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Preface

This volume contains the papers presented at the 16th International Conference on
Reachability Problems (RP 2022), organized by the Max Planck Institute for Software
Systems (MPI-SWS) and the University of Kaiserslautern, Germany. Previous events in
the series were located at the University of Liverpool, UK (2021), Université Paris Cité,
France (2020), Université Libre deBruxelles, Belgium (2019), Aix-MarseilleUniversity,
France (2018), Royal Holloway, University of London, UK (2017), Aalborg University,
Denmark (2016), the University of Warsaw, Poland (2015), the University of Oxford,
UK (2014), Uppsala University, Sweden (2013), the University of Bordeaux, France
(2012), the University of Genoa, Italy (2011), Masaryk University, Czech Republic
(2010), École Polytechnique, France (2009), the University of Liverpool, UK (2008),
and Turku University, Finland (2007).

The aim of the conference is to bring together scholars from diverse fields with
a shared interest in reachability problems, and to promote the exploration of new
approaches for the modeling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include (but
are not limited to) reachability for infinite state systems; rewriting systems; reachability
analysis in counter/timed/cellular/communicating automata; Petri nets; computational
game theory, computational aspects of semigroups, groups, and rings; reachability in
dynamical and hybrid systems; frontiers between decidable and undecidable reachability
problems; complexity and decidability aspects; predictability in iterative maps; and new
computational paradigms.

We are very grateful to our invited speakers, who gave the following talks:

– Michael Benedikt, University of Oxford, UK:
“The Past and Future of Embedded Finite Model Theory”

– Laura Ciobanu, Heriot-Watt University, UK:
“Post’s Correspondence Problem: from computer science to algebra”

– Wojciech Czerwiński, University of Warsaw, Poland:
“Recent Advances on the Reachability Problem for VASSes by Examples”

– Rupak Majumdar, MPI-SWS, Germany:
“Decidability Results for Context-Bounded Analysis of Systems”

– Sharon Shoham, Tel Aviv University, Israel:
“SAT-Based Invariant Inference and Its Relation to Concept Learning”

The conference received 36 submissions (14 regular and 22 presentation-only
submissions) from which one regular paper was withdrawn. Each submission was care-
fully reviewed by three Program Committee (PC) members. Based on these reviews,
the PC decided to accept eight regular papers and 22 presentation-only submissions, in
addition to the five invited speakers contributions. The members of the PC and the list
of external reviewers can be found at the end of this preface. We are grateful for the
high-quality work produced by the PC and the external reviewers. Overall this volume
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contains eight contributed papers and three papers from invited speakers which cover
their talks. Abstracts of all invited talks can be found later in this front matter.

The conference also provided the opportunity to other young and established
researchers to present work in progress or work already published elsewhere. This year
in addition to the eight regular submissions, the PC accepted 22 high-quality informal
presentations on various reachability aspects in theoretical computer science. A list of
accepted presentation-only submissions is given later in this front matter.

So overall, the conference program consisted of five invited talks, eight presentations
of contributed papers, and 22 informal presentations in the area of reachability problems,
stretching from results on fundamental questions in mathematics and computer science
up to efficient solutions of practical problems.

It is a pleasure to thank the team behind the EasyChair system and the Lecture Notes
in Computer Science team at Springer, who together made the production of this volume
possible in time for the conference. Finally, we thank all the authors and invited speakers
for their high-quality contributions, and the participants for making RP 2022 a success.
We are also very grateful to Alfred Hofmann for the continuous support of the event in
the last decade and to Ronan Nugent for the supporting this year’s conference, and also
to the London Mathematical Society and Springer for their financial sponsorship.

October 2022 Anthony W. Lin
Georg Zetzsche

Igor Potapov
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Abstracts of Invited Talks



The Past and Future of Embedded Finite Model Theory

Michael Benedikt

University of Oxford

Abstract. Embedded finite model theory refers to a formalism for
describing finite structures over an uninterpreted signature, which sit
within an infinite interpreted structures. Some theory was developed
in the 1990’s and early 2000’s, with a focus on the real field. But the
theory applies to arbitrary theories, and is relevant to recent develop-
ment on graph querying and analysis of data-driven programs involving
arithmetic.

In this invited paper we review the framework and some of the basic
results on it. We also discuss some open questions, along with some work
in progress, joint with Ehud Hrushovski.



Post’s Correspondence Problem: From Computer Science
to Algebra

Laura Ciobanu

Heriot-Watt University and Maxwell Institute, Edinburgh EH14 4AS, Scotland
L.Ciobanu@hw.ac.uk

Abstract. In this short survey we describe recent advances on the Post
Correspondence Problem in group theory that were inspired by results
in computer science. These algebraic advances can, in return, provide a
source of interesting problems in more applied, computational settings.

Post’s Correspondence Problem (PCP) is a classical decision problem
in theoretical computer science that askswhether for a pair of freemonoid
morphisms g, h : �∗ → �∗ there is any x ∈ �∗ such that g(x) =
h(x). One can similarly phrase a PCP for general groups, rather than free
monoids, by asking whether pairs g, h of group homomorphisms agree
on any inputs. This leads to interesting and unexpected (un)decidability
results for PCP in groups.

Keywords: Post correspondence problem · Free and hyperbolic groups ·
Free monoids · Nilpotent groups · Decidability

https://orcid.org/0000-0002-9451-1471


Recent Advances on the Reachability Problem for VASSes
by Examples

Wojciech Czerwiński

University of Warsaw
wczerwin@mimuw.edu.pl

Abstract. I will briefly describe recent advances on understanding the
complexity of the reachability problem for vector addition systems (or
equivalently for vector addition systems with states - VASSes). I plan
to present a few involved VASS examples in small dimensions, which
illustrate various aspects of hardness of VASSes and various techniques
of proving lower complexity bounds. If time allows I will also briefly
discuss VASSes with a stack.

Supported by the ERC grant INFSYS, agreement no. 950398.



Decidability Results for Context-Bounded Analysis
of Systems

Rupak Majumdar

MPI-SWS, Kaiserslautern, Germany
rupak@mpi-sws.org

Abstract.Automated analysis of multithreaded sharedmemory programs is a core prob-
lem in verification. While the general verification problem for these systems is unde-
cidable, already when there are only two recursive threads, there has been a lot of work
to find appropriate underapproximations. Context-bounding is one such underapproxi-
mation technique. In context bounded analysis, we set an a priori bound K and restrict
attention to only those runs of the system in which each thread is interrupted at most K
times. It turns out that many verification problems become decidable under the restric-
tion of context bounding. In this talk, I will provide a survey of recent results in this
area. Specifically, we shall consider context-bounded safety and liveness verification
for systems in which threads can spawn new threads, as well as practically-motivated
restrictions of the problem such as thread pooling. (Joint work with Pascal Baumann,
Moses Ganardi, Ramanathan Thinniyam, and Georg Zetzsche.)



SAT-Based Invariant Inference and Its Relation
to Concept Learning

Yotam M. Y. Feldman and Sharon Shoham

Tel Aviv University, Israel

Abstract. This paper surveys results that establish formal connections
and distinctions betweenSAT-based invariant inference and exact concept
learning with queries, showing that learning techniques and algorithms
can clarify foundational questions, illuminate existing algorithms, and
suggest new directions for efficient invariant inference.



Presentation-Only Submissions



The Pseudo-Reachability Problem for Affine Dynamical
Systems

Julian D’Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine,
Mahmoud Salamati, and James Worrell

Abstract. We study fundamental reachability problems on pseudo-orbits
of linear dynamical systems. Pseudo-orbits can be viewed as a model
of computation with limited precision and pseudo-reachability can be
thought of as a robust version of classical reachability. Using an approach
based on o-minimality of Rexp we prove decidability of the discrete-
time pseudo-reachability problemwith arbitrary semialgebraic targets for
diagonalisable linear dynamical systems. We also show that our method
can be used to reduce the continuous-time pseudo-reachability problem
to the (classical) time-bounded reachability problem, which is known to
be conditionally decidable. In short, we show how to use logical methods
(in contrast to the usual number theory) to decide versions of the classical
reachability problem for linear dynamical systems.



Pairwise Reachability Oracles and Preservers Under
Failures

Diptarka Chakraborty, Kushagra Chatterjee, and Keerti Choudhary

Abstract. In this paper, we consider reachability oracles and reachability
preservers for directed graphs/networks prone to edge/node failures. Let
G = (V, E) be a directed graph on n-nodes, and P ⊆ V × V be a
set of vertex pairs in G. We present the first non-trivial constructions
of single and dual fault-tolerant pairwise reachability oracle with con-
stant query time. Furthermore, we provide extremal bounds for sparse
fault-tolerant reachability preservers, resilient to two or more failures.
Prior to this work, such oracles and reachability preservers were widely
studied for the special scenario of single-source and all-pairs settings.
However, for the scenario of arbitrary pairs, no prior (non-trivial) results
were known for dual (or more) failures, except those implied from the
single-source setting. One of the main questions is whether it is possi-
ble to beat the O(n|P|) size bound (derived from the single-source set-
ting) for reachability oracle and preserver for dual failures (orO(2kn|P|)
bound for k failures). We answer this question affirmatively. Below we
summarize our contributions.

– For an n-vertex directed graph G = (V, E) and P ⊆ V × V , we
present a construction of O(n

√|P|) sized dual fault-tolerant pairwise
reachability oracle with constant query time. We further provide a
matching (up to the word size) lower bound of �(n

√|P|) on the size
(in bits) of the oracle for the dual fault setting, thereby proving that our
oracle is (near-)optimal.

– Next, we provide a construction of O(n+min{|P|√n, n
√|P|}) sized

oracle with O(1) query time, resilient to single node/edge failure. In
particular, for |P| bounded by O(

√
n) this yields an oracle of just

O(n) size. We complement the upper bound with a lower bound of
�(n2/3|P|1/2) (in bits), refuting the possibility of a linear-sized oracle
for P of size ω(n2/3).

– We also present a construction of O(n4/3|P|1/3) sized pairwise
reachability preservers resilient to dual edge/vertex failures. Previ-
ously, such preservers were known to exist only under single failure
and had O(n + min{|P|√n, n

√|P|}) size [Chakraborty and Choud-
hary, ICALP’20]. We also show a lower bound of �(n

√|P|) edges
on the size of dual fault-tolerant reachability preservers, thereby pro-
viding a sharp gap between single and dual fault-tolerant reachability
preservers for |P| = o(n).
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– Finally, we provide a generic pairwise reachability preserver construc-
tion that provides a o(2kn|P|) sized subgraph resilient to k failures,
for any k ≥ 1. Before this work, we only knew of an O(2kn|P|)
bound implied from the single-source setting [Baswana, Choudhary,
and Roditty, STOC’16].



On the Identity Problem for Unitriangular Matrices
of Dimension Four

Ruiwen Dong

Abstract. We show that the Identity Problem is decidable in polynomial
time for finitely generated sub-semigroups of the groupUT(4,Z) of 4× 4
unitriangular integer matrices. As a byproduct of our proof, we also show
the polynomial-time decidability of several subset reachability problems
in UT(4,Z).



On the Undecidability of Loop Analysis

Laura Kovács and Anton Varonka

Abstract. Our work addresses two central questions of program anal-
ysis, termination and invariant generation of loops. Already simple
infinite-state systems, such as loops with assignments only, have intrin-
sically complex reachable sets and render variants of these problems
undecidable.

In the talk, we give an account of the existing body of work on the
boundary of (un-)decidability.We contribute to the line of work related to
the question raised by Braverman in 2006: “Howmuch non-determinism
can be introduced in a linear loop before termination becomes undecid-
able?”We show that termination of loops with a purely non-deterministic
choice between linear updates cannot be answered by an algorithm. To
our knowledge, this is the most restricted setting in which undecidability
has been shown. Moreover, it contrasts the case of a single linear update
where termination (i.e., reachability) is known decidable.

We also turn to the problem of computing the strongest algebraic
invariant of a program, that is, all polynomial relations among program
variables. Despite a complete algorithm for multi-path affine programs,
allowing arbitrary polynomial assignments is known to result in the
unsolvability of invariant generation. We point out that negative results
do not actually exploit general polynomial updates. There exists no algo-
rithm computing strongest algebraic invariants already for programs with
quadratic updates or updates guarded by affine equalities.



Skolem Meets Schanuel

Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine,
David Purser, and James Worrell

Abstract. The celebrated Skolem-Mahler-Lech Theorem states that the
set of zeros of a linear recurrence sequence is the union of a finite set and
finitely many arithmetic progressions. The corresponding computational
question, the Skolem Problem, asks to determine whether a given linear
recurrence sequence has a zero term. Although the Skolem-Mahler-Lech
Theorem is almost 90 years old, decidability of the Skolem Problem
remains open. The main contribution of this paper is an algorithm to
solve the Skolem Problem for simple linear recurrence sequences (those
with simple characteristic roots). Whenever the algorithm terminates, it
produces a stand-alone certificate that its output is correct – a set of zeros
together with a collection of witnesses that no further zeros exist. We
give a proof that the algorithm always terminates assuming two classical
number-theoretic conjectures: the Skolem Conjecture (also known as the
Exponential Local-Global Principle) and the p-adic Schanuel Conjecture.
Preliminary experiments with an implementation of this algorithmwithin
the tool SKOLEM point to the practical applicability of this method.



Subsequences with Gap Constraints: Complexity Bounds
for Matching and Analysis Problems

Joel Day, Maria Kosche, Florin Manea, and Markus L. Schmid

Abstract. We consider subsequences with gap constraints, i.,e., length-
k subsequences p that can be embedded into a string w such that the
induced gaps (i.,e., the factors of w between the positions to which p is
mapped to) satisfy given gap constraints gc = (C1,C2, . . . ,Ck−1); we
call p a gc-subsequence of w. In the case where the gap constraints gc are
defined by lower and upper length bounds Ci = (L−

i ,L+
i ) ∈ N

2 and/or
regular languages Ci ∈ REG, we prove tight (conditional on the orthog-
onal vectors (OV) hypothesis) complexity bounds for checking whether
a given p is a gc-subsequence of a string w. We also consider the whole
set of all gc-subsequences of a string, and investigate the complexity of
the universality, equivalence and containment problems for these sets of
gc-subsequences.



A Dynamic Programming Algorithm for a Maximum
s-Clique Set on Trees

José Alberto Fernández-Zepeda, Alejandro Flores Lamas,
Matthew Hague, and Joel Antonio Trejo-Sánchez

Abstract. Given an undirected graph G = (VG,EG), a clique C is a
complete subgraph of G. In social networks analysis, the unit distance
of the clique makes it challenging to model certain social concepts. For
those applications, a relaxed variant of the clique is more appropriate. A
s-cliqueQ is amaximal subgraph ofG, such that the distance inG between
any pair of vertices of Q is less than or equal to some positive integer s.
In this sense, a clique is also a 1-clique. The maximum s-clique problem
consists of finding a s-clique with the greatest amount of vertices in G.
Such a problem is NP-hard for arbitrary graphs and any s. In this work,
we propose a dynamic programming algorithm that solves this problem
on a tree of order n in O(s · n) time, for s ≥ 2. Our algorithm improves,
theoretically and experimentally, the performance of previous algorithms
that compute a maximum s-clique on trees.



Higher-Order Nonemptiness Step by Step

Paweł Parys

Abstract. We show a new simple algorithm that checks whether a given
higher-order grammar generates a nonempty language of trees. The algo-
rithm amounts to a procedure that transforms a grammar of order n to
a grammar of order n − 1, preserving nonemptiness, and increasing the
size only exponentially. After repeating the procedure n times, we obtain
a grammar of order 0, whose nonemptiness can be easily checked. Since
the size grows exponentially at each step, the overall complexity is n-
EXPTIME, which is known to be optimal. More precisely, the trans-
formation (and hence the whole algorithm) is linear in the size of the
grammar, assuming that the arity of employed nonterminals is bounded
by a constant.

The same algorithm allows to check whether an infinite tree gen-
erated by a higher-order recursion scheme is accepted by an alternat-
ing reachability automaton, because this question can be reduced to the
nonemptiness problem by taking a product of the recursion scheme with
the automaton. Moreover, thanks to a well-known equivalence between
higher-order grammars and collapsible pushdown automata, we also
obtain an algorithm for reachability in alternating collapsible pushdown
automata.

A proof of correctness of the algorithm is formalised in the proof
assistantCoq.Our transformation ismotivatedbya similar transformation
of Asada and Kobayashi (2020) changing a word grammar of order n to a
tree grammar of order n − 1. The step-by-step approach can be opposed
to previous algorithms solving the nonemptiness problem “in one step”,
being compulsorily more complicated.



A Universal Skolem Set of Positive Lower Density

Florian Luca, Joël Ouaknine, and James Worrell

Abstract.The SkolemProblem asks to determinewhether a given integer
linear recurrence sequence (LRS) has a zero term. Decidability of this
problem has been open for many decades, with little progress since the
1980s. Recently, a new approach was initiated via the notion of a Skolem
set – a set of positive integers relative to which the Skolem Problem is
decidable. More precisely, S is a Skolem set for a class L of integer LRS
if there is an effective procedure that, given an LRS in L, decides whether
the sequence has a zero in S. A recent work exhibited a Skolem set for
the class of all LRS that, while infinite, had density zero. In the present
paper we construct a Skolem set of positive lower density for the class of
simple LRS.



On the Computation of the Algebraic Closure of Finitely
Generated Groups of Matrices

Amaury Pouly, Klara Nosan, Mahsa Shirmohammadi,
James Worrell, and Sylvain Schmitz

Abstract. We investigate the complexity of computing the Zariski clo-
sure of a finitely generated group of matrices. The Zariski closure was
previously shown to be computable by Derksen, Jeandel, and Koiran,
but the termination argument for their algorithm appears not to yield
any complexity bound. In this paper we follow a different approach and
obtain a bound on the degree of the polynomials that define the closure.
Our bound shows that the closure can be computed in elementary time.
We also obtain upper bounds on the length of chains of linear algebraic
groups.



Matching Patterns with Variables Under Edit Distance

Paweł Gawrychowski, Florin Manea, and Stefan Siemer

Abstract. A pattern α is a string of variables and terminal letters. We
say that α matches a word w, consisting only of terminal letters, if w
can be obtained by replacing the variables of α by terminal words. The
matching problem, i.e., deciding whether a given pattern matches a given
word, was heavily investigated: it is NP-complete in general, but can be
solved efficiently for classes of patterns with restricted structure. If we
are interested in what is the minimum Hamming distance between w and
any word u obtained by replacing the variables of α by terminal words (so
matching under Hamming distance), one can devise efficient algorithms
andmatching conditional lower bounds for the class of regular patterns (in
which no variable occurs twice), as well as for classes of patterns where
we allow unbounded repetitions of variables, but restrict the structure
of the pattern, i.e., the way the occurrences of different variables can
be interleaved. Moreover, for matching under Hamming distance, if a
variable occurs more than once and its occurrences can be interleaved
arbitrarily with those of other variables, even if each of these occurs just
once, the problem is intractable. In this paper, we consider the problem
of matching patterns with variables under edit distance. We still obtain
efficient algorithms and matching conditional lower bounds for the class
of regular patterns, but show that the problem becomes, in this case,
intractable already for unary patterns, containing repeated occurrences
of a single variable interleaved with terminals.



The Variance-Penalized Stochastic Shortest Path Problem

Jakob Piribauer, Ocan Sankur, and Christel Baier

Abstract.The stochastic shortest path problem (SSPP) asks to resolve the
non-deterministic choices in a Markov decision process (MDP) such that
the expected accumulated weight before reaching a target state is maxi-
mized. This paper addresses the optimization of the variance-penalized
expectation (VPE) of the accumulated weight, which is a variant of the
SSPP in which a multiple of the variance of accumulated weights is
incurred as a penalty. It is shown that the optimal VPE in MDPs with
non-negative weights as well as an optimal deterministic finite-memory
scheduler can be computed in exponential space. The threshold prob-
lem whether the maximal VPE exceeds a given rational is shown to
be EXPTIME-hard and to lie in NEXPTIME. Furthermore, a result of
interest in its own right obtained on the way is that a variance-minimal
scheduler among all expectation-optimal schedulers can be computed in
polynomial time. This paper has been published at ICALP 2022.



Parameterized Safety Verification of Round-Based
Shared-Memory Systems

Nathalie Bertrand, Nicolas Markey, Ocan Sankur and Nicolas Waldburger

Abstract. We consider the parameterized verification problem for dis-
tributed algorithms where the goal is to develop techniques to prove the
correctness of a given algorithm regardless of the number of participat-
ing processes.Motivated by an asynchronous binary consensus algorithm
[Aspnes02], we consider round-based distributed algorithms communi-
cating with shared memory. A particular challenge in these systems is
that 1) the number of processes is unbounded, and, more importantly, 2)
there is a fresh set of registers at each round. A verification algorithm
thus needs to manage both sources of infinity. In this setting, we prove
that the safety verification problem, which consists in deciding whether
all possible executions avoid a given error state, is PSPACE-complete.
For negative instances of the safety verification problem, we also provide
exponential lower and upper bounds on the minimal number of processes
needed for an error execution and on the minimal round on which the
error state can be covered.



Program Specialization as a Tool for Solving Word
Equations

Antonina Nepeivoda

Abstract. The paper was presented at VPT’2021. The paper focuses on
the automatic generating of the witnesses for the word equation satisfia-
bility problembymeans of specializing an interpreterWeqInt(s, E),which
tests whether a substitution s of variables of a givenword equation system
E produces its solution. We specialize such an interpreter w.r.t. E, while
s is unknown. We show that several variants of such interpreters, when
specialized using the basic unfold/fold specialization methods, are able
to decide the satisfiability problem for some sets of the word equations
whose left- and right-hand sides share variables. We prove that the spe-
cialization process w.r.t. the constructed interpreters is sound, i.e. gives
a simple syntactic criterion of the satisfiability, and compare the results
of the suggested approach with the results produced by some known
SMT-solvers.



Distributed Controller Synthesis for Deadlock Avoidance

Hugo Gimbert, Corto Mascle, Anca Muscholl, and Igor Walukiewicz

Abstract. We consider the distributed control synthesis problem for sys-
tems with locks. The goal is to find local controllers so that the global
system does not deadlock.With no restriction this problem is undecidable
even for three processes each using a fixed number of locks. We propose
two restrictions that make distributed control decidable. The first one is to
allow each process to use at most two locks. The problem then becomes
complete for the second level of the polynomial time hierarchy, and even
in Ptime under some additional assumptions. The dining philosophers
problem satisfies these assumptions. The second restriction is a nested
usage of locks. In this case the synthesis problem is Nexptime-complete.
The drinking philosophers problem falls in this case.



The Membership Problem for Hypergeometric Sequences
with Rational Parameters

Amaury Pouly, Klara Nosan, Mahsa Shirmohammadi, and James Worrell

Abstract. We investigate the Membership Problem for hypergeometric
sequences: given a hypergeometric sequence 〈un〉∞n=0 of rational numbers
and a target t ∈ Q, decide whether t occurs in the sequence. We show
decidability of this problem under the assumption that in the defining
recurrence p(n)un+1 = q(n)un, the roots of the polynomials p(x) and
q(x) are all rational numbers. Our proof relies on bounds on the den-
sity of primes in arithmetic progressions. We also observe a relationship
between the decidability of the Membership problem (and variants) and
the Rohrlich-Lang conjecture in transcendence theory.



On the Expressive Power of String Constraints

Joel Day, Vijay Ganesh, Nathan Grewal, and Florin Manea

Abstract. We investigate properties of strings which are expressible by
canonical types of string constraints. Specifically, we consider a land-
scape of 20 logical theories, whose syntax is built around combinations of
four common elements of string constraints: language membership (e.g.
for regular languages), concatenation, equality between string terms, and
equality between string-lengths. For a variable x and formula f from a
given theory, we consider the set of values for which x may be substi-
tuted as part of a satisfying assignment, or in other words, the property
f expresses through x. Since we consider string-based logics, this set
is a formal language. We firstly consider the relative expressive power
of different combinations of string constraints by comparing the classes
of languages expressible in the corresponding theories, and are able to
establish a mostly complete picture in this regard. Secondly, we consider
the question of deciding whether the language or property expressed by
a variable/formula in one theory can be expressed in another theory. We
establish several negative results which are relevant to preprocessing and
normalisation of string constraints in practice. Some of our results have
strong connections to important open problems regarding word equations
and the theory of string solving.



Weak Bisimulation Finiteness of Pushdown Systems
with Deterministic Epsilon-Transitions Is

2-EXPTIME-Complete

Stefan Göller and Paweł Parys

Abstract. We consider the problem of deciding whether a given push-
down system all of whose epsilon-transitions are deterministic is weakly
bisimulation finite, that is, whether it is weakly bisimulation equivalent
to a finite system. We prove that this problem is 2-EXPTIME-complete.
This consists of three elements: First, we prove that the smallest finite
system that is weakly bisimulation equivalent to a fixed pushdown sys-
tem, if exists, has size at most doubly exponential in the description size
of the pushdown system. Second, we propose a fast algorithm deciding
whether a given pushdown system is weakly bisimulation equivalent to
a finite system of a given size. Third, we prove 2-EXPTIME-hardness
of the problem. The problem was known to be decidable, but the previ-
ous algorithmhadAckermannian complexity (6-EXPSPACE in the easier
case of pushdown systemswithout epsilon-transitions); concerning lower
bounds, only EXPTIME-hardness was known.



What Can Oracles Teach us About the Ultimate Fate
of Life?

Ville Salo and Ilkka Törmä

Abstract. We settle two long-standing open problems about Conway’s
Life, a two-dimensional cellular automaton. We solve the Generalized
grandfather problem: for all n ≥ 0, there exists a configuration that has an
nth predecessor but not an (n+ 1)st one.We also solve (one interpretation
of) the Unique father problem: there exists a finite stable configuration
that contains a finite subpattern that has no predecessor patterns except
itself. In particular this gives the first example of an unsynthesizable
still life. The new key concept is that of a spatiotemporally periodic
configuration (agar) that has a unique chain of preimages; we show that
this property is semidecidable, and find examples of such agars using a
SAT solver. Our results about the topological dynamics of Game of Life
are as follows: it never reaches its limit set; its dynamics on its limit set is
chain-wandering, in particular it is not topologically transitive and does
not have dense periodic points; and the spatial dynamics of its limit set
is non-sofic, and does not admit a sublinear gluing radius in the cardinal
directions (in particular it is not block-gluing). Our computability results
are that Game of Life’s reachability problem, as well as the language of
its limit set, are PSPACE-hard.



Universal Complexity Bounds Based on Value Iteration
and Application to Entropy Games

Xavier Allamigeon, Stephane Gaubert, Ricardo Katz, and Mateusz Skomra

Abstract. We develop value iteration-based algorithms to solve in a
unified manner different classes of combinatorial zero-sum games with
mean-payoff type rewards. These algorithms rely on an oracle, evaluat-
ing the dynamic programming operator up to a given precision. We show
that the number of calls to the oracle needed to determine exact optimal
(positional) strategies is, up to a factor polynomial in the dimension, of
order R/sep, where the “separation” sep is defined as the minimal differ-
ence between distinct values arising from strategies, and R is a metric
estimate, involving the norm of approximate sub and super-eigenvectors
of the dynamic programming operator. We illustrate this method by two
applications. The first one is a new proof, leading to improved complexity
estimates, of a theorem of Boros, Elbassioni, Gurvich andMakino, show-
ing that turn-based mean-payoff games with a fixed number of random
positions can be solved in pseudo-polynomial time. The second one con-
cerns entropy games, a model introduced by Asarin, Cervelle, Degorre,
Dima, Horn and Kozyakin. The rank of an entropy game is defined as the
maximal rank among all the ambiguity matrices determined by strategies
of the two players. We show that entropy games with a fixed rank, in
their original formulation, can be solved in polynomial time, and that
an extension of entropy games incorporating weights can be solved in
pseudo-polynomial time under the same fixed rank condition.



Regular Path Queries in MillenniumDB

Domagoj Vrgoc and Carlos Rojas

Abstract. MillenniumDB is a recently published, open-source, graph
database engine based on traditional relational storage mechanisms, and
state-of-the art query execution techniques such as worst-case optimal
join algorithms and path search guided by automata.Herewewill concen-
trate on MillenniumDB’s algorithms for executing regular path queries,
and the extensions of classical graph reachability algorithms it uses to
tackle this problem.



On the Skolem Problem for Reversible Sequences

George Kenison

Abstract.Given an integer linear recurrence sequence<Xn>, theSkolem
Problem asks to determine whether there is a natural number n such that
Xn = 0. Recent work by Lipton, Luca, Nieuwveld, Ouaknine, Purser,
and Worrell proved that the Skolem Problem for a class of reversible
sequences is decidable up to order seven. Here we give an alternative
proof of their result. Our novel approach employs a powerful result for
Galois conjugates that lie on two concentric circles due to Dubickas and
Smyth.
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SAT-Based Invariant Inference and Its
Relation to Concept Learning

Yotam M. Y. Feldman and Sharon Shoham(B)

Tel Aviv University, Tel Aviv, Israel

yotam.feldman@gmail.com, sharon.shoham@gmail.com

Abstract. This paper surveys results that establish formal connections
and distinctions between SAT-based invariant inference and exact con-
cept learning with queries, showing that learning techniques and algo-
rithms can clarify foundational questions, illuminate existing algorithms,
and suggest new directions for efficient invariant inference.

1 Introduction

SAT-based invariant inference algorithms such as IC3/PDR [4,8] and Interpola-
tion [25] have proven to be extremely successful in practice and have attracted
tremendous interest in recent years. However, the essence of their practical suc-
cess and their performance guarantees are far less understood. In a series of
papers [10–13] we set out to investigate these topics and provide new insights
into the principles and complexity of SAT-based invariant inference. This paper
surveys one of the key avenues pursued in these works, which focuses on the
similarities and discrepancies between SAT-based invariant inference and exact
concept learning from queries for propositional formulas, both as a way to explain
and analyze existing inference algorithms, and as way to develop new algorithms.

Exact learning with queries [2] is one of the fundamental fields of theoretical
machine learning. There, a learner (an algorithm) needs to learn an unknown
concept, e.g., a formula from some class of formulas, with the help of a teacher
who can answer certain queries about the concept. Typical queries include mem-
bership queries: “is a certain example a member of the desired concept?”, and
equivalence queries: “is a certain candidate the desired concept?”. The theory of
exact concept learning is well developed and provides ample efficient algorithms
for learning different classes of concepts with different kinds of queries.

The goal of SAT-based invariant inference is also to learn a formula—an
inductive invariant. Further, the way an inference algorithm uses a SAT solver to
check inductiveness and bounded reachability w.r.t. the transition relation in the
process of constructing candidate inductive invariants bears strong resemblance
to how a learning algorithm uses the teacher to check equivalence or membership
in concept learning.

The first step towards understanding invariant inference from the perspective
of learning is to distill this connection and study it in a rigorous way that enables

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. W. Lin et al. (Eds.): RP 2022, LNCS 13608, pp. 3–27, 2022.
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a transfer of ideas between the fields. To this end, we introduce a model of invari-
ant inference with queries [10]. In this model, the transition relation of the system
is only known to an oracle (implemented by a SAT solver), and an inference algo-
rithm can only “query” it by posing queries to the oracle. Through a sequence
of queries, the algorithm should gain enough information about the transition
relation to be able to find an appropriate invariant. We consider queries that are
common in existing invariant inference algorithms: inductiveness queries, where
the solver is given a candidate invariant α and checks if it is inductive, and their
generalization into Hoare queries, where the solver is given a precondition for-
mula α, a postcondition formula β and a bound k, and checks if (some state in)
β is reachable from (some state in) α in at most k steps (inductiveness queries
correspond to Hoare queries with α = β and k = 1). Hoare queries naturally
capture how many invariant inference algorithms use a SAT solver, including
major versions of PDR and Interpolation, and so results about the Hoare-query
model apply to these algorithms.

A previous learning-based model for invariant inference, ICE learning [15],
corresponds to algorithms that use inductiveness queries only. In practice, many
algorithms (that historically precede the ICE learning model) use more general
Hoare queries to facilitate an incremental construction of invariants in complex
syntactic forms. For example, PDR [4,8] incrementally learns clauses in differ-
ent frames via relative inductiveness checks, and Interpolation learns at each
iteration a term of the invariant from an interpolant [25]. We show that this is
in fact a significant difference: the Hoare-query model is strictly stronger than
inference based solely on presenting whole candidate inductive invariants as in
the inductiveness-query model. To this end, in [10], we identify a class of systems
where a Hoare query algorithm, which is essentially a simplified version of PDR
(and a dual version of Interpolation), can efficiently infer invariants, whereas
every inference algorithm in the inductiveness query model requires an exponen-
tial number of queries in the worst case. This confirms the intuition from [39]
that PDR cannot be implemented within the ICE model.

Having laid the foundations, we set out to compare invariant inference with
queries to exact concept learning. We prove that neither membership queries
nor equivalence queries to an unknown invariant can be implemented by Hoare
queries in general [10]. In particular, even though inductiveness queries can deter-
mine if a formula is an inductive invariant, they are still unable to simulate equiv-
alence queries since they can only return a counterexample to induction—a pair
of states such that if the first state is part of the invariant then so should be the
second. The non-implementability result implies that neither inductiveness nor
Hoare queries are sufficient for identifying a (positive or negative) example that
definitively differentiates the formula from an inductive invariant. This provides
a formal justification to the introduction of implication examples in the ICE
model [15] for learning from examples, as an addition to positive and negative
examples.

The inability to implement exact learning queries is unfortunate, as it pre-
vents porting the rich literature of exact learning algorithms and theory to
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invariant inference. However, we identify a condition, called the fence condi-
tion [11], that rectifies the situation and makes it possible to simulate certain
kinds of exact learning queries in the Hoare-query model. The fence condition
requires that the states in the boundary of the invariant—states outside of the
invariant with a Hamming distance of 1 from states inside the invariant—can
reach a bad state in a bounded number of steps. We show in [11] that when
the membership and equivalence queries performed by an exact learning algo-
rithm satisfy certain restrictions, it is possible to translate the learning algorithm
into an invariant inference algorithm in the Hoare-query model that is always
sound (i.e., never returns an incorrect inductive invariant), and enjoys the same
complexity if the fence condition holds.

These translations are not just theoretical. In [11] we show that a model-
based version due to Chockler et al. and Bjørner et al. [3,7] of McMillan’s Inter-
polation algorithm [25] can be obtained by such a translation from an exact
learning algorithm for learning DNF formulas [1], which is efficient for mono-
tone formulas [1,2]. Not only is it fascinating that an inference algorithm turns
out to be an incarnation of an earlier algorithm from a different discipline, but
the translation also gives rise to a new efficiency result for the interpolation-
based algorithm for monotone invariants when the fence condition holds. To the
best of our knowledge this is the first result of its kind. The translation is also
applicable to an exact learning algorithm for almost-monotone invariants (and
its complexity) [5], which leads to the introduction of a new invariant inference
algorithm with provable polynomial complexity guarantees for almost-monotone
invariants when the fence condition holds.

The aforementioned simulation of exact learning algorithms is only possi-
ble when the queries are restricted in a certain way. Some algorithms, such as
Bshouty’s algorithm [5] for learning CDNF formulas—formulas that have a short
CNF representation as well as a short DNF representation—do not meet these
restrictions. Nonetheless, we present in [11] another translation that is applica-
ble to any exact learning algorithm from membership and equivalence queries,
and maintains the complexity of the algorithm if a stronger, two-sided fence
condition holds.

The question whether it is possible to simulate Bshouty’s CDNF algorithm
under a (one-sided) fence condition remains open. However, inspired by the
CDNF algorithm, and utilizing insights about properties of the boundary of an
invariant, in [13], we develop a novel invariant inference algorithm from Hoare
queries that is efficient for CDNF invariants under the assumption of a (one-
sided) fence condition. Interestingly, this algorithm cannot be viewed as a con-
cept learning algorithm, hinting that invariant inference can not only benefit
from exact learning, but can also exceed it.

Not included in this survey is our investigation of PDR in [12] using the
monotone theory [5] developed for concept learning. This work does not investi-
gate PDR as a concept learning algorithm, but relates it to key principles used
in learning monotone and almost-monotone invariants.
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Outline. The rest of the paper is organized as follows. After a brief background
in Sect. 2, we define the model of invariant inference from queries and show
an exponential gap between inductiveness queries and Hoare queries in Sect.
3 (based on [10]). We contrast invariant inference with exact concept learning
from queries in Sect. 4 (based on [10]), and present cases where the gap can be
bridged through the fence condition in Sect. 5 (based on [11,13]). We conclude
in Sect. 6.

2 Preliminaries

Transition Systems. We consider transition systems defined using proposi-
tional logic. Given a propositional vocabulary Σ, a state is a valuation to Σ.
We denote by F(Σ) the set of well-formed formulas over Σ. A transition sys-
tem is a triple TS = (Init, δ,Bad) such that Init,Bad ∈ F(Σ) define the initial
states and the bad states, respectively, and δ ∈ F(Σ � Σ′) defines the transition
relation, where Σ′ = {x′ | x ∈ Σ} is a copy of the vocabulary used to describe
the post-state of a transition. Given a ϕ ∈ F(Σ), we denote by ϕ′ the formula
obtained from ϕ by replacing each variable with its counterpart in Σ′.

Safety and Inductive Invariants. A transition system TS is safe if all the
states that are reachable from the initial states via steps of δ satisfy ¬Bad. An
inductive invariant for TS is a formula I ∈ F(Σ) such that (i) Init =⇒ I, (ii)
I ∧ δ =⇒ I ′, and (iii) I =⇒ ¬Bad (where =⇒ denotes validity of implication).
A transition system is safe if and only if it has an inductive invariant. When I
is not inductive, a counterexample to induction (cti) is a pair of states σ, σ′ such
that σ, σ′ |= I ∧ δ ∧ ¬I ′ (where the valuation to Σ′ is taken from σ′).

Notation. We use formulas and the sets of states that they represent inter-
changeably. For a state σ, we denote by cube(σ) the conjunction of all literals
(variables or their negations) that hold in σ.

3 Invariant Inference with Queries

An investigation of SAT-based invariant inference and its relation to concept
learning was initiated in [10], by identifying the common SAT queries carried out
by existing algorithms, and introducing corresponding query models. A query-
based approach allows to compare different invariant inference algorithms both
to each other and to concept-learning algorithms that use queries.

In this section we define the invariant inference problem, the basic notions
of queries and query-based inference algorithms, and the query models consid-
ered in this survey: Inductiveness and Hoare, which capture existing SAT-based
invariant inference algorithms.

Invariant inference can be formulated as follows.

Definition 1 (Inductive Invariant Inference from Class of Invariants).
For a class of transition systems P and a class of invariants L, inductive invari-
ant inference is the problem: Given a transition system TS ∈ P over Σ, find an
inductive invariant I ∈ L for TS or determine that none exists.
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When L is omitted, we mean that, for every Σ, it includes all formulas in F(Σ).

3.1 Inference with Queries

In the setting of invariant inference with queries, an algorithm accesses the transi-
tion relation through queries—corresponding to SAT queries performed by exist-
ing algorithms—but cannot read the transition relation directly. This black-box
model reflects the way typical SAT-based invariant inference algorithms use the
transition relation only in their SAT queries, as opposed to white-box algorithms
that analyze the code directly. A black-box model of inference algorithms facil-
itates an analysis of the information of the transition relation the algorithm
acquires. The advantage is that such an information-based analysis sidesteps
open computational complexity questions, and therefore results in unconditional
lower bounds on the complexity of SAT-based algorithms captured by the model.

Queries of the transition relation are modeled in the following way. A query
oracle Q is an oracle that accepts a transition relation δ, as well as additional
inputs, and returns some output. The additional inputs and the output, together
also called the interface of the oracle, depend on the query oracle under con-
sideration. A family of query oracles is a set of query oracles with the same
interface.

Definition 2 (Inference algorithm in the query model). An inference
algorithm from queries, denoted AQ(Init,Bad, [δ]), is an algorithm defined w.r.t.
a query oracle Q that solves the invariant inference problem for (Init, δ,Bad),
given:

– access to the query oracle Q,
– the set of initial states (Init) and bad states (Bad);
– the transition relation δ, encapsulated—hence the notation [δ]—meaning that

the algorithm cannot access δ (not even read it) except for extracting its vocab-
ulary; δ can only be passed as an argument to the query oracle Q.

In the sequel, we consider two different families of query oracles: inductive-
ness and Hoare, representing different ways of obtaining information about the
transition relation.

Time and Query Complexity. Much like a SAT solver, the query oracles
solve NP-complete problems. When analyzing the complexity we consider each
query as a single step, and count the number of queries and also the time of
other steps the algorithm performs. (In lower bounds, we often only report on the
query complexity, which in itself provides a lower bound on the time complexity.)
We analyze the complexity in a worst-case model w.r.t. the possible transition
systems in the class of interest as well as w.r.t. the possible query oracles in the
family (the worst-case analysis is motivated by the property that in SAT-based
algorithms, the oracle is implemented by a SAT solver, which the algorithm does
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not control). For a class of transition systems P, the (time or query) complexity
of A w.r.t. a query oracle family Q is defined as

sup
Q∈Q

sup
(Init,δ,Bad)∈P,

|Σ|=n

Φ(AQ(Init, [δ],Bad))

where Φ(AQ(Init, [δ],Bad)) measures the complexity (either number of steps or
number of queries) of A given oracle Q ∈ Q and input (Init, δ,Bad) ∈ P. (These
numbers might be infinite.)

3.2 The Inductiveness-Query Model

The first query model we consider only allows an algorithm to check inductive-
ness of a candidate invariant:

Definition 3 (Inductiveness-Query Model). An inductiveness-query ora-
cle is a query oracle I such that for every δ and α ∈ F(Σ) satisfying Init =⇒ α
and α =⇒ ¬Bad,

– I(δ, α) = true if α ∧ δ =⇒ α′, and
– I(δ, α) = (σ, σ′) such that (σ, σ′) |= α ∧ δ ∧ ¬α′ otherwise.

An algorithm in the inductiveness-query model, also called an inductiveness-
query algorithm, is an inference from queries algorithm expecting any inductive-
ness query oracle.

Inductiveness-query oracles form a family of oracles since different oracles
can choose different (σ, σ′) for each δ, α.

ICE Learning and Inductiveness-Queries. The inductiveness-query model is
closely related to ICE learning [15], except here the learner is provided with
full information on Init,Bad instead of positive and negative examples (and the
algorithm refrains from querying on candidates that do not include Init or do
not exclude Bad). This model captures several interesting algorithms, includ-
ing include Houdini [14] and symbolic abstraction [30,35], as well as designated
algorithms [15,16]. Our complexity definition in the inductiveness-query model
being the worst-case among all possible oracle responses is in line with the anal-
ysis of strong convergence in Garg et al. [15]. Hence, lower bounds on the query
complexity in the inductiveness query model imply lower bounds for the strong
convergence of ICE learning.

3.3 The Hoare-Query Model

The Hoare-query model captures SAT-based invariant inference algorithms
querying the reachability of one set of states from a possibly different set of
states through a sequence of at most k-steps of the transition relation, for a
fixed k.
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Definition 4 (Hoare-Query Model). A Hoare-query oracle is a query oracle
H such that for every δ, α, β ∈ F(Σ), and k,

– H(k)(δ, α, β) = true if α(Σ0)∧ δ(Σ0, Σ1)∧ . . .∧ δ(Σk−1, Σk) =⇒ ∧k
i=1 β(Σi),

where Σ0, . . . , Σk are k + 1 distinct copies of the vocabulary, and
– H(k)(δ, α, β) = (σ0, . . . , σk) such that σ0, . . . , σk |= α(Σ0) ∧ δ(Σ0, Σ1) ∧ . . . ∧

δ(Σk−1, Σk) ∧ ∨k
i=1 ¬β(Σk), otherwise.

An algorithm in the Hoare-query model, also called a Hoare-query algorithm,
is an inference from queries algorithm expecting any Hoare-query oracle, where
k is bounded by a polynomial in n in all queries.

Hoare-query oracles form a family of oracles since different oracles can choose
different counterexample traces (σ0, . . . , σk) for every δ, α, β, k.

Example: PDR as a Hoare-Query Algorithm. The Hoare-query model captures
the prominent PDR algorithm, facilitating its theoretical analysis. In general,
PDR maintains a sequence of frames F0, F1, . . . such that F0 = Init, Fi =⇒ Fi+1,
Fi ∧ δ =⇒ F ′

i+1 and Fi =⇒ ¬Bad (for every i). These properties ensure that
if at some point Fi+1 =⇒ Fi then Fi is an inductive invariant. To update the
frames, PDR accesses the transition relation via checks of unreachability in one
step and counterexamples to those checks. These operations are captured in
the Hoare query model by checking H(1)(δ, F, α) or H(1)(δ, F ∧ α, α). This is
illustrated using Algorithm 1 which roughly corresponds to PDR with just one
frame. The only accesses to δ are in lines 5, 6 and 9, which are all done through
the Hoare-query oracle, showing that Algorithm 1 is a Hoare-query algorithm.
The (basic) full PDR can similarly be modeled as a Hoare-query algorithm [10].
Furthermore, the Hoare-query model is general enough to express a broad range
of PDR variants that differ in the way they use such checks but still access the
transition relation only through such queries.1

Example: Interpolation-Based Inference as a Hoare-Query Algorithm. Another
operation supported by SAT solvers is interpolation. Interpolation has been
introduced to invariant inference by McMillan [25], and extended in many
works since [18,22,26,37,38]. Interpolation algorithms infer invariants from facts
obtained from bounded unreachability of the bad states, checked by Hoare
queries of the form H(k)(δ, F,¬Bad). In McMillan’s original paper these facts are
interpolants extracted from a resolution proof computed by the solver. As such,
to account for McMillan’s original interpolation-based inference algorithm [25],
the oracle also needs to return an interpolant when the Hoare query checking
unreachability of Bad returns true. This model was investigated in [10]. Our
focus here is on model-based interpolation [3,7], as displayed in Algorithm 2, for
which such an extension is not necessary—model-based interpolation computes

1 A notable exception is ternary simulation [8], which is not a SAT-based operation.
However, the query model can be extended to support it while maintaining our
results.
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interpolants as part of the inference procedure (from bounded unreachability
and counterexamples), rather than inside the solver (from the proof of bounded
unreachability itself). Algorithm 2 is a Hoare-query algorithm: the only accesses
to δ are in lines 3, 4 and 9, and all invoke the Hoare-query oracle.

3.4 Hoare-Queries vs. Inductiveness-Queries

Inductiveness queries are specific instances of Hoare queries, where the pre-
condition and postcondition are the same, and reachability is examined along
a single step of the transition relation (k = 1). Therefore, inductiveness-query
algorithms can be simulated by Hoare-query algorithms. This raises the question
whether the seemingly more general Hoare queries are indeed so. In this section
we answer this question affirmatively and show that the Hoare query model
(Definition 4) is strictly stronger than the inductiveness query model (Definition
3), even when k = 1. To this end we show that there exists a class of transition
systems for which a simple Hoare-query algorithm can infer invariants in poly-
nomial time, but every inductiveness-query algorithm requires an exponential
number of queries.

The exponential gap between the Hoare-query model and the inductiveness
query model is summarized by the following theorem:

Theorem 1 ([10]). There exists a class of transition systems ME for which

– invariant inference has polynomial time complexity in the Hoare-query model,
but

– every inference algorithm in the inductiveness-query model requires an expo-
nential query complexity.

The class ME consists of maximal systems for monotone CNF invariants
together with certain unsafe systems.2 We refer the reader to [10] for the precise
definition of ME and to the proof of the lower bound in the inductiveness-query
model. Here we only highlight two properties of the safe systems in ME that
facilitate efficient inference in the Hoare-query model: maximality of the system,
defined below, and existence of a polynomial monotone invariant. Beyond estab-
lishing the upper bound in the Hoare-query model, these properties also spur
the research on efficient inference discussed in subsequent sections.

Definition 5 (Monotone Invariants). We denote by Mon-CNF the class of
CNF formulas where variables appear only positively and where, for a vocabulary
Σ with n = |Σ|, the number of clauses in formulas over Σ is bounded by p(n),
for a fixed polynomial p(·).
Definition 6 (Maximal System). Let Init,Bad �≡ false and let ϕ be a formula
such that Init =⇒ ϕ and ϕ =⇒ ¬Bad. The maximal transition system for ϕ is
(Init, δM

ϕ ,Bad) where δM
ϕ = ϕ → ϕ′.

2 In [10], the invariants are antimonotone rather than monotone; the algorithm estab-
lishing the upper bound is efficient also for monotone invariants, and the proof of
the lower bound can also be adapted to monotone invariants.



SAT-Based Invariant Inference and Its Relation to Concept Learning 11

A maximal transition system is illustrated as follows:

Note that δM
ϕ goes from any state satisfying ϕ to any state satisfying ϕ,

and from any state satisfying ¬ϕ to all states, good or bad. δM
ϕ is maximal in

the sense that it allows all transitions that do not violate ϕ being an inductive
invariant.

In ME we consider maximal systems for every formula in Mon-CNF, together
with an unsafe transition system whose transition relation is true for each vocab-
ulary. In particular, this means that every safe transition system in ME has an
inductive invariant in Mon-CNF (and others have no inductive invariant). There-
fore, solving invariant inference for ME without restricting the class of invariants
coincides with restricting it to L = Mon-CNF; this is important in Sect. 4.1 when
comparing the complexity of invariant inference to exact concept learning.

Upper Bound for Hoare-Query Algorithms for Maximal Systems
w.r.t. Monotone Invariants. The upper bound is obtained by a simple algo-
rithm, called PDR-1, that can find inductive invariants for safe systems in ME

with a polynomial number of Hoare queries. PDR-1, depicted in Algorithm 1,
is a backward-reachability algorithm, operating by repeatedly checking for the
existence of a counterexample to induction, and obtaining one when it exists.
The invariant is then strengthened by conjoining the candidate invariant with
the negation of a subset of the cube of the pre-state: starting with cube(σ),
which is a conjunction of literals that holds only on σ, a subset of the liter-
als leaves a smaller conjunction, which represents a larger set of states, thereby
“generalizing” σ. Generalization is performed by dropping a literal from the cube
whenever the remaining conjunction does not hold for any state reachable in at
most one step from Init. The result is a minimal conjunction whose negation
does not exclude any state reachable in at most one step. This might exclude
reachable states in general transition systems, but not in maximal systems, since
maximality ensures that their diameter is one.

Algorithm 1. PDR-1 in the Hoare-query model
1: procedure PDR-1(Init, [δ], Bad)
2: I ← ¬Bad
3: if H(1)(δ, Init, ¬Bad) �= true then
4: unsafe
5: while H(1)(δ, I, I) �= true do // I not inductive

6: (σ, σ′) ← H(1)(δ, I, I) // counterexample to induction of I
7: d ← cube(σ)
8: for l ∈ cube(σ) do
9: t ← d \ {l}

10: if Init =⇒ ¬t and H(1)(δ, Init, ¬t) then // Init =⇒ ¬t ∧ Init ∧ δ =⇒ ¬t′

11: d ← t
12: I ← I ∧ ¬d
13: return I
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Maximality therefore allows to determine if a state needs to be part of the
invariant by a simple Hoare-query, examining reachability in 1-step, and ensures
that generalization returns a prime consequence of the invariant (a clause implied
by the invariant which is not strictly weaker than any other clause implied by the
invariant). Efficiency of the algorithm results from the monotonicity of the CNF
invariants, which lets PDR-1 efficiently reconstruct them as the conjunction of
their prime consequences, via a theorem that goes back to Quine [29].

However, our lower bound for the inductinvess-query model for the same
class of transition systems and invariants shows that this incremental process
inherently relies on rich Hoare queries.

3.5 PDR and Interpolation-Based Inference Cannot Be
Implemented with Inductiveness Queries

PDR-1, the Hoare-query algorithm we use to establish the exponential gap, is
essentially PDR with a single frame3. Hence, building on the proof of Theorm
1, which shows that no inductiveness-query algorithm can simulate PDR-1 on
the class ME , we conclude that PDR cannot be efficiently simulated in the
inductiveness-query model:

Theorem 2. There is no inductiveness-query algorithm that solves invariant
inference with a number of inductiveness queries that has at most polynomial
overhead on the number of Hoare queries performed by PDR.

