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Preface

The 17th International Conference on Wireless Algorithms, Systems, and Applications
(WASA 2022) was held in Dalian during November 24–26, 2022. The conference
focused on new ideas and recent advances in computer systems, wireless networks,
distributed applications, and advanced algorithms that are pushing forward the new
technologies for better information sharing, computer communication, and universal
connected devices in various environments, especially in wireless networks. WASA has
become a broad forum for computer theoreticians, system and application developers,
and other professionals in networking-related areas to present their ideas, solutions,
and knowledge of emerging technologies and challenges in computer systems, wireless
networks, and advanced applications.

The technical program of WASA 2022 consisted of 94 regular papers and 68 short
papers, selected by the Program Committee from 265 full submissions in response to
the call for papers. All submissions were reviewed by at least 115 Program Committee
members in a 115 double blind process. The submissions cover numerous cutting
edge topics: cognitive radio networks; software-defined radio and reconfigurable radio
networks; cyber-physical systems (CPSs) including intelligent transportation systems
and smart healthcare systems; theoretical frameworks and analysis of fundamental
cross-layer protocol and network design and performance issues; distributed and
localized algorithm design and analysis; information and coding theory for wireless
networks; localization; mobility models and mobile social networking; mobile cloud;
topology control and coverage; security and privacy; underwater and underground
networks; vehicular networks; radar and sonar networks; PHY/MAC/routing protocols;
information processing and datamanagement; programmable service interfaces; energy-
efficient algorithms; systems and protocol design; operating system and middleware
support; algorithms, systems, and applications of the Internet of Things (IoT); and
algorithms, systems, and applications of edge computing, etc. In the first place, we
would like to express our grateful appreciation for all Program Committee members
for their hard work in reviewing all submissions. Furthermore, we would like to give
our special thanks to the WASA Steering Committee for their consistent leadership and
guidance; also, we would like to extend our gratitude to the the local chairs (Jingang
Yu, Zumin Wang, and Jie Wang), the publication chairs (Chi Lin, Lei Shu, Guangjie
Han, and Pengfei Wang), the publicity chairs (Zichuan Xu, Haipeng Dai, Zhibo Wang,
and Chenren Xu), organizing chairs (Dongsheng Zhou and Zhenquan Qin), and theWeb
chair (Bingxian Lu) for their remarkable contributions to WASA 2022, ensuring that it
was a successful conference. In particular, we wish to express our deepest respect and
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thankfulness to all the authors for submitting and presenting their outstanding ideas and
solutions at the conference.

November 2022 Lei Wang
Michael Segal
Jenhui Chen

Tie Qiu
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Abstract. Low transaction efficiency remains one of the primary con-
straints to the development of permission blockchain. To enhance the
communication performance of blockchain, the majority of research
focuses on optimizing the local architecture of blockchain and improving
consensus. In practice, increasing the block dissemination capability at
the network layer can significantly improve transaction efficiency. We find
that the redundancy and instability of the gossip protocol as a broadcast
method in Hyperledger Fabric have a significant impact on communica-
tion performance. In this work, we introduce the idea of density cluster-
ing to propose the DC-Gossip broadcast protocol, constructing a stable
network architecture with highly dense connectivity for the blockchain
network layer. This architecture can effectively reduce the propagation
latency and ensure the integrity of the distributed ledger. In our exper-
iments with Fabric, DC-Gossip reduces latency by more than 19% after
40 blocks are propagated in a stable network environment with more
than 100 nodes. Moreover, the latency decreases by 14% in a dynamic
network under the identical circumstances.

Keywords: Blockchain · Hyperledger fabric · Network clustering ·
Transaction latency · Broadcast

1 Introduction

As a form of permissioned blockchain, consortium blockchain has steadily become
the most generally used type of blockchain nowadays due to their features such as
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the strict access control mechanism and the flexible channel. However, like with
other blockchain systems, while the decentralized feature ensures the security
and anonymity of transaction execution, the communication performance issue
of low transaction efficiency is also a significant constraint on the deployment
and development of consortium blockchain. This is mostly because blockchain
utilizes a P2P network to ensure its distributed properties and security, and data
transmission between nodes involves a huge number of duplicated operations.
Certain messages must be sent frequently and passed for an extended period of
time in order to reach the tail nodes of network, inevitably causing delay in the
message [1].

After several transactions are bundled into blocks in Hyperledger Fabric con-
sortium blockchain system, they are delivered to each peer in the channel to
accomplish the task of sharing the ledger data. This mechanism of communica-
tion is based on two distributed protocols: consensus and broadcast. Consensus
efficiency and network dissemination rate are the two most important elements
affecting the efficiency of these two protocols. Among these, the network dis-
semination rate has an effect on not only the time necessary to generate and
propagate blocks over the channel, but also on the speed with which transactions
are distributed among consensus nodes. As a result, increasing the dissemination
rate of the blockchain network is an extremely effective necessary measure for
improving the consortium blockchain communication performance. And, as the
number of peers in current consortium blockchain systems grows, the influence
of broadcasting on the efficiency of sequencing services and block dissemination
becomes more pronounced, which has an increasing impact on communication
performance optimization.

In this paper, we focus on Hyperledger Fabric and analyze the problems of
randomness and unfairness in its gossip broadcast protocol, as well as its redun-
dant dissemination structure. Then, using gossip as the foundation, a dynamic
adaptive and efficient block dissemination structure is constructed by introduc-
ing the idea of density clustering algorithm, and other mechanisms in gossip are
adjusted to minimize the impact of new peers and inactive peers on the network,
culminating in the design of a new high-performance gossip-based broadcast
protocol namely DC-Gossip. DC-Gossip is applicable to large-scale blockchain
transactions and possesses several desirable characteristics, including universal-
ity and practicability.

In summary, the main contributions of this paper are listed below: Firstly
based on the gossip protocol, we improve the traditional epidemic algorithm
of gossip by integrating the high-density connectivity concept of density clus-
tering, which dramatically decreases dissemination redundancy and significantly
reduces block propagation latency. Then by integrating the notion of core objects
and sub-clustering in density clustering algorithms, we were able to reduce the
payload on more than half of the peers. Finally we adopt a deterministic dissem-
ination structure, which eliminates isolated nodes caused by random dissemina-
tion, greatly improves the transmission reliability of the network, and reduces
the probability of incomplete dissemination to a negligible level.
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The rest of this paper is organized as follows. Section 2 summarizes and
discusses several significant research topics and breakthroughs in the field of
permissioned blockchain communication performance optimization, as well as
the present condition of broadcasting research in blockchain field. And Sect. 3
presents central idea and framework of our research. Then, in Sect. 4, the spe-
cific design of each mechanism in DC-Gossip is explained. Section 5 summarizes
the performance evaluation results, compares the upgraded broadcast protocol
to the original gossip module and other schemes via simulation, and analyzes
the experimental data to demonstrate the practicality of DC-Gossip. Finally, in
Sect. 6, we summarize our findings and provide a forecast for the study in future.

2 Related Works and Background

2.1 Communication Performance

At present, the predominant research approach for increasing the communica-
tion performance of permission blockchain is to optimize the local architecture
of blockchain and to enhance the performance and scalability of Byzantine-style
fault-tolerant consensus. For instance, in Zhu Li et al. proposed high-performance
consortium blockchain architecture [2], the business logic execution module is
decoupled from the consensus verification module to simplify the consensus pro-
cess and increase consensus speed; and the storage of block information is opti-
mized using CouchDB to improve the write performance of system. Spengler et
al. employed CouchDB to optimize the storage performance of heterogeneous
medical data in Hyperledger Fabric [3], allowing the blockchain to handle more
complicated and efficient query operations, hence optimizing the consortium
blockchain system’s overall throughput and latency. Marson et al. presented the
MITOSIS approach [4], which utilizes a cell mitosis-like partitioning strategy to
reduce the latency of permissioned blockchain while preserving high scalability
via parallel processing. On the other hand, Yi, and colleagues proposed using
a new threshold digital signature approach based on the NP-Hard problem to
improve the consensus algorithm [5] and used it to create a brand new, more
efficient, and secure blockchain system, which is undoubtedly a classic research
proposal as well. The network layer, which lies between the data and consensus
layers, has received less attention in study than the above two layers. In reality, it
can have a significant positive impact on the overall performance and stability of
the blockchain by optimizing the network structure and enhancing transmission
rate and transmission reliability.

2.2 Broadcast Protocal

As an important distributed protocol in blockchain systems, the broadcast pro-
tocol takes the responsibility of building the topology and passing blocks. The
broadcast protocol, a crucial distributed protocol in blockchain systems, is in
charge of creating the topology and passing blocks. The Hyperledger Fabric uses
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the gossip protocol as a means of distributing data throughout the channel mech-
anism. The Epidemic method, which is used to maintain replicated databases,
made the initial proposal for it in 1987 [6]. The way gossip spreads is similar to
how an infection spreads: after starting the message, the source node will ran-
domly choose several peer nodes to push it to, and the infected node will continue
to push to further peers after receiving it. Repeat the process continually. Until
the message is pushed to the back of the network, the procedure is repeated [1].
The pull and recovery mechanisms are activated to get the missing block content
for it from inside the organization or from other organizations when a peer enters
this network for network reasons or for the first time. However, despite ensuring
the dependability of message distribution, this procedure eventually results in
message redundancy and raises the processing load on peers. Additionally, if the
quantity of objects being pushed is decreased in an effort to lighten the load, it
could result in the formation of isolated nodes and the transmission of missing
data. When the pull mechanism is frequently activated to address comparable
network instability, the propagation latency will eventually increase significantly.

Recently, blockchain performance research centered on broadcast has begun
to garner interest. Weifeng Hao et al. designed the BlockP2P dissemination struc-
ture [7], which employs the K-Means algorithm to cluster nodes and then a paral-
lel spanning tree broadcast algorithm to achieve fast data dissemination between
and within clusters. Subsequent work [8] adds an effective inactive node detec-
tion method to further reduce network payload. Elias Rohrer et al. developed
Kadcast [9], a new lightweight P2P protocol based on the UDP protocol that
not only decreases the communication overhead of P2P networks, but also has
exceptional recovery capabilities in the face of packet loss and random and hos-
tile node failures. Meanwhile both of these methods disregard the applicability
within permission chains, and each routing node is subject to heavy demand;
Nicolae Berendea et al., on the other hand, uses Hyperledger Fabric as a research
object [10] and optimizes the rest of the propagation mechanism to increase the
effectiveness and fairness of the Fabric broadcast layer. They also replaces the
push component in the gossip with the infect-upon-contagion algorithm. But the
trustworthiness of nodes is not taken into account by this enhanced gossip, and
the construction of the network architecture is not well discussed; Ying-Hao Zhan
proposes using a satellite broadcast network for data transmission and consen-
sus tasks [11], rather than the traditional Internet, and proposes an automatic
recovery mechanism for the communication problems inherent in satellite broad-
casting, which significantly increases the throughput of the blockchain system.
However, this broadcast network has some stability issues, and the effectiveness
of the propagation efficiency is also impacted by the network restart recovery
mechanism. In order to propose an integrated front-end, back-end, and middle-
ware blockchain network architecture that increases the resource utilization of
the blockchain system and the security of the network, Gokay Saldamli et al.
enhanced the Randomized Gossip Protocol [12] with a failure detection system
and a self-healing network architecture. Unfortunately, although he optimizes
the storage overhead by enhancing the approach, the architecture is unsuitable
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for large-scale networks, and the bandwidth overhead is still significant when the
surrounding tables are updated.

3 Method Analysis

In a traditional centralized network, the server function is concentrated in a
small number of nodes, making it extremely easy to trigger the single point of
failure problem, and the server nodes are constrained in terms of the number of
concurrent services they can handle due to their hardware configuration. As a
result, the blockchain system that prioritizes fairness and security utilizes a P2P
network. Each node in a P2P network can both receive and supply services to
other nodes. This makes use of the massive endpoint resources and simultane-
ously addresses the two major limitations of centralized networks [1].

The performance of a blockchain is measured in two ways: transmission rate
and transmission reliability [8]. The network layer reflects these two dimensions
as network propagation latency and data coverage, respectively. The shorter the
propagation latency between peers, the faster the entire transmission rate of
blockchain network. The greater the coverage of the block data during network
dissemination, the more robust the network state; on the other hand, the more
peers to which the block is not completely propagated, the less reliable the
network transmission, which is typically caused by the dissemination structure
being unstable and the peer inactivation detection mechanism being imperfect.

To ensure that each peer receives the message in P2P blockchain networks,
the gossip is typically employed for data transmission. However, in order to
implement the idea of contagion in the classic gossip, it is necessary to enhance
network connectedness, i.e., the number of neighbor nodes for each peer in the
network. Because the processing capacity of each peer is limited, this raises not
only the strain on the peers, but also reduces the transmission rate when the net-
work connectivity is excessive. To address this issue, this research recommends
using the clustering idea in order to minimize the network width between linked
peers while maintaining network connectivity.

Clustering algorithms are widely employed in contemporary blockchain net-
work research, particularly in social networks. Such as Wu et al. constructed the
Bitcoin transaction network as an undirected graph and partitioned it using spec-
tral clustering for the goal of interest mining [13]. In a real-world network envi-
ronment, each peer is deployed on a physical machine. Each machine is located
in a different part of the network, and the latency of communication between
them is affected by a variety of factors, including physical distance between the
machines, hardware performance, and bandwidth. Thus, these peers can be con-
ceptualized abstractly as being mapped in a multidimensional vector space with
a propagation latency equal to the Euclidean distance. However, because the
effect of propagation latency is eventually restricted, this vector space remains
low-dimensional, and so high-dimensional clustering algorithms such as spectral
clustering are inapplicable. Other clustering methods, such as K-means, divide
the peers into numerous groups and continue clustering inside each cluster if
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additional divisions are required. However, peers are typically scattered more
consistently and irregularly in this multi-dimensional vector space. As a result,
algorithms like K-means have a tough time dividing effective cluster classes in
this application setting.

On the other hand, density clustering excels at identifying clusters of any
shape and can rapidly and precisely identify outlier points. High-density con-
nected regions can be discovered by density clustering, which enables rapid dis-
tribution of blocks from the leader to other peers in channel, including all leaf
nodes. It is crucial to mention that the approach taken in this research does not
reject outliers when density clustering screens them out; rather, they are kept
in the focus to avoid the high latency peers from compromising the network’s
general stability. This is due to the fact that in practical applications, each peer
in the blockchain network frequently represents a specific user. As a result, it is
not advised to remove users from the network because doing so would violate
the blockchain’s fairness and interfere with the regular operation of applications.

On the basis of the foregoing, we introduce the OPTICS algorithm [14] for
determining density connected relationships among each peer, and how data
propagation through this relationship network can achieve an optimal balance
of multiple dimensions of blockchain network performance. Additionally, because
Optics is insensitive to the input parameters, it is capable of effectively reducing
subjective errors introduced by parameter design. The working mechanism of
each phase of DC-Gossip is depicted in Fig. 1. As it illustrates, its operation
is divided into five distinct stages: initial clustering, block pushing, peer state
changing, requesting recovery, and timed re-clustering. Among them, peer state
changing and requesting recovery work in combination to respond the dynamic
network of channel and ensure transmission reliability.

Fig. 1. Overview of the DC-Gossip



DC-Gossip: An Enhanced Broadcast Protocol in Hyperledger Fabric 9

4 Design of DC-Gossip

4.1 Initial Dissemination Structure

DC-Gossip treats peers in the channel as a data object in the dataset, and the
propagation latency between them is mapped to the Euclidean distance in the
Optics vector space for clustering. Note that the clustering is done in terms
of the organizations within the channel, and that clustering process of each
organization is distinct from the others.

To begin, each organization within the channel elects a leader, which will be
responsible for receiving new blocks from the ordering service. The leader is then
used as the initial input for density clustering, and through iterative recursion,
a large cluster containing leader is identified, and all peers within this cluster
are connected via density, i.e., they can be connected directly or indirectly via
their respective core objects. Within the large cluster, there are numerous small
clusters that correspond to the neighborhoods of each core object. The peers of
each neighborhood have a high degree of trust for one another [15], and all block
dissemination operations take place preferentially within the neighborhood to
which they belong. It is worth noting that the clustering structure generated by
our method allows for some neighborhood overlap. Unlike the completely segre-
gated cluster classes generated by algorithms such as partitioning clustering, the
neighbors in density clustering are members of the same large cluster without
any hierarchical relationship, and the clustering structure is used for data dis-
semination rather than data comparison and analysis, so the presence of partial
overlap has no effect on the operation of broadcast. This is similar to the concept
of redundant pushing in the original gossip module, but the difference is that
less than half of the peers in the density-connected dissemination structure must
perform forwarding duties, and as long as the number of neighboring peers is
kept under control, the load on the entire network will be not exceeded.

If there are still peers in the channel that have not been added to this large
cluster and are not outliers, a random peer from it is used as the initial input
for a new round of iterative identification. As a result of this clustering, one or
more large clusters are generated. Each initial input of large cluster is defined as
the responsible peer, which is responsible for receiving blocks from leader and
propagating them within the cluster during the pushing phase.

The final work is that outliers are accounted for. As previously stated, there
are rarely any outlier points in the practical application of Fabric. Thus, each
outlier is added sequentially to the neighborhood of the core object with the
least delay and also to the large cluster to which the core object belongs in this
mechanism. At this point, the structure of the block dissemination is determined.
Figure 2(a) illustrates a simple example of cluster class partitioning in the form
of a two-dimensional space in which all peers are uniformly distributed in an
irregular pattern, all peers are identified as homogeneous cluster relationships,
and all peers are divided into multiple neighborhoods by density clustering in
order to achieve density reachability among all peers.
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Fig. 2. The density clustering dissemination structure

4.2 Push Dissemination

On the basis of the preceding example, an operational example is assumed to
illustrate the block pushing mechanism associated with this dissemination struc-
ture: upon receiving a new block from the ordering service, the leader records it
to the ledger and deposits it into the buffer. When the buffer is full or the push
interval expires, the message is sent to all peers in this neighborhood. These
peers evaluate the blocks they receive and, if they have not previously received
the same blocks, they repeat the above-mentioned operation of leader. Until all
core objects have completed their own pushing work and returned confirma-
tion messages to their superior core objects, and the leader confirms that it has
received enough messages, at which point the round of pushing ends. Indeed,
this is analogous to the idea of contagion used in the epidemic algorithm [16].
Figure 2(b) depicts a graphical representation of this operational example.

It’s worth noting that the method for selecting the leader is typically deter-
mined by the requirements of the actual application. If the application prioritizes
security and authority of leader, a static election is typically used, in which the
user directly designates a peer as the leader; if the application prioritizes fairness,
a dynamic election is typically used, in which each peer elects its own leader via
some mechanism. When a leader is dropped unexpectedly for special reasons
and becomes inactive, the previously selected election scheme is also continued
and a new leader is elected.

4.3 Responding to Dynamic Changes of Network

A network cannot always be stable, and peers may be inactive and then reacti-
vated, or additional peers may be added to the channel network. The pull and
recovery mechanisms of gossip are intended to address this issue.

Due to the deterministic dissemination structure used in DC-Gossip, the
isolated node phenomenon associated with random gossip dissemination is elim-
inated, and block coverage during the push phase is significantly expanded. As a
result, DC-Gossip eliminates the pulling mechanism and retains only the recov-
ery mechanism. Indeed, recovery has no impact on the propagation latencies in
a stable network [10].
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When a peer goes offline, it is simply marked as inactive and all connections
associated with it are deleted; if the peer is a core object, in addition to the above
operation, an election is held in its neighborhood to elect a peer to assume all of
its responsibilities and become the new core object in that neighborhood; and
when the peer rejoins the network, it is treated as a tail peer and rejoins the same
cluster to which it was originally connected. And when a new peer requests to
join the channel, it is initially assigned randomly to a neighborhood of a cluster.
Following a subsequent re-clustering phase, this new peer will be assigned to a
cluster that is appropriate for it.

When a peer joins the channel successfully, a recovery mechanism is activated
for it. The recovery mechanism of DC-Gossip prioritizes requesting a batch of
its missing blocks from the n peers that have the highest trust value with this
peer, where n is a user-defined value. If a peer is reconnected and was a member
of multiple core objects before inactivation, the peers with the highest trust
degree are the core objects of the clusters of which it was a member prior to
inactivation and the core objects of the cluster to which it is now a member. This
is partly because the smaller the euclidean distance, the greater the trust value,
and partly because the probability of missing ledger contents of core objects is
lower in comparison to tail peers in the neighborhood, and the ledger contents of
multiple core objects are quite reliable when compared together. For newly joined
peers and other tail peers that had only one core object prior to inactivation, they
can directly request data from the leader, as the trustworthiness of the ledger
content of a single core object is poor, and the leader, as the role of receiving
blocks directly from orderers, is bound to have the most complete ledger.

4.4 Timed Re-clustering

Since the state of the peers in the network is always changing, if the same
dissemination structure is always used, efficiency will inevitably decrease over
time. To avoid this solution, periodic re-clustering is required, and DC-Gossip
defines a life-cycle du in which the peers that remain online at the end of the
du are used to generate a new dissemination structure. A special case must also
be considered here: when the du is complete, if any peers are still performing
dissemination work, they wait for it to complete before performing re-clustering.
If the peer receives a new block during the waiting time, it temporarily stores
it in the cache and waits for the new dissemination structure to be determined
before pushing the blocks in the cache in an orderly fashion. If a inactive peer
applies to rejoin following the determination of the new dissemination structure,
it is immediately added to the cluster of a particular core object.

5 Evaluation

This section will focus on evaluating the performance improvement of DC-Gossip
in Fabric. We examine the performance differences on various dimensions, such
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as block push latency, propagation latency in dynamic networks, and the prob-
ability of block incomplete dissemination, between DC-Gossip and the original
gossip protocol, as well as the K-Means-based clustering technique described in
BlockP2P-EP [8].

5.1 Experimental Setup

Table 1. Experiment basic setup

Bandwidth Block
size

Interval
of block
sending

Initial
number
of peers

Latency
range

Forwarding
delay

Block
generation
interval

eps MinPts

5 Mbps 1 kb 15 ms 100 1–30 ms 0–3 ms 15ms 3 10

This experiment simulates the blockchain network environment under Fabric
v2.2 using the NS-3 network simulator and a network animator named NetAnim.
The experimental program begins with the deployment of 100 peers, each of
which establishes a P2P connection with each other to represent peers belonging
to the same channel in the Fabric network.

Table 1 summarizes the basic parameters of the simulation experiment,
including the network form, bandwidth, block size, block sending interval, initial
number of peers, and latency range, etc. The initial number of peers refers to
the number of peers in the same channel at the start of the blockchain network,
while the latency range refers to the range of propagation latency between peers
in the channel, which defines the size of a vector space with latency defined as
the euclidean distance. MinPts and eps are the minimum number of objects in
the neighborhood and the radius of neighborhood in Optics respectively. Due
to the fact that this experiment is simulated using simulation software, certain
parameters cannot be set identically to those on a real Fabric network due to
environmental constraints. But that these parameters are based on actual Fabric
parameters and the best values are determined through numerous experimental
comparisons, it is still possible to observe the relative merits and drawbacks of
various approaches based on them.

5.2 Comparison Results

We conduct an experiment during the push phase to compare the performance
of various programs under identical conditions. Since a peer pushes a block to
random fout peers when it firstly receives one in Fabric’s gossip module, where
fout defaults to 3, we created two gossip reference objects in this experiment,
one with fout set to 3 and another with fout set to 10.

This experiment establishes two performance metrics: propagation latency
and the probability of incomplete dissemination. The performance difference
between the three analogues during the pushing phase is depicted in Fig. 3.
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As illustrated on Fig. 3(a), the density structure reduces the pushing latency
of a single block by a whopping 87% when compared to the original gossip
module with the default fout parameter. Additionally, as the number of pushed
blocks increases, the two sides maintain a constant latency differential. It has
a significant advantage even when compared to a gossip module with fout set
to 10. In real-world applications, the fout parameter cannot be set to a large
value, such as 10, since each peer is required to perform the push task in the
gossip mechanism, otherwise the network will be overburdened. Additionally,
the K-Means scheme performs poorly during the push phase, and as transaction
duration increases, its overall latency even approaches that of the original Fabric
gossip module.

Fig. 3. Comparisons in push phase

On the other hand, as illustrated on Fig. 3(b), the probability of incomplete
dissemination of original gossip module is always set to a high value when using
the default fout parameter. While the probability of incomplete dissemination
decreases slightly as the number of block pushes increases, it remains relatively
high at around 6%. By contrast, each round of pushing in DC-Gossip ensures that
all peers receive the blocks, and the probability of incomplete dissemination is
always 0%. At fout = 10, the original gossip module also significantly reduces the
probability of incomplete dissemination, but again, this is based on the premise
of sacrificing load of peers.

The following set of experiments will compare the propagation performance
of each scheme in dynamic networks. To simulate the unstable state of nodes
in a real network environment, we set several random time parameters so that
every other period, some peers will become inactive or new peers will request to
join the network. The requesting peer may be brand-new or reconnected after
inactivation. Upon joining the network, the peer will immediately initiate the
recovery mechanism and request a batch of missing blocks from others in the
channel. The new parameter settings for this experiment are summarized in
Table 2, which contains several random parameter value ranges used to simulate
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the changes in the network, as well as the number of peers with different dynamic
changes for each group comparison.

Table 2. Parameter setup for a dynamic network

Number of
blocks

Number of
newly
joined peers

Number of
inactive
peers

Interval
between
peers
joining

Interval
between
peers
inactivation

Interval
between
reconnect-
ing

1 3 1 8–15ms 10–20 ms 15–25 ms

10 15 10 8–15ms 10–20 ms 15–25 ms

20 20 15 8–15ms 10–20 ms 15–25 ms

30 25 20 8–15ms 10–20 ms 15–25 ms

40 30 25 8–15ms 10–20 ms 15–25 ms

Figure 4 illustrates the performance differences between the schemes as the
network dynamics change. As illustrated on Fig. 4(a), as the transaction pro-
cess lengthens, the network structure is constantly evolving, but a constant gap
is maintained between the two methods. For example, even when fout = 10,
the total latency for the original gossip module remains 40–50 ms longer than
DC-Gossip. This demonstrates DC-Gossip mechanism’s superior applicability in
dynamic network. But the K-Means scheme still causes high latency in dynamic
networks. Figure 4(b) also demonstrates that regardless of the number of blocks
in a round of dissemination, block dissemination in the clustering structures
which include Optics and K-Means always maintains a very high accuracy, with
only a extremely small number of blocks failing to be received by target peers
due to transaction conflicts. To ensure comparability, it is worth noting that the
original gossip module, like DC-Gossip proposed in this research, omits the pull
mechanism and instead relies on the recovery mechanism to reduce the proba-
bility of incomplete dissemination caused by dynamic changes in the network.

Fig. 4. Comparisons of responding to dynamic network changes
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To verify the reasonableness of the trade-off made in our research, we con-
ducted the next experiment. Additionally, this experiment is conducted in a sim-
ulated dynamic network environment, with the parameters specified in Tables 1
and 2. This experiment compares the performance of DC-Gossip when using the
pull and recovery mechanisms respectively, while maintaining the same start-up
times. As illustrated on Fig. 5(a), the difference in propagation latency between
the two is negligible, especially as the number of blocks increases, the latency
of both mechanism is nearly equal. But Fig. 5(b) demonstrates that the proba-
bility of incomplete dissemination with the recovery is significantly lower than
the incomplete propagation rate with the pull, particularly when the number of
blocks is large. The probability of incomplete dissemination with the recovery
remains low at around 2%, while that with the pull continues to climb.

In reality, however, even a low probability of 2% may compromise the ledger’s
integrity and traceability within the channel. The reason for this result is that the
interval between blocks generation is set to a small value due to the limitation
of simulation software, which results in the possibility of transaction conflicts
when the same peer receives blocks from multiple parties, and preventing the
blocks from being successfully recorded to the ledger. To verify this argument,
we increase the interval between blocks generation to 50 ms in simulator, and a
further propagation experiment with 40 blocks is conducted using the recovery
mechanism with 30 new peers and 25 inactive peers. The probability of incom-
plete dissemination is found to be reduced to 0.16%, which is an acceptable rate
for the blockchain system. Of course, if we want to further reduce the probability
of incomplete dissemination, we can keep the pull mechanism in the DC-Gossip,
but its activation frequency must be significantly reduced.

Fig. 5. Comparisons of pull and recovery in density clustering structure

The preceding three experiments are conducted in a vector space with a uni-
form and dense peer distribution, a distribution that is more representative of
the network environment in which blockchains are used in practice. However,
the case in which the peers in a channel are distributed across multiple clusters
should be considered as well. The fourth experiment simulates the performance
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Table 3. Parameter setup for a dynamic network

Number of
peers

Range of
latency

Number of
new peers

Number of
inactive peers

Number of
blocks

100 1–30ms 15 10 10

150 1–45ms 20 15 10

200 1–57ms 25 20 10

250 1–75ms 30 25 10

300 1–95ms 35 30 10

disparities between the various schemes when multiple clusters are used. During
the process of experiment, it was observed that DC-Gossip divides the initial
100 peers into three clusters using the Optics, and the latency of peers within
each intra-cluster ranges from 1–30 ms, while the latency of peers between inter-
clusters ranges from 30–60 ms. Additionally, because the distribution of peers is
quite different in this experiment than in the previous three, the density clus-
tering parameters are changed to eps = 5 and MinPts = 6.

By examining the display results on Fig. 6(a), it is clear that DC-Gossip
has an overwhelming advantage in terms of propagation latency over the orig-
inal gossip module in the case multi-cluster dispersion. This is because density
clustering is extremely effective at identifying cluster classes and planning a
reasonable propagation method accordingly. The gap between the two sides is
roughly doubled when compared to the single-cluster case. And as the number of
blocks increases, this advantage becomes increasingly apparent. Even when it is
used, the latency is reduced by approximately. Concerning the incomplete prop-
agation rate, Fig. 6(b) also demonstrates that DC-Gossip is significantly lower.
The reason why the K-Means method is so ineffective is because it is difficult to
calculate the aggregated nodes using only the network latency, and the method
of network coordinate system [17] and error function to calculate an aggregated

Fig. 6. Comparisons in the case of multi-cluster
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node matching function. This strategy can also be tried to be implemented into
DC-Gossip in the future.

Each of the preceding four experiment compares the performance of multiple
objects in a variety of scenarios using the same number of peers and blocks as
the variable. However, the maximum number of peers in a channel is not always
100 in real-world. To demonstrate that the method proposed in this research is
also applicable to a larger number of peers, the fifth experiment will compare
the performance of the various schemes at various peer counts, which will be
using a constant number of blocks and a variable number of peers. Due to the
fact that the experimental variables are altered in this experiment, several of the
parameter settings listed in Tables 1 and 2 must be altered. Table 3 summarizes
the modified parameter settings. It’s worth noting that this experiment simulates
a situation in which a variable number of peers join the same channel, and in this
case, the distribution range of all peers in the vector space cannot be constant.
Therefore, the range of propagation latency values between peers is continuously
expanded as the total number of peers increases in this set of experiments. In
addition, the K-Means scheme was not introduced in this set of experiments
to ensure the fairness of the experimental comparison because the number of
clusters and the hierarchy of clusters in K-Means had to be manually altered
due to the growing size of the network in this set of experiments.

Fig. 7. Comparisons in the case of various number of peers

As illustrated on Fig. 7(a), the density clustering broadcast mechanism’s
optimization capability in terms of propagation latency becomes increasingly
apparent as the number of peers in the channel increases. When the number of
peers is 100, the propagation latency gap between the clustering structure and
the original gossip module is 71 ms; when the number of peers is 300, this gap
has increased to 199 ms, which is an increase of 280.8%. This demonstrates the
applicability of the law of large numbers in this case: the more peers, the more
efficiently a density clustering structure with a similar propagation process to
the contagion algorithm can perform. At fout = 10 the propagation latency of
the original gossip module is unstable and fluctuating, but always within a small
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margin of DC-Gossip. As shown on Fig. 7(b), the original gossip module with
only the recovery mechanism maintains a high incomplete propagation rate of
5% regardless of the number of peers, but the addition of the pull mechanism
inevitably causes it to spend more time disseminating. In comparison, DC-Gossip
has no transaction conflicts or missed dissemination at high peer counts and
always guarantees complete dissemination at a push count of 10 blocks.

6 Conclusion

To enhance the communication performance of permissioned blockchain and
address the issue of inefficient intra-blockchain transactions, we proposes a
broadcast mechanism named DC-Gossip. By introducing the idea of density
clustering, DC-Gossip is capable of constructing a deterministic structure based
on the distribution of peers within the current network. When this network
structure is used for block dissemination, the latency and the number of invalid
propagation can be significantly reduced while maintaining the load balance of
each peer.

In terms of theoretical research on network structure construction, the cover-
age of the algorithms discussed in this paper is insufficient, and subsequent work
will focus on exploring other algorithms in machine learning to combine a more
efficient broadcasting method. Due to the limitations of the simulation environ-
ment, properties such as the life cycle of the network structure could not be
demonstrated in the experiments to validate the theory, despite our considera-
tion of various scenarios in block propagation. Subsequent work will concentrate
on deploying DC-Gossip in a real Fabric environment in order to confirm the
superiority of our method and continue to improve it. We also intend to add a
trust value mechanism and incentive mechanism [18] in community detection to
increase the security of the network and the reliability of transactions.
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Abstract. With the development of the industrial Internet, IEEE Time-
Sensitive Networking (TSN) has attracted more and more attentions
due to its capability of providing deterministic network performance.
Unlike most existing studies that only considered a single type of traffic,
our work addresses the scheduling problem of mixed-criticality traffic in
TSN. Time utility function (TUF) is a utility curve that measures the
quality of service (QoS) of streams with respect to end-to-end delays. In
this paper, we introduce a variety of TUFs for different streams in TSN
according to specific timing requirements. To match the transmission
protocol of TSN, we first categorize mixed-criticality traffic into periodic
and aperiodic streams, and then design a novel scheduling scheme aiming
to maximize the total TUF value of all streams. We compare our pro-
posed scheme with two benchmark schemes, and evaluation results show
that our proposed one outperforms the counterparts, especially under
the worst-case network settings.

Keywords: Time sensitive network · Mixed-criticality traffic
scheduling · Time utility function · QoS

1 Introduction

Time-sensitive networking (TSN, IEEE Std 802.1Q [1]) is an emerging network
technology, designed for providing the deterministic network performance with
low latency and high reliability, and thus it has been more and more widely
used in the field of industrial Internet. TSN is a collection of sub-standards. For
example, time-aware shaper (TAS, IEEE Std 802.1Qbv) is particularly for deter-
ministic transmission control by configuring the open and close states of the gate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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control list in an offline manner. Credit-based shaper (CBS, IEEE Std 802.1Qav)
is for preventing low-priority traffic from starving through bandwidth reserva-
tion. In addition, frame preemption (IEEE Std 802.1Qbu) improves scheduling
performance by allowing high-priority frames to preempt low-priority ones, and
frame replication (IEEE Std 802.1CB) is for reducing the packet loss of frame
transmissions.

For applications with mixed-criticality traffic, TSN is gradually replacing
existing transmission protocols and becomes a new generation of unified stan-
dards. One main challenge of scheduling mixed-criticality traffic is that each
stream has a specific timing requirement, leading to different utility values per
unit of delay. This necessitates to introduce a measurement index to compre-
hensively characterize the relationship between streams’ end-to-end delays and
utility values. Time utility function (TUF) [2], which records the utility value of
each stream generated by the application from the talker to the listener, has thus
been introduced. It is worth noting that there are two kinds of fundamentally
different traffic in TSN, i.e., hard real-time (HRT) and soft real-time (SRT),
depending on whether there is a strict deadline for the end-to-end delay. Hence,
well designed TUFs should be able to depict these features.

In practice, according to traffic arrival patterns, mixed-criticality traffic may
be time-triggered (TT) or event-triggered (ET). TT traffic is commonly known as
periodic, while ET traffic is often regarded as aperiodic. The periodic streams are
offline schedulable, and there has been a lot of research on managing such traffic
in TSN [3–6]. For scheduling aperiodic traffic, the recent work [7–11] introduced
the new transport mechanism. Nevertheless, most existing studies only consider
to optimize the performance of either periodic or aperiodic traffic in TSN, while
few consider to optimize both performance jointly.

In this paper, we propose a novel scheme to jointly address the transmission
scheduling problem of mixed-criticality traffic consisting of both periodic and
aperiodic streams, which can be either HRT or SRT. Particularly, we model the
TUF of each stream as a specific non-increasing function characterizing HRT or
SRT. Then, for maximizing the total TUF value of all streams, we propose a
scheduling scheme integrating a novel sieving strategy for periodic streams and
an approximate online algorithm for aperiodic streams.

The main contributions of this paper are summarized in the following.

– We optimize the traditional network constraints in TSN, which takes into
account different forms of TUFs for both periodic and aperiodic streams.

– Under the condition of limited transmission capacity, we design a novel sieving
strategy for scheduling periodic streams, and then propose an approximately
optimal algorithm for scheduling aperiodic streams in an online manner.

– We apply constraint programming solver in the implementation for produc-
ing the corresponding scheduling decisions. Then, numerical simulations are
conducted to show the superiority of the proposed scheduling scheme over
counterparts.

The rest of this paper is organized as follows: Section 2 presents the sys-
tem model and problem description. In Sect. 3, a novel scheduling scheme for
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managing mixed-criticality traffic transmissions is proposed. Simulation results
are shown in Sect. 4, followed by conclusions in Sect. 5.

2 System Model and Problem Description

In this paper, we model the TSN network as a directed graph G(V,L), where the
node set V consists of TSN switches (SW) and end devices (ED), the link set L
includes the full-duplex communication links connecting all nodes. For example,
[va, vb] ∈ L indicates the link from node va to node vb.

In the application level, we consider that each task is generated by a talker’s
CPU, and the start time of its transmission process is the instant when the first
bit of its first stream enters the TSN domain, and this transmission process ends
when the last bit of the last stream leaves the TSN domain. After receiving all
streams, the listener hands over the data to the upper layer for certain applica-
tion purposes. Figure 1 shows the transmission process of streams between end
devices. Each stream is associated with a specific TUF (either HRT or SRT),
whose value is calculated with respect to the end-to-end delay.

Fig. 1. Transmission process in the
application level.

Fig. 2. An illustration of fragmented frames
of a stream.

In the TSN domain, information contained in the application is transmitted
in units of streams. We denote the input streams set by S. A stream si ∈ S
is defined by a tuple < si.TUF, si.e2e, si.D, si.T, si.Size >, where si.TUF and
si.e2e represent the time utility function and end-to-end delay of the stream,
respectively; si.D denotes the time instant when the value of si.TUF turns to
zero; si.T and si.Size are the period and length of the stream, respectively. We
define si.T = 0 if stream si is aperiodic.

Each stream is further fragmented into multiple frames, i.e., si =
{fi,1, fi,2, ..., fi,j , ..., fi,|si|}, ∀si ∈ S, |si| = � si.Size

τ �, where τ is the frame
size of stream si. The jth frame transmission instance of stream si from
va to vb is represented by f

[va,vb]
i,j , and each of them is defined by a

tuple < f
[va,vb]
i,j .Size, f

[va,vb]
i,j .η, f

[va,vb]
i,j .φ, f

[va,vb]
i,j .L >, where f

[va,vb]
i,j .Size and

f
[va,vb]
i,j .η separately represent the frame’s length and arrival time; f

[va,vb]
i,j .L =
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� f
[va,vb]
i,j .Size

[va,vb].s
� is the transmission time of f

[va,vb]
i,j ; and f

[va,vb]
i,j .φ represents the

time when the frame actually starts to be transmitted from va to vb. Obviously,
the period of frame fi,j equals that of stream si. Figure 2 illustrates the physical
meaning of all introduced parameters and the relationship between stream si

and each of its fragmented frames fi,j .
For the set of a variety of input streams S = Sp ∪ Sa with a variety of

TUFs, where Sp and Sa denote the subsets of periodic and aperiodic streams,
respectively, we are interested in finding an appropriate transmission scheduling
scheme for maximizing the total TUF of all streams, i.e.,

max O =
∑

si∈Sp

si.TUF (si.e2e) +
∑

si∈Sa

si.TUF (si.e2e).

To this end, we are required to determine: how the offset of each fragmented
frame, i.e., f

[va,vb]
i,j , is determined either in an online or an offline manner, so as

to well control the end-to-end delay performance.

3 Proposed Scheduling Scheme

To schedule mixed-criticality traffic in TSN, we assign all periodic streams into
the TT queue, and the reason is that periodic streams can be offline controlled
by the gate control list, so that given a series of network constraints, the existing
optimization solver can produce a solution that meets all constraints (Section
III-A). For periodic streams that have lower TUFs, we can then move them out
from the TT queue according to the designed stream scheduling strategy (Section
III-B), which reserves time slots for the transmission of aperiodic streams. For
aperiodic streams, we design an online transmission algorithm to further improve
the total TUF value (Section III-C).

3.1 Stream Scheduling Constraints

Scheduling periodic streams in TSN needs to follow basic network constraints [3].
Suppose there is a stream si from talker vsrc to listener vdest, passing through
the intermediate nodes v1, v2, · · · , vm−1, vm. Denote the routing path of si by
Rsi

= [[vsrc, v1], [v1, v2], · · · , [vm−1, vm], [vm, vdest]]. Thus, for periodic stream set
Sp = {s1, · · · , sn}, our objective function becomes

n∑

i=1

si.TUF (si.e2e) =
n∑

i=1

si.TUF (f [vm,vdest]
i,|si| .φ + f

[vm,vdest]
i,|si| .L − f

[vsrc,v1]
i,1 .η),

where (f [vm,vdest]
i,|si| .φ+f

[vm,vdest]
i,|si| .L) represents the time when the last frame com-

pletes transmission, and f
[vsrc,v1]
i,1 .η represents the time when the first frame

begins transmission.
The constraints for scheduling periodic streams are as follows:
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1) Capacity constraint: In a hyperperiod, the total time slots occupied by sched-
uled periodic streams cannot exceed the maximum time slots capacity C allo-
cated to the periodic traffic.

2) Frame constraint: The time instant when a periodic frame starts to be trans-
mitted must be no earlier than its arrival time. At the same time, the frame
must complete transmission before the beginning of next period.

3) Slack size constraint: In order to prevent aperiodic streams from starving,
resulting in excessive loss of TUF value of aperiodic streams, we refer to [8]
and introduce slacks between periodic frame transmission. We set the lower
bound of slacks to X, where X can be dynamically adjusted according to
practical settings. At the same time, the slack size should be no larger than
the difference between the frame period and its transmission time.

4) Time slots reservation constraint: Any two frames cannot be overlapped when
they are transmitted on the same link. Based on this, we reserve the slack
size between frames according to constraint 3).

5) Frame isolation constraint: In order to avoid the jitter caused by interleaving
of frames from different streams when using the same queue, we introduce
the frame isolation constraint [3].

6) End-to-end constraint: The TUF value of the periodic stream received by the
listener must be greater than 0. In other words, the periodic streams must be
delivered within their deadlines si.D.

3.2 Sieving Strategy for Scheduling Periodic Streams

Since the total time slots occupied by periodic streams cannot exceed the speci-
fied capacity C (subject to constraint 1)), we have to sieve the periodic streams
for maximizing the resulting TUF value.

One possible way is to sort all periodic streams according to their potential
utility density (PUD) [12], which measures the average TUF value of each stream
from si.η to si.η + si.D. For any periodic stream si ∈ Sp, We construct a TUF
measurement index of a single stream denoted by si.PUD, where si.PUD =∫ si.η+si.D

si.η
TUF (t)dt

si.D
. We call the stream sieving strategy based on the PUD

value as PUD-based scheduling strategy.
Algorithm 1 is used to calculate the injection time for periodic streams within

the O(n) time complexities. The scheduling order of periodic streams is deter-
mined by their PUD value (Line 1). Then for each sorted stream, the solver will
check whether the stream to be scheduled satisfies the above constraints (Lines
3–4). If the solver returns feasible, the stream will be assigned to the scheduled
set; otherwise, the stream will not be scheduled (Lines 5–9). However, sieving
streams based on the average TUF value may not be accurate since the value
of actual TUF will be affected by the queuing delay during the transmission
process, which makes the end-to-end delay and actual TUF value uncertain.

Another possible way is to make the end-to-end delay of the stream deter-
ministic, that is, to avoid queuing delay, we refer to [5] to introduce the no-
wait scheduling method. The end-to-end delay of a stream adopting the no-wait
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Algorithm 1 PUD-based Scheduling Strategy
Input: Unscheduled periodic stream set Sp ={s1,...,sn}
Output: Scheduled periodic stream set Sp∗ ={s1,...,sm} (m ≤ n)
Initialization: si.φ = si.η, i ∈ [1, n] Sp∗ = ∅
1: Sort the PUD value of the stream from high to low
2: for si ∈ Sp do
3: Put stream si into solver
4: Check the satisfaction of constraints: 1),2),3),4),5),6).
5: if solver returns infeasible then
6: Continue
7: else if solver returns feasible then
8: si → Sp∗

9: end if
10: end for
11: return Sp∗

scheduling method is equal to the transmission delay of each hop multiplied by
the number of hops (we ignore the processing and propagation delay in TSN
domain for simplicity). Then, the no-wait scheduling constraint can be given as:

si.e2e =
|si|∑

j=1

hopnum−1∑

k=1

f
[vk,vk+1]
i,j .L,∀si ∈ Sp.

In this way, the TUF value of each stream is maximized with certainty
because of eliminating the queuing delay, and we sieve the streams based on
their own deterministic TUF values from high to low. We call this stream sieving
strategy based on the deterministic TUF value as no-wait TUF-based scheduling
strategy. Compared to Algorithm1, the scheduling order of no-wait TUF-based
scheduling strategy is determined by deterministic TUF value. Besides, the no-
wait constraint is added to solver. However, in the worst case, for example, all
periodic streams arrive at the same time, then the no-wait TUF-based schedul-
ing strategy can only reserve one periodic stream, leading to a low utilization
efficiency. In order to avoid the aforementioned issues, we use the number of
periodic streams that can be scheduled (schedulability) as the selection criterion
to choose between two strategies, called joint algorithm, which can reduce the
end-to-end delay of streams without losing schedulability in certain cases. The
scheduling result of periodic traffic will eventually generate a gate control list
(GCL), which records the time slots that periodic streams are allowed to pass.

3.3 Online Algorithm for Scheduling Aperiodic Streams

After completing scheduling of periodic streams, the aperiodic streams are sched-
uled for transmission in the time slots reserved for them according to GCL. It
is not suitable to put aperiodic streams into the TT queue in the TSN switch
because of the randomness of their arrival times. We choose to put all aperiodic
streams into the AVB (Audio Video Bridge) queue in the TSN switch.
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Algorithm 2 ASDT Algorithm
Input: si: the stream head of the AV Bj queue, j ∈ [1, QueueNum]

1: for j = 1 to QueueNum do
2: if AV Bj .cbs ≥ 0 then
3: if si.TUF (t) == 0 then
4: Discard si from AV Bj ;
5: Continue;
6: end if
7: Δt =

si.Size

[va, vb].s
;

8: si.TUF loss = si.TUF (t + Δt);

9: AV Bj .TUF loss =

∑AV Bj .streamNum

k=2 sk.TUF (t + Δt)

(AV Bj .streamNum − 1)
;

10: if si.TUF loss < AV Bj .TUF loss then
11: si → end of the AV Bj ;
12: else
13: Transmit si;
14: end if
15: end if
16: end for

To improve the TUF value of aperiodic streams, we propose an aperiodic
stream dynamic transmission algorithm, called ASDT, as shown in Algorithm 2.
The ASDT algorithm cyclically traverses AVB queues from high to low priorities.
In each iteration, ASDT checks the state of the stream at the head of current
queue AV Bj . The stream si will be discarded from the queue if si.TUF = 0
(Lines 3–6). Before si starts transmission, ASDT precalculates the TUF value of
si and the average TUF value of the queue except si after si completes transmis-
sion, denoted by si.TUF loss and AV Bj .TUF loss, respectively. If si.TUF loss
is smaller than AV Bj .TUF loss, the stream si will not be allowed to transmit
and will be put at the end of AV Bj (Lines 10–11), which reduces the end-to-end
delay of the stream with higher TUF values.

4 Experimental Evaluation

In this section, we simulate the transmissions of mixed-criticality traffic with
different TUFs in the TSN. We use a solver, called constraint programming,
to produce the corresponding optimal scheduling decisions. All algorithms are
written in Python and run on a PC with a 2.9GHz CPU and 8 GB of memory.

Consider line topologies (as shown in Fig. 1) with two TSN switches and
four end devices. Six periodic streams and six aperiodic streams are generated
by two end devices and sent to the other two end devices, where each stream
contains one frame with 1542 Bytes. We choose the linear TUF to represent soft
real-time traffics. The initial TUF value of the stream is selected from [1000,
2200] randomly, while the arrival time of all streams is random over [0, 200]
microseconds. We call our proposed scheme JA-ASDT, which is a combination
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of joint algorithm and Algorithm2, and we compare JA-ASDT for scheduling
mixed-criticality streams with the following two common schemes: SA and NSA.
SA adopts the PUD-based scheduling strategy (Algorithm 1) for periodic streams
and FIFO for aperiodic streams [8]. NSA also adopts the PUD-based scheduling
strategy, but it does not reserve slacks for aperiodic streams [3].

We simulate a number of different transmission scenarios by changing the
network settings, and among these scenarios, Fig. 3 illustrates the measured min-
imum TUF value of streams with respect to different capacity limit of periodic
streams. The unit of the capacity we set is exactly the time slot that a stream can
pass. As can be seen in Fig. 3(a), the proposed JA algorithm will give priority to
the no-wait streams without loss of schedulability. As shown in Fig. 3(b), the JA
algorithm not only reserves time slots for aperiodic streams, but also the ASDT
algorithm better improves the TUF value of aperiodic streams. Lastly, Fig. 3(c)
shows the results of all streams, and it is obvious that the proposed JA-ASDT
outperforms the others.

Figure 4 reveals the relationship between TUF value and slack size when the
capacity of periodic traffic is severely limited (i.e., four units). Also, the unit of
slack size we set is the time slot that an aperiodic stream can pass. As shown in
Fig. 4(a), TUF value of periodic streams in SA algorithm will gradually decrease
with the increase of slack size due to the queuing delay, and the part where JA is
higher than SA is when the no-wait TUF-based strategy takes effect. Figure 4(b)
shows the superiority of the ASDT algorithm for aperiodic stream scheduling.
In general, Fig. 4(c) shows that the proposed JA-ASDT can always achieve a
better performance than that of SA under mixed-criticality traffic.

Fig. 3. Worst TUF value with respect to the capacity limit of periodic streams.

Fig. 4. TUF value with respect to the slack size.
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5 Conclusion

In this paper, we design a time utility function (TUF) driven scheduling scheme
for managing mixed-criticality traffic in TSN. We consider that mixed-criticality
traffic can be categorized into either periodic or aperiodic streams. For maxi-
mizing the total TUF value of all streams, a novel scheduling scheme integrating
a sieving strategy for scheduling periodic streams and an online algorithm for
scheduling aperiodic streams has been proposed. Simulation results show that
the proposed scheduling scheme can significantly improve the total TUF value
for streams in TSN under the worst-case network settings compared to the state-
of-the-art schemes.
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Abstract. In response to the vast and ever-changing task demands of
vehicle terminals, the edge-assistant vehicular network (EAVN) supported
by the mobile computation offloading (MCO) technic constituted a new
paradigm for improving system performance. The existing edge resource
trading mechanisms in EAVN were all centralized processing and suffered
from several critical drawbacks of the centralized systems, which inspired
the research design of distributed trading mechanisms. In this paper,
we proposed an efficient distributed reverse combinatorial auction-based
trading mechanism under the anti-manipulation check, namely DRCA, to
solve the joint multi-task offloading and multi-resource allocation prob-
lem in EAVN with overlapping areas, and prevent the participants from
manipulating the auction results. We proved that DRCA has achieved
the property of faithfulness and analyzed its network complexity. Besides,
compared with existing auction-based mechanisms, DRCA could achieve
suboptimal social welfare with relatively low system overhead.

Keywords: Edge-assistant vehicular network (EAVN) · Distributed
incentive mechanism · Multi-resource allocation

1 Introduction

Over the past decade, the vehicular network was regarded as an effective way to
provide innovative services and improve road capacity by connecting vehicles to
resource-rich processing servers. Via V2X communication methods, for example,
Vehicle-to-Vehicle (V2V), Vehicle-to-Network (V2N), Vehicle-to-Infrastructure
(V2I), and Vehicle-to-Pedestrian (V2P), the emergence of 5G-related technologies
has brought enticing prospects to vehicular networks [5]. Besides, technological
advances have promoted new computation-intensive artificial intelligence appli-
cations which will generate massive data in a short time. However, it is difficult
for resource-limited vehicles to process massive data separately and also hard to
transfer these data to remote servers for real-time analysis. To cope with the vast
and constantly changing task demands of vehicles, edge-assistant vehicular net-
work (EAVN) supported by mobile computation offloading technic constitute a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 31–43, 2022.
https://doi.org/10.1007/978-3-031-19211-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_3&domain=pdf
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new paradigm for improving system performance [10]. Real-time data processing
for onboard tasks is provided by surrounding edge nodes, such as base stations
(BSs) and road side units (RSUs). Hence, we found an edge resource trading mech-
anism in EAVN to meet requirements of RSUs and vehicles.

Traditionally, trading mechanism was controlled by an auctioneer in a cen-
tralized manner [6,8,9]. In effect, centralized auctions in EAVN have following
drawbacks [4]: (1) The centralized auction required transmitting all the relevant
information to a trusted center, but actually the trusted center did not always
exist in the real EAVN scenario. (2) The transmission overhead and the compu-
tational burden caused on the trusted center were both unmanageable in large-
scale EAVN. (3) Most centralized auction mechanisms were not robust. Once the
trusted center breaks down, the entire trading system would collapse. To enhance
the performance of resource deals, some distributed incentive mechanisms
had been designed. Due to the heterogeneity of edge resources [1,13,15], the
probability of multi-task demands [2,7,14,15], the allocation decisions of over-
lapping areas [13,14], and possibility of manipulating results [1,2,7,14] were not
considered in, mechanisms mentioned above could not be applied to solve our
problem. The consistency of the messages, the unreliability of delivery, and the
sensitivity to task delay ought to be considered further.

To tackle the above weaknesses, designing a distributed auction-based multi-
resource trading system in EAVN has the following challenges: (1) It is still
a huge challenge for auction designers to handle heterogeneous task demands
from vehicles while allocating heterogeneous types of edge resource without global
information of overlapping bids. (2) Both communication overhead and com-
putation burden of the entire network need to be carefully managed in mecha-
nism design. (3) In the absence of auctioneers, the distributed auctions were con-
ducted by participants themselves who may take chances to manipulate the auc-
tion results through message-passing, information-revelation, and computational
actions.

The contributions of this paper were summarized as follows: (1) To the best
of our knowledge, we are the first to consider the distributed incentive mechanism
design for the joint multi-task offloading and multi-resource allocation problem
in EAVN. We proposed an efficient distributed reverse combinatorial auction-
based multi-resource trading mechanism to solve the NP-hard winner determi-
nation problem. (2) The anti-manipulation check was added to the mechanism
to resist manipulations of auction result. The mechanism was designed to ensure
the property of faithfulness, which means that RSUs would faithfully bid and
complete the assigned tasks. (3) The mechanism we proposed led to suboptimal
social welfare with acceptable network complexity. In addition, the simulation
results of this method showed good performance in terms of social welfare with
relatively low system overhead.

2 System Model

Initially, we introduce the main characteristics of the RSUs and the vehicles.
Next, to model the interactions between the RSUs and the vehicles, we display a



Faithful Distributed Incentive Mechanism Design 33

distributed reverse combinatorial auction framework. Besides, some basic assump-
tions are presented in detail, and the key parameters of the system are summarized
in Table 1.

Fig. 1. Illustration of (a) system model and (b) auction process with numerous RSUs
and vehicles in EAVN scenario.

2.1 Network Model

As shown in Fig. 1(a), we raise a typical EAVN scenario, which contains a
group of geographically distributed RSUs and a set of vehicles, denoted by
I = {1, 2, . . . , i, . . . , I} and M = {1, 2, . . . ,m, . . . ,M}, respectively.

On the one hand, to obtain better computation performance, vehicle m
with limited local computation capacity fm want to rent edge resource for a set
of computation-intensive tasks Tm. The “nth” task from vehicle m is denoted
by Tn

m = {dn
m, lnm}, where dn

m and lnm are the input data size and the number
of required CPU cycles, respectively. Noted that one task can only be assigned
on one RSU. We use T to represent the set of all the tasks from vehicles. On
the other hand, the RSUs, which have much larger resource capacity than
the vehicles, offer their edge resources to neighboring vehicles as a set of candi-
date service schemes S = {1, 2, . . . , s, . . . , S}. Each scheme s, contains wireless
spectrum and virtual machine (VM) instances, is characterized by four types of
resources: bandwidth (θ = 0), CPU frequency (θ = 1), memory (θ = 2), and
storage (θ = 3). We use qs

θ to denote the amount of type θ resource provided
in scheme s. For example, the scheme s = 1 may consist of 5.8GHz bandwidth,
1.86GHz CPU frequency, 2GB of memory, and 20GB of storage, this scheme can
be characterized by q10 = 5.8, q11 = 1.86, q12 = 2, q13 = 20. The edge resource of
type θ offered by RSU i within its available resource capacity, denoted by Cθ

i .
Edge servers deployed at RSUs receive tasks from neighboring vehicles via

vehicle-to-infrastructure (V2I) communication. The set of RSUs can be accessed
by vehicle m is denoted by Im ∈ I. Accordingly, we use Ti ∈ T to denote
the set of tasks that can be completely uploaded to RSU i within limited V2I
connection time. Furthermore, any two RSUs can communicate with each other
directly through wired links.

2.2 Reverse Auction Framework

We model the problem of multi-resource allocation as a distributed reverse com-
binatorial auction, in which the RSUs are the sellers and the vehicles are buyers.
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Table 1. Notations and definitions

Notation Definition Notation Definition

M, I Set of vehicles and RSUs Bj
i , pj

i The RSU i’s “jth” bid and its received payment
T , S Set of tasks and schemes Qj

i , c
j
i Desired tasks and its cost of bid Bj

i

Tm, Dm, Im Set of vehicle m’s tasks, demands and accessed RSUs Um, Ui Utility of buyer (vehicle) m and seller (RSU) i

Ti, Bi Set of RSU i’s achievable tasks and all her bids U Joint utility of sellers and buyers (social welfare)
T n

m, Dn
m, sn

m Vehicle m’s “nth” task, demand and scheme Ni Set of seller i’s neighbors
dn

m, lnm Data size and number of required CPU cycles of T n
m Pj

i , Lj
i Set of Bj

i ’s priority and lagging bids
qs

θ , qθ(s
n
m) Amount of type θ resource of scheme s and sn

m MBi Bid-exchange message for bid set Bi

Cθ
i Type θ resource capacity of RSU i MMj

i Matching message for bid Bj
i

Wb, Wt Set of winning bids and winning task MPj
i Pricing message for bid Bj

i

vn
m, pn

m The utility gain and payment for task T n
m MHj

i Hypothetical-matching-result message for Bj
i

Assuming that time is slotted, we study the market for one specific time slice.
The key parameters of the system are summarized in Table 1.

Buyer. A buyer m is a vehicular user who has a set of computation-intensive
tasks Tm waiting to be executed. Each buyer m can send a set of task demands
Dm to any achievable seller in Im. The buyer m’s task demand for task Tn

m

can be denoted as Dn
m = {Tn

m, sn
m}, where sn

m ∈ S is task Tn
m’s service scheme

(mentioned in Sect. 2.1) chosen by the buyer m. Hence, we use qθ(sn
m) to denote

the amount of type θ resource needed in scheme sn
m. If demand Dn

m ∈ Dm is
fulfilled, task Tn

m will be added to the winning task set Wt.
The utility gain of offloading task Tn

m consists of two parts, one is the time
saved by offloading compared with local computing, and the other is the dif-
ference between the local computing energy consumption and the transmission
energy consumption:

vn
m =

(
lnm
fm

−
(

dn
m

rn
m

+
lnm

q1(sn
m)

))
· gT

m +
(

ϕm · lnm − pmdn
m

rn
m

)
· gE

m, (1)

where rn
m is the data transmission rate when buyer m is allocated bandwidth

q0(sn
m), and q1(sn

m) is the CPU frequency of chosen scheme sn
m. Following the sim-

ilar definitions in [9], we use ϕm to denote the energy consumption per CPU cycle
for local computing, and pm is the transmission power of buyer m. Besides, we
use gT

m (resp. gE
m) to denote the sensitivity of price and task delay (resp. energy

consumption). The larger the value of gT
m (resp. gE

m), the higher price buyer m is
willing to pay as long as the task delay (resp. energy consumption) can be reduced.

The utility of each buyer is the difference between the utility gain and the
payment for winning tasks. We use pn

m to denote buyer m’s payment for task
Tn

m. The utility of buyer m can be expressed as:

Um =
∑

Tn
m∈Tm∩Wt

(vn
m − pn

m). (2)

Seller. A seller i is an RSU who has idle edge resources that can be leased to buy-
ers, helping to relieve the heavy on-board computation workload while receiving
a reasonable payment. Each seller i can submit a maximum of R bids as a set Bi

for different bundles of her desired combinatorial tasks. The “jth” bid from seller i
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can be denoted as Bj
i =

{
Qj

i , c
j
i

}
, where Qj

i is a subset of Ti that denotes seller i’s

desired tasks, and cj
i is the claimed operating cost (i.e., computation energy con-

sumption, equipment maintenance and resource management cost). Each seller is
“single-minded” and costs cj

i if and only if she gets the whole desired tasks Qj
i .

Noted that any two bids from one seller cannot overlap. The winning bids in the
auction will be added to the winning bid set Wb.

The utility of each seller is the difference between the payment received from
buyers for her winning bids and her claimed cost (which is equal to her private
valuation when she bidding truthfully) of the resources allocated to buyers. We
use pj

i to denote seller i’s received payment for bid Bj
i . Thus, the utility of seller

i can be formulated as:
Ui =

∑
Bj

i ∈Bi∩Wb

(pj
i − cj

i ). (3)

3 Problem Formulation

Our work objective is to maximize social welfare with acceptable network com-
plexity by efficient winning bids selection while satisfying sellers’ resource capac-
ity constraints, and prevent the sellers from manipulating the auction results.
Next, the mathematical formulation of the mechanism design problem is given.

Definition 1 (Social Welfare Maximization (SWM) Problem). We
employ the concept of social welfare to maximize the joint utility (U) of both
sellers and buyers when the system is budget balance:

max U =
∑

Tn
m∈Wt

vn
m −

∑
Bj

i ∈Wb

cj
i , (4)

s.t.
∑

Bj
i ∈Bi∩Wb

∑
Tn
m∈Qj

i

qθ(sn
m) ≤ Cθ

i (θ = 0, 1, 2, 3),∀i ∈ I, (5)

where constraint (5) indicates that the resources allocated by each seller do not
exceed her resource capacity. The SWM problem is proved to be NP-hard by
reduction from the NP-complete “INDEPENDENT-SET” problem [11].

Definition 2 (Faithful Distributed Incentive Mechanism Design Prob-
lem [12]). Due to the strategic nature of participants, designing a faithful
(anti-manipulation) incentive mechanism requires thorough consideration. A dis-
tributed mechanism dM =

(
g,Σ, sM

)
is a faithful implementation of outcome

g(s(ρ)), when incentive compatibility (IC), communication compatibility (CC),
and algorithm compatibility (AC) all hold in a single equilibrium.

Remark 1 (IC, CC, and AC [4]). The notions of IC, CC and AC in incentive
mechanism are as follows: Distributed mechanism dM is IC (resp. CC, AC) if each
seller i cannot receive higher utility by deviating from the intended information-
revelation (resp. message-passing, computational) actions in an equilibrium.
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4 Faithful Distributed Multi-resource Trading Mechanism

As shown in Fig. 1(b), without the control of an auctioneer, the faithful dis-
tributed reverse combinatorial auction (DRCA) mechanism is operated by the
rational sellers themselves. The sellers not only compete with each other for
rendering resources but cooperate in determining the auction results.

The process of DRCA is given as follows: (1) Sellers publish a set of can-
didate task offloading service schemes S. (2) Each buyer m sends a set of task
demands Dm to any achievable seller in Im. The information of tasks is public
and known to every seller. (3) Sellers in I whose bids of tasks might overlap
send messages to each other to determine the winning bids in Wb and their pay-
ments. (4) Sellers announce winning tasks Wt to buyers. (5) The central bank
performs anti-manipulation check and completes the transaction. The winning
sellers provides wireless spectrum and VM instances required by tasks.

4.1 The DRCA Mechanism

Let us consider an example to further illustrate the DRCA mechanism. Assuming
that 4 RSUs I = {1, 2, 3, 4} bidding for tasks T = {T 1

1 , T 1
2 , T 1

3 , T 1
4 } from four

vehicles M = {1, 2, 3, 4}. The overlapping bids and their characteristics are shown
in Table 2. For instance, as shown in the fourth row of Table 2, RSU2 submit only
one bid B1

2 for task T 1
4 and the claimed cost of this bid is 4. The following will

introduce four steps to determine the winning bids and their payments.

Table 2. Overlapping bids in example

Bid Tasks Cost Gain Priority Pj
i Lj

i Bid Tasks Cost Gain Priority Pj
i Lj

i

B1
1

{
T 1
1 , T 1

2

}
4 6

√
2 ∅

{
B1

3 , B1
4

}
B1

3

{
T 1
1 , T 1

2

}
5 6

√
2/2

{
B1

1 , B1
4

}
∅

B2
1

{
T 1
3 , T 1

4

}
10 14 2

√
2

{
B1

2

} {
B1

4 , B2
3

}
B2

3

{
T 1
3

}
4 6 2

{
B2

1

} {
B1

4

}

B1
2

{
T 1
4

}
4 8 4 ∅

{
B2

1

}
B1

4

{
T 1
2 , T 1

3

}
8 10

√
2

{
B1

1 , B2
1 , B2

3

} {
B1

3

}

Conflict Graph Construction. In order to facilitate the calculation of network
complexity, we construct a conflict graph to represent the relationship between
sellers in I: (1) Geographically distributed sellers who has common connected
buyers exchange their bid set Bi with each other by sending a bid-exchange mes-
sage MBi =< Bi > (Fig. 2(a)). (2) Construct an undirected conflict graph of geo-
graphically distributed sellers who has common connected buyers (Fig. 2(b)). In
this conflict graph, neighbors are the sellers whose bids overlap. The set of seller i’s
neighbors can be denoted as Ni. (3) Each seller i needs to classify the overlapping
bids of bid Bj

i according to their matching priority as follows:

ûj
i = (vj

i − cj
i )/

√∣∣∣Qj
i

∣∣∣, (6)

where vj
i =

∑
Tn
m∈Qj

i
vn

m is the sum of utility gain in Qj
i . The bid with higher value

of ûj
i has higher matching priority. (4) For each bid Bj

i , their overlapping bids can
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be divided into two sets: the set of priority bids Pj
i =

{
Bh

k | ûh
k ≥ ûj

i , k ∈ Ni

}
,

the set of lagging bids Lj
i =

{
Bh

k | ûj
i ≥ ûh

k , k ∈ Ni

}
. Noted that if ûj

i = ûh
k and

i < k, Bh
k ∈ Lj

i , if ûj
i = ûh

k and k < i, Bh
k ∈ Pj

i . For instance, RSU2 can get B1
2 ’s

priority bid set P1
2 = ∅ and lagging bid set L1

2 =
{
B2

1

}
by calculating the ûj

i of
overlapping bid B2

1 and B1
2 .

Fig. 2. Illustration of conflict graph and message flow: (a) bid-exchange message flow
(b) updated conflict graph (c) matching message flow (d) pricing message flow

Multi-resource Allocation. Sellers determine the allocation results by send-
ing each bid’s matching message MMj

i =< MATCHED/UNMATCHED > to
their neighbors (Fig. 2(c)). The interactions between sellers are described as fol-
lows, which is also shown in Table 3.

Each seller i can only send one matching message MMj
i for her bid Bj

i ∈ Bi.
If and only if seller i receives all the matching messages about bids in Pj

i are
unmatched and she has sufficient resources left to perform all the task schemes of
Qj

i , she can send MMj
i =<MATCHED> for bid Bj

i to owners of Lj
i , otherwise,

she sends MMj
i =<UNMATCHED> to owners of Lj

i . For example, bid B1
2 is first

matched because it has no priority bids. So RSU2 sends MM1
2 =<MATCHED>

to RSU1 (who owns B2
1 ∈ L1

2). Then, RSU1 sends MM2
1 =<UNMATCHED>

to RSU3 and RSU4. Lastly, the winning bid set is Wb =
{
B1

1 , B
1
2 , B

2
3

}
.

Pricing. Each seller i sends a pricing message MPj
i =< PRICING, Bh

k > to
neighbor k (Bh

k ∈ Lj
i ) to determine the payments for winning bids (Fig. 2(d)).

Upon receiving MPj
i of Ph

k , seller k need to reply a hypothetical-matching-result
message MHh

k =<Bj
i ,MATCHED/UNMATCHED> to seller k, where the mes-

sage is the matching result of bid Bh
k if bid Bj

i is not fulfilled. Noted that the
matching result of Bh

k ’s priority bid Bμ
λ ∈ Ph

k \
{

Bj
i

}
can be indirectly affected

by the result of bid Bj
i , seller k also needs to send pricing message MPj

i to the
owner of Bμ

λ . After that, seller k collects all of the hypothetical-matching-result
messages about Bj

i and sends MHh
k to seller i. Sellers utilize the critical-value-

based pricing strategy to determine the payments for winning bids. The critical
bid for defining the payments of bid Bj

i is the one that loses exactly because of
bid Bj

i , i.e., the bid Bh
k ∈ Lj

i is fulfilled without bid Bj
i . But if there is no fulfilled

bid in Lj
i , the bid with maximum û in Lj

i would be chosen as Bj
i ’s critical bid.
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Table 3. Multi-resource allocation and pricing algorithm

Multi-Resource Allocation Algorithm Pricing Algorithm
Input: Bi, Pj

i , Lj
i , S, Cθ

i Input: Bi, Ni, Pj
i , Lj

i , Wb, vj
i

Output: Wt, Wb Output: pj
i

Wt ← ∅, Wb ← ∅, Pj
i ′ ← Pj

i pj
i ← ∅, Pj

i ′ ← Pj
i , Lj

i ′ ← Lj
i ;

foreach Bj
i ∈ Bi do foreach Bj

i ∈ Bi ∩ Wb do
if Pj

i = ∅ Send MPj
i to Lj

i ;
while

∑
Tn
m∈Q

j
i
qθ(s

n
m) ≤ Cθ

i do while Lj
i ′ �= ∅ do

Send MMj
i =<MATCHED> to Lj

i ; Receive MHh
k from Lj

i ;
Wt ← Qj

i , Wb ← Bj
i ; if MHh

k =<Bj
i ,MATCHED>

Cθ
i ← Cθ

i − qθ(s
n
m); pj

i = vj
i − (vh

k − ch
k)/

√∣
∣Qh

k

∣
∣ /

∣
∣Qj

i

∣
∣;

else Break;
Receive MMh

k from Pj
i ; Lj

i ′ ← Lj
i ′\

{
Bh

k

}
;

if MMh
k =<MATCHED> or if Lj

i ′ = ∅

∑
Tn
m∈Q

j
i
qθ(s

n
m) > Cθ

i ; Find Bμ
λ with maximum ûμ

λ in Lj
i ;

Send MMj
i =<UNMATCHED> to Lj

i ; pj
i = vj

i − (vμ
λ − cμ

λ)/
√

|Qμ
λ| /

∣
∣Qj

i

∣
∣;

Break; foreach Bj
i ∈ Bi do

else if Receive MPh
k from Ni

Pj
i ′ ← Pj

i ′\
{
Bh

k

}
; while Pj

i ′\
{
Bh

k

}
�= ∅ do

ifPj
i ′ = ∅ Send MPh

k to Pj
i \

{
Bh

k

}
;

Send MMj
i =<MATCHED> to Lj

i ; Receive MHμ
λ from Pj

i \
{
Bh

k

}
;

Wt ← Qj
i , Wb ← Bj

i ; if MHμ
λ =<Bh

k ,MATCHED>

Cθ
i ← Cθ

i − qθ(s
n
m); Reply MHj

i =<Bh
k ,UNMATCHED> to k;

Break; Break;
return Wt and Wb; Pj

i ′ ← Pj
i ′\ {Bμ

λ};
if Pj

i ′ =
{
Bh

k

}

Reply MHj
i =<Bh

k ,MATCHED> to k;
return pj

i ;

Thus, the payment of bid Bj
i is exactly the claimed cost at which the transition

between Bj
i being before and after Bh

k in the matching order happens [4]:

pj
i = vj

i − (vh
k − ch

k)/
√∣∣Qh

k

∣∣ /
∣∣∣Qj

i

∣∣∣. (7)

For instance, RSU3, one of the winning sellers, sends MP2
3 =<

PRICING, B1
4 > to RSU4. RSU4 sends MP2

3 =<PRICING, B1
1 , B

2
1 > to RSU1,

RSU1 also needs to send MP2
3 =< PRICING, B1

2 > to RSU2. After that,
RSU2 replies MH1

2 =< B2
3 ,MATCHED > to RSU1, RSU1 replies MH2

1 =<
B2

3 ,UNMATCHED > and MH1
1 =< B2

3 ,MATCHED > to RSU4. Apparently,
B1

4 still can not be matched if B2
3 does not exist, so bid B1

4 with maximum
û is chosen as the critical bid. Therefore, the payment for B2

3 is calculated as
p23 = 6−

√
2 ≈ 4.59. Similarly, p11 = 5.00, p12 = 5.17. The pricing rule is shown in

Table 3. Furthermore, winning seller i can send MMj
i , MPj

i and MHj
i together

to her neighbors.
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Anti-manipulation Check. Noted that in a distributed auction, the compu-
tation and communication of each seller is responded and confirmed by at least
one of her neighbors. Therefore, when clearing a transaction, each seller needs to
submit all her interaction messages to the Credit Clearance Service (CCS), which
can subtly control sellers’ manipulated strategies on computation and commu-
nication [3]. After all the messages are collected, the CCS checks the messages,
authorizes the resource allocation and collects the payment. Besides, the CCS
does not always need to have a reliable communication channel with each seller,
or participate in the decisions of allocation and pricing.

4.2 Proof of Properties

Theorem 1 (Faithfulness). DRCA is a faithful distributed mechanism.

Proof. To prove this theorem, we show that DRCA satisfies centralized IC, CC
and AC [12]. The corresponding centralized auction of DRCA is IC:
Assumed that seller i reports truthful bid Bj

i =
{

Qj
i , c

j
i

}
and untruthful bid

B̂j
i =

{
Qj

i , ĉ
j
i

}
. The central auctioneer greedily takes winning bids in an order

determined by formula (6). Assume first that Bj
i is a winning bid. As long

as ĉj
i is smaller than cj

i , the bidder still wins with the same payment, thus
misreporting his value would not be beneficial. When ĉj

i is greater than cj
i ,

seller i will lose, gaining zero utility. If Bj
i is a losing bid, its priority value

in formula (6) must be smaller than the corresponding critical value, so the
payment for any winning bid B̂j

i will be smaller than truthful cost cj
i , making

this deviation nonprofitable. DRCA satisfies CC and AC: The CCS will
find the miscalculation of priorities which causes communication chaos, and any
illegal match will be caught under the anti-manipulation check. Thus, seller i
would follow the intended message-passing and computation strategy.

Network Complexity [4]. We use an interconnection network G = (I, E) to
represent the conflict graph (Fig. 2(b)), where E contains all the connected links
among the sellers in I. The network complexity of DRCA is calculated in terms
of five metrics. The maximum number of messages sent over any one
link in G: In the worst case, every seller submits the maximum number of bids
R and every bid’s payment needs to be calculated through one link. Hence,
there are (2R|I| + 2R + 2) messages sent on each link (i.e. two bid-exchange
messages, 2R matching messages, R|I| pricing messages, and R|I| hypothetical
matching result messages). The total number of messages sent over G: In
the worst case, the total number of messages sent over G is (2R|I|+2R+2)|E|.
The maximum size of a message: The maximum length of any bid-exchange
message MB is constant Z bytes. The maximum size of a message is is not as long
as Z bytes. The local computational burden at each node: The toughest
part throughout DRCA is the division of neighbors’ bids, which takes at most
O(δ) time in the worst case, where δ is the maximum degree of the network.
The storage required at each node: Each seller is required at most O(δ|I|)
space to store messages and local outcome in the worst case.
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5 Simulation Results

This section presents numerical results to illustrate the validity of DRCA. On
the basis of referring to [9,10], the simulation environment is as follows: the
EAVN scenario with dimensions of 1200m × 1200m square region is considered,
where 500 vehicles and 100 RSUs are randomly distributed in vehicular network
simulator VISSIM. The number of demands for each vehicle is within [0, 4], and
the number of desired tasks of each bid is within [2, 5] (R = 3). Besides, we design
10 schemes that contain 4 types of resources follows the uniform distribution [10,
20], and each type of resource capacity of RSUs follows the poisson distribution
in [100, 400].

This study compared the performance of DRCA with four mechanisms: an
upper bound, centralized VCG mechanism that maximizes the social welfare;
a distributed version of VCG (namely DVCG [15]) which constructs a depth-
first search (DFS) tree to achieve optimal social welfare, satisfying the property
of faithfulness with exponential system overhead; a centralized combinatorial
auction mechanism (namely OCRAP [8]) which has a similar allocation rule with
DRCA to achieve suboptimal social welfare with acceptable system overhead,
without satisfying the property of faithfulness; and a centralized mechanism
ensuring the fairness of the allocation (namely DOCAT [6]).

5.1 Allocation Efficiency

This paper evaluate the allocation efficiency of DRCA in terms of social welfare,
and compare it with three centralized incentive mechanisms (DVCG achieves
the same social welfare as VCG [15]). 50 iterations are tested to measure the
allocation efficiency with average results.

Fig. 3. (a) Social welfare with varied RSUs. (b) Social welfare with varied tasks.

From Fig. 3, we observe that VCG achieves higher social welfare than DRCA
under the same parameters. This is because that VCG is designed for optimal
allocation, while DRCA is more inclined to greedy policy. DRCA and OCRAP
have similar suboptimal social welfare since both of them follow the greedy-
based allocation rule and the critical payment rule. DOCAT has the lowest social
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welfare because it sacrifices a portion of social welfare to ensure the fairness of
the resource allocation. In addition, when the number of tasks is fixed, we can
see that increasing number of RSUs leads to higher social welfare. Meanwhile,
social welfare increases with the number of tasks and saturation is reached when
the number of tasks is about 1530.

5.2 System Overhead

We measure DRCA’s system overhead on account of transmission overhead and
computation burden, where transmission overhead is defined as the total number
of messages over the network, and computation burden is defined as the average
computational burden of all nodes [4].

In Fig. 4(a), the transmission overhead of distributed incentive mechanisms
(DVCG and DRCA) and their corresponding centralized incentive mechanisms
(VCG and OCRAP) are compared, where “R20-T80” denotes that 20 RSUs bid
for 80 tasks. We can find that centralized mechanisms have the least number
of messages since they only need basic communications between the auctioneer
and other participants. On the contrary, the quantity of messages of distributed
mechanisms increases exponentially with the amount of RSUs as each RSU need
to enumerate some potential matching results of her constraint view.

In Fig. 4(b), the computation burden of each node in distributed mechanisms
is much smaller than that in centralized mechanism, since the computation of
the auctioneer in a centralized mechanism is divided among multiple nodes in
its corresponding distributed mechanism. In addition, though DRCA and DVCG
have similar transmission overhead, the computation burden of DRCA is much
smaller than that of DVCG. The reason is that each node in DRCA only calcu-
lates the priorities of her neighbors’ bids at the begin of the auction. However,
each node in DVCG is required to calculate optimal welfare of its subtree under
some potential matching conditions, which makes the computation burden grow-
ing exponentially with the number of her neighbors.

Fig. 4. (a) Number of messages with varied RSUs and tasks. (b) Average computation
burden of all nodes with varied RSUs and tasks.
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6 Conclusion

In this study, we have considered the distributed incentive mechanism design for
the joint multi-task offloading and multi-resource allocation problem in EAVN,
and have proposed a faithful distributed auction mechanism under the anti-
manipulation check, namely DRCA. Besides, we have analyzed its economic
property and network complexity. Compared with existing auction-based mech-
anisms, DRCA could achieve suboptimal social welfare with relatively low system
overhead.
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Abstract. Communication load in heterogeneous edge networks is
becoming heavier because of excessive computation and delay caused
by straggler dropout, leading to high electricity cost and serious green-
house gas emissions. To create a green edge environment, we focus on
mitigating computation and straggler dropout to improve the communi-
cation efficiency during the distributed training. Therefore, we propose a
novel scheme named Dynamic Grouping and Heterogeneity-aware Gra-
dient Coding (DGHGC) to speed up average iteration time. The average
iteration time is used as a metric reflecting the effect of mitigating com-
putation and straggler dropout. Specifically, DGHGC firstly uses the
static grouping to evenly distribute stragglers in each group. After the
static grouping, considering the nonuniform distribution of nodes due
to straggler dropout during the training process, a dynamic grouping
depending on dropout frequency of stragglers is employed. The dynamic
grouping tolerates more stragglers by examining the dropout threshold
to improve the rationality of the static grouping for stragglers. In addi-
tion, DGHGC applies a heterogeneity-aware gradient coding to allocate
reasonable data to stragglers based on their computing capacity and
encode gradients to prevent stragglers from dropping out. Numerical
results demonstrate that the average iteration time of DGHGC can be
reduced largely compared to the state-of-art benchmark schemes.

Keywords: Heterogeneous edge networks · Communication
efficiency · Dynamic grouping · Gradient coding

1 Introduction

With the increasing computation power of edge devices, e.g., smartphones and
IoT sensors [1], training Deep Neural Network (DNN) models on multiple edge
devices becomes feasible. The distributed model training in edge networks takes
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advantages of the distributed parameter server (PS) architecture, where edge
devices work as working nodes and the edge server works as the central PS [2].

One of the main challenges for distributed training in heterogeneous edge net-
works lies in the heavy communication load caused by excessive computation and
straggler dropout. Specifically, some nodes incur delay in computation or commu-
nication, which are called stragglers. The PS waits for stragglers to submit their
local gradients, and even abandons stragglers that cannot return outcomes with
a reasonable deadline, which are called straggler dropout. This largely increases
the communication cost and reduces the accuracy of the trained model [3]. In
the meantime, the attributes of heterogeneous nodes, i.e., the computing capac-
ity [4], memory size [5], and communication mode [6], further exacerbate straggler
dropout, resulting in the inefficient communication. Therefore, it is vital to design
an efficient solution of straggler dropout for green communication and computing.

The straggler dropout has been widely studied in distributed computing [7].
From the perspective of parallelism mechanism, the typical Time Asynchronous
Parallel (TAP) [8] and Staleness Synchronous Parallel (SSP) [9] were proposed
to mitigate the negative impact of stragglers on the communication efficiency.
Based on the SSP algorithm, Dynamic Stochastic Gradient Descent (DynSGD)
[10] adjusted the learning rate dynamically according to the delay of stragglers in
completing the gradient computation. Considering the above parallelism schemes
alleviated the model accuracy, Raviv et al. [11] proposed gradient Coding (GC)
to tolerate stragglers by encoding gradients. However, GC is only applicable
in homogeneous training environments, which does not work in heterogeneous
edge networks. Given the heterogeneity of edge devices, Wang et al. [12] pro-
posed Heterogeneity-aware Gradient Coding (HGC) to allocate reasonable data
to nodes depending on their computing capacity, which tolerates a predetermined
number of stragglers to prevent them from dropping out.

To achieve the expected communication efficiency, GC and HGC are designed
for the static grouping of heterogeneous edge devices. However, they fail to con-
sider the fact that stragglers may drop out after the static grouping. To address
the shortcomings of the static grouping for stragglers, Buyukates et al. [13] pro-
posed Dynamic Clustering with Gradient Coding (DCGC), with the goal of
dynamically adjusting the number of stragglers in each cluster based on the
straggler dropout in the previous iteration, making stragglers uniformly dis-
persed into each cluster to the maximum extent. However, DCGC ignores the
heterogeneity of edge devices and fails to fully utilize the computation power of
nodes for the data allocation.

Considering the strong heterogeneity of nodes and inappropriate groupings
for stragglers that leads to straggler dropout in edge networks, we adopt a novel
grouping for stragglers, which firstly employs the static grouping and then uti-
lizes the dynamic grouping to improve the rationality of the static grouping
for stragglers. Besides, a heterogeneity-aware gradient coding is applied in both
grouping phrases. Therefore, we propose a scheme termed Dynamic Grouping
and Heterogeneity-aware Gradient Coding (DGHGC). DGHGC mitigates com-
munication load by solving heavy computation and straggler dropout in hetero-
geneous edge networks.
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The main contributions of this paper include,

– Two static groupings based on greedy algorithm and Karmarkar-Karp (KK)
algorithm [14] are used to evenly distribute stragglers in each group, miti-
gating inherent heterogeneity gaps in edge networks. Given the fact that the
static grouping ignores dynamic straggler dropout during the actual training,
a dynamic grouping based on the frequency of straggler dropout is proposed.

– Considering the heterogeneity of nodes in dynamic grouping, we propose a
novel scheme termed DGHGC. Specifically, DGHGC allocates data of reason-
able size to stragglers and encodes uploaded gradients depending on their com-
puting capacity, which tolerates a predetermined number of stragglers to pre-
vent them from dropping out and mitigates delay caused by straggler dropout.

– Evaluation of baseline comparison demonstrates that DGHGC reduces the
average iteration time by about 2.3 times, 1.53 times, 1.58 times and 1.45
times, respectively, compared with GC, HGC, GCC, and DCGC.

The rest of this paper is organized as follows. Section 2 presents the system
model. In Sect. 3, DGHGC is discussed in detail. Then, DGHGC is compared
with common gradient coding approaches in Sect. 4. At last, conclusions are
drawn in Sect. 5.

2 System Model and Problem Formulation

Suppose that the distributed system in the edge environment has m working
nodes {W1,W2, ...,Wm}, with the computation power C : {c1, c2, ..., cm}. Con-
sidering the heterogeneity of nodes, the PS divides these nodes into k groups.
The data set D is also evenly divided into k non-overlapping copies, expressed
as {D1,D2, ...,Dk}. Each group has n working nodes (

⌈
n = m

k

⌉
, n is an integer),

and the group-based approach is used for m nodes. The data Di of each group
is divided into di copies that do not overlap with each other, represented by
Di :{D1

i ,D2
i , ...,Ddi

i } and di is calculated as,

di = ctotali =
n∑

j=1

cji , (1)

where ctotali represents the total capacity of all working nodes in group i, and cji
stands for the computational capacity of the node j in i. To tolerate s stragglers,
each data set in the group has to be redundantly stored in r copies (r refers to
the redundancy factor and r = s + 1), and there are di(s + 1) copies of data in
total. The number of data copies amountji allocated by j in i is calculated as,

amountji = di · (s + 1) · cji
ctotali

= (s + 1) · cji . (2)

The overall time for each iteration is expressed as,

T (t) = max
i∈{1,2,...,k}

{T
(t)
i } (3)
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where T (t) denotes the overall iteration time after the number of training itera-
tion t, k represents the number of groups and Ti

(t) stands for the iteration time
needed for the training of i after t training iteration. Ti

(t) depends on the slowest
working node within the group as,

Ti
(t) = max

j∈{1,2,...,n}
{Total_T

j(t)
i }, (4)

where Total_T
j(t)
i represents t of j in i during the iteration training, and n refers

to the number of nodes in each group. Total_T
j(t)
i consists of two parts, i.e.,

computation time Comp_T
j(t)
i and communication time Comm_T

j(t)
i . That is,

Total_T
j(t)
i = Comp_T

j(t)
i + Comm_T

j(t)
i . (5)

– Computation time: It depends on the amount of data allocated and the com-
putation capacity of nodes. The computation time of each working node is
expressed as,

Comp_T
j(t)
i =

∥
∥
∥Ij

i

∥
∥
∥

cji
, (6)

where
∥
∥
∥Ij

i

∥
∥
∥ and cji represent the data volume and the computation capacity

of j in i, respectively.
– Communication time: It is determined by the network condition and the

amount of the transferred data.

To sum up, the total time for each iteration of the training is expressed as,

T (t) = max
i∈[1,k]

{ max
j∈[1,n]

{

∥
∥
∥Ij

i

∥
∥
∥

cji
+ Comm_T

j(t)
i }}. (7)

To improve the communication efficiency, the overall optimization objective
is set to minimize the total time of each iteration training as,

argminT (t). (8)

Due to the reduction of the model accuracy caused by straggler dropout, tol-
erating a maximum number of stragglers to take full utilization of their comput-
ing resources becomes necessary. However, the more stragglers, more significantly
the computing time of the system will increase. Trading off the model accuracy
and total system time influenced by the number of stragglers is worth consider-
ing. DGHGC makes each node possible to have the similar completion time so that
the consistent straggler dropout incurred by heterogeneity could be eliminated.

3 Dynamic Grouping and Heterogeneity-Aware Gradient
Coding

DGHGC is proposed for the overall optimization objective. The implementation
process of DGHGC, as shown in Fig. 1, is divided into two steps. The first step
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Fig. 1. The implementation process of DGHGC

refers to grouping heterogeneous nodes, including static grouping and dynamic
grouping based on the dropout frequency of stragglers. That is, stragglers are
evenly distributed in each group and more stragglers are tolerated to improve the
communication efficiency. For the second step, the heterogeneity-aware gradient
coding is applied within each group to make full use of the computation power
of heterogeneous working nodes and encode gradients to prevent them from
dropping out.

3.1 Static Grouping and Dynamic Grouping

In the static grouping, all nodes are divided into k groups. Each group tolerates
r − 1 stragglers. k is limited by the following factors,

– To tolerate more stragglers than HGC, k > r − 1.
– The number of data copies should satisfy amountji ≤ di to obtain r · cji

ctotal
i

≤
1. To satisfy the case that all nodes have the most computational power,
ctotali ≥ r · cmax is required, where cmax represents the node with the most
computational power, and the number of k has to satisfy k ≤ ctotal

r·cmax
.
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In summary, the number of groups k should satisfy the following,

k ∈ (r − 1,
ctotal

r · cmax
]. (9)

We design a static grouping approach based on the greedy algorithm and
Karmarkar-Karp (KK) [14] to obtain the optimal grouping for stragglers. The
specific process of the static grouping is as follows,

1) Input the set C : {c1, c2, ..., cm} of the computation power of m nodes and
the redundancy factor r. Then, set k = kmax using (9). At last, sort set C in
decreasing order.

2) Judge differences in set C [14]. If differences are small, the static grouping
based on the greedy algorithm are employed. Specifically, initialize k empty
sets {G1,G2, ...,Gk} firstly. Then, consider one element in set C at a time, and
place it in the subset with the smallest sum so far. In the case of subsets with
an equal sum, choose any subset until set C is empty. While differences are
large, we use Karmarkar-Karp (KK) to realize the static grouping. That is,
a list of k-tuples is created for each integer in set C. The first integer of this
tuple is the value in set C and the rest integers are set to 0. Combine the first
two tuples in the list (the two tuples with the largest integers). Given the
tuples A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), both sorted in decreasing
order, A is combined with B to form a new tuple C as,

C = (a1 + bn, a2 + bn−1, ..., an + b1). (10)

After the combination of tuples A and B, the KK algorithm keeps track of the
relative differences between subsets only, and normalizes set C by subtracting
its minimum value. This merging process continues until only one tuple remains
and the algorithm ends.
3) Determine whether the sum of each subset satisfies the condition ctotali ≥ r ·

cmax. If yes, output the group. Otherwise, make the groups’ amount k = k−1,
and re-execute the static grouping approach.

After the static grouping, the dynamic grouping is employed to improve
the rationality of groupings for stragglers. Dynamic grouping based on the
dropout frequency of stragglers includes two key steps, i.e., threshold analysis
and dynamic adjustment.

Threshold Analysis. Firstly, the number of iterations b for the static grouping
training is predetermined. Then, it is determined whether to dynamically adjust
stragglers groups depending on the actual expectation after b training times.
The specific steps are as follows,

– Calculate the expectation Estart of the tolerable straggler number based on
the assumption that k nodes has an equal probability to become stragglers
in each iteration.
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– Perform b iterations, and calculate the actual expectation Ereal of the number
of tolerable stragglers by the frequency of becoming a straggler of each node.
Determine whether the actual expectation Ereal reaches the threshold, i.e.,
the static expectation Estart. If not, that is Ereal < Estart, the effect of the
static grouping is poor and has to be dynamically adjusted until Estart =
Ereal. Otherwise, no adjustment is needed.

Dynamic Adjustment. In general, dynamic adjustment includes three steps.
Firstly, heterogeneity-aware gradient coding is applied within each group to
assign data Ij

i to nodes. That is,

Ij
i = {D(index+1) mod di

i ,D(index+2) mod di

i , ...,

D(index+amountji ) mod di

i },
(11)

where index denotes the index of nodes in the group, di means dividing data
Di into di copies equally, and amountji indicates the number of data copies
by j in i. Then, to make intergroup nodes replaceable, nodes with comparable
computational power between groups need to have data from each other. That

is, allocate alternative data Pj
i =

k∑

i=1

Ij
i to the nodes, where k represents the

number of groups. Secondly, estimate k nodes with high probability to become
stragglers based on previous iterations. Thirdly, set the group priority of strag-
glers according to their number and assign n− r+1 non-stragglers to each group
based on the priority, which tolerates r − 1 stragglers. If non-stragglers are not
enough, offer the priority to non-stragglers and then assign the alternative nodes
of stragglers based on data allocation Pj

i until all groups are allocated.

3.2 Dynamic Grouping and Heterogeneity-Aware Gradient Coding

Besides realizing the node grouping, DGHGC also fully exploits computation
resources of heterogeneous nodes for data allocation and encodes gradients that
adapt to the computation power of stragglers, reducing delay caused by straggler
dropout. For data allocation, each data partition Ij

i has to be assigned with at
least s + 1 nodes to tolerate s stragglers by using (11). For the coding phrase,
to prevent stragglers from dropping out, gradients coding matrix B is employed
in each group as,

B = [b1,b2, . . . ,bm]T , (12)

where bj = 1 if Dj
i ∈ Ij

i , else bj = 0. By constructing coding matrix B, we
encode gradients that adapt to the computation power of stragglers as,

g̃i = bi · [g1,g2, . . . ,gi]
T
, (13)

where gi means the gradient that aggregating the partial gradient of each node
in Group i, and g̃i represents encoded gradients by B for the global gradient
aggregation of the server. At last, we describe the workflow of DGHGC in Algo-
rithm1.
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3.3 DGHGC Complexity

The complexity of greedy algorithm and Karmarkar-Karp algorithm are both
O (2m) [14], where m is the number of integers in the input set C. Considering the
dynamic grouping, the complexity is O (s) with s stragglers. Given the gradient
code, the complexity is O

(
1√
kP

)
with the group number k and iteration time

P [12]. Thus, the overall complexity of DGHGC is O
(
2m + s + 1√

kP

)
, which is

slightly higher than HGC.

Algorithm 1 Dynamic Grouping and Heterogeneity-aware Gradient Coding
Input: k: number of groups, r: redundancy number, C : {c1, c2, ..., cm}: computation
power of nodes, b: training time for the static grouping, Ij

i : data partition for the node
j in the group i, n: number of nodes in each group, m: total number of nodes, s: total
number of stragglers
Output: g̃i: encoded gradient
1: Initialize the static grouping:
2: Set k = kmax by using (9)
3: Judge differences in Set C : {c1, c2, ..., cm}
4: if differences are small then
5: static grouping based on the greedy algorithm
6: else
7: static grouping based on the Karmarkar-Karp algorithm
8: end if
9: Conduct the dynamic grouping:

10: Perform b distributed training
11: Calculate Estart by the probability to become a straggler for each node
12: Calculate Ereal by the frequency to become a straggler for each node
13: if Ereal < Estart then
14: repeat
15: Allocate data Ij

i to all nodes by using (11)
16: Assign n− r+1 non-stragglers to each group to tolerate r − 1 stragglers
17: until Estart = Ereal

18: else
19: break
20: end if
21: Encode gradients based on Heterogeneity-aware Gradient Coding by using (12-13)
22: return g̃i

4 Experiments

4.1 Experiment Settings

The experiments are carried out with two DELL PowerEdge R740 servers and
20 nodes with different CPU processing power. Each server is equipped with
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two 28-core Intel Xeon Platinum 8180M CPUs and one NVIDIA GeForce RTX
3090 GPU. The memory capacity of each server is 93GB. 5, 3, 3, 4, 5 nodes
with CPU main frequencies of 600MHZ, 1.2GHZ, 1.8GHZ, 2.4GHZ and 3GHZ
are selected. The memory capacity of each CPU node is 32GB. The software
platform of our experiments is PyTorch, which is a deep learning experimental
platform that provides a high degree of flexibility and efficiency.

Actually, complex network environments, unstable transmission rates and
heterogeneous hardware properties between edge nodes definitely affect the algo-
rithm performance. We only consider the most influential factor that causes
straggler dropout, that is the CPU processing power.

In addition, other experimental settings draw lessons from [12]. The number
of iterations I is set to 500, the learning rate α is 0.01, and the redundancy
factor r is set to 2. Besides, the data transmission rate between nodes and the
server is 3–5MB/s.

4.2 Analysis of Results

Table 1. DGHGC at different b values for 20 nodes with 5 groups

CNN(MNIST) CNN(CIFAR-10) LeNet5(CIFAR-10)
b

T(s) Acc% T(s) Acc% T(s) Accuracy%
100 0.90 93.6 0.92 60.9 0.96 62.6
50 0.56 93.6 0.54 61.2 0.59 62.5
30 0.68 93.8 0.64 60.8 0.70 62.8
20 0.75 93.4 0.72 61.0 0.81 62.4
10 0.87 93.2 0.83 61.1 0.89 62.5

Analysis of Parameter Values. The parameter value of b in DGHGC indi-
cates that one dynamic adjustment is executed after b rounds of iterations. The
value of b affects the number of dynamic groupings and the grouping effect of
DGHGC. Five different values of b are selected for the comparative experiments
with 20 nodes. The experimental results are shown in Table 1, and each value is
averaged after 10 independent experiments.

It can be observed from Table 1 that the value of b can hardly affect the
model accuracy. When b = 100, the communication cost with DGHGC is the
least efficient. This is due to the fact that the number of samples is large enough,
yet the number of groupings is small and close to the static grouping, leading
to the worst communication efficiency, while the best communication efficiency
is achieved when b = 50. The average iteration time of the distributed training
increases with the decrease of b. This is because when b decreases gradually, the
number of dynamic groupings becomes large, which leads to a certain time delay.
Secondly, due to the small number of samples, the results of stragglers dynamic
grouping are not ideal initially, which reduces the communication efficiency. The
value of b is determined as 50 by experiments, and applied into the comparison
experiments below.
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Analysis of Communication Efficiency. Figure 2 shows the experimental
results of the average iteration time based on five approaches, i.e., GC, HGC,
GCC, DCGC and DGHGC for training the MNIST dataset and CIFAR-10
dataset on the CNN model and the CIFAR-10 dataset on the LeNet5 model
under 20 nodes.

Fig. 2. Average iteration time for 20 nodes with 5 groups

It can be observed from Fig. 2 that HGC, GCC, DCGC and DGHGC signif-
icantly outperform the traditional algorithm GC in terms of the communication
efficiency. DCGC combines the idea of dynamic grouping based on GCC so as
to tolerate more stragglers, and make its communication efficiency performance
better than that of GCC. The communication efficiency of GCC and DCGC is
better than that of HGC in the distributed training. In all experiments results,
DGHGC achieves the best communication efficiency. The reason is that DGHGC
not only considers the node heterogeneity, but also combines the dynamic group-
ing to distribute stragglers in each group to the maximum extent. Moreover,
DGHGC does not perform the dynamic grouping in each iteration, but sets a
parameter to reduce the number of adjustments, thus reducing the time con-
sumption, compared with DCGC. The average speed of DGHGC is about 2.3
times than that of the traditional algorithm GC, about 1.53 times, 1.58 times,
1.45 times than those of the state-of-art algorithms HGC, GCC, and DCGC.

The following experiment studies the effects of different groups k on DGHGC,
and the results are shown in Fig. 3. According to Equation (9), Group A is divided
into 5 groups (k = 5) at the most. It can be observed that the average itera-
tion time becomes shorter with the increase of k. The larger k becomes, the
more obvious the greater number of stragglers tolerated in each iteration under
DGHGC, resulting in shorter iteration time and an improvement of communi-
cation efficiency.

Analysis of Training Accuracy. Table 2 shows the results of training accuracy
obtained from MNIST dataset and CIFAR-10 dataset on CNN model, and from
CIFAR-10 dataset on LeNet5 model under the five approaches, i.e., GC, HGC,
GCC, DCGC and DGHGC with 20 nodes.
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As it can be observed from Table 2, there is almost no difference on training
accuracy under five approaches. The reason is that all these approaches utilize
the gradient encoding to store the data redundantly without changing gradients.
Therefore, DGHGC does not suffer from the decrease of the model training
accuracy.

Fig. 3. Average iteration time of DGHGC with different number of k

Table 2. Training accuracy

ACCURACY(%)
CNN CNN LeNet5

APPROACH
(MNIST) (CIFAR-10) (CIFAR-10)

GC 93.2 61.5 62.7
HGC 93.3 61.1 62.6
GCC 93.6 61.1 62.4
DCGC 93.4 61.4 62.4
DGHGC 93.6 61.2 62.5

AVERAGE 93.4 61.2 62.5

5 Conclusion

In the edge environment, the differences of computation power of terminal
equipment lead to the severe stragglers dropout in the distributed training,
which reduces the communication efficiency and causes plenty of electricity cost
and greenhouse gas emissions. To achieve green communication and comput-
ing, a Dynamic Grouping and Heterogeneity-aware Gradient Coding (DGHGC)
scheme is proposed. DGHGC employs the dynamic grouping and gradient cod-
ing to solve straggler dropout in heterogeneous edge networks. From the results,
DGHGC can effectively improve the communication efficiency compared to the
benchmark schemes.
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Abstract. This paper designs a rateless low density parity check
(LDPC) code for the information transmission of the WiFi backscatter
communications. Since WiFi has the characteristics of burst data pack-
ages and low anti-jamming capability, the reliability becomes a problem.
Therefore, the encoding is significantly crucial when using WiFi signals
as the excitation in backscatter communications. Rateless LDPC code
can be applied to not only solve these two shortcomings, but also adjust
the link state and the bit rate without knowing the channel state infor-
mation. It ensures that transmission resources are not wasted and the
computational resources are saved. We conduct simulation experiments
and the obtained results show that the rateless LDPC still performs well
under the restriction of the number of retransmissions. Furthermore, the
proposed scheme works against the intermittent nature of WiFi excita-
tion signals.

Keywords: WiFi backscatter · LDPC code · Rateless code · Iterative
decoding

1 Introduction

In recent years, with the increasing number of Internet of things (IoT) devices,
the backscatter communication [1] is considered as a promising solution to tackle
the challenges of energy supply and consumption. Among these backscattering
systems, WiFi-based backscatter communication is ubiquitous. However, due to
the low transmission power of backscatter signal excited by the WiFi signal, the
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receiver usually receives an extremely low power signal. Moreover, the signal
power is exponentially decayed as the operation distance increasing. It is then a
hard task for the receiver to detect and decode the backscatter signal. In addition,
WiFi packets are bursty [2,3] in nature, so that the data to be backscattered
may not have an excitation signal. Currently, there are two major approached
to overcome these difficulties to improve the system performance; one is to use
more complex encoding and decoding algorithms, and the other is to control
data transmission by analyzing and predicting network conditions.

Complicated encoding and decoding algorithms are used to find and correct
possible errors by increasing the number of transmitting bits and the correla-
tion between each bit. Analyzing and predicting network conditions can find out
those low-power tags are limited by their capabilities to adjust the backscatter
transmission strategy by themselves, while when occurs the interval between data
packets, that can be used to adjust reflective transmission strategies of backscat-
ter tags. GuardRider [4] designed an optimization algorithm of Reed-Solomon
codes to fit the statistical changes of the WiFi traffic and adjust backscatter
transmission policy. Reference [5] proposed a 2 × 2 space-time code (STC) for
backscatter communication. Reference [6] investigated the bit error rate (BER)
performance of an ambient backscatter communication (AmBC) system that
uses LDPC-coded radio frequency (RF) source signals. Manchester coding and
differential Manchester coding are adopted at the information tag of an AmBC
system, and the corresponding semicoherent Manchester (SeCoMC) and non-
coherent Manchester (NoCoMC) detectors are developed in [7].

However, adjusting the transmission schemes, e.g., different coding rates,
requires the channel state information at the tag. Due to the scare computing
resources of the tag, it is extremely hard to estimate of the channel by the tag.
The tag is then impossible to adjust coding and/or link rates to improve the
system performance. Therefore, the WiFi backscatter communication usually
encounter a low throughput in real deployment. To this end, we propose a rate-
less low density parity check (LDPC) code scheme to tackle the problem. It is
worthwhile to mention that the rateless LDPC code gain both the benefits from
the LDPC codes and rateless codes. In particular, LDPC codes are proven to be
Shannon capacity achieving codes if the coding parameters are well designed. On
the other hand, the rateless codes do not require the channel state information.
The tag can continually transmit the coded packets until it receives the positive
acknowledgement from the receiver. As a whole, the tag can operate using a low
power consumption and the system performance is enhanced, by applying the
designed rateless LDPC codes.

The major contributions of this work are summarized as follows.

– We propose LDPC code combined with rateless method through the special
check matrix. The check matrix consists of two parts, one of which is derived
from the index matrix. Rateless method is supported by changing the expo-
nent of prime number in index matrix, which allows us to create countless
check matrix.



Design on Rateless LDPC Codes 61

– Based on characteristics of rateless code, backscatter system is endowed with
the ability to adapt to the channel states. If the channel state is poor, the
tag automatically increases the number of coded packets in order to achieve
reliable transmissions. In the opposite case, the tag rises the bit rate to ensure
that transmission resources are not wasted.

– On the premise that the code length is 1310, BER reaches 10−6 orders of
magnitude when SNR is about 2.5 dB, while rateless LDPC code gains 0.5 dB
in SNR. As the number of coded packets increases, the required SNR gets
smaller. However, when the excitation interval ratio is 0.1, BER reach at
orders of 10−5 if SNR= 5 dB.

2 Preliminaries

In this section, we give the necessary preliminary knowledge about this work,
including the backscatter communications, LDPC code and the rateless code.

2.1 Backscatter Communication Based on WiFi

Backscatter communication is now gradually applied to the data transmission
of IoT terminal due to the low energy consumption [8]. It usually consists of
three parts: excitation source, backscatter tag and receiver. The backscatter tag
receives the RF signal from the excitation source, modulates it by adjusting the
load impedance, and transmits it to the receiver. The tag itself does not gener-
ate RF signal but uses RF signal from the excitation source to transmit data,
resulting in the ultra-low power consumption of backscatter communication.

In daily life, TV signal [9], Bluetooth signal [10], FM signal [11], WiFi sig-
nal, et al. can be used as RF signal. Among them, the WiFi signal sent by the
wireless access point (AP) as the excitation source can be called WiFi backscat-
tering communication. WiFi signal is ubiquitous in real life, and the AP is easy
to deploy. There is no need to add additional devices other than the backscatter
tags. However, there are also some problems, such as the severe signal inter-
ference during the long-distance transmission and gaps between WiFi packets,
also known as WiFi interruption, which cause information lost of the receiver.
Therefore, we propose rateless LDPC code for reliable transmission.

2.2 LDPC Code and Rateless Code

LDPC Code. LDPC code is a linear grouping code with a sparse check matrix
which is invented by Prof. Gallager of MIT in 1963 [12,13]. It not only has a
near Shannon limit performance [14], but also has a low decoding complexity
and a flexible structure. Characterized by a small number of non-zero elements
in its check matrix, it maps a sequence of information into a coded sequence by
a generator matrix G, which corresponds to a check matrix H.

LDPC codes are divided into random LDPC codes and quasi-cyclic LDPC
codes (QC-LDPC) in coding categories. Although random LDPC performs bet-
ter, the irregular distribution of 1 in their check matrices requires that all row
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vectors of the generated and check matrices must be stored during actual deploy-
ment. Thus, very large scale integration (VLSI) encoding and decoding of ran-
dom LDPC codes are difficult to implement. However, QC-LDPC can solve this
problem since its characteristic of quasi-cyclic [15]. There are many methods
to generate QC-LDPC check matrix, among which the method of using index
matrices is the most common and easiest one.

The form of the index matrix P is defined in (1), as

P =

⎛
⎜⎜⎜⎝

1 a . . . ak−1

b ab . . . ak−1b
...

...
...

bj−1 abj−1 . . . ak−1bj−1

⎞
⎟⎟⎟⎠ , (1)

where the size of the matrix P is j×k, and Ps,t = atbs denotes the element in s-
th row and j-th column, with prime numbers a and b. The (s, t) cyclic submatrix
in the check matrix is generated by cyclic shifting the elements of the identity
matrix I. The cyclic shift of I in scale of q × q needs an pan right for each row.
As shown in (2), Ix represents the cyclic shift of x bits to the right in each row
of the identity matrix.

H =

⎛
⎜⎜⎜⎝

I1 Ia . . . Iak−1

Ib Iab . . . Iak−1b
...

...
...

Ibj−1 Iabj−1 . . . Iak−1bj−1

⎞
⎟⎟⎟⎠ (2)

That is the method of generating QC-LDPC check matrix. With the check
matrix, we can easily calculate the generator matrix by the regular operation.
In coding theory, if H can be expressed as [I|Q], where I is an identity matrix,
G can be expressed as [PT |I], where T means transpose. Then the information
is encoded by the generator matrix G for further processing, e.g., modulation.

In receiver, the data needs to be decoded. The general decoding methods
are divided into hard decoding and soft decoding. For hard decoding algorithm,
if a bit does not satisfy the maximum number of check equations, it is most
likely to be an error bit so that flip it. The hard decoding algorithm discards
the reliability information of each bit, and makes a hard judgment on the code
word only. Thus, hard decoding has the simplest theory, easiest implementation,
but the worst performance. When two consecutive iterations of the flip function
determine that the same bit is the most error-prone bit, the algorithm will fall
into an infinite loop, which greatly reduces the performance of decoding. In
practice, we usually use soft decoding algorithm, which is also known as the
Belief propagation (BP) algorithm.

The BP algorithm is an iterative decoding algorithm based on Tanner graph.
The Tanner graph represents a check matrix of LDPC codes. Tanner graph
contains two types of vertices: N bit vertices (called bit nodes), corresponding
to each column of the check matrix, and M check equation vertices (called check
nodes), corresponding to each row of the check matrix. Each row of the check
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Fig. 1. The main components of the tag and the receiver of using rateless LDPC codes
for WiFi backscatter system.

matrix represents a check equation, and each column represents a bit. If there
is a bit in the corresponding check equation, the bit nodes and check nodes
involved are connected by a line, so the number of lines in Tanner graph is the
same as in check matrix.

In the iteration process, messages are passed back and forth through the
edges of the Tanner graph in the variable nodes and check nodes. After several
iterations, it tends to be converged, and the best decision is made accordingly.
Those messages are posterior probabilities, and the initial value of the messages
are set to the prior probability of the information bits.

The complexity of the iterative BP algorithm is linearly proportional to the
length of the code. Parallel implementation in hardware can greatly improve
the decoding speed. If the decoding succeeds in the iteration process, it ends
immediately, which can effectively reduce the number of iterations. BP algorithm
is widely accepted because it can achieve close channel capacity performance in
AWGN environment in both theory and practice.

Rateless Code. The major difference between rateless code [16] and traditional
fixed-rate encoding is that it does not set a fixed rate at the sender. The sender
of rateless code can generate and send countless encoding packages in some
way based on the incoming data packets. The receiver can receive the encoding
packages and try to decode them. If decoding fails, the receiver will receive more
encoding packages and continue to decode. The receiver can repeat this process
until decoding succeeds. Once the decoding succeeds, the receiver only needs to
send a simple feedback signal to inform the sender, then the sender will stop
sending, thus the transmission process is completed entirely. In this case, the
actual transmitted bit rate depends on the number of encoding packets which
are actually sent, while the actual number of encoding packets depends on the
channel conditions at that time.

Normally, the sending rate should be adjusted according to the channel state
to ensure the communication quality. However, the rate of the error-correcting
code usually is not so flexible. This is the reason why we use rateless code, which
enables reliable delivery, and adapting link rates to ensure that transmission
resources are not wasted.
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Fig. 2. The BER performance of various initial exponential values.

3 System Design

Figure 1 illustrates an overview of our designed system. Source information col-
lected by tags is encoded by rateless LDPC code after framing. Index matrix and
generator matrix are used during encoding process. Encoded frames are mod-
ulated and then backscattered. After demodulating and decoding, the receiver
feedbacks a positive or negative feedback according to the decoding results. The
tag either transmits more coded packets or a new frame based on the feedback.

3.1 Index Matrix

On the basis of Sect. 2.2, we can get one check matrix and its corresponding
generator matrix through creating an index matrix. Due to the characteristics of
rateless code, the way which enables us to compose infinite index matrices must
be found. One considerate solution is changing the initial exponent of index
matrix variables.

⎛
⎜⎜⎜⎝

axby ax+1by . . . ax+mby

axby+1 ax+1by+1 . . . ax+mby+1

...
...

...
axby+n ax+1by+n . . . ax+mby+n

⎞
⎟⎟⎟⎠ (3)

The initial exponential values x and y can be substituted with any positive
integer or zero. As depicted in Fig. 2, the index matrices constructed by different
initial exponents have the very close BER. Therefore we can create inexhaustible
and different index matrix in this way.

3.2 Generator Matrix

We assume the check matrix H = [H1,H2]. The matrix H1 is designed based on
the index (3), while the identity matrix I in the middle of H2 can move up and
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down freely, which can ensure that the matrix is a no-four-rings and irregular
matrix. This method can not only make the coding effect close to the random
LDPC, but also facilitate the calculation of its corresponding generator matrix.

After constructing the check matrix, we use Gaussian elimination line by line
to rewrite the check matrix into [I|P] form. According to Sect. 2.2, [PT |I] is the
generator matrix, the operator T being the transpose of a matrix.

H1 =

⎛
⎜⎜⎜⎝

Iaxby Iax+1by . . . Iax+mby

Iaxby+1 Iax+1by+1 . . . Iax+mby+1

...
...

...
Iaxby+n Iax+1by+n . . . Iax+mby+n

⎞
⎟⎟⎟⎠ (4)

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I I 0 . . . 0 0
0 I I . . . 0 0
...

...
...

...
...

I . . . 0 0
0 . . . 0 0
...

...
...

...
...

0 0 0 . . . I I
I 0 0 . . . 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

3.3 Rateless LDPC Encoder

First, the message sequence is multiplied by the generator matrix to form the
LDPC coded sequence. We then adopt the modulation mode of on-off keying
(OOK). When the WiFi signal arrives, we send the modulated symbols through
the tag.

3.4 Rateless LDPC Decoder

The main processes of decoding are shown as two parts below.

LLR Calculation Firstly, the i-th modulated symbol at the tag is denoted
by αi, and the corresponding received signal is βi. The channel LLR is then
calculated as (6), where P 0

i indicates the probability that the channel input
is 0, while P 1

i indicates the probability that the input is 1. The subscript αi

denotes each modulated symbol transmitted from the tag, i.e., the channel LLR
is calculated in symbol-wise.

L(αi) = ln
P 0

i

P 1
i

(6)

with

P 0
i = P (αi = 0|βi) =

P (βi|αi = 0)
P (βi|xi = 0) + P (βi|αi = 1)

, (7)
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Algorithm 1 Rateless Decoding Algorithm
Input: L(ci)
Output: The verdict of each bit x̂
1: count=1
2: while ACK �= 1 do
3: if count = 1 then
4: (ACK,L(qi)) = BPfunction(L(ci))
5: else
6: L(ci) = [L(ci)(1 : M), L(qi)(M + 1 : N)]
7: Normalization function(L(ci))
8: (ACK,L(qi)) = BPfunction(L(ci))
9: end if

10: end while
11: if L(qi) < 0 then
12: x̂=1
13: else
14: x̂=0
15: end if

P 1
i = P (αi = 1|βi) =

P (βi|αi = 1)
P (βi|αi = 0) + P (βi|αi = 1)

. (8)

We assume that the channel is affected by AWGN with variance σ2. Finally, we
obtain the channel LLR (9), which is fed into the iterative decoder as the priori
LLR for decoding, as

L(αi) = ln
P (β|αi = 0)
P (βi|αi = 1)

= ln
e− (βi−0)2

2σ2

e− (βi−1)2

2σ2

=
1 − 2β

2σ2
(9)

Rateless LDPC Decoding Algorithm. In the decoding algorithm, we use an
improved algorithm based on the traditional BP algorithm which is mentioned in
Sect. 2.2, hereinafter called BP function. The result of each BP function will be
retained and replaced with the initial value of the next BP function. In this way,
through the cooperation of infinite generator matrix described in the Sect. 2.1,
we can superimpose the decision of information bits after each BP function to
reduce the BER. The decoding algorithm proposed in this paper is summarized
in Algorithm 1.

In Algorithm 1, BP function has two return values: a feedback signal and
L(qi). Feedback signals are divided into ACK and NACK. The acknowledgment
ACK is a signal which sends to the tag, indicates successful decoding, so that
the tag transmits the following frames. On the contrary, if a NACK signal is
sent by the receiver, the tag will continue to create a new generator matrix to
encode current frame and send it to the receiver again. L(qi) is the result of BP
function, which is composed of a posterior probability of information bits and
a posterior probability of check bits. If decoding fails, we will retain the result
of the last L(qi) information bit. In the next BP function, we will replace the
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value of the information bit in the new L(ci) with retention value, and retain
the value of the check bit in the new L(ci). So except that the complete LDPC
code needs to be sent for the first time, only the check bit in the code needs to
be sent in the future. This replacement retains the result of the last decoding,
so that the value of the decision after each decoding is closer to the true value,
ultimately to deliver as reliably as possible.

It should be noted that the normalization function in the above algorithm is
only be used in some special cases, which will be explained in detail later.

4 Performance Evaluation

To evaluate the system performance with respect to the BER using simulations,
we make the following assumptions. The backscatter link is corrupted by the
AWGN with different variances. The tag totally transmits 1, 000 frames with a
frame length being 1, 310 bits.

Fig. 3. The BER performance compar-
ison between the rateless LDPC and
QC-LDPC.

Fig. 4. The BER performance of using
different coding rates for generating
rate LDPC codes.

Firstly, we compare the performance of ordinary QC-LDPC and rateless
LPDC. QC-LDPC adopts the check matrix form which is identical to that of the
rateless LDPC codes. We choose a = 3, b = 7 as the variable values in the index
matrix. For the ease of experimentation, we limited the number of retransmis-
sions to be 1 if not mentioned. As the result, the code rate of rateless LPDC is
1/3. The obtained simulation results are shown in Fig. 3.

As we can see, rateless LDPC outperforms QC-LDPC in all the ranges of
the signal-noise ratio (SNR) in terms of BER. However, it is noted that such
performance is achieved by only one retransmission. Next, the performance is
evaluated by increasing the number of retransmission to show the impact of the
number of retransmissions on the BER performance. We compare one retrans-
mission with two retransmissions, which means the code rates of rateless LDPC
are 1/3 and 1/4, respectively. Figure 4 illustrates the obtained results.
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In Fig. 4, we can easily draw the conclusion that the larger numbers of retrans-
mission, the smaller BER. Therefore, if the number of retransmission is not lim-
ited, the bit error rate can reach the optimal value, which is the best effect that
rateless LDPC can achieve. Meanwhile, the code length can also affect the per-
formance of rateless LDPC. We compared rateless LDPC with code length of
1310 and 25,390, the code rate was set at 1/3 (Fig. 5).

Fig. 5. Different code lengths of rateless LDPC

Fig. 6. Different interval ratios of WiFi packets.

In WiFi backscatter communication, according to the description in Sect. 2.1,
we need to consider not only the noise interference, but also the intermittent
nature of WiFi signals. Therefore, we add the simulation of WiFi intermittence.
The tag sends frames as usual, if there is an interruption at some point which
leads to the missing of information bits, we assume that the received bit is 0,
and then decode it normally.

We compare the coding effect of rateless LDPC when the interval rate is
0, 0.05 and 0.1 respectively. Rateless LDPC adopts code length of 1310 and
retransmission once, that is, the code rate is 1/3. The results are shown in
Fig. 6.
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Fig. 7. Different retransmissions times with 0.1 interval ratio.

Fig. 8. Whether changing the index matrix.

It is worth mentioning that normalization method is used in this situation
which mentioned in Algorithm 1. When the SNR is relatively large, it will affect
the fluctuation range of the posterior probability in the BP algorithm. If it
exceeds a certain range, an error value will be generated and decoding fails.
Therefore, we need to use the normalization algorithm to keep the posterior
probability after each decoding within a certain range, which can ensure the
success of decoding. In this experiment, we adopt linear function conversion
normalization to limit the posterior probability value to the range of −5 to 5.

Next, we increase the number of retransmissions to verify whether the BER
can be reduced in the case of intermittence. We selected the interval rate as 0.1
and the number of retransmissions as 1, 4 and 9 respectively. The experimental
results are shown as Fig. 7.

At the same time, in order to prove the superiority of rateless LDPC coding
by replacing the index matrix, we compared rateless LDPC with rateless LDPC
without changing the index matrix, the later was equivalent to an improved
automatic repeat request (ARQ) protocol which using the decoding algorithm
mentioned in this paper. Normalization method was used in both situation and
the code rate was 1/4. The results are shown in Fig. 8. It can be concluded from
that the rateless LDPC algorithm in this paper is better than the improved ARQ
protocol.
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5 Discussion

Among the entire experiments, although we limit the code length and retrans-
mission times in order to reduce the complexity of the tag, rateless LDPC still
shows a good performance in anti-interference and WiFi intermittence. In practi-
cal application, we will no longer limit the number of retransmission, but adjust
the code length to the most appropriate value. At the receiver, we could set
a BER threshold which corresponds to the desired quality of service. If the
obtained BER is less than or equal to this threshold, the decoding is considered
to be successful. We can even set the threshold to zero for reliable transmission.
It can be predicted that rateless LDPC can shine in WiFi backscatter com-
munication after releasing the bondage. However, the results of this work are
mainly obtained by computer simulations. As a future study, we can implement
our coding scheme in a prototype to evaluate the system performance in real
scenarios.

6 Conclusion

In this paper, the combination of rateless coding and LDPC coding was applied
to WiFi backscatter communication, which can not only effectively prevent inter-
ference and packet intermittence, but also maximize the utilization of resources.
In the case of good channel conditions, it reduced the number of transmission,
while in poor channel conditions, it increased the number of retransmission to
achieve reliable transmission. In addition, rateless technique makes LDPC coding
reach Shannon limit as much as possible, so as to ensure the excellent perfor-
mance of LDPC coding.

References

1. Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambi-
ent backscatter: wireless communication out of thin air. In: Proceedings of ACM
SIGCOMM. ACM, New York (2013)

2. IEEE standard for information technology-telecommunications and information
exchange between systems - local and metropolitan area networks-specific require-
ments - part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications - redline. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-
2016) - Redline, pp. 1–7524 (2021)

3. Huang, J., Xing, G., Zhou, G., Zhou, R.: Beyond co-existence: exploiting WiFi
white space for ZigBee performance assurance. In: The 18th IEEE International
Conference on Network Protocols, pp. 305–314 (2010)

4. He, X., Jiang, W., Cheng, M., Zhou, X., Yang, P., Kurkoski, B.: GuardRider:
reliable WiFi backscatter using reed-Solomon codes with QoS guarantee. In: 2020
IEEE/ACM 28th IWQoS, pp. 1–10 (2020)

5. He, C., Luan, H., Li, X., Ma, C., Han, L., Jane Wang, Z.: A simple, high-
performance space-time code for MIMO backscatter communications. IEEE Inter-
net Things J. 7(4), 3586–3591 (2020)



Design on Rateless LDPC Codes 71

6. Yunkai, H., Wang, P., Lin, Z., Ding, M., Liang, Y.-C.: Performance analysis of
ambient backscatter systems with LDPC-coded source signals. IEEE Trans. Veh.
Technol. 70(8), 7870–7884 (2021)

7. Tao, Q., Zhong, C., Lin, H., Zhang, Z.: Symbol detection of ambient backscatter
systems with Manchester coding. IEEE Trans. Wireless Commun. 17(6), 4028–
4038 (2018)

8. Zhang, P., Josephson, C., Bharadia, D., Katti, S.: FreeRider: backscatter commu-
nication using commodity radios. In: CoNEXT, pp. 389–401 (2017)

9. Onay, M.Y., Dulek, B.: Performance analysis of TV, FM and WiFi signals in
backscatter communication networks. In: 2019 27th Signal Processing and Com-
munications Applications Conference (SIU), pp. 1–4 (2019)

10. Rosenthal, J., Reynolds, M.S.: A 158 pj/bit 1.0 mbps bluetooth low energy (BLE)
compatible backscatter communication system for wireless sensing. In: 2019 IEEE
Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 1–3
(2019)

11. Daskalakis, S.-N., Kimionis, J., Collado, A., Tentzeris, M.M., Georgiadis, A.: Ambi-
ent FM backscattering for smart agricultural monitoring. In: 2017 IEEE MTT-S
International Microwave Symposium (IMS), pp. 1339–1341 (2017)

12. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, September 1963
13. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE

Trans. Inf. Theory 45(2), 399–431 (1999)
14. Mackay, D., Neal, R.M.: Near Shannon limit performance of low density parity

check codes. Electron. Lett. 32(18), 457–458 (2013)
15. Myung, S., Yang, K., Kim, J.: Quasi-cyclic LDPC codes for fast encoding. IEEE

Trans. Inf. Theory 51(8), 2894–2901 (2005)
16. Zhang, H., Zhang, Z., Dai, H.: Rateless-coding-assisted multi-packet spreading over

mobile networks. In: 2013 IEEE Global Communications Conference (GLOBE-
COM), pp. 5000–5005 (2013)



Design of Physical Layer Coding
for Intermittent-Resistant Backscatter
Communications Using Polar Codes

Xing Guo1,3(B), Binbin Liang1, and Xin He2,3

1 School of Computer Science and Technology, Anhui University, Hefei 230601, China
{guox,E20301219}@ahu.edu.cn

2 School of Computer and Information, Anhui Normal University,
Wuhu 241002, China
xin.he@ahnu.edu.cn

3 Deqing Alpha Innovation Institute, Deqing, China

Abstract. Backscatter communications enable the connection of the
large scale of the Internet of things (IoT) devices, due to their extremely
low power consumption characteristic. As the number of IoT devices
is increasing, the effective and reliable communication between devices
becomes a key factor to offer services with the desired quality by the IoT.
However, due to the impact of noise and the low power of the backscat-
ter signal itself, the system performance is usually unreliable. To this
end, in this paper, we propose an integrated cyclic redundancy check
code and Polar codes (CRC-Polar) to improve the performance of the
ambient backscatter communications. The performance is verified indi-
cating by the bit error rate from the following aspects: excitation source
time intervals, excitation source signal-to-noise ratios, coding rates and
code lengths. We conduct extensive computer simulations using Matlab
platform to verify that the designed method achieves a better enhance-
ment of the excitation source signal transmission process. The exper-
imental results show that our proposed CRC-Polar scheme can effec-
tively improve the communication reliability of backscatter communica-
tion with medium and long distances and effectively reduce the influence
of environmental factors on the communication quality.

Keywords: Polar code · Backscatter communication · Low power
consumption · SCL algorithm

1 Introduction

With the rapid development of the Internet of things (IoT), more and more IoT
devices are entering daily life, making an indispensable contribution to social
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development while facilitating ours daily lives. Along with the rapid develop-
ment of 5G communication technology, the number of IoT devices grows in an
exponential manner in near future [1–8]. Facing the network formed by such a
large number of IoT devices, how to achieve efficient and reliable communication
between devices is a key indicator to improve the service quality. Otherwise, a
good information communication exchange network cannot be formed between
devices, which significantly decrease the user experience of the IoT. To tackle
the challenge, the backscatter communication becomes a possible solution for
connecting these large-scale IoT devices, enabling by its extremely low power
consumption, at a level of µW usually.

A typical backscatter communication system contains an excitation source,
a tag and a receiver. The tag does not generate any radio frequency (RF) signal
to convey information. It just borrows the ambient RF signal to transmit its
data from the excitation source. The receiver receives the modulated RF signal
reflected by the tag. It then decodes and processes the signal to recover the data
from the tag. In this process, the RF signal emitted by the excitation source may
vary during one backscattering phase due to the different deploying distances of
the tag, random noise and the characteristics of the excitation RF signals. As a
result, the reliability of the backscatter communication usually is not acceptable.
To this end, it is necessary to perform a channel encoding at the tag node to
improve the reliability of the backscatter system. Inspired by the Shannon capac-
ity achieving performance of Polar codes, we design a coding scheme to improve
the reliability of long-distance operation of backscatter communications using
Polar code. The system performance of the proposed backscatter communica-
tion system is evaluated from various perspectives.

The main contributions of this work are as following.

– To study the accuracy of decoding information at the receiver after the sig-
nal is transmitted from the excitation source and reflected by the tag to
the receiver under four different conditions: different excitation source time
interval, different excitation source signal-to-noise ratio, different excitation
source code rate and different excitation source code length. The bit error
rate (BER) is utilized as a performance indicator of the system performance.
The lower the BER, the better the quality of service.

– We evaluate the system performances with respect to the distances between
the excitation source signal and the tag, the tag and the receiver, to verify
the effect by the distances.

– Simulation results show that the coding design achieves a notably good per-
formance for a long-range operation with a low signal-to-noise ratio (SNR),
which verifies the effectiveness of the coding design.

The rest of this paper is organized as follows. Section 2 presents the theoreti-
cal knowledge of polarization, convolutional and fountain code coding. Section 3
systematically presents the design of the interruption-resistant physical layer
coding in this paper. The performance evaluation of the coding is given in Sect. 4.
Finally, Sect. 5 concludes the whole paper.
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2 Preliminary Knowledge

In this section, we introduce some vital knowledge of the system design.

2.1 Polar Codes

In 2008, Erdal Arikan first introduced the concept of channel polarization and
invented a new coding method based on the channel polarization, named Polar
code [9–14]. The Polar code is designed without considering the minimum dis-
tance characteristic, but using the process of channel combination and chan-
nel splitting to select the specific coding scheme, and also using probabilis-
tic algorithms in decoding. For a polarization code of length N = 2n (n is
any positive integer). It performs channel union and channel splitting using
N independent copies of the channel W to obtain a new post-split channel{
W

(1)
N ,W

(2)
N , . . . ,W

(N)
N

}
. As the code length N increases, the split channel

evolves to two extremes; one part of the split channel converges to a perfect
channel, i.e., a noise-free channel with channel capacity converging to 1, while
the other part of the split channel converges to a completely noisy channel, i.e.,
a channel with a channel capacity converging to 0. Assuming that the binary
input symmetric capacity of the original channel W is denoted as I(W ), then
when the code length N tends to infinity, the proportion of split channels whose
channel capacity tends to 1 is about K = N × I(W ),and the proportion of chan-
nels whose capacity tends to 0 is about N × (1 − I(W )). For a reliable channel
with a channel capacity of 1, the message bits can be placed directly without any
coding, i.e., equivalent to a coding rate of R = 1, while for an unreliable channel
with a channel capacity of 0, frozen bits can be placed that are known in advance
at both the sender and the receiver, i.e., equivalent to a coding rate of R = 0.
The reachable coding rate R = N × I(W )/N = I(W )$ of the polarization code
when the code length $N , i.e., in theory, the polarization code can be proved to
reach the channel capacity.

2.2 Convolutional Codes

Shannon proved that reliable communication can be achieved by coding when
the coding rate is lower than the channel capacity. Convolutional code, as a
common channel coding technique, has excellent performance. It is a type of
forward error correction (FEC), which can be calculated by the convolutional
formula to obtain the corresponding coding element. Each coding code element is
not simply related to the current coding information, but also to the previous bit
information, which is a kind of coding with memory. The constrianed length and
the genetor polynomials deterimines how many bits are contributes to current
coding outputs.
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Fig. 1. The decoding process of SCL algorithm.

2.3 Fountain Code

Similar to the binary rateless code, in order to generate the simulated rateless
symbols, an integer called degree is first obtained based on a predefined prob-
ability distribution function, called the degree distribution. In the next step, d
different bits of information are chosen randomly and uniformly. Subsequently,
the selected information bits are linearly combined in the real domain with the
real weighting coefficients selected from a predefined probability distribution
function called the weight distribution to generate the coded symbols.

2.4 SCL Algorithm

The successive cancellation (SC) decoding algorithm [13,14] is the successive
deletion decoding algorithm, and its basic idea is to decode by judging the prob-
ability value of the likelihood of the information bits. While the successive can-
cellation list (SCL) decoding algorithm is an improved decoding algorithm based
on the SC algorithm, which can achieve a better balance between computational
and spatial complexity, and thus achieve better decoding results. The decoding
process of the SCL algorithm is depcited in Fig. 1.

3 Coding Design

In this section, we describe the coding design for the backscatter system and
how it works.

The system framework is illustrated in Fig. 2, which mainly contains the
transmitter and receiver. Firstly, a cyclic redundancy check (CRC) code is cal-
culated for the source information and the parity bits are appended. The CRC
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Fig. 2. Transceiver workflow of the proposed backscatter system.

coded sequence is then polarized-encoded using the Polar codes. The coded
sequence is finally modulated for transmission using on-off keying (OOK) mod-
ulation by switching an RF switch. After receiving the RF signal, the receiver
performs a series of computaiton, including demodulation, polarizes-decoding,
CRC code cheking. Finally, the message is reconstructed from the decoded infor-
mation sequence by hard decision.

The transmitter polarizes-encodes the original message and subsequently
adds CRC codes as a way to check for possible errors during transmission. The
log-likelihood ratio of the polarization-encoded message sequence is then calcu-
lated, and the consequence is modulated for transmission. The decoding process
at the receiver side is precisely the opposite of the encoding process.

3.1 Transmitter

The transmitter uses the channel polarization phenomenon to encode the original
message sequence using the CRC-SCL algorithm, which reduces errors by the
encoding. The coded information sequence is then converted to a transmitted
symbol sequence utilizing the OOK modulation.

A binary input discrete memoryless channel (B-DMC) is denoted as W : X →
Y , where X is the set of input symbols, and Y is the set of output symbols. The
transfer probability is denoted as W (y | x), x ∈ X, y ∈ Y . Since the channel
is a binary input, the sets X = {0, 1}, Y , W (y | x) are arbitrary values. The
channel after N uses for channel W can be denoted as WN , then the channel
WN corresponds to the transfer probability WN

(
yN1 | xN

1

)
=

∏N
i=1 W (y | x).

For a B-DMC W , there are two important channel parameters: the symmetric
capacity as

I(W ) �
∑
y∈Y

∑
x∈X

1
2
W (y | x) log

W (y | x)
1
2W (y | 0) + 1

2W (y | 1)
(1)

and the Bhattacharyya parameter as

Z(W ) �
∑ √

W (y | 0)W (y | 1) (2)
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Fig. 3. Level 1 union process of the channel combining.

Fig. 4. The process of channel union at level N .

where I(W ) is a measure of the channel rate and Z(W ) is a measure of the
channel reliability. I(W ) is the maximum rate at which the channel W can be
reliably transmitted with equal probability input; Z(W ) is the upper limit of
the maximum likelihood judgment error probability at which the channel W
transmits only 0 or 1.

Channel polarization includes two processes: channel combining and channel
splitting.

In the stage of channel combining, N independent copies of the B-DMC W
are united to produce a vector channel WN : XN → Y N by recursion, where N
is a power of 2 to N = 2n, n ≥ 0. The recursion starts at level 0 (n = 0) with
just one copy of W and defines W1 � W . Level 1 unites 2 independent copies,
as shown in Fig. 3.

The vector channel W2 : X2 → Y 2 is obtained , and its transfer probability
can be calculated by the following equation.

W2 (y1, y2 | u1, u2) = W (y1 | u1 ⊕ u2)W (y2 | u2) (3)

The general process of channel union is shown in Fig. 4.
The two independent copies of WN/2 jointly produce the channel WN . The

input vector uN
1 enters the channel WN and is first transformed to sN1 : s2i−1 =

u2i−1 ⊕ u2i, s2i = u2i, 1 ≤ i ≤ N/2. RN represents the bit-reversal sorting
operation with input sN1 and output vN1 = (s1, s3, . . . , sN−1, s2, s4, . . . , sN ). And
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vN1 becomes the input of 2 independent copies of WN/2. The mapping uN
1 → vN1

is a linear transformation on the binary domain GF (2). uN
1 → xN

1 is the input
mapping from the input of the composite channel WN to the original channel
WN , and its mapping process is also a linear transformation. Thus there is
xN
1 = uN

1 GN , and GN is said to be an N -dimensional generating matrix. The
transfer probabilities of channels WN and WN conform to the following relation

WN

(
yN1 | uN

1

)
= WN

(
yN1 | uN

1 GN

)
(4)

where yN1 ∈ Y N , uN
1 ∈ XN .

Channel splitting is the second stage of channel polarization. The composite
channel WN formed by channel union is split into N coordinate channels W

(i)
N :

X → Y N ×Xi−1, 1 ≤ i ≤ N with binary inputs, and the corresponding transfer
probabilities are defined as follows

W
(i)
N

(
yN1 , ui−1

1 | ui

)
�

∑

uN
++1∈XN−i

1
2N−1

WN

(
yN1 | uN

1

)
, (5)

where
(
yN1 , ui−1

1

)
denotes the output of W (i)

N and ui denotes the input of W (i)
N .

The transfer probabilities of odd-order splitting sub-channels and even-order
splitting sub-channels can be obtained by two recursive equations.For any n ≥
0, N = 2n, 1 ≤ i ≤ N/2, there are

W
(2i−1)
N

(
yN1 , u2i−2

1 | u2i−1

)

=
∑
u2i

1
2
W

(i)
N/2

(
y
N/2
1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
· W (i)

N/2

(
yNN/2+1, u

2i−2
1,e | u2i

)

(6)
and

W
(2i)
N

(
yN1 , u2i−1

1 | u2i

)

=
1
2
W

(i)
N/2

(
y
N/2
1 , u2i−2

1,o ⊕ u2i−2
1,e | u2i−1 ⊕ u2i

)
· W (i)

N/2

(
yNN/2+1, u

2i−2
1,e | u2i

)

(7)

3.2 Receiver

The receiver first demodulates the signal received from the reflective tag, decodes
the demodulated signal using integrated CRC and SCL (CRC-SCL) algorithm,
and performs CRC checksum on the decoded information sequence. If it passes
the CRC check, a hard decision needs to be done to form the reconstruction of
the message from the tag.

3.3 Algorithm Design

In this paper, the polarization-decoding is performed by CRC-SCL decoding
algorithm, which can largely improve the decoding performance of SCL decoding
algorithm without increasing the decoding complexity too much. The decoding
algorithm process is carried out in the following steps.
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Fig. 5. BER performance with different excitation source time intervals when the
reserved path L = 4.

1. Demodulating the received signal to form the log-likelihood ratio (LLR) which
is the soft information and input into the CRC-SCL decoder.

2. It decode the received signal using the SC decoder, and if the decoded result
passes the CRC check, the decoding is terminated; if the result decoded by
the SC decoder does not pass the CRC check, the CRC-SCL decoder with
L = 2 is selected to decode the signal again.

