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Abstract. Along with the popularity of the Android operating system,
98% of mobile malware targets Android devices [1], which has become one
of the primary source for privacy leakage. Detecting malicious network
transmissions in these apps is challenging because the malware hides its
behavior and masquerades as benign software to evade detection. In this
work, we propose TraceDroid, a framework that can automatically trace
abnormally sensitive network transmissions to detect the malware. By
leveraging the static and dynamic analysis, the sensitive informations
can be firstly inferred from the call graph, and then, the sensitive trans-
missions can be detected by analyzing the network traffic per transfer
and sensitive information with a machine learning classifier. We vali-
date TraceDroid on 1444 malware and 700 benign applications. And our
experiments show that TraceDroid can detect 3433 sensitive connections
across 2144 apps with an accuracy of 94%.

Keywords: Android malware detection · Static analysis · Dynamic
analysis

1 Introduction

With the widespread use of mobile devices running Android, it has become
the dominant operating system. Users can install applications from third parties
without performing any malware checks [31]. As a result, the number of malware
samples targeted the Android ecosystem has skyrocketed in recent years, which
poses significant threat to user’s privacy. Bad guys can infer information such as
home address from user privacy, causing great harm to users [3,5,6,29].
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However, detecting malware on mobile devices is a big challenge. Due to the
limitations of Android’s permission mechanism [23], malware can disguise itself
as a benign application by using normal APIs to fool the security audit module
[28]. For instance, when a user clicks button of an application which shows
sending SMS messages, it might transmit the user’s sensitive contact information
along with that SMS at the background without notifying the user. Furthermore,
the sensitive network transmissions are not necessarily regarded as malicious
traffic, which is probably sent to a benign server for normal operation. Hence,
the key of differentiating normal and abnormal sensitive transmissions lies in
properly understanding the intent. To detect the malware, previous works [18,
19] leverage natural language processing techniques to understand whether an
application’s description is consistent with its permission setting. However, they
are unable to infer the privacy leakage. Some of the detection methods are limited
by the complexity of Android APIs and runtimes, which include millions of lines
of code [8]. Most importantly, they only focus on detecting sensitive traffic and
fail to distinguish between normal and abnormal sensitive traffic. Some people
use the network traffic of application for detection, but they are not always
accurate [17].

TraceDroid. To address the aforementioned issues, we propose TraceDroid,
which combines static analysis, dynamic analysis, and machine learning methods
to detect abnormal sensitive network traffic induced by malware. First, Trace-
Droid employs a static analysis approach to derive possible execution traces
of application and to identify sensitive information. However, some applications
send information after encrypting the name of an external server in order to avoid
security checks, and the destination server address is only visible at runtime.
Therefore, TraceDroid also utilizes a dynamic analysis method to collect run-
time information to uncover disguised malware. This hybrid approach achieves
better performance than purely static or dynamic analysis methods. Moreover,
we are able to obtain more network traffic data and provide a better character-
ization of network behavior by leveraging a hybrid analysis approach than the
widely used static analysis approach [8,14]. At last, the transmission data will be
used for model training. We can apply the well tuned model to identify malware
even when the source code is unavailable, which could be directly integrated into
network-based intrusion detection system.

Our contributions can be summarized as follows.

– We propose an Android malware detection method, TraceDroid, which per-
forms ingress analysis of malicious traffic by lightweight static analysis and
pinpoints negative network transmissions by detailed dynamic analysis.

– TraceDroid can distinguish abnormal network traffic. Compared with previ-
ous work, TraceDroid achieves higher accuracy and better runtime efficiency
while being more robust to malware variants and Android API updates.

– We evaluate TraceDroid on a dataset which includes 1444 malware from var-
ious malware datasets and 700 market apps downloaded from AppStore. The
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results show that TraceDroid can detect 3433 sensitive connections across
2144 apps with an accuracy of 94%.

Paper Organization. The remaining paper is organized as follows. We intro-
duce related work in Sect. 2. In Sect. 3, we presents our system TraceDroid, and
describes its technical details. Section 4 performs the evaluation of our system.
Section 5 summarizes our work.