A similar result applies to interpolation-based inference: the exponential gap
between the inductiveness and Hoare query models can also be established for
maximal systems for Mon-DNF invariants (defined similarly to Mon-CNF, as
the class of DNF formulas where variables appear only positively and where
the number of terms is bounded by p(n)), in which case the upper bound is
obtained by an algorithm dual to PDR-1, the model-based interpolation-based
algorithm displayed in Algorithm 2 with a reachability bound of k = 1. This
shows that Hoare-queries are inherent to both PDR and interpolation-based
inference in the sense that neither can be implemented with inductiveness queries
only, confirming the intuition from [39] regarding PDR. (Profound differences
between PDR and interpolation manifest when PDR uses more than one frame
and interpolation uses k > 1, a topic we explored in [12].)

4 Invariant Learning and Concept Learning with Queries

Query-based models of invariant inference highlight its similarity to exact con-
cept learning with queries. What are the connections and differences between

3 To be precise, in PDR, counterexamples are states that reach a bad state, whereas
PDR-1 uses counterexamples to induction, but these coincide in maximal systems;
additionally, PDR may use an additional frame to discover the counterexamples and
one more to detect convergence.
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concept-learning formulas in L and learning invariants in L? Can concept
learning algorithms be translated to inference algorithms? These questions have
spurred much research [9,15,16,20,21,23,27,31–34]. In this section we study
these questions from the perspective of our aforementioned results.

In exact concept learning [2], an algorithm’s task is to identify an unknown
formula4 ψ using queries it poses to a teacher. The most studied queries are:

– Membership: The algorithm chooses a state σ, and the teacher answers
whether σ |= ψ; and

– Equivalence: The algorithm chooses a candidate θ, and the teacher returns
true if θ ≡ ψ or a differentiating counterexample otherwise: a σ s.t. σ �|=
θ, σ |= ψ or σ |= θ, σ �|= ψ.

In this section, we compare invariant inference to exact concept learning and
show: (1) that classical queries in exact concept learning cannot be efficiently
implemented as queries in order to find an unknown inductive invariant, and
(2) that ICE-learning is provably harder than classical learning: namely, that,
as advocated by Garg et al. [15], learning from counterexamples to induction is
inherently harder than learning from examples labeled positive or negative.

4.1 Complexity Comparison

This section compares the complexity of inferring formulas to concept-learning
the same class of formulas.

Theorem 1 effectively studies the complexity of inferring L = Mon-CNF
invariants using Hoare/inductiveness queries for maximal systems. The next the-
orem studies the complexity for general systems:

Theorem 3. Every Hoare-query inference algorithm solving invariant inference
for the class of all propositional transition systems and the class of invariants
L = Mon-CNF has query complexity of 2Ω(n), where n = |Σ|.
We emphasize that the lower bound considers inference of short, polynomial,
invariants, which ensures that the exponential complexity is not an artifact of
the length of the invariant, but, rather, of the need to infer it. We also point
out that in the more standard setting, when the algorithm is not restricted to
access the transition relation only through Hoare queries, the computational
complexity of inferring invariants of polynomial length is ΣP

2 -complete (NP-
complete with access to a SAT solver as oracle), as shown in [10] (strengthening
a similar hardness result by Lahiri and Qadeer for inferring invariants over a
template [24]).

Table 1 displays these results for invariant inference with a query oracle, and
compares them with known complexity results for exact concept learning. For
the sake of the comparison, the table maps inductiveness queries to equivalence

4 In general, a concept is a set of elements; here we focus on logical concepts.
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Table 1. Concept vs. invariant learning: complexity of learning Mon-CNF

Invariant inference Concept learning

Maximal systems General systems

Inductiveness Exponential Exponential Equivalence Subexponential1 / Polynomial2

(Theorem 1) (Theorem 3) [2,17]

Hoare Polynomial Exponential Equivalence+ Polynomial

(Theorem 1) (Theorem 3) Membership [2]

1 Proper learning
2 With exponentially long candidates

queries (as these are similar at first sight) and maps the more powerful set-
ting of Hoare queries to the more powerful setting of equivalence together with
membership queries.

The comparison in the table demonstrates that invariant inference in general
systems is harder than exact learning. The implications of the complexity gaps
are elaborated in Sect. 4.2. The complexity gap is eliminated when considering
only maximal systems, which is the source of the upper bound in Theorem 1.
However, that is true only for the Hoare-query model, and gaps remain when
considering only inductiveness queries; this is elaborated in Sect. 4.3.

4.2 Invariant Learning Cannot Be Reduced to Concept Learning

This section builds on the above complexity comparison to check which concept
learning queries can be simulated and used in invariant inference.

Table 2. Concept vs. invariant learning: implementability of concept learning queries

Maximal systems General systems

Inductiveness Hoare Inductiveness Hoare

Equivalence ✗ ✓ ✗ ✗

Membership ✗ ✓ ✗ ✗

Table 2 summarizes our results for the possibility and impossibility of sim-
ulating concept learning algorithms in invariant learning with queries. This
table depicts implementability (✓) or unimplementability (✗) of membership and
equivalence queries used in concept learning through inductiveness and Hoare
queries used in learning invariants for maximal systems and for general systems.

Formally, the implementability of a (concept learning) query in a class of tran-
sition systems P means that for every class of invariants L there is an inference
algorithm that, given a transition system TS ∈ P that admits some (unknown)
invariant I ∈ L, correctly answers the query w.r.t. I with a polynomial number
of queries in the respective model.

The proofs of impossibilities are based on the differences in complexity
from Table 1 for L = Mon-CNF. The only possibility result in the table is of simu-
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lating equivalence and membership queries using Hoare queries over maximal sys-

tems (for every L); the idea is that a Hoare query H(1)(δM
ϕ , Init,¬cube(σ))

?

�= true
implements a membership query on σ, thanks to fact that the inductive invariant is
exactly the set of states reachable in one step. Such a membership query (together
with an inductiveness query) can also be used to implement an equivalence query,
specifically to convert a counterexample to induction into a differentiating coun-
terexample as required when answering an equivalence query negatively: given the
counterexample to induction (σ, σ′) = I(δM

ϕ , θ), use a membership query to deter-
mine if σ �|= I or σ′ |= I, and return σ or σ′ accordingly. We pick up on these ideas
for implementing membership queries in Sect. 5, with more sophisticated transla-
tions that are related to more realistic algorithms.

4.3 Counterexamples in Invariant Learning Are Inherently
Ambiguous

As we have seen, equivalence queries cannot be implemented using inductiveness
queries, even in the simple case of maximal systems. The reason is that when
the query fails—returns “not inductive” or “not equivalent”—then the coun-
terexample provided to the inference algorithm is inherently weaker than the
counterexample for the learning algorithm. In inference, the result is a coun-
terexample to induction (an implication example, in the terminology of Garg
et al. [15]), which is a pair of examples (σ, σ′), where σ is a negative example or
σ′ is a positive example, but there is no indication in the query itself of which
is the case. In contrast, in classical equivalence queries, the counterexample is
a single state σ, and it is in effect labelled—by checking whether the proposed
candidate is satisfied by σ or not the learner can tell whether σ is a positive or
negative example.

This discrepancy can be reformulated in the context of concept learning, as
the difference between classical learning from equivalence queries (using labeled
examples) and ICE learning [15], in which (essentially) the result of an equiv-
alence query is an implication example. We have thus obtained a complexity
result separating the two:

Corollary 1. There exists a class of formulas L that can be learned using a
subexponential number of equivalence queries, but requires an exponential number
of ICE-equivalence queries.

This result quantitatively corroborates the difference between counterexamples
to induction and examples labeled positive or negative, a distinction advocated
by Garg et al. [15].

5 From Exact Learning to Invariant Inference
via the Fence Condition

We have seen that Hoare-queries cannot, in general, simulate equivalence and
membership queries used in exact concept learning, but can do so for maxi-
mal systems. This is somewhat disheartening; it would have been much nicer to
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Fig. 1. The (outer) boundary of an
invariant I = x∧y∧z, denoting the sin-
gleton set containing the far-top-right
vertex of the 3-dimensional Boolean
hypercube, {(1, 1, 1)}. Its neighbors
are I’s boundary (depicted in red):
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. The rest of
the vertices are in ¬I but not in the
boundary (depicted in gray). (Illustra-
tion inspired by Fig. 2.1 [28].)

Fig. 2. An illustration of the fence
condition. The boundary ∂−(I) of the
invariant (the states in ¬I nearest to
I, in red) are backwards k-reachable
(reach a bad state in k steps, for exam-
ple by the transitions depicted by the
arrows), but not all states in ¬I are
backwards k-reachable (or even back-
wards reachable at all, in the dotted
area).

apply an algorithm for learning a class of formulas L to the problem of infer-
ring invariants from L. In this section we present the fence condition, which was
introduced in [11]. This condition relaxes the maximality property, and we show
that it facilitates simulation of certain exact concept learning algorithms. In
particular, we obtain the model-based interpolation-based algorithm of [3,7]—
as well as a new algorithm extending it—by a translation from exact learning
algorithms that satisfy certain restrictions. The translation also lets us import
complexity upper bounds for the obtained inference algorithms from the learn-
ing algorithms, revealing new results on the efficiency of inference algorithms
provided that the fence condition holds. We further show that when a two-sided
fence condition holds, every algorithm for exact learning from equivalence and
membership queries can be transformed to a Hoare-query inference algorithm.

5.1 The Boundary of Inductive Invariants

The fence condition relates reachability in the transition system and the geo-
metric notion of the boundary of the invariant.

Definition 7 (Boundary). Let I be a set of states. Then the (outer) boundary
of I, denoted ∂−(I), is the set of states σ− �|= I s.t. there is a state σ+ that
differs from σ− in exactly one variable, and σ+ |= I.

Definition 8 (Backwards k-Fenced). For a transition system (Init, δ,Bad),
an inductive invariant I is backwards k-fenced for k ∈ N if every state in ∂−(I)
can reach Bad in at most k steps.
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More explicitly, an invariant I is backwards k-fenced if every state in ¬I that
has a Hamming neighbor in I (these are the states in the outer boundary of I)
can reach Bad in at most k steps. For an illustration of the boundary and the
fence condition see Figs. 1 and 2.

Example 1. In a maximal system, the (unique) inductive invariant I is backwards
1-fenced, since every state that is not part of I, in particular a state in the outer
boundary, has a transition to every other state, including Bad.

In every system, this condition holds for at least one inductive invariant and
for some finite k: the weakest inductive invariant, which allows all states but
those that can reach Bad in any number of steps, satisfies the condition with the
co-diameter, the number of steps that takes for all states that can reach Bad to
do so.

Lemma 1. Every safe transition system TS = (Init, δ,Bad) admits an inductive
invariant gfp = {σ | ∀σ′ ∈ Bad. (σ, σ′) �∈ δ∗} that is backwards k-fenced for
k that is the co-diameter: the minimal k such that for every state σ:

(∃σ′ ∈
Bad. (σ, σ′) ∈ δ∗) =⇒ (∃σ′′ ∈ Bad. (σ, σ′′) ∈ δ≤k

)
.

While this lemma shows the existence of a backwards-fenced invariant through
the gfp and co-diameter, the k-fence condition is more liberal: it can hold also
for an invariant when not every state in ¬I reaches Bad in k steps (or at all),
and only the states in ∂−(I) do. An example demonstrating this follows.

Example 2. Consider an example of a (doubly)-linked list traversal, using i to
traverse the list backwards, modeled via predicate abstraction following Itzhaky
et al. [19]. The list starts at h. Initially, i points to some location that may or may
not be part of the list, and in each step the system goes from i to its predecessor,
until that would reach x. We write s � r to denote that r is reachable from s by
following zero or more links. Consider the initial assumption h � x, but i �� x
(it may be that x � i, or that i is not at all in the list). The bad states are
those where i = h.

An inductive invariant for this system is h � x ∧ ¬i � x. In predicate
abstraction, we may take the predicates ph,x = h � x, pi,x = i � x, and write
I = ph,x∧¬pi,x, which is a DNF invariant with one term. Hence ¬I ≡ ¬ph,x∨pi,x.
The outer boundary ∂−(I) consists of the states (1) ph,x = false, pi,x = false
and (2) ph,x = true, pi,x = true. Both states are in fact bad states under the
abstraction: both include a state where i = h, from which x is unreachable (in
(1)) or reachable (in (2)). Thus, I is backwards k-fenced for every k ≥ 0.

In contrast, not all the states in ¬I reach bad states (in particular, I is not
the gfp): the state ph,x = false, pi,x = true abstracts only states where h �� i,
and this remains true after going to the predecessor of i. This shows that the
fence condition may hold even though I is not the gfp, and not all states in ¬I
reach bad states (in k steps or at all).
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5.2 Inference from One-Sided Fence and Exact Learning
with Restricted Queries

The challenge in harnessing exact learning algorithms for invariant inference
is the need to also implement the teacher, which is problematic because the
inference algorithm does not know any inductive invariant in advance [15], and,
as we have shown in Sect. 4.2, is unable to efficiently implement a classical teacher
that answers equivalence and membership queries, even in the more general
Hoare-query model. In this section we overcome this problem using the fence
condition, provided that the learning algorithm satisfies some conditions.

First, for equivalence queries, as discussed in Sect. 4.3, inductiveness queries
can determine if a candidate formula is an inductive invariant. However, when
it is not, the difficulty is the ambiguity of counterexamples to induction (σ, σ′),
which makes it difficult to know which of σ or σ′ should be returned to the
learner as an example that differentiates the candidate from the invariant. We
circumvent this problem by simply considering algorithms that query only on
candidates which are underapproximations of the target I:

Lemma 2 (Implementing positive equivalence queries). Let (Init, δ,
Bad) be a transition system and I an inductive invariant. Given θ such that
θ =⇒ I, it is possible to decide whether θ is an inductive invariant or provide a
counterexample σ |= I, σ �|= θ, by

– checking whether there is a counterexample σ′ |= Init ∧ ¬θ and returning σ′

if one exists; and
– using an inductiveness query I(δ, θ) to check whether there is a counterexam-

ple to induction (σ, σ′) |= θ ∧ δ ∧ ¬θ′, and returning σ′ if one exists.

Otherwise, θ is an inductive invariant.

Note that θ �≡ I could be an inductive invariant, which does not amount to an
equivalence query per se, but then the algorithm has already found an inductive
invariant and can stop.

To implement membership queries, we rely on the fence condition. Our main
observation here is that if the fence condition holds for I, then it is possible to
efficiently implement restricted versions of membership queries:

Lemma 3 (Implementing positive-adjacent membership queries). Let
(Init, δ,Bad) be a transition system and I an inductive invariant that is back-
wards k-fenced. Given σ s.t. σ |= I or σ ∈ ∂−(I), it is possible to decide whether
σ |= I by a single Hoare query that checks if H(k)(δ, cube(σ),¬Bad) = true and
answers accordingly.

In fact, under similar restrictions, we can implement subset queries, which gen-
eralize membership queries. In a subset query, the learning algorithm chooses
a formula θ, and the teacher answers whether θ =⇒ I, where I is the target
formula. (A membership query for σ is a subset query with θ = {σ}.)
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Lemma 4 (Implementing positive-adjacent subset queries). Let (Init, δ,
Bad) be a transition system and I an inductive invariant that is backwards k-
fenced. Given θ s.t. θ =⇒ I or θ ∧ ∂−(I) �≡ ⊥, it is possible to decide whether
θ =⇒ I by a single Hoare query that checks if H(k)(δ, θ, ¬Bad) = true and
answers accordingly.

A learning algorithm that only performs such queries induces a Hoare-query
invariant inference algorithm that simulates it by implementing its queries as
above. If the fence condition holds, all queries are answered correctly by the
simulation, perhaps except for an equivalence query on θ returning true although
θ �≡ I, but then we have already found an inductive invariant θ and can stop.
An additional inductiveness check is used in the inference algorithm before an
invariant is returned to ensure that the result is a correct inductive invariant
even when the fence condition does not hold. If the latter inductiveness check
fails, the algorithm returns “failure”.

Corollary 2. Let C be a class of formulas. Let A be an exact concept learn-
ing algorithm that can identify every ϕ ∈ C in at most s1 equivalence queries
and s2 subset queries (including membership queries). Assume further that when
A performs an equivalence query on θ, always θ =⇒ ϕ, and when A performs
a subset query on θ, always θ =⇒ ϕ or θ ∧ ∂−(ϕ) �≡ ⊥. Then there exists a
Hoare-query invariant inference algorithm that is sound (returns only correct
invariants), and, furthermore, can find an inductive invariant for every transi-
tion system that admits an inductive invariant I ∈ C that is backwards k-fenced
using at most s1 +1 inductiveness and s2 Hoare queries (with argument k), band
time the same as of A up to a constant factor.

The inference algorithm is sound even when the fence condition does not hold,
although in this case successful and efficient convergence is not guaranteed.

Efficient Interpolation-Based Inference of Monotone Invariants
Through Exact Learning. Algorithm 2 presents the interpolation-based
invariant inference algorithm due to Chockler et al. and Bjørner et al. [3,7],
which uses a model-based method for interpolant construction, inspired by
IC3/PDR [4,8], rather than constructing interpolants from proofs as in McMil-
lan’s original algorithm [25]. Algorithm 2 starts with the candidate invariant
ϕ = Init, which is gradually increased to include more states. In each iteration,
the algorithm performs an inductiveness query ((lines 3 and 4) and terminates if
an inductive invariant has been found. If a counterexample to induction (σ, σ′)
exists, the algorithm generates a term d which includes the post-state σ′, and
disjoins d to ϕ to obtain the new candidate (line 11). To obtain d, the algorithm
starts with cube(σ′)—the conjunction that exactly captures σ′—and drops liter-
als as long as no state in d can reach a bad state in k steps or less (line 9). These
checks are done via Hoare queries. If σ′ itself reaches a bad state in k steps, no
invariant weaker than ϕ exists, and the algorithm restarts with a larger bound
k (line 6).
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Interestingly, Algorithm 2 is essentially the result of the transformation
of Corollary 2 applied to the exact learning algorithm for DNF formulas of
Aizenstein and Pitt [1] as it appears in Algorithm 3 (similar to the algorithm by
Angluin [2]), where EQ denotes an equivalence query and SQ denotes a subset
query. The differences are the additional check in line 6 in Algorithm 2, meant
to detect failure, and the initialization of ϕ to Init instead of false, which can be
viewed as an optimization.

Algorithm 2. Interpolation-based infer-
ence by term minimization
1: procedure MB-ITP(Init, [δ], Bad, k)
2: ϕ ← Init
3: while I(δ, ϕ) �= true do
4: (σ, σ′) ← I(δ, I)

5: if H(k)(δ, σ′, ¬Bad) �= true then
6: restart with larger k

7: d ← cube(σ′)
8: for � in d do
9: if H(k)(δ, d \ {�}, ¬Bad) = true then

10: d ← d \ {�}
11: ϕ ← ϕ ∨ d

12: return I

Algorithm 3. Exact concept learn-
ing of DNF formulas [1,2,36]
1: procedure Learn-DNF
2: ϕ ← false
3: while EQ (ϕ) is not ⊥ do
4: σ′ ← EQ (ϕ)
5:
6:
7: d ← cube(σ′)
8: for � in d do
9: if SQ (d \ {�}) = true then

10: d ← d \ {�}
11: ϕ ← ϕ ∨ d

12: return ϕ

The queries performed in Algorithm 3 satisfy the conditions of the trans-
formation: the hypothesis ϕ is always below the true formula, as required for
equivalence queries; the subset queries are always positive adjacent, because if
d is a term s.t. d =⇒ ψ, and d′ �=⇒ ψ where d′ = d \ {�}, then taking a state
σ− |= d′ ∧ ¬ψ and flipping the variable in � results in a state σ+ |= d and hence
σ+ |= ψ, hence σ− |= ∂−(ψ) and σ− |= d′, as required. As such, the transforma-
tion also yields an efficiency result for Algorithm 2 which is carried over from
the efficiency of Algorithm 3 for monotone DNF formulas [1,2]:

Theorem 4. Let (Init, δ,Bad) be a transition system with |Σ| = n and k ∈ N.
If there is an inductive invariant I ∈ Mon-DNF that is backwards k-fenced, then
MB-ITP(Init, [δ],Bad, k) converges to an inductive invariant in O(m) inductive-
ness queries, O(mn) Hoare queries (with argument k), and O(mn) time.

Theorm 4 focuses on efficiency of MB-ITP for monotone invariants under
the fence condition; in [11] we also show that if any k-fenced inductive invariant
I exists (not necessarily monotone), then the check in line 5 never fails, hence
convergence with reachability bound k is guaranteed. Together with Lemma 1
this provides an alternative proof of termination for MB-ITP.

Efficient Inference of Invariants with a Known Monotone Basis
Through Exact Learning. Bshouty [5] investigated exact learning of formulas
that are not monotone. To this end, he introduced the monotone theory. The idea
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is that a formula ϕ can be reconstructed as the conjunction of its monotoniza-
tions, Mb(ϕ), w.r.t. elements b in a set B that forms a monotone basis for ϕ; a
set of states B is a monotone basis for ϕ if ϕ ≡ ∧

b∈B Mb(ϕ) (such a set always
exists, and is related to CNF representations of ϕ). Bshouty’s Λ-algorithm can
efficiently learn ϕ, while using equivalence and membership queries, provided
that the monotone basis is known a-priori, and is amenable to the transforma-
tion in Corollary 2, resulting in a Hoare-query algorithm, Λ-Inference, that can
efficiently learn every formula for which B = {b1, . . . , bt} is a basis when the
k-fenced condition holds:

Theorem 5. Let (Init, δ,Bad) be a transition system with |Σ| = n, and k ∈ N.
If there exists an inductive invariant I that is backwards k-fenced, I ∈ DNFm,
and B = {b1, . . . , bt} is a monotone basis for I, then Λ-Inference(Init, [δ],Bad, k)
converges to an inductive invariant in O(m · t) inductiveness checks, O(m · t ·n2)
k-BMC checks, and O(m · t · n2) time.

Choosing a Monotone Basis. Some important classes of formulas admit a known
basis that the algorithm can use. The class of r-almost-monotone DNF is the
class of DNF formulas with at most r terms which include negative literals. The
set of all states with at most r variables assigned true is a basis for this class [5].
When r = O(1), the size of this basis is polynomial in n = |Σ|. Another interest-
ing class with a known base of size polynomial in n is the class of (arbitrary) DNF
formulas with O(log n) terms, although the construction is less elementary [5].

Applying Theorm 5 with the known basis for r-almost-monotone DNF yields:

Corollary 3. Let (Init, δ,Bad) be a transition system with |Σ| = n, k ∈ N, and
r = O(1). If there exists an inductive invariant I that is backwards k-fenced, and
I is r-almost-monotone DNF with m terms, then Λ-Inference(Init, [δ],Bad, k)
with an appropriate basis converges to an inductive invariant in poly(m · n)
inductiveness checks, poly(m · n) k-BMC checks, and poly(m · n) time.

Dual Inference Under the Dual Fence Condition. Safety problems enjoy a
duality between the initial states and the bad states: a formula I is an inductive
invariant w.r.t. (Init, δ,Bad) iff the dual formula ¬I is an inductive invariant
w.r.t. the dual transition system (Bad, δ−1, Init). This gives rise to dual algo-
rithms that, given as input (Init, δ,Bad), infer an invariant for the dual problem
and return the dual invariant. Dual algorithms allow us to translate complexity
results from the inference of CNF invariants to the inference of DNF invari-
ants and vice versa. Since our results are conditioned upon the backwards-fence
condition, we need to dualize it as well:

Definition 9 (Forward k-Fenced). I is k-forward fenced if every state in
∂+(I) is reachable from Init in at most k steps, where ∂+(I) is the inner boundary
of I, the set of states σ+ |= I s.t. there is a state σ− �|= I that differs from σ+

in exactly one variable.
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Using duality, we derive efficiency results under the k-forward fence condition
for antimonotone CNF invariants (from Theorm 4), and for r-almost antimono-
tone CNF invariants, which are CNF formulas with at most r clauses that include
positive literals (from Corollary 3).

5.3 Inference from Two-Sided Fence and Exact Learning

The previous section has provided a translation of exact learning algorithms,
but only those that admit certain requirements on their queries. In this section
we simulate arbitrary exact learning algorithms (going beyond the requirements
in Corollary 2) relying on a two-sided fence condition. An important example of
such an exact learning algorithm is the CDNF algorithm by Bshouty [5]. The
conditions of the transformation in Sect. 5.2 do not hold because this algorithm
performs equivalence queries that can return either positive or negative exam-
ples. We now show how to implement any membership or equivalence query to
the invariant using the two-sided fence condition.

Lemma 5 (Implementing membership queries). Let (Init, δ,Bad) be a
transition system with |Σ| = n and I an (unknown) inductive invariant that is
backwards k1-fenced and forwards k2-fenced. Then membership queries to I can
be implemented in at most n Hoare queries with reachability bound k1 and n
Hoare queries with reachability bound k2.5

Given a membership query “σ ∈ I?”, the idea is to choose some known state
σ0 ∈ Init, and gradually walk from σ to σ0, that is, in each step change one
variable in σ to match σ0 and return true if H(k1)(δ, Init,¬cube(σ)) �= true,
and false if H(k1)(δ, cube(σ),¬Bad) �= true (otherwise continue the walk). The
rational is that if σ ∈ I but it is not reachable from Init in k1 steps, the walk
will eventually hit the inner boundary of I, which is guaranteed to be reachable
in k1 steps—as can be detected using a Hoare query with k = k1—so that the
corresponding Hoare query will return such a counterexample trace; similarly, if
σ �∈ I the walk will eventually hit the outer boundary which is guaranteed to
reach Bad in k2 steps and the Hoare query will detect it.

An equivalence query can be implemented by an inductiveness query and a
membership query (as was also noted in Sect. 4.2):

Lemma 6 (Implementing equivalence queries). Let (Init, δ,Bad) be a
transition system with |Σ| = n, and I an (unknown) inductive invariant that
is forwards k1-fenced and backwards k2-fenced. Then given θ it is possible to
answer whether θ is an inductive invariant, or provide a counterexample σ such
that σ |= θ, σ �|= I or σ �|= θ, σ |= I, using an inductiveness query, and at most n
Hoare queries with bound k1 and n Hoare queries with bound k2.

5 The proof of this also implies that an invariant that is both forwards k1-fenced and
backwards k2-fenced is unique, seeing that the implementation of the membership
query for both is the same.
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We can use these procedures to implement every exact learning algorithm
from (arbitrary) equivalence and membership queries.

Corollary 4. Let C be a class of formulas. Let A be an exact concept learning
algorithm that can identify every ϕ ∈ C in at most s1 equivalence queries and
s2 membership queries. Then there exists a sound invariant inference algorithm
that can find an inductive invariant for every transition system that admits an
inductive invariant I ∈ C that is forwards k1-fenced and backwards k2-fenced
using at most s1 + 1 inductiveness queries, n(s1 + s2) Hoare queries with bound
k1, n(s1 + s2) Hoare queries with bound k2, and time O(n(s1 + s2)tA) where tA
is the worst-case time of A learning I and n = |Σ|.

Next, we demonstrate an application of Corollary 4 to the inference of a
larger class of invariants.

Inference Beyond Almost-Monotone Invariants. Earlier, we have shown
that almost-monotone DNF invariants are efficiently inferrable when the back-
wards fence condition holds, and similarly for almost-antimonotone CNF when
the forwards fence condition holds. We now apply Corollary 4 to the CDNF algo-
rithm by Bshouty [5] to show that the class of invariants that can be succinctly
expressed both in DNF and in CNF (not necessarily in an almost-monotone way)
can be efficiently inferred when the fence condition holds in both directions:

Theorem 6. There is an algorithm A that for every input transition system
(Init, δ,Bad) with |Σ| = n and k ∈ N, if the system admits an inductive invariant
I such that I ∈ DNFm1

, I ∈ CNFm2
, and I is both backwards- and forwards- k-

fenced, then A(Init, [δ],Bad, k) converges to an inductive invariant in O(m1 ·m2)
inductiveness queries, O(m1 · m2 · n3) Hoare queries with bound k, and O(m1 ·
m2 · n3) time.

Such a complexity guarantee is significant, because, put differently, it shows
that an invariant can be learned efficiently in terms of its smallest DNF and CNF
representations (provided that the two-sided fence condition holds). Through an
observation by Bshouty [5], this implies that it is possible to efficiently infer an
invariant that admits a succinct representation as a decision tree: a binary tree
in which every internal node is labeled by a variable and a leaf by true/false, and
σ satisfies the formula if the path defined by starting from the root, turning left
when the σ assigns false to the variable labeling the node and right otherwise,
reaches a leaf true. The size of a decision tree is the number of leaves in the tree.

Corollary 5. There is an algorithm A that for every input transition system
(Init, δ,Bad) with |Σ| = n and k ∈ N, if the system admits an inductive invariant
I that can be expressed as a decision tree of size m, and I is both backwards- and
forwards- k-fenced, then A(Init, [δ],Bad, k) converges to an inductive invariant
in O(m2) inductiveness queries, O(m2 · n3) Hoare queries with bound k, and
O(m2 · n3) time.
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Similarly, when an r-almost-unate invariant with O(log n) non-unate variables
is fenced both backwards and forwards, it can be inferred by an adaptation of
an algorithm by Bshouty [6].

Inference Beyond Concept Learning: Efficient Inference of CDNF
Invariants from One-Sided Fence Condition. The previous section has
arrived at an extremely almost-satisfying result: that any invariant can be
inferred in time proportional to the size of its smallest representations in DNF
and CNF and the number of variables. The culprit is that the translation from
Bshouty’s CDNF algorithm is possible only under the two-sided fence condi-
tion, which is significantly stronger than a one-sided fence condition. In [13] we
show that the same result is also attainable under the one-sided fence condition,
where the Hoare-query algorithm we use cannot be understood as a direct trans-
lation of an exact concept learning algorithm—it builds heavily on Bshouty’s
CDNF algorithm, but modifies it in important ways, while still accessing the
transition relation only through Hoare queries. Specifically, the forwards k-fence
condition ensures that the set S of states reachable in at most k steps satisfies
∂+(I) ⊆ S ⊆ I. The algorithm relies on this property to construct a formula H
that contains I by sampling and generalizing states from S in a certain way that
guarantees that ∂+(I) ⊆ H =⇒ I ⊆ H. In this way, the algorithm relies on the
fact that ∂+(I) ⊆ S (thanks to the fence condition) to ensure that after sampling
enough states from S and using them to increase H, once H(k)(δ, Init,H)=true
holds (i.e., S ⊆ H), then it is also guaranteed that I ⊆ H. This process has no
analog in exact concept learning, because, there, we are not given any set S that
is related to the boundary of the target concept.

6 Conclusion

This paper surveyed results that formally established the relation between SAT-
based invariant inference and exact learning with queries, and utilized it to
illuminate some of the fundamental questions about invariant inference. There
is still much to understand about this topic. In particular, it is interesting to
show separation between Hoare queries that use different lengths of executions
k, which could indicate that bounded model checking in principle provides addi-
tional power. The boundaries of the ability to translate learning algorithms
to invariant inference under the fence condition could be clarified by showing
that general membership queries are impossible to implement even under the
fence condition, justifying the two-sided condition for a general transformation.
Finally, other translations that build on reachability conditions other than the
fence condition could help explain inference algorithms other than model-based
interpolation, and pave the way for new algorithms that are efficient in practice.
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Abstract. In this short survey we describe recent advances on the Post
Correspondence Problem in group theory that were inspired by results
in computer science. These algebraic advances can, in return, provide a
source of interesting problems in more applied, computational settings.

Post’s Correspondence Problem (PCP) is a classical decision prob-
lem in theoretical computer science that asks whether for a pair of free
monoid morphisms g, h : Σ∗ → Δ∗ there is any non-trivial x ∈ Σ∗ such
that g(x) = h(x). One can similarly phrase a PCP for general groups,
rather than free monoids, by asking whether pairs g, h of group homo-
morphisms agree on any inputs. This leads to interesting and unexpected
(un)decidability results for PCP in groups.

Keywords: Post Correspondence Problem · Free and hyperbolic
groups · Free monoids · Nilpotent groups · Decidability

1 Introduction

Post’s Correspondence Problem (PCP) is a prominent undecidable problem in
computer science which owes its popularity both to its particularly simple state-
ment and the fact that it acts as a source of undecidability in a variety of
settings. Among the many equivalent ways of formulating PCP we choose the
one that lends itself most easily to algebraic manipulation and generalisation:
given two finite sets Σ and Δ, PCP takes as input a pair of free monoid mor-
phisms g, h : Σ∗ → Δ∗, and asks if there exists any non-trivial x ∈ Σ∗ such
that g(x) = h(x). Undecidability was proven by Post in 1946 [29], and numerous
other problems were proved to be undecidable by reducing them to the PCP:
the matrix mortality question, tiling problems, or decidability questions about
context-free grammars [17,27].

One of the successful ways to use the PCP in applications has been to modify
it or generalise it. Of the many variations and results on PCP we will survey the
following directions:

(1) ‘free’ PCP: the PCP and its variations for (certain types of) morphisms in
free monoids and groups, and

(2) ‘beyond free’ PCP: the PCP for group homomorphisms in non-free groups.
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2 ‘Free’ PCP

The PCP in the context of free groups was mentioned for the first time in the
1980’s by Stallings [34], to our knowledge, and it remains open for free groups.
It is defined analogous to the free monoid case: Let Σ and Δ be two alphabets,
let g, h : F (Σ) → F (Δ) be two homomorphisms from the free group over Σ to
the free group over Δ, and store this data in a four-tuple I = (Σ,Δ, g, h), called
an instance of the PCP . The PCP is the decision problem:

Given I = (Σ,Δ, g, h), is there x ∈ F (Σ) \ {1} such that g(x) = h(x)?

An equivalent way of stating the PCP in free groups is via the equaliser

Eq(g, h) = {x ∈ F (Σ) | g(x) = h(x)}

of g and h, which is a subgroup of F (Σ); the PCP then asks if Eq(g, h) is non-
trivial. Equalisers are very natural objects because they are subgroups, and so
we can study them with the help of algebraic, combinatorial or geometric tools.
Moreover, since Eq(g, h) has an algebraic structure, it makes sense to ask not
just about the triviality of Eq(g, h) (i.e. PCP), but for a finite description of it.

Injectivity. A first basic observation about PCP for free groups is that if neither
g nor h are injective, then PCP is decidable (by the Lemma 1), which is not the
case for free monoids. Recall that if u, v ∈ F (Σ) then we write [u, v] := u−1v−1uv
for their commutator, and that the kernel of a map g (with domain F (Σ) as
above) is defined as ker(g) = {x ∈ F (Σ) | g(x) = 1}.

Lemma 1 ([6]). If g, h : F (Σ) → F (Δ) are both non-injective homomorphisms
then Eq(g, h) is non-trivial.

Proof. We prove that ker(g) ∩ ker(h) is non-trivial, which is sufficient. Let u ∈
ker(g) and v ∈ ker(h) be non-trivial elements. If 〈u, v〉 ∼= Z = 〈x〉, there exist
integers k, l such that u = xk and v = xl. Then g(xkl) = 1 = h(xkl) so xkl ∈
ker(g) ∩ ker(h) with xkl non-trivial, as required. If 〈u, v〉 � Z then g([u, v]) =
1 = h([u, v]), so [u, v] ∈ ker(g) ∩ ker(h) with [u, v] non-trivial, as required. �	

We write PCP (¬inj,¬inj) for the PCP where none of the maps is injec-
tive, and PCP inj for the PCP with at least one map injective. Lemma 1 set-
tles PCP (¬inj,¬inj), leaving PCP inj as the interesting case, when the subgroup
Eq(g, h) is finitely generated [15] and a finite description relates to bases (or gen-
erating sets): The Basis Problem (BP ) takes as input an instance I = (Σ,Δ, g, h)
of the PCP inj and outputs a basis for Eq(g, h). Recent results settle the BP for
certain classes of free group maps [4,8,12,22], as we describe below, but despite
this progress its solubility remains open in general. The analogous problem for
free monoids aims to describe the equaliser in terms of automata rather than
bases, and is insoluble [19, Theorem 5.2].
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An interesting subclass of injective maps are the marked morphisms for free
monoids, and their analogue, called immersions, for free groups. A set of words
s ⊆ Δ∗ is marked if any two distinct u, v ∈ s start with a different letter of Δ,
which implies |s| ≤ |Δ|. A free monoid morphism f : Σ∗ → Δ∗ is marked if the
set f(Σ) is marked. An immersion of free groups is a morphism f : F (Σ) →
F (Δ) where the set f(Σ ∪ Σ−1) is marked. For these classes of maps not only
PCP , but also the stronger Basis Problem, was shown to be decidable.

Theorem 1 ([8,16]). If g, h are marked morphisms from Σ∗ to Δ∗, then one
can explicitly compute a finite alphabet Σg,h and a marked morphism ψg,h :
Σ∗

g,h → Σ∗ such that Image(ψg,h) = Eq(g, h).
In particular, PCP and the Basis Problem BP are decidable for marked

morphisms of free monoids.

Theorem 2 ([8]). If g, h are immersions from F (Σ) to F (Δ), then one can
explicitly compute a finite alphabet Σg,h and an immersion ψg,h : Σg,h → F (Σ)
such that Image(ψg,h) = Eq(g, h).

In particular, PCP and BP are decidable for immersions of free groups.

Random Homomorphisms and Generic Behaviour. A different perspec-
tive on the PCP and its variations is to consider the behaviour of these prob-
lems when the pairs of homomorphisms are picked randomly. Formally: Fix
the two alphabets Σ = {x1, . . . , xm} and Δ = {y1, . . . , yk}, m, k ≥ 2, and
ambient free groups F (Σ) and F (Δ), and pick g and h randomly by choosing
(g(x1), . . . , g(xm)) and (h(x1), . . . , h(xm)) independently at random, as tuples
of words of length bounded by some positive integer n in F (Δ). If P is a prop-
erty of tuples (or subgroups) of F (Δ), we say that generically many tuples (or
finitely generated subgroups) of F (Δ) satisfy P if the proportion of m-tuples of
words of length ≤ n in F (Δ) which satisfy P (or generate a subgroup satisfy-
ing P), among all possible m-tuples of words of length ≤ n, tends to 1 when n
tends to infinity. There is a vast literature (see for example [18]) on the types
of objects and behaviours which appear with probability 1, called generic, in
infinite groups.

In this spirit, the generic PCP refers to the PCP applied to a generic set (of
pairs) of maps, that is, a set of measure 1 in the set of all (pairs of) homomor-
phisms. We say that the generic PCP is decidable if the PCP is decidable for
‘almost all’ instances, that is, for a set of measure 1 of pairs of homomorphisms.

In [6] we show that among all pairs of homomorphisms g, h, the property of
being conjugacy inequivalent (that is, for every u ∈ F (Δ) there is no x �= 1 in
F (Σ) such that g(x) = u−1h(x)u) occurs with probability 1; that is, conjugacy
inequivalent maps are generic. Since for conjugacy inequivalent maps we can
choose u = 1 we immediately get that if g, h are conjugacy inequivalent then
Eq(g, h) = {1}, which trivially implies the following.

Theorem 3 ([6,7]). The generic PCP is decidable in free groups.

The same holds for free monoids, that is, for the classical PCP , by [14].
We collect the results from this section in Table 1.
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Table 1. Status of results for free monoids and free groups

Problems In free monoids References In free groups References

free monoids free groups

General PCP Undecidable [29] Unknown [8]

General BP Undecidable [19, Thm 5.2] Unknown [8]

PCP (¬inj,¬inj) Undecidable [29] Decidable [6]

PCP inj Undecidable [23] Unknown

PCP marked/immersions Decidable [16] Decidable [8]

Generic PCP Decidable [14, Thm 4.4] Decidable [7]

3 ‘Beyond Free’ PCP

We here describe an analogue of PCP for general groups, rather than just for
free monoids or free groups, following Levine, Logan and the author [24].

Myasnikov, Nikolaev and Ushakov have previously defined a version of this
problem for groups beyond the free ones in [26]. The key difference between
their version and ours is how pairs of non-injective maps are dealt with, which
we explain below.

Post’s Correspondence Problem for Groups. An instance of the PCP is
a four-tuple I = (Σ,Γ, g, h) with g, h : F (Σ) → Γ , where Σ is a finite alphabet
and F (Σ) is the associated free group, Γ is a group, and g, h : F (Σ) → Γ are
group homomorphisms. The PCP itself is the decision problem:

Given I = (Σ,Γ, g, h), is the group Eq(g, h)/(ker(g) ∩ ker(h)) trivial?

Compared to the free group statement in the previous section, where we asked
about the triviality of simply Eq(g, h), here we quotient out by ker(g) ∩ ker(h),
as we wish to be able to consider the case when neither map is injective and get
substantial information. As we have seen for free groups, Lemma 1 (which easily
generalises to non-free groups) immediately deals with the triviality of Eq(g, h)
for non-injective maps, and handles PCP , but without getting to the core of the
problem. Thus we remove the kernels from the discussion: for non-injective maps
ker(g)∩ker(h) is automatically non-trivial as it contains the non-trivial subgroup
[ker(g), ker(h)], and we end up considering a proper quotient of Eq(g, h).

Note that this definition is completely applicable to free groups as well, and
it matches the ‘standard’ PCP if one of the maps is injective, or if we consider
immersions. However, we separated free groups with the standard definition of
PCP from more general groups and the ‘kernel’ definition of PCP because we
wanted to couple free groups with free monoids, where kernels do not exist.

By a solution to I we mean an element x ∈ Eq(g, h) \ (ker(g) ∩ ker(h)).
Solutions are therefore those elements x ∈ F (Σ) that correspond to non-trivial
cosets x(ker(g) ∩ ker(h)) ∈ Eq(g, h)/(ker(g) ∩ ker(h)).

Myasnikov–Nikolaev–Ushakov considered the triviality of Eq(g, h) and mit-
igated against ker(g) ∩ ker(h) automatically being non-trivial by considering
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varieties of groups. However, this mitigation cannot deal with Γ being hyper-
bolic, or indeed not being contained in any proper variety of n-generated groups
(see Hanna Neumann’s book [28] for an exposition on varieties of groups).

Hyperbolic Groups. Hyperbolic groups, and groups of ‘negative curvature’
more generally, tend to be more manageable when it comes to decision problems
and algorithms. The geometry plays a powerful role in limiting the number
of computations in the algorithms, and leads to not just decidability, but also
easier solutions to algorithmic problems, of lower complexity. For example, in any
hyperbolic group the word and conjugacy problem are solvable in linear time,
and it is decidable whether a system of equations and inequations has a solution
[5,9], and possible to understand the language-theoretic complexity of solution
sets of systems of equations and inequations. However, there are exceptions to the
decidability results mentioned above, most notably, the subgroup membership
problem, which in general undecidable; also, there is no algorithm to compute
finite generating sets for intersections of finitely generated subgroups [31]. The
subgroup membership problem will be used in the Theorem 4 below.

The first result of [24] regards the PCP for hyperbolic groups; like both the
classical PCP in monoids and the subgroup membership problem, it ends up
being a negative result. Placing restrictions on the alphabet Σ, group Γ and
maps g and h allows one to investigate the boundary between decidability and
undecidability. The binary PCP is the PCP restricted to those instances I =
(Σ,Γ, g, h) where |Σ| = 2; the classical (free monoid) binary PCP is decidable
[11]. For X a class of finitely generated groups, the PCP for X is the PCP
restricted to those instances I = (Σ,Γ, g, h) where the group Γ is in X. We can
intersect such classes of instances, and so for example can consider the binary
PCP for hyperbolic groups.

Theorem 4 ([24]). The binary PCP for hyperbolic groups is undecidable.

The proof of Theorem 4 relies on the undecidability of the subgroup mem-
bership problem for hyperbolic groups, and on Belegradek and Osin’s version
of Rips’ construction [2]. Belegradek and Osin prove that for every finitely pre-
sented group Q and hyperbolic group H there exists a short exact sequence
1 → N → Γ → Q → 1 such that Γ is hyperbolic and N is a homomorphic image
of H. Then H can be chosen carefully so that N has certain desirable properties,
and one can pick Q with undecidable word problem, which implies that N has
undecidable membership problem. Since the main argument of the proof relies
on reducing the triviality of Eq(g, h)/(ker(g) ∩ ker(h)) to the membership in N ,
this gives the result.

Virtually Nilpotent Groups. On the other side of hyperbolic groups are the
so-called ‘groups of non-negative curvature’, such as nilpotent groups. Finitely
generated nilpotent groups have decidable word and conjugacy problems [3].
Much recent work on algorithms in nilpotent groups has been inspired by work
in computer science and led to positive results: the compressed word problem
[20], the knapsack problem [21] etc. However, unlike in hyperbolic groups, the
satisfiability of systems of equations in (free) nilpotent groups is undecidable
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[32], and many papers have showed how solving equations in various nilpotent
groups [10,13,30,33] reduces to solving Diophantine equations, which fall into
the realm of Hilbert’s 10th problem and undecidability. In general, arithmetic
is much easier to interpret in nilpotent groups than in groups of negative cur-
vature, and it is therefore unsurprising to run into undecidability. On the other
hand, and again contrasting with hyperbolic groups, the subgroup membership
problem is decidable, and there exists an algorithm to compute generating sets
for intersections of finitely generated subgroups [1,25] (many similar positive
results extend to polycyclic groups).

From a geometric and algorithmic viewpoint, hyperbolic groups and nilpo-
tent groups are opposites, and so as the PCP is undecidable for hyperbolic
groups, we might expect it to be decidable for nilpotent groups. This is indeed
the case, with Myasnikov–Nikolaev–Ushakov proving decidability in their above-
mentioned paper [26, Theorem 5.8] (their proof actually addresses our definition
of the PCP, rather than theirs). Levine, Logan and the author extend this result
to virtually nilpotent groups (i.e. groups containing a nilpotent subgroup of finite
index).

Theorem 5 ([24]). The PCP is decidable for finitely generated virtually nilpo-
tent groups.

In fact, [24] give general sufficient conditions for when PCP is decidable in
virtually A groups, where A a variety of groups (see Hanna Neumann’s book
[28], for example), results that can extend to more than just virtually nilpotent
groups.

4 The Verbal PCP

In this section we consider the version of the PCP defined by Myasnikov–
Nikolaev–Ushakov, which is called the “verbal PCP” in [24]. To differentiate,
we shall refer to the PCP we defined in Sect. 3 as the kernel-based PCP.

The definition we give now is equivalent to Myasnikov–Nikolaev–Ushakov’s
definition, but has been rephrased to mirror the definition of the kernel-based
PCP: An instance of the verbal PCP is an instance of the kernel-based PCP,
so a four-tuple I = (Σ,Γ, g, h) with g, h : F (Σ) → Γ . Write V (Γ ) for the
maximal verbal subgroup of F (Σ) such that any map F (Σ) → Γ factors through
F (Σ)/V (Γ ) (i.e. V (Γ ) is the verbal subgroup generated by the “laws” of Γ , in
the sense of Hanna Neumann). The verbal PCP itself is the decision problem:

Given I = (Σ,Γ, g, h), is the group Eq(g, h)/V (Γ ) trivial?

Note that V (Γ ) ≤ (ker(g) ∩ ker(h)), so for a fixed instance I, the verbal PCP
may have solutions when the kernel-based PCP does not.

Hyperbolic Groups. Suppose Γ is non-elementary hyperbolic. Then Γ con-
tains a non-abelian free group, so V (Γ ) is trivial. Hence, the verbal PCP for
non-elementary hyperbolic groups is simply asking if the equaliser Eq(g, h) is
trivial. This compares with the kernel-based PCP as follows:



34 L. Ciobanu

1. If either g or h is injective then ker(g) ∩ ker(h) = V (Γ ), as both are trivial.
Hence, the verbal PCP and the kernel-based PCP ask the same question and
so have identical solution sets. Decidability here is unknown.

2. If both g and h are injective then ker(g) ∩ ker(h) is non-trivial (as it contains
the non-trivial subgroup [ker(g), ker(h)]). Hence, the verbal PCP necessarily
has a solution, and so is trivially decidable. However, by Theorem 4, the
kernel-based PCP is undecidable.

Nilpotent Groups. As we mentioned in Sect. 3, Myasnikov–Nikolaev–Ushakov
proved the kernel-based PCP for nilpotent groups, rather than the verbal PCP
for these groups as their theorem incorrectly states. Levine, Logan and the
author, in work in progress, aim to rectify this situation and prove that the
verbal PCP is decidable for nilpotent groups.

5 Conclusions

The Post Correspondence Problem is a classical problem in theoretical computer
science that crossed over into algebra and generated a number of interesting
(un)decidability results in the last few years. There are many ways to phrase
the problem in order to obtain a satisfying statement that does not have trivial
answers, and we present here two options besides the standard one: the kernel-
based PCP and the verbal PCP .

The crossover from computer science into algebra has begun only recently,
and there are undoubtedly many more avenues to explore by translating ques-
tions on free monoids, where decades of literature exists, into groups. Once in
the world of groups, there are numerous tools to tackle these problems which are
not always available for free monoids, tools coming from geometry, topology and
algebra. The important question remains whether the progress and ideas from
algebra can inform the work in computer science. One of immediate questions
is whether PCP in non-free monoids can be studied successfully, especially in
monoids with interesting algebraic and geometric properties, such as (certain)
hyperbolic or trace monoids.

Finally, the fundamental question asking the decidability of PCP for free
groups remains open, and while it is very challenging, progress on the free group
on two generators is on the horizon.
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Abstract. Embedded finite model theory refers to a formalism for
describing finite structures over an uninterpreted signature, which sit
within an infinite interpreted structures. Some theory was developed in
the 1990s and early 2000s, with a focus on the real field. But the the-
ory applies to arbitrary theories, and is relevant to recent development
on graph querying and analysis of data-driven programs involving arith-
metic.

In this invited paper we review the framework and some of the basic
results on it. We also discuss some open questions, along with some work
in progress, joint with Ehud Hrushovski.

1 Introduction

A common scenario in symbolic reasoning is one where we have both uninter-
preted structure – relation symbols that range over arbitrary interpretations –
along with some structure with a fixed interpretation or a heavily-constrained
family of interpretations. There are, of course, many formalisms that deal with
such situations, depending on what kinds of problems one might look at: data-
aware systems [10] and constrained Horn clauses [16], are formalisms of this
nature that have been explored in verification.

But there is an older line of work, deriving from database theory and model
theory, that takes a different tack on mixing uninterpreted and interpreted struc-
ture: embedded finite model theory. In this setting we have a target infinite model
M in language L, a disjoint finite relational signature S, and we consider for-
mulas over the language L ∪ S, with the intention that predicates in S range
over finite interpretations within M . Formalizing the intended semantics, two
formulas in L ∪ S are said to be equivalent (modulo M) if they agree in any
expansion of M where all finite interpretations of predicates in S have tuples
lying in the domain of M . If we fix an L theory T , we can talk about equivalence
modulo T , allowing M to range over models of T . Here we will focus on com-
plete theories T . Pairs consisting of a model M for T and a finite interpretation
of S within M are referred to as embedded finite models (for T ) in [5,8,19]. In
analogy, we refer to the case where S = {P}, a single unary predicate, as an
embedded finite subset. Reasoning about equivalence of L ∪ S formulas can be
phrased as reasoning about L formulas with free weak second order variables.
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When we talk about evaluation of L ∪ S sentences, we will mean that we take
an L ∪ S formula φ along with a finite interpretation S0 for predicates in S and
we want to know if T |= φ(S/S0). When T is the complete theory of model M
(e.g. the real field), this is the same as asking whether the expansion of M using
S0 for S satisfies φ. This evaluation problem can be reduced to reasoning in T ,
by just substituting S atoms with disjunctions of equalities involving tuples in
S0. However, we will see that there are alternative approaches.