3. If there exists a CRC-SCL decoder with the list number L that can pass the
CRC check, the decoding is terminated; otherwise, make L ← 2L and decode
the signal with CRC-SCL decoder again.

4. Repeat the above process until a result that can pass CRC checksum is pro-
duced, or L exceeds the given maximum value.

Following the above 4 steps, the decoding process is finished and the esti-
mated message sequence is reconstructed from the decoded message sequence
based on hard descision. The decoded information sequence obtained in this
way achieves a good BER performance under various conditions and different
parameters, which also verify the effectiveness of the coding algorithm proposed
in this paper to a certain extent.

4 Performance Analysis

Matlab2018b is used as the experimental platform and simulations are per-
formed. The SNR, code length, code rate, excitation source interval and signal
attenuation are controlled to simulate the performance of this set of coding under
different environments, which can be indirectly reflected by the BER.

1) Different excitation source time interval. In the case of different exci-
tation source time interval (excitation source time interval is the ratio of the
effective signal emitted by the excitation source to the overall emitting time,
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Fig. 6. BER performance of reserved paths L = 2, 4, 8, and SNR= 3, 4 dB with different
code lengths.

the larger the excitation source time interval indicates the lower the effec-
tive information proportion; the opposite indicates the higher the effective
information proportion), the excitation source time interval chosen in this
paper is set as {10%, 15%, 20%, 25%}.In this range, the BER performance
of the selected reserved path L=4 at SNR={1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5} is
shown in Fig. 5. The BER performance decreases with increasing excitation
source interval, and even at 25% excitation source interval (SNR= 4.5 dB),
the proposed scheme can still maintain a good BER performance.
2) The BER performance for different SNR’s. The results of SNR=
3 dB and SNR= 4 dB with a fixed code rate R = 0.5 and different code
lengths N = {64, 128, 256, 512, 1024, 2048} is shown in Fig. 6 by selecting the
reserved paths L = 2, L = 4 and L = 8. It can be seen that the effects of SNR
and reserved path L on BER are different for each code length N, but show
an overall decreasing trend.
3) Different excitation intervals with different reserved path num-
bers. Path numbers L = 2, L = 4andL = 8 are selected to compare the
BER performance of different excitation source time intervals under different
SNR={1.5, 2.5, 3.5, 4.5} dB, where the obtained results as shown in Fig. 7. As
the SNR continues to increase, the corresponding BER performance becomes
better; and at each fixed value of SNR, the BER shows an overall dynamic
decreasing trend as the number of reserved paths L continues to increase.
4) Different coding rates. The reserved paths L = 4 and 8 are selected to
compare the BER performance at different code rates, where the code length
N = 1024, and the results are shown in Fig. 8. At each code rate R, when the
reserved path L is fixed, the performance of BER increases as the SNR keeps
increasing; when the SNR is fixed, the performance of BER generally shows
a decreasing trend as the number of reserved paths L increases.
5) Power loss ratio. The BER performance is then determined in different
signal-to-noise ratios at fixed code length N = 1024, by adjusting signal power
loss ratio, as shown in Fig. 9. When the code length N is fixed, the amount
of signal strength attenuation increases as the distance continues to increase.
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Fig. 7. BER performance at different signal-to-noise ratios for reserved paths L =
2, 4, 8.

Fig. 8. BER performance of reserved paths L = 4, 8 at different SNR’s and code rates.

At each percentage of signal attenuation, the impact on BER performance
due to signal attenuation can be reduced to some extent when the SNR value
is increased.
6) Joint impact of SNR and reserved paths. Finally, we evaluate the
BER performance impacted by different reserved paths and different SNR
with fixed code length N = 1024. The obtained simulation results are shown
in Fig. 10. When the code length N is fixed, the increase of SNR or the number
of reserved paths L is positively correlated with the performance of BER.
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Fig. 9. BER performance under different signal fading strengths with reserved paths
L = 2, 4.

Fig. 10. BER performance with increasing SNR at different retention paths.

5 Conclusion

In this paper, the CRC-SCL algorithm was utilized to evaluate the BER of
the codes generated through this coding method by comparing several differ-
ent scenarios and different impact factors. After conducting numerous sets of
comparison tests, it can be seen that the proposed coding method proposed
can effectively solve the problem of unstable communication process caused by
intermittent excitation source signal in the reflection communication process to
a certain extent. The stability of the communication process in the long-distance
backscatter communication process is improved, which can enhance the perfor-
mance of the IoT devices when they work and thus improve the service quality.
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Abstract. Packet classification plays a key role in network security sys-
tems such as firewalls and QoS. The so-called packet classification is to
classify packets into different categories according to a set of predefined
rules. When the traditional classification algorithm is implemented based
on FPGA, memory resources are wasted in storing a large number of
identical rule subfields, redundant length subfields, and useless wildcards
in the rules. At the same time, due to the rough processing of range
matching, the rules are extended. These problems seriously waste mem-
ory resources and pose a huge challenge to FPGAs with limited hardware
resources. Therefore, a field mapping encoding bit vector (MEBV) scheme
is proposed, which consists of a field-splitting-recombination architecture
that can accurately divide each field into four mapping preparation fields
according to the matching method, field reuse rate, and wildcard ratio,
and also consists of four mapping encoding algorithms to complete the
length compression of the rules, to achieve the purpose of saving resources.
Experimental results show that for the 1K OpenFlow 1.0 ruleset, the algo-
rithm can achieve a significant reduction in memory resources while main-
taining high throughput and support range matching, and the scheme
method can save an average of 38% in memory consumption.

Keywords: Packet classification · Bit-vector · Memory compression ·
Mapping encoding · FPGA

1 Introduction

With the rapid development of Internet technology and the gradual increase
of network security requirements, people are looking for various solutions to
cope with various network attacks while the business requirements are gradually
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increasing. Packet classification is a technology that divides traffic into different
flows based on a set of predefined rules. It can not only realize the blacklist
function of separating and discarding the flow containing malicious traffic, and
transparently transmitting other flows; it can also realize a similar whitelist func-
tion. As such, it is more challenging, especially in environments where packets
must be processed at wire speed. And packet classification is also the core issue
of OpenFlow-based software-defined networking (SDN) [1]. The ever-increasing
number of fields and ever-expanding rulesets pose great challenges to practical
packet classification solutions with high throughput and low memory consump-
tion. From a hardware perspective, the main challenges for packet classification
include: (1) supporting large rulesets, and (2) maintaining high performance.

In the past decade or so, software-based decision tree algorithms [2] and tuple
space search algorithms [3] proposed for classical problems have been used on
CPU processing platforms. However, the performance of software-based meth-
ods is limited by the CPU memory system. Hardware-based ternary content-
addressable memory (TCAM) [4] solutions have also been widely used in indus-
try due to their parallel lookup of wire-speed classification rules. But it has the
disadvantages of being expensive, power-hungry, and limited capacity. Field Pro-
grammable Gate Arrays (FPGA) [5] have been widely used to process real-time
networks. Algorithms based on bit vectors can make good use of the hardware
parallelism of FPGAs through rule decomposition. The currently proposed bit-
vector-based algorithm [6–14] can achieve high throughput by exploiting a homo-
geneous pipeline structure (PE) consisting of sorting processes. But as match
fields and rulesets increase, the FPGA’s master clock frequency decreases rapidly
and range matching is not supported. To solve the above issues, [9] divides the
N-bit vector into smaller sub-vectors to improve the overall performance of clas-
sified PE in FPGA. And [12] proposed an algorithm to support range matching
using precoding. However, the above approach does not reduce the required
memory resources. Therefore, to achieve resource optimization while taking into
account range matching and throughput, a memory-optimized scheme called
MEBV based on field mapping encoding is proposed. Our contributions to this
work include:

A field-splitting-recombination architecture: The architecture can
accurately divide each field into four mapping preparation fields according to
the matching method, field reuse rate, and wildcard ratio.

Four mapping encoding algorithm frameworks, HRME, PMME,
WMME, RMME: According to the characteristics of the mapping prepara-
tion field, four different algorithms are used for mapping encoding to generate
corresponding mapping vectors.

Superior memory optimization: Detailed performance evaluation of our
proposed architecture on state-of-the-art FPGAs. We show in post-place-and-
route results that for a 1K 12-tuple ruleset, the architecture can save 38% mem-
ory consumption on average.

Higher throughput: Compared with algorithms that support range match-
ing, this scheme saves resources while keeping the impact on throughput within
5%, and meets the requirements for wire-speed packet classification.
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Fig. 1. Schematic diagram of stride BV
algorithm. (W = 4, s = 2)

Fig. 2. Field length and abbreviated
name of OpenFlow entry.

2 Related Work

2.1 BV-Based Packet Classification

The Stride BV [7] algorithm divides a field with a bit width of W bits into
m = W/s subfields, where s is the length of a subfield, and the divided subrules
are encoded and stored separately. This method reduces the bit width of the
internal signal from W to s, which improves the throughput, but consumes
more memory and is not suitable for range matching, the algorithm is shown in
Fig. 1, it illustrates a Stride bv-based packet classification method. The bit vector
S
Vj

i is used to represent the matching result of Vj to the matching subfieldj
corresponding to the subruleseti. In this example, s is set to 2 and n is set to
3. For example, in Fig. 1, if the input packet header has V0 = 10 in subfield0
of subruleset1, extract SV0

1 = 010; this means that only rule R4 of subruleset 1
matches the input in that subfield. The FSBV [8] algorithm is a special case, s =
1. When the bit width W increases, the number of pipeline stages will increase
linearly with W , which will also cause a large delay in packet processing. The
subsequently proposed two-dimensional pipelined stride bit vector (2D Stride
BV, hereinafter referred to as 2D BV) [9], which is based on the Stride BV [7]
algorithm, supports dynamic updates and further improves throughput. But the
above problem still exists. Therefore, in response to the problem of memory
consumption, the wildcard-removed bit-vector (WeeBV) [10] deletes the address
space storing wildcards as much as possible to save memory by making full
use of the characteristics of the ruleset. For the range matching problem, range
bit vector encoding (RBVE) [12] has the same characteristics as Stride BV [7],
and uses specially designed code to store the precomputed results in memory,
which can solve the range matching problem. The subsequently proposed Range
Supported Bit Vector (RSBV) [13] further improves RBVE and achieves high
processing speed. However, the above methods are one of the existing problems,
and cannot support range matching while saving memory.
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2.2 Motivation

The process of packet classification: Given a ruleset, extracting the header field
of the packet when the packet is input. Matching the header field with the
corresponding fields of the ruleset, and processing the packet according to the
specified action in the matched result.

The most classic is to use 5-tuple for packet classification, examining each
incoming packet for the following header tuples: Source IP, Destination IP,
Source Port, Destination Port, Protocol. But to accommodate today’s security
policies, a simple five-tuple is not enough. The OpenFlow 1.0 [15] header includes
12 fields, and the detailed description of the attributes of each field is shown in
Fig. 2. By analyzing the characteristics of the OpenFlow 1.0 ruleset in [10], it
is found that there are various types of search methods for different fields, and
many fields have problems such as single value and a high proportion of wildcard
characters: For example, the IP address field requires prefix matching, the port
field requires range matching, the Ethernet type field has a fixed value and a
large bit width, and the wildcard ratio of fields such as IP ToS is high. Since the
meaning of wildcards is whether the bit matches whether the bit is 0 or 1, these
wildcards don’t mean anything.

3 Proposed Scheme

3.1 Mapping Encoding Bit Vector (MEBV) SCHEME

MEBV is to decompose the entry into the various subfields in Fig. 3. Based
on the matching form of each subfield or the number of wildcards, the F
subfields are recombined into 4 mapping preparation fields. Then, different
mapping algorithms are applied to each mapping preparation field for encod-
ing to generate mapping vectors. Assuming that the lengths of the mapping
preparation fields are L1, L2, L3, L4, and the lengths of the mapping encoding
fields are D1,D2,D3,D4. Respectively, there will be L1 + L2 + L3 + L4 >>
D1 + D2 + D3 + D4.

For example, the OpenFlow 1.0 [15] header includes 12 fields that can be split
into 12 subfields. Then analyze the characteristics of each subfield: the reuse rate
of the Ethernet type and IP PROTOCOL fields is very high. Source IP and des-
tination IP are mostly prefix matching, and the multiplexing rate is high. Source
Port and Destination Port are mostly range matching. The remaining fields are
exact or wildcard matches. According to the wildcard ratio of OpenFlow rule-
set 12-tuple organized in MsBV [11], the fields can be divided more clearly:
these fields can be arranged according to the wildcard ratio from small to large,
to complete the subsequent operation of deleting wildcards. Through analysis,
the detailed subfield division and mapping preparation field classification results
after applying the field rearrangement technology are shown in Fig. 3.

According to the specific matching form of the field (prefix matching, range
matching, exact matching, wildcard matching, etc.) or specific characteristics,
the mapping preparation field adopts a specific algorithm to compress the length
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Fig. 3. MEBV scheme.

of the rule and improve the matching efficiency. The four specific algorithms of
MEBV are: HRME: high reuse field mapping encoding, PMME: prefix matching
field mapping encoding, WMME: wildcard matrix field mapping encoding, and
RMME: range matching field mapping encoding.

Next, each mapping encoding algorithm will be introduced in detail. Please
note that when this solution is applied to packet classification, rules can be cus-
tomized according to the application scenario, which can achieve good scalability
while compressing resources.

3.2 HRME: High Reuse Field Mapping Encoding

By analyzing a large number of rulesets and observing real traffic data, there
is a serious waste of resources in the highly multiplexed field composed of the
Ethernet type field and the IP protocol type field. The EtherType field has 2
bytes and 16 bits. If the Stride BV [7] algorithm is applied and divided into steps
of 8, 2 ∗ 28 = 512 values are also required.

However, most of the values for this field are clustered around 0x0800 (IPv4),
0x0806 (ARP), 0x8100 (IEEE 802.1Q frame label), 0x86DD (IPv6) and wild-
cards, etc., while for our packet classification techniques such as OpenFlow1. 0
ruleset, all belong to Ethernet II and IEEE802.3 frames. Therefore, the value
of this field is more fixed. To support the blacklist function or the whitelist
function, a linear mapping method can be applied to this field to save a lot of
resources. The linear mapping results are shown in Table 1. The 5-bit width is
selected here mainly to consider the scalability of the coding results of this field.
If the application network environment is more complex, it can be expanded on
this basis.

As shown above, only the five commonly used values and wildcards need to
be encoded, and the other rarely used values are classified together. The method
will not fail when doing a match, since this is only one of the fields. To get the
correct result, the scheme needs to get the matching result of all fields.

The IP protocol type field is very similar to the Ethernet type field. The
commonly used values of the IP protocol type field are 0x01 (ICMP), 0x06
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Table 1. EtherType field mapping encod-
ing result.

ETH TYPE VETH METH

IPv4 0x0800 00000

ARP 0x0806 00001

802.1Q tag 0x8100 00010

IPv6 0x86DD 00011

MPLS 0x8847 00100

else 11111

Table 2. IP protocol type field mapping
encoding result.

IP PROTOCOL VPRO MPRO

ICMP 0x01 0000

IGMP 0x02 0001

TCP 0x06 0010

UDP 0x17 0011

ESP 0x50 0100

else 1111

(TCP), 0x17 (UDP), etc., so the linear mapping method also can be used to get
the encoding result, as shown in the Table 2.

3.3 PMME: Prefix Matching Field Mapping Encoding

In a set of rulesets, the consumption of redundant space can be effectively
reduced by grouping DIP and SIP with the same prefix length. However, if
linear classification is used, when the number of ruleset entries N increases,
the space used for classification will explode, and the classification work will be
extremely cumbersome. So in this scheme decided to use nonlinear classification,
such as hash algorithm. By hash mapping the destination IP (or source IP) fields
classified by prefix length DPLi (or SPLi) (i = 0, 1, 2,..., 32), a hash value of
a specific length H is generated and stored in the corresponding memory. The
architecture is as follows:

The ruleset has a total of N rules, which are classified according to the prefix
length DPLi (i = 0, 1, 2,..., 32). When DPLi < H, the corresponding hash
values are stored in the same memory, and the memory size is n ∗ 2H ; when
DPLi > H, each Pi will maintain a piece of memory for storing the hash value
generated by the IP address belonging to its own prefix length, and the memory
size is also n∗2H , where n represents the number of rules stored in a RAM. The
processing method of SIP is the same as above. The following Fig. 4 illustrates
the mapping and encoding process of the prefix matching field.

3.4 WMME: Wildcard Matrix Field Mapping Encoding

For wildcard matrix fields, the encoding of the field mapping will be different from
the above. Because wildcards represent any value [11], that is, whether the field
value is “0” or “1”, it will be matched. So can aggregate fields with a large number
of wildcards together by field rearrangement to form a wildcard matrix. When a
match operation is performed, the matching result output by this matrix is 1 by
default, that is, full matching. Therefore, eliminating a large number of useless
wildcards in memory is also an effective means to reduce the waste of resources. A
schematic diagram of applying field rearrangement techniques and rule rearrange-
ment techniques to all rules to form a matrix of wildcards is shown in Fig. 5.
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Fig. 4. Process of PMME. Fig. 5. Process of WMME.

3.5 RMME: Range Matching Field Mapping Encoding

The source port and destination port fields in a ruleset are usually 16-bit ranges.
A 16-bit range is represented by [LR,UR], where LR is the lower range limit
and UR is the upper range limit. In this section, a Range Bit Vector Encoding
(RBVE) [12]-like the scheme is used. In this scheme, a 16-bit range is divided
into two 8-bit subranges. When performing rule matching, this classification
method will cause the matching results of the latter sub-range to be related
to the previous. Therefore, to complete the rule matching operation, a two-
stage pipeline can be designed to place the two sub-range fields. Let VPORT

be a 16-bit input address and divide A into two sub-range fields in stride of
8, VPORTi, i = 0, 1. The specific implementation process used to generate the
matching signal in the RBVE [12] algorithm is shown in the following pseudo-
code Algorithm 1,2 in Fig. 6. The range matching field mapping encoding
process has been introduced, and the matching problem and operations will be
discussed in the following chapters.

3.6 Packet Rule Matching

To better demonstrate our rule matching process, an example is as follows in
Fig. 7, it shows an example of applying the MEBV algorithm to build a mapped
ruleset and matching all fields of the packet to it.

We map and encode the 4 rules in the ruleset to generate mapping rules and
store them in memory. When a data packet is input, the corresponding mapping
encoding will be performed first to obtain the mapping result as shown in the
figure. Since s = 9, the mapping vector produced by the eth type and protocol
fields can be combined into a stride as the input address. The hash result of the
source IP and the destination IP is also nine digits, which is also the length of
a stride. Subsequent wildcard fields will also be divided in steps of s.
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Fig. 6. Process of RMME.

When inputting a data packet, the 9-bit mapping vector of the eth type and
the protocol field is used as the first set of input, all possible 9-bit mapping
vectors of the destination IP are used as the second set of input, and all possible
9-bit mapping vectors of the source IP are used as the third set of input. This
example is a brief introduction, so except for the fields above, the rest of the
rule’s fields are set to wildcards. Here, the rules are sorted by wildcard ratio,
and fields with high wildcard ratios end up in a wildcard matrix. Fields with a
low wildcard ratio are listed first and filled into memory according to the actual
value, without mapping and encoding.

The port field is range matching, so this field adopts the RBVE algorithm.
The mapping code value of this field will be directly used for matching judgment,
and the composition of the mapping rule does not include this field.

3.7 Hash Collision Resolution

There will always be a problem with hash collisions when using hashing algo-
rithms. The solution to the hash conflict in this scheme is to maintain two sets
of hash algorithms. When the result of the first hash calculation produces a
hash conflict, the second set of hash algorithms will be enabled. If the calcula-
tion results still conflict, the IP data will be temporarily stored, and the write
address counter in this memory will be read after all the prefix length rules have
been configured. Then choose the lowest address with a write address counter of
0, and force the hash result to encode this address value and store it in memory.
At the same time, to minimize hash collisions under normal circumstances, the
bit width of the hash value will be increased as much as possible.

4 Experimental Results and Analysis

In this section, we present the experimental setup and experimental results,
which are measured in terms of space complexity, throughput, and resource
consumption.

Synthetic classifiers: To test the performance of our scheme and existing
techniques, we used ClassBench-ng [16], an excellent tool inherited from Class-
Bench [17], to generate OpenFlow1.0 rules. ClassBench-ng [16] provides torrents
from real-life rules to get performance as close to practice as possible.
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Fig. 7. MEBV: mapping encoding of rules and rules matching of packets.

The rulesets such as Accesses Control List (ACL), Firewall (FW) and IP
Chain (IPC) generated by ClassBench [17] only contain traditional 5-tuple, so
we use OpenFlow1.0 containing 13-tuple to prove the advanced nature of the
algorithm. If excellent performance can be achieved on the OpenFlow 1.0 ruleset,
so on other rulesets.

Implementation platform: The experimental environment is a Xilinx Vir-
tex7 xc7vx690t [18] FPGA device. Limited to the experimental platform, simula-
tion software is used to test the performance: Vivado 2018.3 and Modelsim 10.4,
the results presented here are based on the post-place and route performance.

4.1 Space Complexity

Assuming that there are N rules in the ruleset, the rule bit width is W , the field is
divided by stride (s), and each memory stores n rules, then the space complexity
of MEBV is calculated as follows. There are a total of F fields in the rule, of
which f0 fields need to complete HRME, f1 fields need to complete PMME,
f2 fields need to complete WMME, and f3 fields need to complete RMME. In
the mapping preparation stage, f0 and f1 generate 8-bit mapping vector, f2
generates l-bit mapping vector, and f3 generates 3-bit mapping vector and 2-bit
mapping vector in two stages. Therefore, the theoretical space complexity of
MEBV is given by the following equation [13]

STheory(R) = SETH PRO(R) + SIP (R) + SWRD(R) + SPORT (R) (1)

= (9 × (f0 + f1) × 29 + ((
l

s
) × f2 + 5 × f3) × 2s) × N (2)

Because the memory resources that can implement parallel operations are
limited. The minimum granularity of Xilinx FPGA’s [18] 18Kb and 36Kb Block
RAM (BRAM) primitives is 36bit×512 and 72bit×512. Therefore, we set s=9,
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Fig. 8. Simulation of space complexity. Fig. 9. Space complexity comparison.

then the memory depth required for each stage is d=512, and there is F =
f0 + f1 + f2 + f3, then the formulate Summarized as

Sactual(R) = (9 × (f0 + f1) + (
l

s
) × f2 + 5 × f3) × N × d (3)

According to the experimental ruleset, W = 253, N = 1024, F = 12, f0 =
2, f1 = 2, f2 = 6, f3 = 2, l = 25. The value of l here is obtained from [11]. In
addition, according to encoding rules, f0 and f2 should be 1, when calculating.
In summary, the space complexity as a function of s is shown in Fig. 8. It is found
that the optimal step size s in the FPGA implementation is 9, so it is decided to
use a step size of 9 in 2D BV [9]. In the parallel architecture RBVE [12], since
the length of the port field is 16 bits, the step size is 8.

When s = 9, compared with other algorithms, the space complexity is shown
in Fig. 9, and it is marked whether to support range matching. Where lW rep-
resents how many bits of wildcards are in the WeeBV [10] algorithm.

4.2 Throughput

Next, the scheme compared the throughput of multi-field packet classification.
When there are N = 1K rules in the ruleset, the rule bit width is W = 253,
the s = 9 of 2D BV [9], the s = 8 of RBVE [12], and l = 36 rules are stored in
each memory. The simulation results show that the maximum clock frequency
of the MEBV algorithm is as high as 127.15 MHz. If the block RAM used in
the MEBV algorithm is set as a real dual-port RAM, the throughput of the
algorithm can reach 254.30 MPPS. The comparison of the MEBV algorithm
with existing work is shown in Fig. 10. It can be found that the algorithm can
achieve higher throughput while reducing resource consumption and effectively
supporting range matching. However, the throughput of the MEBV algorithm is
14% lower than 2D BV and 1.2% lower than RBVE. The main reason is that the
algorithm is executed in parallel by 2D BV and RBVE, and the throughput is
determined by the smallest channel. Furthermore, due to the mapping encoding
of this algorithm, this will lead to a certain decrease in the clock frequency.
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Fig. 10. Throughput comparison between
algorithms.

Fig. 11. Comparison of resource utiliza-
tion between algorithms.

4.3 Resource Consumption

Then, we mainly focus on the FPGA resource consumption of the proposed
MEBV algorithm. N = 1024,W = 253, 2D BV [9] for s = 9, RBVE [12] for s = 8,
l = 36. The FPGA resource consumption comparison of different flow classifica-
tion algorithms is shown in Fig. 11. The MEBV uses mapping encoding to reduce
the length of storage rules, which can save a lot of register resources and LUT
resources, but because it supports range matching and the results of mapping
encoding are stored in BRAM, the consumption of BRAM resources increases.
But in general, a large number of register resources are often built-in FPGA
chips (Virtex 7 xc7vx690t FPGA [18] has built-in 52Mb BRAM resources). In
this scheme, the BRAM resource consumption rate is 23.3%, while the LUT
resource consumption rate is 43.8%, so the extra BRAM cost will not become
a bottleneck, and the saved resources can support more strategies. To make the
experimental results more representative and comparative, the resource utiliza-
tion here is the result after placement and routing.

The broken line in the figure represents the average resource utilization, which
can better reflect the superiority of our scheme. It is worth noting that the
algorithm has the smallest average resource consumption among the algorithms
that support range matching. That is to say, under the premise of the same
resources, the scheme can support more strategies, which undoubtedly further
reduces the bottleneck caused by resources.

5 Conclusion

In this paper, we propose MEBV, a memory-optimized scheme based on field
mapping encoding bit-vectors, which achieves resource optimization while con-
sidering range matching and throughput. Our proposed solution can save 32.6%
of LUT resources and 12.4% of register resources compared to state-of-the-art
algorithms [13] that support range matching, with throughput impact remaining
within 2%. Compared with the matching algorithm [9], 41.6% of LUT resources
and 18.4% of register resources can be saved, and the impact of throughput
remains within 12%. Meet the requirements of wire-speed packet classification.
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Abstract. Network telemetry provides more accurate and reliable ser-
vices for intelligent network control by pushing fresh status information
actively with help of data plane. However, most existing network teleme-
try methods are difficult to be deployed effectively in business environ-
ment due to the lack of runtime reconfigurability, huge time-space over-
head, and high probability of information loss. In this work, we propose a
high-versatility approach for network telemetry based on FPGA dynamic
reconfigurable pipeline called NT-RP to maintain the balance between
the accuracy of the measurement and the overhead in different scenarios.
NT-RP can change the processing logic in runtime to obtain different
network measurement spontaneously desired by users. Benefiting from
distributed cyclic storage strategy and telemetry function integration
mechanism, NT-RP can greatly reduce the overhead during measure-
ment and mitigate the telemetry information missing problem caused
by packet loss. The implementation of NT-RP in FPGA is evaluated
in a real network testbed which consists of a few programmable nodes.
Experimental results show that the influence of NT-RP in large traffic
scenarios is less than 1%. It is not only able to successfully change the
telemetry task during operation, but also perform more accurate network
measurements with little telemetry information occupancy.

Keywords: Network telemetry · FPGA-based pipeline · Performance
evaluation · Runtime reconfigurability

1 Introduction

Network telemetry is a key technology in the field of network measurement.
It improves the real-time and accuracy of network measurement by using data
planes to directly drive the network measurement process. However, issues such
as huge overhead and the lack of telemetry information caused by packet loss seri-
ously affect telemetry performance and impose additional challenges for teleme-
try data collection and processing.
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In addition, most of the existing network telemetry methods are implemented
by P4 [6]. Although the P4 language is well suited for data-plane related network
processing, it has the disadvantage of a relatively homogeneous programming
framework that does not allow for flexible reconfiguration of multiple processing
logics, which results in its inability to support a network telemetry method for
variable tasks. In fact, using the flexibility and scalability of the programmable
data plane to form a multi-dimensional view of the network state has become
one of the goals of network telemetry.

Pipeline is a temporally serial, spatially parallel technique that splits the
entire digital processing logic into multiple modules. Considering that the par-
allel processing characteristic of FPGA is well suited for pipeline architecture,
FPGA-based pipeline is becoming one of the preferred architectures for low-
latency, high-throughput network processing systems. Dynamic reconfigurable
pipeline is a further approach to apply the FPGA dynamic reconfiguration idea
to the pipeline, which can dynamically adjust the pipeline modules to accomplish
different functions [10], making the whole network processing system with good
scalability while guaranteeing the wire-speed processing performance. Currently,
dynamic reconfigurable pipeline is mainly used to design general customizable
network processing platforms and no researcher has applied this technique for
network telemetry.

In this paper, we design a network telemetry-oriented FPGA dynamically
reconfigurable pipeline NT-RP, which can flexibly obtain different link-level net-
work telemetry information with lower time-space overhead. The research con-
tributions of this paper can be summarized as follows:

1. We design an FPGA dynamic reconfigurable pipeline named NT-RP for net-
work telemetry. NT-RP accomplishes the telemetry tasks by considering them
as the result of combining multiple fine-grained telemetry metadata (NTM)
which can be directly measured. NT-RP can complete different telemetry
tasks according to user requirements by adjusting the NTM calculation mod-
ules in runtime. We propose a reasonable NTM set to optimize the measure-
ment method for link-level network characteristics based on NT-RP.

2. We implement a distributed NTM cyclic storage strategy. On the basis of
assisting NT-RP to accurately complete various telemetry tasks, this strategy
can greatly cut down the storage overhead of network telemetry information
in packets. In addition, benefiting from the periodic data memory capability
of this strategy, NT-RP can mitigate the impact of telemetry information
missing due to packet loss and improve the system robustness.

3. We propose a method to better integrate telemetry functions with packet
forwarding. By using the parallelism of FPGAs, NT-RP enables most of the
telemetry processing logic as a part of the packet forwarding operation, elim-
inating the extra time overhead caused by telemetry. The integration method
allows network devices loaded with NT-RP to perform telemetry with little
impact on packet forwarding performance.
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2 Related Work

Network telemetry provides more accurate and reliable services for intelligent
network control by using the data plane to actively push network status informa-
tion. In recent years, many P4-based network telemetry has been demonstrated
for different purposes in [1,2,7]. The authors of [1] showed how to implement
network telemetry with a very low amount of information added to each packet.
LossSight was developed in [7], which solved the problem of high-speed real-time
telemetry information loss caused by network event packet loss. More recently,
a P4-based selective telemetry method has been proposed in [2] named sINT.
However, sINT is not fully runtime-programmable because P4-based network
telemetry methods are too fixed to change the packet processing logics at run-
time. Then, Tang et al. [8] proposed Sel-Int that can dynamically adjust the type
of telemetry data obtained with runtime programmability based on POF. Never-
theless, Sel-Int cannot change the calculation logic of the pipeline at runtime to
obtain only the telemetry information needed for a specific task and carry it into
the packet, which still generates a large amount of telemetry data as traditional
telemetry methods. In addition, [3,9,10] provided a new idea for customizing
network processing functions by exploiting the reconfigurability of the FPGA
pipeline. However, none of them has application development and integration
for network telemetry. [5] proposed an FPGA-based network measurement inte-
gration approach which is not applicable in multi-tasking measurement scenarios.

The above researches have already contributed in solving some typical net-
work telemetry problems. However, deploying network telemetry on network pro-
cessing platforms faces the difficulties of weak systematicity, low data collection
efficiency, limited task category, and high time-space overhead. Therefore, we
design NT-RP based on two optimization mechanisms to achieve runtime multi-
task switching capability with low time-space overhead for network telemetry.

3 Architecture and Methodology of NT-RP

3.1 Overview

The NT-RP is built on a programmable node that contains FPGA for packet
processing and CPU for configuration works. As shown in Fig. 1, NT-RP consists
of five processing stages. The modules in the first three stages are fixed while
some modules which can be configured through interface in the last two stages
contain multiple parallel subsets to be selected.

Input Stage. The first stage is the input stage, where the incoming proces-
sor module is mainly responsible for GMII receiving and calculating the packet
parameters needed for the telemetry such as packet input timestamp (IT) and
total packet length.

Packet Classification Stage. After passing through the GMII receiver, the
packet is sent to the packet classification stage which contains two fixed mod-
ules. If the packet is classified as a data packet, the common processor module
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Fig. 1. NT-RP packet processing architecture

will perform the normal IP operation by decreasing the hop limit by 1. On the
contrary, the common processor module will parse and store the type of task
represented by the instruction from clients in an instruction register.

NT-Preprocess Stage. This stage includes two modules which are mainly
responsible for determining the role of the node and selecting the telemetry
task. The Parser module determines whether the node is a source node based
on whether the instruction register is written or not, and extracts the task type
based on the contents of the instruction register or the packet (if it is not a
source node). The Selector module determines the subsequent processing logic
based on the parser module’s result in the form of a series of module ID (MID)
sent to the subsequent stages for selecting the corresponding modules. As shown
in Fig. 1, there are three modules containing multiple parallel subsets after the
NT-preprocess stage, and each subset is identified by a MID.

NT-Construction Stage. The NT-packet construction stage will be activated
only when the node is determined as a source node. As shown in Fig. 1, we
load different NT-constructors in this stage to construct telemetry packets for
different types of telemetry tasks. This stage select the NT-constructor according
to the result of previous modules and embed the MeasurementID representing
the telemetry task in the specified position of the packet, so that the telemetry
task type can be judged by the NT-preprocess stage when the telemetry packet
enters the intermediate node.

Output Stage. This final stage in the pipeline handles the operations related
to the packet forwarding and calculations of NTM. Packets are marked with an
output timestamp (OT) when passing through the outgoing processor module,
from which we get the three most basic packet values: IT, OT and packet length.
Then, the output stage selects the appropriate NTM calculators based on the
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MID to calculate the NTM we need by using the three most basic packet values.
As shown in Fig. 1, we divide the NTM calculator into two modules, which can
improve the overall throughput of NT-RP and provide more multidimensional
telemetry services because the calculations of some specific NTM involved in
some telemetry tasks require the use of NTM calculator 1’s results.

3.2 Distributed NTM Cyclic Storage Strategy

We propose a distributed NTM cyclic storage strategy to alleviate the telemetry
invalidity caused by network packet loss and reduce the occupancy of telemetry
information in packets.

Fig. 2. Distributed NTM cyclic storage strategy

As shown in Fig. 2, the distributed NTM cyclic storage strategy is divided
into two phases. In the data collection phase, each telemetry packet is assigned
a flag hop to determine at which node it should collect telemetry information
based on the number of measurement nodes and the sequence number of the
packet. We also assign an NID to each node for identification. If flag hop �=
NID, the NTM calculated based on this telemetry packet is only superimposed
in the specific register Regn (n represents the type of NTM). Otherwise, the
telemetry packet takes all previously NTM information stored in Regn into the
NT-header before clearing Regn to zero. Then, the telemetry packets with the
same flag hop will sum the value of Regn they carry to get xmn to form a NTM
matrix at the telemetry server which will be used to calculate the results of
telemetry tasks. (Ncollect is the number of telemetry packets whose flag hop is
equal to the NID of node m)

This distributed strategy can greatly reduce information overhead bought to
packets for all types of telemetry tasks. Assuming that there are N nodes, as
shown in Fig. 2, in addition to the M -bits NTM information occupancy, only
16 bits (auxiliary information contains flag hop and other flag bits required for
tasks) need to be carried while the traditional network telemetry method [6] at
least needs M×N bits to be allocated in the packet under the same measurement
environment. Therefore, the telemetry information occupancy is reduced in NT-
RP by at least (%):

J =
MN − (16 + M)

1500 × 8
(1)
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In addition, this strategy enables NT-RP to have periodic memory of data by
storing the telemetry results of each packet periodically in Regn. We assume that
the inevitable random packet loss rate of each hop caused by node’s hardware
properties is θm, the k-th node has a network event at some point in time. If
the network event does not result in event packet loss, NT-RP can store the
telemetry state information associated with the event in node k as long as the
packet with flag hop �= NID is not lost until it reaches the (k + 1)-th node, so
the probability of each packet causing the event information lost is:

Pntrp loss =

{
1 − ∏k

m=1(1 − θm), f lag hop �= NID

1 − ∏N
m=1(1 − θm), f lag hop = NID

(2)

However, It is obvious that the probability of each telemetry packet resulting
in event information loss with the traditional telemetry method is always similar
to the Pntrp loss in the case of flag hop = NID, which confirms that NT-RP
can reduce the probability of missing telemetry information problem due to the
inevitable random packet loss. Also, if the network event causes packet loss at
node k, for traditional INT, it is impossible to locate the exact location of the
malicious event because no telemetry information can be collected during the
event duration. NT-RP can alleviate this problem to some extent. Assuming that
the packet loss event occurs during a telemetry process C, we can locate this
event by the significant change of some values. To define “significant change”, we
first compare the time interval Tinterval between any two consecutive telemetry
packets reaching the telemetry server with a time interval threshold T (C), if
Tinterval > T (C), we need further calculate the difference Rdif between the Regn
which is carried in any one of the subsequent N packets and its forward packet
with the same flag hop. Let R(C) be the threshold for C, we can determine that
the node represented by the flag hop of the last packet satisfying Rdif ≤ R(C)
among the N packets is the previous node of the node where the packet loss event
occurs. With these two stages of detection, NT-RP can determine the location
of packet loss in time during the measurement process.

3.3 Telemetry Function Integration Mechanism

As shown in Fig. 3, NT-RP takes advantage of the FPGA’s parallelism and moves
the NTM calculators to the end of the pipeline to be integrated as part of the
GMII interface logic in the output stage, which maximally eliminates the extra
time overhead that the telemetry task may bring to the normal forwarding of
the packet.

There are two phases in this integration mechanism. In NTM calculation
phase, the NTM calculators work in parallel with the GMII transmitter module.
Specifically, the GMII transmitter module performs the bit-width conversion of
the packet while the output of each clock cycle is accompanied by the logical
advance of the NTM calculators. Since the NT header is preceded by a 40-
byte fixed-length IP header and the time required for each NTM calculator to
complete the logical calculation is only 1 to 2 clock cycles, the NT-RP is fully
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Fig. 3. Telemetry function integration mechanism

capable of completing various NTM calculations and storing them in Regn during
the time when the fixed-length header processing is performed.

In the NTM embedding phase, the GMII transmitter module starts to send
the NT-header and its subsequent packet contents to the link, while inserting
the value of Regn calculated in the previous phase into the specified position of
the NT-header.

3.4 NT-RP Based Network Telemetry Methods

To form a more reasonable and complete view of the network state, we have con-
figured various telemetry tasks in NT-RP, including three flow-oriented telemetry
tasks, namely one-way average latency, packet loss rate, flow throughput, and
link-oriented link available bandwidth. We have introduced four common NTM
that cover most telemetry tasks:

Packet number: The number of telemetry packets. NTM calculator maintains
the Regnumber to count the number of telemetry packets.

Packet length: The length of the packets of the measured flow. NTM calcu-
lator maintains the Reglength to count the amount of data (bytes) transferred
by the flow.

Dwell time: the total delay of the packet in the node. The difference between
IT and OT representing the processing and queuing delay while the transmission
delay can be expressed by Packet length/V, where the constant V represents the
hardware processing speed. Regdwell is used to store the sum of these three types
of delay.

Span time: the time interval between two consecutive telemetry packets. We
obtain this value needed to be stored in Regspan by calculating the difference of
the OT of two consecutive telemetry packets.

Assuming that the total number of telemetry packets is Np and the number
of telemetry packets whose flag hop is equal to d is Ncollect, we can use f1 to f3
to get the telemetry result of link d easily:

Flow one-way average latency: The average latency of a flow on a specific link.
Regdwelli represents the value of Regdwell carried in the i-th telemetry packet
with the flaghop == d.

f1 =
∑Ncollect

i=1 Regdwelli

Np
(3)
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Flow packet loss: The packet loss for a flow on a specific link. Regnumber i

represents the value of Regnumber carried in the i-th telemetry packet with the
flag hop == d.

f2 = Np − ∑Ncollect

i=1 Regnumber i (4)

Flow average throughput: The average throughput of a flow on a specific
link. Reglength i and Regspan i respectively represent the value of Reglength and
Regspan carried in the i-th telemetry packet with the flag hop == d.

f3 =
∑Ncollect

i=1 Reglength i∑Ncollect

i=1 Regspan i

(5)

However, some telemetry tasks such as link available bandwidth cannot be
directly completed from the most basic NTM above. Therefore, benefiting from
the FPGA’s ability to provide accurate hardware timestamps, we designed a
more efficient available bandwidth measurement model based on NT-RP and
updated the NTM set.

Fig. 4. Available bandwidth measurement method based on NT-RP

Inspired by the available bandwidth measurement model SMART [4], the
available bandwidth measurement based on NT-RP is shown in Fig. 4. We send
a certain number of short telemetry probes randomly and measure the minimum
residence time Tmin of the probes (i.e., the average Dwell time of the probes
in the node without any background traffic). We consider the node to be idle if
the probe’s Dwell time is very close to Tmin. Otherwise, the node is considered
busy. Therefore, we maintain register countmin in NT-RP to count the number
of probes for whose Dwell time is close to Tmin. In addition, to exclude the
effect of certain deterministic cases on Monte Carlo randomness, we maintain
the register count double to store the number of probes whose Dwell time is
close to Tmin for both the node and its preceding node. We obtain the idle
rate Free bi = count doublei/count mini−1 of link i and find the true link-level
available bandwidth Avail bwi = Ci · Free bi: (Ci is the maximum bandwidth
capacity of link i, count mini and count doublei respectively represent the values
of the corresponding registers in node of link i).

This method solves the problem of SMART’s poor accuracy of delay acquisi-
tion at the software level, and effectively balances the accuracy of link available
bandwidth measurement with the availability of NT-RP services.
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In summary, we currently have five types of NTM calculation modules loaded
in NT-RP, two of which are Dwell time and Span time configured in NTM
calculator 1 for the time dimension, and the other three are Packet number,
Packet length, and count min/count double configured in NTM calculator 2 for
the packet feature dimension. Table 1 lists the NTM used by different telemetry
tasks in NT-RP, and defines the modules to be selected in the last two stages of
the pipeline according to the different task types and node roles.

Table 1. The NTM involved in telemetry tasks and the corresponding processing logic
(M1: MID of NT-processor, M2: MID of NT-meta calculator1, M3: MID of NT-meta
calculator2, −: empty)

Telemetry type Telemetry task Node role NTM needed M1 M2 M3

Flow-telemetry One-way average latency Source Dwell time 1 1 −
Packet loss source Packet number 2 − 1

Average throughput Source Packet length,

Span time

3 2 2

One-way average latency Not-source Dwell time − 1 −
Packet loss Not-source Packet number − − 1

Average throughput Not-source Packet length,

Span time

− 2 2

Link-telemetry Available bandwidth Source or

not-source

count min,

count double

− 1 3

4 Performance Evaluation

The NT-RP prototype is deployed on three programmable nodes equipped
with an FPGA clocked at 125 Mhz and two 1000 Mbps ethernet interfaces. The
pipeline module in programmable nodes uses FAST architecture as [11] which
meets the performance and flexibility requirements of network device function
expansion. Three programmable nodes loaded with NT-RP are configured as
telemetry source node, intermediate node and tail node respectively.

We evaluate the performance of NT-RP by conducting four groups of experi-
ments, these experiments validate the performance of NT-RP from four perspec-
tives: accuracy of telemetry results, integration with normal forwarding, system
robustness in the face of packet loss and runtime reconfigurability.

Accuracy of Telemetry Results. Figure 5(a–c) shows the measurement results
for the four telemetry tasks. As expected, the flow one-way average latency which
is consistent with the processing rate of the FPGA increases with the increase
of packet size while the loss rate measured by NT-RP is always maintained at
about 0.1% for different background traffic intensities, which is very close to the
real value. In addition, the measured values of flow throughput at different packet
lengths are very accurate compared to true throughput of flow.

Figure 5(d) compares the available bandwidth measured by NT-RP and
SMART for different network utilization cases. The relative error of NT-RP
measurement results is always maintained within a good range and less than
that of SMART.
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Fig. 5. Results of various telemetry tasks generated by NT-RP

Integration with Normal Forwarding. To demonstrate that the telemetry
function of NT-RP is great integrated with the normal forwarding of packets,
we compare the average packet forwarding latency and rate between the pro-
grammable node loaded with the NT-RP telemetry pipeline and that acting
only as a normal router. During the experiment, we set the background traffic
rate to 1000Mbps and change the packet size to obtain the results.

Figure 6(a) shows that nodes loaded with NT-RP suffer from slightly longer
average latency of 8ns in packet forwarding because most of the additional
telemetry processing logic has been integrated into the normal forwarding, and
only the NT-processor module, which cannot be integrated, causes a small addi-
tional processing delay for packet forwarding. Moreover, NT-RP has only a small
impact on the normal packet forwarding rate. In Fig. 6(b), with NT-RP loaded,
the loss of the packet forwarding rate decreases as the packet size increases and
drops below 1% when the packet size reaches 1024 bytes.

Fig. 6. Data plane performance: NT-RP loaded node vs. base node

System Robustness in the Face of Packet Loss. We deploy this packet
loss location detection mechanism into the telemetry server and determine two
thresholds based on extensive experiments: T (C) = 50 ms and R(C) = 2%. We
inject a large amount of traffic to the intermediate node at some time during the
telemetry process causing its congestion and generating packet loss. As shown
in Fig. 7(a), after receiving the packet with Tinterval over 50 ns, the telemetry
server calculates the Rdif for the three subsequent packets including this packet.
It is obvious from Fig. 7(b) that the flag hop of the last packet whose Rdif does
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not exceed 2% of the three packets is equal to 1, so the location where the packet
loss occurs is the intermediate node with flag hop of 2.

Fig. 7. Packet loss location detection mechanism in telemetry server

Runtime Reconfigurability. We conduct experiments to verify NT-RP has
real-time task switching capability by sending new telemetry task commands
during a telemetry process and observing whether the traffic throughput is
affected. We consider three cases as 1) MeasurementID = 0 × 01 to mea-
sure flow one-way average latency, 2) MeasurementID = 0 × 02 to measure
flow average throughput, 3) MeasurementID = 0 × 03 to measure link avail-
able bandwidth. Figure 8(a) shows that the traffic throughput hardly changes
when the task command updated, indicating that the task switch does not
have an additional impact on the system. The results in Fig. 8(b) show that the
MeasurementID carried in the telemetry packet changes successfully according
to the different commands. These two experiments confirm the runtime recon-
figurability of NT-RP.

Fig. 8. Performance of NT-RP during task switching

5 Conclusion

In this paper, we propose a dynamically reconfigurable FPGA pipeline NT-RP,
which can switch the calculation logic in runtime to obtain the measurements. It
is experimentally demonstrated that NT-RP is well integrated with packet for-
warding with almost no extra time load, and can accomplish accurate link-level
network telemetry with less data overhead. Meanwhile, by finding the location of
packet loss, NT-RP mitigate the telemetry information missing problem caused
by packet loss. It is conceivable that by deploying NT-RP in scenarios such as
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core switch clusters, network management and service traffic transmission can
be parallelized more efficiently and robustly.
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Abstract. Wireless Sensor Networks (WSNs) are vulnerable to many
security threats from compromised nodes. A trust management system
is an effective method to detect the malicious behaviors in WSNs. In this
paper, an effective Comprehensive Trust Evaluation Model (CTEM) for
WSNs is proposed and two kinds of trusts are considered, the direct
trust and the indirect trust. The direct trust is assessed by monitoring
the data collection, the energy consumption and the data forwarding of
node. More significantly, the entropy theory is introduced to measure the
uncertainty of direct trust. The indirect trust is integrated to evaluate a
comprehensive trust when the uncertainty of direct trust is high enough
so as to improve the one-sidedness of direct trust. CTEM can not only
reduce the computation overhead of node but also prolong the lifetime of
network. Simulation results show that the proposed strategy can defend
against internal attacks and have better performances compared with
some typical trust evaluation mechanisms.

Keywords: Wireless sensor networks · Trust metrics · Trust
evaluation system

1 Introduction

Wireless Sensor Networks (WSNs) are multi-hop and self-organized distributed
networks consisting of hundreds even thousands of tiny sensor nodes. The low-
cost, low-power, and resource-limited sensor nodes are usually used to collect,
transfer and process the sensing data. This makes WSNs perform a variety of
complex tasks and play an significant role in various applications [1], such as the
battlefield surveillance, the smart cities, the medical surveillance and the emer-
gency response. However, sensor nodes are easily exposed to the random failures
and the cyber attacks due to the wireless characteristics and the deficiency in
the secure fortification [2]. The confidentiality, the integrity and the availability
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of the whole network may be compromised if a node is attacked. Therefore, it is
a challenging work to detect malicious behaviors and relieve the negative effect
of compromised nodes in a WSN. The trust management system is one of the
preferred one to resist malicious attacks [3]. A successful trust model can provide
useful information to identify a sensor node is trustworthy or not and encourages
sensor nodes to act in a normal manner [4].

To address the aforementioned issues, this paper proposes an effective Com-
prehensive Trust Evaluation Model (CTEM) for WSNs. In CTEM, the trust
metrics of node and the overall trust level are represented more rationally. The
trust evaluation performance is improved through improving the correlation fac-
tor assignment scheme. Firstly, we divide a WSN into cluster topology. Then, the
direct trust value is evaluated by three trust metrics of sensor nodes: data per-
ception trust, energy trust and data forwarding trust. Secondly, the uncertainty
level of direct trust is evaluated based on the entropy theory which is calculated
in a novel way. If the uncertainty level of the direct trust values are high enough,
the indirect trust values are assessed according to the neighbor node recommen-
dation. Thirdly, we introduce a trust factor to trust evaluation with the aim of
fusing the direct trust and the indirect trust to obtain a comprehensive trust
of sensor nodes. Finally, CTEM is applied into the in-network data aggregation
and nodes with high trustworthiness are selected as reliable relay node for data
transmission, which avoids the risk of malicious aggregation node.

The remainder of this paper is organized as follows. Section 2 shows the
related work. Section 3 describes the proposed comprehensive trust evaluation
model in detail. And the simulation experiments are demonstrated in Sect. 4.
Finally, we conclude this paper in Sect. 5.

2 Related Works

Various trust models, such as the entropy trust model, the fuzzy logic trust
model, the D-S evidence trust model and the game theory trust model, are
widely used in current literatures. Mathapati et al. [5] proposed a secure routing
scheme with multi-dimensional trust evaluation. The proposed system adopted
the analytical methodology to assess the multiple trust levels for sensors in the
process of data aggregation. A Trust Management-based Secure Routing Scheme
(TMSRS) was proposed for the industrial sensor networks with fog computing
[6]. In TMSRS, a Gaussian distribution model was constructed to update the
trusts according to the interaction among sensor nodes which provides a trade-
off among security, energy and transmission performance. In [7], a secure cluster
head election algorithm and a misbehavior detection mechanism were discussed.
A node was elect as a cluster head according to the distance, the energy and
the trust degree of node. The malicious nodes were detected and isolated from
the network. Anwar et al. [8] proposed a Belief based Trust Evaluation Mecha-
nism (BTEM). The Bayesian estimation was introduced into the trust evaluation
based on the direct and indirect trusts. BTEM considers the correlation between
the data gathered before and the estimated value of next collection round. How-
ever, this may negatively affect the robustness of trust assessment. In addition,
the adaptability of pre-defined threshold is also a challenging issue.
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3 Proposed Comprehensive Trust Assessment Model

3.1 Network Topology Model and Assumptions

A multi-level cluster topology is designed and an aggregation tree rooted at the
Base Station (BS) is constructed as shown in Fig. 1. Nodes can be identified
as the Cluster Head (CH) and the Cluster Member (CM). CMs can directly
communicate with their CH which forwards the aggregation result to BS hop-
by-hop. The Monitoring Node (MN) is responsible for monitoring communication
channels and collecting global information. The sensor nodes are organized into
clusters with the existing clustering schemes. In a cluster, CH and MN work
together to record and update the trust value of CMs. And all sensor nodes are
trustworthy and the BS is secure enough in the initial stage.

Fig. 1. Network topology

3.2 Direct Trust Model

Data Perception Trust. It is a regular requirement for CH to evaluate the
Data Perception Trust (DPT) of sensor nodes in order to ensure the reliability
of data collection. DPT reflects the data quality and consistency when there are
error and uncertainty in sensing data. Without loss of generality, assumed that
B is a CM with a sending data sB and S is the set of sensing data received from
the neighbors of B. ei is one of sensor data in S (ei ∈ S) and the average of
sensing data in S is ξ. In the nth sensing round, the data error of node B is
expressed as ΔdB(n) = |sB − ξ|. The data perception trust of node B in CH
(represented as A) is DPTB

A (n) (DPTB
A (n) ∈ [0, 1]). If ΔdB(n) < v, we have

DPTB
A (n) = DPTB

A (n − 1) +
1 − DPTB

A (n − 1)
ρ

, (1)

otherwise,

DPTB
A (n) = DPTB

A (n − 1) − DPTB
A (n − 1)
σ

. (2)
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where DPTB
A (n − 1) denotes DPT of node B evaluated by node A at sensing

round (n − 1). v is the tolerable error. The parameters ρ and σ determine the
increasing or decreasing rate of DPT.

Energy Trust. The Energy Trust (ET) can be used to identify whether a
suspicious node launching a malicious attack to exhaust the energy and harm
the security of sensor node. We design two metrics to measure ET. One is the
residual energy ratio which is the ratio of the residual energy to the initial
energy. The residual energy ratio of CM at sensing round t is ret after a CM
sends its data to CH. We assume that the residual energy ratio threshold is thre.
A CM is allowed to participate in the data collection when its residual energy
ratio is greater than thre. The other is the energy consumption rate. We use
energy consumption rate to detect the abnormal energy changing of nodes and
the energy consumption rate can be illustrated as

Δp =
|pt − pt−1|

pt−1
. (3)

If Δp(Δp ∈ [0, 1]) exceeds the a threshold thΔp, the CH determines that the
CM is abnormal and sets the energy trust to a lower level even zero. Based on
these indexes, the energy trust of node A evaluated by node B at round t can
be expressed as

ETB
A (t) =

{
ret(1 − Δp), ret > thre & Δp < thΔp

0, ret < thre|Δp > thΔp

, (4)

Data Forwarding Trust. The Data Forwarding Trust (DFT) is used to eval-
uate the reliability of nodes’ forwarding and communication behaviors. Node A
monitors the behaviors of node B and counts the number of packets received
and forwarded by node B. The forwarding ratio of node B, FRB

A(t) = pt

(qt+pt)
,

where pt and qt denote the number of packets forwarded and discarded by node
B at round t, respectively. The forwarding ratio can imply the packet forward-
ing behavior of node B and the consistency of node forwarding behavior can
be assessed by comparing FRB

A(t) at two consecutive rounds as following three
cases.

i) If FRB
A(t) > FRB

A(t − 1), the δt increases and δt = δt−1 − α(FRB
A(t) −

FRB
A(t − 1)).

ii) If FRB
A(t) < FRB

A(t − 1), the δt decreases and δt = δt−1 − β(FRB
A(t) −

FRB
A(t − 1)).

iii) if FRB
A(t) = FRB

A(t − 1), δt = δt−1.

In the above cases, δt(δt ∈ [0, 1]) indicates the abnormal fluctuation of for-
warding behavior. α is the penalty factor and β is the reward factor. The α
should be greater than β, which means that the discarded behavior (bad behav-
ior) has more influences on the forwarding ratio than the forwarding behavior
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(good behavior). This mechanism makes the malicious node lose DFT quickly
when bad behavior occurs. Meanwhile, it requires a long time or a lot of nor-
mal behaviors to recover its DFT to a higher level. Then, the DFT of node B
evaluated by node A can be expressed as

DFTB
A (t) = FRB

A(t) ∗ cos (δt ∗ π

2
). (5)

Direct Trust. Based on the above analysis, the Direct Trust (DT) of sen-
sor node can be formalized depending on the DPT, the ET and the DFT. We
describe the DT of node B as{

DTB
A = μ1DPTB

A + μ2ETB
A + μ3DFTB

A

s.t.min{DPTB
A , ETB

A ,DFTB
A } ≥ thDT

, (6)

where DTB
A ∈ [0, 1]. μ1, μ2 and μ3 represent the weights of three trust metrics

in the evaluation of DT and satisfy
∑3

i=1 μi = 1. The parameter thDT are used
to determine whether the three indexes are reliable or not. If one or more trusts
were less than thDT , the node will be directly identified as a malicious node.

3.3 Indirect Trust Model

Besides the DT, the Indirect Trust (IT) also needs to be evaluated. In the com-
munication radius of sensor nodes, we select a set of common neighbors between
source and destination. These common neighbors provide the recommendation
trust of destination node to the source node. The recommendation trust can be
illustrated using Fig. 2.

Fig. 2. Trust evolution of sensor nodes
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Fig. 3. Accuracy of the proposed
model

In Fig. 2, node i and node j are the is the source node and the destination
node, respectively. The distance between i and j is less than the communication
radius. We select a set of common neighbors of i and j, k1, k2, k3, · · · , km and
the direct trusts in node i for k common neighbors are larger than the trust
threshold, namely node i considers these neighbor nodes are trustworthy. During
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the trust evaluation process, node i sends query messages to these k common
neighbors which send back the recommendation trusts of destination node j.
These recommendation trusts serve as the basis for node i to evaluate the IT of
node j. Then, the IT of node j in node i can be expressed as

IT i
j (t) =

∑
k∈Sf

wk ∗ RT k
i,j(t), (7)

where Sf is the set of common neighbors of nodes i and node j. wk is the weight
of common neighbor nodes k.

wk =
DT k

A(t)∑m
k=1 DT k

A(t)
,

∑
k∈Sf

wk = 1(0 ≤ wk ≤ 1) (8)

RT k
i,j(t) is the recommended trust of node k for node j. Due to the transitivity of

trust, the recommendation trust of common neighbor nodes for node j, RT k
i,j(t),

can be formalized as follows.

RT k
i,j(t) =

∑m
k=0 DT k

i (t) ∗ DT j
k (t)

m
(9)

DT k
i (t) is the DT in node i for node k, DT j

k (t) is the DT in node k for node j,
and m is the number of common neighbors of nodes i and node j.

3.4 Comprehensive Trust Evaluation Model

The proposed model uses entropy theory to evaluate the comprehensive trust.
Usually, entropy theory is used to measure the uncertainty in a random event
system. The uncertainty function F is a monotonic decreasing function of prob-
ability P , which is shown as F (P ) = log 1

P = − log P .
A random event contains many possible cases, each of which has its own

uncertainty. The amount of information of this event is the sum of the uncertain-
ties of all cases’ occurrences. Let an event has n cases with the values U1, U2...Un

and happens in a information source with the probabilities P1, P2...Pn, respec-
tively. n values are independent with each other and the average uncertainty of
the information source (information entropy) can be expressed as

H(U) = E(F (Pi)) = −
n∑

i=1

Pi log2 Pi, (10)

where U represents the set of all possible event generated by information source.
The entropy function image can be illustrated by Fig. 3. The curve shows that
the more chaotic the system has, the greater the entropy is.

We evaluate the uncertainty of DT by calculating its entropy. The DT of
every CM in a cluster need to be recorded in each sensing round. Let there be
m CMs in a cluster and n DTs for each CM after the n-th sensing rounds. The
DT of a node is denoted by a vector x, the matrix X of all CMs in a cluster is:
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X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ . (11)

It indicates that a node may be a suspicious node one if its xij fluctuates
greatly. Then, we will discuss the uncertainty measurement of DT by its infor-
mation entropy. It takes three steps

i) Normalize the DT matrix:

x′
ij =

xij − min{xj}
max{xj} − min{xj} . (12)

ii) Compute the weight p(xij) of DT after the j-th sensing round of the node i:

p(xij) =
x′

ij∑m
i=1 x′

ij

. (13)

iii) Calculate the DT entropy H(x) of node i:

H(x) = −k

m∑
i=1

p(xij) ln p(xij), (14)

where k = 1/ ln m, k > 0, 0 ≤ H(x) ≤ 1.

In (14), H(x) is the DT entropy of a CM (short for B, A for CH), that is
H(DTB

A ). Let thE be the threshold for uncertainty. When thE < H(DTB
A ) ≤ 1, it

means that the uncertainty of direct trust is high and more relevant information
is needed in order to accurately judge whether a node is malicious or not and
the IT should be introduced. The CTB

A can be expressed as:

CTB
A (t) =

{
DTB

A (t), 0 < H(DTB
A ) ≤ thE

(1 − μ) ∗ DTB
A (t) + μ ∗ ITB

A (t), thE < H(DTB
A ) ≤ 1

, (15)

In (15), μ is the confidence factor which expresses the weight of the DT in
the CT. The confidence factor can be expressed as μ = 1−η−z, where η denotes
the number of direct interactions between the sensor nodes. z is a dynamic
value z ∈ [0, 1] which is related to the actual application of WSNs. The number
of direct interactions between A and B increases as the time goes on and the
proportion of IT in CT also increases. This enhances the security of network.

4 Simulation Experiment and Performance Analysis

In this section, the performance of CTEM is verified using MATLAB R2020b.
Several parameters of simulation scenarios are determined after combining vari-
ous types of malicious attacks. CTEM is compared with other trust-based data
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Fig. 4. Trust evolution of sensor nodes
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aggregation models, ETRES [9] and TBSIOP [10], in terms of algorithm accu-
racy, communication overhead and the network lifetime.

The average of CT of malicious nodes and trusted nodes are shown in Fig. 4
within a specified time. When the entropy of DT is under the threshold, the
CT is equal to the DT. As the time goes on, the entropy of DT increases and
exceeds the threshold. The IT is participated in the process of trust evaluation
and the CT fluctuates slightly. As the purple curve shows, the trust value of
malicious node decreases rapidly when the malicious node launches the malicious
attack. From this simulation experiment, CTEM can reflect the trust evolution
according to the behavior of sensor nodes. CTEM demonstrates the highest
accuracy compared with other mechanisms under the internal attacks and the
collusion attack in Fig. 5.
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The normalized communication overhead represents the ratio of the number
of control packets and the overall data packets. As shown in Fig. 6, CTEM has
lower communication overhead than other algorithms, which performs better
among the three. TBSIOP and CTEM demonstrates more consistently in com-
munication overhead when the number of malicious nodes increases. In Fig. 7,
we compare the network lifetime of CTEM with TBSIOP and ETRES. We can
know that ETRES significant decreases the network lifetime when the number
of malicious nodes reaches 15%. When the collusion attack occurs in the net-
work, the lifetime of TBSIOP rapidly deteriorates and CTEM performed better.
In brief, CTEM shows well performances in terms of accuracy, communication
overhead and network lifetime.
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5 Conclusion

A successful trust management system is an effective mechanism to ensure the
security of WSNs and distinguish the malicious nodes from normal nodes. In
this paper, we proposed a comprehensive trust evaluation model based on the
behavior attributes and the interaction between sensor nodes. The trust is eval-
uated through the flexible and effective fusion of the direct trust and the indirect
trust with the entropy theory. Theoretical analysis and simulation results proves
that our proposed model can accurately evaluate the trust of sensor nodes at the
low price of communication overhead and energy consumption. In the future, we
will apply our model into more complex attack scenarios and discuss new trust
models which integrate with other entropy theories.
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Abstract. In the field of code clone detection, there are token-based sim-
ilarity and abstract syntax tree-based detection methods. The former con-
sumes less resources and is faster to detect, while the latter consumes
more space and is less efficient. And there are few tools that scale to large-
scale databases. To address the challenges, an approach is proposed that
can detect code clones using the similarity of tokens and architecture of
abstract syntax trees. Architecture of the syntax trees preserves the preci-
sion of detecting clone pairs, at the same time, the method also preserves
the speed of matching code similarity. In the approach, it first parses the
tokens of the code fragments and gets the features of the syntax trees. It
can eliminate the unqualified parts of them based on the architecture when
matching the candidates quickly, and then detects the similarity in detail.
Finally, the results are output according to the input threshold range. The
experiments confirm that the method substantially improves the precision
of code clone detection while keeping the recall rate unabated.

Keywords: Code clone detection · Abstract syntax tree · Large-scale
database

1 Introduction

Code clone refers to two or more identical or similar code fragments. When users
reuse code, such as copying and pasting existing code fragments, code clone will
be generated [3]. To a certain extent, code clone helps develop software systems
and generates positive benefits [1]. Developers can improve efficiency through
code clone when they use development frameworks or reuse design patterns [3].
However, long-term large-scale code clone leads to an ever-expanding code base
and increased maintenance costs [1]. If there are bugs in the code, it also reduces
the reliability of the software due to the constant propagation of code clone.
Therefore, code clone detection is necessary.

Many clone detection tools based on text. SDD [7] and NiCad [13] have no
code hierarchy, so they are inefficient and easy to lose information. CCAligner
[19], CCLearner [8] and so on are vocabulary-based code representations. They
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 117–126, 2022.
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have improved the utilization of the source code, but ignore the structural infor-
mation of the source code. Then there are syntax-based clone detection tech-
nologies, such as CDLH [20], Deckard [4] and so on. But they are expensive
and the efficiency is not enough. There are also many semantic-based code clone
detection technologies, including Oreo [15], Duplix [6], GPLAG [10] and so on.
But they are greatly expensive and difficult to deploy.

Most of the theories of clone detection are however focused on performance.
Few tools can scale to the demands of clone detection in large code bases [14,17].
Large-scale clone detection allows researchers to study code clone in open source
development communities such as Git-Hub.

Tokens and syntax trees are currently the most common objects for deter-
mining code clone. Tokens have been utilised for the quantification of the simi-
larity between code blocks. It consumes fewer resources and detects fast. But the
precision is low with many false positives. Syntax trees represent the syntactic
structure and hierarchy of the code. Matching syntax trees is a well-established
approach. But it is inefficient and consumes large resources.

To explore effective methods for addressing such challenges, an approach is
made to combine tokens with the architecture of abstract syntax trees. Intu-
itively, according to the definitions of code clone type 1 and type 2, they do not
change the syntactic structure of the code blocks. This study has identified that
code clone type 1 and 2 have the same architecture of abstract syntax trees, but
this feature seems to have been overlooked by researchers. The approach there-
fore replaces the full syntax trees with the architectural features of them and
uses them to filter the candidates in similarity determination. The advantage
allows us to win-win with maximum efficiency and precision.

In the proposed method, the tokens of the code blocks and the architecture
of syntax trees are first parsed. Then the tokens are sorted according to the fre-
quency of all tokens. Sub-block overlap filtering is performed on the code blocks
according to the partial index to get the candidates. Among the candidates, if
the architecture of syntax trees are not uniform, the candidates are excluded.
Finally, the final similarity is calculated and listed as the final results if they are
within the threshold value.

The experimental results show that the approach can effectively eliminate
the misclassification in type 2 within different thresholds, which leads to a great
improvement in precision. The experimental data show that the threshold value
corresponding to type 1 is 100%, and the best corresponding ranges for type 2
are [90%, 100%). In addition, the method improves the detection efficiency. The
larger the data size is, the more obvious the efficiency improvement is.

This work makes the following contributions:

– An precise approach is proposed to detect code clone with combining tokens
with the architecture of abstract syntax trees.

– Precision of clone type 2 is significantly improved.
– It concluded that the best similarity for clone type 1 is 100% and for clone

type 2 is [90%, 100%).
– Time of detection part is reduced corresponding to different threshold ranges.
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Fig. 1. Introduce abstract syntax trees’ clone detection process.

2 Background

Code Clone. Researchers uniformly use the following basic concept defini-
tions [2]. (1) Type 1 (exactly the same code): Except for white spaces and
comments, two code fragments are exactly the same. (2) Type 2 (renamed
code): Two code fragments are the same except for the corresponding names
of user-defined identifiers, types, layout and comments. (3) Type 3 (almost the
same code): Syntactically similar fragments that differ at the statement level. (4)
Type 4 (semantic similar code): Heterogeneous codes with the same function
are not similar in text or syntax, but have similarities in semantics.

Abstract Syntax Tree. An abstract syntax tree (AST), or syntax tree for
short, is an abstract representation of the grammatical structure of source code.

3 Methodology

According to the definition of code clone, type 1 and 2 do not change the struc-
ture of code, while type 3 does. Focusing on tokens only will lose structural
information, while focusing on the syntax trees’ structure only, the compensa-
tion is large and inefficient. In order to rectify the problem of clone detection
in large-scale database, the approach is given in combining tokens and AST.
The advantage is that it replaces the complete AST with structural features.
To illuminate this uncharted area, SourcererCC was selected to join experimen-
tal procedure [16]. The advantage of SourcererCC is that it’s currently one of
the most efficient and accurate methods in detecting code clone of large-scale
databases. But the problem is that there is room to improve the precision.

Figure 1 illustrates the exact procedure of the approach. First, it specifies
the upper and lower limits of similarity. In parsing and tokenizing, it parses out
the tokens and AST of the query blocks and candidate blocks. Notably, it pre-
serves the height and width of AST instead of the whole AST. Next, all code
block tokens are sorted according to the frequency of them. Partial indexes are
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calculated based on the threshold and candidates are selected by whether the
sub-blocks overlap. If query blocks have different features with the candidates,
they will be eliminated from the candidates. Iterating the tokens of query and
candidate blocks can calculate the corresponding similarity. The detection pro-
cess is performed twice with the lower and upper limit of the threshold range
and duplicate clone pairs are removed.

3.1 Parsing and Calculating

It’s necessary to save token information and structural features of the query
blocks and candidate blocks respectively. The method parses the tokens and
AST of functions. The tokens need to be statistically global frequency map, and
these functions sort their tokens in frequency order. To extract the structural
information of AST, the height and width are generic features.

3.2 Abstract Syntax Tree Filtering

According to the definition of clone types. The major difference between type 1,
2 and 3, 4 is the change in structure. So if the structure features of one code block
are different from the other, it means that they must not be code clone type 1
or 2. The height and width are selected as features of AST in the approach.

In this section, based on the partial index of the query blocks, determining
whether sub-blocks overlap can eliminate most of the non-candidates. Then,
among the remaining candidates, it leaves the candidates which have the same
height and width with query blocks. This eliminates most of the misclassification
by the trees’ structure.

3.3 Eliminate Duplicate Clone Pairs

SourcererCC outputs clone pairs whose similarity is greater than or equal to
the set threshold. For example, if the threshold is set to 80%, clone pairs with
a threshold of 100% (or Type 1) are also included. If the user only needs the
results of clone type 2, the output should clear the data for which the threshold
is set to 100%. Thus the method needs to exclude data of different clone types
according to the threshold.

Formally, the user wants to get the clone pair θ1 ∼ θ2 about the threshold
range. It then runs the detection process twice, including sub-block overlap fil-
tering, syntax tree architecture filtering and determining similarity. Finally the
experimental results with θ1 are removed from the experimental results with θ2.

4 Experimental Setup

4.1 Research Questions

– RQ-1. Does the architecture of AST play a role in improving recall rate?
– RQ-2. Does the architecture of AST play a role in improving precision rate?
– RQ-3. Whether there is a relatively suitable range of similarity thresholds

for type 1 and type 2?
– RQ-4. How does architecture of AST affect program execution time?
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Table 1. The number of detected clone pairs.

Method 100% [90%, 100%) [80%, 100%) [70%, 100%)

SourcererCC 958,777 532,450 1,097,642 2,128,502

Our method 940,710↓ 367,581↓ 546,757↓ 678,707↓

4.2 Dataset and Configuration

The experimental data is provided by IJaDataset in BigCloneBench [18]. The
programming language is Java. To see the results more intuitively, we divided
data set into 830,684 functions with a total size of 531.9 MB.

To observe the distinction between different threshold ranges, four test pro-
cesses are conducted, including 100%, [90%, 100%), [80%, 100%) and [70%, 100%).
The experiment uses 20 tokens as the minimum, 50,000 as the maximum.

5 Experimental Results and Analyses

The results prove that the approach is feasible and produces good effect. The
AST can eliminate many erroneous clone pairs, making the precision much
higher. According to IJaDataset, the number of detected clone pairs is shown in
Table 1. As the range expands, the amount of clone pairs increases a lot. While
our approach excludes a large number of clone pairs in each ranges. The larger
the threshold range is, the more cases are excluded.

Either the BigCloneBench or the random sampling method, our method is
twice as precise as SourcererCC. While there is no change in recall rate. The
threshold value for type 1 is 100% and the most suitable threshold range for
type 2 is [90%, 100%). And in terms of efficiency, the larger the mount of data,
the more the detection time saved by our method.

5.1 Recall

The confusion matrix is a standard format for precision evaluation. For a two-
class classification system, the pattern classifier has four classification results: (1)
TP (True Positive): a correct positive example, an instance is positive and is also
judged as positive. (2) FN (False Negative): a false negative example, an instance
is positive but judged as negative. (3)FP (False Positive): a false positive example,
an instance is negative but judged as positive. (4) TN (True Negative): a correct
negative example, an instance is negative and is also judged negative.

Recall =
TP

TP + FN
(1)

The recall rate refers to the proportion of the correct prediction that is positive
to all that is actually positive. Table 2 shows the evaluation metrics of different
thresholds. The recall in our method is the same as SourcererCC. However, AST
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Table 2. Recall and precision in BigCloneBench.

Similarity Experimental Method

threshold values SourcererCC Our method

100%

Confusion
TP 48,112 48,112

FP 1,036 899

Matrix
TN 8,535,001 8,535,138

FN 4 4

Recall/% 99.99 99.99

Precision/% 97.89 98.17↑

[90%, 100%)

Confusion
TP 3,573 3,573

FP 5,622 3,503

Matrix
TN 8,574,297 8,576,416

FN 661 661

Recall/% 84.39 84.39

Precision/% 38.86 50.49↑

Similarity Experimental Method

threshold values SourcererCC Our method

[80%, 100%)

Confusion
TP 3,967 3,967

FP 11,071 4,664

Matrix
TN 8,568,848 8,575,255

FN 267 267

Recall/% 93.69 93.69

Precision/% 26.38 45.96↑

[70%, 100%)

Confusion
TP 4,156 4,156

FP 21,981 5,774

Matrix
TN 8,557,938 8,574,145

FN 78 78

Recall/% 98.18 98.18

Precision/% 15.90 41.85↑

Table 3. Precision by random sampling

Method 100% [90%, 100%) [80%, 100%) [70%, 100%)

SourcererCC/% 98.67 37.33 32.66 25.33

Our method/% 98.67 56.67↑ 54.00↑ 51.33↑

clone detection has fewer FP and more TN, indicating that it identifies clone pairs
that were originally incorrectly determined to be clone type 2. It confirms that the
architecture of AST can distinguish most of type 2 and type 3.

✍ RQ-1: � The recall of AST clone detection is the same as SourcererCC.
While the method generates fewer clone pairs and consumes fewer memory
resources.�

5.2 Precision

Precision refers to the proportion of correct predictions that are positive to all
predictions that are positive. In the BigCloneBench, the statistical precision is
shown in Table 2.

Precision =
TP

TP + FP
(2)

It’s not difficult to find that the method has the same TP as SourcererCC,
while it has fewer FP. It means there are fewer cases of misclassification. In
[90%, 100%) to [70%, 100%), the precision improves by 11.6%, 19.6% and 26%,
respectively. It shows that the precision has been greatly improved.

In order to estimate the precision of the tools better, scholars manually vali-
date a random sample of their output [16]. 150 clone pairs were randomly selected
as samples from each corresponding result. The precision is shown in Table 3.
Except for 100%, the precision of SourcererCC is around 30%, while our method
improves it to more than 50%. The results support that AST can help providing
a significant improvement in the precision of code clone detection.
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Table 4. Time comparison

Method Parsing/s Detecting/s Similarity threshold

SourcererCC 130.94 109.06 100%

149.10 [90%, 100%)

370.96 [80%, 100%)

1561.21 [70%, 100%)

Our method 1113.76↑ 111.36↑ 100%

144.58↓ [90%, 100%)

313.95↓ [80%, 100%)

940.71↓ [70%, 100%)

✍ RQ-2: � Whether in the BigCloneBench database or random sample detec-
tion, the precision is significantly improved. �

5.3 Optimal Range

Combining Table 2 and 3, 99.99% of type 1 is distributed in the range of threshold
value 100%. As for type2, the precision is highest in [90%, 100%). Recall is over
80%. There are more FPs than TPs in [80%, 100%), indicating that type 3 clones
are more suitable for this threshold range.

✍ RQ-3: � Clone type 1 corresponds to the most suitable threshold value of
100%, and type 2 is [90%, 100%).�

5.4 Execution Time

In Table 4, the code detection divides the whole process into two parts, one is
parsing and the other is detecting. The AST detection method requires more
parsing time, since parsing the AST takes most of the time. In actual situations,
the database is fixed, and the intermediate file can be parsed in advance.

When the threshold is 100%, the method adds 2 s. However, the time is
reduced in type 2 detection. The lower the lower limit of the threshold range,
the more time is saved. Because in the case of more orders of magnitude, the
AST filtering deletes a large number of candidates.

✍ RQ-4: � The method requires more parsing time, but reduces the detection
time. The scale of database is larger, the more time can be saved.�

6 Discussion

Through the experimental results, the AST method can effectively eliminate the
misjudged clone pairs in type 2. However, many type 3 examples’ architectures
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are the same, which means that although the structure of the tree has changed,
the height and width are not affected. Perhaps it should find more effective
features that can continue to improve the precision in future studies.

7 Related Work

Many clone detection tools based on text. For example, NiCad [13] and SDD [7]
and so on have no code hierarchy, so they are inefficient and easy to lose informa-
tion. CCFinder [5], CP-Miner [9], CCAligner [19], CCLearner [8], Boreas [21],
FRISC [11] and CDSW [12] are vocabulary-based code representations. They
have improved the utilization of the source code, but ignore the structural infor-
mation of the source code. At the same time, this kind of method is sensitive
to code statement modification, and it is easy to miss code clones with only
specific nuances [3]. Then there are syntax-based clone detection technologies,
such as Deckard [4], CDLH [20] and so on. The advantage is that it can take into
account the structural characteristics of the source code, and the disadvantage
is that the difference between identifiers and text values cannot be recognized.
There are also many semantic-based code clone detection technologies, including
Duplix [6], GPLAG [10], Oreo [15] and so on. But they are greatly expensive,
steps are complicated and difficult to deploy.

8 Conclusion

The first main contribution proposed in this field is a precise code clone detec-
tion. It improves the precision greatly and reduces the detecting time. In addi-
tion, it can output the results of the specified threshold range. This study finds
that type 1 corresponds to 100%, and type 2 corresponds to [90%, 100%) more
appropriately.
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Abstract. Vulnerability identification is crucial for cyber security in
the software-related industry. Early identification methods require sig-
nificant manual efforts in crafting features or annotating vulnerable code.
Although the recent pre-trained models alleviate this issue, they over-
look the multiple rich structural information contained in the code itself.
In this paper, we propose a novel Multi-View Pre-Trained Model (MV-
PTM) that encodes both sequential and multi-type structural informa-
tion of the source code and uses contrastive learning to enhance code rep-
resentations. The experiments conducted on two public datasets demon-
strate the superiority of MV-PTM. In particular, MV-PTM improves
GraphCodeBERT by 3.36% on average in terms of F1 score.

Keywords: Pre-trained model · Vulnerability identification ·
Contrastive learning

1 Introduction

Code vulnerabilities are a major threat to the software-related industry. It is
reported that the number of vulnerabilities has grown from 4,600 in 2010 to
175,477 by 20221. The number of vulnerabilities is still rapidly increasing.

Accordingly, the field of vulnerability identification is under intensive explo-
ration in academia. In early-stage research, vulnerability identification methods
can be categorized into three types: static analysis [1,22], dynamic analysis [10],
and machine learning methods [5,18] based on hand-crafted features. Yet, a
drawback of these methods restrains their performance. That is, they require
vulnerability-related expertise and significant manual efforts, yielding them hard
to be deployed and poorly scalable [24].

In later-stage research, researchers applied deep learning to address the afore-
mentioned drawback existing in early-stage research [13]. Some studies [12,24]
leveraged several state-of-the-art deep learning techniques, e.g., LSTM and

1 http://cve.mitre.org/
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GGRN. A common feature of these methods is that they require large amounts
of labeled data to perform supervised training and achieve better performance
than conventional methods. Unfortunately, there is currently a lack of data
annotated with vulnerability categories, and manually annotating data is labor-
intensive. This hinders the further development of these methods in vulnerability
identification.

The emergence of pre-training techniques alleviates the aforementioned prob-
lem. Thanks to the advancement, some pre-trained models for source code have
been proposed, such as CodeBERT [3] and CodeT5 [21]. However, a significant
disadvantage of these methods is that they ignores rich structural information
such as abstract syntax and control flow. As such, a natural research question
arises: how to combine multiple structural information with pre-trained models
for vulnerability identification.

To tackle this question, we propose a novel Multi-View Pre-Trained Model
(MV-PTM). Based on the pre-trained model, MV-PTM encodes both sequential
information and multi-type structural information of the source code in a uni-
fied framework. Specifically, it generates representations of code under different
structural information constraints. We term these representations as multiple
views of source code. In this work, we use analysis tools to extract the Abstract
Syntax Tree (AST), Control Flow Graph (CFG), and Data Flow Graph (DFG)
of the source code and represent them as adjacency matrices that are taken as
input by Structural-Aware Self-Attention Encoder to produce views containing
different semantics. MV-PTM makes vulnerability predictions based on these
views. In addition, MV-PTM uses contrastive learning [15] method for represen-
tation enhancement of structural information.

Our contributions are listed as follows:

– We propose a novel approach based on the pre-trained model that learns
different structural information of the source code in a unified framework,
which endows our model with the capability to represent the semantics of
code more accurately.

– We perform contrastive learning based on multiple views of code to improve
the performance of code representation learning, which is demonstrated to be
better at characterizing code in the experiment.

– MV-PTM outperforms the state of the arts significantly with an average of
3.85% higher Accuracy and 6.80% F-1 Score.

2 Methodology

Overview. Figure 1 shows the overview of MV-PTM. First, we use Tree-sitter2

to parse the source codes and get the code structural graphs We then convert
these graphs into adjacency matrices to guide the generation of multi-view code
representations based on the Structural-Aware Self-Attention Encoder and pre-
trained model. Afterward, the multi-view representations are fed to a Pooling
Layer and Multi-layer Perceptron (MLP) for identification.
2 https://github.com/tree-sitter/tree-sitter-c

https://github.com/tree-sitter/tree-sitter-c
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Fig. 1. The architecture of MV-PTM. In the adjacency matrix, 1 denotes there is an
edge between corresponding nodes of code, and 0 otherwise. The layer of pre-trained
model is used to obtain the source code embedding.

2.1 Structural Information

As aforementioned, we first obtain different structural graphs: CFG, AST, and
DFG. Each node in these graphs represents a program statement, and each edge
represents certain structural information. It should be noted that a pair of nodes
may be connected by multiple edges because they have multiple dependencies.
We use an adjacency matrix Mn×n to represent a certain type of edges in the
graph (n is the number of tokens in the source codes). We set Mi,j = 1 if the
i-th node and the j-th node are connected in the graph; Otherwise, Mi,j = 0.

CFG is a graphical representation of the paths that are traversed during the
execution of a program. For example, as shown in Fig. 2(b), when the program
executes the “if (a > 3)” statement, it decides whether “b = a − b” is executed
according to the variable “a”.

AST is a tree-structured representation of the syntax structure of the source
codes. Each node on the tree represents a syntactic structure. We use the subtrees
in AST to analyze each statement in the program. Specifically, the tokens in the
same statement can be connected to each other when constructing the adjacency
matrix.

DFG tracks the use of variables during program execution, including access
or modification of variables. Take Fig. 2(d) for instance, the variable “a” in
“b = a − b” comes from “a > 3”.

2.2 Structure-Aware Self-attention Encoder

We utilize the pre-trained CodeBERT as the backbone in our approach to gen-
erate contextualized token representations, but our approach is flexible to other
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Fig. 2. An example of different structural adjacency matrices.

pre-trained models. Taking the source code xi as an example, the representations
Zi are obtained by:

Zi = CodeBERT(xi) . (1)

On top of the backbone, we further design Structure-Aware Self-Attention
Encoder (SASA) based on the self-attention mechanism proposed by [20]. SASA
combines the structural information matrix with the scaled dot-product atten-
tion using addition operations, given by:

Attn(Q,K, V,M) = softmax(
QKT

√
dk

+ M)V , (2)

where Q,K and V denote the query, key, and value matrix, respectively, and
are set by Zi. dk is the dimension of K and softmax is Normalized Exponential
Function. M is the adjacency matrix generated according to the specific struc-
ture information and it can constrain what the i-th token can attend to when
computing attention values. Under the constraints of adjacency matrices, SASA
can generate multiple views containing different structural information.

Under our observation, we notice that there are some similar dependencies
between different structural information. Inspired by this, we make the node
representation learning on different views share the same self-attention head.
Besides, we also have the view-specific self-attention head. To fuse the represen-
tations learned from shared heads and view-specific heads, we use linear mapping
to project them into the same space. As a whole, the SASA attention for one
structural adjacency matrix (one view) is calculated as follows:

SASA(Q,K, V,M) = Cat(H1,H2)W o , (3)
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where H1 and H2 correspond to the representation learned from the shared
self-attention head and view-specific self-attention head, as shown in Eq. 2. Cat
means the concatenation operation.

2.3 Multi-view Contrastive Learning

To enhance the representations learned from different structural information, we
regard each type of information as one view and perform Contrastive Learning.
This is motivated by the fact that different views of the same piece of code have
some correlations and tend to cluster together in the semantic space.

To realize contrastive learning, we consider different views of the same code
as positive pairs and those of different codes as negative pairs (Fig. 3). The loss
function w.r.t. contrastive learning is expressed as:

LCONTRA = ψast + ψdfg + ψcfg , (4)

where ψast takes AST as the Matched Structural view, and it is analogous to
ψdfg and ψcfg. ψ is Normalized Temperature Scaled Cross Entropy Loss [2].

Fig. 3. Diamonds, triangles, pentagons, and squares correspond to code sequence,
DFG, CFG, and AST, respectively. The circle denotes the semantic space.

2.4 Training Loss

We leverage Cross Entropy for training the main task, i.e., vulnerability identi-
fication, and the total loss for fine-tuning MV-PTM is given by:

L = LCLS + λLCONTRA , (5)

where λ is the hyper parameter and we set λ = 1 in the experiments.
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3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our approach on two C-language datasets used in pre-
vious studies [21,24], which contain manually-labeled functions collected from
open-source projects FFmpeg and QEMU (Table 1).

Since some code snippets in the dataset exceed the length limit of CodeBERT,
we discarded the codes that have more than 512 tokens. For long code segments,
the recognition accuracy of MV-PTM is not ideal.

Table 1. Statistics of the datasets.

FFmpeg QEMU

Training set 3958 10903

Validation set 462 1378

Test set 499 1319

Total 4919 13600

Average length 274.5 325.3

Baselines. We choose the following six methods as the baselines since they
represent the most up-to-date vulnerability identification mechanisms:

VulDeePecker [12]: It turns the source codes into a token sequence. The
initial embeddings of tokens are trained via Word2Vec [14].

CNN [16]: It models the source codes as natural language and applies CNN
to extract features from the code. The embedding initialization is the same as
that of VulDeePecker.

Devign [24]: It represents the source code with the code property graph
(CPG) which integrates all syntax and dependency semantics. Based on the
graph, it uses Gated Graph Recurrent Network [11] for graph-level classification.

SELFATT [20]: Similar to [12], it takes the source code as sequences and
exploits the multi-head attention mechanism for code representation learning.

CodeBERT [3]: It is a pre-trained model for programming language which
has achieved acceptable performance on many code-related tasks such as code
search and code documentation generation.

GraphCodeBERT [6]: It is the first pre-trained model that leverages code
structure to learn code representation to improve code understanding.

3.2 Experimental Results

Performance Comparison. As shown in Table 2, MV-PTM outperforms all
baseline methods on both two datasets. According to the experimental results,
we summarize the following findings:

The local and structural characteristics of the code can improve
the performance of vulnerability identification. Comparing CNN with
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Table 2. Experimental results on the two datasets.

Methods FFmpeg QEMU

Accuracy F-1 Score Accuracy F-1 Score

VulDeePecker [12] 0.5622 0.5923 0.5956 0.5644

CNN [16] 0.6032 0.6278 0.6482 0.3974

Devign [24] 0.5904 0.6015 0.6039 0.3244

SELFATT [20] 0.6152 0.6323 0.6361 0.3701

CodeBERT [3] 0.6353 0.6431 0.6907 0.6102

GraphCodeBERT [6] 0.6613 0.6724 0.6975 0.6497

MV-PTM 0.6874 0.6843 0.7149 0.7049

VulDeePecker, we can find that the Accuracy is significantly improved in both
two datasets, implying that the local characteristics learned by CNN are indeed
helpful for vulnerability identification. GraphCodeBERT outperforms Code-
BERT with an average of 1.64% higher Accuracy and 3.44% F-1 Score.

MV-PTM performs best among all methods. MV-PTM has further
improved its performance based on CodeBERT. It is noteworthy that the F-1
Score of baselines on the QEMU dataset is not ideal, while MV-PTM raised the
F-1 Score to 0.7049.

3.3 Ablation Study

In this section, we verify the effectiveness of the three structural information
and contrastive learning methods used in our work according to the results of
the ablation study. Table 3 shows the experimental results.

Table 3. Effect of structural information and contrastive learning.

Methods FFmpeg QEMU

Accuracy F-1 Score Accuracy F-1 Score

MV-PTM 0.6874 0.6843 0.7149 0.7049

MV-PTM w/o CFG 0.6553 0.6643 0.6983 0.6865

MV-PTM w/o AST 0.6573 0.6674 0.7036 0.6845

MV-PTM w/o DFG 0.6513 0.6683 0.6990 0.6892

MV-PTM w/o Contrastive 0.6693 0.6845 0.7005 0.6688

Different structural information improves the performance of the
model, but to varying degrees. It can be observed from Table 3 that when
any kind of structural information is removed, the performances of the model
on both datasets decrease significantly.
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Contrastive Learning can learn a more accurate multi-view repre-
sentation of source code. We find that after removing the contrastive learning
module, the performance of the model also decreases to a certain extent. This
phenomenon implies that the contrastive learning method we proposed can make
the model learn different code structure information more effectively.

4 Related Work

Vulnerability Identification. In academia, there usually are rule-based and
learning-based methods for vulnerability identification. Rule-Based methods are
widely explored in academia. SUTURE [23] is a static analysis method, which is
capable of identifying high-order vulnerabilities in OS kernels. Learning-Based
methods are a novel research direction that attracts much attention. VulDeeP-
ecker [12] is an LSTM-based model, which represents the source code as vectors.

Pre-trained Model for Programming Languages. CodeBERT proposed
in [3] is a bimodal model for programming language and natural language trained
by Masked Language Modeling and Replaced Token Detection. GraphCode-
BERT [6] considers the inherent structure of code by Edge Prediction and Node
Alignment to support tasks like code clone detection [8,9,17].

Compared to CodeBERT, MV-PTM improves the accuracy by an average of
3.81% at the cost of 15% additional parameters and 25% training time, which
is within acceptable limits.

Contrastive Learning. Contrastive learning is usually conducted in an unsu-
pervised manner by increasing the similarity between the representations of pos-
itive pairs and decreasing the similarity between the representations of negative
pairs [7,19]. Data augmentation is a commonly-used technique to construct pos-
itive pairs, including rotation, scaling, and cropping in computer vision [2] and
dropout in NLP [4].

5 Conclusion

In this paper, we propose MV-PTM, a pre-trained based model which uses struc-
tural information including AST, DFG, and CFG, to obtain multiple views of the
source code. Besides, we introduce an auxiliary task based on contrastive learn-
ing to improve the performance of code representation. The experiments on two
datasets demonstrate that structural information and contrastive learning are
effective for vulnerability identification. In the future, we plan to explore the appli-
cation methods of MV-PTM on long code segments and introduce the knowledge
graph to generate reasonable explanations for the identified vulnerabilities.
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Abstract. In recent years, the rapidly increasing landscape of industrial
control systems (ICS) devices has made the ICS geolocation more impor-
tant. However, IP-based geolocation cannot provide high accuracy geo-
graphical locations for ICS devices. Commercial databases only provide
coarse mappings between IP hosts and physical locations. Measured-based
geolocation relies on the number of high-quality landmarks. In this paper,
we present a novel framework called OSI-Geo for serving high-quality
landmark mining of ICS devices. The main idea is that there are many
location-indicating clues in the open-source information exposed by ICS
devices, which can be utilized to find their physical locations. The OSI-
Geo automatically collects location-indicating clues to generate ICS land-
marks at large-scale. We conduct real-world experiments for validating the
effectiveness and performance of our method. The results show that OSI-
Geo can accurately collect clues with over 99% recall and precision. Based
on those clues, 36,872 stable landmarks, covering 162 countries and 5,596
cities, are obtained. Among them, there are 30,290 (82%) fine-grained
landmarks accurate to street-level at least. The accuracy of IP geoloca-
tion has been improved significantly based on the ICS landmarks. Thus,
OSI-Geo achieves effectively landmark mining for ICS devices.

Keywords: ICS devices · IP geolocation · Landmark mining ·
Network measurement

1 Introduction

More and more industrial control systems (ICS), including supervisory control
and data acquisition systems, distributed control systems, building automation
systems and other control systems, have connected to the Industrial Internet [13,
14,21]. The study of geolocation for online ICS devices is becoming an important
topic. The lack of ICS landmarks will influence the geolocation accuracy of ICS
devices directly, because the accuracy of IP geolocation based on the common
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inference methods seriously relies on the number and density of landmarks. Thus,
the study of ICS landmark mining has a significant value for Industrial Internet
geolocation.

The IP-based geolocation of ICS devices is to provide the mapping between
IP address and the physical location in the form of the latitude and longitude, or
the country, city and street. However, commercial geolocation databases can only
provide coarse-grained location information. Previous works [5] show that these
databases have various discrepancies at the city-level. Although some improved
methods have been proposed in recent years [12,17,19], IP geolocation inference
is heavily dependent on the number of high-quality landmarks. However, avail-
able landmarks are community-based, most of them are located on academic
networks, leading to a limited scale in terms of their number and coverage.
Thus, the existed landmarks would not support the ICS devices to obtain the
high accuracy of geolocation.

The ICS devices connected to the Internet expose a lot of detailed open-source
information which is highly related to their physical locations, including the
names of streets, buildings, organizations, or other related descriptions. These
information, collectively referred to location-indicating clues, can be collected
from the banners of application layer protocols and the HTML webpages of built-
in web servers, which are helpful to infer the physical locations of ICS devices.
These ICS devices can be utilized as landmarks to improve the accuracy of IP-
based geolocation. Based on this observation, we present a framework called
OSI-Geo, which is able to collect the location-indicating clues from online ICS
devices and utilize those clues to infer the physical locations automatically.

The rest of this paper is organized as follows. Section 2 provides the back-
ground and motivation. Section 3 describes the location-indicating clues miner
component. Section 4 details the ICS landmarks generation based on these clues.
Section 5 presents the experimental evaluation. Section 5.5 surveys the related
work. Finally, Sect. 5.6 concludes our work.

2 Background and Motivation

ICS devices communicate over protocols specified by manufacturers, including
Modbus, DNP3, BACnet, Siemens S7, Tridium Fox, et al. Besides, quite a few
ICS devices have built-in web servers for remote management. These online
ICS devices are visible, and their banners and webpages are accessible via IP
hosts. Although the basic idea is intuitive, there are three major challenges in
practice. First, we need to identify which ICS protocols and products contain
location-indicating clues on their banners and webpages. Second, how to collect
the banners and webpages from online ICS devices and extract the location-
indicating clues. Lastly, most of the location-indicating clues are not explicit
and detailed, how to utilize them to infer the physical locations of ICS devices.

2.1 Clues in Banner

After analyzing banners of each protocol, we found location-indicating clues in
the banners of BACnet and Tridium Fox. By default, the BACnet is found on
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UDP port 47808, and the Tridium Fox on TCP port 1911 or 4911. As Fig. 1
shows, the banners of ICS protocols, which are collected from Tridium Fox and
BACnet devices, disclose the location and organizations respectively.

Fig. 1. Examples of clues in banners of ICS protocols.

2.2 Clues in HTML

By analyzing the webpages from common ICS products, we found that there
are five ICS products whose webpages expose location-indicating clues. Trid-
ium Web, Webctrl and AsiControl are deployed in building management sys-
tem. Acquisuite is designed to collect energy data from meters and environ-
mental sensors. AceManager provides a graphical user interface for the con-
figuration options of Sierra Wireless AirLink modems. As show in Fig. 2, the
location description "Ross1552_OxonHillMD" and the geographical coordinate
"32.00405, -102.18490" are disclosed on the webpages of Tridium Web and Ace-
manager respectively.

Fig. 2. Examples of Clues in built-in webpages of ICS devices.

2.3 ICS Geolocation Based on Clues

We propose OSI-Geo to automatically collect location-indicating clues from the
banners and built-in webpages of online ICS devices and utilize them to infer
the geographical locations. Figure 3 illustrates the architecture. There are two
major components: the location-indicating clue miner (LCM) and the geograph-
ical location generation (GLG). The LCM collects the open-source information
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exposed by online ICS devices and extracts location-indicating clues. The GLG
utilizes clues to generate landmarks. The implementation of LCM and GLG are
detailed in Sect. 3 and Sect. 4.

Fig. 3. Architecture of the OSI-Geo.

3 Location-Indicating Clue Miner

The LCM collects clues through 4 core modules: banner grabber, banner clue
miner, HTML clue miner and clue normalization.

3.1 Banner Grabber

The banner grabber is designed to collect banners of online ICS devices and
built-in web severs. We utilize ZMap [1] to scan ports 47080, 1911, 4911 and
common HTTP ports across the entire public IPv4 addresses. For the host with
one target port open, ZGrab is utilized to grab its banner [3].

3.2 Banner Clue Miner

The banners of BACnet and Tridium Fox have standard formats. We can use
regex shown in Table 1 to extract clues on the parsed banners effectively.

Table 1. Regex for extracting banner clues.

ICS protocol Regex

BACnet (Object Name|Location|Description): (.*)\n
Tridium Fox stationṅame=s:(.*)\n

3.3 Html Clue Miner

Since the banners of HTTP protocol do not provide the complete webpages, we
need to scrape them by web crawler. A problem here is that the number of hosts
with HTTP protocol is huge, while the banners of ICS built-in web servers only
account for a small part. Hence, we need to screen HTTP banners related to the
ICS products mentioned above.
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Banner Classification. There are some features in the HTTP banners of ICS
built-in web servers. (1) Generally ICS products use a special web server (e.g.,
"Niagara Web Server" for Tridium Web). (2) The webpages collected from the
ICS devices in the same ICS product have a fixed HTML template. (3) The
ICS built-in web servers commonly respond status code 301/302 and return a
redirect URL for user login due to the authentication required.

Based on this observation, we consider this problem as a classification task
and design a classifier shown in Fig. 4. We use BERT [2] as the classification
model. The input text is merged by the response header and HTML title. The
output will indicate whether this banner is related to one of those ICS products.

Fig. 4. The classification model for the banners of HTTP.

Clue Miner. The web crawler is utilized to collect the webpages screened
by classifier. Another problem here is that the clues on the webpages are non-
normalized and there are some unrelated organizations and facilities on the web-
pages, such as the manufacturers of ICS devices. Thus, utilizing Name entity
recognition (NER) to extracted the clues has low recall and precision. Besides,
due to the various product models of ICS devices and multiple versions of built-
in web servers, generating regular expression rules manually to extract clue for
all the webpages is a heavy workload.

Fig. 5. Two webpages using Niagara Web Server.

As mentioned above, the ICS webpages collected from the same ICS product
have a fixed template and HTML structure. Figure 5 shows two webpages of
Tridium Web deployed by the same Niagara web server, only the titles in the
login panels are different. We leverage this observation and propose a diff-tags
based clue extractor (DTCE) to generate rules for extracting clues automati-
cally. The overview of DTCE is illustrated in Fig. 6, the DTCE first extracts the
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tag structure of <body> in each webpage and filters out irrelevant tags such
as <img>, <a> and <script>. Then the webpages are clustered according to
the same structure, and the tags with different contents in a same cluster are
identified. Finally, the DTCE extracts the contents of those identified tags.

Fig. 6. Clue miner for built-in webpages of ICS devices.

3.4 Clue Normalization

There are some problems to determine the geographical locations of ICS devices
using those clues directly: (1) Some clues are non-normalized. As shown in Fig. 5,
the clues extracted from webpages of Tridium Web often use "CamelCase" or
underscores as naming conventions to convey multiple-word names without using
spaces. (2) The clues may contain some textual information which is irrelevant to
the geographical locations, such as the manufactures, vendors, serial numbers of
the ICS devices. (3) Since the hosts of ICS devices often open multiple ports for
several services, there is more than one clue indicating to the same geographical
location for the same host.

To address these problems, we first parse clues by splitting multiple-word
names with space. Then we utilize our knowledge database to filter out the irrel-
evant text in clues. The knowledge database contains the manufactures, vendors,
product descriptions and other information of the ICS devices. Finally, multiple
clues of an ICS host are merged, and the duplicate clues are filtered out.

4 Geographical Location Generation

In this section, we present the design and implementation of GLG. The main idea
is to leverage search engine and online map service to obtain the most relevant
geographical locations for the clues.

Most clues only indicate the local locations without the cities where they are
located. Thus, we first leverage commercial geolocation databases to determine
the coarse-grained locations. To address the imprecise and inconsistencies prob-
lems of those databases, we leverage multiple databases and select the coincident
location among them. For example, the results of "173.95.*.*" hosted by an Trid-
ium Fox device are "Concord, North Carolina, US" in Maxmind GeoLite21, and
"Charlotte, North Carolina, US" in IP2Location2 and IPAPI3 we use "North
Carolina, US" as the result.
1 MaxMind GeoLite2. https: //www.maxmind.com/en/geoip2-databases
2 IP2Location. https://www.ip2location.com
3 IPAPI. https://ipapi.com.

https://www.ip2location.com
https://ipapi.com
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Some of the clues contain detailed geographical location names, which can be
utilized to query the geographical locations through online map service combined
with the coarse-grained locations. However, the geographical names in quite
a few clues are non-normalized, such as abbreviation and incomplete location
names. Fortunately, the search engines, such as Bing and Google, can provide
the relevant information for the query items. As an example shown in Fig. 7, the
geographical location of clue "Providence UMC", collected from the Tridium
Fox device which hosts "173.95.*.*", can be found in the Bing search results.

Fig. 7. Bing search results of "Providence UMC, North Carolina, US".

Based on this observation, we propose the search-engine based location gen-
erator (seLG), which is illustrated in Fig. 3. To find the geographical location of
an given ICS device, the seLG first merges clue with coarse-grained location as
the search query, and utilizes the search engine to scrape query results, which
include a list of items and a possible map overlay. The title, geographical name
and coordinates in the map overlay are extracted directly. Meanwhile, for each
item, The geographical names in content are extracted by NER and converted
to geographical coordinates by online map service. As a result, we obtain a list
of geographical locations. Then the locations which are duplicate and conflicted
with the coarse-grained location will be filtered out. If there is still more than
one location, the term frequency-inverse document frequency (TF-IDF) [16] is
utilized to measure text similarities of the clue and each title, and the most
similar result is selected.

For providing normalized results and facilitating analysis, the GLG generates
the ICS landmarks with the format [IP, geographical location name, lat/lon].

5 Experiment

In this section, we conducted real-world experiments. The OSI-Geo was utilized
to collect the ICS landmarks from online ICS devices. We first constructed a
dataset to validate the effectiveness of core modules in LCM. Then we analyzed
the quality of the landmarks generated by GLG. Lastly, we leveraged a geoloca-
tion approach to evaluate the performance of geolocation with our landmarks.

5.1 Dataset

The LCM searched public IPv4 address for collecting banners of the specified
application protocols, including BACnet, Tridium Fox and HTTP. We selected
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3000 banners of HTTP. There are 2500 from the built-in web servers of ICS
devices, and the rest are irrelevant. Each banner is labeled with its product. We
scraped the webpages from the 2500 built-in web servers, and extracted clues
manually. Then we utilized search engine and online map service to generate
the geographical locations for each clue. The data for an ICS device was added
to the dataset in the format [IP, banner, webpage, product, clue, geographical
name, (lat/lon)].

5.2 Performance of LCM

HTML Banner Classification. The dataset is divided to training set (about
70%) and the validation set(the rest 30%). We fine-tune the BERT-based model
using ADAMW optimizer with a batch size of 16 and the learning rate of 2e-
5. The dropout probability is kept at 0.1. We set the number of the epoch to
4 and save the best model. The max score is used to decide the product of
a input HTML banner. If the max score is less than 0.9, we consider that this
banner is irrelevant to any ICS product. Table 2(a) shows the performance on the
validation set, our model achieved a precision of 99.54% and a recall of 99.66%
on all the HTML banners of ICS product. The performance for identifying the
banners of built-in web servers is perfectly acceptable in practice.

HTML Clue Extraction. We utilize the DTCE and a NER toolkit called
Stanza [15] to extract the clues respectively. Noting that clues in the webpages
of AceManager are geographical coordinates, we validate on the other four ICS
products. As shown in Table 2(b), the NER cannot achieve both high recall and
precision. For instance, the recall of NER is only 20.76% on the HTTP banners
of Tridium Web, and the precision is only 37.95% on Acquisuite. By contrast,
the performance of DTCE is very promising.

Table 2. Performance of HTML Clue Miner.

(a) Banner Classification

Product Recall Precise F1-score

TridiumWeb 99.94% 98.97% 00.00%

Webctrl 93.67% 98.65% 00.00%

Acquisuite 100% 100% 00.00%

AsiControl 100% 99.19% 00.00%

Acemanager 100% 100% 00.00%

Total 99.54% 99.66% 00.00%

(b) Clue Extraction

ICS Product
DTCE NER
Recall Precise Recall Precise

TridiumWeb 99% 98.99% 20.76% 56.73%

Webctrl 99.31% 99.42% 59.68% 85.71

Acquisuite 99.38% 99.84% 100% 37.95%

AsiControl 100% 100% 47.66% 100%

Total 99.24% 99.38% 54.2% 60.35%
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5.3 Landmarks Validation

Landscape. In total, We collected 36,052 banners from Tridium Fox, 12,641
banners from BACnet and 183,806,777 banners from HTTP. After classifying on
these banners from HTTP, there are 132,794 banners from built-in web servers of
ICS devices, whose webpages were scraped by web crawler. The LCM extracted
17,334 banners clues and 35,829 HTML clues. Table 3 lists the numbers of the
clues extracted from each banner or webpage. After normalization, there are
37,691 IP-Clue pairs remaining. Based on those clues, the GLG generated 36,872
landmarks with unique IP addresses and their geographical locations. By ana-
lyzing the accuracy of geographical locations, we find that 30,290 landmarks
(82%) are accurate to street-level. Among them, there are 26,872(73%) land-
marks accurate to building level.

Table 3. The numbers of clues extracted from ICS banners and webpages.

Banner Clues HTML Clues

TridiumFox BACnet TridiumWeb Webctrl Acquisuite AsiControl Acemanager

12,937 4,397 29,287 3,808 493 107 2,134

Fig. 8. Geographical distribution of the
ICS landmarks.

Fig. 9. Dynamic changes of the ICS ban-
ners and landmarks.

Geographical Coverage. We conduct an analysis on the geographical coverage
of the ICS landmarks. Figure 8 depicts the world map, and the red dots represent
the ICS landmarks. The landmarks cover a wide range of geographical locations,
including 162 countries and 5,596 cities. Table 4 lists the top 10 countries and
cities covered by ICS landmarks. About 80% landmarks are from North America
and Europe.
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Table 4. The Top 10 countries/cities of ICS landmarks.

(a) Top 10 countries

Country Number Country Number

USA 22,906 UK 1,014

Canada 2,127 Netherlands 823

France 1,390 Germany 303

Italy 1,188 Spain 281

Australia 1,048 Denmark 268

(b) Top 10 cities

Country Number Country Number

New York 1,995 Melbourne 316

Toronto 535 Chicago 291

Houston 527 London 246

Paris 475 Washington 232

Sydney 397 Los Angeles 199

Stability. To validate the stability of ICS landmarks, we use OSI-Geo to col-
lect banners and generate landmarks along with time. Figure 9 illustrates the
dynamic changes using the data collected from February 5 to April 20. We can
see that ICS landmarks remain a stable number. By comparing the landmarks
collected in different time, we find that 75% of the landmarks are still avail-
able after 3 months, and 86% of them remain stable within two weeks, which
demonstrates the long-term stability of the ICS landmarks.

5.4 Geolocation Performance

We experimentally validate IP geolocation performance using the ICS landmarks
on two aspects. First, we implement a geolocation service for approximately pin-
pointing the geographical location of a given Internet host. Second, we compare
the ICS landmarks with commercial geolocation databases.

IP Geolocation. We leverage a geolocation approach based on SLG [19]
for the purpose of the geolocation experiments. The approach first sends the
latency and topology probes to the target host and landmarks from our probe
servers, then utilizes multilateration to shrink the region and pinpoint the tar-
get host to a landmark with the smallest relative latency. We collect 200 target
hosts from M-Lab1 and PingER2 which have IP addresses and corresponding
latitude/longitude pairs. Figure 10 shows the cumulative distribution function
(CDF) of the geolocation errors on these target hosts. We observe that 92%
of the hosts are less than 50KM error, of which 82.7% with less than 10KM
error. The result indicates that the ICS landmarks can significantly improve the
accuracy of geolocation.

1 M-Lab. https://www.measurementlab.net/
2 PingER. https://www-iepm.slac.stanford.edu/pinger/,

https://www.measurementlab.net/
https://www-iepm.slac.stanford.edu/pinger/
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Fig. 10. IP geolocation performance Fig. 11. Compared with geodatabases.

Geolocation Database. We select 200 target hosts with street-level geograph-
ical locations from the ICS landmarks. Each host has a detailed clue to make
sure that its location is reliable. Figure 11 shows the CDF of deviation dis-
tances between the ICS landmarks and the locations in Maxmind GeoLite2,
IP2Location and IPAPI. IPAPI achieves the highest performance, 47% of hosts
have deviations less than 10KM and 75% less than 50KM.

5.5 Related Work

IP geolocation methods can be divided into data mining-based methods and
measurement-based methods. Data mining-based methods aim to derive geo-
graphical location of an given IP address from public webpages or datasets.
Measurement-based methods measure the latencies and topologies among VPs,
landmarks and target hosts to estimate the geographical location of a given
target host.

Data Mining-Based Methods. Huffaker et al. [8] leveraged geographical hints
from hostnames to infer the geolocation of a large set of routers on the Inter-
net. The accuracy is highly relied on the consistency of hints and actual loca-
tions. Liu et al. [11] leveraged check-in data from login logs of social networks
to infer location of user’s IP address, this method requires specified logs and
is not generic. Guo et al. [7] and Wang et al. [18] extracted the geographical
information, including address information and the owner names of web servers,
and derived the relationships with the IP addresses of web servers. However,
due to the widely used cloud services and CDN, those landmarks have unstable
and unverifiable issues. Wang et al. [19] proposed GeoCAM to monitor websites
which host live webcams and extract the IP addresses and latitude/longitude of
webcams for generating landmarks at large-scale. GeoCAM is able to generate
landmarks with high accuracy and wide coverage.

Measurement-based Methods. Gueye et al. [6] proposed a constraints-based
geolocation (CBG). The CBG converts the latencies between VPs and targets
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to geographical distances and utilizes multilateration to locate the target host.
Katz-Bassett et al. [9] leveraged network topology to improve the performance of
CBG. Wong et al. [20] devised a general geolocation framework named Octant,
which takes both positive and negative measurement constraints into account
when estimating locations. Wang et al. [17] proposed SLG, which utilizes relative
network distances and landmarks collected from webpages to achieve the street-
level accuracy. Posit [4] and Soptter [10] utilized statistical analysis to estimate
the relationship between network latencies and geographical distances.

5.6 Conclusion

In this paper, a novel IP landmark mining framework for the industrial con-
trol system (OSI-Geo) is proposed to discover the high accuracy landmarks of
the online ICS devices. Firstly, an extraction method for protocol banners and
built-in webpages of the ICS devices is put forward to gain a large number of
ICS location-indicating clues. To avoid the impact of irrelevant named entity in
the process of the clue extraction, we have designed the text-based rules gener-
ator. Then, a street-level geographical locations mining method is constructed
by using the search engine and online map service. This method can infer the
detailed street-level locations of ICS devices by some abbreviated and vague
geographical clues. Based on the OSI-Geo, we have obtained 36,872 stable land-
marks, covering 162 countries and 5,596 cities. There are 30,290 landmarks are
fine-grained among them. Experimental results show that OSI-Geo can efficiently
collect clues with over 99% recall and precision, and the landmarks can effec-
tively improve the accuracy of IP geolocation. In the future work, we hope to
improve geolocation accuracy for ICS devices by local landmark expand based
on those ICS landmarks.

References

1. Adrian, D., Durumeric, Z., Singh, G.: Zippier ZMap: internet-wide scanning at 10
Gbps. In: 8th USENIX Workshop on Offensive Technologies (WOOT 14) (2014)

2. Devlin, J., Chang, M.W., Lee, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

3. Durumeric, Z., Adrian, D., Mirian, A.: A search engine backed by internet-wide
scanning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 542–553 (2015)

4. Eriksson, B., Barford, P.: Maggs: posit: a lightweight approach for IP geolocation.
ACM SIGMETRICS Perform. Eval. Rev. 40(2), 2–11 (2012)

5. Gharaibeh, M., Shah, A., Huffaker, B.: A look at router geolocation in public and
commercial databases. In: Proceedings of the 2017 Internet Measurement Confer-
ence, pp. 463–469 (2017)

6. Gueye, B., Ziviani, A., Crovella, M.: Constraint-based geolocation of internet hosts.
IEEE/ACM Trans. Netw. 14(6), 1219–1232 (2006)

7. Guo, C., Liu, Y., Shen, W.: Mining the web and the internet for accurate IP address
geolocations. In: IEEE INFOCOM 2009, pp. 2841–2845. IEEE (2009)

http://arxiv.org/abs/1810.04805


Discover the ICS Landmarks Based on Multi-stage Clue Mining 151

8. Huffaker, B., Fomenkov, M., Claffy, K.: Drop: DNS-based router positioning. ACM
SIGCOMM Comput. Commun. Rev. 44(3), 5–13 (2014)

9. Katz-Bassett, E., John, J.P., Krishnamurthy, A.: Towards IP geolocation using
delay and topology measurements. In: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pp. 71–84 (2006)

10. Laki, S., Mátray, P., Hága, P.: Spotter: a model based active geolocation service.
In: 2011 Proceedings IEEE INFOCOM, pp. 3173–3181. IEEE (2011)

11. Liu, H., Zhang, Y., Zhou, Y.: Mining checkins from location-sharing services for
client-independent IP geolocation. In: IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 619–627. IEEE (2014)

12. Liu, J., Chang, W.C., Wu, Y.: Deep learning for extreme multi-label text clas-
sification. In: Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 115–124 (2017)

13. McLaughlin, S., Konstantinou, C., Wang, X.: The cybersecurity landscape in indus-
trial control systems. Proc. IEEE 104(5), 1039–1057 (2016)

14. Mirian, A., Ma, Z., Adrian, D.: An internet-wide view of ICS devices. In: 2016
14th Annual Conference on Privacy, Security and Trust (PST), pp. 96–103. IEEE
(2016)

15. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python natural
language processing toolkit for many human languages. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations (2020). https://nlp.stanford.edu/pubs/qi2020stanza.pdf

16. Tata, S., Patel, J.M.: Estimating the selectivity of TF-IDF based cosine similarity
predicates. ACM SIGMOD Rec. 36(2), 7–12 (2007)

17. Wang, Y., Burgener, D., Flores, M.: Towards street-level client-independent IP
geolocation. In: 8th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 11) (2011)

18. Wang, Y., Wang, X., Zhu, H., Zhao, H., Li, H., Sun, L.: ONE-Geo: client-
independent IP geolocation based on owner name extraction. In: Biagioni, E.S.,
Zheng, Y., Cheng, S. (eds.) WASA 2019. LNCS, vol. 11604, pp. 346–357. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23597-0_28

19. Wang, Z., Li, Q., Song, J.: Towards IP-based geolocation via fine-grained and stable
webcam landmarks. In: Proceedings of The Web Conference 2020, pp. 1422–1432
(2020)

20. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: a comprehensive framework for the
geolocalization of internet hosts. In: NSDI. vol. 7, pp. 23–23 (2007)

21. Xu, W., Tao, Y., Guan, X.: The landscape of industrial control systems (ICS)
devices on the internet. In: 2018 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (Cyber SA), pp. 1–8. IEEE (2018)

https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.1007/978-3-030-23597-0_28


Mobility Models and Mobile Social
Networking



Dynamic Mode-Switching-Based Worker
Selection for Mobile Crowd Sensing

Wei Wang, Ning Chen, Songwei Zhang, Keqiu Li, and Tie Qiu(B)

College of Intelligence and Computing, Tianjin University, Tianjin, China
vwwang@yeah.net, {chenning,zhangsongwei,qiutie}@ieee.org,

keqiu@tju.edu.cn

Abstract. Along with intelligent device popularization, mobile crowd
sensing (MCS) has garnered considerable interest as a novel way of sens-
ing data acquisition. Active and continuous worker engagement in tasks
is a critical concern for sustainability when selecting workers to accom-
plish tasks in continuous MCS. Previous worker selection approaches
are unsuitable for continuous MCS to ensure a large enough workforce.
This paper proposes a framework for dynamic mode-switching-based
worker selection called DMWS. DMWS lets temporary low-quality work-
ers at tasks improve their competitiveness through hybrid mode switch-
ing based on task completion quality to ensure long-term sustainability.
Therefore, they have the opportunity to be selected by the MCS plat-
form again. The ultimate objective is to maximize space coverage at the
lowest possible cost by increasing worker participation. As evidenced by
experimental results on two real-world data sets, DMWS outperforms
other methods in terms of space coverage under budget constraints.

Keywords: Mobile Crowd Sensing · Worker selection · Mode switching

1 Introduction

Mobile crowd sensing (MCS) is well suited for humongous sensing at the urban
level [1]. Compared to the traditional sensing methods [2–4], MCS has garnered
widespread interest because of its adaptability and low-cost benefits [5]. Pollution
prevention [6] and traffic monitoring [7] are two common implementation situa-
tions. Completing these sensing activities necessitates the involvement of a wide
range of workers. Workers do their tasks in two ways, depending on how much
involvement they have: the opportunistic mode and the participatory mode [8].
Workers can perform tasks in the opportunistic mode by continuing their daily
routines. While the cost is minimal, the region count covered by workers is lim-
ited. Workers walk to designated regions to execute tasks in the participatory
mode. The fee is expensive because of transport expenses, but workers could
cover more regions. If the two are mixed, it is referred to as the hybrid mode. It
is vital to adapt the worker selection in hybrid mode to the dynamic MCS with
a large number of workers’ participation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 155–164, 2022.
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MCS is challenged with low worker engagement because of energy loss and
labour time [9]. In the long term, reducing worker loss is critical to the system’s
sustainability [10]. Sustainability requires workers’ active engagement in tasks
for MCS to retain a sufficient number of workers on a limited budget. In spe-
cific worker selection methods, extra benefits are provided to workers who have
already been unsuccessful in the bidding process to preserve them [10–12]. How-
ever, they pay little attention to low-quality workers. This paper uses quality to
denote the percentage of workers’ completed tasks. The workers’ low-quality may
be momentary due to inadequate device power, product defects, or unexpected
worker interruption. It is unsustainable to drop or no longer select some work-
ers because transient qualities. In particular, for activities such as environmental
monitoring, it is essential to select suitable workers to make sure the data col-
lected has high space coverage. Current studies of the hybrid mode aim to select
workers who cover many locations without regard to sustainability [8,13]. The
MCS platform favours opportunistic workers who consistently deliver high-quality
work. When no suitable opportunistic workers are available, expensive participa-
tory workers are chosen. As a result, low-quality workers are not selected. They
are unable to improve their qualities and eventually leave in frustration.

This study discusses the topic and presents DMWS, a dynamic mode-
switching-based worker selection framework for MCS. DMWS intends to give
chances for briefly low-quality workers to enhance their competitive advantage,
thus expanding the engagement of prospective workers. As a consequence, task
completion space coverage is improved and costs less. Because opportunistic
workers have the cheap labour benefit, they are given greater priority than par-
ticipatory workers for the same work. If the opportunistic worker picked was
of poor quality, the task may not be finished. It is preferable to hire participa-
tory workers. Therefore, while picking opportunistic workers, only high-quality
workers are picked. Low-quality workers require the chance to enhance their
competitiveness to become high-quality workers. Workers in DMWS can switch
dynamically between two modes. Workers of poor qualities change to the par-
ticipatory mode and have the option to enhance their qualities by performing
low-cost tasks, reverting to the opportunistic mode.

2 Related Work

Sustainability is a critical research problem for continuous MCS. According to
whether they alter their paths, workers’ modes are classified as the opportunistic
mode and the participatory mode. The opportunistic mode implies that work-
ers accomplish tasks through their everyday routines [14,15]. The participatory
mode refers to workers who go to a specified region to execute assigned tasks.
There are two types of approaches for assigning tasks to workers: worker-selected
tasks (WST) [11,16] and server-assigned tasks (SAT) [17,18]. This paper dis-
cusses worker selection in WST. The participatory mode enables a large cover-
age region, whereas the opportunistic mode maximizes power and cost-efficiency
[19]. As a result, combining the two modes makes sense. The ActiveCrowd frame-
work was introduced by Guo et al. [20]. Time-sensitive tasks were assigned to
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Fig. 1. The overview of DMWS.

participatory workers, while tasks that could wait were assigned to opportunis-
tic workers. Wang et al. [8] conceived the Hytasker, the worker selection con-
sidering participatory workers while choosing opportunistic workers. In the first
stage, tasks were assigned to opportunistic workers, whereas in the second stage,
tasks were assigned to participatory workers. Previously proposed studies lack
a method for adapting to continuous MCS to ensure sustainability in hybrid
mode. When workers frequently do not get tasks, they will abandon the program
in disappointment [9]. Current sustainability measures ensure MCS’s long-term
viability by offering additional benefits to unassigned workers [10,11,16,21,22].
However, they do not consider that when the desire for quality is vital, work-
ers with poor qualities for transitory reasons would rarely be picked to execute
tasks, resulting in workers quitting in despair. To solve the problem, this study
introduces DMWS to maintain MCS sustainability.

3 System Model

As shown in Fig. 1, the MCS comprises three components: the task requester, the
cloud platform, and workers. The task requester releases tasks to the platform.
Workers carry out tasks in the opportunistic or participatory mode. Oppor-
tunistic workers record their predicted route on the platform before beginning
each monitoring round. The platform identifies the target group of opportunis-
tic workers. The other tasks are offered in reverse auctions to every worker. The
platform selects workers based on the outcome of the reverse auctions. Addi-
tionally, workers can switch between the two completion modes based on their
qualities. Finally, the data is analyzed and provided to the task requester.

The sensing cycle is divided into r rounds, expressed as T = [t1, t2, · · · , tr].
The target subregion of the task is A = [a1, a2, · · · , ac]. The worker set W =
[w1, w2, · · · , wn] represents all workers in the worker pool. In each sensing round,
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each subregion corresponds to a task. The subregion is considered covered when a
worker completes a task in the subregion. In each round, the platform’s goal is to
cover as many subregions as possible. The set of workers selected to complete the
task is Y = [Y1, Y2, · · · , Yr] of r rounds, which satisfies Y ⊆ W . Gi,j(Yi) = {0, 1}
indicates the coverage of subregion j in the i − th round. When Gi,j(Yi) = 1,
subregion j is covered in round i. When Gi,j(Yi) = 0, subregion j is not covered
in round i.

In the i − th sensing round, if worker y is the opportunistic worker, the
platform provides y with a reward I1(y, i); if worker y is the participatory worker,
the platform provides y with a reward I2(y, i).

Based on the above, when the total budget for completing the task is Budget,
the problem is defined as follows:

Maximize:
r∑

i

c∑

j

Gi,j(Yi)

r × c
(1)

Subject to:
r∑

i

∑

y∈Yi

I1(y, i) + I2(y, i) ≤ Budget (2)

4 Dynamic Mode-Switching-Based Worker Selection

As shown in Fig. 2, all opportunistic workers record their routes on the cloud
platform before every sense round. It enables the platform to utilize Eq. (3) to
assign every task to the most appropriate opportunistic workers who have the
max S1 of each region in the round r. Equation (4) indicates that the selected
worker’s incentive is I1(yi, r). Workers who are not picked will get digital points
in Eq. (5) for checking in at their pre-registration places, preventing them from
quitting the MCS system. The number of digital points is initially fixed at 1.

S1(wi, r) = Q(wi, r) + λ1 ln(
d(wi, r)

mi
) (3)

I1(yi, r) = Re + ωQ(yi, r) (4)

d1(wi, r) = e (5)

where Q(wi, r) represents qualities of workers wi, described below. λ1 is the
weight factor of the percentage of digital points d(wi, r) to the iteration the
worker wi has been chosen, mi. Re is the base reward. The quality weighting
parameter is ω. e is a positive constant.

The other tasks are provided to workers motivated to alter their future tra-
jectories, including opportunistic and participatory workers. According to S2 in
Eq. (6), workers are chosen to accomplish tasks only when the bidding is within
a certain amount, and the winners receive the payment specified in Eq. (7).
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Fig. 2. Dynamic mode-switching-based worker selection process.

S2(wi, r) =
Q(wi, r)
bid(wi, r)

+ λ2 ln(
d(wi, r)

mi
) (6)

I2(yi, r) = bid(yi, r) + ωQ(yi, r) (7)

where bid(wi, r) is the worker wi’s bid in the round r. λ2 is the weight factor.
The other parameters are the same as Eq. (3) and Eq. (4).

Workers who have not been picked will get the following digital points:

d2(wi, r) = e · Nc(r)
Ns(r)

(8)

where e is a fixed number. Nc(r) denotes the number of regions covered. Ns(r)
denotes the overall number of regions. Equation (8) increases the number of
digital points available to workers bidding on assignments with few participants.

Mode switching is based on the quality of workers. The quality is determined
by workers’ performance, both short-term and long-term. The competence of a
worker in the sensing round r is defined as:

z(wi, r) =
Mc(wi, r)
Ms(wi, r)

(9)

where Mc(wi, r) is the number of tasks completed by the worker wi during the
sensing round r. Ms(wi, r) denotes the aggregate number of the worker wi’s
assigned tasks during the sensing round r.

Short-Term Performance: The performance of the workforce may fluctuate
over time. Recent time records have grown increasingly essential in reflecting
worker capacities throughout time. Workers’ short-term quality is stated as
Eq. (10), using the index’s most recent average value to give recent data
greater weight.
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qs(wi, r) = (1 − α)r +
r∑

t=1

α(1 − α)r−t
z(wi, t) (10)

where (1 − α)r +
r∑

t=1
α(1 − α)r−t = 1. 0 < α ≤ 1, and α is a factor relating to

the rate of weight decay. r denotes the r-th sensing round currently in progress.
The variable t is used to denote all prior sensing rounds.

Long-Term Performance: The workers’ long-term performance is described
as a combinatorial multi-armed bandit problem. Each worker serves as the arm
of selection. The worker is compensated based on his or her performance during
each round. The UCB method is used to represent the long-term performance
of workers as Eq. (11). The algorithm uses the upper bound of the confidence
interval to predict the quality of workers.

ql(wi, r) = ẑ(wi, r) +

√
δ · ln(r)

ri
(11)

where ẑ(wi, r) is the average of all z(wi, r). δ is a positive constant. ri represents
the number of times the worker wi has been chosen. r indicates that this is the
r-th sensing round.

Using the concepts above, we define the quality as the following:

Q(wi, r) = ql(wi, r) + μqs(wi, r) (12)

where μ is a positive factor.
When qualities exceed or equal the threshold, workers switch to the oppor-

tunistic mode. When qualities are less than the threshold, workers switch to the
participatory mode. By performing tasks in the participatory mode at a low
cost, workers increase their qualities to revert to the opportunistic mode.

5 Performance Evaluation

This paper uses two publicly available location-based social network datasets:
Foursquare [23] and Gowalla [24]. The two datasets provide information on users’
check-ins and their friendship networks. Foursquare has 375 subregions, 577001
check-ins, 20613 friendship edges and 11173 users. Gowalla has 426 subregions,
311759 check-in records, 51774 friendship edges and 10868 users.

This paper uses three algorithms for comparison. HybridTasker adopts the
same selection process as DMWS, but opportunistic workers with low qualities
are obsoleted. OPP [25] employs a greedy approach to pick opportunistic workers
within budget constraints. PAR [11] creates a winner selection mechanism to
allocate sensing tasks to participatory workers.

The experiment’s sensing tasks are a quarterly measuring plan. A quarter is
considered 12 weeks. One day is a round for sensing. When workers are chosen,
their completion probability is obtained using a Gaussian distribution. After



Dynamic Mode-Switching-Based Worker Selection for Mobile Crowd Sensing 161

the mode switching, workers have a certain probability to increase Q to return
to the opportunistic mode which is the switching probability. After switching,
the completion probability increases by 50%. Each worker receives fewer than 5
tasks. The workers’ bid range is [20, 30]. Other values are defined as 2 for Re,
0.1 for ω, 0.1 for λ1, 0.01 for λ2, 0.125 for δ, 0.5 for α, 1 for e, and 0.5 for μ.

Fig. 3. Space coverage comparison under various mean values of completion probabil-
ities.



162 W. Wang et al.

Fig. 4. Space coverage comparison under various budgets.

The first experiment is space coverage comparison under various mean val-
ues of completion probabilities. This paper sets the Budget to 6000 and the
mode switching probability to 0.5. As seen in Fig. 3, DMWS outperforms other
algorithms. The second experiment is space coverage comparison under various
budgets. This paper sets the mean value of the completion probability to 0.6 and
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the mode switching probability to 0.5. As seen in Fig. 4, DMWS achieves higher
space coverage under the same completion budget than other algorithms.

6 Conclusion

In continuous MCS, temporary low-quality workers are difficult to be selected
to complete tasks. To solve this problem, this paper proposes DMWS, a frame-
work for dynamic mode-switching-based worker selection. In DMWS, temporary
low-quality workers might improve their qualities by switching modes between
the opportunistic mode and the participatory mode in order to earn the MCS
platform’s favour. Extensive simulation experiments on two real-world datasets
demonstrate DMWS’s good performance. The worker selection is part of the
worker recruitment. In the future work, we will further explore the application
of mode switching in worker recruitment.
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Abstract. The simulation of a Mobile Ad Hoc Network (MANET),
before deployment or during the system running, provides a priori design
validation and insightful observation of the real system. But existing
simulation tools mainly enable these by means of centralized instead of
distributed deployment, which in some sense, cannot truly replicate the
real system settings. In this paper, we present a DIstributively deployable
Simulation tool for MANet (DISMAN), to accurately simulate MANET
in a fully-distributed fashion thus allowing the emulation to scale with
the network nodes without sacrificing accuracy. DISMAN is a fully func-
tional tool that can be integrated with Kubernetes, support link layer
(e.g., bandwidth limitation, delay, packet loss) and the multi-path as
well as multi-hop transmission simulations. DISMAN is based on a four-
layer architecture design, where on the top is a graphical user interface
(GUI) layer for presentation and interaction. We further evaluate DIS-
MAN with micro- and macro-benchmarks and show that DISMAN is
easy to use and can assist MANET design by high level qualitatitive and
quantitative simulations.

Keywords: Wireless mobile ad hoc network · Distributed simulation ·
Bandwidth limitation · Multi-path

1 Introduction

In recent years, with the development of wireless techniques, MANET technol-
ogy has evolved as the foundation of more and more wireless mobile application
scenarios. It deals with mobility and connectivity among network entities, for
example, in the aspects like self-forming, self-healing, and peer-to-peer commu-
nicating, can thus be quickly deployed in complex and harsh environments [17].
A typical application scenario is unmanned aerial vehicle (UAV) swarm [13].

Evaluating MANET is challenging and expensive. Simulation is usually a less
expensive option to validate new designs a priori or insightfully observe the run-
ning MANET systems. But many existing simulation platforms mainly provides
centralized instead of distributed deployment, thus runs the node communication
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and network forming within a single host. This, in some sense, cannot truly repli-
cate the real system settings. Because it is in fact quite challenging to pack com-
ponents into a single centralized node, especially when they are specific softwares
or integrated network functions. The requirements to distributively deploy them
into peer nodes during simulation are reasonable and even fundamental, since it is
really difficult to accurately simulate the heterogeneous and complex software or
function behaviors of an individual node in single node. A possibly more efficient
way is straightforward deploying them into each physical (or virtual, in the sense
of virtual machine) node instead of the simulated ones. Moreover, as a MANET is
inherently a distributed system, a single host cannot fully capture the distributed
system behavior, particularly in terms of communication processes. On the other
hand, it is less efficient to transfer a design to a real system from a centralized
simulation than its distributed counterpart.

Simulating the above stated network node independence is quite challeng-
ing. First, the communication network among nodes in the simulation is usually
built over the underlaying LAN networks, thus resulting in the bandwidth over-
supply than the real system. We need to limit the link bandwidth according to
the actual situation in the real system to be simulated. For example, in LAN
the bandwidth is 1 Gbps, while in the simulation we must limit the bandwidth
to 4 Mbps according to the real system settings. Second, it is also inherent that
the nodes in a LAN can communicate to each other, while the real situation is
that the network-forming depends on the movement of the nodes, wireless reach-
ability, and even supervised on-off node states. It is also notable that these only
relate to the physical connectivity, while networks can be logically divided into
sub-networks according to node roles and functionalities. Third, end-to-end data
transportation needs to consider the behaviors of different network layers, and
all-stack protocol development is complicated. How to precisely abstract commu-
nication protocols or leave which part as open and user-configurable interfaces
are very challenging. Two key factors to cover are multi-hop and multi-path
transportation. Fourth, for better presentation and usability of the simulation,
a GUI is necessary, but the data consistency and interaction efficiency between
GUI and underlying simulation network need subtle maintenance.

For the acute need of simulating network nodes’ independence and meeting
above stated challenges, we propose DISMAN [1], a DIstributively deployable
Simulation tool for MANet, which allows users to build simulations with specific
requirements. DISMAN can limit the bandwidth by splitting data into smaller
scale and buffer-and-sending them in calculated longer time periods. The idea
behind is based on the discrete time simulation and utilizes transport layer socket
to imitate link layer behavior. Along with this idea, it can also simulate multi-
hop and multi-path transmissions. We adopt the store-and-forward strategy at
each node to supply data forwarding and multi-hop transportation. For simulating
multi-path, we set up multiple sockets to imitate multiple physical network port
and leave the network and transport layer settings defined by the users through
user interfaces. Besides, DISMAN supports dynamic position and movement sim-
ulation, network topology updates, and the display of network status in the GUI
windows. Further, for quickly deploying distributed front and back ends, DISMAN
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provides scripts for install automation and support container-wise deployment.
Finally, DISMAN has the corresponding statistics of multiple layers: throughput,
per packet/hop and end-to-end delays, packet loss, etc.

This paper is organized as follows. We survey related work in Sect. 2. The
design and system architecture of DISMAN are described in Sect. 3, with imple-
mentation details presented in Sect. 4. In Sect. 5 we evaluate the tool by inspect
the functions and performance. Finally, we discuss limitations, future work, and
conclude this paper in Sect. 6.

2 Related Work

There are some network simulation platform or dedicated tools for wireless
MANET simulation. However, to accomplish distributed simulation, most of
them exhibit good usability, though, have diverse disadvantages to overcome.

Dummynet [12], EmuSocket [8], DockEmu [20] can be options for link and
network layers. Dummynet is an excellent open source link simulator, which
has been directly embedded in Linux and MacOS. EmuSocket can better sup-
port statically defined point-to-point connections. DockEmu supports multi-
node topologies. But they cannot simulate highly dynamic networks and need
further implementation to support diverse requirements.

Some simulation tools are developed in the early stage, and there is no update
or new version released recently, like GlomoSim [21], SWANS [9], JANE [7],
GTNetS [18]. GlomoSim introduces the concept of grid, with which a simple
entity can simulate several nodes in the system. SWANS is a wireless network
simulator built on the JiST platform. JANE consists of both a simulation envi-
ronment and an execution platform. Its main focus is that it allows the simula-
tion code to be migrated to the real devices with little modification. The design
concept of GTNetS is to identify nodes in the network as physical computers.

NS2 [5], NS3 [6], OMNET++ [2], and OPNET [4] are excellent network
simulators. NS2 and NS3 are centralized multifunctional instead of distributed
tool [19]. The framework of managing compute resources, adding compo-
nents /protocols, and modifying components, is complex for users who simply
want to simulate a mobile ad hoc network. The simulation of expediting for
OMNET++ [10] intended to support wireless and mobile simulations within
OMNET++. However, the mobility extension of OMNET++ is incomplete and
it gives poor analysis of performance measures. OPNET is a widely used com-
mercial network simulation platform, but not open-source and expensive.

So, we consider that it is necessary to design a tool for wireless MANET
simulation, avoiding its physical layer characteristics, abstracting the object in
the data link layer, covering as many wireless technologies as possible, providing
good interfaces for users, to reduce the workload of the design of the simulation
tool. Compared to Dummynet, DISMAN supports not only bandwidth restric-
tions and multi-hop transmission, but also multi-path transmission simulation.
Moreover, DISMAN supports the simulation of node movement and network
dynamic topology, with GUI presentation possibility. Compared to others, DIS-
MAN is relatively light, easy to deploy and cover wider range of features.
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3 Design of DISMAN

In this section, we describe the architecture and workflow of DISMAN.
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network
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Fig. 1. A design of four-layer architecture.

3.1 Architecture

We depicts four-layer architecture from bottom to top in Fig. 1, i.e., physical
network layer, simulated network layer, control layer, interactive layer.

We build a distributed simulation physical architecture with containers (it
can be transferred to physical machine settings almost with no cost), such that
each node represents a moving individual in real system. These nodes have their
own independent network characteristics, and also have some dynamic charac-
teristics such as changing location, together constructing the physical network
layer, as shown in Fig. 1. Note, we also introduce a “control node” to globally
support the simulation process, which mainly supports routing, global control,
data collection. It is regarded as “air”, i.e., serves only simulation, instead of
representing some real physical nodes.

The simulation network layer is responsible for creating network nodes, con-
taining network protocols, and simulating network dynamics like topology, net-
work forming, and node movement. This is the main part of our design. Users can
create multiple visual nodes in the simulation network layer for data interaction.
Through this layer, users can limit the bandwidth and simulate the data trans-
fer of wireless channel, sub-network division, topology reconstruction, multi-
hop/multi-path transmission, delay measurement, etc. The realization of these
functions will be introduced in details in next section.
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The control layer is an “artificial” setting. As shown in Fig. 1, the function of
the control layer is implemented based on the control node mentioned in the sim-
ulation physical layer. There is a database for data interaction, which maintains
the adjacent matrix, data customization and collection of the simulation.

The interaction layer mainly implements three functions. First, users can set
parameters used by the simulation, such as link bandwidth, node information,
and the channel state. Second, users can through GUI set up experiments like
multi-path and multi-hop transmissions. Third, users can visualize the collected
statistics during and after the simulation results, export them, and have a real-
time view on network topology dynamics and node movements.

3.2 Workflow

With the four-layer architecture mentioned above, the overall workflow of DIS-
MAN is stated as below. See Fig. 1. Users can quickly deploy DISMAN with
scripts. Users first browse the local address to enter the system observation win-
dow, then set the link bandwidth, number of initial nodes, locations, status,
and other data on the GUI, afterwards wait for the network initialization to
be completed. During the initialization of the simulation, the data set by the
users in the GUI is mainly transmitted to the database in the control layer. The
docker swarm [16] based on the servers respond and join the simulation network
according to the information in the database.

