
Chapter 5
The Energetics and Biomechanics
of Walking and Running

Pietro Enrico di Prampero and Guido Ferretti

Abstract This chapter is on walking and running, the present knowledge of which
is due essentially to the School of Milano. After a short historical synopsis, the
energetics of walking and running is discussed. In this context, after having intro-
duced Margaria’s concept of energy cost, the effects of incline, of the terrain, of
pathological gaits and of body mass and aging are treated. In the second part, the
contribution of the School of Milano to the knowledge of the biomechanics of
walking and running is analyzed, with special attention to the fundamental role
played by Giovanni Cavagna. The pendulum-like mechanism of walking and the
elastic mechanism of running are described. Concepts like internal and external work
and mechanical efficiency are discussed. Further, the transition between walking and
running is discussed along the lines proposed by Alberto Minetti. Finally, the
energetics of sprint running and the effects of acceleration are discussed.
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Three athletes during training for the marathon race of the 1896 Athens Olympic Games, on the
road from Marathon, Greece. The athlete in the middle is Charilaos Vasilakos (1877–1964), a
student from Athens, who ended at the second place, after the shepherd Spyridon Louis
(1873–1940). Property of WikiCommons, in free domain

5.1 Introduction

The aim of the present chapter is to subsume under a coherent picture the vast
collection of data on the bioenergetics and biomechanics of walking and running,
arising from the numerous papers devoted to these topics by the School of Milano,
along the lines of the seminal study by Rodolfo Margaria (1938) on the energy cost
of walking and running. More specifically, after a brief historical note, we discuss
the basic principles along which an analysis of human locomotion can be performed,
and then we describe more in detail the energetics and biomechanics of walking and
running. The effects of the incline are analyzed for both. Competitive walking is also
considered. The School was active in the study also of other types of locomotion,
both on land (speed skating, skiing, but mostly cycling) and in water (swimming,
rowing and other forms of assisted locomotion), along the same general principles.
These are discussed in Chap. 6.

https://doi.org/10.1007/978-3-031-19197-8_6
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5.2 The Founders

It is well known since the Hellenistic era that muscles are the site of animal
movement. Herophilus (≈325 – ≈255 B.C.), one of the founders of the medical
school of Alexandria, was already aware that muscles can shorten and lengthen.
Although he is credited to have been one of the first to establish a bridge between
hard science and medical science, we are not aware as to whether he created what we
would call nowadays a physical theory of animal motion. Most of his work has been
lost and present information on him is indirect, from citation in other texts (Von
Staden 1989). To set a theory of locomotion, we need an adequate physical system
and the Hellenistic one was lost. It was only with the development of modern
classical mechanics starting from the seventeenth century, and the creations of
concepts like work and power, that we got an instrument for the analysis and
interpretation of animal locomotion.

As already pointed out in Chap. 2, the second necessary instrument came in the
eighteenth century, with the discovery of oxygen and carbon dioxide. Antoine-
Laurent de Lavoisier (1743–1794) was the first to demonstrate that both gases are
necessary to life, as humans consume oxygen and produce carbon dioxide; but even
more important, he demonstrated, together with Armand Séguin (1767–1835), that
oxygen consumption, carbon dioxide elimination and heat production all increase in
exercise, in rough proportion between them (Perkins Jr 1964). This observation
implies three consequences: (i) chemical energy transformation is an oxidation
process of some “organic” fuel, with carbon dioxide as end product; (ii) there
must be a tight coupling of oxygen consumption to fuel degradation, and (iii) the
chemical energy transformation into mechanical energy occurs during muscular
contraction. The basis for an energetic analysis and interpretation of human loco-
motion was set.

It does not come as a surprise that the earlier attempts at describing the energetics
of human locomotion in quantitative terms were devoted to walking. Indeed, in the
second half of the nineteenth century, several authors determined the energy expen-
diture during level walking, wherefrom the energy cost of walking (Cw) on the level
at speeds between 3.8 and 4.8 km h-1 (1.05–1.33 m s-1) can be calculated
(Katzenstein 1891; Smith 1859; Sondén and Tigerstedt 1895). The obtained values
were astonishingly close to the currently accepted ones (from 0.32 to 0.51 kcal kg-
1 km-1, i.e., from 1.34 to 2.13 J kg-1 m-1). The mechanical efficiency of uphill
walking, as obtained from the ratio of the potential energy (Ep) changes to the
corresponding metabolic energy expenditure, was also determined, obtaining values
ranging from≈ 0.20 to≈ 0.37 (Katzenstein 1891; Löwy et al. 1897; Schumburg and
Zuntz 1896). At the beginning of the twentieth century, Brezina and Kolmer (1912)
reported that the energy cost of level walking, per unit of transported mass and
distance, increases sharply at speeds >1.33 m s-1. Shortly afterward, Barkan et al.
(1914) observed that the energy expenditure of level walking at speeds between 0.8
and 1.3 m s-1, at the altitude of the “Laboratorio Angelo Mosso” (2900 m above sea
level, see Chap. 1), was essentially equal to that observed by others at sea level

https://doi.org/10.1007/978-3-031-19197-8_2
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(0.37–0.55 kcal kg1 km1). Similar results were reported also by Benedict and
Murschhauser (1915).
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The energy cost of running (Cr) can be assessed from the studies byWaller (1919)
and by Liljestrand and Stenström (1919), whence values ranging between 0.80 and
1.30 kcal kg1 km1 were obtained, again not far from the presently accepted ones;
whereas Hill (1928) was probably the first to investigate the effects of the air
resistance in running. However, as mentioned above, the most comprehensive
study on the energy cost of walking and running was undertaken by Margaria
(1938). Margaria’s study was a turning point of the history of the energetics of
human locomotion, for the formalization of the concept of energy cost (C), which is
still at the core of our interpretation of the energy transformations during walking
and running, and actually during any type of locomotion.

The study of the biomechanics of human locomotion took great advantages from
the technological revolution that occurred in the second half of the nineteenth
century, thanks to the dramatic development of photography. Several attempts at
reproducing movement using photographic tools preceded the Lumière brothers’
invention of what we call cinema. Two men, interested in understanding human
movement, had a major role in these developments: Etienne-Jules Marey
(1830–1904), a French physiologist, and Eadweard Muybridge (1830–1904), a
British photographer who practised in the USA, who, amazingly enough, shared
the years of birth and death. The former invented the chronophotographic gun, a tool
that allowed taking sequences of 12 frames per second reproduced on the same plate
(classical movie cameras filmed at a frequency of 24 images per second); with this
technique, Marey (1878) decomposed animal movement to get detailed analysis of
it. Similarly, Muybridge placed 12, then 24 cameras at given distances, taking
pictures at given predetermined times along the path of a moving animal. He copied
his images onto a spinning disc allowing projection at predetermined speed of the
sequence of images through a source of light: by doing so, he reproduced motion at a
pre-cinematographic speed (Muybridge 1887).

Their techniques opened the way not only to modern cinema, but also to the
cinematographic techniques of locomotion analysis, which allowed Wallace Fenn
(1893–1971) to perform the first computations of mechanical work during walking
and running (Fenn 1930a, 1930b). Pretty much as Margaria’s 1938 study for the
energetics, Fenn’s papers represented a turning point of the history of the biome-
chanics of human locomotion. Incidentally, Margaria and Fenn were friends. Fenn
later created Rochester, which then spread to Buffalo: their friendship is the base of
the Buffalo—Milano connection.

5.3 Definitions and General Concepts

The maximal absolute velocities in human locomotion encompass a wide range of
values (Fig. 5.1), whereas the maximal muscular power of the athletes competing in
the different events, for any given effort duration, is substantially equal. Thus, the



above speed differences cannot be attributed to the athletes’ “engine”; on the
contrary, they depend on the set of intrinsic characteristics of any given form of
locomotion that determine C, is usually expressed in kJ km-1. However, to compare
subjects of different body size, it is often convenient to express C per kg of body
mass (J kg-1 m-1). It should also be pointed out that 1 kcal = 4.186 kJ, and that the
consumption of 1 L of oxygen in the human or animal body yields ≈ 5 kcal (≈
21 kJ), the precise value ranging from 4.68 to 5.05 kcal L-1 depending on the
substrates utilized, and hence on the respiratory quotient (Margaria 1975).
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Fig. 5.1 Average speed (v) of some extremely high performances, or 2014 world records, as a
function of time in the indicated forms of human locomotion. Since we refer to records, walking is
competitive walking. The time is expressed in seconds (upper abscissa, log scale) or as the
corresponding logarithm, lower abscissa. Modified after di Prampero 2015

The rate of energy expenditure per unit of time (metabolic power, _E ) is the
product of C times the velocity (v):

_E=C v ð5:1Þ

Equation 5.1 tells that, in any form of locomotion, and for any given C value, the
maximal attainable speed (vmax) is directly proportional to the subject’s maximal
metabolic power ( _Emax ). Solving Eq. 5.1 for vmax, we obtain:

vmax =
_Emax

C
ð5:2Þ

Equation 5.2 applies regardless of the energy sources yielding _Emax ; however, it
becomes particularly useful in long-duration aerobic performances, wherein _Emax is



well defined and is represented by the subject’s maximal oxygen consumption
( _VO2

max, see Chap. 7). Hence:
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vmax =
φ _VOmax

2

C
ð5:3Þ

In this specific context, vmax is tantamount to the maximal aerobic speed, whereas
φ is the fraction of _VO2

max that can be sustained throughout the entire performance.
We note that, for effort durations between≈ 30 minutes and≈ 2 hours, φ depends on
the characteristics of the power-time relationship yielding the so-called critical
power (Moritani et al. 1981).