The main goal of this paper and accompanying talk is to re-introduce this
topic. We will outline:

– Some highlights of the theory that was developed several decades ago
– Some recent (unpublished) results
– Some open problems in the area

2 Basic Definitions and Some Highlights of Prior Work

Embedded finite model theory developed out of a formalism for spatial data,
constraint databases, originating in work of Kannelakis, Kuper, and Revesz [18].
They dealt with first order logic over a vocabulary L∪S, where L is an interpreted
signature and S is a finite relational signature disjoint from L. The constraint
database setting considered interpretations for the relational signature S by
definable sets, and focused on the case where T is the complete theory for one of
the natural structures over the reals: for example, the real ordered field. We will
not talk about constraint databases here, although the more general setting does
raise a number of interesting definability questions that go beyond embedded
finite model theory: see, for example, [7,15].

Much work in the 1990s dealt with questions of expressiveness of these logics
over the reals, and this led to the question of what happens when the interpre-
tation of each relation in S is restricted to be finite: that will be our focus here.
Of course, we know a lot about the expressiveness of first-order logic over finite
structures: for example, we know that there cannot be a first order sentence
φ(P ) that holds of a finite set P exactly when the cardinality of P is even. Is the
same true for L ∪ {P} sentences interpreted over embedded finite subsets for a
theory T? Or does the ability to use unbounded quantification over the ambient
model add to the expressiveness? It obviously depends on T .

Example 1. Consider the case where L is empty and T is the complete theory
of an infinite set M∅. Then in L ∪ {P} we can express statements like:

φ1−out = “there is an x that is not inP”

φ2−in,3−out = “there are two elements inP and there are three elements not inP”.
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But note that φ1−out is equivalent to True. And φ2−in,3−out is equivalent to
φ2−in saying only that P has size at least 2: we can always find the required wit-
nesses outside of P . Here when we say “is equivalent”, we mean always equivalent
over interpretations of P that are finite.

Hull and Su [17] showed that the phenomenon above is not an accident: for
every φ as above there is a φ′ which quantifies only over P , with φ′ equivalent to
φ over finite interpretations of P . In this work we call a φ′ which only quantifies
over the “finite part” a first-order bounded-quantifier formula or just 1-bounded
for short. It easily follows from Hull and Su’s result that having quantification
over an ambient infinite set does not allow you to express anything new: for
example, the parity of a unary relation P cannot be expressed using such quan-
tification. Here we talked about a single unary predicate P , but Hull and Su’s
result deals with arbitrary finite relational signatures S. The active domain of
such a structure is the union of the projections of all relations in S. Then [17]
shows that, for every φ over S, where quantification is over an infinite set, we can
find φ′ equivalent to φ that quantifies only over the active domain of the S inter-
pretations: that is, we can pre-process φ to quantify only over the finite part.
We will talk about bounded-quantifier formulas to mean those that quantify
over the active domain of the S structure. Several other terms have been used
for these formulas in the past: e.g. “restricted quantifier” “active domain quan-
tifier”. The motivation for our terminology 1-bounded should become clearer
when we discuss the higher-order case in Sect. 3.

Example 1 deals with a trivial signature and theory. But in the 1990s it was
noted that the same phenomenon arises for more involved settings.

Example 2. Consider the case where L consists of a binary relation < and T is
the complete theory of a dense linear order. Then for every relational signature
S, every L ∪ S formula is equivalent to one that quantifies only over the active
domain of the S structure.

Intuitively, all elements outside the active domain of S can be grouped into
classes, depending on where they sit in the order relative to the active domain of
S. We can replace a quantification over an ambient element with a quantification
over one of its neighbors in the active domain of S.

We say that a theory T in language L has restricted quantifier collapse (RQC)
if for every relational signature S, any L∪S formula is equivalent (over embedded
finite models) to a first-order bounded-quantifier formula. RQC implies quantifier
elimination, but we will abuse notation by saying that a theory has RQC if
some definable extension with quantifier elimination has it. This is equivalent to
extending the notion of bounded-quantifier formula to allow arbitrary first-order
L formulas in the base case. Then we can restate the early results as saying: the
trivial theory and theory of dense linear order have RQC.

The motivating applications we have in mind involve S being a relational
database schema [18] or a graph schema [13]. But much of the theoretical phe-
nomena of interest for a given theory is already evident if we restrict to S = {P}
with P unary. In this case we speak of embedded finite subsets.
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Interest in RQC and embedded finite model theory in general was spurred
by a result due to Van den Bussche, Paredeans, and Van Gucht in [20]: they
showed that RQC holds for the real-ordered group. This was later generalized
to the real order field [8]. On the other hand, it was noted that theories that are
model-theoretically badly-behaved, like full integer arithmetic, do not have RQC:
they can express that P has even parity, and indeed can express uncomputable
properties of |P |.

There are at least two perspectives on RQC. From a practical perspective,
evaluation of an L∪S formula φ can be considered as deciding T -formulas that are
parameterized by data. Any fixed S structure could be inlined into φ, giving an L-
formula which can be evaluated using whatever decision procedures are available
for T (e.g. quantifier elimination). But assuming φ is small and the data is huge,
such an approach would be problematic. Alternatively, one could apply RQC, if it
is applicable. In essence, we are performing the quantifier elimination step prior
to knowing the data, resulting in a parameterized quantifier-free formula. With
this pre-processing finished, we can inline the S structure and evaluate using
any standard technique from databases or finite model theory. This perspective
on RQC is emphasized by Basu [3], who referred to collapse results as “uniform
quantifier elimination”.

Another perspective on these results is model-theoretic. They give us a way
of distinguishing theories that are “nice” from those that are not, and we can
compare these to other model-theoretic dividing lines. We overview some results
in this line below, giving a quick tour of a few model-theoretic properties relevant
to RQC. For details, alternative definitions, and further background on these
properties see, e.g. [11].

NFCP Theories. A theory T is NFCP (Not the Finite Cover Property) if
it satisfies a strong quantitative form of the compactness theorem. For every
φ(x1 . . . xj , y1 . . . yk) there is number n such that for any finite set S of k-tuples in
a model of T , if for every subset S0 of S of size at most n, M |= ∃x ∧

s∈S0
φ(x, s),

then M |= ∃x∧
s∈S φ(x, s). Examples of NFCP theories include the theory of

algebraically closed fields in each characteristic. In particular, the complex field
is NFCP.

NFCP theories are inherently unordered : they do not admit a linear definable
order. In fact, a much stronger statement is true: NFCP theories are stable,
informally meaning that there is no formula φ(x,y) such that φ restricted to
arbitrary large sets defines a linear order.

O-Minimal Theories. We now turn to a model theoretic tameness property
relevant to linear ordered structures. Consider a theory T over L containing
a binary relation < (x, y) such that T implies that < is a linear order. Such
a T is o-minimal if for every φ(x,y) for every model M of T and any c in
M , {x|M |= φ(x, c)} is a finite union of intervals. The real ordered group, real
ordered field, and the real exponential field are all o-minimal [12].

NIP Theories. NIP theories [22] relate to the well-known notion of VC dimen-
sion in learning theory. Given φ(x1 . . . xj , y1 . . . yk), and a finite set of j-tuples S



The Past and Future of Embedded Finite Model Theory 41

in a model M we say that S is shattered by φ if for each subset S0 of S there is
y0 such that S0 = {s ∈ S|M |= φ(s,y0)}. A theory T is NIP if for each formula
there is a number that bounds the size of a set shattered by φ in a model of T .
NIP theories include both ordered and highly unordered structures. Specifically,
they contain o-minimal structures, Presburger arithmetic, as well as all stable
structures, and hence all NFCP structures.

With these definitions in hand, we now present some old results. A natural
model-theoretic sufficient condition for RQC over ordered structures involves
o-minimal theories:

Theorem 1. [8] Every o-minimal theory has RQC.

Belegradek, Stolboushkin and Taitslin [4] showed RQC for an even broader
class, what today are known as distal theories. We will not give the definition of
distal here – see [21]. But it subsumes o-minimal theories and also Presburger
arithmetic, while being contained in NIP. In particular, [4] implies that RQC
holds for Presburger arithmetic.

On the “unordered side”, it is easy to see [14] that NFCP theories are RQC.

Theorem 2. Every NFCP theory has RQC.

An easy observation is that NIP is a necessary condition for RQC:

Proposition 1. [5] If T has RQC, then T is NIP.

It is easy to identify NIP theories (and even stable theories) that do not
have RQC: one example will be given in Example 3 below. Nevertheless it was
shown that in NIP theories one cannot express that |P | is even: indeed, one has a
variant of RQC for formulas that are cardinality-invariant. The rough statement
of the result is:

Theorem 3. [2] In an NIP theory every L ∪ S every formula depending only
on the isomorphism type of S is equivalent to a bounded-quantifier formula.

One Paragraph Summary of Past Work. Prior work gave a decent, albeit
incomplete, picture of when first-order unbounded quantifiers can be eliminated.
If one looks at arbitrary L∪S formulas, one can make due with either NFCP for
unordered theories, or o-minimality/distality for ordered theories. If one focuses
on cardinality-invariant formulas, then the broad class of NIP structures is suf-
ficient. Although the topic has attracted sporadic interest within model theory,
it seems to us that both the theory and the practice related to it has not been
developed as far as one might have hoped. When the motivating application
to spatial databases fell out of favor, interest in this topic within the database
community faded considerably.
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3 Higher Order Boundedness

RQC is restrictive in that it eliminates unbounded first-order quantification,
and only allows one to introduce additional first-order bounded quantifiers in
return. From the motivation of getting manageable “data complexity” – i.e. as
the number of tuples in the embedded finite structures gets large, for fixed φ
– it might suffice to get an algorithm that scales polynomially in the model;
e.g. within fixed point logic. It may even suffice to get an algorithm running
in PSPACE within the size of P . This motivates the more general notions of
collapse below.

We say that a formula of L∪{P} is k-bounded, for k > 0 if it is built up from
L-formulas, P stoms and atoms using higher-order variables of order at most
k, using the Boolean connectives and quantifications ∃S, where S is a higher
order variable. The variables in the quantification range over the corresponding
set-theoretic hierarchy over P . Thus a 2-bounded formula could use first-order
bounded quantification ∃x ∈ P φ and second-order bounded quantification, such
as ∃S ⊆ P φ.

A theory is ∀ k-bounded for k > 0 if every L ∪ {P} formula is equivalent
to a k-bounded one. A theory is ∀ω-bounded if every formula is equivalent to
a k-bounded for some k. When k = 1 this is just RQC, so we are providing
a weaker form of collapse. Above we deal with the case where the relational
signature consists of a single unary relation, but there is an obvious extension
to arbitrary relational signatures S, where we will quantify over the cumulative
hierarchy based on the active domain of the S structure.

The only published result about higher order boundedness is a simple obser-
vation that decidable 2-bounded theories exist: (see [19]).

Proposition 2. The random graph is ∀ 2-bounded but not ∀ 1-bounded.

On the negative side, it is quite obvious that really badly-behaved theories
do not have this more general form of collapse.

Proposition 3. The theory of full integer arithmetic (N,+, ·) is not ω-bounded.

As with RQC, these higher-order collapse questions can be seen from an algo-
rithmic perspective, or as a way of classifying theories into tame/wild. From the
second perspective, an obvious question is whether the ∀ 2-boundedness of the
random graph is explained by some model-theoretic property which it satisfies.
For example, the theory of the random graph is known to be a simple theory
[23]. We will not give the definition here, but in addition to the random graph it
includes the theory of any pseudo-finite field, where the latter is an ultraproduct
of finite fields. Unfortunately, it turns out that standard existing model-theoretic
properties do not seem to imply ∀ 2-boundedness or even ∀ω-boundedness. For
example, “simplicity” does not suffice to imply this more generous notion of
boundedness.

Theorem 4. [6] For each k there are theories that are ω-bounded but not k-
bounded. Such theories can be taken to be decidable and simple. There are also
decidable simple theories that are not even ∀ ω-bounded.
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The construction of examples that are k + 1 but not k bounded requires the
arity of relations in the signature L to grow with k. We do not know of examples
in a finite relational signature that are ∀ ω-bounded but not ∀ k-bounded for
some k.

The examples provided by the constructions above are arguably artificial.
One natural example of unboundedness comes from pseudo-finite fields men-
tioned above:

Theorem 5. [6] For any pseudo finite field in positive characteristic, its theory
is not ∀ ω-bounded.

Above we have referred to the complete theory of any pseudo-finite field. The
incomplete theory of pseudo-finite fields consists of the sentences true of all finite
fields (in a given characteristic). The theory of pseudo-finite fields is known to be
decidable [1], but little is known about its complexity. The encoding used in the
proof of the theorem above can be used to provide some lower bounds on the
theory. And indeed he encoding techniques used, and the connection between
non-boundedness results and lower bounds for decidable theories may be the
aspect of the theorem above that is most relevant for a theoretical computer
science audience.

It is an open question what happens for pseudo-finite fields in characteristic
0. We do not even know if the theory is 2-bounded.

4 Persistent Unboundedness

Like quantifier-elimination, boundedness is sensitive to the signature. It is easy
to construct theories that are “badly behaved” – not even ω-bounded – but
which become RQC when the theory is expanded to a larger vocabulary.

Example 3. Let L = {E(x, y)} and T be the L-theory stating that E is an
equivalence relation with classes of each finite size. Consider the L∪{P} formula
φallclass stating “some equivalence class is contained in P”. It is straightforward
to show φallclass is not equivalent to a k-bounded formula for any k. Informally,
no matter how much one knows about the internal structure of P , one cannot
tell if it contains an entire equivalence class.

Let T+ expand T to L+ = {E,< (x, y)}, stating that < is a linear order for
which each E equivalence class is an interval with endpoints. Then T+ can be
shown to be ∀ 1-bounded. This can be shown using distality and the result of
[4] mentioned earlier, but it can also be argued directly.

Thus another direction of research is to distinguish theories where we can
obtain boundedness by expanding the theory from those where we cannot. Say
that a theory is potentially ∀ k-bounded if it has some expansion that is ∀ k-
bounded, and similarly for ω-bounded. The above example is thus potentially ∀
1-bounded. If a theory is not potentially ∀ ω-bounded we say that it is persistently
unbounded. Potential unboundedness is thus a further weakening of collapse.

The following easy result, implicit in prior work, provides many examples of
persistent unboundedness.
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Proposition 4. If there is an L ∪ P φ that is cardinality-invariant which is
not equivalent to a k-bounded formula for any k over models of T , then T is
persistently unbounded.

That is, if the witness to unboundedness is cardinality-invariant, then
expanding the theory will not help. From the proposition one can see that model-
theoretically wild theories like (N,+, ·) are persistently unbounded.

What is more surprising is that there are decidable theories which do not
allow us to express any new cardinality-invariant properties, but which are per-
sistently unbounded. One natural example comes from Boolean algebra:

Theorem 6. [6] The theory of atomless Boolean algebra is persistently
unbounded.

But for many natural theories that are decidable but not RQC, we do not
know if any kind of boundedness can be achieved by expanding the signature.
For example, we do not know what happens for Büchi arithmetic, which does
not admit RQC [9]. We also do not know the situation when one imposes some
of the model-theoretic tameness criteria mentioned previously. For example, can
NIP theories be persistently unbounded?

The theorem above also indicates that theories of Boolean algebra are a good
place to investigate how to evaluate L∪S formulas in the absence of any kind of
collapse result. We suspect that Büchi arithmetic is also persistently unbounded,
which would give another setting in which non-collapse related evaluation tech-
niques should be investigated.

5 Conclusions and Open Issues

Embedded finite model theory focused on the impact of adding unbounded
first-order quantification within model checking of first-order formulas on finite
structures. Most of the work done in past decades concerned expressiveness
of first-order unbounded quantification in different theories. These “collapse
results” allow one to conclude a limit on the expressiveness of quantification
over the ambient structure. For example, in RQC theories this question reduces
to expressibility in classical finite model theory, and so in RQC theories one
cannot express queries like parity. This invited paper has also focused on expres-
siveness, albeit extending the notion of what it means to eliminate unbounded
quantification. We have briefly mentioned two such extensions: allowing higher-
order quantification and allowing expansion via additional structure.

But we did not mean to imply that the notions of bounded logics defined
here and the investigation of collapse questions associated with them are the
end of the story.

Computation and Complexity. Even in terms of first-order collapse results,
computational aspects – even complexity analysis – have received little attention.
Some upper bounds for the real field case can be found in [3]. One can easily see
that if one defines RQC in the original way – building up bounded formulas from
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only quantifier-free formulas in the base case – then the complexity of collapse
is lower bounded by the complexity of quantifier elimination for the underlying
theory. But as mentioned before, it is natural to build up from arbitrary L-
formulas in the base case, which makes RQC specific to the L ∪ S setting: it is
about pushing unbounded quantifiers past bounded ones. We know of no results
on the complexity of this kind of transformation. Neither do we know of serious
algorithmic work on evaluation – via RQC or otherwise – even in the context of
natural theories such as real linear arithmetic.

Other Source Languages. In defining extended notions of boundedness, we
have extended the target language for collapse results, but we have left the
source language the same. Recent work [13] has proposed alternative source lan-
guages for querying embedded finite models, based on automata. Fragments of
the “hybrid second order logics” that combine unbounded first-order quantifi-
cation with higher-order bounded quantification [8] are another possible source
language.

Other Notions of Uniformity. The classification of RQC results as “uniform”
or “parameterized” quantifier elimination suggests that other transformations
on first-order formulas could be parameterized by data in the same way. For
example, model completeness of a theory T can be defined as the ability to
transform an arbitrary formula to an existential one. The uniform version would
state that an L ∪ S formulas can be converted to one with only atomic negation
and unbounded existential quantifiers.

We believe that if this topic is re-examined in light of developments in the
last two decades, many other new aspects of the theory will emerge.
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Abstract. In the analysis of nonlinear ordinary differential equations
(odes), linear and Taylor approximations are fundamental tools. Such
approximations are generally accurate only in a local sense, that is near a
given expansion point in space or time. We study conditions and methods
to compute linear approximations of nonlinear odes that are accurate
also non locally. Relying on Carleman linearization and Krylov projec-
tion, our method yields a small, hence tractable linear system that is
shown to produce accurate approximate solutions, under suitable sta-
bility conditions. In the general, possibly non stable case, we provide
an algorithm that, given an initial set and a finite time horizon, builds a
tight overapproximation of the reachable states at specified times. Exper-
iments conducted with a proof-of-concept implementation have given
encouraging results.

Keywords: Nonlinear odes · Carleman linearization · Krylov spaces ·
Reachability · Stability

1 Introduction

The analysis of systems of nonlinear ordinary differential equations (odes) poses
formidable challenges to theoreticians and practitioners. Among the great vari-
ety of existing techniques, many concentrate on specific properties, for instance
stability (e.g. via Lyapunov functions [16, Ch.4]) and safety (e.g. via barrier
certificates [14,17,26]). Other techniques focus on computing detailed, effective
descriptions of the set of reachable states over a given time horizon, possibly
taking into account uncertainties on the initial states, see e.g. [2,3,7,8,10,32]
and references therein. These descriptions, variously called reachsets, flowpipes
etc., are typically obtained in a piecewise fashion; that is, by sewing together
local approximations over different regions of the state space and/or time. Here,
we are interested in: (a) conditions and methods by which a single approxima-
tion of a system can be computed that can be accurate also non locally; (b)
understanding if such approximations can be leveraged in reachability analysis.

Given a nonlinear system of odes in the state variables x = (x1, ..., xn)T

ẋ = f(x1, ..., xn) (1)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. W. Lin et al. (Eds.): RP 2022, LNCS 13608, pp. 49–66, 2022.
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(see Sect. 2 for precise definitions), approximation can take place either in space,
like when linearizing the system’s equations around a point x = x0; or in time,
like when Taylor expanding the ode’s solution around a time t = t0. With tra-
ditional methods, the resulting description will typically exhibit only a limited,
local accuracy: the quality of the approximation will tend to get very bad as one
gets away from x = x0 and/or t = t0.

Our goal is to devise approximations of nonlinear systems that can be accu-
rate also non-locally. In particular, under suitable assumptions, accuracy should
remain good over a long, possibly infinite time horizon. In our method, a crucial
step in achieving this goal is the computation of a ‘small’, hence computationally
tractable, linear ode system that approximates (1). In perspective, this linear
system might replace the original system not only for the purpose of global
reachability analysis, but also for tasks such as runtime verification [23,28].

The proposed technique is related to Carleman embedding [5,18], which is
used to transform a given nonlinear system like (1) into an infinite linear sys-
tem (Sect. 3). For the purpose of effective computation, this infinite system is
truncated at a finite cut off, obtaining a linear system

ż = Az (2)

of dimension M , typically with M � n. The z variables represent the (approx-
imate) evolution of certain functions of the original state variables x, say
z = α(x) = (α1(x), ..., αM (x))T . The elements of α are chosen in such a way
that an observable of interest of the state x, say g(x), can be expressed as a
linear combination of them.

In order to achieve dimension reduction, we blend Carleman embedding
with Krylov orthogonal projection techniques [27]. Basically, working in the z-
coordinate space, we reduce the system (2) via projection of the matrix A onto
an appropriate subspace of dimension m � M , thus obtaining a linear system
of dimension m (Sect. 3). Distinctive features of the proposed approximation
scheme are the following: (a) the equations of the resulting linear ode system,
while depending on the given observable function g, are independent of the ini-
tial state. In fact, the system guarantees an error of O(tm) near t = 0 for any
given initial condition. Moreover, the reduced linear system can be computed
without having to store the whole matrix A, which can be quite large; (b) under
suitable stability conditions, error w.r.t. the exact solution is typically small,
at least over a finite time horizon (and provably bounded over an infinite time
horizon in a special case; Sect. 4).

We leverage these features in an algorithm to compute overapproximations of
reachsets of system (1) at specified times over a given finite time horizon (Sect. 5).
The algorithm works in the general, not necessarily stable case. The basic idea is
to perform advection of the vertices of an initial convex set (polytope), relying on
the reduced, linearized system rather than on (1). Similarly to other proposals
[10,22,33], compensation of the errors resulting from nonlinearities is reduced
to an optimization problem. Experiments conducted with a proof-of-concept
implementation of the approximation scheme have given encouraging results
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(Sect. 6). Concerning reachsets, we also offer a comparison with state-of-the art
reachability tools on a few examples drawn from the literature. A few concluding
remarks are reported in the final section (Sect. 7). Due to space limitations,
computational details and proofs have been omitted and will be made available
in an online full version of the paper.

Related Work. There exists a vast literature on the linearization of nonlinear
systems. In particular, techniques based on Carleman embedding [5,18] and the
Koopman approach [21] have recently received a renewed attention. Most related
to our work and motivations, Jungers and Tabuada [15] have recently proposed
a technique for global approximation of nonlinear odes by linear odes, based
on polyflows. These are systems that are exactly linearizable via a change of
variables. The only systems admitting exact polyflow solutions are those where
the set of all Lie derivatives of the state variables w.r.t. the vector field f form
a finite-dimensional vector space: hence they can fundamentally be regarded as
linear systems in a higher dimensional space. The technique in [15] is based on
building polyflows that approximate the original system, using as a basis the
Lie derivatives up to some order N ; the resulting system plays a role somewhat
similar to the truncated Carleman embedding (2). As N → +∞, the approxima-
tion of [15] becomes exact in the interval of convergence of the Taylor expansion
of the solution for any given x0. Note that this is an asymptotic result that
does not easily yield concrete bounds for a fixed N . On the contrary, our results
provide concrete error bounds for any fixed m and finite time horizon—and
also for an infinite time horizon under suitable stability assumptions. Systems
that are exactly linearizable via polynomial changes of variables are the subject
of [6,29,30]. In [6] we have considered Carleman embedding and Krylov-based
approximations, essentially from a local point of view. Here, we provide novel
analyses of both local and global errors, and exploit them in a reachability algo-
rithm. General error bounds for the truncated Carleman linearization are con-
sidered in [4,11]. The time interval of validity of these bounds is quite small,
contrary to ours; moreover, in practice they appear to be significantly more con-
servative than ours. In [12], an efficient reachability analysis algorithm relying
on Carleman linearization is presented, limited to the class of weakly nonlinear,
dissipative systems. Dimension reduction is not considered in any of [4,11,12].

Our work is also related to the Koopman approach [21], where the system’s
dynamics are lifted from the state space X to a higher dimensional space of
observables, smooth functions X → R. The advantage of doing so is that the
dynamics become linear in the space of observables, although the dimension of
this space is infinite. In this framework, global analysis techniques have recently
emerged, see in particular [20]. Our method too is centered on a basis of observ-
able functions, the aforementioned α. However our goal is quite specific, with
an emphasis on finite dimensionality and error bounds that are valid over a
prescribed time horizon.

In the field of tools for continuous and hybrid systems, like Flow* [8] and
cora [2], a mix of techniques are adopted including Taylor Models and different
forms of linearization [1–3,7,8,19]. Here we are primarily interested in approx-
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imations that are accurate for as long as possible, and in connecting them to
reachability analysis. As argued empirically in Sect. 6, our approach brings some
benefits in terms of accuracy.

2 Preliminaries

For x = (x1, ..., xn)T a vector of state variables, we consider a system of odes

ẋ = f(x) (3)

where f = (f1, ..., fn)T is a vector field of locally Lipschitz analytic functions
defined on some open subset Ω ⊆ R

n. For x0 ∈ Ω, we let x(t;x0) be the unique
solution of the ode system with the initial condition x(0) = x0: the unique
solution exists and is real analytic in an open interval containing the origin
t = 0 (Picard-Lindelöf theorem).

For a real analytic function g defined on some open subset of Rn that includes
the trajectories x(t;x0) for x0 ∈ Ω, we will be interested in studying the observ-
able of the system (3) via g, that is the function g ◦ x(t;x0).

Recall that Lf (g) := 〈∇g, f〉 = ∑n
j=1

∂g
∂xj

· fj is the Lie derivative of g (w.r.t.

f), and L(k)
f (g) is the k-th Lie derivative, defined inductively by L(k+1)

f (g) :=

Lf (L(k)
f (g)). We shall omit the subscript f whenever it is understood from the

context.

3 Linearization and Dimension Reduction

In this section, we first introduce a method of linearization of the system (3)
which is strongly related to Carleman embedding [18]. Then discuss how to
reduce the dimension of the resulting system with certain, still local, accuracy
guarantees. The discussion in this section expands that in [6, Sect. 4].

Carleman Linearization. Generally speaking, one can apply the following
method to g(x(t;x0)), for any suitable observable function g, so we will describe
the method in terms of such a generic g. As we will see, for the purposes of
building approximate solutions, it will be sufficient to apply the results to each
of the n identity functions g = xi, for i = 1, ..., n in turn.

Let us fix a set A = {α1, α2, ...} of functions αi : Rn → R. For instance A
might be all monomial functions. We assume that, over its domain of definition,
the observable function g can be represented in a unique way as a linear com-
bination of functions from A up to a cutoff M > 0. In other words, we assume
there are unique v = (λ1, ..., λM )T ∈ R

M and basis vector α := (α1, ..., αM )T

such that

g =
M∑

i=1

λiαi = vT α. (4)
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Otherwise, all we require from the functions in A is that they are analytic1,
and that the Lie derivative of each αi can in turn be expressed as a unique
linear combination of elements from A. That is, for each i ≥ 1, there is a unique
sequence of real coefficients aij (j ≥ 1) such that

L(αi) =
∑

j≥1

aijαj . (5)

For the sake of simplicity, we shall assume that, for each i, only finitely many
coefficients aij here are nonzero; this assumption is true e.g. for g a polynomial
and A equal to the set of all monomials. We let A denote the M×M matrix of the
coefficients aij for 1 ≤ i, j ≤ M , and B be the M ×k matrix of possibly nonzero
elements bi,j = ai,M+j ; that is, k is chosen large enough to ensure that, for

1 ≤ i ≤ M , we have aij = 0 for each j > M +k. We let ψ
�
= (αM+1, ..., αM+k)T .

For any fixed initial condition x0 ∈ Ω of the original system (3), we can form
the linear system of odes and the initial condition described below. Note that for
each fixed x0 ∈ Ω, ψ(x(t;x0)) : I −→ R

k is a real analytic function of t defined in
an interval I containing the origin. This function will in general not be explicitly
available, as it depends on the solution x(t;x0). The Carleman linearization (or
embedding) of (3) is given by the following linear, non-autonomous system in
the variables z = (z1, ..., zM )T and initial condition

ż = Az + Bψ(x(t;x0)) (6)
z(0) = α(x0) =: z0. (7)

The following result is an almost immediate consequence of the existence and
uniqueness of the solution of odes (Picard-Lindelöf). For a detailed proof, see
[6, Th.3].

Theorem 1 (Carleman linearization). Let x0 ∈ Ω. Then α(x(t;x0)) is the
unique solution of the system (6) with z(0) as in (7).

Note that we cannot explicitly build the system (6), as the function ψ(x(t;x0)) is
in general not available – even when ψ and B are available. Moreover, the matrix
A itself can in practice be too large to be explicitly generated. Indeed (6) is the
starting point to build an approximation, as detailed in the next subsection.

Dimension Reduction via Krylov Projection. Starting from the linearized system
(6), we will neglect the “remainder” ψ(x(t;x0)) and then reduce the resulting
linear homogeneous system, by projecting A onto an appropriate subspace of RM

of dimension m � M . The differential equations of the reduced linear system will
depend on g, but not on the initial state x0. The method is amenable to an “on
the fly” implementation, in the following sense: it only requires building the Lie
derivatives of g until a prescribed order m. In detail, the order m coincides with
1 This can be weakened to analyticity in some open set containing all the trajectories

x(t;x0) for x0 ∈ Ω.
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the dimension of the obtained linear system of odes and give rise to approximate
solutions of (3) that are locally accurate. The behaviour of the global error will
be discussed in Sect. 4. Recall that our goal is to approximate a target function
g(x(t;x0)). For the sake of notation, we will adopt the following abbreviation for
this function:

g(t;x0) := g(x(t;x0)). (8)

Fix m ≥ 1 and order the elements in A in such a way the first M functions,
α = (α1, ..., αM )T are those appearing in the (unique) decompositions of the Lie
derivatives of g from 0 through m − 1: that is, for each j = 0, ...,m − 1 there is
a (unique) vector uj ∈ R

M such that L(j)(g) = uT
j α; here u0 = v. We assume

without loss of generality that m ≤ M (typically, m � M). From (5) and from
the definitions of the matrices A, B and of the functions α and ψ, it follows that,
componentwise

L(α) = Aα + Bψ. (9)

From the definition (4) of g and the linearity of L(·), it follows that L(g) =
vT Aα+vT Bψ. From the assumed uniqueness of the decomposition of Lie deriva-
tives in A, we have that vT A = uT

1 and vT B = 0 hence

L(g) = vT Aα.

Taking the Lie derivative of the above equation, we have L(2)(g) = vT A(Aα +
Bψ) = vT A2α + vT ABψ, where vT AB = 0 again as a consequence of the
uniqueness of the decomposition of L(2)(g) in A. Proceeding similarly for the
subsequent derivatives, that is iterating (9) and exploiting the linearity of L(·)
and the uniqueness of the decomposition of L(j)(g) in A, for 0 ≤ j ≤ m − 1, we
arrive at the following conclusions.

vT Ajα = L(j)(g) (0 ≤ j ≤ m − 1) (10)

vT Aj−1B = 0 (1 ≤ j ≤ m − 1). (11)

Now, we consider the m-dimensional Krylov space2 generated by v and AT , that
is the subspace of RM

Km := span{v,AT v, (AT )2v, ..., (AT )m−1v}. (12)

Comparing (12) and (10), we see that Km is the subspace of RM spanned by the
(column) vectors of the coefficients of the Lie derivatives of g from 0 through
m − 1. Here we assume without loss of generality that v �= 0 and that Km

has dimension m—that is, m is small enough that the m vectors listed on the
right-hand side of (12) are linearly independent. Let V = [v1| · · · |vm] be an
orthonormal basis of Km, represented as a M × m matrix (see at the end of
the section for computational considerations). Now consider the projection of
2 For an introduction to Krylov spaces, see e.g. [27].
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AT onto Km and represent it w.r.t. the basis V , in other words we consider the
m × m matrix

Hm := V T AT V. (13)

Given a vector of m distinct state variables y = (y1, ..., ym)T , we let the reduced
linear system derived from (6) and the corresponding initial condition, derived
from (7), be defined as:

ẏ = HT
my (14)

y(0) = V T z0 =: y0.

Note that the reduced equations (14) do not depend on x0 ∈ Ω. Informally
speaking, the solution y(t; y0) of the reduced system describes the evolution of
the vector α(x(t;x0)), projected onto the subspace Km, in the coordinates of
the basis V . Recalling that v ∈ R

M is the vector of the coefficients of g with
respect to α, as in (4), it is then natural to consider the following approximation
of g(t;x0):

ĝ(t;x0) := vT V y(t; y0). (15)

In fact, we will see that v1 = v/||v||2, while v is orthogonal to vj for j > 1. Hence
the above formula can be simplified to

ĝ(t;x0) = ||v||2 y1(t; y0). (16)

In order to study the quality of this approximation, we introduce the error
function relative to g

εg(t;x0) := g(t;x0) − ĝ(t;x0). (17)

The following result confirms that this error is small near t = 0. Indeed, the
Taylor expansions of ĝ(t;x0) and g(t;x0) up to order m − 1 coincide: this is a
consequence of the fact that the coordinates (in α) of the Lie derivatives of g
from 0 to m − 1 span Km.

Theorem 2. For each x0 ∈ Ω, the function εg(t;x0) is O(tm) around t = 0.

Explicit local bounds of the error function can be obtained from the Tay-
lor theorem with remainder in Lagrange form, assuming we can construct val-
idated enclosures S and E of x(t;x0) and y(t; y0), respectively—which for
small t is possible by standard techniques, see e.g. [24] and references therein.
We state the result in a form suitable for application to reachability analy-
sis, where an initial set X0 is explicitly considered. Below, we let ρX0 :=
infx0∈X0{ρ : ρ is the radius of convergence of the Taylor series ofεg(t;x0) from
t = 0}.

Corollary 1. Consider a set X0 ⊆ Ω. Fix t s.t. ρX0 > t > 0 and compact sets
S ⊆ R

n and E ⊆ R
m such that X0 ⊆ S, V T X0 ⊆ E and for each (τ, x0) ∈
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[0, t] × X0 we have x(τ ;x0) ∈ S and y(τ ; y0) ∈ E, where y0 = V T α(x0). Define

γ−(t;S,E) :=
tm

m!
(
min
x∈S

L(m)(g)(x) − max
y∈E

vT V (HT
m)my

)
(18)

γ+(t;S,E) :=
tm

m!
(
max
x∈S

L(m)(g)(x) − min
y∈E

vT V (HT
m)my

)
. (19)

Then for each x0 ∈ X0 and τ ∈ [0, t], γ−(t;S,E) ≤ εg(τ ;x0) ≤ γ+(t;S,E).

There exists a well-known algorithm for the efficient, “on the fly” construction
of the matrices V,B,Hm, the Arnoldi iteration [27]. We illustrate our approx-
imation technique with the following example, an instance of the Van der Pol
oscillator (VdP, see [31]). This system is used as a benchmark in a number of
papers on reachability for nonlinear odes.

Fig. 1. For Example 1, left: g(t;x0) and ĝ(t;x0) Example 1; right: |h(τ ;x0)| and bound
(21).

Example 1. Consider the system ẋ = f where f := (x2,−x1 + x2(1− x2
1))

T . We
fix as A the set of all monomials. Let us build the reduced linear system (14) for
m = 2 and g = x1. This choice of g and m leads to M = 3, α = (x1, x2, x

2
1x2)T ,

v = (1, 0, 0)T and A =
[

0 1 0−1 1 −1
0 0 1

]
. Building an orthonormal basis of Km, we

get: Hm =
[
0 −1
1 1

]
and V = [ 1 0 0

0 1 0 ]
T . Writing x0 = x = (x1, x2)T , we have

ĝ(t;x) = vT V y(t; y0) = y1(t; y0), where y(t; y0) is the solution3 of (14) with
initial condition y0 := V T α(x). For x0 = (0.1, 0.1)T , we plot the exact x1(t;x0)
(dashed) and approximate ĝ(t;x0) (solid) solutions for t ∈ [0, 5] in Fig. 1, left.

4 Behaviour of the Global Error

We study, mostly from a qualitative point of view, the behaviour of the error
function εg. In what follows, we will assume the orthonormal basis V =
[v1| · · · |vm] of the Krylov space Km is generated via the Arnoldi Algorithm.
This means that the vectors vj are an orthonormalized version of the vectors
(AT )jv in (12), inductively built as follows: v1 := v/||v||2 and vj := wj/||wj ||2
for j = 2, ...,m, where wj := AT vj−1 − ∑j−1

k=1 μkvk with μk := 〈AT vj−1, vk〉. We
will let rm denote the projection of AT vm onto K⊥

m, the orthogonal complement
3 An explicit expression for y1 is:

y1(t; y0) = −1/3 et/2(
√
3(x1 − 2x2) sin(

1
2

t
√
3) − 3x1 cos( 1

2
t
√
3)).
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of Km. Explicitly: rm := AT vm − V V T AT vm. We define the remainder function
h : Rn → R as follows for x ∈ R

n:

h(x) := vT
mBψ(x) + rT

mα(x). (20)

We have seen that ĝ(t;x) represents faithfully g(t;x) up to order m − 1 (The-
orem 2). Informally speaking, the remainder function h has two error terms,
corresponding to whatever of the m-th derivative of g(t;x) cannot be repre-
sented: either because it involves elements ψ of A outside α (term vT

mBψ(x)),
or because it falls outside Km (term rT

mα(x)). One’s hope here is that |h(x)| is
small when computed along the trajectories of x(t;x0), for x0 in the initial set.
The following theorem provides a general error bound in terms of h(x).

Theorem 3 (global error bound). For any t > 0 such that x(τ ;x0) is defined
for τ ∈ [0, t]:

|εg(t;x0)| ≤ ||v||2
∫ t

0

|h(x(τ ;x0))| · |(e(t−τ)HT
m)1,m|dτ. (21)

If additionally Hm is stable4 then there is a constant D > 0 independent of t
such that

|εg(t;x0)| ≤ ||v||2 D

∫ t

0

|h(x(τ ;x0))|dτ. (22)

Qualitatively speaking, (22) says that, for a stable Hm, the behaviour of the
global error is determined by |h(x(τ ;x0))|: if this function decays fast enough to
be integrable over [0,+∞), then εg(t;x0) will be globally bounded. A special case
of this situation (exponential stability) can be easily characterized analytically;
details are omitted.

If Hm is not stable, (21) still applies. In this case, the norm of the matrix
exponential e(t−τ)HT

m will eventually dominate, making the bound useless for
large t. Yet, there may be a time horizon within which |h(x(τ ;x0))| and/or
the exponential are small enough to make the bound (21) useful. This will be
typically the case if x(t;x0) hence |h(x(τ ;x0))| are bounded, for instance in
systems that exhibit a limit-cycle behaviour, like VdP. For Example 1, we plot
|h(x(t;x0))| (solid) and the right-hand side of (21) (dashed) for t ∈ [0, 5] in
Fig. 1, right.

These considerations prompt for use of the approximation ĝ(t;x0) inside a
scheme for reachability analysis. As for error control, the evaluation of the upper
bounds (21) and (22) requires knowledge of the solution x(t;x0), or at least of a
bound on its norm on an interval of interest, which are in general not available.
However, useful bounds can be obtained from enclosures of the solution taken
at successive, small time intervals. This will be developed in the next section.

4 That is, all eigenvalues of Hm have a nonnegative real part and every imaginary
eigenvalue, if any, has geometric multiplicity equal to the algebraic one. See e.g. [16,
pp. 135–136].
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5 Application to Reachability Analysis

We will apply the linearization scheme outlined in the previous sections to com-
pute an approximation x̂(t;x0) of the flow x(t;x0), and then use it to compute an
overapproximation of the reachable set of the nonlinear system (1) at fixed times:
t1, t2, .... This goal will be achieved by applying the scheme of Sect. 3 to each
of the observable functions g = xi, for i = 1, ..., n in turn. Using the notation in
that section, for each i = 1, ..., n, let v(i) the coefficient vector of xi in the chosen
basis α, that is xi = v(i)T α, and V (i),H

(i)
m the corresponding basis and reduced

matrix. We define the approximate flow by x̂(t;x0) := (x̂1(t;x0), ..., x̂n(t;x0))T ,
where, as an instance of (16), we have

x̂i(t;x0) := ||v(i)||2 y
(i)
1 (t; y0) (i = 1, ..., n) (23)

with y(i)(t; y0) the solution of the linear initial value problem (14) for g = xi.
Moreover, we will also consider the general case where we are given an initial set
X0 rather than an individual initial state x0.

The proposed reachability method is inspired by the CheckMate algorithm
in [10]. For the sake of simplicity, we will represent the initial set X0 as well as
the successive reachsets R1, R2, ... as convex polytopes5 (see below). Let 0 =
t0, t1, · · · , tN = t be time points, with Δk := tk − tk−1 > 0 for k ≥ 1. The basic
idea is to use (approximations of) the advection maps

x0 �→ x(tk;x0) (k = 1, 2, ...)

to propagate the initial polytope’s vertices {u1, ..., up} to successive time points
tk. At the k-th stage, the polytope resulting from the advected vertices is suitably
inflated to compensate for nonlinearities and approximation errors, thus obtain-
ing the actual polytope Rk that over-approximates the reachable set at time tk;
cf. the figure below. The main difference between [10] and us is that, while they
approximate the advection maps via numerical integration of the original system
(3), we adopt the maps x0 �→ x̂(tk;x0). Theorem 3 suggests that x̂(tk;x0) is a
good approximation of x(tk;x0), but does not provide a direct way of bounding
the resulting error. Instead, we will keep track of the approximation error via
Corollary 1.

Concerning the computation of the approximate
advection maps, we recall that, as a solution of the lin-
ear system (14), each component in (23) can be written
explicitly as:

x̂i(t;x0) = ||v(i)||2
(
e
tH(i)T

m
1

)
V (i)T α(x0) (i = 1, ..., n) (24)

where e
(··· )
1 denotes the first row of the exponential matrix. As a function of

x0, each x̂i(tk;x0) is a linear combination of the components of the basis α(x0).
For instance, it is a polynomial in x0 if the elements of the basis are monomials.
5 The method can be extended without much difficulty to more sophisticated and

scalable types of sets, like zonotopes.
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In more detail, given p vectors (vertices) u1, ..., up ∈ R
n, we assume that X0 is

the convex hull generated by those vertices, X0 = ch(u1, ..., up) := {∑p
i=1 λiui :

λi ≥ 0 and
∑p

i=1 λi = 1}. It is easy to compute the polytope generated by the
advected vertices at time tk, given by Pk := ch(x̂(tk;u1), ..., x̂(tk;up)). We let
the matrix-vector pair (Ck, bk) denote a halfspace representation of Pk, that is
Pk = {x ∈ R

n : Ckx ≤ bk}. In fact, below we will only make use of the matrix
Ck; we assume without loss of generality the rows of this matrix, say cT

1 , · · · , cT
�k

,
are unitary, ||cj ||2 = 1. With the notation used in Corollary 1, we let γ−(i), γ+(i)

denote the bounds in (18), (19) applied to g = xi, for i = 1, ..., n. In Definition
1 below, for k ≥ 1 we shall adopt the abbreviations

γ
(i)
k := max{|γ−(i)(Δk;Sk, E

(i)
k )|, |γ+(i)(Δk;Sk, E

(i)
k )|} (25)

for given compact sets Sk ⊇ {x(τ ; ξ) : (τ, ξ) ∈ [0,Δk] × Rk−1} and E
(i)
k ⊇

{y(τ ; ζ) : (τ, ζ) ∈ [0,Δk] × V (i)T Rk−1}. We let γk := (γ(1)
k , ..., γ

(n)
k )T , with

γ0 := (0, ..., 0)T . For any nonnegative vector ζ ∈ R
n, we will let [−ζ, ζ] denote

the hyper-rectangle [−ζ1, ζ1]×· · ·×[−ζn, ζn] ⊆ R
n. Below, we assume Δk < ρRk−1

for each k ≥ 1.

Definition 1 (reachsets Rk). With the notation introduced above, for k =
0, 1, 2, ... we define the sequence of vectors ηk = (η(1)

k , ..., η
(�k)
k )T ∈ R

�k and of
polytopes Rk ⊆ R

n, as follows. η0 := 0, R0 := X0 and, for k ≥ 1, inductively:

η
(j)
k := max

ξ∈Rk−1
δ∈[−γk,γk]

cT
j (x̂(Δk; ξ) + δ) (j = 1, ..., �k) (26)

Rk := {x ∈ R
n : Ckx ≤ ηk}. (27)

We note the following important facts about the above definition. (1) Computing
ηk requires γk, whose computation in turn only requires enclosures Sk and Ek

for ‘small’ flows x(τ ; ξ) and y(τ ; ζ), for τ ∈ [0,Δk] (cf. Corollary 1). (2) In
the definition of Rk, one actually modifies a polytope Pk obtained by directly
advecting the initial X0 (sort of ‘long’ advection), not the preceding set Rk−1.

The correctness of the method is expressed by the following lemma, which
also gives additional guarantees about the enclosure sets6 Sk.

Lemma 1 (correctness of Rk). For each k = 0, 1, ..., N and x0 ∈ X0, we have
x(tk;x0) ∈ Rk. Consequently Sk ⊇ {x(τ ;x0) : (τ, x0) ∈ [tk−1, tk]× X0} for each
k ≥ 1.

The overall workflow of the method is summarized in Algorithm 1, which
we christen ckr, for Carleman-Krylov Reachability. The timesteps Δk, for k =
1, 2, ..., N , are such that Δk = tk − tk−1 and tN = T , the time horizon, which
is assumed to be in the interval of definition of x(t;x0) for each x0 ∈ X0. In an
actual implementation, the timesteps might be chosen adaptively. In the pseudo-
code, we use the abbreviation hs(P ) to denote a halfspace representation (C, b)
of a polytope P .
6 These are useful in case one wants a flowpipe encapsulating the flow x(t;x0) for all

t’s in a given interval, not only at specified time points tk’s.
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Algorithm 1. ckr
Input: f = (f1, ..., fn), vector field in the variables x = (x1, ..., xn); U ⊆fin R

n

s.t. X0 = ch(U); m ≥ 1, order of approximation; T ≥ 0, time horizon; (Δk)
N
k=1,

timesteps.
Output: RL, a list of reachsets.

1: α := vector of elements of A to repr. each of L(j)
f (xi) (0 ≤ j ≤ m − 1, 1 ≤ i ≤ n)

2: for i = 1, ..., n do
3: v(i) := vector of coefficients of xi w.r.t. α
4: V (i), H

(i)
m := Arnoldi(f, v(i), α, m) � relies on u �→ ATu

5: x̂i := (t, x) �→ ||v(i)||2 (etH
(i)T
m

1 )V (i)Tα(x) � Cf. (24). For t = tk is an adv. map
6: end for
7: R0 := hs(ch(U))
8: RL := [R0]
9: for k = 1, 2, ..., N do

10: (Ck, bk) := hs(ch(x̂(tk, U))) � k-th advected polytope
11: Sk := enclosure(f, Δk, Rk−1)

12: E
(i)
k := enclosure((H

(i)
m )T , Δk, (V (i))TRk−1) (1 ≤ i ≤ n)

13: γk := apply (25) to Δk, Sk, E
(i)
k (1 ≤ i ≤ n)

14: ηk := apply (26) to Rk−1, γk, Ak

15: Rk := (Ck, ηk) � k-th reachset
16: append(RL, Rk)
17: end for
18: return RL

Example 2. Let us reconsider the VdP system of Example 1. We fix m = 2,
X0 = [0.1, 0.2] × [0.1, 0.2], T = Δ = 0.1 and a basis α of monomials. The
approximate advection functions x̂1 and x̂2 are computed in the cycle 2–6 of
Algorithm 1: we have already detailed the computation of x̂1 in Example 1;
one proceeds similarly for x̂2. Overall, writing x0 = x = (x1, x2)T , one obtains
x̂(Δ;x) := (x̂1(Δ;x), x̂2(Δ;x))T where for Δ = 0.1:

x̂1(Δ;x) = 0.99 ·x1+0.10 ·x2 x̂2(Δ;x) = −0.10 ·x2
1 ·x2 −0.10 ·x1+1.09 ·x2.

Let us see how the first (and only, for this example) reachset R1 is computed. The
four vertices U = {u1, u2, u3, u4} of X0 are advected at time T obtaining U1 =
{u′

1, u
′
2, u

′
3, u

′
4} := {x̂(Δ;u1), x̂(Δ;u2), x̂(Δ;u3), x̂(Δ;u4)}. For instance, for u1 =

(0.10, 0.10)T , one has u′
1 = x̂(Δ;u1) = (0.20, 0.08)T . For the convex hull of U1, a

halfspace representation (C1, b1) is computed (step 10); to compensate for errors,
vector b1 is replaced by a slightly larger7 (componentwise) η1, computed via
optimization (step 14), giving rise to the representation R1 = (C1, η1) returned
as output.

Remark 1 (computational considerations). Concerning Algorithm 1, a few con-
siderations are in order. (1) The computation of the enclosures Sk, E

(i)
k in steps

7 More precisely: C1 =
[ −0.11074 −0.99546 0.99544 0.11392

−0.99385 0.09513 −0.09541 0.99349

]T , b1 = (−0.11067, −0.10006,

0.20011, 0.22134)T and η1 = (−0.11065, −0.10002, 0.20015, 0.22142)T .
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Fig. 2. Individual trajectories starting from x0 = (0.485, 0.2)T in the time interval [0, 1]
for systems (28)(a) (left) and (28)(b) (right), computed as follows: (i) x(t;x0), the exact
solution computed numerically (yellow); (ii) x̂(t;x0), our approximate solution (24)
(black); (iii) xT (t;x0) with xT,i(t;x0) :=

∑m−1
j=0 L(j)(xi)|x=x0

tj

j!
, the Taylor expansion

of order m − 1 of the solution from t = 0 (blue), limited to t = 0.2 for system (28)(a);
(iv) xL(t;x0), the solution of the linearized system ẋ = f(x0)+J|x=x0 · (x−x0), where
J is the Jacobian of f(x) in (3) (green). (Color figure online)

11 and 12 can be achieved using any library available to this purpose. We rely on
cora [2] in our implementation. (2) Solving the non-convex optimization prob-
lem (26) at step 14 is arguably the most demanding aspect of the algorithm,
especially if one is interested in building a certified implementation. In the case
of a polynomial vector field and basis, certified upper bounds can be obtained
via Sum-Of-Squares (SOS) programming [25], which preserves correctness. In our
current implementation, we rely on a general purpose global (non-convex) opti-
mization procedure. We leave for future work the exploration of SOS techniques.
(3) Numerical computation of the exponential matrix e(tk−τ)HT

m in step 5 is not
problematic, given that m is typically quite small. In a certified implementation,
one might compute the exponential via interval arithmetic [13].

6 Experiments

In this section, we present some experimental results obtained by applying the
approximation scheme and method in the preceding sections8. The section is
divided into two parts. First, we compare graphically different approximation
methods, including ours, on two examples drawn from the literature, and on a
more substantial example drawn from System Biology. Next we illustrate the
result of applying a proof-of-concept Python implementation of Algorithm 1,
ckr. In particular, we compare ckr with two state-of-the-art tools for reachabil-
ity analysis, cora [2] and Flow∗ [8] on some examples drawn from the literature.
In all the examples, for our method we consider a basis of monomial functions.

Graphical Comparisons. We analyze the following two nonlinear systems.

(a)
{

ẋ1 = 4x2(x1 +
√
3)

ẋ2 = −4(x1 +
√
3)2 − 4(x2 + 1)2 + 16

(b)
{

ẋ1 = x1(1.5 − x2)
ẋ2 = −x2(3 − x1).

(28)

8 Code and examples available at https://github.com/Luisa-unifi/CKR.

https://github.com/Luisa-unifi/CKR
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System (28)(a) is taken from [6], while system (28)(b) is an instance of Lotka-
Volterra in 2D. System (28)(a) has the origin as a stable equilibrium point, while
(28)(b) is not stable at the origin. For a time horizon of T = 1, we show in Fig. 2
trajectories of exact and approximate solutions, computed with various methods,
including ours, as explained in the caption. Our approximation (black curve) is
very close the exact solution (yellow curve).

We consider also a more substantial example drawn from System Biology,
the Laub-Loomis model, whose description we report from [9].