The active nodes positions will be displayed in the three-dimensional coordi-
nate system and refreshed dynamically in real time. Users can view the dynamic
positions and the subnetwork forming. Users can click and view node informa-
tion (location, status, etc.) and set node status, such as changing node informa-
tion, adding nodes, deleting nodes, etc. Users can also control message sending,
select source nodes, destination nodes and information, and manually set up
data transmission, including multi-path and multi-hop transmissions. During
the experiment, performance statistics of nodes are present in the GUI.

4 Implementation of Functional Modules

DISMAN can simulate many functions and entities of MANETs, such as wireless
channel data communication, noisy channel, bandwidth setting, subnet division,
network topology reconstruction, multi-hop/multi-path transmissions, and pro-
vide data collection and visualization.

4.1 Bandwidth Setting and Poor Channel Simulation

Bandwidth limitation is implemented using send/receive queues and send timing
control, as shown in Fig. 2. When node 1 sends a message to node 2, DISMAN
starts cutting the message according to the size of the data frame and delays each
packet k by a time τk, where Lk is the length of the packet, b is the bandwidth of
the link that users can set, tp is the propagation delay of the link and tq is queue



170 X. Shu et al.

occupation when the packet was queued. Since the wireless link is unreliable,
there would be packet loss, and the lost packets need to be retransmitted, but
the retransmitted packets may still be lost. We set the upper limit of the number
of packet retransmissions to N . If the packet is still lost after N retransmissions,
then we can assume that the link is disconnected or over-congested. So τk can
be expressed as follows τk = N

(
Lk

b + tp
)

+ t
(N)
q . The noisy channel can reflect

the reality of data transmission to some extent when simulating wireless channel
data communication. To simulate the characteristics of noisy channels such as
adjusting transmission delay and packet loss, DISMAN simulates random packet
loss and enlargement of a set range based on the Bernoulli distribution, a discrete
probability event before sending message. This can be parameterized.

bw
send queue receive queue

split and send packets

node 1 node 2

Fig. 2. The limitation of bandwidth.

4.2 Queue Management and Data Transmission

DISMAN adopts a default queue scheduling policy, i.e., FIFO [14], with size
configurable either in bytes or number of slots. DISMAN simulates the data
sending and receiving on the physical layer and the link layer with the socket
function. Users can set network parameters, such as bandwidth, delay, queue
size, source, destination nodes.

The data frame format in send and receive queues is composed of header,
data and tail as shown in Fig. 3. Header includes flag and multi-hop information,
where flag is data identity bit and multi-hop information contains the amounts of
multi-hop nodes and ip/port of forwarding node. The data part is the metadata
frame. The tail is made up of hostip, timestamp of sending (in µs), and node ID.
Especially, node ID is used to simulate the MAC address of the network node.

time stamp node IDhostip flag multihop information

header data tail

Fig. 3. The format of data frame.

The entire simulated system is obtained by processing ordered sequences
of timestamped events, which are used to model packet transmission between
communicating nodes. Each event is marked by a timestamp that specifies the
simulation time at which the event must be processed, otherwise the simulation
will not correctly simulate the system evolution. Therefore, in the process of sim-
ulating communication, DISMAN cuts and assembles the data packets according
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to different separators, which include timestamps. With the timestamps of send-
ing and receiving message, users can get the total delay of data transmission
between two nodes, including sending delay, transmission delay, queuing delay
and processing delay. After node i sends several messages to node j, the total
delay T j

i between node i and node j is T j
i =

∑M
k=0 τk = tlj − tfi , where tlj is

the timestamp of the first frame in send queue of source node and tfi is the
timestamp of last frame in receive queue of destination node, M is the number
of data frames that the information is split.

4.3 Subnet Division

The communication between two nodes in the simulated network is almost cer-
tain to succeed, but in the real network, the transmission may fail simply due
to a long distance, or node breakdown, etc., which will cause simulation errors.
There are many subnet standards in the network. DISMAN sets the commu-
nication radius as the dividing standard in default and also the nodes have
ON and OFF states. For other settings we can provide interfaces to accept
as input. We define the node i state as “on” as si = 1 and “off” as si = 0.
Therefore, if si = sj = 1, the distance Dj

i between network nodes i and j is

Dj
i =

√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 , otherwise Dj
i = ∞.

We define the default communication radius as R. And we use Cj
i as whether

node j is within the direct communication range of node i, in other words,
whether node i and node j can directly communicate instead of through other
nodes. If Dj

i ≤ R, Cj
i = 1, otherwise Cj

i = 0.
Since node cannot only communicate to other nodes directly, but also relay

communication through intermediate nodes, the connectivity between nodes can
be expressed as Cj

i = I{∑N
n=0(CN

i ·{∑N
m=n(Cm

n ·Cj
m)})}. Note that I{.} is indicator

function, where I{expr} = 1 if ’expr’ > 0, and I{expr} = 0 if ‘expr’ ≤ 0.
DISMAN includes a pseudo-position update module. It uses Poisson prob-

ability distribution to add some randomness to the position initialization and
control the track in a continuous way. Besides, it also provides API to support
this kind of subnet related settings.

4.4 Multi-path and Multi-hop Networks

As mentioned in the subnet division, DISMAN has a pseudo-location update
module that determines the reachability matrix according to the different
location information of nodes, which gather on the control layer. DISMAN can
support multi-hop networks with a shortest path algorithm based on the Dijk-
stra algorithm [11]. Each node will check the reachability matrix before sending
data to decide whether to send. It also exposes program interfaces to ensure the
extensibility of routing protocols.

We can see from the Fig. 4 that sending node, node 0, creates multiple socket
interfaces with multithreading when node 0 sends data packets to multiple for-
warding nodes, and then the data packets pass the forwarding node and arrive
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at the destination node, node 4. So, DISMAN can support simulating multi-path
transmission with socket function, simulating parallel with concurrency. There
will be packet loss and data packet rearrangement in the transmission process,
which is also in line with the actual network. Users can design data transmission
protocols based on this to ensure that data packets arrive at the destination in
the correct order finally. It also provides an interface for multi-path planning.

node 1

node 0
node 2

port

port node 4

forward node

path 1

path 2

Fig. 4. The realization of multi-path transmission between node 0 and node 4.

4.5 Dynamic Network Reconstruction and Visual Interaction

Network topology reconstruction is a core section of MANET, considering ON
and OFF state switch of nodes, high mobility of nodes, etc. In order to provide
simulation of it, the location information of nodes is continuously collected and
distributed on the control layer. Note, in dynamic reconfiguration, DISMAN
does not refine the module of energy consumption. Users simulate the energy
consumption of mobile nodes by controlling the state of nodes (ON and OFF).

The sending and receiving of simulation data is a distributed aggregation
structure around the database. As mentioned above, the database belongs to
the control layer. The GUI exposes a web-based interface to monitor and control
the experiments, where users can intuitively view part of the simulation data by
clicking the Buttons. DISMAN also provides visualization of network topology
reconstruction with the 3D model of ECharts [3] and adding display windows.

5 Evaluation

In this section, we evaluate DISMAN. The results show that DISMAN can closely
simulate the real system as it has a good support for distributed MANET in
terms of node movement, link layers, network forming, and visualization. We
start the evaluation with a series of micro-benchmarks that highlighting the indi-
vidual features of DISMAN and justify the major design decisions in Sect. 5.1–
Sect. 5.4. These experiments were carried out on a single server, a Dell PowerEdge
R740 with 64 GB RAM. All virtual nodes run on Ubuntu Linux 20.04, kernel
5.4.0–100-generic with docker version 20.10.12. The database version is Mysql
5.8. Then, we compare DISMAN with other widely used tools.
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5.1 Evaluation of Bandwidth Limitation

In the actual wireless network scenario, because of the environmental influence,
the bandwidth cannot reach the theoretical value. The bandwidth mentioned
here represents the average throughput that the user wants to set. We deploy 5
virtual network nodes with a default data frame size of 50 bytes. A transmis-
sion was established between the two virtual network nodes and different size
messages were transferred and timed to compute the bandwidth. Take 1 MB,
5 MB, 10 MB message for 10 experiments based on permutations and record
the corresponding average throughput as shown in Table 1, the average limit of
throughput is around 15 Mbps. If the user wants to simulate a smaller band-
width, to realize the limitation of small bandwidth, each frame is paused for a
corresponding microsecond time before the transmission according to the band-
width setting by the user and the processing delay of the code.

Table 1. Evaluation of bandwidth limitation.

Frame size 50 B 4 KB

Message size 1MB 5MB 10MB 1MB 5MB 10MB

Bandwidth 15.2Mbps 14.9Mbps 15.3Mbps 255.7Mbps 256.5Mbps 256.2Mbps

If the user wants to simulate a larger bandwidth, the system supports modify-
ing the data frame size. We set the frame size to 4 KB, and then repeat the above
experiment. Statistics showed in Table 1 that the average throughput between
two network nodes is around 256 Mbps. A bigger bandwidth is also possible.

5.2 Evaluation of Network Performance Parameters

The Statistics of Delay. Let 10 nodes join the network in turn. In order to
test the visualization of delay conveniently, the information transmission between
nodes is set as point-to-point form. The mobile node speed is 0 m/s, the location
update frequency is once every 10 s, the node status is 1 (power on), and the 10
node locations are within the communication radius of 100 m, which ensures that
the 10 nodes are always in the state of full connectivity. By default, the channel
environment is noise-free, the entire simulated network bandwidth is 15 Mbps,
and the data frame size is 50 bytes.

In order to test the average and the worst delay of node 0, we set the data
flow direction as follows. All nodes except node 0 send 20 byte message to node 0
(which will be cut into two data frames). Check the delay of node 0 at the front
end, as shown in Fig. 5. Repeat the above experiment again, but turn on the noise
channel simulation function, set the maximum random increase of delay to 5ms
and random packet loss. The node 0 delay status is as shown in Fig. 5. First,
these two figures show the delay results to users. When simulating the noisy
channel, the maximum and average delays from each node to node 0 increase
significantly, node 2, 4, 5 and 7 have no data because of packet loss, and node 1,
8 and 9 lose some packets, so the maximum delay and average delay are equal.
Figure 5 indicates the randomness and availability of the noisy channel.
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(a) The delay of node 0 in ideal channel. (b) The delay of node 0 in poor channel.

Fig. 5. The delay visualization of experiment.

The Statistics of Data Packets. The experiment is consistent with most of
the parameters in the above experiment, and it is also divided into two simula-
tion experiments of noisy channel and none noisy channel. To count more data
packets, we set the information transmission path planning and data flow direc-
tion as follows. Except for node 0, all other nodes send 5 byte messages to node
0, such as “hello”. Before node 9 sends to node 0, the path request information
is sent to the control plane by node 9, and the control plane sends the path
planning information back to node 9. The path planning is that the multi-hop
nodes in the path are 8, 7, 6, 5, 4, 3, 2, and 1 in turn, including the IP and port of
the following multi-hop nodes. Then node 9 sends it to node 0 according to the
routing information. The messages sent by other nodes to node 0 are similarly
forwarded according to the planned path. For example, if node 5 sends messages
to node 0, the multi hop nodes in the path are 4, 3, 2, and 1 in turn. After the
test, view the data visualization page, and the data packets received by each
node are shown in Fig. 6. It shows the packet counts to the users.

5.3 Evaluation of Multipath Transmission

We deploy four static virtual network nodes, node 0, node 1, node 2, node 3.
Set some basic parameters, such as 15 Mbps for the entire simulated network
bandwidth and 50B for the frame size. First we set one data flow direction, node
0→node 1→node 3 and let node 0 transmit 10MB information to node 1 and
forward from node 1 to node 2. Repeat the experiment 10 times and record

Fig. 6. Packet counts. Fig. 7. The delay of single vs. double path.
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the delay results. Then we set two data flow directions, node 0→node 1→node
3 and node 0→node 2→node 3. Then let node 0 concurrently transmit 5MB
information to node 1 and node 2. To ensure a more accurate evaluation of
multi-path transmission, we set the processing latency of forwarding nodes to 0.

As shown in Fig. 7, the delay of 10 MB information in single-path trans-
mission is concentrated in 11–12 s, delay of 10 MB information in double-path
transmission is concentrated in 6–7 s, and the delay of single-path transmission
is approximately twice as long as that of double-path transmission. The exper-
imental results show that the multi-path transmission module can effectively
support simulation of multi-path transmission.

5.4 Evaluation of Dynamic Network

To evaluate the effective implementation of other functions, we design a network
consisting of multiple mobile nodes. There are 20 peer-to-peer mobile nodes in
the network. The default bandwidth of the simulation network is set to 15 Mbps,
the data frame size is set to 50B, the communication radius is 100 m, each node
moves randomly at a certain speed and the location update frequency is once in
3 s. The location updates information of all nodes converge to the control plane
based on the pseudo location update module stated above. In our design, nodes
0–9 simulate moving objects on the ground, so the Y coordinate is set to 0, and
the moving speed is 5 m/s, nodes 10–19 simulate flying objects in the air, and
the speed is 20 m/s.

Our experimental steps are set as follows over time: At the beginning of the
experiment, we successively add 10 nodes (nodes 0 to 9) to the network, and the
location update is set to update every 3 s. All nodes join the network and start
updating locations successively after 30s. For ease of description, we do not show
the initial positions of the 10 nodes. At the 90s, we add 10 nodes (node 10 to
node 19) to the network in turn. After another 90s, tool can record all location
information, view the three-dimensional geographic display and the number of
subnets on the visualization page, shown in Fig. 8.

(a) Node locations at 90s (b) Node locations at 180s

Fig. 8. The visual display of dynamic network in different time.
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5.5 Performance of DISMAN

In this part, we mainly evaluate DISMAN from a macroscopic perspective. DIS-
MAN is a distributed simulation environment, so it facilitates more realistic
simulations than those widely used simulators such as NS2 and NS3, which are
deployed in a single computer or server. Compared with dummynet, DISMAN
provides more self-contained functions. It realizes the detailed simulations of link
layer, such as bandwidth, delay, packet loss, queue management, etc., and fur-
ther facilitates the simulation of multi-path concurrent transmission. Users do
not need further implementations.

Besides, it is an easy-to-use tool. Its deployment and learning cost is very
low. It supports the rapid deployment of mobile network simulation environment.
Users can deploy the largest node of the required simulation network in a few
minutes according to their needs. DISMAN also covers a visual GUI and sup-
ports users to interact directly on the GUI, which can not only support setting
dynamic behaviors, such as modifying wireless network bandwidth, simulating
noisy channel, and modifying the state of dynamic nodes, but also directly view
the dynamic network topology in the 3D view. To compare, other tools like ns2,
has more complicated installation and deployment. The deployment of mobile
network simulation environment requires further implementation, either there is
no visualization module that can be used directly.

In terms of scale, one sees nearly no limitation. DISMAN can deploy hun-
dreds or thousands of network nodes on several servers to support large-scale
deployment, using Docker. Mininet [15] also supports the simulation of hundreds
of network nodes, but it is limited to single machine deployment. Moreover, the
simulation of dynamic behaviors is badly supported.

6 Conclusion

In this paper we presented DISMAN, a distributively deployable simulation tool.
It can better replicate system behavior of MANET by limiting the bandwidth,
developing multi-hop and multi-path transmissions, providing dynamic node
position and movement simulation, network topology updates, and the display
of network status in the GUI windows. Moreover, DISMAN provides scripts for
install automation and container-wise deployment. DISMAN provides an inter-
active GUI, where users can not only get statistics but also input parameters and
control the simulation. Numerical experiments evaluated the functionalities of
the tool and showed that DISMAN can become a powerful, easy to use, ready for
exhibition, distributed simulation tool, efficiently assisting design of MANET.
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Abstract. The popularity of smart devices and the availability of wire-
less networks bring considerable attention to Spatial Crowdsourcing
(SC). Existing studies mainly focus on solutions to different optimiza-
tion objectives of the SC platform, ignoring the entitlement of workers.
This paper starts from the perspective of workers and investigates how to
select suitable tasks for each online worker such that everyone can maxi-
mize their individual profit. Since the profit is related to the completion
degree of tasks that is determined by the prior unknown parameter, we
model the problem as a Multi-Agent Multi-Armed Bandit (MAMAB)
problem. We propose a Payment-Estimation-Based Solution (PEBS),
allowing workers to sequentially make decisions on task selection based
on their observations and estimations. Specifically, the proposed PEBS
first utilizes the social network among workers and assists workers in
learning the information of tasks from the historical data. Then, it intro-
duces the idea of probability matching in Thompson Sampling (TS) to
help estimate the profit of workers and deal with the task selection prob-
lem. Finally, extensive simulations show that our proposed mechanism
is efficient in optimizing the individual profit of workers.

Keywords: Social network · Multi-agent multi-armed bandit · Online
task selection · Thompson sampling · Spatial crowdsourcing

1 Introduction

Spatial crowdsourcing (SC) [1,2] has become a competitive paradigm in which
the platform publishes spatial tasks, and workers arrive at specific locations to
execute them. Many applications benefit from combining with SC, such as Waze
and Uber [2], which help with data collection and urban services.

Most existing studies concentrate on allocating tasks to suitable workers
[3,4] to maximize the utility of an SC platform. [5] designs a Bisection-based
framework in the SC scenario of multiple workers to optimize the travel cost
and the number of completed tasks. [6] devises a strategy to maximize the total
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 178–190, 2022.
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weighted completion quality of all tasks under a limited budget. These researches
focus on task allocation from the perspective of the platform while ignoring the
entitlement of workers. In such a case, selfish and rational workers might be
unwilling to execute tasks, leading the platform to fail to achieve the desired
effect in practical application. Motivated by this, we focus on the task selection
from the perspective of workers who arrive at an SC system online, in which
there are two main challenges. First, since the task information is unknown to
workers, it is essential to adopt suitable techniques to learn from historical tasks
of the same categories. Second, it is challenging to design collaboration to benefit
each worker since workers are selfish and rational.

Multi-Armed Bandit (MAB) [7] is an efficient learning technique to deal
with information uncertainty and performs well in crowdsourcing scenarios [8].
Multi-Agent Multi-Armed Bandit (MAMAB) [9] is an extension of the tradi-
tional MAB, which assists multiple agents in learning the information and taking
action to maximize the individual reward [10]. It has been introduced to some
application scenarios, such as wireless caching [11]. In this paper, the problem
of multiple workers deciding on task selection can be modeled as a MAMAB
problem. Note that our optimization goal is to maximize the individual profit
for each worker, which is somewhat different from the goal of the traditional
MAMAB problem (maximize the overall reward).

Compared to the commonly used assumption [12,13] that the payment for
executing tasks follows a specific distribution, we consider a more practical situ-
ation in which the payment is determined by both the task completion and the
worker contribution. Since the platform often gives no more information except
payment, communication among workers is essential to learn task information.
Based on the development and popularity of social networks, workers can col-
laborate on collecting and processing task information, which helps update their
knowledge about tasks of different categories.

In an SC system, selfish and rational workers who arrive online want to select
suitable tasks to maximize individual profit. We propose a Payment-Estimation-
Based Solution (PEBS) to help with task selection. It utilizes the social network
to allow workers to collaboratively learn different categories of tasks from the
historical data, which helps with the decision on task selection. The idea of
probability matching in Thompson Sampling (TS) [14] is employed to build and
adjust the probability distribution of task information. The sampled value is an
estimation of task information, based on which workers can calculate the profit
for executing tasks and make decisions on task selection. The traditional TS
technique applies to the Bernoulli MAB, which requires that the reward of each
arm follows the Bernoulli distribution. We extend it to our problem, where task
information follows a Gaussian distribution, reflecting that some factors may
slightly affect tasks of the same category with the same characteristics. PEBS
allows workers to estimate profit accurately and select suitable tasks.

We highlight the main contributions as follows. (1) Different from existing
studies that focus on task allocation for the platform, we design a task selection
mechanism from the perspective of workers, supplementing the missing angle of
the previous work. (2) We utilize the social network among workers. Workers
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can collaboratively learn from the historical data of different categories of tasks,
which helps with task selection. (3) We extend the traditional TS technique
to estimate the task information under Gaussian distributions. Workers realize
the accurate profit estimation and make appropriate decisions based on it. (4)
Simulation results are provided to demonstrate the effectiveness of our proposed
mechanism in optimizing the individual profit of workers.

The remainder of the paper is organized as follows. We first describe the
model and formulate the optimization goal in Sect. 2. The details of our mech-
anism and proposed PEBS are in Sect. 3. In Sect. 4, simulations are provided to
validate the performance of PEBS. We conclude this paper in Sect. 5.

2 System Model and Problem Formulation

2.1 System Model

The SC system runs in N cycles (usually equal-length time slots) [15] and
includes a task requester, an SC platform, and a set of registered workers.

At the beginning of each cycle k, the requester will submit a set of tasks
Tk = {t1, t2, ..., to} to the SC platform. Each task tj ∈ Tk can be presented
as tj = {lj , cj , bj}, where lj is the location of task tj , cj denotes the category
that task tj belongs to, bj is the budget of the platform for it (which is the
maximum value that the platform is willing to pay for workers who execute tj in
the cycle). There are m different categories of tasks in the SC system, and each
task tj belongs to one specific category cj (cj is an integer that lies in [1,m]).

After receiving the task request from the requester, the platform will publish
the task set to the registered workers W = {w1, w2, ..., wn}. In each cycle, the
registered workers arrive at the system online. Use wi = {ak

i , l
k
i , rki } to present

worker wi in cycle k, where ak
i is the time that worker wi arrives at the system, lki

represents the location of worker wi, rki is the reachable distance of worker wi. For
worker wi who doesn’t participate in the system in cycle k, it has ak

i = ∞. Else,
worker wi participates in the system at time ak

i with location lki . Considering the
spatial constraint, workers can select and execute tasks in the circle reachable
region with center lki and radius rki . The set of tasks in the reachable region of
worker wi is denoted as Ti,k. Worker wi can know the number of workers who
have selected each task tj until the time ak

i in cycle k, and the number is denoted
as ski,j . According to a specific strategy, worker wi makes the decision ζi,k on task
selection from the reachable task set Ti,k to maximize the individual profit.

At the end of each cycle, the platform will calculate the completion degree
of each task tj and the contribution of each worker wi who has selected tj . The
calculation of the completion degree and the contribution is shown in detail in
Sect. 2.3. Based on the above calculation results and the budget bj for each task
tj , the platform gives the payment to each worker wi.

2.2 Social Network Communication Model

In the multi-worker scenario, the social network among workers effectively allows
workers to communicate and share the task information.
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We use a dynamic undirected graph Gk = <Vk, Ek> to represent the social
network among workers. Each node in Vk is one registered worker, and each edge
in Ek represents a communication link between a pair of workers. Workers with
communication links are social friends and can share information about different
categories of tasks. Before the actual operation of the system, workers have an
original social network G0. At the end of each cycle, workers who have selected
the same tasks will become social friends since they communicate to get task
information. The number of communication links in the dynamic social network
has a non-decreasing nature (i.e., |Ek−1| ≤ |Ek|,∀k ∈ [1, N ]).

The social network helps workers obtain and learn from the historical data
of different categories of tasks. At the end of each cycle, the platform gives
workers no information except payments. The payment is related to the com-
pletion degree of tasks and the contribution of workers. Each worker wi, who
has executed task tj , only knows the length of its execution duration and the
obtained payment. Based on the communication with workers who have selected
the same task tj , worker wi can calculate its contribution and further deduce the
task information, such as the execution difficulty. Since workers and friends may
select tasks belonging to different categories, the social network allows them to
obtain information about categories of unselected tasks. Workers adopt specific
strategies to deal with the information from social friends to get observations
on task information. In a word, the social network accelerates the process of
workers learning different categories of tasks, which helps with task selection.

2.3 Problem Formulation

Since workers are selfish and rational individuals, each worker wants to select
suitable tasks to maximize the individual profit.

The profit of worker wi in cycle k is the difference between the obtained
payment and its reserve price. The payment is related to the completion degree
of tasks and the contribution of workers. Next, we formulate these concepts.

The completion degree of tasks generally satisfies the submodularity. It
increases at a diminishing amplitude with the increase in the number of workers
who execute them [16,17] and never exceeds 1. It can be formalized as below:

ct(tj , k) = (1 − 1
(1.5 + ej,k)|Uj,k| ), (1)

in which Uj,k represents the set of workers who execute task tj in cycle k and
ej,k ∈ (0, 1) reflects the execution difficulty of task tj ∈ Tk. The execution diffi-
culty of tasks is unknown to workers. For tasks belonging to the same category,
their execution difficulty follows an independent and identical distribution with
an unknown expectation. The expectation reflects the average execution diffi-
culty of a specific category of tasks, and the fluctuations around the expectation
reflect other factors that influence task execution.

The contribution of worker wi to task tj can be calculated as below:

cw(wi, tj , k) = I
k
i,j · di,k∑

wz∈Uj,k
dz,k

. (2)
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I
k
i,j is a decision variable that returns 1 if worker wi selects task tj in cycle k

and 0 otherwise. di,k is the length of duration for worker wi to execute task tj
from the arrival time ak

i to the end of the cycle k. Equation (2) is the ratio of
the execution duration of wi to that of all workers who execute the same task.
Note that

∑
wz∈Uj,k

cw(wz, tj , k) = 1.
Based on the calculation of completion degree and contribution, the platform

pays worker wi who has executed task tj in cycle k, as below:

Rtrue(wi, tj , k) =

{
bj · ct(tj , k) · cw(wi, tj , k) ct(tj , k) < ε

bj · cw(wi, tj , k) ct(tj , k) ≥ ε
(3)

where bj is the budget of the platform for task tj , ct(tj , k) is the completion
degree of task tj and cw(wi, tj , k) represents the contribution of worker wi. If
the completion degree is more than ε, the tasks are considered fully completed,
and the platform pays all budgets to workers who execute them.

Each worker wi has an expected minimum payment for executing task tj in
cycle k, called the reserve price fk

i,j . It is positively correlated with the budget
bj of task tj and slightly fluctuates due to the different demands of workers.
Workers suffer losses if the obtained payment is less than it. The profit of worker
wi who selects task tj in cycle k is the difference between the payment and the
reserve price. We denote it as P (wi, tj , k) = Rtrue(wi, tj , k) − fk

i,j .
We focus on the task selection problem from the perspective of workers. The

goal of each worker wi ∈ W is to select a suitable task tj ∈ Tk in each cycle k
and maximize the cumulative profit on N cycles. Combining the concepts defined
above, we formulate the optimization goal for worker wi as follows.

Maximize :
∑N

k=1

∑

tj∈Ti,k

I
k
i,j ·

(
Rtrue(wi, tj , k) − fk

i,j

)
(4)

Subject to : Ti,k = {tj | ρ(lki , lj) ≤ rki , tj ∈ Tk}, ∀k ∈ [1, N ] (5)
∑

tj∈Ti,k

I
k
i,j ≤ 1, ∀k ∈ [1, N ] (6)

∑

tj∈Tk

skz,j ≤
∑

tj∈Tk

ski,j , ∀wz ∈ {wz|ak
z ≤ ak

i , wz ∈ W}, k ∈ [1, N ] (7)

I
k
i,j returns 1 if worker wi selects task tj in cycle k and 0 otherwise. ρ(lki , lj)

calculates the distance between worker wi and task tj . Constraint (5) indicates
that workers cannot select spatial tasks out of their reachable region; (6) indi-
cates that workers select no more than one task per cycle; and (7) means that
workers make decisions according to the arrival order and execute the selected
tasks until the end of the cycle. Let online workers act as agents, and tasks act as
arms. We model the decision-making problem of multiple workers as a MAMAB
problem. The workers face the dilemma between exploring and exploiting tasks
whose completion degree is determined by the prior unknown parameter in each
cycle to maximize the cumulative individual profit.
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3 Mechanism Design

3.1 Social-Network-Based Observation

At the beginning of each cycle k, the platform publishes a set of tasks Tk. Since
the execution difficulty follows an independent and identical distribution for
tasks in the same category, workers can estimate the execution difficulty of each
task tj ∈ Tk according to the historical data of tasks in the same categories.

Worker wi uses X̂1×m
i (k), Ŷ 1×m

i (k) to represent its estimation of the cumu-
lative execution difficulty and the total execution times of tasks in m categories
till cycle k. Worker wi can get an observation of the execution difficulty for all
categories of tasks in cycle k, denoted as ê1×m

i (k) = {êi,1(k), êi,2(k), ..., êi,m(k)}
(êi,cj (k) = X̂i,cj (k)/Ŷi,cj (k)). Then, we take X̂n×m(k) and Ŷ n×m(k) to repre-
sent all workers’ estimation of the cumulative execution difficulty and the total
execution times of m task categories till cycle k.

With the continuous execution of tasks and information communication,
worker wi will update X̂(k) and Ŷ (k) through two processes: the individual
update based on the information deduced from the payment for executing task
ζi,k and the collaborative update with friends based on the social network.

The individual update is as follows:

X̂i(k) = X̂i(k) + αi(k), (8)
Ŷi(k) = Ŷi(k) + βi(k). (9)

β1×m
i (k) reflects the category of the task selected by worker wi in cycle k, and

α1×m
i (k) reflects the execution difficulty inferred from the obtained payment. If

worker wi selects task tj in cycle k, we have βi,cj (k) = 1 and αi,cj (k) = ej,k. The
other elements in βi(k) and αi(k) are equal to 0.

The collaborative update based on the social network is as follows:

X̂(k) = Hk × X̂(k − 1), (10)
Ŷ (k) = Hk × Ŷ (k − 1). (11)

Hk = In − λk · (Dk − Gk) is a matrix assisting in updating X̂(k) and Ŷ (k). In
is the identity matrix. λk is the parameter that reflects the influence of friends
on collaborative update. Dk is the degree matrix of Gk, and Gk is the adjacency
matrix. Hk adopts the idea of weighted summation and the sum of each row of
Hk is 1. λk lies in (0, 1/(max{Dk[i][i] | 1 ≤ i ≤ n} − 1)] to guarantee elements
in Hk non-negative. We can modify λk to adjust the dependence of workers on
friends in cycle k. The above updates allow workers to get information about
multiple task categories and get an accurate observation of execution difficulty.

For m task categories, we use P̂n×m(k) and Q̂n×m(k) to represent all n
workers’ estimation of the cumulative length of execution duration and the total
number of workers who have selected them. The individual update is as follows:

P̂i(k) = P̂i(k) + γi(k), (12)
Q̂i(k) = Q̂i(k) + δi(k). (13)
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If worker wi selects task tj in cycle k, we have γi,cj (k) =
∑

wz∈Uj,k
dz,k and

δi,cj (k) = |Uj,k|. The other elements in γ1×m
i (k) and δ1×m

i (k) are equal to 0.
The cooperative update on P̂ (k) and Q̂(k) is as follows:

P̂ (k) = Hk × P̂ (k − 1), (14)
Q̂(k) = Hk × Q̂(k − 1). (15)

Based on P̂ (k) and Q̂(k), workers can get an observation of the length
of duration for one worker to execute a certain category cj of tasks (i.e.,
P̂i,cj (k)/Q̂i,cj (k)).

3.2 Thompson-Sampling-Based Payment Estimation

For each task tj ∈ Tk, worker wi ∈ W needs to estimate its execution difficulty
ẽki,j in cycle k based on the historical observations on its category.

Based on task execution and social-network-based communication, workers
get historical observations about the execution difficulty of different categories of
tasks. Then, workers adopt the probability matching idea in Thompson Sampling
to estimate the execution difficulty. Specifically, workers generate probability
models based on historical observations and then sample from the generated
probability density curves as the estimated execution difficulties of tasks.

We use the normal distribution to model the execution difficulty (which can
be easily adjusted to other types of distributions). Let μk

i,cj
and σk

i,cj
represent

the mean and standard deviation of the distribution that worker wi generates for
the category cj . To accurately estimate the execution difficulty of tj , worker wi

constantly adjusts the two parameters based on the observation of the execution
difficulty êi,cj (k) of its category, which is as follows:

μk
i,cj =

τk
i,cj

μk
i,cj

+ I
k
i,cj

· τ êi,cj (k)

τk
i,cj

+ I
k
i,cj

· τ
, (16)

τk
i,cj = τk

i,cj + I
k
i,cj · τ . (17)

I
k
i,cj

is a decision variable, where I
k
i,cj

= 1 means that there is a new observation
on the execution difficulty of the task category cj in cycle k; otherwise, Iki,cj = 0.
τ is a worker-defined parameter to control the rate at which the probability
density curve changes. We calculate the standard deviation by σk

i,cj
=

√
1/τk

i,cj
.

The sampled value from the execution difficulty distribution of task category cj
is an estimation of execution difficulty of tj in cycle k, denoted as ẽki,j . With the
obtain of observations, the standard deviation σk

i,cj
decreases, and the estimated

execution difficulty ẽki,j gets closer to the mean of the distribution.
Worker wi estimates the payment for executing task tj in cycle k according

to the task budget bj and the estimated contribution, as below:

Rest(wi, tj , k) = bj · di,k

max(ski,j , ũ
k
i,j) · P̂i,cj (k)/Q̂i,cj (k)

. (18)
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Algorithm 1 Payment-Estimation-Based Solution (PEBS) for Task Selection
Require: registered worker set W, cycle number N and original social network G0

1: for k = 1 : N do
2: The platform publishes a task set Tk.
3: W(k) = sort( {wi | ak

i �= ∞, wi ∈ W}, key = ak
i ).

4: for wi ∈ W(k) do
5: T ⇐ [ ].
6: for tj ∈ Tk do
7: Update μk

i,cj and σk
i,cj for its category cj .

8: Estimate its execution difficulty ẽki,j by sampling from N
(

μk
i,cj , (σ

k
i,cj )

2
)

.

9: if (Ŷi,cj (k) = 0) ∧ (tj ∈ Ti,k) then
10: T ⇐ T + [tj ].
11: if |T| > 0 then
12: ζi,k = choice(T).
13: else
14: T ′

i,k = {tj | Rest(wi, tj , k)−fk
i,j ≥ 0, tj ∈ Ti,k}.

15: ζi,k = argmaxtj∈T ′
i,k

(

Rest(wi, tj , k) − fk
i,j

)

.

16: The platform gives payments to workers according to Eq. (3).
17: Gk−1 updates to Gk.
18: Each worker wi updates X̂i(k), Ŷi(k), P̂i(k) and Q̂i(k) individually.
19: Workers make collaborative updates to X̂(k), Ŷ (k), P̂ (k) and Q̂(k).

In practical scenarios, the platform always recruits enough workers to guar-
antee that the completion degree of most tasks reaches ε. Workers reason-
ably believe that the platform pays all budgets bj for each task tj . di,k is
the length of execution duration of worker wi in cycle k. For tasks in cat-
egory cj , P̂i,cj (k)/Q̂i,cj (k) is the latest observation of the average length of
their execution duration. ski,j is the number of workers who have selected task
tj before time ak

i , and ũk
i,j is the minimum needed number of workers for

task tj to be fully completed based on the estimated execution difficulty ẽki,j
(ũk

i,j = min{z | 1/(1.5 + ẽki,j)
z ≤ 1 − ε, z ∈ Z}). We take the larger of the two as

the estimated number of workers who select task tj in cycle k to deal with the
scenario registered workers arrive online.

3.3 Detailed Algorithm

According to the above discussion, we propose the Payment-Estimation-Based
Solution (PEBS) for task selection of workers as shown in Algorithm 1.

At the beginning of each cycle, the platform publishes a task set Tk (Line
2). Workers who arrive at the system online make decisions on task selection
according to the arrival order (Lines 3–14). Based on the historical observa-
tions, workers generate probability models of execution difficulty and estimate
the execution difficulty for each task by sampling (Lines 7–8). If there are reach-
able tasks that worker wi has no knowledge of the execution difficulty of their
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categories, worker wi randomly selects one of them (Line 12). Else, worker wi

selects the reachable task with the maximum and non-negative estimated profit
(Lines 14–15). The social network updates at the end of each cycle (Line 17).
Based on the social network, workers learn from the obtained payment and then
get accurate observations on the information of multiple task categories (Lines
18–19).

4 Performance Evaluation

4.1 Settings, Metrics and Baselines

The performance of our proposed mechanism in maximizing the individual profit
of workers is evaluated in a scenario where the number of cycles is 400. In
each cycle, the platform publishes 100 tasks, and the number of online workers
participating in task selection is 600. The reachable region of each worker is large
enough to cover all tasks. The platform pays all the budgets for tasks whose
completion degree exceeds ε = 0.9. The original social network G0 is generated
randomly. We set λk = 1/|W|, which is a constant and prevents the frequent
adjusting of the collaborative update caused by the dynamic social network.

The ratio of workers who have non-negative profit in all registered workers
(hereafter referred to as the target ratio) and the profit of each worker are the key
metrics to evaluate the performance of task selection algorithms. Since advanced
strategies designed for specific scenarios are not suitable for solving our problem,
we introduce the baselines that adopt random and greedy ideas. The random
strategy allows workers to select tasks randomly. The greedy strategy allows task
selection based on the estimated payment (ζi,k = argmaxtj∈Ti,k

(bj ·1/(1+ski,j))).
Since worker wi has no information about task execution without the social
network, the payment estimation here can only utilize the number of workers
who have selected each task tj ∈ Tk till time ak

i in cycle k.

4.2 Simulation Results

We first illustrate the simulation results regarding the target ratio. In Fig. 1, the
target ratio based on random and greedy fluctuates mainly in (0.65, 0.70) and
(0.60, 0.65), respectively. It fails to optimize because these two strategies without
the social network cannot help workers learn from the payment. The target
ratio based on PEBS rises rapidly and mainly fluctuates slightly in (0.9, 1.0),
reflecting its effectiveness in payment estimation and task selection. To verify
the effectiveness of the social network, we introduce a simplified version of PEBS
without social-network-based communication, named PEBS-NS. We assume that
the platform tells each worker the arrival time of all workers and the execution
information of tasks they select in each cycle. The target ratio rises after about
100 cycles under such an ideal and unrealistic assumption, demonstrating the
advantages and practical significance of adopting the social network in PEBS.
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Fig. 1. The target ratio under different task selection strategies.

Fig. 2. The profit of workers w10, w116, w393 and w540 in each cycle.

Let the indexes of workers reflect their arrival order in each cycle (i.e., w1 is
always the first one arriving at the system, w2 is the second, etc.). We first select
four workers to investigate the profit of workers in each cycle and then study
the impact of the arrival order on the profit of workers. In Fig. 2, the random
strategy brings strong fluctuations to the profit of the four workers, while the
greedy and PEBS strategies stabilize it. It is reasonable because the latter two
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strategies consider the number of workers who have selected each task tj , which is
stable because of the fixed arrival order. In Fig. 2(d), only PEBS helps w540 avoid
negative profit effectively because it can assist in accurate payment estimation.
The standard deviations of their profit in all cycles are listed in Table 1, which
confirms the observation result in Fig. 2. Table 1 also shows the profit information
of all workers in all cycles under different strategies. The greedy strategy brings
stable but lowest profit. The random strategy brings workers more profit, but
workers take a risk because of the highest standard deviation. Compared with
them, PEBS can guarantee the highest profit and lower decision-making risk
owing to the relatively low standard deviation.

Table 1. Profit information under different strategies.

Strategy w10 w116 w393 w540 All workers

Standard deviation Standard deviation Mean

Random 34.25 31.22 23.93 15.53 22.75 14.61

Greedy 1.45 1.13 1.04 0.69 1.13 10.12

PEBS 10.38 12.80 11.02 0.49 10.10 20.21

We then discuss the cases where the random strategy leads to abnormally
high profits, marked in Fig. 2. Their relevant information is shown in Table 2.
The tasks related to these cases all have considerable budgets. At the same time,
the completion degree of these tasks and the contribution of the workers are both
high. The emergence of abnormally high profit highly depends on task budgets
and the decisions of other workers, which cannot be controlled and replicated.

Table 2. Information on marked cases.

Case Task information Worker situation

Index Budget Completion degree Contribution Profit

A 61 498 90.77% 61.14% 254.99

B 61 498 95.40% 64.58% 271.97

C 11 495 77.43% 90.97% 299.71

D 29 495 86.34% 88.42% 330.02

E 11 495 88.08% 76.74% 284.22

Figure 3 shows the average profit of each worker in all cycles. As the index of
workers increases, their duration for executing tasks becomes short (which always
leads to a lower contribution), and the average profit based on all strategies tends
to decline. The profit of later arriving workers who select tasks based on PEBS
may be less than those who select tasks based on other strategies. It is intuitive
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because budgets for tasks are limited. If workers arriving earlier get paid more,
the profit of other workers will be less accordingly. PEBS avoids workers getting
negative profits and helps the worker community achieve a higher overall profit.

Fig. 3. Average profit per worker in all cycles.

5 Conclusion

This paper proposes a mechanism to deal with the task selection problem from
the perspective of online workers in spatial crowdsourcing. Since we consider a
scenario where the information of different categories of tasks is unknown, we
model the problem as a Multi-Agent Multi-Armed Bandit problem and propose
the PEBS algorithm to deal with it. PEBS allows workers to learn from the
historical information of different categories of tasks through the social network.
It adopts the probability matching idea in Thompson Sampling to help estimate
the difficulty and the profit of executing different tasks in the current cycle.
Extensive simulations verify the significant performance and stability of PEBS
in guaranteeing the individual profit of workers.
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Abstract. Mobile crowdsensing (MCS) is a new paradigm for data col-
lection, data mining and intelligent decision-making using large-scale
mobile devices. The efficient task allocation method is the key to the high
performance of MCS. The traditional greedy algorithm or ant algorithm
assumes that workers and tasks are fixed, which is not suitable for the
situation where the location and quantity of workers and tasks change
dynamically. Moreover, the existing task allocation methods usually col-
lect the information of workers and tasks by the central server for decision-
making, which is easy to lead to leakage of workers’ privacy. In this paper,
we propose a task allocation method with privacy protection using deep
reinforcement learning (DRL). Firstly, the task allocation is modeled as
a dynamic programming problem of multi-objective optimization, which
aims to maximize the benefits of workers and platform. Secondly, we use
DRL for training and learning model parameters. Finally, the local differ-
ential privacy method is used to add random noise to the sensitive infor-
mation, and the central server trains the whole model to obtain the opti-
mal allocation strategy. The experimental results on the simulated data
set show that compared with the traditional methods and other DRL
based methods, our proposed method has significantly improved in dif-
ferent evaluation metrics, and can protect the privacy of workers.

Keywords: Mobile crowdsensing · Task allocation · Deep
reinforcement learning · Differential privacy

1 Introduction

MCS, first proposed by Ganti et al. [4], is a new method for sensing and sharing
data among users or communities, which has developed and penetrated into
various fields such as smart medical care and smart cities, requiring a large
number of data sets and users. As is shown in Fig. 1, the task allocation system
of MCS is mainly composed of three parts: platform, workers and tasks. Tasks
are assigned to workers by the platform based on a certain revenue calculation
mechanism, and then workers collect relevant perceptual data and upload it to
the platform to obtain the corresponding revenue. On the one hand, tasks should
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 191–201, 2022.
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be reasonably allocated to appropriate workers with the maximization of total
platform profit and the benefits of selected workers. On the other hand, workers
usually cannot avoid revealing their own private information when uploading
information. Based on the above two aspects, the reasonable task allocation
mechanism and the privacy protection of worker information are particularly
important. The traditional task allocation algorithms, such as greedy algorithm
[12] and ant algorithm [2], are only suitable for small-scale data sets in static
systems with fixed workers and tasks information. Therefore, the algorithms of
DRL are introduced into such dynamic systems by more and more researchers
to solve the corresponding dynamic programming problems.

DRL can interact with the environment through the agent’s choice of actions
and obtain the corresponding state and reward based on past experience [8]. In
dynamic MCS problems, DRL can usually obtain a better performance. Among
the methods of DRL, DQN [1] and A3C [9] can perform well but only in dis-
crete action spaces. DDPG [10] is an offline and deterministic method, which is
unsuitable for dynamic scenarios requiring real-time control solutions. PPO is a
model-free, strategy-based, and gradient-based method that performs extremely
well in continuous control problems [7]. In related works, the PPO framework
even works in composite state and action sets and has excellent performance and
faster convergence than other method of DRL. So we adopt the PPO framework
in this paper.

Fig. 1. Diagram of MCS task assignment system

The task allocation problem in dynamic environment is modeled as an opti-
mization problem of dynamic programming based on discrete data set, which
we use the methods of DRL and differential privacy to solve. Specifically, at
the beginning of each iteration, the allocation strategies and benefits of plat-
form, worker benefits, existing task information and worker information in the
previous iteration are observed. According to the observation results, the tasks
assigned by workers and the order of tasks will be determined according to DRL.
In this process, differential privacy [3] is used to blur the privacy information
related to workers. Our objective is to maximize the total income of the platform
and ensure the maximum income of workers. It is defined as the joint constraint
between workers’ income and the total income of the platform. The main con-
tributions of this paper are summarized as follows:
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• We model the task assignment problem in the MCS dynamic scene as a multi-
objective optimization problem and prove it to be a NP-hard problem. The
dynamic system of changing worker-task status information and the need for
privacy protection of worker-platform data interaction is considered in this
problem.

• We present a method based on DRL and local differential privacy to solve
this optimization problem. Our method based on DRL is more suitable to
solve such dynamic and non-deterministic MCS problems.

• Through experiments, The results show that our model has stable perfor-
mance and good convergence. In addition, ablation experiments are carried
out to verify the effectiveness of adding privacy protection methods.

Fig. 2. Illustration of the system model.

2 Problem Description

We assume that there are n workers W = {w1, w2, ..., wn} carrying smart mobile
devices in the system, and m tasks V = {v1, v2, ..., vm}. The i-th worker is
defined by wi = {Pwi

, Vwi
, xi, yi}, and the j-th task is represented by vj =

{tvj
, rvj

, xj , yj , rpj
}, where (x, y) represents the location coordinates. Pwi

is the
cost set of all tasks of the worker i. Vwi

is the task queue that the worker is
currently assigned. tvj represents the time required for the task j. rvj

represents
the reward of the task j, and rpj

represents the profit that the platform can
obtain from this task. The system is a dynamic environment, that is, the status
and location information of workers and tasks changes continuously. Workers
will become “idle” after completing existing tasks. At this time, it is necessary
to put the “idle” workers in the queue of “to-be-assigned” workers. And the
tasks that each worker can accept are also limited, which needs to be related to
the worker’s compensation and the constraints of task on the worker’s revenue.

Considering the difference in workers’ costs, the task cost should be different
for each worker. Each worker calculates the task cost according to the distance
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and the amount of unfinished tasks. Here, the cost of the worker i for the task
j is defined as follows:

P j
wi

= ζ

√
(xi − xj)

2 − (yi − yj)
2 + αθi (1)

θi =
∑

vj∈Vwi

tvj
(2)

where θi represents the total time required for the worker to complete the task.
ζ represents the Euclidean distance weight from the worker i to the j-th task
point, and α is the time weight. Equation (1) reflects the difference in the task
cost of each worker, while the compensation of each task for all workers is set to
a certain constant.

Therefore, the revenue of worker i and the total profit of the platform can
be defined as:

ri =
∑

vj∈Vwi

(
rvj

− P j
wi

)
(3)

Rp =
∑

vj∈Vout

(
rpj

− rvj

)
(4)

where ri represents the revenue of the i-th worker, and Rp represents the total
profit of the platform at this time. Vout represents the set of all assigned tasks at
this time. rpj

, as described above, is the profit obtained by the platform when
the task is completed.

Then, the dynamic policy optimization problem based on discrete datasets
is defined as:

max . λ1Rp + λ2ri (5)

s.t. 0 < Pmin ≤ P j
wi

,∀wi ∈ W (6)

where the objective Eq. (5) represents maximizing the total profit of the platform
while also maximizing the revenue of the current worker i. λ1 is the weight of
profit of platform, while λ2 is the weight of revenue of worker. The constraint in
Eq. (6) represents that the reward must be guaranteed not to be less than the
minimum value Pmin when worker i completes the task j.

From Eqs. (3) and (4), it can be seen that definition of the platform’s total
profit is negatively correlated with the workers’ revenue. The use of the joint
optimization method balances the interests of both parties by adjusting the
weights and realizes the Nash equilibrium.

The above problem definition proves that the task assignment problem of
MCS is a NP-hard problem. First, assume a special case where there is only one
worker and the set of tasks does not change. Then, this worker has a maximum
travel distance and the revenue paid to the worker is set to zero. Finally, the
total profit of the platform is equal to the worker’s reward for completing the
task, which also maps to the directional motion problem. So it can be inferred
that the problem in this article is also a NP-hard problem, while the directional
motion problem has been proven to be a NP-hard problem [5].
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3 System Model and Algorithm

3.1 Overview of System Model

Our proposed model is shown in Fig. 2. First, each worker’s smart mobile device
transmits the relevant information to the central server after differential pri-
vacy processing. Then, the central server obtains the global status information
of workers and tasks at that moment, formulates the corresponding allocation
strategy through the DRL-based dynamic strategy optimization algorithm, and
finally transmits it to each worker’s smart mobile device. During the interac-
tion process, the PPO algorithm is used in the central server for training and
decision-making. In each round of training, the dynamics and differences of the
system are considered, that is, different workers for the same task, will have
different cost due to the distance and the amount of unfinished tasks. In each
iteration, there may be “idle” worker that has completed the current task. The
above problems are considered in the model design, and the global information
is dynamically updated in each round of iterations. We use a local differential
privacy algorithm, which adds Laplace noise to the process of information inter-
action between workers and platforms to protect privacy. Finally the globally
optimal strategy is obtained.

Fig. 3. Block diagram of A-C network.

3.2 PPO

Our model adopts PPO algorithm, which is derived from the idea of A-C net-
work. As shown in Fig. 3, it consists of an actor network and a critic network.
At each iteration, actor network selects an action according to a certain action
decision probability distribution, and interacts with the environment. Then we
can obtain the state and corresponding reward. After that, critic network cal-
culates the corresponding reward function (sometimes TD-error, the weight of
evaluation action strategy) and passes it to the actor network and the environ-
ment. Then actor network adjusts the decision probability distribution of the
action based on this and selects the next action. The optimal strategy is finally
obtained when the iteration ends.

For the definition of the reward function of PPO, double constraints are
adopted. The action space, state space and reward are defined as follows:

Action Space: The action set contains the matching information between work-
ers and tasks, which is represented in the form of a two-dimensional vector table.
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A record of task assignment and task completion sequence will be stored in each
worker device. ci

k is task set assigned to the i-th worker in the k-th iteration. Cen-
tral server makes the task allocation in each iteration according to the global infor-
mation obtained from the previous round of interaction. Its definition is as follows:

ak = [c1k, ..., ci
k, ..., cn

k ] (7)

State Space: The related information of workers and tasks is recorded. It can be
represented by the set of available workers Wk and the set of available tasks Vk.
At the beginning of each iteration, each worker calculates the cost and benefit
according to Eqs. (1) and (3), and interacts with the central server to update
the information. The state set is defined as:

sk = {Wk, Vk} (8)

Reward: For the definition of reward, we can refer to the joint constraint of (5),
which is a Nash equilibrium problem of non-cooperative competition between
platform and workers. Here the reward constraint is defined as:

rk = λ1Rp + λ2

∑
wi∈Wout

⋃
Wk

rwi
(9)

where Wout is the set of workers assigned, and Wk represents the set of workers
available. Equation (9) means the balance between platform profit and workers
revenue.

During the training of our model, critic network calculates its value and
advantage function Ak based on the reward rk and set of action and state (ak, sk)
for the evaluation action strategy, and then adjusts the policy π of action selec-
tion in the next actor network, which is defined as follows:

Valueπ (sk) =
∑
a∈A

π (ak, sk) [rk + γ
∑
sk∈S

Psksk+1 Value π (sk+1)] (10)

Ak =
∞∑

i=0

(γλ)i∂k+i (11)

Loss = Êk

[
(Ak + Valueπ (sk) − Value πold (sk))2

]
(12)

where the value function for the k-th theory iteration is Valuek, and γ is the
discount rate, and Psksk+1 is the state transition probability. Ak is the advantage
function, and λ is a function weight, and ∂k = rk +γValueπ (sk+1)−Valueπ (sk).
The final loss function of our model can be expressed as Loss.

3.3 Task Allocation Algorithm Based on PPO

PPO is used to train and learn a task assignment policy, which strikes a balance
between ease of implementation, sample complexity, and ease of tuning, trying
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to compute updates to minimize the objective function while ensuring relatively
small deviations from previous policies. Therefore, in this paper, the policy opti-
mization process of the DRL agent adopts the PPO algorithm. It includes a
historical strategy buffer D, strategy π, value function V alue(a, s), weight of
actor network θa, weight of critic network θc and advantage function A(a, s).
The pseudo code of the model is shown in Algorithm 1.

First, the PPO is randomly initialized with θa and θc. The θa is used as
the initial policy parameter (line 1). Then the iteration start (line 2). After
obtaining the information of the current set of available workers Wk and the
set of available tasks Vk in the environment, where the location information of
the workers has been fuzzed, we get the state of the k-th iteration (lines 3–
8). Then, based on the state sk, actor network selects actions according to the
current strategy (line 9). PPO inputs the action set ak at this time into the
environment to calculate the corresponding reward rk and the state set sk+1 in
the next round (line 10). Ak and V aluek are calculated in the critic network,
and the set {sk+1, sk, ak, rk, Ak, V aluek} is stored in D (lines 11–12). When the
history policy buffer D is full, the partial derivatives are calculated. Then the
policy parameter θa is updated based on δθa according to the gradient ascent
policy (lines 13–15). After learning information from D, the new parameters of
the actor network θa are assigned to the policy for the next sampling. At the
same time, the historical strategy buffer is emptied (line 16).

Algorithm 1. Task Allocation Algorithm Based On PPO
Data: historical strategy buffer D, strategy π, weights of actor-critic network θa, θc

1: Randomly initialize the actor-critic network with weights θa and θc, θold
a ← θa

2: for episode k = 1, 2, ... , K do
3: for n = 1, 2, ... , N do
4: Wn

k = wn

5: V n
k = vn

6: end for
7: Get the set of available workers Wk =

{
W 1

k , . . . , Wn
k

}
and the set of available

tasks Vk =
{
V 1
k , . . . , V n

k

}

8: Get the current state set sk = {Wk, Vk}
9: Get the current action ak according to the policy π

(
ak | sk, θold

a

)

10: Get the reward rk and the state in the next iteration sk+1

11: Calculate the Ak and V aluek in critic network
12: Store the set sk+1, sk, ak, rk, Ak, V aluek into D
13: if t%|D| == 0 then

14: Δθa = 1
|D|

∑|D|
j=1{[rj + γ Value(sj+1; θv) − Value(sj ; θv)]

2, Ak}
15: Update the θa using Δθa according to the Gradient Up Strategy
16: θold

a ← θa, Clear D
17: end if
18: end for
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4 Experiments and Results

4.1 Experimental Settings

In this paper, Gowalla and TaskMe datasets are selected to conduct simulation
experiments, from which the location and time information of some data are
captured. We add randomly generated data in a certain range as other informa-
tion, such as task reward. Finally, a set of simulation data with 2000 tasks and
1000 workers is generated. The rewards for each task are set to a range of 8 to
20 and randomly generated according to the normal distribution of N ∼ (12, 4),
while the time for each task is set to a range of 10 to 60. Depending on the
requirements of the experiment, part of data from this dataset is selected for
simulation experiments in a 200 × 200 square sensing region.

We first set up a comparison experiment of loss under different number of
workers and tasks. In a 200 × 200 square sensing area space, 80 tasks and 5 work-
ers, 300 tasks and 15 workers, 800 tasks and 30 workers are tested respectively.
Then we compare our method with the existing traditional methods, greedy
algorithm [12] and the ant colony algorithm (ACO) [6], and the DDQN-based
algorithm [11] in terms of convergence speed, maximum benefit and task cover-
age. The number of ants, the number of iterations and the probability of random
selection in ACO are set to 10, 30000 and 0.1 respectively. For the DDQN-based
algorithm, the replay memory capacity is set to 10000 times and the number of
iterations is 30000 times. The probability of random selection is set to start at 0.9
and gradually decay to 0.1. The effectiveness of privacy protection is verified by
a ablation experiment. We compares PPO-based algorithm with the algorithm
of DDQN and PPO-based algorithm with differential privacy. The experimental
settings are the same as the comparison experiments.

(a) 80 tasks & 5 workers (b) 300 tasks & 15 workers (c) 800 tasks & 30 workers

Fig. 4. The loss function for different states of tasks and workers.

Fig. 5. Average system cost. Fig. 6. Maximum profit.
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4.2 Loss of Model

Simulation experiments with different numbers of workers and tasks are carried
out. In Fig. 4(a), 80 tasks and 5 workers are set. At this time, the number of
iteration is within 100 times, and convergence is reached at about the 70th time.
Figure 4(b) are set with 300 tasks and 15 workers, and the model converges when
the number of iterations is about 120. In Fig. 4(c), 800 tasks and 30 workers are
set, and the model converges at 280 iterations. As the number of workers and
tasks increases, the convergence rate slows down.

Fig. 7. Average costs. Fig. 8. Total costs. Fig. 9. Average revenue
of workers.

4.3 Comparative Experiment

The concept of task coverage is first introduced here: when a task is assigned and
completed within its acceptable time range, it can be called the task is covered,
so task coverage can be defined as the number of tasks assigned and The ratio
of the total number of tasks.

As shown in Table 1, in terms of the maximum profit and task coverage of
the platform, the two DRL algorithms based on DDQN and PPO are much
higher than traditional methods. And the algorithm based on PPO is better
than the algorithm based on DDQN. In Fig. 5, we can see the convergence of
the two DRL algorithms based on DDQN and PPO in the average cost of the
system. The results show that although the algorithm based on DDQN can
achieve faster convergence than our algorithm, our algorithm can achieve smaller
average system overhead with 3.4. Similarly, Fig. 6 shows the platform profit
of the four algorithms. The greedy algorithm and ACO do not need multiple
iterations because they are static algorithms, but their platform benefits are
far from the DRL-based algorithm. The DDQN-based algorithm also suffers
from faster convergence, but the PPO-based algorithm can ultimately achieve
the maximum profit with 518. Figures 7, 8, 9 show the comparison of the four
algorithms in terms of average cost, total costs, and average revenue of workers.
The results show that the PPO-based algorithm in this paper is superior to other
algorithms, while the greedy algorithm performs the worst.
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Table 1. Comparison of maximum profit and coverage ratio of four algorithms.

Algorithm Greedy ACO DDQN PPO

Max profit 298 352 502 512

Coverage ratio 0.4 0.52 0.72 0.76

4.4 Ablation Experiment

As shown in Fig. 10, an ablation experiment for the effectiveness of differen-
tial privacy is performed. We compare PPO-based algorithm with DDQN-based
algorithm and PPO-based algorithm with differential privacy. The results show
that the performance of removing differential privacy can be better. The maxi-
mum profit of PPO-based algorithm with differential privacy is lower than other
two algorithm due to the blurred information which affects the computational
performance of our model. But the method of adding differential privacy can
guarantee the privacy protection of workers’ information without sacrificing too
much performance.

Fig. 10. Ablation experiment.

5 Conclusion

In this paper, considering the rationality of task assignment mechanism and
the privacy protection of worker information in the dynamic system where the
location and status information of workers and tasks are constantly changing,
the perceptual task assignment problem of MCS is modeled as an optimization
problem for dynamic planning based on discrete datasets. The related algorithms
based on differential privacy and DRL are used to solve this problem. In each
iteration, we use joint constraints and try to maximize the benefits of the plat-
form while increasing the cumulative benefits of workers as much as possible, so
as to continuously optimize the distribution strategy in such a dynamic system.
In addition, a differentiated privacy method has been added to the interaction
between workers and platform to protect the workers’ privacy. The experimental
results also demonstrate the validity of this method.
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Abstract. With the ubiquity of electronic communication devices, detecting the
information sources is a critical task in reducing the damage caused by mali-
cious sources. However, in the contemporary research of sources identifications
and information propagation identifications are calculated through social network
topology structure or mathematics inference. In this paper, we borrow the train-
ing tool of neural network and propose a deep convolutional neural network to
identify the sources in social networks. Initially, we utilize the 20% of data set to
play the role of training set and substitute into the proposed model. Subsequently,
we employ a bi-graph to classify the trained sources into truth or rumor vertexes.
Finally, we utilize our proposed model to test 80% of data set as evaluation results
of our identification mechanism. From the experimental results, our developed
method can identify more than 85% of information sources and the classification
accuracy can reach 80% in both test and train process. The obtained results fur-
ther indicate that our model can effectively and accurately identify the information
sources with reasonable computation costs.

Keywords: Social network · Sources identification · Deep convolutional neural
network · Bi-graph

1 Introduction

At present, information spreading in social network have been a common phenomenon
to our world. However, unauthorized or malicious people may spread some fake infor-
mation to cause uncountable damage such as “Obama was injured in two explosions of
White House” causes 10 billion U.S. dollars losses within a few hours. This indicates
that an insignificant rumor can lead great losses to our individuals and society [1]. With
the advance of wireless communications and mobile devices, multiple users can share
any information or personal ideals by assessing online social networks [2].

For the purpose of preventing fake information release and spread in social networks,
it is significantly essential to identify information sources in complex social networks.
However, mostly existing research is concentrated on relationships between individuals,
which can identify the information sources by tracing the root of obtained spanning tree
based on these relationships [3–6]. Subsequently, researchers utilize vertex centrality to
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detect information sources due to sources tend to have higher degrees in social networks
[7]. Nevertheless, all of these methods are based on the graph structure properties or
graph topology mathematical statistics principles [8–12]. With the expansion of social
networks, the cost of computation is extremely increased for traditional identification
techniques.

To address this problem, we propose a novel information identification method by
utilizing a deep convolutional neural network. We will focus on following challenges.
Initially, to transfer a high-level network graph data into a low-level vectors structure,
we utilize graph embedding [13] to extract features. To identify the information sources
in complex communication networks, we develop a deep neural network to train the test
embedding data. Finally, to determine accurately the sources from trained suspicious
vertexes, we utilize credibility factors of each suspicious vertexes and evaluate the final
identification results [14].

Our main contributions can be summarized as following illustrations:

• To best of our knowledge, we are the first to develop a deep neural network for address-
ing the information sources identificationwith reasonable computation costs. Compar-
ing with existing identification models [15–17], our proposed mechanism can achieve
much more higher identification accuracy. Extensively experimental results indicate
that our designed mechanism can obtain the sources with reasonable computation
costs.

• We have considered graph embedding to dispose graph structure dataset, which can
be used in subsequent neural network that requires Euclidean space format.Moreover,
we develop extractor to obtain the social network features including graph properties
and relationship among each vertexes.

• We propose to utilize a bi-graph to distinguish the high credibility vertexes and
opposite low credibility vertexes in social networks, which is used to identify the
information sources after deep neural network training process.

2 Related Works

In this section, we illustrate recently research outcomes and methods that is related to
address the information sources identification in social networks.

As we discussed in Sect. 1, identification methods have been proposed to detect
information sources in term of time-stable and time-varying social networks.Most recent
research is concentrated on time-varying and utilize inference strategy to detect informa-
tion sources. Based on this background, a joint inference is applied to identify sources
[18], which aims to calculated the credibility for each users in social network and query
each users to obtain the final sources. Apparently, querying for each vertexes will cost
enormous computation resources and the accuracy is likely interference by inference
process.

Currently, researchers concentrate on time-varying social network with time-varying
topology structures and users,which ismore satisfies the real social networks. In practice,
a identification mechanism for time-varying social network is designed [19], which is
utilizing a series of time-integrating windows to transfer the dynamic network topology
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structure into a stable format and a maximum likelihood function is applied to enhance
the accuracy of sources identification.

To address these issues, we develop a deep neural convolutional network to train
and test the information sources in social networks and further demonstrate the model
evaluation and analysis association of embedding graph in designed neural network.

3 Notations and Preliminaries

3.1 Notations

Wedefine the network asG= {V,A,P},whereV represents the users set in social network,
A represents the adjacency matrix and P is the attributes matrix of social network. Sub-
sequently, we utilize the symbol u to indicate a single user in social network where u ∈ V
and the single vertex u embedding result represents Eu and the whole network embed-
ding is represented as EG. We summarize the primary used notations and corresponding
description as following Table 1 demonstration.

Table 1. Summary of primary notations used in this paper.

Notation Description

G = {V,A,P} Nodes set V, adjacency matrix A and attributes matrix P

f(u,v) Extracted features among vertex u and v

δ Credibility of vertexes

T Time slot of time-varying network

3.2 Deep Convolutional Neural Network

When applying a deep convolutional neural network, input layer begins to obtain the
features of data. After detail functional layers, the classification results is produced by
developed layers. In this paper, we primary use convolutional layer that is consisted
by convolutional kernels to identify input-data features and produce the convolutional
calculation to subsequent layer, pooling layer scales down the features of upper layer,
fully connected layer is transferring a sequence array as the output and final softmax
layer will output 10 probability distribution of classification results.

3.3 Information Sources Identification

Information Sources Identification in Social Network. In traditional social networks,
each user is simplified as a vertex and the relationship is represented by an edge in
simulated network. Information can spread among these edges in simulated network
and sources identification is concentrated to search the first vertex of telling the message
to others among these spread routes.
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4 System Model

The whole system framework is depicted in Table 1. The designed method is consisted
by three components including graph embedding, construction of deep convolutional
neural network and bi-graph to identify spreading sources. We adopt graph embedding
tool to transfer network graph state into low dimensional vectors, which is appropriated
as training data in neural network system. The deep convolitional neural network is the
core of whole designed model, which utilized the embedding graph data to classify the
suspicious information sources through its spreading paths and evaluate the credibility
of vertexes by graph properties. A bi-graph is applied in the final of designed model to
classify the different credibility vertexes and identify the information spreading sources
from the classification results (Fig. 1).

Fig. 1. The system framework of proposed model.

4.1 Graph Embedding

After transferring the social network into time-varying graphs, the DCNN model is
hard to dispose the networks including nodes and edges. Therefore, graph embedding is
applied to solve this challenge. In this paper, we utilized Embedding Projector service,
which is provided by Google to visually generate the embedding properties.

4.2 Deep Conbolutional Neural Network

General structure is achieved by multiple T DCNNs with same inner kernels and layers
corresponding T time slots. For simplification, we demonstrate one inner DCNN struc-
ture as the following Table 1 demonstration. Convolutional contain the features of each
vertex represent as f(u) and calculate convolution process for each embedding vectors,
which is represented by symbol f(u,v). The pooling layer and rectified linear layer is
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utilized to eliminate the redundancy edges in information spreading process. Two full
connected layers investigate all possible sources after information spreading process.
The whole iterations is represented in Eq. 1.

Cl+1
v = Ul+1(Cv,

∑
u∈neigh[v]Ml+1(O

f (v)
l ,Pf (u,v)

l ,Rf (u,v)
l ,F512

l ,F8
l )) (1)

where the Cl+1
v is the DNCC l + 1 iteration result for vertex v,Ul+1 is the DNCC

operation procedure. The Cv is current embedding vector state and Ml+1 function is
the corresponding layers in proposed structure. Therefore, the credibility of vertex δij
toward information Ij can be expressed as:

δij = δ1i + δ−1
i

2
(2)

where δ1i = P(Ij=1|vi = 1), which means the probability that user v believes that infor-
mation Ij is a real information and information Ij itself is a real information. Otherwise,
δ1i = P(Ij=0|vi = 0), representing the probability that user v believes that information Ij
is fake information and information Ij is really fake and unreliable.

Initially, the information randomly contains a certain reliable value represent as
Ij ∈ (0, 1), where 1 means an extreme true information. The covered credibility will
replace the previous values and the following equation describes coverage procedure
(Fig. 2).
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Fig. 2. Deep convolutional neural network structure.
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4.3 Sources Identification

Algorithm 1: Information Sources Identification
Input: Suspicious vertexes set S, vertex credibility δi
Output: Information sources set R
1  for each information j do
2  Dividing suspicious vertexes into two sub-networks(Bi-graph) .
3  for each sub-network do
4  Searching previous vertex in spreading path. Construct filter eliminates  sequences.
5  if previous vertex filter = do    
6  Current vertex R
7  Return Information sources set R

Our solution is to establish two sub-network, one contains high credibility users
and another contains low credibility users. Subsequently, the appearance sequence of
suspicious users and the spreading path are two critical factors to determine sources.
Algorithm 1 demonstrates the detail procedure of identifying the information sources.

5 Experiments

5.1 Datasets

We utilize gemsec-Deezer to create a simulation situation and train the DCNN, and
Emergent works as the testing situation for proposed model. The detail description
about these datasets is demonstrating as follows:

Gemsec-Deezer: The dataset is consisted by 143844 vertexes and 846915 edges from
European countries, which is open access and available in SNAP website. We randomly
generate 200 real information and 200 fake information to spread in this situation by
utilizing the proposed mechanism to identify the sources.

Emergent: Dataset is concluded by a digital journalism process and obtains totally
102 true information spreading among the web and 78 fake information.

5.2 Experiment Setup

We simulate our propose model in above described datasets with same machine. The
evaluation contains accuracy, distribution and cost aspects. The Identification accuracy is
calculated the percentage of detected sources and original information spreading sources.
The distribution of credibility is obtained the evaluation 10-levels of estimated users
credibility and real situation credibility in datasets. The computation cost measures the
performance of propose model.

Additionally, we compare our proposed mechanism with existing information
sources identification algorithms, which is introducing as follows:
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• Source-CR detects sources by inferring and querying each vertex.
• Rumor Source Identification is an algorithm to search the spreading sources in time-
varying topology structure [19].

• MVNA algorithm is a method that infers the information sources by users properties
in social network.

6 Model Evaluations

6.1 Performance Evaluation

Wesimulate the information spreading inmentioneddatasets andutilize the identification
accuracy to evaluate proposed model, which is plotted in Table 1. We can significantly
observe that the detection accuracy is continuously increasing with the expansion of
information pieces. The available extracted features appears more frequently than less
pieces condition that means the DCNN can obtain higher accuracy for identifying the
suspicious sources. When the piece of information reaches around 600, the trained
accuracy is closely reached at approximately 80%, which is an acceptable accuracy for
sources identification (Fig. 3).

(a) Gemsec-Deezer dataset                                 (b) Emergent dataset

Fig. 3. Model performance of identification accuracy and comparison results in (a)Gemsec-
Deezer and (b)Emergent dataset respectively.

Figure 1 respectively demonstrates the credibility evaluation distribution of proposed
mechanism inmentioned dataset.We select ahead 100 vertexes in datasets to observe the
distribution situation and utilize 10-levels to measures the credibility of vertex, which
means δij ∈ [1, 10].Wecan significantly observe that our estimatedvalues iswellmatched
in original vertex credibility and amplify the real credibility, which is convenient for the
process of classification in bi-graph (Fig. 4, Table 2).

6.2 Cost Evaluation

We simulate the existing sources identification algorithms and ourmethod in same exper-
imental setting conditions. Table 1 demonstrates computation costs when identification
algorithm faces 100 information spreading.
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(a) Gemsec-Deezer dataset                                 (b) Emergent dataset

Fig. 4. Model performance of credibility distribution results in (a)Gemsec-Deezer and
(b)Emergent dataset respectively.

Table 2. Computation cost comparison result.

Dataset Gemsec-Deezer Emergent

RSI Computation cost (second) 102 87

MVNA Computation cost (second) 95 75

Source-CR Computation cost (second) 124 95

Ours Computation cost (second) 118 93

7 Conclusion and Future Improvements

In this article, we propose a novel information sources identification mechanism by
utilizing credibility to identify suspicious sources and determining the sources by con-
structing a bi-graph. We evaluate identification accuracy and assess our method with
reasonable cost. As for future improvement, we will search other substitute credibility
factors to decrease the computation speed and costs.
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Abstract. Inertial navigation adopts localization base stations to cor-
rect cumulative errors for mine rescue robots, while requirements of
explosion-proof safety hinder the application of regular powered base
stations in harsh coal mine environments. Therefore, we propose Mine-
Tag, a novel localization base station for self-positioning of coal mine
robots, which is built with low-cost and battery-free optical tags via a
differ-neighbor deployment strategy. The main innovation of the tag is
to modulate the light retro-reflection with a light absorption mechanism,
allowing the tag to reflect a specific light intensity without the need for a
power source. According to the topological relationship of tags, we pro-
pose a novel tag recognition algorithm based on trajectory matching to
determine which tag the robot is under. Finally, we implemented Mine-
Tag and evaluated its performance in a real coal mine. Experimental
results show that MineTag can achieve the tag recognition accuracy of
more than 95%, and the localization accuracy is 98% error of 2.6 m or
less.

Keywords: Underground self-positioning · Optical tag · Battery-free

1 Introduction

Complex environment in coal mine tends to cause disasters [1,2], accompanied by
power outages, equipment damage, gas leakage, and other dangerous situations.
From the year 2004 to 2021, there were 21753 coal mine disasters in China. In
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2021, a coal and gas outburst disaster occurred in Coal Mine in Heilongjiang
Province. In coal mine rescue, the time to determine the location of missing
miners accounted for about half of the total rescue time (about 16 h), while the
rescue robot played a great significant role. The self-positioning of the robot is
the basis for any rescue task [3–5].

For long and narrow coal mine environments, the inertial navigation method
commonly used for robot localization has a sizeable cumulative error [6,7].
Towards this end, utilizing the localization base station to correct the error is an
ideal method [8]. Despite a wide spectrum of wireless base station(such as WiFi
[9–11], Bluetooth [12–14], UWB [15–17] and Zigbee [18,19]). However, there has
been very limited adoption of coal mine. Due to the interference of the shaft wall,
wireless signal is severely attenuated [20]. Besides, the mine tunnel tends to fill
with gas after the mine accident, while the electromagnetic induction generated
by wireless communication increases the possibility of gas explosion. What is
more, wireless base station calls for continuous power supply from the power
infrastructure. On the one hand, it involves great potential safety hazards and
energy consumption. On the other hand, mine accidents are often accompanied
by power interruptions, resulting in base station being inoperable. Therefore,
building the battery-free base station without safety hazards is the key to realiz-
ing the localization of the coal mine rescue robot. RFID-based system [21,22] as
its battery-free is a promising method, which uses backscatter communication
technology. Nevertheless, this method also has serious signal attenuation and
high cost, hindering the large-scale application in coal mine.

To address this issue, this paper proposes a battery-free localization scheme
for coal mine robot, called MineTag. The core of MineTag is to employ the low-
cost and battery-free optical tags to build localization base station. Then the
mine robot obtains the location information of the location-marked tags for self-
positioning. Minetag mainly includes the following steps. First, to adapt to the
complex coal mine environment with high safety requirements, we designed a
low-cost and battery-free optical tag based on the idea of modulating the light
retroreflection with light absorption mechanism, which requires no power supply
and no electromagnetic interference. Second, to enable large-scale underground
applications with limited optical tags, we propose the differ-neighbor tag deploy-
ment strategy to build localization base station with reused optical tags. Finally,
considering that the light intensity is no longer the unique identifier of the tag
due to the tag reuse, we introduce the topological relationship to propose a novel
tag recognition algorithm based on trajectory matching. The main contributions
of this work are summarized as follows:

– To the best of our knowledge, this is the first study to investigate the use of
battery-free optical tags to enable mine rescue robot self-positioning, which
can be appropriate for harsh mine post-disaster environments.

– We design a novel low-cost and battery-free optical tag based on absorp-
tion mechanism. Furthermore, we propose the differ-neighbor tag deployment
strategy and trajectory matching-based tag recognition mechanism to enable
large-scale application in coal mine.
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– We implement MineTag and conduct plenty of real scene experiments and sim-
ulations to evaluate its performance extensively. Experimental result shows
that MineTag can achieve the tag recognition accuracy of more than 95%,
and the localization accuracy is 98% error of 2.6 m or less.

2 System Overview

In this section, we outline the basic design of MineTag. The overall system con-
sists of localization base station composed of optical tags, an LED transmitter
and a light sensor. As shown in Fig. 1, we designed a battery-free optical tag,
which consists of two parts, an absorption layer and a reflective layer, used
to modulate the light intensity and backscatter the incident light respectively.
Then, tags with sufficient light intensity resolution are selected as anchor tags
to build localization base station with the strategy of differ-neighbor and store
the location information of the tags. Furthermore, we designed a series of tag
recognition algorithms. First, search for candidate tags based on the current light
intensity received by the robot, and then combine the historical light intensity
information to extract the historical tag sequence. Finally, introduce the topo-
logical relationship of the tags to determine which tag the robot is under by
trajectory matching.

`

Search Candidate 
Locations
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Trajectory Matching
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Fig. 1. System overview

3 System Design

3.1 Optical Tag Design

The core of MineTag is the low-cost and battery-free optical tag, which adopts
a novel model based on light absorption mechanism to modulate the intensity
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of reflected light. Before describing the tag’s design, it is helpful to understand
the design principles of the tag.

Principle. An essential function of the tag is to modulate the optical signal.
In the previous work, in order to realize the modulation function, the tag needs
to be equipped with power supply and chip, resulting in high cost and high
power consumption of the system. For the sake of battery-free and chip-less,
this system envisages changing the optical properties of the tag itself. As light
passes through a medium, the particles in it will absorb part of the light and
weaken its intensity. It is worth noting that the light absorption capacity of the
medium is affected by its material properties, such as color and thickness. We
utilize this feature to modify the tag. The film structure is used to construct the
tag, then the light absorption capacity of the tag can be controlled by changing
the color and thickness of the film. In the following, we discuss the influence of
film thickness and color on light absorption performance.

(a) Influence of film thickness. We introduce a typical absorption model,
Lambert-Beer law, to illustrate the modulation ability of film thickness [23].
Lambert-Beer law describes the absorbance of the medium, the thickness of the
medium, and the concentration of the light-absorbing substance. The mathe-
matical expression is as follows:

L = log(I0/I) = a × b × c (1)

where L is the absorbance of the medium, I0 is the intensity of incident light, I
is the intensity of transmitted light. a is the wavelength-dependent absorptivity
coefficient, which is a qualitative value, b is the path length of the light through
the medium, c is the medium concentration. When the temperature and other
conditions remain constant, the absorbance of the medium L is proportional
to the medium concentration c and the path length of the light b, while the
path length is closely related to the thickness of the medium. When increase the
number of layers of the film, the concentration of the medium does not change,
with the thickness increasing, resulting in an increase in the absorbance of the
medium. Thus, L is positively correlated with the thickness of the film, which
allows the tag to modulate the light intensity with different film layers.

(b) Influence of film color. The modulation effect of film thickness on
light intensity is limited, so we need to find more modulation methods. Selective
absorption of light by medium is an ideal physical phenomenon. The electronic
structure of medium is different, and the wavelength of light that can be absorbed
is also different, which constitutes the basis of selective absorption of matter [24].

λ =
hc

δ
(2)

where λ is the wavelength of absorption, δ is the valence electron transition
energy difference, which is related to the electronic structure of matter, h is the
planck constant, c is the light speed. The light source is a polychromatic light
composed of light of different wavelengths. When the color of the film is changed,
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the resulting electronic structure change will lead to the film selectively absorbing
light of different wavelengths. It means films with different colors have different
light absorption capabilities, leading to differences in intensity modulation.

Tag Structure. As shown in Fig. 2, the tag is composed of two parts: an absorp-
tion layer and a reflective layer. The reflective layer on the bottom reflects lights
back to the light source, the reflected lights then pass through the absorption
layer with different layers and colors, which has different light absorption capa-
bilities, resulting in a specific light intensity for light passing through the tag.
Thus, the light intensity modulation is realized by changing the optical proper-
ties of the tag itself to battery-free.

Optical TagLocalization Base Station

Fig. 2. Tag structure

3.2 Build Localization Base Station

Anchor Tag Selection. It is noted that optical tags must have sufficient light
intensity resolution to avoid being difficult to distinguish each other. Therefore,
we set the threshold s to filter the tags. Only when the difference in light intensity
modulated by the two tags is greater than the s, the tags are selected as the
anchor tags to build localization base station.

Tag Deployment. Since there are only a limited number of anchor tags, posi-
tioning with a single tag cannot satisfy large-scale deployment in coal mine. To
solve this problem, we unite the tags to build the localization base station. As
shown in Fig. 3, divided the localization base station into p × q grids, suppose
there are n anchor tags, n < (p× q), each anchor tag will be used multiple times
to fill the base station. In order to avoid path crossing during subsequent tra-
jectory matching, we design a differ-neighbor deployment strategy, that is, the
tags of adjacent positions of a tag cannot be the same. If the grid position of a
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tag is G(Xi, Yj), the tags at its neighbor G(Xi+1, Yj), G(Xi−1, Yj), G(Xi, Yj+1)
and G(Xi, Yj−1) should be different from each other. Furthermore, store the tag
location information in each base station.

G(Xi+1,Y1)
Tag(i+1,1)

G(Xi,Y1)
Tag(i,1)

G(Xi-1,Y1)
Tag(i-1,1)

...

...

...

...

...

...

...

...

G(Xi,Yj)
Tag(i.j)

...

G(X1,Y1)
Tag(1,1)

... G(X1,Yj-1)
Tag(1,j-1)

G(X1,Yj)
Tag(1,j)

...

...

...

G(X1,Yj+1)
Tag(1,j+1)

Optical Tag Deployment

G(Xi-1,Yj)
Taga

G(Xi,Yj-1)
Tagb

G(Xi,Yj+1)
Tagd

G(Xi+1,Yj)
Tagc

Fig. 3. Optical tag deployment

3.3 Optical Tag Recognition

In this section, we introduce the algorithm for tag recognition. First, search for
candidate locations based on the current light intensity received by the robot,
and then combine the historical light intensity information to extract the histor-
ical tag sequence. Finally, introduce the topological relationship of the tags to
identify which tag the robot is under based on the trajectory matching.

Search Candidate Locations. The robot moves in the area where the local-
ization base station is laid, the receiver obtains the reflected light intensity mod-
ulated by the tag in real-time. First, determine which anchor tag the robot is
under according to the received light intensity. Assume that the mathematical
set of all anchor tags is as follows:

T = tag1, tag2, ..., tagm (3)

where m is the label number of the anchor tag. The fingerprint of anchor tags and
received light intensity has been established, The mathematical set of fingerprints
corresponding to T is shown as follows:

I = i1, i2, ..., im (4)

where im denotes the intensity of the reflected light modulated by the anchor
tag m. The reflected light intensity received at the current time is expressed
as icurrent. Since the LED voltage fluctuates slightly, when perform fingerprint
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database matching, calculate the Euclidean distance between the measured value
and the standard value. The anchor tag corresponding to the light intensity value
with the minimum Euclidean distance is selected for matching. The calculation
formula of the Euclidean distance D is shown as follows:

D = |icurrent − im| (5)

Due to the sufficient light intensity resolution of anchor tags, the correct
matching of tags can be achieved even if the light intensity fluctuation caused
by voltage fluctuation. Then, use the label number of the matched anchor tag
as the index to find its position. Due to the reuse of tags, multiple positions will
be found as candidate positions, one of which is the position of the robot.

Trajectory Matching. Extract the historical intensity information for a
while time and convert it into a historical tag sequence (tagcurrent, tag1−step,
tag2−step, ..., tagn−step), which can be regarded as the robot’s trajectory. We
propose a topological relationship-based trajectory matching algorithm to fur-
ther determine which tag the robot is under. The adjacent tags of the historical
tag sequence have an adjacent topology relationship in the localization base sta-
tion. Search the same path in the localization base station as the historical tag
sequence, the starting tag of the path is the tag where the robot is currently
under. The trajectory matching process is as follows: take a candidate position
as the starting point, take the topological relationship as the constraint, and
perform path matching with the localization base station based on the historical
tag sequence. If a certain tag is not matched, the path is lost. When there is
only one path left, perform another two steps matching on this path to verify
the correctness of the path. If the matching is still successful, the path is the
true motion trajectory of the robot.

4 Experiment and Evaluation

4.1 Experimental Results

Experimental Setup. We first evaluated the MineTag’s performance by
conducting small-scale experiments in real scenarios. As shown in Fig. 4, we
conducted preliminary tests in test scenarios and deployed in real coal mine
(100 m× 3 m× 3 m). The length of the mine tunnel is about 500 m. The tag size
is 40× 40 cm2. The reflective layer of the optical tag is made of the retroreflective
material commonly used in traffic signs, and the absorption layer is made of the
cheaper polyethylene material. The cost of each tag is about 50 cents and even
less when in mass production. A rescue robot was used as the carrier. A mod-
ulated LED light with 2500 Hz frequency and a PD were mounted on the top
of the robot and faced upward. Furthermore, the motion capture system tracks
the robot’s actual position information in real-time. This experiment uses an
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FPGA ADC

Resistor
PD

Modual driver

Test Scene

LED Transmitter

Optical Tag

Receiver

Coal Mine

Fig. 4. Experimental scene

off-line localization scheme. First, data are collected in coal mine environment,
and then these data are analyzed in the laboratory. We conducted a thousand
experiments under each experimental condition.
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Fig. 5. MineTag corrected localization performance
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Fig. 6. Inertial navigation localization performance

Localization Performance. In this section, we evaluate the localization per-
formance of the MineTag. The localization base station was deployed every
100 m, Each base station contains 4 × 7 grids formed by 6 anchor tags. Robot
advances in the mine tunnel, Fig. 5 and Fig. 6 show the cumulative distribu-
tions(CDFs) of the location error of inertial navigation and MineTag corrected,
respectively. It can be seen that the 80% of the location error of inertial naviga-
tion is 5.2 m and the maximum location error is up to 9.7 m, while the localization
accuracy of MineTag corrected is 98% error of 2.6 m or less.

4.2 Impact of Varying Factors

In MineTag, the localization accuracy largely depends on the recognition accu-
racy of the optical tag. Next, we evaluate the performance of MineTag in terms of
optical tag recognition accuracy under varying factors. We construct 40×40 cm2,
60 × 60 cm2, and 80 × 80 cm2 optical tags respectively, and conduct 500 experi-
ments on each experimental condition.

Impact of Ambient Light. We evaluat the tag recognition accuracy under
different intensities of ambient light. We change the ambient light intensity by
turning on and off different numbers of LED lights and choose seven grades of
illuminance: 1, 50, 250, 1250, 2500, 3750, and 5000, for which 1 lux means a
dark environment. Figure 7 shows that for the different intensities of ambient
light, the average recognition accuracy remains around 95%, with no noticeable
impact from the variation of ambient light. It is because that the transmitter is
modulated at a specific frequency, which makes it possible to extract the light
intensity of the unique frequency of the robot without being affected by the
ambient light.
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Impact of Speed. This section carries out experiments on the influence of
robot’s speed on recognition accuracy. We set the speed of the robot to 5 m/s,
10 m/s, 15 m/s, 20 m/s, 25 m/s, Fig. 8 shows the performance of average tag
recognition accuracy for the different conditions. The result shows that for all
the test speeds, the average recognition accuracy remains around 95%. It implies
that speed has no significant impact on accuracy.



MineTag 223

5 Conclusion

This paper proposes MineTag, a low-cost battery-free localization scheme for
coal mine rescue robot. Our main idea is to employ the low-cost and battery-
free optical tags to build localization base station. Then the mine robot obtains
the location information of the location-marked tags for self-positioning. Fur-
thermore, we propose the differ-neighbor tag deployment strategy and trajec-
tory matching-base tag recognition mechanism to enable large-scale application
in mine. We implemented MineTag in real coal mine and evaluated its perfor-
mance. Experimental results show that MineTag can achieve the tag recognition
accuracy of more than 95%, and the real-time localization accuracy is 98% error
of 2.6 m or less. The system has a high potential to provide a low-cost and
effective solution for precise positioning of rescue robot in coal mine.
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Abstract. With the increasing variety and number of ocean applica-
tions, the underwater transmission of heterogeneous ocean data has
become a hot spot in the research field of underwater acoustic sensor
networks (UASNs). However, due to lack of flexibility in time slot allo-
cation, the existing multiple access control (MAC) protocols for UASNs
cannot be effectively applied to the transmission of heterogeneous ocean
data. In order to solve the above problem in UASNs with heterogeneous
ocean data, we propose a time slot variable MAC protocol (TSV-MAC)
based on deep reinforcement learning. In TSV-MAC, the long short term
memory (LSTM) deep learning model is constructed and is trained by
considering the usage efficiency of time slots and the data collection con-
dition of underwater nodes. Then, the trained LSTM model is applied
to predict the generation and transmission of data from each underwater
node and a Q-learning model is adopted to allocate a suitable number
of time slots to underwater nodes. The TSV-MAC protocol periodically
updates the time slot allocation table, to enable UASNs to adapt the dif-
ferent data packets which are dynamically generated. Finally, the effec-
tiveness of the protocol is verified by extensive simulation results.

Keywords: Underwater acoustic sensor networks · Multiple access
control protocol · Deep reinforcement learning · Time slot

1 Introduction

With the development of social economy and progress of science and technology,
human activities are gradually expanding from land to sea. Underwater acoustic
sensor networks (UASNs) can collect underwater information data for various
marine applications continuously and conveniently, so they have received very
high attention. At present, the application scenarios of UASNs mainly include
underwater environmental and ecological monitoring, marine animal migration
monitoring, submarine pipeline monitoring [1,2]. In the complex and dynamic
underwater environment, the data transmission efficiency of UASNs is directly
related to the timeliness of data collection, which may largely affects the ability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 225–237, 2022.
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of ocean applications to match the real-time analysis and scheme adjustment of
monitoring data with the real-time underwater environment.

The multiple access control (MAC) protocol plays a very important role
in the data transmission efficiency of UASNs. Compared with frequency divi-
sion multiple access and code division multiple access protocols, time division
multiple access (TDMA)-based MAC protocols can effectively avoid the data
collision and the information interaction, so as to improve the network trans-
mission efficiency of UASNs [3]. However, it is challenging to design an efficient
TDMA-MAC protocol for UASNs because of slow propagation speed of under-
water sound, irregular data packet generation and dynamic marine communica-
tion environment. The traditional TDMA-MAC protocol [4,5], which allocate a
fixed number of time slots, faces the problems of low time slot utilization and
low throughput. To solve such problems, many dynamic TDMA-MAC protocols
have been proposed by subsequent researchers [6–13]. These TDMA-MAC proto-
cols dynamically allocate different numbers of time slots to different nodes based
on information such as their relative positions, propagation delays or scheduling
priorities. However, the existing dynamic TDMA-MAC protocols need a lot of
information interaction to ensure the performance of data transmission, which
costs a lot of node energy. Due to the limited energy and difficult charging of
underwater nodes, it is usually unacceptable for UASNs. In addition, these pro-
tocols do not consider the transmission issue of heterogeneous data of ocean
applications which is an aspect that can not be ignored in the future UASNs.

In order to further improve the transmission performance and reduce the
energy consumption of UASNs, some MAC protocols based on machine learning
have been proposed and showed excellent capabilities [14–16]. Nevertheless, there
is still a lack of in-depth research on the optimization of dynamic TDMA-MAC
protocols based on machine learning in the heterogeneous data transmission sce-
nario of UASNs. Therefore, in this paper, we consider the impact of the large
differences in data packet size generated by underwater nodes on time slot utiliza-
tion. Furthermore, we propose a time slot variable MAC protocol (TSV-MAC)
based on deep reinforcement learning for UASNs with heterogeneous ocean data.
In TSV-MAC, the deep reinforcement learning module is composed of a long
short term memory (LSTM)-deep Q-Learning (DQN) [17]. The LSTM model
is used to learn and predict the data generation and transmission situation of
each underwater node and apply the prediction results to the dynamic TDMA-
MAC protocol, so as to decrease the information interaction between nodes and
reduce the energy consumption of UASNs. For further improving the time slot
utilization and network throughput of UASNs, the DQN model is adopted to
allocate a suitable number of time slots to underwater nodes in advance and
periodically update the time slot allocation table to enable UASNs to adapt the
different data packets that are dynamically generated. To the best of our knowl-
edge, deep reinforcement learning techniques have not been applied to the MAC
protocol for dynamic allocation of the number of time slots in related works.
The main contributions of this paper are as follows:
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• We propose a time slot variable MAC protocol (TSV-MAC) based on LSTM-
DQN for UASNs with heterogeneous ocean data.

• We build a LSTM model to predict the data generation and transmission
of each underwater node in order to decrease the information interaction
between nodes and reduce the energy consumption of UASNs.

• We propose a time slot allocation strategy based on DQN to improve the
time slot utilization and network throughput of UASNs.

The remainder of this paper is organized as follows: Sect. 2 gives the network
model and problem description. In Sect. 3, the TSV-MAC protocol is described.
Section 4 performs the simulation results. The conclusions is given in Sect. 5.

2 Network Model and Problem Description

In this section, we mainly illustrate the system model, MAC protocol workflow
and problem description.

surface node

underwater node

Fig. 1. The UASN model

2.1 Network Model

An UASN model with centralized topology is assumed, which includes a surface
node SN and N underwater nodes n = {n1, n2, · · · , nN}, as shown in Fig. 1. The
SN can be charged by solar cells and mobile boats, so its energy is assumed to be
unlimited. The underwater nodes are randomly deployed in a three-dimensional
underwater area and anchored to the seabed using anchor chains. Each underwa-
ter node transmits data packets in a sequential cycle with time slots according to
the time slot allocation table broadcasted by the SN. Normally, each underwater
node is able to get in communication with the SN. Due to the current movement
and ocean noise, the link quality between SN and underwater nodes may change
dynamically.

According to the requirements of ocean applications, the packet size and
packet generation time of various type of information data, such as numeri-
cal information and image information collected by underwater nodes are also
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different. In the next time period, unknown changes may occur that cause differ-
ent underwater nodes to change the type of information sensed and generate data
packets of different sizes. In order for the SN to obtain the data packet situation
in each underwater node’s queue for LSTM-DQN learning training, each under-
water node needs to transmit a simple control packet to the SN before transmit-
ting the data packet. The control packet contains only information about the
data packet size Db

i,k and data packet generation time Dt
i,k in the node queue.

The notations related to the nodes involved in the network transmission process
are described as in Table 1.

Table 1. Description of main notations

Parameter Description Parameter Description

SN Surface node ni The ith underwater node

Di,k The kth data packet in the queue of ni Db
i,k The data packet size of Di,k

Dt
i,k The generation time of Di,k Di,s The number of time slots to ni

DK
i The number of data packets in ni DB

i The sum of data packet sizes in ni

DV
i The data packet generation rate of ni AB

w The total data packet size matrix

AS
w The number of allocated time slots matrix AK

w The number of data packets matrix

F The number of frames in window period AV
w The data generation rate matrix

2.2 MAC Protocol Workflow

In the UASN, a TDMA-MAC protocol frame in which the number of time slots
can be dynamically allocated is constructed. According to the usage of time slot
allocation tables, we describe the work of the TDMA-MAC protocol of UASN
by dividing it into three stages: A-network initial stage, B-time slot allocation
stage, C-allocation table update stage.

S
N ... S

N ... S
N

Fig. 2. The number of time slots used by each underwater node

A-network initial stage: It is the stage when UASN is just finished deploying
under the water and starts working. The SN will broadcast the initial time slot
allocation table to each ni. Each ni will be assigned a fixed number of time
slots in the initial stage’s time slot allocation table. Each ni transmits the data
packets from its own queue in its own time slot sequentially.

B-time slot allocation stage: After the UASN is stabilized in the initial stage,
the SN continuously collect control data packets from each ni within a certain
number of window periods. The window period can be set for different frame
sizes depending on the needs of the work. As in Fig. 2, the number of time slots
used by each ni will increase, decrease or remain unchanged.
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C-allocation table update stage: Depending on the needs of different works,
new changes may also occur in the data generated and uploaded at each ni. The
SN will start the B stage of generating the new time slot allocation table when
the update threshold is reached by observing the control data packets collected
during the window period.

After the network initial stage, both the SN and ni will keep working between
stages B and C until the end of the UASN work, as in Fig. 3. Finally, the dynamic
adjustment of the number of time slots is implemented.

Fig. 3. The dynamic adjustment of the number of time slots

2.3 Problem Description

In the above TDMA-MAC protocol frame, the utilization efficiency of time slots
of the UASN can be effectively improved by dynamically allocating the number
of time slots for different underwater nodes. However, the time slot allocation
strategy of TDMA-MAC protocol that cannot adapt to the packet generation
rule (packet size and packet generation time) will lead to the following problems,
which seriously reduce the network performance.

Case (1): An underwater node generates small data packets. The time used
by the underwater node to transmit data packets is much less than the time
allocated to it. This results in wastage and low utilization of time slots.

Case (2): An underwater node generates large data packets. The underwater
node needs to split the data packet and wait for its own time slot time sev-
eral times for transmission. Multiple transmissions generate multiple headers,
resulting in extra transmission energy consumption and high end-to-end delay.

Case (3): A large number of information interactions between underwater
nodes. The computational process of the protocol between neighboring nodes
is complex, resulting in high interference and extra energy consumption.

Case (4): A large number of information interactions between underwater nodes
and SN. The large underwater acoustic signal transmission delay and long node
waiting time during the interaction increase the data packet end-to-end delay.
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The design of the TDMA-MAC protocol in the UASN firstly needs to consider
both problems in Case (1) and (2), so that nodes can fully utilize each time slot
and improve throughput. It is also necessary to consider problems in Case (3)
and (4), where control the extra energy consumption and reduce the end-to-
end delay. In order to solve these problems, we design the time slot variable
MAC protocol based on LSTM-DQN to flexibly allocate time slot table for each
underwater node. The details of the strategy will be described in Sect. 3.

3 TSV-MAC Protocol

In our TSV-MAC protocol, the SN firstly stores the collected queue information
of each ni in the respective node information matrix after processing. Then, the
SN predicts the generation and transmission of data by each ni by using LSTM-
DQN to learn the historical data in the ni queue. Finally, the SN applies the
prediction results to the update of the time slot allocation table.

3.1 Node Information Matrix

A node information matrix is designed to store the queue information of under-
water nodes, which is used by the LSTM-DQN model to learn the historical data
transmitted by underwater nodes. The node information matrices contain the
number of allocated time slots matrix AS

w, the number of data packets matrix
AK

w , the total data packet size matrix AB
w , the data generation rate matrix AV

w .
These four information matrices clearly record the status of data packets in the
queue from each underwater sensor node. Specifically, for the queue of each ni,
the SN needs to calculate the number of data packets DK

i for AK
w , the sum of

data packet sizes DB
i for AB

w and the data packet generation rate DV
i for AV

w ,
respectively. Their mathematical expressions are as follows,

DK
i = Di,kM

− Di,k0 + 1 (1)

DB
i =

M∑

m=0

Db
i,km

(2)

DV
i =

DB
i

Dt
i,kM

− Dt
i,k0

(3)

In Eq. (1), Di,kM
is the queue number of the last data packet, and Di,k0 is the

first data packet in the control data packet. In Eq. (2), Db
i,km

is the data packet
size of the queue number through the record in control data packet. In Eq. (3),
Dt

i,kM
is the generation time of the last data packet and Dt

i,k0
is the generation

time of the first data packet in the control data packet.
The SN stores the information obtained by pre-processing in multiple infor-

mation matrices. We set the size of each information matrix to F ∗ N . F is the
number of frames set in a window period. N is the number of underwater nodes
in this UASN. Next, we illustrate the above four matrices with a window period
of 10 frames, 5 underwater nodes, and a matrix size of 10 ∗ 5.
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Fig. 4. Examples of AS
w

Fig. 5. Examples of AK
w , AB

w , AV
w

(1) The matrix of the number of allocated time slots AS
w = (f, i), f ∈ F , i ∈ N ,

(f, i) = Di,S , indicates at the [(w − 1) ∗ 10 + f ] frame, the number of time
slots allocated for the ni node according to the time slot allocation table.
As in Fig. 4, in the initial stage, during the first window period, each ni is
allocated 2 time slots. After 16 window periods (160 frames), a new time
slot allocation table is enabled. The new time slot allocation is recorded in
the 18th window period. (8, 3) = 3 of AS

18 means that at frame 178, the n3

node is allocated 3 time slots according to the time slot allocation table.
(2) The number of data packets matrix AK

w = (f, i), f ∈ F , i ∈ N , (f, i) = DK
i ,

indicates the number of data packets in the queue of ni nodes at frame
[(w − 1) ∗ 10 + f ]. As in Fig. 5, (8, 3) = 5 of AK

18 indicates that there are 5
data packets in the queue of n3 node at frame 178.

(3) The total data packet size matrix AB
w = (f, i), f ∈ F , i ∈ N , (f, i) =

DB
i , indicates the total data packet size in the queue of ni nodes at frame

[(w − 1) ∗ 10 + f ].
(4) The data generation rate matrix AV

w = (f, i), f ∈ F , i ∈ N , (f, i) = DV
i ,

indicates the data packet generation rate in the queue of ni nodes at frame
[(w − 1) ∗ 10 + f ].

3.2 LSTM-DQN for TSV-MAC Protocol

In TSV-MAC protocol, we expect to predict the generation rule of data packets
and allocate time slots through a deep reinforcement learning model, so as to
reduce the information interaction between nodes and improve the utilization
of time slots. In the process of time series prediction, the problem of long-term
dependence is easy to appear, so that the dependent relevant information far
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from the prediction point can not be used effectively. Here, we adopt LSTM to
solve this problem, which allows the network to efficiently deal with the depen-
dence of the current prediction on previous information and can avoid prob-
lems such as gradient disappearance of conventional Recurrent Neural Network.
Meanwhile, we choose to use DQN algorithm in our reinforcement learning app-
roach. Specifically, the definition of agent, action, state, and reward function in
the LSTM-DQN algorithm is as follows:

(1) Agent: The SN is used as agent because it can more conveniently charge and
obtain time slot information than underwater nodes.

(2) Action: The SN performs the action of increase or decrease the number of
time slots by one for ni in the time slot allocation table. If the number of
time slots is 1 before decreasing, the action of no change is executed without
decreasing. The action value ani

is Add, Keep or Reduce. These three values
mean the number of time slots is increased by one, remained unchanged or
decreased by one respectively.

(3) State: After executing an action, we observe the situation in the node infor-
mation matrix during the next window period. The node information matrix
includes AS

w, AK
w , AB

w and AV
w .

(4) Reward: Let the action be executed at the end of f -frame. We let T be
a time slot unit time, T

′
i (j) be the usage time within the last time slot j

allocated to node ni after f -frame. The reward r1i (j) and r2i (j) are set by
accumulating the utilization of node ni in T

′
i (j) within a window period (let

a window period be 10 frames), as follows:

Rni
=

{∑10
j=1 r1i (j) if ani

= Add∑10
j=1 r2i (j) if ani

= Keep or Reduce
(4)

r1i (j) =

{
T

′
i (j)
T if T

′
i (j) �= 0

−1 if T
′
i (j) = 0

(5)

r2i (j) =

{
1 − T

′
i (j)
T if T

′
i (j) �= T

−1 if T
′
i (j) = T

(6)

As in Fig. 6, the reward for an underwater node is described as an example.
At the f -frame, the node is assigned 4 time slots. If the action to increase the
number of time slots by 1 is executed at the end of the f -frame. We add up the
time utilization of the node in the 5th time slot for the next 10 frames. If the
node does not use the 5th time slot assigned to it, then the utilization is not 0,
but −1. This cumulative value is the reward. The higher this cumulative time
slot utilization is, the higher the reward value will be.

On the contrary, reducing the number of time slots by 1 is executed. If the
node fully uses the 3rd time slot allocated to it, then the nonavailability is not
0, but −1. The higher this cumulative time slot nonavailability is, the higher the
reward value will be. The same is true if the keep action is executed.
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(5) To reduce the energy consumption of the algorithm, we use a flexible training
mechanism on SN. The reward difference U of 10 adjacent window periods
is compared to determine whether the LSTM needs to be trained or not by
falling below a threshold value.

3.3 Design of Time Slot Allocation Table

After the above calculation, the TSV-MAC protocol allocates a number of time
slots to each ni. We design a reasonable time slot allocation table for the protocol.
In Fig. 7, the time slot allocation table, besides stating the number of time slots
allocated to each ni, also specifies the serial number of the time slot allocation
table, the starting frame time for using this table and the total number of time
slots allocated by this table.

Fig. 6. The time used within the last time slot

Fig. 7. The time slot allocation table

Due to the complex underwater environment, the underwater nodes occa-
sionally lose connection with the SN. SN will reduce the number of time slots
used by this node. No matter how many time slots are reduced, the time slot
allocation table will eventually reserve one time slot for it. When the ni resumes
communication with the SN, it transmits control data packets and data packets
on its own time slot according to the latest time slot allocation table received.
Then, the SN will add another number of time slots for its use.

4 Performance Evaluation

In this section, two typical MAC protocols TDMA and Slotted ALOHA are
compared with our TSV-MAC protocol. The process of simulation experiments
is implemented in python.
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4.1 Simulation Scenario and Settings

In the UASN, underwater nodes are randomly deployed in underwater area.
The network related parameters are shown in Table 2. Underwater nodes gener-
ate different numerical data packets, image data packets or audio data packets
in each time slot in a Poisson distribution with parameter λ. We design two
representative scenarios for simulation, which are described as follows:

(1) High-load scenario: It is a scenario where the UASN is working at a busy time
and continuously collecting data. The generation of all data packets obeys
Poisson distribution, and the numerical data packets, image data packets and
audio data packets correspond to the parameter λ = 1, 1, 0.1 respectively.
In the high-load scenario, nodes sensing numerical information generate an
average of 1 numerical data packet, sensing image information generate an
average of 1 image data packet, and sensing audio information generate an
average of 0.1 audio data packets per time slot.

(2) Low-load scenario: It is a scenario where the UASN collects data at a low
frequency when it is working idle. The generation of all data packets obeys
Poisson distribution, and the numerical data packets, image data packets and
audio data packets correspond to the parameter λ = 1, 0.1, 0.05 respectively.

In the TDMA and TSV-MAC protocols, if a data packet has been sent for
more than 100 time slots but no ACK data packet is received, we consider it lost.
In the Slotted ALOHA protocol, if there is a collision in data packet delivery,
the data packet is randomly backed up by 1–10 time slots and resent.

Table 2. Simulation parameters

Parameter Value Parameter Value

Deployment area size 1 km ∗ 1 km ∗ 1 km N 3

Coordinates of SN (500 m, 500 m, 0 m) Numerical package size 2 kb

Time slot size 1 s Image package size 50 kb

Transmit speed 100 kb/s Audio package size 300 kb

4.2 Simulation Results

The simulation results are set as the average of 400 times. The performances of
all schemes are evaluated by the following two metrics:

Throughput: The total amount of various data packets collected by the SN
in a given period of time.

End-to-end delay: The queuing delay, which is the time data packets spend in
the queue waiting to be sent out, is adopted to approximate the end-to-end delay
of the network. Because the processing delay, sending delay and propagation
delay can be regarded as the same between the same scenario and different
MAC protocols and the main impact on end-to-end delay is queuing delay.
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Figure 8 shows the learning process of the LSTM-DQN algorithm, the per-
formance of the three protocols in terms of throughput and queuing delay under
different load scenarios. From Fig. 8(a), we can see that the model was trained
for a total of 500 episodes. We can see that the reward curves for the first 400
episodes fluctuate considerably, indicating that the algorithm is still trying to
learn the optimal solution from the historical information. At this point, the
LSTM-DQN algorithm has not yet converged. And after 400 episodes shows the
process of convergence of the algorithm towards a stable reward value. There
are some small fluctuations because the model is still trying to find the reward.

In Fig. 8(b), the performance of throughput is compared. In High-load, the
TSV-MAC protocol allocates multiple consecutive time slots to nodes with
large data packets, reducing the generation of data packet headers compared
to TDMA. Slotted ALOHA experiences a large number of collisions, resulting in
reduced throughput. In low-load, the TSV-MAC protocol allocates fewer time
slots to each node. However, when occasionally a node has a large data packet,
the TSV-MAC protocol adds a few time slots for it and then reduces them
back later. Slotted ALOHA does not have as large a performance difference in
throughput as at high load because there are no large numbers of collisions
generated.

(a) Learning curve (b) Performance of through-
put

(c) Performance of queuing
delay

Fig. 8. Simulation results

In Fig. 8(c), the performance of queuing delay is compared. In High-load, the
TSV-MAC protocol allows data packet-rich nodes to send in multiple consecutive
time slots, reducing the queuing time of data packets in the queue of data packet-
rich nodes compared to TDMA. In low-load, the TSV-MAC protocol adds time
slots to the nodes with more occasional data packets, while other nodes may
not have generated data packets yet. Therefore the impact on the queuing delay
of other nodes is minimal. In the TDMA, nodes with a large number of data
packets have to wait several times before they can finish sending them, thus the
queuing delay is high. Slotted ALOHA also has the potential for collisions, and
each collision adds a certain amount of queuing delay.
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5 Conclusions

In UASNs of transmitting heterogeneous ocean data, we proposed TSV-MAC
protocol based on LSTM-DQN to dynamically allocate time slots for underwater
nodes. The TSV-MAC protocol fully considers the influence of the huge differ-
ence in data packet size generated by underwater nodes on time slot utilization,
so that the SN can learn the historical data in the queue of each underwa-
ter node, and predict the data perception and transmission of each underwater
node. The simulation results show that TSV-MAC can effectively improve the
network throughput and reduce the queuing delay compared with the other two
typical MAC protocols.
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Abstract. In Underwater Sensor Networks (UWSNs), the location
information of sensor nodes is essential for making the measured data
meaningful. However, UWSNs have a complex node deployment environ-
ment. Node mobility caused by ocean currents and other factors would
lead to a bigger ranging error and make some nodes cannot receive
enough data packets. In this paper, a Localization algorithm based on a
Single Mobile Beacon (LSMB) is proposed. LSMB makes use of the atten-
uation law of signal strength and the geometric relationship between a
sensor node and the path of the mobile beacon, reducing the impact
of random error on distance measurement. On this basis, by analyzing
the overall movement trends of sensor nodes, this paper analyzes and
studies the counter-current movement and downstream movement of the
mobile beacon respectively, so as to make LSMB suitable for dynamic
marine environment. The simulation shows that the algorithm reduces
the impact of node mobility on localization and has small average local-
ization error.

Keywords: Underwater sensor networks · Node localization · Mobile
beacon · Ocean current direction

1 Introduction

With the development of marine research, underwater wireless sensor networks
(UWSNs) have attracted more and more attention [1]. The emergence of UWSNs
provides a new platform for under communication to explore the underwater
environment [2]. The location information of nodes is the basis for making the
monitoring data meaningful [3], and it is also a prerequisite for network rout-
ing and coverage [4]. UWSNs contains beacon nodes and sensor nodes, and the
beacon nodes can assisting sensor nodes in completing their localization [5,6].
Underwater sensor nodes use acoustic signals for communication [7], so the prop-
agation delay is large and the bandwidth is limited, which brings a new challenge
to the design of the localization method. Beacon nodes have a great impact on
localization accuracy, but they are difficult to deploy accurately in the underwa-
ter environment. By observing the network that we deployed in Qingdao Bay,
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we found that the data collection should be carried out through a ship, and the
ship can get the accurate position through GPS or other techniques. Deploying
a beacon node on the bottom of the ship not only reduces the deployment cost
but also improves localization accuracy.

In Marine environment, the sensor nodes are randomly moved by the ocean
currents, tides and other factors, which resulting a large ranging error [8,9].
This paper proposes a Localization algorithm based on a Single Mobile Beacon
(LSMB). A beacon node fixed to a ship moves along a certain path and sends
a series of beacon packages at a fixed interval. Each node passively receives
signals and calculates its coordinates according to the geometric relations to the
movement path of the beacon. And combined with the ocean current direction
of the deployment region, different localization strategies are discussed.

The rest of this paper is organized as following. In Sect. 2, we describe the
design of LSMB in both static and dynamic scenes. Following that, we present
simulation results in Sect. 3. Finally, we conclude the paper in Sect. 4.

2 Localization Algorithm Design

2.1 LSMB in Static Environment

The ship moves along a straight line, and the beacon node fixed to it sends
location package to underwater nodes at regular intervals, in which includes the
real-time position of the beacon node and the initial energy and frequency of
the signal. In wireless communication, the bigger the distance, the greater the
signal propagation loss. An underwater sensor node could use the received signal
strength to calculate the distance to these beacon points.

Fig. 1. (a) The distance calculation between a sensor node and the trajectory of the
mobile beacon, (b) the SCAN trajectory

As shown in Fig. 1(a), there is an underwater sensor node A and point B is
its projection position at the sea level. M1 is a beacon point on the trajectory of
the beacon node, which could communicate with node A. Make a perpendicular
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from node A to the trajectory of the beacon node, and the foot point is M , and
connect M1A, MA, M1B, and MB. The depth of the node is obtained from
a pressure sensor, so the length of AB is known. According to the geometric
relations, the length of MB can be calculated.

MB =
√

M1A2 − AB2 − M1M2 (1)

In Eq. (1), the length of M1M is unknown. Assume M ′ is the closest beacon
point on the line to node A, so M ′ is regarded as the foot point M . Then the
value of M1M is an integral multiple of the beacon sending interval. According
to the number of beacon points between M1 and M ′, the value of M1M is known.
Thus, the value of MB can be obtained.

Similarly, the length of MB can also be calculated according to other beacon
points on the line. The average of these calculations is taken as the final result
of MB. Assume that the beacon moves along the direction perpendicular to the
X-axis, then the coordinate of node A can be calculated by Eq. (2).

⎧
⎪⎨

⎪⎩

xA = xM ± MB

yA = yM

zA = zM − h

(2)

It can be observed that there are two possible solutions. For eliminating
the wrong coordinates among them, the beacon node moves along the SCAN
path [10], as shown in Fig. 1(b), which includes main trajectory and auxiliary
trajectory. Main trajectory is perpendicular to X-axis, and is used for distance
measurement. Auxiliary trajectory is perpendicular to the Y-axis, and is used
for changing direction. As shown in Fig. 1(b), through L1, a node could know
that it is on the left or right side of L1, and through L2, it could know that it
is on the left or right side of L2. Thus, through two adjacent main trajectories,
the node can localize itself eventually.

The length of the auxiliary trajectory is related to the number of packets
that the underwater sensor node needs to receive on the main trajectory. If each
node needs to receive at least m consecutive packets on every main trajectory,
the length of the auxiliary trajectory should meet.

H1 ≤
√

R2 − (
m

2
× V T )2 − h2 (3)

where R is the communication range of the beacon node. And in the design of
LSMB, we set the value of m is 5.

2.2 LSMB in Dynamic Environment

From [11,12], underwater nodes affected by ocean currents and tides have obvious
movement trend. Here we define the moving direction of the beacon node on the
auxiliary trajectory as the scanning direction. By the example of the trajectories
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in Fig. 1(b), the scanning direction is from left to right. When an underwater
node moves along with the ocean current, it receives packets sent by the beacon.
In addition to the beacon position and trajectory information, each packet also
contains the movement trend. The trend is a boolean variable, 0 and 1 represents
left or right respectively. If the scanning direction of the beacon node is opposite
to the movement trend of underwater nodes, it is called counter-current scanning,
otherwise it is called downstream scanning.

In a dynamic environment, there may be a mirror image error. For solving this
problem, we need to modify the length of the auxiliary trajectory. Obviously,
the length of the auxiliary trajectory is related to whether the beacon node
scans in the counter-current direction or downstream direction. The localization
strategies under these two scanning modes are discussed below.

Counter-Current Scanning. Assume the beacon node is from left to right
and all unlocated nodes are moved from right to left. As shown in Fig. 2(a), the
sub-region between L2 and L3 could be divided into left and right parts by line
L0. The nodes in the left part may have a mirror image error, but the breadth
of the left part is small, so that the absolute value of error is small. Whereas the
nodes in the right part cannot receive signals from L1, and because they move
from right to left, they must be on the left side of L3. So there is no mirror image
error at this time. For other sub-region in the whole deployment region, it has
the same result. The left area is much smaller than the right area, so the mirror
error of the left part is ignored.

Fig. 2. (a) Node crossing, (b) node crossing on a slant

Because nodes are moving, a small number of nodes may move from one side
of a main trajectory to the other, and the movement of the beacon just makes
these nodes cannot be located. This problem is called node crossing in this paper.
Taking Fig. 2(a) as an example, M1 and M2 are two adjacent beacon points on
L1, N1 is a beacon point on L3, and each of the three points correspond to a
communication range (communication circle). P , Q are two intersections of two
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communication circles. Suppose there is a node on the right side of point P ,
which is outside the coverage area of all beacon points on L1. After a period
of time, the beacon node travels to N1, and the node has moved to the left of
point Q. At this time, the node is outside the coverage area of all points on L3.
Therefore, the node can only receive m packets from L2, and the localization
fails. This problem limits the value of the auxiliary trajectory length.

In extreme cases, the moving direction of the underwater node is completely
opposite to the scanning direction of the beacon node. At this time, the amount
of node movement causing this problem is the smallest. The x-coordinate of
point P is the smallest x-coordinate of the uncovered part of trajectory L1, and
correspondingly, the x-coordinate of point Q is the biggest x-coordinate of the
uncovered part of trajectory L3. Therefore, the line segment PQ corresponds to
the minimum movement distance for the problem to occur.

Suppose that the line equation of L1 is x = i, the x-coordinate of point P is
p. Then the distance between point P and L1 is

p − i =

√

R2 −
(

V T

2

)2

− h2 (4)

Obviously, point Q is the mirror position of point P with respect to line L1,
and the length of PQ is

PQ = 2(p − i − H2) (5)

where H2 is the length of the auxiliary trajectory. From point M1 to point N1,
the beacon travels about 2(L+H2), where L is the length of the main trajectory.
The time consumption of underwater nodes in PQ shall be greater than the time
consumption of the beacon node from M1 to N1.

PQ

v
≥ 2(L + H2)

V
(6)

where v is the moving speed of the underwater node, from Eq. (4), Eq. (5), and
Eq. (6), for avoiding the node crossing, H2 should meet.

H2 ≤
V

√
R2 − (

V T
2

)2 − h2 − vL

V + v
(7)

When the moving direction of a sensor node is not completely opposite to
the scanning direction, the nearest beacon points M1 and N1 are at different
y-coordinate. As shown in Fig. 2 (b), it is easy to know that the lateral distance
between the point P and the point Q is equal to the length of PQ in Fig. 2(a).
Through the Pythagorean theorem, compared with Fig. 2(a), the length of PQ
in Fig. 3(b) is more larger. Thus, it has a fewer restriction on the auxiliary
trajectory length, so we would not discuss it in this paper.

If a node can receive 5 data packets from two main trajectories respectively,
it is more appropriate to use the beacon points on the right trajectory for local-
ization calculation, because the time interval from beacon sending time to the
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calculation time is smaller and the impact caused by node movement is small.
If the number of data packets from the right trajectory is less than 5, the left
trajectory is used for localization calculation, whereas the right trajectory is for
eliminating the wrong position.

Downstream Scanning. When the beacon is from left to right and sensor
nodes are also from left to right, assume that the beacon could start scanning
from the outside of the deployment region. It is well known that if a node moves
from left to right, then the first trajectory it heard must be on the left side
of the node (If the node moves from right to left, this mode determines the
beacon also moving from right to left, the result is the opposite). And the first
heard trajectory could be regarded as the left main trajectory for localization
calculation.

The above processes completely eliminate the mirror image error. However,
the node crossing also exists in this mode. It occurs when the lateral movement
of underwater nodes is larger than the beacon. So the length of the auxiliary
trajectory should meet.

H3

v
≥ 2(L + H3)

V
(8)

H3 ≥ 2vL

V − 2v
(9)

Equation (9) limits the lower bound of the auxiliary trajectory. As for its
upper bound, the length should ensure that a node can receive at least m packets
from the remote main trajectory, that is, it should be less than H1. If the speed
difference between the beacon node and the underwater sensor node is too small,
the lower and upper bound of the auxiliary trajectory length cannot meet at
the same time. At this time, we can reduce m or V . From the perspective of
localization accuracy, the latter is chosen here, and the upper bound is H1.

3 Simulations

3.1 Settings

We used Matlab R2020a to evaluate the performance of LSMB. And in the
future, we would gradually carry out ocean experiments. 300 sensor nodes are
deployed in the range of 1000 m * 1000 m * 100 m. The signal frequency is set to
40 kHz, and the absorption loss coefficient n is 1.5. Assume the error of the sonar
device obeys a normal distribution with zero as its mean value and 0.5 as its
standard deviation. The speed of the beacon node is 5 m/s. Average localization
error is used to judge the stability of algorithm. The localization error of a sensor
node is defined as the Euclidean distance between the estimated position and the
real position. The algorithm proposed in this paper is compared with the algo-
rithm (MANARL) proposed in [13] and a least squares localization method based
on SCAN path (SCAN-LS) [10]. SCAN-LS applies the least squares method to
the SCAN path and it does not utilize the movement trajectory information of
the mobile beacon.



244 Y. Guo et al.

3.2 Simulations for LSMB

Fig. 3. Average localization errors under: (a) different communication ranges, (b) dif-
ferent beacon sending intervals

Figure 3 indicates the influence of communication range and beacon sending
interval on average localization error in the static environment. MANARL does
not completely eliminate the mirror error, so its localization error is hard to
reduce through changing communication range and beacon sending interval. The
localization error of SCAN-LS is obviously improved with the increase of com-
munication range. When the beacon sending interval is small, the average local-
ization error of SCAN-LS is larger because of the collinearity of beacon points
in the multilateration method.

Figure 4 compares the localization performance of the two scanning modes in
different communication ranges and different movement speeds. In each second,
underwater nodes drifting in a random direction in the range of [π/2, π] (i.e.,
the counter-current scanning of the beacon) and [0, π/2] (i.e., the downstream
scanning of the beacon) are simulated respectively. The beacon sending interval
is set to 30 m. It shows that there is little difference in the two scanning modes
on the average localization error.

In general, with the increase of movement speed of underwater nodes, the
localization error of LSMB is improved. One exception is when the communi-
cation range is 200 m, and the reason is that the counter-current localization
does not completely solve the problem of mirror error. When the communica-
tion range is small, the trajectory density of SCAN path is large, and more nodes
across the line, so there is a greater possibility of producing mirror error during
the localization process, resulting in the instability of the localization results.
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Fig. 4. (a) Localization errors while the beacon moving counter-current; (b) localiza-
tion errors while the beacon moving downstream

4 Conclusion

This paper presents a novel node localization method based on a single mobile
beacon for UWSNs. A beacon node moves along a SCAN trajectory and sends
signals periodically. Sensor nodes use the change regularities of propagation loss
and the geometric relations between the node and movement trajectories of
the beacon to estimate their own positions. For dynamic ocean environment,
according to a common tidal mobility model, the movement trend of underwater
nodes is analyzed, then the beacon’s counter-current scanning and downstream
scanning are discussed respectively. Simulation results demonstrate that the pro-
posed method has a relatively high localization accuracy and has fewer extreme
localization errors, and that can suitable for both static and dynamic ocean
environments.
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Abstract. Vehicular ad-hoc networks (VANETs) are core components
of the cooperative intelligent transportation system (C-ITS). Vehicles
communicate with each other to obtain traffic conditions on the current
road segment by broadcasting authenticated safety messages using their
digital certificates. Although this method protects the system against
external threats, it is ineffective when faced with internal adversaries
who possess legal certificates. Consequently, an increasing number of
researchers have focused on intrusion detection (misbehavior detection)
technology. VeReMi and its extension version are the only public misbe-
havior datasets of VANETs in its field, allowing researchers to compare
their studies with those of others. We note that denial of service (DoS)
attacks in these datasets are insufficiently comprehensive. As a result, we
designed a more complete dataset than existing datasets by implement-
ing multiple attacks, including different types of distributed denial of ser-
vice (DDoS) attacks. We present the detection results of some machine
learning algorithms on our proposed dataset. These results indicate that
our dataset can be utilized as a reference for future studies to evaluate
different detection methods.

Keywords: Vehicular networks · DDoS · Dataset · Misbehavior
detection

1 Introduction

VANETs form the core technology of cooperative intelligent transportation sys-
tem (C-ITS) in future traffic management. They mainly consist of devices such
as connected vehicles and roadside units (RSU). VANETs communicate road
conditions to avoid collisions and reduce traffic congestion by exchanging safety
messages. The Institute of Electrical and Electronics Engineers (IEEE) has devel-
oped a series of standards (IEEE 1609) for vehicles communication, of which
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the IEEE 1609.2 specifies the cryptography method, public key infrastructure
(PKI), for ensuring the security of vehicles messages. PKI distributes digital
certificates to vehicles connected to the network. The vehicle that owns a cer-
tificate is regarded as a legitimate user, and it can encrypt and sign the message
to be sent with a certificate to ensure the security and availability of the mes-
sage. This method can effectively defend against attacks from outside the system.
However, legitimate vehicles that have obtained certificates can still launch inter-
nal attacks. For example, they can send tampered messages or launch denial of
service (DoS) attacks. Intrusion detection (misbehavior detection) is considered
to be an effective method for defending against insider attacks. As a result,
intrusion detection technology is becoming increasingly important to academics.

A dataset is crucial when deploying and comparing intrusion detection sys-
tems, particularly detection techniques based on machine learning methods.
However, currently, there is a scarcity of datasets dedicated to vehicular net-
works. VeReMi [7] was the first public dataset for vehicle misbehavior detection.
The dataset and its extended datasets, VeReMi Extension [11] and DARE [6],
have made significant contributions to subsequent research to train their detec-
tion models and test performance. Although the aforementioned datasets cover
a variety of attack models, there are no datasets for distributed denial of service
(DDoS) attacks. Many researchers have not compared their studies [9,12,17]
with others because of the lack of a reference DDoS attack dataset. This study
fills the aforementioned gap.

In this study, we designed and published a DDoS attack dataset dedicated
to vehicular networks. This dataset contains different types of DDoS attacks,
including different attack frequencies (e.g., increasing rate and pulse attack)
and different message contents. Compared to simple massive packet flooding
attacks, these attacks are difficult to detect in time. The generation of this novel
dataset is the main contribution of this study. Our second contribution is that we
tested several machine learning algorithms on our dataset and compared their
performance in detecting DDoS attacks, presenting the results in this paper for
reference to other researchers.

The remainder of this paper is organized as follows: Sect. 2 discusses related
works. Section 3 describes the communication and attacking models. In Sect. 4,
we discuss the details of the simulations used to build the dataset. Section 5
presents the experimental results. Finally, we conclude the study in Sect. 6.

2 Related Works

Since the connected vehicles have not been deployed on a large scale, it is difficult
to collect data of a large scale from the real scenes. The current international
mainstream idea for creating datasets is to run simulation experiments utilizing
a network simulation platform combined with a traffic flow simulation platform,
then gather the data collected during the experiment to generate the dataset.
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van der Heijden et al. [7] published a dataset called VeReMi as the first public
dataset dedicated to misbehavior detection in VANETs using Veins framework
combined with OMNeT++ and SUMO. They considered five types of attackers
(tampering with position information in message), three different attacker prob-
abilities, three different traffic densities, and five different random seeds. VeReMi
dataset consists of 225 individual simulations, providing other researchers with
an evaluation baseline.

Kamel et al. [11] upgraded VeReMi dataset by devising and implementing a
realistic sensor error, which was added to the four main fields, position, speed,
acceleration, and heading, in BSM. They also implemented a large more complex
set of attacks, including data replay, DoS, and Sybil attacks. VeReMi Extension
is more complete compared to its original version, but it still has a limitation in
that it only supports local detection.

In order to solve this problem, Haidar et al. [6] published a dataset that sup-
ports global misbehavior detection. In their work, an individual vehicle performs
simple plausibility checks and reports its result to the up architecture such as
Misbehavior Authority [10] or other cloud components. The dataset consists of
misbehavior report logs and original messages collected from vehicles, enabling
other researchers to evaluate their cloud architecture or compare it to others.

There are also studies [1,2,5] that provided methods for generating a dataset
in VANETs containing DoS or DDoS attacks without the use of Veins. See
Table 1 for more information on above studies.

Table 1. Related works

Tools Standard Attack

frequency

Attackers

collaboration

Multiple

attacker density

Public

[7] Veins IEEE WAVE Fixed × � �
[11] Veins IEEE WAVE Fixed × × �
[6] Veins IEEE WAVE Fixed × � �
[2] ns-3 TCP/IP Fixed × × ×
[1] inet UDP Fixed × × ×
[9] VimRTI ETSI ITS Fluctuation × × ×
Our dataset Veins IEEE WAVE Fluctuation � � �

3 System Models

3.1 Communication Model

C-ITS is an upcoming technology for managing traffic and improving road safety
in the future. C-ITS consists of different Intelligent Transportation System Sta-
tions (ITS-Ss), which can be On-Board Units (OBUs) embedded on vehicles or
Road Side Units (RSUs). There are two communication models. According to
IEEE 1609 standard, also known as IEEE Wireless Access in Vehicular Environ-
ments (WAVE) Architecture, the safety application mounted on the ITS-S can
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send Basic Safety Messages (BSMs) and other safety messages to the surround-
ing ITS-Ss in the wireless environment through the WAVE protocol in the form
of one-hop broadcast to exchange road condition information. BSM consists of
information such as the real-time position and speed of the vehicle, which can
assist autonomous driving, reduce congestion and avoid collisions. ITS-Ss can
access the Internet through IPv6 and TCP/UDP protocols to obtain other ser-
vices, such as navigation services and various entertainment services. This paper
focuses on the first communication model, the communication between ITS-Ss.
We only regard ITS-Ss as vehicles.

3.2 Attack Models

DoS attacks are designed to deplete the resources of victims. So that they cannot
process legitimate service requests. One of the most common forms of attack
is sending massive packets to the victim. DDoS attacks achieve this goal by
deploying multiple attacking entities. Compared with the attacks of a single
attacking entity, DDoS attacks are more threatening and the forms of attacks
are more variable, making it easy to evade detection. A DDoS attack consists
of several phases. The attacker first recruits multiple agent machines, which
are controlled by the attacker, through scanning of remote machines or any
other measures, looking for security holes that will enable subversion. Then, the
attacker exploits the discovered vulnerability to break into recruited machines
and infect them with attack code. Subverted agent machines will cooperate to
launch an attack on the target in the final phase. In the vehicular environment,
this paper implements a DDoS attack by flooding BSMs, the most frequent
messages sent between vehicles. Due to the limitation of the simulation platform,
we only simulate the final launch phase of a DDoS attack, and the first three
phases are beyond the scope of this paper. We assume that the attacker somehow
compromised some vehicles in the simulation area and ordered a DDoS attack
at some point. According to the taxonomy of DDoS attack described in [15],
combined with the characteristics of the vehicular networks, we selected four
different attack forms for simulation:

– Constant rate: Controlled vehicles simultaneously send a large number of
BSM packets to the victim at a constant rate, depleting a lot of resources and
making it unable to process the BSMs sent by normal vehicles. There is a high
possibility of causing a traffic accident due to the lack of BSMs received from
normal vehicles.

– Increasing rate: The attacker starts sending BSMs to the victim at a lower
frequency, then gradually reduces the sending interval, and finally reaches
a higher sending frequency. This increasing rate attack is designed to evade
detection or delay detected time. We considered two functions that shorten
the BSM interval:
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Ic � current beaconInterval

Ip � previous beaconInterval

r � beaconInterval increasing rate

U(x, y) � uniform distribution

dvmin � min drop value of interval

dvmax � max drop value of interval

1) Exponential function:

Ic = Ip × r, r ∈ (0, 1) (1)

2) Linear function
Ic = Ip − U(dvmin, dvmax) (2)

– Pulse attack/On-Off attack: Controlled vehicles are divided into multiple
groups. During a preset time period, the controlled vehicles in the same group
simultaneously flood the victim with BSMs at a constant rate. After a period
of time, the frequency of sending data packets from this group of vehicles
returns to normal. The next group of attackers starts attacking. This alternate
attack method brings great difficulty to detection. Victims can detect attacks,
but it is difficult to detect all attackers at the first time. The current packet
sending interval of the first group of attackers is calculated as follow:

I � normal beaconInterval

Ia � attacking beaconInterval

n � total number of groups

d � attacking duration per round

Ic =

{
Ia, cos( 2π

n×dx − π
n ) − cos(π

n ) � 0
I, cos( 2π

n×dx − π
n ) − cos(π

n ) < 0
(3)

n is the total number of groups and d is the duration of a single attack
– Increasing-pulse: This is a combination of the above two forms of attack.

The controlled vehicles are also divided into multiple groups, and vehicles
in the same group launch attack in the form of increasing rate. Different
from pulse attack, this attack method does not start the next group after the
previous group of attacks ends, but the next group starts to send BSMs to the
victim at a low frequency after the attack has been carried out for a period
of time. The traffic received by the normal vehicles have always remained at
a high level. Such attack is more difficult to be detected because each group
of attackers quickly returns to normal when the attack frequency peaks.

Ic =

{
I×rx mod (n×d)

r , cos( 2π
n×dx − π

n ) − cos(π
n ) � 0

I, cos( 2π
n×dx − π

n ) − cos(π
n ) < 0

(4)
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Figure 1 visually shows the regularity of the transmission frequency of BSMs
sent by the attacker over time.

Fig. 1. Frequency of different DDoS attacks.

In addition to pure DDoS attacks, we also consider the case of attackers
tampering with BSMs, combining it with DDoS attacks. Although large-traffic
DDoS attacks can be quickly detected, BSMs sent in low frequency are treated
as normal messages, which increases the possibility of causing traffic accidents.
We followed [1] and [2] to implement attacks on tampering of the position, speed,
and heading fields in BSM. The attacker adds a random offset to its true value
in one of the three fields, which will cause the surrounding vehicles to misjudge
the road conditions and cause collisions or other accidents.

– Fake position:
posf

x = posr
x + U(Rpos,x

min , Rpos,x
max )

posf
y = posr

y + U(Rpos,y
min , Rpos,y

max )
(5)

– Fake speed:
spdf = spdr + U(Rspd

min, R
spd
max) (6)

– Fake heading:
hr

x = cos(hr)
hr

y = − sin(hr)

hf
x = hr

x + U(Rh,x
min, R

h,x
max)

hf
y = hr

y + U(Rh,y
min, R

h,y
max)

hf = atan2(hf
y ,−hf

x)

(7)

pos, spd, h are position, speed and heading respectively. r is real information
in BSM and f is fake information. R represents the offset range. U(x, y) is a
uniform distribution. cos and sin are trigonometric functions. atan2(y, x) is a
function in C++ that return azimuth.
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4 Simulation

4.1 Parameter Settings

We use the same tools as it is used to generate VeReMi, Veins framework [21]
combining OMNeT++ [22] and SUMO [13], for code writing and simulation.
Veins is an open-source vehicular network simulation framework written in accor-
dance with the IEEE WAVE architecture, which is why we chose this framework
for our experiments. OMNeT++ is an extensible, modular, component-based
C++ simulation library and framework, primarily for building network simula-
tors. SUMO is a mainstream traffic flow simulation platform that provides Veins
with traffic data.

Fig. 2. Simulation area 1. Fig. 3. Simulation area 2.

Like VeReMi and VeReMi Extension, we choose the Luxembourg SUMO
Traffic (LusT) [4] scenario as the experimental scenario. The difference is that
we did not select a large area for simulation. In this work, we focus on the imple-
mentation of DDoS attacks. Limited by the transmission power of the vehicle,
the vehicle cannot receive messages from vehicles at a greater distance. In this
case, attackers scattered in various places cannot launch coordinated attacks on
the target vehicle. Therefore, we choose a smaller area for simulation. We select
two areas as shown in Fig. 2 and Fig. 3: one is the urban traffic intersection,
5200, 6200–5900, 6800, with low vehicle speed; the other simulation area is a
highway, 3600, 3500–4400, 5000, with high speed and high vehicles density.

Since launching a DDoS attack requires controlling multiple vehicles, it is
difficult to launch a large-scale attack during a period of low traffic flow, so we
choose the peak period (7 h) for simulation. We assume that at the beginning of
the simulation, the attacker has taken control of some surrounding vehicles and
is ready to attack. The simulation time is set to 75 s. In the first 15 s, all vehicles
send normal messages. At the 15th second, some controlled vehicles launch a
DDoS attack, and the attack time lasts for one minute. There are two reasons
why the simulation time in this work is shorter than it in previous researchers’
work: 1) A DDoS attack requires a coordinated attack by multiple controlled
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vehicles. After driving for one minute, some attacking vehicles are likely to be
far away from the target vehicle, and the attack effect will be seriously affected.
It becomes a DoS attack launched by a scattered single vehicle. Researchers have
done it. Similar scenarios can be found in the datasets of previous researchers.
2) In a DDoS attack, the vehicle will send a large number of data packets, and
the time consumed by simulating a single scenario will increase sharply, and it
will take a lot of time to run all the scenarios. Because a DDoS attack requires
multiple vehicles, we set the probability that a vehicle can be controlled by the
attacker to be slightly higher in the urban intersection, with three probabilities of
0.3, 0.4, and 0.5, and simulate them separately. During the simulation, normal
vehicles broadcast BSM at a frequency of 10 messages per second. Attackers
send BSMs from 100 to 500 per second depending on attacking probability.
This setting not only guarantees the attack effect but also hides the attacker
to a certain extent (because low-frequency messages are more difficult to be
detected). Additional configuration parameters can be found in the omnetpp.ini
file of our public source code (https://github.com/YangFanAHU/DDoS-attacks-
dataset-in-VANETs).

4.2 Generated Dataset

Our dataset consists of 152 individual simulations, including 2 areas with dif-
ferent vehicle densities and average vehicle speeds, 3 different probabilities of
a vehicle being controlled, 5 different kinds of DDoS attacks, and 5 different
BSMs sent by attackers. Our dataset is recorded in JSON format like VeReMi.
The dataset contains two different forms. First, we record original information in
BSMs received by vehicles. It has labels that mark the DDoS type and message
tampering type: {“sendtime”, “rcvtime”, “senderID”, “messageID”, “position”,
“speed”, “heading”, “ddosType”, “msgType”} The second way is to record some
statistics in the time window [8], such as the total BSMs received by vehicle
in the time window. It can be regarded as features extracted from the first
dataset. The next section will present testing results on some machine learn-
ing algorithms using these features. Researchers also can extract other features
from original BSMs. We set the time window to 2 s. The full format is pre-
sented as follows: {“received BSMs”, “receivedIDs”, “PfID max”, “IAT mean”,
“IAT std”, “IAT max”, “IAT min”, “hasAttackers”} where PfID is the number
of BSMs received from the same id and IAT is the time between two packets
received by a vehicle.

We record messages received by each vehicle and statistics within the time
window on a vehicle-by-vehicle basis. The dataset has a summary file of all
vehicle data to facilitate model training. Besides messages received by vehicles,
a groundtruth file is also included in each scenario to record true information
about vehicles. All the simulation results can be found in Github (https://github.
com/YangFanAHU/DDoS-attacks-dataset-in-VANETs).

https://github.com/YangFanAHU/DDoS-attacks-dataset-in-VANETs
https://github.com/YangFanAHU/DDoS-attacks-dataset-in-VANETs
https://github.com/YangFanAHU/DDoS-attacks-dataset-in-VANETs
https://github.com/YangFanAHU/DDoS-attacks-dataset-in-VANETs
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4.3 Simulation Results

We counted some data generated from simulations to verify the effectiveness
of DDoS attacks. Figure 4 shows the total number of BSMs received by each
vehicle within 75 s without DDoS attack in the simulation area 3600, 3500–4400,
5000. From 7 to 65336, on average each vehicle receives 25252.71 BSMs (Due
to the short driving time of some vehicles in the simulation area, the number of
BSMs received by these vehicles is small). As shown in Fig. 5, in the DDoS attack
scenario, the average number of BSMs received by each vehicle is 40665.31, which
is significantly higher than that in the normal scenario. Figure 6 and Fig. 7 show
the number of vehicle packets lost in the two simulated scenarios respectively.
We can see that even without DDoS attacks, the vehicular network in high-
density areas is very congested, and the average number of packets lost in 75 s
is 10356.17. After being attacked by DDoS, the average number of total lost
packets is 19543.87. DDoS attack aggravates the congestion level of the vehicular
network, and a large portion of the BSMs received by the vehicle is from the
attacker.