The three quantities φ, _VO2
max and C, combined as in Eq. 5.3, explained about

70% of the performance variability in a group of long-distance runners (di Prampero
et al. 1986). So, Eq. 5.3 provides a satisfactory description of the energetics of
endurance running. Moreover, we can reasonably assume that the type of analysis
expressed formally by Eq. 5.3 can be profitably applied to the analysis of any
standardized form of locomotion, wherein the speed: (i) is the only criterion for
evaluating performances, and (ii) depends directly on the subject’s metabolic power.
Thus, Eq. 5.3, the first formulation of which we owe to Margaria (1938), has been
the basis for the analysis of the energetics of human locomotion carried out in the last
80 years within the School of Milano, as discussed in the next paragraphs.

In all forms of terrestrial locomotion, a fraction of C is utilized to overcome
non-aerodynamic forces. This is defined as the non-aerodynamic energy cost (Cn -

a) and includes the fraction of C that is necessary to overcome (i) gravity, to lift and
lower, and inertia, to accelerate and decelerate the body center of mass at each stride;
(ii) the friction of the point of contact with the terrain, whenever there is motion of
one in respect to the other; (iii) the internal work necessary to move the limbs in
respect to the subject’s center of mass; (iv) the static muscular contractions to
maintain the body posture; (v) the work of the respiratory muscles and of the heart
to sustain respiration and circulation.

Over and above Cn - a, in all forms of terrestrial locomotion, an additional
amount of energy is dissipated against the air resistance that increases with the
square of v, where v is the velocity in respect to the air, not in respect to the terrain:
these two velocities become equal in the absence of wind. In fact, the amount of
C used against the air resistance, defined as the aerodynamic energy cost (Ca),

1 is
given by:

1In fact, C is a force. Dimensionally and conceptually, a force (F) is equal to the work (w) or energy
per unit of distance (length, L ): F = w L-1. This depends on the fact that the work is defined as the
product of the force and the distance along the direction of motion. Expressing the quantity in
question as force opposing motion, or as work, or energy, per unit of distance, is therefore
conceptually identical.

https://doi.org/10.1007/978-3-031-19197-8_7
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Table 5.1 Constant relating the energy cost (expressed per unit of distance and per m2 of body
surface area) to the square of the speed (ke); non-aerodynamic energy cost per unit of distance and
per kg body mass (Cn - a, J m

-1 kg-1); overall energy cost per unit of distance for a man of 70 kg
and 1.75 m (C, J m-1) and aerodynamic coefficient (Cx) in the indicated forms of human locomotion
on solid compact terrain at constant speed (v, in m s-1) in the absence of wind at sea level
(Pressure = 760 mmHg, Temperature = 20 °C). Cycling on a traditional racing bike in dropped
posture. Data from di Prampero 1986

Walking (competitive) Running Speed skating (ice) Cycling

ke 0.46 0.40 0.44 0.42

Cn - a 1,43 + 0,91 v 3,86 1,00 0,17

C 100 + 64 v + 0,83 v2 270 + 0,72 v2 70 + 0,79 v2 13 + 0,77 v2

Cx 1.10 1.10 0.50 0.75

Ca = ke v
2 ð5:4Þ

where ke is the proportionality constant relating the two variables. It depends on
(i) the area projected on the frontal plane (Af), (ii) the body shape, (iii) the air density
(ρ), and (iv) the efficiency of transformation of the metabolic energy into mechanical
work (η):

ke =
0:5 CxAf ρ

η
=

kw
η

ð5:5Þ

where kw is the proportionality constant relating the force opposing motion to the
square of the speed, and Cx is a dimensionless coefficient, which is smaller the more
“aerodynamic” is the shape of the moving object. Cx is the ratio of the drags of two
objects of equal Af: one is the body at stake, the other is an object of standard shape
with a squared frontal area. Indeed the drag of any given moving body varies as a
function of the Reynolds number, and thus, ceteris paribus, it is greater, the higher is
the speed of the body with respect to the fluid. When the drag of the body at stake is
equal to that of the standard object, the Cx is equal to 1. This is the case for a cube. In
the four forms of locomotion discussed in this Chapter and in Chap. 6, Cx ranges
from≈ 0.5 to≈ 1 (Table 5.1), whereas in old fashion cars is≈ 0.6 and slightly lower
than ≈ 0.3 for contemporary streamlined cars.

To sum up, C is equal to:

C=Ca þ Cn- a ð5:6Þ

Combination of Eqs. 5.4 and 5.6 yields:

C= ke v
2 þ Cn- a ð5:7Þ

A substantial body of data collected over the years has provided rather accurate
values of ke (Table 5.1). This table shows that Cn - a is independent of v in most

https://doi.org/10.1007/978-3-031-19197-8_6


forms of human locomotion on land. In this case, plotting C as a function of v2

provides straight lines with slope equal to ke and y-axis intercept equal to Cn - a .
However, this is not so for competitive walking, because in this case Cn - a is a linear
function of v. At variance, when we walk or run on a treadmill, Ca is nil, so that
C corresponds to Cn-a.
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Fig. 5.2 Metabolic power ( _E, kW, left ordinate) and corresponding oxygen uptake ( _VO2, L min-1,
right ordinate) above resting as a function of speed (v, m s-1) during natural (w) or competitive (w*)
walking, running (r), ice speed-skating (s) and cycling (c) in a standard subject of 70 kg body mass,
1.75 m stature, at constant speed on flat compact terrain, at sea level in the absence of wind. The red
curve ( _Ea ) describes the power dissipated against the air resistance, essentially equal in the four
forms of locomotion. The vertical distance between the red curve and the blue ones is the power
dissipated against non-aerodynamic forces ( _En- a). The upper black broken horizontal line is the net
maximal oxygen consumption of an elite athlete (1.8 kW, or 5.17 LO2 min-1). The intersection
between this line and the blue ones is a measure of the maximal theoretical aerobic speed (vertical
arrows and corresponding velocities, in km hr-1) of this hypothetical athlete in the four forms of
locomotion. The dark columns indicate the fraction of the overall power dissipated against the air
resistance at the maximal aerobic speed. Modified after di Prampero 1986

The overall _E, as given by the product between C and v in the absence of wind
(Eq. 5.6), is reported as a function of v in Fig. 5.2 for natural or competitive walking,
running, ice speed-skating and cycling (for details on these last two forms of
locomotion, see Chap. 6) (di Prampero 1986). The two components of the overall
metabolic power (aerodynamic, _Ea and non-aerodynamic, _En- a) can be estimated
for each form of locomotion, since the curve depicting the _Ea versus v relationship,
in red on the graph, is essentially the same for all types of locomotion.

https://doi.org/10.1007/978-3-031-19197-8_6
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This figure shows that, in competitive walking as in running, since _Ea is but a
minor fraction of _E, no substantial advantage can be obtained by ameliorating the
subject’s aerodynamic profile. On the contrary, as discussed in some detail in
Chap. 6, an improvement of the aerodynamics of the bicycle provides astonishing
increases of the speed on flat terrain, due to the large predominance of _Ea over _En- a.

Figure 5.2 shows also the maximal aerobic speed that a hypothetical elite athlete
could achieve in these four forms of locomotion, were he/she able to compete with
the same technical ability in all of them. Indeed, the maximal aerobic speed in each
form of locomotion is set by the intersection between the horizontal line representing
the subject’s _VO2

max (above resting) and the appropriate metabolic power versus
speed function.

It should finally be noted that all the functions shown in Fig. 5.2 for the reported
locomotion modes had been obtained within the School of Milano, thanks essen-
tially to the work of Rodolfo Margaria, Paolo Cerretelli, Pietro Enrico di Prampero,
Gabriele Cortili (1939–2009), Piero Mognoni (1936–2008), and Franco Saibene
(1932–2008). Figure 5.2 subsumes one of the most important legacies of the School
of Milano to the physiological community: the theoretical and experimental basis of
our understanding of the energetics of human locomotion, on which current studies
still rely.