(LL)

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = 1.4x3 − 0.9x1

ẋ2 = 2.5x5 − 1.5x2

ẋ3 = 0.6x7 − 0.8x3x2

ẋ4 = 2 − 1.3x4x3

ẋ5 = 0.7x1 − x4x5

ẋ6 = 0.3x1 − 3.1x6

ẋ7 = 1.8x6 − 1.5x7x2
(29)

Like in the previous example, we make a graphical comparison of the
exact solution, computed numerically, with approximate solutions obtained
with various methods, including ours. We fix the initial condition to
x0 = (1.2, 1.05, 1.5, 2.4, 1.0, 0.1, 0.45)T and the time horizon to T = 1. The plots
in Fig. 3 show that x̂(t;x0) is quite accurate w.r.t. to the exact solution.

Fig. 3. Exact and approximate solutions for LL over a time horizon of T = 1. The
color code is the same as in Fig. 2: yellow/exact, black/our approximation, blue/Taylor,
green/linearization with jacobian. Different values of m in {4, 5, 6} are considered,
depending on xi. For layout reasons, the plot of x7 is omitted. (Color figure online)
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Table 1. Comparison of Flow∗, cora and ckr on: system (28)(b) with X0 =
[0.40, 0.52]×[0.18, 0.27]; system (30) with X0 = [−0.5, 0.3]×[−0.7, 0.8]; the VdP system
of Example 1 with X0 = [1.00, 1.50] × [2.00, 2.45]. Legenda: Sys = system’s equation
reference, TH = time horizon, Termination = time at which the algorithm stops,
either by natural termination or by breakdown (marked with ∗), Accuracy = average
area of reachsets, m = approximation order.In each row, the best achieved results are
marked in boldface.

Sys TH Termination Accuracy (average area) Execution time
Flow* CORA CKR Flow* CORA CKR Flow* CORA CKR
m = 4 m = 8 m = 10 all m all m m = 4 m = 8 m = 10 all m m = 4/5 m = 4 m = 8 m = 10 m = 4 m = 4/5

(28)b 1 1 1 1 1 1 0.02 0.02 0.02 0.01 0.01 0.12 1.45 3.90 0.17 13.31
3 3 3 3 2.2∗ 3 22.75 6.20 6.18 1.27∗ 2.82 0.98 4.67 14.94 0.47∗ 50.31
5 2.7∗ 5 5 2.2∗ 5 99.67∗ 4.37 4.35 1.27∗ 1.57 2.74∗ 8.55 25.24 0.49∗ 94.79

(30) 1 1 1 1 0.6∗ 1 5.16 3.34 3.33 5.34∗ 0.95 0.38 6.92 23.06 4.28∗ 14.27
3 1.3∗ 1.5∗ 1.5∗ 0.6∗ 3 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.72 5.04∗ 21.90∗ 67.76∗ 4.18∗ 37.96
5 1.3∗ 1.5∗ 1.5∗ 0.6∗ 5 8.37∗ 6.81∗ 6.10∗ 5.34∗ 0.62 4.94∗ 19.84∗ 76.48∗ 5.08∗ 64.42

VdP 1 1 1 1 1 1 0.37 0.37 0.37 0.15 0.12 0.13 1.71 5.03 2.02 13.72
3 3 3 3 3 3 0.16 0.15 0.15 0.09 0.05 0.42 5.05 15.42 5.13 37.05
5 5 5 5 5 5 0.15 0.13 0.13 0.18 0.07 0.77 8.54 24.93 10.36 65.66

Reachsets: Comparison with Flow∗ and cora. Flow* [8] and cora [2] are state-
of-the-art tools for reachability analysis; they are quite effective at building (over-
approximations of) reachsets. The purpose of the following comparison is show-
ing that building reachsets around our the approximate solutions x̂(t;x0), as we
do in ckr, can be beneficial for accuracy. We compare the reachsets Rk produced
by ckr with those produced by Flow* and cora on three examples, one stable
and two unstable. Specifically, we consider: (1) the system in (28)(b) (unstable);
(2) a new system (stable) defined by:

ẋ1 = −x3
1 + x2 ẋ2 = −x3

1 − x3
2. (30)

and finally, (3) the VdP system introduced in Example 1 (unstable). VdP also
exhibits a limit cycle behaviour. We also stress-test the capabilities of the algo-
rithms in terms of initial sets by considering relatively large X0’s.

We measure the quality of the results as the average area of the reachsets
in correspondence of the timesteps returned by each algorithm, until natural
or premature termination: 1

N

∑N
k=1 a(Pk), where a(Pk) denotes the area of the

polygon Pk corresponding to the reachset at time tk (Pk = Rk for ckr). We
report the obtained results in Table 1, together with the time at which the dif-
ferent algorithms stop, possibly due to an explosion of the overapproximation
(breakdown time). For the sake of completeness, we also report a column with
execution times9.

As far as accuracy is concerned, in all cases the sets produced by ckr are
tighter than those produced by the other two, often significantly so. Concerning
termination, ckr is the only algorithm to complete its execution over the whole
time horizon in all the considered cases.
9 It should be noted, though, that it makes little sense to compare a proof-of-concept

implementation with highly optimized tools in this respect. At any rate, all execution
times are below 100 seconds.
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7 Conclusion

We have presented an approach to effectively compute, given a nonlinear ode
system, a linear system which is at the same time small and useful to produce
globally accurate approximate solutions, under suitable conditions. We have
argued that the method can also bring some benefit to classical reachability
analysis in terms of accuracy.

As for future work, we would like to investigate the relation of our method
with other well-known linearization schemes, in particular the Koopman app-
roach. Indeed, a trait d’union between Koopman’s and our approach is the central
role played in both by the observable functions g. In our case, the decomposition
of g in the given basis α is the starting point to build a Krylov space, which
seems to capture a lot of relevant information about g(x(t;x0)). This is reminis-
cent of finite-dimensional approximations in Koopman’s approach [21, Ch.1.4],
but establishing a precise relation is nontrivial.
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Abstract. An automaton is history-deterministic (HD) if one can safely
resolve its non-deterministic choices on the fly. In a recent paper, Hen-
zinger, Lehtinen and Totzke studied this in the context of Timed Autom-
ata [9], where it was conjectured that the class of timed ω-languages
recognised by HD-timed automata strictly extends that of deterministic
ones. We provide a proof for this fact.

Keywords: Timed automata · History-determinism

1 Introduction

History-determinism asks for the existence of a strategy to produce a run on
an input word that is given one letter at a time, so that the resulting run is
accepting whenever the given word is in the language.

Similar to automata with bounded ambiguity, history-deterministic ones pro-
vide a middle ground between determinism and non-determinism. They are typ-
ically more succinct, or even more expressive, than their deterministic counter-
parts while preserving some of their good algorithmic properties. For example,
when verifying finite or ω-automata against history-deterministic specifications
(i.e. checking inclusion with languages given by a HD automaton), the costly step
of complementing the specification automaton can be avoided, as checking lan-
guage inclusion can be replaced by checking fair simulation [9], which is polyno-
mial for finite, Büchi and co-Büchi automata [8]. For some co-Büchi-recognisable
languages, history-deterministic automata can be exponentially more succinct
than any equivalent deterministic automaton [12], and checking if a Büchi or co-
Büchi automaton is history-deterministic is decidable in polynomial time [2,12].

History-determinism has mostly been studied in the ω-regular setting, i.e., for
finite-state automata recognising languages of infinite words or trees, where the
concept of history-determinism has also been called “good-for-games” [3,6,10,
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13]. Recently, the notion has been extended to richer automata models, such as
pushdown automata [7,14] and quantitative automata [4,5], where deterministic
and nondeterministic models have different expressivity.

In [9], history-determinism was first studied in the context of timed autom-
ata(TA) with ω-regular acceptance conditions [1]. It is shown that for history-
deterministic TA with arbitrary parity acceptance, timed universality, inclusion,
and synthesis are ExpTime-complete, contrary to their undecidability for non-
deterministic Büchi TA [1]. History-deterministic TA with safety acceptance
are effectively determinisable; checking if a given timed automaton is history-
deterministic is decidable in ExpTime for safety or reachability acceptance, and
open for more general acceptance conditions such as Büchi, coBüchi and Parity.

In terms of expressivity, it was conjectured that history-deterministic timed
automata recognise a class of ω-languages strictly between those defined by
deterministic and non-deterministic TAs. The following language is proposed as
a candidate to separate deterministic and HD timed languages.

Let L be the language of all timed words along which eventually events appear
at unit distances: from some time t onwards, for every nonnegative integer i, there
is an event at time t + i.

It is not difficult to see that this language is recognised by a HD coBüchi
automaton. One can commit to the fractional time at which the longest chain
of events has been observed so far, and can afford to be wrong a finite number
of times. It is intuitively clear that L is not deterministic, considering that any
DTA has only finitely many clocks and thus “cannot remember unboundedly
many past timestamps” for comparisons. It is however notoriously technical to
provide formal arguments for showing that timed languages are not determinis-
tic. Herrmann [11] suggests some high-level lemmas based on reset points, but
these only apply to the Büchi setting.

The main contribution of this paper is a formal argument that the
language L is indeed not recognised by any deterministic timed automaton, even
with general Parity acceptance. We present a scheme to recursively produce, for
a given DTA, a suitable pair of words so that their runs are region-equivalent
(and so either both are accepting or both rejecting) but where only one of them
is in L. The main idea is to produce events and observe the resulting run until
it closes a loop in the region graph, then force that same loop again twice more.
Any resets that occurred in the intermediate loop are lost and overwritten in
the final iteration, which allows to move the timing of the intermediate loop
arbitrarily.

We also provide an example that separates history-deterministic from non-
deterministic timed automata, concluding that indeed, this class of timed lan-
guages sits strictly in between deterministic and non-deterministic ones.

2 Notations

Let N and R≥0 denote the nonnegative integers and reals, respectively. For c ∈
R≥0 we write �c� for its integer and fract(c) def= c − �c� for its fractional part.
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Timed Alphabets and Words. A timed word is a finite or infinite word
w = (a0, t0)(a1, t1), . . . over the alphabet (Σ ×R≥0) where the first components
are letters from some finite alphabet Σ and the second components are non-
decreasing and progressing, that is, for all n ∈ N, there is some i and a such that
w[i] = (a, t) and t > n. We sometimes call the (ai, ti) an ai-event with times-
tamp ti. For convenience, we will confuse timed words as above with words over
(Σ∪R≥0), interpreting each letter either as discrete event or a delay. The duration
of a (finite or infinite) timed word is the combined sum of all its delays. More pre-
cisely, a timed word w as above gives rise to the word d0a0d1a1 . . . over (Σ∪R≥0),
where t0 = d0 and ti+1 = ti+di+1. Conversely, the duration and the timed word
of a word over (Σ ∪ R≥0) is given inductively as follows. For any d ∈ R≥0,
a ∈ Σ, α ∈ (Σ ∪ R)∗, and β ∈ (Σ ∪ R)∞ let duration(τ) def= 0; duration(d) def=
d; duration(αβ) = duration(α) + duration(β); tword(ε) = tword(d) def= ε;
tword(αd) def= tword(α); and tword(ατ) def= tword(α)(τ, duration(α)).

Timed Automata are finite-state automata equipped with finitely many real-
valued variables called clocks, whose transitions are guarded by constraints on
clocks. Constraints on clocks C = {x, y, . . .} are (in)equalities x�n where x ∈ C,
n ∈ N and � ∈ {≤, <}. Let B(C) denote the set of Boolean combinations of clock
constraints, called guards. A clock valuation ν ∈ R

C
≥0 assigns a value ν(x) to each

clock x ∈ C. We write ν |= g if ν satisfies the guard g. A timed automaton (TA)
T = (Q, ι, C,Δ,Σ,Acc) is given by

– Q a finite set of states including an initial state ι;
– Σ an input alphabet;
– C a finite set of clocks;
– Δ ⊆ Q × B(C) × Σ × 2C × Q a finite set of transitions; each transition is

associated with a guard, a letter, and a set of clocks to reset.
– Acc ⊆ Δω an acceptance condition.

We assume that for all (s, ν, a) ∈ Q×R
C
≥0 ×Σ there is at least one transition

(s, g, a,R, s′) ∈ Δ so that ν satisfies g. T is deterministic if there is at most one
such enabled transition. I.e., for every state s and for every letter a ∈ Σ, all
transitions from s on a have mutually exclusive guards.

A configuration is a pair consisting of a control state and a clock valuation.
For every configuration (s, ν) ∈ Q × R

C
≥0,

1. there is a delay step (s, ν) d−→ (s, ν + d) for every d ≥ 0, which increments all
clocks by d.

2. there is a discrete step (s, ν) τ−→ (s′, ν′) if τ = (s, g, a,R, s′) ∈ Δ is a transition
so that ν satisfies g and ν′ = ν[R → 0], that is, it maps all clocks in R to 0
and agrees with ν on all other values.

A path ρ = (s0, ν0)
l1−→ (s1, ν1)

l2−→ (s2, ν2) . . . is called a run on timed word
w ∈ (Σ × R≥0)∞ if tword(l1l2 . . .) = w, where tword(τ) = a, for τ =
(s, g, a,R, s′) ∈ Δ. It is accepting if ρ ∈ Acc. The language L(s, ν) ⊆ (Σ ×R≥0)ω

of a configuration (s, ν) consists of all timed words for which there exists an
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accepting run from (s, ν). The language of T is L(T ) def= L((ι, 0)), the language
of the initial configuration with state ι and the valuation 0 where all clocks set
to zero. We assume that Acc is determined by a parity condition: Q → D maps
states to a integer priority domain D = [i..p] with minimal priority i ∈ {0, 1} and
maximal priority p ∈ N. A run is accepting if the highest priority seen infinitely
often along the run is even. Büchi acceptance corresponds to D = {1, 2} and
co-Büchi acceptance corresponds to D = {0, 1}.

Regions. The following is the standard definition of regions (cf. [1], def. 4.3).
Let T = (Q, ι, C,Δ,Σ,Acc) be a timed automaton and for any clock x ∈ C let cx

denote the largest constant in any clock constraint involving x. Two valuations
ν, ν′ ∈ R

C
≥0 are (region) equivalent (write ν ∼ ν′) if all of the following hold.

1. For all x ∈ C either �ν(x)� = �ν′(x)� or both ν(x) and ν′(x) are greater than
cx.

2. For all x, y ∈ C with ν(x) ≤ cx and ν(y) ≤ cy, fract(ν(x)) ≤ fract(ν(y)) iff
fract(ν′(x)) ≤ fract(ν′(y)).

3. For all x ∈ C with ν(x) ≤ cx, fract(ν(x)) = 0 iff fract(ν′(x)) = 0.

It follows that there are only finitely many equivalence classes w.r.t. ∼, called
regions, for any given TA. Two configurations (s, ν) and (s′, ν′) are (region)
equivalent, write (s, ν) ∼ (s′, ν′), if s = s′ and ν ∼ ν′. Two runs are (region)
equivalent if they have the same length and stepwise visit region equivalent
configurations. Let maxfrac(ν) = max{fract(ν(x)) | x ∈ C} denote the maximal
fractional value of any clock in configuration ν. We will make use of the following
two properties.

Proposition 1. 1. For any valuation ν and d ≤ 1 − maxfrac(ν) we have ν ∼
ν + d.

2. Suppose that (p, ν) ∼ (p′, ν′) and let ρ ∈ (Δ ∪ R≥0)∗ satisfy duration(ρ) <

1 − maxfrac(ν), duration(ρ) < 1 − maxfrac(ν′) and (p, ν)
ρ−→ (q, μ).

Then (p′, ν′)
ρ−→ (q′, μ′) for some (q′, μ′) ∼ (q, μ).

Proof (sketch). Part 1 is immediate from the definition of regions.
Part 2 can be shown by induction on the length of ρ using the facts that

region-equivalent configurations enable the same discrete transitions and that
any delay decreases the duration of the remaining path by the same amount it
increases clocks. ��

History-Deterministic TA. A timed automaton is history-deterministic if
one can resolve non-deterministic choices on-the-fly.

More formally, consider a function r : (Δ ∪ R≥0)∗ × Σ → Δ that, given a
finite run ρi = (s0, ν0)

a0−→ (s1, ν1)
a1−→ (s2, ν2) . . . (si, νi) and a next letter ai ∈ Σ,

returns a transition r(ρi, ai) = (si, gi, ai, si+1) ∈ Δ such that νi |= g. This yields,
for every word w = a0a1 . . . ∈ (Σ ∪ R≥0)ω and initial configuration (s0, ν0), a
unique run in which the ith step (si, νi)

ai−→ (si+1, νi+1) either results from a
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q q′

a, x ↓

a, x > 1

a a, x < 1

a, x = 1, x ↓

Fig. 1. A history-deterministic timed co-Büchi automaton for L. The state q′ has
priority 0, i.e. is accepting, while the state q has priority 1.

delay (if ai ∈ R≥0 and (si+1, νi+1) = (si, νi + ai)) or a discrete step chosen by r
(if ai ∈ Σ and r(ρi, ai) = (si, gi, ai, si+1)).

Such a function is called resolver if for any input word w ∈ L(T ) the con-
structed run ρ from initial configuration (s0, ν0) = (ι, 0) is accepting. A timed
automaton is history-deterministic if such a resolver exists.

3 D<HD

The interesting aspect of our claim is to show that HD timed automata are
strictly more expressive than deterministic ones. We show that the following
language L over the singleton alphabet Σ = {a} is recognised by a one-clock
history-deterministic co-Büchi automaton yet not by any deterministic Parity
timed automaton. In words, L asks to eventually see events a at unit distance.
Formally,

L
def= {(a, t0)(a, t1)... | ∃i ∈ N. ∀n ∈ N. ∃j > i. tj − ti = n} .

L is HD Recognisable

We show that L is recognised by the history-deterministic timed ω-automaton,
in Fig. 1. This automaton has an initial rejecting state q, from where there is a
nondeterministic choice to either remain in this state or transition to an accept-
ing state q′, which resets the unique clock. There are two transitions to stay in
the accepting state: one enabled when the clock value is smaller than 1, and one
enabled at clock value 1, which also resets the clock. If the clock value grows
larger than 1, the only enabled transition goes back to the initial state. Since
this is a co-Büchi automaton, an accepting run must eventually remain in the
accepting state.

First, this automaton recognises L: if w ∈ L then there is an accepting run
that moves to state q′ at time t, where it then remains since the clock x is reset
at the occurrence of each event (a, t + n) for n ∈ N, so the clock value never
grows larger than 1. Conversely, a word accepted by this automaton has a run
that eventually moves to q′ at a time t, and then remains in q′. For the run to
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b1,1 b2,1 b3,1 . . .
bi,1

. . .

b1,2 b2,2 b3,2 . . .
bi,2

. . . . . .

bi,3
. . . b3,3

b2,3
b1,3

0 1/3 2/3 1

si,1 ei,1

fi,1,2

. . .

Fig. 2. Blocks within an interval and ticks within a block

stay in q′, it must reset x at every time-unit after t, so (a, t + n) must occur in
the word for all n ∈ N, that is, the word is in L.

We now argue that this automaton is also history-deterministic. Given a
finite word read so far and a new letter a at time tnew, the resolver identifies
the earliest time tearly such that a has so far occurred at time tearly + n for all
integers n such that tearly + n ≤ tnew. Let r be the function that maps a run ρ
ending in q to q′ if tnew = tearly + m for some integer m, and otherwise to the
only other available transition.

We claim that this is indeed a resolver. If w ∈ L then there is an earliest time
t such that (a, t+n) occurs in w for all integers n. Since t is minimal, eventually
the resolver r will make its choice whether to move to q′ over a letter (a, tnew)
based on whether tnew = t + m for some integer m. Since time progresses and
(a, t+n) occurs in w for all integers n, the run will eventually transition to q′ at
a time t+m for some m. From there, since (a, t+n) occurs in w for all integers
n, the run over w remains in q′ and is therefore accepting.

It remains to be shown that L is not recognised by a deterministic timed
automaton.

L is not Deterministic Parity Recognisable

Suppose towards a contradiction that L is recognisable by some deterministic
Timed Automaton D with Parity acceptance. Let r be the number of its regions.

We will construct two words, one belonging to L and one that does not, so
that the run of D on w is region equivalent to the one on w′. The two words can
only differ in the timing of events since there is only one letter in the alphabet.

Both words will be constructed on the fly, according to the following schema.
Consider the intervals and fractional values in Fig. 2; There are infinitely

many disjoint intervals, bi,j = [si,j , ei,j ] so that all bi,1 have start and endpoint
strictly between 0 and 1

3 and are increasing, i.e., si+1,1 < ei,1 for all i. Similarly,
bi,2 ⊆ [13 , 2

3 ], and si+1,2 < ei,2 for all i. The third sequence of intervals bi,3 ⊆ [ 23 , 1]
have start and endpoint strictly between 1

3 and 1 and are decreasing : ei+1,3 <
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si,3 for all i. Each interval bi,j contains equi-distant values fi,j,0, fi,j,1, . . . , fi,j,r

starting at fi,j,0 = si,0.
We step-wise construct w (and w′) together with the run of D on it. In every

integral interval from i − 1 to i we place events as follows.

– start with a delay of fi,1,1, followed by a discrete event a, then delay of
fi,1,2 − fi,1,1 followed by a, and so on. This induces a run of D on the pre-
fix constructed and we continue constructing the prefix until the induced
run closes a cycle in the region graph. This implies existence of times fi,1,k

and fi,1,k+� such that the automaton is in configurations (si,1,k, νi,1,k) and
(si,1,k+�, νi,1,k+�) and (si,1,k+�, νi,1,k+�) ∼ (si,1,k, νi,1,k). We denote by Li the
run between fi,1,k and fi,1,k+�.

– Now we force the automaton to close the same cycle, but with all events
occurring at times in the interval bi,2 (respectively b1,2) in w (respectively
w′). This can be done by adding a time delay by si,2 − fi,1,k+� in w followed
by an event a at times fi,2,�′ for all 
′ ≤ 
. We prove this formally in Lemma
1.

– Finally we force the automaton to close the same cycle once more, with all
times in interval bi,3. This can be done by adding a time delay si,3 − fi,2,�

followed by events at times fi,3,1, fi,3,2, . . . fi,3,�. We prove the correctness of
the construction in Lemma 1.

Consider the cycle Li in the region graph obtained in step 1 above in the
interval [i − 1, i], between fi,1,k and fi,1,k+l. Note that the k and 
 depends on
i. However, we write k and 
 without as we only reason about loops within an
integral interval. The duration of the loop, denoted by duration(Li) is fi,1,k+� −
fi,1,k. An important observation is that duration(Li) ≤ ei,j − si,j as the loop
occurs within the interval between si,1 and ei,1.

Lemma 1. Let νi and ν′
i be the configurations reached by the run of D at times

i − 1 + fi,1,k and i − 1 + fi,1,k+�. Then 1 − maxfrac(νi + dij) ≥ duration(Li),
where dij = si,j − fi,1,k for j ∈ {2, 3}.

Furthermore, let νij be the configuration reached by the run of D at time
i − 1 + fi,j,1, where j = {2, 3}. The cycle Li is executable from νij.

Proof. We prove this lemma by induction on i. The case i = 1 is easy to see
since maxfrac(ν1 + d1j) ≤ s1,j and therefore 1 − maxfrac(ν1 + d1j) ≥ 1 − s1,j ≥
e1,j − s1,j ≥ duration(L1).

Furthermore, ν12 = ν′
1 + d, where d = s1,2 − f1,1,k+� ≤ 1 − f1,1,k+� ≤ 1 −

maxfrac(ν′
1). Therefore, by Proposition 1.1., ν12 ∼ ν′

1 ∼ ν1. For ν = ν1 and ν =
ν12, 1 − maxfrac(ν) > e1,3 − s1,3 > duration(L1) as 1 > e1,3 and maxfrac(ν) <
s1,3. By applying Proposition 1.2., L1 is executable from ν12 and ends in a
configuration ν′

12 ∼ ν12.
The configuration ν13 equals ν′

12 + d′, where d′ = s1,3 − f1,2,� < 1 −
maxfrac(ν′

12) as maxfrac(ν′
12) ≤ f1,2,�. Proposition 1.1. gives ν13 ∼ ν12, and

1−maxfrac(ν13) ≥ e1,3 − s1,3 ≥ duration(L1). By Proposition 1.2., we can con-
clude that L1 is executable from ν13.
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To prove the inductive case, we bound the value of maxfrac(νi + dij) for j ∈
{2, 3}. Consider a clock x ∈ C and the last time when it was reset. Either it was
never reset or the reset occurred at time fi′,j′,k′ . For a clock that is never reset,
the fractional part of its value at νi will be fi,1,k. If the clock was last reset within
some blue block, i.e., at time i′ − 1 + fi′,1,k′ , then either i′ < i (corresponds to
previous blue blocks), or k′ < k (corresponds to previous ticks within the current
blue block). In both cases, the fract(x) = fract(fi,1,k − (i′ − 1+ fi′,1,k′)) ≤ fi,1,k.

Note that any reset to clock x in a previous red block must also be reset again
in the corresponding green block as the runs in the red and green block are the
same by construction. For a clock x last reset in some previous green block, i.e.,
at time i′ − 1 + fi′,3,k′ , fract(x) = fract((i − 1 + fi,1,k) − (i′ − 1 + fi′,3,k′)) =
fi,1,k+(1−fi′,3,k′). Furthermore, fi′,3,k′ > si−1,3 as i′ ≤ i. Therefore, fract(x) ≤
1 + fi,1,k − si−1,3 + 1 which bounds 1− fract(x) ≥ si−1,3 − fi,1,k. Combining all
the possibilities for clock resets, we obtain 1 − maxfrac(νi) ≥ si−1,3 − fi,1,k.

It is easy to see that for j ∈ {2, 3}, maxfrac(νi + dij) ≤ maxfrac(νi) + dij .
Therefore, 1−maxfrac(νi + dij) ≥ 1−maxfrac(νi)− dij ≥ 1− (fi,1,k − si−1,3 +
1)− (si,j − fi,1,k) ≥ si−1,3 − si,j ≥ ei,j − si,2. The last step follows from the fact
that ei,j ≤ si−1,3 for j ∈ {2, 3}. Note that the duration of the loop Li is less
than ei,j − si,j and thus completes the proof for fist part of the lemma.

We now show that Li is executable from νi2 and νi3. First, νi2 ∼ νi and
νi3 ∼ νi2 by repeated application of Proposition 1.1.. This is similar to the
argument in the base case. We just showed that 1 − maxfrac(νi2) > si−1,3 −
si,2 > ei,2 − si,2 = duration(Li). The same argument holds for νi3 as well.
Also, maxfrac(νi) ≤ 1 − si−1,3 + fi,1,k and hence 1 − max νi ≥ si−1,3 − fi,1,k <
ei,3 − si,3 < duration(Li). Therefore, by Proposition 1.2., Li is executable from
both νi2 and νi3.

Notice that the so-constructed word w is not in L because all bi,j are disjoint.
The word w′ will be constructed almost the same way, with the only exception
that the first repetition of the cycle is move not to bi,2 but always the same
interval, b1,2. Its easy to see that Lemma 1 can be modified where bi,2 is replaced
everywhere by b1,2. In particular this means that w contains an event at time
n + s1,2 for any n ∈ N, and thus must be contained in L. Therefore, D has an
accepting run on w′ but the run on w′ is visits the same sequence of states as
the run of D on w. Therefore, D must accept w as well, which is a contradiction
proving that L is not accepted by any deterministic Timed Automaton with
Parity acceptance.

4 HD<ND

We now show that non-deterministic TA are more expressive than history-
deterministic TA. In particular, we show that the following language L′ over
the singleton alphabet Σ = {a} is recognised by a one-clock non-deterministic
TA with reachability acceptance but not by any history-deterministic Parity TA.
In words, L′ asks to see two events a at unit distance. Formally,
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q q′ qf
a, x ↓

aa

a, x = 1

a

Fig. 3. A non-deterministic timed reachability automaton for L′.

L′ def= {(σ0, t0)(σ1, t1)... | ∃i, j ∈ N. tj − ti = 1 and σi = a and σj = a} .

The non-deterministic TA shown in Fig. 3 accepts the language L′ by guessing
positions i by reading an a, resetting a clock x and checking that it sees an a at
distance 1.

Assume towards a contradiction that there exists a HD TA H with k clocks
and maximum constant in guards cx, that recognises L′. For all i ≤ k consider
the finite word

wi =
(

a,
1

k + 1

)
· · ·

(
a,

k + 1
k + 1

)(
a, 1 +

i

k + 1

)

that sees k + 1 equi-distant events in the interval [0, 1] and then repeats the ith
fractional value in the next integral interval. All these wi are in L′ and so the
resolver gives a run on all such words. Note that the prefix up to time 1 is the
same on all wi and therefore the resolver gives the same run, on all of them
until then. Consider the configuration ν reached by the resolver after reading
the prefix up until and including the event (a, 1). Since H has k clocks and k+1
events a, there exists an j ≤ k such that ν(x) �= 1 − j

k+1 holds for all clocks x.
That is, either no clock is reset while reading the jth event, or any clock reset
at that time is again reset later. It follows that ν + j

k+1 ∼ ν + j
k+1 +

(
1

2(k+1)

)
.

Finally, let’s take the word

w′ =
(

a,
1

k + 1

)(
a,

2
k + 1

)
· · ·

(
a,

k + 1
k + 1

)(
a, 1 +

j

k + 1
+

1
2(k + 1)

)

Clearly w′ is not in L′. However, H must have a run on w′ which follows the
accepting run of H on wj . The final step in this run can be executed because
the two runs end up in equivalent configurations. A contradiction. ��

We thus conclude that the classes of languages accepted by deterministic,
history-deterministic and non-deterministic TAs are all different.
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Abstract. Nonuniform families of polynomial-size finite automata,
which are series of indexed finite automata having polynomially many
inner states, are used in the past literature to solve nonuniform fami-
lies of promise decision problems. In such a nonuniform family, we focus
our attention, in particular, on the variants of nondeterministic finite
automata, which have at most “one” (unique or unambiguous), “poly-
nomially many” (few) accepting computation paths, or unique/few com-
putation paths leading to each fixed configuration. We prove that those
variants of one-way machines are different in computational power. As for
two-way machines restricted to instances of polynomially-bounded size,
families of two-way polynomial-size nondeterministic finite automata are
equivalent in power to families of unambiguous finite automata.

Keywords: Nonuniform state complexity · Finite automata ·
Accepting computation path · Unambiguous · Fewness

1 Background and an Overview

1.1 Historical Background: Unambiguity and Fewness
in Complexity Theory

The number of accepting computation paths of an underlying nondeterministic
machine has been a centerpiece of intensive research over the decades because the
accepting criteria are of great importance for nondeterministic computation and
it is indeed a key to the full understandings of nondeterministic computation.

The unambiguity of a language is in general characterized by an underly-
ing machine, which has at most one accepting computation path. The study of
unambiguous context-free languages, in particular, is also one of the important
subjects in formal languages theory because there are efficient parsing algorithms
for those languages.

In computational complexity theory, the unambiguity issues have been dis-
cussed since Valiant [15] introduced the unambiguous polynomial-time complex-
ity class, known as UP, in connection to the existence of one-way functions.
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When we allow more than one accepting computation paths but limited to poly-
nomially many paths, we then obtain FewP, which was introduced in [1,2]. It
still remains open whether or not the inclusions P ⊆ UP ⊆ FewP ⊆ NP are all
proper. A series of papers in the past literature have proposed various refine-
ments of unambiguous language families.

For the model of space-bounded machines, the logarithmic-space (or log-
space) analogues of UP and FewP, denoted UL and FewL, were discussed in
1990 s s [5] for better understandings of the nondeterministic logarithmic-space
computation. The space restriction sometimes presents a quite different land-
scape from the time restriction. With the help of the Karp-Lipton advice [10], for
instance, Reinhardt and Allender [13] managed to prove the equivalence between
NL/poly and UL/poly although NL and UL themselves are still unknown to coin-
cide. Bourke, Tewari, and Vinodchandran [4] and lately also Pavan, Tewari, and
Vinodchandran [12] gave an intriguing refinement of those complexity classes and
they exhibited the existence of a rich structure among such refined complexity
classes that are located between L and NL. Their refined classes associated with
unambiguity and fewness notions include: ReachUL, ReachFewL, ReachLFew,
and FewUL. It is also imperative to expand and explore the nature of unambigu-
ity and fewness of accepting computation paths in other computational models.

1.2 Historical Background: Nonuniform Families of Finite
Automata

Let us turn our attention to “finite(-state) automata”, which are one of the sim-
plest uniform models of computation. Those machines have been intensively
studied since its early introduction but, only since late 1970s,s, nonuniform
families of those machines have drawn our attention. In analogy to families
of (Boolean) circuits, Sakoda and Sipser [14], following the work of Berman
and Lingas [3], studied the families of polynomial-size finite automata, indexed
by natural numbers. Later, a series of papers [6–9,17–20] have contributed to
establishing a coherent theory over nonuniform state complexity of families of
languages, more generally, promise decision problems. Nonuniform machine fam-
ilies are generally used as a vehicle to solve families of promise problems in quite
efficient ways. In such a nonuniform setting, there are two parameters to take
into consideration: machine’s index n and input length |x|.

A family of finite automata is quite different from a family of (Boolean)
circuits in the following key point: while each circuit in a circuit family takes only
inputs of a fixed length, a finite automaton in an automata family can take inputs
of arbitrary length. This makes it possible for us to discuss subfamilies of a family
of automata by freely restricting the size of inputs, which is called a “ceiling”. By
choosing different ceilings, we can discuss the computational complexity of a wide
variety of nonuniform families of finite automata. The notion of nonuniformity,
ranging from advice-enhanced Turing machines to families of Boolean circuits,
is as important as that of uniformity in computational complexity theory.

Families of promise problems that are solvable by nonuniform families of two-
way polynomial-size deterministic finite automata are, in particular, denoted
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2ReachFew/poly

2N/poly = 2Few/poly = 2U/poly

2ReachU/poly

2ReachFewU/poly

Fig. 1. Inclusion and collapse relations among families of promise problems discussed
in this work.

collectively as 2D, and its nondeterministic variant is denoted 2N. In fact, the
nonuniform nature of such machine families in fact provides enormous flexibil-
ity to solving families of promise problems. Manifestation of this fact has been
demonstrated in the field of automata theory, for various machine types includ-
ing deterministic, nondeterministic, probabilistic, quantum automata and also
pushdown automata. The nonuniform families of finite automata have been stud-
ied in direct connection to logarithmic-space advised complexity classes, such as
L/poly and NL/poly. It has been expected to further expand the scope of the
research on nonuniform state complexity theory to other types of finite automata
families.

1.3 New Challenges in This Work

Unfortunately, the theory of nonuniform state complexity has not yet intensively
studied in depth and scope. Thus, it is imperative to replenish the theory by
cultivating and examining structural properties of underlying finite automata.
In this work, we intend to explore structural properties of machine models that
lie between nonuniform families of deterministic finite automata and those of
nondeterministic finite automata.

For this purpose, we need to adapt various notions related to unambiguity
and fewness for nondeterministic logarithmic-space Turing machines [12] to fit
into our setting of nonuniform families of finite automata. Our intension here is
to replenish the theory by making new challenges in the topics of unambiguity
and fewness for polynomial-size families of finite automata, because the notions
of unambiguity and fewness are also important in automata theory. We intend to
study the computational complexity of families of polynomial-size nondetermin-
istic finite automata that satisfy various conditions on accepting computation
concerning unambiguity and fewness.

In a spirit similar to [12], we will introduce six nonuniform state complexity
classes between 1D and 1N in Sect. 3.1 and between 2D and 2N in Sect. 4. We
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will then demonstrate various relationships among those state complexity classes.
Our result is summarized in Fig. 1.

2 Basic Notions and Notation

2.1 Numbers, Promise Problems, and Kolmogorov Complexity

Let N (resp., N
+) denote the set of all nonnegative (resp., positive) integers.

Notice that N = N
+ ∪ {0}. Given two integers m and n with m ≤ n, [m,n]Z

denotes the integer interval {m,m + 1,m + 2, . . . , n}. When n ∈ N
+, [1, n]Z is

abbreviated as [n] for simplicity. Given a set A, the notation ‖A‖ denotes the
cardinality of A and P(A) denotes the power set of A.

A polynomial in this paper is assumed to have nonnegative integer coeffi-
cients. An exponential refers to a function of the form 2p(n) for an appropriate
polynomial p. Any logarithm is assumed to take the base 2 and any logarithmic
function f has the form a log x+b for certain constants a, b ≥ 0. For convenience,
we say that a function f on N (i.e., from N to N) super-exponential if, for any
polynomial p, f(n) > 2p(n) holds for all but finitely many numbers n ∈ N.

We briefly explain (nonuniform) families of promise (decision) problems as
described in [17–20]. Given an alphabet Σ, a promise (decision) problem over
Σ is a pair (A,B) of sets satisfying A ∪ B ⊆ Σ∗ and A ∩ B = ∅. Any instance
in A is called positive and any instance in B is negative. To clarify the use of
positive/negative instances, we often use the superscripts of (+) and (−) to
express a promise problem as (L(+), L(−)). We further consider a family L of
promise problems (L(+)

n , L
(−)
n ) for all indices n ∈ N; however, we focus only on

families of promise problems over the “same” alphabet Σ. From this condition,
we often denote the union L

(+)
n ∪L

(−)
n by Σ(n), where the notation Σn is reserved

for the set of strings of length n. Any string in Σ(n) indicates a valid (or a
promised) instance over Σ. The complement of L, denoted co-L, consists of
(L(−)

n , L
(+)
n ) for all indices n ∈ N.

Let U denote any universal (deterministic) Turing machine taking binary
input strings and eventually produces binary output strings. Given any binary
strings x and y, the conditional Kolmogorov complexity of x conditional to y,
denoted C(x|y), is the length of the shortest binary string p such that U on
inputs (p, y) produces x on its output tape. We use the notation ε to denote the
empty string. If y is ε, we write C(x) instead of C(x|ε). This is referred to as the
(unconditional) Kolmogorov complexity of x. See, e.g., [11] for more detail.

2.2 Families of Finite Automata

In this work, we use “standard” model of finite automata. We abbreviate a one-
way nondeterministic finite(-state) automaton as a 1nfa and a two-way nonde-
terministic finite(-state) automaton as a 2nfa. Similarly, we call deterministic
variants of 1nfa and 2nfa by 1dfa and 2dfa, respectively.
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We consider “families” of finite automata of the same machine type over the
same alphabet Σ. In particular, we use families M = {Mn}n∈N of 2nfa’s (as
well as 2dfa’s, 1nfa’s, and 1dfa’s) as a base model to solve families of promise
problems.

Each finite automaton Mn in the family M is expressed as a septuple
(Qn, Σ, {�,�}, δn, q0,n, Qacc,n, Qrej,n) with two designated endmarkers � and �
and two sets Qacc,n and Qrej,n of accepting (inner) states and rejecting (inner)
states satisfying both Qacc,n ∪ Qrej,n ⊆ Qn and Qacc,n ∩ Qrej,n = ∅. Any inner
state in Qacc,n ∪ Qrej,n are simply called a halting (inner) state. The transition
function δ is defined only on non-halting states. The state complexity of Mn

refers to |Qn|, which is the total number of Mn’s inner states, and it is denoted
sc(Mn). A family M is said to have polynomial size if there exists a polynomial
p such that sc(Mn) ≤ p(n) holds for all n ∈ N. For more information on the
underlying setting of automata families, the reader refers to [18].

Following [18], a one-way finite automaton is always assumed to make no
stationary move (or ε-move); that is, its tape head must move only in one direc-
tion, to the right, whenever it reads an input symbol (including the endmarkers).
This condition is sometimes called real time in the literature.

It is imperative to clarify a few important terminologies associated with
“computation” of finite automata Mn on input x. A surface configuration of
Mn on x is of the form (q, i) in Q × [0, |x| + 1]Z excluding x, which indicates
that Mn is in inner state q and its tape head is located at cell i, assuming that
tape cells are indexed by nonnegative integers and that � and � are placed
respectively at cell 0 and cell |x| + 1. In the rest of this work, since we deal only
with surface configurations, we drop the word “surface” altogether from “surface
configurations”. With the use of configurations, we consider a computation graph
of Mn on x, whose vertices are configurations of Mn on x and a transition from
any non-halting configuration to another configuration forms a directed edge.
We write (p, i) 	 (q, i + 1) to express an edge of this graph. A computation path
is a path in a computation graph from the root (i.e., the initial configuration)
to a certain leaf (i.e., a halting configuration) if any. A computation path is
accepting (resp., rejecting) if it ends in a configuration with an accepting (resp.,
a rejecting) configuration.

We say that Mn halts on x if there exists a computation path of finite length
in the computation graph of Mn on x. In this work, we are interested only in
finite automata that always halt on all valid instances. For such a halting 2nfa
Mn, we say that Mn accepts x if Mn starts with �x� and produces a certain
accepting computation path, and M is said to reject x otherwise.

Let us consider a family L = {(L(+)
n , L

(−)
n )}n∈N of promise problems over a

fixed alphabet Σ. Recall that Σ(n) expresses the set of all valid (or promised)
instances over Σ for (L(+)

n , L
(−)
n ). For any other “invalid” instance x, when a

machine, say, Mn takes x as an input, we do not require any condition on the
behavior of the machine. A family M = {Mn}n∈N of machines over Σ is said to
solve (or recognize) L if, for any n ∈ N, (1) for any x ∈ L

(+)
n , Mn accepts x and
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(2) for any x ∈ L
(−)
n , Mn rejects x. There may be a case where M does not even

halt on invalid instances.
The notation 2N (resp., 1N) denotes the collection of all families of

promise problems solved by appropriate families of polynomial-size 2nfa’s (resp.,
polynomial-size 1nfa’s). Similarly, the notation 2D (resp., 1D) is defined using
2dfa’s (resp., 1dfa’s).

2.3 Unambiguous and Few Computation Paths

Unambiguous and few computation paths of nondeterministic machines have
played an important role in computational complexity theory. Following early
works of [2,5,12,15], we introduce key notions related to “unambiguity” and
“fewness” into theory of nonuniform state complexity. Let us recall that each
1nfa is allowed to have multiple accepting states and multiple rejecting states.
Let M = {Mn}n∈N denote any family of nondeterministic finite automata.

◦ Firstly, M is called unambiguous if, for each index n ∈ N and for any input
x ∈ Σ(n), there is at most one accepting computation path of Mn on x.
Similarly, M is weak-unambiguous if, for any index n ∈ N, for any input
x ∈ Σ(n), and for any accepting configuration conf , there exists at most one
computation path from the initial configuration of Mn on x to conf .

◦ Moreover, M is reach-unambiguous if, for any index n ∈ N, for any input
x ∈ Σ(n), and for any configuration conf , there is at most one computation
path from the initial configuration of Mn on x to conf .

◦ In contrast, M is accept-few1 if there exist a polynomial p such that, for any
index n ∈ N and for any input x ∈ Σ(n), there are at most p(n, |x|) accepting
computation paths of Mn on x.

◦ Lastly, M is reach-few if there exist a polynomial p such that, for any index
n ∈ N, for any input x ∈ Σ(n), and for any configuration conf of Mn on x,
there are at most p(n, |x|) computation paths of Mn on x from the initial
configuration to conf .

We remark that all the above five conditions are applied only to “valid”
inputs and there is no requirement for “invalid” inputs.

3 Complexity Classes Defined by One-Way Head Moves

We begin with discussing the computational complexity of families of promise
problems solved by nonuniform families of one-way nondeterministic finite
automata of various types introduced in Sect. 2.3.

It is important to remark that, since tape heads of 1nfa’s always move to
the right without making stationary moves, we can modify the 1nfa’s so that,
whenever they fail to enter accepting states until reading the right endmarker
1 This notion is called just “few” in [12]. For clarity reason, here we use a slightly

different term.
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�, they must enter rejecting states at the time of reading �. Moreover, when
the 1nfa’s enter accepting states even before reading �, it is also possible to
postpone the timing of acceptance until reading �. The 1nfa’s obtained by these
modifications halt precisely at reading �.

3.1 Definitions of New Complexity Classes

In a way similar to [2,5,12,15], as various subfamilies of 1N, we introduce six
nonuniform state complexity classes associated with unambiguity and fewness
of accepting computation paths given in Sect. 2.3.

◦ 1Few consists of all families of promise problems, each family of which is
solved by an appropriate family of 1-way accept-few finite automata having
polynomially many inner states.

◦ 1ReachFew is a unique subclass of 1Few, whose underlying finite automata are
additionally reach-few.

◦ 1ReachFewU is a unique subclass of 1ReachFew, whose underlying finite
automata are additionally unambiguous.

◦ 1ReachU is a unique subclass of 1ReachFewU, whose underlying finite
automata are additionally reach-unambiguous.

◦ 1FewU is defined from 1Few with underlying finite automata are additionally
weak-unambiguous.

◦ 1U consists of all families of promise problems, each family of which is solved
by an appropriate family of 1-way unambiguous finite automata having poly-
nomially many inner states.

The following inclusion relationships hold among the above-mentioned com-
plexity classes. See also Fig. 1.

Lemma 1. (1) 1D ⊆ 1ReachU ⊆ 1ReachFewU ⊆ 1ReachFew ⊆ 1Few. (2)
1ReachFewU ⊆ 1U ⊆ 1FewU ⊆ 1Few ⊆ 1N.

3.2 Class Separations

In what follows, we will demonstrate the class separations depicted in Fig. 1. For
our later argument, we will introduce several notions and notation.

Given numbers i1, i2, . . . , ik in N
+, [i1, i2, . . . , ik] denotes the binary string

1i101i20 · · · 01ik . The value k is called the size of [i1, i2, . . . , ik]. For any string
r of the form [i1, i2, . . . , ik], it follows that |r| =

∑k
j=1 ij + k − 1. Given such

a string r and for any index e ∈ [k], the notation (r)(e) denotes ie and Set(r)
stands for the set {i1, i2, . . . , ik}. Let An denote the set of all strings of the form
[i1, i2, . . . , ik] for certain numbers k ∈ N

+ and i1, i2, . . . , ik ∈ [n]. Additionally,
we set An(k) = {r ∈ An | size of r is k } for each fixed number k ∈ N

+.
As the first class separation, we show that 1ReachU properly contains 1D.
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Lemma 2. 1D �= 1ReachU.

Proof. Given each index n ∈ N, we set L
(+)
n = {r1#r2 | r1, r2 ∈ An(n),∃!e ∈

[n][(r1)(e) �= (r2)(e)]} and L
(−)
n = {r1#r2 | r1, r2 ∈ An(n),∀e ∈ [n][(r1)(e) =

(r2)(e)]}. We then denote by L1 the family {(L(+)
n , L

(−)
n )}n∈N.

To show that L1 is in 1ReachU, let us consider the following 1nfa Nn for each
n ∈ N: on input of the form r1#r2 with r1, r2 ∈ An(n), guess (i.e., nondeterminis-
tically choose) an index e ∈ [n], read through r1 to find the eth entry ie = (r1)(e),
remember it as an inner state of the form (ie, e), move to r2, and check whether
ie = (r2)(e). If so, accept the input, or else reject it. It is not difficult to see that
Nn solves (L(+)

n , L
(−)
n ). By the definition of L

(+)
n , Nn is unambiguous on all valid

instances. Since Nn is also reach-unambiguous, L1 belongs to 1ReachU.
Next, we want to show that L1 /∈ 1D by way of contradiction. Assume that

L1 ∈ 1D. This implies that co-L1 ∈ 1D since 1D = co-1D. Take a family M =
{Mn}n∈N of 1dfa’s having polynomially many inner states that solves co-L1.
Since Mn solves (L(−)

n , L
(+)
n ) for each n ∈ N, Mn accepts r1#r2 in L

(−)
n and

Mn rejects r1#r2 in L
(+)
n . Since M has polynomial size, there exists a constant

c > 0 satisfying |Qn| ≤ nc for any index n ∈ N. Here, we take a sufficiently large
number n ∈ N for which n > c holds.

For each string r1 ∈ An(n), μ(r1) denotes the unique inner state q of Mn

obtained just after reading r1#. It follows that, for any pair r1, r
′
1 ∈ An(n),

μ(r1) = μ(r′
1) implies r1 = r′

1. This is shown as follows. Assume that μ(r1) =
μ(r′

1) and r1 �= r′
1. Take an index e ∈ [n] satisfying (r1)(e) �= (r′

1)(e). Consider two
strings r1#r1 and r′

1#r1. Since r1#r1 ∈ L
(−)
n and Mn is deterministic, r′

1#r1
must be accepted. Thus, we obtain r′

1#r1 ∈ L
(−)
n , a contradiction. Therefore,

we conclude that |An(n)| ≤ |Qn|. However, since |An(n)| = nn and |Qn| ≤ nc,
it follows that n ≤ c. This is a clear contradiction. ��

Next, we look into a relationship between 1U and 1FewU.

Lemma 3. 1U �= 1FewU.

Proof. We first define a family L2 = {(L(+)
n , L

(−)
n )}n∈N by setting L

(+)
n =

{r1#r2 | r1, r2 ∈ An(n),∃e ∈ [n][(r1)(e) �= (r2)(e)]} and L
(−)
n = {r1#r2 | r1, r2 ∈

An(n),∀e ∈ [n][(r1)(e) = (r2)(e)]}.
Let us prove that L2 is in 1FewU. This can be shown by the following 1nfa

Nn. We assume that this machine has n accepting states q̂1, q̂2, . . . , q̂n. On input
x = r1#r2 with r1, r2 ∈ An(n), guess an index e ∈ [n], read r1, remember the
eth number ie = (r1)(e) by entering inner states of the form (ie, e), read r2,
and check whether ie = (r2)(e). If so, enter the eth accepting state q̂e. It follows
that, for each accepting state q̂e, there are at most one accepting computation
path leading to q̂e. Thus, Nn is accept-few and also weak-unambiguous. Since
Nn solves (L(+)

n , L
(−)
n ) for all n ∈ N, L2 belongs to 1FewU.

Next, we want to show that L2 /∈ 1U. Toward a contradiction, we take a
family M = {Mn}n∈N of polynomial-size unambiguous 1nfa’s and assume that
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M solves L2. Since Mn is unambiguous, it is possible to assume that |Qacc,n| = 1
for all n ∈ N.

Assume that |Qn| ≤ nc for a certain constant c ≥ 1. Choose any large enough
number n ∈ N satisfying nc < 2n. In what follows, we consider only inputs of the
form r1#r2 in L

(+)
n with r1, r2 ∈ An(n). Recall the notation C(x) from Sect. 2.1.

Since r1 ∈ An(n), r1 has the form [i1, i2, . . . , in] for i1, i2, . . . , in ∈ [n]. Letting
In = {i ∈ [n] | i ≥ √

n}, if i1, i2, . . . , in are all taken from In, then it follows
that |r1| − n =

∑n
j=1 ij − 1 ≥ n

√
n − 1. Hence, we obtain log (|r1| − n) ≥ log n.

Take a sufficiently large number n ∈ N and fix a string r1 ∈ An(n) for which
C(r1) ≥ log2 (|r1| − n) ≥ log2 n holds.

We partition r1 into r11r12 for which |r12| > 2c log n holds. Note that
r1#r11r12 /∈ L

(+)
n . Note that Mn is unambiguous on all valid instances. We

define Qr1,r11 to be the collection of all inner states q ∈ Qn such that there
exists a string w12 with w12 �= r12 for which r1#r11w12 ∈ L

(+)
n and, along a

unique accepting computation path γ1 on r1#r11w12, Mn enters q just after
reading r1#r11. Similarly, we set Q̄r1,r12 to be the set of all inner states q ∈ Qn

such that there exists a string w11 with w11 �= r11 for which r1#w11r12 ∈ L
(+)
n

and, along a unique accepting computation path γ2 on r1#w11r12, Mn enters q
just after reading r1#w11. We then claim the following.

Claim 4 Qr1,r11 ∩ Q̄r1,r12 = ∅.