2 Related Work

Emerging research efforts have been made on Android malware detection, which
can be broadly classified into Signature-Based( [11,13]), ML-Based([16,26]),
and Behavior-based([25,26]) respectively. The signature-based methods have low
computing complexity and can provide specific evidence (detected malicious fea-
ture codes) to explain. However, such methods can easily be bypassed by mali-
cious code. Machine learning-based methods have been investigated to detect
Android malware. However, the performance of pure machine learning methods
is limited to selected features and existing training datasets [4]. MaMaDroid [16]
utilizes the statistical methods of Markov chains to detect malware, but it is also
vulnerable to some attacks using evasion techniques [7].

FlowDroid [2] and DroidSafe [10] both utilize static analysis solutions to
precisely detect suspicious information flows, but the results become inaccurate
because the visited code paths are not always feasible. Based on dynamic analysis
tools, TaintDroid [9] is a real-time privacy monitoring system. By modifying
the Dalvik virtual machine, TaintDroid can report information leaks while the
application runs on the Android device. It only identifies leaks triggered during
execution, so a driver with good code coverage is required. Naturally, some tools
use hybrid analysis, such as AppAudit, to avoid the weaknesses of using a single
analysis. Still, it leaves out most unknown branches and only follows one chapter
identified by static checks. The downside of all the tools mentioned above is that
they treat any breach of user data as malicious, leading to numerous false alarms.
Compared to the above system, TraceDroid has the flexibility to extend code
coverage based on context and explore as many possible paths as possible when
discovering unknown branches. Our hybrid program analysis approach further
improves detection efficiency and reduces false positives.

3 Design Of Tracedroid

3.1 Overview

This section introduces the design of TraceDroid, which leverages data flow anal-
ysis technology to determine the source of perceptual data and then track the
information flow to select the final destination of sensitive data. The system
overview of TraceDroid is given in Fig. 1. It includes three main components:
Static analysis, dynamic analysis, and classification.
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Fig. 1. The workflow of TraceDroid.

3.2 Static Analysis

The goal of static analysis is to construct the call graph of the target application,
which can assist the dynamic analysis and improve its efficiency.

Call Graph Extractions. In contrast to traditional Java programs, which have
only one entry point (i.e. main), Android apps have multiple entry points. Specif-
ically, Android applications consist of multiple components that each Activity or
Service component is a Java class, and each event listener and lifecycle method
serve as an entry point for a specific event. Thus, to fully capture the sensitive
information traces, all possible transitions in the application’s lifecycle must be
captured precisely.

onCreate() onRestart() onClick() onDestroy()

sendMessage()

Fig. 2. An example of call graph

In order to construct an application’s call graph, prior work typically creates
one or more virtual main routines that are shared by multiple components [2,27].
However, some components without leaking information will be included with the
above methods which will introduce unnecessary interference. Besides, the shared
virtual main program may obscure the connection between components. Instead
of building a shared virtual main program, each component in TraceDroid has
a separate call graph to eliminate clutter and reduce the overhead of dynamic
analysis. As shown in Fig. 2, event listeners onClick() are embedded in the
component and registered after onCreate(). onClick() is a UI callback function
that will be called when the appropriate button is clicked. As the underlying
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static analysis framework, we leverage Soot [24] which is a Java optimization
and analysis framework to extract call graphs.

Traversing Graph. After obtaining the call graph, TraceDoid leverages it to
quickly locate the sensitive APIs call. A source is an API call which accesses
to the sensitive information. Sensitive information includes device identifiers,
SMS, contact data, etc. All of these data items are retrieved, sent, or stored
through the Android APIs, which is listed in Susi [21]. Typically, getText() at
line 8 shown in Listing 1.1 is a source. For each source, the corresponding entry
point of the component is extracted by applying a graph traversal algorithm
in the call graph. For instance, the entry point onRestart() of the component
PrivataDateLeakag in Listing 1.1 is located through breadth-first search begin-
ning with getText() on the call graph.