Combining Eqs. 5.1 and 5.4, one obtains:

_Ea =Ca v= ke v
3 ð5:8Þ

It should be noted that Eq. 5.8, as such, applies only in the absence of wind. If this
is not the case, the analysis becomes more complicated, as briefly discussed in
Chap. 6.

A direct consequence of Eq. 5.8 is that, at speeds close to the maximal aerobic
ones in elite athletes, _Ea varies greatly among different exercise modes. As an
example, at the _VO2

max represented in Fig. 5.2, _Ea is almost negligible in competitive
walking (≈ 0.066 kW or 0.19 L O2 min-1), rather small in level running (≈ 0.19 kW
or 0.54 L O2 min-1), much higher in speed skating (up to ≈ 1.08 kW or 3.10 L O2

min-1), to reach about 90% of the total metabolic power in cycling (≈ 1.71 kW or
4.92 LO2 min-1).

5.4 The Energy Cost of Walking and Running

The relationship between Cn-a and v in natural level walking on the treadmill has a U
shape with a minimum at a speed between 1.1 and 1.4 m s-1 (Fig. 5.3a ). On the
contrary, in level running, Cn-a is essentially constant and independent of the speed
(Fig. 5.3b), amounting to about 3.8–4.1 J kg-1 m-1, a value about twice that
observed in level walking at the most economical speed (Margaria et al. 1963).
However, above≈ 2.2 m s-1, the Cn-a of walking on flat terrain becomes higher than
that of running. Indeed, it seems that, at speeds around 2.2 m s-1, uninformed

https://doi.org/10.1007/978-3-031-19197-8_6
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a

b

Fig. 5.3 (a) Energy cost of treadmill running, or natural walking, at the optimal speed (C, J kg-
1 m-1), as a function of the incline of the terrain (i, %). The energy cost of walking is a function of
the speed (v, m s-1), as indicated in the inset, whereas that of running, for any given incline, is
constant. Modified after di Prampero 1986; data from Margaria et al. 1963. (b) Energy cost of
treadmill running on the level as a function of the speed for the two most economical subjects
(empty symbols) and the two less economical ones (filled symbols) of a group of 37 amateur
marathon runners. Data from di Prampero et al. 1986



subjects shift spontaneously from walking to running (or vice-versa, if the speed is
decreasing). The way this transition occurs is discussed more in detail in Sect. 5.6.
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The same applies, in an even more elaborate way, in animals, like dogs and
horses, characterized by three gaits: pace, trot, and gallop. The shift from one to the
other of these forms of locomotion, as a function of the speed, occurs always in such
a way as to select the most economical gait at the speed in question.

However, with a little bit of patience, it is possible to persuade humans or horses
to utilize un-economical gaits: trot races for horses, competitive walking for humans.
In this latter case, C, even if higher than that of running, is nevertheless substantially
lower than could be expected from the extrapolation to high speeds of the C versus
v relationship for natural walking. This feat is obtained thanks to the well-known
technique of locomotion of competitive walking (Cappozzo et al. 1976; Cavagna
and Franzetti 1981; Marchetti et al. 1983), somewhat funny at first glance, but
energetically more economical than natural walking at the competition speed, even
if not as much as level running.2

As far as Ca is concerned, Eq. 5.7 applies to running as well, as demonstrated on
top-level marathon runners from Kenya (Tam et al. 2012), who could be investigated
up to speeds as high as 5.0–5.5 m s-1 (18–20 km h-1) in fully aerobic conditions.
Concerning natural walking, Ca is so small, that it can be practically neglected, so
that the C versus v relationship on a flat terrain (an athletic field, for instance) is
essentially the same as that on the treadmill.

5.4.1 The Effect of the Incline

As mentioned above, in 1938, Margaria investigated in depth the energetics of
walking and running at speeds between 0.14 and 2.64 m s-1 and slopes between
+40 and - 40% in walking and between 1.80 and 4.20 m s-1 from +15 to – 30% in
running, respectively. His data are reported in Fig. 5.3a. This Figure shows that Cn-a,
as expected, increases uphill and decreases downhill; in this latter case, however, if
the slope becomes steeper than – 15%, Cn-a increases again. It shows also that in
walking, the optimal speed, yielding the minimum Cn-a, is smaller, the steeper the
incline (Fig. 5.3a). In running, at all slopes, the Cn-a is independent of the speed
(Fig. 5.3b). Finally, the Cn-a of running turns out always higher than that of walking
at the optimal speed; on flat terrain, as mentioned above, the former is about two
times higher than the latter.

Minetti et al. (2002) studied Cw or Cr uphill or downhill in a much larger range of
slopes than did Margaria, i.e., from – 45% to +45%. The so obtained data, on the one
side, confirmed the data reported by Margaria (1938), as did also Minetti et al.

2At the 2014 European Championships in Zürich, Yohann Diniz from France established the
current world record in the 50 km distance, which he completed in 3 h 32 min and 33 s. His
average speed corresponded to 14.11 km h-1 or 3.92 m s-1



(1994a), and, on the other side, have shown that the Cn-a of treadmill running is
independent of v even at these very steep uphill or downhill slopes. This has allowed
condensing these data into one and the same empirical relationship (independent of
the speed) between the net Cn-a (in J kg-1 m-1) and the incline of the terrain (i):
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Cn- a = 155:5 i5� 30:4 i4� 43:3 i3 þ 46:3 i2 þ 19:5 iþ 3:6 ð5:9Þ

where i is the tangent of the angle β between the terrain and the forward direction
of the treadmill’s movement (positive for uphill and negative for downhill), and 3.6
is the Cn-a value observed on their subjects during level running at constant speed.

Knowledge of i = tan β allows a trigonometric computation of the vertical
distance h, whence the work against gravity (Mgh, whereM is the body mass and g is
the gravity acceleration) can be obtained. In fact h is equal to:

h= Lho tan β= Lt sin β= Lho i ð5:10Þ

where Lho is the distance covered on the horizontal plane (that of the floor on which
the treadmill is placed) and Lt is the distance covered along the treadmill’s axis
(direction of movement),3 so that:

Lt = Lho
tan β
sin β

ð5:10aÞ

Equation 5.10 shows also that i is the h per unit Lho, so that the abscissa of
Fig. 5.3a is a representation of h, and thus, for any given human on Earth, of Mgh.
The ordinate of this same figure reports the corresponding Cn-a, so that, when both
Cn-a and Mgh are expressed per unit of distance, their ratio is the reciprocal of the
apparent net mechanical efficiency of the vertical work (ηv) of walking (at the
optimal speed), or of running. Thus, in Fig. 5.3a, we can draw a family of isopleths
departing from the origin of the axes (three of which are shown in the Figure), along
which ηv is constant. However, h is expressed per unit of Lho, whereas Cn-a is
expressed per unit of Lt. For this reason, since, when β > 0, and thus Lt > Lho, the
nominal ηv turns out larger than the real ηv, by a factor equal to tan β/sin β
(Eq. 5.10a). For inclines ≤0.25, corresponding to β ≤ 14.04 deg., tan β /sin
β ≤ 1.03. Hence, within this range of inclines, the above approach does not lead to

3Consider as an example a 10% slope: under these conditions the subject, for Lho = 1 m, lifts his
body mass by 0.1 m; as a consequence, the mechanical work performed against gravity (Mgh),
expressed per unit body mass and distance, amounts to: (9.81 * 0.1) = 0,98 J/kg-1 m-1. The y axis
of Figure 5.3a shows that the energy cost corresponding to i = 0.10 amounts to 4,70 and 6,18 J kg-
1 m-1 of Lho, for walking and running, respectively. Hence, since Lt = Lho tan α

sin α (Eq. 5.10a), the
corresponding efficiencies (ηv) amount to (0,98*1.005)/4,70 = 0,210 for walking at the optimal
speed and to (0.98*1.005)/6.18 = 0,159 in running. Neglecting tan β

sin β, one would obtain ηv = 0,98/

4,70 = 0,208 for walking at the optimal speed and to 0,98/6,18 = 0,158 in running, a very
negligible difference indeed.



any gross over-estimates of ηv; for steeper slopes, this error turns out important, so
that it becomes necessary to apply this correction procedure.
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When walking or running downhill, Mgh is negative, in so far as it is performed
by gravity on the mass of the subject, whose muscles contract eccentrically to apply a
brake to the fall of the body, thus absorbing mechanical work: hence the resulting ηv
is also negative.

