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A generalized Poincaré–Birkhoff theorem
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To H. Poincaré, who taught us much;
To A. Floer, who followed suit;

To C. Viterbo, now on his 60th birthday, who took the cue;
and to all those who stand on the Shoulders of Giants.

Abstract. We prove a generalization of the classical Poincaré–Birkhoff
theorem for Liouville domains, in arbitrary even dimensions. This is
inspired by the existence of global hypersurfaces of section for the spa-
tial case of the restricted three-body problem (Moreno and van Koert
in Global hypersurfaces of section in the spatial restricted three-body
problem, 2020).
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1.1. Poincaré–Birkhoff theorem, and the planar restricted three-

body problem 2
Fixed-point theory of Hamiltonian twist maps 3
1.2. The Hamiltonian twist condition 3
1.3. Index growth 4
1.4. Fixed-point theorems 4
1.5. Sketch of the proof 6
1.6. Remarks on the twist condition and generalizations 6

2. Motivation and background 7
Hypersurfaces of section, return maps, and open books 7

3. Preliminaries on symplectic homology 8
3.1. Liouville domains and Hamiltonian dynamics 8
3.2. Conley–Zehnder index, Robbin–Salamon index, and mean

index 9

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder, and Felix Schlenk.

Reprinted from the journal 981

c© The Author(s), under exclusive licence to
Springer Nature Switzerland AG 2022, corrected
publication 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19111-4_30&domain=pdf
https://doi.org/10.1007/s11784-022-00957-6


A. Moreno, O. van Koert JFPTA

3.3. Hamiltonian Floer homology and symplectic homology 10
3.4. Continuation maps and symplectic homology 12
3.5. Degenerate Hamiltonians and local Floer homology 13
3.6. Spectral sequence 13
3.7. Index-definiteness and grading 14

4. Proof of the Generalized Poincaré–Birkhoff Theorem 14
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1. Introduction

1.1. Poincaré–Birkhoff theorem, and the planar restricted three-body prob-
lem

The problem of finding closed orbits in the planar case of the restricted three-
body problem goes back to ground-breaking work in celestial mechanics of
Poincaré [31,32], building on work of Hill on the lunar problem [22]. The
basic scheme for his approach may be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed-point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré–Birkhoff theorem, proposed
and confirmed in special cases by Poincaré and later proved in full generality
by Birkhoff in [8]. The statement can be summarized as: if τ : A → A is
an area-preserving homeomorphism of the annulus A = [−1, 1] × S1 that
satisfies a twist condition at the boundary, then it admits infinitely many
periodic points of arbitrary large period.

In [30], the authors proved the existence of S1-families of global hy-
persurfaces of section for the spatial restricted three-body problem (in the
low-energy range, i.e., below and slightly above the first critical value, and
independent of mass ratio), fully and non-perturbatively generalizing step (1)
in the above approach to the spatial situation. The relevant return map τ
is a Hamiltonian diffeomorphism defined on the interior of the global hyper-
surface of section, which is symplectomorphic to the interior of a Liouville
domain (D∗S2, ω), where ω is deformation equivalent to the standard sym-
plectic form. Furthermore, τ extends smoothly to the boundary of the global
hypersurface of section, and gives rise to a homeomorphism of (D∗S2, ω) that
is a Hamiltonian diffeomorphism on the interior. Drawing inspiration from
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this situation, in this paper, we propose a general fixed-point theorem for
Liouville domains, as an attempt to address step (2) for the spatial case.

Fixed-point theory of Hamiltonian twist maps

The periodic points of τ are either boundary periodic points, which give
planar orbits, or interior periodic points which are in 1:1 correspondence
with spatial orbits. We are interested in finding interior periodic points.

1.2. The Hamiltonian twist condition

We propose a generalization of the twist condition introduced by Poincaré,
for the Hamiltonian case and for arbitrary Liouville domains. Let (W,ω = dλ)
be a 2n-dimensional Liouville domain, and consider a Hamiltonian symplec-
tomorphism τ of W . Let (B, ξ) = (∂W, ker α) be the contact manifold at
the boundary where α = λ|B , and Rα the Reeb vector field of α (uniquely
determined via the equations dα(Rα, ·) = 0, α(Rα) = 1). Recall that τ is
Hamiltonian if τ = φ1

H , where φt
H is the isotopy of W defined by φ0

H = id,
d
dtφ

t
H = XHt

◦ φt
H , where we write Ht = H(t, ·), and XHt

is the Hamiltonian
vector field of Ht defined via iXHt

ω = −dHt. The Liouville vector field Vλ is
defined via iVλ

ω = λ.

