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Abstract. The large scale multiparty computation and private set inter-
section requires a number of oblivious transfer instances as subroutines,
but the implementation of oblivious transfer protocols is relatively slow.
An feasible way is to use the oblivious transfer variant called random
oblivious transfer. In this paper, we propose a 1-out-of-2 random obliv-
ious transfer protocol and extend it to a 1-out-of-k random oblivious
transfer protocol based on the LWE assumption, quantum computation
and measurement. Then, we analysis the stand-alone security of our 1-
out-of-2 random oblivious transfer protocol under various malicious sit-
uations and prove its universally composable security in UC framework.
As for the security of our 1-out-of-k random oblivious transfer protocol,
the similar results can be obtained.

Keywords: Oblivious transfer · LWE problem · Quantum
computation · UC-security

1 Introduction

Oblivious transfer (OT) is an important cryptographic primitive which can be
used for designing secure multi-party computation (MPC) [1–3], bit commit-
ment [4–6] and private set intersection (PSI) [7,8]. The OT protocol was firstly
proposed, by Michael O. Rabin in 1981, to construct a secrets exchange scheme
[9]. The original OT protocol has two participants, where one party (the sender)
sends a message to another (the receiver) with the requirement that the receiver
obtains this message with probability 1

2 and the sender remains oblivious of
whether the message has been received or not.

In order to build protocols for secure two-party computation, a more useful
kind of OT protocol, called the 1-out-of-2 OT protocol, was developed [10–13].
In these protocols, the receiver is allowed to get one message from the sender’s
message pair without knowing anything about the other message, and the sender
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is required not to know about the receiver’s choice. Another OT variant is the
randomized oblivious transfer (ROT), the only difference from 1-out-of-2 OT
lies in that the receiver is required to get one message randomly.

As is know, MPC protocols based on oblivious-circuit evaluation techniques
require a large number of OT. Since the OT schemes are relatively slow, they
become a major bottleneck for the large-scale MPC implementations. In order to
deal with the problem of OT efficiency, Ishai et al. introduce the concept of OT
extension [14] where one needs to use ROT instances as base OTs. In addition,
the ROT scheme also is a main tool in designing efficient PSI protocols [8] which
is one of the most popular MPC technique.

Motivated by the construction of trapdoor, claw free, 2-regular functions in
[15–17], we propose a 1-out-of-2 ROT protocol based on quantum mechanics and
LWE assumption. Then, we construct a family of trapdoor claw-free k-regular
functions and extend the 1-out-of-2 ROT protocol to a 1-out-of-k ROT protocol.
Furthermore, we analysis the stand-alone security of our ROT protocols under
various malicious situations and prove their universally composable security in
UC framework. The key technique of our protocol is to construct a family of
trapdoor, claw free, k-regular function based on the LWE assumption. Another
technique used in our protocol is quantum computation and quantum entan-
glement by which Bob can obtain only one of k preimages after measuring the
produced quantum state.

2 The Construction of TCF k-Regular Functions

In this section, we will describe the construction of trapdoor claw-free (TCF)
2-regular functions defined in [17] and the construction of trapdoor claw-free
k-regular functions, which are necessary for our ROT protocols. We start with
the definition of trapdoor claw-free k-regular functions as follows:

Definition 1 (Trapdoor claw-free k-regular). A deterministic function f : D →
R is a trapdoor claw-free k-regular function if the following conditions hold:

– k-regular: ∀y ∈ Im(f), we have |f−1(y)| = k.
– collision resistance: It is impossible to find out any pair (x0, x1) such that

x0 �= x1 ∧ f(x0) = f(x1) for any QPT algorithm without the trapdoor.
– Trapdoor one-way: Given y ∈ Im(f) and the trapdoor tf of the function f ,

there exists a QPT algorithm that can return the set f−1(y). Moreover, it is
impossible to get any x ∈ f−1(y) for any QPT algorithm without the trapdoor.

2.1 Requirements on Parameters

Let λ ∈ Z be the security parameter in the LWE problem, all other parameters
be the functions of λ.

– n = λ, the length of vector s ;
– q = poly(n), the prime modulus;
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– m ≈ 2n lg q, the length of the error vector e;
– α ∈ (0, 1), the discrete Gaussian distribution Φα is centered around 0 with

standard deviation αq ≥ 2
√

n.

Under the setting of the parameters above, the LWE problem is at least as hard
as solving SIVP [18,19]. And thus, the functions constructed in Sect. 3.2 and
Sect. 3.3 are all trapdoor claw-free.