During locomotion on flat terrain at constant speed, both in walking and in
running, ηv is nil, because no net vertical work is performed. On the contrary,
when moving uphill, ηv does increase, tending to a value of the order of 0.25 for
i values close to 0.25 in both walking and running (Fig. 5.3a). The ηv at these slopes
corresponds well to the maximal efficiency of isotonic muscle contractions, in which
the muscle performs only positive (concentric) work. Similarly, when moving
downhill, ηv becomes progressively more negative, tending to a value between
-1.0 and -1.2 for i values close to -0.20 (Minetti et al. 2002). This ηv corresponds
well to the maximal efficiency of isotonic eccentric muscle contractions, in which
the muscle performs only negative work. It is therefore reasonable to assume that, at
the inclines of the terrain at which these asymptotic values of ηv are attained, the
muscles perform only positive or negative work.

This state of affairs is likely the consequence of the biomechanics of walking and
running. Indeed, when walking or running on flat terrain, the subject’s center of mass
is lifted and lowered in the vertical plane at each stride, over the same distance
upward and downward (see Sect. 5.5). On the contrary, when moving uphill, the
ascent of the body center of mass is greater than the subsequent descent, the opposite
being true during downhill locomotion. It seems therefore reasonable to assume that,
at the inclines at which the efficiency attains its asymptotic values, the descent
(in uphill walking or running) or the ascent (in downhill walking or running) of
the center of mass cease altogether.

5.4.2 Effects of the Terrain

The data reported so far, and summarized in Figs. 5.2 and 5.3, and in Table 5.1, were
obtained during natural or competitive walking and in running on the treadmill or on
smooth compact terrain. On irregular or soft terrain, such as on sand, grass, or snow,
C increases by an amount that depends on the terrain characteristics. An example
thereof is reported in Fig. 5.4 for natural walking and running on dry sand. Under
these conditions, at variance with what happens on compact terrain, Cw increases
monotonically with the speed and is 2 to 3 times greater than on compact terrain.
Similarly, also Cr is about 1.5 times larger than on compact terrain (Lejeune et al.
1998; Pinnington and Dawson 2001; Soule and Goldman 1972; Zamparo et al.
1992).

This state of affairs is likely due to the fact that, on soft terrain, the pendulum-like
mechanism that leads to the transformation of potential energy into kinetic energy,
and vice-versa, in natural walking, and the recovery of elastic energy in running, are



less effective than on compact terrain (see Sect. 5.6) (Pinnington and Dawson 2001).
These mechanisms act optimally only if there is a firm grip of the foot on the ground.
In the absence of this, the deficit of elastic energy recovery in running on sand
implies increased muscle activation, associated with greater hip and knee range of
motion than on firm terrain (Pinnington et al. 2005). On grass, Cr is about 20% larger
than on compact terrain; this lesser increase, as compared to dry sand, is probably
because grass is less compliant than dry sand, thus permitting a greater recovery of
elastic energy (Pinnington and Dawson 2001).
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Fig. 5.4 Energy cost of natural walking (Cw, J kg
-1 m-1) on compact terrain (empty symbols), or

on dry sand (filled symbols), as a function of the speed. From Zamparo et al. 1992

5.4.3 Pathologies of Locomotion

Cw increases substantially also in numerous pathologies, both neurological (multiple
sclerosis, Parkinson’s disease, hemiplegic paralysis) and orthopedic (hip or knee
prosthesis) (Fusi et al. 2002; Maggioni et al. 2012; Olgiati et al. 1986; Zamparo et al.
1995), by similar amounts at all walking speeds.

When comparing the Cw in pathological conditions to the normal physiological
values, the effects of v cannot be neglected. To take this into account, Fusi et al.



(2002) proposed to utilize the so-called locomotor index, defined as the ratio
between the energy cost in the investigated pathology and that observed in healthy
subjects at the same speed. The evolution of the locomotor index as a function of
time after surgical intervention is reported in Fig. 5.5 for hip or knee prosthesis
carriers. It is noteworthy that, about 6 to 12 months after hip or knee prosthesis, these
patients still have a locomotor index of 1.3–1.4, i.e., significantly higher than the
physiological value of ≈ 1.0, even if the patient has completely recovered from
surgery and is considered clinically “healthy.” This is probably due to an abnormal
gait pattern that the patient has acquired to minimize pain in the long period
preceding the implant of the prosthesis (in the vast majority of instances the implant
of the prosthesis is due to long-duration arthrosis processes of the hip or knee joint).
This interpretation suggests that, in spite of the clinical recovery, the patient is not
able, at least over relatively short periods of time, to resume the normal neuromus-
cular gait pattern.
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Fig. 5.5 “Index Locomotorius” (IL) before and after hip or knee prosthesis. Vertical bars indicate
1 standard deviation. Red horizontal line: IL in healthy subjects. From Fusi et al. 2002

On the contrary, in hemiplegic patients, the locomotor index is only marginally
increased (≈ 1.1). This can presumably be attributed to the fact that the affected
limb, even without contributing energetically to the progression, is nevertheless an
effective “pillar” permitting the pendulum-like mechanism, an essential biomechan-
ical mechanism optimizing C during natural walking. However, the muscular insuf-
ficiency of the affected limb necessarily leads to a slow speed; hence, the
corresponding C moves up the ascending part of the curve relating C and v, thus
leading to a larger energy expenditure per unit of distance (Fig. 5.6). As a conse-
quence, in these patients, the overall C is greater than in normal subjects because of



their impossibility to attain the optimal walking speed (vopt), a fact that inevitably
leads to a greater sense of fatigue and hence to a sedentary life style.
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Fig. 5.6 Energy cost of
natural walking (Cw) in
hemiplegic patients, as a
function of the speed (v).
Average energy cost of
healthy patients is also
indicated (continuous
curve). From Zamparo et al.
1995

5.4.4 The Effect of Body Mass and Age

In several animal species, the Cr per unit of body mass decreases with increasing the
animal’s mass, as indicated in Fig. 5.7 for a mass range from 20 g to 4000 kg. The
relationship has an allometric exponent of -0.316, slightly higher than that calcu-
lated by Taylor et al. (1970) in the mass range from 10 g to 1000 kg (-0.40).
However, within a given species, three of which are represented in the figure:
humans, horses, elephants, C is essentially constant and independent of body
mass. Coherently, Taboga et al. (2012) observed that, in severely obese subjects,
whose body mass ranged from 109 to 172 kg, the Cr on the treadmill at 2.2 m s-1,
expressed per kg of body mass, was similar to that observed in non-obese subjects
(4,10 ± 0,30 J kg-1 m-1, obese, 3,90 ± 0,35 J kg-1 m-1, non-obese). This is a
common phenomenon when studying the effects of body mass, since allometric
cross-species relationships encompass a very wide range of body mass values
(in Fig. 5.7, the biggest body mass is 200,000 times larger than the smallest one),
whereas within-species relationships cover a by far smaller body mass range (the
body mass of the obese subjects was less than 60% higher than that of non-obese
subjects in the study by Taboga et al. 2012).
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Fig. 5.7 Energy cost (C) of running in humans (full dots), horses (filled squares) and elephants
(open dots) as a function of the body mass (M ). Logarithmic coordinates. Straight line, described by
C = 10.7 M-0.316, indicates the energy cost of running, as a function of the body mass, in several
species of mammals. Modified after di Prampero 2015, data from Griffin et al. 2004; Langman et al.
2012; Taboga et al. 2012

Table 5.2 Energy cost of running and walking at the optimal speed on compact flat terrain at
various ages. Mass and optimal walking speed are also indicated. Modified after di Prampero 2008

Age Cost of running Mass Cost of walking at optimal speed Optimal walking speed

(years) (ml kg-1 m-1) (kg) (ml kg-1 m-1 (m -1)

5 0.390 20 0.09 1.0

7–10 0.245 28 0.09 1.3

11–13 0.212 37 0.09 1.3

14–16 0.195 60 0.10 1.4

Adult 0.182 70 0.10 1.4

At variance with these data, and in apparent contrast with the above consider-
ations, other studies, all from the same group (Bourdin et al. 1993; Lacour et al.
1990; Padilla et al. 1992) observed a substantial reduction of Crwith increasing body
mass (from about 30 to about 80 kg) in basketball players and in long-distance
runners, similar to, albeit somewhat larger, than reported in Fig. 5.7. However, the
high Cr observed by Bourdin et al. (1993) in their smallest subjects may be due, at
least in part, to the fact that these subjects were also the youngest of the investigated
group. Indeed, since the Cr in children and adolescents is greater than in adults
(Table 5.2), we cannot exclude that the differences reported by these authors be due,
at least in part, to the physiological variations of Cr itself with age.