Filter. Since the static analysis component has a lot of unnecessary entry func-
tions, we thus use filters in the static analysis results to improve the efficiency
of our analysis. Some keywords are used in the filter to filter out unnecessary
entries such as those containing Android kernel features.

3.3 Dynamic Analysis

The dynamic analysis component consists of an execution system with a taint
analysis module and a simulation of the Android runtime.

Executor. The executor is based on a specially designed Dalvik virtual machine
which can unpack Android package files and execute bytecode instructions
directly. After static analysis, a set of traces can be derived. Then the traces
are fed into the execution system. Note that each trace is a sequence of specific
API calls beginning with a lifecycle callback and ending with an API call related
to sensitive information.

For instance, for the entry point onRestart() in PrivateDataLeakage,
TraceDroid builds an execution trace onRestart() to onClick() that informs
the executor to invoke onClick() after calling onRestart(). When the frame-
work restarts the application, the application reads the password from the text
box (line 8). When the user clicks the active button (onClick()), the password
is sent via SMS (line 20). This constitutes a tainted data flow from the pass-
word field (source) to the SMS API (sink). In this example, sendMessage()
is associated with a button in the application UI, which is triggered when the
user clicks the button. The execution trace is generated by applying depth-first
search to find a path from onRestart() to onClick() in the call graph (Fig. 2).
The default values of global variables are normally initialized at the lifecycle
callbacks such as onCreate() and onStart(). We choose to perform these call-
backs to reduce the unknown variables. AS it reduces the number of unknown
branches to be explored, it improves the efficiency of dynamic analysis.
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Listing 1.1. Example Android Application

1 class PrivateDataLeakage extends Activity {
2 private User user = null;
3 void onCreate() {...//initiate the activity }
4 void onRestart() {
5 EditText usernameText = (EditText)findViewById(R.id.username);
6 EditText passwordText =

(EditText)findViewById(R.id.password);
7 String uname = usernameText.toString();
8 String pwd = passwordText.getText().toString(); //source
9 user = new User(uname, pwd);

10 }
11 void sendMessage(View view) {
12 if(user != null){
13 String password = getPassword();
14 String obfuscatedUsername = "";
15 for(char c : password.toCharArray())
16 obfuscatedUsername += c + "_";
17 String message = "User: " + user.getUsername() + " |

Pwd: " + obfuscatedUsername;
18 SmsManager smsmanager = SmsManager.getDefault();
19 Log.i("TEST", "sendSMS"); //sink
20 smsmanager.sendTextMessage("+49 1234", null, message,

null, null); //sink, leak
21 }
22 }
23 void onDestroy() {... //finish the activity}
24 }

Taint Analysis. Here, the unknown variables are often closely related to some
factors, e.g., user input, device status, surrounding environment, etc. Thus, mali-
cious applications may take advantage of some factors to hide their behavior,
creating malicious code that can only be triggered under certain circumstances.
To tackle this problem, TraceDroid not only introduces the function of snap-
shots to handle different cases of unknown quantities, but also proposes a rule
base to deal with the problem of path explosion caused by unknown variables.
Specifically, if an unknown branch is encountered, TraceDroid creates a snap-
shot to store the state of the executor and presses the snapshot onto the stack.
If the termination condition of a loop or recursion is an unknown quantity, code
that contains the loop or recursion may cause an infinite number of paths to be
explored. We choose the way that execute the block under the loop only once,
and mark all the variables in the block that accept the new value. After explor-
ing the block, the marked variable is symbolically modeled for the rest of the
execution. During execution, whenever the source API is invoked, the pollution
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analysis module begins to track the propagation of the correspondingly sensitive
values. When one or more sensitive values reach a network connection API call
(a sink, such as the openConnection() or connect() ), this means that the
transport is sensitive, the corresponding runtime information, such as network
traffic data, is recorded. We employ the general contamination strategy which
has been used in the previous work [9,27] to specify the propagation process.