Fig. 4. Total received BSMs in the nor-
mal scenario.

Fig. 5. Total received BSMs in the DDoS
scenario.

Fig. 6. Total lost packets in the normal
scenario.

Fig. 7. Total lost packets in the DDoS
scenario.

5 Detection

In this section, we test 6 commonly used machine learning algorithms on the
dataset presented in this paper, which are Multi-Layer Perceptron (MLP) [20],
Random Forest (RF) [3], K-Nearest Neighbor (KNN) [14], Support Vector Clas-
sification (SVC) [18], Decision Tree (DT) [19] and Gaussian Naive Bayes (GNB)
[16]. All the algorithms are written in Python 3.9. We utilize scikit-learn library



258 H. Zhong et al.

to implement these machine learning models with all parameters default. Both
the training set and the test set come from the dataset recorded in the form of
time windows, of which the training set contains 12605 pieces of data, and the
test set has four parts. 1) Constant DDoS with 4046 pieces of data; 2) Increas-
ing DDoS with 4046 pieces of data; 3) Pulse attack with 4046 pieces of data;
4) Increasing-pulse with 4045 pieces of data. Since the time window dataset is
already the feature extracted from the original BSM dataset, we do not process
the dataset in this part and use it directly for training. The detection results
are presented in the form of a confusion matrix, as shown in Fig. 8 and Fig. 9.
From the first to the fourth quadrant of the matrix are False negative (FN),

Fig. 8. Confusion matrix - detection
results of constant rate DDoS attacks.

Fig. 9. Confusion matrix - detection
results of increasing rate DDoS attacks.

True Negative (TN), False Positive (FP), and True Positive (TP), which repre-
sent normal traffic determined as DDoS attack, normal traffic determined as
normal traffic, DDoS attack traffic detected as normal traffic and correctly
detected DDoS traffic. Using the confusion matrix, we calculated 4 common
metrics for evaluating machine learning algorithms, that is Accuracy, Recall,
Precision, and F1score. Table 2 shows the detection results on the constant
DDoS test set. Except KNN, all the detection algorithms perform well, with
four indicators above 0.90, especially the accuracy, which is all higher than 0.99.
The performance of KNN is very poor, the accuracy is only 0.81, while the
recall reaches 0.99, which shows that KNN is seriously misjudging normal traf-
fic. Table 3 presents the detection results of the six algorithms on the Increasing
rate attack test set. The overall performance is a little worse than the former
because the small-volume attack traffic in the early stage of the attack is similar
to the normal traffic, which is difficult to be detected. For Pulse attacks, detec-
tion on the current features set almost fails. The best performing DT achieves
only 88.03% accuracy. Other algorithms are less than 80% accuracy. SVC is even
less than 50%. In fact, this does not mean that the traffic of the pulse attack is
indistinguishable from the normal traffic. We observed data packets received by
some vehicles and found that in some time windows marked as containing attack-
ers, the current vehicle only received a few BSMs from the attacker (sometimes
only one, if the BSM information has not been modified, this is not regarded
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Table 2. Detection result of constant
rate DDoS attacks

Detection result

Accuracy Recall Precision F1 score

MLP 98.49% 98.63% 99.51% 99.07%

RF 99.87% 100% 99.84% 99.92%

KNN 81.71% 100% 81.67% 89.91%

SVC 99.25% 99.09% 100% 99.54%

DT 99.82% 100% 99.78% 99.89%

GNB 100% 100% 100% 100%

Table 3. Detection result of increasing
rate DDoS attacks

Detection result

Accuracy Recall Precision F1 score

MLP 94.09% 93.24% 99.48% 96.26%

RF 99.82% 99.93% 99.84% 99.89%

KNN 81.68% 99.96% 81.67% 89.90%

SVC 93.79% 92.39% 100% 96.04%

DT 99.77% 99.93% 99.78% 99.56%

GNB 94.48% 93.24% 100% 96.50%

as being attacked) due to transmission distance limitations and high packet loss
due to congested networks.

6 Conclusion

In this study, we provide a DDoS attack dataset for misbehavior (intrusion)
detection in vehicular networks. This dataset contains different types of DDoS
attacks combined with different tampered messages that are difficult to detect.
We tested some machine learning algorithms on our dataset and presented the
detection results. This dataset enables researchers to compare their studies with
others and improve the performance of detection algorithms for DDoS attacks
on vehicular networks. In future, we plan to design a detection mechanism for
DDoS attacks in vehicular networks, particularly for increasing rate and pulse
attacks. Moreover, we will make our dataset more realistic by selecting a larger
area and increasing the simulation time.
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5. Gonçalves, F., et al.: Synthesizing datasets with security threats for vehicular ad-
hoc networks. In: Global Communications Conference (GLOBECOM), pp. 1–6.
IEEE (2020)

6. Haidar, F., Kamel, J., Jemaa, I.B., Kaiser, A., Lonc, B., Urien, P.: Dare: a reports
dataset for global misbehavior authority evaluation in c-its. In: 91st Vehicular
Technology Conference (VTC 2020-Spring), pp. 1–6. IEEE (2020)



260 H. Zhong et al.

7. van der Heijden, R.W., Lukaseder, T., Kargl, F.: VeReMi: a dataset for comparable
evaluation of misbehavior detection in VANETs. In: Beyah, R., Chang, B., Li, Y.,
Zhu, S. (eds.) SecureComm 2018. LNICST, vol. 254, pp. 318–337. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01701-9 18

8. Idhammad, M., Afdel, K., Belouch, M.: Semi-supervised machine learning approach
for DDoS detection. Appl. Intell. 48(10), 3193–3208 (2018)

9. Kadam, N., Krovi, R.S.: Machine learning approach of hybrid KSVN algorithm to
detect DDoS attack in VANET. Int. J. Adv. Comput. Sci. Appl. 12(7), 718–722
(2021)

10. Kamel, J., Ansari, M.R., Petit, J., Kaiser, A., Jemaa, I.B., Urien, P.: Simula-
tion framework for misbehavior detection in vehicular networks. IEEE Trans. Veh.
Technol. 69(6), 6631–6643 (2020)

11. Kamel, J., Wolf, M., van der Heijder, R.W., Kaiser, A., Urien, P., Kargl, F.:
VeReMi extension: a dataset for comparable evaluation of misbehavior detection in
VANETs. In: International Conference on Communications (ICC), pp. 1–6. IEEE
(2020)

12. Kolandaisamy, R., Noor, R.M., Z’aba, M.R., Ahmedy, I., Kolandaisamy, I.:
Adapted stream region for packet marking based on DDoS attack detection in
vehicular ad hoc networks. J. Supercomput. 76(8), 5948–5970 (2020)

13. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of sumo-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3&4)
(2012)

14. Liao, Y., Vemuri, V.R.: Use of k-nearest neighbor classifier for intrusion detection.
Comput. Secur. 21(5), 439–448 (2002)

15. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. ACM SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

16. Mukherjee, S., Sharma, N.: Intrusion detection using Naive Bayes classifier with
feature reduction. Procedia Technol. 4, 119–128 (2012)

17. Poongodi, M., Hamdi, M., Sharma, A., Ma, M., Singh, P.K.: DDoS detection mech-
anism using trust-based evaluation system in VANET. Access 7, 183532–183544
(2019)

18. Pradhan, A.: Support vector machine-a survey. Int. J. Emerg. Technol. Adv. Eng.
2(8), 82–85 (2012)

19. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

20. Sarle, W.S.: Neural networks and statistical models. In: 19th Annual SAS Users
Group International Conference, pp. 1–13. SAS (1994)

21. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road
traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. (TMC)
10(1), 3–15 (2010)

22. Varga, A.: Discrete event simulation system. In: European Simulation Multicon-
ference (ESM 2001), pp. 1–7. EUROSIS (2001)

https://doi.org/10.1007/978-3-030-01701-9_18


Vehicle-Road Cooperative Task
Offloading with Task Migration

in MEC-Enabled IoV

Jiarong Du, Liang Wang(B), Yaguang Lin, and Pengcheng Qian

School of Computer Science, Shaanxi Normal University, Shaanxi, China
{dujiarong,wangliang,light,qianpengcheng}@snnu.edu.cn

Abstract. Mobile edge computing (MEC) is considered as a key technol-
ogy for addressing computation-intensive and delay-critical applications
in the Internet of vehicles (IoV). In MEC-enabled IoV, vehicles lighten
their computing load by offloading tasks to edge servers. However, the high
speed mobility of vehicles and time-varying network environment brings
tough challenges to task offloading. In addition, considering only road-
side units (RSUs) or vehicles as offloading objects lead to the waste of
computing resources and increase the process delay of task. To this end,
we formulate the reduction of task processing delay and improvement of
service reliability as an utility maximization problem and propose a dis-
tributed vehicle-road cooperative task offloading scheme with task migra-
tion. Then we use RSUs and surrounding vehicles as offloading objects and
divide offloading tasks into multiple subtasks for offloading objects and
local parallel processing, which improves the utilization rate of comput-
ing resources. Meanwhile, we reduce the task processing failure by migrat-
ing the computing results of offloading subtasks. The offloading scheme
is formulated as a mixed-integer nonlinear optimization problem, and a
multi-agent deep Q-learning network (MADQN) algorithm is proposed
to find the near-optimal offloading objects and number of offloading sub-
tasks. Simulation results show that the proposed approach significantly
improves the total task processing speed and service reliability.

Keywords: Mobile edge computing · Internet of vehicles · Task
offloading · Multi-agent deep Q-learning network

1 Introduction

Thanks to the development of mobile communication technology, vehicles as
the new mobile device, can realize information sharing among vehicles, users
and infrastructure, thus the concept of Internet of vehicles (IoV) came into
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being [1]. The IoV plays an important role in intelligent transportation systems
(ITSs) [2] and novel smart cyber-physical systems (CPSs) [3], like data sharing
[4] and privacy protection [5]. With the further development of IoV, mobile
devices generate huge amounts of data [6], a variety of computation-intensive on-
board applications have emerged. Autonomous driving applications, for example,
generate a lot of perceptual data [7,8]. The vehicle’s computing and storage
resources are usually limited to serve such applications, so how to process such
applications in the IoV is a serious challenge [9].

Fortunately, the emergence of mobile edge computing (MEC) offers a promis-
ing approach to tackle such issues. MEC is a new computing architecture in
which computing, storage and communication services are deployed at the edge
of networks closer to data sources [10]. In MEC-enabled IoV (MEC-IoV), vehicles
utilize edge objects (ENs) resources through task offloading, which significantly
reduces task processing delay. However, task offloading also brings new chal-
lenges. The most obvious is the additional cost of transmission. What’s worse, the
vehicles may not receive the computing results due to the fast movement of vehi-
cles and the limited communication range of edge objects [11], which reduces the
service reliability. Therefore, in order to meet the needs of computation-intensive
applications in time-varying IoV, an efficient offloading scheme of tasks is worth
studying.

Existing works are mainly divided into the vehicle-to-vehicle (V2V) and
the vehicle-to-road infrastructure (V2R) offloading scheme. The V2V offloading
schemes usually only consider the computing resources of vehicles on the road
and regard them as vehicle edge node (VEN). The schemes that considers only
the task offloading between vehicles is presented in [12,13]. Buda et al. [14] pro-
poses a scheme using vehicle clusters as edge server to reduce processing delay.
A WiFi-assisted offloading method in connected vehicle scenarios is proposed in
[15] to maximize the overall transmission efficiency. Since RSUs have more com-
puting resources than vehicles, V2R scenarios generally perform better. Notably,
most V2R offloading schemes are designed to minimize task processing delays
[16,17]. However, focusing only on reducing the offloading delay and offloading
almost all tasks to the RSU, the vehicle may not be able to receive the computing
results in the case of high speed movement, resulting in offloading failure. So we
attempt to combine V2V with V2R and propose a distributed vehicle-road coop-
erative offloading scheme with task migration. Due to the above problem is a
mixed-integer nonlinear optimization problem, traditional optimization methods
are difficult to solve it. We use multi-agent deep Q-learning network (MADQN)
algorithm in Multi-agent deep reinforcement learning (MADRL) to solve the
above problem. The main contributions of our work are summarized as follows:

– In the time-varying MEC-IoV, we integrate RSUs and vehicles comput-
ing resources and propose a distributed vehicle-road cooperative offloading
scheme. This offloading scheme divides the offloading task into several sub-
tasks that can be processed distributed on ENs. ENs includes RSUs and
VENs.
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– In order to improve service reliability, we added task migration mechanism
in the above offloading scheme. Task migration overcomes the shortcoming of
limited communication range of ENs in the MEC-IoV.

– We formulate the problem as an MDP and propose two MADQN algorithms
to find the appropriate offloading object and the number of offloading sub-
tasks to achieve the approximate optimal offloading performance. Simulation
results show that the proposed scheme significantly improves the total task
processing speed and service reliability.

2 System Model

This section describes the system architecture for task offloading in MEC-IoV.
In this architecture, we focus on a multi-vehicle and timeslot-based scenario, and
the total time slot is T . The vehicle that generates the offloading task is defined
as the offloading vehicle (OV). As shown in Fig. 1, a stretch of the highway is
cooperatively covered by a row of RSUs located at one side of the road. The
RSUs are connected through fibers. RSUs and vehicles can communicate with
each other via wireless links within its communication range.

Fig. 1. Highway task offloading scenario.

The set of RSUs is denoted by R = {1, · · · , R}, where R is the number
of RSUs. VENs is denoted as V = {1, · · · , V }, and OVs is denoted as O =
{1, · · · , N}, V and N are the number of VENs and OVs, respectively. OV i
(i ∈ O) has the option of offloading tasks to RSU or VEN. The RSU that
receives the offloading tasks is called the receiver RSU (Rs-RSU) and is denoted
as r (r ∈ R). The VEN receives offloading tasks is denoted as j (j ∈ V). Note
that OVs select the nearest EN to offload tasks. We use a binary variable αi(t) to
indicate OV i offload task to Rs-RSU or VEN in time slot t, αi(t) = 0 indicates
offloading to Rs-RSU, and αi(t) = 1 indicates offloading to VEN. In particular,
in order to reduce the probability of task offload failure, we specify that the
offload object can migrate the computing result of the task to the next RSU,
called migrator RSU (Mig-RSU), denoted as m (m ∈ R).
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OV i generates an offloading task in time slot t. Assume that all tasks can
be completed before the next time slot. The offloading task that generated by
the OV i in time slot t is denoted as Hi(t) = {Wi(t), Zi(t)}(t ∈ T ), which Wi(t)
represents the amount of computation tasks, Zi(t) (in CPU cycles per byte)
indicates the number of computation cycles needed to execute 1 bit of data for
task Hi(t). Hi(t) can be divided into several subtasks of equal size and each
subtask can be processed in any order. The number of subtasks is a constant,
denoted as X(X ∈ N∗). The number of subtasks of vehicle i offloaded to the
EN in time slot t is denoted as xi(t) (0 ≤ xi(t) ≤ X), where xi(t) is an integer
variable.

2.1 Communication Model

The communication model follows the reference [18]. Therefore, there are two
communication scenarios: vehicle to RSU (V2R) and vehicle to vehicle (V2V).
In V2R scenario, the offloading transmission rate for OV i to Rs-RSU r is

rir(t) = Br log2

(
1 +

Pr · 10−PLr(dir(t))/10

N

)
, (1)

where PLr(dir(t)) is the pathloss between vehicle and RSU which is defined as
PLr(dir(t)) = 128.1 + 37.6 lg dir(t), dir(t) represents the distance between the
OV i and the Rs-RSU r in kilometres in time slot t. Pr and Br represent the
transmit power and bandwidth for OV to Rs-RSU respectively. N is denoted as
the power of the Gaussian noise. In V2V scenario, the offloading transmission
rate for OV i to VEN j is

rij(t) = Bj log2

(
1 +

Pj · 10−PLj(dij(t))/10

N

)
, (2)

where PLj(dij(t)) represents the distance between the OV i and the VEN j,
which calculation method is referenced in [18], and dij(t) represents the distance
between the OV i and the VEN j in kilometres in time slot t. Pj and Bj represents
the transmit power and the bandwidth for OV i to VEN j respectively. Thus,
the transmission delay for OV i to offloading object is

Tio(t) = (1 − αi(t)) · xi(t)Wi(t)
Xrir(t)

+ αi(t) · xi(t)Wi(t)
Xrij(t)

. (3)

2.2 Computation Model

The offloading subtasks processing time of OV i shown is

TP
io (t) = (1 − αi(t)) · Zi(t)xi(t)Wi(t)

XCir(t)
+ αi(t) · Zi(t)xi(t)Wi(t)

XCij(t)
, (4)
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where Cir(t) and Cij(t) represent the computing resources allocated to OV i by
Rs-RSU r and VEN j in time slot t, respectively. And the processing time of
locally executed task can be computed as

TP
il (t) =

(X − xi(t))Zi(t)Wi(t)
XCi(t)

, (5)

where Ci(t) denotes the computing capability of OV i. Due to the time variability
of the IoV, we assume that the computing resources obtained by OVs from ENs
in each time slot are random. Local processing is the same. Thus, the total
processing time of OV i can be formulated as follows:

TC
i (t) = max{Tio(t) + TP

io (t), TP
il (t)}. (6)

3 Problem Formulation

We aim to minimize the OVs’ total processing delay and improve service relia-
bility for OVs. To evaluate service reliability, we rule task processing failure if
the result returns failure or the total processing delay of the task exceeded the
maximum tolerated delay Tmax. We introduce a binary variable Fi(t) to indicate
whether OV i has failed to processed or not, Fi(t) = 1 represents task process-
ing succeeded, Fi(t) = 0 represents processing failed. Then, in order to reduce
the probability of offloading failure, we introduce task migration mechanism.
The proposed offloading scheme is described in detail in Algorithm 1. Thus, we
model the above problem as a utility maximization problem and denote it as:

max
x,α

T∑
t=1

(
Wi(t)
TC

i (t)
· Fi(t) + γWi(t) · (1 − Fi(t))), (7)

s.t. C1: α = {0, 1}, C2: n ≤ 1, C3: TC(t) ≤ Tmax,

C4:
N∑

i=1

αi(t)Cir(t) ≤ Cr, C5:
N∑

i=1

(1 − αi(t))Cij(t) ≤ Cv,

C6: Ci(t) ≤ Cv, C7: N + V = Vtotal,

where γ is the penalty factor for the case when the computing service fails. Vtotal

is the total number of vehicles. In particular, we use task processing speed to refer
to the total processing delay. In the set of constraints, constraint C1 guarantees
OV i must select RSU or VEN as offload object. Constraint C2 make sure that
the result migration can occur at most once. Constraint C3 ensures that the
total processing delay must be less than the maximum tolerated delay, or the
offloading fails. Constraints C4, C5 and C6 ensure that the sum of computing
resources obtained by all OVs in time slot t is less than the computing resources
provided by RSU and vehicle. Constraint C7 ensures that the sum of OVs and
VENs remains the same.
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Algorithm 1. Distributed vehicle-road cooperative offloading scheme with task
migration
1: Get αi(t), xi(t) by MADQN
2: Calculate the transmission delay Tio(t) in (3), the offloading subtasks processing

time TP
io (t) in (4) and the total processing time TC

i (t) in (6)
3: if TC

i (t) < Tmax then
4: if αi(t) == 0 then
5: if Task Hi(t) processing is complete and the OV i is still within Rs-RSU r

communication range then
6: No task migration required and Fi(t) = 1
7: else
8: The processing results of the task to be migrated to the next Mig-RSU m
9: if OV i is within communication range of the Mig-RSU m then

10: Fi(t) = 1
11: else
12: Fi(t) = 0
13: end if
14: end if
15: else
16: if Task Hi(t) processing is complete and the OV i is still within VEN j

communication range then
17: No task migration required and Fi(t) = 1
18: else
19: The processing results of the task need to be migrated from VEN j to the

nearest Mig-RSU m
20: if OV i is within communication range of the Mig-RSU m then
21: Fi(t) = 1
22: else
23: Fi(t) = 0
24: end if
25: end if
26: end if
27: else
28: Fi(t) = 0
29: end if

4 MADQN-Based Offloading Strategy

In order to solve the above problems effectively, we adopt Deep Q-learning Net-
work (DQN) [19] to find the optimal solution with large state-space, because the
traditional dynamic optimization problem is difficult to deal with the problem
with unknown state transition probability and the large state-action space. We
propose two MADQN algorithms, namely self-interested DQN and cooperative
DQN to solve the multi-vehicle task offloading problem.

We consider a timeslot-based process and assume the driving behavior of
OVs can be considered as a Markov decision process (MDP) with finite hori-
zon, which is defined by a tuple (S,A,T,R). S represents the set of possible
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system states, the state for OV i in time slot t can be calculated as
Si(t) = {Cir(t), Cij(t), rir(t), rij(t), Ci(t),Wi(t),Hi(t),X}. A represents the set
of actions, the action taken by the OV i in time slot t is expressed as ai(t) =
{αi(t), xi(t)}. T = {p(St+1|St, at)} is the set of transition probabilities, and R

is the reward function. To maximize total utility, we define the reward function as
Ri(sit, ait) = (Wi(t)/TC

i (t)) · Fi(t) + γWi(t) · (1 − Fi(t)).

Algorithm 2. Multi-agent deep Q-learning network
1: Initialize DQN-networks for all OVs randomly
2: for each episode do
3: Update OVs and VENs location
4: for each time slot t do
5: for each OV i do
6: Observe Si(t)
7: Choose action ai(t) with ε-greedy policy
8: Perform action ai(t) to observe reward Ri(t) and next state Si(t + 1)
9: Updated VENs and RSUs computing resources

10: end for
11: for each OV i do
12: if Self-interested MADQN then
13: Store (Si(t), ai(t), Ri(t), Si(t + 1)) in experience replay pool Di

14: else
15: Store (Si(t), ai(t),

∑N
i=1 Ri(t), Si(t + 1)) in experience replay pool

16: end if
17: end for
18: for each OV i do
19: Sample random minibatch from Di

20: Perform a gradient descent step on (8) to optimize error between Q-network
and learning targets

21: end for
22: end for
23: end for

4.1 DQN Algorithm

In the IoV, due to the large number of environment states, we have to employ a
deep neural network (DNN) to approximate the Q-function. In order to approx-
imate the Q-table, we need to train the neural network by sample, which
is selected from the experience replay pool and θ that is the set of weight
parameters of every layer of the network. The value function can be expressed
as Q(st, at, θ). The storage format of data in the experience replay pool is
(st, at, Rt, st+1), which contain the current state, current action, current reward
and next state. Each time updating parameters, a batch of stored experience
chosen randomly from the replay memory is used as samples to train the net-
work. To update the network, by taking minimum mean square error, we define
a loss function as

Lt(θt) = E[(Qtarget
t − Q(st, at|θ))2], (8)
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where Qtarget
t is the target value that represents the optimization object of the

predict network. Nevertheless, if we use the same DNN to obtain the target value,
the optimization object will be changed with the parameter θ at each iteration.
Therefore, we apply the target network which has the same structure with the
predict network, except that the parameter update of the target network θ− is
tcopy time slots later than that of the predict network. So we can calculate the
target value Qtarget

t = E[Rt + λQ(st, arg maxat+1 Q(st+1, at+1|θ−))].
For each state, the algorithm selects an action through the predict network.

The predict network evaluates the value after each possible action, then the best
action based on predicting result will be taken with possibility 1 − ε.

Fig. 2. The framework of two MADQN algorithms.

4.2 MADQN-Based Solution

In MADQN, each OV learns strategies based on its own actions and treats other
vehicles as part of the environment [20]. The framework of the two algorithms is
shown in Fig. 2. The difference between the two MADQN algorithms lies in the
calculation design of the reward function:

– Self-interested MADQN: Each OV is selfish, that is, they independently max-
imizes its own reward function. For this reason, the reward function in time
slot t shown is Ri(t) = Wi(t)/TC

i (t) · Fi(t) + γWi(t) · (1 − Fi(t)).
– Cooperation MADQN: The objective of each OV is to maximize the sum of

the reward of all OVs in slot t, all OV’s have the same reward, expressed as

Ri(t) =
∑N

i=1

{
Wi(t)/TC

i (t) · Fi(t) + γWi(t) · (1 − Fi(t))
}

.

The details of MADQN are summarized in Algorithm 2.

5 Simulation Results

In this section, we make a numerical simulation to evaluate the performance of
our proposed scheme. We consider a 800 m long freeway with 5 RSUs deployed
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along by the one side of the road. The distance between RSUs is 150 m and the
coverage radius of RSU is 100 m. The OVs has a average speed of 108 km/h and
generates tasks every 10 milliseconds. The amount of computation tasks in each
time slot follow the uniform distribution on [2, 8] KB. The number of computing
cycles required for the OVs to execute 1 bit data for the task is also random in
each time slot, ranging from 5 to 10. The VENs travels at a average speed of
90 km/h. Other key parameters are summarized in Table 1.

Table 1. The simulation parameters.

Parameters Definition Typical Values

Br, Bj The bandwidth reserved for vehicle i to RSU r and VEN j 1, 0.5MHz

Pr, Pj The transmit power for vehicle i to RSU r and VEN j 20, 14 dBm

f The carrier frequency 2GHz

N The power of the Gaussian noise −100 dBm

Cr, Cv The computing capability of RSU r and vehicle j 80, 120MHz

Rr, Rj The communication radius of RSU r and VEN j 100, 50m

Vtotal The total number of vehicles on the road 30

D The size of the replay memory 20000

E The training episodes 500

α The learning rate 0.01

(a) N = 1. (b) N = 5. (c) N = 10

Fig. 3. The influence of RSU computing capacity on the OVs’ average processing speed.

In order to verify the superior performance of our proposed scheme under
different offloading densities, we first get the optimal strategy by exhaustive
algorithm (EA), and then compare the performance of the proposed scheme
with the local processed (LP) scheme, random processed (RP), equal processed
(EP) scheme and maximum computing capability processed (MCCP) scheme on
average offloading speed and task processing failure probability when N = 1,
N = 5 and N = 10 respectively. In LP scheme, tasks are processed locally only.
In the RP scheme, the selection of offloading object and number of offloading
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subtasks is random. In EP scheme, offloading object are randomly selected, and
the number of uninstalled subtasks is the same as that of the remaining subtasks.
The MCCP scheme requires OVs select the EN with the strongest computing
capacity within its communication range as the offloading object. The number
of offloading subtasks is determined based on the ratio of computing resources
obtained by the OV from the offloading object and the local. Note that in all
offloading schemes, OVs are allocated resources in fixed order.

(a) N = 1. (b) N = 5. (c) N = 10.

Fig. 4. The influence of RSU computing capacity on the OVs’ failure percentage.

Figure 3 and Fig. 4 describe the task offloading performance of the offload-
ing schemes when the computing capacity of RSU from 80 MHz to 120 MHz.
As shown in Fig. 3, with the increasing computing capacity of the RSUs, the
average processing speed of offloading schemes increases. This is because when
the computing capacity gap between RSUs and vehicles is getting wider, OVs
is more inclined to offload tasks to RSUs, which reduces the task processing
delay. More importantly, the communication range of RSU is much higher than
that of vehicle. Compared with offloading task to VENs, the probability of task
offloading failure due to the limited communication range is significantly reduced
when the task is offloaded to RSU. Therefore, it can be seen from Fig. 4 that
the processing failure percentage of the offloading schemes decreases with the
increase of RSU computing capacity.

Figure 5 illustrates how the tasks size influences the offloading performance
of the offloading schemes when the tasks size from [4, 8] KB. It can be seen in
the figure that when the tasks size increases, the offloading failure percentage of
the offloading schemes will be improved.

As can be seen from the above simulation results, the performance of self-
interested DQN is significantly better than that of cooperative DQN, because in
the case of given computing resources, OVs does not need to maximize the overall
cumulative reward through the balance of resource allocation. In this case, max-
imizing each OV’s own reward is equivalent to maximizing the overall reward. In
addition, the self-interested DQN algorithm shows excellent performance under
different offloading densities, which further proves that our proposed offloading
scheme has strong generalization performance.
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(a) N = 1. (b) N = 5. (c) N = 10.

Fig. 5. The influence of tasks size on the OVs’ processing failure percentage.

6 Conclusions

In this paper, we propose a distributed vehicle-road cooperative offloading
scheme with task migration in order to reduce total processing time and improve
service reliability. The problem is formulated as a mixed-integer nonlinear opti-
mization problem, and we use the MADQN algorithm to solve the problem.
Simulation results verify the effectiveness of the proposed scheme. In the future,
we will take into account more complex vehicle driving scenario and the needs
of different on-board applications. In addition, random partitioning of tasks and
subtasks dependency will also be considered in order to be more in line with the
actual application scenarios.
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Abstract. The high-definition (HD) map is the foundation for
autonomous driving, which has a huge data volume and needs to be
updated frequently. To ensure low download latency, HD map contents
are usually pre-cached at roadside units (RSU) or vehicles. However,
the HD map contains a lot of dynamic data, and maintaining its fresh-
ness is crucial for ensuring driving safety, which is ignored by the exist-
ing HD map caching methods. In this paper, we propose a freshness-
aware HD map caching method to minimize both download latency and
loss of freshness. First, we introduce a cost function to incorporate both
the download latency and the loss of freshness. Next, we formulate the
HD map caching problem as an optimization problem to minimize the
total cost. To reduce computation complexity, we decompose the origi-
nal problem into two subproblems. Consequently, we propose a freshness-
aware vehicle request algorithm to optimize vehicle request decisions and
then leverage a distributed multi-agent multi-armed bandit (MAMAB)
algorithm to make optimal caching decisions. Finally, simulation results
verify that the proposed freshness-aware HD map caching method out-
performs other baseline methods.

Keywords: High-definition map · Edge caching · Freshness · Internet
of vehicle · Multi-agent multi-armed bandit

1 Introduction

Autonomous driving is an important application to the Internet of Vehicles
(IoV). In order to meet safety and accuracy, high-definition (HD) maps with
precise and rich semantic information about roads are important for correct
path planning and driving decision-making [1]. HD maps have a huge data vol-
ume and contain many dynamic data. For instance, the amount of HD map data
used by Google reaches 1 GB/mile [2]. Therefore, it is infeasible to pre-cache all
HD maps on the vehicles. Furthermore, vehicles in the same area may request
the same HD maps, which imposes tremendous pressure on the backhaul link,
resulting in unacceptable latency.

In order to reduce the download latency, the HD maps can be pre-cached
in the roadside unit (RSU) by using the edge caching technology [3]. If the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 273–284, 2022.
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content popularity within the serving area of RSUs is known to follow a partic-
ular distribution, such as Zipf distribution [4], we can cache the contents with
high popularity at RSUs to maximize the cache hit rate and reduce download
latency [5]. In [6], the authors predicted content popularity based on historical
vehicle requests through the long short-term memory (LSTM) algorithm. Due to
the high mobility of vehicles, the popularity of content changes frequently and
is usually difficult to be accurate predicted. Therefore, Yu et al. [7] proposed
to predict vehicle requests using federated learning, based on which the caching
decision is made. Zhao et al. [8] proposed to estimate the future connected RSUs
using data traces based on vehicle mobility. The authors in [9] considered the
dynamic of HD maps and proposed a distributed algorithm to optimize the cache
strategy of RSUs. However, due to the limited cache capacity of RSU, it cannot
cache all the requested contents.

Inspired by the increasing computation and storage resources of vehicles,
some researchers proposed to cache HD maps in both RSUs and vehicles. In this
case, the vehicles can fetch HD maps via vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication to further reduce download latency and
alleviate the burden on the backhaul link [10]. The authors in [11] proposed a
method to first decide the request decisions through a matching method and
then based on the request decisions to determine cache placement to minimize
the average download latency. Liu et al. [12] proposed to form a platoon of
vehicles requesting the same HD maps, and Wu et al. [13] designed a cluster-
based strategy, where vehicles can fetch HD maps via V2V or V2I. In [14],
the authors proposed a method in that vehicles can fetch HD maps from their
opposite vehicles. However, the HD map contains a lot of dynamic data, such as
the position, direction, and speed of pedestrians and vehicles, which is crucial
for real-time driving decisions. Additionally, the freshness of dynamic HD maps
plays an important role in making the driving decisions, but dynamic HD maps
cached in vehicles suffer a loss of freshness compared to those cached in RSUs
and the cloud, which is ignored by the previous methods. It may lead to reduced
driving safety.

To address these problems, in this paper, we propose an efficient HD map
caching strategy to achieve low latency while ensuring the freshness of HD maps.
The main contributions of this article are summarized as follows.

• We present a freshness-aware HD map caching method to minimize both
download latency and loss of freshness. We introduce a cost function to balance
download latency and loss of freshness. The HD map caching problem is then
formulated as an optimization problem to minimize the total cost.

• We decompose the formulated problem into two subproblems: a vehicle
request problem and a caching placement problem. Then, we design a freshness-
aware vehicle request algorithm to make optimal vehicle request decisions. Next,
we propose a distributed caching approach based on a multi-agent multi-armed
bandit (MAMAB) algorithm to determine the optimal caching decisions of RSUs.
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• We verify the proposed method with simulations on the Simulation of
Urban MObility (SUMO) platform. Simulation results show that the proposed
method can better ensure data freshness and low latency.

The remainder of the paper is structured as follows. We introduce the system
model in Sect. 2. In Sect. 3, the problem formulation is presented. Our proposed
method is detailed in Sect. 4. Section 5 shows the simulation results. Finally, we
conclude this paper in Sect. 6.

2 System Model

2.1 HD Map Model

The HD map contains two layers, i.e., the basic layer and the advanced layer.
Each layer contains both static and dynamic information, which are used in dif-
ferent driving control functions [9]. Specifically, the basic layer can be used for
low-level path planning, and the combination of the basic layer and advanced
layer can be used for high-level driving decision-making. Generally, the HD map
can be divided into four sub-maps with different data types and update fre-
quency [15], i.e., basic layer with static information fbs and dynamic information
fbd, advanced layer with static information fas and dynamic information fad, as
shown in Table 1. Each sub-map is seen as a file, and the file set can be denoted
as F = {fm,bs, fm,bdfm,as, fm,ad}M

m=1. Each sub-map f has the same data size
denoted as sf .

Table 1. The components of HD map.

Layer Data style Data content Update frequency

Basic layer Static landmark data road facilities, surrounding

buildings, trees, etc.

Months

Dynamic traffic data Congestion, temporary speed

limit, etc.

Seconds or minutes

Advanced layer Static road data Road and lane details

(curvature, slope, etc.)

Days or months

Real time environment data Speed, position and direction

of pedestrians and vehicles

Seconds

2.2 System Overview

The IoV network considered in this paper is shown in Fig. 1, which consists
of a remote cloud server, M cached-enabled RSUs, and V vehicles scattered
around a geographic region. The sets of RSUs and vehicles are denoted as M =
{1, 2, ...,M} and V = {1, 2, ..., V }, respectively. We consider a finite time horizon
T that contains T time slots. The whole region is divided into M blocks, which
is covered by one RSU. The set of vehicles that can be served by RSU m at time
slot t is denoted as Vt

m.
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Fig. 1. Vehicle network model.

Each block has an individual HD map, and all the HD maps are stored in the
cloud server. The maximum storage space of the RSUs is S. Moreover, RSU m
can only communicate with the vehicles located in its own block. In each time
slot, RSUs update their caching decision and retrieve the missing sub-maps from
the cloud via a high-speed backhaul link. The vehicle fetches the required sub-
maps from the cloud server or a RSU via the V2I link, or from the neighboring
vehicles via the V2V link. Different spectrum resources are allocated to V2I links
and V2V links to avoid interference. Let βt ∈ {0, 1}M×F denote the caching
decision of RSUs in time slot t, where βt

m,f = 1 means that sub-map f is cached
in RSU m in time slot t and βt

m,f = 0 otherwise. Let αt ∈ {0, 1}V ×F denote
the caching decision of vehicles, where αt

v,f = 1 means sub-map f is cached in
vehicle v in time slot t and αt

v,f = 0 otherwise. The set of vehicles that can
communicate with vehicle v in time slot t is denoted as It

v = {1, 2, · · · ,K}.
When vehicle v drives on block m in time slot t, it has to make path planning

and driving decisions. The path planning is a low-level control, thus, vehicle v
needs to obtain the basic layer fbs and fbd for blocks among all possible paths
from its current driving block to its destination block, which is denoted as F t

v,l.
Driving decision making is a high-level control, and hence vehicle v needs to
obtain basic and advanced layers for its current driving block and possible next
arrival block, which is denoted as F t

v,h. In time slot t, the set of sub-maps vehicle
v required is N t

v = F t
v,l+F t

v,h. Let U t
v denote the set of sub-maps that the vehicle

v has already cached locally in time slot t. Thus, the set of sub-maps vehicle v
needs to request in time slot t is

Qt
v = N t

v − U t
v. (1)
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We use the age of information (AoI) to characterize the freshness of sub-
maps [16]. The AoI of sub-map f in vehicle v in time slot t is denoted as at

v,f ,
which is defined as the number of time slots since the vehicle v receives dynamic
sub-map f until time slot t. Note that for static sub-maps, we have at

v,f = 0.
We set a threshold τ for at

v,f . If at
v,f exceeds τ , sub-map f is considered to be

stale and needs to be removed from the vehicle’s local cache. Therefore, U t
v is

updated as
U t

v = U t−1
v

⋃
Qt−1

v − εt
v −

(
N t−1

v − N t
v

)
, (2)

where εt
v is the set of stale sub-maps, and

(
N t−1

v − N t
v

)
is the set of sub-maps

that are no longer needed by vehicle v in time slot t.

2.3 Cost Function

To ensure driving safety, both download latency and freshness loss need to be
considered.

1) Download Latency: The V2I bandwidth of RSU m is equally distributed
to the vehicles in Vt

m. Therefore, the download latency of vehicle v fetching a
sub-map from RSU m is

dt
v,m,f =

sf

Bm,v log2

(
1 + Pm·gm

N

) , (3)

where Bm,v is the wireless bandwidth between RSU m and vehicle v, Pm is the
transmission power of RSU m and gm is the channel gain. The download latency
of vehicle v fetching a sub-map from vehicle k, k ∈ It

v is

dt
v,k,f =

sf

Bv log2

(
1 + Pk·gk

N

) , (4)

where Bv is the bandwidth of the V2V link, Pk is the transmission power and
gk is the channel gain. The download latency vehicle v fetching a sub-map from
the cloud server is

dt
v,0,f =

sf

B0 log2

(
1 + P0·g0

N

) , (5)

where B0 is the bandwidth of between the cloud server and vehicle v, P0 is the
transmission power and g0 is the channel gain.

2) Freshness loss: We define the freshness loss of vehicle v fetching a sub-
map f from vehicle k in time slot t as

ltv,k,f =

{
at
k,f

10τ , if k ∈ It
v and at

k,f ≤ τ,

0, otherwise,
(6)

Since sub-maps cached in the cloud server and RSUs are updated in each time
slot, thus, the freshness loss via V2I communication is ltv,0,f = 0 and ltv,m,f =
0, m ∈ M.



278 Q. Hao et al.

In order to strike the balance between these download latency and freshness
loss, we define the cost function of vehicle v fetching a sub-map f from the place
i as

Ct
v,i,f = ω · dt

v,i,f + (1 − ω) · ltv,i,f , i ∈ {0} ∪ M ∪ V, (7)

where ω ∈ [0, 1] is a weight factor. A higher ω value means we emphasize more
on the download latency.

3 Problem Formulation

Let X t ∈ {0, 1}V ×(M+V +1)×F denote the request decisions of vehicles in time
slot t. xt

v,k,f = 1 indicates vehicle v requests sub-map f from vehicle k via V2V
communication in time slot t, and xt

v,k,f = 0 otherwise. xt
v,m,f = 1 indicates

vehicle v requests sub-map f from either the cloud server or RSU m via V2I
communication in time slot t, and xt

v,m,f = 0 otherwise. Therefore, the cost of
vehicle v in block m fetches sub-map f in time slot t is

Dt
v,m,f =xt

v,m,f

[
βt

m,fCt
v,m,f +

(
1 − βt

m,f

)
Ct

v,0,f

]
+

∑

k∈It
v

xt
v,k,fαt

k,fCt
v,k,f .

(8)
Our goal is to select proper caching decision βt and vehicle request decision

X t to minimize the total cost, which can be formulated as an optimization
problem as

P1: min
xt,βt

M∑

m=1

∑

v∈Vt
m

∑

f∈Qt
v

Dt
v,m,f

s.t. xt
v,k,f ≤ αt

k,f , (9a)
∑

k∈It
v

xt
v,k,f + xt

v,m,f = 1, (9b)

∑

f∈F
βt

m,fsf ≤ S, (9c)

βt
m,f ∈ {0, 1} , xt

v,k,f , xt
v,m,f ∈ {0, 1} , (9d)

Constraint (9a) indicates that vehicle v cannot request sub-map f from vehi-
cle k without sub-map f . Constraint (9b) means that vehicle v can only get one
copy of sub-map f . Constraint (9c) indicates the size of all the cached maps in
RSU m should not exceed its maximum storage capacity.

4 Freshness-Aware HD Map Caching Algorithm

It is intractable to solve P1 directly due to its huge solution space and tight
coupling between the caching decision and the vehicle request decision. There-
fore, in the following, we decompose the original problem into two subproblems:
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the vehicle request problem and the caching placement problem. First, given a
fixed caching strategy βt, we derive an efficient algorithm to obtain the optimal
xt

o. Next, we solve the caching placement problem with distributed MAMAB
algorithm based on the obtained request decision xt

o.

4.1 Freshness-Aware Vehicle Request Algorithm

We assume that RSUs cache all the HD sub-maps and make decisions in each
time slot, i.e., βt = 1, then the cost of vehicle v fetches f in time slot t can be
simplified as

D
′t
v,m,f = xt

v,m,fCt
v,m,f +

∑

k∈It
v

xt
v,k,fαt

k,fCt
v,k,f . (9)

Therefore, the optimization problem can be rewritten as follows:

P2: min
xt

M∑

m=1

∑

v∈Vt
m

∑

f∈Qt
v

D
′t
v,m,f (10)

s.t. (9a), (9b),

xt
v,k,f , xt

v,m,f ∈ {0, 1} .

Note that P2 is an integer linear programming (ILP) problem, which can be
solved by conventional ILP algorithms, e.g., branch and bound (B&B) algorithm.
However, there are k + 1 possible request cases for each sub-map f , thus, the
worst-case time complexity of B&B algorithm is O

(
(k + 1)|Qt

v|
)
.

In order to reduce complexity, we solve P2 with a matching-based freshness-
aware vehicle request algorithm, which is detailed in Algorithm 1. The proposed
algorithm works as follows. First, for vehicle v in the coverage area of RSU m,
we calculate the cost of fetching sub-map f from the RSU m, i.e., Ct

v,m,f , and
that from vehicle k if αt

k,f = 1, i.e., Ct
v,k,f . Then, for vehicle k, we obtain the

difference of the costs ΔLt
k = Ct

v,m,f − Ct
v,k,f , k ∈ It

v. If ΔLt
k > 0, vehicle

k will be added to the candidate set ψt
v of vehicle v. The vehicles in ψt

v are
ranked in desceding order by the cost difference ΔLk. If ψt

v = ∅ or ΔLk ≤ 0,
we set xt

v,m,f = 1, which means vehicle v fetches sub-map f from RSU. Finally,
we find the maximum cost difference in the candidate set ψt

v and determine
whether vehicle v fetches sub-map from the corresponding vehicle according to
the average cost of vehicles on the block m, until convergence.

4.2 Distributed MAMAB-Based Caching Algorithm

Compared with fetching a sub-map from the cloud, the delay of fetching a sub-
map from the RSU is smaller. For a sub-map f , the more vehicles in block m
fetch it via V2I, the more cost will be reduced by caching it at RSU m. We define
the reward of RSU m caching sub-map f at time slot t as

rt
m,f =

∑

v∈Vt
m

I(f,Gt
v,m), (11)
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Algorithm 1. Freshness-Aware Vehicle Request Algorithm
Input: B0, Bv, Bm and vehicle caching variable α0

Output: vehicle request decision
1: Initialize the vehicle request variable.
2: for m = 1, 2, ..., M do
3: Calculate the cost for vehicle v ∈ V t

m to download sub-map from RSU m and
each vehicle in It

v.
4: while the search for V t

m or It
v is not complete do

5: Calculate the difference of the costs ΔLk = Ct
v,m,f − Ct

v,k,f .
6: Vehicles that satisfy (9a) and ΔLk > 0 will be included in ψv.
7: Rank the elements of ψv in descending order by ΔLk.
8: Find the maximum cost difference in ψv of vehicle v.
9: Update total cost Ctotal(w) of vehicles in V t

m fetching sub-map in iteration w.

10: if Ctotal(w) ≤ Ctotal(w − 1) then
11: Update the preference list of vehicle v
12: else
13: Save the vehicle request decision for iteration w − 1.
14: end if
15: end while
16: end for
17: return the vehicle request decision

where Gt
v,m means the sub-maps that vehicle v needs to request from RSU m in

time slot t. I(f,Gt
v,m) = 1 if f ∈ Gt

v,m, and I(f,Gt
v,m) = 0 otherwise. Instead of

minimizing the total cost, we reformulate the caching problem into a MAMAB
problem with the aim of maximizing the total reward, which is defined as

P3: max
βt

T∑

t=1

M∑

m=1

∑

f∈F
βt

m,frt
m,f (12)

s.t. (9c),

βt
m,f ∈ {0, 1} .

As the number of RSUs increases, the action space will be too large, resulting
in additional delay by the traditional centralized approach. Additionally, there is
extra communication overhead between RSUs and the central controller. Thus,
we adopt a distributed MAMAB approach in which each RSU is considered as an
agent and the sub-maps are arms. The Upper Confidence Bound (UCB) method
is adopted to obtain the tradeoff between exploration and exploitation. First,
each RSU m caches sub-maps randomly until each sub-map f is cached once.
Then we update the number of times that sub-map f is cached in RSU m, which
is denoted as J t

m,f . Define the average reward of caching sub-map f in RSU m
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Algorithm 2. Distributed MAMAB-Based Caching Algorithm
Input: vehicle request decision xt, Gt

v

Output: cache decisions of RSUs
1: Each RSU caches sub-maps randomly until each sub-map is cached once.
2: Update the number of times sub-map f cached in RSU m J0

m,f = 1.
3: for t = 1, 2, ..., T do
4: for m = 1, 2, ..., M do
5: Calculate estimated reward R̂t

m,f of caching sub-map f .
6: Calculate the real reward rtm,f of caching sub-map f at RSU m.

7: RSU m optimizes caching strategy by max
∑F

f=1 βt
m,f R̂t

m,f with constraint
(9c).

8: Update the average caching reward according to the cache strategy.
9: if βt

m,f = 1 then

10: R̄t
m,f =

R̄t−1
m,f

Jt−1
m,f

+rtm,f

Jt−1
m,f

+1
and J t

m,f = J t−1
m,f + 1.

11: else
12: R̄t

m,f = R̄t−1
m,f and J t

m,f = J t−1
m,f .

13: end if
14: end for
15: end for
16: return the cache decisions of RSUs

at time slot t as R̄t
m,f . We define the estimated reward as

R̂t
m,f = R̄t−1

m,f +

√
3 log (γf

2t)
2J t−1

m,f

, (13)

where γ2
f is the upper bound on the reward of RSU m caching sub-map f .

When the number of explorations of the sub-map f is small, J t
m,f will be small.

Thus,
√

3 log(γf
2t)

2Jt−1
m,f

is large, and the probability of sub-map f being selected will

be high. This is the exploration process of sub-map f . When each sub-map
has been explored enough, the value of J t

m,f is large, and the main influence
is concentrated on R̄t

m,f , which is the exploitation of sub-map f . Each RSU
m optimizes its caching strategy by max

∑F
f=1 βt

m,f R̂t
m,f with the cache size

constraint. And then, update the average reward according to the cache strategy.

If βt
m,f = 1, R̄t

m,f =
R̄t−1

m,fJt−1
m,f+rt

m,f

Jt−1
m,f+1

and J t
m,f = J t−1

m,f + 1. Otherwise, R̄t
m,f =

R̄t−1
m,f and J t

m,f = J t−1
m,f . The details of the proposed algorithm are shown in

Algorithm 2.

5 Simulation Results

In this section, we evaluate the performance of the proposed method with Sim-
ulation of Urban MObility (SUMO) software. We consider a 1600 × 1600 m2
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Fig. 2. The total cost, average freshness loss and average download latency of different
methods with under the impact of (a) the RSU cache size and (b) the RSU bandwidth,
respectively.

grid road network with K=40 RSUs. Therefore, there are 160 sub-maps. The
size of each sub-map is sf = 100 Mbits and the cache size of each RSU S = 2
Gbits [9]. The bandwidth of a vehicle and the RSU are set to 50 and 150 MHz,
respectively. The communication range of a vehicle is set to 100 m. In addition,
the transmission power of a vehicle and RSUs are 300 mW and 2 W, respec-
tively. The gaussian channel noise and channel gain are set to 10−6 mW and
5 dB, respectively [17]. There are T = 20000 slots and the threshold τ = 5 time
slots. We set ω = 0.5. The following benchmarks are used for comparison.

• Caching without V2V [13]: each RSU caches sub-maps to maximize
the average caching reward without V2V collaboration. Distributed MAMAB
method is utilized to make the caching decisions.
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• Delay-Aware Caching [11]: vehicle request decisions are made to min-
imize the download latency without considering the freshness of dynamic sub-
maps. Both V2I and V2V communications are considered.

• Location-Aware Caching: each RSU caches sub-maps of the blocks from
the near to far until its cache size is full. The vehicle request decisions are
determined by Algorithm 1.

Figure 2(a) shows the total cost, average freshness loss and average download
latency of all the methods with the RSU cache size varies from 1 Gbits to 5
Gbits. As can be seen from the figure, the average freshness loss of caching
without V2V is the lowest, while its download latency is the highest. This is
because all the sub-maps are fetched from RSUs or the cloud platform. On the
contrary, the average freshness loss of delay-aware caching is the highest, while
its download latency is the lowest. This is because this method only considers
download latency when making vehicle request decisions. The average freshness
loss of location-aware caching is close to that of caching without V2V, which
proves the effectiveness of Algorithm 1. However, its average download latency
is the second highest, due to the fact that its caching decision is not optimized.
The proposed freshness-aware caching method achieves a trade-off between the
average freshness loss and the average download latency, and hence its total cost
is the lowest. We also observe that as the RSU cache size increases, the total
cost of all the methods decreases since more sub-maps can be fetched from the
RSUs.

The total cost, average freshness loss, and average download latency of the
four methods with different RSU bandwidth is shown in Fig. 2(b). Similar results
can be obtained which is consistent with that in Fig. 2(a). Again, the total cost
of the proposed freshness-aware caching method due to the same reason pre-
sented above. Moreover, as the RSU bandwidth increases, the download latency
of obtaining sub-maps via V2I is reduced, which can further reduce the total
cost.

6 Conclusion

In this paper, we proposed a freshness-aware HD map caching method to min-
imize both download latency and freshness loss in IoV. We introduced a cost
function to incorporate both factors and then formulated the caching problem
as an optimization problem to minimize the total cost. First, we designed a
freshness-aware vehicle request algorithm to optimize vehicle request decisions.
Next, distributed MAMAB algorithm is leveraged to make optimal caching deci-
sions for RSUs. Simulation results demonstrated that the proposed method out-
performs other caching methods. In practical scenarios, not all the vehicles are
willing to share their cache resources, therefore, a proper incentive mechanism is
needed to encourage vehicles to participate in the HD map caching and sharing
process. This is left as a future study.
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Abstract. In recent years, the dynamic environment on the Internet
of Vehicles led vehicular communication networks’ trust management
mechanism to become a research hotspot. Most of the existing trust
management in vehicular networks relies on a centralized third party.
However, it causes trust management to be limited to a single node
and has high requirements for device performance. In order to improve
the reliability of information exchanged between vehicles, we propose
a scalable blockchain-based trust management strategy, which employs
vehicle-related objective factors to evaluate the credibility of information
transmitted between vehicles to determine the vehicles’ trust level. We
also design a consensus mechanism to make all RSUs (Roadside Units)
maintain a consistent and reliable distributed ledger as nodes so that
vehicles can obtain global trust information more quickly during inter-
action to improve its reliability. The security and performance analysis
shows that our strategy has high reliability and availability.

Keywords: Blockchain · Vehicular networks · Trust management ·
Consensus mechanism

1 Introduction

With the development of 5G technology and smart car, the Internet of Vehi-
cles (IoV) has undergone a huge transformation. In today’s vehicular networks,
vehicles obtain various information such as road or surrounding vehicle condi-
tions by communicating with surrounding vehicles (V2V, Vehicles to Vehicles)
or communicating with surrounding infrastructures (V2I, Vehicles to Infrastruc-
tures) to improve the efficiency and safety of vehicles driving [1]. Ensuring secure
and trusted communication in vehicular networks is complex due to numerous
uncertain threats, such as low-quality and false information.

Due to the high variability of the vehicular networks’ topology, the vehicles
that conduct V2V communication are likely to be completely unfamiliar. The
reliability of messages sent between strange vehicles cannot be ensured, which
may lead to the spread of false information and cannot be resolved. It will pose a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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threat to the traffic situation [2]. Therefore, it is necessary to propose an effective
trust model to improve the reliability of the interaction between vehicles.

The current trust models applied to vehicular networks are divided into
entity-oriented (vehicle), data-oriented (message), and hybrid trust models
according to different evaluation objects [3]. Even a high-confidence entity can
threaten the system if the message sent is fake because the entity may send fake
messages for selfish or malicious purposes [4]. Hence, it is necessary to evaluate
the message’s authenticity. In many state-of-the-art solutions, the vehicle judges
whether the information received is trustworthy, providing a basis for network
operators to reward and punish specific vehicles [5].

Existing trust management strategies are roughly divided into centralized
and decentralized. For the centralized [6], trust management tends to rely too
much on a single authority or infrastructure, and this causes many problems in
terms of communication costs and data tampering or leakage. For the decentral-
ized [7], the RSU acts as the role of computing and synchronizing data. However,
this also leads to new problems, such as the inconsistent trust data affecting the
quality of V2V service.

Blockchain provides a decentralized distributed ledger that allows multiple
parties that do not trust each other to conduct transactions without the need
for a central third party, ensuring the transparency and traceability of transac-
tion data while protecting the integrity and security of data. In vehicular net-
works, RSUs are usually distributed, and the blockchain is maintained through
multiple RSUs to synchronize information to achieve trust management. Any
single transaction is verified by entities in the P2P (Peer-to-Peer) network, then
packaged into blocks and updated to the chain according to the established
consensus mechanism [8]. When there are malicious vehicles or faulty RSUs,
trust evaluation and consensus mechanism ensure the system’s normal opera-
tion. Consensus mechanisms may also face problems affecting the system, such
as blockchain forks, high latency caused by excessive computing power require-
ments, and monopolizing miners’ election results. Therefore, a reliable consensus
mechanism that conforms to the vehicular network and enables multiple nodes
to maintain trust data consistently is required, combined with a trust evaluation
method that improves trust management in reliability and availability. The main
contributions are summarized as follows:

– A decentralized and scalable trust management framework in vehicular net-
works, vehicles make use of objective factors (time, location, historical trust)
to evaluate the credibility of each other. The evaluation results are uploaded
to the RSU to calculate and update the vehicles’ trust value.

– A joint Proof-of-Stake (PoS) and Practical Byzantine Fault Tolerance
(PBFT) consensus mechanism, all RSUs in a certain area jointly maintain
a consortium blockchain, some RSUs will validate the block, and all RSUs
synchronize the trust data according to the consensus mechanism.

– Evaluating the security properties and performance of the trust management
strategy proves that the scheme has high reliability and availability.
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2 Related Work

Utilizing blockchain technology with a consensus mechanism can solve the prob-
lems with centralize and decentralize. Articles combining trust management with
blockchain usually rely on multiple RSUs or edge servers to maintain the trust
information. In [5], RSUs calculate the vehicles’ trust value offset and follow the
joint PoS and PoW consensus mechanism to update the trust information. That
is to say, the greater the variation of the vehicles’ trust value offset in the area, the
easier it is for RSU to complete the PoW (find the nonce) and update the block. In
[9], the certificate issuance and revocation mechanism are used for vehicles. RSUs
follow a dynamic PoW consensus mechanism. The higher the traffic flow in the
coverage area, the easier it is to find the nonce to reach a consensus. The authors
of [10] proposed that RSUs globally maintain the trust scores calculated by adja-
cent vehicle nodes with each other through the PBFT protocol.

However, the above articles cause new problems. Some transactions are not
guaranteed to update the blockchain successfully due to forks. The hash value
computing also has high requirements on the device. The current consensus
mechanism may have a high delay due to the consensus reached after multi-party
verification. Besides, the equipment with high performance may monopolize the
right to produce blocks in the blockchain network. The above problems may lead
to data loss or tampering.

Fig. 1. Overall framework

3 System Model

3.1 Overall Framework

The overall framework of our proposed vehicular network trust management is
shown in Fig. 1. The functions of each part are as follows:
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Vehicle. Participants in the vehicular networks communicate with surrounding
vehicles and RSUs. The vehicle senses the surrounding traffic conditions or events
and sends them to surrounding vehicles through V2V communication.

RSU. It is mainly responsible for 1) collecting the evaluation results of mes-
sages of surrounding vehicles from the receiving vehicle and 2) calculating the
surrounding vehicles’ trust value according to the evaluation results. 3) Several
RSUs in a certain range maintain the blockchain to ensure data consistency.

Besides, the overall framework of this paper consists of three layers:

Vehicular Network Layer. This layer consists of RSUs and vehicles equipped
with onboard sensors, computing and communication equipment. When a vehi-
cle enters the communication range of an RSU, it interacts with the RSU as
a user node. Trust information is stored in RSUs. The vehicle obtains the sur-
rounding vehicles’ trust information by accessing the RSU and employs the trust
information to determine whether the vehicle is a trusted entity.

Blockchain Client Layer. RSUs are both clients and consensus nodes that
participate in the consensus. The client RSU requests consensus after packaging
the multiple vehicles’ trust value in the coverage area for a period of time.

Blockchain Consensus Layer. According to our proposed joint PoS and
PBFT consensus mechanism, the trust information block is validated by valida-
tor nodes selected according to the stake and then updated to the blockchain.

3.2 Overall Flow

Figure 2 shows the overall flow of trust management for vehicular networks.
First, vehicle A requests to communicate with vehicle B, and vehicle B queries
the historical trust value of vehicle A from RSU and the blockchain. After RSU
returns the trust value, vehicle B judges whether it can communicate with vehicle
A according to the trust value. If possible, vehicle A sends a message to vehicle
B. Then, vehicle B evaluates the message’s credibility and uploads the evaluation
result to RSU. Next, according to the evaluation results, RSU calculates vehicle
A’s trust value. Finally, an RSU packages multiple vehicles’ trust value to initiate
a consensus request.

Fig. 2. The overall flow between vehicles, Rsu and blockchain in an information service
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4 Detailed Methodology

4.1 Message Credibility Evaluation

After the vehicle receives messages from the surrounding vehicles, the messages’
credibility is evaluated. First, the message sent by the sender will contain infor-
mation such as IDi, IDj , Reportn, addri, timei. IDi, IDj are the unique identi-
fiers of message sender and receiver, respectively. Reportn is a related report on
event n. addri is the location where the vehicle sends the message, and timei is
the timestamp when it sent the message. Each message receiver maintains a set
E of event reports, in which m events described in different messages are divided
into <E1, E2, . . . , Em> according to the messages sent by surrounding vehicles,
each subset En contains reports <r1n, r2n, . . . , ra

n> of events n from surrounding a
vehicles. As the sender who reports the event closer to the place and time of the
event happens has higher credibility, the messages sent by vehicles with higher
historical trust value are more trustworthy. Therefore, we consider three factors
(distance, time, historical trust value) to calculate the message’s credibility of
surrounding vehicles in Eq. (1).

eb
n(Δd,Δt, T ) = eDistance+Time+curTrust

s.t. Distance = μ1 − ω1 |sin(Δd)|
Time = ω2 |Δt|

curTrust = ω3T

(1)

where eb
n ∈ (0, 1], denotes the credibility of the message reported by vehicle b to

event n. Δd is the distance between the message sender and the incident location,
Δt indicates the time difference between the vehicle reported and the event
occurred, T represents the current trust value of message sender, and ω1, ω2, ω3

represent the their respective weights. Through the calculation, the credibility
set en = <e1n, e2n, . . . , ea

n> of reports of event n sent by multiple surrounding
vehicles is obtained, and the event’s credibility α is also subsequently obtained
by combining with Bayesian Inference [5,11] as follows:

P [α|e] =

P [α] ·
N∏

b=1

P [eb|α]

P [α] ·
N∏

b=1

P [eb|α] + P [ᾱ] ·
N∏

b=1

P [eb|ᾱ]

(2)

where P [α|e] ∈ [0, 1], ᾱ is the mutually exclusive event of event α, P
[
eb|α]

is
the probability that sender b confirms event α when α occurs, and P [α] is the
prior probability that event α occurs. We assume that an event is true only when
P [α|e] is greater than 0.5; otherwise, it is considered fake. According to Eq. (2),
the evaluation result of the event’s authenticity is obtained. Subsequently, it
concluded whether the event reports sent by surrounding vehicles were credible.
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4.2 Trust Value Calculation

When a message receiver completes the evaluation, the evaluation information
was packaged in the form of (IDi, IDj , Reportn, credible/incredible), where
credible/incredible represents the evaluation result of report Reportn. Then,
upload information to the nearby RSU, which recalculates the vehicle’s trust
value according to Algorithm 1. If a vehicle’s trust value is not less than Vhigh,
or it broadcasts unreal messages maliciously many times, it will suffer a heavier
punishment and need to spread more real information to make up.

Algorithm 1 Trust value calculation
Input: (IDi, IDj , Reportn, credible/incredible),

curTj , the current trust value of vehicle j;
Output: Tj , the calculated trust value of vehicle j;

1: if Reportn ⇒ credible then

Tj =

⎧
⎨

⎩

Exit
curTj curTj == Vupperbound

reward(curTj) curTj ∈ [Vlow, Vupperbound)

2: else if Reportn ⇒ incredible and less than 3 times then

Tj =

⎧
⎪⎨

⎪⎩

Exit
p.high(curTj) curTj == Vupperbound

p.mid(curTj) curTj ∈ [Vhigh, Vupperbound)
p.low(curTj) curTj ∈ [Vlow, Vhigh)

3: else if Reportn ⇒ incredible and not less than 3 times then

Tj =

{
Exit

p.high(curTj) curTj ∈ [Vlow, Vupperbound]

4: else Exit;

5: return Tj ;

4.3 Consensus Mechanism

This section chooses to select validator nodes based on stake. The RSUs with the
fewest vehicles in the coverage area are selected as validators to participate in
the block validation. In other words, the traffic flow within the scope is used as
the stake to select validator nodes. In this way, RSUs with many vehicles in the
coverage area have to allocate resources to participate in the block validation
while performing calculations and communication can be avoided, improving
block generation efficiency. More importantly, reducing the number of validator
nodes avoids the low communication efficiency and high cost caused by excessive
validator nodes in the PBFT [12]. Similarly, using a highly variable objective fac-
tor (traffic flow) as a stake to select validator nodes prevents the election results
from being monopolized by the adversary who controls multiple shareholders
in the PoS [13]. The main steps of our proposed consensus mechanism are as
follows:

Validator Selection. First, the leader node is selected from n nodes in the
entire network. The leader sorts and broadcasts all the requests from client RSU
and packages trust information into blocks to initiate consensus. Then, according
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Algorithm 2 The selection of validators
Input: Rn−1, the set of each RSU nodes participating in the consensus;

Vn−1, the set of the number of vehicles covered by each RSU node;
Output: Rm, m RSU nodes with least vehicle in coverage range, Rm ∈ Rn−1;
Step1: Calculate the number of validator node

1: m = max(log(ξ · (n − 1)), mmin);

Step2: Select m validator nodes

1: for Vn−1,Rn−1 do
2: generate Vm, contains the smallest m values in Vn−1;
3: choose Rm from Rn−1 based on Vm;

4: return Rm

to Algorithm 2, the number of validator nodes m to be selected is determined
from the remaining n−1 RSU nodes. Next, according to the stake (traffic flow),
the m RSUs with the smallest traffic flow are selected as the validator nodes.

Request. A client RSU sends a request message to the leader, which contains
the vehicles’ trust information in the coverage of RSU.

Pre-prepare. When the leader receives the request message from the client
RSU, it generates a pre − prepare message and broadcasts it to the previously
selected validator nodes. Then, the validator node receives and validates the
pre−prepare message from the leader node. If passed, it broadcasts the prepare
message to other validator nodes and then enters the prepare phase.

Prepare. A validator node receives the prepare message and validates it. If the
node receives 2

3m + 1 correct messages, it broadcasts the commit message and
enter the commit phase.

Commit. A validator node receives the commit message from other validator
nodes and validates it. If the node receives over 2

3m + 1 valid commit messages,
the block validation completed. Each validator node synchronizes the validated
block information to the remaining n − m − 1 RSUs that do not participate in
the validation, and the block is updated to the blockchain. Then reply the reply
message to the client. The block validation process is shown in Fig. 3.

Reply. After the client receives 1
3m+1 reply messages with the same timestamp

and response value, it considers the response to be successful.

Fig. 3. The validation of block information
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5 Security Analysis

This part mainly introduces the security properties based on the possible threat
model in the strategy.

Message Sender
– Message spoofing: The message sender sends randomly generated, counter-

factual, or low-quality messages to the receiver to reduce driving safety. How-
ever, in this strategy, the receiver evaluates the events’ credibility by calcu-
lating the credibility of reports issued by multiple surrounding vehicles.

– On-off: The sender may sometimes send real or false messages, making it
difficult to identify its threats. However, repeated acts of evil result in heavier
punishments in this strategy. The message sender must first send some real
messages to make its trust value higher than the set threshold, which increases
the cost of doing evil.

Message Receiver
– Bad mouthing: The message receiver may maliciously generate false evalua-

tion results and upload them to the RSU. However, the message sender sends
the message to each surrounding vehicle. Under the premise that the number
of attackers is limited, the wrong evaluation result only has a small influence
on the system.

Roadside Unit
– Faulty RSU: Suffering from DoS attack, network intrusion, or physical dam-

age caused RSU failure, making it unable to participate in the consensus
mechanism. However, according to our proposed consensus mechanism, the
system is able to tolerate partial faulty or malicious RSU nodes.

6 Performance Analysis

This section will evaluate the performance of the proposed blockchain trust man-
agement framework. We first use Python (version 3.9.4) programming language
to compare and analyze the influence of time and distance factors on the mes-
sage’s credibility in the trust evaluation. Then we simulate the change of trust
value between honest vehicles and malicious vehicles by implementing simula-
tion. The trust value calculation utilizes smart contracts written in Solidity (a
high-level programming language created to implement smart contracts). Finally,
the performance of the proposed blockchain consensus mechanism is evaluated
through the FISCO BCOS (version 2.8.0) consortium blockchain platform.

6.1 Message Credibility

This part mainly elaborates on the influence of time and distance factors on the
message’s credibility in the evaluation stage through Eq. 1. Figure 4(a) and 4(b)
show the impact of the different distances and time differences on the message’s
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Fig. 4. The influence of objective factors on credibility and the changing trend of
vehicles’ trust value

Fig. 5. Blockchain performance test

credibility, respectively. It can be seen from Fig. 4(a) that the farther away from
the accident site, the lower the credibility of the message sent by the vehicle.
Compared with [5], when the distance is less than 230 m, our method’s cred-
ibility result is higher. On the contrary, it is lower when the distance exceeds
230 m. Our approach more precisely achieves that the closer the distance, the
more credible the reported message. As shown in Fig. 4(b), the longer it’s been
since the incident happened, the less credible it is. The above results show that
our method is more fine-grained, improving the accuracy of message credibility
evaluation and trust evaluation.

6.2 Trust Value Calcution

Trust value calculation requires distinguishing honest vehicles and malicious
vehicles effectively. As shown in Fig. 4(c), 4(d), 4(e), and 4(f), the changes in
trust value of honest vehicles and malicious vehicles after 10 and 20 interactions
can be obtained respectively. With the increase in the number of interactions, the
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honest vehicles’ trust value shows a significantly increased trend in Fig. 4(c), 4(d).
In contrast, the malicious vehicles’ trust values show a clear downward trend in
Fig. 4(e), 4(f). Most of the messages sent by honest vehicles are real but may also
send wrong messages, resulting in fluctuations in their trust value. As malicious
vehicles may also send real information to avoid being identified, the malicious
vehicles’ trust value fluctuates but still maintains a downward trend.

6.3 Consensus Mechanism

In order to test the availability of this mechanism, we simulate a client RSU to
send 10,000 transactions to conduct a pressure test on the blockchain.

As can be seen from Fig. 5(a) and 5(b), the average latency and through-
put with our proposed consensus mechanism are significantly better than the
PBFT consensus mechanism. Since our proposed consensus mechanism reduces
the number of nodes participating in the block validation according to Algo-
rithm 2, the throughput and average latency are greatly improved. Similarly,
due to the selection of validator nodes based on stake, blockchain has similar
throughput and average latency within a certain number of nodes.

According to the selection method of validator nodes from Algorithm 2, the
parameter ξ’s influence on the latency change of the blockchain under different
numbers of RSU nodes is tested. As shown in Fig. 5(c), the latency is proportional
to the ξ’s value. When the ξ’s value is greater than or equal to 6, the latency
gap between 30 and 60 nodes is smaller and stable.

7 Conclusion

In this paper, we propose a scalable blockchain-based trust management strategy
for vehicular networks. Vehicles evaluate the credibility of the messages sent by
surrounding vehicles through V2V communication according to objective factors
and upload the results to a nearby RSU. Then, the RSUs collect the results and
calculate the message senders’ trust value. Utilizing blockchain, multiple RSUs
can maintain a consistently distributed ledger that records vehicles’ trust value
changes. Through the analysis of security properties, simulation of trust evalu-
ation mechanism and performance analysis of the blockchain, it is proved that
this strategy has better availability and reliability. In addition, our proposed PoS
and PBFT consensus mechanism improves the scalability and efficiency of the
blockchain. The experiment result shows the strategy can provide a reliable and
efficient decentralized trust management solution in an intelligent transportation
environment.

Acknowledgements. This work was supported by Special Project for Research and
Development in Key ares of Guangdong Province China (Grant No. 2020B0101090003).



A Scalable Blockchain-Based Trust Management Strategy 295

References

1. Azees, M., Vijayakumar, P., Deborah, L.J.: Comprehensive survey on security
services in vehicular ad-hoc networks. IET Intel. Transport Syst. 10(6), 379–388
(2016)
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Abstract. The most important thing for Connected and Automated
Vehicles (CAVs) is to ensure driving safety and prevent the loss of life
and property due to danger. The existence of vehicle blind spots can
lead to incomplete or ineffective access to information, which will bring
risks. At the same time, the transmission of a large amount of duplicate
data will lead to information redundancy and bandwidth waste. In this
paper, we design BP-CODS, which uses blind-spot prediction assistance
to schedule image data between vehicles with the support of the Edge
Server. We model the data scheduling transmission as two processes of
uploading and downloading, form the set coverage problem, and propose
a heuristic algorithm to solve it. We conduct extensive simulation exper-
iments in CARLA to verify the effectiveness of BP-CODS in reducing a
large number of redundant data.

Keywords: Scheduling · Vehicular networks · Prediction · Edge server

1 Introduction

In our daily life, the blind spot of the driver can lead to the operation mistake
of the vehicle and may cause a serious accident. According to World Health
Organization (WHO) report survey in 2018, the number of road traffic deaths
reached 1.35 million every year [11]. Road accidents due to blind spots account
for approximately 20% of overall lane-changing accidents [6]. Connected and
Autonomous Vehicles (CAVs) were created to enable a safer transportation envi-
ronment. Cellular Vehicle to Everything (C-V2X) based on 5G communication
technology can realize data transmission, the sharing of data and computing
resources [3]. Through vehicle cooperative communication, vehicles can obtain
traffic conditions from their blind spots, and perceive potentially hazardous sit-
uations over an extended spatiotemporal range.
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Through collaboration and sharing between CAVs, vehicles can receive a large
amount of useful data information. For large amounts of data transmission, pre-
vious work focused more on low latency and high speed of vehicle data transmis-
sion, aiming at timely and stable transmission, with little attention to the data
content. This will lead to the following problems. First, the data transmission is
started on time, but the high mobility of the vehicle may result in untimely data
reception. Second, in the transmission, the data of each vehicle is treated equally,
but the importance of each data is different for each vehicle, and the more impor-
tant data is not given priority in the transmission. Third, different vehicles may
get the same or similar data, and their duplicate transmissions will also cause
data redundancy. The transmission of such a large amount of redundant data
will take up substantial bandwidth resources, leading to untimely transmission
and failure to prioritize data, resulting in irreversible consequences.

In this paper, we focus on the image data obscured by the blind spot, aiming
to supplement the obscured blind-spot view. The aid of blind-spot prediction
allows the data to be transmitted in advance, enabling the vehicle to receive
the data in time. The data acquired through multi-vehicle collaboration will be
selected at the Edge Server for content selection and priority transmission of
important data, which will reduce a large amount of redundant data, reduce
the load on the network, and better ensure effective data acquisition. The main
contributions of this paper are as follows.

– We propose BP-CODS for collaborative vehicle data scheduling aided by
blind-spot prediction with the Edge Server. We exploit the sociality among
vehicles using a graph neural network to perform blind-spot prediction.

– We upload the vehicle data to the Edge Server, select the content and send
it down to the desired vehicles. We model this processing to minimize the
amount of data downloaded. It is a set coverage problem belonging to NP-
Hard. We hence propose heuristic algorithms to solve it.

– We validate BP-CODS in the CARLA simulator, and experiments show that
our algorithm can substantially reduce the transmission of the same or similar
data, reducing data redundancy and bandwidth waste.

2 Related Work

Vehicle collaboration is primarily designed to expand the perception boundary of
vehicles and share information between vehicles to build safer road traffic envi-
ronments. Among them, LiveMap [9] uses crowdsourced data from connected
vehicles to detect, match, and track objects on the road and effectively integrate
objects from multiple vehicles. EdgeSharing [8] leverages the edge cloud platform
and real-time 3D feature maps to provide accurate localization and object shar-
ing services for vehicles passing through intersections. EMP [17] can share raw
sensor data between vehicles and use Edge Servers to merge individual views of
vehicles to form a more complete view with higher resolution, greatly improving
the quality of vehicle perception.
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Data transmission in in-vehicle networks is mainly divided into vehicle-to-
vehicle and vehicle-to-infrastructure data sharing and transmission. For vehicle-
to-vehicle mode, D. Tian et al. [13] developed a robust optimization model for
distributing content data traffic among different collaborative transmission paths
to reduce unsuccessful transmissions. V2V-CoVAD [14], a vehicle-to-vehicle col-
laborative video alert propagation mechanism, designs a bidirectional collabo-
rative transmission strategy for the transmission of accident videos in highway
scenarios. For vehicle-to-infrastructure mode, after prefetching the contents of
interest to RSU, S. Berri et al. [2] used different physical layer data rates to
broadcast different contents to vehicles, and under the limitation of the RSU
storage capacity, proposed a heuristic content prefetching and scheduling algo-
rithms to maximize the broadcast downlink data contents. In [7], it formulates
a hybrid scheduling problem, aiming to better exploit the synergy between cen-
tralized scheduling within RSU and self-organized data scheduling outside RSU,
and uses an RSU Cooperation-based Adaptive Scheduling (RCAS) algorithm to
solve the problem.

3 Model and Problem Formulation

3.1 Framework Overview

We consider a scenario with multiple vehicles driving on the road, each connected
to an Edge Server (ES). The overall architecture of BP-CODS is shown in Fig. 1.
Vehicle Vi captures forward information via cameras, uses the target detection
and tracking algorithm to detect and track the targets, and then performs blind-
spot prediction to obtain the movement orientation and the variation of the blind
spot in the future. Vehicle Vi sends a data scheduling request to ES and then ES
executes the uploading and downloading scheduling according to our proposed
algorithm.

3.2 Model

Let N be the set of vehicles driving along the segment of the road where ES
is implemented. The vehicles can send data scheduling requests and data to ES
or receive vehicle data from ES. A vehicle that requires data from the other
vehicle is denoted Vi, and the other that provides data to vehicle Vi is denoted
Vj , where i, j ∈ N . We divide the time the vehicle is connected to ES into equal
time block tB . Let T and L be the sets of the time blocks and the transmission
rate, respectively. At each time block t ∈ T , data is transmitted between the
vehicle and ES at a given transmission rate l, l ∈ L, and its transmission time
is denoted ol, l ∈ L. Hence, here we define the ratio of time occupied by the
transmission of the vehicle data at rate l as rl = ol

tB
, l ∈ L.

In the uploading process, we define the binary variable ki, i ∈ N to indicate
whether vehicle Vi needs data scheduling, and the binary variable z+i,j , i, j ∈ N
to indicate whether vehicle Vi needs vehicle Vj to upload its data to ES. We
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Fig. 1. The architecture of our proposed BP-CODS.

also define the binary variable x+
j,l,t, j ∈ N, l ∈ L, t ∈ T to indicate whether

the data of vehicle Vj is uploaded to ES at transmission rate l in time block
t. Let γ+

j,l,t, j ∈ N, l ∈ L, t ∈ T denote the probability of successful reception
of the data uploaded to ES at transmission rate l within time block t. Note
that, γ+

j,l,t and γ−
j,l,t can be obtained by a function of distance and data rate,

which is described in detail in the experimental setup. Considering whether
the data rate can be adaptively selected in the data transmission process, two
modes are given here, the union model and the single model, to distinguish.
Furthermore, let u+

i,j,t, i, j ∈ N, t ∈ T denote the reception rate of vehicle Vj ’s
data by ES due to the request of vehicle Vi at time block t. From the definition,
u+
i,j,t =

∑
l∈L γ+

j,l,tx
+
j,l,tz

+
i,j ,∀i, j ∈ N, t ∈ T . In addition, let δi,j be the distance

between vehicle Vi and vehicle Vj , and dis be the distance threshold to determine
whether the collaboration request are allowed.

Again, in the downloading process, we define the variables z−
i,j , x−

j,l,t, γ−
j,l,t,

u−
i,j,t accordingly. In particular, u−

i,j,t =
∑

l∈L γ−
j,l,tx

−
j,l,tz

−
i,j ,∀i, j ∈ N, t ∈ T . In

each time block t ∈ T , we define set Et to represent all objects detected by
all vehicles. We hence define a binary variable Cj,em to represent whether the
vehicle Vj detects object em, em ∈ Et = {e1, ..., em}.

3.3 Problem Formulation

Uploading Process. Constraint (1) guarantees that only one data rate can
be used to upload data to ES within a time block per vehicle. Constraint (2)
limits the proportion of data transmission time between the vehicle and ES.
Constraints (3) - (5) are binary variables.
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Downloading Process. Constraint (6) guarantees that every object em ∈ Et

must be detected by at least one vehicle. Constraint (7) indicates that the down-
loaded data must be chosen from uploaded data in the same time block. The
meaning of Constraints (8) - (11) are similar to that of the uploading process.

Upload:
∑

l∈L

x+
j,l,t ≤ 1,∀j ∈ N,∀t ∈ T (1)

∑

j∈N,l∈L

x+
j,l,trl ≤ 1,∀t ∈ T (2)

x+
j,l,t ∈ {0, 1},∀j ∈ N,∀l ∈ L,∀t ∈ T

(3)

z+i,j =

{
1, if δi,j ≤ dis & ki = 1
0, otherwise

∀i, j ∈ N (4)
ki ∈ {0, 1},∀i ∈ N (5)

Download:
∑

j∈N

Cj,emu−
i,j,t ≥ 1,

∀em ∈ Et,∀i ∈ N,∀t ∈ T (6)

u−
i,j,t ≤ u+

i,j,t,∀i, j ∈ N,∀t ∈ T (7)
∑

l∈L

x−
j,l,t ≤ 1,∀j ∈ N,∀t ∈ T (8)

∑

j∈N,l∈L

x−
j,l,trl ≤ 1,∀t ∈ T (9)

x−
j,l,t ∈ {0, 1},∀j ∈ N,∀l ∈ L,∀t ∈ T

(10)

z−
i,j ∈ {0, 1},∀i, j ∈ N (11)

Objective Function. For a given time t = t0 (t0 is the current time), we aim to
design a vehicle data uploading and downloading scheme at ES that minimizes
the amount of vehicle Vj ’s data received by the vehicle Vi from ES in every
determined time block. Meanwhile vehicle Vj ’s data contains as many targets as
possible. It is a set coverage problem, and the set coverage problem belongs to
NP-Hard.

min
∑

i∈N

∑

j∈N

u−
i,j,t (12)

4 Algorithm Design

4.1 Blind-Spot Prediction Module

We now describe the blind-spot prediction module. It is not appropriate to sched-
ule vehicle data too early or too late. We believe that it is a more reasonable
and accurate method to decide the data scheduling time according to the future
trend of blind spot size.

Let H be the set of blind spots. At time t, the 2D bounding box of blind
spot h is defined as Xh

t = {(
xh
1,t, y

h
1,t

)
,
(
xh
2,t, y

h
2,t

) |t ∈ T, h ∈ H. We put Xh
t

into the Social-STGCNN model [10] to predict the future coordinates denoted
as X̂h

t+1 = {(
x̂h
1,t+1, ŷ

h
1,t+1

)
,
(
x̂h
2,t+1, ŷ

h
2,t+1

)}. Here, Social-STGCNN is a graph
neural network model, which mainly consists of Spatio-Temporal Graph Convo-
lution Neural Network (ST-GCNN) and Time-Extrapolator Convolution Neu-
ral Network (TXP-CNN). It can model social interactions and extract fea-
tures for prediction. Then, we calculate the pixel size of the 2D bounding box
p̂ht+1, t ∈ T, h ∈ H based on the predicted coordinates of the blind spots X̂h

t+1.
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If there is p̂ht+1 greater than a certain threshold P , set ki = 1 for vehicle Vi

corresponding to blind spot h, 0 otherwise.
For the training of the Social-STGCNN model, we assume that (xh

1,t, y
h
1,t) fol-

lows the binary Gaussian distribution N(μh
1,t, σ

h
1,t, ρ

h
1,t), where μh

1,t is the mean
of the distribution, σh

1,t is the variance, and ρh1,t is the correlation [10] [4]. The
assumption of (xh

2,t, y
h
2,t) can be given accordingly. Finally, the model parameters

are obtained by minimizing the negative log-likelihood loss, that is, Lh (W ) =
−∑

t∈T logP
(
xh
1,t, y

h
1,t | μh

1,t, σ
h
1,t, ρ

h
1,t

) − ∑
t∈T logP

(
xh
2,t, y

h
2,t | μh

2,t, σ
h
2,t, ρ

h
2,t

)
,

where W includes all trainable parameters of the model.

4.2 Vehicle Data Scheduling

Data scheduling is divided into two stages, upload and download, and we give
the corresponding heuristic algorithms in sequence.

Uploading Process. The uploading scheduling process determines the set of
vehicle Vj data to be uploaded, and it is summarized in Algorithm 1. The detailed
process is executed in every time block according to the following steps.

First, we iterate over all vehicles. Based on δi,j and the scheduling instructions
ki for each vehicle, we assign a value to z+i,j . We calculate the minimum Dj , which
is the ratio of the distance between vehicle Vi and vehicle Vj to the distance
threshold dis.

Second, we calculate sj,l,t which refers to the number of all vehicles Vi that
require vehicle Vj ’s data at time block t with data rate l. We calculate ωj,l,t,
which is the ratio of the number of vehicles Vi that need data to the occupied
time by transmitting the data and occupied distance. This indicates whether
scheduling this data at time block t with data rate l has a high performance-cost
ratio.

Next, we sort ωj,l,t into decreasing order. According to ωj,l,t, we search the
pair of (j, l) in turn and obtain the scheduling order if (1) it does not violate
the bandwidth constraint in (2); (2) the number of vehicles Vi that request
vehicle Vj ’s data (defined as Bj) is not 0 and the data of vehicle Vj has not been
allocated to be uploaded to ES in this time block yet. Once its scheduling order
is determined, τ , Bj and x+

j,l,t are updated.
Finally, we calculate u+

i,j,t and output its set U+
t = {u+

i,j,t},∀i, j ∈ N .

Downloading Process. The downloading scheduling algorithm determines the
set of data to be downloaded to vehicle Vi from ES, and it is summarized in
Algorithm 2. The detailed process is executed in every time block according to
the following steps.

First, for each vehicle Vi, a set Fi is constructed, to which vehicle Vj ’s data
that has been uploaded to ES and required by vehicle Vi is added.

Next, for each u+
i,j,t ∈ Fi, we calculate countj , which refers to the number of

objects in every data of vehicle Vj . We then sort countj into decreasing order,
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and obtain the order of its subscript j. Iterating through j, if has objects in the
vehicle Vj ’s data that are not selected, it will set all objects of vehicle Vj to the
selected state, and set z−

i,j = 1, indicating that vehicle Vj ’s data is sent to vehicle
Vi from ES. Mimicking steps 9-21 of the uploading scheduling algorithm, we can
get x−

j,l,t.
Finally, u−

i,j,t is calculated and U−
t = {u−

i,j,t},∀i, j ∈ N is output.

5 Experiment

5.1 Setting

Environment. We adopt the urban driving simulator CARLA [5], an open-
source simulator implemented in Unreal Engine 4, to validate BP-CODS, and
OpenCDA [15] to implement the simulated vehicles for autonomous driving. The

Algorithm 1: Uploading Scheduling Algorithm for each time block t

Input: N, L, Γ+, K
Output: U+

t

1 for each i ∈ N do
2 if ki == 1 then
3 for each j ∈ N do
4 if δi,j ≤ dis and i �= j then
5 z+

i,j = 1;
6 Dj = min(

δi,j
dis

);

7 else
8 z+

i,j = 0;

9 for each j ∈ N and l ∈ L do
10 sj,l,t =

∑
i∈N γ+

j,l,tz
+
i,j ;

11 ωj,l,t =
sj,l,t
rlDj

;

12 Sort ωj,l,t into decreasing order;
13 Let A represent the subscript sequence pair (j, l) of ωj,l,t;
14 Set Bj =

∑
i∈N z+

i,j , x+
j,l,t = 0, τ = 0;

15 for (j, l) ∈ A do
16 if τ > 1 then
17 Break;

18 if Bj > 0 and
∑

l∈L x+
j,l,t ≤ 0 then

19 Bj = max(0, Bj − sj,l,t);
20 x+

j,l,t = 1;
21 τ+ = rl;

22 u+
i,j,t =

∑
l∈L γ+

j,l,tx
+
j,l,tz

+
i,j ;

23 return U+
t = {u+

i,j,t}, ∀i, j ∈ N ;
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hardware and software we used consist of Intel Xeon Silver 4208, NVIDIA RTX
3090, and Ubuntu 20.04 LTS.

The target detection and tracking module in BP-CODS can be implemented
by various target detection and tracking algorithms such as YOLOv5, SSD,
mono3DT, PCA. Here we obtain target classes and 2D bounding boxes for vehicle
detection directly in the CARLA world, and then we can get Et and Cj,em .

Datasets. In the training of the blind-spot prediction module, we used the
BDD100K dataset [16], an autonomous driving dataset released in 2018. We
extracted the positions of 2D bounding boxes for bus, car, and truck classes,
and acquired continuous sequence data over 10, 000 frames. We set the training
batch size to 128 and trained the model for 500 epochs using stochastic gradient
descent (SGD). The initial learning rate is 0.01, which becomes 0.002 after 150
epochs.

Simulation Settings. We used the town06 map in the CARLA simulator and
we chose a 5-lane straight road close to 700m long. We distribute 5–20 Connected
and Automated Vehicles (CAVs) equipped with BP-CODS on the road. We
tested two scenarios. In Scenario A, the speed of all CAVs is set to 30 km/h, while
in Scenario B, the speed of each CAV is set to 30 km/h–70 km/h respectively.

Algorithm 2: Downloading Scheduling Algorithm for each time block t

Input: N, L, Γ−, U+
t , Cj,em ;

Output: U−
t ;

1 for each i ∈ N do
2 Set Fi = ∅;
3 for each j in N do
4 if u+

i,j,t == 1 then
5 Fi = Fi ∪ u+

i,j,t;

6 for each u+
i,j,t ∈ Fi do

7 countj =
∑

em∈Et
Cj,emu+

i,j,t;

8 Sort countj into decreasing order;
9 Let R represent the subscript sequence j of countj ;

10 Initialize Et;
11 for each j ∈ R do
12 if

∑
em∈Et

Cj,emem < countj then
13 z−

i,j = 1;
14 Set all objects em = 1 in the data of the vehicle Vj ;

15 Compute x−
j,l,t imitating steps 9-21 of Algorithm 1;

16 u−
i,j,t =

∑
l∈L γ−

j,l,tx
−
j,l,tz

−
i,j ;

17 return U−
t = {u−

i,j,t}, ∀i, j ∈ N ;
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Fig. 2. The data reception probability versus distance between vehicle and ES at dif-
ferent data rates.

We place ES at 250m behind the starting point of the road so that the far-
thest distance between the vehicle and ES during driving is close to 1000m. We
perform data synthesis based on the data from the experimental result in [1,12]
and obtain the synthesized data of the relationship between the data reception
rate and the distance between the vehicle and ES under the 5G protocol, as
shown in Fig. 2.

We call the mode that can transmit data at multiple rates in combination
as the union model, and the mode that can only transmit at a single rate as
the single model. In the simulation, we use a function that randomly gener-
ates probabilities to simulate the process of receiving or discarding image data
probabilistically during transmission.

We set time block t to 1 s, distance threshold dis to 50m, and blind spot
threshold P to 526. Each CAV is mounted with a front-facing camera with a
maximum sensing range of 50m. In the CARLA world, the size of the image data
acquired by each camera is 28800B. We give the set of available transmission
rates L = {3Mbps, 12Mbps, 27Mbps}. Hence the time to transmit each image
is 0.0732 s, 0.0183 s, and 0.0081 s, respectively.
Baselines. We have implemented two baselines, namely CT and VTV to com-
pare BP-CODS.

– CT, an algorithm in [2], can upload data to ES and then send it to the vehicle
uniformly. We modify it to fit the CARLA simulation environment.

– VTV, another algorithm in [13], can send the data of the front vehicle directly
to the rear vehicle without going through ES. We modify it to fit the CARLA
simulation environment.
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Fig. 3. Experiments in Scenario A. We use UM and SM refer to the union model and
the single model.

Fig. 4. Experiments in Scenario B.

5.2 Performance Analysis

We set the simulated vehicles to be 5, 10, 15, and 20 CAVs, respectively. Due
to the different speeds of CAVs in the two scenarios, their scheduling on the
same road is also different. Scenario A is scheduled 1200 times while Scenario B
is scheduled 600 times. In Fig. 3(a) and Fig. 4(a), we compare BP-CODS with
the other algorithms CT and VTV under the union model in Scenario A and
Scenario B. We find that BP-CODS reduces the data transmission number by
10%–50% in Scenario A and reduces the data transmission number by up to 20%
in Scenario B, compared to VTV. Compared with CT, the transmission number
of BP-CODS in Scenario A is reduced by 40%–60% and the data transmission
number in Scenario B is reduced by 20%–40%. It is foreseeable that as the
number of CAV equipped with BP-CODS increases, we can reduce the number of
data transmissions even more, while still maintaining the validity and criticality
of the transmitted data.

Next, we investigate the performance of BP-CODS in different transmission
models (i.e., union model and single model). In Fig. 3(b) and Fig. 4(b), we com-
pare the number of transmissions of BP-CODS for different transmission models
in Scenario A and Scenario B. We can find that the union model has more sta-
ble performance, which can take into account both network data rate and data
reception rate. When using a single rate of 27Mbps and 12Mbps, its communi-
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Fig. 5. The number of transmissions with and without the blind-spot prediction. We
use BP refer to the Blind-spot Prediction Module.

cation distance is short, and the data reception rate decreases after exceeding
the communication range, and the number of transmissions decreases signifi-
cantly. While using the 3Mbps rate will have great transmission stability, but
the transmission rate is also the lowest, which can’t use the bandwidth resources
reasonably. Therefore, the union model can achieve a good balance between data
rate and transmission stability.

We believe that if both CAVs have the same object in their captured image
data at the same moment, the two images are duplicates and only one of them
needs to be transmitted. In Fig. 3(c) and Fig. 4(c), we compare the ratio of the
number of images downloaded to the number of uploaded images for BP-CODS
under different transmission models and different number of CAVs in Scenario A
and Scenario B. We find that BP-CODS can reduce the image data by more than
50% in Scenario A and the image data more than 30% in Scenario B. Hence,
our algorithm can reduce the duplicate transmission of large amounts of image
data.

Finally, we conduct ablation experiments to investigate the effect of the blind-
spot prediction module. Since the CAVs in Scenario A are all at the same speed,
which does not show the effect of the blind-spot prediction module very well, we
only select Scenario B to carry out these experiments. In Fig. 5, we compare the
situation with and without the blind-spot prediction module. We find that for
different numbers of CAVs, the difference between the number of transmissions
with and without the blind-spot prediction module increases as the number
of scheduling increases. The inclusion of the blind-spot prediction module can
reduce data transmission by 2%–5%.

6 Conclusion

In this paper, we introduce BP-CODS, the overall system architecture of multi-
vehicle collaborative vehicle data scheduling assisted by blind-spot prediction
using the graph neural network. Using a union model for data transmission in
vehicle data scheduling makes more rational use of bandwidth resources and also
reduces the number of data transmissions. Our simulation in CARLA shows that
it can reduce the number of data transmission by more than 60%, and it can
reduce the transmission of similar or duplicate data by more than 30%.
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Abstract. Partition-based caching is emerging as an appealing solution to
improve the performance of the content caching by increasing the content diver-
sity at the network edge. In this paper, we model and analyze a vehicular net-
work where the vehicles can obtain the requested contents from the roadside
units (RSUs) by adopting the random linear network coding in the partition-
based caching scheme. Specifically, the geographic distribution of the roads and
RSUs are modeled by the stochastic geometry tools. The required content can be
obtained from the multiple nearest RSUs and the content can be decoded by using
the successive interference cancellation approach. We derive the distance distri-
bution between the typical vehicle and the nearest RSUs, and obtain the analytical
expression of the successful transmission probability of the content caching. The
numerical simulations verify the analytical results and provide the guidelines for
the application of the partition-based caching in vehicular networks.

Keywords: Stochastic geometry · Content caching · Vehicular networks

1 Introduction

With the rapid growth of the vehicular networks, the explosive data demand from the
vehicles typically requires the networks to support the data rates up to several Gbps
from the data center to the vehicles. It is found that the nearby vehicles usually down-
load the same up-to-date 3D high-resolution maps [1]. Additionally, vehicles tend to
make content request based on the content popularity. Considering these facts, content
caching at the edge of the vehicular networks has been proposed for the content delivery
by reducing the communication overhead between the vehicles and the data center [2].

In the content caching architecture, the network performance highly depends on
the adopted caching strategies. The proposed caching strategies can be categorized into
two types: the entire content caching and the partition-based caching. Most existing
works consider the scenarios where the entire contents are cached at the BSs or the
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RSUs [1,3,4]. In [3], the entire contents are cached at the network edge based on the
contents’ popularity which is subject to the Zipf distribution. The most popular caching
and the probabilistic caching strategies are proposed. The authors in [1] considered the
contents are cached at the vehicles with the uniform distribution. And all contents have
an equal probability of being cached in the edge node. In [4], a hybrid caching strategy
is proposed, where the contents are divided into two groups: the most popular sets and
the less popular sets. Network nodes at different layers cache contents with different
popularity. In the aforementioned content caching scheme, the user has to search for
the targeted edge node that has stored the required content. However, due to the limited
storage of the edge nodes, it is impossible to store all entire contents in each edge
node, and thus the targeted edge node might be far from the user. This motivates the
application of the partition-based caching in the network.

In the partition-based caching scheme, the entire file can be decomposed into mul-
tiple subfiles and stored in multiple network nodes in an uncoded [5] or coded manner
[5–8]. For the uncoded strategy [5], the different pieces of subfiles are directly stored
in the edge nodes. In this case, the original content can be recovered only if all sub-
files are received by the user and this is a stringent requirement in the vehicular com-
munication scenario. In [6], the authors investigated the partition-based coded caching
in the cellular network where the subfiles are coded according to the Random Linear
Network Coding (RLNC) approach. The user can recover the entire file by obtaining
coded subfiles from several recent BSs, which is easier to be satisfied compared to
the uncoded approach. The authors in [7,8] considered the combination of partitioned
and non-partitioned based caching scheme in Fog Radio Access Networks. In [7], the
transmission delay and the energy efficiency are first analytically investigated. Then, a
multi-objective optimization problem is formulated to obtain the optimal hybrid caching
strategy by considering the trade-off between the delay and the energy efficiency. The
successful transmission probability and the fractional offloaded traffic are analyzed in
[8] and the corresponding multi-objective optimization problems are investigated. How-
ever, the impact of the partition-based caching in vehicular networks and how it can
improve the caching performance are still unknown.

In this paper, we consider a cache-enabled vehicular network with partition-based
caching scheme. Stochastic geometry tools are used to characterize the random dis-
tribution of the vehicles and the RSUs. We consider a RLNC-based caching design
and adopt the successive interference cancellation (SIC) approach to decode multiple
encoded subfiles for the content recovery. We derive the expression of the successful
transmission probability with specific caching parameters in RLNC. The results reveal
that there is a trade-off between the successful transmission probability and the size of
the cache resources occupied.

2 System Model

2.1 Network Model

We consider the RSUs are deployed along the roads and the vehicles connect with
multiple RSUs in order to receive multiple subfiles, as illustrated in Fig. 1. We assume
the distribution of roads are modeled as a Poisson line process (PLP) Φl with density
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λl . PLP is proposed in [1] to characterize the distribution of roads in vehicular net-
works. Upon the distribution of the roads, the RSUs located along the L-th road can be
characterized by a one-dimensional homogeneous Poisson point process (PPP)ΨL with
density λ2. Thus, the locations of RSUs form a Poisson line cox process (PLCP) that is
denoted as Φv ≡ ∪L∈ΦlΨL [9]. For analytical simplicity, we consider the typical vehicle
is located at the origin. In addition, we consider a typical line L0 through the origin. The
RSUs on the typical line are modeled as an independent one-dimensional PPPΨL0 with
density λ2. As such, the distribution of RSUs is the combination of two independent
distributions of Φv and ΨL0 , expressed as Φ2 = Φv ∪ΨL0 . As illustrated in Fig. 1, the
RSUs are labeled in ascending order based on their distance to the typical vehicle.

Fig. 1. System model of the partition-based caching in vehicular network with N = 2 and m = 3.

2.2 Partition-Based Caching Design

We assume there are N contents that can be requested by the vehicles and each content

has the same size of S bits. Let N Δ= {1,2, · · · ,N} represents the collection of N con-
tents. The typical vehicle requests the content randomly based on the content popularity
which is subject to the Zipf distribution. The probability of the typical vehicle requests
a content n ∈ N is pn ∈ (0,1), where pn = n−γ/∑n∈N n−γ .

Each content is decomposed into m subfiles at the data center. Then, all m subfiles
are coded by using the Random linear network coding (RLNC) approach. We consider
a large coding domain in RLNC, and the content can be fully recovered by any m coded
subfiles [6]. At least one subfile of each content is distributed at every RSU during the
off-peak hours. Thus, each RSU should at least have the storage capacity SN/m bits in
order to cache the subfiles of all contents.

In this partition-based caching scheme with RLNC, all contents are cached in each
RSU in the form of their coded subfiles. The typical vehicle sends the content request
based on the content popularity. Once the content request is confirmed, the typical vehi-
cle can selectmRSUs for the content downloading without considering whether thesem
RSUs store the same subfiles. In order to improve the transmission success probability,
we assume the typical vehicle is associated with the nearest m RSUs in this model.
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2.3 Channel Model

We consider the downlink transmission between multiple RSUs and the typical vehi-
cle. Each RSU has one antenna with the same transmission power P and transmission
bandwidthW . The vehicle is also equipped with one antenna. We consider a discrete-
time system where time is divided into multiple periods and one period is T seconds.
The transmission of the subfile can be achieved in one period. As for the path loss,
we assume that the transmitted signals with distance d are attenuated by a factor d−α ,
where α > 2 is the path loss exponent. For small-scale fading we consider the Rayleigh
fading as it can describe the multi-path propagation effect in the vehicular networks.

We consider an interference-limited transmission by ignoring the background ther-
mal noise. It is assumed that the RSUs in the network are all active in the transmis-
sion periods. In this case, the RSUs that do not serve the typical vehicle are active,
which incur the co-channel interference. Let di denote the distance between RSU i and
the typical vehicle, where d1 ≤ d2 ≤ ·· · . The received signals of the typical vehicle

are: yn = ∑
i∈Φk

d
− α

2
i hiP+ ∑

j∈Φ2\Φk

d
− α

2
j h jP, where Φ2 is the set of RSUs in the network,

Φk ∈ {1,2, · · · ,m} refers to the set of the associated RSUs and hi represents the small-
scale channel fading between the i-th RSU and the typical vehicle.

When yn is received, the typical vehicle adopts SIC to decode the transmission
signals from the signal combination. SIC decoding is performed in order of distance
from near to far. In particular, when the vehicle decodes the signal from the i-th RSU,
we assume that the signals of RSUs closer than the i-th RSU have been successfully
decoded and eliminated. The signal-to-interference ratio of the signal from RSU i is
defined as:

SIRi =
d−α
i |hi|2

∑ j∈Φ2\{1,2,··· ,i} d−α
j

∣
∣h j

∣
∣2

(1)

2.4 Performance Metric

The successful transmission probability of the required content is used as the perfor-
mance metric of the this caching scheme. According to the above, the successful trans-
mission probability of the requested content n equals to the joint successful transmission
probability of the transmission with multiple RSUs, which is written as:

Pn (m) = Pr

[

⋂

i∈Φk

W log2 (1+SIRi)>
S
mT

]

(2)

where SIRi is given in (1). According to the total probability theorem, the successful
transmission probability of the content caching is given by: Q= ∑

n∈N
pnPn (m), where pn

is the file request probability that is subject to Zipf distribution.
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3 Performance Analysis

In this section, we analyze the SIR-based successful transmission probability of the typ-
ical vehicle. The successful transmission probability is closely related to the distribution
of the transmission distance since all nodes are randomly distributed. Thus, the analysis
begins with the derivation of the distance distributions between the associated RSUs
and the typical vehicle. Then, the conditional probability of successfully decoding the
signal of the j-th RSU is derived considering the desired signals from the nearest j−1
RSUs are obtained and eliminated from the signal combination. Finally, the successful
transmission probability of the content caching is obtained.

3.1 Serving Distance Distributions

The distance distribution between the typical vehicle and the nearestmRSUs is required
to characterize the randomness of SIR. It should be noticed that the RSUs might be
located on the typical line or the other lines and the distance distribution in these two
scenarios are different. Thus, we first express the distance distribution in each sce-
nario. Since the RSUs on the typical line is subject to 1D homogeneous PPP distri-
bution, the probability of the existence of N1 RSUs within a distance r to the typ-

ical vehicle is given by: P(N1 = n) = exp(−2λ2r)
(2λ2r)n

n! , where the above expres-
sion is obtained by acknowledging that the number of nodes in a finite area in PPP
model is Poisson distributed. Considering the RSUs on the roads except for the typ-
ical road, the probability of the existence of N2 RSUs in the area with a radius of

r to the typical vehicle is given by [9]: P(N2 = k) = (−λ2)k
k!

[
∂ k

∂ skLT (s)
]

s=λ2
, where

LT (s) = exp
[

−2πλl
∫ r
0 1− exp

(

−2s
√

r2 −ρ2
)

dρ
]

is the Laplace transform of the

total chord length distribution and ρ is the distance from the origin to a line in the area.
Given the above expressions, the probability of the distance between the typical

vehicle and the j-th closest RSU is larger than r equals to the probability of having at
most j−1 RSUs in the area with radius r, which is given by:

P(d j > r) = P(N < j−1) =
j−1

∑
i=0

j−1−i

∑
k=0

P(N1 = i)P(N2 = k) (3)

where d j is the distance between the typical vehicle and j-th closest RSU and we denote
N =N1+N2. As such, the cumulative distribution function (CDF) of d j is expressed as:

Fdj(r) = 1−P(d j > r) = 1−
j−1

∑
i=0

j−1−i

∑
k=0

exp(−2λ2r)
(2λ2r)

i

i!

(−λp
)k

k!

[
∂ k

∂ sk
LT (s)

]

s=λ2
(4)

Additionally, the probability density function (PDF) of d j is given by:

fd j(r) =
dFdj(r)

dr
(5)



314 S. Zhou et al.

3.2 SIR-based Successful Transmission Probabilities

The SIR-based successful transmission probability is defined as the probability that the
received SIR from all associated RSUs satisfy W log2(1+SIR) > S

mT . The successful
transmission probability of caching content n from the nearest i RSUs is derived as:

Pn (i) = Pr

⎡

⎣
⋂

j∈{1,2,··· ,i}
W log2 (1+SIR j)>

S
mT

⎤

⎦
(a)≈

i

∏
j=1

Pr

[

W log2 (1+SIR j)>
S
mT

]

,

(6)
where (a) follows from the fact that the decoding processes among multiple RSUs can
be approximated as the independent events. This independent approximation is also
used in the performance analysis of partition-based caching in the large-scale cellular
networks [6]. The accuracy of this approximation will be verified by simulation later.

By considering the distance d j = r is known, the conditional probability of success-
fully decoding the signal of the j-th RSU is derived as

Pn ( j|r) = Pr

[

W log2 (1+SIR j)>
S
mT

|d j = r

]

(a)
=EI j

[

Pr
[∣
∣h j

∣
∣2 >

(

2
S

WmT −1
)

dα
j I j|d j = r

]]

(b)
=EI j

[

exp
(

−
(

2
S

WmT −1
)

rα I j
)]

Δ=LI j(s,r)|
s=

(

2
S

WmT −1

)

rα

(7)

where the step (a) is according to the expression of SIRi given in (1), and the step (b) is
according to the fact that |hi|2 follows an exponential distribution with mean 1.

The characterization of the interference I j should consider the exclusion area and
the network topology in vehicular networks. Since SIC is adopted in this system, we
consider the exclusion area is centered at the typical vehicle with radius r and there are
no interfering RSUs in it. Therefore, the interference received at the origin I j can be
divided into three parts: I j = I j20+ I j21+ I j22. In this expression, the interference from
the RSUs located on the typical line passing through origin is represented as I j20 =
∑k∈ΨL0\{1,2,··· , j} d−α

k |hk|2. The interference from RSUs located on the line that intersect

with the exclusion area is denoted by I j21 = ∑k∈Φv\{1,2,··· , j},ρ<r d
−α
k |hk|2. At last, I j22 =

∑k∈Φv\{1,2,··· , j},ρ>r d
−α
k |hk|2 is used to represent the interference from the RSUs located

on the lines that do not intersect with the exclusion area.
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The Laplace transform of I j20 is derived as:

LI j20(s,r) = E

⎡

⎣exp

⎛

⎝−s ∑
k∈ΨL0\{1,2,··· , j}

d−α
k |hk|2

⎞

⎠

⎤

⎦

(a)
=E

⎡

⎣ ∏
k∈ΨL0\{1,2,··· , j}

1

1+ sd−α
k

⎤

⎦

(b)
= exp

(

−2λ2

∫ ∞

r

(

1− 1
1+ sx−α

)

dx

)

(8)

where (a) is obtained since |hk|2 follows an exponential distribution with mean 1, and
(b) follows from the probability generating function (PGFL) of the one-dimensional
PPP. The Laplace transforms of I j21 is given by:

LI j21(s,r) = E

[

exp

(

−s ∑
k∈Φv\{1,2,··· , j},ρ<r

|hk|2d−α
k

)]

(a)
=EΦl

[

∏
L∈Φl

EΨL

[

∏
k∈ΨL

1

1+ sd−α
k

| Φl ,ρ < r

]]

(b)
=EΦl

[

∏
(ρ,θ)∈Φl

exp

(

−2λ2

∫ ∞
√

r2−ρ2

s

s+(ρ2+μ2)
α
2
dμ

)]

(c)
= exp

{

−2πλl

∫ r

0

[

1− exp

(

−2λ2

∫ ∞
√

(r2−ρ2)

s

s+(ρ2+μ2)
α
2
dμ

)]

dρ

}

(9)
where (a) is obtained by taking the expectation of |hk|2 and conditioning on the line
process Φl . By expressing the location of the RSUs in polar coordinates, (b) is obtained
by using the PGFL of the 1D PPP ΨL on each line. In the last step, (c) follows from
the PGFL of the 2D PPP in the representation space corresponding to the line process
Φl , where dk = (ρ2+μ2)

1
2 , ρ is the distance between origin and other road in the disc,

and μ is the distance between the foot of the perpendicular and RSUs on the road in the
disc. Similarly, we can obtain the Laplace transforms of I j22 which is given by:

LI j22(s,r) = exp

{

−2πλl

∫ ∞

r

[

1− exp

(

−2λ2

∫ ∞

0

s

s+(ρ2+μ2)
α
2
dμ

)]

dρ

}

(10)

Therefore, the conditional probability of successfully decoding the signal of the j-th
RSU is given by:

Pn ( j|r) =LI j(s,r)|
s=

(

2
S

WmT −1

)

rα
=LI j20(s,r)LI j21(s,r)LI j22(s,r)|

s=

(

2
S

WmT −1

)

rα

(11)
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The overall successful transmission probability of a content requested by the typical
vehicle for a given design parameter m is given by:

Q= ∑
n∈N

pnPn (m) = ∑
n∈N

pn
m

∏
j=1

Pn( j) = ∑
n∈N

pn
m

∏
j=1

∫ ∞

0
Pn ( j|r) fd j(r)dr (12)

4 Simulation Results

In this section, we present the numerical results for the successful transmission prob-
ability of the cache-enabled vehicle network. The accuracy of the analytical results in
Sect. 3 is verified by comparing them with the empirical results obtained from Monte-
Carlo simulations. We will also discuss the effect of various parameters such as different
cache parameters, and density of nodes on the performance of the content caching. The
results can provide the design insights for the content caching in vehicular networks.

Fig. 2. The impact of the file size S and the RSU density λ2 (S= 4000bits)

In the simulation, we assume that N = 100, α = 4, W= 10MHz, T = 1 ms and γ
= 1. As shown in Fig. 2 (a), we plot the successful transmission probability as a func-
tion of file size S. We obtain the successful transmission probability under three differ-
ent caching parameters with m = 1,2,3. In these setting, the required storage in RSU
equals to NS/m bits. The analytical results match well with the numerical results. It can
be clearly seen from the figure that there is a trade-off between the successful trans-
mission probability and the storage requirement for the content caching in RSU. When
the available storage increases, the successful transmission probability of the content is
higher. In Fig. 2 (b), we observe that the successful transmission probability monoton-
ically increases as the RSU density λ2 increases. Besides, the analytical results is also
verified by the numerical results.

As shown in Fig. 3, we plot the successful transmission probability as a function of
content size S under limited cache resources. We relax the constraint that all contents are
decomposed intom subfiles and allow different number of subfilesmi can be created for
the content n in the partition procedure. For different combinations of mi, the storage
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Fig. 3. The impact of the different caching strategies on the content caching.

volume of the RSU is a constant equals to 40×S. We employ three combinations as
illustrated in Fig. 3. It can be seen from the figure that when the content size is small, the
partition-based cache designs have a higher successful transmission probability. Among
the different behaviors, it is interested to find that there exists an optimal combination
of mi to maximize the successful transmission probability. This is the research direction
that we are going to explore in the future.

5 Conclusion

In this paper, we consider a cache-enabled vehicular network model with partition-
based caching. RLNC scheme is applied for the content coding and SIC is adopted to
decode multiple encoded subfiles to recover the request content. We derive the expres-
sion for the successful transmission probability with the specific caching parameters by
stochastic geometry tools. The result reveal that there is a trade-off between the success-
ful transmission probability and the required storage for content caching in the RSUs.
Furthermore, the evaluation revealed the design insights regarding the selection of the
RSU density and the caching parameters.
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Abstract. Reliable routing is a classic problem in the field of computer networks.
After a network fault occurs, how to choose the recovery path directly determines
the performance of network services. This paper introduces service customized
techniques into reliable routing. By meeting customized traffic protection require-
ments, network service quality can be ensured after fault recovery. Topology Inde-
pendent Loop-free Alternate (TI-LFA) supported by SRv6 is a new reliable rout-
ing technology. In this paper, an SRv6-based service customized reliable routing
mechanism is designed for the single link failure in the case of P-Q space adja-
cency in TI-LFA. For traffic with QoS requirements, this paper uses fuzzy theory
to make the optimal decision for SRv6 candidate protection schemes. Finally,
three representative topologies are selected to build an experimental network sup-
porting SRv6 based on ONOS, Mininet, and the programmable data plane. The
results show that when responding to a network service customized request, the
recovery path selected by the mechanism proposed in this paper is superior to the
comparison mechanism of related QoS indicators.

Keywords: SRv6 · Service customized networks · Reliable routing · Fuzzy
theory · TI-LFA

1 Introduction

With the rapid development of the Internet in recent decades, the types of network
services are also increasing. As different types of network services have different QoS
requirements, Internet Service Providers (ISPs) face new challenges, that is, acquiring
the ability to customize networks while providing differentiated network resources.
The requirement of service customized networks brings new challenges to network
programmability.

SDN is a new network architecture proposed by Stanford University. SDN separates
the data plane from the control plane and endows the network with programmability
[1]. SRv6 is a specific implementation of segment routing in the IPv6 forwarding plane.
SRv6 has all the strengths of segment routing while taking full advantage of the pro-
grammable capability and extensibility of IPv6 extension headers [2]. The programmable
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data plane increases the network’s programmable capability of the data plane, allowing
programmable switches to perform a series of processes on packets.

The reliability of IP networks is a classic research problem in the field of computer
networks. The main research content is to ensure uninterrupted data transmission. The
existing fault protection methods include fast rerouting [3] and network backup [4].
Fast rerouting refers to calculating the recovery path before a fault occurs. When a fault
occurs, the data flow will be directly sent to the recovery path. Fast reroute technologies
currently include Loop-free Alternate (LFA), Remote Loop-free Alternate (RLFA), and
Topology Independent Loop-free Alternate (TI-LFA) algorithms. The TI-LFA mecha-
nism supported by SRv6 is based on the segment routing model. Compared with LFA
and RLFA, TI-LFA uses the source routing feature of segment routing to achieve topo-
logically independent loop-free backup. However, TI-LFA only randomly selects the Q
node closest to the protected node, which cannot meet the QoS requirements of data
flow.

This paper uses the programmable features of SRv6 and TI-LFA to build a service
customized reliable routing mechanism so that the network can customize the recovery
path for data flow. The scenario of this paper is the single link failure in SRv6 when
the P and Q spaces of TI-LFA are adjacent. The aim is to combine the programmable
capabilities of SRv6 with SDN and the programmable data plane so that the TI-LFA
based onSRv6 canhave the capability of service customization. Finally, network services
can customize the protection scheme of reliable routing according to their own QoS
requirements.

The main contributions of this paper are:

• Based on customized reliable routing requests and standardized network services, our
arbitration mechanism in TI-LFA can make the optimal decision for multiple SRv6
protection schemes.

• We propose an SRv6 customized reliable routing algorithm. To meet the QoS require-
ments of network services, the Fuzzy Analytic Hierarchy Process (FAHP) and Fuzzy
comprehensive evaluation are used to select the optimal protection scheme for network
services with QoS requirements.

• The cost factor is designed for measuring users’ willingness to pay. Our algorithm can
select the optimal QoS recovery path for network service within the cost that users
can afford.

2 Related Work

SRv6 is a network architecture and P4 is a domain-specific language for programmable
data planes. Given the new possibilities brought by SRv6 and P4 language, paper [5]
considers the combination of SRv6 and P4 and realizes the forwarding pipeline. The
pipeline supports the latest extended uSID instruction of SRv6 by using P4 It also
supports the new SRv6 behavior by using the BMv2 software switch and the extended
ONOSmodel. For scheduling experiment-sensitive services, paper [6] presents amethod
to calculate the segment list, which can guarantee the delay. The algorithm is divided into
two steps. Firstly, some nodes in the network are extracted to construct an auxiliary graph



A Service Customized Reliable Routing Mechanism Based on SRv6 323

to reduce the complexity of topology. Then, based on the auxiliary graph and weights
of links obtained in the first step, the segment list is calculated using the Bellman-Ford
algorithm.

When a failure occurs in a network, TI-LFA quickly restores packet forwarding
without waiting for other nodes to update their routing tables. However, determining the
segment routing sections has a high computational cost because it requires computation
for each destination. The paper [7] proposes a method that only computes three times of
shortest path tree for TI-LFA rerouting path. This algorithm does not need to calculate
each destination separately, which reduces the calculation cost of segmented routing.
The paper [8] studies how to use segmented routing technology to enable ISPs to provide
connection service reliably through disjoint paths. This paper introduces a robust disjoint
path, which can automatically calculate the robust disjoint path based on segmented
routing, and proves that the algorithm can be extended to large ISP networks.

In terms of service customized networks and network service composition, relevant
scholars design some servicemodels based on specific network service requirements and
consider future network architecture. The paper [9] proposes aQoS-aware network cloud
service composition method and describes the service composition problem as a variant
of themulti-constrained optimal path problem. Finally, an approximate algorithm is used
to solve the problem. The paper [10] investigates the new network architecture proposed
recently and the emerging technologies to meet the new network needs. Combined with
service customized networks, it discusses the opportunities and challenges of the future
Internet and guides future network customization.

3 SRv6 Customized Reliable Routing Algorithm Based on Fuzzy
Theory

The SRv6 customized reliable routing algorithm uses FAHP, triangular fuzzy number
membership function, fuzzy comprehensive evaluation, andTOPSISmethod to construct
a reliable routing decisionmodel. The cost factor is also defined, which is used to process
the customized request with QoS requirements. The customized algorithm replaces the
traditional TI-LFA algorithm of randomly selecting the nearest PQ nodes, and adds an
arbitration mechanism to it so that the network has the ability of customized reliable
routing.

3.1 Reliable Routing Customized Request

According to the ITU standards, this paper defines the key QoS attributes of various
network services. Table 1 gives the network service types combined with user overhead.
BW , DL, JT , and LOSS indicate the network bandwidth, delay, jitter, and packet loss
rate respectively. ID is used to identify different network services. The primary attribute
and the secondary attribute represent the primary and secondary factors affecting users’
experience respectively. Cost indicates the cost level that users are willing to pay for
corresponding network services. The cost of customized services is higher than that of
common services.
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Table 1. Service type

Service Name ID Primary Attribute Secondary Attribute Cost

Voice Session 1 DL JT 1

Voice Session
(customized)

2 DL JT 2

Video Phone 3 JT LOSS 1

Video Phone
(customized)

4 JT LOSS 2

Streaming Video 5 BW NULL 1

Streaming Video
(customized)

6 BW NULL 2

Live Video 7 JT LOSS 1

Live Video
(customized)

8 JT LOSS 2

High Quality Audio 9 JT LOSS 1

High Quality Audio
(customized)

10 JT LOSS 2

3.2 Fuzzy Analytic Hierarchy Process

FAHP is used to determine the weight of network services. The basis of constructing a
fuzzy theory is to determine the formof fuzzy numbers,which can be divided into triangle
fuzzy numbers, trapezoidal fuzzy numbers, and interval numbers. The triangular fuzzy
number is expressed as (a, b, c), where a represents the lower limit of a fuzzy number, c
represents the upper limit of a fuzzy number, and b represents the most likely value of a
fuzzy number. The importance of QoS indicators of network services can be described
as “very important”, “important”, “normal”, “unimportant”, and “very unimportant”.
The importance of QoS indicators can be described by a triangular fuzzy number, and
the mapping relationship is shown in Table 2.

Table 2. Mapping table of triangular fuzzy number and evaluation language set

Evaluation language
variable

Triangular fuzzy number

Very unimportant (0, 0, 0.25)

Unimportant (0, 0.25, 0.5)

Normal (0.25, 0.5, 0.75)

Important (0.5, 0.75, 1)

Very unimportant (0.75, 1, 1)
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The evaluationmatrixEM of FAHP is shown in Formula 1. ex,y represents the impor-
tance of the indicator x to the indicator y in the service, and its value is the corresponding
triangular fuzzy number. ex,y and ey,x are opposite fuzzy numbers to each other.

EM =
⎛
⎜⎝
(1, 1, 1) e1,2 . . . e1,m−1 e1,m

...
. . .

...

em,1 em,2 · · · em,m−1 (1, 1, 1)

⎞
⎟⎠ (1)

3.3 Calculate QoS Weight

According to users’ customized requests, the algorithm will provide a corresponding
SRv6 reliable routing protection scheme according to their QoS requirements. The QoS
weight of each network service needs to be determined. First, extract each dimension of
matrix EM into separate matrices (A,B,C) as shown in Formula 2:

(A,B,C) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a1,1 . . . a1,m
...

. . .
...

am,1 · · · am,m

⎞
⎟⎠,

⎛
⎜⎝

b1,1 . . . b1,m
...

. . .
...

bm,1 · · · bm,m

⎞
⎟⎠,

⎛
⎜⎝

c1,1 . . . c1,m
...

. . .
...

cm,1 · · · cm,m

⎞
⎟⎠

⎫⎪⎬
⎪⎭

(2)

Then compute the LESS, MIDDLE, and UPPER arrays as shown in Formula 3:
(LESS,MIDDLE,UPPER) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

m∑
i=1

a1,i

m∑
x=1

m∑
y=1

cx,y

. . .

m∑
i=1

am,i

m∑
x=1

m∑
y=1

cx,y

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

m∑
i=1

b1,i

m∑
x=1

m∑
y=1

bx,y

. . .

m∑
i=1

bm,i

m∑
x=1

m∑
y=1

bx,y

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

m∑
i=1

c1,i

m∑
x=1

m∑
y=1

ax,y

. . .

m∑
i=1

cm,i

m∑
x=1

m∑
y=1

ax,y

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3)

Then takes a value from LESS, MIDDLE, and UPPER, then sorts them as a row in
array M , as shown in Formula 4. In each row, less is the minimum number, middle is
the middle number, and upper is the maximum number.

M =
⎛
⎜⎝

less1 middle1 upper1
...

...
...

lessm middlem upperm

⎞
⎟⎠ (4)

Then select any line Mx = (lessx, middlex, upperx) in M and every other line
My = (

lessy, middley, uppery
)
to calculate CNumber , as shown in Formula 5:

CNumber =

⎧⎪⎨
⎪⎩

1, middlex ≥ middley
upperx−lessy

(upperx−middlex)+(middley−lessy)
, upperx ≥ lessy

0, Others

(5)
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Finally, a matrix CResult of m rows and m − 1 columns is obtained, as shown in
Formula 6:

CResult =
⎛
⎜⎝

r1,1 · · · r1,m−1
...

...

rm,1 · · · rm,m−1

⎞
⎟⎠ (6)

The minimum value of each line in CResult is selected to generate vector CMin, as
shown in Formula 7:

CMin = (min1, min2, · · · , minm) (7)

Finally, the weights of indicators are normalized to obtain the MetricWeight vector
of each indicator, as shown in Formula 8:

MetricWeight =

⎛
⎜⎜⎝

min1
m∑
i=1

mini

,
min2
m∑
i=1

mini

, · · · , minm
m∑
i=1

mini

⎞
⎟⎟⎠ (8)

3.4 Cost Factor Design

The cost factor represents the cost that users are willing to pay to customize reliable
routing services. This papermainly considersQoSvalue, PQnodes computing resources,
and request time.

The more the primary and secondary attributes of the network service meet the
requirements of the service, the higher the service price will be. In this paper, normalized
values of primary and secondary attributes are used to participate in the calculation of
overhead factors, denoted as CostQoS1 , CostQoS2 .

PQ nodes are important computing resources for establishing protection paths in
TI-LFA. How PQ nodes are used directly determines the performance of a network. PQ
nodes should not be used as an unlimited network resource. The total cost of PQ nodes is
denoted in Formula 9. CostP and CostQ represent the cost of PQ nodes on the protection
scheme. AllCostPQ represents the total cost of all PQ nodes in the network.

CostPQ = CostP + CostQ
AllCostPQ

(9)

The supply and demand of services is also a concern, that is, “less is more”. There
are obvious differences in the popularity of network usage in different periods. The
supply capacity of the network changes over time. When Internet resources are scarce,
users often need to pay higher prices. In order to quantitatively depict the popularity
of network usage in different periods, the percentage data of network users from Baidu
[11] were collected. The fitting is divided into five periods, and the fitting function is
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shown in Formula 10.

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.034x3 − 0.433x2 + 0.84x + 5.065, 23 : 00 < x ≤ 6 : 00
−0.056x3 + 0.517x2 − 0.503x + 1.47, 6 : 00 < x ≤ 11 : 00
0.028x3 − 0.128x2 − 0.023x + 5.202, 11 : 00 < x ≤ 13 : 00
0.007x3 − 0.169x2 + 0.873x + 4.047, 13 : 00 < x ≤ 19 : 00
−0.047x3 + 0.373x2 − 0.429x + 4.258, 19 : 00 < x ≤ 23 : 00

(10)

After obtaining the fitting function, the deviation standardization method is adopted
for normalization, and the formula is shown in Formula 11. Where, F(x)min represents
the minimum value of F(x), and F(x)max represents the maximum value of F(x).

time = F(x) − F(x)min
F(x)max − F(x)min

(11)

Formula 12 shows the calculation process of the cost factor, which determines the
price to be paid for the scheme.

Cost = (CostQoS1 + CostQoS2 + CostPQ) ∗ time (12)

Based on QoS parameters and cost factors corresponding to the SRv6 protection
scheme, protection scheme evaluationmatrixDM can be generated, as shown in Formula
13.

DM =
⎛
⎜⎝
bw1 dl1 jt1 loss1 Cost1
...

...
...

...
...

bwn dln jtn lossn Costn

⎞
⎟⎠ (13)

3.5 Customized Decision Based on TOPSIS Method

This paper uses the TOPSISmethod to rank the schemes in the judgmentmatrixDM . The
TOPSIS method first selects the global best and worst values for each attribute to form
the best and worst points. Then calculate the distance between the points corresponding
to each scheme and select the optimal scheme.

Weighted Euclidean distance is used to evaluate each scheme, as shown in Formulas
14 and 15. qosi represents the bandwidth, delay, jitter, and packet loss rate of the ith
scheme in DM . besti represents the best value of the four indicators, worsti represents
the worst value of the four indicators.

Dbest =
√√√√ 4∑

i=1

wi (qosi − besti)2 (14)

Dworst =
√√√√ 4∑

i=1

wi (qosi − worsti)2 (15)
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Formula 16 is used to calculate the TopsisC value for each scenario. The schemewith
the maximum TopsisC value is optimal, providing the optimal list of protected segments
to meet user customized requests.

TopsisC = Dworst

Dworst + Dbest
(16)

4 Evaluation

4.1 Setup

As shown in Fig. 1, This paper uses the following three representative network topologies
for experiments. Topology 1 has a total of 8 nodes and 11 links. Topology 1 selects the
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Fig. 1. Topo diagram
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topology used in paper [12], which studies network fault recovery and puts forward S3P
algorithm. Topology 2 has 12 nodes and 15 links. Topology 2 selects the topology used
in the TI-LFA section of Segment Routing, which is written by Cisco fellow Clarence
Pilsfils, the inventor and promoter of segmented routing. Topology 3 has 16 nodes and
22 links. Topology 3 selects the topology of USA backbone network ANS [13].

4.2 Performance Comparison

In topology 1–3, 30 experiments are performed to calculate the average QoS indicators
of the protected path to ensure data stability and reliability.

Bandwidth. In the performance evaluation of bandwidth, streaming video and cus-
tomized streaming video are selected as network services with high bandwidth require-
ment, and high quality streaming audio is selected as servicewith low bandwidth require-
ment. The experimental results are shown in Fig. 2. The customized protected path band-
width of streaming video is 9.22% higher than that of high-quality streaming audio,
13.88% higher than that of TI-LFA, and 32.94% higher than that of ordinary streaming
video on average.
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Fig. 2. Bandwidth of different topologies and routing algorithms

Latency. In the performance evaluation of delay, voice session and customized voice
session are selected as network services with low delay requirement, and high quality
streaming audio is selected as servicewith high delay tolerance. The experimental results
are shown in Fig. 3. The latency of customized protected paths for voice sessions is 4.51%
lower than that of high quality streaming audio, 8.13% lower than that of TI-LFA, and
25.9% lower than that of common voice sessions on average.
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Fig. 3. Latency of different topologies and routing algorithms

Jitter. In the performance evaluation of jitter, high quality streaming audio and cus-
tomized high quality streaming audio are selected as network services with low jitter
requirement, streaming video is selected as service with high jitter tolerance. The exper-
imental results are shown in Fig. 4. The jitter value of customized protection path for
high quality streaming audio is calculated to be 12.71%, lower than that for streaming
video, 14.32% lower than that for TI-LFA, and 33.68% lower than that for ordinary
high-quality streaming audio.
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Fig. 4. Jitter of different topologies and routing algorithms

Packet Loss. In the performance evaluation of packet loss rate, video phone and cus-
tomized video phone are selected as network services with low packet loss rate require-
ment, and streaming video is selected as services with high packet loss rate tolerance.
The experimental results are shown in Fig. 5. The packet loss rate of customized pro-
tection path of video phone is 4.4% lower than that of streaming video, 10.11% lower
than that of TI-LFA, and 28.96% lower than that of ordinary video phone.
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Fig. 5. Packet loss rate of different topologies and routing algorithms

Cost. In the performance evaluation of cost, live video and customized live video are
selected for comparison. The experimental results are shown in Fig. 6. The cost of
customized protected path of customized video broadcast is 55.77% higher than that
of ordinary live video on average and 18.55% higher than that of TI-LFA on average.
The algorithm proposed in this paper allows users to obtain better QoS performance by
paying more than that of ordinary service.
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5 Conclusion

In this paper, an SRv6-based service customized reliable routingmechanism is proposed.
Considering the characteristics of SRv6, a series of mechanisms for network reliability
and service customization are designed. The function of service customization for reli-
able routing is considered emphatically, and the selection of reliable routes is linked with
decision making. The results show that the proposed mechanism can improve service
customization capability while ensuring network reliability.
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Abstract. Unmanned Aerial Vehicles (UAVs) have been widely used in
both military and civilian scenarios since they are low in cost and flexi-
ble in use. They can adapt to a wide variety of dangerous scenarios and
complete many tasks the Manned Aerial Vehicles (MAVs) can not under-
take. In order to establish connectivity and collect data in large areas,
numerous UAVs often cooperate with each other and set up a UAV wire-
less network. Many multi-hop routing protocols have been proposed to
efficiently deliver messages with high delivery ratio and low energy con-
sumption. However, most of them do not consider that the power level
of UAVs is adjustable. In this paper, we propose a Power-Aware Routing
(PAR) algorithm for UAV networks. PAR utilizes the pre-planned trajec-
tory information of UAVs to compute the encounters at different power
levels, and then constructs a power-aware encounter tree to calculate the
transmission path with minimum energy consumption from the source to
the destination within the delay constraint. Through extensive simula-
tions, we demonstrate that compared with three classic algorithms, PAR
significantly reduces the energy consumption and improves the network
performance on the basis of ensuring timely delivery of packets.

Keywords: UAV networks · Routing protocol · Energy optimization ·
Power-aware · Trajectory-based

1 Introduction

In recent years, with the development of sensors, navigation systems and wireless
communication technologies, Unmanned Aerial Vehicle (UAV) networks achieve
significant performance improvements and have been widely used in both mil-
itary and civilian scenarios, such as battlefield surveillance, disaster response,
farmland monitoring, etc. Due to the agility, versatility, ease of installation and
simplicity of operation, UAVs can adapt to a wide variety of dangerous sce-
narios and complete many tasks that Manned Aerial Vehicles (MAVs) can not
undertake.

To establish connectivity in large areas, a great number of UAVs cooperate
with each other in the form of clusters and establish a multi-hop UAV network.
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Compared with single-hop UAV networks, multi-hop UAV networks can cover
a wider range and undertake more complex tasks. Meanwhile, multi-hop UAV
networks have many other advantages, such as low cost, low mission completion
time, better survivability and better scalability. Many multi-hop routing pro-
tocols in UAV networks [10] are proposed to efficiently deliver messages to the
destination, which have become a research hotspot in recent years.

Due to the unique characteristics of UAV networks, such as high mobility,
sparse distribution, intermittent connectivity and unstable link quality, multi-
hop routing in UAV networks faces many challenges, such as low delivery ratio,
high delay and expensive energy consumption. In order to address these issues,
a mechanism called store-carry-forward (SCF) [1] has been proposed to improve
the delivery ratio of packets. With the SCF mechanism, if there is a suitable
forwarding node within the communication range, the current message-holder
UAV will forward the packet to this forwarding node, otherwise it will store and
carry the packet until it encounters a suitable forwarding UAV.

Many routing protocols [1,8] have been proposed on the basis of the SCF
mechanism. However, most of them focus on improving the delivery ratio, but
ignoring the delivery delay and energy consumption. In many time-sensitive or
delay-constrained applications for UAV networks, such as forest surveillance,
disaster rescue and battlefield networks, messages need to be delivered in time,
otherwise, their values will be greatly reduced or even invalid. Meanwhile, UAVs
are energy-constrained and required to work for a long time. Therefore, routing
protocols for UAV networks need to reduce the energy consumption on the basis
of ensuring the timely delivery of messages.

Energy-efficient routing has attracted considerable attention and many meth-
ods have been proposed to minimize the total energy consumption. However,
most of them [4] assume that the power level of UAVs is fixed. In fact, the trans-
mission power of many UAVs is now adjustable [2,12], and the performance of
existing routing protocols is inefficient because they do not utilize the power-
adjustable characteristic of UAVs to optimize routing.

Meanwhile, in many military and civilian application scenarios for UAV net-
works, the trajectories of UAVs are pre-planned and can be obtained in advance
through mission planning and path planning [3,7]. Furthermore, if trajectories
of UAVs need to be dynamically adjusted, the ground station can broadcast the
updated global trajectory information through the out-of-band channel to ensure
that all UAVs have the latest global trajectory information [9,12]. We can use
this pre-planned trajectory information to reduce the energy consumption and
ensure the delivery delay.

Therefore, in this paper, we design a Power-Aware Routing (PAR) algorithm
for UAV networks which takes the delivery ratio, energy consumption and delay
constraint into consideration. The main idea of PAR is to utilize the power-
adjustable characteristic and pre-planned trajectory information of UAVs to
optimize routing protocols. First, PAR utilizes the pre-planned trajectory infor-
mation to compute encounters between UAVs at different power levels. Then,
a power-aware encounter tree (PET) is constructed according to the encounter
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information, based on which PAR can calculate an efficient transmission path
with minimum energy consumption within the delay constraint. It is worth not-
ing that, in PAR, each UAV selects the appropriate power level for each packet
transmission dynamically and individually. The main contributions of this paper
are twofold:

– A power-aware routing algorithm for UAV networks called PAR is proposed
to find the efficient transmission path with minimum energy consumption
within the delay constraint. Different from existing routing protocols using a
fix-power model, for each packet transmission, PAR dynamically selects an
appropriate power level for each UAV to reduce the energy consumption on
the basis of ensuring timely delivery of the packet.

– Extensive simulations are conducted by using the Opportunistic Network
Environment (ONE) simulator [6]. The results show the superior performance
of PAR compared to three classic algorithms in terms of the delivery ratio,
energy consumption and overhead ratio.

The reminder of the paper is organized as follows. Section 2 summarizes state-
of-art on routing protocols in mobile ad-hoc networks (MANETs). In Sect. 3, we
describe the problem formulation. Then, in Sect. 4, the design of PAR is pro-
vided in detail. Finally, we provide the performance evaluation of PAR through
extensive simulations in Sect. 5, and conclude this paper in Sect. 6.

2 Related Work

In this section, we introduce the latest progress of related work. There is a con-
siderable research effort for the development of routing protocols in MANETs,
which can be divided into topology-based or geographic routing protocols.

Topology-based routing protocols rely on the current network topology, based
on which routing-related information can be obtained and utilized for message
forwarding. The authors in [13] propose a new neighbor discovery mechanism
and a social network-based relay selection scheme to help make routing decisions.
The authors in [5] combine the blockchain with traditional Optimized Link State
Routing Protocol to encourage cooperation between nodes. Moreover, a relay
selection game model is improved and further applied to select the appropriate
relay node. However, the high mobility of nodes and high dynamic of topology
in UAV networks make the current topology information out of date frequently
and quickly, thereby making the routing inefficient or even unavailable.

Geographic routing protocols exploit local location information instead of
global topology information to route data. The pure idea is to forward packets to
the neighbor node nearest to the destination. The authors in [4] adaptively utilize
the location information and the characteristics of energy consumption to make
routing decisions for better route recovery from routing holes. The authors in [8]
further consider the transmission direction of data packets while using geographic
location information to improve the routing efficiency in similar strip networks.
However, due to the sparse distribution of nodes and intermittent connectivity
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of communications, pure geographic routing protocols are not enough to cope
with UAV networks.

In order to address the above challenges, a promising approach called store-
carry-forward mechanism is proposed and widely used due to its simplicity and
effectiveness. In [2], the minimum energy routing problem is converted into a
directed Steiner tree problem and then map the computed tree back into a
transmission scheme. Meanwhile, the authors in [1] further take the prediction
of trajectory and the load of UAVs into consideration to optimize data packet
forwarding. However, due to the highly dynamic nature of UAV networks, geo-
graphic routing protocols inevitably falls into local optimum.

3 Problem Formulation

The application scenarios we consider in this paper are search and rescue mis-
sions. Many UAVs search in an area and will send messages as needed. Without
loss of generality, we abstract the three-dimensional space into a Euclidean space
ignoring the vertical space [2]. The ground station calculates the trajectories of
UAVs in advance according to the path planning algorithm [7,9,10].

The UAV network model can be denoted as a weighted directed graph
G = (V,E, P ) where V = {u1, u2, . . . , uN} stands for the N nodes, each node
represents a UAV or a ground station. Each node has L adjustable power levels,
P = {p1, p2, . . . , pk, . . . , pL}, and E = {e1, e2, . . . , eG} ⊆ V ×V denotes the edge
set. Time is divided into discrete T time slots and nodes remain static within a
time slot [2]. An edge e = (ui, uj , t, pk), where 1 ≤ i, j ≤ N, 0 ≤ t ≤ T, 1 ≤ k ≤ L
and i �= j, means that ui will encounter uj and ui can communicate with uj with
the power level pk in the time slot t. Moreover, the energy consumption that ui

transmits a packet m to uj with the power level pk is denoted as Ee(pk).
Given a UAV network, every time a real-time message m is generated, it will

be associated with a delay constraint T based on its urgency. Taking the power-
adjustable characteristic of UAVs into consideration, the objective of this paper
is to find an efficient transmission path with minimum energy consumption while
satisfying the delay constraint for each message.

4 Power-Aware Routing Algorithm

4.1 Basic Idea

Our basic idea is to utilize the power-adjustable characteristic and pre-planned
trajectory information of UAVs to optimize routing in UAV networks. First,
the pre-planned trajectory information is used to predict encounters at dif-
ferent power levels between UAVs. As depicted in Fig. 1, there are five UAVs
u1, u2, u3, u4, u5 and a ground station g0. UAVs are flying along with their pre-
planned trajectories and collecting data. We assume that each UAV has two
different power levels (i.e., p1 and p2), and Fig. 1 shows the encounters between
UAVs at different power levels (i.e., ei and ci). For ease of differentiation, we
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abstract encounters at the power level p1 as points [9]. For instance, at position
e1, UAV u1 and u2 encounter at 10s with the power level p1. Moreover, at posi-
tion c1, UAV u2 and u3 encounter at 25s with the power level p2; at position c2,
UAV u2 and u5 encounter at 25s with the power level p2; at position c3, UAV
u5 and u2 encounter at 45s with the power level p2.