Proof. Assume otherwise and take an inner state q ∈ Qr1,r11 ∩ Q̄r1,r12 . By the
definition of Qr1,r12 , there is a string w12 �= r12 and a unique accepting compu-
tation path γ1 of Mn on r1#r11w12, on which Mn enters q after reading r1#r11.
Similarly, there is a string w11 �= r11 and a unique accepting computation path γ2
of Mn on r1#w11r12, on which Mn enters q after reading r1#w11. Consider the fol-
lowing computation of Mn. We first follow γ1 until Mn reads off r1#r11 and enters
q. Starting with q, we read off r12 by following γ2. Since γ2 is an accepting com-
putation path, we eventually enter a certain accepting state. This implies that we
accept r1#r11r12, and thus it belongs to L

(+)
n , a contradiction. ��

For convenience, let l1 = |r11| and l2 = |r12|. Since Qr1,r11 ∩Q̄r1,r12 = ∅, take
two accepting computation paths γ1 and γ2 and two inner states p1 ∈ Qr1,r11 and
p2 ∈ Q̄r1,r12 appearing on them, respectively. Let qacc denote a unique accepting
state that Mn enters after reading r1#r11r12. Moreover, let q denote an inner
state that Mn enters just after reading off r1#.

Hereafter, we intend to construct r1 from certain information of size signif-
icantly less than log2 n. Starting with q, we can find r11 uniquely if we know
(n, l1, l2, p1). This can be done by cycling through all strings z of length l1 and
running Mn on z to reach p1 since there is a unique accepting computation path,
on which Mn reaches p1 after reading off r11. Similarly, from p2, we can find r12
since an accepting computation path uniquely determines r12. Thus, for the con-
struction of r1 = r11r12, it suffices to know the tuple (n, q0, q, p1, p2, qacc, l1, l2).
Therefore, we obtain C(r1) ≤ |q0|+ |p|+ |p1|+ |p2|+ |qacc|+O(log n) ≤ O(log n),
a contradiction against the bound of C(r1) ≥ log2 n. ��

The next lemma easily follows from the proof of Lemma 3.
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Lemma 5. 1ReachFew � 1U.

Proof. Let us recall the family L2 of promise problems defined in the proof
of Lemma 3. Recall also the family of 1nfa’s used in the same proof to show
the membership “L2 ∈ 1FewU”. These 1nfa’s are accept-few and unambiguous.
Moreover, they are also reach-few. Thus, L2 belongs to 1ReachFew. Note that,
by the proof of Lemma 3, L2 /∈ 1U. ��

Lemma 5 contrasts the result of Pavan et al. [12], who demonstrated that
ReachFewL is included in UL ∩ co-UL.

Corollary 6. 1ReachFewU �= 1ReachFew

Proof. The proof of Lemma 5 asserts that L2 ∈ 1ReachFew. Recall from the
proof of Lemma 3 that L2 /∈ 1U. Because of 1ReachFewU ⊆ 1U, we conclude
that L2 /∈ 1ReachFewU. ��

In addition to the class separations given by Lemmas 2–3 and Corollary 6,
we show the non-closure property of 1U.

Lemma 7. The family 1U is not closed under complementation.

Proof. We recall the family L1 = {(L(+)
n , L

(−)
n )}n∈N of promise problems from

the proof of Lemma 2, in which L1 is shown to be in 1ReachU. Since 1ReachU ⊆
1U, we instantly obtain L1 ∈ 1U.

Recall that co-L1 is of the form {(L(−)
n , L

(+)
n )}n∈N. Hereafter, we show that

co-L1 /∈ 1U. To lead to a contradiction, let us assume the existence of a nonuni-
form family M = {Mn}n∈N of polynomial-size unambiguous 1nfa’s solving
co-L1. Recall that L

(+)
n = {r1#r2 | r1, r2 ∈ An(n),∃!e ∈ [n][(r1)(e) �= (r2)(e)]}

and L
(−)
n = {r1#r2 | r1, r2 ∈ An(n),∀e ∈ [n][(r1)(e) = (r2)(e)]}.

The following argument is similar in essence to the proof of Lemma 2. Choose
any sufficiently large n so that nc < 2n holds. Take (L(−)

n , L
(+)
n ) and Mn, and

focus on all inputs x of the form r1#r2 in Σ(n) (= L
(+)
n ∪ L

(−)
n ). Note that, for

any pair r1, r2 ∈ An(n), if Mn accepts r1#r2, then there exists a unique q ∈ Qn

such that Mn enters q just after reading r1# and then enters an accepting state
after reading r2. We write μ(r1) for this inner state q. Note that |Qn| < |An(n)|
since |An(n)| = nn. From |Qn| < |An(n)|, it follows that there exist two elements
r1, r

′
1 ∈ An(n) with r1 �= r′

1 satisfying μ(r1) = μ(r′
1). This implies that r1#r′

1 is
accepted by Mn, and thus it belongs to L

(−)
n . This is a clear contradiction. ��

For a class C of families of promise problems, we write co-C for the complexity
class {L | co-L ∈ C}. It is known that co-1D coincides with 1D. Lemma 7 then
asserts that 1U �= co-1U.
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4 Complexity Classes Defined by Two-Way Head Moves

In Sect. 3.1, we have introduced six nonuniform state complexity classes situ-
ated in between 1D and 1N. By replacing underlying one-way finite automata
defining those complexity classes with two-way finite automata, we naturally
obtain the corresponding six nonuniform state complexity classes: 2U, 2ReachU,
2ReachFewU, 2Few, 2FewU, and 2ReachFew.

4.1 Case of Logarithmic and Polynomial Ceilings

In comparison to Sect. 3.1, we focus our study on the case of two-way head moves
of 1npda’s.

A family L = {(L(+)
n , L

(−)
n )}n∈N of promise problems is said to have a poly-

nomial ceiling if there exists a polynomial p for which Σ(n) ⊆ Σ≤p(n) holds for
all n ∈ N. Similarly, we can define the notion of exponential ceiling (resp., loga-
rithmic ceiling) simply by replacing the term “polynomial” with “exponential”
(resp., “logarithmic function”). More generally, given a function g : N → N, we
say that L has an g(n)-ceiling if Σ(n) ⊆ Σ≤g(n) follows for all n ∈ N.

For two functions f, g on N (i.e., from N to N), we say that g majorizes f
(denoted g ≥ f) if g(n) ≥ f(n) holds for all n ∈ N. Consider a family L =
{(L(+)

n , L
(−)
n )}n∈N of promise problems having an f(n)-ceiling. It then follows

that L
(+)
n = {x ∈ L

(+)
n | |x| ≤ f(n)} and L

(−)
n = {x ∈ L

(−)
n | |x| ≤ f(n)}. For

any function g on N that majorizes f , since Σ(n) ⊆ Σ≤f(n) ⊆ Σ≤g(n), L has a
g(n)-ceiling as well.

Given a function f on N, the notation 2N/f(n) stands for the subclass of 2N,
consisting of all families of promise problems having f(n)-ceilings. Notice that
g ≥ f implies 2N/f(n) ⊆ 2N/g(n). For a set F of functions on N, 2N/F denotes
the union of all 2N/f(n) for any f ∈ F . In a similar way, we obtain 2D/F from
2D. These terminologies are also applied to 2FewU, 2ReachU, 2ReachFew, and
2ReachFewU.

For convenience, we abbreviate the sets of logarithmic functions, polynomi-
als, exponentials, and sub-exponentials, as “log”, “poly”, “exp”, and “subexp”,
respectively. This subsection will concentrate on the case where F is one of those
sets of functions. We start with an easy case of F = log.

Lemma 8. 2N/log = 2D/log. More strongly, 2N/log ⊆ 1D.

Proof. We show that 2N/log ⊆ 1D because this implies 2N/log ⊆ 1D/log ⊆
2D/log. Let L = {(L(+)

n , L
(−)
n )}n∈N be any family of promise problems in 2N/log.

Take a function �(x) of the form a log x + b for two constants a, b ≥ 0. Notice
that Σ(n) ⊆ Σ≤�(n), where Σ(n) = L

(+)
n ∪ L

(−)
n . and |Σ�(n)| = O(na). It then

follows that |Σ≤�(n)| = nO(1).
Fix n ∈ N. We enumerate all elements in Σ≤�(n) as x

(n)
0 , x

(n)
1 , x

(n)
2 , . . . accord-

ing to the lexicographic order. We define Qn to be composed of all strings of
the form [ x

(n)
i
ai

], where (i) ai = +1 if x
(n)
i ∈ L

(+)
n , (ii) ai = −1 if x

(n)
i ∈ L

(−)
n ,
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and (iii) ai = 0 otherwise. Let us design a 1dfa Mn to read an entire input,
say, x, determine i satisfying x = x

(n)
i , and accept (resp., reject) x if ai = +1

(resp., ai = −1). The family M = {Mn}n∈N clearly has polynomial size. Since
M solves L, L belongs to 1D. ��

We want to prove the following collapse result. Our proof is motivated by a
simulation technique of [13].

Theorem 9. 2U/poly = 2FewU/poly = 2Few/poly = 2N/poly.

However, it is not known whether 2N/subexp = 2U/subexp, 2N/exp =
2U/exp, or even 2N = 2U.

For two other nonuniform state complexity classes, 2ReachFewU and
2ReachFew, we obtain the following relationships given in Fig. 1.

Corollary 10. 2D/poly ⊆ 2ReachU/poly ⊆ 2ReachFewU/poly ⊆ 2ReachFew/
poly ⊆ 2U/poly.

Proof of Theorem 9. Because 2U/poly ⊆ 2FewU/poly ⊆ 2Few/poly ⊆
2N/poly, it suffices to prove the inclusion 2N/poly ⊆ 2U/poly, which is equiva-
lent to 2N/poly ⊆ 2U. We hereafter prove that 2N/poly ⊆ 2U.

It is shown in [8] (re-proven in [18]) that 2N/poly ⊆ 2D iff NL ⊆ L/poly. In
a similar vein, we claim the following.

Claim 11. NL ⊆ UL/poly implies 2N/poly ⊆ 2U.

Note that Reinhardt and Allender [13] proved the inclusion NL ⊆ UL/poly.
Assuming that Claim 11 is true, we instantly obtain 2N/poly ⊆ 2U from their
result. Therefore, in what follows, we aim at proving Claim 11. For this purpose,
we adopt the proof technique of [17–20] and introduce the notion of parameter-
ized decision problems.

A parameterized decision problem is a pair (L,m) of a language L over alpha-
bet Σ and a size parameter m mapping Σ∗ to N. A log-space size parameter m
must satisfy the condition that there exists a log-space deterministic Turing
machine (DTM) M for which M on input x produces 1m(x) on a write-once
output tape. An advice function h maps N to N and it is said to be polynomially
bounded if h(n) ≤ p(n) holds for all n ∈ N for an appropriately chosen polynomial
p. A parameterized decision problem (L,m) belongs to PHSP if m is polynomially
honest (that is, there exists a polynomial q such that |x| ≤ q(m(x)) for all strings
x). The notation para-NL/poly denotes the class composed of all parameterized
decision problems (L,m) with log-space size parameters m, such that, for each
(L,m), there exists a nondeterministic Turing machine (NTM) M equipped with
read-only input and advice tapes and a polynomially-bounded advice function h
for which M solves L in time (|x|m(x))O(1) using space O(log m(x)) with access
to advice strings h(|x|) written on the advice tape, where x is a “symbolic”
input. Similarly, para-UL/poly is defined using unambiguous NTMs (or UTM,
for short) instead of “standard” NTMs. The reader refers to [16–18] for more
information on parameterized problems.
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Claim 11 follows immediately from the following two assertions. Given a
language L over alphabet Σ, its complement Σ∗ − L is succinctly denoted L.

Claim 12. 1. NL ⊆ UP/poly implies para-NL/poly ∩ PHSP ⊆ para-UL/poly.
2. para-NL/poly ∩ PHSP ⊆ para-UL/poly implies 2N/poly ⊆ 2U.

Proof Sketch. We loosely follow an argument made in the proof of [18, Propo-
sition 5.1].

(1) Assume that NL ⊆ UL/poly. Note that NL ⊆ UP/poly implies NL/poly ⊆
UL/poly. Let us consider an arbitrary parameterized decision problem
(L,m) in para-NL/poly∩PHSP with a log-space size parameter m : Σ∗ → N

and a language L over alphabet Σ. Take a polynomial-size advice func-
tion h and an NTM M0 such that M0 recognizes {(x, h(|x|)) | x ∈ L} in
time (|x|m(x))O(1) and space O(log m(x)). We wish to verify that (L,m) ∈
para-UL/poly. For this purpose, we define L

(+)
n = L∩Σn and L

(−)
n = L∩Σn,

where Σn = {x ∈ Σ∗ | m(x) = n}. We further set L = {(L(+)
n , L

(−)
n )}n∈N.

Since m is polynomially honest, we take a polynomial q such that |x| ≤
q(m(x)) for all x. We write K ′ for the set {(x, 1t) | x ∈ L, t ∈ N,m(x) ≤ t}
and claim that K ′ ∈ NL/poly. Consider the following algorithm. On input
(x, 1t), we check if m(x) ≤ t using log space. This is possible because m
is log-space computable. If m(x) > t, then we reject the input; otherwise,
we simulate M0 on (x, h(|x|)). Clearly, this algorithm recognizes K ′. This
algorithm can be realized by an appropriate NTM running in time (|x|t)O(1)

and space O(log |x|t) with the help of h. Since |(x, 1t)| = O(|x| + t), K ′

belongs to NL/poly.
Since NL/poly ⊆ UL/poly by our assumption, K ′ must be in UL/poly.
Take a UTM M , an advice function g, a logarithmic function �′ such that
M recognizes K ′ using at most �′(|z|) space with an access to g(|z|), where
z indicates a “symbolic” input. We then design a new NTM N for (K,m′)
as follows. Define g′(|x|) = g(|(x, 1t)|) for all x ∈ Σ∗. On input x, compute
n = m(x), and run M on (x, 1n) with g′(|x|). Note that N ’s space usage
is O(�′(|x| + n) + log |x|) ⊆ O(log(q(m(x)) + n) + log |x|) ⊆ O(log m(x))
since q is a polynomial satisfying |x| ≤ q(m(x)). This shows that (L,m) ∈
para-UL/poly.

(2) Assume that para-NL/poly ∩ PHSP ⊆ para-UL/poly. Let L =
{(L(+)

n , L
(−)
n )}n∈N be an arbitrary element of 2N/poly and take two poly-

nomials p, q and a family M = {Mn}n∈N of 2nfa’s that solves L with
the following properties: each Mn has at most p(n) inner states and Σ(n)

(= L
(+)
n ∪L

(−)
n ) is included in Σ≤q(n). Hereafter, we show that L belongs to

2U.
For each index n ∈ N, we define K

(+)
n = {1n#x | x ∈ L

(+)
n } and K

(−)
n =

{1n#x | x ∈ L
(−)
n } ∪ {z#x | z ∈ Σn − {1n}, x ∈ Σ∗

#} ∪ {z | z ∈ Σn},

where Σ# = Σ ∪ {#}. We set K =
⋃

n∈N
K

(+)
n and Kc =

⋃
n∈N

K
(−)
n . It

then follows that K ∪ Kc = Σ∗
# and K ∩ Kc = ∅; thus, Kc coincides with

the complement K of K. We define m′(w) = n if w = 1n#x for a certain
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x ∈ L
(+)
n ∪ L

(−)
n and m′(w) = |w| otherwise. Note that m′ is log-space

computable and also polynomially honest. Since (L(+)
n , L

(−)
n ) is solved by

Mn for each n ∈ N, K is solvable nondeterministically in time (|x|m(x))O(1)

and space O(log m(x)) with the use of an appropriate polynomial-size advice
function. Thus, (K,m′) belongs to para-NL/poly ∩ PHSP.

The assumption para-NL/poly ∩ PHSP ⊆ para-UL/poly makes (K,m′) fall
into para-UL/poly. Take an advice function h and a UTM N that solve K
in time (|x|m′(x))O(1) and space O(log m′(x)). Consider the algorithm that, on
input x with index n ∈ N, generate both 1n#x and h(|x|) and then run N on
(1n#x, h(|x|)) to produce an outcome. An appropriate unambiguous 2nfa, say,
N ′

n can realize this algorithm since we can store h(|x|) as a series of inner states.
We thus conclude that N ′

n solves (L(+)
n , L

(−)
n ). Therefore, L belongs to 2U. ��

This completes the proof of Theorem 9. ��

4.2 Case of No Ceiling Restriction

We turn our attention to the case of no ceiling restriction. Kapoutsis [8] demon-
strated that 2N ⊆ 2D iff 2N/supexp ⊆ 2D, where supexp denotes the set of all
super-exponentials on N. Similarly, we claim that, in our unambiguity/fewness
setting, the case of no ceiling restriction on families of promise problems is equiv-
alent to the case of supexp-ceiling.

Proposition 13. For any pair C and D of classes taken from {D,ReachU,
ReachFewU,ReachFew,U,FewU,Few,N}, it follows that 2C ⊆ 2D iff
2C/supexp ⊆ 2D.

For a finite automaton M , L(M) means the set of all strings accepted by
M . In the following proof, for simplicity, we assume that 2nfa’s make their tape
head return to the start cell when they halt.

Proof Sketch of Proposition 13. Since 2C/supexp ⊆ 2C, it is obvious that
2C ⊆ 2D implies 2C/supexp ⊆ 2D. In what follows, we intend to prove the
converse. Assume that 2C/supexp ⊆ 2D. Our goal is to show that 2C ⊆ 2D. Let
f(n) denote any function in supexp. It follows that, for any polynomial q, f(n) >

2q(n) holds for all but finitely many n ∈ N. Let L = {(L(+)
n , L

(−)
n )}n∈N be any

family of promise problems in 2C and take a family N = {Nn}n∈N of polynomial-
size 2nfa’s that solves L, where every Nn must satisfy the condition imposed on
underlying machines of 2C. Let Nn = (Q′

n, Σ, {�,�}, δ′
n, q′

0,n, Q′
acc,n, Q′

rej,n) and
let q denote a polynomial satisfying |Q′

n| ≤ q(n) for all n ∈ N.
We expand (L(+)

n , L
(−)
n ) to the “language” L(Nn) induced by Nn. Note that

L
(+)
n ⊆ L(Nn) and L

(−)
n ⊆ L(Nn). For convenience, we write Nn(x) to denote

the outcome (i.e., acceptance or rejection) of Nn on input x. From this language
L(Nn), we define another promise problem (K(+)

n ,K
(−)
n ) by setting K

(+)
n = {x ∈

L(Nn) | |x| ≤ f(n)} and K
(−)
n = {x ∈ L(Nn) | |x| ≤ f(n)}. Consider the family



Unambiguity and Fewness for Nonuniform Families 91

K = {(K(+)
n ,K

(−)
n )}n∈N. Since K has an f(n)-ceiling, K must be in 2C/f(n),

which is further included in 2C/supexp since f ∈ supexp.
By our assumption, K belongs to 2D. Take a family M = {Mn}n∈N of

2nfa’s with Mn = (Qn, Σ, {�,�}, δn, q0,n, Qacc,n, Qrej,n) that solves K, where
|Qn| ≤ p(n) holds for a fixed polynomial p independent of n and each Mn satisfies
the condition imposed for 2D. Notice that Mn can take strings of arbitrary
lengths as its inputs. However, for any x of length at most f(n), Mn(x) coincides
with Nn(x). We then compare between the behaviors of Mn and Nn. Define
r(n) = 2(p(n)2 + q(n)2) for all n ∈ N, which is a polynomial satisfying 2(|Qn|2 +
2|Q′

n|2) ≤ r(n). We then claim the following statement concerning the set A =
{n ∈ N | L(Mn) �= L(Nn)}.

Claim 14 A ⊆ {n ∈ N | 2r(n) ≥ f(n)}.

Finally, we modify Mn into M ′
n in order to solve (L(+)

n , L
(−)
n ). By the choice

of f , {n ∈ N | 2r(n) ≥ f(n)} is a finite set, and thus A is also a finite set. Let
c denote the largest number in A. Given any n ∈ N, if n ∈ A, then we take
a 1dfa that exactly simulates Nn with 2O(|Q′

n|) inner states and we set M ′
n to

be this 1dfa; otherwise, we define M ′
n to be exactly Mn. Since n ≤ c, the state

complexity of M ′
n is upper-bounded by a certain constant, independent of n.

Therefore, M ′
n correctly solves (L(+)

n , L
(−)
n ), as requested. ��

5 A Discussion and Open Problems

In this work, we have studied the computational complexities of various families
of promise problems solved by nonuniform families of polynomial-size nondeter-
ministic finite automata with unambiguity/fewness conditions on their accepting
computation paths. In particular, following [12], we have introduced six classes
of such families. When tape heads of underlying finite automata are limited to
move in only one direction, we have proved that most of those classes are distinct
from each other. On the contrary, when the tape heads are allowed to move in
both directions, four of the six classes have been shown to collapse. All those
results have been illustratively summarized in Fig. 1. As for problems left untold
in this work, we wish to list two relevant topics for future work.

It is not known that 1ReachFew ⊆ 1FewU. We have shown that 2N/poly
coincides with 2U/poly, but this does not seem to imply the collapse of 2U/poly
down to 2ReachFew/poly (or 2ReachFewU/poly or even 2ReachU/poly). Does
such a collapse actually occur?

When we change polynomial ceilings to exponential ceilings, for instance, is
it true that 2N/exp ⊆ 2U? Is it also true that 2ReachFew/exp ⊆ 2ReachFewU?

Recently, as a natural extension of finite automata, nonuniform families of
pushdown automata were studied in [20]. It is unknown that 2N ⊆ 2DPD. For a
more weak family, such as 2ReachFewU, is it true that 2ReachFewU ⊆ 2DPD?
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Abstract. We study a new modification of the Arrival problem, which
allows for nodes that exhibit random as well as controlled behaviour, in
addition to switching nodes. We study the computational complexity of
these extensions, building on existing work on Reachability Switching
Games. In particular, we show for versions of the arrival problem involv-
ing just switching and random nodes it is PP-hard to decide if their value
is greater than a half and we give a PSPACE decision algorithm.

Keywords: Arrival · Markov chains · Reachability Switching Games ·
MDPs · Simple stochastic games

1 Introduction

Arrival is a simple to describe decision problem defined by Dohrau, Gärtner,
Kohler, Matous̆ek and Welzl [3]. In simplistic terms, it asks whether a train
moving along the vertices of a given directed graph, with n vertices, will eventu-
ally reach a given target vertex, starting at a given start vertex. At each vertex,
v, the train moves deterministically, based on a given listing of outgoing edges
of v, taking the first out-edge, then the second, and so on, as it revisits that
vertex repeatedly, until the listing is exhausted after which it restarts cyclically
at the beginning of the listing of outgoing edges again. This process is known as
“switching” and can be viewed as a deterministic simulation of a random walk
on the directed graph. It can also be viewed as a natural model of a state transi-
tion system where a local deterministic cyclic scheduler is provided for repeated
transitions out of each state.

Dohrau et al. showed this Arrival decision problem lies in the complexity
class NP ∩ coNP, but it is not known to be in P. There has been a lot of recent
work, showing that a search version of the Arrival problem lies in sub-classes
of TFNP including PLS [10], CLS [6], and UniqueEOPL [5], as well as showing
that Arrival is in UP ∩ coUP [6]. There has also been work on lower bounds,
including PL-hardness and CC-hardness [11]. Further recent work by Gärtner
et al. [7] gives an algorithm for Arrival with running time 2O(

√
n log(n)), the

first known sub-exponential algorithm. In addition, they give a polynomial-time
algorithm for “almost acyclic” instances.

The complexity of Arrival is particularly interesting in the context of other
games on graphs, such as Condon’s simple stochastic games, mean-payoff games,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. W. Lin et al. (Eds.): RP 2022, LNCS 13608, pp. 93–107, 2022.
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and parity games [1,9,14], for which the two-player variants are known to be in
NP ∩ coNP, whereas the one-player variants have polynomial time algorithms.
Arrival however is a zero-player game which has no known polynomial time
algorithm and furthermore it was shown by Fearnley et al. [4] that a one-player
generalisation of arrival is in fact NP-complete, in stark contrast to these two-
player graph games.

Further generalisations of Arrival to Reachability Switching Games were
considered, adding player controlled nodes to the game, by Fearnley, Gairing,
Mnich and Savani [4]. We provide a further generalisation, by introducing prob-
abilistic nodes, out of which we have random transitions according to a given
probability distribution, thus combining the elements of Fearnley et al. [4] and
those of Condon’s [1], by allowing a mixture of randomisation, switching, and
controlled or game behaviour.

Some of our main results consider a mixture of switching and randomisa-
tion. In this case we show there is an exponential upper bound on the expected
termination time of such a switching run. We also show that deciding whether
the value is greater than 0 (or equal to 1 resp.) is complete for NP (resp. coNP)
and that the quantitative decision problem is both hard for PP, under many-one
(Karp) reductions, and contained in PSPACE thus showing it is harder than the
single player switching games of Fearnley et al. [4]. We also give hardness results
for the natural generalisation with players, showing these are hard for PSPACE.
Some simpler upper bounds follow from viewing these as succinctly presented
instances of MDPs, or Condon’s simple stochastic games. A full summary of our
complexity results (and prior complexity results) can be found in Table 1.

Due to space limits, most proofs are relegated to the full version of the paper.

2 Preliminaries

Our arrival instances represent a reachability problem in a given directed graph,
G = (V,E), with given start and target vertices s, t ∈ V , and where the nodes V
are partitioned into different types according to a given partition V, with nodes
of each type having slightly different behaviour. We use din(v) and dout(v) to
represent the in-degree and out-degree of a vertex v in a directed graph. Four
distinct types of nodes may be contained in V:

– Probabilistic nodes - We denote the set of probabilistic nodes by VR ∈ V,
and we require a probability distribution, P , to be given on their outgoing
edges. These are sometimes also called as random, stochastic or nature nodes.

– Switching nodes - We call the set of switching nodes VS ∈ V, and require
an ordering, Ord , to be given on their outgoing edges.

– Max Player nodes - We call the set of max player nodes V1 ∈ V at which
choices are controlled by a player aiming to reach t. These are also referred
to as player 1 nodes.

– Min Player nodes - We call the set of min player nodes V2 ∈ V at which
choices are controlled by a player aiming to avoid t. These are also referred
to as player 2 nodes.
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Our instances then have the following structure.

Definition 1. An instance of an arrival problem has the following signature
(V,E, s, t,V, P,Ord) where:

– (V,E) is a finite directed graph.
– s, t ∈ V . s is called the start and t the target node.
– For all v ∈ V , we require dout(v) ≥ 1, and we allow self loop edges of the

form (v, v).
– For t we require (t, v) ∈ E =⇒ v = t, i.e. the only out-edge at the target is

a self-loop.
– V ⊆ P(V ) is a partition of the vertices of V − {t} into different node types.

Often we will take V = {VR, VS , V1, V2}, omitting empty sets, with each of
these sets as described above.

– A function P : VR × V → [0, 1] with the properties that for any v ∈ VR we
have

∑
w∈V P (v, w) = 1 and where P (v, w) > 0 if and only if (v, w) ∈ E.

– A function Ord : VS → V + from switching nodes to a finite sequence of
vertices. We require that, for v ∈ VS, (v, w) ∈ E if and only if there exists an
i such that w = Ord(v)i. So, every outgoing edge from v is “used” in Ord(v),
but can be used more than once.

Given such a model, we wish to define a play of the game. To do so we first
need to define the current state. Due to how switching nodes work we will also
include the current positions of those nodes into our game state.

Definition 2. Given a set of switching nodes VS the current switching node
position is a function q : VS → N0, i.e., a function from vertices to natural
numbers, where we require that ∀v ∈ VS, q(v) < |Ord(v)|. We call the set of all
such position functions Q. If there are no switching vertices then Q is a singleton
containing only the empty function.

Definition 3. A state of the game consists of an ordered pair (v, q) ∈ V × Q
with v ∈ V denoting the current vertex, and q ∈ Q, denoting the current position
of the switching nodes (Definition 2). Thus we call the set V ×Q our state space.

Now that we have a state space we can define valid transitions between states.

Definition 4. We let Valid : V × Q → P(V × Q) be the function defined as
follows:

– For v ∈ VS and any q ∈ Q, where by definition q : VS → N0, we define
Valid(v, q) := {(u, q′)}, where u and q′ are defined as follows:

• Suppose Ord(v) = (u0, . . . , uk−1). We let u := uq(v). Note that this is well
defined, i.e., 0 ≤ q(v) < |Ord(v)| = k, because (v, q) is a state.

• For x ∈ VS with x 
= v we let q′(x) := q(x).
• Furthermore, we let q′(v) := (q(v) + 1 mod k).

– For v ∈ V1 ∪ V2 and any q ∈ Q, we let Valid(v, q) := {(u, q) : (v, u) ∈ E}.
– For v ∈ VR and any q ∈ Q we let Valid(v, q) := {(u, q) : P (v, u) > 0}
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We call a transition from a state (v, q) to a state (u, q′) ∈ Valid(v, q) valid, and
otherwise we call it invalid.

It follows directly from the definitions that for any state (v, q), Valid(v, q) 
= ∅.
We call an infinite sequence π = (v0, q0)(v1, q1)(v2, q2) · · · ∈ (V ×Q)ω over the

state space V × Q a play if for every i ∈ N0 we have (vi+1, qi+1) ∈ Valid(vi, qi).
We use Ω to denote the set of all (infinite) plays. A partial play of the game is
a finite initial prefix w ∈ (V × Q)∗ of a play. For a partial play w, we define its
basic cylinder, C(w) ⊆ w(V × Q)ω, as the set of all plays with w as an initial
segment. We use Π ⊆ (V × Q)∗ to denote the set of all finite partial plays. We
say a play π is winning for player 1 if there exists some index i with πi = (t, q).
Otherwise, it is a losing play (winning for player 2).

It follows from known results, namely, deterministic memoryless determinacy
of simple stochastic games ([1]), that for all our generalised arrival games it
suffices to consider deterministic “essentially memoryless” strategies for a player
i given by Strat i : (Vi × Q) → V , which ignore the history in a partial play π,
and only considers the current state (v, q) in order to choose (deterministically) a
move to the next vertex, v′, such that (v′, q) ∈ Valid(v, q). (Note that switching
positions only change during transitions out of switching nodes.) Indeed, we can
view our instances of generalised arrival as defining exponentially larger simple
stochastic games over the state space V × Q, because of the deterministic way
the switching position q updates with each transition.

Fixing a start state s, and strategies σ1 and τ2 for the two players, naturally
determines a probability space (Ω,F ,Pσ1,τ2) on the set Ω of (infinite) plays.
Here F denotes the Borel σ-algebra of events generated by the set of basic
cylinders {C(w) | w ∈ Π}, and Pσ1,τ2 denotes the probability measure defined
on events in F uniquely determined by probabilities of basic cylinders, which
are defined inductively in the standard way, starting with the base case given by
P(C((s, q0))) := 1, where by definition q0(v) := 0 for all v ∈ VS . In other words,
all plays begin, with probability 1, with state (s, q0) as the initial state.

Definition 5. Given an instance G = (V,E, s, t, {VR, VS , V1, V2}, P,Ord) we
define the value of the instance as follows. Let Reach ∈ F be the event Reach :=
{π = (s, q0)(v1, q1)(v2, q2) . . . ∈ Ω : ∃i ∈ N0, vi = t} and let σ1 and τ2 range over
strategies for each player:

val(G) := max
σ1

min
τ2

Pσ1,τ2(Reach)

We may sometimes refer to the value val(G) as the “winning probability” (for
player 1).

It follows from known results for simple stochastic games that these games
are determined, meaning that val(G) = minτ2 maxσ1 Pσ1,τ2(Reach) and that
these maxima and minima are obtained.

We generalise of the notion of a “hopeful edges” of [3, Definition 3]:
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Definition 6. Given an instance G := (V,E, s, t,V, P,Ord) we say a vertex
v ∈ G is hopeful if Player 1 can win the reachability game (V,E, v, t, {V ′

1 , V2}),
where V ′

1 := VR ∪ VS ∪ V1 and v is our start vertex. We call an edge (v, w) ∈ E
a hopeful edge if w is a hopeful vertex. A vertex or edge which isn’t hopeful is
called dead.

We note that we can decide whether v ∈ G is hopeful in NL if we have no player 2
nodes in G, and otherwise in P by solving the 2-player reachability game. We now
define different versions of the computational problems we wish to study, using
a common notation. We use a subset B ⊆ {R,S, 1, 2} to denote the different
kinds of nodes that are present in the instances for the problem in question.

Definition 7. For a subset B ⊆ {R,S, 1, 2}, given an instance structure G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), we define the following associated decision
problems. Let val(G) be the value of the underlying arrival/reachability game
associated with G, and let p ∈ (0, 1) be a (rational) probability given as part
of the input. We define three variants of quantitative and qualitative B-Arrival
decision problems that we wish to study:

– B-Arrival-Quant: Decide whether val(G) > p.
– B-Arrival-Qual-0: Decide whether val(G) > 0.
– B-Arrival-Qual-1: Decide whether val(G) = 1.

The original arrival problem studied in [3] corresponds to the above definition
with B = {S}. Reachability Switching Games defined in [4] correspond to B =
{S, 1} and B = {S, 1, 2}. Taking B ⊆ {R, 1, 2} corresponds to Markov Chains,
Markov Decision Processes and Simple Stochastic Games.

We note that when R /∈ B these problems all coincide, since in that case
val(G) ∈ {0, 1} and such instances constitute an (exponentially large) determin-
istic reachability game. In such a case we use B-Arrival to refer to the problem
of deciding if val(G) = 1. Several of these problems have previously known com-
plexity. Throughout this work we aim to show complexity results for the cases
when R ∈ B. When referring to an instance of some variant of the above arrival
problems, with node types B, we use the expression “instance of a generalised
B-arrival problem”. It is not hard to show:

Proposition 1. Given an instance of a generalised B-arrival problem G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), with R ∈ B, and given any rational p ∈
(0, 1), the decision problem B-Arrival-Quant is polynomial-time equivalent to
B-Arrival-Quant where p = 1/2.

Hence we will use B-Arrival-Quant to refer to the quantitative arrival problem
when p = 1

2 , and it suffices to only consider this quantitative decision problem.
The complexity status of the various different arrival problems, including the
results established in this paper, is summarized in Table 1, with references to
the original works, or to specific results in this paper that establish it.

While Fearnley et al. do not explicitly consider the {S, 2}-Arrival prob-
lem in [4] we are able to deduce NP-completeness using their results and our
generalised notion of hopefulness.
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Table 1. Complexity of Arrival variants with different node types.

Problem name Known complexity Cite

{S}-Arrival PL-hard, CC-hard (explicit input)

P-hard (succinct input)

in UEOPL, CLS,PLS, UP ∩ coUP

[11]

[4]

[3,6]

{S, 1}-Arrival NP-complete [4]

{S, 2}-Arrival NP-complete Proposition 2

{S, 1, 2}-Arrival PSPACE-hard in EXPTIME [4] [4]

{R, S}-Arrival-Qual-0 NP-complete Theorem 2

{R, S}-Arrival-Qual-1 coNP-complete Theorem 4

{R, S}-Arrival-Quant PP-hard, in PSPACE Theorem 6, Theorem 5

{R, S, 1}-Arrival-Qual-0 NP-Theorem complete 2

{R, S, 1}-Arrival-Qual-1 coNP-hard, in EXPTIME Theorem 4

{R, S, 1}-Arrival-Quant PSPACE-hard, in EXPTIME Theorem 1

{R, S, 2}-Arrival-Qual-0 equiv {S, 1, 2}-Arrival Theorem 3

{R, S, 2}-Arrival-Qual-1 in EXPTIME Proposition 5

{R, S, 2}-Arrival-Quant PSPACE-hard, in EXPTIME Corollary 2

{R, S, 1, 2}-Arrival-Qual-0 equiv {S, 1, 2}-Arrival Theorem 3

{R, S, 1, 2}-Arrival-Qual-1 in NEXPTIME ∩ coNEXPTIME Proposition 5

{R, S, 1, 2}-Arrival-Quant PSPACE-hard, in NEXPTIME ∩ coNEXPTIME Theorem 1, Proposition 5

Proposition 2. The {S, 2}-Arrival problem is NP-complete.

We need a convenient notation for drawing instances of arrival diagrammat-
ically. To do so we use the shapes shown in Fig. 1a to distinguish the different
node types. We also make use of gadgets, shown in dashed lines, which are
repeated pieces of smaller graphs performing a specific function. Gadgets are
shown with entry and exit ports and are permitted to contain other gadgets in
a non-recursive way. At probabilistic nodes we assume there is a uniform distri-
bution over outgoing edges, otherwise we label each edge with the probability
assigned to it. At switching nodes we label each outgoing edge with numbers
such that if Ord(x) = u0 . . . uk we label an edge (x, y) with all the indices, i,
such that ui = y. For instance in Fig. 1b we have k = a+1 and Ord(x) = y . . . yz,
with a consecutive y’s.

2.1 Preliminary Results

We may assume Arrival instances have simplified forms and that any instance
may be transformed in polynomial-time to an equivalent simplified form. In our
simplified form we have two distinguished vertices t and d, with a single self-loop
edge. Every other v ∈ V \ {t, d} has dout(v) = 2 and (v, v) 
∈ E. For v ∈ V and
(v, w) ∈ E we have P (v, w) = 1

2 and for v ∈ VS we have |Ord(v)| = 2 and
there exists functions s0, s1 : VS → V with (v, s0(v)), (v, s1(v)) ∈ E, Ord(v) =
s0(v)s1(v) and s0(v) 
= s1(v).

We may also view a generalised Arrival instance, G, as concise ways of specify-
ing a expanded (exponentially larger) game, Exp(G), without switching. These
results are shown in the full version and the construction is analogous to ([4,
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(a) Different node types. (b) Switching Orders.

Fig. 1. Pictorial representations of B-Arrival instances.

Lemma 4.6]), reducing a 2-player reachability switching game to an exponen-
tially large reachability game. Using this fact we can establish lower bounds on
how close the value of such an instance can be to zero, without being equal to
zero. Namely, if val(G) is not 0, then, val(G) = Ω(22

−n

) where n is our instance
bit encoding size.

Corollary 1. The value of an instance G of a generalised B-arrival problem is
a rational number val(G) := p

q which in lowest terms has 0 ≤ p, q ≤ 4k with
k = 2n(|V | × M |VS |) with M = maxv∈VS

|Ord(v)|.
However we can show that we can actually obtain a value of this small magnitude,
even in the case where we only have B = {R,S}.

Proposition 3. For any positive integer n, we can construct an instance G of
the generalised B-arrival problem containing node types B = {R,S}, such that
G has encoding size O(n), and such that val(G) is a positive value that is at
most 1

22n
.

We note that, just as in the case of simple stochastic games, we could force these
games to terminate, i.e., reach either the target t or dead end d, by modifying
them by applying a small discount, ending the game with a small probability
after each step. However, unlike the situation with simple stochastic games, even
applying a very small discount of the form 1

2poly(n) can change the value of the
game drastically (taking a value close to 1 down to a value close to zero). We
can however use Proposition 3 to reduce a version of the quantitative B-arrival
problem with greater than or equals to the strict inequality decision problem:

Proposition 4. Given an instance of a generalised B-arrival problem G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), with R ∈ B, and given any rational p ∈ (0, 1),
deciding whether val(G) ≥ p is polynomial-time equivalent to B-Arrival-Quant
where p = 1/2, i.e., to deciding whether val(G) > 1/2.

We can also see from interpreting these models as succinct representations of
exponentially large Markov chains, MDPs, and simple stochastic games, respec-
tively, that we have the following simple upper bounds on these problems.
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Proposition 5. The {R,S, 1}-Arrival-Quant and {R,S, 2}-Arrival-Quant
problems are contained in EXPTIME and the {R,S, 1, 2}-Arrival-Quant is con-
tained in NEXPTIME ∩ coNEXPTIME.

3 PSPACE-hardness with Three or More Node Types

Here we show that {R,S, 1}-Arrival-Quant and {R,S, 2}-Arrival-Quant are
both hard for PSPACE. Our proof takes inspiration from Fearnley et al.’s proof
of PSPACE-hardness for {S, 1, 2}-Arrival ([4, Theorem 4.3]), but requires some
new tricks. From these results it trivially follows that {R,S, 1, 2}-Arrival-Quant
is also PSPACE-hard.

To show the {R,S, 1}-Arrival-Quant is PSPACE-hard we reduce from the
SSAT problem as defined by Papadimitriou ([12]):

Definition 8 (SSAT). Given a 3CNF Boolean formula ϕ = C1 ∧ C2 ∧ . . . ∧ Cm

with three literals per clause, involving variables x1, . . . , xn, where n is even,
we are asked whether there is a choice of Boolean value for x1 such that, for a
random choice (with probability of true and false each equal to 1

2) of truth value
for x2, there is a choice for x3, etc., so that the probability that ϕ comes out
true under these choices is greater than 1/2. We denote this as follows (read R
as “for uniformly random”):

∃x1 Rx2∃x3 . . . Rxn[P(ϕ(x1, . . . , xn) = �) >
1
2
] (1)

By [12, Theorem 2] this problem is PSPACE-complete. Our aim is to
take an instance of SSAT and construct an instance G(ϕ) of generalised
{R,S, 1}-Arrival with the following property:

val(G(ϕ)) = max
x1

[Ex2 [max
x3

[. . .Exn
[χ[ϕ(x1, . . . , xn) = �] . . . ] (2)

where χ represents the indicator function for an event. With this we can see that
val(G(ϕ)) > 1/2 if and only if (1) holds. We now outline this construction and
show it can be performed efficiently, and that the value is as required.

Given an instance of SSAT with 3CNF ϕ, n variables and m clauses, we con-
struct the instance G(ϕ) of generalised {R,S, 1}-arrival shown in Fig. 2 where
each of the boxes represents the gadgets shown in Figs. 3 and 4, respectively and
the values ai, bi and D are computable from the formula ϕ.

We now explain this construction in more detail. Given ϕ = C1∧C2∧. . .∧Cm,
to begin with, in polynomial time we enumerate our n variables as x1, . . . , xn

and for each we compute constants ai = |{l ∈ {1, . . . , m} | xi ∈ Cl}| and
bi = |{l ∈ {1, . . . , m} | ¬xi ∈ Cl}|. Here ai is the number of clauses in which
the literal xi appears, and bi is the number of clauses in which the literal ¬xi

appears. We let D = max
⋃

i{ai, bi} be the maximum number of occurrences
of any literal. We divide the game into three phases which correspond to the
different nodes in Ord(start): the “assignment” phase, consisting of the time
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Fig. 2. Control gadget

strictly before the n + 1’th visit to the vertex start where the switching node
takes us to the node as, the “agreement” phase, consisting of the time strictly
before the Dn + 1’th visit to the vertex start where the switching node takes us
to ag , and the “verification” phase consisting of the time afterwards where the
switching takes us to either ver or fail . Each phases has the following objectives:

– Assignment Phase - In this phase the player and nature alternate in choos-
ing values of x1, . . . , xn in sequence.

– Agreement Phase - In this phase the player must continue to agree with
the choices in the “assignment” phase. Each time we visit we go through a
list of clauses which our choice of assignment to that variable doesn’t satisfy.

– Verification Phase - In this phase we verify that the player acted honestly
and did agree with the choices in the “assignment” phase by moving through
each variable gadget.

These phases correspond to the three distinct entries to each of our quantified
variable gadgets and we only use the entrance matching the phase we are in. We
use “pass” to refer to a path from an entry to the exit, the “initial pass” is the
one made in the “assignment” phase. Our gadgets function like:

– The Control Gadget. In this structure shown in Fig. 2 we enforce the phases
using the switching behaviour at start . The nodes as and ag cycle through the
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(a) Randomly Quantified (b) Existentially Quantified

Fig. 3. Gadgets for quantified variables.

n quantified variable gadgets, visiting each once in the “assignment” phase
and D times in the “agreement” phase. The node ver finally starts the veri-
fication process by moving to ver1. We note any more visits to start send us
to fail . We note our quantified gadgets are connected with edges between as
and all asi and between ag and all ag i, return edges from reti to start and a
chain of edges going from ver to ver1, next1 to ver2,..., and finally nextn to
target .

– Quantified Variable Gadget. We have two variations of this gadget shown
in Figs. 3a and b which depend on whether xi is existentially or randomly
quantified in ϕ, differing only in the node type of asi. On the initial pass
the assignment is chosen by the player or uniformly at random respectively.
The three entries correspond to the different phases of the game and we have
two exits, reti returns back to the start and next i moves us on to the next
variable’s verification entry ver i+1, or to target if i = n. The nodes xT

i and
xF

i represent choosing an assignment of the variable xi on this pass, and the
“initial assignment” is the one from the initial pass. The switching behaviour
of xT

i and xF
i prevents next i being reached without D + 2 visits to one of the

two nodes, which forces D visits to the respective Consequence gadget Negi

or Posi.
– Consequences Gadget. We have two consequences gadgets for each vari-

able, Negi and Posi, shown in Figs. 4a and b. Negi (resp. Posi) enumerates
the gadgets for clauses, Cj1 , . . . , Cjai

(resp. Ck1 , . . . , Ckbi
), where the literal

¬xi (resp. xi) appears. When we choose an assignment of true (resp. false)



The Stochastic Arrival Problem 103

(a) Posi consequence gadget (b) Negi consequence gadget (c) Clause gadget

Fig. 4. Gadgets for Consequences of variable xi and Clauses Cl

these clauses aren’t immediately satisfied by our assignment. As any literal
appears in at most D clauses by visiting this gadget D times we are guaran-
teed to go through each of the contained clause gadgets. If we have ai < D
(resp. bi < D) then any further edges proceed straight to the exit to ensure
if we make exactly D passes we visit each clause gadget exactly once.

– The Clause Gadget. This is shown in Fig. 4c. Here we check if it is possible
to still satisfy a clause. Note we pass through the clause gadget for Cl only
in the following situations:

• From a Negi gadget where we have assigned xi true on this pass and ¬xi

appears in Cl,
• From a Posi gadget where we have assigned xi false on this pass and xi

appears in Cl,
Thus as a consequence of our truth assignment to xi it doesn’t witness the
truth of Cl. Our clause Cl has width 3 and if our assignment is satisfying
then we must have at least one of the 3 literals as a witness to the truth of
Cl. Thus our gadget acts as a simple counter of the number of literals in the
clause which evaluate to false, after 3 passes our switch sends the play to the
fail state, because the assignment we have chosen does not satisfy Cl. On the
first and second passes the counter is just incremented and we use this gadget
to ensure the clause is satisfied.

We can prove that instance G(ϕ) has value val(G(ϕ)) satisfying Eq. (2).
We note that this construction remains polynomial in the size of the formula,

with the control gadget (Fig. 2) only containing instances of the randomly and
existentially quantified variable gadgets, the quantified variable gadgets (Fig. 3)
only containing the Consequence gadgets Posi and Negi and the Consequence
gadgets (Figs. 4a and b) only containing Clause Gadgets (Fig. 4c). Further the
reti exits and all exits of the consequence and clause gadgets may be treated
as the node start , independent of the index i or l of the gadget, as each has an
onward path containing only nodes of out-degree one leading to start .

Theorem 1. {R,S, 1}-Arrival-Quant is PSPACE-hard.

Proof (sketch). We prove this by showing the above construction, which can
easily be carried out in polynomial time, given a SSAT instance, ϕ, constructs an
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instance G(ϕ) whose value val(G(ϕ)) satisfies Eq. (2). To do so we note any play
must reach the “agreement” phase, as there is no way to reach a consequence
gadget (containing fail nodes) or the next i nodes with a single pass of each
variable. Thus every play makes an initial assignment V : [n] → {T, F} where
we visit x

V (i)
i from asi.

We can then show that in any play we can only make at most D + 2 passes
of the Ex1 gadget, once through entrance as1, D times through ag1 and once
through ver1 and thus use the edge from next1 at most once. We may extend
this inductively to show in any play we can make at most D + 2 passes of any
quantified variable gadget and use the next i exit at most once. We can also show
by induction if we reach target we must make exactly D+2 passes of each gadget
and use the next i exit exactly once. To use the next i exit we must visit one of
xT

i or xF
i exactly D + 2 times.

Firstly we can use this to show in any play that reaches target that the
initial valuation V was satisfying. As we make D + 2 visits to xT

i (resp. xF
i ) in

the “agreement” phase we must visit exactly one of Negi (resp. Posi) exactly D
times, which means we visit every clause gadget they contain exactly once. If we
reach the end of the “agreement” phase then there is at least one edge incoming
to each clause gadget that was unused, as there are three incoming edges which
can be used at most once each and we can not make three passes of the clause
gadget as it has an internal fail state. This lets us show valuation V satisfies ϕ.

Secondly we can show that under the “agreement strategy”, where the player
agrees with the initial assignment in the “agreement” and “verification” phases,
the play reaches target when V satisfies ϕ, and by the above we can never reach
target otherwise. Thus this strategy is optimal for the player in the “agreement”
and “verification” phases.

We then show our value is the maximum over strategies for the “assignment”
phase. In this phase we can consider the player and nature playing a game on a
binary tree, where the leaves are possible valuations V : [n] → {T, F} and we call
a leaf accepting if it’s a valuation satisfying ϕ. At the root the player makes the
choice between V (1) = T and V (1) = F . On the next level nature randomises
between V (2) = T or V (2) = F . The player then chooses between V (3) = T or
V (3) = F , etc. At each stage the player knows the past decisions and maximises
their choice with the aim that they reach an accepting leaf, which gives exactly
Eq. (2). ��
As an immediate corollary we can deduce hardness for {R,S, 2}-Arrival-Quant.
Corollary 2. {R,S, 2}-Arrival-Quant is PSPACE-hard.

4 The {R,S}-Arrival Problems

Firstly we give some bounds on the qualitative problems, then we give an inter-
esting bound on the expected number of times we use edges in each play. Finally,
for {R,S}-Arrival-Quant both a PSPACE algorithm and PP-hardness.
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We are able to give two easy reductions by creating new instances where we
give control of random nodes to player 1 or randomise over player 1 choices,
these allow us to deduce NP-completeness for two of our problems.

Theorem 2. {R,S}-Arrival-Qual-0, {S, 1}-Arrival and {R,S, 1}-Arrival-
Qual-0 are all poly-time equivalent and NP-complete.

Theorem 3. {R,S, 1, 2}-Arrival-Qual-0, {S, 1, 2}-Arrival and {R,S, 2}-
Arrival-Qual-0 are all poly-time equivalent.

While the above arguments exploit exchanging player 1 and random nodes, we
note that a similar exchange for player 2 is not immediately possible. Consider
the case of a cycle of random nodes. Any play must almost surely escape this
cycle, however under player 2 control it is optimal to always stay in the cycle.

We now show coNP-hardness of {R,S}-Arrival-Qual-1, by exploiting a
construction in [3]. They showed that the {S}-Arrival problem lies in the class
NP ∩ coNP by constructing succinct witnesses for the fact that the play does
not reach the target t, by modifying the graph (such that reachability of t is
preserved) introducing a new dead end state d, and showing that exactly one of
t or d is reached in any play in the modified graph. Here we show we can use
a similar construction to reduce the complement of {R,S}-Arrival-Qual-0
to {R,S}-Arrival-Qual-1. We assume (w.l.o.g.), we are working with the
instances of Arrival in our simplified form.

Definition 9 (cf. [3, Definition 3]). Let (V,E, s, t, {VS , VR}, P,Ord) be an
instance of generalised {R,S}-arrival. If (v, w) ∈ E is hopeful (Definition 6) we
call its desperation the length of the shortest directed path from w to t.

We proceed to give our generalised versions of a Lemma in [3], generalised to the
randomised setting. We note that it is simple to process our inputs and replace
dead edges of the form (v, w) by an edge (v, d) immediately to the dead end.

Definition 10. Let G be an instance of the generalised B-arrival problem and
e ∈ E an edge. Define the random variable Te to be the number of traversals of
e in a run of the instance starting from s.

Lemma 1. Let G be an instance of the generalised {R,S}-arrival problem in
simple form, and let e ∈ E be a hopeful edge of desperation k in G. Then E[Te] ≤
2k+1 − 1.