2.2 On the TCF 2-Regular Functions

In [17], the authors constructed a family F2 of TCF 2-regular functions based
on the existence of a family G of injective, homomorphic, trapdoor one-way
functions. For the completeness, we will recall the construction of F2 and related
knowledge in this subsection.
The specific family G of injective, homomorphic, trapdoor one-way functions
was constructed by Micciancio and Peikert [20]. Here, we list the outline of their
construction and leave the detail to readers. First, generate a n × m̄ matrix A
by randomly choosing its elements from Zq and a m̄ × kn trapdoor matrix R by
sampling its elements from a discrete Gaussian distribution Dm̄×ω

αq with mean 0
and standard deviation αq. Then, select a fixed matrix G as in [20] for which the
function gG(s, e) = stG + et can be efficiently inverted, and construct the index
matrix K by concatenating A and G−AR, i.e. K = (A,G−AR). Finally, define
the function gK with trapdoor tK = R, which forms the family G, as follow:

gK(s, e) = stK − et, (1)

where s ∈ Z
n
q and e ∈ Lm, L is the domain of the errors in the LWE problem

(the set of integers bounded in absolute value by μ).

Theorem 1 ([20]). The functions in G are injective, homomorphic, trapdoor
one-way.

2.3 The Construction of TCF k-Regular Functions

In order to design the 1 − k ROT protocol, we need to construct a family Fk of
TCF k-regular functions. Motivated by the idea of constructing TCF 2-regular
functions in Sect. 3.2, we construct the family Fk also by using the family G of
homomorphic injective trapdoor one-way functions.
Let gK ∈ G with trapdoor tK , xi ∈ D \ {0}(0 ≤ i ≤ k − 2) satisfying xi �= xj

whenever i �= j, we define the function f : D × Zk → R with trapdoor tf =
(tK , x0, ..., xk − 1), which forms the family Fk, as follows:

f(x, c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gK(x), if c = 0;
gK(x) + gK(x0), if c = 1;
gK(x) + gK(x1), if c = 2;
...
gK(x) + gK(xk−2), if c = k-1.

(2)



494 L. Xu and M. Wang

In a similar way as proving the functions in F2 are TCF 2-regular in [17], we
can prove that the functions in Fk constructed above is TCF k-regular.

Theorem 2. The functions in the family Fk are trapdoor claw-free k-regular.

3 Our 1 − k ROT Protocols

In this section, we will present a 1 − 2 ROT protocol by using the family F2

of TCF 2-regular functions in [17], and extend this protocol into a 1 − k ROT
protocol by using the family Fk of TCF k-regular functions constructed in Sect. 3.
As in [17], for k ≥ 2, we employ the family Fk of TCF k-regular functions in a
convenient form as Fk = {f : {0, 1}n → {0, 1}m}, where the domain of each f
is also denoted by D.

3.1 The 1 − 2 ROT Protocol

In the prepare stage, first choosing a fixed function f and its trapdoor tf from
the family F2 = {f : {0, 1}n → {0, 1}m} of TCF 2-regular functions. Then,
giving (f, tf ) to the sender Alice and f to the receiver Bob. To transfer the two
messages b1, b2 ∈ {0, 1}m from Alice to Bob obliviously, our 1 − 2 ROT protocol
performs as follows:

1. Bob prepares his registers at 1√
|D|

∑

x∈D

(|x〉 ⊗ |0〉).
2. Bob applies the operator Uf by using the first register as control and the

second one as target, and the state in the two registers is in the form of
1√
|D|

∑

x∈D

|x〉|f(x)〉. After that, Bob sends the second register to Alice.

3. Alice measures her register in the computational basis and obtains the out-
come y. Then, Bob’s register becomes 1√

2
(|x1〉+|x2〉), where f(x1) = f(x2) =

y. Bob measures his register in the computational basis and obtains the out-
come x̃ (= x1 or x2).

4. Alice computes the preimages x1, x2 of y by using the trapdoor tf . Then, she
sends the pairs (a1 = b1 ⊕ x1, h(x1)) and (a2 = b2 ⊕ x2, h(x2)) to Bob, where
h(x) represents the last bit of x.

5. Bob computes the value of f(a1 ⊕ a2 ⊕ x̃). If the result is y (which means
b1 = b2), then he terminates this protocol.