Definition 1.1. (Hamiltonian twist map) We say that τ is a Hamiltonian twist
map (with respect to α), if τ is generated by a smooth Hamiltonian H :
W × R → R which satisfies XHt

|B = htRα for some positive and smooth
function h : B × R → R

+.

Remark 1.2. For the purposes of this article, one may relax the smoothness
assumption on H to C2 regularity.

In particular, Ht|B ≡ const on B, and τ(B) ⊂ B. We have ht =
dHt(Vλ)|B is the derivative of Ht in the Liouville direction Vλ along B,
which we assume strictly positive. Also, τ |B is the time-1 map of a posi-
tive reparametrization of the Reeb flow on B. But note that, while the latter
condition is only localized at B, the twist condition is of a global nature, as
it requires global smoothness of the generating Hamiltonian (cf. [30, Remark
1.4]).

Here is a simple example illustrating why the smoothness of the Hamil-
tonian is relevant for the purposes of fixed points:

Example 1.3. (Integrable twist maps) Consider M = Sn, n ≥ 1 with its
round metric and its cotangent bundle T ∗M = {(q, p) ∈ R

2n+2 : 〈q, p〉 =
0, |q| = 1}. Let H : T ∗M → R, H(q, p) = 2π|p| (not smooth at the zero sec-
tion); φ1

H extends to all of D∗M as the identity. It is a positive reparametriza-
tion of the Reeb flow at S∗M , generating a full turn of the geodesic flow, and
all orbits are fixed points with fixed period. If we smoothen H near |p| = 0
to K(q, p) = 2πg(|p|), with g(0) = g′(0) = 0, then τ = φ1

K : D∗M → D
∗M ,

τ(q, p) = φ
2πg′(|p|)
H (q, p), is now a Hamiltonian twist map. If g′(|p|) = l/k ∈ Q

with l, k coprime, then τ has a simple k-periodic orbit; therefore, τ has sim-
ple interior orbits of arbitrary large period (cf. [26, p. 350], [29], for the case
M = S1).
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The Hamiltonian twist condition will be used to extend the Hamiltonian
to a Hamiltonian that is admissible for computing symplectic homology. The
extended Hamiltonian can have additional 1-periodic orbits and these, as well
as 1-periodic orbits on the boundary, need be distinguished from the interior
periodic points of τ . We impose the following conditions to do so.

1.3. Index growth

We consider a suitable index growth condition on the dynamics on the bound-
ary, which is satisfied in the restricted three-body problem whenever the pla-
nar dynamics is strictly convex (see Theorem D.1). This assumption will
allow us to separate boundary and extension orbits from interior ones via the
index.

We call a strict contact manifold (Y, ξ = ker α) strongly index-definite
if the contact structure (ξ,dα) admits a symplectic trivialization ε with the
property that

• There are constants c > 0 and d ∈ R, such that for every Reeb arc1

γ : [0, T ] → Y of Reeb action T =
∫ T

0
γ∗α, we have

|μRS(γ; ε)| ≥ cT + d,

where μRS is the Robbin–Salamon index [33].

Index-positivity is defined similarly, where we drop the absolute value.
A variation of this notion was explored in Ustilovsky’s thesis [37]. He im-
posed the additional condition π1(Y ) = 0. With this extra assumption, the
concept of index-positivity becomes independent of the choice of trivializa-
tion, although the exact constants c and d still depend on the trivialization
ε. The global trivialization will be important when considering extensions of
our Hamiltonians, as it will allow us to measure the index growth of potential
new orbits.

1.4. Fixed-point theorems

We propose the following generalization of the Poincaré–Birkhoff theorem:

Theorem A. (Generalized Poincaré–Birkhoff theorem) Suppose that τ is an
exact symplectomorphism of a connected Liouville domain (W,λ), and let
α = λ|B. Assume the following:

• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the
generating Hamiltonian is at least C2. In addition, assume that all fixed
points of τ are isolated;

• (Index-definiteness) If dim W ≥ 4, then assume c1(W )|π2(W ) = 0,
and (∂W,α) is strongly index-definite;

• (Symplectic homology) SH•(W ) is infinite dimensional.

Then τ has simple interior periodic points of arbitrarily large (integer) period.