Then, for the message that need to be delivered, we construct a power-aware
encounter tree (see in Sect. 4.2) according to the encounter information of UAVs.
Based on the power-aware encounter tree, we can find the efficient transmission
path with minimum energy consumption within the delay constraint for the
message. In PAR, each UAV can select the appropriate power level for each
packet transmission dynamically and individually according to its respective
encounter situation.

e5:35se5:35s

e1:10se1:10s

c3:45sc3:45s

c1:25sc1:25s

u1 u3 u2

u4

g0 

e2:5se2:5s

e3:25se3:25s

e4:60se4:60s e6:45se6:45s

c2:25sc2:25s

u5

Transmission range of UAVs with the power level  p2

Encounters with the power level p1

Encounters with the power level p2

m

Trajectory of UAV

ei:tsei:ts

ci:tsci:tsci:ts

Fig. 1. An example of encounters between UAVs when UAVs have two power levels.

For example, in Fig. 1, a data packet m with a delay constraint T is gen-
erated by UAV u1 at 0s, and u1 wants to send m to the ground station g0.
For convenience, in this paper, we use a sublinear energy model in [11], that
is 2Ee(p1) > Ee(p2). It is worth nothing that PAR is not restricted by a spe-
cific energy model. According to the pre-planned trajectory information and
encounter information, we can deduce that there are at least three transmission
paths:

1. pa1 : u1
e2−→ u3

e4−→ g0. The transmission path is (u1, u3, 5s, p1),
(u3, g0, 60s, p1). The delivery time of m along this path is 60s and the energy
consumption is 2Ee(p1).

2. pa2 : u1
e1−→ u2

e3−→ u4
e5−→ u5

e6−→ g0. The transmission path is (u1, u2, 10s, p1),
(u2, u4, 25s, p1), (u4, u5, 35s, p1), (u5, g0, 45s, p1). The delivery time of m along
this path is 45s and the energy consumption is 4Ee(p1).

3. pa3 : u1
e1−→ u2

c2−→ u5
e6−→ g0. The transmission path is (u1, u2, 10s, p1),

(u2, u5, 25s, p2), (u5, g0, 45s, p1). The delivery time of m along this path is
45s and the energy consumption is 2Ee(p1) + Ee(p2).
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When the delay constraint T ≥ 60s, all three transmission paths mentioned
above can deliver the message m in time, but the first transmission path pa1 is the
best choice, since it has the least energy consumption while ensuring the timely
delivery of m. However, when 45s ≤ T < 60s, pa1 can not satisfy the requirement
because the delivery time along it is 60s which exceeds the delay constraint. In
this situation, if we do not consider the power-adjustable characteristic of UAVs,
the suitable transmission path will be pa2, the delivery time of m along pa2 is
45s and the energy consumption is 4Ee(p1). On the contrary, if we take the
adjustable power levels into consideration, we can find out a better transmission
path, that is, pa3. The delivery time of m along this path is also 45s. Both pa2
and pa3 can ensure the timely delivery of m, however, the energy consumption
of pa3 is 2Ee(p1)+Ee(p2), which is less than that of pa2 which does not consider
the adjustable power level.

4.2 Power-aware Encounter Tree Construction

In order to find an efficient transmission path with minimum energy consump-
tion within the delay constraint for the packet m, we propose a power-aware
encounter tree (PET ) based on the encounter information of UAVs at differ-
ent power levels within the delay constraint. Before describing the construction
procedure of PET, we first introduce some basic definitions and terms of PET :

– PET is a directed tree that originates from the source node s that sends m
to the destination node d.

– For a node n in PET, it represents a UAV or a ground station in the network.
Each node can appear repeatedly in PET.

– Each edge e between nodes in PET is a directed edge, which represents an
encounter between the two parties. The direction of the edge indicates the
direction of the packet transmission. Each encounter can only be added to
PET once.

– The child nodes of n are the nodes which n will encounter at different power
levels after encountering its parent node within the delay constraint. For the
same node that encounters at different power levels, we regard it as different
child nodes. The child nodes of n are denoted as n.C =

⋃L
k=1 N(n, n.t, T, pk),

where n.t indicates the encounter time between n and its parent node, T
represents the delay constraint of m, and N(n, n.t, T, pk) represents the nodes
that n will encounter between n.t and T with the power level pk.

– For each child node of n, denoted as c ∈ n.C, and its encounter ec with n,
represented as (n, c, c.t, pk), the transmission path from the source node s to
c consists of the transmission path from s to n and the transmission path
from n to c, denoted as c.pa = n.pa → (n, c, c.t, pk).

– The total energy consumption to transmit m from s to c along c.pa is denoted
as Et(c.pa), and Et(c.pa) = Et(n.pa) + Ee(pk), where Ee(pk) indicates the
energy consumption that the node n transmits m to its child node c with the
power level pk.

– PET only contains the source node s when it is initialized. For the source
node s, s.t = 0, Et(s.pa) = 0.
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Then, we describe the construction procedure of a power-aware encounter
tree. The construction of PET is a process of expanding the tree by adding new
pairs of nodes and edges into it one by one until a transmission path that satisfies
the requirements is found. Each pair of added node n and edge en is associated
with an energy consumption metric (ECM ) and encounter time (ET ), where
ECM = Et(n.pa) and ET = n.t. We use a priority queue (PQ) to assist the
insertion of nodes and edges in PET. When each node is added into PQ, its
parent node and the encounter (i.e., the associated edge) have been determined.
Nodes with their edges are sorted by the associated ECM and ET to ensure
that the head node in PQ has the smallest ECM. Meanwhile, in order to ensure
the uniqueness of the encounters in PET, we use a bitmap V to mark whether
an encounter has been added to PET. The algorithm is expressed as follows:

1. Insert the message source UAV into PQ ; all the elements of V are initialized
with 0, indicating that all encounters have not been added into PET yet.

2. If PQ is empty, the construction process of PET is done; otherwise, take out
the first node (denoted as u) from PQ. If u is the source UAV, go to Step 4;
otherwise, get the encounter eu between u and its parent node, and then go
to Step 3. Note that u is the node with the smallest ECM.

3. If eu has been added into PET before (i.e., V [eu] = 1), discard it and go to
Step 2; otherwise go to Step 4.

4. Based on the pre-planned trajectory information, calculate the child nodes of
u (i.e., u.C). Note that the child nodes of u are the UAVs that u will encounter
at different power levels (i.e., from p1 to pL) within the delay constraint T
after encountering its parent node (i.e., between u.t and T ).

5. For each child node c of u (i.e., c ∈ u.C), compute its ECM and ET based on
the encounter ec between u and c. If ec has been added to PET, then discard
it; otherwise, node c along with ec is added to PQ. The priority queue PQ
can ensure that the ECM of the head node is the smallest.

6. If u is the source node, it will be the root node of PET ; otherwise, add u
into PET by inserting it into its parent’s corresponding child-list as a child
node. The edge represents the encounter between u and its parent node (i.e.,
eu). Then, set the corresponding bitmap element V [eu] to 1, indicating that
encounter eu has been added into PET.

7. If the destination node d is added into PET, the construction process of PET
will be done, which means a qualified transmission path is found; otherwise,
go to Step 2.

After describing the main stages of the construction of the power-aware
encounter tree, we summarize PAR in Algorithm 1.

4.3 Proof of Optimality

In this section, we provide a theoretical proof of the optimality of PAR.

Theorem 1. When the destination node d is added into PET for the first time,
its associated transmission path (i.e., d.pa) will be the transmission path with
minimum energy consumption while satisfying the delay constraint.
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Algorithm 1 PAR: A Power-Aware Routing Algorithm for UAV Networks
Require:

Source node (s), destination node (d), delay constraint (T )
Ensure:

Power-Aware Encounter Tree (PET )
1: PQ.push(s), initialize(V, 0)
2: while !PQ.isEmpty() do
3: u ⇐ PQ.poll()
4: if V [eu] == 1 then
5: continue
6: end if
7: u.C ⇐ ⋃L

k=1 N(u, u.t, T, pk)
8: for each c ∈ u.C do
9: computeECM(c)

10: computeET(c)
11: if V [ec] == 0 then
12: PQ.push(c)
13: end if
14: end for
15: insertPET(u, u.parent, eu)
16: set V [eu] = 1
17: if u == d then
18: break
19: end if
20: end while
21: return PET

Proof. We suppose that there is another transmission path d.pa1, which con-
sumes less energy than d.pa (i.e., Et(d.pa1) < Et(d.pa)) while satisfying the
delay constraint. There will be two cases:

1. d.pa1 has been added to PET.
It contradicts the condition that the destination node d is added into PET
for the first time.

2. Part or all of d.pa1 is still in PQ.
We assume that the part of d.pa1 in PQ is u.pa′

1, so Et(u.pa′
1) < Et(d.pa1) <

Et(d.pa). However, based on the rule of PAR, the ECM of the head node of
PQ is the smallest. When d is taken out from PQ and added into PET, the
ECM of its associated transmission path (i.e., d.pa) is the smallest, namely
Et(d.pa) < Et(u.pa′

1) < Et(d.pa1). Contradiction.

Therefore, there is no other transmission path with lower energy consump-
tion, namely d.pa is the transmission path with minimum energy consumption
while satisfying the delay constraint.

Based on the above analysis, we can prove that if there is a transmission
path that satisfies the requirements, PAR can always find it. This ensures the
correctness and optimality of PAR.
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5 Performance Evaluation

In this section, we evaluate the performance of PAR along with three classic
routing algorithms in [1]: DTNgeo, DTNclose and DTNload. DTNgeo utilizes the
current location and trajectory information for packet forwarding. Then on the
basis of the DTNgeo algorithm, DTNclose further predicts the future location of
UAVs, and DTNload considers the load of UAV networks to optimize routing. We
implement them on the Opportunistic Network Environment (ONE) simulator
[6] and extend the ONE simulator to support multiple power levels.

5.1 Simulation Setup and Scenarios

Referring to the simulation scenarios in [1,9,10], we design a power-adjustable
simulation scenario inspired by search and rescue missions. In the scenario, one
stationary ground station is placed together with nine search UAVs and four
ferry UAVs. Each search UAV uses a typical search zigzag movement pattern to
cover the mission region efficiently, and each ferry UAV moves back and forth
along specified trajectory to assist search UAVs in transmitting packets. Table 1
summarizes the detailed experimental parameters. We use the following metrics
to evaluate the performance of the packet forwarding algorithms:
– Delivery ratio. The fraction of messages that have been successfully deliv-

ered to the destination out of the messages that have been generated.
– Energy consumption. The average energy consumed by messages success-

fully delivered to their destinations.
– Overhead ratio. Overhead = Sumrelay−Sumdely

Sumdely
, where Sumrelay is the total

times that all messages were forwarded, and Sumdely is the total number of
messages that have been successfully delivered to the destination.

Table 1. Simulation settings

Parameter Default value

Simulation area (m2) 800 × 800

Simulation time (s) 480

Number of nodes 14

UAV speed (m/s) 4.5

Number of power levels 4

Communication range (m) 200

Message size (Byte) 1400

Message creation Rate of Each UAV (/s) 6

Delay constraint (s) 75

To avoid bias, we run each experiment with 10 rounds and calculate the
average value as the final experimental result. In addition, for DTNgeo, DTNclose

and DTNload, we run the simulation separately at each fixed power level and
select the best simulation value as the final experimental result.
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5.2 Analysis of Simulation Results

Impact of the Message Creation Rate. As shown in Fig. 2(a), PAR achieves
the maximal delivery ratio and outperforms the three algorithms especially when
the message creation rate becomes very high. This is because PAR utilizes the
pre-planned trajectory information and power-adjustable characteristic of UAVs
to calculate the transmission path in advance which improves the delivery ratio
of data packets. Meanwhile, as depicted in Fig. 2(b), the energy consumption
of PAR is much lower than DTNgeo and DTNload, but higher than DTNclose.
However, DTNclose is at the expense of the delivery ratio, while PAR firstly
guarantees the timely delivery of messages, and then minimizes the energy con-
sumption. PAR can improve the power level and increase the energy consumption
to ensure the timely delivery of messages. For the overhead ratio, as Fig. 2(c)
shows, PAR achieves the minimum overhead ratio and there is almost no fluctua-
tion in PAR. This is because PAR calculates the transmission paths in advance,
and then forwards the messages according to these calculated paths without
redundant forwarding, thereby reducing the number of message forwarding.

Fig. 2. The impact of the message creation rate on the delivery ratio, energy consump-
tion and overhead ratio.

Impact of the UAV Speed. As depicted in Fig. 3(a), the delivery ratios of
all algorithms increase with the increasing of the UAV speed. This is because
with the increasing of the UAV speed, the current message holder can have
more opportunities to choose a suitable forwarding node before the delay con-
straint expires due to more encounters in the same time window. The energy
consumption of PAR is always lower than DTNgeo and DTNload, but higher
than DTNclose when the UAV speed is slower than 8m/s, as Fig. 3(b) shows.
This is because PAR dynamically adjust the power of UAVs to find an effi-
cient transmission path to the destination. On the contrary, DTNclose does not
guarantee the timely delivery of packets. When the delivery ratios of PAR and
DTNclose are the same, we can find that the energy consumption of PAR is
much smaller than DTNclose. As shown in Fig. 3(c), the overhead ratios of all
algorithms decrease with the increasing of the UAV speed, and PAR achieves
the minimum overhead ratio.
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Fig. 3. The impact of the UAV speed on the delivery ratio, energy consumption and
overhead ratio.

Impact of the Delay Constraint T . As Fig. 3(a) and 3(b) shows, even when
the delay constraint is small, PAR can still maintain a perfect delivery ratio.
The reason is that PAR adjusts (i.e., increases) the power level to ensure the
timely delivery of messages. Meanwhile, as the delay constraint tends to be
relaxed, PAR gradually adjusts (i.e., decreases) the power level to minimize
the energy consumption. For the overhead ratio, as depicted in Fig. 3(c), PAR
achieves the minimum overhead ratio, and as the delay constraint increases,
the overhead ratio of PAR gradually decreases. This is because PAR always
chooses the transmission path with minimum energy consumption within the
delay constraint (Fig. 4).

Fig. 4. The impact of the delivery constraint on the delivery ratio, energy consumption
and overhead ratio.

6 Conclusion

In this paper, we propose an efficient Power-Aware Routing (PAR) algorithm for
UAV networks. PAR takes the adjustable power into consideration. Based on the
pre-planned trajectory information of UAVs, PAR computes encounters between
UAVs at different power levels and constructs a power-aware encounter tree to
find an efficient transmission path. Then according to the found transmission
path, it selects the appropriate power level for each forwarding UAV to minimize
the energy consumption and ensure timely delivery of the packet. The simulation
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results show that PAR significantly improves the network performance and has
a better delivery ratio, energy consumption and overhead ratio than three classic
algorithms.
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Abstract. Low power and lossy network (LLN) massive terminal
deployment has become an inevitable trend. However, traditional rout-
ing protocols cannot meet the large-scale data transmission requirements.
In this paper, we introduce the multi-channel communication technology
into LLN and propose a multi-channel routing protocol based on cross-
layer design (MC-RPL), which can increase the data transmission capac-
ity of the network via a parallel data transmission strategy. Specifically,
we design a novel super-frame structure to decouple the communication
period into a route maintenance phase and a data transmission phase.
Nodes can transmit data in parallel during the data transmission phase.
Besides, we improve the trickle algorithm to enhance routing mainte-
nance efficiency during the route maintenance phase. Simulation results
have demonstrated the effectiveness of the MC-RPL protocol compared
to the MRHOF and IRH-OF protocols.

Keywords: LLN · Multi-channel · Routing protocol · Cross-layer ·
Superframe structure

1 Introduction

Low Power Lossy Network Routing Protocol (RPL) is a distance vector routing
protocol proposed by the Low Power Lossy Network Routing Working Group
(ROLL), which builds network topology based on Objective Function [1]. Due
to the sharp increase in wireless sensor equipment brought about by diversi-
fication of practical application scenarios, network density is getting crucially
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high and the limited capacity of LLN networks has become a bottleneck of net-
work performance. Explore multi-channel communication in wireless networks
has been long known as a practical way to increase network capacity as well
as mitigate interference in radio links. A multitude of nodes can transmit data
packets in multiple radio channels simultaneously, thus appealing multi-channel
communication mode in LLN is also could consider a promising approach. During
recent decades, several multi-channel protocols have been proposed to optimize
the performance of the single-channel deployment in legacy WSN. However, the
majority of existing multi-channel research in wireless sensor networks is mainly
performed on the Media Access Control (MAC) layer while there are seldom
studies focusing the routing layer optimization based on multi-channel scenar-
ios. Routing protocols based on multi-channel scenarios have much more out-
standing performance compared with single-channel and become a main trend
in the future. In this paper, we propose a multi-channel routing protocol, called
MC-RPL. The main contributions are as follows:

– We design a new superframe structure to support multi-channel communi-
cation in the LLN network, in which system communication time is divided
into the initialization phase, data transmission phase, and route maintenance
phase.

– In the data transmission phase, we design a channel allocation mechanism
based on the pseudo-random code of the MAC address, which can improve the
data transmission performance of the network by enabling different channels
for parallel data transmission for multiple data link pairs.

– In the route maintenance phase, we optimize the trickle algorithm to adjust
the sending period of control messages, which can accelerate the network con-
vergence and avoid unnecessary overhead. In addition, the multi-channel of
MAC mechanism enhances the reliability of data transmission, while optimiz-
ing the selection of the optimal parent node.

The rest of the paper is organized as follows: Sect. 2 reviews related work, Sect. 3
presents the proposed MC-RPL protocol, Sect. 4 describes the simulation and
result evaluation, and Sect. 5 offers concluding remarks.

2 Related Work

The current research on RPL routing protocol mainly focuses on load balanc-
ing and optimizing the RPL protocol by using better routing metrics. IETF-
ROLL has developed two objective functions: OF0 [2] and MRHOF [3]. How-
ever, network performance may reach the bottleneck when the number of nodes
increases to a threshold in single-channel communication mode. Therefore, the
multi-channel communication mode in LLN has become a main trend of research.
To make better use of the multi-channel communication mode in LLN, the RPL
routing protocol needs to combine with the MAC layer for further improvement.
The work in [4,5] conducted a comprehensive analysis of cross-layer protocols
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in existing wireless sensor networks and proved that RPL could supply inter-
operability with other layer protocols. Hassani A E et al. [6] designed a new
objective function to improve network performance by considering the Radio
Strength Signal Indicator and hop count. Nordin N et al. [7] proposed a multi-
channel cross-layer routing protocol (MCRP) that allows physically close nodes
to communicate on different channels. This is mostly found in routes for nodes
that are not interfered with or have low interference. However, in this scheme
channel allocation is performed after topological stabilization, which does not
have good robustness. Amitangshu P et al. [8] proposed a distributed dynamic
channel and route selection method to optimize network performance. However,
all nodes need to maintain the information table of surrounding nodes to reselect
the channel in the second stage, resulting in excessive overhead in the network.
Bizagwira H et al. [9] divided the entire communication time into three phases:
synchronization, data transmission, and sleep. However, the time slot-based com-
munication method may reduce network reliability in high-density scenarios.

In response, this paper proposes the multi-channel routing protocol based on
cross-layer design, which can replace the traditional RPL protocol in the high-
density multi-channel LLN network. This protocol allows data to be transmitted
in parallel via multi-channel at specific stages of the superframe and periodic
routine maintenance ensures the stability of the network topology.

3 MC-RPL Protocol

3.1 System Model

In this section, we introduce the system model of the MC-RPL protocol. The
MC-RPL protocol takes a single Destination-Oriented Directed Acyclic Graph
(DODAG) in a single RPL instance as the main research object. There is only one
sink node in the network, and other nodes use the sink node as the root node to
construct the network topology. Except for the sink node, all nodes in the entire
network are operated in non-storage mode. In addition to being responsible for
sending the data packets generated by itself, a non-root node also acts as a relay
node to forward the data packets received from the child nodes. In addition, each
node that joins the network can maintain clock synchronization with the parent
node to ensure that all nodes in the network have a common reference time [10].

3.2 MC-RPL Protocol Design

This section proposes a multi-channel RPL protocol based on a cross-layer
design. This protocol guarantees route maintenance and data transmission in
LLN networks through the superframe mechanism. Then, the superframe struc-
ture, initialization phase, data transmission phase, and route maintenance phase
are introduced in detail, respectively.



348 J. Lei et al.

Superframe Structure. We design a novel superframe structure for the LLN
network, splitting the communication period into two parts: the initialization
phase and the superframe period. When the node starts the initialization phase,
the sink node will start the superframe period after completing the initialization
phase within a certain period, and other nodes will estimate the start time of the
superframe period according to the parent node after completing the networking
in the initialization phase.

A superframe consists of a data transmission phase and route maintenance
phase, and each superframe starts with the data transmission phase. In the
data transmission phase, each node listens to its working channel and utilizes
multi-channel for data packet transmission. In the route maintenance phase, all
nodes listen to the control channel and can receive broadcast control information
such as DIO (DODAGs Information Object) sent by all surrounding nodes to
assure the construction and maintenance of network topology. The superframe
structure is shown in Fig. 1.

Fig. 1. Superframe structure

Initialization Phase. In the initialization phase, all nodes work on the con-
trol channel and initialize their network parameters. After the node completes
initialization, the sink node will start to broadcast the DIO control message on
the control channel to trigger the node to start network construction. The sink
node will start the superframe period after completing the pre-defined initial-
ization phase. In this stage, the superframe index (sfindex) of the sink node will
be calculated according to Eq. 1 after each node is connected to the network.
Each node calculates the start time of the next superframe (next sf) according
to Eq. 2 and enters the superframe period with the sink node at the next super-
frame. The initialization period can ensure that the network topology converges
faster when the network starts up.

sfindex =
⌊
curr time− init time

sf time

⌋
(1)

next sf = sfindex · sf time + init time (2)
Let sfindex represent the superframe index of the sink node. curr time repre-

sents the current time of the node, init time is the duration of the initialization
phase and sf time is the duration of a superframe. next sf represents the time
when the node enters the superframe.
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Data Transmission Phase. In the data transmission phase, Multi-channel
communication could enable multiple pairs of nodes to communicate in parallel
on different channels. Simultaneously, the node will reduce the collision proba-
bility of data packets by suppressing the sending of broadcast messages in this
phase.

In this phase, each node selects its working channel through a procedure that
pseudo-randomly according to its own MAC address. Therefore, when a node
communicates with another node, it can estimate the working channel according
to the address of the destination node, avoiding the overhead of maintaining node
channel information. We have utilized Eq. 3 to calculate the working channel
index of a node.

Channeliindex = mod (MacAddi,K) + 1 (3)

where Channeliindex is the working channel index of node i, MacAddi is the
MAC address of node i, K is the number of available channels. mod (a, b) is is
remainder of a divided by b.

All nodes listen to their working channels, once the source node wants to send
a data packet to the destination node, according to Eq. 3, the working channel of
the destination node will be calculated. After that, the source node will switch
to the corresponding channel for data transmission.

Route Maintenance Phase. In the multi-channel scenario, nodes could trans-
mit data packets on multiple working channels respectively. Since network main-
tenance requires nodes to broadcast DIO and send other control messages to
surrounding neighbors during the route maintenance phase, it is necessary to
ensure that all nodes exchange control messages on the same channel, which is
called the control channel. The main task of the route maintenance phase is to
update and maintain the network topology. In this phase, each node switches the
control channel to listen to the control channel sent by the surrounding nodes.

In this phase, each node needs to receive DIO control messages sent by other
nodes in the network to join the network, or determine whether to switch from
the current parent to a better one or not. In other words, RPL broadcasts the
routing information using DIO messages which are transmitted based on the
Trickle Algorithm. In MC-RPL protocol, DIO control messages are only sent
to the control channel during the route maintenance phase to ensure that all
nodes update network information and avoid collision with data transmission.
To accelerate the convergence of the network, the node adopts a standard trickle
algorithm to construct the network topology during the initialization phase.
Once the node enters the superframe period, the optimized Trickle algorithm
described above will be activated and inhibit the nodes from sending broadcast
data packets during the data transmission phase. For this purpose, the Trickle
timer controls the sending of DIO messages and will be feezed during the data
transmission phase.

In the standard trickle algorithm, the minimum transmission interval of DIO
is Imin = 212 ticks, and the maximum transmission interval Imax = 220 ticks.
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Tick is the relative time unit of the system, also known as the time base of the
system, derived from the periodic terminal of the timer. To ensure DIO mes-
sages are only transmitted once in a superframe period, the minimum transmis-
sion interval of DIO messages needs to be modified properly. The newly defined
minimum interval is calculated via Eq. 4:

Imin = 2�log2R time� (4)

where R time represents the duration of the route maintenance phase. In addi-
tion, according to the traditional trickle algorithm, the maximum sending inter-
val of DIO is set to Imax = Imin · 28.

In addition, the node analyzes the information carried in the received DIO
control message, selects the optimal parent node according to the objective func-
tion, and determines whether to switch the parent node. We adopted the objec-
tive function named Expected Transmissions Count (ETX) as the routing metric.
The MC-RPL protocol can improve the success rate of data packet transmission
by introducing multi-channel in the data transmission stage. Therefore, multi-
channel communication can ensure that the ETX is relatively stable, thereby
improving the stability of the network topology.

4 Experimental Results

To evaluate the performance of the MC-RPL protocol, we implemented the MC-
RPL in the Contiki-ng operating system and analyzed its performance with the
Cooja simulation platform. In the simulation experiment, the performance of
MC-RPL has been investigated through its comparison with MRHOF [3] and
IRH-OF [6]. We mainly evaluate from four dimensions: packet delivery rate,
end-to-end delay, the throughput of the sink, and control packet overhead. We
analyzed the network performance under different node densities, and all nodes
were randomly deployed in an area of 200 m × 200 m. Contiki-ng operates in the
915 MHz band and has a total of 10 available channels, one of which is a control
channel. To ensure the accuracy of experimental results, all simulation tests
were averaged 5 times, and the simulation time was 30 min. Table 1 describes
the summary of the simulation environment.

4.1 Packet Delivery Rate

Packet Delivery Rate (PDR) refers to the ratio of the number of data packets
successfully received by the destination node compare with the total number of
data packets sent. With the network scale getting larger, plenty of packets need
to be transmitted in the network, the collision probability of data packets will
increase and the PDR declines significantly. In Fig. 2, we compared the PDR
of three different protocols. The traffic load is relatively light in the case of
low-density topologies for each node. The MRHOF and IRH-OF method can
easily cope with this scenario, and the MC-RPL protocol does not have great
advantages. However, when the topology gets relatively dense, especially when
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Table 1. Simulation parameters

Parameters Value

Radio environment Unit disk graph medium (UDGM)

Standard for PHY and MAC IEEE 802.15.4/CSMA

Number of available channels 10

Duration of initialization phase 20 s

Duration of data transmission phase 9 s

Duration of route maintenance phase 1 s

Network area 200 m × 200 m

Number of nodes 25,50,75,100,125

Transmission/interference ranges 60/100 m

Data sending rate 6pkt/mins

Package size 127 bytes

Simulation time 30mins

the number of nodes is 125, the PDR of the MRHOF protocol is reduced to
70% and the IRH-OF protocol is 83%. The reliability of the network is hard
to guarantee. In contrast, MC-RPL can still achieve a PDR of more than 92%
in this high-density scenario, ensuring network reliability. Results of simulation
experiments verify that the MC-RPL protocol in multi-channel communication
mode, allowing multiple pairs of nodes to transmit data in parallel, which can
effectively alleviate collisions in the network and increase the success rate of data
transmission.

Fig. 2. Packet delivery rate Fig. 3. End-to-end latency
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4.2 End-to-End Latency

The end-to-end latency is the duration for the data packet to be transmitted
from the source node to the sink node. As shown in Fig. 3, in a network with a
relatively limited number of nodes (25 nodes), the MC-RPL protocol needs to
perform channel switching during data transmission, resulting in higher delay
than IRH-OF protocol and lower delay than MRHOF. With the increase in the
number of nodes, MC-RPL can mitigate the average amount of delay against
MRHOF and IRH-OF by 31.35% and 15.15%, respectively. The main reason is
that only a pair of nodes are allowed to communicate within the node’s listening
range in a single channel. If the channel is busy, data packets need to be backed
off, which also to increased delay. Nonetheless, MC-RPL allows multiple pairs of
nodes to use different channels for simultaneous transmission in multi-channel
communication mode.

Fig. 4. Throughput Fig. 5. Control packet overhead

4.3 Throughput

The throughput is the number of data packets successfully transmitted per unit
of time. In Fig. 4 can be seen that as the number of nodes increases, the through-
put of the IRH-OF protocol and MC-RPL protocol are constantly increasing.
The throughput of MC-RPL is always higher than that of IRH-OF. Conversely,
the throughput of the MRHOF protocol decreases when the number of nodes
exceeds 100. since nodes are always suffering heavy traffic and the data packets
cannot be successfully transmitted.

4.4 Control Packet Overhead

Control packet overhead is the ratio of control packets to the total number of
generated packets by the nodes. According to Fig. 5, with deploying more nodes
in the network, the overhead of MC-RPL is slight to both MRHOF and IRH-
OF and has an average reduction of 43% compared to MRHOF. The result
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shows that by enabling a multi-channel approach, the MC-RPL protocol, which
avoids network topology instability caused by excessive ETX fluctuations, has
successfully reduced the retransmission of data packets. Besides, MC-RPL has
an average reduction of 28% compared to IRH-OF, due to the adjustment of
the trickle algorithm ensures that control messages can be sent in time and
minimizes the unnecessary overhead when the network topology is stable.

5 Conclusions

The main challenge faced by the highly densely deployed LLN network is the
limited network capacity. To solve this problem, we propose a multi-channel
routing protocol called MC-RPL. This protocol supports the construction and
maintenance of topology in the multi-channel communication mode by using the
superframe structure. The simulation experiment on Cooja shows that the MC-
RPL protocol has more satisfactory performance than MRHOF and IRH-OF in
terms of PDR, end-to-end delay, throughput, and control overhead.
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Abstract. Aiming at the problems of high end-to-end transmission delay and low
packet delivery rate caused by the highmobility of unmanned aerial vehicle (UAV)
nodes, a routing protocol based on the improved equal dimension new information
GM(1,1) model (IEDNI-GM) is proposed. By analyzing the motion characteris-
tics of the UAV node, combine the gray prediction model and the Markov chain
model to construct IEDNI-GM to predict the location of the UAV node at the next
moment. Meanwhile, the paper combines the advantage that clustering structure
can optimize network management. We consider the motion state and the com-
munication link state between nodes and use the predicted value of node position
to calculate the value of link holding time, motion similarity and expected trans-
mission count. The cluster-head election indicator is constructed by combining
these three values, and the UAV nodes in the network are clustered. This cluster-
ing structure is adopted to improve the AODV routing protocol. Therefore, the
source node can find an effective communication route to the destination node.
Experiments under the network simulator NS-3 show that compared with routing
protocols such as AODV and AODV-ETX, the routing protocol in this paper can
effectively reduce the end-to-end average transmission delay, increase the delivery
rate of data packets, and is more suitable for UANET.

Keywords: UAV ad hoc networks · Position prediction · Cluster-head election
indicator · Clustering routing protocol

1 Introduction

With the continuous expansion of the application field of UAV (Unmanned Aerial Vehi-
cle) [1], the tasks it needs to perform also become more diverse. On some complex occa-
sions, a single UAV system is no longer suitable, and multiple UAVs need to coordinate
and cooperate to complete more complex tasks.

Each UAV is equipped with sensors, positioning systems and autopilots. UAVs can
relay remote control commands from satellites or ground base stations to each other,
and exchange awareness, node energy consumption, and airframe conditions. UANET
(UAV Ad Hoc Networks) [2] has the characteristics of high node mobility and frequent
network topology changes. This easily leads to problems such as low data delivery rate
and high information transmission delay when nodes communicate in the network [3].
The main contributions of this paper are as follows:
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– The IEDNI-GM (Improved Equal Dimension New Information GM(1,1) Model) is
proposed to predict the position of the UAV node at the next moment. By analyzing
the motion characteristics of UAV nodes, IEDNI-GM is constructed by combining
GM(1,1) and Markov chain models.

– A location prediction-based UANET clustering routing protocol AODV-PPC is pro-
posed. The predicted node positions are used to calculate the link retention time,
motion similarity and expected transmission times between nodes. The cluster head
election indicator is constructed by combining the link retention time, motion similar-
ity and expected transmission times between nodes.According to the cluster head elec-
tion indicator, the nodes in the network are clustered, thereby improving the AODV
routing protocol. This improvement can effectively reduce the average end-to-end
transmission delay and improve the packet delivery rate.

2 Related Work

This paper focuses on location-based routing protocol [4]. This kind of routing protocol
is suitable for UANET, whose topology changes frequently but it is more dependent on
the accuracy of the positioning system [2]. Greedy Perimeter Stateless Routing (GPSR)
[5] is a typical location-based routing protocol. Each node in the network can get its
own location information through the positioning system, and get the location of the
target node by constantly interacting with neighbors. This protocol is prone to routing
vulnerabilities in networkswith rapidly changing topologies and sparse nodes.Rodrigues
for the high mobility of UAV nodes. Rodrigues et al. [6] aimed at the high mobility
of UAV nodes. The contact duration between nodes is calculated by predicting the
location of nodes. The uncertainty of a node is measured by its neighbor’s progress in
completing its flight plan. Combining the two methods mentioned above to improve
GPSR. Sang et al. [7] proposed an opportunistic routing protocol based on trajectory
prediction. The protocol predicts the speed and position of the UAV node at the next
moment by using a Gaussian mixture model. Calculate the trajectory metric of the node
using the predicted value of the node position. This protocol combines node trajectory
measurement, node energy and node buffers to make routing decisions. Hussein et al. [8]
proposed a geographical multicast routing protocol in the flying ad hoc network. When
a node has information to send to multiple destination nodes, it will predict the location
of its neighbors, thus obtaining the neighbors and each destination node. If this value
is smaller than the transmission radius of the node, it will forward the route through its
neighbor. When the node can not find a neighbor closer to the target node than itself,
it will forward the boundary until the current node finds a neighbor closer to the target
node.

3 Proposed Approaches

This paper designs a UANET routing protocol by predicting the location of UAV nodes.
This clustering structure has the advantages of improving the stability of the network and
optimizing the management [9]. In this paper, the cluster head election indicator is con-
structed by combining the link holding time between nodes, the similarity of movement



356 J. Shu et al.

and expected transmission times. According to the cluster head election indicator, cluster
the nodes in the network. So far, the design of the cluster routing protocol AODV-PPC
has been completed.

3.1 Node Location Prediction

Equal Dimension New Information GM(1,1) Model (EDNI-GM). EDNI-GM [10]
keeps the input dimension constant by employing a sliding time window on the basis
of GM(1,1). The time-varying sequence x(0)(k) of original UAV node position data is
fed into the EDNI-GM model to obtain the predicted position sequence X (0)(k + 1), as
shown in Eq. (1).

X (0)(k + 1) = (1 − ea)(x(0)(1) − b

a
)e−ak . (1)

Among them, a and b are the gray parameters of the model, which can be obtained
by the least square method.

Improved EDNI-GM based on GM (1,1). The gray prediction residual value at time k
is the difference between the actual position value x(0)(k) of the node at time k and the
position prediction value X (0)(k) of EDNI-GM. The predicted value E(0)(k + 1) at the
next moment is obtained by inputting the prediction residual data sequence e(0)(k) into
GM(1,1), as shown in Eq. (2).

E(0)(k + 1) = (1 − eae)(e(0)(1) − be
ae

)e−aek , (2)

Among them, ae and be are the gray parameters of the residual gray predictionmodel,
and the corrected node position prediction value is shown in Eq. (3).

X (0)
GM (k+1) = X (0)(k + 1) + param ∗ E(0)(k + 1). (3)

where param is the correction coefficient.

Improved EDNI-GM based on Markov chain. The Markov chain model can better
predict the random fluctuation data series [11]. The Markov chain model divides the
residual sequence E(0)(k + 1) and constructs the state transfer matrix according to its
characteristics. Thus, the most likely residual state of the predicted data at the latter posi-
tion is predicted, and the revised results of the Markov chain model are obtained. Taking
the node position prediction result curve after GM(1,1) correction as the benchmark,
draw a h + 1 curve parallel to it. Each two adjacent curves constitute an interval, and
each interval constitutes a prediction stateHr(r = 1...h). pfg is the transition probability
from state Hf to state Hg , as shown in Eq. (4).

pfg = mfg

mf
, (4)

Among them,mfg is the number of times the revised residual data is transferred from
the state Hf to the state Hg , and mf is the number of times the state Hf appears in the
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revised residual data. The transition probabilities between all states can form a state
transition probability matrix.

The corrected node position prediction residual value will be transferred from the
stateHf to the stateHl at the next moment.When the initial state vectorW0 is transferred
through the l step to obtain the predicted state vectorWl = W0∗p, and there ismax(pfr) =
pfl in the f row of the state transition probability matrix p. At this time, the correction
value XMG(k+1) of theMarkov chain model is the median of the interval corresponding
to the state Hl , as shown in Eq. (5)

XMG(k + 1) = rup + rdown
2

, (5)

Among them, rup is the upper limit of the interval state to which Hl belongs, and
rdown is the lower limit of the interval state to which Hl belongs.

XGM (k + 1) is the gray predicted value corrected by GM(1,1). XMG(k + 1) is the
corrected value obtained through the Markov chain model. Xfinal(k + 1) is the final
predicted node position, as in Eq. (6).

Xfinal(k + 1) = XGM (k + 1)

1 − XMG(k + 1)
. (6)

3.2 Constructing Cluster Head Election Indicator

The cluster head election indicator is constructed by link retention time,motion similarity
and expected transmission times between nodes. Figure 1 is a schematic diagram of the
relativemotion between twoUAVnodes. There are UAVnodesVI andVJ in the network.
The positions of nodes VI and VJ are K and A. The velocity vectors of nodes VI and VJ .
Node VJ flies in the direction of AB relative to node VI . The communication radius of
the drone node is R.

Motion Similarity. The motion similarity Sim(�mIJ ) between the nodes VI and VJ is
the product of the direction similarity Sim(�θIJ ) and the velocity similarity Sim(�vIJ ),
as shown in Eq. (7).

Sim(�mIJ ) = Sim(�θIJ ) × Sim(�vIJ ) = cos
�θIJ

2
× 1

1 + �vIJ
, (7)

Among them, �θIJ is the angle between the motion directions of the nodes VI and
VJ , �vIJ is the speed difference between the nodes VI and VJ .

Link Hold Time. The link retention time represents the communication time that the
communication link between nodes can provide for two nodes. dAB is the length of the
line segment AB, and TIJ is the link retention time between nodes VI and VJ , as shown
in Eq. (8).

TIJ = dAB
∣
∣−→vJ

∣
∣
, (8)
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Fig. 1. Schematic diagram of relative motion between two UAV nodes

Expected Transmission Times [5] . The expected number of transmissions ETXIJ

between UAV nodes VI and VJ is shown in Eq. (9).

ETXIJ = 1

sIJ−f × sIJ−r
, (9)

Among them, sIJ−f is the success probability of forward transmission on the link
between nodes VI and VJ , and sIJ−r is the success probability of reverse transmission
on the link between nodes VI and VJ .

Cluster Head Election Indicator. The cluster head election indicator is constructed by
combining the link retention time, motion similarity and expected transmission times
between nodes and their neighbors in UANET. The cluster head election indicator of the
node is shown in Eq. (10).

CHI = 1

u

u
∑

j=1

(TIj × (Sim(�mIj) + ETXIj)). (10)

Among them, u is the degree of node VI , TIj is the normalized link retention time
value between node VI and its j neighbor, and Sim(�mIj) is the normalized motion
similarity value between node VI and its j neighbor, ETXIj is the normalized expected
number of transmissions between node VI and its j neighbor.

Cluster Formation. The UAV periodically broadcasts the information packet with its
own cluster head election indicator value to the neighbors, and compares it with the
neighbor’s cluster head election indexvalue. If its ownelectionvalue is larger, it continues
to broadcast the information packet to the neighbors; If its own election value is small,
it stops broadcasting. When a node no longer receives the information packet with the
cluster head election index value broadcast by its neighbor, it is elected as the cluster
head.

The cluster head node broadcasts its cluster head announcement packet to its neigh-
bors. After receiving the packet, the neighbors send a request packet requesting to join
the cluster to the node that issued the cluster head announcement. After receiving the
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request packet, the cluster head node replies to the response packet agreeing to join the
cluster. The node that sent the request packet becomes a member node of the cluster
after receiving the response packet.

After the cluster is formed, the cluster member node with the second largest cluster
head election index value becomes the gateway node. The status transition of the UAV
node is shown in Fig. 2.

Fig. 2. Schematic diagram of UAV node state transition

4 Simulation Experiment

In the simulation experiment, the performance of the routing protocol is compared and
analyzed by using Ubuntu18.04 under the Linux system combined with NS-3. The
simulation scene is a rectangular area with a size of 1500m*1500m.

The comparison methods in this paper are AODV [12], AODV-ETX [13], AODV-
EE-Hello [14], AODV-PLR-ETX [15], AODV-L-ETX [15]. In the experiment, the per-
formance of routing protocol will be evaluated by packet transmission rate [16], the
average end-to-end transmission delay [16] and the throughput [16].

Node Location Prediction Performance Analysis
Figure 3 shows that the prediction errors of IEDNI-GM and EDNI-GM both reach
a large value when the movement state of the nodes changes. During the movement
process from the 20th moment to the 26th moment, IEDNI-GM and EDNI-GM begin
to converge gradually, and the prediction error of IEDNI-GM is smaller. This is because
IEDNI-GM is usingGM(1,1) tomodify EDNI-GM.Markov chain correction is also used
to improve themodel, so as to strengthen its prediction ability of random itemdata, which
leads to better prediction performance when the node motion state changes. GM(1,1)’ s
prediction result curve is three time intervals behind the actual node motion state change
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due to the continuous influence of previous data, and it is difficult to converge, so its
prediction error is too large.

Compared with GM(1,1) and EDNI-GM, IEDNI-GM proposed in this paper has
better prediction performance and stronger convergence ability when the movement
state of nodes changes, so it is more suitable for predicting the location of nodes in UAV
ad hoc networks.
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Fig. 3. Comparison of node location prediction

Routing Protocol Performance Analysis
In this experiment, AODV-PPC is compared with other routing protocols by changing
the number of UAV nodes in the network.

Figure 4 shows that AODV-PPC performs better in most cases. The reason is that in
the AODV-PPC routing protocol, nodes communicate through the cluster head, which
avoids the congestion caused by the frequent broadcast of Hello messages, reduces net-
work conflicts, and improves packet delivery rates performance. AODV-ETX, AODV-
L-ETX, and AODV-PLR-ETXmake routing decisions by measuring the quality of com-
munication links between nodes and are not suitable for networks with frequent topology
changes and frequent disconnection of communication links.

Figure 5 shows that AODV-PPC performs the best. The reason is that AODV-PPC
builds clusters by considering the communication link state and motion state between
nodes, which reduces the impact of unreliable links on data transmission, suppresses
network congestion, and reduces the average end-to-end transmission delay. AODV-
ETX, AODV-L-ETX and AODV-PLR-ETX do not consider the frequent disconnection
of links between nodes in the network, resulting in poor average end-to-end transmission
delay performance.

Figure 6 shows that as the number of nodes increases, the network throughput of
all routing protocols increases. The throughput performance of the AODV-PPC routing
protocol increases the most and remains optimal after the number of nodes reaches
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40. The AODV-PPC routing protocol by clustering nodes in the network, even if the
number of nodes increases, the routing protocol can reduce the competition and conflict
between nodes, thereby improving its throughput performance. Compared with AODV-
ETX, AODV-L-ETX, and AODV-PLR-ETX routing protocols, it is easier to establish a
route from the source node to the target node in the process of route discovery, to ensure
its throughput performance.
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Fig. 4. Packet delivery rate under different number of nodes
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5 Conclusion

In this paper, IEDNI-GM model is established by analyzing the motion characteristics
of UAV nodes. The location of the UAV node at the next moment is predicted through
IEDNI-GM. The network nodes are clustered according to the cluster head election
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indicator. The cluster head selection indicator is constructed by combining the link
holding time between nodes, the similarity of motion and the expected transmissions
times. The AODV routing protocol is improved by using the clustering structure, and
the AODV-PPC routing protocol based on node location prediction is obtained. With
NS-3, the routing protocol is simulated and compared from the two aspects: the moving
speed of nodes and the number of nodes. The experimental results show that the AODV-
PPC routing protocol has good packet delivery rate, average end-to-end transmission
delay and throughput performance. The next step is to improve the selection indicator
of cluster head.
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Abstract. Federated learning based on edge computing environment
has great potential to facilitate the implementation of artificial intel-
ligence at the edge of the network. However, because of the limited
resource at the edge, place the complete Deep Neural Networks (DNN)
model on the edge for training may not a good choice. In this paper, we
study the time optimization for asynchronous federated learning based
on model partition. That is, the DNN model is divided into two parts
and deployed separately on the device and the edge server for the model
training. First, we give the metric of the relationship between learn-
ing accuracy and iteration frequency, and then we build a mathematical
model based on this. Because the solution space of mathematical model
is too large to be solved directly, we propose an algorithm to minimize
the total time by dynamically adjusting the model partition point and
bandwidth allocation. Simulation results show that our algorithm can
reduce the time by 32% to 60% compared with the other three methods.

Keywords: Federated learning · Model partition · Edge computing

1 Introduction

Federated learning(FL) is a new machine learning framework [1]. The main idea
of FL is to train models on clients, and then send model parameters to the server
for parameter aggregation, that it can protect data privacy [2,3]. Nowdays there
are two different federated optimization schemes that have been studied widely:
the synchronous FL [4] and the asynchronous FL [5]. In synchronous FL, all
participating clients use local data for training the local model, and the server
waits for all clients to send the updated local model and aggregates them into
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a new global model. In asynchronous FL, the server does not need to wait for
all clients to complete local training, but updates the global model as soon as it
receives a local model of any participating client.

In FL framework, learning accuracy is an important performance indica-
tor [6,7], and it is mainly related to the number of iteration and aggregation
strategy [8]. In [9], authors derived the lower bound of local and edge iterations
for distributed approximate Newton (DANE) algorithm with given accuracy.
In [10], for federated averaging (FedAvg) algorithm running Stochastic Gradient
Descent (SGD), authors established a convergence rate of O( 1

T ) for strongly con-
vex and smooth problems, where T is the iteration frequency of SGDs. In addi-
tion, due to the participation of multiple clients, the learning efficiency is an over-
all performance indicator of FL. In [11,12], authors studied joint user selection
and resource allocation in federated learning in order to improve performance.
In [13], authors proposed a device scheduling and resource allocation algorithm
based on channel conditions and the importance of local model to improve the
FL efficiency and performance. Notice that these methods mentioned above are
based on synchronous FL. The efficiency of asynchronous FL can also be stud-
ied, and some researchers have done their efforts on this field. In [14], authors
proposed an asynchronous federated learning algorithm, which can accelerate
convergence. In [15], authors considered the uncertainty and resource limita-
tion of the system, and proposed an asynchronous learning-aware transmission
scheduling algorithm for improving learning performance.

Meanwhile, edge computing(EC) is a new computation model [16]. EC pushes
computing tasks and services to the edge close to the data source [17]. There-
fore, the cooperation between EC and FL can promote the realization of artificial
intelligence at the edge of network [18]. By doing this, the benefits of a shared
model trained from rich data can be gained, and the computing resources of
user devices can be utilized [19]. However, the edge has the disadvantage of lim-
ited resources, so the calculation of the complete DNN model at the edge will
lead to greater pressure on the edge. Fortunately, the model partition technol-
ogy can divide the complete DNN model by taking advantage of the structure
characteristics, and deploy different parts in different locations, thus reducing
the calculation pressure at the edge and reducing the delay [20]. In [21], authors
proposed a method to dynamically adjust the partition point for the training
stage of DNN at the single server and single device for reducing the end-to-end
delay.

Previous works have studied the optimization problem in FL, but there are
few researches on asynchronous FL after model partition. In this paper, we
consider asynchronous FL based on model partition. Firstly, the model accu-
racy is converted into the iteration frequency through experiment, and then a
mathematical model is established to express the total training time. Since the
mathematical model contains a large number of variables and is difficult to be
solved directly, we propose a heuristical algorithm to optimize the training time
by dynamically adjusting the partition point and bandwidth allocation.
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The rest of this paper is organized as follows: In Sect. 2, we introduce our
system model and define our problem. In Sect. 3, we analyze the problem and
give our algorithm. In Sect. 4, we give the simulation results and analyze them.
In Sect. 5, we summarize this paper.

2 System Model and Problem Definition

2.1 System Model

Consider a network with one edge server and N edge devices. Define d0 as the
edge server and di(∈ N) as one edge device, as shown in Fig. 1. Suppose edge
devices are heterogeneous, which means each device has different calculation
ability. Assume devices are connected to the server with wireless network. To
protect the data privacy, the raw collected training data by devices will not be
exchanged among them. Suppose all edge devices start training at the same time,
which is 0. We want to train a DNN model by training tasks on the edge server
and edge devices, and each device will produce and only produce one training
task in the whole training process. Suppose this DNN model has v layers, and
denote lr(r = 1 . . . v) as one of the layer. We use model partition technique for
training this model, which means each task will first be trained several layers
in its generated edge device, and then be transmitted to the edge server for
training the remained layers. Since iterations exist in the training process, so
these tasks may be calculated repeatedly in these edge devices and the edge
server. When they are in the server, since the server can only process one task
at a time, which means when there are multiple tasks to be processed, other
tasks cannot be processed until the current task is completed. After E local
iterations, model parameters will be updated in the server, and we assume the
updating parameter work is also be done on the edge server. We will use the
asynchronous updating method, which means when local iterations of a task
is completed, model parameters will be transmitted to the server and updated
immediately instead of waiting for other iterations to complete. Denote mj

i as
the j-th iteration from di, then mj

i is made up of the following steps:
1) di performs forward propagation before the partition point and then trans-

mits the intermediate data to the edge server;
2) d0 performs forward propagation and back propagation after the partition

point, and transmits the intermediate data of back propagation to di;
3) di performs backward propagation; if it has reached E local iterations,

uploads model parameters on the device to the server for parameter aggregation;
4) di downloads the new parameter and completes the parameter update.
We want to design the partition method for each iteration and the bandwidth

allocation for uploading data to the server to minimize the total training time
on the premise of ensuring the learning accuracy.
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Fig. 1. The system model

2.2 Problem Formulation

We want to minimize the total time Ttotal for the whole training process, which
is decided by the task with the maximum training time. Since the first part
of the model is performed by multiple devices in parallel, so the total time is
determined by the slowest device. And we know each task is combined by many
iterations. Denote Ti,j as the j-th iteration of device di. We have

Ttotal = max
i∈N

{
J∑

j=1

Ti,j}, (1)

where J is the iteration frequency for the task. We want to ensure that after the
whole training process, the learning accuracy will be larger than a threshold ε.
We know that the iteration frequency have some relationship with the learning
accuracy, but we do not know the exact formula between them. So we will first
use a common function f(J) to represent the relationship, then we have f(J) ≥ ε.
In the next section, we will give a fitting formula for f(J).

So for modeling the system model, we should first model Ti,j . To do that,
define a binary variable q(mj

i ) to indicate whether parameter aggregation is
performed after the j-th iteration of device di. We have

q(mj
i ) =

{
1 :parameter aggregation is required after this iteration;
0 :otherwise.

(2)

Then Ti,j can be expressed as

Ti,j = tf+b
d (mj

i ) + tf+b
trans(m

j
i ) + tf+b

s (mj
i ) + tw(mj

i ) + q(mj
i )tupdate(m

j
i ). (3)

In Eq. (3), the time Ti,j is made up of five parts. The first part tf+b
d (mj

i ) is the
computing time on di for forward and backward propagation. The second part
tf+b
trans(m

j
i ) is the intermediate data transmission time between di and d0 in the

process of forward and backward propagation. The third part tf+b
s (mj

i ) is the
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computing time on d0 for the forward and backward propagation. The fourth
part tw(mj

i ) is the waiting time for execution on d0. The fifth part tupdate(m
j
i )

is the transmission time for parameter updating on d0. In the following we will
give equations for these five parts.

For the first part tf+b
d (mj

i ), since we use model partition technique, define
a binary variable xr(m

j
i ) to indicate whether the partition point is on the r-th

layer. We have

xr(m
j
i ) =

{
1 :the partition point is the r-th layer;
0 :otherwise.

(4)

Since there is only one partition point for each task, we have
v∑

r=1
xr(m

j
i ) = 1.

Then tf+b
d (mj

i ) can be represented as

tf+b
d (mj

i ) = tfd(mj
i ) + tbd(m

j
i ) =

v∑

r=1
(xr(m

j
i ) · (Lf

r (mj
i ) + Lb

r(m
j
i ))), (5)

where Lf
r (mj

i ) represents the time from 1 to r-th layer on the device for forward
propagation, and Lb

r(m
j
i ) represents the time from r-th to 1 layer on the device

for backward propagation.
For the second part tf+b

trans(m
j
i ), we have

tf+b
trans(m

j
i ) = tftrans(m

j
i ) + tbtrans(m

j
i ) =

v∑

r=1
(xr(m

j
i ) · (Gf

r (m
j
i )

βj
i ·B + Gb

r+1(m
j
i )

B )),

(6)
where βj

i is the bandwidth allocation ratio for di, B is the total bandwidth,
Gf

r (mj
i ) is the amount of data of intermediate result at layer lr of mj

i for forward
propagation, and Gb

r+1(m
j
i ) is the amount of data of intermediate result at layer

lr+1 of mj
i for backward propagation.

For the third part tf+b
s (mj

i ), we have

tf+b
s (mj

i ) =
v∑

r=1
(xr(m

j
i ) · (Sf

r+1(m
j
i ) + Sb

r+1(m
j
i ))), (7)

where Sf
r+1(m

j
i ) is the computing time for server to execute the forward prop-

agation from layer lr+1 to lv, and accordingly, Sb
r+1(m

j
i ) is the computing time

for server to execute the backward propagation from lv to lr+1.
For the fourth part tw(mj

i ), since in our learning framework, multiple devices
cooperate with edge server for training, and the limited resources of edge server,
they cannot be processed at the same time. So there is a waiting queue. Let
τ(mj

i ) represents the start time of the j-th iteration on di. Since there is no
interval between iterations of the same device, we have

τ(mj
i ) =

j−1∑

k=1

Ti,k. (8)
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Denote AT (mj
i ) as the arrival time of mj

i to d0, then we have

AT (mj
i ) = τ(mj

i ) + tfd(mj
i ) + tftrans(m

j
i ), (9)

where tfd(mj
i ) is the forward propagation time on the device and tftrans(m

j
i )

is the transmission time. We express the wait time recursively, with Z(mj′
i′ )

representing the previous task of mj
i . We have

Z(mj′
i′ ) =

{
1 :mj′

i′ is the previous task of mj
i ;

0 :otherwise.
(10)

Then tw(mj
i ) can be expressed as

tw(mj
i ) = max{0,

N∑

i′=1

j∑

j′=1

Z(mj′
i′ ) · (tw(mj′

i′ ) + tf+b
s (mj′

i′ ) − AT (mj
i ))}. (11)

For the fifth part tupdate(m
j
i ), since the parameter aggregation will be done

on the edge server, which means we need to transfer the parameter on the device
to the edge server, and then the updated parameter should be returned to the
device. So we have

tupdate(m
j
i ) =

v∑

r=1
(xr(m

j
i ) · (Hb

r(m
j
i )

βj
i ·B + Hb

r(m
j
i )

B )), (12)

where Hb
r(mj

i ) is the parameter quantity size from l1 to lr. Therefore, the opti-
mization problem is formulated as follows:

min Ttotal.
s.t.(3) (5) (6) (7) (11)

v∑

r=1
xr(m

j
i ) = 1;

0 ≤ βj
i ≤ 1;

ε ≥ εmin.

(13)

In (13), q(mj
i ), Z(mj′

i′ ) and other notations are all constants or determined
values for specific network. xr(m

j
i ) and βj

i are variables. xr(m
j
i ) is a binary

variables, which almost appears in all items with different forms. βj
i is continuous

variables, and it appears in the denominator. Therefore, to solve this problem
in polynomial time, we need to further analyze and find a way to reduce the
complexity of the problem.

3 Algorithm

In this section, we introduce the proposed algorithm for the above optimization
problem. Firstly, we give an expression for f(J) by the fitting method from
experimental data. Secondly, we obtain several optional partition points for each
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device and reduce the range of xr(m
j
i ) from the PPS algorithm in [22]. Finally, we

propose an algorithm to dynamically adjust the partition point and bandwidth
allocation for getting smaller training time.

3.1 Iterations Analysis

In this subsection, we will first discuss f(J). In fact, the relationship between the
learning accuracy f(J) and the iteration frequency J is hard for modeling. Since
many DNN inner features will affect the modeling, such as the characteristics of
training data, the smoothness, the convexity of loss function and the character-
istics of gradient, and so on. As we have mentioned in the related work, Some
papers have done their work for finding the relationship, but these are not suit
for the asynchronous iteration. So in our work, we try to model the relationship
by means of experimental data fitting.

The DNN model used in our experiments is VGG-16, and the dataset for
training is cifar-10. For each device, it will first do local iterations for some
times by using the SGD, and then transmit parameters to the server for per-
forming the parameter aggregation. In asynchronous iteration, a task performs
parameter aggregation after local iterations without waiting for other tasks.
Therefore, models that are more recently updated should have a larger weight
in the aggregation. We have

ωs
t+1 = (1 − α)ωs

t + αωi
j ; (14)

where ωs
t is the current global parameters on the server for t parameter aggre-

gation, and ωi
j is the local parameters for j local iteration. α is a parameter for

the staleness weight, which can be calculated by α = a−(M−j), where M is the
current largest local iteration number for all the local models on the server and
a is a constant.

Suppose the number of local iterations E is set to 5. According to the above
settings and methods, our training results are shown in the Fig. 2, and the exper-
imental data is fitted to obtain the formula (15).

f(J) = 77.52e(0.000324J) − 92e(−0.0576J). (15)

Suppose there are 10 devices involved in the training. Suppose the minimum
accuracy fmin(J) is 80%. Then by (15) we can get that it should take at least
100 iterations to achieve the accuracy. According to this, the following analysis
and experiments are based on J = 100.
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Fig. 2. The relationship between test accuracy and iterations

3.2 Problem Analysis

In this subsection, we continue to discuss our algorithm. In (13), xi(m
j
i ) and

βj
i are dependent variables. In other words, xi(m

j
i ) is the variable deciding the

partition point, which will affect variable βj
i . However, the solution spaces for

xi(m
j
i ) and βj

i in the original problem are very large, so we need to find some
way to reduce them. In our algorithm, we first use the PPS algorithm in [22] to
select several optional partition points for xi(m

j
i ). Then for βj

i , we filter out some
cases with smaller βj

i by adjusting the partition point, and obtain the bandwidth
allocation with smaller time. We give the detail discussion in the following.

We first discuss the xi(m
j
i ). In fact, for a DNN model, not all layers are

suitable for partition point since the output data of some layers are large. The
larger lr, the larger amount of uploaded parameters, which means if we choose
a layer with large lr for partition point, it will lead to high transmission cost.
In our previous work, we have designed an algorithm named the PPS algorithm
for selecting the optional partition points [22]. So in this paper, we first use the
PPS algorithm and get c optional partition points for each device. Denoted the
set of optional partition points for di as Pi.

Then for βj
i , we know bandwidth allocation occurs when multiple tasks need

to upload data simultaneously. For task mj
i , which requires bandwidth in

Φ(mj
i ) = [tst

im, ten
im] ∪ [tst

pa, ten
pa], (16)

where tst
im, ten

im are the start and end time of data transmission in the middle of
forward propagation, they can be expressed as

tst
im = τ(mj

i ) + tfd(mj
i ), (17)

ten
im = tst

im + tftrans(m
j
i ). (18)
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And tst
pa, ten

pa are the start and end time of parameter upload on device di,
they can be expressed as

tst
pa = ten

im + tf+b
s (mj

i ) + tbtrans(m
j
i ) + tbd(m

j
i ) + tw(mj

i ), (19)

ten
pa = tst

pa + tupdate(m
j
i ). (20)

If task mj′
i′ need bandwidth in Φ(mj

i ), the bandwidth needs to be allocated. In
general, more tasks competing for bandwidth will result in higher communica-
tion time. Therefore, we expect to reduce the number of tasks that generate
bandwidth contention to reduce communication time.

Based on this, we design the Optimize Bandwidth Allocation (OBA) algo-
rithm to dynamically adjust the partition point and bandwidth allocation. That
is, reduce the tasks that will cause bandwidth competition to some extent when
determining the corresponding partition points of tasks.

3.3 OBA Algorithm

According to the analysis in the previous section, the OBA algorithm can be
summarized into the following three steps:

1) Firstly, a complete partition point allocation set P of partition points is
obtained according to Pi, and the partition point allocation in P is calcu-
lated to obtain pk with the minimum number of tasks requiring bandwidth,
and βj

i is calculated according to the partition points in pk;
2) Calculate the arrival time of tasks according to the partition point allocation

pk, and process tasks on server according to first come first service (FCFS);
3) For the next task to be processed, judge whether there are still optional parti-

tion points. If there are, calculate Φ in the partition point allocation including
the remaining optional partition points, find the appropriate partition point
allocation pk′ and βj

i to minimize the time. Otherwise, the original partition
point allocation pk and βj

i are still used.

The step 3 will be repeated until the ending of training. The algorithm is
shown in Algorithm 1. Line 1-13 are the process of training with finding the
optimal partition point allocation in each iteration.
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Algorithm 1. Optimize Bandwidth Allocation Algorithm
Input: Pi, the set of optimal partition points for each device; di, the i-th device; lr, the

partition point; j, the number of iteration; pk, the initial partition point allocation;
Output: The minimum total time, Ttotal;
1: for j = 2, 3, ..., J do
2: for di, lr ∈ pk do
3: Compute AT (mj

i ) according to Eq.(9);
4: end for
5: Find mj′

i′ whose arrival time is second only to that of the previous task mj
i to

start the next iteration;

6: if mj′
i′ still has optional partition points then

7: Find the partition point allocation in P ′ including the remaining optional
partition points, compute βj

i and Ti,j in Eq. (3);
8: Use partition point allocation pk′ and βj

i that minimize Ti,j ;
9: else

10: Continue to use allocation pk;
11: end if
12: Compute the total time, Ttotal;
13: end for

4 Simulation and Experiment

In this section, we introduce experiments and simulations. We use GPU to simu-
late the computing power of edge server, and use CPUs of different computers as
edge devices. To get some constants for the Sect. 2, such as Lf

r (mj
i ), Sf

r+1(m
j
i ),

Gf
r (mj

i ), Hb
r(mj

i ) and so on, we train VGG-16 to get the execution time, output
data and parameters amount for each layer. Firstly, the forward and backward
propagation of the model is performed 100 times, then the execution time and
output data amount for each layer are calculated on average, and the parameters
amount for each layer of the model is obtained by using the tool in pytorch.

In Subsect. 4.1, we first obtain the above basic data, then calculate the total
time of forward, back propagation, parameters upload and download at different
partition points according to PPS algorithm, and finally get the optional par-
tition points set Pi of di. In Subsect. 4.2, we run our algorithm under different
system bandwidth and different number of devices. Use the following methods
for comparison: 1) No-Partitioned, asynchronous federated learning without
model partition; 2) Fixed-Point, allocate bandwidth on demand in the case of
fixed partition point; 3) Average-Bandwidth, average bandwidth allocation
in the same case as our algorithm.

4.1 Result of Partition Points

First of all, we obtain the time of each layer of the VGG-16 model for device and
server execution, respectively, as shown in Fig. 3. When the total bandwidth B =
10 MB/s, according to the PPS algorithm, we can obtain the time cost of a task
at different partition point when the waiting time is ignored. One of the result
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is shown as Fig. 4, and we get four partition points. We have already included
intermediate data transmission, model parameters upload and download time
when calculating the time cost. Therefore, we believe that these four partition
points are consistent with the structural characteristic and network condition of
the current model.

Fig. 3. The executing time on device and server

Fig. 4. The total time in different partition points

4.2 Algorithm Simulation

Firstly, we set the number of devices N = 10 and the iterations J = 100, then
take the total bandwidth from 6 MB/s to 16 MB/s. The result is shown in Fig. 5a.
As we can see, the higher the total bandwidth, the smaller the total time. In the
case of small total bandwidth, our algorithm can achieve better result. Because
the more limited bandwidth resources are, the more reasonable allocation is
needed to play a full role. According to the experimental results, our algorithm
can reduce the total training time by 60% on average compared with the No-
Partitioned. The total time is reduced by 32% on average when compared with
the Average-Bandwidth and the Fixed-Point.

In Fig. 5b, the total bandwidth is set to 10 MB/s, then we set different number
of devices. It can be seen that with the increase of the number of devices, the
training time also increases due to the increase of the number of iterations.
Because there are more devices and data is spread across devices, asynchronous
update requires more iterations to achieve the specified accuracy. Obviously, the
effect of the proposed algorithm is always superior to other methods.
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Fig. 5. Simulation result. (a) Total training time under different bandwidth. (b) Total
training time under different number of device.

5 Conclusion

In this paper, we study asynchronous federated learning based on model parti-
tion in edge environment, aiming to ensure learning accuracy and reduce learn-
ing time. Firstly, we use the experimental method to get the expression of the
relationship between learning accuracy and iteration frequency, and convert the
learning accuracy to iteration frequency to express. Then, the time model of the
learning system is established based on this, which contains a large number of
variables related to model partition and bandwidth allocation, so it is difficult
to solve directly. Therefore, we propose an algorithm to reduce the time as much
as possible by dynamically adjusting model partition point and bandwidth allo-
cation. Finally, the experimental results show that our algorithm can reduce the
time by 32% to 60% compared with other methods.
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Abstract. Mobile-edge computing (MEC) has become a popular
research topic from both academia and industry since it can alleviate
the computation and power limitations of mobile devices by offloading
computation-intensive and energy-consuming tasks from mobile users to
nearby edge servers for remote execution. Existing papers have studied
related problems, however, none of them considers the reliability of MEC
systems that may suffer soft errors during execution and bit errors dur-
ing offloading. In this work, we study the task offloading and scheduling
problem targeting to maximize the quality of experience (QoE) of multi-
user MEC systems under a certain reliability requirement. We propose
to decompose the original problem into i) a task offloading optimization
problem, ii) a task-to-server assignment problem for ensuring system
reliability constraint, and iii) a computing resource allocation problem
for maximizing system QoE. To address these sub-problems, we first
obtain the optimal offloading decision using the discrete particle swarm
optimization method. We then propose a reliability-optimality analysis-
based task assignment heuristic and a utility-optimal resource alloca-
tion algorithm. Simulation results show that our scheme outperforms
two state-of-the-art approaches and two baseline methods. The average
improvement on QoE (quantified by offloading utility) achieved by our
scheme is up to 63.2% under reliability requirement.

Keywords: MEC · QoE · Reliability · Scheduling · Resource
allocation

1 Introduction

With the advancement of Internet of Things (IoT) technologies, various mobile
applications such as autonomous driving and smart city emerge and are gradu-
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ally changing people’s daily lives [1]. The emerging mobile applications typically
have a heavy demand of computation capability and energy of mobile devices
for processing massive IoT data. However, mobile devices generally cannot meet
this demand due to their limited computing resources and finite battery energy.
Recently, a promising technology named mobile edge computing (MEC) [2]
emerges to solve this issue by allowing mobile devices to offload applications to
nearby edge servers for remote execution. Benefiting from MEC, mobile devices’
computing ability and energy efficiency can be both effectively improved.

The key of MEC is offloading and scheduling that decide which task should
be offloaded to which edge server for remote execution with what resource, to
meet diverse performance requirements. Offloading and scheduling strategies for
improving the quality of experience (QoE) of users in the MEC system have been
studied from many aspects. For single-user MEC systems, Kuang et al. [3] pro-
pose a partial offloading and power allocation scheme to minimize latency and
energy consumption of independent tasks. Wang et al. [4] develop a meta rein-
forcement learning based offloading method for dependent mobile applications
to reduce latency. In multi-user MEC systems, the task offloading and schedul-
ing problem becomes more challenging due to the competition among multiple
users for resources. A dynamic resource allocation and computation offloading
strategy [5] is presented to minimize system timing and energy cost. Gupta
et al. [6] and Tran et al. [7] solve the joint task offloading and resource allo-
cation problems that maximize the lifetime of multi-user MEC networks and
optimize the offloading performance of multi-user MEC systems, respectively.

Although the above-mentioned approaches are effective in improving QoE
performance, none of them considers reliability which is actually very important
to the MEC systems for ensuring successful task offloading and execution. In
an MEC system, no matter whether tasks are executed locally on the mobile
devices or remotely on the edge servers, they all may suffer soft errors induced
by transient faults. Besides, the tasks to be offloaded may suffer bit errors during
the data transmission. Thus, it is highly necessary to enhance the reliability of
MEC systems. In this paper, we study the task offloading and scheduling problem
to maximize QoE of multi-user multi-server MEC systems while satisfying the
reliability requirement. Our major contributions are listed as follows.

1. We consider both transmission reliability and execution reliability of MEC
systems and provide a reliability-optimality analysis on the task-to-server
assignment. Based on the analysis, we propose a theorem and then develop a
task assignment heuristic following the theorem.

2. We formulate the problem of allocating computing resources to tasks offloaded
on edge servers for maximizing utility. We prove that the utility aware
resource allocation problem is a convex optimization problem when task
assignment have been decided, we use Karush-Kuhn-Tucker (KKT) condi-
tions to solve it.

3. We implement extensive simulations to evaluate the performance of the pro-
posed scheme in improving utility and reliability. The simulation results show
the efficacy of the proposed scheme.
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2 System Model

2.1 MEC System Model

Consider a multi-user multi-server MEC system shown in Fig. 1. In such an
MEC system, a base station is equipped with multiple edge servers. Note that
an edge server can be either a physical server or a virtual machine with moder-
ate computational capability. The base station can help mobile users complete
computation-intensive tasks by offloading these tasks to edge servers via the
wireless channel. Let U = {U1, · · · , UN} and S = {S1, · · · , SM} denote the sets
of N mobile users and M edge servers in the MEC system. Similar to [7], we
assume that each mobile user has one computation task to execute at a time. The
tasks of mobile users are all atomic and independent, and cannot be divided into
sub-tasks. Let Γ = {τ1, · · · , τN} be the set of tasks to be executed by N users.
The task of user Ui (1 ≤ i ≤ N), represented by τi, is characterized by a triple
{di, ci, νi} where di is the amount of data transferred for offloading, ci is the
number of computation cycles to be completed, and νi is the task vulnerability
factor when suffering transient faults [8].

Each task could be executed either locally or offloaded to an edge server. Let
X = {xi|1 ≤ i ≤ N} be the task offloading decision where xi = 1 when task τi is
offloaded to an edge server and xi = 0 otherwise. Given an offloading decision,
task set Γ can be divided into two sets: local task set Γloc and offloaded task set
Γoff. The MEC system allows multiple users to offload their tasks to the same
server concurrently by sharing the server’s computing resource. When a task is
offloaded to an edge server, the server will allocate its computing resource to
execute the task and return the result to the user. The computing resource of
server Sj (1 ≤ j ≤ M) is quantified by its computing capacity Fj (in cycles/s) [7].
Let F = {fij |1 ≤ i ≤ N, 1 ≤ j ≤ M} denote the computing resource allocation
policy where fij refers to the computing resource allocated by server Sj to task
τi and it holds for fij ≤ Fj .

Fig. 1. A multi-user multi-server MEC system.

The orthogonal frequency division multiple access technology [9] is adopted
in the uplink to support multiple access to edge servers. The base station’s
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bandwidth B is divided into equal sub-bands and each user is assigned one sub-
band. According to the Shannon-Hartley theorem [10], the data uploading rate
ri from user Ui to the base station is ri = B

n log2

(
1 + pigi

ω+
∑n

k=1,k �=i pkgk

)
, where

pi is transmission power, gi is channel gain, and ω is background noise. Same as
in [7], the time of transferring output result is not considered.

2.2 Computation Model

When a mobile user offloads its task to an edge server, the device would save its
energy for execution but take extra time and energy for data transmission [3–7].

Local Computing. If task τi is executed locally on user device Ui, the local
computing latency tloc

i is derived as

tloc
i =

ci

f loc
i

(1)

where f loc
i is the computing capability (in cycles/s) of device Ui. The energy

Eloc
i consumed by locally executing task τi is

Eloc
i = κ

(
f loc

i

)2
ci (2)

where κ is the processor-dependent coefficient [10].

Offloading Computing. If task τi is executed remotely, it needs to be offloaded
to an edge server first and then be executed by the server. Thus, the time cost
toffi is the sum of transmission delay ttrans

i and execution delay texe
i ,

toffi = ttrans
i + texe

i =
di

ri
+

ci

fij
. (3)

The energy consumed by device Ui for data transmission is

Etrans
i = pi × ttrans

i (4)

2.3 Reliability Model

Transmission Reliability. During the transmission, tasks may suffer from
noise and interference bit errors, as well as bit synchronization errors over trans-
mission links [11]. Following the bit error model [11], we can derive the trans-
mission reliability of task τi as

Rtrans
i = e−γ×ttrans

i (5)

where γ is the constant bit error rate.
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Execution Reliability. During the execution, transient faults may induce soft
errors, which appear in a short period of time and disappear without damaging
hardware [12]. Following the exponential distribution [13], the execution relia-
bility of task τi is expressed as

Rexe
i = e

−λ(fi)×νi× ci
fi (6)

where λ (fi) is the raw fault rate when executing task τi at processor frequency
fi and νi is the vulnerability factor of task τi. fi = f loc

i if task τi is executed
locally and fi = fij otherwise.

System Reliability. Given the transmission reliability and execution reliabil-
ity, the task reliability is formulated as

Ri =
{Rexe

i , if xi = 0
Rtrans

i × Rexe
i , if xi = 1 (7)

where xi indicates whether task τi is offloaded. Obviously, system reliability
depends on the successful transmission and execution of all independent tasks.
Therefore, the system reliability can be readily derived as

Rsys =
∏

τi∈Γ
Ri. (8)

3 Problem Formulation and Methodology Overview

3.1 Problem Definition

Task execution latency and device battery energy are two main factors affecting
the QoE of users in the MEC system. To quantify the users’ QoE of offloading,
we define a metric offloading utility that reflects the improvement in execution
latency and energy efficiency achieved by offloading. The offloading utility of
device Ui is formulated as

�i = xi

(
αi(

tloc
i − toffi

tloc
i

) + βi(
Eloc

i − Etrans
i

Eloc
i

)
)

(9)

where αi and βi indicate the user’s preference on latency and energy respectively,
and they hold for αi + βi = 1, αi, βi ∈ [0, 1]. We aim to maximize the offloading
utility of multi-user multi-server MEC systems under the reliability constraint.
The offloading utility optimization problem is formulated as

max:
∑N

i=1
�i (10)

s.t.: xi = {0, 1} , ∀i = 1, · · · , N (11)
fij > 0, ∀τi ∈ Γoff, ∀j = 1, · · · ,M (12)∑

τi∈Γj

fij ≤ Fj , ∀j = 1, · · · ,M (13)

Rsys ≥ Rth (14)
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Eq. (11) implies that each user can only execute its task either locally or remotely.
Equations (12) and (13) require that each offloaded task should be allocated a
certain amount of computing resources within the capacity of its offloaded server,
where Γj ⊂ Γoff is the set of tasks offloaded to server Sj . Equation (14) ensures
that system reliability Rsys cannot be lower than a threshold Rth.

3.2 Overview

The studied problem involves the decisions on i) the tasks to be offloaded, ii)
the assignment of offloaded tasks to edge servers, and iii) the allocation of com-
puting resources to tasks assigned on servers. Considering the combinatorial
nature of this problem, we propose to decompose the original problem into three
sub-problems. Since many papers have studied offloading decision optimization
problem, we derive the offloading decision X which is a 0–1 sequence using the
discrete particle swarm optimization method [14]. Then we can focus on other
two sub-problems. Given an offloading decision X that divides task set Γ into two
sub-sets Γloc and Γoff, we propose a reliability-aware task assignment approach
that judiciously assigns the tasks in set Γoff to edge servers for increasing system
reliability. After that, we formulate the computing resource allocation problem
F as a convex optimization problem with given task offloading and assignment
strategies {X,A}. We solve the convex problem to derive the resource allocation
solution F using Karush-Kuhn-Tucker (KKT) conditions.

4 Reliability-Aware Task Assignment

Fault-tolerant techniques such as checkpointing and replication are effective in
improving reliability but they are both time/energy-consuming. This paper pro-
poses a task-to-server assignment scheme that exploits the heterogeneity of tasks
and servers to increase system reliability without incurring extra time/energy
overhead.

Motivated by [13], we design our task assignment scheme which is however
quite different from the approach in [13] from many aspects such as the formu-
lation of system reliability and the implementation of heuristic algorithm. Given
a task offloading decision X, we can readily derive the local task set Γloc and
the offloaded task set Γoff. Then, the system reliability given in Eq. (8) can be
re-written as

Rsys =
∏

τi∈Γ
Ri =

∏
τi∈Γloc

Ri ×
∏

τi∈Γoff
(Rtrans

i × Rexe
i )

= e

(

− ∑
τi∈Γloc

λ(f loc
i )×νi× ci

floc
i

)

× e

(
− ∑

τi∈Γoff
γ× di

ri

)

× e

(
− ∑

τi∈Γoff
λ(fij)×νi× ci

fij

)

. (15)

The first item
∏

τi∈Γloc
Ri and second item

∏
τi∈Γoff

Rtrans
i are constant since

all parameters are constant or related to given tasks or devices. Thus we can
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conclude that Rsys is determined by the third item for a given offloading decision
X and it is maximized when the third item reaches its maximum value. In other
words, maximizing Rsys is equivalent to maximizing

∏
τi∈Γoff

Rexe
i .

Consider a case that each task τi in set Γoff is executed at its offloaded server’s
maximum capacity Fj . The corresponding reliability is expressed as

∏
τi∈Γoff

Rexe
i (Fj) = e

(

− ∑M
j=1

λ(Fj)
Fj

×(
∑

τi∈Γj
νi×ci)

)

= e(−(y1×z1+···+yM ×zM )) = e(−y·z) (16)

where Γj is the set of tasks offloaded to server Sj . Through the above algebra
transformation, the reliability is determined by the product of two vectors y
and z where yj = λ(Fj)

Fj
∈ y represents the vulnerability index of server Sj and

zj =
∑

τi∈Γj
νi × ci ∈ z represents the vulnerability index of task set Γj . We can

easily find that the two vectors have the following characteristics with respect
to reliability. ❶ For a given offloaded task set Γoff, the sum of νi × ci of all tasks
is a constant, i.e., z1 + · · · + zM is a constant. ❷ A task/server with a relatively
smaller vulnerability index means that it is relatively more reliable. ❸ y is fixed
for a given MEC system while z is not and depends on task assignment. Based
on the three characteristics, we propose a theorem (i.e., Theorem 1) on task
assignment that derives the minimal y · z to maximize

∏
τi∈Γoff

Rexe
i and hence

Rsys. Although we assume fij = Fj in the above analysis, we can still derive the
three characteristics and hence deduce Theorem 1 for any other cases of fij

once fij has been determined. The proof of the theorem is omitted due to page
limit.

Algorithm 1: Reliability-Aware Task Assignment
Input: Γoff and S = {S1, · · · , SM} meeting y1 ≤ y2 ≤ · · · ≤ yM

Output: Task assignment strategy A = {Γ1, · · · , ΓM}
1 for j = 1 to M do
2 initialize the task set assigned to server Sj by Γj = ∅ ;

3 for i = 1 to sizeof(Γoff) do
4 sort tasks in Γoff in descending order by νi × ci.

5 j = 1 and i = 1;
6 while i ≤ sizeof(Γoff) do
7 Γj = Γj + τi, i + +, j + +;
8 if j > M then
9 j = 1;

Theorem 1. Given an offloading strategy X, if the server vulnerability index
yi in y satisfy y1 ≤ · · · ≤ yM and the sum of task set vulnerability index zj in
z is constant, then y · z is minimized (system reliability Rsys is maximized) if
z1 ≥· · ·≥zM holds.
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Motivated by Theorem 1, we design a heuristic algorithm (i.e., Algorithm
1) that assigns the unreliable tasks with relatively larger vulnerability to the
reliable servers with relatively smaller vulnerability index.

5 Utility-Optimal Resource Allocation

After deriving the task assignment strategy, we formulate and solve the prob-
lem of allocating resources to all tasks assigned on edge servers for maximizing
offloading utility.

Substituting Eq. (9) into Eq. (10), we have

∑
τi∈Γoff

�i =
∑M

j=1

∑
τi∈Γj

(
1 − αidif

loc
i

rici
− βipidi

riκ
(
f loc

i

)2
ci

)

−
∑M

j=1

∑
τi∈Γj

αif
loc
i

fij
(17)

where the transmit power pi and transmission rate ri of user device Ui are both
known after task assignment. Thus, the first item of Eq. (17) is a constant and
then the original problem given in Eqs. (10)-(14) can be reduced to

min: ϕ (fij) =
∑M

j=1

∑
τi∈Γj

αif
loc
i

fij
(18)

s.t.:
∑

τi∈Γj

fij ≤ Fj , ∀j = 1, · · · ,M (19)

fij > 0, ∀τi ∈ Γj , ∀j = 1, · · · ,M (20)

where the reliability constraint is not considered since it has most probably
been satisfied via our reliability-aware task assignment and can be checked after
resource allocation. Clearly, the reduced problem is a function of fij which rep-
resents the computing resource allocated by server Sj to task τi. Our goal is to
find an optimal allocation strategy F to minimize the value of function ϕ (fij).
Below, we propose a theorem to show that ϕ (fij) is a convex function in its
domain. We omit the proof due to page limit.

Theorem 2. The computing resource allocation problem formulated in Eqs.
18–20 is a convex optimization problem.

To solve the convex optimization problem, we build the Lagrangian function
of Eqs. (18)–(20) and then apply the Karush-Kuhn-Tucker (KKT) conditions to
solve the problem. The Lagrangian function is defined as

L (ϕ (fij) , υ) =
∑M

j=1

∑
τi∈Γj

αif
loc
i

fij
+

∑M

j=1
υj

(∑
τi∈Γj

fij − Fj

)
(21)

where υ = [υ1, υ2, · · · , υM ] is the Lagrange multiplier vector.
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The KKT conditions are given as follows.

∂L (ϕ (fij) , υ)
∂fij

= 0,∀τi ∈ Γoff, 1 ≤ j ≤ M (22)
∑

τi∈Γj

fij − Fj ≤ 0,∀τi ∈ Γoff, 1 ≤ j ≤ M (23)

υj ≥ 0,∀τi ∈ Γoff, 1 ≤ j ≤ M (24)

υj

(∑
τi∈Γj

fij − Fj

)
= 0,∀τi ∈ Γoff, 1 ≤ j ≤ M (25)

Finally, we use KKT conditions to solve the convex problem and obtain the
optimal resource allocation solution as

f∗
ij =

Fj

√
αif loc

i∑
τi∈Γj

√
αif loc

i

,∀τi ∈ Γj , 1 ≤ j ≤ M (26)

We summarize the basic steps of our method to derive the utility-
optimal resource allocation strategy F ∗ = {f∗

ij | ∀τi ∈ Γj , ∀j = 1, · · · ,M} in
Algorithm 2.

Algorithm 2: Utility-Optimal Resource Allocation
Input: Task assignment strategy A = {Γ1, · · · , ΓM}
Output: Resource allocation strategy F ∗ = {f∗

ij | ∀τi ∈ Γj , ∀j = 1, · · · , M}
1 for j = 1 to M do
2 for i = 1 to sizeof(Γj) do
3 calculate optimal f∗

ij by Eq. (26) and set fij = f∗
ij ;

4 Check whether the system reliability Rsys reaches the threshold Rth.

6 Simulation

This section validates our proposed scheme through extensive simulation exper-
iments. In the experiments, we consider three simulated MEC systems that con-
sist of 20 mobile devices (N = 20), 35 mobile devices (N = 35), and 50 mobile
devices (N = 50), respectively. The computing capability f loc

i of mobile devices
is varied in the range of [1.0, 1.2]GHz. Regarding the mobile user preference
on latency and energy in QoE, we set them as equal by αi = βi = 0.5. Each
simulated MEC system is equipped with a base station and three edge servers
to provide offloading services to mobile devices. We use three resource settings
(i.e., low-resource case, medium-resource case, and high-resource case) to evalu-
ate the performance of our proposed scheme and comparative algorithms. In the
low-resource case, the base station’s bandwidth B is set to 15MHz and the com-
puting capacity Fj of three edge servers is set to {8GHz, 10GHz, 12GHz}. In the
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medium-resource case, the base station’s bandwidth B is set to 25MHz and the
computing capacity Fj of three edge servers is set to {14GHz, 16GHz, 18GHz}. In
the high-resource case, the base station’s bandwidth B is set to 35MHz and the
computing capacity Fj of three edge servers is set to {20GHz, 22GHz, 24GHz}.
The background noise ω is set to −100dBm. The transmission power of mobile
devices is uniformly distributed within the range of [0.1, 0.5]W. The energy coef-
ficient κ is set to 5 × 10−27 [7]. For each task τi, its data size di, number of
execution cycles ci, and vulnerability factor νi are uniformly distributed in the
range of [200, 1000]KB, [500, 2500]Megacycles, and [0, 1], respectively.

Fig. 2. Offloading utility with varying (a)-(c) number of mobile devices (d)-(f) task
input data and (g)-(i) workloads.

We compare our scheme with two state-of-the-art approaches JTORA [7] and
NFA [15] and baseline methods FOA and RA that are all applied to solve our
problem, with respect to QoE (quantified by offloading utility) and reliability.

– JTORA [7] is a Joint Task Offloading and Resource Allocation algorithm
that uses mixed integer nonlinear programming and decomposition methods
to find near-optimal solution.
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– NFA [15] is a Novel Firefly Algorithm that develops a mapping operator and
a composite heuristic to find the optimal solution efficiently.

– FOA is a Full-Offload Algorithm that offloads all tasks of mobile devices to
edge servers for execution.

– RA is a Random Algorithm that randomly decides offloading and scheduling.

Figure 2(a)-(c) compares the offloading utility achieved by our scheme and
JTORA, NFA, FOA, RA under varying resource settings and number of
mobile devices. The results clearly indicate that our scheme always outper-
forms JTORA, NFA, FOA, and RA in increasing offloading utility regardless of
resource settings and the number of mobile devices. Compared to JTORA, NFA,
FOA, and RA, the average improvement on offloading utility realized by our
scheme are 6.1%, 8.1%, 23.8% and 63.2%, respectively. The maximum improve-
ment achieved by our scheme can be up to 84.0% when compared to RA, in the
medium-resource case of Fig. 2(b) with N = 20. As shown in the three cases of
Fig. 2(a)-(c), we can find that offloading utility increases along with the growth in
resource capacity. This is because that more bandwidth and computing resources
are provided, more tasks can be offloaded and hence higher system offloading
utility can be derived.

For a comprehensive evaluation, Fig. 2(d)-(f) and (g)-(i) demonstrate offload-
ing utility achieved by our scheme and JTORA, NFA, FOA, RA under varying
task input data and workloads, respectively. The results show that our scheme
always has the maximum offloading utility among the five methods regardless
of task data size and workload. The maximum utility improvement achieved by
our scheme can be up to 104.6% when compared to RA, in the high-resource
case of Fig. 2(f) with di = 800. In addition, from the Fig. 2(d)-(f) and (g)-(i)
we find that offloading utility decreases with the increase of task data size di

while it increases with the growth of task workload ci. This implies that tasks
with smaller data size and larger workload are more suitable for offloading and
remote execution on servers.

We also compare the system reliability achieved by our scheme and JTORA,
NFA, FOA, RA under varying number of mobile devices, task input data and task
workloads, respectively. Due to page limit, we only present the system reliability
under varying number of mobile devices. As shown in Table 1, unlike the other
four approaches, our scheme can always maintain the system reliability at a high
level and thus more probably meets the reliability constraint. For example, in
the low-resource case, the system reliability realized by our scheme can be up to
12.9%, 20.7%, 23.4%, and 32.8% higher than that of NFA, JTORA, FOA, and
RA, respectively. The same observation can be found in the cases of varying task
input data and task workloads.
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Table 1. System reliability with varying number of devices.

Low-resource Medium-resource High-resource

N = 20 N = 35 N = 50 N = 20 N = 35 N =50 N = 20 N = 35 N = 50

NFA 0.949 0.927 0.847 0.964 0.912 0.870 0.974 0.932 0.889

JTORA 0.940 0.833 0.792 0.962 0.899 0.805 0.974 0.921 0.865

FOA 0.938 0.831 0.775 0.962 0.890 0.795 0.972 0.919 0.841

RA 0.913 0.822 0.720 0.938 0.840 0.786 0.951 0.861 0.822

Our 0.976 0.966 0.956 0.979 0.946 0.928 0.983 0.945 0.910

7 Conclusion

To solve the task scheduling issues in multi-user multi-server MEC systems, this
paper proposes a task assignment heuristic that increases system reliability based
on the reliability-optimality analysis and designs a convex optimization method
to perform computing resource allocation to maximize system QoE (quantified
by offloading utility). Experiment results show the effectiveness of the proposed
scheme in improving offloading utility and reliability.
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Abstract. With the rapid growth of edge intelligence, a higher level of
deep neural network computing efficiency is required. Visual intelligence,
as the core component of artificial intelligence, is particularly worth more
exploration. As the cornerstone of modern visual modeling, convolutional
neural networks (CNNs) have greatly developed in the past decades.
Variants of light-weight CNNs have also been proposed to address the
challenge of heavy computing in mobile settings. Though CNNs’ spatial
inductive biases allow them to learn representations with fewer param-
eters across different vision tasks, these models are spatially local. To
acquire a next-level model performance, vision transformer (ViT) is now
a viable alternative due to the potential of multi-head attention mech-
anism. In this work, we introduce EdgeViT, an accelerated deep visual
modeling method that incorporates the benefits of CNNs and ViTs in a
light-weight and edge-friendly manner. Our proposed method can achieve
top-1 accuracy of 77.8% using only 2.3 million parameters, 79.2% using
5.6 million parameters on ImageNet-1k dataset. It can achieve mIoU
up to 78.3 on PASCAL VOC segmentation while only using 3.1 million
parameters which is only half of MobileViT parameter budget.

Keywords: Edge computing · Vision transformer · Lite computation

1 Introduction

Edge computing is gaining traction recently as new use cases emerge, notably
with the introduction of 5G [43]. Specifically, edge computing combined with arti-
ficial intelligence [37,56] enables faster computation and insights, improved data
protection, and effective control over continuous operations. Automated optical
inspection, for example, plays a critical role in manufacturing lines. With the
help of an automated Edge visual model, it is possible to detect faulty portions of
assembled components on a production line. Without relying on massive volumes
of cloud-based data transmission, an edge based automated optical inspection
enables for both accurate and ultrafast pipeline processing. Besides the manufac-
turing industry, many other real-world applications (e.g., autonomous vehicles,
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facial recognition, emergency medical care, etc.) also require such visual recog-
nition tasks (e.g., object detection and semantic segmentation) to run on edge
devices in a timely fashion.

As the cornerstone of modern deep visual representation learning, convolu-
tional neural networks (CNNs) have gained massive success in the past decades.
Recent methods such as vision transformers (ViTs, [14,50]) have also been pro-
posed with the development of self-attention mechanism [50]. It has been extreme
successful in NLP since huge transformer language models [1,13] have substan-
tially revolutionized the discipline. Likewise, vision transformers (ViTs) [14],
are now a viable alternative to convolutional neural networks (CNNs) to learn
visual representations and have been the defacto benchmark backbones for many
downstream vision tasks. Generally, ViT divides an image into a series of non-
overlapping patches and then applies multi-head self-attention transformers to
learn inter-patch representations. According to previous research, the perfor-
mance gains of these ViT networks are usually at the expense of model size
(#Parameters) and computation complexity (#MACs). However, in most edge
infrastructures, the computation and memory capacity is restricted by the edge
or IoT devices’ capability. As a result, large complex deep neural networks have to
be compressed (e.g., pruning [17,22,32], model quantization [27,51], etc.) prior to
the deployment to the Edge hardware, which almost inevitably results in model
performance degradation. To be effective, visual models in such infrastructure
should be light and fast at inference.

Fig. 1. EdgeViT produces higher Top-1 accuracy
on ImageNet-1K than other light-weight CNN mod-
els and also MobileViT with significantly smaller
memory footprint.

Recent light-weight design
of CNNs and ViTs have been
proposed and demonstrated
to lift performance in many
mobile settings [4,25,38,42].
Compared to CNNs, ViTs are
more heavy-weight which are
often harder to optimize [55],
needs extensive data aug-
mentation and L2 regular-
ization to prevent overfit-
ting [48,52]. For example, a
ViT-based segmentation net-
work [40] learns about 345M
parameters and achieves sim-
ilar performance as the CNN-

based network, DeepLabv3 [3], with 59M parameters. The lack of image-specific
inductive bias [55] (attention vs. convolutions) resulting in an appetite of parame-
ters also limits the capabilities of ViTs to be applied in edge computing scenarios
compared to CNNs. Therefore, hybrid approaches that combine the benefits of
convolutions (e.g., spatial inductive bias and less sensitive to data augmenta-
tion) and transformers (e.g., input-adaptive weighting and global relationship
modeling) are gaining interest [4,12,38,55], among which, MobileViT [38] is one
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representative that can produce competitive model performance while maintain a
low memory footprint. Specifically, the MobileViT design (see Fig. 2 right panel)
follows a local-global [54] information sequential modeling paradigm. Standard
convolution involves local representation learning initially, and then transform-
ers learn global representations of the images. Nevertheless, edge devices require
even more stringent memory footprint and computation complexity (e.g., some
sensor devices only support <1G FLOPs and a latency lower than 15ms [43])
to keep its efficacy. Inspired by MobileViT [38], we present EdgeViT, a new
architecture that separates the local-global representation learning into two par-
allel branches rather than serializing through the embedding dimensionality. It
shrinks the feature map size to further reduce the model size and total com-
putation amount (#MACs) while not severely hindering the model performance.
The increased degree of parallelism also advances inference speed and lowers the
latency.

Our extensive experiments show that (also see Fig. 1), our proposed EdgeViT
can achieve a top-1 accuracy of 77.8% (1% less than MobileViT’s accuracy) on
ImageNet-1K dataset (image classification) [41], while only uses 46.56% of the
parameter budget and 62.41% of the computing budge (#MACs) of MobileViT
under the same training recipe. Integrated with a DeepLabV3 decoded head, our
method can achieve a 78.9% mIOU on PASCAL VOC 2012 dataset [15], which
is 4.2% better than MobileNetV2 [42].

2 Related Work

2.1 Vision Transformers

Transformers [14,50] for large-scale image recognition and shown that ViTs may
reach CNN-level accuracy without image-specific inductive bias on extremely
large-scale datasets (e.g., JFT-300M). ViTs [14] can be trained on the ImageNet
dataset to achieve CNN-level performance [48,49,60] with significant data aug-
mentation, intensive L2 regularization, and distillation. However, unlike CNNs,
ViTs have poor optimizability and are difficult to train. [2,11,16,31,52,57] reveal
that the lack of spatial inductive biases in ViTs is the cause of the poor opti-
mizability. The use of convolutions in ViTs to include such biases increases their
stability and performance. To take advantage of convolutions and transformers,
various designs have been investigated. ViT-C [55], for example, adds an early
convolutional stem to help ViT see better. CvT [53] alters multi-head attention in
transformers by replacing linear projections with depth-wise separable convolu-
tions. BoTNet [44] replaces ResNet’s bottleneck unit’s normal 33% convolution
with multi-head attention. ConViT [12] uses gated positional self-attention to
add soft convolutional inductive biases. PiT [23] is a depth-wise convolution-
based pooling layer that extends ViT. Despite the fact that with considerable
augmentation, these models may compete with CNNs, the majority of them are
heavy-weight. On the ImageNet-1k dataset, PiT and CvT, for example, learn
6.1 and 1.7× more parameters than EfficientNet [46] and achieve similar per-
formance (top-1 accuracy of roughly 81.6%). Furthermore, when these models
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are scaled down to create light-weight ViT models, their performance lags well
below that of light-weight CNNs. ImageNet-1k accuracy of PiT is 2.2% worse
than MobileNetv3 [24] with a parameter budget of roughly 6 million. Most recent
MobileViT [38] incorporates MobileNetv2 blocks with ViTs which has a compet-
itive generalization capability while also light-weight.

2.2 Light-Weight CNNs

Standard convolutional layers serve as the foundation of CNNs. Numerous fac-
torization based techniques have been suggested to reduce the computational
cost of this layer and make it mobile-friendly [8,28,39]. Modern light-weight
CNNs for mobile vision tasks, such as MobileNets [24,25,42], ShuffleNetv2 [36],
MixNet [47], and MNASNet [45], frequently use separable convolutions of [8,46].
These networks can quickly substitute the heavy-weight backbones in current
task-specific models (such DeepLabv3 [3]) to reduce network size and improve
latency, such as ResNet [20]. Despite these advantages, these approaches have a
significant disadvantage in that they are spatially confined. In this work, we aim
to combine the advantages of both convolutions and transformers (e.g., versatile
and simple training) to construct a deep visual model that works under critical
computational latency requirements such as edge.

2.3 Efficient Computing in Deep Learning

Another strategy to accomplish efficient inference is to compress and speed
the current huge models, in addition to directly building efficient models [32].
To speed up model inference, some have suggested pruning individual neu-
rons [17,18], entire channels [21,22,33], or the network as a whole [9,51].
Recently, model acceleration and compression have also been automated using
AutoML [21,32,51]. Multi-tasking is also a viable alternative [6,7]. These
research are orthogonal to our work because they all condense already-built
models. Instead of compressing or accelerating an existing model, we are more
interested in investigating how to harness the domain knowledge to develop an
effective architecture from the initial.

3 EdgeViT: Efficient Visual Modeling for Edge

MobileViT [38] adopts a local-global representation learning paradigm to incor-
porate the benefits of CNNs and ViTs, however, the sequential modeling design
may not be the optimal choice. As shown in Fig. 2 (middle), our EdgeViT
block follows a double-branch design. It splits the original input feature maps
X ∈ R

c×h×w into two portions along the channel dimension c, followed by
two attention branches: one convolution branch for extracting information in a
restricted neighborhood and one typical transformer attention branch for captur-
ing global-wise dependencies. Following ViT [14], the feature maps are divided
into regular non-overlapping patches, which are often considered as the basic
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Fig. 2. EdgeViT. An illustration of how the architecture design of EdgeViT com-
pares to MobileViT. For EdgeViT, we adopt a multi-branch design for the attention
computation by splitting the input X ∈ R

c×h×w across the channel dimension. The
convolutional operations are used for neighboring patches representation modeling and
the transformer is used for global representation modeling. As such, nearly half com-
putation complexity of the transformer portion is simply reduced.

processing units of Transformers. Convolution over the feature maps is one obvi-
ous solution for the local-representation modeling. The diagonal groups can be
simply covered by the module with a sliding window. Some light-weight and
accelerated implementation of CNNs are utilized in this case.

3.1 Self-attention in Vision Transformers

The vanilla multi-head self-attention mechanism was originally proposed by [50].
For a sequence of token representations X ∈ R

n×d (with sequence length n and
dimensionality d), the self-attention function firstly projects them into queries
Q ∈ R

n×dk , keys K ∈ R
n×dk and values V ∈ R

n×dv , h times with different,
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learned linear projections to dk, dk and dv dimensions, respectively. Then a
particular scaled dot-product attention was computed to obtain the weights on
the values as:

Fig. 3. As Fig. 2 shows, a typical EdgeViT is composed of 5 stages (from 0 to 4).
Using an example of image with size (3, 512, 512), the top panel shows that in all
EdgeViT blocks, transformer occupies a large portion of both network parameters and
computations. The bottom panel demonstrates that multi-branch design significantly
optimizes the model size and reduces the overall compute cost.

Attention(Q,K,V) = Softmax(
QKT

√
dk

)V (1)

Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions. With a concatenated
computing way, the final output of multi-head attention is as following:

MultiHead(Q,K,V) = Concat(head1, · · · , headh)WO (2)

in which, h is the number of total heads. Each head is defined as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

where the projections are parameter matrices WQ
i ∈ R

d×dk , WK
i ∈ R

d×dk ,
WV

i ∈ R
d×dv and WO ∈ R

hdv×d.
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3.2 Complexity Analysis

LSRA [5,54] has demonstrated the effectiveness of multi-branch attention in cap-
turing global and local context patterns, especially under mobile computational
constraints. Figure 3 compares the amount of parameters and computational
complexity between MobileViT block and our EdgeViT block across multiple
stages (see the main architecture of EdgeViT in Fig. 2 (left)). Across all stages,
the transformer occupies over 59% of the total model memory footprint and
about 40% of the total GFLOPs, and this trend will become more significant as
the depth of transformer layers in each stage increases.

Table 1. Comparison with both light-weight and heavy-weight CNNs and also Mobile-
ViT on image classification (validation set).

Model #Params(M) IN1k-Top1 (%)

Light weight MobileNetv1 2.6 68.4
MobileNetv2 2.6 69.8
MobileNetv3 2.5 67.4
ShuffleNetv2 2.3 69.4
ESPNetv2 2.3 69.2
MobileViT-xs 2.3 74.8
EdgeViT-xs (ours) 0.92 73.1

Heavy weight DenseNet-169 14 76.2
EfficientNet-B0 5.3 76.3
ResNet-101 44.5 77.4
ResNet-101-SE 49.3 77.6
MobileViT-s 5.6 78.4
EdgeViT-s (ours) 2.3 77.8

The bottom panel in Fig. 3 further demonstrates that a multi-branch based
architecture will compress the entire attention procedure over 4× for later stages
and over 8× for early stages across both model size and computational complexity.

4 Experimental Results

In this section, we analyze EdgeViT’s performance on the ImageNet-1k dataset
and also a visual segmentation task, demonstrating that it is competitive to
other state-of-the-art methods. We demonstrate EdgeViT’ general applicability
and edge device-friendly in following sections.

4.1 Image Classification on ImageNet-1K Dataset

Implementation Settings. On the ImageNet-1k classification dataset [41],
we train EdgeViT from scratch. The training and validation sets of IN-1K
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provide 1.28 million and 50 thousand images, respectively. With an effective
batch size of 1,024 images, the MobileViT networks are trained using PyTorch
for 300 epochs on 8 NVIDIA A10 GPUs using the AdamW optimizer [35],
label smoothing cross-entropy loss (smoothing=0.1), and multi-scale sampler
(S = {(160, 160), (192, 192), (256, 256), (288, 288), (320, 320)}). For the first 3000
iterations, the learning rate is increased from 0.0002 to 0.002, and then it is
annealed to 0.0002 using a cosine schedule [34]. We employ a L2 weight decay
equals to 0.01. The performance is assessed using a single crop top-1 accuracy
and baseline data augmentation (i.e., random scaled cropping and horizontal
flipping). An exponential moving average of the model weights is employed for
inference following [38].

Table 2. Comparison with ViTs based models on ImageNet-1k validation set. (aug)
stands for more advanced augmentation methods combined with baseline augmentation
methods (e.g. MixUp [58], RandAug [10], and CutMix [59]).

Model #Params(M) IN1k-Top1(%)

DeIT 5.7 68.7
5.7 (aug) 72.2
10.0 (aug) 75.9

T2T 4.3 (aug) 71.7
6.9 (aug) 76.5

PiT 10.6 72.4
4.9 (aug) 73.0
10.6 (aug) 78.1

Mobile-former 4.6 (aug) 72.8
9.4 (aug) 76.7

Cross-ViT 6.9 (aug) 73.4
8.5 (aug) 73.8

CeiT 6.4 (aug) 76.4
ViL 6.7 (aug) 76.7
LocalViT 7.7 (aug) 76.1
PVT 13.2 (aug) 75.1
ConViT 10.0 (aug) 76.7
BoTNet 20.8 77.0
BoTNet 20.8 (aug) 78.3
MobileViT 2.3 (xs) 74.8

5.6 (s) 78.4
EdgeViT 0.92 (xs) 73.1

2.3 (s) 77.8
5.6 (xl) 79.2
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Table 3. Comparison with other SOTAs on segmentation w/ DeepLabv3.

Model #Params(M) mIOU

MobileNetv1 11.2 75.3
MobileNetv2 4.5 75.7
MobileViT-xxs 1.9 73.6
MobileViT-xs 2.9 77.1
EdgeViT-xs 1.3 76.5
ResNet-101 58.23 80.5
MobileViT-s 6.4 79.1
EdgeViT-s 3.1 78.3

Comparison with CNNs. In different model memory footprints (MobileNetv1
[25], MobileNetv2 [42], ShuffleNetv2 [36], ESPNetv2 [39], MobileNetv3 [24] and
MobileViT [38], EdgeViT outperforms all light-weight CNNs, and reaches a com-
petitive performance compared to MobileViT, however, only using a over 2×
smaller network size as shown in Table 1. Specifically, EdgeViT outperforms
MobileNetv2 by 4.73%, ShuffleNetv2 by 5.33%, and MobileNetv3 by 8.46% on
the ImageNet-1K validation set for a model size of less than 1 million param-
eters (0.92M). The results also demonstrate that EdgeViT outperforms heavy-
weight CNNs like ResNet [20], DenseNet [26], ResNet-SE, and EfficientNet [46].
For a similar set of criteria, EdgeViT is, for instance, 1.97% more accurate than
EfficentNet.

Comparison with ViTs. We compare our EdgeViT with many ViT variants
including DeIT [48], T2T [57], PVT [52], CAIT [49], CrossViT [2], LocalViT [29],
PiT [23]. EdgeViT performs better with fewer parameters and basic augmenta-
tion than other ViT variants that gain a lot from advanced augmentation (e.g.,
PiT with basic augmentation vs. advanced: 72.4 vs. 78.1 (see Table 2). For exam-
ple, EdgeViT outperforms DeIT by 13.25% while being 2.5× smaller. All these
evidences show that EdgeViTs are just like CNNs, are reliable and easy to opti-
mize. Again, it is easy to adapt them to various other tasks and datasets.

4.2 Semantic Segmentation on PASCAL VOC Challenge

Implementation Settings. We adopt DeepLabv3 [3] as the decode head and
EdgeViT as the backbone to train from scratch for semantic segmentation. On
the PASCAL VOC 2012 dataset [15], we fine-tune EdgeViT using AdamW with
cross-entropy loss. We also use additional annotations and data from [19,30],
respectively, in accordance with a common training approach [3,38]. Mean inter-
section over union is used to evaluate the performance on the validation set
(mIOU). Same to training on ImageNet, we train all models on NVIDIA A10
GPUs with Pytorch.
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Fig. 4. Inference time of EdgeViT compared to MobileViT on segmentation tasks.
EdgeViT is very close to the very restrictive many edge latency requirements (shadowed
area: inference time < 15ms). Tests are based on AMD EPYC 7R13 Processor, using 1
core with 2 threads and CPU MHz@2405.544.

Comparison with MobileViTs. Table 3 demonstrates how DeepLabv3 incor-
porated with EdgeViT is more efficient and superior than other SOTAs. When
EdgeViT-xs is utilized as a backbone instead of MobileNetv2, DeepLabv3 per-
forms 1.0% better and has a 3.46× size reduction. Additionally, EdgeViT mod-
els with ResNet-101 with comparable performance while requiring 18.78× fewer
parameters, indicating EdgeViT is a strong but super light-weight backbone.
Additionally, the results in Table 3 demonstrate that EdgeViT can achieve a com-
petitive performance as MobileViT while only uses half of the parameters budget.
It is also important to notice that the real-time inference time of EdgeViT is only
slightly faster (see Fig. 4). than MobileViT. The main causes of this difference
are two parts. First, particular CPU cores or CUDA kernels are accessible and
used right out of the box in ViTs to improve the scalability and efficiency of
transformers on CPUs or GPUs. Additionally, one of the device-level improve-
ments that CNNs benefit from is batch normalization fusion with convolutional
layers. These modifications enhance memory access and latency. However, there
are not any such specialized and effective procedures for transformers right now.

5 Discussion

In this work, we propose EdgeViT, a light-weight deep network for visual model-
ing in edge computing. The core is based on multi-branch attention architecture
which significantly reduces the model size and accelerates the computation. This
method can achieve competitive performance on wide range of downstream tasks
while maintaining a very low memory footprint which is naturally edge-friendly.
Nevertheless, a further combination with deep compressing or quantization or
distillation techniques are worth investigation.
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Abstract. In this paper, we study the joint optimization of task allo-
cation and charging scheduling of mobile charging vehicles (MCVs) for
parked-vehicle-assisted edge computing networks. In the proposed model,
a group of electric vehicles (EVs) that have been parked for a long time
must be recharged to their expected energy level within a specified time
frame. Meanwhile, an optimal set of parked vehicles (PVs) is selected
to compute a machine learning task utilizing their hardware resources
and local data while satisfying the task’s training performance require-
ments. Within the calculated time window, an MCV is dispatched to
provide power replenishment to the PVs. By jointly deciding the task
allocation and MCV charging sequence, the proposed model seeks to
minimize the total energy consumption of the parked vehicular network,
which includes the PV computation and MCV traveling consumption,
subject to the PVs’ expected energy level, task target utility and time
window. To address this joint optimization problem, a marginal-product-
based algorithm is designed, where a deep reinforcement learning method
is integrated to solve the MCV scheduling problem. Simulation results
demonstrate that the proposed method can efficiently solve the problem
and outperform the compared algorithms in terms of energy consump-
tion.

Keywords: Parked vehicular network · Edge computing · Mobile
charging · Deep reinforcement learning

1 Introduction

Electric vehicles (EVs) have recently received considerable attention due to their
environmental friendliness and low carbon emissions compared to conventional
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diesel locomotives. Therefore, a significant increase in the adoption of EVs has
been observed in recent years. Meanwhile, with the upgrading of vehicle hardware
and the development of artificial intelligence technology, vehicular edge training
has become a future development trend of machine learning, where parked EVs
can utilize idle computing resources to undertake learning-related tasks (e.g.,
optimizing parameters of an autopilot model by computing local video data).

However, one of the key barriers limiting the expansion of the EV market
is the issue of power replenishment. Furthermore, in addition to the power con-
sumed by vehicle movement, long-term high-power machine learning training
incurs additional charging pressure. The mainstream solution for this problem
is fixed charging stations (FCSs), where users must drive to a suitable charging
station and wait for the charging process to be completed. On the one hand,
the construction and maintenance of FCSs require expensive capital investment.
On the other hand, due to the lack of flexibility, FCSs cannot fully satisfy users’
charging demands, which vary over time and space.

Since previously methods cannot fundamentally address the EV charging
problem, recent advances in charging technology have inspired the emergence
of mobile charging services (MCSs) as a promising alternative solution. Mobile
charging vehicles (MCVs), which have energy storage, can provide charging ser-
vices for EV customers. The mobility of MCVs enables instant adaptation to the
charging needs of different regions; furthermore, the low price of MCVs compared
to FCSs makes them even more competitive. Issues related to MCVs have been
discussed in recent research [1,2]. Traditional optimization methods (e.g., queu-
ing theory) and learning-based algorithms are employed to solve the modeled
problems to maximize the charging benefits while minimizing the cost.

However, the existing researches considers only typical charging scenarios; the
emergence of edge training introduces a new charging scenario. In [3], the concept
and application of vehicular edge training are explored in detail. Heterogeneous
EVs that undertake training tasks generate additional charging demands, and
their state of charge varies over time. Moreover, dispatched MCVs incur addi-
tional power consumption and costs. Therefore, the optimal set of EVs must be
selected to collaboratively and continuously execute training tasks while guaran-
teeing that the performance requirements of the machine learning model are sat-
isfied. Moreover, another key issue of MCVs is to determine the charge sequence
and the amount of charging to provide when serving EVs.

Furthermore, EVs must perform high-power training tasks for long periods
and feed the trained parameters of the learning model back to the central con-
trol platform. Therefore, any unpredictable EV failure may cause failed training
results. Hence, to guarantee that all selected EVs work continuously during
the task period, the MCVs should be scheduled to charge EVs before the PVs
exhaust their power and can no longer function properly. Moreover, EVs con-
suming energy for training purposes require basic energy replenishment; at the
end of the period, the remaining power of the PVs must reach the expected value
set at the beginning. However, if an MCV charges a PV too early, the power
consumed by subsequent training will make the final energy state lower than the
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user’s expectation. Therefore, the MCV must arrive at the PV after a certain
time.

To address the aforementioned issues, we model a parked-vehicle-assisted
edge computing network, where both PV selection and charging scheduling are
considered. We aim to minimize the overall energy consumption of the modeled
vehicular network while satisfying the training task requirements and customers’
charging demands. In the considered model, a set of parked EVs are selected to
perform the training task. Based on the task allocation strategy, the training
power consumption combined with the power expectation of EV users forms
the final charging demand. An MCV is dispatched to arrive at EV parking
locations for energy replenishment within their required time windows. To solve
this coupled optimization problem, a deep reinforcement learning (DRL)-based
method is proposed. Moreover, we integrate a marginal approximation problem
to solve the coupling relationship between the two optimization problems.

The main contributions of this paper can be summarized as follows:

1 A joint task allocation and MCV scheduling optimization problem is modeled
in which the aim is to minimize the task energy consumption and MCV
traveling cost. This problem is subjected to the energy limitation of MCVs
and arrival time constraints.

2 To solve the joint optimization problem, a DRL-based algorithm combined
with marginal approximation is proposed to jointly optimize the task alloca-
tion and MCV scheduling.

3 The effectiveness of the proposed algorithm is verified through simulation
experiments and comparison with other methods. The proposed algorithm
significantly reduces the network’s overall energy consumption.

The remainder of this paper is structured as follows. Sect. 2 describes the
system model and presents the problem description, including network, energy
consumption and charging model. In Sect. 3, a joint optimization algorithm is
proposed. In Sect. 4, the numerical results and analysis are presented. Finally,
conclusions are drawn in Sect. 5.

2 System Model

2.1 Network Model

In this network model, We consider a parked vehicular network composed of a set
of PVs PV = {pv1, pv2, ..., pvm}, a cloud server that is responsible for publishing
the tasks, and an MCV that is dispatched from the depot to travel along the
scheduled charging tour.

In a certain area, charging customers leave their EVs at parking places. We
assume that in the case of long-term EV parking, such as when the owner is
working, there is no strict time limit for charging requirements. Moreover, only
long-term parking makes it possible for vehicles to perform FL tasks since com-
putation processes generally take a considerable amount of time.
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Based on the task framework in [4], at the beginning of a joint optimization
period, the cloud server releases one task, and each PV uses only local data to
complete the task. Di is the size of the local data, and fi is the CPU frequency
of PV i. Moreover, the earth mover distance (EMD) [5] is used to describe the
effect of the PV’s local data distribution on the overall task utility, which is
denoted as vi.

The cloud server must choose the optimal subset of PVs X ⊆ PV to complete
the task to minimize the total energy consumption while ensuring overall task
utility. Once a PV is recruited, the cloud server sends it the parameters of model
Mj . Client i trains the model on its local data Di. After training, the client
transmits the trained local model to the server.

The global model quality of a task can be modeled by the total data size and
average EMD value of the selected PVs set:

U(X) = β(γ) − κ1e
−κ2(κ3D)β(γ), (1)

where D is a function of the total data size of the selected PVs, γ is the average
EMD value, and β(γ) = κ4exp(−(γ+κ5

κ6
)2) is a function of the average EMD

value.

2.2 Energy Consumption Model

Once the task allocation decision is completed, the cloud server sends the param-
eters of the model to the distributed PVs, and the transmission process consumes
energy. Similarly to [6], we define the achievable data rate of PV i as:

ri = B log2(1 +
Ph

N0B
), (2)

where B is the bandwidth available to the cloud server, P is the unified trans-
mission power, h is the channel gain, and N0 is background noise. The data size
of the model is M , so the power consumed to transmit the model is

Etra
i = P

M

ri
. (3)

Moreover, the local computation of the FL model consumes a substantial amount
of energy. The CPU energy cost per second is ρfi(t) [7], which is related to the
chip architecture of the CPU frequency and fi(t) is the CPU frequency of PV i.
We assume that each PV performs τ local model updates. Thus, the total energy
consumed in the computation process and the consumption rate of PV i which
is selected are defined as

Ecom
i = τDiHiρf2

i ,

ecom
i = ρfi,

(4)

where H is the number of CPU cycles required to compute one sample of a PV’s
local data and tau is the number of local training rounds.
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Given the selected PV set X, the total energy consumption for the task can
be defined as

Etask(X) =
∑

i∈X

(Etra
i + Ecom

i ). (5)

2.3 Charging Model

The central controller collects a bundle of charging demands from parked EVs.
For PV i, the charging demand is denoted as pvi =

{
eful
i , eini

i , eexp
i , xi, yi

}
, i ∈

{1, 2, ...,m}, where eful
i , eini

i , eexp
i and xi, yi denote the battery capacity, remain-

ing energy, expectation power state and location in the 2D plane, respectively. To
simplify the model, only one MCV is considered. An MCV with energy storage
EMCV is dispatched from the depot located at the center of the model area. As
the MCV travels along the set route, once its power is exhausted, the MCV will
return to the depot to replenish its power. We assume that each PV is charged
only once during a single period. At the end of this stage, the power state of
all PVs must reach the expected value eexp

i . For PVs that are not selected to
the perform training task, since their state of charge (SOC) is stable, the MCV
can reach their parking location at any time. Thus, the amount of energy and
charging time of these PVs can be calculated as:

Echar
i = eexp

i − eini
i ,∀i /∈ X,

tchar
i =

eexp
i − eini

i

echar
i

,∀i /∈ X.
(6)

The SOC of PVs that are selected decreases with time, which means the task
energy consumption must be considered. Since the amount of energy consumed
for communication is small compared to that for computation, it can be ignored
in the following equations.

Echar
i = Ecom

i + eexp
i − eini

i ,∀i ∈ X,

tchar
i =

Ecom
i + eexp

i − eini
i

echar
i

,∀i ∈ X.
(7)

The charging sequence vector is expressed as α(PV,X) = [α0, α1, α2,
..., αj , αT ], where αj represents the jth visiting PV. Moreover, we assume that the
MCV starts from the depot and returns to it after charging. Thus, α0 = αT = 0.
To reduce the complexity of the model, each PV is visited only once, which means
αj �= αj′ for j �= j′, αj �= 0, αj′ �= 0. Notably, the arrival time of the MCV for each
PV depends on the traveling and charging time on previous routes; the arrival time
is denoted as tai and calculated as:

tai =
αj+1=i∑

j=1

dist(αj , αj+1)
v

+
αj+1=i∑

j=1

tchar
αj

,∀i ∈ {1, 2, ..., T} , (8)
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where v is the moving speed of the MCV and dist(αj , αj+1) is the distance
between pvαj

and pvαj+1 . Specifically, we assume that the MCV uses battery
swapping technology, so the time spent in the depot can be ignored. Therefore,
tchar
0 = 0.

In practice, once the PV’s SOC is lower than the minimum emin
i , the PV

cannot remain in operation, leading to the task failure. Thus, to ensure that
all selected PVs can successfully complete the training tasks, the MCV must
arrive at the PV’s parking place before it runs out of power. Moreover, since
the amount of charging energy is fixed and the SOC of a PV depends on the
arrival time, if the MCV arrives at a PV too early, the subsequent training power
consumption may make the final power state lower than the expected value of
the PV, even if it is fully charged. Therefore, MCV scheduling is transformed
into a sequential decision problem with time window constraints. We denote the
time window of each selected PV i as twi =

{
tw1

i , tw2
i

}
. Based on the initial

SOC eini
i and energy consumption rate ecom

i , tw2
i can be calculated as:

tw2
i =

eini
i − emin

i

ecom
i

. (9)

For tw1
i , we need to ensure that the SOC will not exceed the battery capac-

ity during the process of charging the specified amount of power echar
i . The

inequality is denoted as:

(eini
i − tai × ecom

i ) + tchar
i × (echar

i − ecom
i ) ≤ eful

i . (10)

Hence, tw1
i can be calculated as:

tw1
i =

Ei
com + eexp

i − eful
i

ecom
i

− Ecom
i + eexp

i − eini
i

echar
i

. (11)

Given the charging tour α, the energy consumed by the MCV for traveling
can be formulated as:

Etravel(α) = γ (dist(αj , αj+1)) , (12)

where γ represents the amount of electricity consumed by the MCV per unit of
driving distance.

2.4 Problem Formulation

In this part, we describe the formulation of the joint task allocation and MCV
scheduling problem. We aim to minimize the total energy consumption of the
network while satisfying the requirements of the task and the charging demand
of PV customers. The energy consumption includes task computation energy
and MCV traveling cost. Since the charging cost depends on the demand of
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PVs, which is not related to the strategy, it is ignored in the target formulation.
Therefore, the total energy consumption can be formulated as:

Etotal(X,α) = Etask(X) + Etravel(α). (13)

The strategy of this problem consists of the optimal PV selection and optimal
charging sequence, which aim to minimize the total energy consumption. More-
over, this problem is subject to task and PV charging satisfaction constraints.
This joint optimization problem can be expressed as follows:

min
X,α

Etotal(X,α), (14)

s.t., αk ∈ {0, 1, 2, ...,m} ,∀k ∈ {1, 2, ..., T − 1} , (15)
α0 = αT = 0, (16)
αk �= αk′ ,∀k, k′ ∈ {1, 2, ..., T − 1} , k �= k′, αk �= 0, αk′ �= 0, (17)

tw1
i ≤ tai ≤ tw2

i ,∀i ∈ {1, 2, ...,m} (18)
X ⊆ PV, (19)
U(X) ≥ Γ, (20)

where constraints (15), (16) and (17) state that the MCV starts from the depot,
visits all PVs only once and returns to the depot at the end; constraint (18)
indicates that the arrival time of the MCV is always within the corresponding
time window of the PV; constraint (19) means that the PV that completes the
task is selected from the set of PVs to be charged; constraint (20) ensures that
the final quality of the model trained by the selected PVs meet the requirements
of the task.

3 Joint Optimization Algorithm

We can divide the problem (14) into two subproblems. For the upper layer, the
cloud server chooses PVs to perform the task based on the PV location and
hardware device information and then transmits the parameters of the model.
The selected PVs train the model in a distributed manner, and eventually the
cloud server aggregates an overall model that must satisfy the defined criteria.
Therefore, the upper layer can be formulated as a 0–1 programming problem,
which is NP-hard. The lower layer determines the MCV charging sequence with
the time window limitations. Since the charging is determined by demand and
task consumption, this subproblem can be seen as a classic vehicle routing prob-
lem (VRP), which is also NP-hard. Thus, it is very difficult to solve problem
(14) directly. These two subproblems are proved to be NP-hard after analysis
and tightly coupled. Based on the MCV scheduling of the lower layer, PVs can
only be selected arbitrarily from the set regardless of the remaining power and
charging satisfaction. Meanwhile, based on the assignment of the FL task in the
upper layer, the MCV can be scheduled according to the calculated time win-
dows. In the following section, a DRL-based algorithm for the charging schedul-
ing problem is introduced. Then, based on the solution of the lower layer, a joint
optimization algorithm is designed.
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3.1 DRL Algorithm for the Mobile Charging Scheduling Problem

The mobile charging scheduling problem is described as a DRL model that uses
a pointer network and an actor-critic training approach. similar to [8]. We will
define the Markov decision processes (MDPs) and the training procedures of the
model in the following part.

The state vector of MDPs is defined as Xt =
{
xi

t, i = 0, ....m, t = 0, 1, ...T
}
,

which changes over time. Moreover, the i-th PV’s state vector in time step t
is formulated as

{
xi

t = (si
t, d

i
t)

}
, which includes the static and dynamic state

elements. The static elements si
t are defined as PV coordinates {xi, yi} that

remain constant throughout the decision-making process. The dynamic factors
di

t include the PV charging requirement demandi
t and the MCV’s power state

storagei
t. The next destination of the MCV in the tour affects the demand of

PVs and the remaining energy of the MCV itself. Therefore, the dynamic ele-
ments of the state change between the decoding steps. When a PV is visited, its
charging demand drops to zero in next time step, and the MCV subtracts the
corresponding power. When the MCV’s battery is depleted and it is scheduled
to travel to the next PV, it will return to the depot to recharge its own battery
before proceeding.

The state transfer process can be defined based on the state vector. In each
time step t, with the state input Xt, the output decision vector αt+1 is given
by the neural network after decoding which value belongs to the input index,
which represents the next destination. Starting with the initial state X0, the
state will gradually change to the termination state XT when all PV charge
requests have been met. During this process, the charging sequence α can be
given. Moreover, the neural network’s output is actually a set of probabili-
ties, each of which represents the likelihood that a specified ordinal number
will be selected as the next visiting point. Then, the state transition equation
can be defined as Xt+1 = f(αt+1,Xt). The probability of the entire charging
sequence is denoted as P (α|X0) =

∏T
t=0 P (αt+1|At,Xt)), where At represents

the charging sequence up to time step t. The goal of training is to improve
the probability of the route that minimizes the traveling energy consumption
while satisfying the time windows constraints. For time windows, since the exist-
ing DRL research does not have a reasonable solution for hard constraints, we
add a penalty to the reward function to ensure the MCV arrives at each PV
within the time window, if feasible. Therefore, the reward function can defined
as R =

∑m
j=0 γ(dist(αj , αj+1))+

∑T
t=1 pexc

i , where pexc
i is the seconds outside of

the time windows.
Since the order of the state input is not meaningful when training the neural

network, the embedded inputs replace the RNN hidden states in the encoder to
reduce the computational complexity. Static and dynamic elements are mapped
to a D-dimensional vector space using two one-dimensional (1D) convolution
operations. Specifically, the dynamic elements must be embedded in each time
step, while the static elements are processed only once. The embedded input
i is denoted as x̄i

t = (s̄i
t, d̄

i
t). Since the position of the MCV is a time-related
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sequence, it is further processed using a gated recurrent unit (GRU) to obtain
the vector r̄t.

After processing all the inputs, the final output is obtained by decoding
with the attention mechanism. Through the attention mechanism, the relevant
information of each input data with the next decoding output can be measured
and denoted as at. The vector at is computed as:

at = softmax(vT
a tanh(Wa[x̄i

t;ht]), (21)

where ht is the memory state of the GRU. Then, by combining the attention
vector and state input, the context vector can be calculated as ct =

∑m
i=0 ai

tx̄
i
t.

Finally, we denote P (αt+1|At,Xt) = softmax(vT
c tanh(Wc[x̄i

t; ct])) as the condi-
tional probability of the next-visited PV. In the training stage, we use a random
strategy to sample PVs based on probabilities, while in the validation and infer-
ence stages, a greedy strategy is adopted.

To train this network, the policy gradient method REINFORCE [9] is used.
In addition to the actor network, a critic network used to estimate the reward
function based on the initial state is included. We denote the training dataset as
θ, which includes the VRP instances with time windows following a probability
distribution Φθ. We sample k problems from the dataset in each training epoch
and use the actor network to generate a feasible charging sequence. Based on
the reward function and charging tour, the corresponding reward can be com-
puted. In epoch i, the reward approximation V (Xi

0) can be calculated by the
critic network and then used in the policy gradient to accelerate the training of
the actor network. Moreover, the observed rewards can be used to update the
parameters of the critic network and shift its estimated reward value based on
the state closer to the true value.

3.2 A Joint Optimization Algorithm Based on the Marginal
Product Formula

Based on the solution of the lower layer, a joint optimization algorithm based
on the marginal product formula is proposed. The core concept of this algorithm
is that for the set of PVs selected, we choose the PV with the greatest gain per
unit cost until the requirements of the training task are satisfied. The cost here
includes the computational energy consumption and the MCV’s travel energy
consumption; the previous part can be be computed directly by Eq. (5) and the
latter is inferred from the DRL model. Therefore, the marginal product formula
based on the selection result sets X in each round for each PV i can be defined
as

M(X, i) =
U(X ∪ i) − U(X)

E(X ∪ i, α) − E(X,α)
. (22)

Based on the marginal product formula, we continuously add the PV with
the maximum M(X, i) to the set X until the utility requirements of the task are
met. The details of the algorithm are shown in Algorithm 1.
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Algorithm 1. Joint Task Allocation and Charging Scheduling
Input: PV , τ .
Output: X, α. Phase I - Initialization: Initialize data:X = ∅, α = ∅, Etask(X) = 0,

Etravel(X) = 0, U(X) = 0.
1: while U(X) ≤ τ do
2: for i ∈ PV do
3: echar

i = Ecom
i + eexp

i − eini
i

4: tw1
i =

Ecom
i +e

exp
i −e

ful
i

ecomi
− Ecom

i +e
exp
i −eini

i

echar
i

5: tw2
i =

eini
i −emin

i
ecomi

6: Use trained DRL model to obtain the charging tour α; the arrival time of the
MCV must satisfy the time window. When the remaining power of the MCV
is not sufficient to reach the next destination and then return to the depot,
the MCV will return to the warehouse first to replenish its energy.

7: end for
8: best = arg maxi∈PV

U(X∪i)−U(X)
E(X∪i,α)−E(X,α)

9: X = X ∪ best
10: PV = PV \ best
11: end while
12: return X, α(PV, X)

4 Simulation Results and Analysis

In this section, we measure the effectiveness of the proposed algorithm by means
of numerical experiments and comparison with other methods. Moreover, the
effect of MCV capacity is evaluated. The detailed experimental parameters are
presented in Table 1. The parameters in Eq. (1) is set based on [5]. We train the
DRL model for 20 epochs on a dataset with 120,000 instances. The batch and
validation sizes are set to 200 and 1,000, respectively. The compared methods
include the greedy algorithm and reward-cost ratio (RC-Ratio) method [10]. In
the greedy algorithm, the PV that has the maximum utility is selected in each

Table 1. Main Experiment Parameters

Parameter Value Parameter Value

m 20 echar
i 60 kw

Eful
i 50 kwh MCV Capacity 200 kwh

Eexp
i 20 kwh fi [1.6, 2] GHZ

Eini
i [3, 9] kwh τ 15

Emin
i 3 kwh Di (5, 10]

Area size 36 km×km H [1, 3] cycles/sample

v 10 m/s ρ 0.5

γ 500 j/m EMDi [0, 1.2]
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round until the task target utility is satisfied. For the charging scheduling tour,
the MCV selects the PV with the earliest deadline as the next destination. Once
all PVs with time windows are visited, the MCV drives to the nearest PV. For
the RC-Ratio method, the PV with the maximum marginal value is added to
the PV set to perform the training task, and the corresponding charging tour is
calculated in the same way as it is in the greedy algorithm.

Figure 1 compares the energy consumption of the entire network, which is the
objective function in the modeled joint optimization problem. There is a positive
correlation between energy usage and target utility because as the target utility
increases, more PVs are selected to perform the training task, thereby consum-
ing a large amount of energy. Moreover, the selection of the upper PVs imposes
more time window constraints on the lower MCV scheduling, resulting in an
increase in the traveling cost. The proposed algorithm outperforms the two other
methods because the greedy algorithm focuses on maximizing the benefits and
ignores the computational energy consumption of different PVs and the impact
on the lower-level MCV scheduling. Although the RC-Ratio method chooses the
PV with the maximum marginal product, the MCV scheduling algorithm called
at the lower layer is less effective than our trained DRL model. Therefore, our
proposed algorithm, which combines the marginal product with DRL, achieves
the best performance. To illustrate the performance of the DRL method, Fig. 2
compares the MCV efficiency of the three algorithms with different target util-
ity. The MCV efficiency is defined as the percentage of charging energy for
PVs to the total energy consumption of the MCV. The simulation results show
that the proposed algorithm outperforms the greedy and RC-Ratio methods.
On the one hand, the trained DRL minimizes the traveling cost with the time
window constraints, which outperforms the other two methods. On the other
hand, the proposed algorithm jointly selects PVs and determines the charging
sequence, which reduces the time constraints from a global perspective. However,
the greedy and RC-Ratio methods ignore the effect of selection on the charg-
ing scheduling. Meanwhile, these two algorithm consider only the time window
requirements and do not attempt to minimize the overall travel consumption.
Therefore, the proposed algorithm can improve the energy utilization and reduce
energy waste.

In Fig. 3, we study the effect of MCV capacity on network energy consump-
tion. As the capacity of the MCV increases from 100 kWh to 200 kWh, the overall
energy consumption of the network decreases because the increased MCV capac-
ity reduces the number of journeys back to the depot to refuel, resulting in lower
travel energy usage. Moreover, the DRL model can be trained to make better
decisions in each stage of selecting a destination to visit, thereby reducing the
energy consumed for traveling. Therefore, the proposed algorithm outperforms
the greedy and RC-Ratio methods.
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Fig. 1. Overall network
energy consumption with
different target utility

Fig. 2. MCV efficiency with
different target utility

Fig. 3. Overall network
energy consumption with
different MCV capacity

5 Conclusions

In this paper, we consider a joint task allocation and charging scheduling prob-
lem in a parked-vehicle-assisted edge computing network. To minimize the overall
energy consumption of this modeled network with task training target limita-
tions and PV energy level expectations, we design a joint optimization algorithm
that combines the DRL method with the marginal product concept. The exper-
imental results verify that the proposed algorithm can effectively reduce the
overall energy consumption of the network.
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Abstract. Smart home applications make our lives more comfortable,
more convenient than ever before. However, deploying smart home appli-
cations and smart terminals could pose a potential security threat to
personal information and home privacy. In order to prevent illegal use of
terminals and applications, it is very necessary to establish secure and
reliable communication between terminal and edge server. In this paper,
we design a two-party authentication and key negotiation protocol for the
smart terminal and edge service. The edge-based authentication and key
negotiation scheme offloads the terminal’s main computational overhead
to the edge side, and exploits cryptographic algorithms to achieve user
anonymity and untraceability. Security is verified by the BAN logic and
AVISPA. We also evaluate the performance by comparing our scheme
with other related schemes in terms of computational overhead. The
security and performance results show that our proposed scheme is suit-
able for edge-assisted smart home applications.

Keywords: Smart home · Authentication session key negotiation ·
Elliptic curve code · Edge service

1 Introduction

Recently, such smart home applications as anti-theft, remote monitor and help
services become more and more popular [1]. These smart home applications need
smart end devices to collect and upload information about the home and pro-
vide remote services, thus enhancing the convenience and intelligence of living.
According to a report by the Internet Data Center, the smart home market in
China has exceeded 208 million units. The huge market size of smart homes is
attracting manufacturers such as Haier, Huawei, Xiaomi and Baidu to continu-
ously develop new smart home products and keep pushing the development of
smart homes and the smart home cloud also been introduced.

However, the centralized data processing method represented by cloud com-
puting is no longer able to meet the demand for real-time and efficient data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 419–430, 2022.
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processing at the exploding terminals due to its storage characteristics and trans-
mission bandwidth limitations [2]. Edge computing is located close to endpoint
data sources and supports low-latency services to reduce the pressure on cloud-
centric processing and storage and improve real-time service responsiveness [3].
The smart home becomes an important area for edge computing applications.
Judgments and action decisions are made by the edge server to the smart home,
following the principle of processing data at the source, which can ensure the
security of terminal data to a certain extent.

While enjoying the convenience brought by the smart home, there are also
many security issues. Once a smart terminal connects to the network, it can
be subject to various types of attacks, which can not only cause leakage of
important information, but also threaten personal safety and property security.
In January 2020, a major security vulnerability was discovered in the Xiaomi Mi
Home security camera, which allowed users to view other users’ home screens
when connecting the camera to Google Nest Hub, which seriously breaks users’
privacy.

Therefore, ensuring secure communication in the smart home is an important
consideration [4]. The application security challenges faced by smart homes are
divided into authentication and communication confidentiality. Authentication
and key negotiation technology, as the first line of defence for smart home secu-
rity communication, can achieve the integrity, confidentiality and anonymity of
communication data and solve the problem of privacy leakage between smart
home users and edge nodes, and the session key negotiated through authenti-
cation and negotiation is used to encrypt the data in the upload and despatch
process. The focus should be on making optimisations in terms of flexibility and
efficiency, designing a secure authentication key system and achieving goals such
as anonymity and security for smart home users.

1.1 Related Work

An authentication and key negotiation protocol is the first protection mechanism
to ensure the secure transmission of smart terminal data in the edge computing
environment, which has been partially investigated by researchers. An analysis
of a class of lightweight authentication and key negotiation protocols reveals that
many researchers have ignored the most fundamental security in the pursuit of
lower computational cost [5]. Geetha et al. [6] implement session keys using
low-cost computational tools and message authentication codes, but each com-
munication requires the help of a gateway and the communication overhead is
high. Wazid et al. [7] propose a three-factor anonymous authentication protocol
for smart homes based on symmetric and hash functions. It is shown that pro-
tocol security is generally proportional to the complexity of the computational
tools used.

Mishrad et al. [8] scheme requires the participation of a third party authen-
tication center, based on which the authentication center issues signature cre-
dentials as authentication credentials for all parties, but there is no guarantee
that the third party is honest and trustworthy. Lyu et al. [9] proposes an elliptic
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curve-based key negotiation protocol that implements authentication and key
management, but the drawback is that it requires a large cost to establish a
trusted third-party key distribution center to manage public and private keys.
The protocol of Alshahrani et al. [10] in 2019 does not provide strong confiden-
tiality for smart homes and is not resistant to known key attacks and denial of
service attacks.

Shuai et al. [11] propose an authentication scheme using elliptic curve cryp-
tography for effective anonymity, and in 2020 Soumya et al. [12] point out the
existence of impersonation attacks and insider attacks in this scheme, and pro-
posed the use of biometric and hash functions for lightweight authentication.
However, the Soumaya solution using only hash functions is subject to internal
privilege attacks and forgery attacks, and anonymity is not guaranteed. Jia et
al. [13] use the identity signature issued by the certification center as a tem-
porary public key in the edge-end authentication process, combined with the
Diffie-Hellman idea to guarantee the anonymity of the endpoint, but the bilin-
ear pair operation of the scheme is not applicable to resource-constrained home
endpoint devices. Li et al. [14] propose a new anonymous identity-based security
scheme based on identity cryptography under the edge-end architecture, but the
scheme suffers from offline dictionary attacks and lack of perfect forward security.

In summary, the current authentication and key negotiation protocols for
smart homes have the following problems: First, the current mutual authenti-
cation and key negotiation protocols for smart home terminals and edge servers
still require the participation of the cloud center and do not really implement
edge-side authentication. Second, smart home terminals are resource-constrained
devices, and some existing schemes use algorithms such as bilinear pairing, which
are not applicable to resource-constrained terminals. Third, some only use hash
functions to complete authentication and key negotiation, which is low in com-
putation but lacks security. Fourth, some smart home authentication and key
negotiation protocols require a trusted third party to act as an authentication
center to issue signature credentials, but a true trusted third party is difficult to
implement in real scenarios.

1.2 Contributions

To address the above issues, the main contributions of this paper are as follows.

(1) To address the problem that traditional authentication and key negotiation
protocols for smart homes in edge environments still require third-party
assistance in authentication from the cloud center, a new authentication
architecture for smart homes in edge environments is considered to provide
secure and efficient communication between resource-constrained home ter-
minals and edge servers in the event of cloud link disconnection.