6. Bob gets the message bσ by computing aσ ⊕ x̃ if h(xσ) = h(x̃) (σ = 1 or 2).

3.2 The 1 − k ROT Protocol

To extend the protocol above into the general 1 − k ROT protocol, we only
need to substitute the TCF 2-regular function for a TCF k-regular function
constructed in Sect. 3.3.
In the prepare stage, first choosing a fixed function f and its trapdoor tf from
the family Fk = {f : {0, 1}n → {0, 1}m} of TCF k-regular functions. Then,
giving (f, tf ) to the sender Alice and f to the receiver Bob. To transfer the k
messages b1, b2, ..., bk ∈ {0, 1}m from Alice to Bob obliviously, our 1 − k O.T.
protocol performs as follows:
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1. Bob prepares his registers at 1√
|D|

∑

x∈D

(|x〉 ⊗ |0〉).
2. Bob applies the operator Uf by using the first register as control and the

second one as target, and the state in the two registers is in the form of
1√
|D|

∑

x∈D

|x〉|f(x)〉. After that, Bob sends the second register to Alice.

3. Alice measures her register in the computational basis and obtains the out-
come y. Then, Bob’s register becomes 1√

k
(|x1〉 + ... + |xk〉) where f(x1) =

... = f(xk) = y. Bob measures his register in the computational basis and
obtains the outcome x̃(∈ {x1, x2, ..., xk}).

4. Alice computes the preimages x1, ..., xk of y by using the trapdoor tf . Then,
she sends the pairs (ai = bi⊕xi, h(xi))(1 ≤ i ≤ k) to Bob, where h(x) presents
the last �log k� bits of x.

5. Bob computes the value of f(ai ⊕ aj ⊕ x̃)(1 ≤ i < j ≤ k). If some f(ai ⊕ aj ⊕
x̃) = y (which means bi = bj), then he terminates this protocol.

6. Bob gets the message bσ by computing aσ ⊕ x̃ if h(xσ) = h(x̃) where σ ∈
{1, 2, ..., k}.

3.3 The Security Analysis of Our 1 − 2 ROT Protocol

In this section, we will consider the stand-alone security of our 1−2 ROT protocol
in two aspects, Bob’s malicious operation and Alice’s malicious operation. The
extended version, 1 − k ROT protocol, can be analysed in the same way. Let
us first recall the following property of the family F2 described in Sect. 3.2, on
which the security of our 1 − 2 ROT protocol is based.

Theorem 3 [17]. The functions in the family F2 described in Sect. 3.2 are TCF
2-regular.

Bob’s Malicious Strategy. A malicious receiver Bob aims to get both two
messages b1 and b2 from Alice. To achieve his aim, Bob has to find a method
to get the collision x′ for his measurement outcome x̃ in Step 3. Except for
guessing x′, what he could do is computing y = f(x̃), and managing to find the
preimages of y with respect to f . But, the function f is one-way according to
Theorem 3, and thus Bob cannot obtain the preimages of y by inverting f . So,
it is impossible that Bob have an efficient method to get both b1 and b2.

Alice’s Malicious Strategy. A malicious sender Alice wants to know what
message Bob gets from the transfer procedure. There are two ways for Alice to
achieve her aim, one is to get Bob’s measurement outcome x̃ and another is to
cheat by sending illegal information to Bob in Step 4.
Note that, Alice gets y by measuring her register and Bob obtains x̃ by measuring
his register with the superposition state 1√

2
(|x1〉+|x2〉) in Step 3. Although Alice

can computes the preimages x1 and x2 of y by the trapdoor tf in Step 5, and x̃
must be one of x1 and x2, Alice has no way to determine which one x̃ is. So, the
first way is not possible.
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As for the second way, Alice may send two pairs (a1 = b1 ⊕ w1, h(w1)) and
(a2 = b2 ⊕ x2, h(x2)) with b1 = b2 to Bob in Step 4. If Bob does not verify
whether the two pairs are legal, he will always get b1 in Step 6, no matter what
his measurement outcome x̃ is. And thus, Alice can know what the message Bob
obtains. But in Step 5, Bob verifies the reality of the two pairs from Alice by
computing the value of f(a1 ⊕ a2 ⊕ x̃). If the result is y, then Bob infers that b1
and b2 are the same, and terminates the protocol. Therefore, this strategy also
does not work.