Remark 1.4. Let us discuss some aspects of the theorem:

1We will refer to the restriction of a Reeb orbit or Hamiltonian orbit to a finite interval as
a Reeb arc or Hamiltonian arc.
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(1) (Grading) We impose the assumptions c1(W )|π2(W ) = 0 (i.e. W is sym-
plectic Calabi–Yau) to have a well-defined integer grading on symplectic
homology.

(2) (Surfaces) If dim W = 2, then the condition that SH•(W ) is infinite
dimensional just means that W is not D2 (see Appendix B); for D2, we
have SH•(D2) = 0, and a rotation on D2 gives an obvious counterex-
ample to the conclusion. In the surface case, the argument simplifies,
and one can simply work with homotopy classes of loops rather than
the grading on symplectic homology. The Hamiltonian twist condition
implies the classical twist condition for W = D

∗S1, due to orientations.
(3) (Cotangent bundles) The symplectic homology of the cotangent bundle

of a closed manifold with finite fundamental group is well known to
be infinite dimensional, due to a result of Viterbo [38,39] (see also [3,
34]), combined, e.g., with a theorem of Gromov [19, Sect. 1.4]. We have
c1(T ∗M) = 0 whenever M is orientable. As for the existence of a global
trivialization of the contact structure (ξ, dλcan), we note the following:

• if Σ is an oriented surface, then S∗Σ admits such a global sym-
plectic trivialization;

• if M3 is an orientable 3-manifold, then S∗M3 also admits such a
global symplectic trivialization;

• In addition, we know that symplectic trivializations of the con-
tact structure on (S∗S2, λcan) are unique up to homotopy, since
[S∗S2, Sp(2)] ∼= H1(S∗S2;Z) = 0.

(4) (Fixed points) If fixed points are non-isolated, then we vacuously obtain
infinitely many of them, although we cannot conclude that their periods
are unbounded; “generically”, one expects finitely many fixed points.

(5) (Long orbits) If W is a global hypersurface of section for some Reeb
dynamics, with return map τ , interior periodic points with long (integer)
period for τ translate into spatial Reeb orbits with long (real) period;
see Lemma C.1.

(6) (Katok examples) There are well-known examples due to Katok [25]
of Finsler metrics on spheres with only finitely many simple geodesics,
which are arbitrarily close to the round metric (we review them in Ap-
pendix A.2); they admit global hypersurfaces of section with Hamil-
tonian return maps, for which the index-definiteness and the condition
on symplectic homology hold. It follows that the return map does not
satisfy the twist condition for any choice of Hamiltonians.

(7) (Spatial restricted three-body problem) From the above discussion and
[30], we gather: the only standing obstruction for applying the above
result to the spatial restricted three-body problem, in case where the
planar problem is strictly convex, is the Hamiltonian twist condition.
Here, note that symplectic homology is invariant under deformations of
Liouville domains; see, e.g., [9] for a paper with detailed proofs. This
would give a proof of existence of spatial long orbits in the spirit of Con-
ley [13], which could in principle be collision orbits. Since the geodesic
flow on S2 arises as a limit case (i.e., the Kepler problem), it should
be clear from the discussion on Katok examples that this is a subtle
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condition. In [30], we have computed a generating Hamiltonian for the
integrable case of the rotating Kepler problem; it does not satisfy the
twist condition in the spatial case (in the planar case, a Hamiltonian
twist map was essentially found by Poincaré). This does not mean a
priori that there is not another generating Hamiltonian which does, but
this seems rather unlikely.

As a particular case of Theorem A, we state the above result for star-
shaped domains in cotangent bundles, as of independent interest (cf. [21]):

Theorem B. Suppose that W is a fiber-wise star-shaped domain in the Li-
ouville manifold (T ∗M,λcan), where M is simply connected, orientable and
closed, and assume that τ : W → W is a Hamiltonian twist map. If the Reeb
flow on ∂W is strongly index-positive, and if all fixed points of τ are isolated,
then τ has simple interior periodic points of arbitrarily large period.

The above holds in particular for M = S2, as explained in Remark 1.4
(3). One difference with [21] is that we work with compact domains in cotan-
gent bundles and conclude that periodic points are interior, at the expense
of imposing index-positivity.