Lemma 1 (which is closely related to [3, Lemma 2]) enables us to bound the
expected length of a play by a single exponential in our input {R,S}-arrival
instance size. Note this is despite the fact the {R,S}-arrival instance succinctly
represents an exponentially larger Markov chain, and in general for an exponen-
tially large Markov chain the worst case expected termination (hitting) time can
be double-exponential. Note also that by contrast, by Proposition 3, the prob-
ability of reaching the target can be double-exponentially small. Using Lemma
1 we construct instances that almost surely terminate and given an instance G
construct a new instance G′ with val(G′) = 1 − val(G). These allow us to show:
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Theorem 4. The {R,S}-Arrival-Qual-1 problem is coNP-complete.

Theorems 2 and 4 together imply that {R,S}-Arrival-Quant is both NP-hard
& coNP-hard. In Theorem 6 we will show a stronger PP-hardness result for
{R,S}-Arrival-Quant. As an upper bound, we can show the following:

Theorem 5. The {R,S}-Arrival-Quant problem is in PSPACE.

Proof (sketch). We can view our instance G as an exponentially larger Markov
Chain (MC) with a succinct represented transition probability matrix P . Using
suitable preprocessing, we can simplify the model so that the matrix (I − P )
is invertible, without altering the probability of reaching the target. We can
compute individual bits of the hitting probabilities on such a MC by computing
entries of (I − P )−1, which can be done in PSPACE, using the fact that an
(explicitly given) linear system of equations can be solved in NC2 ([2]). Using
these bits we can decide {R,S}-Arrival-Quant. ��
We can finally use a construction similar to Theorem 1 to construct a hard
instance.

Theorem 6. {R,S}-Arrival-Quant is PP-hard.

Proof (sketch). We show this by a reduction from the MAJSAT problem, namely
deciding whether, for a given CNF formula ϕ(x) over n variables, the proba-
bility, pϕ, that a uniformally random assignment of truth values to the vari-
ables x satisfy ϕ. MAJSAT is PP-complete ([8,13]). We use similar gadgets
to those in the proof of Theorem 1, however for our PP-hardness proof for
{R,S}-Arrival-Quant, we make a new random assignment on each pass of
the variable gadget and use switching nodes to ensure this is the same as past
choices. Where we make different assignments to a variable on different passes
we move to a state which moves us randomly to target or fail , thus we only reach
the verification phase when we make the same assignment on every pass. Our
“verification” phase then checks if all clauses are satisfied. This allows us to dis-
tinguish three distinct cases, “invalid random assignment”, “valid, unsatisfying
assignment” and “valid, satisfying assignment”, which we can use to determine
if pϕ > 1

2 . ��

Acknowledgements. Thanks to a prior anonymous reviewer who sketched a proof
of Theorem 5, improving on our prior result which only showed that approximation of
the {R, S}-Arrival value to within any given desired accuracy ε > 0 is in PSPACE.
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A Journey Through Discrete Mathematics, pp. 367–374. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-44479-6 14

4. Fearnley, J., Gairing, M., Mnich, M., Savani, R.: Reachability switching games.
Log. Methods Comput. Sci. 17(2) (2021)

5. Fearnley, J., Gordon, S., Mehta, R., Savani, R.: Unique end of potential line.
In: 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019), LIPIcs, vol. 132, pp. 1–15 (2019)
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Abstract. We consider the reachability problem for higher-order func-
tional programs and study the relationship between reachability games
(i.e., the reachability problem for programs with angelic and demonic
nondeterminism) and may-reachability (i.e., the reachability problem for
programs with only angelic nondeterminism). We show that reachability
games for order-n programs can be reduced to may-reachability problems
for order-(n + 1) programs, and vice versa. We formalize the reductions
by using higher-order fixpoint logic and prove their correctness. We also
discuss applications to higher-order program verification.

1 Introduction

This paper considers the reachability problem for simply-typed, call-by-name
higher-order functional programs with integers, recursion, and two kinds of non-
deterministic branches (angelic and demonic ones). The problem of solving reach-
ability games (hereafter, simply called the reachability game problem) asks, given
a higher-order functional program and a specific control point succ of the pro-
gram, whether there exists a sequence of choices on angelic non-determinism that
makes the program reach succ no matter what choices are made on demonic non-
determinism. Thus, our reachability game problem is just a special case of the
notion of two-player reachability games [8], where the game arena is specified
as a higher-order functional program. Various program verification problems
can be reduced to the reachability game problem. For example, the termina-
tion problem, which asks whether a given program terminates for any sequence
of non-deterministic choices, is a special case of the reachability game prob-
lem, where all the non-deterministic branches are demonic, and all the termina-
tion points are expressed by succ. The safety verification problem, which asks
whether a given program may fall into an error state after some sequence of
non-deterministic choices, is also a special case, where all the non-deterministic
branches are angelic, and error states are expressed by succ.

We establish relations between the reachability game problem and the may-
reachability problem, a special case of the reachability game problem where all
the non-deterministic choices are angelic (hence, may-reachability is a one-player
game). We show mutual translations between the reachability game problem for
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order-n programs and the may-reachability problem for order-(n+1) programs.
(Here, the order of a program is defined as the type-theoretic order; the order of
a function that takes only integers is 0, and the order of a function that takes
an order-0 function is 1, etc.) The translations are size-preserving in the sense
that for any order-n program M , one can effectively construct an order-(n + 1)
program M ′ such that the answer to the reachability game problem for M is the
same as the answer to the may-reachability problem for M ′, and the size of M ′

is polynomial in that of M ; and vice versa.
The translation from reachability games to may-reachability allows us to

use higher-order program verification tools specialized to may-reachability (or,
unreachability to error states) such as MoCHi [15] and Liquid types [20] to check
a wider class of properties represented as reachability games. Conversely, the
translation from may-reachability to reachability games allows us, for example,
to use verification tools that can solve reachability games for order-0 programs,
such as CHC solvers [5,9,17] to check may-reachability of order-1 programs.

We formalize our translations for μHFL(Z), which is a fragment HFL(Z) [16]
without greatest fixpoint operators and modal operators, where HFL(Z) is an
extension of Viswanathan and Viswanathan’s higher-order fixpoint logic [23]
with integers. The use of higher-order fixpoint formulas rather than higher-
order programs in the formalization of the translations is justified by the result
of Kobayashi et al. [16,24], that there is a direct correspondence between the
reachability problem for higher-order programs and the validity problem for
the corresponding higher-order fixpoint formulas, where angelic and demonic
branches in programs correspond to disjunctions and conjunctions respectively.

The rest of this paper is structured as follows. Section 2 introduces μHFL(Z),
and explains its relationship with the reachability problem for higher-order pro-
grams. Section 3 gives a reduction from the reachability game problem to may-
reachability problem, and Sect. 4 gives a reduction in the opposite direction.
Section 5 discusses applications and reports some experimental results. Section 6
discusses related work and Sect. 7 concludes the paper. The proofs and defini-
tions omitted in this paper are found in the longer version [1].

2 µHFL(Z) and Reachability Problems

In this section, we first introduce μHFL(Z), a fragment of higher-order fix-
point logic HFL(Z) [16] (which is in turn an extension of Viswanathan and
Viswanathan’s higher-order fixpoint logic [23] with integers) without greatest
fixpoint operators. We then review the relationship between μHFL(Z) and reach-
ability problems, and state the main theorem of this paper.

2.1 µHFL(Z)

The set of (simple) types, ranged over by κ, is given by:

κ (types) ::= Int | τ τ (predicate types) ::= � | κ → τ.
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K, x : κ �ST x : κ

K �ST ϕ1 : �
K �ST ϕ2 : �

K �ST ϕ1 ∨ ϕ2 : �

K �ST ϕ1 : �
K �ST ϕ2 : �

K �ST ϕ1 ∧ ϕ2 : �

K, x : τ �ST ϕ : τ

K �ST μxτ .ϕ : τ

K �ST ϕ1 : τ2 → τ
K �ST ϕ2 : τ2

K �ST ϕ1ϕ2 : τ

K, x : κ �ST ϕ : τ

K �ST λxκ.ϕ : κ → τ

K �ST ϕ : Int → τ
K �ST e : Int
K �ST ϕ e : τ

K �ST e1 : Int
K �ST e2 : Int

K �ST e1 ≤ e2 : �

K �ST n : Int

K �ST e1 : Int
K �ST e2 : Int

K �ST e1 + e2 : Int

K �ST e1 : Int
K �ST e2 : Int

K �ST e1 × e2 : Int

Fig. 1. Simple type system for μHFL(Z)

For a type κ, the order and arity of κ, written ord(κ) and ar(κ) respectively,
are defined by: ord(Int) = −1, ord(�) = 0, ord(κ → τ) = max(ord(τ), ord(κ)+
1), ar(Int) = ar(�) = 0, and ar(κ → τ) = ar(τ) + 1.

The set of μHFL(Z) formulas, ranged over by ϕ, is given by:

ϕ (formulas) ::= x | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | μxτ .ϕ | ϕ1ϕ2 | λxκ.ϕ | ϕ e | e1 ≤ e2

e (integer expressions) ::= n | x | e1 + e2 | e1 × e2.

Intuitively, μxτ .ϕ denotes the least predicate x of type τ such that x = ϕ.
We write true and false for 0 ≤ 0 and 1 ≤ 0. For a formula ϕ, the order of ϕ is
defined as: max({0}∪{ord(τ) | μxτ .ϕ′ occurs in ϕ}). We call a μHFL(Z) formula
ϕ disjunctive if the conjunction ∧ occurs in ϕ only in the form of e1 ≤ e2 ∧ ϕ1

(i.e., the left-hand side of ϕ is a primitive constraint on integers).
We write ϕ̃j,...,k for a sequence of formulas ϕj , . . . , ϕk; it denotes an empty

sequence if k < j. We often omit the subscript and just write ϕ̃ for ϕ̃j,...,k when
the subscript is not important. Similarly, we also write ẽ and κ̃ for sequences
of expressions and types respectively. We use the metavariables α, β, and γ to
denote either a formula or an integer expression.

The simple type system for μHFL(Z) formulas is defined in Fig. 1. Henceforth,
we consider only well-typed formulas (i.e., formulas ϕ such that K �ST ϕ : κ for
some K and κ). A formula ϕ is called a closed formula of type κ if ∅ �ST ϕ : κ.

For a closed formula ϕ, we write [[ϕ ]] for the semantics of ϕ. If ϕ has type �,
then [[ϕ ]] is either 	 (meaning that the formula is valid) or ⊥ (invalid). Similarly,
for a closed expression e, we write [[ e ]] for the integer value of e. The formal
semantics of formulas is found in the full version of this paper [1]. The validity
checking problem for μHFL(Z) is the problem of deciding whether [[ϕ ]] = 	,
given a closed μHFL(Z) formula ϕ of type �. Note that the validity checking
problem is undecidable.
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For closed formulas, the following alternative semantics is sometimes con-
venient. Let us define the reduction relation ϕ −→ ϕ′ by the following rules.

i ∈ {1, 2}
E[ϕ1 ∨ ϕ2] −→ E[ϕi]

E[true ∧ ϕ] −→ E[ϕ]

E[false ∧ ϕ] −→ E[false]

E[μx.ϕ] −→ E[[μx.ϕ/x]ϕ]

E[(λx.ϕ)e] −→ E[[e/x]ϕ]

E[(λx.ϕ)ψ] −→ E[[ψ/x]ϕ]

b =

{
true if [[ e1 ]] ≤ [[ e2 ]]
false otherwise

E[e1 ≤ e2] −→ E[b]

Here, E denotes an evaluation context, defined by: E ::= [ ] | E ∧ϕ | E ϕ. We
write −→∗ for the reflexive and transitive closure of −→. We have the following
fact (see, e.g., [22]).

Fact 1. Suppose �ST ϕ : �. Then, [[ϕ ]] = 	 if and only if ϕ −→∗ true.

Due to the fact above, the validity checking problem is equivalent to the problem
of deciding whether ϕ −→∗ true, given a closed μHFL(Z) formula ϕ of type �.

Example 1. Suppose �ST ϕ : Int → �, and let ψ be the formula (μxInt→�.λy.ϕ y∨
ϕ(−y) ∨ x(y + 1))0. Then ψ −→∗ true just if ϕ n −→∗ true for some n. Thus,
ψ represents ∃z.ϕ z.

The example above indicates that existential quantifiers on integers are express-
ible in μHFL(Z). Below, we treat existential quantifiers as if they were primitives.

2.2 Relationship with Reachability Problems

We consider reachability problems for a call-by-name, simply-typed λ-calculus
extended with two kinds of non-determinism (� and �) and a special term succ,
which represents that the designated target has been reached.1 The sets of types
and terms, ranged over by σ and M respectively, are defined by:

σ ::= Int | η η ::= unit | σ → η

M ::= ( ) | succ | x | λx.M | M1 M2 | M e

| fixη(x,M) | M1�M2 | M1�M2 | assume(e1 ≤ e2);M.

Here, fixη(x,M) denotes a recursive function x of type η such that x = M .
The term M1�M2 denotes a demonic choice between M1 and M2, where
the choice is up to the environment (or, the opponent O of the reachability
game), and M1�M2 denotes an angelic choice between M1 and M2, where
the choice is up to the term (or, the player P of the reachability game). The
term assume(e1 ≤ e2);M first checks whether e1 ≤ e2 holds and if so, pro-
ceeds to evaluate M ; otherwise aborts the evaluation of the whole term. Using
assume, we can express a conditional expression if e1 ≤ e2 then M1 else M2

as (assume(e1 ≤ e2);M1)�(assume(e2 + 1 ≤ e1);M2). Henceforth, we con-
sider only terms well-typed in the simple type system (which is standard, hence
omitted), where ( ) and succ are given type unit.
1 In the context of program verification, we are often interested in (un)reachability to
bad states. Thus, in that context, succ in this section is actually interpreted as an
error state, and the terms “angelic” and “demonic” below are swapped.
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The order of a type σ is defined by:

ord(Int) = −1 ord(unit) = 0 ord(σ → η) = max(ord(η), ord(σ) + 1).

The order of a term M is defined as the largest order of type η such that M has
a subterm of the form fixη(x,M ′). We write Intn → � for Int → · · · Int

︸ ︷︷ ︸

n

→ �.

For a closed simply-typed term M of type unit, a play is a (possibly infinite)
sequence of reductions of M . The play is won by the player P if it ends with succ;
otherwise the play is won by the opponent O. The reachability game for M is
the problem of deciding which player (P or O) has a winning strategy. For the
general notion of reachability games and strategies, we refer the reader to [8]. As
a special case of the translation of Watanabe et al. [24] from temporal properties
of programs to HFL(Z) formulas, we obtain the following translation (·)† from
reachability games to μHFL(Z) formulas.

( )† = false succ† = true x† = x (λx.M)† = λx.M† (M1M2)† = M†
1M†

2

(M e)† = M† e (fix(x,M))† = μx.M† (M1�M2)† = M†
1 ∧ M†

2

(M1�M2)† = M†
1 ∨ M†

2 (assume(e1 ≤ e2);M)† = e1 ≤ e2 ∧ M†.

The following is a special case of the result of Watanabe et al. [24].

Theorem 1 ([24]). For any closed simply-typed term M of type unit and order
k, M† is a closed μHFL(Z) formula of type � and order k. The player P wins
the reachability game for M , if and only if, [[M† ]] = 	.

Based on the result above, we focus on the validity checking problem for μHFL(Z)
formulas, instead of directly discussing the reachability problem. Note that the
may-reachability problem (of asking whether, given a closed term M of which
all the branches are angelic, there exists a reduction sequence from M to succ)
corresponds to the validity checking problem for disjunctive μHFL(Z) formulas.

Example 2. Let us consider the following OCaml program.

let rec sum x k =
assert(x>=0); if x=0 then k 0 else sum(x-1)(fun y-> k(x+y))

in sum n (fun r -> assert(r>=n))

Suppose we are interested in checking whether the program suffers from
an assertion failure. It is modeled as the reachability problem for the term
Msum n (λr.assume(r < n); succ), where Msum is:

fix(sum, λx.λk.(assume(x < 0); succ)
�(assume(x = 0); k 0)�(assume(x > 0); sum (x − 1) (λy.k(x + y)))).

Here, note that an assertion failure is modeled as succ in our language. By
Theorem 1, the above term is reachable to succ just if the (disjunctive) μHFL(Z)
formula ϕex1 := ϕsum n (λr.r < n) is valid, where ϕsum is:

μsum.λx.λk.x < 0 ∨ (x = 0 ∧ k 0) ∨ (x > 0 ∧ sum (x − 1) (λy.k(x + y))).
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The formula ϕex1 is valid only if n < 0, which implies that the OCaml program
suffers from an assertion failure just if n < 0. �


2.3 Main Theorem

The main theorem of this paper is stated as follows.

Theorem 2. There exist polynomial-time translations (·)# and (·)� between
order-n μHFL(Z) formulas and order-(n+1) disjunctive μHFL(Z) formulas that
satisfy: (i) For any order-n closed μHFL(Z) formula ϕ, ϕ# is an order-(n + 1)
closed disjunctive μHFL(Z) formula such that [[ϕ ]] = [[ϕ# ]]. (ii) For any order-
(n+1) closed disjunctive μHFL(Z) formula ϕ, ϕ� is an order-n closed μHFL(Z)
formula such that [[ϕ ]] = [[ϕ� ]].

Due to the connection between reachability problems and μHFL(Z) validity
checking problems discussed in Sect. 2.2, the theorem above implies that any
order-n reachability game can be converted in polynomial time to order-(n+ 1)
may-reachability problem, and vice versa. Applications of this result are dis-
cussed in Sect. 5.

3 From Order-n Reachability Games to Order-(n + 1)
May-Reachability

In this section, we show the translation (·)# from order-n μHFL(Z) formulas
to order-(n + 1) disjunctive μHFL(Z) formulas. The idea is to transform each
proposition ϕ (i.e. a formula of type �) to a predicate ϕ#′

of type � → �, so that
true and false are respectively converted to the identity function λx.x and
the constant function λx.false. We can then encode the conjunction ϕ1 ∧ϕ2 as
λx�.ϕ#′

1 (ϕ#′
2 x), which is equivalent to the identity function just if both ϕ#′

1 and
ϕ#′
2 are.

The translation (·)# for formulas and types is defined as follows.

ϕ# = ϕ#′
true (e1 ≤ e2)#

′
= λx�.(e1 ≤ e2 ∧ x) (λxκ.M)#

′
= λxκ#

.M#′

(ϕ1ϕ2)#
′
= ϕ#′

1 ϕ#′
2 (ϕ e)#

′
= ϕ#′

e (μxτ .ϕ)#
′
= μxτ#

.ϕ#′

(ϕ1 ∨ ϕ2)#
′
= λx�.ϕ#′

1 x ∨ ϕ#′
2 x (ϕ1 ∧ ϕ2)#

′
= λx�.ϕ#′

1 (ϕ#′
2 x)

Int# = Int �# = � → � (κ → τ)# = κ# → τ#.

Example 3. Consider the formula ϕ := (μpInt→�.λy.y = 0∨(p (y−1)∧p (y+1)))n
(where n is an integer constant). The translation (followed by β-reductions for
simplification) yields:

(μpInt→�→�.λy.λx�.(y = 0 ∧ x) ∨ p (y − 1) (p (y + 1)x))n true.

The following theorem states the correctness of the translation. The proof is
given in the full version [1].

Theorem 3. If ϕ is an order-n closed μHFL(Z) formula, then ϕ# is an order-
(n + 1) closed disjunctive μHFL(Z) formula, and [[ϕ ]] = [[ϕ# ]].
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4 From Order-(n + 1) May-Reachability to Order-n
Reachability Games

In this section, we show the translation (·)� from order-(n + 1) disjunctive
μHFL(Z) formulas to order-n μHFL(Z) formulas. The translation (·)� is much
more involved than the translation (·)#.

To see how such translation can be achieved, let us recall the formula ϕex1 :=
ϕsum n (λr.r < n) in Example 2, where ϕsum : Int → (Int → �) → � is:

μsum.λx.λk.x < 0 ∨ (x = 0 ∧ k 0) ∨ (x > 0 ∧ sum (x − 1) (λy.k(x + y))).

Note that the order of the formula above is 1. We wish to construct a formula ψ
of order 0, such that [[ϕex1 ]] = [[ψ ]]. Recall that, by Fact 1, [[ϕex1 ]] = 	 just if
ϕex1 −→∗ true. There are two cases where the formula ϕex1 may be reduced to
true: (i) ϕex1 is reduced to true without the order-0 argument λr.r < n being
called; and (ii) ϕex1 is reduced to (λr.r < n)m for some m, and then (λr.r < n)m
is reduced to true. Let ϕsum0 n be the condition for the first case to occur, and
let ϕsum1 nm be the condition that ϕex1 is reduced to (λr.r < n)m. Then, ϕsum0

and ϕsum1 can be expressed as follows.

ϕsum0 :=μsum0.λx.x < 0 ∨ (x > 0 ∧ sum0 (x − 1)).
ϕsum1 :=μsum1.λx.λz.(x = 0 ∧ z = 0) ∨ (x > 0 ∧ ∃y.sum1 (x − 1) y ∧ z = x + y).

To understand the formula ϕsum1 , notice that ϕsum (x−1) (λy.k(x+y)) is reduced
to k z just if sum (x− 1) (λy.k(x+ y)) is first reduced to (λy.k(x+ y))y for some
y (the condition for which is expressed by sum1 (x − 1) y), and z = x+ y holds.

Using ϕsum0 and ϕsum1 above, the formula ϕex1 can be translated to the
order-0 formula ϕsum0 n ∨ ∃r.ϕsum1 n r ∧ r < n. In general, if ϕ is an order-1
(disjunctive) formula of type Intk → (Int�1 → �) → · · · → (Int�m → �) → �
and ψi (i ∈ {1, . . . , m}) is a formula of type Int�i → �, then ϕ ẽ1,...,k ψ1 · · · ψm

can be translated to an order-0 formula of the form:

ϕ0 ẽ1,...,k ∨
∨

i∈{1,...,m}
∃ỹ1,...,�i .(ϕi ẽ1,...,k ỹ1,...,�i ∧ ψi ỹ1,...,�i),

where the part ϕ0 ẽ1,...,k expresses the condition for ϕ ẽ1,...,k ψ1 · · · ψm to be
reduced to true without ψi being called, and the part ϕi ẽ1,...,k ỹ1,...,�i expresses
the condition for ϕ ẽ1,...,k ψ1 · · · ψm to be reduced to ψi ỹ1,...,�i .

For higher-order formulas, the translation is more involved. To simplify the
formalization, we assume that a formula as an input or output of our translation
is given in the form (Θ,D,ϕ0), called an equation system; here D is a set of
mutually recursive fixpoint equations of the form {F1 x̃1 =μ ϕ1, . . . , Fn x̃n =μ

ϕn} and Θ is the type environment for F1, . . . , Fn. We sometimes omit Θ and just
write (D,ϕ0). Here, each ϕi (i ∈ {0, . . . , n}) should be fixpoint-free, ϕ0 is well-
typed under Θ, and ϕi (i ∈ {1, . . . , n}) should have some type τi under the type
environment Θ, xi,1:κi,1, . . . , xi,mi

:κi,mi
, where Θ(Fi) = κi,1 → · · · → κi,mi

→ τi
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and x̃i = xi,1 · · · xi,mi
. The μHFL(Z) formula (D,ϕ0)μ represented by (Θ,D,ϕ0)

is defined by:

(∅, ϕ)μ = ϕ (D ∪ {F x̃ =μ ψ}, ϕ)μ = ([μF.λx̃.ψ/F ]D, [μF.λx̃.ψ/F ]ϕ)μ.

We write [[(D,ϕ) ]] for [[(D,ϕ)μ ]].
For an equation system as an input of our translation, we further assume,

without loss of generality, the following conditions.

(I) Each ϕi (i ∈ {1, . . . , n}) on the right-hand side of a definition in D has
type � and is generated by the following grammar (where the metavariable
x may be a fixpoint variable Fj or its parameters):

ϕ ::= x | ϕ1 ∨ ϕ2 | e1 ≤ e2 ∧ ϕ | ϕ1ϕ2 | ϕ e. (1)

In particular, (i) ϕi is a disjunctive μHFL(Z) formula, (ii) ϕi contains
neither λ-abstractions nor fixpoint operators, and (iii) a formula of the
form e1 ≤ e2 may occur only in the form e1 ≤ e2 ∧ ϕ.

(II) Every integer predicate (i.e., a formula of type of the form Int� → � with
� ≥ 0) that occurs in an argument position has the same arity M . In other
words, in any function type κ → τ , either κ = IntM → �, or ord(κ) �= 0.

(III) The “main formula” ϕ0 is a formula of the form F λx̃1,...,M .true.

Note that the assumption above does not lose generality. Given an order-(n+1)
disjunctive μHFL(Z) formula ϕ, it can be first transformed to a formula of the
form ϕ′ true, where true does not occur on the right-hand side of any conjunc-
tion in ϕ′. We then set M to the largest arity of integer predicates that occur
in argument positions in ϕ′ true, and raise the arity of every integer predicate
argument to M by adding dummy arguments. For example, given

(λfInt→�.f 1)((λgInt→Int→�.g 1)(λxInt.λyInt.x ≤ y)),

we can set M to 2, and replace the formula with:

(λf ′Int→Int→�.f ′ 1 0)λz1.λz2.((λgInt→Int→�.g 1)(λxInt.λyInt.x ≤ y)) z1.

Here, we have inserted dummy (actual and formal) parameters 0 and z2 to
increase the arities of f and the argument of (λfInt→�.f 1). We can then apply
λ-lifting to remove λ-abstractions and generate a set of top-level definitions D.

We translate each equation F y1 · · · ym =μ ϕ in D as follows. We first decom-
pose the formal parameters y1, . . . , ym to two parts: y1, . . . , yj and yj+1, . . . , ym,
where the orders of (the types of) yj+1, . . . , ym are at most 0, and the order of
yj is at least 1; note that the sequences y1, . . . , yj and yj+1, . . . , ym are possibly
empty. We further decompose yj+1, . . . , ym into order-0 variables x1, . . . , xk and
integer variables z1, . . . , zp (thus, j + k + p = m). Formally, the decomposition
of formal parameters is defined by decomparg(ε, �) = (ε, ε, ε) and
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decomparg(u · ỹ, κ → τ) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

((u : κ) · K, x̃, z̃) if decomparg(ỹ, τ) = (K, x̃, z̃),K �= ε
(u : κ, x̃, z̃) if ord(κ) > 0, decomparg(ỹ, τ) = (ε, x̃, z̃)
(ε, u · x̃, z̃) if κ = IntM → �, decomparg(ỹ, τ) = (ε, x̃, z̃)
(ε, x̃, u · z̃) if κ = Int, decomparg(ỹ, τ) = (ε, x̃, z̃)

Here, decomparg(ỹ1,...,m, Θ(F )) decomposes the sequence of variables ỹ1,...,m and
returns a triple (K, x̃, z̃), where K is the type environment for y1, . . . , yj , x̃ is the
sequence of integer predicate variables, and z̃ is the sequence of integer variables.

For example, given an equation F u1 u2 u3 u4 u5 =μ ϕ, where Θ(F ) = Int →
((Int → �) → �) → Int → (Int → �) → Int → �, the formal parameters
u1 · · · u5 are decomposed as follows.

decomparg(u1 · · · u5, Θ(F )) = ({u1 : Int, u2 : (Int → �) → �}, u4, u3u5).

Given an equation F ỹ =μ ϕ where decomparg(ỹ, Θ(F )) = (K, x̃1,...,k, z̃) with
K = y1:κ1, . . . , yj :κj , we generate equations for new fixpoint variables F0, . . . , Fk.
As in the order-1 case, for i ∈ {1, . . . , k}, Fi ϕ̃′

1,...,j z̃ ũ1,...,M represents the con-
dition for F ϕ̃1,...,j to be reduced to xi ũ1,...,M (where ϕ̃′

1,...,j is the sequence of
formulas obtained by translating ϕ̃1,...,j in a recursive manner). F0 is a new com-
ponent required to deal with higher-order formulas; it is used to compute the
condition for F ỹ to be reduced to x ũ1,...,�i for some order-0 predicate x, which
has been passed through higher-order parameters ỹ1,...,j . For example, consider
a formula F (Gx) y where F : ((Int → �) → �) → (Int → �) → �,G : (Int →
�) → (Int → �) → �. Then, the condition for F (Gx) y to be reduced to y n is
computed by using F1, while the condition for F (Gx) y to be reduced to x n is
computed by using F0; see Example 4 for a concrete version of this example.

To compute F0, . . . , Fk, we translate each subformula ϕ of the body of F
to: (ϕ∗, ϕ0, ϕ1, . . . , ϕk, ϕk+1, . . . , ϕk+gar(τ)), where τ is the type of ϕ, and gar(τ)
denotes the number of order-0 arguments passed after the last argument of order
greater than 0. More precisely, we define the decomposition of types as follows.

decomp(�) = (ε, ε, 0)

decomp(κ → τ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(κ · κ̃,m, n) if decomp(τ) = (κ̃,m, n), κ̃ �= ε
(κ,m, n) if ord(κ) > 0, decomp(τ) = (ε,m, n)
(ε,m + 1, n) if κ = IntM → �, decomp(τ) = (ε,m, n)
(ε,m, n + 1) if κ = Int, decomp(τ) = (ε,m, n)

Then, gar(τ) denotes m when decomp(τ) = (κ̃,m, n). For example, for τ =
(Int → �) → ((Int → �) → �) → (Int → �) → Int → (Int → �) → �,
decomp(τ) = ((Int → �) · ((Int → �) → �), 2, 1); hence gar(τ) = 2. Here,
ϕ1, . . . , ϕk are analogous to F1, . . . , Fk: they are used for computing the condition
for ϕ ˜ψ to be reduced to xi ñ. Similarly, ϕk+i (where i ∈ {1, . . . , gar(τ)}) is used
for computing the condition for ϕ ˜ψ to be reduced to ψi ñ, where ψi is the
i-th order-0 argument of ϕ. The component ϕ0 is analogous to F0, and used
to compute the condition for ϕ ˜ψ to be reduced to x ñ, where x is an order-0
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predicate passed through higher-order arguments of ϕ. The other component ϕ∗
is similar to ϕ0, but the target predicate x may have already been set inside ϕ∗.

Based on the intuition above, we formalize the translation of a formula as
the relation: K; x̃1,...,k �Θ ϕ : τ � (ϕ∗, ϕ0, . . . , ϕk+gar(τ)). Here, Θ denotes the
type environment for fixpoint variables defined by D. If ϕ is a subformula of
the body of F , and F is defined by F ỹ =μ ϕF , then K and x̃1,...,k are set to
KF , z̃ : ˜Int and x̃F respectively, where decomparg(ỹ, Θ(F )) = (KF , x̃F , z̃).

The translation rules are given in Fig. 2. We explain the main rules below. In
the rule Tr-VarG for an order-0 variable xi (which should disappear after the
translation), ϕj z̃1,...,M w̃1,...,M should represent the condition for xi z̃1,...,M −→∗

xj w̃1,...,M ; thus ϕj is defined so that z̃1,...,M w̃1,...,M is equivalent to true just
if i = j and z̃1,...,M = w̃1,...,M . In the rule Tr-Var for a variable y in K, the
output of the translation is constructed from (y∗, y0, y1, . . . , ym), whose values
will be provided by the environment. Because the environment does not know
order-0 variables x1, . . . , xk, we use y0 to compute the condition for y ˜ψ to be
reduced to xi m̃. The rule Tr-VarF for fixpoint variables is almost the same as
Tr-Var, except that the component F0 is reused for F∗. The rationale for this
is as follows: both ϕ∗ and ϕ0 are used for computing the condition for a target
order-0 predicate variable (which is set by the environment) to be reached, and
the only difference between them is that the target predicate may have already
been set in ϕ∗, but since F is a closed formula, such distinction does not make
any difference; hence F0 and F∗ need not be distinguished from each other.

In the rule Tr-App, the first two components (ϕ∗(ψ∗, . . .) and ϕ0(ψ0, . . .))
are used for computing the condition for some target predicates (set by the envi-
ronment) to be reached, and the next k components (ϕ1(ψ1, . . .), . . . , ϕk(ψk, . . .))
are used for computing the condition for predicate x1, . . . , xk to be reached. The
rule Tr-AppG is another rule for applications, where the argument ψ is an order-
0 predicate. The component ξj of the output is used for computing the condition
for the predicate xi to be reached (i.e., the condition for a formula of the form
ϕ ψ ˜ψ′ to be reduced to xi w̃1,...,�j , where ˜ψ′ consists of order-0 predicates and
integer arguments z̃1,...,p). The formula ϕ ψ ˜ψ′ may be reduced to xi w̃1,...,�j if
either (i) ϕ ψ ˜ψ′ −→∗ xi w̃1,...,�j without ψ being called, or (ii) ϕ ψ ˜ψ′ is reduced
to ψ z̃ ũ for some ũ, and ψ z̃ ũ is reduced to xi w̃1,...,�j . The part ϕj z̃ w̃ represents
the former condition, and the part ∃ũ. · · · represents the latter.

Example 4. Consider S (λx.true), where S is defined by:

S t =μ F (Gt) t F v w =μ v H ∨ w 2 G p q =μ p 1 H x =μ H x.

There are the following two ways for S t to be reduced to t n for some n:

S t −→ F (Gt) t −→ G t H ∨ t 2 −→ G t H −→ t 1
S t −→ F (Gt) t −→ G t H ∨ t 2 −→ t 2.
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Fig. 2. Translation from order-(n + 1) disjunctive μHFL(Z) to morder-n μHFL(Z).

The output of our transformations (with some simplification) is ∃z.S1 z
where:

S1 =μ λw1.F0 (λw1.G0 w1 ∨ G1 w1, G0, G2)w1 ∨ F1 (G0, G2)w1
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F0 (v∗, v0, v1) =μ λz1.v∗ z1 ∨ ∃u1.v1 u1 ∧ H0 u1 z1

F1 (v0, v1) =μ λz1.v0 z1 ∨ (∃u1.v1 u1 ∧ H0 u1 z1) ∨ 2 = z1

G0 =μ λw1.false G1 =μ λw1.1 = w1 G2 =μ λw1.false H0 x =μ H0 x.

Notice that the formula S1 z has the following two reduction sequences that lead
to the conditions of the form z = n for some n.

S1 z −→∗ F0 (λw1.G0 w1 ∨ G1 w1, G0, G2) z −→∗ (λw1.G0 w1 ∨ G1 w1)z −→∗ 1 = z

S1 z −→∗ F1 (G0, G2) z −→∗ G0 z ∨ (∃u1.G2 u1 ∧ H0 u1 z) ∨ 2 = z −→∗ 2 = z.

The former reduction sequence corresponds to the reduction sequence of the
original formula S t −→∗ t 1 where t embedded in the first argument of F (in
F (Gt) t) is called, and the latter reduction sequence corresponds to the reduction
sequence S t −→∗ t 2 where the second argument t of F (in F (Gt) t) is called.
Note that the first condition 1 = z has been computed by using F0, and the
second condition 2 = z has been computed by using F1. �


The following theorem states the correctness of the translation. A proof of
the theorem and more examples of the translation are given in [1].

Theorem 4. If (D,S λz̃1,...,M .true) � (D′, ψ), then [[(D,S λz̃1,...,M .true) ]] =
[[(D′, ψ) ]].

5 Applications

As mentioned already, the translation from order-n reachability games to order-
(n+1) may-reachability enables us to use automated (un)reachability checkers for
solving the reachability game problem, and the translation in the other direction
enables us to use, for example, reachability game solvers for non-higher-order
programs as a may-reachability checker for order-1 programs.

As a direct application of the former translation, we have applied it to
the νHFL(Z) solver ReTHFL [11], which is a refinement-type-based validity
checker for formulas of νHFL(Z), the fragment of HFL(Z) without least fix-
point operators (but with greatest fixpoint operators). The fragment νHFL(Z)
is dual to μHFL(Z), in the sense that, for every closed formula ϕ of type � of
μHFL(Z), there exists a νHFL(Z) formula ϕ such that ϕ is valid if and only if
ϕ is invalid, and vice versa; ϕ is obtained from ϕ by just replacing each logical
operator (including fixpoint operators) with its de Morgan dual, and e1 ≤ e2
with e1 > e2. Using a refinement type system, ReTHFL reduces the validity of
a given νHFL(Z) formula in a sound (but incomplete) manner to an extended
CHC (constraint Horn clauses) problem, where disjunction is allowed in the
head of each clause, and passes the problem to an extended CHC solver called
PCSat [21]. For a fragment of νHFL(Z) corresponding to disjunctive μHFL(Z),
however, the reduced problem is actually an ordinary CHC problem, for which
more efficient tools [5,9,17] can be invoked. Thus, we can use the translation in
Sect. 3 to improve the efficiency of ReTHFL.
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From the benchmark suite of ReTHFL [11] (which originates from [10]), we
picked the “non-termination” benchmark set, which consists of formulas obtained
from non-termination verification of higher-order programs. All the formulas in
that benchmark set do not belong to (the dual of) disjunctive μHFL(Z) (in con-
trast, the problems in the other benchmark sets belong to disjunctive μHFL(Z),
hence our translation is not required). We have implemented the translation in
Sect. 3, applied it to the problems in the “non-termination” benchmark set, and
then ran ReTHFL with a CHC solver HoIce [5,6] as the back-end solver. We
have compared the result with plain ReTHFL (without the transformation),
which uses the extended CHC solver PCSat.

Table 1. Experimental results. Times are in seconds, with the timeout of 180 s.

Input ReTHFL ReTHFL+i.s. ReTHFL+ tr.

fixpoint_nonterm 11.579 0.054 0.102
unfoldr_nonterm timeout unknown 4.22
indirect_e 16.832 0.035 0.066
alternate unknown unknown unknown
fib_CPS_nonterm timeout 0.047 0.075
foldr_nonterm 8.447 unknown 0.122
passing_cond 116.423 unknown 0.444
indirectHO_e 11.582 0.044 0.073
inf_closure timeout 20.171 9.080
loopHO timeout 0.026 0.121

The results are summarized in Table 1. The column ‘ReTHFL’ shows the
result of plain ReTHFL with PCSat as the back-end extended CHC solver
(since ordinary CHC solvers are inapplicable to this benchmark set, as explained
above). The column ‘ReTHFL+i.s.’ show the result of ReTHFL where the
subtyping relation has been replaced by the imprecise one (equivalent to that
of Horus [4], a HoCHC solver that can also be viewed as a νHFL(Z) solver)
so that the type checking problem is reduced to ordinary CHC solving. The
column ‘ReTHFL+tr.’ shows the result of ReTHFL with our translation. In
both ‘ReTHFL+i.s.’ and ‘ReTHFL+tr.’, HoIce was used as the back-end
CHC solver. The entry “unknown” indicates that the solver terminated with the
answer “ill-typed”, in which case, we do not know whether the formula is valid
or invalid, due to the incompleteness of the underlying refinement type system.2
The refinement type system used in ‘ReTHFL+i.s.’ is less precise than the one
used in ReTHFL; hence, it returns more unknowns. As clear from the table,
our translation significantly improved the efficiency of ReTHFL.
2 Although the understanding of the refinement type systemsReTHFL is not required
below, interested readers may wish to consult [11].
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The translation in the other direction given in Sect. 4 also helps ReTHFL,
especially for relaxing the limitation caused by the incompleteness of the under-
lying refinement type system. For example, consider the formula S true, where:

S t =μ App (λx.x �= 0 ∧ t) 0 App p y =μ p y ∨ App (λz.p(z − 1)) (y + 1).

The formula is invalid, but ReTHFL (nor Horus [4], a higher-order CHC solver
based on a refinement type system) cannot prove the validity of the dual formula,
due to the incompleteness of the refinement type system. The translation in
Sect. 4 yields the following order-0 formula:3

S1 =μ ∃x.App1 0x ∧ x �= 0
App1 y z =μ y = z ∨ ∃w.App1 (y + 1)w ∧ w − 1 = z.

Here, App1 y z intuitively means that App p y can be reduced to p z. The under-
lying type system of ReTHFL is complete for order-0 formulas, and indeed, the
order-0 formula above can automatically be proved invalid by ReTHFL.

6 Related Work

The relationship between order-n reachability games and order-(n + 1) may-
reachability has some deep connection to the relationship between order-n tree
languages and order-(n+1) word languages [2,3,7], intuitively because the may-
reachability problem is concerned about the set of “paths” of the execution tree
of a given program, whereas the reachability game problem is also concerned
about the branching structures of the execution tree. Indeed, our translations
(especially, the use of ϕ∗ and ϕ0 components in the translation in Sect. 4) have
been inspired by Asada and Kobayashi’s translations between tree and word
languages [3]. Kobayashi et al. [12] have also used a similar idea for a character-
ization of termination probabilities of higher-order probabilistic programs.

For finite-data programs (programs in Sect. 2.2 without integers), according
to the complexity results on HORS model checking [14,18], both the order-n
reachability game problem and the order-(n + 1) may-reachability game prob-
lem are n-EXPTIME complete, which imply that there are mutual translations
between them. Concrete translations have, however, not been given (except
unnatural translations through Turing machines). Also, the complexity-theoretic
argument for the existence of translations does not apply in the presence of
integers.

For HORS model checking, Parys [19] developed an order-decreasing transfor-
mation for higher-order grammars, which shares some ideas with our translation
in Sect. 4. The details of the translations are however quite different. His trans-
lation makes use of finiteness in a crucial manner, and is not applicable in the
presence of integers. Also, his translation is not size-preserving.
3 We have implemented a prototype translator, but have not yet integrated it into
ReTHFL. For readability, here we show the formula obtained by some manual
simplification of the automatically generated formula.
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For order-1 programs, Kobayashi et al. [13] have shown that linear-time
omega regular properties can be translated to order-0 HFL(Z) formulas. Our
translation in Sect. 4 may be viewed as a higher-order extension of their trans-
lation, while the properties are restricted to may-reachability.

The fragment μHFL(Z) (or its dual fragment νHFL(Z)) is essentially (modulo
the restriction of data domains to integers) equivalent to HoCHC [4], a higher-
order extension of CHC. Therefore, the result of this paper should be useful also
for improving HoCHC solvers.

7 Conclusion

We have shown translations between order-n reachability games and order-(n+1)
may-reachability, and proved their correctness. We have applied the translations
to higher-order program verification, and obtained promising results in prelim-
inary experiments. As mentioned in Sect. 6, our results are closely related to
the correspondence between higher-order word and tree languages [3]. A deeper
investigation of the relationship and generalization of the translations that sub-
sume the related translations [3,12] are left for future work.
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Abstract. Threshold automata are a formalism for modeling fault-
tolerant distributed algorithms. The main feature of threshold automata
is the notion of a threshold guard, which allows us to compare the number
of received messages with the total number of different types of processes.
In this paper, we consider the coefficient synthesis problem for threshold
automata, in which we are given a sketch of a threshold automaton (with
the constants in the threshold guards left unspecified) and a specification
and we want to synthesize a set of constants which when plugged into
the sketch, gives a threshold automaton satisfying the specification. Our
main result is that this problem is undecidable, even when the specifica-
tion is a coverability specification and the underlying sketch is acyclic.

Keywords: Threshold automata · Coefficient synthesis · Presburger
arithmetic with divisibility

1 Introduction

Threshold automata [7] are a formalism for modeling and analyzing parameter-
ized fault-tolerant distributed algorithms. In this setup, an arbitrary but finite
number of processes execute a given distributed protocol modeled as a threshold
automaton. Verifying these systems amounts to proving that the given protocol
is correct with respect to a given specification, irrespective of the number of
agents executing the protocol. Many algorithms have been developed for verify-
ing properties of threshold automata [2,4,7–10] and it is known that reachability
for threshold automata is NP-complete [3].

In many formalisms for modeling distributed systems (like rendez-vous pro-
tocols [6] and reconfigurable broadcast networks [5]), the status of a transition
being enabled or not depends only on a fixed number of processes, independent
of the total number of participating processes. One of the central features that
distinguishes threshold automata from such formalisms is the notion of a thresh-
old guard. A threshold guard can be used to specify relationships between the
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number of messages received and the total number of participating processes, in
order for a transition to be enabled. For example, if we let x be a variable count-
ing the number of messages of a specified type, n be the number of participating
processes and t be the maximum number of processes which can fail, then the
guard x ≥ n/3+ t on a transition specifies that the number of messages received
should be at least n/3 + t, in order for a process to execute this transition.

While the role of these guards is significant for the correctness of these pro-
tocols, they can also be unstable as small changes (and hence small calculation
errors) in the coefficients of these guards can make a correct protocol faulty. (A
concrete example of this phenomenon will be illustrated in the next section). For
this reason, it would be desirable to automate the search for coefficients so that
once the user gives a “sketch” of a threshold automaton (which only specifies
the control flow but leaves out the arithmetic details) and a specification, we
can compute a set of coefficient values, which when “plugged into” the sketch
can satisfy the specification. With this motivation, the authors of [11] tackle this
coefficient synthesis problem and provide theoretical and experimental results.
They show that for a class of “sane” threshold automata, this problem is decid-
able and provide a CEGIS approach for synthesizing these coefficients. However,
the decidability status of the coefficient synthesis problem for the general case
has remained open so far.

In this paper, we prove that this problem is actually undecidable, hence
settling the decidability status of this problem. We do this by giving a reduction
from a sub-fragment of Presburger arithmetic with divisibility, for which the
validity problem is known to be undecidable. Further, our result already shows
that the coefficient synthesis problem is undecidable, even when the specification
is a coverability specification of constant size and the underlying control-flow
structure of the sketch automaton is acyclic.

Related Work. As mentioned before, the coefficient synthesis problem has
already been studied in [11]. However, the decidability status of the general case
was left open in that paper and here we show it is undecidable. A similar problem
has also been studied for parametric timed automata [1], where the control flow
of a timed automaton is given as input and we have to synthesize coefficients
for the guards in order to satisfy a given reachability specification. The authors
show that the problem is undecidable, already for timed automata with three
clocks. They also show that it is decidable when the automaton has only one
clock. Unlike clocks, the shared variables in our setting cannot be reset. Further,
in our setting, variables can be compared with both the coefficients and other
environment variables, which is not the case with parametric timed automata.

2 Preliminaries

Let N>0 be the set of positive integers and N be the set of non-negative integers.
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1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s en t ECHO be f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s en t ECHO be f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Fig. 1. Pseudocode of a reliable broad-
cast protocol from [13] for a correct
process i, where n and t denote the
number of processes, and an upper
bound on the number of faulty pro-
cesses. The protocol satisfies its speci-
fication (if myvali = 0 for every correct
process i, then no correct process sets
its accept variable to true) if t < n/3.

�0

�1

�2 �3

r2 : γ1 �→ x++

r1 : true �→ x++ r3 : γ2

Fig. 2. Threshold automaton from [9]
modeling the body of the loop in the
protocol from Fig. 1. Symbols γ1, γ2

stand for the threshold guards x ≥
(t + 1) − f and x ≥ (n − t) − f ,
where n and t are as in Fig. 1, and f is
the actual number of faulty processes.
The shared variable x models the num-
ber of ECHO messages sent by correct
processes. Processes with myvali = b
(line 1) start in location �b (in green).
Rules r1 and r2 model sending ECHO
at lines 7 and 12. (Color figure online)

2.1 Threshold Automata

We introduce threshold automata, mostly following the definition and notations
used in [2,3]. Along the way, we also illustrate the definitions on the example of
Fig. 2 from [9], which is a model of the Byzantine agreement protocol of Fig. 1.

Environments. An environment is a tuple Env = (Π,RC, N), where Π is a
finite set of environment variables ranging over N, RC ⊆ N

Π is a resilience con-
dition over the environment variables, given as a linear formula, and N : RC → N

is a linear function called the number function. Intuitively, an assignment of Π
determines the number of processes of different kinds (e.g. faulty) executing the
protocol, and RC describes the admissible combinations of values of environment
variables. Finally, N associates to a each admissible combination, the number
of processes explicitly modeled. In a Byzantine setting, faulty processes behave
arbitrarily, and so we do not model them explicitly; In the crash fault model,
processes behave correctly until they crash and they must be modeled explicitly.
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Example 1. In the threshold automaton of Fig. 2, the environment variables are
n, f , and t, describing the number of processes, the number of (Byzantine) faulty
processes, and the maximum possible number of faulty processes, respectively.
The resilience condition is the constraint n/3 > t ≥ f . The function N is given
by N(n, t, f) = n − f , which is the number of correct processes.

Threshold Automata. A threshold automaton over an environment Env is
a tuple TA = (L, I, Γ,R), where L is a finite set of local states (or locations),
I ⊆ L is a nonempty subset of initial locations, Γ is a finite set of shared variables
ranging over N, and R is a finite set of transition rules (or just rules), formally
described below.

A transition rule (or just a rule) is a tuple r = (from, to, ϕ, �u), where
from, to ∈ L are the source and target locations respectively, ϕ ⊆ N

Π∪Γ is
a conjunction of threshold guards (described below), and �u : Γ → {0, 1} is an
update. We often let r.from, r.to, r.ϕ, r.�u denote the components of r. Intuitively,
r states that a process can move from from to to if the current values of Π
and Γ satisfy ϕ, and when it moves, it updates the current valuation �g of Γ by
performing the update �g := �g + �u. Since all components of �u are nonnegative,
the values of shared variables never decrease. A threshold guard ϕ has one of the
following forms: b ·x �� a0 + a1 · p1 + . . .+ a|Π| · p|Π| where �� ∈ {≥, <}, x ∈ Γ is
a shared variable, p1, . . . , p|Π| ∈ Π are the environment variables, b ∈ N>0 and
a0, a1, . . . , a|Π| ∈ Z are integer coefficients.

The underlying graph of a threshold automaton is the graph obtained by
taking the vertices as the locations and connecting any two vertices with an
edge as long as there is a rule between them. A threshold automaton is called
acyclic if its underlying graph is acyclic.

Example 2. The threshold automaton from Fig. 2 is acyclic. The rule r3 of this
automaton has �2 and �3 as its source and target locations, x ≥ (n− t)−f as its
guard, and does not increment any shared variable. On the other hand, the rule
r1 has �1 and �2 as its source and target locations, no guard (denoted by true)
and increments the variable x.

Configurations and Transition Relation. A configuration of TA is a triple
σ = (�κ, �g,p) where �κ : L → N describes the number of processes at each location,
and �g ∈ N

Γ and p ∈ RC are valuations of the shared variables and the envi-
ronment variables respectively. In particular,

∑
�∈L �κ(�) = N(p) always holds.

A configuration is initial if �κ(�) = 0 for every � /∈ I, and �g = �0. We often let
σ.�κ, σ.�g, σ.p denote the components of σ.

A configuration σ = (�κ, �g,p) enables a rule r = (from, to, ϕ, �u) if �κ(from) > 0,
and (�g,p) satisfies the guard ϕ, i.e., substituting �g(x) for x and p(pi) for pi in ϕ
yields a true expression, denoted by σ |= ϕ. If σ enables r, then there is a step
from σ to the configuration σ′ = (�κ′, �g′,p′) given by, (i) p′ = p, (ii) �g′ = �g + �u,
and (iii) �κ′ = �κ + �vr, where �vr = �0 if from = to and otherwise, �vr(from) = −1,
�vr(to) = +1, and �vr(�) = 0 for all other locations �. We let σ

r−→ σ′ denote that
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TA can move from σ to σ′ using the rule r. We use σ −→ σ′ to denote that σ
r−→ σ′

for some rule r and we let σ
∗−→ σ′ denote the reflexive and transitive closure of

the −→ relation. If σ
∗−→ σ′, then we say that there is a run from σ to σ′ and also

that σ′ is reachable from σ.

Coverability. We will only be interested in coverability specifications through-
out this paper. Later on, we will see how our result implies similar undecidability
results for other specifications for threshold automata.

Let � ∈ L be a location. We say that a configuration σ covers � if σ(�) > 0.
We say that σ can cover a location � if σ can reach a configuration σ′ such that σ′

covers �. Finally, we say that TA can cover � if some initial configuration of TA can
cover �. Hence, TA cannot cover � if and only if every initial configuration of TA
cannot cover �. It is known that deciding whether a given threshold automaton
can cover a given location is NP-complete [3].

Coefficient Synthesis. We now state the main problem that we are inter-
ested in this paper, namely the coefficient synthesis problem [11]. We begin by
introducing the notion of sketch threshold automata.