(2) We design a new edge-based authentication and key negotiation scheme
AKES-TE in smart home environments, which achieves efficient authen-
tication of home terminals and edge servers in a single round of message
exchange, shifts the main computational overhead of authentication and
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key negotiation to the edge side for completion, eliminates the need for
the cloud center to assist in authentication in real-time, and utilizes crypto-
graphic algorithms to process endpoint identities to achieve user anonymity
and untraceability.

(3) A proof of the security of the scheme is given using the BAN method and
is also verified by simulation using the widely used formal analysis tool
AVISPA, which shows that the scheme is secure. The scheme was compared
with the previous method and the results showed that the new scheme
guarantees a lower computational complexity without sacrificing the secu-
rity objective.

The rest of the paper is structured as follows, the authentication architecture
for the smart home in Sect. 2, the details of the scheme in Sect. 3, the proof of
safety in Sect. 4, and the experiments comparing the security and computation
performance of the scheme in Sect. 5, and the conclusion in Sect. 6.

2 Authentication Architecture

The authentication architecture of the smart home in the edge computing envi-
ronment is shown in the Fig. 1. The smart terminal is the authentication user,
and the edge server is the local server closest to the smart home. In the whole
system, the smart home terminal can transmit data to the edge server for pro-
cessing and short-term storage, the edge server can offload the computing tasks
of the remote cloud server, and the edge server can make intelligent judgment
and action decisions according to the data processing near the data source.

Smart Home

Smart Light

Smart Curtain

Smart 
Refrigerator Smart Switch

Smart Air 
Conditioner

Smart Socket

Smart 
Monitoring

Smart 
Speaker

User

Registration Request

Private Key

Edge Server

Data Preprocessing Computation Offload

Data Processing and Advanced Service

Remote Cloud Server

Temporary 
Data Storage

Long-term 
Data Storage

Registration Phase Authentication Phase Data Tranmission

Fig. 1. Authentication architecture for the smart terminal and edge service in the
smart home.
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3 Proposed Scheme

Our authentication scheme for the smart home edge service consists of three
phases: the registration phase, the login authentication phase, the password
change phase. In the scheme, the counter CTR−S for the edge server ESj and
the counter CTR_SC for the terminal users are set to track the number of con-
secutive failed attempts for login and authentication, with the initial value set
to 0 and the maximum failure threshold set to n . The communication process
is terminated immediately when CTR_S > n or CTR_SC > n. The symbols
and descriptions used in this paper are shown in Table 1.

The authentication process works between the smart terminal (user) and
the edge server. First, the user sends a registration request to the edge server
and then obtains the private key. Then in the public channel, through a single
round of message exchange, both parties complete the authentication and key
negotiation process, and the negotiated session key is used for subsequent data
communication.

Table 1. Description of symbols.

Notations Descriptions Notations Descriptions

TMi i-th smart home user TMi SCID Smart card identifier

ESj j-th edge server ESj p A very large prime number

UIDi Identification of smart home users TMi k Secret keys for edge servers

G A generating element of the group Ep Tn Current Timestamp

SIDj Identity for edge servers ESj SC Smart card

Ek Symmetric encryption of key k ‖ Concatenation operations

Dk Symmetric decryption of key k ⊕ Bitwise xor operations

3.1 Registration Phase

Step 1. The registration phase is mainly for the smart home user TMi to register
with the edge server ESj , where TMi obtains a SC issued by ESj and thus
obtains a proof of legal identity. TMi selects the identity UIDi, the password
PWi and the random number oi, calculates RIDi and sends {RIDi, UIDi} to
ESj , where RIDi is a very large number belonging to Zp output by H(), which
can be regarded as a string of length |Zp| .

RIDi = H (UIDi ‖ PWi ‖ oi) (1)

Step 2. The ESj receives {RIDi, UIDi} and checks the validity of the UIDi to
determine if the TMi has already been registered. If the TMi has already been
registered, the ESj returns a message for the TMi to reselect a new identity for
registration. If the TMi’s identity has not been registered before, the smart card
identifier SCID, identity SIDj and oj are selected and then {ID,EID, V j

0 } is
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calculated. Finally, {ID, SCID,CTR_S} is stored in the database, {EID, V j
0 }

is written to the SC and the SC is sent to the TMi via a secure channel.

ID = H (UIDi ‖ SIDj ‖ SCID) (2)

EID = Ek (ID ‖ oj) , V j
0 = H (ID ‖ k) ⊕ RIDi (3)

Step 3. When the TMi receives the SC, it initializes the CTR_SC to 0 and
updates the SC → {EID, V j

0 , CTR_SC}.

3.2 Login and Authentication Phase

The smart home user and the edge server should authenticate with each other
and negotiate a session key for subsequent secure communication after the
authentication is completed. The specific steps for the negotiation of the cer-
tificate and key are shown below.

Step 1. When the TMi wants to establish a connection with the ESj for
data communication, the TMi needs to verify the validity of the identity
and password. the TMi enters the UIDi and PWi and if it is wrong then
CTR_SC = CTR_SC +1. if it is correct and CTR_S < n, the SC selects the
random number ri ∈ Zp, calculates {Xu,X1

u, V i
1 } and sends {V i

1 , EID,X1
u, T1}

to the ESj .
Xu = ri · G,X1

u = Xu ⊕ H
(
V j
0 ‖ RIDi

)
(4)

V i
1 = H

(
V j
0 ‖ RIDi ‖ T1

)
(5)

Step 2. After the ESj receives {V i
1 , EID,X1

u, T1}, it first checks the time valid-
ity, determines whether |T s

1 − T1| < ΔT holds, ΔT being the time delay thresh-
old of the ESj . Then decrypts the (ID ‖ oj) = Dk (EID) to check the legitimacy
of the TMi. If the ID is incorrect, it calculates CTR_S = CTR_S +1 and ter-
minates the communication session. If the TMi is legitimate and CTR§ < n,
the calculation determines whether V j

1 is equal to V i
1 . If equal then a random

number rj and bs are chosen to calculate {Xu,Xs,X
1
s , EIDnew, V j

2 , V j
3 } and

finally {V j
2 , V j

3 ,X1
s , T2} is sent to the TMi, where T2 is the current timestamp.

V j
1 = H

(
V j
0 ‖ RIDi ‖ T1

)
,Xu = X1

u ⊕ H
(
V j
0 ‖ RIDi

)
(6)

Xs = rj · G,X1
s = Xu ⊕ Xs (7)

EIDnew = Ek (ID ‖ bs) , V j
2 = H (Xs) ⊕ EIDnew (8)

V j
3 = H (Xs ‖ EIDnew ‖ T2) (9)
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Step 3. When TMi receives
{

V j
2 ‖ V j

3 ‖ X1
s ‖ T2

}
, it first verifies the time

validity, calculates{Xu
s , EIDu

new, V i
3 } if |Tu

2 − T2| < ΔT holds, and determines
if V i

3 = V j
3 holds. If not, CTR_SC = CTR_SC + 1, the TMi denies the ESj

access and terminates the session. If equal then continue to compute {V i
4 , SK}

and finally return {V i
4 , T3} to the ESj , where T3 is the current timestamp of the

TMi, while initialising CTR_SC to 0.

Xu
s = X1

s ⊕ Xu, EIDu
new = V j

2 ⊕ H (Xu
s ) (10)

V i
3 = H (Xu

s ‖ EIDu
new ‖ T2) , V i

4 = H
(
Xu ‖ V i

1 ‖ Xu
s ‖ T3

)
(11)

SK = H (Xu
s ‖ Xu ‖ UIDi ‖ SIDj) (12)

Step 4. Upon receipt of {V i
4 , T3}, the ESj similarly first verifies that T is

satisfied. If not, the ESj denies service and terminates the session, setting
CTR_S = CTR_S + 1. If satisfied, it computes V j

4 and determines if it is
equal to V i

4 , which is used to determine the user’s legitimacy. When they are
equal, the session key SK is calculated and CTR_S is set to 0. This determines
that the ESj and TMi authentication is successful and that the session key
between the ESj and TMi is SK.

V j
4 = H

(
Xu ‖ V j

1 ‖ Xs ‖ T3

)
(13)

SK = H(Xs||Xu||UIDi||SIDj) (14)

3.3 Password Change Phase

When the TMi wants to change the password, it first enters the old PWi to
calculate the RIDi = H (UIDi ‖ PWi ‖ oi) and then sends it to the ESj .The
ESj simply calculates the V j

0 _new = H(ID ‖ k)⊕ RIDi and if V j
0 _new = V j

0 ,
it returns that the user is allowed to change the password and calculates the
RIDnew

i = H (UIDi ‖ PWnew
i ‖ onewi ) with the new password , the rest of the

steps are the same as in the registration phase. Otherwise, the password change
is rejected and the session is terminated.

4 Security Analysis

4.1 Proof of BAN Logic

BAN(Burrows-Abadi-Needham) logic [15] is a formal method of belief-based
modal logic for analysing and verifying authentication protocols and session keys,
consisting of propositional knowledge or inference rules, where the proposition
represents the subject’s knowledge or belief about the message.
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(1) Goals: Goal G1: TMi |≡ TMi
SK←→ ESj . Goal G2: ESj |≡ TMi

SK←→ ESj .
Goal G3: TMi |≡ ESj |≡ TMi

SK←→ ESj . Goal G4: ESj |≡ TMi |≡ ESj
SK←→

TMi.
(2) Idealized Communication Information Mesg1 : TMi → ESj :

{UIDi, RIDi}. Mesg2 : ESj → TMi :
{

EID, V j
0

}
. Mesg3 : TMi →

ESj :
{
V i
1 , EID,X1

u, T1

}
. Mesg4 : ESj → TMi :

{
V j
2 , V j

3 ,X1
s , T2

}
.

Mesg5 : TMi → ESj :
{
V i
4 , T3

}
.

(3) Initialisation Phase Assumptions:

δ1 : TMi |≡ #(Xs) δ5 : TMi |≡ ESj |⇒ Xs

δ2 : ESj |≡ #(Xu) δ6 : ESj |≡ TMi |⇒ Xu

δ3 : TMi |≡ #(ri) δ7 : TMi |≡ TMi

EID
� ESj

δ4 : ESj |≡ #(rj) δ8 : ESj |≡ TMi

H(V j
0 ‖RIDi)
� ESj

(4) Major Proofs using BAN Logic Rules:
For G1, we get Υ1 : TMi �

{
V j
2 , V j

3 : (Xs, EID, T2) ,X1
s , T2

}
from Mesg4

and the reception rule. By δ7, Υ1 and the message meaning rule we can get
Υ2 : TMi |≡ ESj |∼ (Xs, T2) . We get Υ3 : TMi |≡ ESj |≡ (Xs, T2) from
δ1, Υ2 and the provisional validation rule. We get Υ4 : TMi |≡ ESj |≡ Xs

from Υ3 and the belief rule. we get Υ5 : TMi |≡ Xs from δ5, Υ4 and
the arbitration rule, and we get Υ6 : TMi

∣∣∣≡ TMi
SK←→ ESj from SK =

H (Xs ‖ Xu ‖ UIDi ‖ SIDj) (G1 is certified).
For G2, we can get Υ7 : ESj �

{
V i
1 , EID,X1

u, T1

}
according to Mesg3

and the receiving rule. We can get Υ8 : ESj �
{

〈Xu〉H(V j
0 ‖RIDi)

}
by

Υ7 and receiving rules. By δ8, Υ8 and the message meaning rule we
can get Υ9 : ESj |≡ TMi |∼ Xu . We can get Υ10 : ESj |≡ TMi |≡ Xu

by δ2, Υ9 and temporary value validation rules. We can get Υ11 :
ESj |≡ Xu through δ6, Υ10 and Jurisdiction rules. Combined with SK =

H (Xs ‖ Xu ‖ UIDi ‖ SIDj) we can get Υ12 : ESj |≡ TMi
SK←→ ESj (G2

certified).
For G3, according to Υ6 : TMi

∣∣∣≡ TMi
SK←→ ESj , δ3 and session key

rules, we can get Υ13 : TMi |≡ ESj |≡ TMi
SK←→ ESj (G3 certified).

For G4, according to Υ13, δ4 and provisional verification rules, we can
get Υ14 : ESj |≡ TMi |≡ ESj

SK←→ TMi (G4 certified).

4.2 AVISPA Verifying

We simulate our protocol using the AVISPA [16] security protocol analysis tool,
which allows us to check and evaluate whether the protocol AKES-TE is resistant
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to various security attacks. Because of the XOR operation in AKES-TE, we have
used both OFMC and CL-AtSe backends in our simulation experiments.

The simulation results are shown in Fig. 2. In the OFMC model, the total
number of nodes visited is 4 and the depth is 2. In the CL-AtSe model, the
number of analyzed states is 1686, of which 724 can be achieved, the transition
time is 0.02 s, and the computation time is 0.84 s. The results show that the
protocol AKES-TE is safe under the OFMC and CL-AtSe models.

Fig. 2. AVISPA experimental simulation results.

5 Performance Analysis

5.1 Functional Comparison

The secure functions of AKES-TE are compared with these authentication pro-
tocols [5,8,13,14] shown in Table 2 . In Table 2, " � " indicates that the attack
can be resisted, and " × " indicates that the attack cannot be resisted. As can be
seen, the new scheme addresses some serious security threats of the authentica-
tion key exchange protocol and makes countermeasures to make it more secure
compared to other schemes, while using low-energy encryption to make it suit-
able for resource-constrained terminals. We use random number (ri, rj , oi, oj),
timestamp(Tn), a reasonable one-way hash cipher algorithm and elliptic curve
cipher algorithm to ensure the integrity of the session information and achieve
resistance to other attacks such as replay attacks and man-in-the-middle attacks.
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Table 2. Function Comparison.

Function Chen [5] Mishra [8] Jia [13] Li [14] AKES-TE

Anonymity � � � � �
Resist forged counterfeit attacks � � � � �
Resist offline dictionary attacks × � × � �
Resist to replay attacks � � � × �
Resist to known key attacks � � × � �
Resist SC loss of attack � � � × �
Resist man-in-the-middle attacks � × � � �
Resist Dos attacks × � � × �
Enables forward security × × × � �

5.2 Computing Performance Comparison

A comparison of the computational performance of this protocol with other
protocols is shown in Table 3. Because the edge server and smart teminal have
different computational capabilities, the operations were simulated on two dif-
ferent platforms (see Jia [13]). The edge server was simulated by Alibaba’s cloud
platform with Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz, 1 GB RAM and
Ubuntu 14.04 with resource-constrained Terminal emulated by Google Nexus
4.4.2 OS with 2GHz ARM CPU armeabi-v7a, 300 MiB RAM.

Table 3. Running time of basic operations.

Operations User EdgeServer

Bilinear pairing (TB) 48.660ms 5.275ms
Scalar multiplication (TS) 19.919ms 1.97ms
Point addition (TP ) 0.118ms 0.012ms
Hash function (TH) 0.089ms 0.009ms
Modular exponentiation (TM ) 3.328ms 0.339ms
Symmetric encryption/decryption (TSy) 6.6967ms 0.65ms

Table 4. Computing performance comparison.

Scheme User (ms) EdgeServer (ms) Total (ms)

[5] 2TS + 12TH ≈ 40.906 2TS + 8TH ≈ 4.012 44.918
[8] TM+2TS+5TH+TSy ≈

50.3077
TB+3TS+4TH +TSy ≈
11.880

62.1877

[13] TM + 4TS + 5TH ≈
83.449

TB+6TS+5TH+3TP ≈
17.176

100.625

[14] 4TP + 6TS + 5TH ≈
120.431

TB+4TS+2TH+3TP ≈
13.209

133.64

Our TS + 6TH ≈ 20.453 TS+6TH+2TSy ≈ 3.324 23.777
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As shown in Table 4 , we can see that the Chen scheme [5] has a computational
cost of 44.918ms in the authentication phase, while it takes 40.906ms on the
smart teminal side. Obviously, the authentication cost of the scheme in this paper
is only 23.777ms, the computing cost of the smart teminal is 20.453ms, and the
computing cost of the edge server is 3.324ms. From the table comparison, it
can be seen that the calculation cost of this scheme is lower than the other four
schemes, and it is more suitable for the smart home. As shown in Figs. 3, 4, and
5, the different solutions are compared in terms of computing performance at
the user side, computing performance at the edge server and total computing
time.

Fig. 3. Computing perfor-
mance for users

Fig. 4. Computing perfor-
mance for edgeservers

Fig. 5. Total computing
performance

6 Conclusion

With the widespread use of edge computing in smart homes, this paper pro-
poses an authentication and key negotiation protocol for smart homes in an
edge environment, AKES-TE. It achieves efficient authentication between smart
homes and edge servers in a single round of message exchange, and realizes
edge-side authentication without the involvement of cloud servers. The main
computational overhead of authentication and key negotiation is shifted to the
edge side, and the end-user identity is cryptographically processed to achieve
user anonymity and untraceability. Reduces endpoint energy consumption and
enables lightweight authentication using symmetric encryption. Fast and effi-
cient authentication and key negotiation are achieved using passphrases and
tamper-proof smart cards, avoiding the use of public key infrastructure. Rig-
orous security verification and attestation are then performed using BAN logic
methods and AVISPA tools. Finally, an experimental comparison shows that
this scheme offers better performance in smart home security authentication.
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Abstract. With the development of the Internet of Things (IoT), more
and more applications are increasingly demanding latency. Traditional
single-task scheduling strategy is difficult to satisfy low-latency demand.
This is because the task scheduler usually schedules tasks to a closer
server, which leads to an increase in task latency when there are more
tasks, which in turn leads to an increase in task rejection rate. In this
paper, we propose an end-edge cooperative multi-tasks scheduling (MTS)
strategy based on improved particle swarm optimization (IPSO) algo-
rithm. At first, we design a Software-Defined Networks controller algo-
rithm to cluster task offload requests. Then, we set the scheduling priority
for the multi-task clusters. At last, we minimize the total offloading cost
of total tasks as the optimization goal to satisfy its delay. The results
demonstrate that the strategy we proposed can effectively reduce the ser-
vice cost of the system, and the processing delay of tasks, which improves
the success rate of task processing.

Keywords: Edge computing · Resource management · Task offloading

1 Introduction

With the advent of 5G, the Internet has been promoted from the IoT to the
Internet of Everything. Every walk of life is actively embracing changes. The
world has set off a wave of digitization, and the data generated by terminal
devices (TDs) is explosive growth. According to Cisco’s estimation [1], by 2023,
there will be 29.3 billion TDs (e.g., monitoring equipment, sensors, Robotics, and
so on) in the world. Those TDs will connect Internet. Half of these connections
will support a wide range of IoT applications (14.7 billion by 2023). As shown
in Fig. 1, the wireless edge computing scenario is shown, many new applications
such as AR, face recognition, 3D game video, autopilot, etc., which have higher
delay requirements for time delay and security, have rapidly entered people’s life.
This has brought great challenges to cloud computing [2]. Edge computing [3] is
proposed to solve the problem. Edge computing brings the computation ability
from the cloud to the network of edge, which decreases the pressure of the band-
width of the cloud. The computation-intensive applications can be offloaded to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 431–443, 2022.
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the edge server. It allocates computing tasks to the edge for processing, alleviat-
ing the pressure of bandwidth and cloud data center, solving the problem that
clouds computing cannot meet the low-latency task processing request.

Fig. 1. The wireless edge computing scenario.

At present, many studies have shown that offloading all tasks to the edge
servers still causes a large latency [4–8]. Many researchers have studied delay-
sensitive tasks. Zhang et al. [9] proposed a task scheduling strategy for delay-
sensitive tasks. They proved that the task scheduling problem is an NP-hard
problem. However, the authors didn’t consider the problem of end-edge collab-
orative scheduling, and the model assumes that the next batch of tasks will be
scheduled only after the current batch of tasks is processed. In [10], Yin et al.
proposed a task scheduling algorithm based on Docker in fog computing, which
was suitable for delay-sensitive and high concurrency. The author assumed that
tasks were offloaded to the fog and cloud without reservation, and only consid-
ered the interaction between multiple TDs and a fog server. Intharawijitr et al.
[11] proposed a fog computing model based on a 5G cellular network, which con-
sidered the application scenario of multi-terminal and multi-fog node interaction
and took the goal of minimizing the task rejection rate. Through mathematical
modeling of calculation and communication delay, a task scheduling algorithm
with the lowest latency is proposed. The algorithm assigned each request to the
fog node that can process the task with the lowest latency. However, the situa-
tion of local processing tasks is still not considered, and only takes the delay as



End-Edge Cooperative Scheduling Strategy 433

the decision-making reference factor, and does not consider the processing task
cost and other factors.

As a new networking paradigm, software-defined networking (SDN) [12] can
achieve logically centralized control on the distributed edge server and TDs,
which can improve scheduling efficiency. However, facing the massive applica-
tion market, how to meet the performance requirements of different applica-
tions is a challenge for edge computing. The essence of meeting the performance
requirements of multiple applications is to complete the task request within the
minimum required delay. At the same time, the development of the application
market has led to the improvement of the performance of the terminal hardware.
At present, most of the TDs on the market have certain computing performance.
However, there are few types of research on end-edge cooperative scheduling of
tasks. Most researchers consider offloading all tasks to the edge layer or cloud
layer for processing, without considering the computing resources of TDs. There
are two challenges in edge computing scheduling: (1) The TDs can only obtain
the information of the request server, and it is difficult to obtain the informa-
tion of global information, which leads to the low efficiency of offloading. (2) In
the multi-task scenario, the system cost increases, and the single task schedul-
ing strategy is difficult to meet the requirements of task delay, which leads to
the failure of task offloading. To solve these problems, we propose an end-edge
cooperative multi-task scheduling strategy based on IPSO.

Our contributions to this paper are as follows:

– Global information is not transparent in edge computing local networks, and
intensive task scheduling is difficult to achieve optimality, resulting in high
task rejection rates. We design an SDN controller based on edge application
service architecture. SDN controller has a global network view that can flexi-
bly manage edge servers and TDs. Therefore, this architecture can effectively
improve the resource utilization of the edge layer and improve the quality of
service of the TDs.

– The scheduler schedules tasks one after the other in a way that causes
increased queuing delays for tasks and makes it difficult for the server to
meet the latency requirements of the tasks. When the tasks of TDs near the
server are more intensive, it leads to a full server task queue and an increased
rejection rate. We present a multi-task joint scheduling strategy to minimize
the total offloading cost of multiple tasks, to meet the minimum required delay
of multiple tasks. We cluster the task offloading requests that arrive within
a period before the task scheduling. Using the joint scheduling strategy, TDs
can reduce the failure rate of task offloading.

– In MTS, we use particle swarm variational methods to improve the perfor-
mance of scheduling. We improve the particle swarm optimization algorithm
to solve the local optimum of traditional particle swarm optimization. When
the particle swarm falls into the local optimum, we evaluate the particle posi-
tions and randomly initialize the particle positions with probability β, which
improves the efficiency of task scheduling.
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2 System Model

The architecture of the edge computing system based on SDN is shown in Fig. 2.
The TD interacts with the SDN controller and edge server through the cellular
base station, WiFi, AP, and other network access devices. As shown in Fig. 2, the
task is offloaded in the order of 1© to 4©. Firstly, the TD sends the metadata of
the task to the scheduling module of the SDN controller. The format of metadata
is fixed, including the size of the task data, the minimum required to delay, the
computing power of the TD, the remaining length of the cache queue of TD, and
other information. Secondly, the scheduling model of the SDN controller reads
the task request metadata and determines the task scheduling scheme according
to the real-time information of the edge layer. The SDN controller sends the
task scheduling scheme to the TDs. Thirdly, the TD offloads the task based on
the scheduling scheme. Lastly, the edge server processes the tasks and sends a
request to the TD. The TD does not send the task to the SDN controller but
sends the metadata of the task to the scheduling module of the SDN controller.

In this paper, we define the TDs with the set denoted as {T1, T2, T3, . . . TN},
the edge server with the set denoted as {E1, E2, E3, . . . EM}. To make it simple,
we assume that the computation resource of each TD is a constant in each
time slot denoted by ut, and the computation resource of each edge server is
ue. We assume that the task requests generated by the TDs follow the Poisson
distribution [11,13].

Fig. 2. Architecture of edge computing system based on SDN.



End-Edge Cooperative Scheduling Strategy 435

2.1 Task Cost

We combine the processing delay of the task and the cost of renting resources to
define the system cost. The delay cost of taski mainly includes the transmission
delay, queuing delay of the task, and the computing delay of the TD or the com-
puting delay of the j-th server. The cost of renting resources mainly includes the
cost of renting bandwidth resources and the cost of computing resources. The
rental cost of the TD consists of the cost of renting bandwidth resources and
renting computation resources of the edge server. We assume that the operator
allocates a fixed bandwidth to the TDs, so we ignore the cost of renting band-
width resources of TDs. If the cost of computing resources consumed by the edge
server per unit time is c, The cost of renting computation resources is denoted
as Cost = Cij ∗ c, where c is the cost of computing resources consumed by the
edge server per unit time, Cij is the computation delay of task i at edge server j.

2.2 System Delay

The system delay consists of the delay between the TD and the SDN controller,
and the delay between the TD and the edge server. The delay between the
TD and the SDN includes the transmission delay, the average queuing delay in
the SDN controller, and the execution delay of the SDN controller. The TDs
firstly send the metadata to the SDN controller, we define the metadata format
as Metai(datai, delayi, T

cap
n ), datai is the amount of task data, delayi is the

minimum required delay, and T cap
n represents the amount of tasks remaining in

the queue of Tn. Due to the fixed format of task metadata and decision result
data, little data is transmitted, and in the system architecture of Fig. 2, these
two processes are essential regardless of the offloading result, so the delay of
task scheduling results and execution result can be ignored. Therefore, we only
consider the transmission delay of task data from the TD to the edge server. We
assume that hi and B are the channel gains and channel bandwidths of the TDs
and the edge server. Let pi denote the transmission power of the user, and σ2

denotes the transmission noise. In this paper, the free space channel model is
applied. Thus, the uplink data delay is given by

Tti =
datai

B ∗ log2
(
1 + pi∗hi

σ2

) . (1)

The SDN controller is set to wait for the number of offloading requests in
the cache queue to reach a threshold δ before triggering the task scheduling
algorithm. The TD generates task requests according to Poisson’s expectations.
If the number of TDs is N , the SDN controller’s task arrival per unit time is
U = λ∗N , and the average queuing delay of processing requests is Qsi =

1
U ∗ δ−1

2 .
If taski is offloaded to the TD for execution, then it has Qti =

T cap
n

ut
+T cur

n , T cap
n

is the space occupied by the buffer queue of the TDs, and T cur
n is the remaining

execution time of the task being executed. If the SDN controller decides to offload
the task to the j-th server for execution, the TD will send the task data to the
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cache queue of the j-th server through the network access facility. The queue
delays Qeij in the j-th server is equal to the sum of the total calculation time
of the task to be processed in the cache queue of the current j-th server and the
remaining execution time of the currently executing task expressed as:

Qeij =
Ecap

j

ue
+ Ecur

j , (2)

and Ecap
j is the total amount of task data to be processed in the cache queue

of the j-th server, and Ecur
j is the remaining execution time of the task being

executed. The computing delay is the ratio of the data volume of the task to the
data volume processed by the computing device per unit of time. Therefore, the
computing delays of taski at the TD and j-th server are respectively expressed
as Cti = datai/ut and Cij = datai/ue.

2.3 Problem Formulation

In this paper, we model the multi-task joint scheduling model of TDs and
edge servers. Suppose that the edge server schedules δ task offloading requests
task1, task2, . . . , taskδ, edge layer has M available edge servers. We define the
decision parameter xij , when taski has the least cost on edge server j xij = 1,
else xij = 0.

The total delay of task offload requests in TD processing can be expressed
as:

T t =
δ∑

i=1

⎡
⎣

⎛
⎝1 −

M∑
j=1

xij

⎞
⎠ (Qsi + Qti + Cti)

⎤
⎦ (3)

where
∑M

j=1 xij = 0 means that the task is offloaded to the TD, Qsi is SDN
controller queuing delay, Cti is TD local computing time delay. The total delay
cost of δ tasks on the edge server can be written as:

T e =
δ∑

i=1

M∑
j=1

[xij(Tti + Qsi + Qeij + Cij)]. (4)

We aim to optimize the total offloading cost of multiple tasks under the con-
straint of the minimum required delay of each task. The optimization objective
of total offloading cost can be summarized as follows:

min Costδ (5)

s.t.

⎛
⎝1 −

M∑
j=1

xij

⎞
⎠ (Qsi + Cti) +

M∑
j=1

[xij(Tti + Qsi + Qeij + Cij)] ≤ delayi,

(6)
where Costδ = T t + T e +

∑δ
i=1

∑M
j=1 xijCij ∗ c, which means total offloading

cost of δ tasks, and its value is the sum of delay cost and rental resource cost.
delayi means that the task scheduling needs to meet the minimum delay.
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3 Collaborative End-Edge Multi-task Scheduling
Strategy Based on Improved Particle Swarm

In this section, we propose an end-edge cooperative MTS strategy based on
IPSO. The MTS strategy clusters the tasks and sets the scheduling priority
according to the delay requirements of the tasks, which can ensure the first
process of the delay-sensitive tasks. Because scheduling multiple tasks lead to a
large space for problem-solving, the large scheduling delay increases the rejection
rate of tasks and decreases the quality of experience of the TD. Therefore, we
adopted the particle swarm optimization algorithm in the heuristic algorithm.
To improve the searching ability of the algorithm in the solution space and the
evolution speed of particles, we use the IPSO algorithm.

3.1 Task Classification

To better reflect the task delay sensitivity, we take the minimum required delay
of the task and the amount of task calculation as the characteristic attributes of
the task. The way we assess the degree of similarity between data is to calculate
the Euclidean distance between task feature attributes. We first normalize the
task’s delay sensitivity and task volume. Then, we calculate the Euclidean dis-
tance of each task to the cluster center to complete the clustering of the task. We
assume that the SDN controller caches the first δ tasks in the queue at time t, and
the computational complexity and minimum required delay of these tasks are
{data1, data2, . . . , dataδ} and {delay1, delay2, . . . , delayδ}. The task calculation
amount is {data∗

1, data∗
2, . . . , data∗

δ}, we have data∗
i = datai∑δ

j=1 dataj
. The normalized

value of the minimum required delay of the task is {delay∗
1 , delay∗

2 , . . . , delay∗
δ},

where delay∗
i = delayi∑δ

j=1 delayj
. The similarity between taski and taskj is dij =

2

√
(data∗

i − data∗
j )

2 + (delay∗
i − delay∗

j )
2. After clustering δ tasks, K task clus-

ters will be generated.

3.2 Improved Particle Swarm Optimization Algorithm

According to the minimum delay requirement of K cluster centers, we set the
scheduling priority for task clusters. The smaller the delay requirement is, the
higher the priority is. In the task cluster scheduling stage, the particle swarm
optimization algorithm has better optimization performance when using real
coding, and this problem model just needs real coding to solve the MTS problem,
so this paper uses the particle swarm optimization algorithm to schedule the
task cluster. Each particle will remember its historical optimal position and
population optimal position, and determine the direction and speed of the next
step according to these two positions. Finally, the whole population will gather
the optimal solution nearby, and the algorithm will take the optimal position of
the population as the final solution to the problem. In this paper, each particle
represents a scheduling scheme of the decision layer.
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Particle coding methods are generally binary coding and real coding. Our
coding method is integer coding in real coding. The dimension of particles is the
number of tasks to be scheduled. Suppose that there are S ∗ N particles in the
population, where pars is the s-th particle in the population, and the position
vector of the particle at time t is Post

s =
(
post

s,1, post
s,2, post

s,3, . . . , post
s,δ

)
,

post
s,i ∈ [0,M ], post

s,i = 0 implies that SDN controller assign task i to the
TD for local execution. post

s,i = j(j ∈ [1,M ]) means that TD will offload the
task to the j-th server. The fitness function is used to evaluate the advantages
and disadvantages of the particle position. Since the algorithm takes minimizing
the system cost as the optimization goal, the smaller the fitness value of the
particle, the higher the fitness value. The fitness function we use is based on the
offload cost calculation (9). We use xij as the decision parameter, and xij = 1
indicates that the taski is offload to the j-th server. Therefore, we need to
convert the particles into the formula. When the specific conversion scheme is
post

s,i = j(j �= 0), xij = 1, otherwise xij = 0.
In the iteration process, each particle will remember its optimal historical

position HPost
s, and the global optimal position GPost will be shared among

particles. The particle position update is given by
{

V t
s = wV t−1

s + c1Rand1
(
HPost

s − Post−1
s

)
+ c2Rand2

(
GPost − Post−1

s

)

Post
s = Post−1

s + V t
s

,

(7)
where c1 and c2 are learning factors, Rand1 and Rand2 are random number of
(0,1) interval, and Rand1 + Rand2 = 1. Moreover, the particles have a chance
of variation in the process of evolution, which means regenerating the random
position, to improve the global search ability of the algorithm. w is the inertia
factor, and its value is related to the global search ability. The larger the value
is, the stronger the global search ability will be, while the local search ability will
be weakened accordingly. The smaller the value is, the opposite is true. In the
traditional particle swarm optimization algorithm, w is often set as a fixed value
of 0.5, and this setting will lead to premature convergence in the early stage
of the algorithm, and the population will fall into the local optimal solution
early. Therefore, we use the linear decreasing weight strategy to dynamically
modify w to improve the fine-grained search solution space in the early stage
of the algorithm, and enhance the global search ability in the late stage of the
algorithm, to improve the probability of the algorithm to obtain the optimal
solution of the problem. The modified formula of w is

w = (wini − wend)(G − g)/G + wend, (8)

where wini is the initial value, wend is the maximum number of iterations, G is
the maximum number of iterations, and g is the current number of iterations.
Due to the large probability of particle swarm optimization will fall into the
local optimal solution, the problem of premature convergence appears. Therefore,
a mechanism must be provided to make the algorithm jump out of the local
optimum and continue to search in other regions of the solution space when
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premature convergence occurs. In this paper, the mutation mechanism is used,
that is, after evaluating the particle position, the probability β is used to initialize
the particle position randomly.

We describe the pseudo-code of the proposed IPSO in Algorithm 1.

Algorithm 1: IPSO Algorithm
input : task data set {task1, . . . , taskδ} the maximum number of iterations n

in k-means, the maximum number of iterations G
output: the global optimal particle position is the optimal scheduling result

1 Initialize the cluster center and randomly select k tasks from δ to generate the
cluster center.

2 for epoch = 1 to n do
3 for i = 1 to δ do
4 for j = 1 to K do
5 lj = argminidi,j

6 end
7 end
8 for v = 1 to K do
9 lv center takes the average value of task quantity and delay of its

category.
10 end
11 end
12 The initial values of position and velocity are generated randomly.
13 The optimal particle is selected by fitness function and eq.6.
14 for g = 1 to G do
15 Change the inertia factor ω according to eq.8.
16 The particle swarm velocity and position are updated according to eq.7

update global optimum.
17 β probability initializes particle position
18 end

4 Simulation and Evaluation

This section will evaluate the simulation performance of the multi-task joint
scheduling strategy. We use the Eclipse simulation platform and the Java multi-
threaded programming technology, which is to simulate the entire offloading
process of tasks in edge computing.

4.1 Parameter Setting

In the simulation process, we take the image processing scene as the prototype
and sets the parameters in the simulation delay. According to Poisson’s expec-
tation λ = 1.5, the TD generates 200 task processing requests. Since the size of
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each picture is generally between 100 KB and 500 KB, the calculation amount
of tasks sent by the TDs is set between 100KB and 500KB, and the minimum
required delay of tasks is randomly generated within 1 s–5 s. In [14], the author
presents that the computing power of the edge server is about 100–10K times
that of the TDs, and the cache capacity is 100 times that of the TDs. Therefore,
we set the configuration specification of the TDs which can calculate 500KB of
data per unit time, and cache queue capacity is 5MB. The configuration spec-
ification of the edge server is the same, which can process 50MB of data per
unit time and cache 500MB of queue capacity. For simplicity, we refer to [15]
and assume the following simulation settings. Each device can access the access
point through the communication channel. For each channel, the bandwidth B
is 20MHz, the white noise power σ2 is −100 dBm, the channel model is indepen-
dent of Rayleigh fading, the average power loss is 53 dB, and the transmission
power of offloading is 500mW. The SDN controller can schedule 500 task offload-
ing requests per unit time. The cost of computing resources per unit time c is
set to 80. In the MTS model, the task scheduling threshold δ is set to 30, and
the number of task clusters K in the k-means algorithm is set to 4. In the IPSO,
the number of populations is set to 20, the maximum number of iterations is
G = 30, c1 = c2 = 0.5, and the number of times is winit = 0.4, wend = 0.9 and
β = 0.2.

4.2 Simulation and Analysis

We compare MTS with two baseline methods, single task scheduling (STS) and
complete offloading scheduling (COS).

– STS: A scheduling algorithm that offloads all tasks to the edge layer through
the SDN controller using the greedy algorithm.

– COS: The strategy of offloading all tasks to the edge layer.

The experimental data of all comparison indexes are the average of 3 experimen-
tal results.

Impact of Computation Amount on Offloading Performance. At first,
we consider the impact of the number of TDs on offloading performance. At this
time, the number of edge servers is set to 20. As shown in Fig. 3, with the increase
of TDs, the system cost and task rejection rate increase. From Fig. 3(a), we can
see that the system cost of MTS is higher than the other two algorithms at the
beginning, and the system cost is minimized as the tasks increase. Then, we
can conclude that MTS requires tasks to reach the threshold before scheduling,
and the algorithm complexity is higher than the other two strategies, resulting
in large task scheduling delays. In Fig. 3(b), we can see that the average delay
increases with the increase of tasks. When the number of tasks increases to a
certain level, the COS delay does not change significantly, as is shown in Fig. 3(b).
This is because the edge node can’t meet the minimum delay required to execute
the task, and the task request is rejected.
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Fig. 3. The impact of the number of TDs on the task.

Fig. 4. The influence of TD number on task rejection rate.

As shown in Fig. 4, with the increase in the number of TDs, the rejection
rate of COS even reached 19.5 %, which also verified the above statement. The
rejection rate of MTS is nearly half lower than that of STS. We can conclude
that our algorithm MTS has a lower task rejection rate than other algorithms,
indicating that our algorithm has a good effect on improving the quality of
service.

Impact of Computation Amount on Offloading Performance. The
impact of the number of edge servers on the system cost is shown in Fig. 5(a). In
the process of increasing the number of edge servers, gradually abundant com-
puting resources reduce the processing delay of tasks, and the system cost of the
three strategies will also decrease correspondingly. When the number of edge
servers exceeds 30, the system cost tends to be stable State. When the number
of edge servers increases to 50, the extremely low processing delay of the edge
layer causes the tasks to be offloaded to the edge layer. From the experimental
results, it can be concluded that the total cost of the system can’t be reduced by
increasing the number of edge servers. When the computing resources of the edge
layer are sufficient, the system cost tends to be stable. We also analyze the influ-



442 F. Li et al.

Fig. 5. The impact of the number of edge servers on tasks.

ence of the number of edge servers on the total task delay, and the experimental
results are shown in Fig. 5(b). It can be seen from the figure that the strategies
we proposed can effectively reduce the processing delay of tasks and improve the
service experience of users in the situation of a shortage of computing resources
or abundant computing resources.

5 Conclusion

In this paper, we design an end-edge cooperative MTS strategy with the SDN
controller’s global function. The system aims to minimize the total offloading cost
of multiple tasks under the constraint of the minimum required delay of each
task. We use the IPSO algorithm to solve the optimization problem. Simulation
results show that the scheduling strategies can meet the TD delay requirements,
reduce the average processing delay of tasks, improve resource utilization, and
reduce the system cost. The system architecture of this paper only considers the
task scheduling in one region. Our next work will consider the joint task schedul-
ing of SDN controllers in multiple regions. Through the mutual communication
between multiple regional SDN controllers, and sharing the resource status infor-
mation of the edge layer, we can build a more complete network view, provide
a more perfect scheduling scheme for the TD layer, expand the service scope of
the edge layer resources, and improve the resource utilization of the edge layer.
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Abstract. Federated Edge Learning (FEEL) is becoming a popular dis-
tributed privacy-preserving machine learning (ML) framework where mul-
tiple edge devices collaboratively train an ML model with the help of an
edge server. However, FEEL usually suffers from a communication bot-
tleneck due to the limited sharing wireless spectrum as well as the large
size of training parameters. In this paper, we consider gradient quantiza-
tion to reduce the communication traffic and aim at minimizing the total
training latency. Since the per-round latency is determined by both the
bandwidth allocation scheme and gradient quantization scheme (i.e., the
quantization levels of edge devices), while the number of training rounds
is affected by the latter, we propose a joint optimization of bandwidth
allocation and gradient quantization. Based on the analysis of total train-
ing latency, we first formulate the joint optimization problem as nonlinear
integer programming. To solve this problem, we then consider a variation
of this problem where the per-round latency is fixed. Although this vari-
ation is proved to be NP-hard, we show that it can be transformed into
a multiple-choice knapsack problem which can be solved efficiently by a
pseudopolynomial time algorithm based on dynamic programming. We
further propose a ternary search based algorithm to find a near-optimal
per-round latency, so that the two algorithms together can yield a near-
optimal solution to the joint optimization problem. The effectiveness of
our proposed approach is validated through simulation experiments.

Keywords: Federated edge learning · Gradient quantization ·
Bandwidth allocation

1 Introduction

Federated Edge Learning (FEEL) [8,11,13] is becoming a popular distributed
privacy-preserving machine learning (ML) framework where multiple edge
devices collaboratively train an ML model with the help of an edge server. In
FEEL, edge devices compute gradients for a global model on their local data,
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and upload the gradients to the edge server for model updates in an iterative
manner. However, FEEL usually suffers severely from the communication bot-
tleneck caused by the limited sharing wireless spectrum as well as the large
size of training parameters. One promising approach to alleviate the communi-
cation bottleneck is gradient quantization, which refers to using fewer bits to
represent gradients. For example, [3,12] use 1-bit quantization to increase the
speed of model training with little loss of accuracy. TernGrad [15] maps posi-
tive, zero, and negative elements in gradients into 1, 0 and -1. QSGD [1] provides
users with different quantization levels to choose from, thus making a trade-off
between communication cost and convergence speed.

In this paper, we consider gradient quantization to reduce the communication
traffic and aim at minimizing the total training latency, which is a critical concern
in FEEL [10]. The total training latency is proportional to the number of required
training rounds and the per-round latency. The former is closely related to the
gradient quantization scheme, i.e., the individual quantization levels of edge
devices. The latter is determined by the gradient quantization scheme together
with the bandwidth allocation scheme which specifies how the spectrum is shared
among the edge devices. Bandwidth allocation and gradient quantization are
closely related, e.g., when an edge device uses a higher quantization level which
leads to larger communication traffic, it requires more bandwidth to shorten its
transmission time. On the other hand, the per-round latency is determined by
the slowest edge device. Hence, it is necessary to optimize bandwidth allocation
and gradient quantization for all the edge devices in a joint manner.

Several works [4,6,9,10,14] have considered the joint optimization of band-
width allocation and gradient quantization in different contexts. More specifi-
cally, in [4,6,14], a stochastic quantization method proposed in [2] is considered,
where the quantization level at each edge server relies on the dynamic range
of its local gradient. So the joint optimization can only be done when all the
edge devices have carried out their local gradients, which is unfavorable since
the computation faster edge devices need to wait for slower devices before start-
ing their transmissions. In contrast, [9,10] consider another quantization method
proposed in [1], where the quantization levels of edge servers are independent
with the values of their local gradients. So the optimization can be done before
each training round starts. However, in [9], only the number of training rounds is
optimized but the per-round latency is not taken into account, while in [10], all
the edge servers use the same quantization level, which only leads to an inferior
performance as demonstrated by our experiments.

In this paper, we consider a generalization of the quantization method pro-
posed in [1], where the edge servers can adopt different quantization levels, and
minimize the total training latency by optimizing the bandwidth allocation and
gradient quantization in a joint manner. We first characterize the total train-
ing latency under given bandwidth allocation scheme and gradient quantization
scheme, and then formulate the joint optimization problem as nonlinear integer
programming. To solve this problem, we propose a variation of this problem
where the per-round latency is fixed and treated as a constraint other than a
part of objective function. Although this variation is proved to be NP-hard, we
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show that this variation can be transformed into the well-known multiple-choice
knapsack problem which can be solved efficiently by a pseudopolynomial time
algorithm based on dynamic programming. In order to find a near-optimal per-
round latency, we further propose a ternary search based algorithm. Combing
with the algorithm for the variation, this can yield a near-optimal solution to
the joint optimization problem. Finally, we demonstrate the effectiveness of our
proposed approach through simulation experiments.

2 System Model

As shown in Fig. 1, we consider a federated edge learning (FEEL) system consist-
ing of an edge server and a set of M edge devices. The edge devices connect to the
edge server via a shared wireless spectrum. Each edge device m, m = 1, . . . ,M ,
has a local data set Dm which consists of Nm = |Dm| data samples. We assume
that these Dm are disjoint, and denote the whole dataset by D = ∪M

m=1Dm which
has size N =

∑M
m=1 Nm. The aim of FEEL is to collaboratively train a machine

learning model w ∈ R
d that minimizes an empirical loss function,

L(w) =
1
N

M∑

m=1

∑

(x,y)∈Dm

f (w,x, y) , (1)

where f (w,x, y) denotes the sample-wise loss function. The minimization is
done by the system using gradient descent (GD) algorithm, which consists of
multiple rounds. In the t-th round, edge server broadcasts global model wt to
all users. Each edge device m computes its local gradient

gm(wt) =
1

Nm

∑

(x,y)∈Dm

∇f
(
wt,x, y

)
. (2)

To reduce the communication traffic, it then uploads a quantized version of its
local gradient, denoted by Qm(gm(wt))to the edge server. After receiving all the
local gradients of the edge devices, the edge server updates the global model as

wt+1 = wt − η

N

M∑

m=1

NmQm(gm(wt)), (3)

where η denotes the learning rate.
A widely-used stochastic quantization method is considered for local gradient

quantization [1]. The quantization function Qm : R
d → R

d for edge device
m is defined as follows. For any gradient g ∈ R

d that is not a zero vector,
and 1 ≤ i ≤ d, the i-th entry of Qm(g) is ‖g‖2 · sgn (gi) · ξi(g, sm), where gi

denotes the i-th entry of g, ‖g‖2 denotes the 2-norm of g, sm is a positive
integer referred to as the quantization level of edge server m, and ξi(g, sm) is an
independent random variable defined as follows. Let � be an integer such that
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Fig. 1. An illustration of FEEL system.

|gi| /‖g‖2 ∈ [�/sm, (�+1)/sm], i.e., [�/sm, (�+1)/sm] is the quantization interval
corresponding to |gi| /‖g‖2. Then

ξi(g, sm) =

{
(� + 1)/sm w.p. |gi|

‖g‖2
sm − �

�/s otherwise.
(4)

If g = 0, then we define Qm(g, s) = 0. As proved in [1], the quantization function
satisfies the following properties: (1) Unbiasedness: E [Qm(g)] = g. (2) Variance
Upper Bound: Var(Qm(g)) = E

[
‖Qm(g) − g‖22

]
≤ min

(
d

s2
m

,
√

d
sm

)
‖g‖22.

3 Problem Formulation

We start by characterizing the total training latency, which depends on the
number of training rounds required as well as per-round latency.

3.1 Number of Training Rounds

We first analyze the variance of the weighted average gradient aggregated by the
edge server gt = 1

N

∑M
m=1 NmQm(gm(wt)). We have

Var(gt) =
1

N2

M∑

m=1

N2
m Var(Qm(gm(wt)))

≤ 1
N2

M∑

m=1

N2
m min

(
d

s2m
,

√
d

sm

)

‖gm(wt))‖22

≤ 1
N2

M∑

m=1

N2
m min

(
d

s2m
,

√
d

sm

)
1

N2
m

∑

(x,y)∈Dm

‖∇f
(
wt,x, y

) ‖22

≤
(

1
N2

M∑

m=1

min

(
d

s2m
,

√
d

sm

)

Nm

)

Z � σ2,
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Fig. 2. Illustration of a training round.

where the last step holds under a widely used assumption that there exists
some constant Z that satisfies ‖∇f (wt,x, y) ‖22 ≤ Z for any wt and (x, y) ∈ D.
According to [5, Theorem 6.3], we have the following result directly.

Theorem 1. Assume that the loss function f(·) is convex and �-smooth. Let
w0 ∈ R

d be given and R2 = supw∈Rd ‖w − w0‖22. Then FEEL with initial model

w0 and learning rate η = 1
�+1/γ , where γ = R

σ

√
2
T , achieves

E

[

L

(
1
T

T∑

t=0

wt

)]

− min
w∈Rd

L(w) ≤ R

√
2σ2

T
+

�R2

T
. (5)

From Theorem1, we can see that, in order to achieve an ε-optimality gap,
i.e., E

[
L

(
1
T

∑T
t=0 wt

)]
− minw∈Rd L(w) ≤ ε, the number of required training

rounds, denoted by T (ε), satisfies that T (ε) = O
(
R2 · max

(
2σ2

ε2 , �
ε

))
.

When the bandwidth is rather limited, the quantization levels sm usually
have to be small integers, and hence 2σ2

ε2 is larger than �
ε when ε is very small.

In the following, we assume

T (ε) = O

(

R2 · 2σ
2

ε2

)

(6)

3.2 Per-round Latency

As illustrated in Fig. 2, the process of a training round at each edge device
consists of three phases: model downloading phase which is used for downloading
the global model, the computation phase, and the communication phase. Usually,
the time of the first phase is much smaller than the time of the other two phases,
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so we assume that the downloading time is zero. For the computation phase, let ν
denote the number of processing cycles required by each edge device to process
one sample, and Fm denotes the clock frequency of edge device m, then the
computation time of m is tcp

m = Nm·ν
Fm

.
For the communication phase, the communication time of each edge device

depends on how the whole spectrum of frequency bandwidth B is shared among
edge devices. In this paper, we consider a frequency-division multiple access
(FDMA) is adopted for uplink transmission. Suppose each edge device m is allo-
cated with a non-overlapping spectrum with frequency bandwidth bm. According
to Shannon’s second theorem, the data transfer rate of node m is given as

rm = bm log2

(

1 +
Pmh2

m

bmN0

)

, (7)

where Pm denotes the transmit power at edge device m, hm denotes the channel
propagation coefficient between m and the edge server, and N0 denotes noise
power spectral density.

For uploading the quantized local gradient Qm(gm(wt)), edge device m needs
to encode the vector norm ‖gm(wt)‖2, sgn(gm(wt)), as well as Qm(gm(wt)) into
bits. Encoding of sgn(gm(wt)) costs d bit bits, one bit for each entry. Encoding
of Qm(gm(wt)) costs d	log2(sm+1)
 bits, where each entry costs 	log2(sm+1)

bits. Encoding ‖gm(wt)‖2 costs a constant number of bits, which is negligible.
Hence, the communication time of m is

tcmm =
d (	log2(sm + 1)
 + 1)

rm
. (8)

Since edge devices are usually in shortage of energy, we impose the following
constraint on energy consumption for both computation and communication:

Ecp
m + Pmtcmm ≤ Em, m = 1, 2, . . . ,M (9)

where Ecp
m is the energy cost for computation, and Em is the maximum energy

consumption of m per round. Finally, since the edge server needs to collect the
local gradients of all edge devices before updating the model, the total latency
per round is

tround = max
1≤m≤M

tcpm + tcmm . (10)

3.3 Joint Bandwidth Allocation and Gradient Quantization

According to (6), the number of training rounds for achieving an ε-optimality
gap is proportional to σ2. So in order to minimize the total training latency, one
natural objective function is

σ2 · tround =

(
1

N2

M∑

m=1

min

(
d

s2m
,

√
d

sm

)

Nm

)

Z · tround (11)
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Generally speaking, when the available spectrum is somehow inadequate or the
available energy of edge devices is low, sm should be set small. On the other
hand, the dimension of model d is very large. So for simplicity, we assume that
min

(
d

s2
m

,
√

d
sm

)
=

√
d

sm
. Then we can minimize the total training latency by mini-

mizing
∑M

m=1
Nm

sm
· tround.

Hence, the joint optimization problem of bandwidth allocation and gradient
quantization (BA-GQ), which is to determine {bm}, the bandwidth allocation,
and {sm}, the quantization levels of edge devices, can be formulated as follows:

(P1): min
M∑

m=1

Nm

sm
· tround (12)

s.t. tcpm +
d(	log2(sm + 1)
 + 1)

bm log2
(
1 + Pmh2

m

bmN0

) ≤ tround,∀m (12a)

Ecp
m + Pm

d(	log2(sm + 1)
 + 1)

bm log2
(
1 + Pmh2

m

bmN0

) ≤ Em,∀m (12b)

M∑

m=1

bm ≤ B (12c)

sm ∈ N
+, sm ≤ 2q̂ − 1,∀m (12d)

where (12b) corresponds to the energy constraint (9), (12c) is the bandwidth
constraint, and (12d) means that the maximum quantization level is 2q̂ −1 which
corresponds to that the full-precision local gradient (i.e., without quantization)
is represented by q̂ bits in edge devices. One common value of q̂ is 32.

Define qm = 	log2(sm + 1)
. Then sm ≤ 2qm − 1. It is straightforward to see
that, in any optimal solution of (P1), sm = 2qm −1. Therefore, we can transform
(P1) into the following form:

(P2): min
M∑

m=1

Nm

2qm − 1
· tround (13)

s.t. tcpm +
d(qm + 1)

bm log2
(
1 + Pmh2

m

bmN0

) ≤ tround,∀m (13a)

Ecp
m + Pm

d(qm + 1)

bm log2
(
1 + Pmh2

m

bmN0

) ≤ Em,∀m (13b)

qm ∈ N
+, 1 ≤ qm ≤ q̂,∀m

(12c)
(13c)

4 Algorithm Design

The BA-GQ problem is generally hard, as both the objective function (13)
and the constraint (13a) are nonlinear. To tackle this issue, we first consider a
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variation of BA-GQ where the per-round latency tround is fixed to be a constant,
and propose an efficient algorithm for this variation, and then show how to find
an optimal tround.

4.1 BA-GQ with Fixed Per-Round Latency

By fixing per-round latency tround to be a constant, we have the following pro-
gramming problem, which is referred to as BA-GQ-variation:

(P2): min
bm,qm

M∑

m=1

Nm

2qm − 1
(14)

s.t. bm log2

(

1 +
Pmh2

m

bmN0

)

≥ d(qm + 1)
tround − tcpm

,∀m (14a)

dbm log2

(

1 +
Pmh2

m

bmN0

)

≥ Pmd(qm + 1)
Em − Ecp

m
,∀m (14b)

M∑

m=1

bm ≤ B (15)

qm ∈ N
+, 1 ≤ qm ≤ q̂,∀m (16)

In the following, we will show that BA-GQ-variation is NP-hard, and further
propose an efficient algorithm to solve it. Let b∗

m(qm) be the minimum value of
bm such that the corresponding constraints (14a) and (14b) are satisfied. Since
bm log2

(
1 + Pmh2

m

bmN0

)
is a strictly increasing function of bm, b∗

m(qm) exists and is
unique. Hence, (P3) is equivalent to the following programming:

(P4): min
M∑

m=1

Nm

2qm − 1
(17)

s.t. bm ≥ b∗
m(qm)

(12c), (13a), (13b)
(17a)

Theorem 2. The BA-GQ-variation problem given in (P3) is NP-hard.

Proof. We will establish a polynomial-time reduction from the well-known 0-1
knapsack problem which is NP-hard. The 0-1 knapsack problem is defined as
follows: given a set of M items, each with a weight wm and a value vm, along
with a maximum weight capacity W , the objective is to find a subset of items
such that the total weight of these items does not exceed W while the total value
is maximized. We will reduce it to an instance of the BA-GQ-variation problem
which is generated as follows: set q̂ = 2, and find proper values of input values
such that b∗

m(2)−b∗
m(1) = wm. Also B = W +

∑M
m=1 b∗

m(1). Besides, Nm = 3
2vm.
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We note that there is a one-one correspondence between the solutions of the
instance of 0-1 knapsack problem and the solutions of the instance of the BA-
GQ-variation problem, which is defined as follows: let A ⊆ {1, 2, . . . ,M} be a
feasible solution of the instance of 0-1 knapsack problem with objective value
SOL, its corresponding feasible solution of the instance of the BA-GQ-variation
problem is given as qm = 2 and bm = b∗

m(2) for m ∈ A, and qm = 1 and
bm = b∗

m(1) for m /∈ A, and vice versa. Besides, the solution of the instance
of 0-1 knapsack problem has an objective value of

∑
m∈A

1
2vm +

∑
m/∈A

3
2vm =

3
2

∑M
m=1 vm − SOL. This implies that the instance of 0-1 knapsack problem has

an optimal value of OPT if and only if the instance of the BA-GQ-variation
problem is 3

2

∑M
m=1 vm − OPT . The proof is accomplished by noting that the

reduction can be done in polynomial time.

From the proof of Theorem 2, we can see there exists some connection between
the BA-GQ-variation problem and the knapsack problem. In fact,we can formu-
late the BA-GQ-variation problem as an equivalent maximization problem:

(P5): max
M∑

m=1

(

U − 1
2qm − 1

)

Nm

s.t. (12c), (13a), (13b), (17a) (18)

One key observation is that (P5) can be viewed as the multiple-choice knapsack
problem (MCKP) [7], where the knapsack has a weight capacity of B, the set
of items consists of M classes, each class Cm, m = 1, . . . , M , consists of q̂ items,
each having weight b∗

m(qm) and value
(
U − 1

2qm−1

)
Nm, qm = 1, . . . , q̂. U is a

large constant to ensure the value is positive. The problem is to select exactly
one item from each class such that the total weight does not exceed B while the
total value is maximized. Despite the NP-hardness of MCKP, several efficient
algorithms have been proposed to solve MCKP, including dynamic-programming
based pseudo-polynomial time algorithm which can return an optimal solution,
and polynomial-time approximation scheme (PTAS) that can produce a solution
that is within a factor of 1 − ε of being optimal for any constant ε > 0 in
polynomial time of the problem size [7]. In this paper, we employ the dynamic
programming algorithm to solve (P5), which yields an optimal solution to (P3).

4.2 Search for Optimal Per-Round Latency

For a fixed tround, let the optimal objective value of (P3) be F (tround), which
can be computed by Algorithm 1. Now we proceed to introduce how to find an
optimal round time tround such that F (tround)tround is optimized.

Consider a large enough value Tup which is an upper bound of tround and
Tlow = max{tcpm} which is a lower bound, such that the search space is [Tlow, Tup].
In general, F (tround)tround is not a function that is first decreasing then increasing
of tround, which is due to the integrity requirement of qm. To address this, we
discretize the search space [Tlow, Tup] into Ψ points with equal distance, where Ψ
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is a tunable parameter. When Ψ is not very large, e.g., Ψ = 100, we observe from
our experiments that F (tround)tround is first decreasing then increasing function
of tround over these points. This inspired us to use ternary search to quickly find
a near-optimal round time, as described in Algorithm2.

Algorithm 1 Dynamic Programming to Select Quantization Levels
Input: Number of parameters d; Bandwidth B; Latency per round tround; Clock fre-

quency Fm; Number of samples Nm; Channel gains hm; Energy constraint Em;
Transmit power Pm, ∀m

Output: Quantization Selections qm, m = 1, 2 · · · , M ;
1: Initialize array SelectionM to store quantization selections,two-dimensional arrays

PathBM and dpBM to record state jump and dynamic program.
2: Calculate the value vmq and weight wmq for each item as formula (17a);
3: for b = 0 to B do
4: for m = 1 to M do
5: max ← 0
6: for qm = 1 to 32 do
7: if b − wmqm ≥ 0 and dp(b−wmqm )(m−1) + vmqm > max then
8: max ← dp(b−wmqm )(m−1) + vmqm � Find item maximizes total value
9: pathbm ← qm � Record the quantization selection in node m

10: node ← M , cap ← B � The current node index is M and the bandwidth is B
11: while node > 0 do
12: Selectionnode ← Pathcap node � Fetch quantization selection
13: cap ← cap - wnode Selectionnode

14: node ← node - 1, � Jump state to previous node
15: return SelectionsM ;

5 Experiment Results

Environment Settings. Consider M = 8 edge devices uniformly located in a
cell of radius 500m and an edge server located at the center of the cell. Assume
that all devices are re-distributed per epoch to reflect mobility. The wireless
bandwidth is B = 0.1MHz; path loss exponent is α = 3.76. Set transmit power
spectrum density pm = 20 to 23 dBm randomly, and the power spectrum density
of the channel noise is N0 = −174dBm. The maximum energy consumption of
each edge device is 50 J.

Datasets and Models. We consider a federated learning task that classifies
Cifar-10 data set, which has 50,000 training images and 10,000 testing images.
The training samples are evenly partitioned to edge devices (i.e., 6,250 local
training images for each edge device). The BA-GQ algorithm performs per epoch
to accommodate device selection in FL. The computing power of edge devices is
randomly selected from 10ms/sample to 100ms/sample. We adopt LeNet model
which has 62,006 parameters. All experiments are implemented on PyTorch 1.9.0
with Python 3.8, with a fixed learning rate = 0.05 and batch size = 128. The
number of iterations of the training process is set to 4000.
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Algorithm 2 Ternary Search for Finding Optimal Per-Round Latency
Input: Number of parameters d; Bandwidth B; Time division Ψ ; CPU cycle

frequencyFm; Number of samples Nm; Channel gains hm; Energy constraint Em;
Transmission power Pm, ∀m

Output: T ∗

1: Give a big enough Tup, Tlow=max{tcp
m}, T = Tup

2: while Tlow + 1
Ψ

< Tup do
3: Tlm = (Tlow + 2Tup)/3, Trm = (2Tlow + Tup)/3
4: Call Algorithm 1 with Tlm and Trm and calculate Costlm and Costrm

5: if Costlm < Costrm then
6: Tup = Tlm � Optimal point is to the left of the right point
7: else
8: Tlow = Trm � Vice versa
9: T ∗ = Tlow

10: return T ∗;

Fig. 3. Comparison with fixed quantization schemes on LeNet.

Simulation Results We compare BA-GQ algorithm with two quantization
level fixed schemes TernGrad [15], QSGD[1]. We choose 2bit and 4bit quantiza-
tion in QSGD as comparison objects because using more bits will violate the
energy constraint. For these fixed quantization schemes, we use corresponding
optimal bandwidth allocation schemes. The results are plotted in Fig. 3. From
this figure, we can see that, BA-GQ algorithm outperforms QSGD and TernGrad
significantly in terms of both test loss and test accuracy, when the training time
is kept the same.

6 Conclusion

In this paper, we optimize the bandwidth allocation and gradient quantization
for FEEL in a joint manner. By establishing a relationship between the joint
optimization problem and the MCKP problem, we propose an efficient approach
that can find a near-optimal solution to the joint optimization problem. Simula-
tion results show that our proposed approach performs better than quantization
level fixed schemes.
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Abstract. Federated learning (FL) has been proposed and applied in
edge computing scenarios. However, the complex edge environment of
wireless networks, such as limited device computing resources and unsta-
ble signals, leads to increase communication overhead and reduced per-
formance for federated learning. Therefore, we propose a hierarchical
aggregation mechanism to improve federated learning performance in a
resource-constrained wireless edge environment. We propose three fea-
ture models to quantify the FL performance and design a fuzzy K-means
clustering mechanism. We construct an optimization problem for the
process of hierarchical aggregation. And a cluster-based hierarchical fed-
erated learning algorithm (CluHFed) is designed, which consists of fuzzy
clustering, asynchronous aggregation, and topology reconstruction. At
last, we make an experiment with Pytorch. The results show that the
proposed algorithm improves the accuracy by 2.6%–35.8% and reduces
the latency of FL networks by 5.9% compared with other popular feder-
ated learning algorithms.

Keywords: Edge computing · Federated learning · Clustering ·
Topology reconstruction · Heterogeneity

1 Introduction

As machine learning and smart devices become increasingly popular, more and
more intelligent applications are performed on the edge, such as virtual reality
(VR), augmented reality(AR), image recognition, etc. [8]. Distributed model
training architecture based on federated learning (FL) emerged following the
great success of mobile edge computing [3].

However, in the edge wireless network environment, the performance of fed-
erated learning is restricted by heterogeneous mobile devices and unbalanced
data quality, making it difficult to exert its value. The application of federated
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learning in the edge environment has the following two problems that need to
be solved urgently: 1) Frequent parameter transfer leads to high communication
costs; 2) The wireless environment is unstable, which leads to frequent inter-
ruption or “traggler effect” in the interaction process of federated learning and
affects the model quality. The problems have attracted the attention of many
researchers to improve federated learning performance at the edge [5].

Several typical optimization methods have been proposed, including data
edge offloading, node selection [1], model compression, etc. Ji et al. [4] proposed
an Edge-Assisted Federated Learning (EAFL) mechanism, which enables strag-
glers to offload part of the computation to edge servers. In order to achieve a
long-term performance guarantee, Xu et al. [12] formulate a stochastic optimiza-
tion problem for joint client selection and bandwidth allocation under long-term
client energy constraints for FL. Yin et al. [13] gave a function encryption algo-
rithm to support multi-party data privacy-preserving and sharing. The above
methods alleviated the impact of device heterogeneity and data heterogeneity
on FL to a certain extent, but their help is limited.

In addition, in response to the challenge of deploying efficient federated learn-
ing tasks in resource-limited wireless edge networks, Chen et al. [1] proposed a
federated learning framework for joint communication and learning, in which
joint learning, wireless resource allocation, and user selection problem are for-
mulated as an optimization problem. To deal with edge dynamics, Liu et al. [6]
proposed an adaptive asynchronous federated learning (AAFL) mechanism, in
which the parameter server will aggregate local updated models only from a cer-
tain fraction of all edge nodes in each epoch. These works endow FL algorithms
with wireless communication properties and quantify the impact of wireless fac-
tors on FL performance [10]. However, as far as our survey is concerned, there
is still a lack of research on the topology control of federated learning networks.
It is expected to come up with FL solutions that take into account training
efficiency, stability, and continuity.

To address this issue, we propose a cluster-based hierarchical aggregation
mechanism for FL. We construct an edge-assisted clustering framework for fed-
erated learning (EFL), including energy consumption modeling, resource align-
ment modeling, and data heterogeneity modeling. Then we propose a fuzzy clus-
tering mechanism to discover the optimal cluster. To ensure the stability of the
mobile clients, we build an FL network topology reconstruction model for a
timely response. In addition, we use an asynchronous hierarchical aggregation
mechanism based on delay evaluation to adapt to the high dynamics of mobile
devices. From this, we construct a resource-constrained clustering optimization
problem for the EFL network that jointly minimizes the loss of accuracy and
the sum of squared errors within the clusters. And we design a cluster-based
hierarchical FL algorithm including three modules to solve this problem. At
last, we make an experiment with Pytorch on two datasets. The experimen-
tal results show that compared with the typical FL algorithms, our proposed
scheme reduces communication costs and improves the accuracy in an unstable
environment.
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2 System Structure

2.1 Edge-Assisted Hierarchical Federated Learning Architecture

Figure 1 illustrates our proposed cluster-based hierarchical federated learning
architecture in wireless networks. The three-layer architecture of federated learn-
ing networks is consist of three components: client, cluster center (CC), and
parameter server (PS), which are deployed in mobile devices, edge server, and
cloud respectively.

– Device layer: the clients form a service topology for faster detection of strag-
glers (i.e., the federated learning workers who need to wait for a long time).
The clients perform local iterations to train a local modal and send the model
parameters to the CC for edge aggregation.

– Edge layer: all the CCs aggregate the local model parameters collected within
a cluster and update edge models. Besides, the CCs are responsible for for-
warding the collected resource information and edge model to the PS.

– Cloud layer: the PS will aggregate the edge model parameters asynchronously
for updating the global model, and evaluate the operational quality and
resource consumption of the federated learning network.

2.2 Cluster-Based Hierarchical Federated Learning Workflow

The architecture also contains three functional modules: fuzzy clustering, asyn-
chronous updating, and topology reconstruction.

1) Fuzzy Clustering. Before federated training, according to the resource state
and data distribution of each client, the energy consumption, training time, and
data distribution characteristics are extracted, and the nodes are divided into K
clusters by fuzzy clustering method.

Fig. 1. Cluster-based hierarchical federated learning architecture with topology recon-
struction.
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2) Hierarchical Asynchronous Federated Learning. Client i in cluster k
use gradient descent to train the local model. And it sends updated local models
wk

i to edge nodes, and edge nodes are responsible for collecting all local models
of cluster k where they are located, and perform the first aggregation, which
is called “edge aggregation”. Then the model is uploaded to the aggregator in
the cloud. At the same time, the edge node will broadcast wk to the clients in
cluster k to perform the next iteration of the local model training. The edge
node does not access the local raw data Di

k of each client i during this process.
After each edge node, ENk ∈ K completes the edge aggregation and uploads
wk to the cloud, the cloud server will accept all the models from the edge and
perform global aggregation.

3) Topology Reconstruction. In order to adapt to the unstable wireless
environment, the graph model of mobile devices in the federated learning network
is established, and the heterogeneous device database in a fuzzy hierarchical
space is constructed. The reconstructed topology will be sent to the cloud center
for the next round of federated learning updates.

3 Cluster-Based Federated Learning Networks

3.1 Feature Model

Assuming that there are N clients willing to participate in federated learning
training, and the PS cluster the clients according to the collected features Vi.
The features include the remaining energy of client, the distance from CC (sink
node), and the gap between single data distribution and the overall distribution.
We use the fuzzy clustering method for initial stratification to determine the
number of clusters K.

Energy Consumption Model. The energy consumption of the client is mostly
used for data transfer and computation of datasets. Let the energy consumed by
client i to transmit g-bit data to j is

Etran(i, j) = g × αdel + g × αop × dγ
ij (1)

where αdel represents the unit energy consumed by the data processing circuit,
αop represents the unit energy consumed by the running circuit, dij represents
the distance between clients i and j, γ is path attenuation index. For one local
iteration, the energy consumption of client i is expressed as

Ecop = ςciβif
2
i (2)

The CPU cycle frequency of client i is expressed as fi, the number of CPU
cycles required to train the local model is ci, βi is the sample data size, and ς
denotes the effective capacitance parameter of the chipset.
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Resource Alignment Model. The PS connects to the resource pool of each
AP for clients at the beginning of federated learning, and the resource infor-
mation is used to estimate the P2P transmission throughput under a specific
topology. When a new round of calculation starts, the throughput of the client’s
P2P link under different topologies is estimated, and finally the throughput is
converted into the required communication time during aggregation.

Denote the transfer rate of parameters as rk = Bln
(
1 + ρkhk

N0

)
, where B is

the transmission bandwidth, ρk is the transmission power of the CC k, hk is the
channel gain of the P2P link between the CC k, and N0 is the possible noise.
Let the number of model parameters obtained by edge aggregation of CCs be σ,
which is a definite value. Then the time for CC k to transmit model parameters is

T com
k =

σ[
Bln

(
1 + ρihi

N0

)] (3)

Denote the communication time between clients as Hcom
i , and use |ω| to

represent the size of the local training model ω, then we have

T com
i = 2 · |ω|

TPi
, (4)

where TP i represents the P2P communication throughput between clients, which
is determined by the network topology and the efficiency of the federated learning
algorithm.

Data Heterogeneity Model. For the non-IID data in the federated learning
network, we use the EMD distance as one of the clustering features to ensure
the training effect of federated learning [14]. Assuming that the training data
of the i-th client is sampled from IID in the distribution Di, then the overall
distribution can be considered to be a mixture of all local data distributions, that
is D =

∑n
i=1 piDi. We define the SGD weight divergence of federated learning

as

Weight divergence � ‖wavg − wSGD‖
wSGD

(5)

Let p(y = z) be the overall probability distribution, and pi(y = z) be the
local probability distribution of the i-th client, then the EMD distance of client
i is

EMD(p, pi) =
n∑

i=1

‖pi(y = z) − p(y = z)‖ (6)

3.2 Federated Learning Network Topology Model

To achieve fast response and efficient processing of complex federated learning
tasks, we build a federated learning network topology model. When it occurs
time-varying working conditions, node failure, or insufficient number of clients,
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the idle clients can join the task at any time and the network topology would be
reconstructed.

The federated learning network is represented by an undirected graph
G(S,D,N), where S = {s0, s1, ..., sn}, n indicates the number of clients in the
network, and n = |S|−1. D is the distance set between any two points (clients),
and also represents the edge set formed by the client in G. Then we have

D = {d(si, sj)|∀i, j ≤ n} (7)

where d(si, sj) represents the distance between si and sj . Let Ni denotes the
one-hop neighbor node set of si, defined as follows:

Ni = {sij |d(si, sj) ≤ r,∀i �= j, si ∈ S} (8)

In this formula, r represents the communication radius of one hop, so N
also represents the adjacency matrix of G. For two clients si, sj ∈ S, if there is
d(si, sj) ∈ D, then sij = 1, called si and sj can communicate; if d(si, sj) /∈ D,
then sij = 0. Define the Laplace matrix L(G) = [lij ]n×n to satisfy L(G) = D−N ,
where

lij =

{∑
i�=j sij , i = j

−sij , i �= j

Let the state of the federated learning network satisfy the following dynamic
equation:

x̃i(t) = Axi(t) + Bui(t) (9)

where x̃i(t) ∈ Rn is the state of the client i, ui(t) ∈ Rc is the control input
of the network, A and B are coefficient matrices. When the communication
network between clients is connected, it can be considered that the client joins
the FL network. When the communication network is not connected, we need
to reconstruct the communication network topology.

Definition 1. Let G = (S,D,N) be a directed graph of order n, define a matrix
P = (pij)n×n, that is

pij =

{
1, there is at least one directed chain from si to sj

0, there is no directed chain from si to sj

(10)

Call P the reachability matrix of directed graph G.

When the order of G is large (n > 50), the reachability matrix can also be
directly calculated through the adjacency matrix N , i.e.,

pij =

{
1, l

(n)
ij > 0

0, l
(n)
ij = 0
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4 Cluster-Based Hierarchical Federated Learning
Mechanism with Topology Reconstruction

4.1 Problem Formulation

In this section we propose a Cluster-based and Resource-Constrained Federated
Learning Problem (CRC-FLP) to find the optimal cluster structure K. We con-
sider the resources related to computation and communication. For a specific
federated learning task, we want the final trained model to perform best, and
the completion time of training can be shortened to achieve efficient and feasi-
ble federated learning, which directly reflects the loss value of the global model
and the error between the cluster center and the clients. We write the following
multi-objective programming problem:

min
K∈{1,2,3,...N}

P1F
(
wf

)
+ P2

K∑
k=1

∑
i∈S

|xi − μk|2 (11)

s.t. C1 :
T∑

t=1

nkpt
k(Ek

tran + Ecop) ≤ Emax,∀m, (12)

C2 :
K∑

k=1

∑
i∈S

(T com
i + T com

k ) ≤ Tmax, (13)

C3 :
K∑

k=1

pt
k = 1,∀t, (14)

C4 : nk =
N

K ,∀k. (15)

P1 and P2 in the objective function respectively represent the priority fac-
tors of the two objectives.

∑K
k=1

∑
i∈K |xi − μk|2 represents the sum of squared

errors (SSE) after clustering, where xi denotes each scattered point and μk is
the centroid. We use Ei

cop to represent the resources consumed by the clients to
perform a local iteration, and Ek

cop to represent the resources consumed by the
edge nodes to perform an edge aggregation. C1 indicates that the total energy
consumption of T iterations does not exceed the energy budget, where nk is the
number of client in cluster k, and pt

k indicates whether cluster k has joined the
global aggregation in t-th iteration. C2 represents the delay tolerance of hier-
archical FL. C3 means that all clusters perform global updates asynchronously.
C4 illustrates the relationship between the cluster structure and the number of
client.

4.2 Cluster-Based Hierarchical Federated Learning Algorithm
(CluHFed)

Obviously, it is impossible to solve the CRC-FLP directly. In the literature [10],
it is proved that the convergence property of hierarchical federated learning is
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Algorithm 1 CluHFed Algorithm
Input: resource budget Emax, Tmax; the number of clients N
Output: federated learning model parameter wf

1: Fuzzy K-Means Clustering at PS:
2: for the number of iterations b do
3: calculate the partition matrix U = [uij ]n×n and select the cluster center μk(b);
4: b = b+1;
5: if ‖μk(b) − μk(b − 1)‖ < ε then # Determine whether to converge.
6: return cluster center μk.

7: Federated Learning with Hierarchical Aggregation:
8: initialize w0 = 0, t = 0;
9: repeat

10: # Local training at clients:

11: compute wk
i by wk

i (t) = wk
i (t − 1) − η∇Fi(w

k
i (t − 1));

12: # Edge aggregation at cluster centers (CCs):

13: compute wk by wk(t) =
∑N

i=1 Diw
k
i (t)

D
;

14: record resource consumption Ecop and T com
i ;

15: send wk,
∑nk

i=1 T com
i and Ecop to the PS;

16: # Global aggregation at PS:

17: compute wt according to formula (17); estimate Ek
tran and T com

k ;
18: update current resource consumption E(t) and T (t);
19: Send wt back to the CCs;
20: until E > Emax or T > Tmax.
21: return the final model parameter wt.
22: Topology Reconstruction at CCs:
23: initialize adjacency matrix Ns;
24: repeat
25: for i = 1 do
26: if N(j, i) == 1(j = 1, 2, ..., n) then
27: N(j, k) = N(j, k) ∨ N(i, k), (k = 1, 2, ..., n);

28: until all elements in Ns are 1 #i.e.,the current network topology is connected
29: send si to the PS for re-clustering.

related to the number of local iterations of the client. Therefore, we propose a
Cluster-based Hierarchical Federated Learning (CluHFed) Algorithm consisting
of three modules to solve the problem model.

First, we use the fuzzy clustering method to determine the initial value of K
(lines 1–6). According to the feature models for the clients, we can get a feature
space V. Then we transform the clustering problem into the following nonlinear
programming problem:

min J =
K∑

k=1

n∑
i=1

uki‖xi − μk‖2 (16)

where J is the minimization target, i.e., the squared error in the cluster,
K ∈ {1, 2, 3, . . . N}, μk denotes the cluster center. And uki forms a K-cluster
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partition matrix, which represents the probability that the scatter point (client)
i is divided into cluster k. There are n × k groups of data in the matrix, each
group of data contains v columns, representing v-dimensional vectors.

Then, our proposed asynchronous update mechanism is used for federated
learning training (lines 7–21). For cluster k, we use τ to denote the number of
local iterations of its internal clients since the last global update, then (t − τ)
denotes the interval rounds of trained model in t-th iteration [9]. The model
weights received from any cluster will be determined by τ , i.e., the global update
rule for the cloud server is:

wt =
(
1 − δt

τ

)
wt−1 + δt

τwk (17)

where wk represents the edge model parameters received in t-th iteration, and
δt
τ represents the weight of the edge model wk in t-th global iteration. We use

the function in [2] to determine the value of δt
τ .

Finally, we design an improved Warshell algorithm to generate and recon-
struct the communication topology (lines 22–29), which means the PS will re-
evaluate the clients’ status after each global aggregation. The specific algorithm
flow is described in Algorithm 1.

5 Simulation Experiment Evaluation

5.1 Experimental Setting

We build the hierarchical asynchronous federated learning training framework
based on the Pytorch and verified our proposed algorithm on popular image
datasets MNIST and CIFAR-10, where the CNN model is mainly used. We also
compare the accuracy, computation completion time and resource consumption
with several popular FL algorithms (FedAvg [7], FedAsync [11]).

We set the resource consumption between CC and PS to unit 1, then the
communication consumption between clients is 0.1, because the communication
delay between CC and PS is ten times that of intra-cluster communication.

Fig. 2. Convergence evaluation of the algorithms.
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Fig. 3. Stability evaluation of CluHFed.

Fig. 4. The fitting curve of accuracy
under different K.

Fig. 5. The time delay of three algo-
rithms.

Meanwhile, we adopt an asynchronous training mechanism and design a priority
queue, only one cluster uploads its aggregation parameters at a time slot. We
set the learning rate η = 0.01, local iteration h = 10 times in each global
aggregation. In order to evaluate the effectiveness of CluHFed, we set different
number of clusters K = {5, 10, 15, 20, 25, 50, 60, 80} to observe the impact on FL
performance. We also test the effect of clustering and topology reconstruction
on federated learning.

5.2 Experimental Results

We first verify the convergence of the proposed algorithm. Figure 2 shows the
comparison between the CluHFed algorithm and the benchmark algorithm when
the number of clients is 20, 50, and 100, respectively. It can be seen in Fig. 2(a),
in the early stage, the convergence speed of CluHFed is about 20 rounds faster
than that of FedAvg, 10 rounds faster than that of FedAsync. And CluHFed is
about 300 rounds faster than FedAvg in reaching the same convergence accuracy.
In Fig. 2(b), the convergence speed of CluHFed is about 500 rounds faster than
that of FedAvg, and is comparable to that of FedAsync.
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As shown in Fig. 3, it can be seen that whether it is MNIST or CIFAR10,
there is always an optimal K∗ value that makes the algorithm achieve the best
convergence performance. In Fig. 3(a), CluHFed has the best convergence per-
formance when K = 20, the optimal number of clusters can improve accuracy by
5.4%–31.2% when resources are limited. In Fig. 3(b), CluHFed has the highest
accuracy when K = 15, the optimal number of clusters can improve accuracy
by 2.6%–35.8% when resources are limited. Further, when the size of nodes
increases, CluHFed exhibits stronger convergence stability and lower volatility.
This shows that the topology reconstruction based on heterogeneous state space
has a good effect on the training stability of federated learning.

We fit the convergence accuracy under a different number of clusters into a
curve, as shown in Fig. 4, the fitting curve is an approximate convex function,
which further verifies the validity of our algorithm.

For clustering experiments, we compare the time delay with K-means and
BKM. We determined the number of clusters to be 10 for the different number
of clients. The clustering experiment takes the MNIST dataset as an example, in
the case that the same class is divided into the same cluster, the FL time delay
is compared and analyzed. It can be seen from the Fig. 5 that the proposed fuzzy
clustering method can always maintain a high aggregation efficiency. Taking the
number of 200 as an example, compared with the K-means algorithm and the
BKM algorithm, the fuzzy K-means algorithm reduces the latency of FL by 5.9%
and 4.6%, respectively.

6 Conclusion

In this paper, we propose a hierarchical aggregation mechanism for federated
learning, including fuzzing clustering, asynchronous updating, and topology
reconstruction. We build a cluster-based hierarchical federated learning archi-
tecture on which we implement our proposed mechanism and the algorithm.
We demonstrate the benefit of the proposed mechanism and the effectiveness
of the CluHFed algorithm by the experimental results. It is proved that the
CluHFed algorithm with fuzzy K-means outperforms the typical algorithms. In
future work, we plan to study multi-hop routing in federated learning network
topology and build a more robust hierarchical federated learning architecture.
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Abstract. Service scenarios under edge-cloud collaboration are becom-
ing more diverse in terms of service performance requirements. For exam-
ple, smart grids require both intelligent control and long-term opti-
mization, which poses considerable challenges for service providers to
meet quality of service (QoS). However, current pioneering work has not
yet explored both system utility and QoS guarantees. Therefore, this
paper investigates the optimization problem of edge-cloud collaborative
scheduling for QoS guarantees. First, we model the edge-cloud collab-
orative scheduling scenario and derive two sub-problems such as ser-
vice deployment and request dispatch. Second, we design a near-optimal
scheduling algorithm based on a submodular function optimization app-
roach with the objective of maximizing the number of requests that are
processed within the edge-cloud cluster under QoS constraints. Finally,
our experiments verify the beneficial effects of the proposed algorithm in
terms of throughput rate, scheduling time cost, and resource utilization.

Keywords: Edge-cloud collaboration · Edge computing · Service
deployment · Request dispatch

1 Introduction

Edge computing moves computing and storage capabilities down to the edge of
the network close to the data source, which can effectively reduce congestion
in the backbone network while significantly reducing transmission latency and
improving Quality of Service (QoS) [14]. The massive resources of cloud com-
puting are more suitable for long-period, non-real-time big data processing and
analysis. It can be seen that edge computing and cloud computing do not belong
to a mutual substitution relationship, but should complement each other’s capa-
bilities in the form of edge-cloud collaboration. Therefore, the joint scheduling of
edge-cloud resources and tasks based on service deployment and request dispatch
can further amplify the beneficial complementary effects of edge and cloud, and
thus improve the throughput of edge-cloud cluster systems [9].
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However, scheduling for edge-cloud clusters, such as smart grid clusters, is
not a breeze. In the 5G era, the service scenarios will have more and more diverse
requirements in service performance, which imposes a greater challenge to meet
the QoS [8]. Most of the current research is oriented towards QoS for resource
deployment, and solutions that focus on both system utility and QoS guar-
antees are still missing. According to different QoS requirements, service can
be classified into two categories [1]: 1) Latency-critical (LC) services that must
meet strict QoS guarantees, such as virtual reality. 2) Best-effort Batch (BE)
services, such as data analysis. If these two types of services and requests are to
be scheduled uniformly, it will not only cause resource competition within the
LC services or BE services, but also cause shared resource competition, which
leads to service execution interference and performance loss. Since such inter-
ference is particularly disruptive for LC services, edge clusters need to be able
to dynamically schedule service deployments and requests [3,11] under resource
constraints to meet the QoS requirements and to maximize throughput.

Therefore, for the two main scheduling requirements such as service deploy-
ment and request dispatch in edge-cloud clusters, this paper investigates the
optimization of edge-cloud collaborative scheduling and take smart grid clusters
as an example, with the aim of improving system utility while guaranteeing QoS.
First, this paper designs a service deployment algorithm with the objec-
tive of maximizing the number of requests processed under QoS constraints.
Second, this paper employs dual time-scale scheduling to coordinate ser-
vice deployment and request dispatch for reducing scheduling overhead. Finally,
this paper designs a two-tier mechanism to schedule the LC and BE services
for improving the utilization of resources.

The main contributions of this paper are summarized as follows: 1) We pro-
pose an QoS-oriented edge-cloud collaborative scheduling architecture, which
employs dual time-scale scheduling to coordinate service deployment and request
dispatch, and designs a two-tier mechanism to schedule LC and BE services to
improve the utilization of resources. 2) We perform a complexity analysis of the
above joint scheduling optimization and prove that it is NP-hard; meanwhile, we
design an algorithm, Service Deployment based on Submodular Function Maxi-
mization (SD-SFM), for solving this problem. 3) We conduct real dataset-driven
experiments on the proposed architecture and algorithm, selecting scheduling
time consumption, resource utilization, and throughput rate as metrics, and
verify the effectiveness of the scheduling solution using experiments.

The remainder of this paper is organized as follows. Related works are dis-
cussed in Sect. 2 and Sect. 3 elaborates the system model and the schedule prob-
lem. Then, the proposed solutions are derived in Sect. 4 along with experiment
results given in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

Some research works [9] have established the theoretical basis for the joint opti-
mization of service deployment and request dispatch. Liang et al. [7] modeled
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the service deployment problem of edge-cloud clusters and designed a greedy-
based service deployment algorithm. However, Liang et al.’s work did not directly
consider the dynamic and competitive nature of resources in actual deployment.
Ning et al. [11] fully considered the dynamic nature of service deployment scenar-
ios, decomposed the long-term optimization problem into a series of immediate
optimization problems using the Lyapunov optimization method, and used a dis-
tributed Markov approximation algorithm to determine the service deployment
(placement) configuration.

Further, Hudson et al. [6] studied joint service placement and model schedul-
ing of edge intelligence services with the goal to maximize QoS for end users
where edge intelligence services have multiple implementations to serve user
requests, each with varying costs and QoS benefits. Chen et al. [1] presented a
QoS-aware resource manager that enables an arbitrary number of interactive,
latency-critical services to share a physical node without OoS violations. The
proposed resource manager leverages a set of hardware and software resource
partitioning mechanisms to adjust allocations dynamically at runtime, in a way
that meets the QoS requirements of each co-scheduled workload, and maximizes
throughput for the machine. Nevertheless, none of the above pioneering works on
scheduling for edge-cloud clusters consider the QoS guarantees and the hybrid
deployment of LC and BE services.

Table 1. Table of notations

Symbol Definition Symbol Definition

L The set of LC services N The set of edge nodes

xln Deployment variables for LC services ylnm Dispatch variables for LC service requests

rl Storage requirement for LC service l Rn Storage capacity of edge node n

kl Computation requirement per request of

LC service l

Kn Processing capacity of edge node n

R′
n Remaining storage capacity of edge node

n after deploying LC services

K′
n Remaining processing capacity on edge node

n after processing LC service requests

λln Average arrival rate of LC service

requests

Tl Maximum tolerated response time of service

l

Ol Processing time per request of service l tnm Transmission delay from edge node n to m

3 Scenario Description and Problem Modeling

In this section, we present the scheduling problem of edge-cloud clusters under
QoS guarantees and take smart grid clusters as an example. We first describe a
system framework to elaborate service deployment and request dispatch. Then,
we formulate a scheduling problem of smart grid clusters towards a single exem-
plary QoS requirement, while adding constraints to such model to guarantee
QoS requirements.

3.1 System Model

As shown in Fig. 1, there is an smart grid cluster system on a geographic region
where end devices are covered by a set of edge clusters. The smart grid cluster
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system considered in this paper includes an edge cluster and a cloud cluster, where
the edge cluster consists of a set of edge nodes N = {1, . . . , N} for smart grids.
Each edge node for smart grids has limited storage and computing resources, and
the resource capacities among the edge nodes for smart grids are heterogeneous
with each other. All the services undertaken by the smart grid cluster include LC
services L = {1, . . . , L} and BE services L′ = {1, . . . , L′}. Meanwhile, service
heterogeneity is not only reflected in terms of resource requirements, but also in
terms of QoS requirements. The symbols involved in this paper and their meanings
are given in Table 1.

Fig. 1. Edge-cloud smart grid cluster scheduling for hybrid service deployments.

3.2 Problem Formulation

The heterogeneity of service requirements requires differentiated QoS guaran-
tees. To meet the different QoS guarantees, Liu et al. designed a resource chan-
nel pre-configuration (slicing) solution “EdgeSlice” [8]. EdgeSlice initializes the
resource channel configuration according to the different QoS requirements of
services, i.e., allocates resource units composed of compute, storage, and network
resources to services. The QoS-oriented scheduling optimization problem with
multiple QoS constraints can be decoupled into a scheduling optimization prob-
lem with multiple single QoS guarantees, provided that such solutions have been
pre-configured with effective resource channels. Therefore, this paper focuses on
the resource channel corresponding to a certain QoS requirement (character-
ized by the “maximum tolerated response time” property) without losing the
generality for other resource channels.

Considering that the scheduling optimization problem discussed in this work
includes both service deployment and request dispatch, we set two decision vari-
ables: the service deployment variable xln and the request assignment variable
ylnm. If a replica of service l is deployed on edge node n, xln takes the value
of 1 otherwise 0. Since the meaning of ylnm is the probability that a request
of service l submitted to an edge access point n is dispatched to an edge node
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m, the value of ylnm ranges from [0,1]. In this case, the scheduling optimization
problem of LC services can be modeled as problem (1), whose objective function
is to maximize the throughput of LC services, i.e., the number of LC requests
that are successfully dispatched under guaranteed QoS requirements.

max :
∑

l∈L

∑

n∈N
λln

∑

m∈N
ylnm, (1a)

s.t. :
∑

m∈N
ylnm ≤ 1, ∀l ∈ L, n ∈ N , (1b)

∑

l∈L
xln · rl ≤ Rn, ∀n ∈ N , (1c)

∑

l∈L
kl

∑

n∈N
λln · ylnm ≤ Km, ∀m ∈ N , (1d)

ylnm ≤ I{Tl−Ol−tnm}>0 ∀l ∈ L, n ∈ N ,m ∈ N , (1e)
ylnm ≤ xlm, ∀l ∈ L, n ∈ N ,m ∈ N , (1f)
xln ∈ {0, 1}, ylnm ≥ 0, ∀l ∈ L, n ∈ N ,m ∈ N . (1g)

We jointly optimize service deployment and request dispatch by a dual time-
scale scheduling mechanism. The dual time-scale refers to the larger time scale
“frame” and the smaller time scale “slot”, where a time frame contains multiple
time slots. At each time slot, the system performs request dispatch, so there are
requests arriving at the edge access point waiting for dispatch, i.e., the request
arrival rate λ = (λln) is obtained at each slot, where λln denotes the request
arrival rate of service l submitted to edge access point n. At the granularity
of each time frame, it performs service deployment. Considering the deployed
services are fixed over the whole frame, the request arrival rate parameter λ in
problem (2) should consider the whole time frame range. According to the work
of Farhadi et al. [3], the average request arrival rate that can be predicted is
considered as a known parameter in this work. In this manner, the system can
periodically adjust the service deployment strategies to ensure that the deployed
services match the current pattern of request arrivals. In addition, this dual time-
scale design can reduce scheduling overhead compared to performing request
dispatch and service deployment at the same frequency [3].

With the above premises, the joint optimization problem on LC service
deployment and request dispatch can be formulated as problem (1). Objective
(1a) is to maximize the number of LC requests processed under the QoS con-
straint. Constraint (1b) ensures the decision variables for request dispatch are
valid. Constraint (1c) guarantees that the edge node for smart grids does not
deploy more services than its storage capacity. Constraint (1d) ensures that each
edge node for smart grids does not process more requests than its computing
capacity. Constraint (1e) indicates that a request is dispatched successfully pro-
vided that the QoS is guaranteed, i.e., the sum of the process time and the
transmission delay of the request will not exceed the maximum response time
that the service can tolerate, where I{Tl−Ol−tnm>0} is the indicator function.
Constraint (1f) indicates that a request is dispatched successfully provided that
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the requested service is deployed on that edge node for smart grids. Constraint
(1g) specifies the valid value ranges of the scheduling variables.

To improve resource utilization without affecting the utility of LC services,
the paper designs to run BE services on the remaining resources after LC ser-
vice scheduling. The optimization objective of BE service scheduling is consistent
with that of the LC, i.e., to maximize the throughput of BE services. The con-
straints of BE service scheduling are also formally identical with problem (1), but
it is noteworthy that available resources for BE requests are not constrained by
Rn, Kn, but R′

n, K ′
n. Given that both LC and BE service scheduling optimiza-

tion can be expressed in the form of problem (1), only the solution to problem
(1) is explored below. Since it involves both integer variables x = (xln) and real
variables y = (ylnm), problem (1) is clearly a mixed-integer linear programming
problem. Since mixed-integer linear programming is an NP-hard problem [10],
problem (1) is an NP-hard problem.

4 Two-Tier Scheduling for Edge-Cloud Clusters

In this section, we design a scheduling algorithm based on submodular func-
tion optimization with the objective of maximizing the number of successfully
processed requests, and prove the near-optimality of the algorithm theoretically.

4.1 Two-Tier Scheduling Algorithm

We further decompose problem (1) into two subproblems, service deployment
and request dispatch, and design scheduling optimization algorithms for each
of them. Since service deployment is performed at each frame while request
dispatch is executed at each slot, each request dispatch decision is generated
when the decision variables of service deployment are known. Then, since only
the request dispatch variables y (real number variables) is included, the request
dispatch subproblem (problem (2)) is a linear programming problem and can
be solved in linear time. As can be seen, solving the NP-hard subproblem of
service deployment is where the challenge lies. Therefore, we will seek efficient
suboptimal service deployment algorithms with approximate guarantees.

max :
∑

l∈L

∑

n∈N
λln

∑

m∈N
ylnm, (2a)

s.t. : (1b), (1d), (1e), (2b)
ylnm ≤ I(l,m)∈S , ∀l ∈ L, n ∈ N ,m ∈ N , (2c)
ylnm ≥ 0, ∀l ∈ L, n ∈ N ,m ∈ N . (2d)

First, we reformulate the service deployment subproblem as a combinatorial
optimization problem. Let S ⊆ L × N denote the set consisting of selected
individual service deployment elements (l, n), where (l, n) ∈ S denotes deploying
a replica of service l on edge node n, i.e., xln = 1. Then, we let Ω (S) denote the
optimal objective value of problem (1) under fixed service deployment variables
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x = (xln), where xln = 1 when and only when (l, n) ∈ S. Then, Ω (S) can
be computed by solving the request dispatch subproblem (2). Finally, we can
rewrite the service deployment subproblem as problem (3).

max : Ω(S), (3a)

s.t. :
∑

l:(l,n)∈S
rl ≤ Rn, ∀n ∈ N , (3b)

S ⊆ L × N . (3c)

Next, we design a joint scheduling algorithm based on submodular function
optimization to solve the service deployment subproblem. The idea of SD-SFM
is to iteratively select elements to add to the selected set S of service deployments
(see Algorithm 1, line 4) continuously in a greedy manner, while evaluating the
benefits brought by such action (see Algorithm 1, line 7) and selecting the service
deployment element that brings the most benefits to add to the set S in each
round of iterations.

Algorithm 1: Service Deployment based on Submodular Function Maxi-
mization (SD-SFM)
input : rl, kl, λln, Tl, Ol, Rn, Kn,tnm

output: Service deployment variables x, request dispatch variables y

1 Initialization: the service deployment set S = ∅, the optimization value ω = 0;
2 repeat
3 Initialize temporary variables at a new round: ω′ ← 0, (l′, n′) = (0, 0);
4 for (l, n) ∈ (L × N )\S do
5 if S ∪ {(l, n)} satisfies the constraints (3b) and (3c) then
6 Solve problem (2) to derive the objective function value

Ω(S ∪ {(l, n)});
7 if Ω(S ∪ {(l, n)}) > ω′ then
8 Update the temporary optimization target value

ω′ = Ω(S ∪ {(l, n)});
9 Update temporary decision pair (l′, n′) = (l, n) for service

deployment;

10 if (l′, n′) �= (0, 0) then
11 Update the optimal set of decisions for service deployment

S = S ∪ {(l′, n′)};

12 until (l′, n′) = (0, 0);
13 Convert S into its vector representation x;
14 Solve problem (2) to derive the request dispatch decisions y based on x;

In addition, we consider a more general scenario in which LC services and BE
services can be deployed simultaneously within an edge node for smart grids. This
is because although the LC service has a strict QoS requirement, its resource
occupation is not always maintained at a high level due to the fluctuation of
request arrival strength. The resource efficiency (or throughput) of the smart
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grid cluster can be further improved if the BE services can make full use of
the remaining resources of the LC services. Therefore, we design Algorithm 2
to optimize the hybrid scheduling of LC and BE services. We denote the set of
frames as F = {1, . . . , f, . . . , F}, and for each frame f , its corresponding set of
slots as Tf = {1, . . . , tf , . . . , Tf}.

Algorithm 2: Two-tier hybrid scheduling algorithm
1 for f ∈ F do
2 Execute the algorithm SD-SFM for the deployment of LC services;
3 Calculate R′

n = Rn − ∑

l∈L
xln · rl for each node n ∈ N ;

4 Execute the algorithm SD-SFM on remaining storage resources for the
deployment of BE services;

5 for tf ∈ Tf do
6 Execute request dispatch for LC services by solving problem (2);
7 Calculate K′

m = Km − ∑

l∈L
kl

∑

n∈N
λln · ylnm for each node m ∈ N ;

8 Execute request dispatch on remaining computing resources for BE
services by solving problem (2);

4.2 Effectiveness Analysis

To prove that the SD-SFM algorithm is conditionally near-optimal with approx-
imation guarantees, we need to show that the objective function of problem (3)
is a monotone submodular function under certain conditions.

Lemma 1. The objective function Ω(S) of problem (3) is a monotonic submod-
ular function if the following conditions hold, and the SD-SFM algorithm can
conditionally generate near-optimal decisions: a) �Rn/rl� ≤ 1,∀n ∈ N ,∀l ∈ L;
or b)

∑
l∈L kl

∑
n∈N λln ≤ Kn,∀n ∈ N .

Proof. First, we prove the monotonicity of the objective function: Since S1 (S1 ⊆
S2 ⊆ L × N ) is a subset of S2, S2 relaxes the constraint of condition (2c)
compared to S1, so the objective function value grows, i.e., Ω(S1) ≤ Ω(S2).

Second, we prove the submodularity of the objective function [4]. Since there
is no competition for resources among requests under the condition of Lemma
1, the throughput brought by (l1, n1) in the service deployment decision S1 ∪
{(l1, n1)} is Ω (S1 ∪ {(l1, n1)})−Ω (S1). Consider the following case, first deploy
the service in S1 ∪ {(l1, n1)} and then deploy the service in S2\S1, then the
requests originally served by the replica (l1, n1) may be offloaded to the replica
in S2\S1, so the number of requests served by (l1, n1) may become less, i.e.,
Ω (S1 ∪ {(l1, n1)}) − Ω (S1) ≥ Ω (S2 ∪ {(l1, n1)}) − Ω (S2), where S1 ⊆ S2 ⊆
L × N , ((l1, n1) ∈ (L × N )\S2).

Finally, it’s obvious that (L × N ,J ) is an independence system [5] where
J ⊆ 2L×N is the set of all feasible solutions to problem (3). We consider any
two feasible service deployment sets S1 ⊆ S2 and S2. As it can reduce the number
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of replicas by at most p times when transforming the set S1 into S2, constraints
(3b) and (3c) constitute a p-independence system, where p =

⌈
max rl

minl:rl>0 rl

⌉
.

To maximize the monotone submodular function subject to p-independence
system constraints, the greedy algorithm has an approximation rate of 1/(p+1)
[4]. Therefore, the SD-SFM algorithm has 1/(p + 1) approximation rate with
problem (1), which proves the theoretical feasibility of the SD-SFM algorithm.

5 Performance Analysis

In our experiments, we simulate service requests based on the Alibaba clus-
ter dataset [2], and then forward these requests to the smart grid cluster ran-
domly (an edge cluster consists of |N | = 6 edge nodes for smart grids and
|L| ∈ [10, 20] types of services). We scale the attributes in the dataset, e.g., the
“plan mem” field and “plan cpu” field in the “pai task table” dataset are used
as the storage resources rl and computing resources kl required by the request,
the “end time” field minus the “start time” field is used as the processing time
Ol of a service, “cap mem” field and “cap cpu” field in the “pai machine spec”
dataset are used as the storage capacity Rn and processing capacity Kn of
a node, respectively. Specifically, rl, kl, Rn,Kn are scaled to the data ranges
[0 : 5, 1]; [0 : 5, 1]; [1, 8]; [4, 32], respectively. Besides, the values for transmission
delay between edge nodes tnm are drawn from (0, |N |/2], where tnn = 0. Mean-
while, the maximum response time Tl tolerated [6] by the LC service is the sum of
Ol and a random value drawn from (0, |N |/2], and that by the BE service is the
sum of Ol and max(tnm). The request arrival rate of a node, λn =

∑
l∈L λln, is

drawn from [5, 50], while the value of λln is based on its popularity in the dataset.
In addition, a time frame contains |Tf | ∈ [10, 60] time slots in the experiments.

Fig. 2. Time cost comparison of dual/single time-scale scheduling.

To verify the beneficial effect of Algorithm 1 (i.e., SD-SFM algorithm) under
the dual time-scale scheduling design, we compared the scheduling time cost
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under single time-scale (executing one service deployment before each request
dispatch) with that under dual time-scale. As shown in Fig. 2(a), the scheduling
time cost keeps increasing as the frequency of request dispatch increases, but
the cost of single time-scale one grows much faster than the dual time-scale one.
It is worth noting that in the dual time-scale, the frequency of request dispatch
is equal to the number of time slots in a frame. Figure 2(b), on the other hand,
illustrates that the scheduling time cost increases with the number of service
types as well, and the single time-scale one also grows much faster than the dual
time-scale one. Therefore, the dual time-scale scheduling design will be more
beneficial to reduce the scheduling time cost of the system compared to the
single time scale.

Fig. 3. Resource utilization of hybrid deployment versus non-hybrid deployment.

To verify the effectiveness of the SD-SFM algorithm in the two-tier hybrid
scheduling algorithm, we conducted experiments under different request arrival
rates. Figure 3(a) shows that the storage resource utilization under hybrid
deployment of LC services and BE services is always higher than that with-
out hybrid deployment of services at different request arrival rates. Figure 3(b)
demonstrates that the computing resource utilization increases with the request
arrival rate and is always higher under hybrid service deployment than non-
hybrid service deployment. These experimental results validate the effective-
ness of Algorithm 2 and also illustrate that hybrid deployment helps to improve
resource utilization.

To further validate the effectiveness of the SD-SFM algorithm, we designed
several different service deployment baseline strategies: 1) Service Deployment
with Linear Programming Relaxation (SD-LPR): first relaxing problem (1) to a
linear programming problem [12] to solve, and then rounding the service deploy-
ment variables to integer variables under the constraints of problem (1). 2) Ser-
vice Deployment in Descending order of requests Demands for each Edge node
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Fig. 4. The performance of SD-SFM against baselines with various resource settings.

(SD-DDE): considering each edge node n ∈ N in turn, deploying services on edge
n in descending order (i.e., descending order of λln) [13] according to the request
arrival rate of each service l arriving at edge node n under the constraint of stor-
age resources. 3) Service Deployment in Descending order of requests Demands
for the whole edge-cloud cluster System (SD-DDS): Consider the total request
arrival rate of each service l arriving within the whole edge-cloud cluster sys-
tem (denoted as Λl =

∑
n∈N λln), and then deploy the services on each edge

node in descending order of Λl [13] subject to the storage resource constraint.
From Fig. 4(a), it can be seen that the throughput rates under different service
deployment strategies improve as the storage resource capacity of the edge nodes
increases, but the throughput rates under the SD-SFM algorithm are always
higher than the other baseline strategies. Similarly, Fig. 4(b) demonstrates that
the throughput rates under different service deployment strategies are increas-
ing with the increase of computing resource capacity of the edge nodes, and the
SD-SFM algorithm always brings higher throughput rates than other baseline
strategies. It can be seen that the SD-SFM algorithm has superiority over other
baseline strategies.

To summarize, although our experimental setup is more stringent than the
conditions in Lemma 1, the theoretical near-optimality of Algorithm1 is guar-
anteed if the constraints (1c) and (1d) in our scenario are relaxed. In fact, the
experimental results do verify the superior performance of the algorithm.

6 Conclusion

First, this paper studies the scheduling optimization problem of edge-cloud smart
grid clusters under the consideration of both system utility and QoS guarantees.
By proving that the problem is NP-hard, this paper decouples two subprob-
lems, such as service deployment and request dispatch, and gives feasible and
efficient solutions to each of them. Secondly, this paper designs the heuristic
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algorithm SD-SFM according to the monotonicity and submodularity of the ser-
vice deployment subproblem and analyzes the near-optimality of the algorithm
SD-SFM. Thirdly, this paper employs dual time-scale scheduling to coordinate
two subproblems for reducing scheduling overhead and proposes a coordina-
tion algorithm for hybrid deployment of LC services and BE services within a
resource channel to improve the utilization of resources of smart grid clusters.
Finally, this paper verifies the feasibility as well as the efficiency of the proposed
algorithm using experiments driven by real data sets. In future work, we will
consider the overall joint scheduling optimization problem of resource slicing,
service deployment and request dispatch to further improve resource efficiency.
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Abstract. Compared with traditional mobile edge computing (MEC), heteroge-
neous MEC (H-MEC), which is assisted by ground vehicles (GVs) and unmanned
aerial vehicles (UAVs) simultaneously, is attracting more and more attention from
both academia and industry. By deploying base stations (along with edge servers)
on GVs or UAVs, H-MEC is more suitable for access-demand dynamically-
changing network environments, e.g., sports matches, traffic management, and
emergency rescue. However, it is non-trivial to perform real-time user associa-
tion and resource allocation in large-scale H-MEC environments. Motivated by
this, we propose a shared multi-agent proximal policy optimization (SMAPPO)
algorithm based on the centralized training and distributed execution framework.
Due to the NP-hard difficulty of jointly optimizing user association and resource
allocation for H-MEC,we adopt the actor-critic-based online-policy gradient (PG)
algorithm to obtain near-optimal solutions with low scheduling complexities. In
addition, considering the low sampling efficiency of PG, we introduce proximal
policy optimization to increase the training efficiency by importance sampling.
Moreover, we leverage the idea of centralized training and distributed execution
to improve the training efficiency and reduce scheduling complexity, so that each
mobile device makes decisions based only on local observation and learns other
MDs’ experience from a shared replay buffer. Extensive simulation results demon-
strate that SMAPPO can achieve more satisfactory performances than traditional
algorithms.

Keywords: Mobile edge computing · Computation offloading · Deep
reinforcement learning · Proximal policy optimization · Unmanned aerial vehicle

1 Introduction

The explosive growth of real-time computation-intensive mobile applications, such as
online gaming, automatic driving, and virtual reality (VR), has strict requirements of
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low latency delivery by mobile devices (MDs) [1]. Nonetheless, MDs are usually con-
strained by finite battery capacity and computing resources and are not able to meet such
requirements of the applications [2]. Fortunately, benefitting from the emergence of 5G,
mobile edge computing (MEC) is proposed and envisioned as a promising technology
to tackle the challenge by offloading computing-intensive and delay-sensitive tasks to
the edge servers of nearby base stations [3].

In traditional MEC, edge servers are deployed in fixed terrestrial infrastructures,
which not only leads to high deployment costs, but also is inadaptable for serving
access-demand dynamically changing scenarios, e.g., sports matches, traffic manage-
ment, and emergency rescue [4]. Therefore, heterogeneous MEC (H-MEC) [5], whose
edge servers could be deployed at both terrestrial infrastructures, and movable ground
vehicles (GVs) or unmanned aerial vehicles (UAVs), is considered as an effective comple-
ment of traditional MEC [6]. Owing to the high flexibility and convenience of deploying
GVs and UAVs, H-MEC is able to accommodate dynamic network environments with
hotspot areas or emergency rescue activities on demand [7]. However, the high flexibility
and dynamically-changing demand also bring intractable challenges for H-MEC, which
include in-time decision-making, large-scale user association, and resource allocation
under stringent scheduling constraints.

In existing works, [8] adopted the convex optimization (CO) method and heuristic
search algorithm to solve task offloading and resource allocation for multi-server MEC
networks. [9] proposed a coordinate descent method to maximize the computation rate
for wireless-powered MEC. Although closed-form solutions could be obtained in the
above CO-based methods, they require a considerable amount of iterations to reach an
optimal solution and thus are not suitable for making real-time offloading decisions [10]
in dynamically changing environments. [11] proposed a DNN-based framework to serve
the dynamic H-MEC environment through incremental online learning [12], and [13]
adopted a DRL-based framework to adjust the policy of DRL online in hybrid MEC
networks. However, these existing learning-based methods are mostly inefficient for
data sampling and suffer from slow convergence.

In view of the above issues, we propose a shared multi-agent proximal policy opti-
mization (SMAPPO) algorithm to perform real-time online computation offloading and
resource management for H-MEC, which also accommodates high efficiency in data-
sampling and model-training. The main contributions of this article are generalized as
follows:

• We optimize the online computation offloading and resource management solution
in H-MEC by achieving the minimum system cost with Markov decision process,
which is further worked out by using online multi-agent deep reinforcement learning
algorithms with affordable scheduling complexities for each MD.

• We further improve the sampling efficiency by introducing importance sampling for
the learning algorithm and increase the training efficiency by replacing long-term
cumulative rewards with creditable reward advantages. Specifically, MD can learn
from the experiences of other MDs through a shared replay buffer.

• Finally, we demonstrate the effectiveness and efficiency of our algorithm via extensive
experiments. The simulation results demonstrate that SMAPPO can achieve more
satisfactory performances than traditional algorithms do.
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2 System Model

2.1 Network Model

As illustrated in Fig. 1, we consider a heterogeneous MEC network consisting multiple
MDs and edge nodes including several UAVs and GVs. The sets of GVs and UAVs
are denoted by V = {1, 2, . . . ,V} and U = {1, 2, . . . ,U}, where V and U refer to the
number of GVs and UAVs, respectively. Each GV/UAV is equipped with an edge server
to serve MDs’ computation-intensive and delay-sensitive applications.

Fig. 1. H-MEC System model

We assume that there areM MDs randomly distributed in the ground and denote the
set ofMDsbyM = {1, 2, . . . ,M}. Similar to [14], thewhole runningperiod is uniformly
distributed as N equal parts and define the set of time slots by N = {1, 2, . . . ,N}. MD
i at time slot n randomly generates a task J ni as follows:

J ni = {
Dn
i ,F

n
i ,Tn,max

i

}
, (1)

where Dn
i represents the input data size, F

n
i is the required amount of CPU frequencies

to compute one bit of task J ni , T
n,max
i denotes the maximum tolerable latency of task.

In this article, we adopt a complete offload method, where the task can be entirely
processed either on theMDor on aGV/UAV.We denote oni as the computation offloading
decision of MD i at slot n as follows:

oni =
⎧
⎨

⎩

0 if Local Computing
1 if GV Edge Computing
2 if UAV Edge Computing

, (2)

2.2 Communication Model

In this subsection, we give the channel gain models between GVs and MDs as well as
between UAVs and MDs, respectively.
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1) MD-GV Channel Model: Similar to [15], the channel gain between MD i and GV j
can be expressed by:

gni,j = 128.1 + 37.6 · log10
(
dn
i,j

)
, (3)

where dn
i,j is the Euclidean distance between MD i and GV j at time slot n.

Therefore, the offloading transmission rate between MD i and GV j at time slot n
can be given by:

rn,Vi,j = Wj · log2
⎡

⎣1 + pni g
n
i,j/

⎛

⎝σ 2 +
M∑

u,u �=i

pnug
n
u,j

⎞

⎠

⎤

⎦, (4)

where pni represents the transmission power of MD i at time slot n, andWj is the channel
bandwidth between MD i and GV j.

2) MD-UAV Channel Model: Similar to [16], the channel gain between MD i and UAV
k can be calculated by

gni,k = 20 · log(dn
i,k

) + 98.4 + ζLOS · Pn,LOS
i,k + ζNLOS ·

(
1 − Pn,LOS

i,k

)
, (5)

where ζLOS and ζNLOS represent the additional loss due to line-of-sight and no-line-
of-sight links, respectively. dn

i,k is the Euclidean distance between MD i and UAV k
at time slot n.

Therefore, the transmission rate betweenMD i and UAV k at time slot n can be given
by:

rn,Ui,k = Wk · log2
⎡

⎣1 + pni g
n
i,k/

⎛

⎝σ 2 +
M∑

u,u �=k

pnug
n
u,k

⎞

⎠

⎤

⎦. (6)

where pni expresses the transmitting power of MD i, and Wk is the channel bandwidth
between MD i and UAV k.

2.3 Computation Model

1) Local Computing: If oni = 0, the arrived task is processed by MD i. So, the latency
of executing task in the local device is given by

tn,Li = Dn
i · Fn

i /f n,Li , (7)

where f n,Li is the local computing capacities of MD i. Accordingly, the energy
consumption of processing task can be calculated by

en,Li = κ · (f n,Li )ξ−1 · Dn
i · Fn

i , (8)
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where κ express the switch capacitance coefficient of the chip architecture. With (7)
and (8), the weighted cost of executing task locally is given by.

cn,Li = wt,L
i · tn,Li + we,L

i · en,Li , (9)

where wt,L
i and we,L

i denote the weights of delay and energy consumption cost

respectively, and 0 ≤ wt,L
i ≤ 1, 0 ≤ we,L

i ≤ 1, wt,L
i + we,L

i = 1.
2) GV Edge Computing: If oni = 1, the task of MD i is handled at the ground vehicle.

Therefore, the latency of transmitting task remotely to ground vehicle is given by

t̃n,Vi,j = Dn
i /r

n
i,j, (10)

Accordingly, the energy consumption of transmitting task is expressed as

ẽn,Vi,j = pni · t̃n,Vi,j , (11)

where pni expresses the transmitting power of MD i at time slot n. In addition, the
latency of executing task remotely in ground vehicle is given by

tn,Vi,j = Dn
i · Fn

i /f n,Vi,j . (12)

Accordingly, the energy consumption of executing task is expressed as

eVi,j = znj · tn,Vi,j . (13)

With (10), (11), (12) and (13), in GV edge computing, the total cost of MD i and
ground vehicle is given as follow:

cn,Vi = wt,V
i ·

(
t̃n,Vi,j + tn,Vi,j

)
+ we,V

i ·
(
ẽn,Vi,j + en,Vi,j

)
. (14)

where wt,V
i and we,V

i denote the weights of delay and energy consumption cost

respectively, and 0 ≤ wt,V
i ≤ 1, 0 ≤ we,V

i ≤ 1, wt,V
i + we,V

i = 1.
3) UAVEdgeComputing: If oni = 2, the task ofMD i is processed at theUAV. Therefore,

the latency of transmitting task remotely in UAV is given by

t̃Ui,k = Di/r
U
i,k , (15)

Accordingly, the energy consumption of transmitting task is expressed as

ẽUi,k = pni · t̃n,Ui,j , (16)

Besides, the latency of executing task remotely in UAV is given by

tUi,k = Dn
i · Fn

i /f n,Ui,k , (17)

where f n,Ui,k is the computing capacities assigned by the UAV k to MD i.
Accordingly, the energy consumption of executing task is expressed as

eUi,k = znk · tn,Ui,j . (18)
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With (15), (16), (17) and (18), in UAV edge computing, the total cost of MD i
and unmanned aerial vehicle is given as follow:

cn,Ui = wt,U
i ·

(
t̃n,Ui,k + tn,Ui,k

)
+ we,U

i ·
(
ẽn,Ui,k + en,Ui,k

)
, (19)

where wt,U
i and we,U

i denote the weights of delay and energy consumption cost

respectively, and 0 ≤ wt,U
i ≤ 1, 0 ≤ we,U

i ≤ 1, wt,U
i + we,U

i = 1.

3 Problem Formulation

In this chapter, we describe the computation offloading and resource management
optimization problem in the H-MEC system.

Given the above, the system cost of MD i at time slice n is given by

Cn
i =

⎧
⎪⎨

⎪⎩

Cn,L
i if oni = 0;

Cn,V
i if oni = 1;

Cn,U
i if oni = 2.

(20)

To this end, the average system cost in H-MEC throughout period is expressed by

Csys = 1

M
· 1

N
·

M∑

i=1

N∑

n=1

Cn
i . (21)

To sum up, the average system cost minimization problem under corresponding
system constraints is formulated as below.

P : min(
oni ,p

n
i ,f

n,L
i ,fn,Vi,j ,fn,Ui,k

)Csys

st.∀i ∈ M, j ∈ V, k ∈ U , n ∈ N
C1 : oni = {0, 1, 2};C2 : pni ≤ pL,max

i ;C3 : f n,Li ≤ f L,max
i

C4 :
M∑

i=1

f n,Vi,j ≤ f V,max
j ;C5 :

M∑

i=1

f n,Ui,k ≤ f U,max
k ;C6 : tn,Li ≤ Tn,max

i

C7 : tn,Vi + t̃n,Vi,j ≤ Tn,max
i ;C8 : tn,Ui + t̃n,Ui,j ≤ Tn,max

i

C9 :
t∑

n=1

en,Li ≤ EL,max
i ;C10 :

t∑

n=1

M∑

i=1

(
en,Vi,j + ẽn,Vi,j

)
≤ EV,max

j ,∀t ∈ N

C11 :
t∑

n=1

M∑

i=1

(
en,Ui,k + ẽn,Ui,j

)
≤ EU,max

k .∀t ∈ N

(22)

4 Algorithm

In the section, its first part is devoted to the introduction of the reinforcement learning.
Then, we will present the process of transforming the optimization problem into MDP
[17] problem. Finally, we demonstrate in detail our proposed SMAPPO algorithm.
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4.1 Preliminary Work

1) State. The state of each MD includes its task details, channel state, and battery
information. Thus, the state of MD i at time step n can be expressed as

sni =
(
Dn
i ,F

n
i ,Tn,max

i ,En,now
i , gn,Vi,j , gn,Ui,k

)
, (23)

where En,now
i depicts the current remaining capacity of MD i at time step n

2) Action. The action of each MD includes its offloading indicator, transmitting power,
and allocated computing capacity. At the time slot n, the action of MD i can be
represented by

ani =
(
oni , p

n
i , f

n,L
i , f n,Vi,j , f n,Ui,k

)
. (24)

3) Reward. We aim to search the optimal computation offloading and resource man-
agement solution to minimize the average system cost under system constraints in
H-MEC system. So, we define the reward rni of MD i at time slot n as

rni = R
(
sni , a

n
i

) = −Cn
i . (25)

4.2 Problem Transformation

Based on above definition of the three elements of reinforcement learning, the trajectory
of MD i during N time slot can be represented as:

τi =
{
s1i , a

1
i , s

2
i , a

2
i , · · · , sNi , aNi

}
. (26)

Accordingly, the probability and total reward of the trajectory τi are calculated as
follow:

R(τi) =
N∑

n=1

rni , (27)

and

pθ (τi) = p
(
s1i

) N∏

n=1

[
pθ

(
ani |sni

) · p
(
sn+1
i |sni , ani

)]
, (28)

respectively, where θ is the network parameter of the Actor. The average reward is
denoted as

Rθ =
∑

τ

R(τ )Pθ (τ ) = Eτ pθ (τ )[R(τ )]. (29)

To this end, the problem P could be transformed into object function P1 as below:

P1 : max
θ

Rθ . (30)
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4.3 Algorithm Implementation

To address problem P1, we propose a shared multi-agent proximal policy optimiza-
tion (SMAPPO) algorithm based on the centralized training and distributed execution
(CTDE) framework, as shown in Fig. 2. From the flow diagram, the whole framework
can be divided into three parts: decentralized execution, data collection and centralized
training. Specifically, each MD first interacts with the H-MEC environment based on
its observation of the local state, generating a batch of learning experiences. Then, the
learned experiences are employed to train a shared policy and value function for all
MDs, with adoption of the generalized advantage estimation and importance sampling
method. Last, each MD shares the trained policy and continuously interacts with the
environment.

Fig. 2. The distributed execution and centralized training framework.

In the decentralized execution phrase, each MD i obtains its initial state sni from
the H-MEC environment, gives the probability distribution of actions pni and the sam-
pled action value ani according to its Actor network, and attains the reward rni and next
state sn+1

i from the environment. When a time slot ends, MD insert an experience tuple(
sni , a

n
i , p

n
i , r

n
i , s

n+1
i

)
into the shared replay buffer. At the end of an episode, we prepro-

cess the experience tuples (S,A,P,R). In the data collection phase, experience tuples
are processed to convert immediate reward into cumulative reward. The experience tuple
changes from (S,A,P,R) to (S,A,P,G).

During the centralized training phrase, we randomly sample a lots of experiences
tuples (Sb,Ab,Pb,Gb) from the replay buffer to calculate the loss function LActorb and
LCriticb of Actor network and Critic network, and update the network parameters of two
network. Due of the importance sampling, we can sample and update multiple times.
After the training, we copy the updated network parameters of Actor network to allMDs.
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We provide the pseudocode of the SMAPPO algorithm in Algorithm 1.

The gradient of object function is given by:

∇Rθ =
∑

τ

R(τ ) · ∇pθ (τ ) =
∑

τ

R(τ ) · pθ (τ ) · ∇logpθ (τ )

= Eτ pθ (τ )

[
R(τ ) · ∇logpθ (τ )

] ≈ 1

B

B∑

b=1

[
R(τb) · ∇logpθ (τb)

]

= 1

B

B∑

b=1

N∑

n=1

[
R(τb) · ∇logpθ

(
anb|snb

)]
,

(31)

whereB is themini-batch size of each sampling. In order to add a baseline and assign suit-
able credit, we introduce advantage function [18] to replace total reward. The definition
of advantage function denotes as follow:

Gθ

(
snb, a

n
b

) =
N∑

n′=n

(
γ n′−n · rn′

b − Vφ

(
snb

))
, (32)

where γ is the discount factor of future reward [19]. Therefore, the gradient ∇Rθ can
change as:

∇Rθ = 1

B

B∑

b=1

N∑

n=1

[
Gθ

(
snb, a

n
b

) · ∇logpθ

(
anb|snb

)]
. (33)
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To improve the efficiency of data sampling, we choose off-policy [20] to replace
on-policy, the loss function of the Actor network is expressed by:

Jθ ′(θ) = E(st ,at) πθ ′

[
pθ (st, at)

pθ ′(st, at)
Gθ ′(st, at)

]

≈
∑

(st ,at)

min(Xt · Gθ ′(st, at), clip(Xt, 1 − ε, 1 + ε) · Gθ ′(st, at)),
(34)

where θ ′ is the network parameters of Actor of each MD, θ is the network parameters
that we need to train.Xt can be calculated as follow:

Xt = pθ (st, at)

pθ ′(st, at)
. (35)

Besides, the loss function of the Critic can be represented as:

Jφ =
∑

(st ,at)

(
Gθ (st, at) − Vφ(st)

)2
. (36)

5 Simulation Results

In this chapter, we first give some simulation settings which are followed by the
simulation results and their discussion and analysis.

5.1 Simulation Setting

In the simulation, we assume that four GVs and one UAV in a 800 × 800 m2 square
zone, with the coordinate of UAV as (0, 0, 50). The four GVs are located at (200, 200),
(−200, 200), (−200,−200), and (200,−200), respectively. Similar to [21], The band-
width set 30 MHz as default value, the available computing capability of MD, GV and
UVA is 1 GHz, 30GHz and 60GHz, respectively. Each MD is randomly moved with
moving velocity of 5 m/s. The input data size of generated task and the amounts of
computing cycles of finish on bit are sampled from [400000, 50000] bits and [800, 900]
cycles/s. The maximum tolerance delay is uniformly sampled from [0.8, 0.9] s. Both
the actor and the critic network have four hidden layers 1024 × 512 × 256 × 128. Use
ReLU as activation function and define the 10−3 and 3 × 10−3 as learning rate of the
actor and critic, respectively. The buffer capacity of memory is 8000, and the batch size
of each sampling is 64. Let the discount factor of future reward as 0.99 and define the
parameter clip as 0.2.

5.2 Performance Evaluation

The performance of SMAPPO is compared with the below benchmark algorithms:

(1) LOCAL: all tasks are processed within the MDs;
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(2) Random:half of the tasks are executed locally and the other half aremoved randomly
to edge nodes;

(3) MADQN: Consider that the action space is discrete, we use multi-agent deep Q
network algorithm to generate offloading decision. The task offloading is optimized
by the MADQN algorithm.

We first compare the performance of SMAPPO with those of the other benchmarks
w.r.t the average reward with different numbers of MDs, as shown in Fig. 3. It can be
noticed that with the rise of numbers of MDs, the average reward of SMAPPO, DQN
and RANDOM gradually decline. Thus, we can reasonably speculate the reason that
with the increase of the numbers of MDs, more MDs choose to offload the task to edge
nodes, which can cause the transmission time and energy consumption to rise.

Fig. 3. Performance comparison with different numbers of MDs.

For simplicity, we assume that the number of MD is 24 in subsequent experiment.
Then, we investigate the performance of SMAPPO with those of baselines w.r.t the

average reward with different bandwidth of GVs, as illustrated in Fig. 4 (a). It could be
noticed that with the rise of bandwidth of GVs, the average reward of SMAPPO and
MADQN notably increase. The observation may base on the fact that the increase of
bandwidth of GVs can cut down the transmission time and energy consumption. Next,
we compare the performance of SMAPPO with those of benchmarks w.r.t the average
reward with various computing capacity of GVs, as exhibited in Fig. 4(b). It could be
noticed that with the rise of computing capacity of GVs, the average reward of SMAPPO
andMADQNfirst increase notably then gently.We can safely draw that as the computing
capacity of GVs increases, the execution time and energy consumption reduce.

Besides, the performance of SMAPPO is compared with those baselines w.r.t the
average reward with different bandwidth of UAVs, as depicted in Fig. 5(a). It could be
noticed that with the rise of bandwidth of UAVs, the average reward of SMAPPO and
MADQN quickly increase. The phenomenon means that when the bandwidth of UAVs
expands, the transmission time and energy consumption is cut down. Last, we illustrate
the performance of SMAPPO with those baselines w.r.t the average reward with various
computing capacity of UAVs, as shown in Fig. 5(b). It could be noticed that with the rise
of computing capacity of UAVs, the average rewards of SMAPPO and MADQN first
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Fig. 4. Performance comparison with different GVs. (a). different bandwidths of GVs. (b).
different computing capacities of GVs.

rise quickly then slow down. We can conclude that as the computing capacity of UAVs
increases, time and energy consumption can be decreased.

Fig. 5. Performance comparison with different UAVs. (a). different bandwidths of UAVs. (b).
different computing capacities of UAVs.

6 Conclusion

In this article, we study the computation offloading and resource management problem
in the H-MEC network with multiple mobile devices and edge nodes. Firstly, we build a
heterogeneousMEC network consisting multipleMDs and edge nodes including several
UAVs and GVs. And on this basis, we minimize the average system cost by searching
the optimal offloading decision, transmitting power, and allocated computing capacity
solution. Then, we transform the optimization problem into a Markov Decision Process
(MDP) based on related knowledge of reinforcement learning. Next, we propose a shared
multi-agent PPO (SMAPPO) based on deep reinforcement learning for a dynamic sys-
tem.We further improve the sampling efficiency by introducing importance sampling for
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the learning algorithm and increase the training efficiency by replacing long-term cumu-
lative rewards with creditable reward advantages. On the one hand, MD can learn from
the experiences of other MDs through a shared replay buffer. The training efficiency of
the model can be improved by learning the experience of othersMDs. On the other hand,
we also improve the sampling efficiency of data through importance sampling. By shar-
ing experience and network parameter, our proposed algorithm outperforms traditional
methods in performance. Meanwhile, it also avoids the dimensionality disaster that cen-
tralized scheduling may face. Finally, we demonstrate the effectiveness and efficiency
of SMAPPO via extensive experiments.
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Abstract. Federated Learning (FL) is a distributed machine learning
approach which is suitable for edge computing environment. While in
this environment, how to take full advantage of the computing resources
on end devices and edge servers is still a difficult problem. Especially for
the synchronous federated learning, computing resources among different
participants will lead to extra time cost and cause resource waste. In this
paper, we try to reduce the time cost and the computing resource waste
by using model splitting and task scheduling. We first establish the math-
ematical model and find it can not be solved directly. Then we design our
algorithm which we name as the Federated Learning Offloading Accel-
eration (FLOA) algorithm to obtain a sub-optimal solution. The FLOA
algorithm first uses the Partition Points Selection method to reduce the
size of the solution space, then proposes a task offloading method based
on matching theory. Experiments and simulations show that compared to
the other three calculation methods, the single iteration time is reduced
by 47%, 28%, 14% under our algorithm in turn.

Keywords: Edge computing · Federated learning · Model splitting

1 Introduction

With the development and popularity of AI applications, it has become a trend
for deploying AI applications on smart devices. The key to the deployment of
AI applications is to use the rich data distributed on smart devices for training
AI models. The data on smart devices contains a large amount of the user’s
privacy [1,2]. Traditional cloud computing requires these data on devices to be
transferred to the cloud centre, which will lead a large communication burden
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and threat the data privacy. To solve these problems, some scholars are trying
to combine edge computing and Federated Learning (FL) to train AI models [3].

Edge computing refers to the enabling technologies allowing computation to
be performed at the edge of the network and is much efficient to process the data
at the edge of the network [4]. For example, in [5] and [6], authors use computing
resources from end devices and edge servers to process data. FL is a distributed
machine learning approach suitable for edge computing [7]. In FL, participants
collaborate with each other to train a shared DNN model together by using
their own local data without sharing them [8,9]. In detail, each participant first
trains a shared DNN model by using its local private data, and then uploads
the model parameters to the parameter server for aggregation to obtain a global
model. This process can be iterated several times until the trained model achieves
the desired accuracy. FL has two different types of iterations, synchronous and
asynchronous. The synchronous one means that model aggregation occurs after
all participants complete local computation [10].

There are already some researches on combining edge computing with FL.
In [11], a multi-layer federated learning protocol called HybridFL is designed for
the Mobile Edge Computing (MEC) architecture, HybridFL improves the FL
training process significantly in terms of shortening the federated round length,
speeding up the global model’s convergence and reducing end device energy con-
sumption. [12] proposes a new FL-based client selection optimization to balance
the trade-off between energy consumption of the edge clients and the learning
accuracy of FL. [13] introduces a novel Hierarchical Federated Edge Learning
(HFEL) framework, further formulate a joint computation and communication
resource allocation and edge association problem for device users under HFEL
framework to achieve global cost minimization.

In addition, model splitting can also accelerate the training process while
protecting data privacy [14]. By using model splitting technique, A DNN model
can be split inside between two successive layers into two partitions and then
be deployed on different locations without losing accuracy [15]. [16] uses model
splitting in FL to protect data privacy by placing the first layer of the DNN
model on the end device, so there is no need to transmit sample data.

Previous work has made some contributions in combining edge computing
and FL. However, they mostly focus on improvements to FL framework or aggre-
gation protocols, and few researches use model splitting in federated learning to
reduce latency. They do not take full advantage of the computing resources of end
devices and edge servers in edge computing. In addition, they also ignore the time
cost and resource waste in synchronous FL caused by the difference in computing
resources of end devices. In this paper, we make full use of computing resources
in edge computing environment through model splitting and task scheduling,
which reduces the time cost of synchronous federated learning. First, we build a
mathematical model for federated learning under end-to-edge collaborative edge
computing. Edge computing scenario is complex and the mathematical model
is difficult to solve directly because of the many variables. We first reduce the
size of the solution space by filtering the split points, and Federated Learning
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Fig. 1. System model.

Offloading Acceleration (FLOA) algorithm is designed based on matching theory
to solve for the mathematical model.

The rest of this paper is organized as follows: In Sect. 2, we introduce system
model and define our problem. In Sect. 3, we introduce the matching theory and
the details of FLOA algorithm respectively. In Sect. 4, we give the simulation
results and analyze them. In Sect. 5, we summarize this paper.

2 System Model and Problem Formulation

2.1 System Model

The system model is shown in Fig. 1. Suppose there are n end devices and m
edge servers deployed in the scheduling network. Denote ei(i ∈ {1 . . . n}, ei ∈ E)
as one end device and sj(j ∈ {1 . . . m}, sj ∈ S) as one edge server. Suppose
all devices and servers are heterogeneous with different computing capabilities
and suppose servers have better computing capabilities comparing with devices.
Suppose there is a common DNN model needed to be trained in a distributed
training manner by the whole network. Since we use model splitting technique,
which means the DNN model will be split inside between two successive layers
and then be trained separately on devices and servers. We also have a separate
parameter server PS for updating parameters in the whole training process,
devices and edge servers will send local training improvement to PS to obtain
the global DNN model. The end devices are connected to edge servers and PS
by wireless, the edge servers and PS are connected by wired.

Suppose we use the Stochastic Gradient Descent (SGD) algorithm to train
the DNN model. Suppose the DNN model has v layers. Each device has its own
data set, and the data set can be divided into many batches. For the training
process, each data batch will undergo one forward propagation and one backward
propagation. We call this process as an iteration. For a whole training process,
each batch may be trained for several iterations and there are many iterations.
But since we use the synchronous iteration method for training, which means
iterations on different devices do not affect each other. So in our model, we only
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consider one batch in each device for one iteration. Define an iteration for one
batch on ei as a task mi. All tasks are computed in a serial manner on end
devices and edge servers. For one task, an appropriate model splitting point will
be selected according to the calculation amount, the size of parameter data and
the size of intermediate results of each layer. Then the first half of the model will
be trained on the end device, and the second half of the model will be trained
on an edge server. For each task, the edge server will be selected according to
the real-time status to undertake the training of the second half of the model.
The total training time under synchronous training is the sum of all iterative
training time. So we can minimize the total training time by minimizing the
training time of each iteration.

Optimization objective: Minimize the training time of one iteration.

2.2 Problem Formulation

The time for completing task mi can be expressed as

ti = tei + ttrans
i + tsi + twi + tup

i , (1)

where tei and tsi represent the training time for mi on end device and edge server,
respectively, twi represents the waiting time for executing mi on the edge server,
ttrans
i represents the data transfer time between end device and edge server, and

tup
i represents the time to update the parameters on PS.

Define a binary variable xr
i to indicate whether mi is split at the r-th layer

of DNN, we have

xr
i =

{
1 :mi is split at the r-th layer of the DNN;
0 :otherwise.

(2)

Note that
v∑

r=1
xr

i = 1, which means mi should select one and only one model

splitting point.
For the first item tei , it consists of the forward propagation time te,f

i and the
backward propagation time te,b

i on ei. We have

tei = te,f
i + te,b

i =
v∑

r=1
(xr

i ·
r∑

w=1
(Lf

ei,w + Lb
ei,w)), (3)

where Lf
ei,w and Lb

ei,w represent that for task mi, the forward and the backward
propagation time for the w-th layer when processing one batch on ei.

For the second item ttrans
i , similar to tei , it consists of the forward transmission

time ttrans,f
i and the backward transmission time ttrans,b

i on ei. We have

ttrans
i = ttrans,f

i + ttrans,b
i = 2 ·

v∑
r=1

xr
i · Gr

Be,s
, (4)

where Gr represents the output size of the r-th layer in the forward phase, which
is equal to the output data of the (r+1)-th layer in the backward phase, and Be,s
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indicates the bandwidth between any device and any edge server (we suppose
the bandwidths between any device and any edge server are the same).

For the third item tsi , denote a binary scheduling variable yj
i to indicate

whether mi is executed on the server sj . We have

yj
i =

{
1 :mi is executed on the server sj ;
0 :otherwise.

(5)

Note that
m∑

j=1

yj
i = 1, which means that a task can only select one edge server

for offloading. Then the third item tsi can be expressed as

tsi = ts,f
i + ts,b

i =
m∑

j=1

(yj
i ·

v∑
r=1

(xr
i ·

v∑
w=r+1

(Lf
sj ,w + Lb

sj ,w))), (6)

where ts,f
i and ts,b

i represent forward and backward propagation time on edge
server sj . Lf

sj ,w and Lb
sj ,w represent the mi’s forward and the backward process-

ing one batch time for layer w on sj .
For the fourth item tw, we first denote ATi as the arrival time of task mi to

the edge server. We have

ATi = te,f
i + ttrans,f

i , (7)

where te,f
i is the forward propagation time on the end device ei, and ttrans,f

i is
the time that the intermediate result is transferred from the end device to the
edge server.

When task mi arrives, there may already have some tasks from other devices
on the server forming a waiting queue. Therefore, the task should wait for the
completion of these previous tasks. Then the fourth item twi can be expressed as

twi = max{0, Ii − ATi}, (8)

where Ii represents the completion time of the task which precedes task mi on
the same task queue. Ii can be expressed as

Ii =
m∑

j=1

yj
i · (

n∑
i′=1

(yj
i′ · Zi(mi′) · (ATi′ + twi′ + tsi′))), (9)

where Zi(mi′) is a binary scheduling variable to indicate whether task mi′ pre-
cedes task mi,τ . We have

Zi(mi′) =

{
1 :mi′ arrives one bit earlier than task mi;
0 :otherwise.

For the last item tup
i , we have

tup
i =

v∑
r=1

xr
i · (

r∑
w=1

dw

Be,ps
), (10)
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where dw is the parameter data size of the w-th layer, and Be,ps is the bandwidth
between PS and any device (we suppose the bandwidths between any device and
PS are the same).

Our optimization goal is to minimize the training time of one iteration. So
we have

min( max
i∈{1,2,...,n}

ti).

(1) (2) (3) (4) (5) (6) (8) (10)
v∑

r=1

xr
i = 1;

m∑
j=1

yj
i = 1.

(11)

The analysis of the problem shows that there are two types of 0–1 variable
in this optimization problem: xr

i and yj
i , while the others are constants. As

each end device has its own decision variables, the number of variables is large.
The two decision variables of one device in (6) are multiplied together, so this
optimization problem is nonlinear. In summary, we learn that the optimization
problem is very complex and difficult to solve directly.