1.5. Sketch of the proof

The proof is fairly simple: due to the twist condition, we can extend the map τ
to a Hamiltonian diffeomorphism τ̂ that is generated by a weakly admissible
Hamiltonian (defined in Sect. 4). This allows us to appeal to symplectic
homology. In particular, we will show lim−→k

HF•(τ̂k) = SH•(W ) (Lemma 4.1).
Using an index filtration (via index-definiteness and the twist condition), we
can show that all generators contributing to homology are actually fixed
points of some τk, rather than fixed points of the extension. The crucial
technical input is Lemma 4.5. If the minimal periods of periodic points of
τ are bounded, then we can show using a spectral sequence, involving local
Floer homology groups, that the rank of the resulting symplectic homology
should also be bounded, leading to a contradiction. Alternatively, one could
use the methods used for the proof of the Conley conjecture [17,21] to finish
the proof.

1.6. Remarks on the twist condition and generalizations

If the Liouville domain is a surface, this definition of the Hamiltonian twist
condition is not restrictive, and implements the idea sketched above in a
simple way. In higher dimensions, the Hamiltonian twist condition is much
more restrictive. Some examples illustrating the nature of the twist condition
and applications of the above theorem will be presented in Appendix A. Given
the above sketch of the proof, there is obviously some freedom in Definition
1.1 that allows the same methods to work. For example, if the vector field
XHt

is sufficiently C1-close to a positive reparametrization of the Reeb vector
field, then the methods will still go through. However, we will not pursue
this generalization, because its depends on details that make the formulation
awkward and difficult to check. We list some other generalizations, whose
proofs will not be worked out in detail:
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• (Action positivity) One can impose constraints on the functions ht in
the Hamiltonian twist condition that force the periodic orbits in the
extension to have large action under iterates. In the setting of cotangent
bundles, one can then use a theorem of Gromov [19, Sect. 1.4] cited
below, to construct infinitely many interior periodic points.

• (Isolated sets) The assumption that the fixed points are isolated can be
replaced by the weaker assumption that the fixed point set consists of
a finite union of submanifolds. This is based on a slight generalization
of local Floer homology, and is useful when studying integrable systems
and their perturbations.

• (Non-vanishing symplectic homology) The condition dimSH•(W ) = ∞
can be replaced by the condition SH•(W ) �= 0. The key point here is
that non-vanishing symplectic homology implies its unit is non-trivial.
Then, the methods of the proof of the Conley conjecture [17,21] can
be applied to conclude the existence of infinitely many simple periodic
points. Strong index-definiteness is needed to show that these periodic
points do not correspond to boundary and extension orbits, and so are
interior.

Remark 1.5. Concerning the last generalization, we remark that we do not
know a single example of a Liouville domain (W,λ) with c1(W ) = 0, SH•(W )
�= 0, and dimSH•(W ) < ∞.

2. Motivation and background

Hypersurfaces of section, return maps, and open books

Definition 2.1. Suppose that Y is a compact, oriented, smooth manifold with
a non-singular autonomous flow φt. We call an oriented, compact hypersur-
face Σ in Y a global hypersurface of section for φt if

• the set ∂Σ is an invariant set for the flow φt (if non-empty);
• the flow φt is positively transverse to the interior of Σ;
• for all x ∈ Y \∂Σ there are t+ > 0 and t− < 0, such that φt+(x) ∈ Σ

and φt−(x) ∈ Σ.

Given a global hypersurface of section, we can define a return map τ as
follows: for each x ∈ int(Σ), we choose a minimal t+(x) > 0 as in the definition
above. Then, we put τ(x) = φt+(x)(x). Periodic points of τ then correspond to
closed orbits of φt. In general, there is no continuous extension to the bound-
ary, although it is unique whenever exists. Although global hypersurfaces of
section do not have good stability properties in higher dimensions, we found
that they can be constructed in certain classes of Hamiltonian dynamical sys-
tems that admit an involution. This class includes the restricted three-body
problem and several variations (e.g., suitable Stark–Zeeman systems [30]).

This notion is also closely related to the notion of an open book decom-
position. This consists of a fiber bundle π : Y \B → S1, where B ⊂ Y is a
codimension 2 submanifold with trivial normal bundle (called the binding),
such that π coincides with the angular coordinate along some choice of collar
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neighborhood B × D
2 of B. The pages of the open book are the closure of

the fibers of π, all having B as boundary. Whenever φt is a Reeb dynamics
of a contact form α on Y which is adapted to the open book (i.e., α|B is also
contact, and dα is symplectic on the pages), each page is a global hypersur-
face of section, and the return map preserves the symplectic form dα. This
is precisely the situation in [30].