4 The UC-security of Our 1 − 2 ROT Protocol

In this section, we will prove the universally composable security of our 1−2 ROT
protocol in the UC framework. As for our 1 − k ROT protocol, its UC-security
can be proven in the same way.
We work in the standard universal composability framework of Canetti [21] with
static corruption of some parties. The ideal world execution involves dummy
parties (some of whom may be corrupted by an ideal adversary) interacting
with the functionality F . The dummy parties only relay the inputs to F , and
relay the outputs of F to the calling machine. The real world execution involves
parties (some of whom may be corrupted by a real world adversary) interacting
only with each other.
For our 1 − 2 ROT protocol interacting with an adversary, the functionality
FROT interacting with the simulator in the ideal world is defined as follows:

Functionality FROT

Parameters: String length n.
Parties: The sender Alice and the receiver Bob.

1. Upon receiving the message b0, b1 from Alice and activated by Bob,
FROT outputs bσ to Bob randomly

Fig. 1. The functionality FROT

Let A be a static adversary that interacts with the parties Alice and Bob running
the 1−2 ROT protocol, we now construct a simulator S in ideal world interacting
with the ideal functionality FROT , such that no environment Z can distinguish
the interaction with A in the real world from the interaction with S in the ideal
world. The simulator S starts by invoking a copy of A and runs a simulated
interaction of A with Z and the parties Alice and Bob. More specifically, the
simulator S works as follows:
Simulating the communication with Z: Every input value that S receives
from Z is written on the adversary A’s input tape (as if coming from A’s envi-
ronment). Every output value written by A on its output tape is copied to S’s
output tape (to be read by the environment Z).
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Simulating the case when only Alice is corrupted: The simulator S ran-
domly selects a function f with its trapdoor tf from the family F2 of TCF
2-regular functions, and sends (f, tf ) to Alice and f to Bob respectively.
When A produces (a1, w1) and (a2, w2) with w1 �= w2 for honest Bob, S ran-
domly chooses some x̃ ∈ D. Then, S computes y = f(x̃) and another preimage
x̃′ of y by the trapdoor tf . After that, S computes b1 = a1 ⊕ x̃ and b2 = a2 ⊕ x̃′

where h(w1) = h(x̃), h(w2) = h(x̃′) and stores them. When dummy Bob is acti-
vated, S sends b1 and b2 to FROT . When FROT returns bσ, S outputs it as if
from Bob.
Simulating the case when only Bob is corrupted: The simulator S ran-
domly selects a function f and its trapdoor tk from the family F2 of TCF
2-regular functions, and sends (f, tf ) to Alice and f to Bob respectively.
When the dummy Alice is activated, S gets bσ from the functionality FROT and
stores it. When A is activated, S outputs bσ as if from Bob.
Simulating the remaining cases: When both parties are corrupted, the sim-
ulator just runs A internally (who itself generates the messages from both Alice
and Bob). When neither party is corrupted, there is no necessity to construct S.
According to the above models of different corrupted cases, we obtain the follow-
ing two propositions. And thus, our 1−2 ROT protocol possesses the UC-security.

Proposition 1. If the adversary A corrupts Alice in an execution of our 1 − 2
ROT protocol π, then we have

IDEALFROT ,S,Z
s≈ EXECπ,A,Z .

Proposition 2. If the adversary A corrupts Bob in an execution of our 1 − 2
ROT protocol π, then we have

IDEALFROT ,S,Z
s≈ EXECπ,A,Z .

Theorem 4. Denote our 1 − 2 ROT protocol as π, then

IDEALFROT ,S,Z
s≈ EXECπ,A,Z .

Thus, π UC-emulates the ideal function FROT , in other word, π is UC-secure.

5 Conclusion

Motivated by the construction of trapdoor claw-free 2-regular functions in [17],
we propose a 1 − 2 ROT protocol and construct a family of trapdoor claw-free
k-regular functions based on which we extend the 1−2 ROT protocol to the 1−k
ROT protocol. In our protocols, the key techniques are quantum computation
and the family of trapdoor, claw free, k-regular functions. Furthermore, We
analysis the stand-alone security of our 1− 2 ROT protocol in various malicious
situations and prove its composable security in the UC framework. Certainly,
the security of our 1 − k ROT protocol can be obtained by a similar discussion.
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Comparing with other OT protocols, our 1− 2 ROT protocol possesses stronger
security and needs fewer rounds between the sender and the receiver. We give an
intuitional comparison between our 1−2 ROT protocol and the others presented
before in the following table:

Table 1. Comparison with other OT (ROT) protocols

Protocol Round (moves) Security

OT in [22] 5 (including 2 with functionality) UC-secure

OT in [23] 6 Non proof

OT in [24] O(log n) FullSim

ROT in [3] 5 (including 2 with functionality) UC-secure

Our ROT 3 UC-secure
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