Finally, Thorstensson (1986) showed that, both in adults and in children (10 years
of age, 30 kg body mass), Cr decreases by 3–7% when the overall mass is artificially
increased by 10% by adding an external load, provided that the added mass is placed



at the level of the body center of mass. On the contrary, as shown by Soule and
Goldman (1969), an additional mass on the hands or feet leads to a substantial
increase of Cw per unit of overall transported mass (body mass plus added load). The
increase of Cw becomes particularly relevant when the additional mass is positioned
on the head or in backpacks, as it happens in many African or Alpine populations
(Bastien et al. 2005; Lloyd et al. 2011; Maloiy et al. 1986).
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In this connection, the study of Cw and Cr in children is particularly interesting;
indeed, in children, both Cw and Cr are greater than in adults, due to their little size; it
decreases with age along the entire childhood, to reach, at puberty, the adult value,
which is maintained until old age (Table 5.2). However, the increase of Cr in
children is substantially higher than expected from their smaller body mass alone
(by 70 to 90% at the age of 5 years). It is therefore possible that the observed
increase, or at least a large fraction of it, be due to the biomechanical characteristics
typical of the pre-pubertal age, e.g., as concerns the relative size of the limbs, as
compared to the whole body, and/or to the different elastic characteristics of the
muscle tendon complex. A school backpack on children’s shoulders increased Cw by
about 7% (Merati et al. 2001), which appears in line with the observations on adults
who carried additional loads far from the body center of mass (Maloiy et al. 1986;
Soule and Goldman 1969).

To conclude this section, we note that Askew et al. (2011) showed that wearing
medieval armors, the weight of which was on the order of 30–50 kg, led to an
increase of Cw or Cr of about 1.9-to-2.3 times, as compared to “free” locomotion at
the same speed. And this, without considering that a tight armor may also generate
lung and chest wall restriction, with reduction of total lung capacity, inspiratory flow
limitation and acute hypoventilation. It does not seem appropriate to open here a
chapter on the “Physiology of History”; nevertheless it is interesting to consider
whether and to what extent this enormous metabolic extra-load (for warriors and
horses alike!) may have influenced the final outcome of the battles and wars, and
hence of the history, of medieval times.

5.5 The Biomechanics of Walking and Running

5.5.1 Definitions; Efficiency of Locomotion, Internal Work
and External Work

The quantitative assessment of the mechanical work performed, either absolute or
per unit of distance, is often rather complicated. In all forms of locomotion, a fraction
of the overall mechanical work is not utilized against external forces, nor does it lead
to any changes in the position of the body center of mass in the vertical or horizontal
plane (e.g., when an upper or lower limb is projected forward and the other
symmetrically backwards). This fraction of the overall mechanical work, generally
defined internal work (wi), can only be assessed by means of graphical (video)



analyses. Moreover, wi includes the mechanical work of breathing and of the heart
pump. The remaining fraction of mechanical work, called external work (we), can by
determined not only by means of graphical (video) analyses, but also by means of
traditional ergometric approaches and/or by means of force platforms (Cavagna
1975). Obviously enough, the overall mechanical work performed (wtot) by the
subject is the sum of internal and external work:
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wtot =wi þ we ð5:11Þ

This section is devoted to an analysis of wi and we, and hence of wtot, as a function
of the speed during natural walking and running, based essentially on the data
reported in a remarkable series of studies by Cavagna and co-workers that followed
two seminal papers by Cavagna, Saibene, and Margaria (Cavagna et al. 1963, 1964).
These papers initiated a glorious, long-lasting, highly influential scientific line of the
School of Milano, the flag of which is still carried by Alberto Minetti, Paola
Zamparo and their collaborators.

5.5.2 Walking and Running on Earth

In these two forms of locomotion, the center of mass of the body is lifted and
lowered in the vertical plane, and accelerated and decelerated in respect to the
average speed in the horizontal plane, throughout each stride. In this section, we
consider only walking or running on flat terrain and at constant speed, in which case
the lifting and lowering of the center of mass, as well as the acceleration and
deceleration within each stride are equal in absolute terms.

At any given time instant, the total energy of the center of mass in motion is given
by the sum of the changes (Δ) in kinetic energy (Ek) and in potential energy (Ep)
(thus, ΔEk and ΔEp, respectively), in respect to a pre-defined reference value. If, in
any given phase of the stride, the overall energy increases, we state, by definition,
that we has been performed by the muscles on the center of mass. On the contrary, if
the overall energy decreases, the system or parts thereof have absorbed external
work; in this case we state, somewhat loosely, that the muscles have done negative
we. Hence, the overall we performed at each stride can be expressed by (Cavagna
1969):

we =ΔEp þ ΔEk ð5:12Þ

As such, we takes into account the work performed against gravitational and
inertial forces, as well as that performed against the air resistance. Indeed, at each
stride, the deceleration in the forward direction is greater, the greater the air resis-
tance; as a consequence, at constant average speed the greater must also be the



subsequent acceleration, thus leading to an increased value of ΔEk, and hence of we

at each stride.
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Fig. 5.8 Potential (Ep) and kinetic (Ec in the Figure, Ek in the text) energy (in J) of the body center
of mass as a function of time (s) during walking at 0.9, (a) 1.4, (b) and 2.2, (c)m s-1. At any given
time during the stride cycle, the external work (we) is the sum ΔEp + ΔEk (Eq. 5.12). The instant at
which one foot touches the ground is indicated by the first arrow (and vertical dotted line); that at
which the other foot is lifted above the ground is indicated by the second arrow (and vertical dotted
line). Modified after Cavagna et al. 1963, Figure taken from di Prampero 2015 with the kind
permission of Raffaello Grandi, Edi Ermes

As mentioned above, after a given number of strides on flat terrain, the overall net
external work is nil, since positive and negative work are equal in absolute terms.
However, this is strictly true only if the air resistance is neglected; nevertheless, at
the speeds prevailing in natural walking, the air resistance is so small, that its effects
can indeed be neglected.

During natural walking, the center of mass is lifted in the initial phase of the
stride, in which its Ep increases at the expense of the simultaneous decrease of Ek due
to decreased forward velocity: hence, in this phase, ΔEp is positive, whereas ΔEk is
negative. The so accumulated Ep is utilized in the immediately following phase to
increase the forward velocity of the body: hence, in this second phase, ΔEp is
negative, whereas ΔEk is positive.

In 1963 Cavagna, Saibene, and Margaria did show that, at vopt, the Ep reaches its
maximum almost at the very moment at which Ek attains its minimum and vice-versa
(Fig. 5.8). Hence, the biomechanics of walking is characterized by pendulum-like
energy exchanges, as in an inverted oscillating pendulum, or in an egg rolling on its
major axis. In fact, in an oscillating pendulum, Ep attains its maximum when the
sphere is at its highest position and stops (Ek is nil). This occurs at the two extremes
of the trajectory of the pendulum, when the sphere is still, or when the major axis of
the egg is vertical. On the opposite side, at the lowest point of the trajectory, the
translational velocity is maximal (maximal Ek) and the Ep attains its minimum
(lowest position of the sphere) (Fig. 5.9).
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Fig. 5.9 Schematic representation of the potential, kinetic, and total energy (Ep, Ek and Etot,
respectively, arbitrary units) of the body center of mass as a function of the distance (arbitrary
units) during walking. An egg rolling on its major axis represents a simplified model of walking at
the optimal speed. In the rolling egg, as well as in walking, Ep attains a maximum when the center of
mass reaches the highest point of its trajectory; at this same instant, Ek attains a minimum. In the
absence of any frictional forces, as in an ideal pendulum, Etot (as given by the sum of Ep and Ek) is
constant, and the egg, once set in motion, would keep rolling forever thanks to the transformation of
one energy form into the other. Redrawn after di Prampero 2015

In an oscillating pendulum, the curves of Ep and Ek are in perfect opposition of
phase and of identical amplitude. Thus, in vacuo, were it possible to reduce the
friction to zero, the total energy (sum of Ep and Ek) would be constant, so that an
ideal pendulum would oscillate in aeternum. Obviously enough, this is not the case
in natural walking, wherein ΔEp and ΔEk do not completely compensate each other,
in so far as the respective curves are slightly out of phase and not perfectly
symmetrical (Fig. 5.8). Therefore, the overall energy, as given by the sum of Ep

and Ek, would decrease at each stride, were it not for the appropriate muscle work,
performed on the center of mass, which is equal to the algebraic sum of the two
curves. Hence, the we in natural walking depends on the absolute values of ΔEp and
ΔEk, indicating the total we, as well as on the respective phase of the two curves
(Fig. 5.8), indicating how much of the total we comes from the transformation of Ek

into Ep and vice-versa. The difference between these two values is equal to the
amount of energy that muscle contraction must add to keep we, and thus the average
forward speed, constant. We define this extra-energy as wm.
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To express quantitatively this state of affairs, Cavagna et al. (1976) proposed to
evaluate the efficacy of the transformation of Ek into Ep and vice-versa, which they
defined Recovery, as follows:

Recovery=
│ΔEp│þ │ΔEk│- │wm│

│ΔEp│þ │ΔEk│
ð5:13Þ

where the symbol │ indicates that the quantities are expressed in absolute values,
regardless of the sign, positive, or negative. Eq. 5.13 shows that, were wm = 0, as for
an ideal pendulum in vacuo, the Recovery would attain 100%. At the other extreme,
were wm= │ΔEp │ + │ ΔEk│, the Recovery would be nil. As shown below, in running,
ΔEp and ΔEk are essentially in phase, so that the Recovery is practically nil, whereas
for natural walking the Recovery is about 0.65 at vopt, being smaller above or below
it (Fig. 5.10). As described above, the Cw on flat terrain attains a minimum at a speed
of about 1.1–1.4 m s-1 (vopt, Figure 5.3a). Indeed, the two curves depicting the
evolution of Ek and Ep (Fig. 5.8) are very nearly equal in amplitude and most closely
in opposition of phase at vopt. Hence wm is at its minimum, whereas at greater or
smaller speeds the two curves depicting Ek and Ep shift, one in respect to the other,
and the more so the farther from vopt (Fig. 5.8), thus leading to a progressively higher
wm and hence Cw than at vopt.The relationship between Recovery and speed reported
in Fig. 5.10 was obtained on young adults of average body size. However, in order to
eliminate the effects of inter-individual differences, it can be normalized, expressing
the speed itself as a function of the subjects’ size. To this aim, we can use the theory
of dynamic similarity, allowing a comparison of the behavior of objects of different
size, the motion of which depends on the cyclic transformation of Ep into Ek and
vice-versa, as typically happens in natural walking (Alexander 1989; McMahon and
Tyler Bonner 1983). According to this theory, two geometrically similar objects of
different size behave similarly when they move at the same Froude number (Fr):

Fr=
v2

L g
ð5:14Þ

where L is the length of a relevant body segment (the lower limb in this specific
instance). The Froude number, so defined in honor of the naval engineer William
Froude (1810–1879), who utilized it to infer the characteristics of actual ships as
obtained from small-size models, is a non-dimensional quantity, corresponding to
the ratio of Ek to Ep.

When the Recovery is expressed as a function of Fr, the resulting relationship is
substantially equal for children (aged 1 to 12 years), normal-size adults,
hypophysarian dwarves and pygmies (Cavagna et al. 1983; Minetti et al. 1994c,
2000). In all these subjects, the Recovery attains a maximum on the order of 0.70 for
Fr ≈ 0.25 (Saibene and Minetti 2003). In addition, since vopt corresponds to the
speed at which the Recovery attains its maximum (Fig. 5.10), and, as mentioned
above, this occurs at Fr ≈ 0.25, we can write:
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Fig. 5.10 Energy Recovery (see Eq. 5.13), external work and energy cost as a function of the speed
in walking and running. From Cavagna 1988

vopt2

L g
= 0:25 ð5:15Þ

whence

vopt = 0:5
ffiffiffiffiffiffiffi
L g

p
ð5:16Þ

Assuming L = 0.9 m (average lower limb length of adult males), Eq. 5.16 yields
vopt= 1.49 m s-1 (5,36 km h-1), close to the value reported in Figure 5.3a. However,



for children below the age of 6, the vopt value obtained from Eq. 5.16 is larger than
the actually determined one. Indeed, for 3-years old children and L ≈ 0.45 m (for a
stature of ≈ 0.95 m), theoretical vopt (1.06 m s-1) is about 40% larger than the
experimental one (0.75 m s-1, Cavagna et al. 1983). This suggests that children
below age 6 may not be dynamically similar to adult humans.
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Fig. 5.11 Total mechanical work expressed per unit of distance (wtot), external work (we), internal
work (wi), energy cost (C) and mechanical efficiency (η= wtot C

-1) during walking (a) and running
(b) on flat terrain as a function of the speed for a 70 kg subject. From di Prampero 2015; data of wtot,
we and wi are from Cavagna and Kaneko 1977 and Cavagna et al. 1977; C is from di Prampero
1986. With the kind permission of Raffaello Grandi, Edi Ermes

Cavagna and Kaneko (1977) and Cavagna et al. (1977) analyzed in detail Ep, Ek

(and hence we, see Eq. 5.11), as well as wi, during walking and running on the level.
The so obtained data, summarized in Fig. 5.11, show that, in walking, wtot increases
with v:

wtot =we þ wi = 0:07þ 0:6 v ð5:17Þ

where wtot, we and wi are expressed in J kg-1 m-1 and v in m s-1.
Since Cw as a function of v is known, Eq. 5.17 allows a calculation of η, as the

ratio between wtot and Cw (see Sect. 5.5.1). As shown in Figure 5.11a, η attains a
maximal value of about 0.48 in a range of speeds between 2 and 2.5 m s-1. This
value is greater than that observed during isotonic muscular contractions (≈0.25). As
v is increased, the Recovery diminishes: at the speed of spontaneous transition
between walking and running, it is about 0.50, and therefore, η is slightly lower
than at vopt (0.40 instead of 0.48).
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Fig. 5.12 Potential (Ep) and kinetic (Ec in the Figure, Ek in the text) energy, external work (we, J)
and vertical displacement of the body center of mass (dv, cm) as a function of time during running at
5.56 m s-1. From Cavagna et al. 1964

When running on the level, at the onset of each stride the body center of mass is
projected upwards and forwards by the muscle activity of the “pushing” limb. In the
subsequent phase, after a brief time interval in which both feet are off the ground, the
center of mass is lowered and decelerated, thanks to the muscle action of the
“braking” limb. At the onset of the subsequent stride, the “braking” limb becomes
the “pushing” limb. It follows that ΔEp and ΔEk are always in phase (Fig. 5.12).
Hence, at variance with walking, the Ep accumulated in the initial phase of the stride
cannot be used to accelerate the body forward in the subsequent phase: no transfor-
mation of one type of energy into the other is possible, and the Recovery, as
described by Eq. 5.13, is always nil (see Fig. 5.10).

Also in running, as in walking, we is the sum of ΔEp and ΔEk (Eq. 5.12). However,
since in running ΔEp and ΔEk are always in phase, at the onset of the stride, we has a
large positive value, to reach an equally large negative value at the end of the same
stride. Therefore, the active muscles must consume energy in the initial phase of the
stride (push phase) to perform positive work, as well as in the final phase (braking
phase) to absorb negative work. In the latter phase, a fraction of the negative work is
stored in the series elastic elements of the contracting muscles.4 The so accumulated
elastic energy is utilized in the subsequent rebounding phase, when the absorbing
limb becomes the pushing one. This leads to a substantial economy of metabolic
energy, as shown by the high values of η observed in running (see Figure 5.11b).
Hence, the biomechanics of running is similar to the bouncing of a rubber ball on the
terrain. When the ball hits the ground, it is initially compressed, because of the
simultaneous decrease of Ep and Ek, leading to a large negative value of we; in this
phase, however, the decrease of we is partly counterbalanced by an increase of the
energy stored in the elastic structures of the ball itself. In the following phase, this
elastic energy is released with a simultaneous increase of both Ep and Ek (Fig. 5.13),
allowing the ball to rebound. Cavagna et al. (1968) demonstrated a similar

4About 30% of the overall elastic energy is stored and released by the elastic structures of the arch
of the foot (Ker et al. 1987).
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Fig. 5.13 A ball bouncing on the terrain represents a simplified model of running. When the ball
hits the ground, the potential and kinetic energy attain simultaneously a minimum value and, for a
very short time, the ball is motionless at the lowest point of its trajectory. In this phase, a fraction of
the total energy is stored in the elastic structure of the ball itself; it is recovered in the immediately
subsequent rebound phase, with a simultaneous increase of both potential and kinetic energy. In
running, as well as in a bouncing ball, there cannot occur any transformation of potential into kinetic
energy or vice-versa; however, the recovery of elastic energy in the rebound phase is a substantial
“energy-sparing” mechanism. From di Prampero 2015, with the kind permission of Raffaello
Grandi, Edi Ermes



mechanism in isolated muscles, which perform a greater work when they contract
immediately after stretching: the elastic elements of muscle release the stored elastic
energy at the onset of contraction.
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A recovery of elastic energy analogous to that described above for running does
occur also in other movements, in which the shortening of the muscle is immediately
preceded by its stretching (eccentric contraction). For instance, a series of flexions
and extensions of the knees performed without interruption, other things being
equal, requires a lesser metabolic energy consumption than the same series of
movements performed with a brief pause between flexion and extension. In this
latter case, in fact, the elastic energy accumulated in the extensor muscles that during
knee bending are forcefully stretched, is dissipated during the pause; hence, the
concentric action that follows must be performed entirely at the expense of metabolic
energy. As a consequence, the overall mechanical efficiency of the exercise is lower
(η = 0,19) in this latter case, as compared to the same series of movements
performed without interruption between flexion and extension (η = 0,26) (Thys
et al. 1972). This shows that the recovery of elastic energy is possible only if the
eccentric contraction (stretching of the muscle) is immediately followed by its
concentric counterpart (shortening); if this is not the case, the elastic energy is
dissipated as heat before the subsequent concentric contraction starts.