Simulation of the Android runtime. Accurate modeling of the Android
runtime state is required to perform taint analysis correctly. Therefore, we man-
ually pad the incomplete Android SDK and emulate the core functionalities.
Our inspiration for emulating Android comes from [10]. But the Android device
implementation used is only developed for static analysis and does not extend
well enough to support our dynamic analysis. We supplemented the android
framework to make it support more functions. Meanwhile, the return value of
the function is simulated to support our dynamic analysis.

3.4 Transmission Classification

The final step is to detect the Android malware by analyzing the traffic gener-
ated by the dynamic analysis component. TraceDroid uses a supervised learning
approach to train classifiers that we aim to operate in local-based or network-
based intrusion detection systems. To generate the representative features from
URL sets in the traffic, we finally choose lexical features, as the lexical features
contain the purpose of transmissions which can be used to distinguish suspicious
and benign traces.

Words Vectorization. To extract the lexical features from traffic, a bag-of-
words model [15] is employed, which is often used for spam detection. In our
framework, URLs can be divided into tags using certain characters as delimiters.
Each different tag is then treated as an independent feature. Each collected data
stream is converted into a vector of binary values. To reduce the computation
cost, we can’t use word bags directly because this can result in vast feature
Spaces. As described in [22], we limit the size of a feature set by removing
tokens that are rarely present in a stream.

Model Training. Since TraceDroid is commonly used in traffic classification,
we consider Decision Tree as a learning classifier [20,22]. We use labeled trans-
missions as training and test data, and use ten-fold cross validation [12], which
is the standard method for evaluating machine learning solutions. According to
the hybrid analysis tool, the traffic generated from different code paths in target
app probably goes to the same URL, thus, we merge the same URL connections
into one transmission. Later, for the collected transports, we check the target
hostname to see if it belongs to an Advertising(AD) server or a malicious server
and flag the transports as illegal. Then, we need to check the plain text content
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passed through the stream to prevent the server from sending a response that
is related to the user data being sent. In order to test the transmission of flow
is legal, we will intercept these flows in some special way and repackage these
applications. If the function of these applications is affected, then we will mark
the transmission of flow as legal and if the application is not affected, so we will
have sufficient reason to mark the transmission of flow as illegal transfer.

4 Evaluation

4.1 Experimental Settings

Datasets. We first extract 1223 malicious sensitive transmissions and record
the corresponding traffic from the classic malicious software set [30]. In addi-
tion, we also obtain 700 malicious samples from VirusShare1, as well as 1147
malicious sensitive transmissions. We crawl 700 applications on the legitimate
app store. Since the architecture of android system has changed in recent years,
our dataset includes new versions of android applications to make our analysis
more convincing.

Matrics. In the experiments, we employ the standard F-measure metric,
Accuracy, TP, FP, FN to evaluate the performance of TraceDroid under dif-
ferent settings. The Accuracy refers to the ratio of correctly predicted samples
to the total samples. TP denotes the number of correctly classifying normal
samples as normal, and FP and FN indicate the number of samples mistakenly
identified as malicious and benign respectively.

4.2 Comparison with Benchmark

We first evaluate the performance of TraceDroid on base datasets compared with
the other two state-of-the-art Android detection frameworks. Table 1 summarizes
the detection results on DroidBench. DroidBench2 is an open-source benchmark-
ing suite that contains 118 hand-crafted applications. Particularly, it can utilize
various features of programming languages to bypass static pollution analysis.
We removed 14 apps due to the inter-app communication involved and other
reasons.

Compare with Other Static Detection Methods. The detection accuracy
of FlowDroid is only 76.8%, that is because it can not effectively analyze the
runtime data of app and the modeling of the lifecycle of FlowDroid is imprecise.

1 https://virusshare.com/.
2 https://github.com/secure-software-engineering/DroidBench.

https://virusshare.com/.
https://github.com/secure-software-engineering/DroidBench.
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Table 1. Detection results on DroidBench

Tools FP Accuracy Precision

FlowDroid [2] 10 76.8% 70.5%
AppAudit [27] 2 50.5% 91.3%
TraceDroid 0 98.3% 100%

Compare with Other Hybrid Analysis Detection Methods. As we can
see that TraceDroid achieves higher detection accuracy than AppAudit. The
first underlying reason is that AppAudit chooses to terminate the current exe-
cution when it encounters a sink, but satisfying reachability does not imply
malicious transfers, as discussed in Sect. 3. The second, AppAudit does not take
into account the diversity of unknown variables and keeps hanging on to an
unknown branch in one direction, which can reduce the detection accuracy of
AppAudit. Furthermore, since Android contains various mechanisms, AppAudit
does not support any of these Android features.