Sketch Threshold Automata. An indeterminate is a variable that can take any
integer value. In a typical threshold automaton, a guard is an inequality which
can either be of the form b ·x ≥ a0 +a1 ·p1 + . . . a|Π| ·p|Π| or b ·x < a0 +a1 ·p1 +
. . . a|Π| · p|Π| with b ∈ N>0 and a1, . . . , a|Π| ∈ Z. A sketch threshold automaton
(or simply a sketch) is the same as a threshold automaton, except that some of
the b, a0, a1, . . . , a|Π| terms in any guard of the automaton are now allowed to
be indeterminates. Intuitively, a sketch threshold automaton completely specifies
the control flow of the protocol, but leaves out the precise arithmetic details of
the threshold guards.

Given a sketch TA and an integer assignment μ to the indeterminates, we
let TA[μ] denote the threshold automaton obtained by replacing the indetermi-
nates with their corresponding values in μ. The coefficient synthesis problem for
threshold automata is now the following:

Given: An environment Env, a sketch TA and a location � of TA
Decide: Whether there is an assignment μ to the indeterminates such that
TA[μ] cannot cover �.

Example 3. We consider the threshold automaton from Fig. 2. As mentioned in
the text under Fig. 1, if no (correct) process initially starts at �1, then no process
can ever reach �3. This implies that if we remove the location �1 in the threshold
automaton of Fig. 2, then the modified threshold automaton TA′ will never be
able to cover �3.

We can now convert TA′ into a sketch, by replacing the guard γ1 with x ≥
(t + a) − f , where a is an indeterminate. When a = 1, we get TA′ and so it
will never cover �3. However, when a = 0, the resulting automaton can cover
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�3. Indeed if we set n = 6, t = f = 1 and if all the N(6, 1, 1) = 6 − 1 = 5
processes start at �0 initially, then the guard γ1 will always be true and so all
the 5 processes can move to �2, thereby setting the value of x to 5. At this point,
the guard γ2 becomes true and so all the processes can move to �3. This indicates
that very small changes in the coefficients can make a protocol faulty.

Our main result is that

Theorem 1. The coefficient synthesis problem is undecidable, even for acyclic
threshold automata.

3 Undecidability of Coefficient Synthesis

We now prove Theorem 1. To do so, we first consider a restricted version of this
problem, called the non-negative coefficient synthesis problem, in which given a
tuple (Env,TA, �), we want to find a non-negative assignment μ to the indetermi-
nates so that the resulting automaton TA[μ] does not cover �. We first show that
the non-negative coefficient synthesis problem is undecidable. Then, we reduce
this problem to the coefficient synthesis problem, thereby achieving the desired
result.

3.1 Presburger Arithmetic with Divisibility

We prove that the non-negative coefficient synthesis problem is undecidable
by giving a reduction from the validity problem for a restricted fragment of
Presburger arithmetic with divisibility, which is known to be undecidable. We
describe this fragment by mostly following the definitions and notations given
in [12].

Presburger arithmetic (PA) is the first-order theory over 〈N, 0, 1,+, <〉 where
+ and < are the standard addition and order operations over the natural num-
bers N with constants 0 and 1 interpreted in the usual way. We can, in a straight-
forward manner, extend our syntax with the following abbreviations: ≤,=,≥, >
and ax =

∑
1≤i≤a x where a ∈ N and x is a variable. A linear polynomial is an

expression of the form
∑

1≤i≤n aixi + b where each xi is a variable and each ai

and b belong to N. An atomic formula is a formula of the form p(x) �� q(x) where
p and q are linear polynomials over the variables x and �� ∈ {<,≤,=, >,≥}.

Presburger arithmetic with divisibility (PAD) is the extension of PA obtained
by adding a divisibility predicate | which is interpreted as the usual divisibility
relation among numbers. For the purposes of this paper, we restrict ourselves to
the ∀∃RPAD+ fragment of PAD, i.e., we shall only consider statements of the
form

∀x1, . . . , xn ∃y1, . . . , ym

∨

i∈I

⎛

⎝
∧

(j,k)∈Si

(xj |yk) ∧
∧

l∈Bi

Al(x1, . . . , xn, y1, . . . , ym)

⎞

⎠

(1)
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where I, Si, Bi are finite sets of indices and each Al is a quantifier-free atomic PA
formula. It is known that checking if such a statement is true is undecidable [12].
We now prove the undecidability of the non-negative coefficient synthesis prob-
lem by a reduction from this problem.

Remark 1. PAD as defined here allows us to quantify the variables only over
the natural numbers, whereas in [12] the undecidability result is stated for the
variant where the variables are allowed to take integer values. However, the same
proof given in [12] allows us to prove the undecidability result over the natural
numbers as well.

Remark 2. In our definition of ∀∃RPAD+, we only allow divisibility constraints
of the form xj |yk. In [12], divisibility constraints of the form f(x)|g(x,y) were
allowed, where f and g are any linear polynomials. This does not pose a problem,
because of the fact that ∀x1, . . . , xn ∃y1, . . . , ym f(x)|g(x,y) is true if and only if
∀x1, . . . , xn, z ∃y1, . . . , ym, z′ (z �= f(x))∨(z = f(x)∧z′ = g(x,y)∧z|z′). Because
of this identity, it is then clear that any formula in the ∀∃RPAD+ fragment as
defined in [12] can be converted into a formula in our fragment without changing
its validity.

3.2 The Reduction

Let ξ(x1, . . . , xn, y1, . . . , ym) be a formula of the form 1. The set of atomic for-
mulas of ξ is the set comprising each quantifier-free atomic PA formula in ξ and
all the divisibility constraints of the form xj |yk that appear in ξ. The desired
reduction now proceeds in two stages.

First Stage: The Environment. We begin by defining the environment Env =
(Π,RC, N). We will have m environment variables t1, . . . , tm, with each ti intu-
itively corresponding to the variable yi in ξ. Further, for every atomic formula A
of ξ which is a divisibility constraint, we will have an environment variable dA.
Finally, we will have an environment variable z, which will intuitively denote the
total number of participating processes.

The resilience condition RC will be the trivial condition true. The linear
function N : RC → N is taken to be N(Π) = z. Hence, the total number of
processes executing the threshold automaton will be z.

Second Stage: The Indeterminates and the Sketch. For each variable xi of ξ,
we will have an indeterminate si. Before we proceed with the description of the
sketch, we make some small remarks.

Remark 3. Throughout the reduction, a simple configuration of a sketch will
mean a configuration C such that 1) there is a unique location � with C(�) > 0
and 2) C(v) = 0 for every shared variable v, i.e., all the processes of C are in
exactly one location and the value of each shared variable is 0.
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We now proceed with the description of the sketch. Throughout the reduc-
tion, we let s denote the set of indeterminates s1, . . . , sn and t denote the set
of environment variables t1, . . . , tm. The sketch will now be constructed in three
phases, which are as follows.

First Phase. For each atomic formula A of ξ, we will construct a sketch TAA.
TAA will have a single shared variable vA. We now have two cases:

– Suppose A is of the form xj |yk for some j ∈ {1, . . . , n} and k ∈ {1, . . . , m}.
Then, corresponding to A, we construct the sketch in Fig. 3.

startA �A endA

vA++
vA = sj · dA ∧ vA = tk

Fig. 3. Sketch for the first case

– Suppose A is of the form f(x,y) �� g(x,y) where f and g are linear polyno-
mials and �� ∈ {<,≤,=, >,≥}. Then, corresponding to A, we construct the
sketch in Fig. 4.

startA �A endA

vA++
vA = f(s, t) ∧ vA �� g(s, t)

Fig. 4. Sketch for the second case

Remark 4. Notice that any assignment to the variables of x (resp. y) can be
interpreted in a straightforward manner as an assignment to s (resp. t) and also
vice versa. We will use this convention throughout the reduction.

Now let us give an intuitive idea behind the construction of these gadgets.
Intuitively, in both these cases, all the processes initially start at startA. Then
each process either takes the top transition and increments vA or takes the
bottom transition and does not increment any variable. Ultimately, this would
lead to a point where all the processes are now at �A. Then, in the first case, the
guard from �A to endA essentially checks that sj divides tk and in the second
case, the guard from �A to endA essentially checks that f(s, t) �� g(s, t). By the
previous remark, the variables s (resp. t) can be thought of as corresponding to
the variables x (resp. y) and so this means that a process can reach endA iff A
can be satisfied. We now proceed to formalize this intuition.

Lemma 1. Let X and Y be assignments to the variables x and y respectively.
Then A(X,Y ) is true if and only if there is a simple configuration C of TAA[X]
with C(startA) > 0 and C(t) = Y such that it can cover endA.
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Proof. (⇒): Assume that A(X,Y ) is true.

– Suppose A is a divisibility constraint of the form xj |yk. Let q be such that
X(xj) · q = Y (yk) and let C be the (unique) simple configuration given by
C(startA) = C(z) = Y (yk) + 1, C(tk) = Y (yk) and C(dA) = q.

– Suppose A is of the form f(x,y) �� g(x,y). Let C be the (unique) simple
configuration given by C(startA) = C(z) = f(X,Y ) + 1 and C(t) = Y .

The reason for having a “+1” in the definition of C(startA) is so that we are
guaranteed to have at least one process to begin with.

From C, we proceed as follows: We move exactly one process from startA
to �A by using the rule which increments nothing and we move all the other
processes, one by one, from startA to �A by using the rule which increments
vA. This leads to a configuration C ′ such that C ′(vA) = C ′(z) − 1 = C(z) − 1.
Because we assume that A(X,Y ) is true, it follows that at C ′, the outgoing
rule from �A is enabled. Hence, we can now move a process from �A into endA,
thereby covering endA.

(⇐): Assume that C is a simple configuration of TAA[X] with C(startA) > 0
and C(t) = Y such that from C it is possible to cover endA. Let ρ be a run from
C which covers endA. By construction of TAA, it must mean that the outgoing
rule from �A is fired at some point along the run and so its guard must be
enabled at some configuration C ′ along the run. Note that C ′(t) = C(t), since
the environment variables never change their value along a run.

Now, suppose A is of the form xj |yk. This means that we have X(sj) ·
C ′(dA) = C ′(tk). Since X(sj) = X(xj), C ′(tk) = C(tk) = Y (tk), this implies
that X(xj) divides Y (tk) and so A(X,Y ) is true. On the other hand, suppose
A is of the form f(x,y) �� g(x,y). Since C ′(t) = C(t) = Y , this implies that
f(X,Y ) �� g(X,Y ) and so A(X,Y ) is true. ��

Second Phase. Let {ξi}i∈I be the set of subformulas of ξ such that ξ =
∀x1, . . . , xn∃y1, . . . , ym

∨
i∈I ξi, i.e., the subformula ξi is the disjunct correspond-

ing to the index i in the formula ξ. Let A1
i , . . . , A

li
i be the set of atomic formulas

appearing in ξi. We construct a sketch threshold automaton TAξi in the follow-
ing manner: We take the sketches TAA1

i
, . . . ,TA

A
li
i

from the first phase and then
for every 1 ≤ j ≤ li −1, we add a rule which connects endAj

i
to startAj+1

i
, which

neither increments any shared variable nor has any threshold guards. This is
illustrated in Fig. 5 for the case of li = 3.

To prove a connection between the constructed gadget and the formula ξi,
we first need to state a property of the gadget. We begin with a definition.

Definition 1. Let C,C ′ be two configurations of TAξi [X] for some assignment
X and let A ∈ {A1

i , . . . , A
li
i }. We say that C �A C ′ if v ∈ {vA, dA, t} implies

that C(v) = C ′(v) and v ∈ {startA, �A, endA, z} implies that C(v) ≤ C ′(v).

By construction of TAξi , the following monotonicity property is clear.
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startA1
i

. . . . . . endA1
i

A1
i

startA2
i

. . . . . . endA2
i

A2
i

startA3
i

. . . . . . endA3
i

A3
i

Fig. 5. Example sketch for the second phase

Proposition 1 (Monotonicity). Let X be an assignment to the indetermi-
nates and let C

r−→ C ′ be a step in TAξi [X] such that the rule r belongs to TAAj
i

for some j. Then for every D such that C �Aj
i

D, there exists a D′ such that

D
r−→ D′ is a step in TAξi [X] and C ′ �Aj

i
D′.

We now have the following proof which asserts the correctness of our con-
struction.

Lemma 2. Let X and Y be assignments to the variables x and y respectively.
Then ξi(X,Y ) is true if and only if there is a simple configuration C of TAξi [X]
with C(startA1

i
) > 0 and C(t) = Y such that it can cover end

A
li
i

.

Proof. (⇒): Suppose ξi(X,Y ) is true. This means that Aj
i (X,Y ) is true for

every 1 ≤ j ≤ li. By Lemma 1, for every 1 ≤ j ≤ li, there exists a simple
configuration Cj of TAAj

i
[X] with Cj(startAj

i
) > 0 and Cj(t) = Y such that

Cj can cover endAj
i
. For each j, let Cj

∗−→ C ′′
j

rj−→ C ′
j be a shortest run from

Cj which covers endAj
i
. By definition C ′′

j (endAj
i
) = 0 and C ′

j(endAj
i
) > 0. This

means that the (unique) outgoing rule from �Aj
i

is enabled at C ′′
j and rj is in

fact, this rule. This also implies that the only difference between C ′′
j and C ′

j is
that a process has moved from �Aj

i
to endAj

i
. In particular, the shared variables

and the environment variables do not change their values during this step and
so the guards along the rule rj are true at C ′

j as well.
Let Z = max{Cj(z) : 1 ≤ j ≤ li}. Further, for each Aj

i which is a divisibility
constraint of the form xk | yl, let WAj

i
= Y (yl)/X(xk). Let D1 be the configu-

ration given by D1(t) = Y,D1(dA) = WA for every A ∈ {A1
i , . . . , A

li
i } which is a

divisibility constraint, D1(z) = D1(startA1
i
) = Z and D1(v) = 0 for every other

v. Note that C1 �A1
i

D1.
We will now show the following by induction: For any 1 ≤ j ≤ li,

there is a configuration Dj which is reachable from D1 such that Cj �Aj
i

Dj ,Dj(startAj
i
) = Z and Dj(vAk

i
) = 0 for every k ≥ j. The base case of j = 1

is trivial. Assume that we have already shown it for some j and we now want to
prove it for j + 1. By existence of the run Cj

∗−→ C ′
j and because of the mono-

tonicity property, there is a run Dj
∗−→ D′

j such that C ′
j �Aj

i
D′

j . Since the guards
of the outgoing rule from �Aj

i
are enabled at C ′

j , it follows that it is also enabled
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at D′
j . We now do the following: From D′

j , we first move all the processes at
startAj

i
to �Aj

i
by means of the rule which increments nothing. From there we

move all the processes at �Aj
i

to endAj
i

and then to startAj+1
i

. This results in a
configuration Dj+1 which satisfies the claim.

By induction, this means that we can reach Dli from D1. By the monotonicity
property, we can cover end

A
li
i

from Dli .
(⇐): Suppose there is a simple configuration C of TAξi [X] with C(startA1

i
) >

0 and C(t) = Y such that it can cover end
A

li
i

. Let C
∗−→ C ′ be such a run. By

construction of TAξi , this implies that there must be configurations C1, . . . , Cli

along this run such that at each Cj , the outgoing rule from �Aj
i

must be enabled.

Hence, this means that if Aj
i is a formula of the form xk | yl, then X(sk) ·

Cj(dAj
i
) = Cj(tl) and if Aj

i is a formula of the form fj(x,y) �� gj(x,y), then
fj(X(s), Cj(t)) �� gj(X(s), Cj(t)). Since environment variables do not change
their values along a run, this implies that in the former case, X(xk)|Y (yl) and
in the latter case, fj(X,Y ) �� gj(X,Y ). Hence, Aj

i (X,Y ) is true for every j and
so ξi is true. ��

Third Phase. The final sketch threshold automaton TA is constructed as fol-
lows: TA will have a copy of each of the TAξi and in addition it will also have two
new locations start and end. Then, for each index i ∈ I, TA will have two rules,
one of which goes from start to startA1

i
and the other from end

A
li
i

to end. Both
of these rules do not increment any variable and do not have any guards. Intu-
itively, these two rules correspond to choosing the disjunct ξi from the formula
ξ. This is illustrated in Fig. 6 for the case when the index set I = {i, j, k}.

Setting the initial set of locations of TA to be {start}, we have the following.

Proposition 2. Let X and Y be assignments to the variables x and y respec-
tively. Then ξ(X,Y ) is true iff some initial configuration C with C(t) = Y can
cover the location end in TA[X].

Proof. (⇒): Suppose ξ(X,Y ) is true. Then ξi(X,Y ) is true for some i.
By Lemma 2, there exists a simple configuration C of TAξi [X] such that
C(startA1

i
) > 0 and C(t) = Y which can cover end

A
li
i

. Consider the initial
configuration D in TA which is the same as C except that D(startA1

i
) = 0 and

D(start) = C(startA1
i
). By construction of TA[X], we can make D reach C.

Since we can cover end
A

li
i

from C in TAξi [X], we can also cover it in TA[X].
Once we can cover end

A
li
i

, we can also cover end.
(⇐): Suppose there is some initial configuration C with C(t) = Y which can

cover the location end in TA[X]. Let C
∗−→ C ′ be such a run covering end. By

construction, there must be an index i ∈ I and configurations C1, C2, . . . , Cli

along this run such that at each Cj , the outgoing rule from �Aj
i

is enabled.

Similar to the argument from Lemma 2, we can show that each Aj
i (X,Y ) is true

and so ξi(X,Y ) is true, which implies that ξ(X,Y ) is true. ��
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start

startA1
i

. . . . . . end
A

li
i

TAξi

startA1
j

. . . . . . end
A

lj
j

TAξj

startA1
k

. . . . . . end
A

lk
k

TAξk

end

Fig. 6. Example sketch for the third phase

It then follows that ∀x ∃y ξ(x,y) is true iff for every assignment X of the
indeterminates of TA, there exists an initial configuration C such that C can
cover end in TA[X]. Since TA is acyclic, it follows that

Theorem 2. The non-negative coefficient synthesis problem for threshold
automata is undecidable, even for acyclic threshold automata.

Example 4. We illustrate the above reduction on an example. Suppose we have
the formula

∀x1, x2,∃y1, y2 (x1|y1) ∨ (x2|y1 ∧ x1 = 2x2 + y2) (2)

Let A, B, and C denote the subformulas x1|y1, x2|y1, and x1 = 2x2 + y2
respectively. For this formula, our reduction produces the sketch given in Fig. 7.

Here s1, s2 are indeterminates corresponding to x1, x2 and t1, t2 are environ-
ment variables corresponding to y1, y2. Notice that the formula is true, because
if x1 is assigned the value a and x2 is assigned the value b, then we can always
set y1 to a and y2 to b, which will always make the first disjunct true. Sim-
ilarly, in the sketch threshold automaton, if μ is any assignment to the inde-
terminates, then by letting C be the (unique) initial configuration such that
C(t1) = μ(s1), C(t2) = μ(s2), C(z) = μ(s1) + 1 and C(dA) = C(dB) = 1, we
can cover endA from C and so we can also cover end from C.
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start

startA �A endA

startB �B endB

startC �C endC

end

vA++
vA = s1 · dA ∧ vA = t1

vB++
vB = s2 · dB ∧ vB = t1

vC++

vC = s1 ∧ vC = 2s2 + t2

Fig. 7. Sketch for formula 2

3.3 Wrapping Up

We can now reduce the non-negative coefficient synthesis problem to the coeffi-
cient synthesis problem.

Theorem 3. The coefficient synthesis problem for threshold automata is unde-
cidable, even for acyclic threshold automata.

Proof. Let (Env,TA, �) be an instance of the non-negative coefficient synthesis
problem. Without loss of generality, we can assume that TA is acyclic and has
only a single initial location start. This is because we have shown earlier that
the non-negative coefficient synthesis problem is already undecidable for inputs
satisfying this property.

Let X be the set of indeterminates of TA. We now add a new location begin
and a new shared variable check. check will have the invariant that it will never
be incremented by any of the rules. Now, from begin we add |X| + 1 rules as
follows: First, we add a rule from begin to start which neither increments any
variable nor has any guards. Then for each indeterminate x ∈ X, we add a rule
from begin to � which has the guard check > x. Notice that since check is never
incremented, it will always have the value 0 and so the guard check > x will
be true if and only if x takes a negative value. Finally, we set the new initial
location to be begin and we let this new sketch threshold automaton be TA′.
Notice that TA′ is acyclic.

We will now prove that (Env,TA, �) is a yes instance of the non-negative
coefficient synthesis problem if and only if (Env,TA′, �) is a yes instance of the
coefficient synthesis problem.

Notice that if μ is an assignment to X such that μ(x) < 0 for some x ∈ X,
then it is possible to move a process from begin to �. Hence, if μ assigns a
negative value to some indeterminate, then there is at least one run from an
initial configuration in TA′[μ] which covers �. Hence, if no initial configuration
of TA′[μ] can cover �, then μ has to be a non-negative assignment. But then it
is easy to see that no initial configuration of TA[μ] can cover � as well.
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Similarly, suppose μ is a non-negative assignment such that TA[μ] does not
cover �. Then, since μ is non-negative, it is clear that the only rule which can be
fired from begin is the rule which moves a process from begin to start. Hence,
it is then clear that TA′[μ] also cannot cover �. ��

4 Conclusion

We have shown that the coefficient synthesis problem for threshold automata
is undecidable, when the specification is a coverability specification, i.e., even
when we want to synthesize coefficients which prevent a process from reach-
ing a given state �. This already implies that if we have a class of specifica-
tions which can express coverability specifications, then the coefficient synthesis
problem for threshold automata generalized to that class is also undecidable.
For instance, this implies that coefficient synthesis for specifications from the
ELTLFT logic [9], which has been used to express various properties of threshold
automata obtained from distributed algorithms, is also undecidable. Further our
reduction implies that the coefficient synthesis problem is undecidable even for
threshold automata with an acyclic control-flow structure.
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11. Lazić, M., Konnov, I., Widder, J., Bloem, R.: Synthesis of distributed algorithms
with parameterized threshold guards. In: OPODIS. LIPIcs, vol. 95, pp. 32:1–32:20
(2017)
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Abstract. In this paper, we consider a variant of the classical algo-
rithmic problem of checking whether a given word v is a subsequence
of another word w. More precisely, we consider the problem of decid-
ing, given a number p (defining a range-bound) and two words v and
w, whether there exists a factor w[i : i + p − 1] (or, in other words,
a range of length p) of w having v as subsequence (i. e., v occurs as
a subsequence in the bounded range w[i : i + p − 1]). We give match-
ing upper and lower quadratic bounds for the time complexity of this
problem. Further, we consider a series of algorithmic problems in this
setting, in which, for given integers k, p and a word w, we analyse the
set p-Subseqk(w) of all words of length k which occur as subsequence of
some factor of length p of w. Among these, we consider the k-universality
problem, the k-equivalence problem, as well as problems related to absent
subsequences. Surprisingly, unlike the case of the classical model of sub-
sequences in words where such problems have efficient solutions in gen-
eral, we show that most of these problems become intractable in the new
setting when subsequences in bounded ranges are considered. Finally,
we provide an example of how some of our results can be applied to
subsequence matching problems for circular words.

Keywords: Subsequences · Bounded range · Matching problems ·
Analysis problems · Algorithms · Fine grained complexity

1 Introduction

A word u is a subsequence of a string w if there exist (possibly empty) strings
v1, . . . , v�+1 and u1, . . . , u� such that u = u1 . . . u� and w = v1u1 . . . v�u�v�+1. In
other words, u can be obtained from w by removing some of its letters. In this
paper, we focus on words occurring as subsequences in bounded ranges of a word.

The notion of subsequences appears in various areas of computer science. For
instance, in automata theory, the theory of formal languages, and logics, it is
used in connection with piecewise testable languages [45–47,66,67], or subword
order and downward closures [7,39,51,52,71]. Naturally, subsequences appear in
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the area of combinatorics and algorithms on words [5,26,28,53,54,58,62–64], but
they are also used for modelling concurrency [14,61,65], as well as in database
theory (especially in connection with event stream processing [3,38,72,73]). Nev-
ertheless, a series of classical, well-studied, and well-motivated combinatorial and
algorithmic problems deal with subsequences. Some are stringology problems,
such as the longest common subsequence problem [1,2,4,12,13] or the short-
est common supersequence problem [56]), but there are also problems related
to the study of patterns in permutations, such as increasing subsequences or
generalizations of this concept [8,9,17,20,23,27,37,42].

In general, one can split the algorithmic questions related to the study of sub-
sequences in two large classes. The first class of problems is related to matching
(or searching), where one is interested in deciding whether a given word u occurs
as a subsequence in another (longer) word w. The second class contains analysis
problems, which are focused on the investigation of the sets Subseqk(w) of all
subsequences of length k of a given string w (of course, we can also remove the
length restriction, and investigate the class of all subsequences of w). In this
setting, one is interested, among other problems, in deciding the k-universality
problem, i. e., whether Subseqk(w) = Σk, where w and k are given, or the equiv-
alence problem, i. e., whether Subseqk(w) = Subseqk(u), where w, u and k are
given. In the general case of subsequences, introduced above, the matching prob-
lem can be solved trivially by a greedy algorithm. The case of analysis problems
is more interesting, but still well-understood (see, e. g., [59,60]). For instance,
the equivalence problem, which was introduced by Imre Simon in his PhD thesis
[66], was intensely studied in the combinatorial pattern matching community
(see [16,25,35,40,68,69] and the references therein). This problem was opti-
mally solved in 2021 [36]. The universality problem was also intensely studied
(see [5,18] and the references therein); to this end, we will also recall the work on
absent subsequences in words [50], where the focus is on minimal strings (w. r. t.
length or the subsequence relation) which are not contained in Subseq(u).

Getting closer to the topic of this paper, let us recall the following two scenar-
ios related to the motivation for the study of subsequences, potentially relevant
in the context of reachability and avoidability problems. Assume that w is some
string (or stream) we observe, which may represent, on the one hand, the trace of
some computation or, on the other hand, and in a totally different framework, the
DNA-sequence describing some gene. Deciding whether a word v is a subsequence
of w can be interpreted as deciding, in the first case, whether the events described
by the trace v occurred during the longer computation described by w in the same
order as in v, or, in the second case, if there is an alignment between the sequence
of nucleotides v and the longer sequence w. However, in both scenarios described
above, it seems unrealistic to consider occurrences of v in w where the positions
of w matching the first and last symbol of v, respectively, are very far away from
each other. It seems indeed questionable, for instance, whether considering an
alignment of DNA-sequences v and w where the nucleotides of v are spread over
a factor of w which is several times longer than v itself is still meaningful. Simi-
larly, when observing a computation, one might be more interested in its recent
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history (and the sequences of events occurring there), rather than analysing the
entire computation. Moreover, the fact that in many practical scenarios (includ-
ing those mentioned above) one has to process streams, which, at any moment,
can only be partly accessed by our algorithms, enforces even more the idea that
the case where one is interested in subsequences occurring arbitrarily in a given
string is less realistic and less useful than the case where one is interested in the
subsequences occurring in bounded ranges of the respective string (which can
be entirely accessed and processed at any moment by our algorithms).

Hence, we consider in this paper the notion of p-subsequence of a word. More
precisely, a word v is a p-subsequence of w if there exists a factor (or bounded
range) w[i : i+p−1] of w, of length p, such that v is a subsequence of w[i : i+p−1].
In this framework, we investigate both matching and analysis problems.

Our Results. With respect to the matching problem, we show that checking,
for a given integer p, whether a word v is a p-subsequence of another word w
can be done in O(|w||v|) time and O(|v|) space, and show that this is optimal
conditional to the Orthogonal Vectors Hypothesis. With respect to the analysis
problem, we show that the problem of checking, for given integers k and p and
word w, whether there exists a word v of length k which is not a p-subsequence
of w is NP-hard. Similarly, checking, for given integer p and words v and w,
whether the sets of p-subsequences of w and v are not equal is also NP-hard.
These results are complemented by conditional lower bounds for the time com-
plexity of algorithms solving them. Several results related to the computation
of absent p-subsequences are also shown. Interestingly, we show that checking
if a word is a shortest absent p-subsequence of another word is NP-hard, while
checking if a word is a minimal absent p-subsequence of another word can be
done in quadratic time (and this is optimal conditional to the Orthogonal Vectors
Hypothesis). We end the paper with a series of results related to subsequences
in circular words. Among other results, we also close an open problem from [41]
that is related to the computation of minimal representatives of circular words.

Related Works. Clearly, considering properties of bounded ranges (or factors of
bounded length) in words can be easily related to the study of sliding window
algorithms [30–34] or with algorithms in the streaming model [6,21]. For our
algorithmic results, we discuss their relation to results obtained in those frame-
works. Moreover, the notion of subsequences with gap constraints was recently
introduced and investigated [19]. In that case, one restricts the occurrences of a
subsequence v in a word w, by placing length (and regular) constraints on the
factors of w which are allowed to occur between consecutive symbols of the sub-
sequence when matched in w. Our framework (subsequences in bounded range)
can be, thus, seen as having a general length constraint on the distance between
the position of w matching the first symbol of v and the position of w matching
the last symbol of v, in the occurrences of v inside w.

Structure of the Paper. We first give a series of preliminary definitions. Then
we discuss the matching problem. Further, we discuss the analysis problems and
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the problems related to absent subsequences. We then discuss the case of subse-
quences of circular words. We end with a conclusions section. For space reasons,
missing proofs and additional comments are only presented in the full version of
this paper [49].

2 Basic Definitions

Let N be the set of natural numbers, including 0. For m,n ∈ N, we define the
range (or interval) of natural numbers lower bounded by m and upper bounded
by n as [m : n] = {m,m + 1, . . . , n}. An alphabet Σ is a non-empty finite set of
symbols (called letters). A string (or word) is a finite sequence of letters from
Σ, thus an element of the free monoid Σ∗. Let Σ+ = Σ∗ \ {ε}, where ε is the
empty string. The length of a string w ∈ Σ∗ is denoted by |w|. The ith letter of
w ∈ Σ∗ is denoted by w[i], for i ∈ [1 : |w|]. Let |w|a = |{i ∈ [1 : |w|] | w[i] = a}|;
let alph(w) = {x ∈ Σ | |w|x > 0} be the smallest subset S ⊆ Σ such that
w ∈ S∗. For m,n ∈ N, with m ≤ n, we define the range (or factor) of w between
positions m and n as w[m : n] = w[m]w[m+ 1] . . . w[n]. If m > n, then w[m : n]
is the empty word. Also, by convention, if m < 1, then w[m : n] = w[1 : n], and
if n > |w|, then w[m : n] = w[m : |w|]. A factor u = w[m : n] of w is called a
prefix (respectively, suffix) of w if m = 1 (respectively, n = |w|).

The powers of a word w are defined as: w0 = ε and wk+1 = wwk, for k ≥ 0.
We define wω as the right infinite word which has wn as prefix for all n ≥ 0.
The positive integer p ≤ |w| is a period of a word w if w is a prefix of w[1 : p]ω.
Let w = w1 . . . wn (for some w1, . . . , wn ∈ Σ) and p ∈ N. Then w

p
n = w� p

n �w′,
where w′ = w1 . . . w(p mod n).

We recall the notion of subsequence.

Definition 1. A word v is a subsequence of length k of w (denoted v ≤ w),
where |w| = n, if there exist positions 1 ≤ i1 < i2 < . . . < ik ≤ n, such that
v = w[i1]w[i2] · · · w[ik]. The set of all subsequences of w is denoted by Subseq(w).

When v is not a subsequence of w we also say that v is absent from w.
The main concept discussed here is that of p-subsequence, introduced next.

Definition 2. 1. A word v is a p-subsequence of w (denoted v ≤p w) if there
exists i ≤ |w| − p + 1 such that v is a subsequence of w[i : i + p − 1].
2. For p ∈ N and w ∈ Σ∗, we denote the set of all p-subsequences of w by p-
Subseq(w) = {v ∈ Σ∗ | v ≤p w}. Furthermore, for k ∈ N, we denote the set of
all p-subsequences of length k of w by p-Subseqk(w).

Extending the notions of absent subsequences introduced in [50], we now
define the notion of (shortest and minimal) absent p-subsequences in a word.

Definition 3. The word v is an absent p-subsequence of w if v /∈ p-Subseq(w).
We also say v is p-absent from w. The word v is a p-SAS (shortest absent p-
subsequence) of w if v is an absent p-subsequence of w of minimal length. The
word v is a p-MAS (minimal absent p-subsequence) of w if v is an absent p-
subsequence of w but all subsequences of v are p-subsequences of w.
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Note that, in general, any shortest absent |w|-subsequence of a word w (or,
simply, shortest absent subsequence of w, denoted SAS) has length ι(w) + 1,
where ι(w) = max{k | alph(w)k ⊆ Subseq(w)} is the universality index of w [5].

Computational Model. In general, the problems we discuss here are of algo-
rithmic nature. The computational model we use to describe our algorithms
is the standard unit-cost RAM with logarithmic word size: for an input of
size N , each memory word can hold logN bits. Arithmetic and bitwise oper-
ations with numbers in [1 : N ] are, thus, assumed to take O(1) time. In all the
problems, we assume that we are given a word w or two words w and u, with
|w| = n and |v| = m (so the size of the input is N = n + m), over an alphabet
Σ = {1, 2, . . . , σ}, with 2 ≤ |Σ| = σ ≤ n + m. That is, we assume that the
processed words are sequences of integers (called letters or symbols), each fitting
in O(1) memory words. This is a common assumption in string algorithms: the
input alphabet is said to be an integer alphabet. For more details see, e. g., [15].

Our algorithmic results (upper bounds) are complemented by a series of
lower bounds. In those cases, we show that our results hold already for the case
of constant alphabets. That is, they hold already when the input of the problem
is restricted to words over an alphabet Σ = {1, 2, . . . , σ}, with σ ∈ O(1).

Complexity Hypotheses. As mentioned, we are going to show a series of condi-
tional lower bounds for the time complexity of the considered problems. Thus, we
now recall some standard computational problems and complexity hypotheses
regarding them, respectively, on which we base our proofs of lower bounds.

The Satisfiability problem for formulas in conjunctive normal form, in short
CNF-Sat, gets as input a Boolean formula F in conjunctive normal form as a set
of clauses F = {c1, c2, . . . , cm} over a set of variables V = {v1, v2, . . . , vn}, i. e.,
for every i ∈ [m], we have ci ⊆ {v1,¬v1, . . . , vn,¬vn}. The question is whether F
is satisfiable. By k-CNF-Sat, we denote the variant where |ci| ≤ k for all i ∈ [m].

The Orthogonal Vectors problem (OV for short) gets as input two sets A,B
each containing n Boolean-vectors of dimension d, where d ∈ ω(log n). The ques-
tion is whether there exist two vectors �a ∈ A and �b ∈ B which are orthogonal,
i. e., �a[i] ·�b[i] = 0 for every i ∈ [d].

We shall use the following algorithmic hypotheses based on CNF-Sat and
OV that are common for obtaining conditional lower bounds in fine-grained
complexity. In the following, poly is any fixed polynomial function:

– Exponential Time Hypothesis (ETH) [44,55]: 3-CNF-Sat cannot be solved in
time 2o(n) poly(n + m).

– Strong Exponential Time Hypothesis (SETH) [43,70]: For every ε > 0 there
exists k such that k-CNF-Sat cannot be decided in O(2n(1−ε) poly(n)) time.

The following result, which essentially formulates the Orthogonal Vectors
Hypothesis (OVH), can be shown (see [10,11,70]).

Lemma 1. OV cannot be solved in O(n2−εpoly(d)) time for any ε > 0, unless
SETH fails.
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3 Matching Problems

We first consider the following problem.

Subsequence Matching in Bounded Range, pSubSeqMatch
Input: Two words u and w over Σ and an integer p, with |u| = m and

|w| = n, and m ≤ p ≤ n.
Question: Decide whether u ≤p w.

Theorem 1. pSubSeqMatch can be solved in O(mn) time.

Proof. We present an algorithm which solves pSubSeqMatch in O(mn) time
and works in a streaming fashion w. r. t. the word w. More precisely, our
algorithm scans the letters of w one by one, left to right (i. e., in the order
w[1], w[2], . . . , w[n]), and after scanning the letter w[t], for t ≥ p, it decides
whether u is a subsequence of the bounded range w[t − p + 1 : t] (i. e., our
algorithm works as a sliding window algorithm, with fixed window size, and the
result for the currently considered window is always calculated before the next
letter is read).

Let us explain how this algorithm works. We maintain an array A[·] with
m elements such that the following invariant holds. For t ≥ 0: after the tth

letter of w is scanned and A is updated, A[i] is the length of the shortest suffix
of w[t − p + 1 : t] which contains u[1 : i] as a subsequence (or A[i] = +∞ if
w[t − p + 1 : t] does not contain u[1 : i] as a subsequence). Note that, before
reading the letter w[t], for all t ∈ [1 : n], the array A, if correctly computed, has
the property that A[i] ≤ A[i + 1], for all i ∈ [1 : m].

Initially, we set A[i] = +∞ for all i ∈ [1 : m].
Let us see how the elements of A are updated when w[t] is read. We first

compute 	 ← |u|w[t] and the positions j1, . . . , j� ∈ [1 : m] such that u[jh] = w[t].
Then, we compute an auxiliary array B[·] with m elements, in which we set
B[jh] ← A[jh − 1] + 1, for h ∈ [1 : 	]. For i ∈ [1 : m] \ {j1, . . . , j�} we set
B[i] ← A[i] + 1. Intuitively, B[i] is the length of the shortest suffix of w[t − p : t]
which contains u[1 : i] as a subsequence. Then, we update A[i], for i ∈ [1 : m],
by setting A[i] ← B[i] if B[i] ≤ p and A[i] ← +∞, otherwise.

After performing the update of the array A[·] corresponding to the scanning
of letter w[t], we decide that u occurs in the window w[t − p+ 1 : t] if (and only
if) A[m] ≤ p.

Let us show that the algorithm is correct. The stated invariant clearly holds
before scanning the letters of w (i. e., after 0 letters were scanned). Assume that
the invariant holds after f −1 letters of w were scanned. Now, we will show that
it holds after f letters were scanned. Assume that, for some prefix u[1 : i − 1]
of u, we have that w[f ′ : f − 1] is the shortest suffix of w[f − p : f − 1] which
contains u[1 : i − 1] as subsequence. Next, we scan letter w[f ]. If w[f ] = u[i],
then w[f ′ : f ] is the shortest suffix of w[f − p : f ] which contains u[1 : i] as
subsequence (otherwise, there would exist a suffix of w[f − p : f − 1] that is
shorter than w[f ′ : f − 1] which contains u[1 : i − 1] as subsequence). So, it is
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correct to set B[i] ← A[i−1]+1, when w[f ] = u[i]. Otherwise, if w[f ] �= u[i], we
note that the shortest suffix of w[f −p : f ] which contains u[1 : i] as subsequence
starts on the same position as the shortest suffix of w[f −p : f −1] which contains
u[1 : i] as subsequence. Therefore, B[i] ← A[i]+1 is also correct (as we compute
the length of these shortest suffixes w. r. t. the currently scanned position of w).
Then, we simply update A to only keep track of those suffixes of the currently
considered range of size p, i. e., w[f − p + 1 : f ].

The algorithm runs in O(nm) time. Indeed, for each scanned letter w[f ] we
perform O(m) operations. Moreover, the space complexity of the algorithm is
O(m), as we only maintain the arrays A and B. So, the statement holds. 	


As stated in the proof of Theorem 1, the algorithm we presented can be seen
as an algorithm in the sliding window model with window of fixed size p (see
[30,31,34]). More precisely, we scan the stream w left to right and, when the
tth letter of the stream is scanned, we report whether the window w[t − p + 1 :
p] contains u as a subsequence. In other words, we report whether the string
w[t − p + 1 : p] is in the regular language Lu = {v | u ≤ v}. The problem of
checking whether the factors of a stream scanned by a sliding window are in a
regular language was heavily investigated, see [29] and the references therein.
In particular, from the results of [31] it follows that, for a constant u (i. e., u is
not part of the input), the problem of checking whether the factors of a stream
scanned by a sliding window are in the language Lu cannot be solved using
o(log p) bits when the window size is not changing and equals p. We note that
our algorithm is optimal from this point of view: if u is constant and, thus,
m ∈ O(1), our algorithm uses O(log p) bits to store the arrays A and B.

We can show that our algorithm is also optimal (conditional to OVH) also
from the point of view of time complexity.

Theorem 2. pSubSeqMatch cannot be solved in time O(nhmg), where h + g =
2 − ε with ε > 0, unless OVH fails.

Proof. Let (A,B) be an instance of OV with A = {a1, . . . , an} ⊂ {0, 1}d and
B = {b1, . . . , bn} ⊂ {0, 1}d. Furthermore let v = (v[1], v[2], . . . , v[d]) for every
v ∈ A ∪ B. We represent ai and bj by the strings

ψA(ai) = ψA(ai[1])ψA(ai[2]) · · · ψA(ai[d]),
ψB(bj) = ψB(bj [1])ψB(bj [2]) · · · ψB(bj [d])

where ψA(x) =

{
01# if x = 0,
00# if x = 1

and ψB(y) = y# for y ∈ {0, 1}.

Claim I. ai and bj are orthogonal if and only if ψB(bj) occurs in ψA(ai) as a
subsequence.

Proof ( of Claim I). Since |ψA(ai)|# = |ψB(bj)|# = d holds, ψB(bj) is a subse-
quence of ψA(ai) if and only if ψB(bj [k]) occurs in ψA(ai[k]) for all k ∈ [d]. We
note that, for x, y ∈ {0, 1}, ψB(y) is absent from ψA(x) if and only if x = y = 1.
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Hence, ψB(bj) is a subsequence of ψA(ai) if and only if ai[k] · bj [k] = 0 for all
k ∈ [d]. That is, ψB(bj) is a subsequence of ψA(ai) if and only if ai is orthogonal
to bj . (End of the proof of Claim I) 	


With ψA and ψB we construct two words W,U ∈ {0, 1,#, [, ]}∗ representing
A and B as follows:

W = [ψA(1)][ψA(0)][ψA(a1)][ψA(0)][ψA(a2)][ψA(0)] . . . [ψA(an)][ψA(0)][ψA(1)]
U = [ψB(1)][ψB(b1)][ψB(b2)] . . . [ψB(bn)][ψB(1)]

where 0 (respectively, 1) stands for the all-zero (respectively, all-one) vector of
size d. We will occasionally omit ψA and ψB and call [ψA(v)] and [ψB(v)] [v]-
blocks or, more generally, [·]-blocks if it is clear whether it occurs in W or in U .
As such, [ψA(0)] is called a zero-block in the following, while a [v]-block is called
a non-zero-block if and only if v �= 0. Thus, the encodings of U and W include
two [1]-blocks at the beginning and at the end of U and W , respectively, and a
zero-block after each non-zero-block of W (excluding the [1]-block at the end).

Remark 1. Since U starts with [, if U is a subsequence of any bounded range of
length |W | of W 2, then U is a subsequence of a bounded range of length |W | of
W 2 starting with [.

Next we show that the instance (A,B) of OV is accepted if and only if the
instance u = U , w = W 2 and p = |W | of pSubSeqMatch is accepted.

Claim II. There are orthogonal vectors ai ∈ A and bj ∈ B if and only if U is a
|W |-subsequence of W 2.

Proof ( of Claim II). Firstly, suppose ai and bj are orthogonal. Then [ψB(bj)]
occurs in [ψA(ai)]. Since |W | = (2n + 3) · |[ψA(v)]| for any v ∈ {0, 1}d, we can
choose a bounded range (until the end of this proof the reader may safely assume
every bounded range to be a bounded range of length |W | of W 2) containing
2n + 2 [·]-blocks around [ψA(ai)]. Furthermore, every bounded range starting
with [ contains exactly n + 1 zero-blocks. Hence, we choose a bounded range
containing j zero-blocks to the left of [ψA(ai)] and n − j + 1 zero-blocks to
the right of [ψA(ai)]. If j ≤ i, we match the [bj ]-block in U against the first
occurrence of the [ai]-block in W 2 and choose the bounded range starting at the
first occurrence of [ψA(ai−j)]. If j > i, we match the [bj ]-block in U against the
second occurrence of the [ai]-block in W 2 and choose the bounded range starting
at the first occurrence of [ψA(an+i−j+1)]. In both cases there is one zero-block
to the left (respectively, right) of [ψA(ai)] for one [1]-block and each [bk]-block
for 1 ≤ k < j (respectively, j < k ≤ n). Hence, U is a |W |-subsequence of W 2.

For the inverse implication, suppose that ai is not orthogonal to bj for all
1 ≤ i, j ≤ n. By Claim I, no [bj ]-block occurs in any [ai]-block as a subsequence,
hence the [·]-blocks of U only occur in zero-blocks of W 2. By Remark 1, it suffices
to show that U does not occur in a bounded range starting with [. Each of those
has n + 1 zero-blocks but U has n + 2 non-zero-blocks. Thus, U is |W |-absent
from W 2. (End of the proof of Claim II) 	
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Finally, we note that |W | = (2n + 3)(3d + 2) ∈ O(n · poly(d)) and |U | = (n +
2)(2d + 2) ∈ O(n · poly(d)) and so an algorithm deciding pSubSeqMatch in time
O(|W |h|U |g), with h + g = 2 − ε, could also be used to decide OV in time
O(n2−εpoly(d)), which is not possible by OVH. Hence, Theorem 2 holds. 	


4 Analysis Problems

This section covers several decision problems regarding the set p-Subseqk defined
for an input word. More precisely, we approach problems related to the univer-
sality of this set, the equivalence of the respective sets for two words, as well
as problems related to minimal and shortest absent subsequences w. r. t. these
sets. For these problems we give respective hardness results and fine-grained
conditional lower bounds. We start with the following problem.

k-Non-Universality in Bounded Range, kpNonUniv
Input: A word w over Σ and integers k, p, with |w| = n, and k ≤ p ≤ n.
Question: Decide whether p-Subseqk(w) �= Σk.

Let us observe that if |w| < kσ, where σ = |Σ|, then we can trivially conclude
by the definition of the universality of a word that Subseqk(w) �= Σk, so p-
Subseqk(w) �= Σk as well. Therefore, to avoid the trivial inputs of kpNonUniv
we will assume that |w| ≥ kσ.

To show that kpNonUniv is NP-complete, we first examine a related problem
given in [57]. We need some preliminaries. A partial word over an alphabet Σ
is a string from (Σ ∪ {♦})∗. In such a partial word u, we have defined positions
(those positions i for which u[i] ∈ Σ) and undefined positions (those positions
i for which u[i] = ♦); intuitively, while the letters on the defined positions are
fixed, the ♦ can be replaced by any letter of the alphabet Σ and, as such, a partial
word actually describes a set of (full) words over Σ∗, all of the same length as u.
This is formalized as follows. If u and v are partial words of equal length, then
u is contained in v, denoted by u ⊆ v, if u[i] = v[i], for all defined positions i
(i. e., all positions i such that u[i] ∈ Σ). Moreover, the partial words u and v are
compatible, denoted by u ↑ v, if there exists a full word w such that u ⊆ w and
v ⊆ w. In this framework, we can define the problem partialWordsNonUniv,
which we will use in our reductions.

Partial words non-universality, partialWordsNonUniv
Input: A list of partial words S = {w1, . . . , wk} over {0, 1}, each partial

word having the same length L
Question: Decide whether there exists a word v ∈ {0, 1}L such that v is not

compatible with any of the partial words in S.

The first part of following result was shown in [57] via a reduction from
3-CNF-Sat, and it can be complemented by a conditional lower bound.

Theorem 3. partialWordsNonUniv is NP-complete and cannot be solved in
subexponential time 2o(L) poly(L, n) unless ETH fails.
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Based on the hardness of partialWordsNonUniv, we continue by showing
that the k-Non-Universality in Bounded Range Problem is also NP-hard.

Theorem 4. kpNonUniv is NP-hard and cannot be solved in subexponential time
2o(k) poly(k, n) unless ETH fails.

Proof (Sketch). Let S = {w1, . . . , wk} be a set of partial words, each of length L,
defining an instance of partialWordsNonUniv. We reduce this to an instance of
kpNonUniv as follows. For every partial word wi ∈ S, construct ui = u1

i u
2
i · · · uL

i

where

uj
i =

⎧⎪⎨
⎪⎩
0# if wi[j] = 0
1# if wi[j] = 1 for j ∈ [L],
01# if wi[j] = ♦

Now, we define:

V = #2L(001101#2L)L−1,

U = #4L2
u1#4L2

u2#4L2 · · ·#4L2
uk#4L2

,

and set W = V U .
We can show (see the paper’s full version [49]) that the instance of kpNonUniv

defined by the input word W and k = 2L and p = |V | is accepted if and only if
the instance of partialWordsNonUniv defined by the set S is accepted.

So, we have a valid reduction from partialWordsNonUniv to kpNonUniv.
Moreover, as this reduction can be performed in polynomial time and we have
k = 2L, we also obtain an ETH lower bound for kpNonUniv. That is, kpNonUniv
cannot be solved in subexponential time 2o(k) poly(k, n) unless ETH fails. 	


This hardness result is complemented by the following algorithmic result.

Remark 2. Note that kpNonUniv can be trivially solved in O(σk poly(k, n)) by
a brute-force algorithm that simply checks for all words from Σk whether they
are in p-Subseqk(w). For σ ∈ O(1), this algorithm runs in 2o(k) poly(k, n).

Now, when looking at a related analysis problem, we consider two different
words w and v, and we want to check whether both words are equivalent w. r. t.
their respective sets of p-subsequences of length k.

k-Non-Equivalence w. r. t. Bounded Ranges, kpNonEquiv
Input: Two words w and v over Σ and integers k, p, with |w| = n,

|v| = m, and k ≤ p ≤ m,n.
Question: Decide whether p-Subseqk(w) �= p-Subseqk(v).

We can now state the following theorem.

Theorem 5. kpNonEquiv is NP-hard and cannot be solved in subexponential
time 2o(k) poly(k, n,m) unless ETH fails.

Again, a matching upper bound is immediate.
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Remark 3. kpNonEquiv can be trivially solved in O(σk poly(k, n)) by a brute-
force algorithm that looks for a word from Σk which separates p-Subseqk(w)
and p-Subseqk(v). For σ ∈ O(1), this algorithm runs in 2o(k) poly(k, n).

A natural problem arising in the study of the sets p-Subseqk(w), for k ≤ p ≤
|w|, is understanding better which are the strings missing from this set. To that
end, we have introduced in Sect. 2 the notions of shortest and minimal absent
p-subsequences, p-SAS and p-MAS, respectively.

We first focus on shortest absent subsequences in bounded ranges.

Non-Shortest Absent Subsequence w. r. t. Bounded Ranges, pNonPSAS
Input: Two words w and v over Σ and integer p, with |w| = n, |v| = m,

and m ≤ p ≤ n.
Question: Decide whether v is not a p-SAS of w..

We can show the following result.

Theorem 6. pNonPSAS is NP-hard and cannot be solved in subexponential time
2o(k) poly(k, n,m) unless ETH fails.

Now let us examine minimal absent subsequences in bounded ranges, p-MAS.
First we give an algorithm to check whether a string is a p-MAS of another string.

Minimal Absent Subsequences w. r. t. Bounded Ranges, pMAS
Input: Two words w and v over Σ and integer p, with |w| = n, |v| = m,

and m ≤ p ≤ n.
Question: Decide whether v is a p-MAS of w.

In this case, we obtain a polynomial time algorithm solving this problem.

Theorem 7. pMAS can be solved in time O(nm), where |v| = m, |w| = n.