we and wi are reported as a function of v during level running in Figure 5.11b
(Cavagna and Kaneko 1977). Their sum (wtot) is described by the following empir-
ical equation:

wtot = 0:66 v- 1 þ 1:19þ 0:24 v ð5:18Þ

where wtot is in J kg
-1 m-1 and v in m s-1. The sum of the first two terms of Eq. 5.18

is a measure of we, which is essentially independent of speed in physiological human
running conditions, since in the velocity range (2.8–8.3 m s-1) investigated by
Cavagna and Kaneko (1977), it decreases only from 1.43 to 1.27 J kg-1 m-1. On
the contrary, wi, represented by the sum of the second and third terms of Eq. 5.18,
increases linearly with v.

Knowledge of wtot and of Cr allows calculation of η for level running: as shown in
Figure 5.11b, η increases with v from ≈ 0.5 at v ≈ 2 m s-1 to ≈ 0.7 at v ≈ 6.5 m s-1.
These high values of η, substantially larger than the maximal ones observed during
purely isotonic muscle contractions, demonstrate that the recovery of elastic energy
occurring at each stride in running is larger, the higher the running speed.

The recovery of elastic energy is an extremely useful mechanism for reducing Cr:
it occurs to a various extent in several mammalian species (Cavagna et al. 1977), but
it reaches an extraordinary extent in kangaroos, which can easily reach speeds of
40–50 km h-1 (11–14 m s-1) that, however, they maintain for short time periods
only (Dawson 1977). Indeed, at each bout, the thick tendon of the tail of the
kangaroo becomes an effective spring (Alexander and Vernon 1975). Thanks to
this “tail effect,” the recovery of elastic energy increases with the speed, so much so,
that the Cn - a of “running” (hopping) in this animal species decreases from ≈



7.5 J kg-1 m-1 at 2.8 m s-1 to ≈ 2.8 J kg-1 m-1 at 6.4 m s-1. It follows that, in this
speed range, the _E of “running” in the kangaroo is constant, amounting to about
20 W kg-1 (60 mlO2 kg

-1 min-1).
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The _VO2
max of contemporary top-level long-distance runners is ≈ 70 ml kg-

1 min-1 above resting (Tam et al. 2012). Assuming that no recovery of elastic energy
occurs during running, and thus η = 0.25, Eq. 5.18 shows that a hypothetical athlete
with these characteristics would attain at _VO2

max a speed of 2.9 m s-1, and thus
would cover the 5.000 m distance in 28 min 44.14 s, as compared to the actual world
record of 12 min 35.36 s. This back of the envelope calculation stresses dramatically
the great importance of elastic energy recovery at each stride in running humans.

Recognizing the importance of the role of the recovery of elastic energy in setting
Cr further highlights, in terms of athletic performances, the roles of training regimes
leading to appropriate increases of the maximal muscular power. Indeed, muscle
fiber composition and specificity of training do affect muscle performance as well, in
so far as training may increase the number of active muscle fibers and lead to the
metabolic potentiation of specific fiber types. Hence, since the mechanical charac-
teristics of the various fiber types are diverse, especially in terms of maximal
contraction velocity (Bottinelli 2001), it appears reasonable to suggest that the
effects on the recovery of elastic energy provided by a training regime based on
long-term high-intensity aerobic exercise, may be different from those provided by a
training regime based on explosive exercise and force development.

The effects of the recovery of elastic energy on the running economy, and hence
on performance, have also been discussed in terms of the potential advantage that
artificial metallic prostheses, to be utilized only in competitions, may offer to athletes
having undergone mono- or bi-lateral limb amputations. Indeed these prostheses
may ameliorate artificially the athlete’s running economy thanks to an increased
recovery of elastic energy (as compared to natural running), thus constituting a kind
of “mechanical doping.” This line of reasoning led to the exclusion of athletes
suffering from this type of handicap from competitions, as was the case of Oskar
Pistorius being excluded from the 2008 Olympics in Peking.

5.6 The Spontaneous Transition between Walking
and Running

In Sect. 5.5, we underlined that at speeds around 2.2 m s-1, uninformed subjects
shift spontaneously from walking to running (or vice-versa, if the speed is decreas-
ing). This speed was defined as the speed of spontaneous transition between walking
and running. The traditional interpretation assumes that humans always choose the
most economical gait. On this basis, Margaria et al. (1963) hypothesized that at
speeds higher than the spontaneous transition speed, Cr started to be lower than Cw,
the opposite being the case at speeds below the transition speed.
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The spontaneous transition between walking and running does not occur at a fix
speed, but in a speed range between 1.8 and 2.5 m s-1 (Saibene and Minetti 2003).
This may depend, at least in part, on the geometric characteristics of the subjects,
since the spontaneous transition seems to occur at a speed that is lower, the shorter
the limb (Thorstensson and Roberthson 1987).

Minetti et al. (1994b) carried out a systematic analysis of the transition speed
during treadmill running. According to them, the speed of spontaneous transition is
slightly lower than that at which walking and running have the same Cn-a. On this
basis, they suggested that the transition may not have an energetic origin only. When
passing from walking to running, there is a sudden significant, though small,
increase of speed, and the subject suddenly moves at a higher step frequency. So,
they proposed a hypothesis involving both mechanical and energetic factors. They
plotted C as a function of v after expressing C in Joules per kg per step instead of J
kg-1 m-1, as customary. Because of the differences in step frequency in the
transition zone, it turned out that the speed of transition was the speed at which
both walking and running had the same C per step (see Fig. 5.14). This observation is
still partly compatible, although on a slightly different basis, with Margaria’s
hypothesis.

The question remains as to how a step can be “sensed” such as to determine a gait
transition. More favorable patterns of neuromuscular activation during running at the
transition speed and a possible mechanical reflex arising from lower limb proprio-
ceptors have been hypothetically evoked (Prilutsky and Gregor 2001; Segers et al.
2013).

5.7 Sprint Running and the Role of Acceleration

The massive utilization of anaerobic sources and the short duration of sprint running
events make any direct measurements of _E under these conditions rather problem-
atic. So far, the energetics of sprint running has been mainly estimated indirectly
from biomechanical analyses (Cavagna et al. 1971; Fenn 1930a, 1930b; Mero et al.
1992; Plamondon and Roy 1984). Otherwise, it was assessed by means of rather
indirect procedures (Arsac 2002; Arsac and Locatelli 2002; di Prampero et al. 1993;
van Ingen Schenau et al. 1991, 1994; Ward-Smith and Radford 2000).

An alternative approach is to assume that, during the acceleration phase, sprint
running on flat terrain is biomechanically equivalent to uphill running at constant
speed, the slope being dictated by the forward acceleration, and that, conversely,
during the deceleration phase it is biomechanically equivalent to running downhill.
Since the energy cost of uphill (downhill) running at constant speed over a fairly
large range of inclines is rather well know (Minetti et al. 2002), the energy cost of
accelerated (decelerated) running, can be easily estimated once the acceleration
(deceleration) is known (di Prampero et al. 2005).