3 Algorithm

In the last section, we give the whole problem model and find it is hard to be
solved directly. In this section, we will try to solve it and give our algorithm. For
solving it, we need to find some way to reduce the size of the solution space. If we
use the model splitting technique, the DNN can be split at any layer. However,
the characteristics of different layers, such as the size of the computation and the
parameter data, vary greatly. So not all layers are suitable for splitting. In our
algorithm, we will first reduce the number of split points between each device
and each server with the help of the Partition Points Selection(PPS) algorithm in
[17]. Then based on matching theory, we design our whole algorithm of selecting
a split point and an offloaded server for each end device. We name our algorithm
as the Federated Learning Offloading Acceleration (FLOA) algorithm.

3.1 Many-to-One Matching with Externalities

In this sub-section, we will give some definitions. These definitions will be useful
for the FLOA algorithm description. The related two-sided matching problem
is to assign agents of one set to agents of other disjoint set [18]. From Sect. 2
we know that one end device can only select one edge server, while one edge
server can be assigned to multiple devices. So the server selection is many-to-
one matching, which can be defined as follows.
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Definition 1. Suppose e is one end device from E, and suppose s is one edge
server from S. Define a many-to-one matching function μ on E ∪ S, such that

(1) |μ(e)| = 1 for every device e ∈ E and |μ(s)| ≤ n for every server s ∈ S;
(2) e ∈ μ(s) if and only if s = μ(e).

Based on Definition 1, we define Uei
(μ) as the utility function for ei on μ,

and define Us(μ) as the utility function for s on μ. The utility function can be
used for measuring the matching effect. Then we have

Uei
(μ) = 1

ti(μ)
, (12)

where ti(μ) is the task training time of ei under the matching state μ.
For Us(μ), we have

Us(μ) = 1
max

i∈{1,...,n}
ti(μ)

, (13)

Based on (12) and (13), we know that the matching effect is decided by the
task training time ti(μ). However, in our environment, training time for different
tasks have high relationship, which means devices and edge servers care about
more than their own matching. So traditional pairwise stable matching may not
exist [19]. We continue to leverage the concept of two-sided exchange stability
[20] on the following definition.

Definition 2. Define μe′
e = {μ \ {(e, s), (e′, s′)}} ∪ {(e, s′), (e′, s)} as a swap

matching, where μ(e) = s, μ(e′) = s′, and e �= e′.

A swap matching can enable device e and e′ to swap their matched servers with
each other, and remain the matching of other devices and servers unchanged.
Notice that when e′ is 0, it means that the edge server matched by device e is
changed to s′, i.e. μ0

e = {μ \ {(e, s)}} ∪ {(e, s′)}, where μ(e) = s and s �= s′.

Definition 3. Given a matching function μ and a pair of devices (e, e′), if there
exists μ(e) = s and μ(e′) = s′, and satisfies: (1) ∀x ∈ {e, e′, s, s′}, Ux(μe′

e ) ≥
Ux(μ); (2) ∃x ∈ {e, e′, s, s′}, Ux(μe′

e )>Ux(μ); then we call (e, e′) as a swap-
blocking pair under μ.

Definition 4. A matching μ is said to be two-sided exchange stable if and only
if there is no swap-blocking pairs in μ.

Definition 4 indicates that a matching is two-sided exchange stable if all devices
fail to increase their own or the matching edge server’s utility after changing the
matching edge server.
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3.2 FLOA Algorithm

Now we discuss the FLOA algorithm. The FLOA pseudo code can be found in
Algorithm 1, and the detail steps are shown in the following.

Algorithm 1: Federated Learning Offloading Acceleration Algorithm
Input: E:Set of device; S:Set of server; P:Set of split points to be

selected.
Output: A two-sided exchange stable matching μ;a split point strategy θ.

1 Initialization a matching μ.
2 Initialize a split point strategy θ for all devices based on the set P.
3 repeat
4 ∃e ∈ E,μ(e) = s.
5 Re-select a split point in P for device e such that Ue(μ0

e) is the
maximum.

6 if device e meets Ue(μ0
e) ≥ Ue(μ) then

7 Device e sends an offload request to server s′.
8 if Us(μ0

e)>Us(μ) or Us′(μ0
e)>Us′(μ) then

9 The edge server s′ receives the request:μ ← μ0
e

10 change split point strategy θ.
11 else
12 The edge server s′ rejects the request,
13 the split point strategy θ remains unchanged.

14 ∃e ∈ E, e′ ∈ E,μ(e) = s, μ(e′) = s′, and e �= e′.
15 Select a split point in P for device e and e′ such that Ue(μe′

e ) and
U ′

e(μ
e′
e ) is the maximum.

16 if device e and e′ meet Ue(μe′
e ) ≥ Ue(μ) and Ue′(μe′

e ) ≥ Ue′(μ) then
17 Device e sends an offload request to server s′, e′ sends an offload

request to s.
18 if Us(μe′

e )>Us(μ) or Us′(μe′
e )>Us′(μ) then

19 The edge servers s and s′ both receive the request:μ ← μe′
e

20 change split point strategy θ.
21 else
22 The edge servers s and s′ both reject the request,
23 the split point strategy θ remains unchanged.

24 until Matching μ meets Definition 4 ;

step 1 Initialize a matching μ and a split point strategy θ based on the selected
split point set P, which is obtained from the PPS algorithm (line 1–2).

step 2 Perform μ0
e for device e and re-select a split point in P such that Ue(μ0

e)
is maximized under all available split points (line 4–5).

step 3 If Ue(μ0
e) is greater than Ue(μ), which is the utility of device e when

matching the original matching server s, then let e send an offload request
to s′ (line 6–7).
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step 4 If Us(μ0
e) or Us′(μ0

e) increases after e changes the matched server, then
let s′ accept the offload request and update the matching μ and the split
point policy θ, otherwise μ and θ remain unchanged. (line 6–13).

step 5 Perform μe′
e for device e and e′, re-select a split point in P such that

Ue(μe′
e ) and Ue′(μe′

e ) is maximized under all available split points (line
14–15).

step 6 If both e and e′ have greater utility Ue(μe′
e ) and Ue′(μe′

e ) after swapping
the matched servers than that before, then e and e′ send offload requests
to s′ and s, respectively (line 16–17).

step 7 If the utility of s or s′, Us(μe′
e ) and Us′(μe′

e ) increases after the swap,
then s and s′ accept the offload request and update μ and θ, otherwise
μ and θ remain unchanged (line 18–23).

step 8 Repeat above steps until Definition 4 is satisfied.

4 Simulation and Experiment

In this section, we demonstrate the validity of the previous sections of the work
through simulation experiments. The DNN model to be trained is VGG16, and
the training data is a set of RGB images of size 224×224×3. All model training
tasks are performed using the pytorch. The computing power of the end devices
is simulated with the following 5 CPUs: AMD Ryzen 7 4800H, AMD Ryzen
9 3900X, i5-6200U, i5-11400H, and i7 11700F. And the computing power of
the edge servers is simulated with the following GPU: NVIDIA GeForce RTX
2060(Note book).

First, we use CPUs and GPU to train the DNN model, and get the forward
and backward propagation time for each layer of the DNN model on each end
device and each edge server, i.e. the value of Lf

ei,w, Lb
ei,w, Lf

sj ,w and Lb
sj ,w. Then

we get the size of parameter data and intermediate data for each layer of the
DNN model, i.e. the value of Gr and dw. We assume that there are several end
devices, 5 edge servers and one parameter server in the scheduling network, and
that the value of bandwidth Be,ps is 6MBps.

In Subsect. 4.1, according to PPS algorithm, we compare the total training
time of the task when different layers are used as split point, and get the set of
split points P. In Subsect. 4.2, simulations are carried out with different numbers
of end devices and different bandwidths between end devices and edge servers,
respectively, to validate the proposed system model and algorithm.

4.1 Split Point Selection Experiment

First, we train the DNN model using a set of images of size 224 × 224 × 3, and
obtain the forward and backward propagation time for each layer of VGG16 on
different end devices and different edge servers. Figure 2 shows the training time
for each layer of VGG16 on one of the devices and one of the servers. We then
study the structure of VGG16 to obtain the amount of data for the parameters
and intermediate data for each layer of VGG16.
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Fig. 2. The training time for each layer of VGG16 on device and server

Fig. 3. The total training time under different split points of VGG16

We also set up a range of different bandwidths between the end devices and
the edge servers. We then calculate the total training time ignoring waiting time
for the task at different bandwidths with different layers as split point. Figure 3
shows that time when the bandwidth between the end device and the edge server
is 6 Mbps. We obtain that the third, sixth and tenth layers are the three split
points with the smallest total training time.

4.2 Simulation Results

In order to compare the effect of the algorithm with different number of devices
and different bandwidths, first we set the bandwidth between the end device
and the edge server to 6 Mbps, and the number of end devices from 40 to 90.
Then we set bandwidth from 4 Mbps to 6 Mbps and fix the number of devices at
50. In both cases above, we calculate the time for a single iteration in different
cases: Non-split, Fixed-split, Random strategy, and FLOA. The result is shown
in Fig. 4.

In Fig. 4, FLOA indicates that we use the FLOA algorithm for training task
scheduling. Non-split indicates that no model splitting is used, i.e. all training
tasks are performed locally on the device. Fixed-split indicates that the split
point is fixed and the training task randomly selects a edge server for offloading.
Random strategy means randomly selecting a split point and a edge server for
splitting and offloading.
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Fig. 4. Simulation result. (a) One iteration time with different number of devices. (b)
One iteration time at different bandwidths.

As shown in the Fig. 4 (a), as can be seen from Non-split, the iteration time is
always limited by the worst-performing device as the number of devices increases.
FLOA obviously works better. Compared to Non-split, the one iteration time
of FLOA is reduced by 47%. Compared to Fixed-split, the one iteration time
is reduced by 14%. And compared to Random strategy, the one iteration time
is reduced by 28%. In the Fig. 4 (b), FLOA is still obviously better than other
solutions at different bandwidths.

5 Conclusion

In this paper, we use model splitting and task scheduling to reduce the over-
all training time for synchronous federated learning (FL) by reducing the time
for one iteration. First we build mathematical models for synchronous federated
learning in edge computing scenario. Then we analyse the mathematical model
and design the corresponding solutions: using PPS algorithm to reduce the size
of solution space and then proposing FLOA algorithm based on the two-sided
matching theory to obtain the DNN splitting and offloading scheme. Experimen-
tal and simulation results show that using model splitting in synchronous FL,
dynamically selecting split points and assigning training tasks can effectively
reduce the time spent in synchronous FL.
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Abstract. Malware detection has become a hot research pot as the development
of Internet of Things and edge computing have grown in popularity. Specifically,
various malware exploits firmware vulnerabilities on hardware platform, result-
ing in significant financial losses for both IoT users and edge platform providers.
In this paper, we propose CodeDiff, a fresh approach for malware vulnerability
detection on IoT and edge computing platforms based on the binary file similarity
detection. CodeDiff is an unsupervised learning method that employs both seman-
tic and structural information for binary diffing and does not require label data.
Through the SkipGram with Negative Sampling, we generate the word vocabu-
lary for instruction data. The Graph AutoEncoder is then used to embed both the
semantic and structure information into the representation matrix for the CFG.
After this, we employ the Improved Graph AutoEncoder to fuse all the func-
tion structures, function characteristics and function features to the fusion matrix.
Finally, we propose the specific matrix comparison to achieve the high accuracy
similarity results in short amount of time. Furthermore, we test the prototype on
binary datasets OpenSSL and Curl. The results reveal that CodeDiff gives high
performance on the binary file similarity detection, which contributes to identify
malware vulnerability and improves the security of Internet of Things platforms.

1 Introduction

1.1 Motivation

Internet of Things combines all edge devices with the internet to improve urban life
on multiple levels of modern smart city, enhance the productivity in industry 4.0 and
power the construction of smart grid. However, with the widespread use of IoT and
edge computing platforms, the safety for the firmware has become a critical issue. For
example, in September 2017, a hacker discovered four attack vectors by analyzing the
firmware of OFO shared bicycles and took control of the shared bicycles; in October
2017, LIFX smart light bulbs were also successfully hacked due to a password was leak-
age in its firmware. Two researchers from Northeastern University reversed the internal
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firmware of Xiaomi IoT devices and found loopholes in the entire Xiaomi ecosystem
at the ReCon BRX 2018 conference, as another example. A major aspect of IoT safety
comes from that their malware has an amount size of numbers and distribution, but they
usually have similar and even the same data sources, which makes them easy to get an
attack through the same malware flaws. As a consequence, it is essential to analyze the
binary file similarity for IoT and edge computing platform firmware to take precautions
against malware vulnerability.

1.2 Limitations of Prior Art

IoT firmware security inspection is a cloud-based service for device manufacturers and
operators, supply chain security management and service providers, and security eval-
uation and consulting agencies that provide non-invasive, multi-dimensional security
risk inspection for device firmware. It could help manufacturers in swiftly identifying
software security vulnerabilities and discovering numerous security risks such as weak
passwords, certificate risks, privacy leakage, improper configuration, etc. Generally, it
raises the security protection level of device firmware, for both the users and providers.
There have been several proven techniques used in the firmware security detection for
IoT device. CVE vulnerability based solutions [30] enables open source component
CVE vulnerability detection and scans the Linux distribution package vulnerabilities.
Code security [28] runs insecure library function usage detection and searches for the
cracked or risky encryption algorithms. Sensitive information leakage [29] leverages
but is not limited to the following methods: the source code leaks, information leaks in
binary files, and plaintext storage of sensitive data in configuration files. However, they
both rely on known malwares to detect the firmware vulnerabilities and lack of adap-
tion for new attacking methods. The main objective of this paper is to provide a novel
firmware vulnerability detection tool for IoT and edge computing platform, which could
track the vulnerability for even cross optimization/architecture/version binary files.

1.3 Proposed Approach

In this paper, we use similarity detection to identify the firmware vulnerabilities on the
IoT and edge computing platform. Through the accurate and robust binary diffing, we
can determine whether there exists the same source code vulnerability on the hardware
platform and notify users and platform providers, thereby improving the safety of the
IoT and edge computing platform. Specifically, we present the binary diffing system
called CodeDiff, which can analyze binary file similarity across multiple optimization
levels and CPU architecture, as well as the cross version revolution for the source code.
Through extracting and summarizing the semantic features of the binary files, we use
and extend the deep neural network-based method to carry out the feature extraction
and similarity comparison of the binary files. We generate the representation matrix for
each basic block by fusing the instruction and operand information. By transporting
the semantic information and assembling basic block-level feature vectors, the graph is
constructed through the control flow diagram inside the function. Combined with the
structural information inside the function, the mixed feature embedded vector represen-
tation is obtained. Then we bring the function feature vector into the CFG as a node
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feature and represent this as a network representation learning problem. Finally, we
use the graph auto-encoder to obtain the low-dimensional vector representation of the
binary file, and we carry out the similarity comparison process by comparing the vector
cosine distance of the files. The entire file is represented as a fusion matrix in this man-
ner, and we compare this fusion matrix between different binary files to determine the
binary similarity.

1.4 Contribution

We provide CodeDiff, an unique malware vulnerability detection tool that detects
vulnerabilities using binary file similarity detection to detect the vulnerabilities and
improves the firmware safety for the IoT and edge computing platforms. CodeDiff uses
an unsupervised model, the SkipGram and Graph AutoEncoder for binary diffing. In
order to generate high-quality embeddings for basic blocks, we fuse the semantic infor-
mation and the structure information through the Word2vec model, as well as the repre-
sentation of the control flow graph. Meanwhile, we consider the structural information
associated with functions and reduce the dimensionality of CFG to acquire the file fea-
ture vectors. Finally, we arrive at the optimal result for binary file similarity. Here we
summarize the primary contribution as follows.

• We implement a prototype of CodeDiff. It first utilizes natural language processing
(NLP) techniques to extract semantic information. Then, the SkipGram algorithm is
executed to generate a feature vector for each basic block, which contains semantic
and program-wide dependency information. Finally, an auto-encoder is used to fuse
and compress the feature matrix for the binary file, as well as for the entire function
call graph which represents the features of the function nodes.

• Extensive evaluations show that code diff can outperform state-of-the-art binary diff-
ing tools for diffing across versions, across optimization levels and across architec-
tures. A case study further demonstrates that CodeDiff can be analyzed to identify
real-world vulnerabilities. This case study also evaluates that doing similarity analy-
sis only for basic blocks and ignoring the entire file and function structure can easily
get into a local dilemma.

2 Problem Definition

For two different binary files, CodeDiff precisely measures the similarity and char-
acterizes the functional-level differences at a fine-grained level. The binary similarity
difference problem is formalized as follows.

Definition: Given a collection of executables F = {F1, ..., Fn}, and a query exe-
cutable Q = {Q1, Q2, ..., Qn}, containing several executable file sets of binary pro-
grams, we aim to determine for each executable Ti ∈ F whether it has a similar rela-
tionship with Qi ∈ Q.
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Hypothesis: 1) Two input binaries are for the different architectures. Include x86,
arm64, mips binaries as they are the most common binaries in the real world. 2) The
binary files are not packaged but can be optimized by different compilers. Moreover,
there will be distinct file-making code inputs generated even if the sources are the same.
For packaged malware binaries, we assume that they could be opened and decompiled
before getting submitted.

3 Method Overview

Fig. 1. CodeDiff: system architecture

The system takes the binary files as input and the similarity comparison result of embed-
ded vectors as output. It performs feature processing on binary files in two dimen-
sions to obtain the low-dimensional feature vectors. In order to get the feature vector of
the basic block, CodeDiff first disassembles the binary file to get the command of the
basic block. Then the embeddings are then generated by CodeDiff using the SkipGram
method. Meanwhile, CodeDiff uses the control flow diagram inside the function to gen-
erate the feature vector of each function. Finally, CodeDiff extracts feature vectors for
the entire file through the function call graph of the entire file, and CodeDiff compares
the similarity of the files by the multi-layer perceptron.

The whole system consists of four main parts: 1) preprocessing; 2) embedding gen-
eration; 3) graph vector generation; 4) contrastive analysis between vectors. Prepro-
cessing consists of two main parts: the generation of the control flow graph and the
generation of the feature vector of functions.

After generation, the feature vector of the function is used as the node attribute,
which belongs to the function call graph in the file. Then the nodes with attributes
are processed by the graph embedding algorithm, reducing the dimension of the entire
file on the basis of semantics and structure. The feature vectors of different files are
compared to determine the similar relationship between different files.



CodeDiff: A Malware Vulnerability Detection Tool 511

4 Preprocessing

Preprocessing analyzes binary files and generates input for embedding generation. More
specifically, it generates an Interprocedural Control Flow Graph (ICFG) for the binary
file, then a Word2vec model is applied to generate an embedding for each command-
line token (the instruction and operand). These generated token embeddings are further
transformed into feature vectors which represents the characteristic of a basic block.

4.1 Disassemble

Since binary files can not be directly utilized for similarity detection, it is essential
to choose an excellent disassembly tool for binary code disassembling. Currently,
there are various mature disassembly tools available for researchers to choose from
by need. There have been several typical disassembly tools, e.g., online disassembly
tool ODA [20], commercial disassembly tool IDA Pro and Hopper, open-source dis-
assembly tool Capstone [15]. These disassembly tools generally support features such
as multiple instruction architecture sets, multiple platforms, and multiple compilation
optimization options. We choose the IDA Pro disassembly tool which has the highest
performance in those characteristics in terms of the stability, reliability, and functional
diversity. The binary file is decompiled into assembly code by IDA Pro in this paper. In
the disassembly process, the function is divided into basic blocks according to the jump
of the instruction. Those basic blocks are formed as the nodes of the control flow chart,
and the connection relationship of them, known as the jump position of the instruction,
is generated as the flow chart edges. The control flow chart and the control flow graph
are formed in this way, and the decompiled data is statistically integrated to obtain more
detailed structural features inside the file.

4.2 Generation of Control Flow Graph

By combining the call graph with the control flow graph for each function, CodeDiff
leverages IDA pro [14] to extract basic block information. In the meantime, IDA pro
generates an interprocedural CFG (ICFG) which provides program-wide context infor-
mation. This information contributes a lot to distinguishing semantically similar basic
blocks in various settings.

4.3 Consideration of Structural Features

Besides the CFG of the function, we take into consideration of the structural features in
the function as well as the statistical features of the numerical constants, which offers a
high reference to judge the similarity of binary files. We count and calculate numerical
features such as out-degree, in-degree, number of numerical constants, number of nodes
and etc.

4.4 Generation of Semantic Features

To achieve high feature extraction performance, we take account of the semantic infor-
mation, from the low-dimensional basic block to the high-dimensional binary file.
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Specifically, we generate feature vectors for each basic block from the semantic infor-
mation. The whole process includes two subtasks: token embedding generation and fea-
ture vector generation. Here we train a token embedding model derived fromWord2Vec,
then we make use of this model to generate the token (opcode and operand) embed-
dings. Following that, we generate the feature vector of the basic block from the token
embedding. We explain the details of semantic feature generation in the following steps.

Normalization: Before the training of the token embedding model, we normalize the
serialized code, which can decrease the difference in serialized code that comes from
different compilation choices. In particular, we refine the code in the following nor-
malization process. 1) All numeric constant values are replaced with the string “im”;
2) All general purpose registers are renamed according to their lengths; 3) Pointers are
replaced with the string “prt”; 4) The function address is replaced with the string “addr”;
5) For the function to be jumped, the string “func” is replaced.

Model Training: CodeDiff treats the negative sampling as our modified Word2Vec ver-
sion of the sentence algorithm [13]. Here we train a token embedding model that nor-
malizes the negative sampling by learning token embeddings. This training step is only
needs to be completed once then we can use this model to generate a vector for the
token with no limitations. A word embedding is just a vector that is learned to capture
the contextual semantics of the word meaning from a given article. There are multi-
ple methods for generating vector representations of words, including the most popular
models of Continuous Bag of Words (CBOW) and Skip-Gram [21], both of which uti-
lize the model proposed by Mikolov et al. Here we take advantage of the Skip-Gram
model to represent the target through context (Fig. 2).

Fig. 2. SkipGram, model overview
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SkipGram: Based on the token embeddings, the feature vectors of the basic blocks
get generated. Since each basic block contains multiple instructions, each instruction
involves an opcode and potentially multiple operands. We compute the average of the
operand embeddings, and concatenate them with the opcode embeddings to generate
instruction embeddings. Furthermore, we summarize the inner of the instruction block
to formulate the block feature vector. In this paper, we improve the SkipGram through
the negative sampling method, which is called the SkipGram of Negative Sampling
(SGNS). We introduce the details in the following.

1) Probability function: w(c, j) is the j-th word predicted on the c-th context posi-
tion; w(O, c) is the actual word present on the c-th context position; w(I) is the only
input word; and u(c, j) is the j-th value in the U vector when predicting the word for
c-th context position.

p(wc.j = wO,c|wI) =
expuc,j

∑V
j′=1 expuj′

(4.4.a)

2) Loss function: as we want to maximize the probability of predicting w(c, j) on
the c-th context position, we can represent the loss function L as follows.

L = −logP (wc,1, wc,2, ..., wc,C |wo) = −
C∑

c=1

uc,j∗ +
C∑

c=1

log

V∑

j=1

exp(uc,j) (4.4.b)

As a result, the fundamental block is standardized, and the semantic information is
extracted by SkipGram. Furthermore, two loss layers, softmax and negative sampling
are used in this algorithm. The weight gradient of the last layer is no longer related
to the derivative of the activation function but is only proportional to the difference
between the output value and the true value. The backpropagation is multiplicative,
so the update of the entire weight matrix will be accelerated, which means that the
convergence is faster at this time (Fig. 3).

Fig. 3. Vector generation for basic blocks
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5 Vector Generation for Binary Files

In previous steps, we generate the CFG and feature vectors, as well as the basic block
embeddings. Specifically, CodeDiff performs node feature processing on the basic
block and merges the feature vector of each CFG graph with the node block vector
into one graph. Here we model this problem as a graph embedding problem. In our
solution, we first make use of the Graph AutoEncoder (GAE) [23] to embed the feature
vectors into the adjacent matrix, then compress this matrix to obtain a low-dimensional
feature vector as the middle representation for the function. Second, we use another
GAE to substitute this middle representation into the call function graph, resulting a
low-dimensional feature vector to represent the binary file. In the following sections,
we first describe the enhanced GAE algorithm in depth and the method of generating
low-dimensional feature vectors. Then we demonstrate the necessity of graph merging
and report how CodeDiff accomplishes it (Fig. 4).

Fig. 4. Graph AutoEncoder (GAE), architecture overview

5.1 Improved AutoEncoder for Graph Embedding

Graph AutoEncoder (GAE) is frequently used in unsupervised learning, which is suit-
able for learning graph node representations with unsupervised information. To over-
come the problem of varied dimensions, we do a complement standardization process
for each matrix of dimensions. Meanwhile, we achieve the consistency of the matrix
dimensions based on the weight. We classify and compress CFG and blocks for each
dimension, and then perform post-normalization matrix processing on the compressed
CFG. Lastly, this matrix is trained in the GAE model. Meanwhile, considering that
CFG contains structural features and semantic features simultaneously, we innovatively
improve the GAE model. In particular, we create two feature matrices independently
for the graph embedding, which embeds both structural features and semantic features
in the training at the same time. Further experiments reveal that the improved GAE
model has high precision and quick convergence. We illustrate the algorithm detail of
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the improved Graph AutoEncoder to show how to generate low-dimensional feature
vectors. The Graph AutoEncoder realizes the reconstruction of samples by reducing the
number of neurons in the hidden layer. In order to duplicate the input data as closely
as feasible, the hidden layer of the Graph AutoEncoder must capture the important fea-
tures of the input data. To put it another way, the Graph AutoEncoder must find the
primary components that can represent the original data. Compared with the normal
AutoEncoder, the GAE has two different structures. 1) GAE uses an n × n convolu-
tion kernel in the encoder process; 2) GAE has no data decoding part, instead, it has
a graph decoder. Meanwhile, GAE adjusts the adjacency matrix and the loss compu-
tation. Except for the main differences, GAE can be used for latent vector generation,
just like the normal AutoEncoder. Moreover, GAE can be used for link prediction in
recommendation tasks.

The following diagram illustrates the kernel concepts for the Improved GAE Ini-
tially, the Variational AutoEncoder (VAE) [24] extracts the feature vectors for the com-
posite graph, which can generate the embedding vectors as well as make the compres-
sion for the graph. However, GAE can not directly apply the method of VAE due to
the irregular graph-structured data. Each graph has unordered nodes of variable size,
and each node in the graph has a different number of neighbors, so we can no longer
directly use convolutions to process control flow graphs that contain features of nodes.
We use the following steps for the graph data process.

1) In GAE, the encoder is a two-layer graph convolutional network. The first layer is
shown in the following equation, in which Ā is the symmetrically normalized adjacency
matrix.

X = GCN(X,A) = ReLU(ÃXW0), Ã = D− 1
2 AD− 1

2 (5.1.a)

The second Graph Convolution Network (GCN) layer generates μ and logσ2, where

μ = GCNμ(X,A) = ÃXW1, logσ2 = GCNσ(X,A) = ÃXW1 (5.1.b)

Now if we combine the math of two-layer GCN together, we get

GCN(X,A) = ÃRELU(ÃXW0)W1 (5.1.c)

which generates μ and logσ2. Then we can calculate Z using parameterization trick.

Z = μ + σ ∗ ε, ε ∼ N(0, 1) (5.1.d)

Fig. 5. GAE for binary file vector generation
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2) The decoder (generative model) is defined by an inner product between latent
variable Z. The output of our decoder is a reconstructed adjacency matrix Â, which is
defined as

Â = σ(zzT ) (5.1.e)

where σ(·) is the logistic sigmoid function.
In summary, the encoder is represented as

q(zi|X,A) = N(zi| μi, diag(σ2
i )) (5.1.f)

and the decoder is represented as

p(Aoj = 1|zi, zj) = σ(zT
i zj) (5.1.g)

3) The loss function accesses the difference between the created graph and the orig-
inal graph, which is nearly identical to the VAE loss function. It consists of two parts
of the function. The first part is the reconstruction loss between the input node feature
matrix and the reconstructed node feature matrix. More specifically, it is the binary
cross-entropy between the input high-dimensional control flow graph (A) and the out-
put low-dimensional embedded feature vector (Â) logits. The second part is the KL-
divergence between q(Z|X,A) and p(Z), where p(Z) = N(0, 1). It measures how
well our q(Z|X,A) matches p(Z).

L = Eq(Z|X,A)[logp(A|Z)] − KL[q(Z|x,A)||p(Z)] (5.1.h)

5.2 Matrix Generation Through GAE

As shown in Fig. 1, we employ the GAE model for the representation matrix genera-
tion for function and binary files. Several feature extraction method, such as machine
learning and deep learning, have been used in feature engineering on binary file simi-
larity detection. Moreover, the strong generalization ability models like CNN and RNN
can well learn the feature information of space and time. However, such methods suffer
low performance in binary similarity analysis due to the unevenly distributed dataset of
normal binary files with large/small samples. Binary similarity detection system needs
to be able to detect unknown binary file similarity and unknown malicious binary code
detection ability, but the supervised depth model can not accurately identify and clas-
sify unknown binary files. Automatic encoder outperforms standard deep unsupervised
algorithm, especially in representation learning and confrontation training constraints
in potential space. These researchers have made significant contributions in the direc-
tion of anomaly detection using the depth unsupervised algorithm, which proves the
feasibility of similarity comparison between the unsupervised algorithm in the natural
language field and the image field. In contrast to the low-dimensional feature extrac-
tion of the depth automatic encoder, the unsupervised depth neural network based on
the variational self-encoder uses the multivariate Gaussian probability distribution to
reconstruct the input compression feature to the hidden space, and the probability den-
sity function is used for error evaluation. The overall similarity detection performance
is superior than that of the simple automatic encoder.
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Function Matrix Generation: In this stage, we generate the representation matrix for
function of the binary file. The function itself contains multiple fundamental blocks,
each of which has its own mnemonic and operand. After we use the SkipGram model
to generate vector for each block, now we have both the graph adjacent matrix and
feature vector for each node in this graph. The adjacent matrix and the feature matrix
are used as the input to the GAE model in this case. Through this process, we could find
that the compressed data in the GAE model is exactly the fused representation matrix
for this function, which contains both semantic information and structure information.
Then we perform additional analysis for this matrix to make the binary file similarity
detection.

Binary File Matrix Generation: In this stage, we aim to construct the representation
matrix for the whole binary file. We make three main types of fuse matrix according
the function number in each binary file, taking into account the unevenly distributed
data for each binary file (different file has different file size and different number of
functions and blocks). In particular, we make the small, medium and large for binary
file with function numbers larger than 10, 100 and 1000. The binary file with number
less than 10 is also classified as the tiny type. In the binary file, apart from the semantic
information represented by the fused matrix, there exists another important informa-
tion, the statistical feature of function characteristics, which describes another aspect
of function feature. As a result, we have two feature vectors for each node in the func-
tion call diagram. Instead of vector concatenation directly, we employ the dual channel
solution for the Graph AutoEncoder, as shown in Fig. 5. Here we generate the adjacent
matrix for the function call diagram, with the function caller as the in-degree and the
function called as the out-degree. For each node in this binary file graph, it has specif-
ically two feature vectors, the compressed semantic and structure feature from GAE
and the statistical characteristic feature. The second GAE receives the two-channel fea-
ture matrix and the adjacent matrix to make a compressed representation matrix for this
entire binary file. Next this generation, we make further analysis on the compressed
data in the following section.

6 Similarity Comparison

The purpose of code comparison is to find a graph embedding-based matching solution,
which maximizes the similarity of the two input binaries. A spontaneous choice is to
perform a linear assignment based on the basic block embedding to produce the best
match. This strategy, however, has two fatal limitations. 1) Inefficiency: the binary file
may contain a huge number of blocks, requiring a long computation time; 2) Accuracy:
the linear assignment ignores any graph information and file header information, result-
ing in a greater error rate. Here we present a new comparison algorithm, the multi-layer
perceptron, which can achieve high accuracy in an efficient manner.

6.1 The Design of Multi-layer Perceptron

The multi-layer perceptron and the similarity measurement network consists of two
parts: the feature splicing and the fully connected neural network. Specifically, the two
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graph feature embedding vectors −→g 1and
−→g 2 are firstly spliced to form a new feature

vector. Then the concatenated feature vector gets input into the neural network, which
has two full connection layers. The first layer uses ReakyReLU/ReLU activation func-
tion, whereas the output layer does not use activation function. Consequently, this net-
work produces a scalar that denotes the relationship between the two graph feature
embedding vectors. To put it another way, this scalar represents the similarity between
two binary files, which is exactly the similarity score.

As previously stated, the multi-layer perceptron is a network structure composed of
two fully connected layers, and the final output is only one scalar. We use the following
Equation to represent this process:

x = g1‖g2 (6.1.a)

In this Equation, g1 and g2 refer to the two feature embedding vectors generated by
the graph attention network in Section ‘Matrix Generation Through GAE’, and ‖ means
the cascade operation.

Assuming that the input x ∈ R
n×d, n × d represents the dimension, the output of

the hidden layer isH andH ∈ R
n×d. Since both the hidden layer and the output layer

are fully connected layers, the weight coefficient and bias parameters of the hidden
layer can be set as Wh ∈ R

d×h and bh ∈ R
1×d, the weight and bias parameters of

the output layer are W o ∈ R
h×q and bo ∈ R

1×q . Then the hidden layer calculation is
shown in Eq. (6.1.b).

H = σ (xWh + bh) (6.1.b)

In this Equation, σ indicates the activation function LeakyReLU/ReLU, and the
output layer is calculated as shown in Eq. (6.1.c).

m = HWo + bo (6.1.c)

Since the final output layer does not use the activation function and merely con-
ducts simple dimensionality reduction, the similarity scores of the final two embedding
vectors are as follows.

score (g1, g2) = m (6.1.d)

6.2 The Objective Function

The training objective function of the model is calculated based on the following loss
function.

L =
1
k

k∑

i=1

(scorei − yi)
2 + λ‖W‖22 (6.2.a)

In Eq. (6.2.a), k indicates that there are k pairs of binary files, scorei denotes the
similarity score of the i pair of binary files, and yi means the similarity label of the i
pair of files. The first part of the function represents the mean square error loss, and the
second part is the regularization term to prevent the model from overfitting.
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6.3 The Similarity Detection Algorithm of Binary Code

Combining the two improved methods given above, we propose a new similarity detec-
tion algorithm for binary code based on graph embedding representation. The detection
algorithm is shown below. The entire binary code similarity detection process is divided
into four steps:

1. Input n pairs control flow chart < g1, g2 > of binary functions, perform unsuper-
vised feature extraction through SkipGram model, and extract corresponding func-
tion instruction features.

2. Combine the extracted instruction features and flowcharts into the graph embedding
generation network, and generate the corresponding graph embedding vectors <−→g 1,

−→g 2 >.
3. Perform feature fusion on each pair of graph embedding vectors as the input of the

multi-layer perceptron.
4. Use the multi-layer perceptron neural network to learn the similarity measure, and

get the similarity score of each pair of binary functions.

7 Results

This section assesses the performances of CodeDiff on binary files, which consist of
two parts, the cross-version files and cross-optimization-version files. We investigate the
dataset of OpenSSL [25] and Compiler [26] to demonstrate the usefulness and effective-
ness of CodeDiff. Moreover, we analyze the cross-architecture binary diff performance
on the case study, utilizing the FFMpeg dataset.

Table 1. Diff results for cross version binary files

Cross version Precision Recall

BinDiff Gemini VulSeeker CodeDiff BinDiff Gemini VulSeeker CodeDiff

OpenSSL fips2.0.16-1.1.1m 0.769 0.640 0.601 0.785 0.521 0.665 0.638 0.717

0.9.6l-1.1.1m 0.775 0.661 0.638 0.832 0.582 0.639 0.681 0.764

1.0.0s-1.1.1m 0.790 0.739 0.780 0.928 0.778 0.795 0.776 0.908

1.1.0l-1.1.1m 0.856 0.750 0.782 0.922 0.767 0.809 0.803 0.912

Average 0.798 0.698 0.700 0.867 0.662 0.727 0.725 0.825

Curl 7.42.0-7.82.0 0.672 0.721 0.746 0.822 0.601 0.730 0.724 0.802

7.52.0-7.82.0 0.771 0.843 0.919 0.936 0.795 0.839 0.806 0.930

7.62.0-7.82.0 0.934 0.912 0.923 0.953 0.898 0.891 0.917 0.941

7.72.0-7.82.0 0.946 0.931 0.914 0.966 0.934 0.927 0.897 0.938

Average 0.831 0.849 0.876 0.919 0.807 0.847 0.836 0.903

Experimental Setup: Without sacrificing generality, we make our experiments on a
modern operating system, DeepIn 20.3, which is a debian based Linux system. Our
computer has a CPU of I7-10700K with an NVIDIA gpu of RTX2080, as well as 32GB
memory. Furthermore, we make extra experiments on the Raspberry Pi 4 with 4GB
memory to verify the binary diff, which also shows the lightweight of our method.
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Baseline Solution and Groundtruth: Here we compare CodeDiff to numerous state-
of-art binary diff technologies, such as BinDiff, Gemini and VulSeeker [27]. To get the
groundtruth for binary file difference, we employ the source code analysis to gain the
code line similarity detection.

Metrics: generally, we utilize the following metrics to evaluate the performance of
CodeDiff, the precision rate, the recall rate and the unit process time for binary file.
Precision is the fraction of relevant instances among the retrieved instances, while recall
is the fraction of relevant instances that were retrieved. The unit process time for binary
file means the real process time to represent a binary file to an embedded vector, which
could be used directly in the multi-layer perception to get the similarity score.

7.1 Diffing Performance

We implement the prototype of CodeDiff and analyze the diff performance through
the metrics of precision and recall. We make the comparison for FFMpeg dataset from
three angles, the cross-version and cross-optimization analysis for OpenSSL and Curl
datasets, and the cross-architecture analysis. We download the latest version of those
datasets (in the time of this paper was written) and compile them using the gcc-v9.4
compiler.

Cross-Version Diffing. First, we take advantage of four seperate tools to differentiate
the cross version binary files with default optimization (O1 level) for datasets OpenSSL
and Curl, and the results are displayed in Table 1. It is not difficult to find that our
method, CodeDiff, achieves the average highest precision and recall among all diff
tools. E.g., for the OpenSSL diff between version 0.9.6l-1.1.1m, CodeDiff achieves the
0.832 precision with 0.764 recall, which improves at least 10% than other three meth-
ods. Meanwhile, when the two different binary files have slight differences, CodeDiff
achieves both high precision and recall, implying that CodeDiff can make successful
analysis for binary files. We can also see that the analysis tool Gemini and VulSeeker
have higher recall than BinDiff, which proves that additional semantic information
helps improve the quality of binary file diff.

Cross-Optimization Diffing. In this section, we run tests to evaluate the CodeDiff
performance on different optimization methods, using the datasets of OpenSSL and
Curl. We compile those datasets on our Deepin OS with multiple optimization levels,
such as O0, O1, O2 and O3. The results are then recorded and reported in Table 2. We
can plainly find that CodeDiff achieves the maximum precision and recall performance
in most cross optimization cases. However, in the case of O2-O3 in OpenSSL 3.0.1 and
O2-O3 in Curl 7.30.0, BinDiff achieves the highest Precision and Recall, separately.
While CodeDiff achieves a smaller precision and recall, which comes from the small
number of binary files. It is hard to extract accurate semantic information from only a
few binary files and embed them into the adjacent matrix. However, even in such special
cases, CodeDiff also achieves high diff performance in both precision and recall, which
proves that CodeDiff can successfully make the comparison for distinct optimization
binary files.
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Table 2. Diff results for cross optimization binary files

Cross optimization Precision Recall

BinDiff Gemini VulSeeker CodeDiff BinDiff Gemini VulSeeker CodeDiff

OpenSSL 3.0.1 O0-O3 0.291 0.279 0.272 0.324 0.133 0.15 0.15 0.299

O1-O3 0.631 0.506 0.467 0.674 0.519 0.538 0.528 0.626

O2-O3 0.947 0.819 0.871 0.914 0.82 0.863 0.868 0.933

1.1.1m O0-O3 0.327 0.295 0.291 0.405 0.16 0.23 0.209 0.401

O1-O3 0.698 0.606 0.621 0.775 0.504 0.604 0.634 0.689

O2-O3 0.932 0.855 0.834 0.951 0.857 0.919 0.903 0.935

Curl 7.82.0 O0-O3 0.138 0.14 0.149 0.249 0.082 0.141 0.136 0.302

O1-O3 0.748 0.714 0.671 0.909 0.685 0.695 0.718 0.842

O2-O3 0.92 0.936 0.942 0.967 0.862 0.929 0.878 0.975

7.30.0 O0-O3 0.136 0.171 0.184 0.325 0.074 0.149 0.142 0.302

O1-O3 0.649 0.723 0.698 0.841 0.553 0.639 0.618 0.79

O2-O3 0.91 0.932 0.908 0.948 0.964 0.93 0.949 0.947

Table 3. Diff results for cross architecture binary files

Cross architecture Precision Recall

BinDiff Gemini VulSeeker CodeDiff BinDiff Gemini VulSeeker CodeDiff

ffmpeg (7:4.3.3-0+deb11u1)-amd64 arm64 0.742 0.908 0.757 0.913 0.552 0.802 0.536 0.882

armhf 0.793 0.803 0.8 0.838 0.777 0.794 0.704 0.781

i386 0.885 0.939 0.814 0.926 0.857 0.887 0.768 0.952

mipsel 0.679 0.827 0.643 0.862 0.587 0.763 0.531 0.846

Cross-Architecture Diffing. More experiments are conducted here to verify that the
semantic-based method, CodeDiff, can perform diff on even different CPU architec-
tures, e.g., AMD64, ARM64, x86. We download the latest FFMpeg from the debian
repository with different CPU architectures to perform the cross architecture diffing,
as indicated in Table 3. In the cross architecture diffing, we can find that CodeDiff
achieves the best performance on both precision and recall, which comes from the accu-
rate semantic information extraction and function graph building. We can also see that
the amd64 architecture has the highest similarity with the i386 architecture among all
diff tools, which is in line with the intuition that 32bit program and 64bit program has
slight differences.

7.2 Model Parameter Selection

In CodeDiff, there are two important structures, the Word2vec model, as known as the
SkipGram method, and the Graph AutoEncoder (GAE). The building of corpus highly
relies on the SkipGram, which dependents more on the word itself instead of the hyper
parameters in SkipGram. Here we conduct experiments about changing hyper param-
eters in the GAE to investigate the relationship between the binary diff performance
and hyper parameters in GAE. Specifically, we change the factors of dropout rate and
a number of units in the hidden layer, to demonstrate the diff performance in the cross-
version dataset OpenSSL and Curl with default gcc optimization (O1).
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Fig. 6. Hyper parameters selection in CodeDiff

Dropout Rate. As shown in Fig. 6a, we analyze the relationship between dropout in
GAE and model predict accuracy (precision and recall). We can immediately find that
there have slightly performance changes along with the dropout rate, indicating that
our GAE model does learn the characteristic of binary files and there is no obvious
overfitting detected. Moreover, to assurance CodeDiff has the highest adaptability for
different datasets, here we set the dropout rate to zero.

Hidden Layer. In addition, we change the number of hidden layers in the GAE model
to decide which type of hidden layer has the best performance in the binary diff task,
the result is shown in Fig. 6b. Along with the enlargement of the number of the hidden
layer, we can find the precision and recall both growth. However, when the hidden layer
is larger than ‘32-16’, the precision and recall of datasets benefit little, but the compu-
tation time for the GAE grows quickly, which reduces the effectiveness of CodeDiff.
Therefore, we select the ‘32-16’ as our hidden layer to attain high accuracy while also
computing efficiency.

7.3 Effectiveness

This section makes extra study for CodeDiff in the data process to prove the effec-
tiveness of our method. Specifically, we analyze the processing time for each step in
CodeDiff. Moreover, we transplant CodeDiff to Raspberry Pi to process data, which
further demonstrates the lightweight of CodeDiff.

Process Time. This section details the process time of the binary file and the training
time of the model.

1. Model Training: we have a total of four models to be trained, SkipGram, GAE for
basic blocks, GAE for finary files and Multi-layer perceptron. Since this work is a
one-time effort, we are more comcerned with the prediction accuracy rather than the
training time, which results in 100–300 epoches for loss converges for each model.
This training time totally consumes 11 h in our DeepIn OS, and it can be accelerated
by using more advanced CPU and GPU.
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Fig. 7. Binary matrix generation time on different platform

2. Data Preparation: this step extracts the instruction and operand information from
raw binary file using the IDA pro tool. Each binary file takes average of 6.9 s to
extract the information required by CodeDiff.

3. Block Matrix Generation: in this stage, we transform the word (instruction and
operand) in blocks to vector referring to the pre-build word corpus by the SkipGram
model. Then we embed this vector to the adjacent matrix inside the function to fuse
the CFG Matrix. When processing a binary file with 194 identical functions, we
make use of 1.3 s to generate the matrix for each block.

4. Binary Matrix Generation: we use the improved GAE model to embed the CFG
feature matrix and statistic feature to the function call graph and generate the binary
matrix. This processing time highly depends on the size of the binary file. We report
the detailed relation between generation time and file size in Fig. 7a. We can clearly
see that there is a linear relationship that represents the process time of CodeDiff
is almost a constant time for each unit size of binary file. Specifically, we use an
average of 1.2 s to process 1kb size of the binary file.

5. Similarity Comparison: here we employ the multi-layer perceptron to measure the
similarity for each pair of binary functions, and then we generate the precision and
recall for the binary file comparison. This process uses an average of 20 s for a pair
of binary files with 50 kb size. From the process time evaluation of the above five
steps, CodeDiff exhibits high efficiency for binary file diffing. We further proves the
lightweight of our method in the following sections.

Evaluation on Raspberry Pi. In this section, we port our model from Desktop Com-
puter to an Edge Computing Node, the Raspberry Pi, to further demonstrate the great
efficiency and lightweight of our model. We evaluate the unit processing time for block
matrix generation, binary file matrix generation and similarity comparison, as shown in
Fig. 7b. Specifically, our Raspberry Pi runs the Pi OS version 5.10.63-v8+ in aarch64
architectures, which has 4GBROM and 32GBRAM.Moreover, we increase the SWAP
size to 4GB to prevent the run out of memory. CodeDiff employs an average of 4.9 s
to process the block matrix. For binary matrix, CodeDiff utilizes an average of 9.7 s
to process 1kb size of binary file. However, this time increases to 29.6 s when the size
binary file gets larger than 600kb, which comes from the memory lack of ROM and
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the SWAP memory does decrease the processing time. A large ROM of a faster disk
for SWAP memory will help improve this problem. And CodeDiff uses an average of
97 s for similarity comparison to a pair of binary files with 50 kb size. This evaluation
on Raspberry Pi proves that CodeDiff achieves both high efficiency and lightweight in
binary file similarity detection.

8 Related Work

Program Logic-Based Detection. Based on the program logic, this detection technol-
ogy uses data structures, such as the lists, trees and graphics, to record and describe
the data flow and control flow information of the program. Simply put, the intermedi-
ate representation can capture certain syntax and semantic information in the program,
this technology matches the similar sequences and subgraphs to find logically and func-
tionally similar program basic blocks. This program logic is reflected as the data flow
inside the function. It is also reflected as the input/output of the function. For example,
Multi-MH system [1] used the input/output of the function to grasp the semantics, and
it took advantage of the signatures to find vulnerable code with similar behavior. The
binary search engine, Bingo, utilized input/output samples generated from symbolic
expressions to match semantically similar functions.

The program control logic can be described by function call sequence outside func-
tion level, control flow graph (CFG) inside function level and logic tree in basic block
level. For example, the tool HAWK [2] implemented a dynamic detection method based
on the System Call Dependence Graph (SCDG) birthmark. The TEDEM method pro-
posed by Pewny [3] used the edit distance of the expression tree to measure the sim-
ilarity in the basic block level. The well-known binary similarity detection systems,
discovRE [4] and Genius [5], applied the optimized graph matching algorithm based
on attribute-optimized CFG. Meanwhile, tools like BinHun [6] and iBin-Hunt [7] were
also based on CFG, and they utilized the symbolic execution to determine the similar-
ity of basic blocks and functions. CFG is a high degree of abstraction of the program
code, which means it could effectively capture and display the control flow informa-
tion of the program. In addition, CFG is an intermediate representation, which can
be used to represent both source code and assembly code. Due to the cross-language
nature of CFG, most similarity detection technology rely on CFG heavily, especially
for cross-architecture binary code detection. The program logic-based detection have
the advantages of high accuracy, strong scalability and flexible matching algorithms and
strategies. However, there exists fatal limitation, which is the high computing require-
ment. There is an expensive process for the extraction of data flow and CFG. Besides,
the graph matching algorithm lacks for a polynomial solution, which means that the
amount of calculation increases exponentially with the size of the code base.

Semantic-Based Detection. Semantic-based detection technology compares the
semantic differences between functions and components. By capturing the semantic
information in the program assembly code, it achieves similarity measurement. Such
a method generally draws on NLP, image recognition and other technologies. It uses
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deep neural networks (DNN) to embed program semantics, and then implements large-
scale task processing by comparing or querying embedded vectors. The main inter-
mediate representation for binary code includes three parts: normalized assembly text,
other intermediate languages and CFG. The neural network model mostly adopts the
siamese architecture, which uses the large-scale feature of the program code to train
the sample library. This implies that the experience knowledge is not necessary for the
DNN. Xu et al. [8] proposed the first method of CFG embedding for binary functions
based on neural networks. In the Gemini system, they used the improved Structure2ve
model to construct the Siamese architecture network, which embedded the CFG in a
high-dimensional vector and calculated the similarity between functions by the cosine
distance of the vector. The Structure2ve model was derived from the graphical model
inference algorithm, which aggregated the vertex-specific feature vector from the topo-
logical structure of the graph in a recursive manner. Primarily, the PV-DM model was
designed for text data, and it learnt document representation based on the identification
of the document. Then Ding et al. put forward the Asm2vec [9] model, which was an
assembly code representation learning model based on an improved PV-DMmodel [16].
The Asm2vec model made use of the mechanism of custom function inlining and ran-
dom walk to model the CFG as a linear sequence of assembly instruction. It took the
assembly text as input, learnt the instruction semantics, built the instruction embed-
ding vector, and got the semantic embedding vector of the function without any prior
knowledge. As the first scheme which used representation learning as assembly code to
construct feature vectors, the Asm2vec provided outstanding anti-obfuscation and anti-
compiler optimization properties. However, it was not suitable for cross-architecture
comparison. TheWord2vec [13] was a Google NLP tool with the ability to vector words
and quantitatively measured the relationship between words. The SAFE network [10]
then took advantage of the Word2vec model of NLP to implement instruction embed-
ding in assembly language firstly. Then it utilized recurrent neural network (RNN) [17]
to capture the context of the instruction sequence and embed the functions. The SAFE
abandoned CFG as the intermediate representation. Instead, the semantic information
of assembly code was directly embedded into high-dimensional vectors by DNN, which
not only saved the time-consuming CFG extraction process, but also avoided the intro-
duction of human bias. Based on the RNN architecture, the SAFEmodel used the super-
vised learning method to train the model, which could automatically construct positive
sample pairs and sub-sample pairs randomly. However, for the cross-architecture detec-
tion tasks, with the increase of system instruction architectures, the size of the training
sample library needed to be expanded exponentially. This was a fatal limitation for the
SAFE model in the scalability. As the first method to use a semantic representation
to learn a binary code intermediate language, GeneDff [11] enabled cross-architecture
clone detection. It relied on dynamic analysis of VEXIR’s intermediate language [18],
which eliminated the differences between different instruction architectures. It gener-
ated semantics for the VEXIR to embed function vectors through an improved PV-DM
model. Since each assembly instruction will be translated into multiple VEX instruc-
tions, the model regarded the combination of multiple VEX instructions translated from
the same assembly instruction as a word. The basic bloc was also treated as a sentence,
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whereas the function was regarded as a paragraph. Finally, GeneDff used the cosine
distance between vectors to measure the similarity between functions.

In addition to the improvement of detection speed and accuracy, the advantage of
applying neural networks to similarity detection tasks is flexibility. The matching algo-
rithms used in traditional detection methods are usually fixed, but the neural network
can be retrained for different tasks. Moreover, the neural network can not only learn and
select the features automatically, but it can also learn the weights of distinct features,
which is difficult to determine by artificial methods, thereby reducing or even avoiding
the overfitting caused by manual design and features extraction.

Defects on Existing Works. Despite these positives, we identify three key drawbacks
of existing learning-based methods. First, current learning-based methods are unable
to achieve efficient program-wide binary difference on block-level in a fine-grained
basis. Most methods analyze the difference on the function-level, without delving into
the similarity inside the function structure. Additionally, those methods rely heavily on
fine-grained frameworks and efficient difference tools. Only in this way, can those meth-
ods conduct a comprehensive and effective similarity comparison. Second, representa-
tions are not comprehensive enough for feature selection. For example, InnerEye [12]
extracted basic block semantic information using NLP techniques and the longest com-
mon subsequence, but it only considered dependency information in local and small
control code components. Asm2Vec only generated random walks inside functions to
learn token and function embeddings. Third, there is a lack of a general algorithm
which can be both suitable across architecture and common binary files. Because of
the extreme diversity of binary files, supervised learning may be affected by overfit-
ting. Meanwhile, considering the entire instruction as an object may result in serious
out-of-vocabulary problems (OOV) [19].

9 Conclusions

In this paper, we propose CodeDiff, a new technique for malware vulnerability detec-
tion on IoT and edge computing platforms that employs both semantic and structure
information to detect binary similarity. Besides, CodeDiff is an unsupervised learn-
ing method which does not require label data. Through the SkipGram with Negative
Sampling, we build the word vocabulary for instruction data. Then we use the Graph
AutoEncoder to embed both the semantic and structure information to the representa-
tion matrix for the CFG. After all, we utilize the improved Graph AutoEncoder to fuse
all the function structure, function characteristics and function features to the fusion
matrix. Finally, we present the specific matrix comparison to achieve a high accuracy
similarity result in fast speed. Furthermore, we make an experiment for the prototype
on binary datasets OpenSSL and Curl with a case study of FFMpeg, which shows that
CodeDiff gives a high performance on the binary file similarity detection.
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Abstract. Due to the drawbacks of Federated Learning (FL) such as
vulnerability of a single central server, centralized federated learning
is shifting to decentralized federated learning, a paradigm which takes
the advantages of blockchain. A key enabler for adoption of blockchain-
based federated learning is how to select suitable participants to train
models collaboratively. Selecting participants by storing and querying
the metadata of data owners on blockchain could ensure the reliability
of selected data owners, which is helpful to obtain high-quality mod-
els in FL. However, querying multi-dimensional metadata on blockchain
needs to traverse every transaction in each block, making the query time-
consuming. An efficient query method for multi-dimensional metadata in
the blockchain for selecting participants in FL is absent and challenging.
In this paper, we propose a novel data structure to improve the query
efficiency within each block named MerkleRB-Tree. In detail, we lever-
age Minimal Bounding Rectangle (MBR) and bloom-filters for the query
process of multi-dimensional continuous-valued attributes and discrete-
valued attributes respectively. Furthermore, we migrate the idea of the
skip list along with an MBR and a bloom filter at the head of each block
to enhance the query efficiency for inter-blocks. The performance analysis
and extensive evaluation results on the benchmark dataset demonstrate
the superiority of our method in blockchain-based FL.

Keywords: Federated learning · Blockchain · Multi-dimensional query

1 Introduction

As a special distributed machine learning framework, FL, in which allows mul-
tiple data owners to train machine learning models collaboratively with their
data stored locally, is much popular in the present age [1]. However, centralized
FL still faces some challenges such as the failure of a single central server, etc.
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With the overwhelming development of blockchain technology, it is possible to
leverage some advantages of blockchain to FL and construct a decentralized FL
paradigm named blockchain-based FL [2,3]. In blockchain-based FL, blockchain
is able to enhance the robustness, trust, security of FL, as well as providing a
credible cooperation mechanism among participants.

When the aggregation server initializes a FL task, it need to select a set of
data owners to participate. Selecting participating nodes according to their data
type without knowing the metadata information of data owners is challengeable.
Through providing secure data storage platform in blockchain-based FL, data
owners can announce the description of their data called metadata in the com-
munity via blockchain [4]. When the metadata is queried on the blockchain, the
aggregation server can abtain the candidate participants list from nearest proxy
server and invite these nodes to participate in FL [5]. And we will introduce the
process in Sect. 3.

However, on the one hand, the query efficiency on the existing blockchain
is extremely low [6]. With the increasing number of data owners registering,
it cannot meet the large query requirements of the aggregation server when
selecting nodes. On the other hand, in the real scenario of choosing data own-
ers in FL, the query condition may usually be composed by multi-dimensional
continuous-valued attributes and discrete-valued attributes [4]. Existing query
methods on the blockchain can only cater for single-dimensional hash value.
It is inefficient to store multi-dimensional attributes in the single dimensional
data structures, since it needs to do intersectional operation when we need to
query for multi-dimensional attributes [7]. For multi-dimensional query condi-
tion with both continuous-valued attributes and discrete-valued attributes on
the blockchain, yet there is no appropriate query method to satisfy this kind of
query demand [8]. In this paper, we propose a method for the query process of
both inter-block and intra-block. Our contributions are listed in the following
points:

– We formulate the selection of participating nodes in blockchain-based FL as
the metadata query problem on blockchain. We divide this query problem
into intra-block query and inter-block query and put forward schemes for
them respectively.

– For intra-block query, we modify the structure of the block and construct
an MerkleRB-Tree in each block. Query schemes for both discrete-valued
attributes and continuous-valued attributes are proposed.

– For inter-block query, we apply the skip list and implement an inter-block
query scheme with bloom-filters and MBR for discrete-valued attributes and
continuous-valued attributes respectively.

– We analysis the performance of the query schemes we propose. The results
of the comparative experiments with the baseline method show our schemes
are more efficient.
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Fig. 1. Blockchain-based FL framework

2 Related Work

2.1 Blockchain Empowered Federated Learning

Since traditional centralized FL faces a number of challenges [9] such as lack of a
secure and credible cooperation mechanism etc., an increasing number of studies
focus on empowering FL with blockchain [10]. Being empowered with blockchain,
FL owns a credible incentive and contribution measurement mechanism as well
as strengths its security [11].

Besides, blockchain provides a trusted storage mechanism for FL, allowing
data to be shared securely. Data owners can leverage blockchain to publish
their metadata information and then aggregation servers can select participat-
ing nodes by querying the metadata on the blockchain according to the data
type [5]. Zhang et al. propose a FL protocol based on blockchain in which the
nearest proxy server can help to query metadata on blockchain and return the
set of selected participating nodes [4]. However, these studies do not focus on
the query efficiency of metadata in blockchain-based FL, nor did they change
the original block structure.

2.2 Query on the Blockchain

For query on the blockchain, traversing every transaction of each block can be
regarded as time-consuming. Current studies show that using external databases
can improve the query efficiency of blockchain query [12,13]. By establishing
an efficient query layer, EtherQL, Li et al. propose a quick query method that
imports block data into an off-chain database using the Ethereum listening inter-
face [14]. Peng et al. propose a three-tier blockchain query architecture, which
saves the time to traverse unnecessary blocks [6]. Zhang et al. design new data
structures named Gem2Tree which can be effectively maintained by blockchain,
significantly reducing the storage and computing cost of smart contract [8]. How-
ever, these schemes are hardcoded and cannot be well adapted to different query
conditions and do not consider the problem of the inter-block query.
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3 Problem Formulation

3.1 System Framework

In the training process of blockchain-based FL, the data owners register the FL
community and publish the metadata to the blockchain. It is noticeable that
the metadata generally refer to the description of the data type of the data
owners. When the metadata is queried by the aggregation server, it can get
the candidates list according to the task requirements. Then the aggregation
server initializes the machine learning model and allocates it to participants for
local training. Finally, after getting the updated models from participants, the
aggregation server aggregates them to update the global model. The system
paradigm is detailed in Fig. 1.

3.2 Query Metadata on the Blockchain

In our system framework, the aggregation are responsible for querying the meta-
data on the blockchain. Moreover, when the aggregation servers select parties
to participate in the FL task, they usually select different parties to join in
based their type of data sets according to the requirements of machine learn-
ing model training task. In the metadata, there are discrete-valued attributes
and also continuous-valued attributes. Each query condition may contain multi-
dimensional discrete-valued attributes and continuous-valued attributes. There-
fore, we can regard the problem as the mixed multi-dimensional query of
continuous-valued attributes and discrete-valued attributes.

However, it is inefficient to use existing methods to solve this problem. In
the traditional way, in order to find the data owners who have this type of data
set, they may need to traverse all the transactions in every block and check
whether each query condition is satisfied. It is time-consuming if we traverse all
the transactions in the blockchain. If the query condition of continuous-valued
attributes is multi-dimensional, it will increase the difficulty and cost of querying
to a greater extent [7]. Therefore, the problem is how to design a data structure
in the blockchain to query both discrete-valued attributes and multi-dimensional
continuous-valued attributes more efficiently. In the next two sections, we divide
this problem into the intra-block query and inter-block query and describe the
solution we propose for this problem respectively.

4 Intra-block Query Scheme

4.1 The Structure of MerkleRB-Tree

In order to make the intra-block query quicker, we apply the idea of MR-Tree
[15] and bloom filter together to construct a new structure named MerkleRB-
Tree. MerkleRB-Tree extends the advantages of MR-Tree and bloom filter. We
use it for multi-dimensional query of both continuous-valued and discrete-valued
attributes. As shown in Fig. 2, MerkleRB-Tree verifies the integrity of the whole
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tree based on Merkle Hash Tree. Each internal node contains a hash value, a
bloom filter, and an MBR [16]. The bloom filter in each node can be used to
check whether there are existing transactions in the current subtree that satisfy
the discrete-value query condition. MBR covers the range of continuous-valued
attributes of all transactions of every dimensions in its subtree.

Fig. 2. The query structure for both discrete-valued and continuous-valued attributes
on blockchain

4.2 Intra-block Query of Continuous-Valued Attributes

For querying multi-dimensional continuous-valued attributes, it is inefficient to
take the intersection after querying the multiple dimensions separately for query-
ing multi-dimensional continuous-valued attributes. In this section, we focus on
the query of multi-dimensional continuous-value. In the MerkleRB-Tree, the spa-
tial range of the MBR at the root node of the whole tree. In the query process,
we use the recursion method to traverse all the child nodes of the current node.
If there is an intersection between the spatial scope of the multi-dimensional
query condition and the child node, then we continue to search down the cur-
rent subtree. The specific algorithm is shown in Algorithm 1. Using the above
method for multi-dimensional range query, we can save the time cost of travers-
ing unnecessary nodes in MerkleRB-Tree and improve the efficiency of the query
process.

4.3 Intra-block Query of Discrete-Valued Attributes

For querying discrete-valued attributes, we add a bloom filter [17] in each node
of MerkleRB-Tree. A Bloom filter is a long binary vector and a series of random
mapping functions that can be used to check whether an element is not in a set.
In MerkleRB-Tree, the bloom filter of each node can determine whether all the
transactions in the subtree do not satisfy the query condition of discrete-valued
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attributes. In other words, the non-leaf node’s bloom filter is the sum of all its
child nodes’ bloom-filters, which we represent in formula (1).

BFparent = BF 1
child + BF 2

child + ...BFn
child (1)

For each discrete-valued query condition, we start it from the root node of
MerkleRB-tree. For all the transactions in the left and right subtrees that do not
satisfy the discrete-valued query condition, bloom-filters in each node are used
to find these subtrees and not query them.

5 Inter-block Query Scheme

5.1 Inter-block Index Structure

In Fig. 2, an MBR and a bloom filter are added to the block header. For querying
discrete-valued attributes, we use the bloom filter at the head of the block to
verify whether the block contains any transactions that satisfies the query con-
dition. If no transaction satisfies the query condition, we do not need to query
within the block. Similarly, for the inter-block query of the multi-dimensional
continuous-valued attributes, we also need to check whether the range space of
query condition has an intersection with the MBR at the head of each block.

However, traversing all the blocks in the blockchain is time-consuming. In
order to solve this problem, inspired by the idea of dichotomy, we apply a skip
list and put forward an efficient inter-block query method. The architecture of
the inter-block query is shown in Fig. 2, and each level of the skip list includes
a bloom filter and an MBR denoted as SkipListiBF and SkipListiMBR. For
SkipListiBF which is used to query discrete-valued attributes, the ith level’s
bloom filter in the skip list can be used to check whether there are satisfied
transactions in the next αi blocks. We can use formula (2) to represent it.

BF i
SkipList = BF current

block + ... + BF current+αi

block (2)

Algorithm 1 IntraQuery(Node,MBRquery)
Input: Query condition q =< Qdiscrete, MBRquery >, query tree Tree
Output: result Ω

1: if Node.isLeaf()=False then
2: for MBRi

child for Node do
3: if MBRi

child intersects MBRquery AND
BF i

child.isContain(Qdiscrete) then
4: IntraQuery(Node.Child(i), MBRquery)
5: end if
6: end for
7: else
8: Add this to the result set Ω
9: end if
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Similar to BF i
SkipList, the ith MBR in MBRi

SkipList is the minimum bound
rectangle of all the MBRs at each block’s head which we represent in formula
(3).

MBRi
SkipList = MBRcurrent

block + ... + MBRcurrent+αi

block (3)

Therefore, the first level’s MBR in the skip list can be used to determine
whether there are existing transactions that satisfy the query condition in the
next αi blocks.

5.2 Inter-block Query of Discrete-Valued Attributes

For the inter-block query of discrete-valued attributes, we can use bloom-filters
in the skip list to help us query quicker. In this way, we also save the time of
traversing unnecessary bloom-filters at the head of each block. The specific query
algorithm is shown in Algorithm 2. This can be illustrated by the fact that if
α = 2, we will set the first block of the blockchain as the current block and query
the first level’s bloom filter in the skip list of the current block. If the return
result is true, we will query the bloom-filters BF 2

block, BF 3
block at the head of the

next two blocks. If false is returned, the second level’s bloom filter in the skip list
of the current block is checked. Eventually, when the SkipListiBF returns true,
it proves that there are might existing blocks that satisfy the query condition
between the (2i−1)th block or (2i)th block. Then we need to set the current block
as the (2i−1)th block and follow the steps above to continue the query process.

5.3 Inter-block Query of Continuous-Valued Attributes

Similar to the inter-block query of discrete-valued attributes, we use MBR at
the head of each block to generate the SkipListMBR and propose an efficient
scheme for the inter-block query of continuous-valued attributes. We set the
current block as the first one which denotes as blockcurrent. Querying process
is started from the first level in the skip list of the first block. If the returned
result is true, we need to check the MBRs of the next two blocks. If false is

Algorithm 2 InterQuery(blockcurrent, Q)
Input: Query condition q =< Qdiscrete, MBRquery >

1: for BFiandMBRi in Skiplist do
2: if BFi.isContain() AND MBRi.isIntersect() then
3: if i!=0 then
4: InterQuery(blockcurrent+αi , Q)
5: else
6: TraverseBlock(blockcurrent, blockcurrent+αi)
7: end if
8: end if
9: end for
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returned, the second MBR and MBR behind in the skip list is queried. There
are some transactions in the blocks between (αi−1)th and (αi)th satisfying the
query conditions if the check result of the SkipListiMBR returns true. Then we
set the (αi−1)th block as the current block and continue to query the rest blocks
as described above.

6 Performance Analysis

6.1 Analysis of the Efficiency

We analyze the efficiency of our proposed query schemes on the blockchain.
Firstly, the intra-block query cost for multi-dimensional continuous-valued
attributes is similar to R-tree [18]. We use df and dl to denote the average
fan-out of the leaf nodes and the internal nodes in each blocks’ R-Tree respec-
tively. In each block, if the number of transactions is Nblock, the number of leaf
nodes and internal nodes in this R-Tree is Nblock

df
and Nblock

dl
[19]. In the unit

space [0, 1]d which contains d dimensions, the probability of two rectangles R1

and R2 overlap is as follows in Eq. (4), where Ri
l express the rectangle R’s length

along the ith dimension [20].

Poverlap =
d∏

i=1

(Ri
1,l + Ri

2,l) (4)

We assume that the total sample space is [0, s
1
d ]d and the size of each leaf

nodes are the same which we denote as S1 = S2 = ... = Sn, so the size of each leaf
node equals to s·df

Nblock
. Similarly, the size of each internal node in level j is s

dj
n
. If

the length of query condition for continuous-valued attributes in each dimension
is Ql,i

r and the length for each node in MerkleRB-Tree in every dimension is the
same, then the number of nodes in each block’s MerkleRB-Tree that needs to be
accessed can be computed like in Eq. (5).

Nq =
d∏

i=1

( d

√
s · df

Nblock
+ Ql,i

r ) · df +
h−2∑

j=0

dj
l ·

d∏

i=1

( d

√
s

dj
l

+ Ql,i
r ) (5)

where the height of the MerkleRB-Tree is h = 1+logdl

s·df

Nblock
. Therefore, the total

average cost of continuous-valued attributes’ query in each block is Crange, and
the cost of querying continuous-valued attributes each node in MerkleRB-Tree
is Caccess. We illustrate it in Eq. (6).

Crange = Caccess · Nq (6)

For discrete-valued attributes, we assume that the average probability of a
bloom filter contains the discrete query condition value Qdis in each block can
be shown in Eq. (7), where the notation θ expresses the number of times that



Multi-dimensional Data Quick Query for Blockchain-Based FL 537

Qdis appears in the current block. We represent the cost of querying for discrete-
valued attributes in Eq. (8).

PBF (BF,Qdis) =
θ

Nblock
(7)

Cdis = CBF · ( df

Nblock
+

h−2∑

j=0

dj
l ·

df · fh−2−j
n

Nblock
) (8)

When the query condition contains the continuous-valued attributes and
discrete-valued attributes together, it is obvious that total cost for query con-
dition contains both discrete-valued attributes and continuous-valued attributes
equals to the right hand of the Eq. (9), in which Caccess denotes the cost of
accessing a node in MBR-Tree.

Ctotal = Caccess · df

Nblock
·

d∏

i=1

( d

√
sdf

Nblock
+ Ql,i

r )

+
h−2∑

j=0

dj
l ·

d∏

i=1

( d

√
s

dj
l

+ Ql,i
r ) · df · fh−2−j

n

Nblock

(9)

For the inter-block query, we use a skip list to decrease the query cost for both
discrete-valued attributes and continuous-valued attributes. The time complex-
ity of the skip list query is O(log(n)) [21]. However, the cost of improving query
efficiency is increasing its spatial complexity. And the relationship between time
complexity and space complexity in the inter-block query scheme we propose is
a negative correlation according to the settings of α and this will be discussed
in the next section.

7 Experiments

In this part, we implement and test the performance of the inter-block query
and intra-block query respectively.

7.1 Experiment Setting

Dataset. We use a public dataset from kaggle1. In this dataset, it contains dif-
ferent employees with multi-dimensional attributes including continuous value
attributes and discrete value attributes. For this experiment, we choose the
year of joining company and the age to do the multi-dimensional range query,
and choose city as the discrete value. So for each transaction, we can use
Q = <year, age, city> to represent the query condition.

Environments. All the experiments are running a computer which is equipped
with Intel Core i7 CPU with 6 cores, 3.2 GHz for each core. The memory of
the computer is 16 GB memory on Window 10 operating system. And the JDK
version we use is JDK 1.8.
1 https://www.kaggle.com/tejashvi14/employee-future-prediction.

https://www.kaggle.com/tejashvi14/employee-future-prediction
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7.2 Performance Evaluation

Query for Discrete-Value Attributes: To verify the efficiency of the query
method we propose above, we test the inter-block and intra-block query perfor-
mance for the discrete-valued attributes. The results are shown in Fig. 3(a) and
Fig. 3(b).

In Fig. 3(a), we test our proposed inter-block query schemes on blockchain
with different numbers of transactions from 3400 to 4400. We also put the differ-
ent number of transactions 10, 20 and 40 in each block. We choose the scheme
without SkipListBF as the baseline. We can see that the query time of our
schemes are less than the baseline scheme when each block stores the same
amount of data. This is because the fact that the method we propose saves time
for querying unnecessary blocks when using SkipListBF . In addition, with the
increasing number of blocks, the efficiency of our plan is more obvious.

Fig. 3. Query performance

In Fig. 3(b), we put different amounts of data 10, 20 and 40 in each block.
As for the circumstance which does not have bloom-filters, we cannot quickly
exclude subtrees that do not need to be traversed in MBR-Tree through the
discrete-valued query condition. Thus, we need to traverse the nodes that only
satisfy the continuous-valued query condition and return the correct nodes.
By comparing our proposed intra-block query method for the discrete-value
attribute with the baseline scheme without bloom-filters, when the amount of
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data inside the block is the same, it can be seen that the performance of our
scheme is better than the baseline scheme. As the amount of data inside the
block increases, the query cost of our solution increases smoothly, whereas the
query cost of the baseline method increases apparently. The reason lies in that as
the number of nodes increases, the baseline method needs to query more useless
subtrees, and the method we propose can solve this type of problem effectively.

Query for Continuous-Value Attributes: For query continuous-valued
attributes, it is obvious that the intra-block query performance of our scheme
using R-Tree is much better than non-index query scheme [7]. Moreover, the
performance results of continuous-valued inter-block query efficiency for multi-
dimensional data are shown in Figs. 3(c). We choose the method without
SkipListMBR as the baseline method. We can see that our scheme performs
better than the Baseline scheme, since our proposed scheme for inter-block
queries saves the time cost to search unnecessary blocks in blockchain by using
SkipListMBR.

In Fig. 3(d), we contrast the method without skip list for inter-block query
process to our scheme. It can demonstrate the advantages of generating and
applying skip list for the inter-block query process in blockchain-based FL.

8 Conclusion

In this paper, we optimize the query efficiency of selecting participants in
blockchain-based FL by modifying the blockchain’s structure. By analyzing and
comparing the existing query schemes, our scheme that contains intra-block
query and inter-block query has superiority on query performance. In the future,
we will further do explorations in industrial platform of blockchain for varies
fields.
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Abstract. With the growing activities of diverse Maritime Internet
of Things (MIoT), mobile edge computing (MEC) becomes a promis-
ing paradigm to provision computation and storage for computation-
intensive tasks of marine users. Although the edge server (ES) deploy-
ment and service placement are important issues in the field of MEC,
research on joint placement is often overlooked, particularly in the MIoT.
In this paper, we propose the buoy-based ES deployment and service
placement (BESDSP) problem for MIoT networks, aiming at maximiz-
ing the total profit while considering the location constraints of buoys,
the different service request rates, the income and delay cost of ser-
vice provided by ESs, as well as the characteristics of maritime chan-
nels. Then, we propose a heuristic approach, the genetic-BESDSP (G-
BESDSP) algorithm, to solve the BESDSP problem. Simulation results
demonstrate that the proposed G-BESDSP algorithm outperforms exist-
ing state of art solutions.

Keywords: Mobile edge computing (MEC) · Edge server (ES)
deployment · Service placement · Maritime Internet of Things (MIoT)

1 Introduction

With the rapid development of artificial intelligence and communication tech-
nologies, a variety of delay sensitive and computation intensive maritime services
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such as virtual/augmented reality, automatic driving and intelligent transporta-
tion have involved in the field of maritime services, and Maritime Internet of
Things (MIoT) have been emerging. In the traditional cloud computing archi-
tecture, mobile users offload task requests to a remote cloud server which is ineffi-
cient due to low bandwidth and high latency. A massive amount of maritime data
transmission in MIoT puts forward higher requirements for bandwidth. Further-
more, mobile edge computing (MEC) as one core component of 5G networks,
brings a promising paradigm for deploying servers at the infrastructure-based
edge of networks in proximity to the users of MIoT. MEC migrates a portion of
communication, computing and storage resources from the remote cloud server
to the edge, in order to reduce the end-to-end transmission delay and decrease
the traffic of the backbone network of MIoT.

Most existing MEC works focus on task offloading [1] and resource allocation
[2] strategies for users, assuming that all edge servers (ESs) have been deployed.
In terms of ES deployment, recent studies assume that each ES places a kind
of service, rarely taking the varieties of services and users’ requests for differ-
ent services into account [3–8]. In terms of service placement, recent studies
assume that all base-stations are MEC-enabled [9–12]. In MEC networks, ES
deployment and service placement are tightly coupled, which should be joint
optimized. Moreover, research on MEC in maritime networks is lagging behind
that in the terrestrial networks. The challenges of maritime networks are sum-
marized as follows. i) The hostile maritime environment makes it challenging
to reliably deliver data over a communication link. ii) Different from terrestrial
networks, the deployment of maritime networks are subject to many constraints
as it is difficult to find a solid area to install network devices. Specially, the buoy
provides a feasible solution to establish wireless networks. ESs can be deployed
on the existing buoys in MIoT. Thus, the physical locations of buoys are impor-
tant as ESs installed on buoys process different service requests from users. As
mentioned above, we need to consider joint ES deployment and service place-
ment [3,13,14], which is a crucial issue in the field of MEC. However, no matter
disjoint or joint ES deployment and service placement, few works pay atten-
tion to maritime MEC environments. From the perspective of marine users, the
reasonable ES deployment and service placement scheme effectively reduces the
completion time of the offloading task. From the perspective of service providers,
although a large number of deployed ESs can improve the edge resources, it will
result in high operational costs, such as server device prices, installation and
maintenance costs. Therefore, deploying ESs at appropriate numbers and loca-
tions to maximize the profit of service providers and to provide satisfactory QoS
for users is an important issue.

In this paper, we study a buoy-based ES deployment and service placement
(BESDSP) problem, aiming at maximizing the total profit of all ESs. Specially,
we first determine a set of appropriate buoys for ESs deployment, based on which
the services are then placed at each ES. The main contributions are summarized
below:
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• We propose a novel deployment model in an MEC-enabled MIoT network.
Then, we formulate a BESDSP problem with the goal of maximizing the total
profit, taking into consideration the location constraints of buoys, the user’s
request rate, the income and delay cost of service, the storage capacity and
the computing capacity of the ES, as well as the characteristics of maritime
channels.

• We propose a genetic-BESDSP (G-BESDSP) algorithm, to solve the BESDSP
problem, and compare it with some state of art algorithms in the literature.

The rest of this paper is organized as follows: Sect. 2 formulates the BES-
DSP problem. Section 3 describes the proposed G-BESDSP algorithm in detail.
Section 4 evaluates the performance of G-BESDSP algorithm and compares it
with existing representative algorithms. Section 5 concludes this paper.

2 System Model and Problem Formulation

2.1 System Model

We consider an MEC-enabled MIoT network as shown in Fig. 1. Buoys are
employed as micro base stations that receive marine users’ service requests and
then forward the service requests to ESs.

Fig. 1. MEC-enabled MIoT network system model.

The MEC-enabled MIoT network can be described as an undirected graph
G = (V, E), where V = {V1, V2, ..., Vm, ..., VM} is the set containing M buoys
and E is the set of communication links between these buoys. Each marine user
w ∈ W � {1, 2, ...,W} can access the buoy and offload tasks to the ES. There
are K ESs denoted as K = {1, 2, ...,K}. We assume that the number of existing
buoys is greater than that of the ESs K (M > K) to be deployed. We suppose
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that each buoy attaches only one ES; and only one ES can be installed in each
buoy. Then, a binary variable yVm

∈ {0, 1},∀Vm ∈ V is denoted as whether buoy
Vm hosts an ES or not, where yVm

= 1 indicates that the ES is deployed on the
buoy Vm, and yVm

= 0 otherwise. Therefore, we have

M∑

Vm=1

yVm
= K (1)

Each service s ∈ S � {1, 2, ..., S} is modeled as a tetrad Ds = {αs, gs, qs, βs},
where αs denotes the average request rate of service s for each user, gs denotes
the storage size of service s, qs denotes the unit income of providing the service
s, and βs denotes the delay cost of processing the service s. Binary variable
xn

Vm
∈ {0, 1},∀Vm ∈ V,∀n ∈ K is defined to indicate whether ES n is responsible

for the buoy Vm hosting its service requests (xn
Vm

= 1) or not (xn
Vm

= 0). Each
ES can be responsible for several buoys and each buoy attaches only one ES,
which is formulated as follows,

K∑

n=1

xn
Vm

= 1,∀Vm ∈ V (2)

The buoy serves as a relay node to forward the user’s service request to the
corresponding ES. Each user can be covered by several buoys, but a user can
only communicate with a buoy at one time. The total number of users served by
ES n is expressed as

Un =
M∑

Vm=1

uVm
xn

Vm
(3)

where uVm
represents the number of users connected to the buoy Vm. In order

to satisfy marine users’ service requirements, ESs usually provision multiple
difference services. We use a binary variable bs

n ∈ {0, 1},∀n ∈ K,∀s ∈ S to
denote the placement of services, where bs

n = 1 indicates service s is placed on
ES n, and bs

n = 0 otherwise. Furthermore, we denote Bn = {s | bs
n = 1, s ∈ S}

by the set of ES n placed services, then the users’ service requests of ES n is
expressed as Reqn =

∑
s∈Bn

Unαs,∀n ∈ K. The limited storage size of each ES
is G, which is used to store services. We consider the storage size of service s,
the total storage size of a series of services placed on each ES cannot exceed the
storage size of the ES, the constraint can be expressed as follows,

∑

s∈Bn

gs ≤ G,∀n ∈ K (4)

where gs is the storage size of service s. From the perspective of service providers,
the payment of edge users is necessary, and once the service request is processed
will generate corresponding revenue which is different for each service. From the
perspective of marine users, the offloaded task processing latency at the ES is
the major expenditure on service, which is considered as the server penalty. In
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summary, the objective function of the BESDSP problem is composed of income
and delay cost.

1) Income of ESs: The income of ESs is related to the placed services and con-
nected users. The income of providing service requests of ES n is modeled as
follows,

Qn =
∑

s∈Bn

Unαsqs,∀n ∈ K (5)

where qs is the unit income of providing service s, αs is the average request
rate of service s for each user, and Un is the total number of users served by
ES n.

2) Delay Cost of Services: In this paper, considering the impacts of sea sur-
face reflection and antenna height, the two-ray signal propagation model is
adopted for maritime channels. The transmission model assumes that the
maritime channel mainly consists of a direct path and a reflection path, and
its path loss can be expressed as [15]

L2−ray = −10log10

{(
λ

4πd

)2 [
2sin

(
2πH1H2

λd

)]2
}

(6)

where λ is the carrier wavelength, d is the distance between the transmitter
and receiver, H1 is transmitter antenna height, H2 is receiver antenna height.
Using the two-ray signal model, the channel gain from user w to ES n can be
expressed as

hw,n =
(

λ

4πdw,n

)2 [
2sin

(
2πHwHn

λdw,n

)]2

,∀n ∈ K,∀w ∈ W (7)

where dw,n is the direct signal link distance between user w and ES n, Hw is
the user w antenna height, Hn is the ES n antenna height. We can express
the maximum achievable rate from user w to ES n as

σw,n = Blog2

(
1 +

Pwhw,n

N0

)

= Blog2

[
1 +

Pw

N0

(
λ

4πdw,n

)2 [
2sin

(
2πHwHn

λdw,n

)]2
]

,∀n ∈ K,∀w ∈ W
(8)

where N0 denotes the white Gaussian noise power density, B denotes available
bandwidth, Pw denotes the user w transmission power.

The delay cost is related to the end-to-end latency in providing the request.
Assume that each ES handles service requests with first input first output
method. When the user requests service to the ES, the task will be stored in the
queue, if the server is busy. The delay is the sum of the transmission delay, the
processing delay and the queuing delay. Therefore, the delay of task e on the ES
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n can be expressed as [8]

T (ESn, e) =

⎧
⎨

⎩

θe

σw,n
+ θe

μ e = 1

max
{

T (ESn, e − 1), θe

σw,n

}
+ θe

μ 2 ≤ e ≤ �Reqn� (9)

where �.� is the integer upward, θe is the data size of task e processed by ES n,
σw,n is the maximum achievable rate from user w to ES n, μ is the computation
capacity of ES. We use a binary variable ζs

n,e ∈ {0, 1} to denote whether task e
belongs to service s ∈ Bn processed by ES n (ζs

n,e =1) or not (ζs
n,e = 0). The

delay cost of services request to ES n is calculated as follows,

costn =
∑

s∈Bn

�Reqn�∑

e=1

ζs
n,eT (ESn, e)βs,∀n ∈ K (10)

Thus, the profit of ES n is computed as follows,

Pn = Qn − ρcostn

=
∑

s∈Bn

Unαsqs − ρ
∑

s∈Bn

�Reqn�∑

e=1

ζs
n,eT (ESn, e)βs

(11)

where ρ > 0 is a parameter defining the relative weight of income and delay cost.

2.2 Problem Formulation

In this subsection, we aim to maximize the total profit via optimizing the income
of all ESs and the delay cost of services processed by ESs to find a feasible
deployment strategy. Thus, the BESDSP problem is formulated as

max
K∑

n=1

Pn

s.t. C1 :
K∑

n=1

xn
Vm

= 1,∀Vm ∈ V

C2 : bs
n ∈ {0, 1},∀n ∈ K,∀s ∈ S

C3 :
∑

s∈Bn

gs ≤ G,∀n ∈ K

C4 : yVm
∈ {0, 1},∀Vm ∈ V

C5 :
M∑

Vm=1

yVm
= K

(12)

The constraint C1 ensures that each buoy is associated with only one ES.
The constraint C2 denotes whether service s is placed on ES n (bs

n = 1) or
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not (bs
n = 0). The constraint C3 guarantees that the total storage size of placed

services cannot exceed the storage capacity of the ES. The constraint C4 denotes
whether buoy Vm host an ES (yVm

= 1) or not (yVm
= 0). The constraint C5

indicates the maximum number of ESs that can be deployed.
The BESDSP problem is NP-hard. We analyse the NP-hardness of the

BESDSP problem by a reduction from the warehouse-retailer network design
(WRND) problem. We model our problem to the WRND problem in the follow-
ing way: i) The optimal location of opened warehouses in the WRND problem
is mapped to the appropriate buoys to deploy ESs in the BESDSP problem.
ii) Each retailer served by only one opened warehouse in the WRND problem
is mapped to each marine user served by only one ES-enabled buoy. iii) The
inventory replenished by a supplier in the WRND problem is mapped to ser-
vice instances placed on each ES in the BESDSP problem. iv) The cost of the
WRND problem is mapped to the delay cost of the BESDSP problem. The
WRND problem is known to be NP-hard [16], and hence the BESDSP problem
is NP-hard.

3 Genetic-BESDSP Algorithm

In this section, we propose a genetic-BESDSP (G-BESDSP) algorithm to solve
the formulated BESDSP problem.

The decision variable of the BESDSP problem is encoded into a string of
alphabets [7]. These strings are referred to as chromosomes. A chromosome
contains two decision variables, ES deployment yVm

and service placement bs
n.

An example of constructed chromosome is shown in Fig. 2, the chromosome
D = {X1,X2} represents the feasible solution to the problem that consists
of optimization variables sub-chromosome X1 and sub-chromosome X2. Each
binary coded gene in a sub-chromosome X1 is used to present the buoy location,
which is decided by the number of buoys m. Each binary coded gene in a sub-
chromosome X2 is applied to represent the ES which the number of ESs is k. In
addition, binary encoding of the gene in X2 is used to present a service instance
which the number of services is n.

Fig. 2. An example of constructed chromosome.
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1) Initialization and Fitness Function: In this phase, an initial population with
a size of P is formed from different combinations of chromosomes. The fitness
function is used to evaluate the individual chromosome in the population in
each generation of the evolution. According to the theory of survival of the
fittest, the higher value of individual fitness, the less likely it is to be elim-
inated. Therefore, the fitness function F (Dx) is dependent on the objective
function.

2) Elitist Preservation Strategy: Initial population chromosomes are evaluated by
fitness function for individual selection operation. Elitist preservation strategy
is used to retain R individuals with high fitness scores from the parent gener-
ation into the children generation, which can effectively prevent the existence
of losing high-quality genes. The chromosome with the high fitness score will
be chosen as the next generation population, which prevents the crossover
and mutation operations from losing elite individuals.

3) Crossover: To avoid the emergence of premature convergence, individuals
are carried out crossover and mutation operations. The crossover strategy
is to select two individuals from the parent generation, and swap parts of
individuals to produce two new individuals into the next generation. The
crossover process is described as follows: i) Select two individuals Dx and
Dy as the parent chromosomes for the crossover operation. ii) Retain the
characteristics of the constructed chromosome, while swapping parts of Dx

and Dy. iii) New chromosomes generated by cross operation are added to the
next generation of the population.

4) Mutation: The mutation operation slightly alters the genes of individuals
except for the elite. The detailed process of mutation operation is as follows:
i) If the mutation probability is satisfied then the selected individual per-
forms the mutation operation, otherwise the individual remains unchanged.
ii) The mutation operator randomly selects the genes of sub-chromosome X1,
retaining the number of ESs is necessary. If the gene value of the selected gene
is 1, it becomes 0 after the mutation and vice versa. iii) The mutation oper-
ator randomly selects the genes of sub-chromosome X2, while retaining the
capacity constraints for each ES.

5) Roulette Selection Strategy: The remaining individuals are selected through
the roulette selection strategy and copied directly to the next generation.
In this phase, each individual’s selected probability L(Dx) is relevant to its
fitness value, that is

L(Dx) =
F (Dx)

∑P
x=1 F (Dx)

(13)

After calculating the selected probability of all individuals, the individual’s
cumulative probability is getting as follows,

Q(Dx) =
x∑

y=1

L(Dy) (14)

The individual’s cumulative probability is the sum of the selected probabil-
ity of all individuals previously selected by the individual, which is equivalent



Joint Edge Server Deployment and Service Placement 549

to the probability distribution function in probability theory. Roulette selection
strategy is described as follows: i) Calculate the individual’s selected probability
L(Dx) according to its fitness value. ii) Calculate the individual’s cumulative
probability Q(Dx). iii) Generate a random number c ∈ [0, 1], the selected indi-
vidual Q(Dp) is shown as

Q(Dp) =
{

c ≤ Q(D1), p = 1
Q(Dp−1) ≤ c ≤ Q(Dp), 2 ≤ p ≤ P

(15)

iv) Repeat step. iii) Until all requirements are met. The pseudocode of the G-
BESDSP algorithm is presented in Algorithm 1.

4 Simulation Results and Discussion

In this section, we conduct simulation experiments to validate the effectiveness
of proposed G-BESDSP algorithm. Simulation experiments coded with Python
3.9. To verify the performance of the proposed algorithm, we compare it with a
randomized ES deployment and randomized service placement (RSDRSP) algo-
rithm, as well as a cluster placement (CP) algorithm. RSDRSP algorithm selects
buoys randomly to deploy ESs and then places services randomly for each ES.
By dividing buoys into K parts, CP algorithm selects the buoy closest to the
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centroid of each part as the position of the ES [4], and then adopts our pro-
posed service placement method to place services for each ES. The simulation
scenario is set as a narrow lane of 30 nmile × 4 nmile in an offshore area (the
selected simulation scenario from the sea chart), where marine users and buoys
are unevenly distributed. According to the scale of offshore scenario and navi-
gation safety distance limit, we set the number of marine users from 10 to 35.
The average request rate αs of the marine user for different services follows the
Zipf distribution [3], and all users offload required tasks to edge networks. The
simulation parameter settings are chosen according to [5,17,18] and summarized
in Table 1.

Table 1. Simulation parameters.

Symbol Parameter name Default value

Θ Scale of offshore scenario 30 nmile × 4 nmile

M Number of buoys 10

K Number of ESs 3,4,5,6,7,8

W Number of marine users 10, 15, 20, 25, 30, 35

μ Computation capacity of ES 3.0 GHz

G Storage size of ES 96GB

S Set of services {1, 2, 3}
λ Carrier wavelength 0.05 m

B Communication bandwidth per link 10MHz

Hw Antenna height of user 9.8 m

Hn Antenna height of buoy 1.9 m

Pw User transmission power 47 dBm

N0 White Gaussian noise power density −169 dBm/Hz

Impact of the Number of ESs: We first study the total profit under different
number of ESs, using different algorithms. As shown in Fig. 3, the total profit
of the edge network is lowest when the number of deployed ESs is 3. The total
profit improves significantly when the number of ESs increases from 3 to 4.
Subsequently, the profit does not vary much when the number of ESs increases.
The reason is the deployed ESs cannot carry mass service requests from marine
users in the edge network, so that ESs with high delay produce excessive latency
cost. The edge network has more resources to process offloaded tasks from the
marine users with the increase in the number of ESs. Thus, the available resources
of the edge network far exceed the demand of users with more ESs deployed that
enables low delay. On the contrary, it reduces the resource utilization of ESs and
increases the additional equipment cost of ESs. The performance of the service
delay of all ESs are compared in Fig. 4. It can be seen that the delay decreases
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when the number of ESs increases. This is due to the fact that there are more
computation resources to process offloaded tasks. In addition, Fig. 3 and Fig. 4
also show that the G-BESDSP algorithm outperforms the RSDRSP and CP
algorithms in terms of the total profit and the delay.

Fig. 3. Comparison of the total profit
under different numbers of ESs

Fig. 4. Comparison of the delay under
different numbers of ESs

Impact of the Number of Marine Users: We compare the total profit and
delay under different numbers of marine users. In Fig. 5, the total profit increases
with the number of marine users in all three algorithms. This is because, when
the number of marine users increases, more tasks produced by users need to be
processed on ESs, which leads to an increase in the service income. Moreover, the
available resources of ESs can meet the demand of marine users, which enables
low delay cost. As shown in Fig. 6, the delay does not vary much when the number
of marine users from 10 to 20. While the delay of the G-BESDSP algorithm is

Fig. 5. Comparison of the total profit
under different numbers of marine users

Fig. 6. Comparison of the delay under
different numbers of marine users
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lower than the RSDRSP and CP algorithms with the number of marine users
increases. Hence, the G-BESDSP algorithm can service more marine users and
thus achieves the highest total profit while obtaining a low delay.

5 Conclusion

We have formulated a buoy-based ES deployment and service placement problem
in the MEC-enabled MIoT network by maximizing the total profit. The BESDSP
problem is NP-hard, hence a genetic algorithm G-BESDSP is proposed. Finally,
simulation results have demonstrated that the proposed algorithm achieves close
to optimal performance. In the future work, we will explore the computing migra-
tion to further improve the mobile users’ experience in an MEC-enabled MIoT
network.
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Abstract. In vehicular edge computing, when there are many vehi-
cles requesting offloading services at the same time, relying only on the
resources of edge servers often cannot meet the needs of delay-sensitive
tasks. Most existing task offloading studies tend to only consider pure
offloading strategies for vehicles, which may not be the optimal strategy
for some splittable tasks. In this paper, we jointly optimize the vehicle
hybrid offloading strategy and the server resource pricing strategy. For
a requesting task, it can be executed locally, be offloaded to the edge
server, and be offloaded to the cloud center at the same time. We model
the interaction between vehicles, the edge server and the cloud center as a
game model. Based on the analysis of backward induction, we prove that
the game has a unique Nash equilibrium. Meanwhile, an algorithm that
can converge to the equilibrium point in polynomial time is proposed.
Numerical experimental results show that the proposed algorithm has
better performance in terms of delay and cost than existing algorithms.

Keywords: Vehicular edge computing · Task offloading · Game
theory · Backward induction

1 Introduction

Currently, more and more vehicular intelligent applications require large amount
of computing resources. However, due to vehicle’s resource limit, the large
amount of computation cannot be completed in the vehicle locally [1]. In addi-
tion, the cloud server is far away from the vehicle, which leads to the high
latency of data transmission. With the servers deployed nearby the vehicles, the
edge network is formed to provide high-intensity computing service for vehicles,
and the close distance between vehicles and servers ensures the low-latency data
transmission in vehicular edge computing (VEC) [2].

Although edge servers can provide high quality service for requesting vehicles,
edge servers have limit resources [3] compared with the cloud center. Therefore,
offloading some parts of one task to the cloud center not only can improve

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the quality of service (QoS) but also can reduce the load of the edge server. In
addition, the vehicle needs to pay the corresponding fee for the services provided
by edge and cloud servers. Vehicles hope to obtain high-quality services at low
cost, while edge servers hope to maximize their economic benefits. Therefore,
reasonable vehicle offloading strategy and server pricing strategy are particularly
important in task offloading. But, most existing works do not consider cloud-
edge-vehicle tripartite collaborative in task offloading [4–7]. In this paper, the
optimal vehicle offloading strategy and server pricing strategy are studied by
establishing the game model of the interaction among the edge server, the cloud
center and vehicles. The main contributions of this paper are as follows:

(1) We establish a game model among the edge server, the cloud center and
vehicles, and analyze the optimal offloading response of the vehicle based
on backward induction. After analysis, we can transform the game problem
into a convex optimization problem, and theoretically prove that the game
has a unique Nash equilibrium.

(2) A cloud-edge-vehicle tripartite collaborative task offloading (TCTO) algo-
rithm has been proposed to find the optimal vehicle offloading strategy and
server pricing strategy in polynomial time. Numerical experimental results
show that, compared with the other algorithms, the proposed algorithm has
better performance.

2 Related Works

Due to the limited resources of edge servers, some researches improve the QoS
of tasks by expanding the resources of edge networks. In VEC, Sun [7] et al.
propose a strategy that can share part of the offloading task by neighboring
vehicles, thereby realizing vehicle resource sharing. However, the computing and
storage resources of vehicles are often limited, and how to efficiently and sta-
bly summon neighboring vehicles remains to be solved. Zhao et al. [8] proposed
a cloud-edge collaborative task offloading method, and proposed a distributed
algorithm to solve the non-convex problem of offloading decision-making and
computing resource allocation. Although the cloud center can provide stable
services compared to neighboring vehicles, it ignores the fact that vehicles also
have certain task processing capabilities. Pham et al. [9] proposed to use mobile
volunteer nodes as an extension of edge server and cloud server resources, which
can alleviate the resource constraints of edge networks to a certain extent. How-
ever, this scheme does not consider the task offloading decision under the hybrid
strategy.

From a market perspective, the vehicle needs to pay a certain amount for the
services provided by the server. Therefore, in task offloading, we not only need to
consider the optimal offloading strategy of vehicles but also the optimal pricing
strategy of server resources. Zeng et al. [10] proposed to use volunteer vehicles
to expand the resources of the edge server, and obtain the optimal unloading
decision and pricing strategy by constructing a game model of the interaction
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between the request vehicles and the edge servers and the volunteer vehicles.
However, volunteer vehicles are often difficult to call. Similarly, Yang [11] and
Liu [12] also analyzed the optimal task offloading strategy and pricing strategy
by constructing a game model of the interaction between the request vehicle and
the edge server, and theoretically proved that the game has a unique equilibrium.
However, the above research only addresses the optimal vehicle pure offloading
strategy and server resource pricing strategy. In fact, a hybrid offload strategy
is more appropriate for some decomposable offloading tasks.

In addition, the fiber-wireless technology introduced by Zhang [13] and Guo
[14] is able to enhance the communication between vehicles and the edge servers
and the cloud center, which lays a foundation for the realization of multi-party
collaborative task offloading. To fill the gaps in the above studies, in this paper,
we consider a hybrid strategy for vehicle offloading, that is, the offloading task
of the vehicle can be simultaneously performed locally, be performed on the
edge server, and be performed on the cloud center. By constructing a tripartite
game model among vehicles, the edge server and the cloud center, the optimal
hybrid offloading strategy of vehicle and the optimal resource pricing strategy of
the edge server and the cloud center are obtained based on backward induction
method.

3 System Model

3.1 Network Model

In Fig. 1, each RSU integrates a VEC server V = {v1, v2, · · · , vm}. It is supposed
that there are n vehicles R = {r1, r2, · · · , rn} within the communication range
of vj . Meanwhile, a requesting task can be abstracted as {Pi, ρ, ω1,i, ω2,i}(i ∈
{1, 2, · · · , n}).

Fig. 1. Network model diagram.
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Table 1. Symbol description.

Symbol Description

Pi/ρ The task data volume of ri/unit data computational complexity

ω1,i(ω2,i) The task proportion of ri being offloaded to the edge (cloud)

Wi,j(Wi,c) The channel bandwidth between ri and vj (cloud)

h2
i,j(h

2
i,c) The channel gain between ri and vj (cloud)

σ2
i,j(σ

2
i,c) The white gaussian noise between ri and vj (cloud)

Ri,j(Ri,c) The data upload rate between ri and vj (cloud)

pi/ti The transmission power of ri/the task offloading delay of ri

fj(fc,fl) The computing power of the edge (cloud, vehicle)

α(β,γ) The satisfaction coefficient of the edge (cloud, vehicle)

τ1(τ2) The proportional gain coefficient of offloading task to the edge (cloud)

S1,j(S2,j) The unit resource price for the edge (cloud)

ϑ1(ϑ2) The delay coefficient of edge (cloud)

δ1(δ2,ci) The unit resource cost of the edge (cloud, vehicle)

ω∗
1,i(ω

∗
2,i) The optimal task proportion of offloading task to the edge (cloud)

χj/timax The resource upper limit of vj/the task delay limit of ri

3.2 Communication Model

The communication uses time division multiple access, and we assume that the
communication between different vehicles is independent. The data upload rate
Ri,j and Ri,c can be expressed based on the Shannon formula [15].

Ri,j = Wi,j log2(1 +
pih

2
i,j

σ2
i,j

), (1)

Ri,c = Wi,clog2(1 +
pih

2
i,c

σ2
i,c

), (2)

Since the data volume of the calculation result is often small, the result
receiving time can be ignored. Requesting vehicles also needs data upload time
to offload task to edge servers or cloud servers. The task offloading delay ti can
be expressed as:

ti = max{ω1,iPi

Ri,j
+

ρω1,iPi

fj
,
ω2,iPi

Ri,c
+

ρω2,iPi

fc
,
ρ(1 − ω1,i − ω2,i)Pi

fl
}, (3)

3.3 Utility Functions of Vehicle and Cloud-Edge Alliance

Considering the cost of the vehicle and the quality of the service obtained, the
utility function Ui of ri can be expressed as [16,17]:

Ui(ω1,i, ω2,i) = αln(1 + τ1ω1,i)Pi + βln(1 + τ2ω2,i)Pi

+γ(1 − ω1,i − ω2,i)Pi − ω1,iϑ1PiS1,j − ω2,iϑ2PiS2,j

−(1 − ω1,i − ω2,i)ciPi.
(4)
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We maximize the utility of cloud-edge alliance to reflect the cooperative
relationship between edge and cloud. Considering the cost and pricing of the
edge server and the cloud center, the utility function of cloud-edge alliance Uj

can be expressed as:

Uj(S1,j , S2,j) =
∑

i

ω1,i(S1,j − δ1)Pi +
∑

i

ω2,i(S2,j − δ2)Pi, (5)

4 Game Theory Based Analysis for Task Offloading

Based on game theory, the task offloading problem proposed in this paper can
be decomposed into two maximization problems Q1 and Q2. One is to maximize
the utility Ui of the vehicle and the other is to maximize the utility Uj of the
edge-cloud alliance.

Q1 : max
ω1,i,ω2,i

Ui(ω∗
1,i, ω

∗
2,i|S1,j , S2,j)

s.t.
C1 : ω1,i + ω2,i ≤ 1
C2 : ω1,i ≥ 0, ω2,i ≥ 0
C3 : ti ≤ timax

(6)

Q2 : max
S1,j ,S2,j

Uj(S∗
1,j , S

∗
2,j |ω∗

1,i, ω
∗
2,i)

s.t.
C1 :

∑
i ω1,iPi ≤ χj

C2 : S1,j − δ1 > 0, S2,j − δ2 > 0

(7)

Lemma 1. In the game, when S1,j and S2,j are given, the optimal offloading
decision of the vehicle ri is:

ω∗
1,i = α

γ+ϑ1S1,j−ci
− 1

τ1

ω∗
2,i = β

γ+ϑ2S2,j−ci
− 1

τ2

(8)

Proof. When S1,j and S2,j are given, Ui is a function of ω1,i and ω2,i. the second-
order Hessian matrix of Ui can be obtained by calculating the second-order
partial derivatives and second-order mixed partial derivatives of ω1,i and ω2,i

respectively for Ui. ⎡

⎣− αPiτ
2
1

(1+τ1ω1,i)2
0

0 − βPiτ
2
2

(1+τ2ω2,i)2

⎤

⎦

From the second-order Hessian matrix of Ui, we know that Ui is a convex
function with respect to ω1,i and ω2,i [18]. Therefore, the optimal response (8)
of the requesting vehicle can be obtained by setting the first derivative to zero.
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Algorithm 1. Tripartite Collaborative Task Offloading Algorithm.
Require: Requesting vehicle tasks volume set P = {P1, P2, · · · , Pm}, utility function

Uj , linear constraints @lcon and nonlinear constraints @nonlcon. Set population
pop, crossover probability cp, mutation probability mp, maximum evolutionary
generation Maxite.

Ensure: The optimal strategy of cloud-edge alliance S∗
1,j , S∗

2,j , the best utility Up.
1: initialize pop according to @lcon and @nonlcon
2: for ite < Maxite do
3: Rank ← calculate fitness(pop,Uj)
4: pop ← select population object(pop)
5: pop ← cross population object(pop,cp)
6: pop ← mutations(pop,mp)
7: pop ← remove object(pop,@lcon,@nonlcon)
8: ite ← ite + 1
9: end for

10: return S∗
1,j , S∗

2,j , Up

Lemma 2. The game proposed in this paper has a unique Nash equilibrium.

Proof. We substitute the optimal offloading response of the vehicle into Uj ,
and then calculate the second-order partial derivatives and second-order mixed
reciprocals of Uj with respect to S1,j and S2,j , respectively, to obtain the second-
order Hessian matrix with respect to Uj .

[
−∑

i
αPi(γ+ϑ1δ1−ci)
(γ+ϑ1S1,j−ci)3

0

0 −∑
i

βPi(γ+ϑ2δ2−ci)
(γ+ϑ2S2,j−ci)3

]

where γ + ϑ1δ1 > ci. From the second-order Hessian matrix of Uj , we know
that Uj is a convex function with respect to S1,j and S2,j [18]. Therefore, there
are unique S1,j and S2,j for Uj that maximize the utility. In addition, when
the maximum utility is achieved, the response of the corresponding vehicle is
also optimal, and it is in Nash equilibrium at this time. That is, The game
proposed in this paper has a unique Nash equilibrium. Since the solution of
game equilibrium is nonlinear, this paper proposed an algorithm 1 that can
converge to Nash equilibrium in polynomial time.

5 Simulations

In this section, we will analyze the performance of the TCTO algorithm proposed
in this paper and compare it with other algorithms through experiments, such
as random algorithm. All experiments were done using Matlab, and the specific
parameter values can be found in Table 2.

In Fig. 2(a), when the unit resource pricing is stable, the utility of the cor-
responding edge server and cloud center reaches the maximum value, which are
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0.8899 and 5.3380, respectively. On the contrary, when the unit resource pric-
ing is not stable, the utility of the corresponding edge server and cloud center
are 07077 and 5.3240 respectively. This result further shows that the TCTO
algorithm proposed in this paper can converge to the equilibrium point of the
game.

Table 2. Simulation parameters.

Parameter Value Parameter Value

ρ 240 δ1 0.4

hi,c/hi,j 53 δ2 0.2

σ2
i,c/σ2

i,j 60 τ1/τ2 1.0

Wi,c 5 Wi,j 10

pi 0.5 fj 5

fc 5 fl 0.5

Fig. 2. Utility and equilibrium.

In Fig. 3, diverse execution capabilities vehicles with different task volume
will make distinct decisions under the same task offloading scene. Such as, low
processing power vehicles with large task volume will offload more task volume
to edge servers and cloud servers. In general, the requesting vehicles will select
the appropriate task offloading ratio of cloud-edge collaboration according to its
processing power and task requirements.

Figure 4 shows the comparison of the performance of the proposed algorithm
and random algorithm. It is not difficult to find that the task offloading delay
of each vehicle in the TCTO algorithm is significantly lower than the task delay
upper limit of 2.5 s. However, under random algorithm, all vehicles other than
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car2 did not complete the offloading task within the limited time delay. In addi-
tion, the TCTO algorithm also costs less for most of the requested vehicles than
the random algorithm. This is because the proposed algorithm is a cloud-edge-
vehicle tripartite collaborative task offloading model, which can make full use of
the resources of the cloud, the edge and the vehicle to undertake more vehicles
offloading tasks under the specified delay requirement.

car1 car2 car3 car4 car5 car6 car7
0

2

4

6

8

10

12

14

16

P
i

i

vehicle utility

1,j

2,j

task delay

vehicle cost

Fig. 3. Vehicles with different capabil-
ities and missions.

car1 car2 car3 car4 car5 car6 car7
0
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8
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12

14

TCTO utility
w

1,j

w
2,j

TCTO cost

Random cost

TCTO delay

Random delay

Fig. 4. The performance comparison
between TCTO algorithm and random
algorithm.

6 Conclusion

In this paper, we consider the hybrid offloading strategy of vehicles and the pric-
ing strategy of edge servers and cloud centers. The optimal offloading strategy
and pricing strategy are analyzed by building a game model of vehicles, edge
servers and cloud centers. And an algorithm that can find the game equilibrium
point in polynomial time is proposed. The numerical experiments show that the
TCTO algorithm proposed in this paper has higher performance in terms of
delay and cost than the existing algorithms.
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Abstract. Unmanned Aerial Vehicles (UAV) supported by 5G networks can play
an important role in providing aerial-aerial/aerial-ground computing services to
remote and isolated areas at a low cost. In this paper, we present an aerial-aerial-
ground network (AAGN) computing architecture using High Altitude Unmanned
Aerial Vehicle (HAU) andMini-Drones (MDs) based onMobile Edge Computing
(MEC) services where HAU provides computation offloading services for MDs,
while MDs can serve as edge computing servers that can be equipped with appro-
priate capabilities to provide computing services for User Equipments (UEs) on
demand. This study focuses on the computation offloading services provided by
HAU to MDs, where the MD offloads all or a part of the task to the HAU, and
the remaining of the task can be executed by MD. The proposed AAGN frame-
work aims to reduce the MDs’ energy consumption and minimize the processing
delay by optimizing HAU mobility, MDs scheduling, flight speed, flight angle,
and tasks offloading, equipping HAU with the required computing resources. We
investigate the computation offloading problem using Deep Deterministic Pol-
icy Gradient (DDPG) as a computing offloading approach to learn the optimal
offloading policy from a dynamic AAGN environment, considering this problem
as a non-convex problem. The simulation results show the feasibility and effec-
tiveness of the proposed AAGN environment where DDPG algorithm can achieve
an optimal decision offloading policy and obtains a critical optimization in delay
and task offloading ratio compared with Deep QNetwork (DQN) and Actor-Critic
(AC) algorithms.

Keywords: Aerial computing · High altitude unmanned aerial vehicles · Mobile
edge computing · Computation offloading · Reinforcement learning

1 Introduction

The importance of UAVs has been proven to be effective not only on the battlefields
but also in other domains, such as natural disasters and providing computing and com-
munication services for remote and isolated areas in a short time and at a low cost [1].
Currently, small andMD are becoming more critical in military and civilian fields where
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the missions of the MDs vary according to the purpose for which they are designed, e.g.,
Monitoring the target area, collecting information and sending them to management and
control center, and providing communication and computing services for UEs. But lim-
itations in battery capacity, short flying time, control capabilities, computing resources,
and limited area that can be covered represent the most critical challenges for MDs.
Enabling aerial-aerial computing and management services for MDs can minimize task
latency and reduce battery usage; furthermore, employing a swarm of MDs to perform a
mission and the possibility to switch between them can help cover a larger area for amore
extended period. Consequently, we propose using AAGN computing architecture where
HAU can be used to provide centralized computation offloading services for swarm
of MDs, carry out the required processing operations, and offer computing offloading
services on-demand. Furthermore, deploying the agile MEC solutions to provide UEs
with communication and computing services by MDs is possible. Figure 1 shows our
proposed AAGN computing architecture.

Fig. 1. Our proposed AAGN architecture.

HAU-based aerial computing provides communication and computing offloading
services to MDs serving one MD at a time and connected to the edge computing server
on the ground, where the MDs perform the tasks assigned to them and offload all or
part of the task to HAU on-demand while the rest of the task can be executed by MD.
MDs can also serve as an edge computing servers by equipping them with the necessary
equipment to provide communication and computation services for UEs. In this paper,
we propose a computation and communication dynamic AAGN architecture to provide
aerial-aerial/aerial-ground computing services, using DDPG as a computation offload-
ing approach to learn the optimal offloading policy. We can summarize the significant
contributions of this study as follows.

• We propose an aerial-aerial/aerial ground computing architecture aiming to deploy
dynamic communication and computation offloading services for a swarm of MDs
using HAU. We investigate the feasibility of the proposed AAGN environment by
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using DDPG to solve computation offloading problems, comparing its computation
performance with DQN and AC [2, 3].

• To minimize the processing delay and energy consumption, we optimize HAUmobil-
ity, MDs scheduling, flight speed, flight angle, and tasks offloading using DDPG,
which supports continuous action space to provide the optimal offloading policy in
a proposed AAGN. We emulate this problem as non-convex optimization offloading
problems using aMarkovDecision Process (MDP) to formulate computing offloading
problems, considering the varying in channel status during the flying time of HAU.

• We implemented Simulation within Tensorflow, and evaluated and demonstrated the
effectiveness of the proposed AAGN, showing the computation offloading capability
of the DDPG algorithm to achieve the best performance (e.g., computation offloading
ratio and delay).

The rest of the paper will be covered as follows. Section 2 presents related works.
The system model is presented in Sect. 3. The simulation results and discussions are
shown in Sect. 4. Finally, we present the conclusion of this study in Sect. 5.

2 Literature Review

There are many recent works related to low and high-altitude computing where UAV-
based MEC provides MEC services and internet access for UEs. As for the low-altitude
computing, we can present some recent studies. For example, in [4], The authors give
an aerial-ground integrated computing system, including a cloudlet server and several
MEC servers placed on UAVs to provide UEs with efficient and reliable edge computing
services. In [5], UEs obtain computation offloading resources from UAVs to process
latency-sensitive tasks. A distributed deep reinforcement learning method is proposed
to address the lack of a flexible learning. As for the high-altitude computing, there are
some relevant recent studies. For example, in [6], the authors suggest using high altitude
platforms (HAPs) and UAVs as part of a hierarchical aerial computing infrastructure to
deliver MEC services for terrestrial IoT devices. To dynamically optimize the time and
energy consumption for UEs [7], the authors propose a novel framework using high-
altitude balloons to provideMECservices forUEs. In [8], the authors proposed a satellite-
aerial integrated computing architecture, where UEs can execute their computation tasks
locally or offload them to LowOrbit satellite. Previous studies present some frameworks
using satellite, HAPs and UAVs to provide aerial-ground computing services for UEs
and IoT devices and reduce delays and energy consumption, whereas, in our study, we
present a novel aerial-aerial computing framework where an high-altitude UAV provides
centralized computing services to MDs, reducing energy consumption and delays for
MDs, aiming from this study to reconsider a new architecture for an aerial computing
system that is easy to deploy and can cover a larger area on-demand with low cost,
keeping in line with the evaluation in MEC, UAV, 5G, and beyond 5G.
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3 System Model

3.1 Communication Model

Themain purpose of the proposed AAGN is to deploy severalMDs in the air where HAU
provides them communication and computing services, considering the varying in chan-
nel status over time. The communication time T is split out into i time slots. We suppose
thatMDs keep hovering at a fixed altitudeH in a 2DCartesian coordination systemwhen
offloading tasks toHAU.HAUmoves in the fixed trajectorymanner to cover theMDs tar-
get area, where the start coordination of HAU A(i) = [x(i), y(i)]T ∈ R2×1 and the final
coordination A(i + 1) = [x(i + 1), y(i + 1)]T ∈ R2×1 at time slot i ∈ {1, 2, . . . , I}.
The coordination m of MDs m ∈ {1, 2, . . . ,M } is Pm(i) = [xm(i), ym(i)]T ∈ R2×1 [9].
The line-of-sight channel gain between the HAU and the MDs can be represented as:

(1)

where denotes the Euclidean distance between HAU and MDs, αO indicates the
channel gain at a distance , and H 2 is HAU fixed flying altitude. The wireless
transmission ratio between HAU and MDs can be defined as [10]:

(2)

whereB represents the network bandwidth,Pup represents the upload link transmit power
and σ 2 is the noise power.

3.2 Computation Model

A partial offloading strategy is applied in each time slot in the proposed AAGN system,
whether at the MDs level or UEs level [16]. LetRm(i) ∈ [0, 1] indicates the task offload-
ing ratio between MDs and HAU, and (1 − Rm(i)) indicate the remaining tasks that are
executed locally byMDs. The delay of MD execution can be denoted as:

TMD,m(i) = (1 − Rm(i))Cm(i),S
FMD

. (3)

where Cm(i) indicates MD’s computing task sizes, S denotes the required CPU cycles to
process each unit byte, and FMD indicates the computing capability of MDs. The HAU
starts moving at a time slot i from its initial position A(i) and has to reach the destination
A(i + 1) = [x(i) + v(i)Tflycosβ(i), y(i) + v(i)Tflysinβ(i)]T at a speed v(i) ∈ [0, vmax]
and an angle β(i)ε[0, 2π ]. The flight’s energy consumption is calculated as follows:

Efly(i) = ∅‖v(i)‖2. (4)

where ∅ = 0.5WHAUTfly,W is the payload of the HAU, and the flight time Tfly is a fixed
value[4]. We can denote the transmission delay as follows:

Ttra,m(i) = Rm(i)Cm(i)S
rm(i)

. (5)
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where the computation delay at HAU server can be represented as:

THAU ,m(i) = Rm(i)Cm(i)S
FHAU

. (6)

FHAU represents HAU server CPU’s computation frequency. When the computation
process is performed on HAU server, the energy consumption can be represented as:

PHAU ,m(i) = MF3
HAU , (7)

Then, the energy consumption of HAU server at time slot i can be represented as:

EHAU ,m(i) = PHAU ,m(i)THAU ,m(i) = MF2
HAURm(i)Cm(i)S, (8)

3.3 Problem Formulation

Weoptimize HAUmobility, resourcemanagement,MDs scheduling, and task offloading
to ensure the best utilization of computation resources and to reduce processing delays
benefiting from the line of sight betweenHAUandMDs.We can present the optimization
problems as follow:

min{um(i),A(i+1),Rm(i)}
I∑

i=1

M∑

m=1

um(i)max{TMD,m(i), THAU ,m(i) + Ttra,m(i)} (C1)

um(i) ∈ {0, 1},∀i ∈ {1, 2, . . . , I},m ∈ {1, 2, . . . ,M } (C2)

M∑

m=1

um(i) = 1,∀i (C3)

0 ≤ Rm(i) ≤ 1,∀i,m (C4)

A(i) ∈ {(x(i), y(i))|x(i) ∈ [0,L], y ∈ [0,W ]},∀i (C5)

P(i) ∈ {(xm(i), ym(i))|xm(i) ∈ [0,L], ym ∈ [0,W ]},∀i,m (C6)

I∑

i=1

(Efly,m(i) + EHAU ,m(i)
) ≤ Eb,∀m (C7)

I∑

i=1

M∑

m=1

um(i)Cm(i) = C (C8)

C2 and C3 ensure that in time slot i, only oneMD can be scheduled for computation.
C4 represents the value range for the computing task’s offloading ratio. C5 andC6 denote
that HAU and MDs fly inside the defined area. C7 guarantees that the total energy
consumed by HAU during flying and computation doesn’t overpass the battery energy.
C8 states that all computation tasks must be implemented within the ensured period.
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4 The Simulation Results

This section clarifies the scenarios and simulation parameters in detail to investigate
the computation offloading in AAGN environment and evaluate the DDPG algorithm’s
performance compared with DQN and AC algorithms.

4.1 Simulation Setting

In the proposed AAGN system, we consider 4 MDs and one HAU distributed over a 2
Dimensional Coordinate area L×W = 3000× 3000 m2. MDs hover at 300 m altitude.
According to the scenario, HAV grass weight WHAU = 150 kg [11], flies at a fixed
altitude H = 2500 m. The time period T = 400 s is split into I = 40 s time slots, in
each time slot HAU flight time is Tfly = 1 s. The maximum HAU and MD flight speed
are Vmax = 50 m/s. We set the channel power gain to be a0 = −50 dB with d = 1 m
as a reference distance [19], and the transmission bandwidth for MDs BMD = 2 MHZ
[12]. The receiver noise power is set to be σ 2 = −100 dBm without signal blockage
[13]. We considered that the MD’s transmission power PUPMD = 0.8 W . The capacity
of the HAU battery is EB = 1000 KJ . The frequency cycles of CPU for HAU and MDs
required per bit are = 3000 and = 1000 cycles/bit, respectively [14]. MDs and HAU
computing capability is set to FMD = 2.4 GHz, and FHAU = 5.8 GHz, respectively.
We evaluate the computation offloading performance for DDPG algorithm compared
with DQN algorithm and AC and investigate the feasibility of the proposed AAGN
framework.

4.2 Parametric Analyses

To evaluate DDPG performance as a computation offloading solution for the proposed
AAGN environment, we perform several experiments to determine the optimal values
for aactor learning rate, acritic learning rate, discount factor γ and exploration variable σe.
We can deduce that the DDPG algorithm converges when aactor = 0.1, acritic = 0.2 and
aactor = 0.001, acritic = 0.002 and cannot converge when aactor = 0.00001, acritic =
0.00002, because DNN updates are slower when using lower learning rates. So, aactor =
0.001 and acritic = 0.002 are considered the optimal learning rates. The computation
offloading policy in the training stage achieves high performance using the discount
factor γ = 0.001 due to the substantial changes in the environment over time. A larger
γ denotes that the data collected during the period will be considered by the Q table as
long-term data that results in poor generalization over time. As a result, an acceptable
value of γ can enhance the eventually trained policy performance, and in the following
experiments, we set the discount factory γ to 0.001. A larger value of the exploration
parameter results in a larger random noise in the distribution, allowing the agent to
explore a larger spatial range. When σe = 0.005, the algorithm’s performance reaches
a locally optimal solution at 200 episodes because of the small exploration parameters,
so we use it in the experiments.
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4.3 Performance Evaluation

We compare DDPG performance with DQN and AC using different task sizes under
AAGN environment, evaluating the efficiency of AAGN. In Fig. 2a, when task size
D = 1 MB, DDPG and AC algorithms can achieve higher performance than the DQN
algorithm since both algorithms deal easily with continuous action spaces. In contrast,
DQN cannot optimally determine the best offloading strategy because of the search for
non-negligible gaps and discrete action space among possible actions. In Fig. 2b, when
task size D = 15 MB, both DDPG and DQN achieve higher performance than the AC
algorithm. That’s because, unlike DDPG and DQN, the AC algorithm doesn’t use a
Reply Buffer to store the learning model, but learns the models at every step. DDPG
algorithm keeps low processing delay and high convergence with the more significant
task size.

Fig. 2. The performance of the DDPG algorithm compared with DQN and AC using different
task sizes.

Figure 3 showsThe processing delay performance and offloading ratiowhen task size
D = 3.5 MB and computing capability of MD FMD = 2.4 GHz. DDPG optimization
schemes can optimize the convergence performance and achieve lower processing delay
because the action space is continuous,whereasDQN’s performance suffers significantly
when attempts to build a state-action value for each action. Discretizing the action space
is one of the most effective approaches to solving this challenge, but it cannot obtain the
optimal solution. This explains the high performance of the DDPG algorithm’s since it
deals well with continuous action spaces, allowing the output layer in the action model
to be adjusted to fit the environment’s action space. In terms of offloading ratio, Fig. 3b
shows the offloading ratio where DDPG algorithm achieves an optimal offloading ratio.
However, in the AC algorithm, when the computational capabilities are high, MDs tend
to perform the tasks locally, which explains why AC processing delay is less than DQN,
while DQN can achieve a better offloading ratio than AC.
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Fig. 3. The processing delay performance and offloading ratio of the DDPG algorithm compared
with DQN and AC using task size D = 3.5 MB.

However, the DQN algorithm obtains a lower offloading ratio compared with DDPG
but still can achieve an offloading convergence. From Fig. 2 and Fig. 3, we notice that
when the task size increases, the DQN algorithm achieves more convergences. In all pre-
vious Figures, the DDPG algorithm is the optimal computation offloading approach for
our proposed AAGN framework. To summarize, the efficiency of the proposed AAGN
has been investigated. DDPG algorithms achieve optimal convergence with lower pro-
cessing delay and a high offloading ratio. Therefore, DDPG can be a suitable solution for
computation offloading problems under a dynamic network environment (e.g., AAGN).

5 Conclusion

This paper presents an aerial-aerial/aerial-ground computing architecture using HAU
and a swarm of MDs based on MEC services, where the HAU provides communication
and computing services to theMDs. The proposed architecture aims to find solutions for
theMDs’ limited battery capacity, limited coverage area, and short flying time.We study
in detail the computation offloading processes between MDs and HAU. The efficiency
of the proposed AAGN architecture was estimated by evaluating the processing delay
and offloading ratio. To achieve high performance, we optimize HAU mobility, MDs
scheduling, flight speed, flight angle, and tasks offloading using DDPG to solve the
computation offloading problem, considering this problemas a non-convex problem.The
results show the feasibility and effectiveness of our proposed AAGN architecture using
the DDPG algorithm as a computation offloading policy which can achieve optimal
results in a processingdelay andoffloading ratio comparedwithDQNandACalgorithms.
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Abstract. With the assistance of mobile edge computing (MEC), mobile devices
(MDs) can optionally offload local computationally heave tasks to edge servers
that are generally deployed at the edge of networks. As thus, the latency of task and
energy consumption of MDs can be both reduced, significantly improving mobile
users’ quality of experience. Although considerable MEC scheduling algorithms
have been designed by researchers, most of them are trained to solve specific
tasks, leaving the performance in otherMEC environments remaining dubious. To
address the issue, this paper first formulates the optimization problem to minimize
both task delay and energy consumption, and then transforms it into Markov deci-
sion problem that is further solved by using the state-of-the-art multi-agent deep
reinforcement learningmethod, i.e.,MADDPG.Furthermore, aiming at improving
the overall performance in various MEC environments, we integrate MADDPG
withmeta-learning and proposeMeta-MADDPGwhich is carefully designedwith
dedicated reward functions. The evaluation results are given to showcase the more
satisfactory performances of Meta-MADDPG over the state-of-the-art algorithms
when confronting new environments.

Keywords: Deep reinforcement learning · Multi-agent deep deterministic policy
gradient · Meta learning · Mobile edge computing

1 Introduction

In recent decade, mobile applications (APPs) have been thriving with the emergence
of numerous popular and cutting-edge applications, e.g., face recognition, real-time
online games, and virtual reality, which are usually computation-intensive and delay-
sensitive. Nonetheless, finite computing capacity and battery power have strainedmobile
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devices (MDs) frommeeting abovementioned requirements of APPs. Motivated by this,
mobile edge computing (MEC) is proposed as a promising technology to mitigate the
gap between MDs’ limited capacity and APPs’ increasing requirements [1]. With MEC,
MDs can choose to offload their tasks to edge servers, which are generally deployed at
the edge of networks and equipped with resilient distributed computing resources and
energy supply.

A non-trivial issue in MEC is computation offloading decision making and tasks
scheduling [2]. In view of the superiority in optimal control, deep reinforcement learning
(DRL) has attracted increasing attention from both academia and industry [3], resulting
in various DRL-based MEC algorithms for scheduling computation offloading tasks.
The researchers in [4] advanced a novel strategy for jointly optimizing task offload-
ing and resource allocation in dynamic MEC. [5] presented a two-layer optimization
algorithm to optimize UAV deployment and task scheduling to achieve minimal sys-
tem energy consumption. [6] proposed to use multi-agent depth deterministic strategy
gradient (MADDPG) to maximize offloading tasks while meeting the requirements of
heterogeneous service quality.However, the existingDRL-basedMECalgorithms are too
specialized to achieve best performances when encountering new MEC environments.

To address the issue, we propose a novel transfer-enhanced computation offloading
and resource allocation algorithm based on deep reinforcement learning.We first formu-
late the optimization problemwithminimizing theweighted sumof task delay and energy
consumption, and then transform it intoMarkov decision problemwhich is further solved
by using multi-agent deep deterministic strategy gradient (MADDPG) [8]. Furthermore,
we integrate MADDPG with meta-learning and propose the Meta-MADDPG algorithm
which is able to adapt its scheduling policy to new MEC environments. Ordinary DRL
learns the optimal policy under a specific MDP, while Meta-RL can quickly adapt to
different new MDPs and get the corresponding optimal policy [9]. In the Meta-RL sce-
nario, our goal is to learn a learning process that can quickly adapt to a new MDP task
with very few samples. The main contributions of this paper are summarized as follows:

• We set the MEC environment divided by the large span change of the data size,
required computing power, and delay sensitivity of the tasks. In other words, the data
size range, required computing power range, and delay sensitivity of the tasks in each
MEC environment are unique.

• We set experience pool for each pair of agent and environment to distill scheduling
policies from various MEC environments and sample experiences from these pools
according to their contribution to the policy distillation.

• We design a novel algorithm of fast adaptive capacity, named Meta-MADDPG, to
re-sample MADDPG network after each update. In addition, we perform periodic
parameter initialization on the network every longitudinal time for all agents, so as to
find promising initial parameters suitable for various environments.

• We compare the performance of the proposed Meta-MADDPG with the state-of-the-
art algorithms. Simulation results show that Meta-MADDPG could achieve not only
faster convergence but also lower task delay and energy consumption in different
MEC environments.
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The rest of this paper is organized as follows. In Sect. 2, we present the system
model, followed by the formulation of the optimization problem in Sect. 3. Section 4
introduces the Meta-MADDPG algorithm, along with a parameter initialization method
based on deep reinforcement learning. In Sect. 5 and 6, we discuss the evaluation results
and give the conclusion, respectively.

2 System Model

2.1 MEC Network

Base station

Mobile robot

Mobile device

Unmanned vehicle

Fig. 1. Multi-agent MEC system model.

Figure 1 shows a MEC network structure consisting of multiple mobile devices and a
single base station (BS). The system time is evenly divided into N slots, N = {1, 2…
N}. MDs at the MD layer are denoted by the set M = {1, 2… M}. The computing
resources and battery resources embedded in each MD are expressed as f MD and eMD,
respectively. In addition, the idle power of each MD is defined as pidle. Each mobile
device periodically generates computing tasks with different QoS requirements. The
device can choose to execute the computing tasks locally or at the edge server.

At the Edge layer, we posit BS as L = (xb, yb,Hb). The computing ability of
additional ES of BS is f ES , and the computing ability allocated to the task offloaded to
ES is f m,ES

n . Compared with the wireless transmission delay between MDs and BS, the
transmission delay between BS and its ES is negligible because the result of the task
calculated by BS is often much smaller than the input task. Tasks will be transferred via a
communication link if the devices choose to offload them to the edge servers. If multiple
mobile devices offload computing tasks simultaneously, the wireless bandwidth will be
evenly allocated to perform the offloading tasks.
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2.2 Task Model

In slot n, eachmobile device generates the calculation task gmn with differentQoS require-
ments. Task gmn consists of three elements [10], namely gmn = (Dm

n ,Zm
n , τm), where

Dm
n ,Zm

n , τm represent the input task data (in bits), CPU cycles per bit of task data, and
the maximum allowable task delay, respectively. All mobile devices can execute tasks
locally or offload tasks to the edge servers. τm represents the maximum allowable delay
of each computation task, which is a crucial index of QoS. These three parameters are
different for each task.

The edge offloading indicator of the m th MD at the n th slot is defined as: κm
n ∈

{0, 1},∀m ∈ M, n ∈ N , where κm
n = 0 indicates local execution, and κm

n = 1 indicates
task offloading to the edge server. In this paper, we adopt a binary offload strategy,
where the task is entirely executed either locally on the MD or remotely at the edge
server. K = [κ1, κ2, . . . κm

n ] denotes offloading decision variables.

2.3 Computing Model

– Local Computation Model
If the indicator κm

n = 0, MD m chooses to execute the calculation locally, gmn will
be executed on MD m. Set the transmitting power of the mobile device to 0 and the
computing capacity of the base station to 0. The local computation time for MD m is:

Tm,l
n = Dm

n ×Zm
n

f mn
, (1)

where f mn refers to the computing power allocated to the task by the mobile device, that
is, the number of CPU cycles per second.

Meanwhile, we can express the energy consumed by the local execution of any task
as:

Em,l
n = 10−27 × (f mn )

2 × Dm
n × Zm

n , (2)

where 10−27 represents the chip-dependent calculation coefficient, which is the energy
consumed per CPU cycle during the execution of the task. According to one literature
[11] we set it to be 10−27.

We set two weight parameters ωt
l and ωe

l related to Tm,l
n and Em,l

n respectively, and
express the weighted sum of local calculation time and energy consumption as C l

n.

– Edge Computation Model
If the offloading indicator κm

n = 1, MD m chooses to offload the task to the edge layer,
gmn must be transmitted through the wireless connection between MD m and BS. Since
there may be multiple MD-BS connections in the same slot, signal interference must
be considered. The white Gaussian noise power is expressed as σ 2. The SINR of BS
receiving gmn can be calculated as follows:

SINRm
n = ηmn p

MD

∑

m′ �=m&κm
′

n �=0
ηm

′
n pMD+σ 2

, (3)
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where pMD is the transmitted power of MD. The channel gain ηmn [12] as follows:

ηmn = θ(δmn )−α||h||2ζ. (4)

where δmn is the distance between MDs and BS. We can obtain that the wireless
transmission rate from MD m to BS is:

γm
n = B log

(
1 + SINRm

n

)
, (5)

where B represents the wireless channel bandwidth of BS. Using γm
n , we can get the

upload time Tm,o,u
n of gmn during the offloading phase:

Tm,o,u
n = Dm

n
γm
n

. (6)

In addition, the upload energy consumption ofMDm offloading gmn can be calculated
as:

Em,o,u
n = pMDTm,o,u

n = pMDDm
n

γm
n

. (7)

Then the calculation time of BS executing gmn is as follows:

Tm,o,c
n = Zm

n D
m
n

f m,ES
n

. (8)

Therefore, the total delay of the offloading process can be obtained Tm,o
n . In the

offloading process, the mobile device consumes idle energy inevitably for sustaining
operation, which can be expressed as follows:

Eidle
n = pidleTm,o,c

n = pidleZm
n D

m
n

f m,ES
n

. (9)

The total energy consumption of offloading process is Em,o
n . We relate two weight

parameters ωt
o and ωe

o to Tm,o
n and Em,o

n , respectively. Therefore, the total cost of the
offloading task is Co

n , the total cost of local computation is C l
n, and the total cost of all

mobile devices is expressed as follows:

Call =
n∑

i=1

[(
1 − κm

n

)
C l
n + κm

n C
o
n

]
. (10)
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3 Problem Formulation

This section proposes optimization problems for computational offloading and resource
allocation based on MEC systems. Under the following constraints, we aim to minimize
the total cost of execution time and energy consumption of all mobile devices in the
system. The problem can be formulated as:

(11)

where Tm
n is the execution delay of each task gmn , and Em

n is the energy consumption
of MD m at slot n. In Formula (11), edge offloading decision variables can only be
discrete values (C1). The allocated computing resources should not exceed the available
computing resources of the MD (C2) (C3). The remaining energy Em,left

n′ for each MDm
of any time slot n′ should be nonnegative (C4). Finally, the delay of gmn per task should
not exceed the maximum allowable delay (C5).

Formula (11) achieved optimization by finding the optimal offloading decision vector
and resource allocation. It can be seen that the objective functionCall contains integer κm

n
and continuous f mn mixed optimization variables. In addition, we found that the objective
functionCall and constraintsC2,C3,C4 andC5 are nonlinear. SinceK is a binary variable
and the objective function is not convex, the optimization problem P can be translated
as a mixed integer nonlinear programming (MINLP) problem. When mobile devices
increase, the problem expands substantially, usually NP-hard [13]. Since the interaction
between mobile devices and the environment corresponds to the Markov decision pro-
cess (MDP), we propose solving the NP-hard problem using the reinforcement learning
method.

4 Problem Solution

In this section, we introduce reinforcement learning (RL) including three key parameters
[14], and introduce a classical RL learning method deep deterministic policy gradient
(DDPG). On this basis, we propose Meta-MADDPG, a reinforcement learning method
based on meta-learning and DDPG, which can better solve the problems proposed in
this paper.
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4.1 RL

Three critical parameters in reinforcement learning, state, action, and reward, can define
MDP.

• state: The state refers to the collective states of all the involved mobile devices, mainly
consisting of dynamic information. In each slot n, the state can be expressed as the
elements of sn = {gmn , �mn ,Em,left

n |m ∈ M, n ∈ N }. The message of sn includes task
data size, task computing size and task tolerance delay, current energy, channel gain
to the base station.

• action: The action represents the set of MDs’ actions, the set of scheduling variables.
The message of each action includes the offloading decision variables, transmission
power, and the mobile device’s computing power. In each slot n, an can be expressed
as an = {κm

n , f mn |m ∈ M, n ∈ N }.
• reward: It represents the reward value of eachmobile device after executing action a in
state s. In addition, we set up a reward function r, denoted by rs→s′

a , which determines
how much reward value should be given immediately when the action a is taken in
state s transitions to state s

′
.

4.2 DDPG

DDPG is a typical reinforcement learning method for continuous behavior. Firstly, a
deterministic behavior strategyμ is defined, and the action of each step can be calculated
by at = μ(st). Then we use a neural network to simulate the function μ, called policy
network, with parameters θμ. In training, random noise is introduced into the decision-
making mechanism of action, and the decision of action is changed from a deterministic
process to a randomprocess. Then the action is sampled from this process and transmitted
to the environment for execution.

After passing action at to the environment for execution under a state st , an expected
valueRt will be obtained, namely the action-value function, which is defined by Bellman
equation as:

Qμ(st, at) = E
[
r(st, at) + γQμ(st+1, μ(st+1))

]
. (12)

As Q is a recursive expression, we use a convolution neural network in DDPG
to simulate the Q function with the parameter θQ, and use a function to measure the
performance of strategy μ, which is defined as:

Jβ(μ) = ∫ ρβ(s)Qμ(s, μ(s))ds

= Es∼ρβ

[
Qμ(s, μ(s))

] . (13)
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Therefore, the optimal behavior strategyμ is obtained, i.e., maximizes theμ of Jβ(μ):

μ = arg maxμJ (μ). (14)

4.3 Meta-MADDPG

On the basis of defining MDP, we first transform the optimization problem P into the
strategy of pursuing optimal deterministic action decision an = π(sn),∀n ∈ N , with the
goal of maximizing long-term reward as follows:

P ′ = arg max
π

qπ (s0, a0), (15)

where qπ (s0, a0) is the maximum long-term return expected by a at s:

qπ (s, a) = E

[

Rs→s
′

a + ϒmax
s′

qπ

(
s
′
, a

′)
]

. (16)

Fig. 2. Diagram of Meta-MADDPG’s network structure.
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Meta-MADDPG is divided into inner and outer structure, as shown in Fig. 2. At
the beginning of training, get state sn after observing the environment, and generate
a random action an from one noise variable random sampling. Then execute an, get
observations sn+1, reward rn, package (sn, an, rn, sn+1) and store in experience pool Bx.
After the experience pool Bx is full, we take S samples.

In the inner structure, we use MADDPG network and take state, action, reward, and
next state information of eachmobile device from the experience pool into actor network
and critic network. Then the soft update is used to update the target network. After that,
the information in the experience pool is passed to the updated DDPG network, and the
loss value of the updated network is calculated.