In summary, TraceDroid provides a more complete dynamic analysis imple-
mentation that not only simulates the behavior of the Android runtime to sup-
port various mechanisms, but also tracks communication between multiple com-
ponents.

4.3 Real App

Trasmission Detection. In this section, we further present the performance
comparison with VirusTotal3 VirusTotal is a popular website that scans submit-
ted URLs with the latest 68 anti-virus engines. In Fig. 3, Malware represents the
1,444 malware apps we collected, AppStore represents the 700 apps we down-
load from the AppStore, and All represents all the pieces of Malware and apps.
It can be observed that the performance of VirusTotal is always inferior than
TraceDroid no matter on which apps.

Table 2. Classification results in different scenarios

Scene Class Precision F-measure

Local-based Illegal 0.982 0.962
Local-based Legal 0.872 0.905
Network-based Illegal 0.918 0.924
Network-based Legal 0.910 0.915

3 https://www.virustotal.com/.

https://www.virustotal.com/.
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Fig. 3. Detecting malicious transmission.

Comparison with Different Scenarios. In order to verify the effectiveness
of TraceDroid in multiple scenarios, we designed two scenarios: the first is local
host system of automatically finds the disclosure points and the second is the
scenario involves only the flows of sensitive transmissions. Table 2 shows the clas-
sification results in different scenarios. For local-based scene, Table 2 shows that
TraceDroid has high precision and F-measure in identifying illegal transmissions.
After manually inspecting the misidentified instances, we found that their URLs
were very similar to the benign addresses. Also, they put the sensitive data into
their body rather than the URL, which makes the URL-based detection more
difficult to correctly label them. We plan to consider more features to further
reduce the false negatives in the future. For network-based scene, based on the
sensitive transmissions we collected, we add the non-sensitive traffic flows to the
legitimate class. This reflects the real environment of the network-based detec-
tion. Table 2 summarizes our results. As we can see that the prediction accuracy
of network-based scenario is slightly lower the local-based detection’s.

TraceDroid found 3,433 suspicious behaviors in marketing apps. In order
to analyze the reasons why some behaviors are classified as suspicious cases,
we compare the behavior characteristics with common behaviors through data
visualization and manual comparison, and obtain some results as follows.

Finding1. The 700 apps acquired in the AppStore that are generally consid-
ered benign, we detect 1,063 sensitive transmissions and 74.5% of these sensi-
tive transmissions are related to advertising, as shown in Fig. 4. For example, a
weather-forecasting app takes a user’s location and sends it to an AD server.

Finding2. Some applications use specific environments to steal privacy. Such
as an app from the DroidDream malware family only sends messages at night.

Finding3. Most malicious transcribes use resources that have clear semantics
and are related to users’ private information. To be specific, many malicious
transcribes obtain the users’ personal information and write them to files or
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logs. Then malicious transcribes use APIs under NETWORK and SMS packets
to transport sensitive information.

Fig. 4. A sensitive transport classification map of a dataset downloaded from AppStore.

5 Conclusion

This paper proposes TraceDroid, an Android malware detection system. At first
we apply lightweight static analysis to get the entry points, and then perform
dynamic analysis to track the traces of privacy leaks. To the best of our knowl-
edge, our framework can identify anomalies in sensitive information instead of
treating all sensitive information transmission as unreliable. We have conducted
plenty of experiments to evaluate the performance of TraceDroid and results
show that TraceDroid can effectively detect unknown malware samples with a
94% accuracy. However, there are still some problems to be explored, such as
insufficient sample collection and the accuracy of online detection of unknown
malware is low. In the next work, we will collect more samples, optimize our
model, and improve the accuracy of unknown software detection.
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