Figure 5.15 (left panel) shows that a runner accelerating on flat terrain leans
forward, so that the angle α between the runner’s mean body sagittal axis and the



terrain (average throughout a whole stride) is smaller the greater the forward
acceleration (af). Thus, this state of affairs is analogous to running uphill at constant
speed, provided that α is unchanged (Fig. 5.15, right panel). It necessarily follows
that the complement of α, i.e., the angle between the terrain and the horizontal plane
(90 – α), increases with af when running on flat terrain, or with the incline of the
terrain when running uphill at constant speed.
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Fig. 5.14 An analysis of
the spontaneous transition
speed (thick white arrow)
between walking (unfilled
squares) and running (filled
circles). (a) The regression
curves of energy cost per
unit distance, intersect at a
higher speed (thin arrow)
than the spontaneous one.
(b) Differences in stride
frequency between walking
and running are shown. (c)
The energy cost is expressed
per step, instead of per
meter. In this case, the
intersection between
regression curves occurs at
the same speed as for
spontaneous transition. The
grey area depicts the speed
range at which humans may
either walk or run. From
Saibene and Minetti 2003;
data from Minetti et al.
1994b
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Fig. 5.15 The subject is accelerating forward while running on flat terrain (a), or is running uphill
at constant speed (b). M, subject’s body mass; af, forward acceleration; g, acceleration of gravity;
g0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af 2 þ g2

p
, vectorial sum of af plus g; T, terrain; H, horizontal; α, angle between the runner’s

mean body axis throughout the stride and T; 90 – α, angle between T and H. Note that, in this
representation, the angle 90-α corresponds to the angle β of Eqs. 5.9 and 5.10, and in the footnote
3. See text for details. Modified after di Prampero et al. 2015

The incline of the terrain (i, see also Eq. 5.9) is generally expressed as the tangent
of 90 – α (β in Eq. 5.9). During accelerated running on flat terrain, i is equivalent to
the ratio between af and g (Fig. 5.15, left panel):

i= tan 90- αð Þ= af
g

=ES ð5:19Þ

Hence, the ratio af/g yields the tangent 90 – α, which makes accelerated running
on flat terrain biomechanically equivalent to running at constant speed up to a
corresponding slope (Fig. 5.15, right panel), defined as equivalent slope (ES).

Inspection of Fig. 5.15 also shows that accelerated running is characterized by yet
another difference, as compared to constant speed running. Indeed, the acceleration,
which the runner undergoes along the vertical axis of his/her body (g’), is greater
than g, corresponding to the vectorial sum of af and g, which is equal to:

g0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af 2 þ g2

q
ð5:20Þ

It follows that the force that the runner must develop (average throughout a whole
stride), as given by the product of the body mass and the acceleration, is greater in
accelerated running (= M g’) as compared to constant speed running (= M g),
because g’ > g (Fig. 5.15, left panel). Thus, accelerated running is equivalent to
uphill running wherein, however, the body weight is increased in direct proportion to



�

the ratio g’/g. Because of Eq. 5.20, this ratio, defined “equivalent body mass” (EM),
is described by:
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EM=
M g0

M g
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af 2 þ g2

p
g

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af 2

g2
þ 1

s
ð5:21Þ

Substituting Eq. 5.19 into Eq. 5.21, one obtains:

EM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af 2

g2
þ 1

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ES2 þ 1

p
ð5:22Þ

It must also be pointed out that during decelerated running, which is equivalent to
downhill running, and in which case ES is negative, EM assumes nevertheless a
positive value, because ES in Eq. 5.22 is raised to the square.

In conclusion, if the time course of v during accelerated/decelerated running is
determined, and the corresponding instantaneous accelerations/decelerations are
calculated, Eqs. 5.19 and 5.22 allow computation of the appropriate ES and EM
values, thus converting accelerated/decelerated running on flat terrain into the
equivalent constant speed uphill/downhill running. Hence, if Cr at constant speed
at any incline is known, the corresponding energy cost of accelerated/decelerated
running can be easily obtained.

On these premises, the empirical equation described by Minetti et al. (2002)
(current Eq. 5.9) can be used to compute the energy cost of running during accel-
eration/deceleration (Cacc), by substituting ES for i, denoting the energy cost of
constant speed level running as Cr, and multiplying then the entire equation by EM:

Cacc

=EM 155:4 ES5 - 30:4 ES4 - 43:3 ES3 þ 46:3 ES2 þ 19:5 ESþ Cr

� ð5:23Þ

In Eq. 5.19, only the forward acceleration is accounted for, whereas the effect of
the air resistance is neglected. Therefore, only the non-aerodynamic component of
ES (ESn-a) is considered, as would be the case in treadmill running, so that
ES = ESn-a. To overcome the air resistance, the runner must lean forward more
than indicated in Fig. 5.15 during running on a track, thus reducing angle α and
increasing the ES by an amount, due to the air drag (aerodynamic ES, ESa), which is
equal to:

ESa =
kw v2

g
ð5:24Þ



where v is the instantaneous velocity and k is the same constant as in Eqs. 5.5,

�
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w

however expressed per unit of body mass. Hence, the overall ES, as set by both af
and the air velocity, i.e., by the sum of ESn-a and ESa, is given by:

ES=ESn- a þ ESa =
af
g
þ kw v2

g
ð5:25Þ

Equation 5.25 tells that during accelerated running, the air resistance leads to an
increase of ES, whereas the opposite is true in decelerated running, in which case af
is negative.

The effects of the air resistance are rather minor, as compared to those due to the
forward acceleration: indeed, assuming kw (per unit of body mass)≈ 0.0037 m-1, in
the range of speeds between 2 and 10 m�s-1, ESa ranges from 0.15 to 3.8%. This is
coherent with the usual practice of simulating the air resistance, when running on the
treadmill at speeds of 5.55 m s-1, by inclining it upwards by about 1%.

In conclusion, if the time course of velocity during accelerated/decelerated
running is determined, and the corresponding instantaneous accelerations/decelera-
tions are calculated, Eqs. 5.25 and 5.22 allow computation of the appropriate ES and
EM values. Accelerated or decelerated running can then be easily converted into
equivalent constant speed uphill or downhill running. Hence, the corresponding
energy cost of accelerated/decelerated running can be obtained.

It should be noted here that the effects of the acceleration on Cr can be astonish-
ingly high. Indeed, at the very onset of a 100 m dash, in medium-level sprinters, Cr

attains about 50 J kg-1 m-1, as compared to about 4 J kg-1 m-1 for constant speed
running on flat terrain (di Prampero et al. 2005). Furthermore, knowledge of Cr

allows calculation of the corresponding metabolic power, as given by the instanta-
neous product of Cr and v. In medium-level sprinters, this attains a peak of about
80 W kg-1, equivalent to an oxygen consumption of 230 ml kg-1 min-1 above
resting, i.e., about four times larger than the _VO2

max of the investigated subjects.
Similar calculations can be made also on Usain Bolt during his 100 meters dash

world record (9.58 s). However, because of his astonishingly high initial af, his ES
falls largely outside the range of application of Eq. 5.9. Depending on how extrap-
olation of Eq. 5.9 is performed, the peak metabolic power, attained about 0.8 s after
the start, may result as high as 160 W kg-1 (di Prampero et al. 2015).

5.8 Conclusions

Walking and running are natural forms of bipedal locomotion, as trotting galloping
and ambling are natural forms of quadrupedal locomotion. There are more locomo-
tion paradigms in quadrupedal than in bipedal locomotion, and their analogies were
investigated by Alberto Minetti (Minetti 1998). Walking is characterized by the
exchanges between Ek and Ep at each step in both cases. Running is an analogue of



trotting, both being characterized by storage and release of elastic energy at each
step, whereas Ek and Ep vary in phase, so that no exchanges between these two forms
of energy are possible indeed. Minetti (1998) proposed that skipping gaits are
analogues of galloping and represent the third paradigm of bipedal locomotion. In
fact, the simultaneous presence of pendulum-like and elastic mechanisms in skip-
ping differentiates this gait from running. Gravity may matter in determining the
predominance of skipping on other gaits, as long as skipping becomes the “natural”
form of locomotion in low-gravity environments such as the Moon (Pavei et al.
2015), as originally suggested by Margaria and Cavagna (1964), well before the first
manned flight to the Moon in 1969 (see Chap. 11).
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The role of the School of Milano in the history of the physiology of locomotion is
central. It sounds logical that scientists interested in exercise be attracted by the
energetics and biomechanics of human locomotion. Yet few combined the two
issues, exercise and locomotion, within the same cultural framework, and none in
a systematic, programmatic manner as Margaria did. This is a further feature
characterizing the exceptional, farseeing vision of Margaria. Along the groove traced
initially by Marey and Muybridge, then by Fenn, Margaria started the study of the
energetics and promoted the study of the biomechanics of human locomotion.
Cavagna and Saibene in the latter, Cerretelli and di Prampero in the former took
the relay. Cavagna generated a vassal kingdom at Leuven, Belgium, with Norman
Heglund, Peter Willems and their successors; Saibene trained Minetti, who carries
the flag of locomotion in Milano. Cerretelli and di Prampero left a patrol of scientific
heirs (Carlo Capelli, Guido Ferretti, Bruno Grassi, Paola Zamparo) who ensures
scientific continuity to the study of the energetics of muscular exercise and of human
locomotion within the cultural framework of the School of Milano. No other School
can compete in terms of impact, continuity and longevity with the School of Milano,
as far as the study of the energetics and biomechanics of human locomotion is
concerned.
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