In the outer structure, the loss value calculated by the inner structure is used to update
the parameters of the meta-policy. Set a valueψ , after each trainingψ wheel, we use the
average value of loss calculated by the inner structure to update the parameters of the
outer structure. Finally, all the parameters of the outer structure are copied and initialized
as the parameters of the inner structure. Repeat the cycle.After each trainingψ wheel, the
parameters of the inner structure in the first round of training are copied to the parameters
of the updated outer structure. The data from different experience pool Bx are sampled,
which means that the environmental conditions have changed. The time complexity of
the code is determined by m episodes, n MDs and t steps. Since the maximum step is
50, which means that all tasks can be trained in each episode, the time complexity of
the algorithm is O(mn). The space complexity of the code is mainly determined by the
experience stored in the experience pool. The size of these experiences depends on the
number of MDs, so the space complexity of the algorithm is O(m).The pseudocode of
Meta-MADDPG algorithm is presented as follows:
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5 Evaluation

In this section, we present simulation results to evaluate the performance of the algorithm
presented in this paper. We set the base station in the center of the MEC system, and



582 Y. Yao et al.

the MEC server deployed on the base station with computing power f ES = 10 GHz/s
and bandwidth B = 10 MHz. Mobile devices move randomly in the MEC system. The
computing power of each mobile device is f MD = 1 GHz/s, the transmission power is
pMD = 900 mW, and the idle power is pidle = 100 mW [15]. We set Dm

n (in kbits) as
the random value between (400,500), Zm

n (in Megacycles) as the random value between
(800,900), and τm (in second) as the random value between (0.8,0.9). We set up five sets
of environment configurations, as shown in Table 1.

Table 1. The experimental environment configurations

Configuration
number

The experimental environment configurations

Number of MDs BS computational capacity Bandwidth

1 10 1 × 1010 1 × 107

2 20 2 × 1010 2 × 107

3 30 3 × 1010 3 × 107

4 40 4 × 1010 4 × 107

5 50 5 × 1010 5 × 107

We compared the proposed algorithm with DQN, MADDPG, and Full-Local in var-
ious configurations. Full-Local indicates that all mobile devices execute their computing
tasks locally. The ordinate cost represents the weighted sum of total energy consumption
and total delay.

In Fig. 3, we run several algorithms under the five configurations shown in Table 1.
As the numbers of MD, base station computing power and bandwidth increase in the
same proportion, the average cost of Meta-MADDPG decreases naturally. Although the
average cost of DQN and MADDPG decreases generally, the average cost of DQN and
MADDPG increases when the number of MD is 20 because the MEC system resources
in configuration 2 are too strained.
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Fig. 3. Performance evaluation of average cost with the change of configuration.
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In Fig. 4, we take the number of MD as a variable, and it can be seen that with the
increase of MD, the average costs of all three algorithms, Meta-MADDPG, DQN and
MADDPG, show upward trends. This indicates that the limited computing resources of
MEC server are incapable of supporting the computation offloading of all MD. When
the number of MD is 30, the average cost of DQN is equal to that of Full Local. The
observation shows that DQN can achieve the minimum cost by maximizing local com-
puting under the current environment configuration. This phenomenon shows the effect
of base station computing power and bandwidth resources in the DQN model.
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Fig. 4. Performance evaluation of average cost with the increase of number of MD.

Figure 5 shows the changing trend of average cost with the increase of bandwidth,
and the three algorithms all decline naturally. This is because the increase in bandwidth
cut down the time for MD offloading tasks to the MEC server, thus reducing the average
cost of the MEC system. The Meta-MADDPG algorithm proposed in this paper gets the
best results. When the bandwidth is increased to 5 × 107, the performance of the three
algorithms, except Full Local, is almost equal. The reason is that the bandwidth has been
maximized in reducing the average cost and other factors are in play.
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Fig. 5. Performance evaluation of average cost with the increase of bandwidth.
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Figure 6 shows how Meta-MADDPG and MADDPG adapt to suddenly changing
environments. The abscissa in Fig. 6 represents 1000 episodes in the MEC environment,
that is, after the three elements of the task have been changed in a large span, while
the ordinate represents the number of tasks completed in each episode. We consider the
completion of 50 tasks as a strategy to find the optimal solution. It can be seen that the
MEC system can complete all MD tasks within 50 time slot in Meta-MADDPG at 150
steps, and the scheduled tasks can be completed in most episodes after that. MADDPG
was slow to complete a scheduled goal in the face of a suddenly changing environment
while Meta-MADDPG showed better adaptability and faster convergence.
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Fig. 6. Adapt to suddenly changing environments.

6 Conclusion

This paper proposes a MADDPG model of initialization parameters based on deep
reinforcement learning. We conduct simulation experiments to compare this model with
some other benchmark schemes. The MEC environment changes due to the large span
change of task data size required computing power and delay sensitivity, which leads to
the increased cost of scheduling decisions with weak fast adaptation ability during the
convergence process, and even the tasks in the time slot will not be completed in the
training process. Simulation results show that under different configuration parameters,
the proposed scheme saves more energy and boasts more robust adaptability to new
environments. Further work is underway to explore a more complexMEC systemmodel
that includes a three-tier network structure.
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Abstract. With the rapid development of information technology, low-
cost unmanned aerial vehicles (UAVs) appear. With advanced sens-
ing and actuating technologies, they are being increasingly applied to
a variety of scenarios. However, considering their limited computing
resource and restricted battery capability, the computation-intensive
tasks or data-intensive tasks will face tough challenges. With the aid
of Mobile Edge Computing (MEC), moving computation-intensive tasks
from resource-constrained UAVs to edge cloud servers can significantly
save energy and finally achieve impressive performance.This paper pro-
poses an evolutionary game based algorithm to solve the computation
offloading problem for UAVs. By replicator dynamics, UAVs select the
suitable service provider to offload the computation tasks via achieving
a tradeoff between time delay, energy consumption and monetary cost
when network externality exists. Simulation results show that the pro-
posed algorithm can rapidly converge to evolutionary equilibrium and
achieve desirable performance.

Keywords: Evolutionary game · Replicator dynamics · Computation
offloading · Unmanned aerial vehicles · Mobile edge computing

1 Introduction

With the research and development (R&D) of drone technology, the power of
unmanned aerial vehicles (UAVs), also known as drones, has been enhanced
dramatically. Meanwhile, their cost has been dropped. As a consequence, UAVs
can not only serve as aerial working platforms but also play increasingly impor-
tant roles in military, commercial and civilian areas such as law enforcement
by the police, environmental monitoring, geological survey, prevention of for-
est fires, movie and television photography, surveillance and so on. In many
scenarios, UAVs are brought to deal with the specific tasks, such as video pre-
processing, pattern recognition and feature extraction. These kinds of tasks typ-
ically require executing complex algorithms or running big models, which can
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be computation-intensive and requires dedicated and powerful processors [1].
Although the technologies of drones have been improved a lot, the limited com-
puting capabilities present a major challenge for real-time data processing and
decision-making. Besides, the constrained energy supply needs to be applied to
the take-off, flying, hovering, landing. Performing highly intensive computation
tasks onboard deteriorate the battery lifetime, which may furhter affect mission
success. In order to address these challenges, offloading computation-intensive
tasks to remote servers is widely regarded as a promising solution.

Mobile Edge Computing (MEC) has been introduced to bring computing and
storage resources in physical proximity of end devices [2]. MEC helps to provide
low-latency services to end devices which require intensive computation or a large
volume of data [3]. Works on computation offloading in MEC have gained many
advances [5]. In the scenarios where multiple edge servers co-exist in the same
area for UAVs to select, choosing the most suitable edge server is a challenging
problem. It is hard to make decision in a distributed manner. Game theory is
expected as an effective method to solve the problem of resource allocation and
multiple access in the distributed manner. The work presented in [1] adopted a
game theory model in the network with three possible strategies to minimize the
cost function. In [4], dynamic evolutionary game-based network-selection algo-
rithms in the heterogeneous wireless networks are presented. Game theoretic
approach for the computation offloading decision-making problem among mul-
tiple mobile device users for mobile-edge cloud computing are proposed in [6].
In order to achieve an efficient computation offloading coordination among end
users, a decentralized mechanism was designed using potential game in [7]. The
work in [8] proposed computation offloading game strategies for UAVs. Aiming
at maximizing servers’ utility and minimizing the cost of users, a game theoretic
approach is proposed for jointly allocate wireless and cloud resources in [9].

Cost is the key when decisions are making. The potential factors evolving
in cost function include delay, energy consumption and monetary cost. In order
to solve the problem and select the most suitable providers to minimize cost,
the paper considers the network externality. The number of UAVs sharing the
same server is included in monetary cost. When the number of sharing UAVs
exceed a threshold, time delay, energy consumption and monetary cost are pos-
itive correlation with it. Furthermore, the numerical normalization operation is
introduced to maintain roughly the same influence for all three factors. Then a
computation offloading algorithm based on evolutionary game (EG) is proposed.
Simulation results shows the proposed method can converge to evolutionary equi-
librium (EE) rapidly and achieves desirable performance when multiple service
providers co-exist in the same area.

2 System Model

2.1 System Description

In the scenario, the heterogeneous network includes one macro base station
(MBS) and K small base stations (SBSs). The MBS is locating in the center
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of the area. The SBSs are scattered in the coverage area of MBS, following a
poisson point distribution. Each base station (BS) connects to a small data center
which provides edge computing resources. In the following, the MBS/SBS and
its connecting server are referred as macro/small service provider (MSP/SSP).

As shown in Fig. 1, I UAVs are hovering in the area. K SSPs overlaid
with one MSP providing communication and computation services to UAVs.
K = {0, 1, 2, . . . ,K} represents the set of MSP and SSPs, where 0 represent
the MSP and {1, 2, . . . ,K} the SSPs. We denote the set of service areas by
J = {1, 2, . . . , J} in which service area is covered by only a macro cell or
a macro cell and several small cells. The number of UAVs in service area j
(j ∈ {1, 2, . . . , J}) is denoted as Nj ,

∑J
j=0 Nj = I.

In this model, we have similar assumptions in [12] with some differences.

– An UAV with multiple radio transceivers is capable of connecting to differ-
ent SPs, and we assumes that the UAV can select only one SP for wireless
transmission, resource scheduling and task offloading at the same time.

– The service area of each SP is a circular region that the SP is in the center. The
coverage vary from SP to SP in view of their communication and computation
capabilities.

– There are overlapped zones between two or more service areas of SPs. UAVs
which are hovering in the overlapped zones could select different SPs accord-
ing to their choices. In Fig. 1, area 1 only has MSP coverage. UAVs in the
area can only subscribe to the MSP. The area 2 is covered by MSP and SSP6.
UAVs in this area can select MSP or SSP6. However, one SP cannot located
in the coverage of another except a SSP within the range of MSP.

Fig. 1. Service areas considered in the mobile edge computing environment.

Each UAV has some computational tasks to be executed. Tasks are charac-
terized by Ci, the number of instructions to be executed, and Di, the data size
of the tasks. The available spectrum bandwidth of SP k is Wk. It can process
tasks from all UAVs connecting to it concurrently with the computing capacity
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of Fk instructions per unit time. The number of UAVs connecting to SP k is
noted as nk. The bandwidth and computing capability of each SP are averagely
allocated to all UAVs connecting to it which are Wk/nk and Fk/nk.

We consider a channel model similar to [10] and [13]. The orthogonal sub-
channels are assigned to the UAVs. Therefore, there is no channel interference.
The channel between each SP and its connected UAV is composed of a fixed
distance path-loss, a slowly component modeled by lognormal shadowing and
Rayleigh fast fading with unit average power. Each SP allocates rate adaptively
depends on the received signal to noise ratio (SNR) per drone. As SSPs and MSP
averagely allocate the bandwidth to the subscribers, all UAVs that subscribe to
the same SP share the long-term expected throughput equally. ηk denotes the
throughput of SP k in bit/s/Hz. Therefore, the expected throughput Rk for the
UAV which subscribe to SP k can be descripted as Rk = (Wkηk)/nk.

2.2 Cost Design

Time Delay. According to previous works, the delay due to task offloading is
composed of four parts: Ti =�ul

i + �dl
i + �bl

i + �exe
i , the uplink communication

delay �ul
i , the downlink delay �dl

i , the backhaul link delay �bl
i and the task

processing delay �exe
i . However, compared with the size of input data Di, the

size of output data is so small that could be neglected. Furthermore, the data
rate of backhaul link between BSs and their corresponding servers is high. The
distance between them is also small. Therefore, �bl

i is too small to be considered.
Hence, the delay is computed as: Ti =�ul

i + �exe
i . �ul

i is given as �ul
i = Di/ri

where ri = Rk = (Wkηk)/nk = wiηk. �exe
i is defined as �exe

i = Ci/fi where
fi = Fk/nk, if UAV i select BS k. Then the time delay can be also written as:

Ti = Di/(wiηk) + Ci/fi (1)

Energy Consumption. The energy consumption of UAV i is Ei = pi �ul
i

+pri �dl
i , which includes both uplink and downlink energy consumption, where

pi represents the transmission power of UAV i which is fixed. pri denotes the
received power of UAV i. As mentioned above, the energy consumption of data
receiving stage is neglected. The energy consumption is given by:

Ei = pi �ul
i = piDi/(wiηk) (2)

Monetary Cost. In this paper, the monetary cost of UAV i is composed of
three parts: the communication cost, the computation cost and the basic cost
which is related to the number of UAVs sharing same SP:

Mi = qkwiηk + gkfi + lpknk (3)

where qk and gk mean the price of per unit transmission bandwidth and the
price of per 100 unit computation resources of SP k, respectively. lpk is the basic
cost related to nk. When the number of UAVs nk is larger than a certain value,
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the monetary cost Mi will increase as nk goes up. In the other case, it shows
Mi is inversely proportional to nk. These kind of monetary cost lead UAVs to
choose SPs rationally.

Additionally, we found that monetary cost Mi is much larger than time delay
cost Ti and energy consumption cost Ei, if use simulation data to calculate with
the above formulas. In order to set the three parts of cost to have the influence
with similar scale, the numerical normalization is carried out: the monetary cost
Mi 100 is set to one percent of the original value.

Cost Function. The cost function is defined as the weighted sum of delay,
energy consumption and monetary cost:

Zi = αTi + βEi + γMi (α + β + γ = 1) (4)

α, β and γ mean the weighted parameters of delay, energy and monetary cost,
satisfying α + β + γ = 1. Then the total cost of all UAVs could be expressed as:

min
J∑

j

Nj∑

i

Zi (5)

The objective of the system model is to optimize the function, i.e., to mini-
mize the total cost.

3 Evolutionary Game Formulation

3.1 Game Formulation

The evolutionary game in the MEC-aided heterogeneous environment can be
described as follows:

– Players: In each service area, each UAV that could select SPs is a player of
the game.

– Population: The population in this evolutionary game refers to the set of
UAVs in the same service area, expressed as J = {1, 2, . . . , J} and J is the
number of populations. Besides, Nj is the number of UAVs in population j,
satisfying

∑J
j=1 Nj = I.

– Strategy: The strategy of each player refers to the selection of SPs, denoted
as K = {0, 1, 2, . . . ,K} where 0 represent the MSP and {1, 2, . . . ,K} is the
SSPs.

– Population share: The amount of UAVs that select SP k in the population j
is represented by nj

k. Then the population share of the UAVs that select SP
k in the population j is xj

k = nj
k/Nj , where xj

k ∈ (0, 1].
– Population state: The population shares of all SPs in the population j con-

stitute the population state, denoted by the vector xj = [xj
0, x

j
1, x

j
2, . . . , x

j
K ],

∑K
k=0 xj

k = 1. We use matrix X to denote the population state space, which
contains the states of all J populations.
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– Cost function: As mentioned above, we use the cost function to quantify
the consumption of an UAV when the task is offloaded. For a particular
population j, the cost of UAV i selecting SP k can be written as: Zj

k(i) =
αTi + βEi + γMi . In the case that all UAVs specify the same size of tasks
and weights, Zj

k(i) can be noted as Zj
k.

3.2 Replicator Dynamics

In evolutionary game, replicator dynamics provides an approach to converge to
the equilibrium selection. The replicator dynamics equation is defined as follows:

ẋj
k(t) = σxj

k(t)[Z
j
k(t) − Z̄j(t)] (6)

where σ is the gain parameter, satisfying σ > 0. It is the speed at which the player
adjusts its strategy. Zj

k(t) is the current cost of the players choosing strategy k in
population j. Z̄j(t) is the average cost of the population j, which can be derived
as:

Z̄j(t) =
K∑

k=0

(xj
k(t)Z

j
k(t)) (7)

Via the replicator dynamics, the amount of UAVs selecting SP k will increase
if the cost of selecting SP k is below the average cost. Otherwise, UAV will not
select SP k. This replicator dynamics satisfies the condition of

∑K
k=0 ẋj

k(t) = 0.

3.3 Evolutionary Equilibrium

The evolutionary stable strategy (ESS) is the basic equilibrium in evolutionary
game theory. If ESS is reached, it is impossible for a small mutant population
to invade the population. The population share x will not change unless there is
a strong external impact [10].

Supposing that there is a small portion of players switching from the equilib-
rium strategy to a different strategy y. This part of players is viewed as mutants
of the population. Its size can be expressed as a normalized value ε ∈ (0, 1).
Then the population state after mutation is (1 − ε)x + εy.

With the above notations, ESS is described as follows:
If a strategy X ∗ is an ESS in population j, for any yj �= xj , there is some

εy ∈ (0, 1) such that for all ε ∈ εy, the following inequality holds:

Z(xj , (1 − ε)xj + εyj) < Z(yj , (1 − ε)xj + εyj) ∀j ∈ J (8)

where Z(xj , (1 − ε)xj + εyj) and Z(yj , (1 − ε)xj + εyj) are the expected costs
of non-mutants and mutants of population j, respectively. The εy ∈ (0, 1) can
be regarded as an invasion barrier which represents the maximum proportion of
players using mutant strategies. εy is resisted by the ESS, satisfying the larger
εy is, the more robust ESS is [13].
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3.4 Offloading Algorithm Description

The objective is to minimize the total cost. According evolutionary game, reach-
ing the EE leads to the optimization goal. In order to reach the EE, the player
who is choosing the SP with higher cost will change to select a lower SP repeat-
edly. The SPs will allocate their communication and computation resources to
UAVs averagely. The proposed algorithm based on replicator dynamics can be
described as Algorithm 1.

Algorithm 1. Evolutionary game algorithm
Require: J : the set of populations; J : the amount of populations; Nj : the amount

of UAVs of population j; K: the set of SPs; K: the amount of SPs; C: computing
requirement; D: input date size; Wk: the bandwidth of SP k; Fk: the computing
capacity of SP k; ηk: the throughput of SP k;

1: Initialize: J , J , K, K, Nj , C, D, Wk, Fk, ηk, α, β, γ, p, q, g, lp.
2: for j = 1 : J do
3: for i = 1 : Nj do
4: UAV i in population j randomly choose accessible SP k
5: end for
6: end for
7: loop
8: SP k acquires nk and allocates Wk Fk averagely
9: Computes Zj

k and Z̄j

10: if Nj �= 0 then
11: for i = 1 : Nj do
12: if Zj

k(i) > Z̄j then
13: if (Zj

k(i) − Z̄j)/Z̄j > rand() then
14: choose strategy t, where t �= i and Zj

k(t) < Zj
k(i)

15: end if
16: end if
17: end for
18: end if
19: end loop for all players in all populations.

4 Simulation Results

4.1 Parameter Settings

The simulation scenario is shown in Fig. 2. We consider a heterogeneous net-
work with 1 MSP and 3 SSPs. Just like the assumptions and requirements of
Sub-sect. 2.1 System Model, the MSP lies in the center of the area, SSPs are
scatterd following poisson point distribution, UAVs are randomly created within
the coverage of SPs.
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Fig. 2. Simulation result of service area.

Fig. 3. Total delay of different strategies. Fig. 4. Total energy consumption of dif-
ferent strategies.

The radius of the service areas of SPs is set to sp r = [300,150,100,80] m. As
shown in Fig. 2, in the service scenario up to 8 populations could be formed, i.e.,
J = 8. The total amount of UAVs are 25. The default cost function weight is
set to α = 0.4, β = 0.3 and γ = 0.3. The bandwidth and computation capacity
of SPs are set to W = [200,150,100,80] MHz, F = [80000,60000,50000,40000]
Mega/s, respectively. The throughput of the SPs is set to η = [1.5,1.7,1.8,2]
bit/s/Hz, and the transmit power of the UAVs is p = [10,8,6,5] mW. The price
for communication resources is q = [0.05,0.035,0.02,0.01] $/Mbit. The charge for
computation resource is g = 0.1 $/100 Mega, and the basic cost lp = 2 $ per
UAV. For the computing task, we use the face recognition program, which the
data size for the computation offloading D = 10 M and the total number of
instructions C = 20000 Megacycles.

4.2 Performance Evaluation

Overhead of Different Strategy Mechanisms. Figure 3 and Fig. 4 respec-
tively reveals the total delay and total energy consumption of different strategies
of SP selecting. The MSP stratety is only choosing MSP. Random-unchangeable
is the strategy that players select the SPs randomly at the beginning and will
not change during the system-running. In Random-changeable, players can select
their SPs randomly at every slot. The JRA-EG is the proposed strategy in [10].
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The evolutionary game strategy is the one proposed by the paper. The results
are averaged by 105 times simulations. By comparing the MSP with the other
four, we can see that pure selection of MSP leads to the highest cost: the more
players subscribe to the same SP, the higher the cost of the SP. Furthermore, the
Random-unchangeable and the Random-changeable have similar cost, as both
them are randomly selecting strategies. In the simulation, EG could guarantee
the lowest total cost. This is due to the fact that players always choose the
cheaper strategy to decrease the cost in every iteration until reaching EE, at
which point players could not lower cost through changing their strategies. And
the proposed monetary cost function and the numerical normalization operation
improve the superiority of the algorithm.

Fig. 5. Cost of different SPs and population.

Fig. 6. Convergence with different amount of UAVs.
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Evolutionary Equilibrium. According to the replicator dynamics, the amount
of the subscribers of the SPs which have lower cost than average will increase. In
the cost design, the cost will increase subsequently. Correspondingly, the amount
of UAVs choosing SPs decrease if the cost is higher than the average. Then the
cost will decrease. As shown in Fig. 5, the dotted lines represent the cost treads
of 4 SPs, while the solid lines represent the average cost of 8 populations. As
the iterations evolve, the overhead of selecting different SPs gradually converge
to average cost. It is the equilibrium cost of all UAVs, at which UAVs have no
motivation to change its strategy.

Convergence with Different Number of UAVs. Figure 6 shows the con-
vergence of the evolutionary strategy when the amount of UAVs vary. We can
see that the cost grows up as the amount of players increases. The resluts also
show there are more fluctuations in the convergence process.

We analyze there are two main reasons that cause the fluctuations. Firstly,
the cost of SPs are influenced by multiple populations.The amount of players
in each population and the amount of populations are random distributed. The
process of convergence is instable relatively. Secondly, the specific value of each
parameter influence the process, too. However, from Fig. 7, we can conclude
that the normal fluctuations during the iterative convergence process would not
impede the convergence of the propsed strategy.

Fig. 7. Convergence of total cost.

Average Cost. The paper also analyzes the change of different input data and
computing requirement to evaluate their impact on the average cost. Figure 8
and Fig. 9 shows that the average cost increases as the input data size or comput-
ing requirement increases. However, the influence of computing requirement is
smaller compare with the effect of input data size. Part reason of the phonomenon
is that input data size is related to both delay and energy consumption, which
computing requirement only affects delay.
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Fig. 8. Impact of different data size on
the average cost.

Fig. 9. Impact of different computing
size on the average cost.

5 Conclusion

At this stage, we do not consider the strategy selection of UAVs when they
are moving. In future, we will take into account the movement of UAVs.The
strategy space of UAVs will dynamical chanege. Furthermore, we will study
how to allocate the resources of SPs in the case that UAVs have different QoS
requirements.
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Abstract. With the development of the sixth generation mobile net-
work (6G), the arrival of the Internet of Everything (IoE) is accelerat-
ing. An edge computing network is an important network architecture
to realize the IoE. Yet, allocating limited computing resources on the
edge nodes is a significant challenge. This paper proposes a collaborative
task scheduling framework for the computational resource allocation and
task scheduling problems in edge computing. The framework focuses on
bandwidth allocation to tasks and the designation of target servers. The
problem is described as a Markov decision process (MDP). To minimize
the task execution delay and user cost and improve the task success rate,
we propose a Deep Reinforcement Learning (DRL) based method. In
addition, we explore the problem of the hierarchical hash rate of servers
in the network. The simulation results show that our proposed DRL-
based task scheduling algorithm outperforms the baseline algorithms in
terms of task success rate and system energy consumption. The hierar-
chical settings of the server’s hash rate also show significant benefits in
terms of improved task success rate and energy savings.

Keywords: Edge collaborative · Task scheduling · Deep reinforcement
learning · Hierarchical server

1 Introduction

Field of metaverse and autonomous driving, massive amounts of data place
incredibly high demands on hash rate, and the construction of a mobile edge
computing (MEC) network platform is expected to cope with this challenge

Supported by the Natural Science Foundation of Anhui Province (2108085MF202).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 598–606, 2022.
https://doi.org/10.1007/978-3-031-19211-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_49&domain=pdf
https://doi.org/10.1007/978-3-031-19211-1_49


Edge Collaborative Task Scheduling and Resource Allocation 599

[1,2]. The network of edge nodes allocates computing resources upon requests of
offloading a task to the network. Scheduling methods have been developed, e.g.,
workflow-based dynamic scheduling algorithms [3,4], self-adaptive learning par-
ticle swarm optimization (SLPSO) [5,6]. Methods based on Deep Reinforcement
Learning are developed for the task scheduling problem [7] in the MEC system.

In addition, setting optimization goals is essential in algorithm evaluation.
Many scholars use task delay [8] and energy consumption [9,10] as evaluation
goals [11–14].

This paper proposes an optimal scheduling strategy suitable for delay con-
straints and user rent constraints to address this challenge. We propose an
improved DRL-based task scheduling algorithm to solve multiple tasks’ edge
cooperative scheduling problem. Our main contributions are as follows:
• An edge collaborative task scheduling framework is proposed for the compu-

tational resource allocation and task scheduling problems in edge scenarios.
The problem considers the bandwidth resources of the server, task character-
istics, task queue state of the target server, and arithmetic power level.

• We propose a DRL-based algorithm to solve this scheduling problem, improv-
ing algorithm convergence and minimizing the weighted sum of task latency
and cost by allocating appropriate bandwidth resources and target servers.

• Simulation results demonstrate that the proposed method outperforms the
baseline algorithms. In addition, the hierarchical settings of arithmetic power
for servers in the network effectively reduces the system energy consumption.

The rest of this article is organized as follows. Section 2 introduces the sys-
tem model and describes the problem. Section 3 presents our proposed algorithm
including algorithm design and process description. Section 4 presents our exper-
imental results and discussion. Section 5 concludes this paper with a summary.

2 System Model and Problem Description

2.1 Model Overview

As shown in Fig. 1, our model consists of servers with hierarchical hash rate and
multiple end-users. There are two waiting queues on each server, the waiting
scheduling queue, and the waiting execution queue. The edge servers can be rep-
resented as M = {1, 2, . . . ,M}. N = {1, 2, . . . , N} represents a task generated
by the end-user.

Users send task requests to the closest server m′ first, which we define as the
local server. The local server receives the task Am′n = {Cm′n, Lm′n, Costm′n},
where Cm′n denotes the task size and Lm′n, Costm′n denotes the task’s latest
response time and the maximum acceptable overhead for that task, respectively.

2.2 Task Scheduling Model

After the user sends a task request to the local server m′, the scheduler in the
local server m′ allocates transmission bandwidth and gives it to the specified
target server m for execution. The entire scheduling process can be divided into
the following four stages.
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Fig. 1. The structure of our system model.

Task Transmission: After the local server m′ receives the task request, it
allocates appropriate bandwidth resources to it, and the end-user transmits the
task to the local server m′ through the wireless channel, we ignore the time
delay, the uplink transmission rate can be defined as:

om′n = Qlog

(
1 +

pm′n|hm′n|2

σ2

)
(1)

where pm′n is transmission channel bandwidth between the task n and the local
server m′, hm′n represents the channel gain, which is time-varying, and σ2 is the
noise. The transfer time of the task is:

STm′n =
Cn

om′n
(2)

Task Scheduling: The scheduler of the local server gives the optimal task
scheduling policy according to the currently observed network status, such as
the bandwidth of the local server and the available computing resources of each
server in the network.

Waiting for Execution: We use Quem to indicate the number of tasks in the
waiting execution queue of the target server m. Therefore, the waiting execution
time of the task is:

WTmn =
{

0, Quem = 0
freeTmn − ATmn, else

(3)

where freeTmn represents the idle time of the server m after task n arrives.
ATmn is the task n arrival time to the target server. If it is in working condition,
the task needs to wait. At this time, the idle time of the target server can be
expressed as:

freeTmn =
{

freeTmn′ + ETmn′ , if freeTmn′ > ATn′

ATn′ + ETmn′ , else
(4)
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where n′ represents the previous task of the task n, freeTmn′ , ETmn′ , ATn′

denote respectively the idle time of the target server after task n′ arrive, the
execution time of the task n′, and the arrival time after the task n′ arrives at
the target server.

Task Execution: The task size Cn and server compute speed fm are known.
So the estimated computing time of the task n on the server m can be expressed
as

ETmn =
Cn

fm
. (5)

In summary, after the completion of task n, the estimated completion time is
the sum of the task n’s transmission time, waiting time for execution, and task
execution time, which is expressed as follows

Tn = STm′n + WTmn + ETmn. (6)

2.3 User Cost Model

The unit cycle price is um, and the higher the hash rate, the greater the um.
Therefore, the total cost to be paid to the service after the execution of task n
is

Umn =
Cn

fm
∗ um. (7)

2.4 Problem Description

Our optimization goal is to minimize task execution delay and user cost overhead.
The optimization problem can be described as follows

P1 : min
p

{
α ∗

N∑
n=1

Tn + (1 − α) ∗
N∑

n=1
Umn

}
s.t. C1 : α ∈ (0, 1)

C2 : 0 < fm ≤ fmax
m , ∀m ∈ M

C3 : 0 < pm′n ≤ pmax
m′ , ∀m′ ∈ M, ∀n ∈ N

C4 : Tn ≤ Ln, ∀n ∈ N
C5 : Umn ≤ Costn, ∀m ∈ M, ∀n ∈ N

(8)

where α represents the weight factor, which the scheduler can define according
to different task requirements [15]. C2 indicates that the server’s hash rate is
limited, and C3 indicates that the transmission power between each server and
the task does not exceed the maximum value. Conditions C4 and C5 represent
the task’s constraints on time and cost.

3 Proposed Method

We transform Problem P1 into an MDP problem and design a Deep Determin-
istic Policy Gradient-based online scheduling and allocation (SA-DDPG) algo-
rithm to solve it. The structure of our proposed network is shown in Fig. 2.
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Fig. 2. SA-DDPG algorithm structure.

3.1 MDP-Based Task Scheduling Problems

State Space: The system state s (t) is consists of two components: the channel
gain hm′n (t) between the user and the local server and the server state informa-
tion sm (t) in the network. Thus, the state space at moment t can be expressed
as :

s (t) = {hm′n (t) , s1 (t) , s2 (t) , . . . . . . sm (t)} (9)

Action Space: We define the action space as:

a (t) = {pm′n (t) , a1n (t) , a2n (t) , . . . amn (t)} (10)

Here amn ∈ {0, 1}, and amn = 1 represents offloading task n to server m,
a1n + a2n + . . . + amn = 1.

Reward Function: Our optimization problem P1 is to minimize the delay and
cost of task completion, so we set the reward to:

R =
Lm′n − Tn

Lm′n
+

Cost
m′n − Umn

Cost
m′n

(11)

3.2 SA-DDPG Algorithm Framework

We describe the network structure of the algorithm in Fig. 2. The weight param-
eters θμ and θQ of the Actor network and the Critic Network are randomly
initialized at the beginning of the algorithm. We use Q′ and μ′ to improve learn-
ing stability in the target network.
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Algorithm 1 Deep Deterministic Policy Gradient-based Online Scheduling and
Allocation algorithm
Input: Task Am′n = {Cm′n, Lm′n, Costm′n}, channel gain hm′n
Output: Optimal scheduling policy a∗ (t)

Initialize critic network Q(s, a|θQ) and actor network μ(s|θμ) with weights θQ and
θμ;
Initialize target network Q′ and μ′ with weights θQ′ ← θQ and θμ′ ← θμ

Initialize the empty replay buffer B;
for t = 1, 2, ..., T do

Takes system state s(t) as an input to the actor network and obtains action a(t) =
μ (s (t) |θμ) + δt

Execute action a(t), obtain the reward R(t) and next state s(t + 1)
Store transition tuple s (t) , a (t) , R (t) , s (t + 1) into B
if learning time reaches then

Agent collects K samples from B
Update critic by minimizing the loss function in Equation (13)
Update actor policy by the deterministic policy gradient in Equation (14)

end if
regularly update the target networks:

θQ′ ← τθQ + (1 − τ) θQ′

θμ′ ← τθμ + (1 − τ) θμ′

end for

Algorithm Training: The Agent obtains states s (t) from the environment
and selects the current best action a∗ (t). After taking action a∗ (t), the Agent
receives a reward Rt and subsequently observes the next state s (t + 1). The
transition buffer is {s (t) , a (t) , R (t) , s (t + 1)}, which can be stored into the
experience replay memory B. In addition, the loss function in Fig. 2 is:

L = E
[(

R (t) + γQ′
(
s (t + 1) , a (t + 1) |θQ′) − Q

(
s (t) , a (t) |θQ

))2
]

(12)

where γ is the attenuation coefficient. And policy gradient can be expressed as:

∇θT = E
[
∇aQ

(
s, a|θQ

)
|s=s(t),a=μ(s(t))∇θµμ (s|θμ) |s(t)

]
(13)

We formalize the SA-DDPG algorithm process in Algorithm 1.

4 Experimental Analysis

4.1 Settings

We compare the task success rate and energy consumption with the random
scheduling algorithm, the round-robin [16] scheduling algorithm, the earliest
scheduling algorithm, and the DRL algorithms of DQN [17] and DDQN. The
detailed simulation parameters are shown in Table 1.
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Table 1. Simulation Parameters

Parameters Description Value

fm Server hash rate [12.5 MIPS/s,15 MIPS/s,17.5 MIPS/s]

Cn Size of task n [500 KB, 1200 KB]

M Number of servers 15

Mcapacity Computing capacity of the server 1000 MIPS

pmax
m′ Maximum transmission power 0.2 M

ω channel bandwidth 0.5 MHZ

αactor Actor network learning rate 0.01

αcritic Critic network learning rate 0.02

γ The discount factor 0.9

Fig. 3. The task success rate.

As shown in Fig. 3, the task success rate of the DRL-based family of algo-
rithms is 30%-40% higher than that of the conventional algorithms because the
DRL-based algorithms can make learning based on historical experience and
continuously train to optimize the decisions.

Fig. 4. Impact of different weighting factors α on task success rate.

We set α to 0.2, 0.5, and 0.8 for cost-sensitive tasks, balanced tasks, and
delay-sensitive tasks, respectively. As shown in Fig. 4, the task success rate of
our proposed algorithm consistently outperforms the other baseline algorithms
in the three task type arrival scenarios, converging to about 93%.
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Fig. 5. Total energy consumption in different hash rate environments.

Furthermore, we explore the impact of the hierarchical hash rate of the servers
on system energy consumption in Fig. 5. And after the server hash rate is hierar-
chical, the total energy consumption of all algorithms is reduced by about 25%
compared with the ungraded case.

5 Conclusion

In this paper, we study the task scheduling problem in edge scenarios. To solve
the problem of allocating bandwidth resources to servers and scheduling tasks
among servers, we propose a DRL-based algorithm to reduce the total task
latency and user overhead to maximize the success rate of tasks. In addition,
we verified that our algorithm is highly adaptable and capable of handling any
type of task. In future work, we can further explore mobility under multi-edge
networks.
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Abstract. Mobile cloud gaming (MCG) can provide userswith high-quality gam-
ing services anytime, anywhere, but suffers from long network latency and huge
wide-area traffic. In order to solve these problems, mobile edge computing (MEC)
is envisioned as a promising approach to enable relevant computing at the edge.
Since the quality of experience (QoE) of the game requires high frame rates and
low network latency, the placement of service entities can affect the performance
of MEC-enabled MCG. In addition, users have a high degree of mobility while
enjoying MCG, so service migration is proposed to reduce QoE impairment, and
service migration means an increase in system cost. To address these challenges,
we investigate the service placement of MEC-enabled MCG. Considering the
dynamics of the system, we propose to minimize the QoE impairment according
to the constraint cost of migration. We design the ECP algorithm to solve the
problem.

Keywords: Mobile edge computing · Mobile cloud gaming · Dynamic service
placement · QoE impairment · User mobility

1 Introduction

With the development of 4G/5G technology and video games, mobile cloud gaming
(MCG) has become the trend of the future gaming industry [1]. Mobile cloud gaming
offers the possibility of running complex games on thin and light devices by offloading
heavy tasks to the cloud, making mobile games accessible on any device and anywhere
with simple settings. However, mobile edge computing often cannot fulfil increasingly
stringent latency requirements because of the long-distance communication between the
remote cloud and mobile devices [2].

As game services are devolved to edge networks, new challenges raised due to the
limited resources of edge nodes and the unstablemobility of users. Existingworks shows
that network latency and frame rate are the major factors affecting the user’s gaming
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Mongolia Natural Science Foundation under Grant 2019ZD15.
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experience [3]. Therefore, placing the service entity at a non-nearest but appropriate
edge nodes is a more practical solution, which leads to the service placement problem.

In addition, users may move from one edge node service area to another while
playing game. To maintain a satisfactory quality of service, service placement decisions
should be continuously adjusted over time. An effective dynamic service placement
strategy should: 1) coordinate communication and computation delays tominimize user-
perceived delays; or 2) balance performance and cost in a cost-effective manner.

The main contributions of our work are summarized as follows:

• We propose a method to solve the problem of poor gaming experience in mobile cloud
gaming through dynamic service placement in the MEC environment. Minimize the
QoE impairment caused by low frame rate and long network delay.

• We design a dynamic service placement algorithm (ECP) under mobile cloud gam-
ing. The algorithm transforms a long-term problem into a series of subproblems by
applying the Lyapunov optimization framework.

• We conduct numerical simulations to evaluate the performance of ECP algorithm
and measure the impact of the algorithm parameters. The results shows that the ECP
algorithm outperforms other algorithms and has a large reduction on the long-term
gaming experience impairment.

The rest of this paper is organized as follows. Section 2 reviews related work, the
system model will be introduced in Sect. 3, and Sect. 4 proposes an online service
placement algorithm to seek the optimal service placement strategy. Section 5 evaluates
the performance of the algorithm and concludes the paper in Sect. 6.

2 Related Work

Our work is related to traditional mobile cloud gaming QoE issues as well as service
placement problem inMEC systems. Research on themost relevant issues of these topics
is reviewed in our article.

With the development of MEC, people begin to study the problem of service place-
ment inMEC.A key challenge to achieve efficient service deployment inMEC is to track
the mobility of users and devices. To meet these challenges, E.g., Nadembega [4] solved
the trade-off between execution overhead and latency, using a mobility-based prediction
scheme to estimate data transfer throughput, VMmigration management, and switching
time in advance. Also, Wang [5] looked at how to place services by predicting user
location and preferences, database location and more. In [6] the authors assume a good
understanding of the user’s mobility within a given time frame. In this paper, our goal
is to simultaneously optimize the service placement to minimize the QoE impairment
caused by the network delay and the frame rate.

Existing MCG works can be divided into two categories: 1) Graphics streaming
[7] where the data is the game specification model and instructions, and the rendering
task is handed over to the mobile device. 2) Video streaming [8] where the data has
been rendered as a game scene. Due to the thin-client and transparency feature, video
streaming is the most used in practice. Therefore, the target of this article is also video
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streaming. Video streaming faces two major challenges, namely, huge wide-area traffic
and long network latency. However, since mobile devices still have to communicate with
the remote cloud through the WAN, these works fail to reduce the traffic or the network
delay to a desired grade.

3 System Model and Problem Formulation

As illustrated in Fig. 1,we consider aMECsystem that consist of a setN = {1, 2, . . . ,N}
of edge nodes, a remote cloud and a network operator. Each edge node is a base station
or a wireless access node equipped with a server, and consequently has the capability of
computing and communication. Furthermore, edge nodes are connected via high-speed
local-area network (LAN) and can communicate with remote clouds through the WAN.
To facilitate capturing user mobility, it is assumed that services are provided in discrete
slot frames, expressed as T = {1, 2, . . . ,T}. The system provides a game library G =
{1, 2, . . . ,G} for users to choose. And the user is represented as M = {1, 2, . . . ,M}.
We denote Nt

m ∈ N as an edge node communicating with user m within time slot t.

Fig. 1. Architecture of MEC-enable mobile cloud gaming

In order to maintain a satisfactory quality of service, here we take a binary indicator
xtm(n) to represent the dynamic service placement decision variable, let xtm(n) = 1 if the
service entity of user m ∈ M is placed at the MEC node n ∈ N at slot t, and xtm(n) = 0
else. We have the following constraints on the service placement decision:

∑

n∈N
xtm(n) = 1,∀m ∈ M ,∀t ∈ T (1)

xtm(n) ∈ {0, 1},∀m ∈ M ,∀t ∈ T ,∀n ∈ N (2)

Executing a service entity will cause the corresponding node to consume computing
resources. We denote Sn as the computing power of node n and Sg as the computing
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capacity (e.g., CPU cycles per second) required by the service entity running game g.
We have the following constraint:

∑

m∈M
xtm(n) × Sgm ≤ Sn,∀n ∈ N ,∀t ∈ T (3)

Denoting the bandwidth capacity of edge node n at any time slot t asWt
n, and denoting

the bandwidth allocated to user m as ytm, analogous to the limitation of computing
resources, we have the following constraints:

∑

m∈M ,ntm=n

ytm ≤ Wt
n,∀n ∈ N ,∀t ∈ T (4)

The frame rate is determined by the bandwidth and the resolution also with compres-
sion ratio. We assume that each game has only one resolution, and denote the resolution
of game g by rg . Thus, at any slot t, the allocation decision is yt , and γ represents the
transmission compression ratio the frame rate f tm of user can be expressed as:

f tm = ytm
γ × rgm

(5)

The communication delay includes network propagation delay and data transmission
delay. Given the service request information and the current location of user m, the
communication delay to MEC node n can be represented by the general model Hm

n (t).
When considering the service placement decision xtm(n), the communication delay is
Lm(t) = ∑N

n=1 x
t
m(n)Hm

n (t).
In this paper, we use Rm(t) to denote the amount of computation capacity required

by service request of user m at time slot t. Computation delay in time slot t is Dm(t) =∑M
i=1 x

m
i (t)Rm(t)Ni(t)/Fi among them Ni(t) is the number of users served by node i in

time slot t and Fi represents the maximum computation power.
By combining the computation delayDm(t) and the communication delay Lm(t), We

denote the total delay that user m is in during period t as Tm(t) = Lm(t) + Dm(t).
We use the mean opinion score (MOS) to evaluate the gaming experience, to obtain

the video coding parameters of the QoE model. According to the collected data we fit
the data by using different linear and nonlinear models, and the accuracy of the fitting
is analyzed to obtain the following expression of the QoE impairment function:

I(t,m) = α1f
t
m + α2T

mt + α3
(
Tmt

)2 + α4
(
f tm

)2 + α5f
t
mT

mt (6)

The QoE impairment functions in terms of the network delay and the frame rate, and
denote by I(t,m). Among them α1−α5 are model parameters of the game specification.

In this part, we present themigration cost.While dynamic service placement provides
satisfactory QoE by migrating service entities between edges to follow user mobility.
But it’s worth noting that migrating across edge servers incurs additional operational
costs. We use Cg

ij (t) to denote the cost of migrating game task entity g from node i to

node j in time slot t. Then at any time slot t, the service placement decisions xt and xt−1
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are given, and the migration cost of user m is denoted as Ct
m, which can be expressed as

follows:

Ct
m =

M∑

m=1

N∑

i=1

N∑

j=1

Cg
ijm(t)xtmx

t−1
m (7)

Due to users mobility, to ensure the desired level of QoE, the service entity should
be migrated to follow the user movement. We introduce Cavg to denote the long-term-
averaged cost budget limit the cost of servicemigrationwithin time slot t, which satisfies:

lim
T→∞

1

T

T∑

t=1

∑

m∈M
Ct
m ≤ Cavg (8)

Based on above formulation, our goal is to optimize service placement for MCG
using MEC to minimize QoE impairment caused by frame rate and network latency. We
describe the long-term time-averaged QoE impairment and migration cost as:

p1 : min lim
T→∞

1

T

T∑

t=1

∑

m∈M
I(t,m) (9)

s.t(1) − (4), (8)

Striking the optimal solution requires a full knowledge of the system dynamics, such
as usermobility patterns. Even if p1 is transformed into a series of one-shot optimization,
the derived subproblem is amixed integer non-linear optimization problem and is proved
to be NP-hard in the following section.

4 Online Service Placement Algorithm

In this section, we describe a novel framework for making online service placement
decisions. To solve p1, we transform the problem into a Lyapunov-based queue stability
control problem, and present it in Algorithm 1.
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In this part, we present the Lyapunov-based Online Algorithm. Due to the dynamic
nature of the system, p1 makes a long-term trade-off between cost and performance
without future global information. The key idea of Lyapunov optimization [9] is to
transform the initial problem into a queue stability control problem by introducing a
virtual queue for each long-term constraint.When the queue is controlled to be long-term
stable, the corresponding long-term constraints are satisfied.

First, we construct the constraint cost as a dummy queue and assume that the initial
queue backlog is 0 (i.e., Q (0) = 0):

Q(t + 1) = max

{
Qt +

∑

m∈M
Ct
m − Cavg, 0

}
(10)

where Qt is the queue length of time slot t, which represents the cost of performing task
migration at the end of the time slot.

We set the initial queue backlog to 0, i.e.Qt = 0.We treat queue backlog as a criterion
for evaluating violations of cost constraints. That is, when the value of Qt is large, it
means that the accumulated migration cost has exceeded the budget, and migration
during this period should be avoided. The main part of our online service placement
algorithm is to solve the following problem p2 in at every time slot t:

min V ×
∑

m∈M
It,m(g, f , b) + Qt ×

(
∑

m∈M
Ct
m − Cavg

)
(11)

The positive parameterV is the Lyapunov control parameter, which is used to control
the bias between the original objective and the long-term constraint. In order to solve
the proposed problem, p2 needs to be solved.

We set the environment considered in p2 to consist of a remote cloud and a single
edge node, and we assume that the bandwidth of the edge node is unlimited, so the QoE
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impairment of frame rate can be ignored, assuming the queue backlog is zero, so, in this
particular case, p2 can be rewritten as:

max
∑

m∈M
xtm × It,m

(
dt) (12)

where dt is the network delay between the edge node and the remote cloud, xtm is the
service placement decision for userm andW is the computation power of the edge node.
We can see that p2 becomes a standard 0 – 1 knapsack problem after rewriting, in which
the knapsack capacity is W , the item set is M , and the value and weight of each set
m ∈ M are It,m

(
dt

)
and wgm. Due to the NP-hardness of its special case, p2 is proved to

be a NP-hard problem.
Since the NP problem cannot be solved in polynomial time when P �= NP, we turn

to the approximate optimal solution and show it as an iterative algorithm based on the
Markov approximation method. Each iteration is constructed as a one-step transition
from one state of the underlying chain to another state. The algorithm is shown in
Algorithm 2, based on the first initial service placement decision xtm in the current state,
m
∧ ∈ M and node n

∧ ∈ N are randomly selected in each iteration to generate a new service
placement decision.

5 Performance Evaluation

In this section we perform numerical simulations to evaluate our ECP algorithm by
comparing with several algorithms, in addition, we change the algorithm parameters
and evaluate their impact on the algorithm performance.

In the simulation, like some previous work [10], we simulate a 2 km × 2 km area
with 35 edge nodes. For simplicity, we assume that edge servers are irregular motion in
this regular mesh network, and each user is within the coverage of exactly one edge node
at any time. We use ONE to simulate user mobility, the user moves at a speed of 0.5 m/s
to 1.5 m/s and a random direction will be chosen each time in the user’s movement. The
communication delay between cloud and edge nodes is within 200 ms to 300 ms. More
parameters are shown in Table 1.

To evaluate the performance, following algorithms are used.

1. Stay at the cloud (SC) [11]: Mobile users always place service entities in the cloud,
simulating traditional mobile cloud gaming.

2. Follow the user mobility (FUM) [11]: Regardless of the switching cost, and it’s an
ideal way, mobile users will always choose the nearest edge server to handle the
request in each time slot.

3. First in first migration (FIFM): Migrate at minimal cost per user, repeat until budget
is used up.

4. Based on Markov center algorithm (MCA) [5]: Service placement decisions are
obtained using a Markov approximation method.

Figure 2 (a) shows the impact of cost budget on QoE impairments after a 200 slot
simulation. Impairment values for SC and FUM are same because they are not affected
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Table 1. Simulation parameter settings

Parameter Value

User number M 600

Game number G 20

Computation capacities Rm 10 GHz–20 GHz

Bandwidth capacities Wn 20 MBps–50 MBps

Game resolutions rg {240 P, 360 P, 480 P, 720 P}

Migration cost budget Cavg 20

Lyapunov control parameter V 103

Compression ratio α 0.2

Communication requirement Qn 0.5 GHz–1 GHz

by cost budgets. For FIFM, MCA and ECP, it can be observed that with the growth of
cost budget, more services can follow the user’s mobility to reduce impairment.

Figure 2 (b) illustrates the QoE impairment per time slot. All user’s service entities
are initially placed in the cloud and afterwards placed according to ECP and these
compared alternatives. As expected, SC has highest QoE impairment due to its long-
distance communications and FUM achieves the lowest conversely. FIFM repeatedly
migrates the service with maximal migration cost until the cost budget is used up. By
contrast, ECP achieves an elegant balance between the performance and the cost.

Fig. 2. Impact of different parameter on QoE impairment

In Fig. 2 (c),we vary the parameter number of users and compare theQoE impairment
of each user betweenECP and other algorithms.Due to the limited number of edge nodes,
the larger the number of users, the more users are served by remote clouds, which leads
to an increase in the average QoE impairment of users. Furthermore, as the number of
users grows, the gap between ECP and other algorithms becomes larger. The impairment
gap between the FUM and the ECP will also become larger.



Improving Gaming Experience with Dynamic Service Placement 615

We compare different number of edge nodes from 15 to 55 and show the QoE
impairment results in Fig. 2 (d). All algorithms except FUM perform poorly when the
number of nodes is small since most of the service entities are placed on the cloud. To
some extent, increasing the number of nodes improve the performance. we learned that
MCA performs poorer as the number increases from 35 to 55, this is because MCA
prefers more to migrate services in the edge and ignores services placed in the cloud.

Figure 2 (e) shows the change of QoE impairment under different Lyapunov control
parametersV .We learned that increaseV from small values can improve the performance
of ECP.We also observed that increaseV at large values contributed little to performance
and thus improving the performance by simply adjusting V is unviable.

6 Conclusion

In this paper, we investigate the dynamic service placement problem for MEC-enabled
MCG and formulate a long-term optimization problem with random settings. We then
proposeECP,which transforms the original problem into a series of residual optimization
problems through the Lyapunov optimization framework. The performance of ECP is
evaluated by numerical simulations, and the results show that ECP can significantly
reduce the QoE impairment.
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Abstract. In the field of edge computing, collaborative computing
offloading, in which edge users offload tasks to adjacent mobile devices
with rich resources in an opportunistic manner, provides a promising
example to meet the requirements of low latency. However, most of
the previous work has been based on the assumption that these mobile
devices are willing to serve edge users, with no incentive strategy. In this
paper, an online auction-based strategy is proposed, in which both users
and mobile devices can interact dynamically with the system. The auc-
tion strategy proposed in this paper is based on an online approach to
optimize the long-term utility of the system, such as start time, length
and size, resource requirements, and evaluation valuation, without know-
ing the future. Experiments verify that the proposed online auction
strategy achieves the expected attributes such as individual rationality,
authenticity and computational ease of handling. In addition, the index
of theoretical competitive ratio also indicates that the proposed online
mechanism realizes near-offline optimal long-term utility performance.

Keywords: Online auction strategy · Collaborative computing
offloading · Long-term utility

1 Introduction

With the continuous development of advanced wireless communication technol-
ogy in recent years, the number of mobile devices has also exploded. First, these
applications are typically resource-intensive, latency-sensitive, and computation-
ally intensive. Second, the computing power required by mobile devices is still
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severely limited by portability operations [1]. This presents a serious test for the
future of mobile devices [2].

Offloading computing tasks is a fundamental solution to the problem of
resource constraints [3]. Although cloud computing has made great achievements
in the past many years, when users finally offload tasks to the public cloud, there
is still the problem of long delay, especially in the environment of severe network
congestion. In recent years, MEC has been designed as a promising computing
paradigm for mobile services with ultra-low latency [4,5]. Rather than offloading
tasks to a remote cloud, mobile users address ultra-low latency issues by cooper-
ating with end users or by performing computationally intensive tasks at the net-
work edge of nearby facilitie [6]. It is precisely because it is known that the MEC
system performance can be effectively improved through the untapped resources
of a large number of mobile devices, this paper studies the MEC framework of user
cooperation [7]. Specifically, some mobile devices could partake these untapped
resources to assist other edge users in offloading computing tasks [8].

The existing gage is to guarantee the real reliability of the online strategy
proposed in this paper. In addition to request-private conditions such as resource
requirements and task evaluation involved in offline policies, this paper also needs
to address new obstacles, namely ensuring the authenticity of start times and
task durations [9]. False edge users purposefully use false reports of their private
information to control market decision-making action to obtain high profits,
which will deteriorate the long-term profit system [10,11]. This paper adopts
the technical expression social utility, which is determined as the total utility of
edge end users and mobile devices. The crucial is to incentivize edge users to
claim their realistic details through the right price. Only when users report false
conditions will they get less utility than if they report true information. Its early
classic work - the vicery-clarke-groves (VCG) strategy was used to develop a
mechanism to prove its auction [12,13]. However, the existing VCG algorithm is
not suitable for the online situation, because its payment determination requires
the optimal distribution results. In the case of uncertain future task requests,
this paper cannot obtain those optimal solutions [14].

To address all the above problems and challenges, this paper develops an
incentive mechanism for online auctions with the following properties: (1) The
arrival and departure of computing tasks and mobile devices are dynamic at any
time, and each task will be set up with a bundled resource package in the future;
the auction decision-making behavior is matched between dynamic tasks and
mobile devices. (2) The auction strategy designed in this paper is conducted
in an online manner and does not do any suppositions about the arrival of
future request information. Despite the premise that future information is not
available, task assignment decision-making must be done instantaneously. The
main contributions of the artical are summarized as follows.

In this paper, an online incentive strategy is developed in a collaborative
MEC environment for multi-type resource users. This paper deals with the gen-
erality of collaborative task execution: (1) Tasks are heterogeneous and need
different amounts of diversity resources; (2) The number of tasks a mobile device
can perform is limited by its resource capacity; (3) The performance of resource
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supply and demand can affect its unit resource price. Therefore, two mechanisms
are designed in this paper. One is an offline mechanism based on VCG, which is
optimal as a benchmark. The other is a true online mechanism that only refers
to the current request status to make decisions.

2 System Model

A. Mobile Edge Computing: Referring to here a MEC involving M edge
users, indicated by M = {1, 2, ...,M}, microbase stations for mobile devices
N , indicated by N = {1, 2, ..., N} devices serving the users. Mobile devices
can be thought of as smartphones, mobile microclouds, ipads and Internet of
Things devices. It is assumed that the system is run in timeslot mode, and each
timeslot is represented as t ∈ T , T = {1, 2, ...T}. User i’s j-th task is denoted as
Tij = {tij , lij}, where tij stands for the start time of the task, lij stands for the
length of the task, that is, the amount of timeslots used to accomplish the task.
Therefore, the index number required to complete the time slot is expressed
as t′ij = tij + lij − 1. Z-Resources for instance CPU, RAM, and bandwidth
are assumed. Define az

ij(t) be the amount of z-resources required for slottime t,
whose variable az

ij(t) varieties with time, and its varieties will be different due
to the heterogeneity of computing tasks. Aij =

{
a1

ij , a
2
ij , ..., a

Z
ij

}
is defined as a

computing resource as a specified bundle, where az
ij =

{
az

ij(t) : ∀t ∈ [tij , t′ij ]
}
.

To give a mode for mobility, set tn and sn to the interval time and service
duration of mobile devices n ∈ N respectively. The computing resources of each
mobile device are limited. Defining Cz

n indicates the maximum capacity of type
z-type resources on mobile device N . Because the microbase station can access
the all network state, it is a system controller that controls the decision making
of task scheduling.

B. Auction Theory: In this paper, the interaction between edge users and
mobile devices is modeled as an auction strategy, which edge users are regarded
as bidders and mobile devices as sellers. The microbase-station is a trusted third-
party auction manager who manages both parties and makes online decisions.
Users on the edge ask nearby mobile devices to assist with tasks and provide
some immediate reward when the task is completed. The stages of the auction
process are as follows:

Set bj
i to the bid of task Tij . The bidding prototype of the task Tij should

denoted as σj
i =

{
tij , lij , Aij , b

j
i

}
∈ Σi, where Σi is the bidding group of edge

user i. There are M,N and Σ = {Σ1, Σ2, ..., ΣM}, the auction manager can con-
trol a winning bid set W and a task assignment scheme, i.e., to search a mapping:{

σj
i : σj

i ∈ W
}

→ {n : n ∈ N} and the payment of each winning bidder σj
i ∈ W.

Note here that each bid σj
i is private info for edge user i.

In a fake auction, the bidder will present the difference between his request
and his actual request. For the purpose of distinguishing, the submitted bids are
indicated by σj

i =
{

tij , lij , Aij , b
j
i

}
, and the actual request info is indicated as

σ̄j
i =

{
t̄ij , l̄ij , Āij , q

j
i

}
.
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C. Offline Revenue Maximization Problem: The entire information about
bidding and mobile devices is available in an offline environment. There is a
tradeoff between the utility and the cost of completing a task, which in turn
creates some utilities for the bidder. The bid assignment variable yn(σ

j
i ) is given

here, and yn(σ
j
i ) = 1 when the bid σj

i is assigned to the mobile device N . And
the overall bid allocation strategy is Y = (yn(σ

j
i ) : ∀n ∈ N ,∀σj

i ∈ Σ).
Bidding allocation strategy Y is defined, Λ = (λij) is a payment rule, and λij

indicates the payment of task Tij . In order to explore this tradeoff, this paper
adopts welfare benefit maximization index, which is mainly characterized via
system completion utility and mobile device service cost.

1. Computation Completion Utility: Set bid Σ and bid allocation strat-
egy Y, and the system utility that can be completed by computing the task will
be expressed as:

U(Y) =
∑

σj
i ∈Σ

∑

n∈N
yn(σ

j
i ) · bj

i (1)

2. Mobile Device Service Costs: The service cost of mobile devices mainly
comes from its battery energy consumption. This paper applies a linear energy
consumption mould according to resource consumption. It is understood that
in the case of not using dynamic voltage frequency scaling, its energy consump-
tion and CPU, RAM usage approximately show a linear relationship. Set rz

n(t)
to represent the z-type resource usage on mobile device N at time t, and its
relevanting execution cost can be expressed as

Ez
n(r

z
n(t)) =

{
gz

nrz
n(t) 0 ≤ rz

n(t) ≤ Cz
n

+∞ otherwise
(2)

which gz
n indicates the energy consumption required to use unit z-type resource

in each slottime on mobile device n.
The total resource consumption in T is summarized by r = (rz

n(t)) : ∀n ∈
N ,∀z ∈ Z,∀t ∈ T . Therefore, its operating cost is:

ΩE(r) =
∑

n∈N

∑

t∈T

∑

z∈Z
Ez

n(r
z
n(t)) (3)

3. Utility Maximization Problem: Set Σ−j
−i to the entire set of claimed

bid profiles for all tasks except bid σj
i . That (σj

i , Σ
−j
−i ) stand for the entire bidding

situation. The user i’s untility function is: μij(σ
j
i , Σ

−j
−i ) = bj

i − λij(σ
j
i , Σ

−j
−i ),

when exist xn(σ
j
i ) = 1. The total utility of a mobile device is to receive the

total payment minus the cost of service. Social utility maximization problem
(SUM) is the difference between the utility completed after task aggregation
and the service cost. In short, the problem of maximizing social benefits in the
system model in the article will be converted into the mixed integer programming
problem as follows:

max
Y,r

SUM(Y, r) = U(Y) − ΩE(r) (4)
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∑

σj
i ∈Σ:tij≤t≤t′

ij

yn(σ
j
i )aij(t) ≤ rz

n(t) ∀n,∀t,∀z (4a)

∑

n∈Ψij

yn(σ
j
i ) ≤ 1 ∀σj

i (4b)

yn(σ
j
i ) ∈ {0, 1} ∀σj

i ∀n ∈ Ψij (4c)

which Ψij = {n ∈ N : tn ≤ tij , lij ≤ sn}.

3 Offline Auction Strategy Formed

The objective of the article is to design a VCG enabled offline optimal auction
strategy in which the auctioneer has the entire future details situation. The
optimal allocation outline is the optimal solution of the precisely maximized
mixed integer programming, namely, Eq. (4).

Strategy 1. (VCG-enabled Offline Auction Strategy-VCG-OOA)

(1) The allocation strategy Y O
n � (yO

n (σj
i ) ∀σj

i ∈ Σ ∀n ∈ N ) is derived by
optimal solution to the mixed integer programming problem with a union of
global bid Σ.

(2) The payment strategy ΛO
n � (λO

n (σ
j
i ) ∀σj

i ∈ Σ ∀n ∈ N ), which λO
n (σ

j
i ) is

descripted as :

λO
n (σ

j
i ) = SUM(Yo(Σ), ro(Σ)) − bj

i − SUM(Yo(Σ −
{

σj
i

}
), ro(Σ −

{
σj

i

}
))

(5)
where Σ−

{
σj

i

}
indicates all bid sequences except bid bj

i , and Yo(Σ−
{

σj
i

}
)

indicates the optimal solution obtained when Σ −
{

σj
i

}
treats as the input.

Algorithm 1. OAP-SUM Strategy
1: Input: Current Event;
2: t̃ ← Now timeslot;
3: N(t̃) ← {

n|the collection of mobile devices participating in the auction att̃
}
;

4: Ψ(t̃) ←
{

σj
i |bid has been authorized but work has not yet been processed withint̃

}

5: if Event==‘Mobile device n reaches’ then
6: N(t̃) ← N(t̃) ∪ n, (tn ≤ t ≤ t′n);
7: end if
8: if Event==‘Bid σj

i reaches’ then
9: Computing the union Ψij for bid σj

i based on N(t̃);
10: Y(σj

i ), λij ← OAP-SUM-A (t̃, N(t̃), σj
i , Ψij)

11: Ψ(t̃) ← Ψ(t̃) ∪ σj
i

12: Y ← Y ∪ Y(σj
i ), Λ ← Λ ∪ λij

13: end ifreturn: Y and Λ
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4 Online Auction Strategy Formation

OAP-SUM Strategy: According to the applicable rules of Myerson’s theorem,
this paper mainly describes the scheme implementation and allocation rules of
SUM online auction policy (OAP-SWM), as shown in Algorithm 1. This paper
first develops an event processing application, which involves the call processing
of results for instance bid arrival, bid acceptance, task completion, mobile device
arrival and mobile device departure (line 2–4). OAP-SUM computes two collec-
tions, N(t̃) indicates the collection of mobile devices available at auction time
t̃. Ψ(t̃)is the collection of accepted bids for unfinished tasks at t̃ (line 5–6). The
union N(t̃) is updated as soon as the new mobile device reaches. In the case of
submitting a new bid, OAP-SUM first computes the union Ψij of bid σj

i based
on N(t̃) (line 7–9). OAP-SUM-A is controlled by function based on allocation
decision and payment decision at lines 10. The OAP-SUM set is then updated
at lines 11–12.

1) Allocation policy: This paper uses the primitive dual technique to
develop allocation policy. Firstly, the relaxed integer constraint is adopted in
Eq. (4c), and yn(σ

j
i ) ∈ {0, 1} is converted to yn(σ

j
i ) ≥ 0. Based on the standard

Fenchel duality principle, the cost function or the conjugate function form Êz
n(x)

of Ez
n(r

z
n(t)) is first given.

Êz
n(x) = max

rz
n(t)≥0

{xrz
n(t) − Ez

n(x)} (6)

The dual variables ηz
n(t) and νij are added to the Eqs. (4a) and (4b) in the

form of constraint conditions. The duality problem is developed as follows:

min
∑

n∈N

∑

z∈Z

∑

t∈T
Êz

n(η
z
n(t)) +

∑

σj
i ∈Σ

νij (7)

νij ≥ bj
i −

∑

z∈Z

∑

tij≤t≤t′
ij

ηz
n(t)a

z
ij(t) ∀n,∀σj

i (7a)

ηz
n(t) ≥ 0 ∀n,∀z,∀t (7b)

νij ≥ 0 ∀σj
i (7c)

Based on the principle of complementary relaxation primal duality in the
Karush -Kuhn -Tucker (KKT) condition, the primal variable yn(σ

j
i ) = 1 iff the

dual constraint, i.e., Eq. (7a) is valid in the optimal solution. In order to realize
the feasibility of the double restriction of formula (7a), for each new bid σj

i case,
this paper defines:

ν = [y]+, y = max
n∈Ψij

(bj
i −

∑

z∈Z

∑

t

ηz
n(tij , t)a

z
ij(t)) (8)

which [y]+ indicates max {y, 0}. From this comes the allocation rule. In the case
of νij > 0, bids σj

i will be accepted and yn′(σj
i ) = 1, otherwise, they will be

rejected.
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Algorithm 2. OAP-SUM-A (t̃, N(t̃), σj
i , Ψij)

1: Initialize:Y(σj
i ) = (yn(σ

j
i ) ∀n ∈ N ), λij = 0;

2: for ∀n ∈ N (t) do
3: for ∀z ∈ Z do
4: for ∀t = t̃ : T do
5: rzn(t, t̃) =

∑
az
ij(t) ∀σj

i ∈ Ψ(t̃)
6: ηz

n(t, t̃) = Γ z
n(r

z
n(t, t̃))

7: end for
8: end for
9: end for

10: Obtaining n′ via resolving the Eq. (12);
11: Computing the dual variable value νij ;
12: Computing the union Ψij for bid σj

i based on N(t̃);
13: νij ← bji − ∑

z∈Z
∑

tij≤t≤t′
ij

ηz
n′(t, t̃)az

ij(t)

14: Ψ(t̃) ← Ψ(t̃) ∪ σj
i

15: Y ← Y ∪ Y(σj
i ), Λ ← Λ ∪ λij

16: if νij > 0 then
17: yn′(σj

i ) ← 1 and yn(σ
j
i ) ← 0 ∀n ∈ {N − n′}

18: λij ← ∑
z∈Z

∑
tij≤t≤t′

ij
ηz
n′(t, t̃)az

ij(t)

19: else
20: νij ← 0
21: yn(σ

j
i ) ← 0 n ∈ N

22: end if
return: Y(σj

i ) and λij

(2) Payment Principle: The dual variable ηz
n(t, t̃) is taken as the optimal

planned price for a z-type resource in time slot t ≥ t̃ on mobile device n. Based
on the off-line environment, the dual problem can be easily resolved directly to
obtain these prices. However, it is difficult to get these prices when bids change
dynamically over time. An auxiliary price function of rz

n(t) ∈ [0, Cz
n] is developed

to realize online decision as soon as possible.

Γ z
n =

Pz − gz
n

2Z
(
2Z(Qz − gz

n)
Pz − gz

n

)
rzn(t)
Cz
n + gz

n (9)

which Pz = min
σij

bji∑

t∈[tij ,t
′
ij

]
aij(t)

, Qz = max
σij

bji∑

t∈[tij ,t
′
ij

]
aij(t)

are respectively the

lower and upper limits of the bidder’s valuation of unit z-type resources, which
are obtained from previous information. All explanations are given in the future
paper Appendix. In a word, the specific details of the allocation principle appear
in OAP-SUM-A of Algorithm 2.

5 Experimental Analysis

A. Experimental Environment Setting: The task data in this paper is taken
from Google database, which composed of task start time, implementation time
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and resource requirement conditions. This article converts the request into a bid,
as shown below. This paper assumes two types of resources, namely Z = 2. In
order to obtain the bidding value of the task, the unit z-type resource valuation
is taken from the random selection in Pz, Qz, whose bidding value corresponds
to its resource requirements within the quantization range of the unit valuation.
The value range of Pz, Qz varies with different experiments. Qz = 8 and Pz = 1
are the default cases.

Under other default conditions, the edge computing system in this paper
contains N = 20 mobile devices. In this paper, the cycle T of 300 timeslots is
tried to run, and then the trajectory of the mobile device is randomly generated.
It is supposed that mobile devices have the property of Poisson process arrival
in average arrival interval N/T , and their service time interval sn is selected
uniformly and randomly in [15, 35], and the normalized resource capacity of
each mobile device comes from the uniform and random distribution within the
range of [0.25, 0.35]. gz

n is uniformly and randomly distributed between the range
[0.6 − 1].

B. Actual Acquisition of Competitive Ratio Analysis: This paper adopts
online auction strategy to realize the comparison between the actual competi-
tion ratio and the corresponding theoretical one. The actual competition ratio
is based on the OAP-SUM Algorithm to realize the ratio between the maxi-
mum actual social utility and the optimal offline social utility. The value of the
theoretical competition ratio is ln(2Zγ), which γ = max

n,z

Qz−gz
n

Pz−gz
n

.

Figure 1(a) verifies the comparison between the actual and theoretical com-
petition ratios of OAP-SUM Algorithm as the number of tasks grows. Qz = 8,
the paper learned that most of the actual competitive ratio is around 1.4, which
is far less than the upper limit of the actual theoretical value, which denotes that
the online strategy developed shows superior performance. However, the value
of the actual competition ratio increased slightly with the grow in the number
of tasks. The real reason is that with the grow of tasks, the future uncertainty
will be more difficult to control, and the possibility of task allocation will be
more and more, and the corresponding decision difficulty will be more and more
uncontrollable. Furthermore, it is specifically understood that the theoretical
ratio is not correlated with the corresponding number of tasks.

In Fig. 1(b), the functional forms of actual and theoretical competition ratios
of OAP-SUM are studied when parameter γ ranges from 6 to 12. The number
of tasks given here is 120 and the number of mobile devices is 20. Thus, with
the increase of γ, the actual ratio will also increase. This makes sense because
higher unit resource prices will lead to real improvements in competitiveness.
The theoretical ratio is the same. This verification result is consistent with the
analysis that the competition ratio is controlled by the value of ln(2Zγ).

C. Individual Rational Analysis: This paper studies the performance of
OAP-SUM from the perspective of individual rationality, as illustrated in Fig. 2.
Here, 20 successful bids are randomly selected from the winning collection, and
the submitted bids, actual payments, and actual execution costs are given. It can
be seen from Fig. 2 that the bid submitted is continuously greater than the actual



Cooperative Offloading Based on Online Auction 625

Fig. 1. Competitive Ratio of different number of tasks with γ.

Fig. 2. Individual rational analysis

payment price paid to mobile devices, i.e., the individual rationality is guaranteed
by OAP-SUM. D. True Validity Analysis: Now we study the analysis of the
true validity of OAP-SUM. Figure 3 shows the performance impact of unreal
resource requirements and task execution time on user utility respectively. In
this paper, a winning bid σj

i is randomly selected and its bid situation is adjusted
at any time. Meanwhile, the OAP-SUM algorithm is run again with other bids
unchanged. It is stated here that the user cannot declare that the execution
time is shorter than the actual execution time and the actual resource demand
is less. Therefore, this article only applies to the environment where the user
claims that the execution time is longer and the resource demand is higher.
The value on the x-axis refers to the ratio of claimed resource requirements
to actual resource requirements. It follows from this that submitting more bids
than actual resource requirements will reduce the user’s utility, while the actual
resulting true resource requirements will yield the highest utility.

Similarly, the added task execution time in Fig. 3(b) is a bid σj
i in the range

from 10 to 20, and its real value is 10. As can be seen from the graph, submit-
ting bids with longer execution times than actual times will reduce the user’s
utility, while actual verified true execution times will yield the highest utility.
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Fig. 3. Authenticity analysis

E. Comparison of the Two Proposed Strategies: The online mechanism
OAP-SUM is now compared with the offline one VCG-OOA according to two
capability indexes of user utility and winner percentage.

Figure 4 verifies the function comparisons of VCG-OOA and OAP-SUM in
the light of user utility and winner percentage, respectively, as the number of
tasks grows. It can be concluded that the user utility of OAP-SUM is larger or
smaller than that of VCG-OOA in Fig. 4(a). The reason for this is that although
there is an allocation optimum, VCG-OOA may not necessarily be the payment
optimum. Figure 4(b) verifies the difference in function comparison of winner
percentages. It is worth mentioning that the percentage of winners serves as
a measure of distribution efficiency. Typically, the allocation strategy of OAP-
SUM is close to optimal because its winner percentage is very close to the result
of VCG-OOA. It can also be seen from the figure that as the amount of tasks
grows, the percentage of winners will decrease. The reason behind this is that
owing to the restricted resource capacity of mobile devices, the increased task
value is greater than the increased number of winners.

Fig. 4. Analysis and comparison of different number of tasks
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Figure 5 verifies how the winner’s utility and the winner’s percentage are
influenced when the ratio γ is increased from 6 to 12. Figure 5(a) shows that
the utility of VCG-OOA is to maintain a kind of stability, while the utility of
OAP-SUM decreases with the grow of γ value. The major reason is that the
ratio σ is only a range of the marginal price function of the OAP-SUM strategy
and will not affect the VCG-OOA strategy. OAP-SUM takes advantage of the
increasing value of γ, which in turn charges the winner more to reduce user
utility. Similarly, as displayed in Fig. 5(b), the percentage of winners shows a
decreasing trend with the increase of γ value.

Fig. 5. Comparative analysis of different γ

6 Conclusion

In this paper, cooperative computing offload performance in MEC is investi-
gated. In this paper, task offloading scheduling is modeled as an NP-hard SUM
problem, and an offline optimization strategy is first used as a reference bench-
mark. This paper further designs an online strategy that does not rely on future
details, which not only schedules computing tasks and computing payments in
polynomial time without involving future details, but also optimizes the long-
term social utility problem in a near-optimal fashion. A large number of theoret-
ical analyses show that the designed online auction achieves such properties as
individual rationality, authenticity and computational tractability. Meanwhile,
function evaluations on actual world trajectories also validate the valid perfor-
mance of the online mechanism proposed in this paper.
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Abstract. With the popularity of intelligent vehicles, computation-
intensive vehicle tasks rise dramatically. Vehicle edge computing (VEC)
is a promising technology that offloads overloaded computation tasks of
intelligent vehicles to the edge. However, VEC servers are constrained
by their available computation capacity while dealing with numerous
tasks. To this end, we propose multi-party cooperation to complete
vehicle task offloading. Computation-assisted vehicles (CAVs) with free
resources assist VEC servers to offload Computation-required vehicles
(CRVs), which enables computation resources of VEC servers and CAVs
for CRVs’ task execution. To motivate positive participation of VEC
servers and CAVs, we design a resource management and pricing mech-
anism by quantifying their gains and costs. Such design efficiently inte-
grate and leverage the communication mode and computing mode among
participants to describe their interactions, which composes two two-
stage Stackelberg games. While Nash equilibrium (NE) for each Stackel-
berg game reaches, none of participants violates unilaterally. Simulation
results demonstrate its effectiveness of the proposed model.

Keywords: Vehicle edge computing · Incentive mechanism ·
Stackelberg game · Resource allocation

1 Introduction

With the rapid development of Internet of Things (IoT), various transport sys-
tem applications win growing popularity in recent years. Intelligent vehicle ser-
vices generate high performance demands, such as low-latency commuication
and intensive computation. Vehicle edge computing (VEC) thus emerges for

Supported by National Natural Science Foundation of China under Grant No.
61802216, National Key Research and Development Plan Key Special Projects under
Grant No. 2018YFB2100303, Shandong Province colleges and universities youth inno-
vation technology plan innovation team project under Grant No. 2020KJN011, Pro-
gram for Innovative Postdoctoral Talents in Shandong Province under Grant No.
40618030001.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 629–637, 2022.
https://doi.org/10.1007/978-3-031-19211-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_52&domain=pdf
http://orcid.org/0000-0002-0835-7368
https://doi.org/10.1007/978-3-031-19211-1_52


630 C. Song et al.

supporting computing, storage and network bandwidth [1]. Many studies intro-
duce a variety of VEC technology, including vehicle fog computing [2], hybrid
combination of fog computing architecture and vehicle cloud computing [3] and
so on. VEC servers execute computation tasks, generated by the vehicles at the
end, while reducing the delay. To improve the QoS of vehicle applications, stud-
ies have investigated if peripheral vehicles with free resources cooperate with
VEC server to complete computing tasks. Authors in [4] studied task scheduling
scheme for enhancing computing resource utilization with system stability and
low latency. Some other studies on vehicle edge computing are also discussed in
[5,6].

In this paper, we are motivated to achieve mutual cooperation for vehicle task
offloading. Vehicles, constrained by limited resources, require VEC serves for task
execution. A large number of computation tasks burden VEC servers. To improve
VEC efficiency, we consider numerous vehicles with free resources to assist the
computing work of VEC servers. However, due to energy usage, most vehicles
unenthusiastically participate in task calculation. In doing so, a framework of
resource allocation and pricing is designed to economically compensate their
costs and stimulate their cooperation.

2 System Module and Game Formulation

2.1 System Model

Our model focuses on task offloading between one VEC server and a group of
vehicles. The proposed model is illustrated. Assume that a VEC server connects
m CRVs and n CAVs within its coverage, denoted by M = {1, 2, . . . ,m} and
N = {1, 2, . . . , n}. We also assume CRV i’s total computation tasks as wr

i ,
i ∈ M. Let pr denote CRVs’ transmit powers over the VEC server’s sub-channels
with pr = {pr

1, p
r
2, . . . , p

r
m} while offloading tasks to VEC server. Specially, pr

i is
the transmit power from CRV i to VEC server, i ∈ M. Similarly, the allocated
powers for transmitting tasks to CAVs are denoted as pa = {pa

1 , p
a
2 , . . . , p

a
n},

where pa
j corresponds to the transmit power from VEC server to CAV j, j ∈ N .

According to the communication model in [7], the channel rate from CRV
i, i ∈ M to VEC server is defined,

Rr
i = Br

i log2

(
1 +

pr
i h

r
i

σ2
i

)
, (1)

The channel rate from VEC server to CAV j is also defined,

Ra
j = Ba

j log2

(
1 +

pa
j ha

j

σ2
j

)
, (2)

where Br
i and Ba

j represent the transmission bandwidth of the subchannel, σi

and σj represent noise power, and hr
i and ha

j represent the subchannel power
gain.



Incentive Offloading with Communication 631

We here define the utility function of a CRV as the difference between its
gains and its costs. Service satisfaction contributes to its gain. Local computation
cost, incentive payment and task transmission cost incur its total costs. Let T r

i

represent the uplink transmission time of delivering CRV i’s tasks to VEC server,
which indicates its task size of Rr

i T
r
i . Given the unit pricing u0 that VEC server

charges CRVs, we define the utility of CRV i, i ∈ M,

Ur
i (u0, p

r
i ) = sr

i R
r
i T

r
i − εr

i (wr
i − Rr

i T
r
i ) − u0p

r
i − ξr

i pr
i , (3)

where sr
i is CRV i’s internal demand rate, εr

i is the unitary local computation
cost and ξr

i is the unitary transmission cost. Accordingly, the utility of CAV
j, j ∈ N is outlined as,

Ua
j

(
ua

j , pa
j

)
= ua

j pa
j − εa

j Ra
j T a

j , (4)

where ua
j is the incentive gain per unitary transmit power, εa

j is the unitary com-
putation consumption. The parameter T a

j represents computation tasks’ uplink
transmission time while delivering from VEC server to CAV j. It indicates the
task size of Ra

j T a
j , offloaded by CAV j. For the VEC server, its gain is the pay-

ment offered by CRVs. The total costs include local computation cost, incentive
payment for CAVs, and power cost of transmitting task to the CAVs. So, the
utility function Uvec of VEC server can be defined as:

Uvec (u0,u
a,pr,pa) =

M∑
i=1

u0p
r
i −

N∑
j=1

ua
j pa

j

−τ

N∑
j=1

pa
j − ε0

⎛
⎝ M∑

i=1

Rr
i T

r
i −

N∑
j=1

Ra
j T a

j

⎞
⎠ ,

(5)

where ε0 is the unitary computation cost of VEC server and τ is the unit trans-
mission cost. Denote ua as ua = {ua

1 , u
a
2 , . . . , u

a
n}. For ease of illustration, we

decompse the utility function in (5) into Uvec = Uvec
1 + Uvec

2 , in which,

Uvec
1 (u0,p

r) =
M∑
i=1

u0p
r
i − ε0

M∑
i=1

Rr
i T

r
i , (6)

Uvec
2 (ua,pa) =

N∑
j=1

ε0R
a
j T a

j −
N∑
j=1

(
ua

j + τ
)
pa

j . (7)

2.2 Problem Formulation

In the three-tiered model, each participant has its own strategy and goal. Their
different goals formulate different computation task management and pricing
problems.
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For player CRV i, ∀i ∈ M, its strategy is to determine the transmit power
pr

i from it to VEC server in order to maxmize the utility in (3). So, the CRV i’s
optimization problem is stated as,

pr
i
∗ = arg maxpr

i >0U
r
i (u0, p

r
i ) (8a)

subject to pr ≤ pr
i ≤ p̄r, (8b)

where pr and p̄r correspond to minimal and maximum transmit powers of CRVs.
For the player of VEC server, its strategy is to decide the pricing u0 of CRVs’s

computation tasks and transmit power pa from it to CAVs in order to maximize
the utility in (5). So, the VEC server’s optimization problem is stated as,

(
pa*

, u0

)
= arg max(pa∗

j ,u0)U
vec (u0,u

a,pr,pa) (9a)

subject to pr ≤ pr
i ≤ p̄r, (9b)

pa ≤ pa
j ≤ p̄a, (9c)

where pa and p̄a correspond to minimal and maximum transmit powers of CAVs.
Since the utility function in (5) can be seperately divided into Uvec = Uvec

1 +
Uvec
2 , problem (9) is thus decomposed into two subproblems as follows,

u∗
0 = arg maxu0U

vec
1 (u0,p

r) (10a)
subject to pr ≤ pr

i ≤ p̄r, (10b)

and,

pa
j = arg maxpa

j
Uvec
2

(
ua

j , pa
j

)
(11a)

subject to pa ≤ pa
j ≤ p̄a. (11b)

For player CAV j,∀j ∈ N , its strategy is to determine the pricing ua
j of VEC

server’s overloaded tasks for maximizing the utility in (4). So, the CAV j’s
optimization problem is described as,

ua∗
j = arg maxua

j >0U
a
j

(
ua

j , pa
j

)
(12a)

subject to pa ≤ pa
j ≤ p̄a. (12b)

2.3 Stackelberg Game Building

We here build two consecutive Stackelberg games for describing the interactions
among CRVs, CAVs and VEC server, shown in Fig. 2. The VEC server acts as
the leader of CRVs to determine the power pricing u0 for CRVs’ task. CRVs,
as the followers of VEC server, then decide their transmit power strategy pr.
The interactions between CRVs and VEC server formulates the first two-stage
Stackelberg game. Problem (8) and Problem (10) jointly formulates such nonco-
operative game GCRV =

{M, {pr
i }i∈M, {Ur

i }i∈M
}
, where M is the set of CRVs,

{pr
i }i∈M is the strategy set and {Ur

i }i∈M is the cost function set.
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CAVs, as the leaders, determine power pricing ua for VEC server’s over-
loaded tasks. Accordingly, VEC server acts as the follower of CAVs in the
second stage to determine its transmit power strategy pa. The interaction
between CAVs and VEC server formulates the second two-stage Stackelberg
game. In detail, Problem (11) and Problem (12) composes CAVs’ game GCAV ={

N ,
{
ua

j

}
j∈N ,

{
Ua

j

}
j∈N

}
, where N is the set of CAVs,

{
ua

j

}
j∈N is the strategy

set and
{
Ua

j

}
j∈N is the set of profit functions.

Fig. 1. Interactions in Stackelberg game

Definition 1. Subgame Perfect Equilibrium (SPE) in GCRV : If the stratification
strategy

{
u∗
0,p

r*
}

represents SPE, it can reach NE in each stage of subgame,
i.e.: {

Stage I : u∗
0 = arg maxu0U

vec
1 (u0,p

r)
Stage II : pr

i
∗ = arg maxpr

i
Ur

i (u0, p
r
i ) ∀i ∈ M (13)

Definition 2. Subgame Perfect Equilibrium (SPE) in GCAV : If the stratification
strategy

{
ua*

,pa*
}
represents SPE, it can reach the NE in each stage of subgame,

i.e.: {
Stage I : ua∗

j = arg maxua
j
Ua

j

(
ua

j , pa
j

)
,∀j ∈ N

Stage II : pa*

= arg max
pa* Uvec

2

(
ua

j ,pa*
) (14)

Each game reaches SPE, which corresponds to a stable solution point of
these problems. Under NE, no player has incentive to deviate. In detail, we use
backward induction to analyze Stackelberg game. CRVs initiate the transmis-
sion strategy pr based on VEC server’s pricing u0. To finish CRVs’ computation
tasks, the VEC server also recruits computation-assisted vehicles. CAVs deter-
mine a power pricing for VEC server’s overloaded tasks, on which VEC server
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allocates the transmit power pa for CAVs. The process continues until Nash
equilibrium reaches. The best strategy

{
u∗
0,u

a*
,pr*

,pa*
}

corresponds to the
Nash equilibrium point, which is solved in the following theorems.

Theorem 1. Given the unit price u0, the optimal strategy pr of CRVs is calcu-
lated in (15).

pr
i
∗ = γr

i (pr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pr if
(sr

i+εr
i )B

r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

< pr,

(sr
i+εr

i )B
r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

otherwise,

p̄r if
(sr

i+εr
i )B

r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

> p̄r.

(15)

Theorem 2. VEC server achieves the unique optimal pricing strategy u∗
0 by

solving subproblem (10) while pr
i ∈ [

pr, p̄r
]
, i ∈ M.

Proof. Substituting (15) into (6), we calculate the first derivative and second
derivative of Uvec

1 with respect to u0,

∂Uvec
1

∂u0
=

M∑
i=1

(sr
i + εr

i + ε0) Br
i T r

i

ln2 (u0 + ξr
i )

− σ2
i

hr
i

− u0 (sr
i + εr

i ) Br
i T r

i

ln2(u0 + ξr
i )2

, (16)

∂2Uvec
1

∂u0
2

= −
M∑
i=1

Br
i T r

i

[
2 (sr

i + εr
i ) ξr

i + ε0 (u0 + ξr
i )

ln2(u0 + ξr
i )3

]
. (17)

Obviously, the second derivative of Uvec
1 on u0 is always negative. So, Uvec

1

is a strict concave function with respect to u0, which indicates the uniqueness
of optimal solution u∗

0. Because of non-linear complexity of ∂Uvec
1

∂u0
in (16), we

approximate u∗
0 by gradient ascent method.

Theorem 3. VEC server achieves the unique optimal transmit power strategy
pa*

in (18) by solving subproblem (11) while pa
j ∈ [

pa, p̄a
]
, j ∈ N .

pa
j

∗ = δa
j (pa) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pa if
ε0Ta

j Ba
j

ln2(ua
j+τ) − σ2

j

ha
j

< pa,

ε0Ta
j Ba

j

ln2(ua
j+τ) − σ2

j

ha
j

otherwise,

p̄a if
ε0Ta

j Ba
j

ln2(ua
j+τ) − σ2

j

ha
j

> p̄a.

(18)

Theorem 4. CAV j, j ∈ N reaches the optimal pricing ua∗
j in (19) by solving

problem (12),

ua
j

∗ = Ra
j (ua) =

√(
�1

j − �2
j − 2�3

jτ
)2

+ 4τ�3
j

(
�1

j − �3
jτ

)
−

(
2�3

j + �2
j − �1

j

)

2�3
j

, j ∈ N ,

(19)

with �1
j =

(
ε0 + εa

j

)
T a

j Ba
j ,�2

j = T s
j Ba

j ε0 and �3
j = ln2 σ2

j

ha
j
.



Incentive Offloading with Communication 635

3 Performance Evaluation

3.1 Simulation Setup

We consider a simulation scenario in which a VEC server provides services for
m CRVs with assistance of n CAVs for task offloading. Each VEC server is able
to cover about 10–30 CRVs. Referring to [8–10], the default model parameters
are stated as follows. It is assumed that the bandwidth of each subchannel is
20 MHz and its channel gain is 53 dbm. The noise power of the channel of the
relevant vehicles is 10 db. The task transmission time T r

i and T a
j is set from 0.5

ms to 1.5 ms. CRVs’ satisfaction on offloaded tasks follows a normal distribution
N (e0, σ0). The number of CRVs and CAVs are 10 and 10 by default.

3.2 Simulation Results

We first investigate the effect of VEC server’s computation cost on its utility
under different number of participants. We see from Fig. 2(a) and (b) that the
increasing number of CRVs and CAVs is indeed helpful for enhancing VEC
utility. While fixing the CRV number and CAV number, we start with observing
a descending trend of VEC utility on computation cost. However, VEC server’s
utility finally improves with incremental computation cost. Such situation is
illustrated in Fig. 2(c) and (d). The growing computation cost incurs CRV’s
decreasing contribution on VEC utility and CAV’s increasing contribution on
VEC utility. While VEC server’ payoff increased by CRV completely cover that
decreased by CAV, VEC utility turns into improvement.

Fig. 2. Effect of computation cost on utility of VEC server

We next observe the comparison by altering the transmit power cost of VEC
server. Figure 3(a) and (b) shows an ascending trend of VEC utility while more
CRVs and CAVs participate in computation offloading. We also observe that the
utility of VEC server tends to decline with the increasing VEC power cost in
Fig. 3(a) and (b). Such result is explained in Fig. 3(c) and (d). VEC power cost
has a negative effect on CAV’ contribution for VEC server’s payoff. However,
CRV’s contribution on VEC server’s payoff don’t follow a significant change.
Accordingly the utility of VEC server decreases.
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Fig. 3. Effect of VEC power cost on profit of VEC server

The CRV computation cost is also explored if it determines the performance
of the proposed model. It can be observed in Fig. 4(a) that local computation
cost of CRV has no obvious effect on pricing, determined VEC server. With
the increase of local computation cost, the steady pricing motivates the CRV
to improve the transmit power for reducing local computation consumption in
Fig. 4(a). We see from Fig. 4(b) that CRV utility depends on its computation
cost, as well as task transmission time. Given a computation task, shorter task
transmission time incurs higher local computation consumption. So, CRV utility
tends to dwindle with the increasing local computation cost.

We finally evaluate CAV computation cost on the model performance.
Figure 4(c) shows the transmit power, allocated by VEC server, and power pric-
ing, determined by CAV. The large CAV computation cost incurs CAV’s high
pricing. Accordingly, VEC server reduces the transmit power for utility maxi-
mization. Therefore, Fig. 4(c) shows an increasing pricing for VEC power, as well
as a decreasing VEC transmit power. Under such scenario, CAV utility gradu-
ally degrades with the increasing CAV computation cost in Fig. 4(d). While the
power pricing is large enough, the VEC power decreases to zero. CAV utility
accords with being zero. Given the computation cost, long task transmission
time for CAV promotes the improvement of power pricing and transmit power,
on which CAV utility increases.

Fig. 4. Effect of CRV and CAV computation cost on utility of VEC server
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4 Conclusion

In this paper, we study the incentive mechanism of task offloading based on
vehicle edge computing. Vehicles, constrained by limited computation resources,
request VEC server for executing computation tasks. To avoid more burdens
on VEC server, vehicles with free resources are recruited to assist VEC server’s
computation work. We are motivated to quantify their gains and costs by defin-
ing utility function. Specially, the establishment of utility function considers the
modes of task transmission and task computation among them, which is aimed
to accurately describe their profits. Moreover, we build resource management
and pricing framework by tools of Stackelberg game to ensure that each par-
ticipant has appropriate incentives to participate in task offloading. Simulation
results show that our incentive framework is stable and effective. In the future
work, we will concentrate on computation resource management in extensive
edge computing networks.
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Abstract. Rapid development of mobile communications has led to respectable
latency-sensitive and computation-intensive mobile applications. There is a huge
contradiction between high resource demands of these applications and limited
resource of mobile devices. In this regard, mobile edge computing (MEC) is a
promising technology, where computation tasks can be offloaded from mobile
devices onto network edges with stronger capability. However, the dependency
between tasks leads to high complexity for offloading decision. In this paper,
we investigate the optimal offloading problem for completing dependency-aware
tasks by minimizing the latency and energy cost. An improved non-dominated
sorting genetic algorithm-II (INSGA-II) is proposed to solve this multiobjective
problem. Simulation results validate the advantage of the proposed algorithm in
terms of the performance of low latency and cost.

Keywords: Mobile edge computing (MEC) · Task dependency · NSGA-II

1 Introduction

Numerous data computation of applications exceeds the capabilities of mobile devices
[1–5]. In this regard, European Telecommunications Standard Institute (ETSI) proposed
mobile edge computing (MEC) in 2014 [6]. Closer-distance computation offloading
offloads computational-intensive tasks from mobile devices to edge nodes for execution
at lower latency and energy cost. Thus, making offloading strategy is significant.

In order to reduce the burden of resource-limited mobile devices, numerous
researches have been done on the MEC in recent years. Lu et al. replaced edge server
resource allocation on blocks of the task with allocation on demand, improving com-
putation resources utilization [7]. Their arbitrary division of task and simultaneous
execution can reduce latency, but it is too ideal. An et al. considered the sequential
dependency between tasks, and reduced the total energy consumption for both slow fast
fading channels [8]. Besides, Al-Habob et al. considered both sequential and parallel
task offloading, and applied genetic algorithm and conflict graph models to obtain min-
imal latency-reliability cost [9]. Two task division types above consider only execution
order or latency reduction, therefore, combining them would be better. Pan et al. took
the method of model-free approach based on reinforcement learning [10], Liu et al.
and Chai et al. proposed the strategies of prioritizing the multiple tasks in computation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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scheduling and offloading [11,12], Wang et al., Lee et al. and Song et al. all adopted the
heuristic algorithm to reduce the complexity in optimization [13–15], and Zhao et al.
proved that no algorithm with constant approximation can solve the NP-hard problem,
so they designed a convex programming algorithm [16]. All these works above focused
the single latency optimization objective, some works, therefore considered multiobjec-
tive optimization, such as both Liu et al. and Sun et al. aimed at both time and energy
cost optimization, but applied a distributed deep reinforcement learning strategy and
genetic algorithm-based flexible computation offloading and task scheduling algorithm,
respectively [17,18]. Both works took the same method of weighted addition in mul-
tiobjective optimization, but for optimization objectives of different dimensions, each
objective weight is hard to determine. Unlike the works above, Zhang et al. combined
Gaussian hidden Bayesian algorithm with KNN algorithm to simultaneously achieve
feasibility, effectiveness, and efficiency in offloading [19]. Lu et al. also proposed a
clustering-assisted offloading scheme based on mobile prediction, resulting in enhance-
ment in the data processing capability of power-constrained networks [20].

This paper, therefore, takes task dependency into account. Meanwhile, the goal of
the work is to identify the offloading strategy with minimized latency and cost, which
enhance privacy preservation, under the constraints of service configuration and task
dependencies [21,22]. Themain contributions of this paper are summarized as followed:

– Dependencies between subtasks is shown by directed acyclic graph (DAG).
– To strike a balance between latency and cost, an optimization problem is formulated
to minimize both latency and cost under dependency constraint.

– To solve the non-convex problem, an improved solution based on Non-dominated
Sorting Genetic Algorithm II (NSGA-II) is proposed.

The remainder of this paper is organized as follows. The system model and problem
formulation are discussed in Sect. 2. The proposed algorithm are clarified in Sect. 3. The
simulation results are shown in Sect. 4. The conclusion is drew in Sect. 5.

2 Network Model and Problem Formulation

In this section, the system model is firstly introduced. Then the latency and cost model
of task completion are described. Finally, an optimization problem is formulated.

2.1 System Model

A mesh network with a user equipment (UE) and multiple edge nodes (ENs) is con-
sidered in this paper, and they can communicate with each other directly and stably as
shown in Fig. 1(a). The UE has a task divided into dependent subtasks. Due to resource-
limited UE, all subtasks are offloaded onto ENs, then ENs return the final result to UE.

2.2 Task Graph

A UE task is described by a DAG, G(V, E), as shown in Fig. 1(b), where V =
{i1, i2, ..., iL} is the set of subtasks, and E is the set of edges representing subtask
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Fig. 1. System model

dependency. The edge eii+ = 1 implies that subtask i is a predecessor of subtask
i+, and denote transmitted data between them as ωi,i+ . The set of ENs is denoted by
M = {m1,m2, ...,mN}. Denote subtask offloading strategy as a matrix XL×N , where
element xi,m = 1 indicating that subtask i is offloaded onto EN m, otherwise, xi,m = 0.
Note that a subtask can only be offloaded onto one EN at a time, thus,

∑
m∈M xi,m = 1

for ∀i ∈ V .

2.3 Latency Model

In this subsection, the total latency for completing a task is analyzed, including the
computation latency, the communication latency and the queuing latency.

– Computation Latency. Denote the computation data of each subtask i as ωi and
the computing capacity of EN m as fm, thus, the computation latency of subtask i
executing on EN m is T cmp

i,m = ωi

fm
, i ∈ V,m ∈ M.

– Communication Latency.Assume that constant transmission rate between two ENs
is r0. Then, communication latency between subtask i− and subtask i from EN m−

to EN m is T cmm
i−i,m−m =

{
0 m− = m
ωi−i

r0
m− �= m.

– Queuing Latency. The queuing latency for a subtask i occurs when i) assigned EN
is executing other subtasks; ii) predecessor subtasks have not been completed.

– Total Latency. The subtask i can start executing on ENmwhen i) all its predecessor
subtasks have been completed; ii) its input data have been transmitted to EN m; iii)
EN m is idle. Thus, actual starting time instant of subtask i at EN m is

tstart
i,m = max

(

max
i∈Pre(i)

(
tstart
i−,m− + T cmp

i−,m− + T cmm
i−i,m−m

)
, tidle

m

)

, (1)

where Pre(i) is the set of immediate predecessors of subtask i, and tidle
m is the

time instant that EN m is idle. Then the finishing time instant for the subtask i is
tfinish
i = tstart

i + T cmp
i,m . Thus, the task completion time can be described as

T = max
i∈V

tfinish
i . (2)
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2.4 Cost Model

The computation cost of subtask i at EN m can be described as Ccmp
i,m = ωi ·(fm)2. And

communication cost between two subtasks from EN m to EN m+ can be calculated as
Ccmm

ii+,mm+ = pm · T cmm
ii+,mm+ , where pm is the transmission power of EN m. Therefore,

the accumulative energy consumption for task execution Cost is given as

Cost =
∑

i∈V
Ccmp

i,m +
∑

i,i+∈V
m,m+∈M

Ccmm
ii+,mm+ . (3)

2.5 Problem Formulation

Our aim is to minimize the latency by as low energy cost as possible under the constraint
of subtask dependency. Thus, we formulate the following optimization problem:

min
XL×N

{T,Cost} (4)

s.t. xi,m ∈ {0, 1} , ∀i ∈ V,m ∈ M (4a)
∑

m∈Mi

xi,m = 1, ∀i ∈ V (4b)

tstart
i +

∑

m∈M
xi,mTct ≤ tstart

i+ , ∀(i, i+) ∈ E (4c)

tstart
i ≥ 0, ∀i ∈ V (4d)

where Tct = T cmp
i,m +

∑

m+∈M
xi+,m+T cmm

ii+,mm+ . The minimization objectives are latency

and energy cost. Constraint (4a) is the indicator between subtasks and ENs; (4b) shows
that each subtask can only be offloaded to one EN; (4c) represents task dependency.

The formulated problem is a 0–1 integer programming problem with non-convex
constraints. In the following section, we propose an improved non dominated sorting
genetic algorithm-II (INSGA-II) to solve this multiobjective problem.

3 Algorithms Design

In this section, we give the details of the INSGA-II, which is different from the conver-
sional NSGA-II in terms of three aspects.

3.1 The Design of INSGA-II

Firstly, we give definitions of three basic elements in a genetic algorithm (GA).

Definition 1. A gene shows the index of the selected EN for a subtask, and multiple
genes consist of a chromosome, i.e. a solution to the problem (4). Multiple chromosomes
constitute a population with size of Np. An example is shown in Fig. 2(a).
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Fig. 2. The key processes of classic NSGA-II.

Then, we introduce each step of the INSGA-II and highlight the solutions for com-
bating the challenges encountered by the traditional NSGA-II algorithm.

– Step1: Chaotic population initialization. Initial population in classic NSGA-II is
generated randomly, which usually leads to poor search direction and falls into local
optima. Lu et al. proved that chaotic maps help evolutionary algorithms perform
better [23]. In this regard, we employ a chaotic method to generate more evenly
distributed initial population as follows: i) Generate a population with size of 2Np.
Specifically, genes are generated by Logistic map of xk+1 = μxk(1 − xk), μ ∈
[3.57, 4], k = 1, · · · , 2Np − 1, where x1 is a random value from [0, 1]; ii) Map frac-
tion of genes into integer EN index. Equidistantly divide range [0, 1] and correspond
to available ENs of each subtask, then map the gene fraction into EN index.

– Step2: On-demand fast non-dominated ranking. Fast non-dominated ranking in
classic NSGA-II as shown in Fig. 2(b) aims at forming intermediate population. The
objective values determine the dominance between the chromosomes, which divides
chromosomes into various sets, i.e. F = F1

⋃
F2

⋃ · · · . Then put Np chromosomes
with smaller ranking into intermediate population. To speed up ranking process, we
propose on-demand ranking shown in Algorithm 1, where the ranking process stops
once the number of ranked chromosomes is enough.

– Step3: Crowding distance sorting. Crowding distance is introduced for a more
uniform solution population in the target space, so larger distance is better. The
crowding distance of each chromosome is related to adjacent chromosomes with
the same non-dominated ranking, and represented below, where fl and fc represent
latency and energy cost calculation function, respectively.

id =

{
∞ i = 1, Np
fl(i+1)−fl(i−1)

fmax
l −fmin

l

+ fc(i+1)−fc(i−1)
fmax
c −fmin

c
others.

(5)

– Step4: Tournament selection. Two chromosomes are selected randomly from pop-
ulation, then the chromosome with better non-dominated ranking and crowding dis-
tance is put into the parent population with the size of 1

2Np.
– Step5: Crossover with adaptive rate. SBX performed in NSGA-II may lead to
wrong EN indexs. Therefore, this paper applies simple two-point crossover with
probability Rc,t = Rc,max − (Rc,max − Rc,min)( t

Gen )
2, which expands the search

solution range upfront and avoids late non-convergence [24].
– Step6: Mutation with adaptive rate. Polynomial mutation performed in NSGA-II
does not apply. Therefore, multi-point mutation with probability Rm,t = Rm,min +
(Rm,max − Rm,min)( t

Gen )
2 is apply to avoid falling into local optimal solutions.
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Algorithm 1. On-demand fast non-dominated ranking
Input:

Population P , population size Np

Output:
Population with non-dominated rankings F

1: For each chromosome p in P , calculate the number of chromosomes that dominate chromo-
some p (np) and the set of chromosomes that chromosome p dominates (Sp)

2: Put chromosomes with np = 0 into set F1

3: F = F1, i = 1
4: while Population size of F , Nf < Np do
5: for Chromosome p in set Fi do
6: for Chromosome q in set Sp do
7: nq = nq − 1
8: if nq = 0 then
9: Put chromosome q into set Fi+1

10: end if
11: end for
12: end for
13: F = F ∪ Fi+1, i = i + 1
14: end while
15: if Nf = Np then
16: Keep the population F intact
17: else
18: Calculate crowding distance of chromosomes in set Fi, arrange them in descending order

and exclude the last Nf − Np chromosomes from F
19: end if

– Step 7: Elitism selection. Combine the parent and offspring populations to form
a new population, where chromosomes have smaller non-dominated ranking and
larger crowding distance.

Repeat the step 2 to step 7 until the end of the iteration.
INSGA-II is extended and enhanced from the conventional NSGA-II by using

chaotic population initialization, on-demand non-dominated rankings, and adaptive
genetic operators. The general framework of INSGA-II is shown in Algorithm 2.

3.2 Task Offloading

According to the assignment result given by NSGA-II, the earliest start timeEST (i,m)
and the earliest finish timeEFT (i,m) of each subtask i are recorded in aList, subtasks
in List are offloaded in ascending order of their EST (i,m) till List is empty. Also, the
start time tstart

i and finish time tfinish
i of each subtask i are updated after offloading.

3.3 Complexity Analysis

Assume that the number of optimization objectives is Nobj . Both objective function
and crowding distance computation have O(Nobj · Np) computational complexity.
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Algorithm 2. INSGA-II
Input:

Population size Np, maximum number of iterations of population Gen
Output:

Pareto solutions of offloading strategy P ∗

1: Initialize population P0 with size of Np according to chaotic initialization
2: Compute the non-dominated rankings and crowding distance of each solution in P0

3: for t = 1 : Gen do
4: Generate parent population Pt with size of 1

2
Np through tournament selection

5: Obtain offspring population Qt with size of Np by crossing and mutating Pt

6: Combine the Pt with Qt, and obtain population Rt = Pt ∪ Qt

7: Sort the population Rt according to non-dominated rankings and then crowding distance,
then take the first Np solutions as the new population Pt+1 through elitism selection

8: end for
9: Find the chromosomes in PGen with 1st non-dominated ranking as P ∗.

Moreover, the computational complexity of Pareto non-dominated sorting is O(Nobj ·
N2

p ). Thus, the overall complexity of the proposed INSGA-II is O(Nobj · N2
p ).

4 Simulation

4.1 Simulation Setups

In this section, four ENs and a UE task including ten dependent subtasks are considered,
and related simulation setups are shown in Table 1. Node that the channel resource and
computing rate of each ENs are known in advance.

Table 1. Simulation setups

Parameter Value

Computation data size of subtask ωi [100, 500] KB

Unit computation data amount [500, 1500] cycles/bit

Computing rate at EN fm [2, 6] × 108 cycles/s

Transmission power of EN pm [0.1, 0.5] W

Transmission rate r0 866Mb/s

Ratio of communication to computation data α 0.1

Percentage of ENs configured with required services β 75%

Iteration number 20

Population size 200

Crossover probability [0.6, 0.8]

Mutation probability [0.1, 0.3]
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To verify the performance of the proposed algorithm, simulations based on ran-
domly generated subtasks in terms of DAG structure is conducted. In addition to con-
ventional NSGA-II, three benchmark algorithms are also introduced.

– Exhaustion: Arrange all feasible offloading strategies.
– Greedy Algorithm: Select subtasks according to topology sorting of DAG and
schedule each subtask to the available EN with the maximum computing capacity.

– Random Algorithm: Select subtasks from top to bottom along with the acyclic
graph structure and schedule each subtask to a random and available EN.

4.2 Optimization Results

In this section, comparison between multiple algorithm is shown. From the Fig. 3, take
the case of only three subtasks as an example, it is clearly seen that INSGA-II has a
more equally distributed initial population than that of NSGA-II. Furthermore, the data
in Table 2 are obtained when the number of subtasks is 14, the number of ENs is 8
and the population size is 100, which shows that INSGA-II executes more quickly than
NSGA-II, especially when the number of iterations increases.

Fig. 3. Comparison of population initializa-
tion.
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Fig. 4. Comparison of the completion time
and accumulative cost.

Table 2. Comparison of algorithm execution time

Number of iteration 10 30 50 70 90

Reduced time (%) 11.16 11.76 16.24 22.43 28.94

Besides, proposed INSGA-II is compared with aforementioned benchmark algo-
rithms and NSGA-II. A point in Fig. 4 represents an offloading solution and shows its
latency and cost, figures in terms of latency and cost minimization is shown in Table 3.
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Table 3. Numerical optimization results obtained by different approaches

Optimization objective Latency Cost

Algorithm Objective value

Latency(s) Cost Lantency(s) Cost

Greedy algorithm 2.929 220.537 5.834 45.396

Random algorithm 3.232 194.486 5.551 50.392

NSGA-II 3.208 205.280 5.765 46.398

INSGA-II-D 2.670 211.119 5.204 62.092

From Fig. 4, it is clearly seen that INSGA-II almost fits the edge of the exhaus-
tion method, which is better than NSGA-II. The greedy algorithm can only obtain
the offloading strategy with the lowest accumulative cost, and the random algorithm
behaves erratically. The reason why INSGA-II cannot fully fit the edge of the exhaustion
method is initial population generation that discards part of cost optimization searching
direction. In addition, though the exhaustion method can obtain the best solutions to the
formulated problem, its execution time far exceeds the proposed INSGA-II.

5 Conclusion

In this paper, the problem of offloading task divided in the form of DAG is formulated
as a multiobjective optimization problem, aiming at reducing latency and cost simul-
taneously. The proposed INSGA-II effectively reduce the difficulty to obtain a set of
optimal offloading strategies. The simulation results demonstrate that INSGA-II out-
performs the other algorithms with reduced latency and cost. Future improvement are
as follows: 1) consider the INSGA-II of resource competition among multi tasks; 2) use
actual data to verify the performance of INSGA-II.

Acknowledgement. This work was supported in part by the Fundamental Research Funds for
the Central Universities under Grant 2022JBGP000 and in part by the National Natural Science
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Abstract. Vehicles request road condition information, traffic informa-
tion, and various audio-visual entertainment frequently. Repeat Down-
load will burden the core network and seriously affect the user experience.
Edge caching is a promising technology that can effectively alleviate the
pressure of repeatedly downloading content from the cloud. There are
many existing edge cache scheduling methods, but they all have lim-
itations. his paper proposes an edge cache scheduling method based
on the multi-head attention mechanism federal reinforcement learning
(FRLMA). Firstly, the problem is modeled as a Markov decision model.
The local models are trained through a deep reinforcement learning
method. Finally, the federated reinforcement learning framework of edge
Cooperative Cache is established. In particular, the multi-head attention
mechanism is introduced to weigh the contribution of the local model to
the global model from multiple angles. Simulation results show that the
FRLMA method has better convergence and is superior to the most cur-
rent popular methods in terms of hit rate and average delay.

Keywords: Edge caching · Deep reinforcement learning · Federated
learning · Multi-head attention

1 Introduction

With the rapid development of the technology of the Internet of vehicles, a
large number of innovative vehicle applications have emerged [1], which have
a great demand for computing, communication, and storage resources. edge
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caching technology has emerged where popular content is cached at the edge
of the network, and users can access and download the cached content directly
from the edge [2], which can reduce backhaul data traffic congestion and shorten
transmission latency effectively.

Currently, the edge cache scheduling problem has been widely studied by
scholars at home and abroad and can be divided into two main categories:
traditional and learning-based methods. Most of the existing traditional cache
replacement scheduling algorithms are rule-based [3–6], such as first-in-first-out
(FIFO), least recently used (LRU), and least recently used. These traditional
methods, however, have high complexity, low computational accuracy, and dif-
ficulty in adapting to dynamic network environments. Some scholars then used
learning methods [7–9] to solve the cache scheduling problem. However, these
reinforcement learning methods face the problem of data islands.The federal
reinforcement learning method [10] can obtain better training effect while lack-
ing training data. At present, most of the parameters of Federated learning are
updated by the method of average aggregation, which is obviously unreasonable.
Therefore, this paper mainly studies the edge cache scheduling method based on
multi head attention mechanism Federation reinforcement learning. The main
contributions of this paper are as follows:

• The content cache scheduling problem in the vehicle Edge network is mod-
eled as a Markov decision process, and the DQN algorithm in reinforcement
learning is used to solve the process. The dynamic scheduling of content cache
is realized through continuous interaction with the edge network.

• In this paper, a federated parameter aggregation method based on multi-
head attention mechanism is proposed and introduced into DQN algorithm
to train the local reinforcement learning model in a distributed way. By intro-
ducing multi head attention mechanism, the contribution of the local model
to the global model is concerned from multiple dimensions, and the problem
of parameter aggregation between heterogeneous networks is solved.

2 System Model

2.1 Network Modeling

Network Structure: As shown in Fig. 1, the network architecture is modeled
into a three-tier architecture, that are cloud server, base station (BS) and user
(UES). Suppose that there are B base stations at the edge, it can be expressed as:
B = {b1, b2...bi, ...bB} each base station has a certain storage capacity,it can be
expressed as: Cc = {c1, c2, ...ci, ...cC} and each base station has a certain number
of users in the coverage area, it can be expressed as: U b

i = {u1, u2, ...un}. Suppose
that there are F kinds of content in the content repository, which can be expressed
as F = {f1, f2, ...fi, ...fF }, in order to make the model more in line with the actual
situation, the size of each content is modeled as inconsistent, which is expressed
as: Sf = {Sf1 , Sf2 , ...Sfi

, ...SfF
}, We order B ∗ F represents the matrix of base

station cache status,H = (xb,f )B∗F , xbi,fi
= 1 indicates the base station bi has

contents fi, xbi,fi
= 0 indicates base station bi not have contents fi.
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Fig. 1. Edge cache network architecture in a driverless scenario.

Content Popularity: Generally, the probability distribution of content request
obeys Zipf distribution, for content fi, its content popularity can be calculated
as follows:

Ωfi
=

ri
α

∑F
i=1 ri

α
(1)

where ri is the content fi ranking of requested frequency in the content library,
α is a constant.

Content Transmission Delay: In this paper, orthogonal frequency division
multiple access (OFDMA) is used for communication between the user and the
edge server. According to Shannon formula [11], the communication rate between
the user and the base station can be expressed as:

Vu,bi = wilog2(1 +
pig

σ2
) (2)

where Wi, Pi, g, and σ2 represent channel bandwidth, channel transmission
power, channel gain, and interference noise power respectively.

Case 1: Tfi,u,bj = Sfi

vu,bj
,∀i ∈ F,∀j ∈ B indicates that the content requested by

the user has hit.

Case 2: TO
fi,u,bj

= Tfi,u,bj + Sfi

vb,b
,∀i ∈ F,∀j ∈ B Indicates that you need to go

to the adjacent base station to obtain content, where, vb,b is the transmission
speed between adjacent base stations.

Case 3: TO
fi,u,bj

= Tfi,u,bj + Sfi

vb,b
,∀i ∈ F,∀j ∈ B Indicates that you need to get

content from the cloud, where, vbi,c is the transmission speed between adjacent
base stations.

The content transmission delay in the above three cases meets Tfi,u,bj ,c >
TO

fi,u,bj
> Tfi,u,bj .
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2.2 Problem Definition

This paper aims to optimize the average delay of content acquisition. The cal-
culation formula of the average delay for n requests is as follows:

Tsum =
∑

i∈(N∗hit)

Tfi,u,bj +
∑

i∈α∗(N∗(1−hit))

T O
fi,u,bj +

∑

i∈(1−α)∗(N∗(1−hit))

Tfi,u,bj ,c (3)

P1 min Tsum

N
s.t. c1 : α ∈ (0, 1)

c2 :
T∑

t=1
R (fi) ≤ CB

c3 : hitratio ∈ (0, 1)
c4 : Vu,b > Vb,b > Vb,c

(4)

where, α indicates the proportion of requested content by the local edge server
decision to go to adjacent base stations to all content requests, 0 < α < 1, C2
indicates that the upper limit of the local content cache should be less than the
maximum local cache space, C3 indicates that the hit rate of content requests
should be between 0 and 1, and C4 indicates that the rate of local transmission
is greater than that between adjacent base stations and also between the local
and cloud.

2.3 Markov Modeling

We model the physical problem as a Markovian decision process(MDP).

State: St = {Ft,Ht} where Ft is the content requested by the user in the current
time slot, and Ht is the cache state of the local base station.

Action: at = {ωfi

t ,X fi

t , Af
t }, where ωfi

t is a binary indicator indicating and xt
fi

indicates whether to cache the content fi in the local cache and Af
t indicates

which local content is replaced.

Reward: The optimization goal of this paper is to minimize the average content
acquisition delay of the whole system. Therefore, this paper takes the reciprocal
of the transmission delay of the edge device processing N content requests as a
reward. Then the immediate reward of the edge device under the time step is:

Rt =
N

∑

bi∈B

T sum
bi

(5)

3 Algorithm Design

In order to solve the problems of data shortage and data security, an edge cache
scheduling method based on Federated reinforcement learning(FRLMA) is pro-
posed, including local dqn training and cloud parameter aggregation,The whole
process of the FRLMA algorithm is shown in Algorithm 1.
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3.1 Local DQN Training

Since the action space of the DQN model in this paper is very large, the Q(s, a) of
each action cannot be obtained directly. Therefore, assuming Q(s, a, θ) ≈ Q(s, a)
and the iterative formula of Q function can be expressed as:

Q(st, at, θt) = (1 − α)Q(st, at, θt) + α

(
C(st, at) + γ max

at+1∈At

Q(st+1, at+1, θ
−
t )

)
(6)

where α ∈ (0, 1) represents the learning rate, when α = 1, the Q value is com-
pletely updated to the newly calculated Q value. Otherwise, it will be modified
and fine-tuned on the basis of retaining part of the historical Q value. θ is the
parameter for evaluating the network and θ− is the parameter of the target
network. The loss function of DQN model can be expressed as:

Loss(θ) = E

[
C(st, at) + γ( max

at+1∈At

Q(st+1, at+1, θ
−
t ) − Q(st, at, θt))

2
]

(7)

parameter θ The update expression of can be expressed as:

θt+1 = θt − α∇(Loss(θ)) (8)

3.2 Parameters Aggregation

This section proposes a parameter aggregation method based on a multi-headed
attention [12] mechanism weighted by the following procedure.

Local Environmental Status of Participants: Average reward: the average reward
is defined as the average value of the reward C(s, a) of the local model in the
local M round training, which can be expressed as Cave; Local cache capacity:
the larger the local cache capacity, the more content can be cached locally, and
the cache hit rate will also increase, The local cache capacity can be defined as
Dmax; The parameters of Zipf distribution: The parameters of Zipf distribution
determines the density of content requests, the larger the parameter, the greater
the cache hit rate. Zipf parameters can be defined as zipα; Data set size: the
local training data of each local model is different, and the size of the data set
can be expressed as Sc.

Local Environmental Status of Participants: Experience pool size: for those
devices with more memory resources, they can store more training data
into replay memory and thus learn more about previous experience, the size
of the experience pool can be expressed as Rc; Batch size: As each local
model has different computational power, some local models have the more
computational power and can train more data in one local training pro-
cess, denoted asBc.The above evaluation metric can be expressed as Kb =
[Cb

ave,D
b
max, zipb

α, Sb
c , R

b
c, B

b
c ], in order to obtain a better local model, more

rewards, shorter latency and higher cache hit ratio, we design the query as
Q = [max(Cb

ave),max(Db
max),max(zipb

α),max(Sb
c),max(Rb

c),max(Bb
c)], the spe-

cific aggregation process is as follows:
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1) Split operation: The ECS determines the number of heads to be split, and
splitting the local inputs Kb, Q by a linear transformation:

Ki
b = linear (K) , Qi

b = linear (Q) (9)

2) Attention operation: The attention mechanism is manipulated for each head
to obtain the weight of each head:

ωheadi
= softmax

⎛

⎝Qi
bK

i
b
T

√
dk

h

⎞

⎠ (10)

3) Concat heads:The weights of each head are combined by a weight matrix to
obtain the final weights for each local model b:

ωb = concat (ωhead1 , ωhead2 . . . ωheadh
) (11)

ωb can be seen as a measure of the magnitude of the contribution of the local
model to the global model, so the update parameter Θ of the global model
can be calculated by:

Θ =
∑

b∈B

ωbθb (12)

Algorithm 1. Framework of FRLMA.

Input: Network Status: St = {{fi,t, Sfi,t, Ωi,t},Ht};
Output: Q value for each action Q(st, at, θt);
1: Initialisation: Local network parameters; Number of iterations n; Updates

frequence M .
2: for each ∈ [1, B] do
3: for episode ∈ [1, n] do
4: Local BS gets content requests f from UES;
5: if xb,f = 1 then
6: break;
7: else

8: if Cb −
F∑

i=1

xb,fi
× Sfi

≥ Sf then

9: Cache content f to local BS
10: else
11: Observe

the current state of the environment St = {{fi,t, Sfi,t, Ωi,t},Ht}

12: Select action at = arg max Q(st, at, θt)
13: Execute action at

14: Obtain immediate reward rt = C(st, at)
15: Observe the new state st+1

16: Store (st, at, rt, st+1) into the experience pool
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17: if n%M = 0 then
18: Send local model parameter to the cloud for aggregation
19: Obtain the parameters Θ after cloud aggregation
20: Update local network parameter θ = Θ
21: else
22: Randomly sample a mini-batch (st, at, rt, st+1) from the experi-

ence pool
23: Update the parameters of the evaluation network θt+1 = θt −

α∇(Loss(θ))
24: Update target network parameter periodically θ− = θ
25: end if
26: end if
27: end if
28: end for
29: end for

4 Simulation

In this section, we first describe the setting of the experimental parameters, then
verify the convergence of the algorithm, and finally compare the performance
with other algorithms.

4.1 Experimental Parameter Settings

We set the number of base stations participating in the federation to 3, the
number of contents of the whole system to 2000, and then set the size of each
content to 5–15 M. According to the Mzipf distribution [13], this paper uses three
values of 0.7, 0.9 and 1.1 to set the popularity of the contents, the storage space
size of local base stations is taken as 200–1000 M, the transmission rate between
local base stations is 50 M/s, the transmission rate between local base stations
to the cloud is 10 M/s, the bandwidth of RSU is 100 MHz, the transmission
power is 35 dBm, the Gaussian noise power is –95 dBm, and the information
gain of this paper is set to 100. In addition, we set the experience pool size of the
three local network models participating in the federation to 1000–2000, as well
as different batch sizes of 32–64 for each local base station. The deep networks
used in the local models were neural networks with two hidden layers, and the
number of neurons in the hidden layer was 64. The learning rate of the local
networks was 0.01, and the value of e-greedy was 0.9.

4.2 Algorithm Performance Comparison

To verify the performance of the FRLMA under different data, we compare it
with the first-in-first-out algorithm (FIFO), least recent unused (LRU), least
recent used (LFU), deep reinforcement learning (DQN), federal average based
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Fig. 2. Comparison of the average time delay between FRLMA and other six algorithms
with different Zipf parameters.

Fig. 3. Comparison of the cache hit rate of FRLMA and six other algorithms with
different Zipf parameters.

reinforcement learning (Fedavg), federal reinforcement learning based on the
self-attention mechanism (Fed-attention), and we will evaluate the performance
of the algorithm of the article in terms of the following two metrics: 1) cache hit
rate and 2) average latency.

Figures 2 and 3 show the comparison of the cache hit rate and average latency
between FRLMA and the other six algorithms for parameters α of 0.7, 0.9, and
1.1, respectively. From Fig. 2, we can see that the FRLMA always has a higher
cache hit rate than the other six algorithms. Figure 2(c) shows that when the
parameter α of Zipf distribution is 1.1 and the storage space of the BS is 1000M,
the cache hit rate of the FRLMA reaches 75% and the average fetching latency
of the task is about 0.3 s, which is about 15% better than the traditional LRU
algorithm and the average latency is reduced by about 0.15 s. Compared to the
centralized DQN algorithm, the cache hit rate is improved by about 5% and the
average content fetching latency is reduced by 0.1 s. Compared to the other two
federal reinforcement learning algorithms, the FRLMA is also improved in terms
of both the cache hit rate and the average content fetching latency.
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5 Conclusion

Aiming at the problem of multi edge secure Cooperative Cache, this paper estab-
lishes a three-level cache architecture between users and edge devices, between
edge devices, and between edge devices and ECs, and establishes an optimization
problem model with the goal of minimizing the average delay and maximizing
the content hit rate. By introducing the federal learning framework, an edge
cache scheduling method (frlma) based on multi head attention mechanism fed-
eral reinforcement learning is proposed, which improves the identification ability
of the contribution of individuals participating in federal learning to the learning
model. Through simulation experiments, the advantages of the proposed algo-
rithm in request hit rate, average delay and convergence speed are verified.
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Abstract. The insufficient number of tags is currently the biggest constraint on
named entity recognition (NER) technology,with only a small number ofRegisters
(means the domain of language, whichwill be explained in Part I) currently having
a corpus with sufficient tags. The linguistic features of different Registers vary
greatly, and thus a corpus with sufficient labels cannot be applied to NER in other
Registers. In addition, most of the current NER models are more designed for
large samples with sufficient labels, and these models do not work well in small
samples with a small number of labels. To address the above problems, this paper
proposes a model T_NER based on the idea of migration learning and multi-task
learning, which learns the common features of language by using the idea of
multi-tasking, and passes the model parameters of neurons with common features
of language learned from multiple well-labelled source domains to the neurons
in the target domain to achieve migration learning based on parameter sharing. In
baseline experiments, T_NER’s neurons outperformed the original models such
as BiLSTM and BiGRU on a small-sample NER task; in formal experiments,
the more the Registers in source domains, the better T_NER’s recognition of the
target domain. The experiments demonstrate that T_NER can achieve NER for
small samples and across Registers.

Keywords: NER · Register · Transfer learning · Multi-task learning

1 Introduction

NER is one of the most fundamental of natural language processing techniques, which
belongs to the problemof sequence labeling [1], a number ofmethods havebeenproposed
for named entity recognition [2–4], and although these methods have improved the
accuracy of named entity recognition, these models still rely on large-sample corpus
and cannot be analyzed and studied on small-sample corpus. The distinction between
large and small samples is based on the number of tags in the text, the number of tags

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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in small samples are usually in the order of 100,000 and above, while the number of
tags in small samples is less than 10,000. The current mainstream models are poor at
recognising named entities in small- sample corpus training (see Sect. 4 for details).

Register is a conception belongs to philology category, which means the language
domain. [13] The distinction between Registers is usually based on two kinds: firstly,
language texts from different domains can be regarded as different Registers, for exam-
ple, news texts and advertising texts belong to different Registers; secondly, language
texts from the same domain from different eras can also be regarded as different Reg-
isters, for example, news reports from different eras belong to different Registers. The
distribution characteristics of named entities in different Registers will be different.

The current reality is that most Registers’ texts have a small number of labels, and
only a small number of Registers have a sufficient number of labels; it is not possible
to use a corpus with sufficient labels to train a corpus with insufficient labels (because
named entities across Registers do not work well).

In order to solve the problems in the field of NER, this paper proposes the model
T_NER, which is a new NER model. Firstly, the model is based on Register migration,
by learning the source domain corpus, adjusting the model parameters, and applying the
adjusted model to the training of the target domain to achieve migration learning based
on parameter sharing. The model also utilises the idea of multi-task learning by using
different corpus as the source domain and learning them simultaneously, thus extracting
the common features of the language and applying them to the recognition of named
entities in the small sample target domain.

The paper is organized as follows: Sect. 2 provides a summary of cutting-edge meth-
ods in the relevant field, Sect. 3 provides a detailed analysis of the model architecture,
describes and analyses the experiments involved in the model, and Sect. 4 summarizes
and analyses the model as well as the experiments.

2 Related Work

2.1 NER Techniques

NER is the most fundamental technique in the field of natural language processing. In
addition to deep learning, many new approaches and ideas have been applied to the prob-
lem of NER: MetaNER uses the technical approach of meta-learning [2], which makes
the model learns and analyses the corpus faster and more efficiently; BERT- BiLSTM-
GAM-CRF uses the approach of syntactic analysis [3], which focuses on relying on
linguistic logic to redefine features; besides, there are new model design ideas using
attention mechanisms or multi-tasking [4], all of which are good at learning features of
the language.

2.2 Transfer Learning Techniques

Transfer learning is a method of machine learning that refers to a pre-trained model
being reused in another task, the effect of one type of learning on another, or the effect
of an acquired experience on the completion of other activities.
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Migration learning is currently widely used in the following areas: feature-based
migration for cross-domain gesture recognition [5]; instance-based migration for
radioparticle tracking [6]; and optimization of reinforcement learning and meta-inspired
optimization algorithms using migration learning [7].

Currently, migration learning is also widely used in the field of NER: TL-NER,
which combines migration learning with deep learning for Chinese NER [8]; BioNER,
based on a migration learning paradigm, investigates entity relationships in the medical
domain [9]; Trans- NER, a feature-based migration learning, character-level vector gen-
eration algorithm for contextual features to migrate source model knowledge to entity
recognition models [10].

2.3 Multi-task Learning

Multi-task learning is one of the most popular machine learning methods, which aims
to perform simultaneous learning of multiple projects, using parameter sharing to better
enable learning for different tasks.

Multi-task learning has awide range of applications, andMT-DNNsperformmultiple
specific tasks in the pre-training phase to better learn the features of the language [11].
Zhan Fei et al. used multi-task learning to achieve model building for short textual entity
links [12].

3 Model

3.1 Related Definitions

T_NER is a small-sample oriented, migration learning based NER model using the idea
of multi-task learning. The model aims to recognise named entities in small samples of
inadequately annotated corpus by learning from multiple adequately annotated corpora
of different Registers, based on the common features of the learned languages.

Formally, the source domain of T_NER is {(x1, y1), (x2, y2), …, (xn, yn)} and the
target domain is (xt, yt) (t �= 1, 2, …, n). Where x represents the character text and the
corresponding y represents the named entity label corresponding to the character. The
(xi, yi) (i= 1, 2,…, n) in the source domain represents a sufficiently labeled large sample
corpus from different domains; the (xt, yt) in the target domain represents a small sample
corpus different from each training sample Register in the source domain.

3.2 Model Structure

T_NER is divided into two parts, the first part is the source domain training structure
and the second part is the target domain extraction structure, the overall structure of the
model is shown in the following figure (Fig. 1):

The corpus in source domain and target domain belong to different Registers. How
to extract the common features of the language through many different Registers. This
model is designed with the thought of multi-task. T_NER treats the training of different
domains as different tasks, and learns from many different domains (including a large



660 H. Ma et al.

Fig. 1. T_NER model architecture

number of texts and corresponding labels). This learning approach mitigates the overfit-
ting of the model at the Register level due to single Register, the multi-Register mixture
training can better highlight the common features of the language.

At the same time, T_NER uses transfer learning based on parameter sharing, which
enables the transfer of knowledge between different Registers by sharing training
parameters from different Registers.

Analyzed from a structural point of view, at a micro level, the training structure of
the source domain is a linear combination of several cells. The cell is a special design
structure of T_NER, the mathematical representation is as follows:

pi = ∅(xi, yi, pi−1) (1)

where pi denotes the output of layer i cell (i ∈ [1, n]) which is the model parameters
of layer i cell and denotes the model parameters passed to layer i + 1. (xi, yi, pi-1)
denotes the input to the cell at layer i, xi denotes the text of group i, yi denotes the label
corresponding to the text of group i, and pi-1 denotes the neural parameters passed from
the cell at layer i–1 to the cell at layer i.∅ denotes the function of the source domain
cell (in fact this is a description from a mathematical point of view, the essence of this
function is the cell model).

For the target domain structure, the logic can be expressed by the following
mathematical formula:

yt = θ(pn, xt) (2)

xt denotes the text of the target domain, pn denotes the model parameters passed from
the source domain to the target domain. yt denotes the label corresponding to xt, the θ

denotes the function of the target domain cell.

3.3 Neuronal Structure

The structure of each cell is shown in the figure below (Fig. 2):
Each cell structure consists of three parts: the pre-training module, the BiLSTM +

BiGRU encoder module and the CRF decoder module.
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Fig. 2. T_NER neuron architecture

The pre-training module uses the Albert model to transform the text in the source
domain from the form of characters to the form of word vectors, which can speed up the
subsequent training.

The input of BiLSTM + BiGRU encoder module is the word vector trained by
pre-training module, and the output is a probabilistic combination of the corresponding
label sequences of the text, i.e. the module encodes the word vector into a probabilistic
combination of the corresponding label sequences. It is found that BiLSTM is better at
feature learning for long texts and BiGRU is better at feature learning for short texts, so
the model combines the two as a learning structure for sequence features.

The BiLSTM + BiGRU encoder is concrete structured as follows (Fig. 3).

Fig. 3. BiLSTM + BiGRU encoder architecture

The principle of operation can be described by the following equation.:

itL = σ
(
Wixt + Uih(t−1)L + bi

)
(3)

ftL = σ
(
Wf xt + Uf h(t−1)L + bf

)
(4)
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otL = σ
(
Woxt + Uoh(t−1)L + bo

)
(5)

gtL = tanh
(
Wgxt + Ugh(t−1)L + bg

)
(6)

ctL = ftL ∗ c(t−1)L + itL ∗ gtL (7)

htL = ot ∗ tanh(ct) (8)

rtG = σ
(
Wrxt + Urh(t−1)G + br

)
(9)

utG = σ
(
Wuxt + Uuh(t−1)G + bu

)
(10)

gtG = tanh
(
Wgxt + Ug

(
rt ∗ h(t−1)G

))
(11)

htG = (1 − utG) ∗ h(t−1)G + utG ∗ gtG (12)

ht = htL ⊕ htG (13)

In the above equation, σ denotes the sigmoid function, and ⊕ denotes the splicing
of vectors (i.e. splicing two 1*4 vectors into a 1*8 vector). The subscripts *L denote
the parameters and output of the BiLSTM neuron, while the subscripts *G denote the
parameters and output of the BiGRU neuron. Where xt denotes the trained word vector
and ht denotes the probabilistic sequence splicing obtained from the hybrid training, i.e.
the linear splicing of the label probabilities obtained by each of BiLSTM and BiGRU.

The CRF decoder module has a CRF as its core structure, the purpose of which
is to provide more constraints on the probabilistic combinatorial splicing obtained
from the BiLSTM + BiGRU encoder, the essence of which is to decode the proba-
bilistic combinations of label sequences into their corresponding deterministic labels.
Experiment.

3.4 Experimental Configuration

Three BIO-tagged corpora were used in experiment: 1998 People’s Daily, 2014 People’s
Daily and sighan 2006 MSRA (Microsoft Research Asia). There are three categories of
entities in the corpus, namely LOC (location category), ORG (organisation category)
and PER (person name category).

According to the study, although the three corpuses in the experiment all belong to
the news category corpus, the three corpuses belong to different eras, and therefore the
three corpuses belong to different Registers.

In this paper, a small sample corpus and a large sample corpus are classified as
follows: a small sample is one in which the total number of entities in the text is less
than five thousand, and a large sample is one in which the total number of entities in the
text is greater than five thousand.
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3.5 Experimental Effects Discriminated

This experiment uses f1_score’s micro avg, macro avg, and weighted avg as the
discriminatory criteria for model effects, calculated as follows.

micro R = (
∑

TP)/(
∑

TP +
∑

FN ) (14)

micro P = (
∑

TP)/(
∑

TP +
∑

FP) (15)

micro f1_score = (2 ∗ micro P ∗ micro R)/(micro P + micro R) (16)

precisioni = (TPi)/(TPi + FPi) (17)

recalli = (TPi)/(TPi + FNi) (18)

f1_scorei = (2 ∗ precisioni ∗ recalli)/(precisioni + recalli) (19)

macro f1_score = (

n∑

1

f1_scorei)/n (20)

weighted f1_score =
[

n∑

1

f1_scorei∗(TPi + FNi)

]

/

n∑

1

(TPi + FNi) (21)

TP means that the true category is positive and the predicted category is positive. FP
means that the true category is negative and the predicted category is positive. FNmeans
that the true category is positive and the predicted category is negative. TN means that
the true category is negative and the predicted category is negative. Micro f1_score、
macro f1_score、micro f1_score refers to the micro avg, macro avg, and weighted avg
of f1_score, respectively.

3.6 Neuron Utility Experiment

This set of experiments mainly compared the named entity recognition capabilities of
BiLSTM + CRF, BiGRU + CRF and T_NER neurons in small samples.

We use the 1998 People’s Daily corpus in this part, which was fed into BiLSTM +
CRF, BiGRU + CRF and T_NER neurons respectively for training. The results were as
follows (Table 1 and Fig. 4):
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Table 1. BiLSTM + CRF, BiGRU + CRF, T_NER experimental control results.

Neuron model Micro avg Macro avg Weighted avg

BiLSTM + CRF 0.8037 0.7969 0.8037

BiGRU + CRF 0.8026 0.7966 0.8026

T_NER 0.8247 0.8188 0.8246

0.79

0.81

0.83

micro avg macro avg weighted avg

The test of Neuron u�lity

BiLSTM+CRF BiGRU+CRF T_NER cell

Fig. 4. The comparation of the neuron utility.

From the above table, we can easily find that T_NERneurons outperformedBiLSTM
+ CRF and BiGRU + CRF in the test, and this experiment demonstrates that T_NER
neurons have a greater improvement in NER in small sample domains compared to
traditional models.

3.7 Multitasking Experiment

The purpose of this experiment is twofold: firstly, to verify the facilitative effect of the
presence of the source domain on the target domain for NER, and secondly, to verify
the effect of the amount of corpus in the source domain, i.e. the degree of multitasking,
on the effectiveness of NER.

This experiment involves three sets of BIO-tagged corpus, namely 1998 People’s
Daily, 2014 People’s Daily and sighan 2006 MSRA, which are in different Registers.
The first two serve as the source domain and the latter as the target domain.

This experiment is divided into four groups, the first group is to perform NER on the
target domain text only; the second group is to use only the 1998 People’s Daily corpus
as the source domain and then perform NER on the target domain; the third group is to
use only the 2014 People’s Daily corpus as the source domain and then perform NER
on the target domain; the fourth group is to use both the 1998 People’s Daily corpus and
2014 The fourth group uses both the 1998 People’s Daily corpus and the 2014 People’s
Daily corpus as source domains, and then identifies named entities for the target domain.

The comparison between the first set of experiments and the fourth set of experiments
will verify the facilitative effect of the presence of the source domain on the target domain
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for NER. The comparison of the second set of experiments, the third set of experiments
and the fourth set of experiments is to verify the effect of the degree of multitasking,
on the effectiveness of NER. The results of the four sets of experiments are as follows
(Table 2 and Fig. 5).

Table 2. The impact of multitasking on learning outcomes.

Neuron model Micro avg Macro avg Weighted avg

Lab1 0.4039 0.3896 0.4060

Lab2 0.5494 0.5369 0.5527

Lab3 0.6359 0.6226 0.6389

Lab4 0.6518 0.6425 0.6563

0.3

0.5

0.7

micro avg macro avg weighted avg

Comparison of the influence of mul�tasking degree on 
u�lity 

Lab1 Lab2 Lab3 Lab4

Fig. 5. Comparison of the influence of multitasking degree on utility

From the above experimental results, we can draw two conclusions: 1. The presence
of the source domain has a facilitating effect on the NER ability of the target domain. 2.
The more corpus in the source domain, the better the NER of the target domain.

4 Summary

Through the different experiments in this article, the excellent results of T_NER in cross-
domain NER with small samples are verified on the one hand, and on the other hand,
two features in migration learning as well as multi-task learning are verified: the more
adequate the source domain in migration learning, the better the experimental results
in the target domain; the more tasks in multi-task learning, the better the final learning
results.

T_NER still has a number of shortcomings: the BiLSTM and BiGRU encoders
improve the experimental results but are difficult to interpret from a mathematical point
of view; the training is not fast enough; and the accuracy is not high enough. Despite
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these shortcomings, T_NER is still a very good model for NER in terms of robustness
and transferability.
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