Similarly to the proof of Theorem 1, we propose an algorithm (see paper’s
full version [49]) which can be seen as working in the sliding window model, with
window of fixed size p. If, as in the case of the discussion following Theorem 1, we
assume u (and m) to be constant, we obtain a linear time algorithm. However,
its space complexity, measured in memory words, is O(p) (as we need to keep
track, in this case, of entire content of the window). In fact, when m is constant,
it is easy to obtain a linear time algorithm using O(1) memory words (more
precisely, O(log p) bits of space) for this problem: simply try to match u and
all its subsequences of length (m − 1) in w simultaneously, using the algorithm
from Theorem 1. Clearly, u is a p-MAS if and only if u is not a subsequence of
w, but its subsequence of length m − 1 are. However, the constant hidden by
the O-notation in the complexity of this algorithm is proportional with m2. It
remains open whether there exists a (sliding window) algorithm for pMAS both
running in O(mn) time (which we will show to be optimal, conditional to OVH)
and using only O(log p) bits (which is also optimal for sliding window algorithms,
see appendix of the full version of this paper [49]).
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Complementing the discussion above, we can show that it is possible to con-
struct in linear time (see paper’s full version [49]), for words u,w and integer
p ∈ N, a string w′ such that deciding whether u is a p-MAS of w′ is equivalent
to deciding whether u is a p-subsequence of w, so solving pSubSeqMatch for the
input words u and w. Hence, the lower bound from Theorem 2 carries over,
and the algorithm in Theorem 7 is optimal (conditional to OVH) from the time
complexity point of view.

Theorem 8. pMAS cannot be solved in time O(nhmg) where h + g = 2 − ε with
ε > 0, unless OVH fails.

5 Application: Subsequence Matching in Circular Words

An interesting application of the framework developed in the previous setting is
related to the notion of circular words.

We start with a series of preliminary definitions and results.
Intuitively, a circular word w◦ is a word obtained from a (linear) word w ∈ Σ∗

by linking its first symbol after its last one as shown in Fig. 1.

Fig. 1. The circular word w◦, defined via the (linear) word w.

Formally, two words u,w ∈ Σ∗ are conjugates (denoted u ∼ w) if there
exist x, y ∈ Σ∗ such that u = xy and w = yx. The conjugacy relation ∼ is an
equivalence relation on Σ∗, and the circular word w◦ is defined as the equivalency
class of w with respect to ∼ (i. e., the set of all words equivalent to w w. r. t. ∼).
Clearly, for a word w of length n, the equivalence class of w with respect to ∼
has at most n elements. It is worth investigating how we can represent circular
words. To this end, we use the following definition from [41].

Definition 4. A pair (u, n) ∈ Σ∗ × N is a representation of the circular word
w◦ if |u| ≤ n, n = |w| and u

n
|u| ∈ w◦. A minimal representation of a circular

word w◦ is a pair (u, n) such that (u, n) is a representation of w◦ and for each
other pair (u′, n) which represents w◦ we have that |u| < |u′| or |u| = |u′| and u
is lexicographically smaller than u′.

As an example, (baa, 5) is a representation of the circular word baaba◦,
because (baa)5/3 = baaba, but its minimal representation is (ab, 5). Indeed,
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ab5/2 = ababa, which is a conjugate of baaba, as baaba = ba · aba and
ababa = aba · ba. As another example, both (ababa, 12) and (babaa, 12) are rep-
resentations of the circular word aababaababaa◦, but (ababa, 12) is the minimal
representation.

Clearly, every circular word w◦ has a minimal representation, and an open
problem from [41] is how efficiently can the minimal representation of a circular
word w◦ be computed. We solve this open problem (only proved in the full version
of this paper, as it is not directly connected to the main topic of this paper [49]).

Theorem 9. Given a word w of length n, the minimal representative (v, n) of
w◦ and a conjugate w[i : n]w[1 : i−1] = vn/|v| of w can be computed in O(n) time.

Proof. We begin by referring to [22]. In Lemma 5 of the respective paper it is
shown that, for a word u of length n, we can compute in O(n) time the values
SC[i] = max{|r| | r is both a suffix of w[1..i − 1] and a prefix of w[i..n]}. The
proof of that lemma can be directly adapted to prove the following result: given
a word u of length n and an integer Δ ≤ n, we can compute in O(n) time
the values SC[i] = max{|r| | r is both a suffix of w[1..i − 1] and a prefix of
w[i..n], |r| ≤ Δ}. We will use this in the following.

Let us now prove the statement of our theorem. We consider the word
α = www, and we compute the array SC[i] = max{|r| | r is both a suffix of
α[1..i−1] and a prefix of α[i..3n], |r| ≤ n−1}, using the result mentioned above.
Now, we note that, for i ∈ [n+1 : 2n] if SC[i] = k, then α[i : i+k−1] is the longest
non-trivial border of the conjugate w[i−n : n]w[1 : i−n−1] = α[i : i+n−1] of
w; that means that α[i : i+ k − 1] is the longest string which is both non-trivial
suffix and prefix of w[i − n : n]w[1 : i − n − 1]. Consequently, the length of the
shortest period of w[i − n : n]w[1 : i − n − 1] is n − k.

In conclusion, we have computed for each conjugate w[j : n]w[1 : j − 1] of w
its shortest period n − SC[j + n]. Further, we can sort these conjugates w. r. t.
their shortest period using counting sort. In this way, we obtain a conjugate
w[j : n]w[1 : j − 1] of w which has the shortest period among all the conjugates
of w. In the case of multiple such conjugates w[jg : n]w[1 : jg −1], with g ∈ [1 : 	]
for some 	, we proceed as follows. We construct (in linear time) the suffix array of
α (as in [48]), and set j ← jh where jh+n occurs as the first in the suffix array of
α among all positions jg+n, for g ∈ [1 : 	]. Therefore, we obtain a conjugate w′ =
w[j : n]w[1 : j−1] of w which has the shortest period among all the conjugates of
w, and is lexicographically smaller than all other conjugates of w which have the
same period. Moreover, for p = n − SC[j + n], we have that w′ = (w′[1 : p])n/p.

The algorithm computing w′ and its period runs, clearly, in O(n) time, as all
its steps can be implemented in linear time. Our statement is, thus, correct. 	


This concludes the preliminaries part of this section.
In this framework, we define subsequences of circular words.

Definition 5. A word v is a subsequence of a circular word w◦ (v ≤◦ w) if
and only if there exists a conjugate w′ = w[i + 1..n]w[1..i] of w such that v is a
subsequence of w′.
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This definition follows from [5] where one defines k-circular universal words as
words u ∈ Σ∗ which have at least one conjugate u′ whose set of subsequences of
length k is Σk. In this setting, we can define the following problem.

Circular Subsequence Matching, SubSeqMatch◦
Input: Two words u and w over Σ, with |u| = m, |w| = n, and m ≤ n.
Question: Decide whether v ≤◦ w.

As the conjugates of a word w, of length n, are the factors of length n of ww,
we immediately obtain the following result from Theorem 1.

Theorem 10. SubSeqMatch◦ can be solved in O(mn) time.

And furthermore, the proof of Theorem 2 shows that the following statement
also holds.

Theorem 11. SubSeqMatch◦ cannot be solved in time O(nhmg), where h+g =
2 − ε with ε > 0, unless OVH fails.

To conclude this paper, we consider an extension of the SubSeqMatch◦ which
seems natural to us. We begin by noting that reading (or, more precisely, travers-
ing all the positions of) a circular word w◦ can be interpreted as reading (respec-
tively, going through) the letters written around a circle, as drawn, for instance,
in Fig. 1. So, we can start reading the word at some point on this circle, then
go once around the circle, until we are back at the starting point. Then, as in a
loop, we could repeat reading (traversing) the word. So, it seems natural to ask
how many times do we need to read/traverse a circular word w◦ until we have
that a given word u is a subsequence of the word we have read/traversed.

Clearly, this problem is not well defined, as it depends on the starting point
from which we start reading the circular word w◦. Let us consider an example.
Consider the word w = ababcc. Now, if we consider the circular word w◦, and
we start reading/traversing it from position one of w (i. e., we start reading
ababcc · ababcc · ababcc · . . .) then we need to read/traverse twice the circular
word to have that ca is a subsequence of the traversed word. But if we start
reading/traversing the circular word on any position i ≥ 2 of w (e. g., we start
on position 3 and read abccab · abccab · abccab · . . .), then it is enough to traverse
the circular word once to have that ca is a subsequence of the traversed word.

In this setting, there are two natural ways to fix this issue.
The first one is to define a canonical point of start for the traversal. A natural

choice for this starting point is to consider a special position of the word such
as, for instance, the positions where a minimal representative of w◦ occurs. To
this end, a conjugate u = w[i : n]w[1 : i − 1] of a word w of length n is called
minimal rotation of w if u = vn/|v| and (v, n) is a minimal representative of w◦.
We obtain the following problem (presented here as a decision problem).

Iterated Circular Subsequence Matching, ItSubSeqMatch◦
Input: An integer 	, a word v, and a word w, which defines the circular

word w◦, over Σ, with |v| = m and |w| = n, and m ≤ n.
Question: Decide whether v ≤ u�, where u is a minimal rotation of w.



154 M. Kosche et al.

This problem is clearly well defined now, as if u and u′ are minimal rotations
of w, then u = u′. Moreover, this problem can be also formulated as a minimi-
sation problem by simply asking for the smallest 	 for which ItSubSeqMatch◦
with input (	, v, w) can be answered positively.

The second way to solve the issue identified above is as follows.

Best Iterated Circular Subsequence Matching, BestItSubSeqMatch◦
Input: An integer 	, a word v, and a word w, which defines the circular

word w◦, over Σ, with |v| = m and |w| = n, and m ≤ n.
Question: Decide whether there is a conjugate u of w such that v ≤ u�.

Clearly, this problem can be also formulated as a minimisation problem
by simply asking for the smallest 	 for which BestItSubSeqMatch◦ with input
(	, v, w) can be answered positively.

Our results regarding these two problems are summarized below.

Theorem 12. 1. ItSubSeqMatch◦ (and the related minimisation problem) can
be solved in O(min(nσ + m,n + m log log n)) time, where σ = |Σ|.

2. BestItSubSeqMatch◦ (and the corresponding minimisation problem) can be
solved in O(nm) time.

3. BestItSubSeqMatch◦ cannot be solved in time O(nhmg), where h+ g = 2− ε
with ε > 0, unless OVH fails.

As a comment on the previous result, it remains open whether there are solu-
tions for ItSubSeqMatch◦ which are more efficient than our algorithms, whose
complexity is given in statement 1 of Theorem 12.

6 Conclusions

In this paper we have considered a series of classical matching and analysis prob-
lems related to the occurrences of subsequences in words, and extended them to
the case of subsequences occurring in bounded ranges in words. In general, we
have shown that the matching problem, where we simply check if a word is a sub-
sequence of another word, becomes computationally harder in this extended set-
ting: it now requires rectangular time. Similarly, problems like checking whether
two words have the same set of subsequences of given length or checking whether
a word contains all possible words of given length as subsequences become much
harder (i. e., NP-hard as opposed to solvable in linear time) when we consider
subsequences in bounded ranges instead of arbitrary subsequences. We have also
analysed a series of problems related to absent subsequences in bounded ranges
of words and, again, we have seen that this case is fundamentally different than
the case of arbitrary subsequences. In general, our results paint a comprehensive
picture of the complexity of matching and analysis problems for subsequences
in bounded ranges.

As an application of our results, we have considered the matching problem
for subsequences in circular words, where we simply check if a word u is a subse-
quence of any conjugate of another word w (i. e., is v a subsequence of the circular
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word w◦), and we have shown that this problem requires quadratic time. A series
of other results regarding the occurrences of subsequences in circular words were
discussed, but there are also a few interesting questions which remained open
in this setting: What is the complexity of deciding whether two circular words
have the same set of subsequences of given length? What is the complexity of
checking whether a circular word contains all possible words of given length as
subsequences? Note that the techniques we have used to show hardness in the
the case of analysis problems for subsequences in bounded ranges of words do
not seem to work in the case of circular words, so new approaches would be
needed in this case.
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Abstract. Petri Nets are a central model for concurrent or distributed
systems but are not expressive enough to specify a system’s dynamic
reconfiguration. Rewriting Logic, in turn, has proved to be a suitable
framework for several formal models of distributed systems. We have
recently proposed an efficient Maude formalization of dynamically recon-
figurable PT nets. In this paper, we address the scalability of this model
using a canonization technique for PT systems integrated into Maude.

1 Introduction

Several types of modern SW/HW systems, among which those distributed,
embedded, self-adapting, and automated, operate under varying conditions in
highly dynamic environments. System components may become temporarily
or permanently unavailable, may appear/disappear, e.g., due to failures or a
dynamic load balancing. These systems use dynamic-reconfiguration procedures
that overlap with the system’s functionality. There is an impelling need for formal
methods by which we can specify both the system’s base layout and reconfigu-
ration to assess design choices and verify the system’s behaviour at run-time.

Petri nets (PNs) are a central model of concurrent or distributed systems, but
they lack the flexibility to specify dynamically reconfigurable systems. PN exten-
sions have been proposed in which enhanced expressivity is not adequately sup-
ported by automated analysis techniques. The most significant representatives
meet the “nets within nets” paradigm, introduced in [20], and are High-Level
PNs enriched with algebraic annotations for the manipulation of net-tokens, e.g.,
[4,10,12]. Reconfigurable PN should be mentioned as well, a family of PN-based
formalisms composed of a classical marked PN and a separated set of rewrite
rules specified as pushouts, according to algebraic Graph Transformations Sys-
tems, [9,11,13,17]. Most research in this field has focused on trying to formulate
these models as M-adhesive categories. See [15] for a survey.

We have recently proposed [6,7] a Maude [8] formalization of “rewritable”
Place-Transition (PT) nets with inhibitor arcs (a Turing-complete formalism),
somehow inspired to Reconfigurable PN. Maude is a well-supported, purely
declarative language with a sound concurrent semantics in rewriting-logic [3,14].
Compared to the Maude formalization of reconfigurable PNs given in [1,16] (for
model-checking purposes), our encoding provides more data abstraction (to ease
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the modeller task), is more compact (and then more efficient), and permits
the definition of rewrite rules without the restrictions imposed by the pushout
pattern.

In this paper, we address the scalability of our model. As usual in Graph
Transformation Systems, the State Transition System associated with a Maude
term representing a (rewritable) PT system should be defined up to (PT system)
isomorphism. The solution we describe and discuss in this paper is an efficient
(though upgradable) canonization procedure for PT systems fully integrated
into Maude through a rich set of algebraic operators.

We use the same simple, tricky benchmark as in [6,7], a fault-tolerant pro-
duction line of a Manufacturing System (MS). We provide some experimental
evidence of the effectiveness (space reduction) of canonization and the induced
overhead by formally verifying simple liveness properties with a base Maude tool.

2 Background: PT Nets and Maude

2.1 Place-Transition (PT) Nets with Inhibitor Arcs

A multiset (or bag) b on D is a map b : D → N. We say that b(d) is the multiplicity
of d and d ∈ b if and only if b(d) > 0. The extension of basic arithmetic/relational
operations on bags is component-wise. Let Bag[D] denote the set of bags on D.

A PT net [18] is a 5-tuple (P, T, I,O,H), where: P , T are non-empty, finite
sets such that P ∩ T = ∅ and I,O,H are maps T → Bag[P ]. P and T hold
the net places and transitions. The former – drawn as circles – represent system
state variables, whereas the latter – drawn as bars – represent events causing
local state changes. A distributed state of a PT net, called marking, is a bag
m ∈ Bag[P ]. A net is a kind of directed, bipartite multi-graph whose nodes are
P ∪T . Maps I, O, H describe the input, output, and inhibitor edges, respectively
( ). Let f ∈ {I,O,H}: if k = f(t)(p) > 0,
then a weight-k edge of corresponding type links p to t.

The dynamics of a PT net is specified by the firing rule. A transition t ∈ T
is enabled in m if and only if: I(t) ≤ m ∧ H(t) >′ m (>′ is the restriction
of > on the elements of H(t)). If t is enabled (in m) it may fire leading to
m′ = m + O(t) − I(t). We use the notation: m[t〉m′.

A PT-system is a pair (N,m), where N is a net and m is a marking of N . The
interleaving semantics of (N,m0), where m0 denotes the initial state, is specified
by the reachability graph (RG), an edge-labelled directed graph (V,E) defined
inductively: m0 ∈ V ; if m ∈ V and m[t〉m′ then m′ ∈ V , m

t−→ m′ ∈ E.

2.2 Rewriting Logic and the Maude System

Maude [8] is an expressive, purely declarative language with a rewriting logic
semantics [3]. Statements are (conditional) equations (eq) and rules (rl). Both
sides of a rule/equation are terms of a given kind that may contain variables.
Rules and equations have a simple rewriting semantics in which instances of
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the lefthand side are replaced by corresponding instances of the righthand side.
Maude’s expressivity is achieved through: equational pattern matching modulo
equational attributes, sub-typing and partiality, generic types, reflection.

A Maude functional module (fmod) contains only equations and (with all
the imported modules) specifies an equational theory in membership equational
logic [2]. Formally, such a theory is a pair (Σ,E ∪ A), where Σ is the signature,
that is, the specification of all the (sub)sort, kind1, and operator declarations;
E is the set of (conditional) equations and membership axioms, and A is the
set of operator equational attributes (assoc, comm, ..). The model of (Σ,E ∪ A)
is the initial algebra (denoted TΣ/E∪A), which is both junk- and confusion-free
and mathematically corresponds to the quotient of the (ground) term-algebra.
Under certain conditions on E and A, the final values (canonical forms) of all
ground terms form an algebra isomorphic to the initial-algebra.

A Maude system module (mod) contains rewrite rules and possibly equations.
Rules represent local transitions in a concurrent system. Formally, a system mod-
ule specifies a generalized rewrite theory [3], a four-tuple R = (Σ,E ∪ A,φ,R)
where (Σ,E∪A) is a membership equational theory; R is a set of rewrite rules; φ
specifies the operator arguments not touched by rules. A rewrite theory specifies
a concurrent system. (Σ,E ∪ A) defines the algebraic structure of the states. R
and φ specify the system’s concurrent transitions. The initial model of R asso-
ciates to each kind k a labeled transition system whose states are TΣ/E∪A,k, and

whose transitions take the form: [t]
[α]→ [t′], with [t], [t′] ∈ TΣ/E∪A,k, and [α] an

equivalence class of rewrites modulo the equational theory of proof-equivalence.
The executability condition for system modules is the ground coherence, which
ensures that a rewriting strategy in which terms are first reduced to the canonical
form then rewritten according to the rules is both sound and complete.

3 The Running Example: A Self-healing Production Line

We consider a simple manufacturing system (MS) with two symmetric produc-
tion lines as an example (Fig. 1, top). This scenario has been used as a case study
for Rewritable PT Nets in previous work [6], to which we refer for a detailed
description. We will use the original place and transition names where possible
to emphasise the similarities.

In the scenario we have raw material and two production lines (i.e. robots) t1
and t2 working on pieces of those, both performing the same job. The MS finally
assembles pairs of worked pieces. During the execution one of the two lines may
get faulty (a double failure has a negligible probability and is not modelled). In
this case, the MS will adapt itself to preserve functionality (and worked pieces)
using the available line. The bottom of Fig. 1 illustrates the adapted MS layout.

Upon another fault which affects the left line, the MS goes back to its nominal
configuration after an hypothetical global repair. The parameter M ∈ N

+ defines
the number of raw pieces (2 · M) worked during an production cycle.
1 A kind is an equivalence class grouping sorts directly or indirectly related by subsort

order; terms in a kind without a specific sort are undefined or error terms.
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Fig. 1. The MS and its reconfiguration upon a fault on a line.

4 Encoding Rewritable PT Systems in Maude

The formalization relies on three generic functional modules, BAG{X},
MAP+{X,Y}, SET+{X} (the last two extensions of built-in modules). These modules
may be arbitrarily nested thanks to a flexible mechanism of parameterized views
(instantiating the type-parameters of a generic module). Differently from other
Maude formalizations of PNs [16,19], bags are not merely represented as free com-
mutative monoids on sets. A few bag-operators provide much more abstraction:
_._, _+_, _[_] _-_, _<=_, _>’_, set, _*_. The first two are constructors, i.e.,
appear in canonical forms. We can thus intuitively/conveniently represent a bag
as a commutative/associative weighted sum, e.g., 3 . a + 1 . b. The module
MAP+ defines a map term as a “set” of entries built using the associative/com-
mutative juxtaposition _,_. Sub-sort Entry of Map has as a unique constructor
_|->_. Module MAP+ supplies, among others, a predicate verifying the uniqueness
of map’s keys which is widely exploited (in data structures building on MAP) in
membership equations implementing consistency checks.

PT System Formalization. The Maude specification in [6], here summarized,
supplies an efficient operational semantics for dynamically reconfigurable PT nets
and represents the basis for formalization. According to definition, however,
dynamic adaptation comes down to net-tokens manipulation. Reconfiguration
at the system-net level is part of ongoing work.
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Places/transitions are indexed terms, e.g., p(2), t(1). A transition’s inci-
dence matrix is a triplet (constructor [_,_,_] defined in module IMATRIX) of
terms of sort Bag{Place} (defined in Pbag, an instance of BAG{X})2. The modules
PT-NET and PT-SYS hold the signature of a PT net/system. A net is a term of
sort Map{Tran,Imatrix} (renamed Net), i.e., a semicolon-separated set of entries
t(k)|-> [i,o,h], each entry belonging to subsort ImatrixT of Net. A PT sys-
tem is the empty juxtaposition (__ : Net Bag{Place} -> [System]) of a Net
term and a Bag{Place} term representing the net’s marking. The use of a kind
as operator’s range means that it defines a partial function: the reason is that
the net sub-term must be a consistent, non-empty map. A membership axiom
characterizes System terms. This approach, typical of membership equational
logic, is a good trade-off between rewriting efficiency and code compactness.

The system module PT-EMU specifies the interleaving operational semantics
of PT systems by exploiting the effective algebraic representation of PT nets.

mod PT−EMU is
pr PT−SYS .
var T : Tran .
vars I O H S : Bag{Place} .
var N N’ : Net .
crl [firing] : N S => N S + O − I if I =/= O /\ T |−> [I,O,H] ; N’ := N /\ I <= S

/\ H >’ S .
endm

The conditional rewrite rule firing intuitively encodes the PT firing rule.
All the involved operators are bag-operators. The matching equation (t := t’)
in rule’s condition makes it very compact. The model-specific part consists of
a system module importing PT-EMU and containing two zero-arity operators of
range Net and Bag{Place}, respectively, describing a given PT system.

Listing 1.1. Maude specification of self-healing MS

mod RWPT−FMS is
protecting PT−RWLIB .
op net : −> Net .
op m0 : −> Pbag .
op M : −> Nat . ∗∗∗ model’s parameter (number of worked pieces)
vars N N’ : Net .
vars TL TF : Tran . vars P2 P3 P4 P5 PF : Place .
var S : Pbag .
var K : NzNat .
eq M = 50 .
eq net = t(0) |−> [2 . p(1),1 . p(2) + 1 . p(3),nilP], t(1) |−> [1 . p(2),1 . p(4), 1 .

p(7)], t(2) |−> [1 . p(3),1 . p(5),1 . p(8)], t(3) |−> [1 . p(4) + 1 . p(5),1 . p(6),
nilP], t(4) |−> [1 . p(6),2 . p(1), nilP],t(5) |−> [1 . p(0),1 . p(7),nilP], t(6)
|−> [1 . p(0), 1 . p(8),nilP].

eq m0 = 2 ∗ M . p(1) + 1 . p(0) .

2 They represent the input, output, inhibitor connections, respectively.
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crl [r1] : (N,t(0) |−> [2 . p(1),1 . P2 + 1 . P3,nilP],t(3) |−> [1 . P4 + 1 . P5,1 . p(6)
,nilP],TF |−> [1 . p(0),1 . PF,nilP],TL |−> [1 . P3,1 . P5,1 . PF]) S + 1 . PF =>
(N,t(0) |−> [1 . p(1),1 . P2,nilP], t(3) |−> [2 . P4,1 . p(6),nilP]) set(S, P3,0)

+ S[P3] . P2 + 1 . p(0) if S[P5] = 0 .
crl [r2] : N S => net S + 1 . p(0) + M . P3 − M . P2 − 1 . p(7) − 1 . p(8) if 1 . P2 :=

Out(N, t(0)) /\ 1 . P2 + 1 . P3 := Out(net, t(0)) /\ dead(N S) .
endm

4.1 Reachability Properties of Rewritable PT Systems

Property 1 (correspondence between PT systems and well-defined terms). A PT
system S = (N,m) has an associated ground term of sort System, vice-versa, a
ground term of sort System represents a PT system (up to isomorphism).

Let r be a rewrite rule, t, t′ two ground terms of kind k. The notation t
r(σ)→ t′

means that 1) the rule’s lefthand side u ∈ TΣ(X),k matches t (i.e., there is a
ground substitution σ such that σ(u) = t)3, 2) t is rewritten to t′ using (r,σ).

Given a PT system S = (N,m0), let RWPT-S represent a system module in
which the term (net m0) encodes S, R be the set of rewrite rules defined in
RWPT-S, and S-EMU a system module importing both PT-EMU and RWPT-S. The
interleaving semantics of the rewritable PT system specified by RWPT-S is:

Definition 1 (State-transition system of RWPT-S). Let R′ = R ∪ {firing}.
RWLTS is an edge-labelled, directed graph (VRWS

, ERWS
) inductively defined:

(net m0) ∈ VRWS
; if s ∈ VRWS

and s
r(σ)→ s′ then: s′ ∈ VRWS

, s
r(σ)→ s′ ∈ ERWS

.

The Maude’s command search explores the state-space of a term by executing
rewrite rules in a breadth-first way, coherently with the definition above. By the
way, RWPT-S includes the ordinary behaviour of the PT system S.

Property 2 (RG inclusion). RWLTS contains a sub-graph isomorphic to RGS .

Notice that, in the event of badly defined/used rules, we may reach undefined
(error) states, despite (net m0) well-definiteness.

Definition 2 (Well-defined specification). RWPT-S specifies a rewritable
PT system if and only if all reachable states in VRWS

are terms of sort System.

Rule Validation. The module RWPT-FMS is well-defined. In general, however,
ensuring the well-definiteness of a Maude specification of a rewritable PT may
not be simple. There are two possible approaches. One consists of defining struc-
turally valid rewrite rules and works also in the event of an infinite state-space.

Definition 3 (Valid rewrite rule). r ∈ R is valid if and only if, for any

ground term s of sort System, if s
r(σ)→ s′ then s′ is of sort System.

3 σ is null is u is a ground term; if r is a conditional rule σ may involve free variables
introduced by matching equations used in the rule’s condition.
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We may indeed rephrase any rewrite rule crl [r] : s => s’ if cond,
where s, s’ ∈ TΣ(X),System, as a valid one using the built-in sort membership:

crl [vr] s => s’ if cond /\ s’ :: System.

The weak spot of this elegant and efficient solution is that it may shadow
bad design choices. Otherwise, we may define rules using exclusively safe net-
operators. For example, the operator setw (defined in module PT-RWLIB) always
results in a term of sort Net. The operator setwS, which builds on setw, guar-
antees that the resulting term is a non-empty PT net (note the use of owise
equation attribute mixed with a matching equation).

5 Canonization of Rewritable PT

In this section, we illustrate through an example the procedure for canonizing
(reconfigurable) PT systems. We mention the main Maude operators employed
(most of which are collected in CAN-PT-SYS module) by omitting the techni-
cal details of their definition. We refer to unlabeled (uncoloured) PT nodes.
We discuss the possible extension of the technique to coloured (i.e., statically
partitioned) nodes and related (dis)advantages in the section on ongoing work.

We start by briefly presenting some related work on graph isomorphism/can-
onization and giving some basic notions used in the sequel.

5.1 Graph Isomorphism and Canonization: An Overview

PT System Isomorphism. An isomorphism φ between PT systems S = (N,m),
S′ = (N,m′) is a pair of bijections φp : P → P ′, φt : T → T ′, preserving
edge connections and marking. S and S′ are isomorphic if and only there is
an isomorphism mapping S to S′. If N = N ′ and T = T ′ then we speak of
automorphism. In the sequel, we basically restrict to automorphisms. Two places
(transitions) of S are automorphic equivalent (or symmetric) if and only if there
is an automorphism mapping one to the other. Checking graph isomorphism is
in general complex: this well-studied problem belongs to NP, but is thought to
be neither P nor NP-complete. Canonization is an approach which consists in
finding an (usually “minimal”) form such that S ∼= S′ ⇔ can(S) = can(S′).

5.2 Base Notations/Definitions for PT Canonization (in Maude)

We denote with (A,<), or <A (possibly omitting A if implicit) a strict total order
on a set (sort, in Maude’s parlance) A (or a totally ordered set/sort, depending
on the context). Let LIST (A) be the set/sort of lists defined on (A,<). Then
(LIST (A), <) is the lexicographic order between lists induced by <A. The can-
onization of PT systems operates on list of pairs. Given (A1, <), (A2, <), then
(A1 × A2, <) is: 〈a1, a2〉 < 〈a′

1, a
′
2〉 iff a1 < a′

1 ∨ (a1 = a′
1 ∧ a2 < a′

2). On lists
of (sortable) pairs we may use the total order(s) induced by pair components,
further to the default lexicographic order. Let l (l′) ∈ LIST (A1×A2): we denote
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with l1 (∈ LIST (A1)) (l2 ∈ LIST (A2)) the projection of l on A1 (A2). For any
two l, l′, (LIST (A1 × A2), <1) ((LIST (A1 × A2), <2)) is: l <1 l′ ⇔ l1 < l′1
(l <2 l′ ⇔ l2 < l′2).

Ordering PT Systems in Maude. The (overloaded) operators <, <1 are fomalized
by simple equations. Specifically, (Place, <) and (Tran, <) map to (Nat, <),
by considering node subscripts. For the rest, we exploit the library mod-
ule SORTABLE-LIST{X :: STRICT-TOTAL-ORDER} by associating the module’s
parameter X (whose type is a theory) with a totally-ordered sort (of a con-
crete module). It supplies the operator op sort : List{X} -> List{X} which
implements mergesort. (Pbag, <) maps to (List{Pair{Nat,Place}}, <). The
operator op makeList : Pbag -> List{Pair{Nat,Place}} gets a list ouf of a
multiset. Analogously, (Net, <) maps to (List{Pair{Tran,Imatrix}}, <) using
op makeList : Net -> List{Pair{Tran,Imatrix}} to get a list out of a Net.
The total order (Imatrix, <) is formalized (in Imatrix module) as:

vars X Y Z X’ Y’ Z’ : Pbag .
op _<_ : Imatrix Imatrix −> Bool .
eq [X,Y,Z] < [X’,Y’,Z’] = X < X’ or−else X == X’ and−then (Y < Y’ or−else Y == Y’

and−then Z < Z’).

Finally, we define (System, <) as:

op _<_ : System System −> Bool .
vars N N’ : Net .
vars S S’ : Pbag .
eq N S < N’ S’ = S < S’ or−else S == S’ and−then N < N’ .

The canonized form of the PT system encoded by (net m) is the least System
term isomorphic to (net m), according to (System, <).

Canonization. We illustrate the main steps of PT system canonization through
our running example (Listing 1.1). We initially refer to the system term aliased
by (net m0), with M = 1.

The algorithm uses (Pbag, <1), namely, (List{Pair{Nat,Place}}, <1), and
(Imatrix, <1), which is built on top of (Pbag, <1) and is formalized by:

vars X Y Z X’ Y’ Z’ : Pbag .
op _<1_ : Imatrix Imatrix −> Bool .
eq [X,Y,Z] <1 [X’,Y’,Z’] = X <1 X’ or−else X == X’ and−then (Y <1 Y’ or−else Y

== Y’ and−then Z <1 Z’).

Canonization is place-driven (we may consider transitions only at the end)
and logically consists of two stages: first, we canonize the Pbag (marking) sub-
term and then the Net sub-term. The order in which we consider these sub-terms
matters: marking’s canonization indeed affects net’s canonization.

As anticipated, canonization is incremental and monotonic: we repeatedly
permute pairs of places using op swap : System Place Place -> System4

until we eventually reach the minimal form. Places are considered one by one in
4 swap is overloaded, e.g., by op swap : Imatrix Place Place -> Imatrix.
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increasing order. For each place, we search for possible candidates to swap in a
restricted sub-list of greater by possibly pruning the swap sequences to try out.
By the way, any sequence of swaps defines an automorphism.

As a preliminary key step, we get a sorted list of matrices out of the net sub-
term (op makeAdjList : Net -> List{Imatrix}) using (Imatrix, <1). This
allows us to divide (op regroup : List{Imatrix} -> List{List{Imatrix}})
the list of matrices into contiguous blocks of “similar” elements composed of mul-
tisets having the same weights. We, therefore, have to consider these elements
together to calculate the isomorphic minimal form. We prefix the list of blocks
with the marking sub-term, to get the expected ordering effect. It is worth not-
ing that the final form matches this disposal, up to reordering elements inside
blocks (according to (Imatrix, <)). The luckiest situation occurs when blocks
are singletons: in that case, no reordering is needed.

The sorted list of blocks we obtain from net m0 is as follows:

1 . p(0) + 2 . p(1),
[1 . p(0), 1 . p(7), nilP], [1 . p(0), 1 . p(8), nilP],
[1 . p(2), 1 . p(4), 1 . p(7)], [1 . p(3), 1 . p(5), 1 . p(8)],
[1 . p(6), 2 . p(1), nilP],
[1 . p(4) + 1 . p(5), 1 . p(6), nilP],
[2 . p(1), 1 . p(2) + 1 . p(3), nilP] .

block 1 (marking)

block 2

block 3

block 4

block 5

block 6

For each place p(i), starting from the smallest one, we scan the sorted list of
blocks by considering the input/output/inhibitor components in sequence. We
search for candidates to swap with p(i), namely places {p(j)}, j > i, whose
multiplicity is minimal and is less than or equal to that of p(i), if that is not
zero. If this set is empty, we go on with the next place. If it is a singleton, we
carry out the swap p(i) ←→ p(j). Otherwise, we may have to (recursively)
branch the canonization process on sub-lists to determine the sequence of swaps
leading to the minimal list. In the last two cases, we need to reorder non-singleton
blocks, as explained. No backtracking on the computation tree is needed.

This procedure relies on the assumption (trivially met at the beginning) that
at any moment, any permutation p(i) ←→ p(j), with j < i, results in a non-
smaller list. The proof (omitted, being only technical stuff) is by contradiction.

Going back to the example, we easily argue that the marking (block 1) is
the smallest multiset of that shape. Therefore, no swap involves p(0), p(1)
and we pass considering p(2) by directly jumping to block 2. Looking at the
block’s output components, we figure out that there are two candidates to swap
with p(2), namely, p(7), p(8). At this point the computation splits into two
branches: let us call them b1 and b2, and denote sub-branches as b1.1, b1.2,
etc. The final, minimal form results from (recursively) taking the minimum of
local branches. After p(2) we have, necessarily, to swap p(3) with either p(7)
or p(8). We get (we implicitly carry out a local reorder after any swap):
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b1 (p(2) ←→ p(7); p(3) ←→ p(8))

[1 . p(0), 1 . p(2), nilP], [1 . p(0), 1 . p(3), nilP],
[1 . p(7), 1 . p(4), 1 . p(2)], [1 . p(8), 1 . p(5), 1 . p(3)],
...,
...,
[2 . p(1), 1 . p(7) + 1 . p(8), nilP] .

block 2

block 3

block 4

block 5

block 6

b2 (p(2) ←→ p(8); p(3) ←→ p(7))

[1 . p(0), 1 . p(2), nilP], [1 . p(0), 1 . p(3), nilP],
[1 . p(7), 1 . p(5), 1 . p(2)], [1 . p(8), 1 . p(4), 1 . p(3)],
...,
...,
[2 . p(1), 1 . p(7) + 1 . p(8), nilP] .

block 2

block 3

block 4

block 5

block 6

The next place to consider in each branch is p(4). Since block 2 (which
coincides in b1 and b2) now contains places lesser than p(4), we can jump to
block 3. We figure out that the candidates for swapping with p(4) are (again)
p(7), p(8), in both the main branches. That results in sub-branches, as described
below. As before, after the swap of p(4), there is a mandatory sequence of swaps
that lead to local, minimal forms. Let us follow the sub-paths from b1, one of
which leads to the global minimum (we don’t describe the sub-branches of b2).
Notice that there is no further branching from that point on.

b1.1 (p(4) ←→ p(7); p(5) ←→ p(8))

[1 . p(4), 1 . p(7), 1 . p(2)], [1 . p(5), 1 . p(8), 1 . p(3)],
[1 . p(6), 2 . p(1), nilP],
[1 . p(7) + 1 . p(8), 1 . p(6), nilP],
[2 . p(1), 1 . p(4) + 1 . p(5), nilP] .

block 3

block 4

block 5

block 6

Then we analyse p(6): looking at block 3 (output components), there are
seemingly two possible swaps of p(6) with p(7) and p(8), i.e., two further sub-
branches. But a simple heuristic allows us to prune p(6) ←→ p(8): it would
result indeed in a greater sub-list, independently on the tail blocks. The only
eligible sequence is p(6) ←→ p(7); p(7) ←→ p(8). We finally get:

[1 . p(4), 1 . p(6), 1 . p(2)], [1 . p(5), 1 . p(7), 1 . p(3)],
[1 . p(8), 2 . p(1), nilP],
[1 . p(6) + 1 . p(7), 1 . p(8), nilP],
[2 . p(1), 1 . p(4) + 1 . p(5), nilP] .

block 3

block 4

block 5

block 6

As per the other sub-branch, we can make analogous considerations. We get:
b1.2 (p(4) ←→ p(8); p(5) ←→ p(7); p(6) ←→ p(7); p(7) ←→ p(8))

[1 . p(4), 1 . p(6), 1 . p(3)], [1 . p(5), 1 . p(7), 1 . p(2)],
[1 . p(8), 2 . p(1), nilP],
[1 . p(6) + 1 . p(7), 1 . p(8), nilP],
[2 . p(1), 1 . p(4) + 1 . p(5), nilP] .

block 3

block 4

block 5

block 6
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It turns out that the minimal list of matrices is the one we obtain at the end
of sub-branch b1.1 (with the addition of blocks 1 and 2). At that point, we only
need to rearrange transition indices accordingly.

In general, we may also have to rescale the node subscripts so that they lie
in 0 . . . |P |−1, and 0 . . . |T |−1, respectively. This may be done at the beginning
or the end of the canonization, indifferently. In our example, that is not due.

The canonical form of the PT system in Fig. 1 (top) corresponds to the PT
automorphism {p2 → p4, p3 → p5, p4 → p6, p5 → p7, p6 → p8, p7 → p2, p8 → p3},
{t0 → t6, t1 → t2, t2 → t3, t3 → t5, t5 → t0, t6 → t1} (identities are implicit).

Here, we are not interested in studying the theoretical complexity of the
canonization procedure. We supply a few experimental pieces of evidence in the
next section. We may significantly improve the algorithm by implementing more
sophisticated heuristics to prune branches in the computation tree (other than
that used in b1.1 and b1.2). For example, it should even be possible to avoid the
split of the two main branches by looking at the structure of the outgoing lists.

Nonetheless, we point out that compared to a brute-force approach enumer-
ating the 9! permutations on places (more those on transitions), we have only
carried out a few dozens of swaps. We believe that such an improvement is not
occasional due to some regularity shown by most realistic models.

Implementing the PT canonization directly in Maude, however, is far from
intuitive. The entire process is divided into several (recursive) sub-tasks, each
matching an operator. Let us mention a few, among which the top operator.

op canonize : System −> System . ∗∗∗ top canonization operator
op canonizeNet : List{List{Imatrix}} List{Place} −> List{List{Imatrix}} .
op canonizeM : Pbag List{List{Imatrix}} List{Place} −> List{List{Imatrix}} .
op canonizeP : List{List{Imatrix}} Place −> List{List{Imatrix}} .
op candidates : List{List{Imatrix}} Place −> Set{Place} .

5.3 Equivalences and Rewrite Rules: Making Rules Symmetric

The canonization of System terms allows the automatic detection of behavioural
equivalences (symmetries) that a PT system may exhibit during its evolution.
Equivalences are of two types: those due to the inner dynamics of a PT system
(expressed by the firing rule) and those due to the structural changes that a PT
system undergoes (specified by the other rewrite rules).

Syntactically, the right-hand side of any rewrite rule needs to be surrounded
by the top canonization operator. Thus, the firing rule becomes:

var T : Tran .
vars I O H S : Bag{Place} .
var N N’ : Net .
crl [syfiring] : N S => canonize(N S + O − I) if I =/= O /\ T |−> [I,O,H] ; N’ := N

/\ I <= S /\ H >’ S .

The canonized state-transition system of a rewritable PT system encoded
by the System term (net m0) is the state transition system generated from
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the canonized form of net m0 (Definition 1), assuming that all rewrite rules of
System type take the form crl [r] : s => canonize(s’) if cond (as usual,
we consider conditional rules as more general).

We may conveniently define an alias for the canonized, initial PT system.

op cansys0 : −> System .
eq cansys0 = canonize(net m0) .

Unfortunately, rules are not terms, so they are not affected by canoniza-
tion. For the canonized state transition system to preserve the properties of the
ordinary one, rewrite rules have to be symmetric.

Definition 4 (Symmetric rewrite rule). crl [r] : s => s’ if cond is
symmetric if and only if only non ground terms occur both in s and cond.

Since any term in our specification is made up of sub-terms of sorts Place
and Tran, we may rephrase Definition 4 by saying that a rule r is symmetric if
only variable-terms of these two sorts occur in r’s left-hand side and condition.

The firing rule trivially meets Definition 4. But the two rules specifying the
evolution of the MS upon a fault (Listing 1.1) do not. For example, the ground
terms p(0),p(1),p(6) appear in r1’s left-hand side. In the listing below, we
show a possible translation of these rules into a symmetric form. As per r1, we
straightforwardly replace ground terms with corresponding variables. The trans-
lation of r2 is a bit trickier since the deadlock (triggering the rewriting of the
system into its initial shape, while retaining worked pieces) factorizes two differ-
ent states. It is worth noticing that (modulo the canonization) this translation
exactly preserves the behaviour of the original rules. The use of variables instead
of ground terms only causes a negligible overhead in rule matching.

Listing 1.2. symmetric rewrite rules of the self-healing MS

vars N N’ Net .
vars T0 T1 T3 TL TF : Tran .
vars P1 P2 P3 P4 P5 P6 PF : Place .
var S : Pbag .
...
crl [syr1] : (N, T0 |−> [2 . P1, 1 . P2 + 1 . P3, nilP] , T3 |−> [1 . P4 + 1 . P5, 1 . P6

, nilP],TF |−> [1 . P0,1 . PF,nilP],TL |−> [1 . P3,1 . P5, 1 . PF]) S + 1 . PF
=> canonize((N, T0 |−> [1 . P1, 1 . P2, nilP], T3 |−> [2 . P4, 1 . P6, nilP])

set(S, P3, 0) + S[P3] . P2 + 1 . P0) if S[P5] = 0 .
crl [syr2] : N S => canonize(net 1 . p(0) + M . p(3) + sd(S[P2], M) . p(2) + if S[P3]

== 1 then 1 . p(4) else nilP fi) if N’, T0 |−> [1 . P1, 1 . P2, nilP], T1 |−> [1
. P2, 1 . P3, 1 . P4]) := N /\ dead(N S) .

5.4 Canonization and Reachability

The following properties formalize that the canonized state transition system is
a quotient of the original (non canonized) one. We denote with s, s′, u, u′ (final)
ground terms of sort System, with ŝ the canonized form of s, with r a rewrite
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rule t ⇒ t′ which meets Definition 4, and with r̂: t ⇒ canonize(t′) (σ is a ground
substitution of a rule’s left term’s variables, u ∼= s is the same as û = ŝ).

Property 3 (correspondence between transitions). Let s
r(σ)→ s′. Then ŝ

r̂(φ(σ))→ ŝ′,
where φ is the isomorphism from s to ŝ.

Property 4 (source correspondence). Let s
r̂(σ)→ s′. Then ∀u ∼= s ∃u′ ∼= s′ s.t.

u
r(φ(σ))→ u′, where φ is the isomorphism from s to u.

The analogous of Property 4 for the target node of a canonized state transi-
tion doesn’t hold, because we admit the presence of ground terms on the right-
hand side of a symmetric rule. For example, in syr2 we use the net ground term
to refer to the initial structure of the MS.

Theoretically, this doesn’t represent a restriction because we always rea-
son “up to isomorphism”. The use of ground terms on the right-hand side of
rules permits, actually, an interesting optimization: If the outcome of a system
transformation, under certain conditions, is known “a priori” then we can avoid
repeating canonization using the simple pattern below.

op s : −> System .
eq s = canonize(...) . ∗∗∗ ... ground term to use on rule’s right−hand side
crl [optr] t => s if c . ∗∗∗ t and c are terms satisfying Def. 1

We could use this pattern to improve the efficiency of our running example
at the cost of splitting rule syr2 in two, given that (using PT structural analysis)
we know how and when the system’s reconfiguration takes place [6,7].

A similar but general optimization concerns the firing rule. Do we always
need to canonize a System term after a transition’s firing? In some cases, we can
not do it. More precisely, whenever the change of marking preserves the marking
canonization. For example, if the marking of a canonized system is 1 · p0 + 2 · p1
and the new reached marking is 1·p0+3·p1 then we can drop the canonization of
the (new) System term. That would require splitting the corresponding rewrite
rule by refining its condition and is part of our ongoing work.

Let us finally (briefly) discuss an important aspect of reachability. How many
different instances do really represent a (canonized) System term and a canon-
ized firing? We consider, once again, the PT system in Fig. 1 (top), whose Maude
encoding is Listing 1.1 (term net m0) and which we have used to illustrate the
canonization procedure. For simplicity, in the sequel, we mix the use of the clas-
sical PT notation and the algebraic one. We initially ignore canonization.

Consider the firing sequences 1) m0[t0; t1 > m1, with m1 = 1·p0+1·p3+1·p4,
2) m0[t0; t2 > m2, with m2 = 1 · p0 + 1 · p2 + 1 · p5. The markings m1, m2 have
the same minimal form (1 ·p0 +1 ·p1 +1 ·p2) and the corresponding PT systems
(System terms) collapse into the same canonized form (not represented). In the
canonized state-transition system the two firing sequences above collapse as well.

To calculate the cardinality of a (canonized) System term (transition firing)
we need to partition the places of the Net into classes of automorphic equivalent.
In the example, p2, p3 are automorphic-equivalent, as well as, p4, p5. Thus in
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m1, m2 (and in their canonized form as well) two places belongs to two different
classes of size 2, and one to a singleton class. Using simple combinatorics, that
means that the (canonized) System term represents two different instances. An
algebraic characterization of this point is part of our ongoing work.

6 PT Canonization and Verification: Does It Scale?

In this section, we provide some experimental evidence of the use of canonization
to face the complexity of formal verification of models specified with rewritable
PT systems. We use a base analysis tool of the Maude system. We initially refer to
our running example and then consider a parallel extension with N replicas of the
MS production line to asses if the canonization technique scales up adequately.

A Maude system module specifies a rewrite theory. Therefore, it provides
an executable formal model of a distributed system. Under some executability
conditions (met by our specification), one can check that a model satisfies some
properties or obtain counterexamples. This common model-checking builds on
the inline search command, which explores the state transition system of a
rewritable PT system using a breadth-first strategy. If a system generates a big
(or infinite) state space we may set some bounds on search or use abstractions by
adding equations in our specification. Under the finite reachability assumption,
we can efficiently model-check any linear time temporal logic (LTL) property of
a system module. Since our object is to evaluate the effectiveness (in terms of
space reduction) of canonization and the induced time overhead, we model-check
two simple invariant properties through the search command.

A base liveness property of a dynamically reconfigurable system is deadlock
freedom. A straightforward way to check it is to issue the command below, which
searches for any final states of the PT system specified in Listing 1.1 starting
from the nominal configuration of the MS production line. The second version of
the command searches through the canonized state transition system (the rewrite
rules are those specified in Sect. 5.3, Listing 1.2) – FMS-EMU and FMS-EMU-CAN
are convenience modules importing all the other necessary modules.

search in FMS−EMU : net m0 =>! X: System .
search in FMS−EMU−CAN : cansys0 =>! X: System .

As expected, the search has no matches, meaning that the MS is deadlock-
free (using the LTL module, we asses that net m0, or its canonized form, is a
home-state, i.e., the state-transition system is strongly-connected).

Another interesting search concerns possible dead states inside the different
configurations (the nominal one and the two symmetric, faulty ones) that the
system enters during its evolution. The command to issue is ( * means “in zero
or more steps”, dead is a predicate defined in module PT-SYS):

search in FMS−EMU : net m0 =>∗ X:System such that dead(X:System) .
search in FMS−EMU−CAN : cansys0 =>∗ X:System such that dead(X:System) .
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The first search matches six states (for any value of parameter M), two for each
system configuration. The second search, instead, has only three matches (one
refers to the nominal MS, two to its reconfigured layout) due to canonization.

Table 1 reports some data about the performances as the system’s parameter
M (half of the number of pieces worked in a production cycle) varies. These
data refer to an Intel Core i7-6700 equipped with 32 GB RAM. The execution
time value is the average of the two commands we have run. The second and
third columns of the table refer to the ordinary state transition system and the
canonized one, respectively. We note that canonization approximately halves the
state space (independently on M) per the MS layout, made up of two symmetric
lines. The execution time shows an increasing overhead due to canonization (for
M = 50, it takes around 5 h). Most of this is because the implementation of
the algorithm exploits trivial heuristics. We firmly believe that integrating more
structural ones could dramatically drop the price of canonization.

Nonetheless, canonization becomes crucial when considering systems with
many replicated components. Table 2, e.g., measures the performances of search
on a variant of the running example with a higher parallelism degree (using the
same HW configuration). In this variant, N replicas of the reconfigurable pro-
duction line shown in Fig. 1 work in parallel by “synchronizing” at the beginning
of a production cycle (for N = 1 the model coincides with that in Fig. 1). The
value of M in each replica is 2. This model is formalized in [5] (Fig. 11) in a
compact, parametric way using Symmetric Nets, a subclass of High-Level PN
featuring a structured syntax which outlines the behavioural symmetries of a
system. It corresponds to the term: Par(net m0, N, p(1), empty), where

op Par : System NzNat Set{Place} Set{Tran} −> System .

is a net-algebra operator which creates N copies of the specified System by
resizing the node subscripts and merging the specified sets of nodes –modulo the
subscript resizing (we omit further details on the Maude specification).

As N grows, exploiting the system’s symmetries through canonization of
terms becomes the only way to deal with the combinatorial complexity of models:
To give an idea, for N = 4 there are around sixty million ordinary states against
under a million and a half canonized ones. The execution time data for N = 4
confirms the scalability due to canonization. As a final remark, the performances
of the Maude specification of the self-healing MS outperform those shown by the
emulation-based, Symmetric Nets model [5] of the same example.

Table 1. Performance of search command as M (pieces) varies

M (ord.) # states time (s.) (can.) # states time (s.)

2 92 0.004 48 0.136

5 1232 0.15 604 1.73

10 8932 2.19 4398 29.65

20 94008 36.09 46904 357.60

50 2186132 862.53 1098644 17061
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Table 2. Performance of search command as N (replicas) varies

N (ord.) # states time (s.) (can.) # states time (s.)

1 92 0.007 48 0.198

2 7618 1.81 1798 15.36

4 60639296 29136 1337404 26131

7 Conclusion, Open Issues and Ongoing Work

We have presented an efficient canonization technique for a class of “rewritable”
PT systems recently formalized in Maude. This approach faces a major scalabil-
ity issue of Graph Transformation Systems, namely, the automatic recognition
of isomorphic graphs (PT systems). We have used a simple, tricky example
throughout the paper. We have finally discussed the effectiveness and overhead
of canonizing rewritable PT systems by reporting some experimental evidences
of a base Maude model-checker. Even if the outcomes seem promising in terms
of scalability, much work has to done to reduce the canonization overhead.
Open issues We have currently implemented a few trivial heuristics which help
prune some branches of the canonization’s computation tree in particularly sim-
ple conditions. More structured heuristics (e.g., avoiding the canonization of the
Net sub-term after a PT transition’s firing which retains the marking canoniza-
tion) may dramatically reduce the canonization’s inefficiency in most practical
cases. Two more systematic optimizations, currently under study, are the use
of labelling to partition PT nodes in classes of automorphic equivalent and the
exploitation of net-algebra operators to specify bunches of symmetric system
components (related in some way).
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