In Appendix C, we will collect some standard facts which apply for re-
turn maps arising from Reeb dynamics, as described here, for which Theorem
A may be applied.

3. Preliminaries on symplectic homology

3.1. Liouville domains and Hamiltonian dynamics

There are various forms of Hamiltonian Floer homology for Liouville domains:
these are all referred to as symplectic homology. The first version was due to
Floer-Hofer, [15]. See also Sect. 5 of [23] for an even earlier version, called
symplectology. However, we will review the version due to Viterbo, [38,39].
Roughly speaking, this is a ring with unit that encodes both topological and
dynamical data; it is the homology of a chain complex that is freely generated
by 1-periodic Hamiltonian orbits.

We now fix conventions. Consider a Liouville domain (W,λ), i.e., (W,dλ)
is a compact symplectic manifold with boundary, and the vector field X de-
fined by the equation ιXdλ = λ is outward pointing along each boundary
component of W . This vector field is the Liouville vector field. The 1-form λ
is the Liouville form, and its restriction to ∂W , which we denote by α, is a
contact form.

Given a Liouville domain (W,λ), we build its completion to a Liouville
manifold by attaching a cylindrical end

(Ŵ , λ̂) := (W,λ) ∪∂ ([1,∞) × ∂W, rα).

Throughout the paper, we will consider smooth functions of the form H : W ×
S1 → R, a (time-dependent) Hamiltonian on W . Given such a Hamiltonian,
we define its Hamiltonian vector field XH via

ιXH
dλ = −dH.

We denote the set of 1-periodic orbits of XH by P(H). For the purpose
of Floer theory on non-compact manifolds, we will need a suitable class of
Hamiltonians to work with. First, we recall the spectrum of a contact form
α. If P(α) denotes the set of all periodic Reeb orbits (including covers and
without period bound), then

spec(α) = {a ∈ R | there is γ ∈ P(α), such that a = A(γ)},

where the action is defined as A(γ) =
∫

γ
α.

Definition 3.1. We recall some standard terminology.
• A 1-periodic orbit γ ∈ P(H) is non-degenerate if dF lXH

1 (γ(0)) − id
invertible.
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• The Hamiltonian H is non-degenerate if all γ∈P(H) are non-degenerate.
• A Hamiltonian H on Ŵ is linear at infinity if at the cylindrical end H

has the form H(r, b, t) = cr + d for some constants c > 0 and d. In this
case, we write slope(H) := c.

• A Hamiltonian H that is non-degenerate and linear at infinity with
slope(H) /∈ spec(α) will be called admissible.

We call an S1-family of almost complex structures J = Jt on a Liouville
manifold (Ŵ , λ̂) SFT-like if

• it is compatible with (TŴ , dλ̂); and
• on the cylindrical end it satisfies Lr∂rJ = 0, Jξ = ξ, and Jr∂r = Rα.

We denote by J the space of such families of almost complex structures.

3.2. Conley–Zehnder index, Robbin–Salamon index, and mean index

We will also need invariants of Hamiltonian orbits, i.e., the Conley–Zehnder
index, or more generally, the Robbin–Salamon index, and the mean index.
Assume that x : R → Ŵ is an orbit of XH . Take a symplectic trivialization
ε : R × R

2n → x∗TŴ , (t, v) �→ εt(v) ∈ Tx(t)Ŵ . Then, we get a path of
symplectic matrices associated with x, namely, ψt = ε−1

t ◦dF lXH
t ◦ε0. We can

then define the Robbin–Salamon index of x as μRS(x|[0,T ], ε) := μRS(ψ|[0,T ]).
If ψT −id is invertible, then the Robbin–Salamon index reduces to the Conley-
Zehnder index. The case of Reeb flows is done similarly; we simply restrict
the linearized Reeb flow to the symplectic vector bundle (ξ, dα). Similarly,
we define the mean index of a 1-periodic orbit x as Δ(x, ε) := Δ(ψ), where
Δ(ψ) is the mean index of the symplectic path ψ.2 We have the following
properties (see, e.g., Sect. 3.1.1 of [18]):

(1) |μRS(x|[0,T ], ε) − Δ(x, ε)| ≤ dim W
2 , for all T ;

(2) limT→+∞
μRS(ψ|[0,T ],ε)

T = Δ(x, ε);
(3) Δ(x(k), ε) = kΔ(x, ε),

where we interpret the k-fold catenation x(k), a k-periodic orbit of H, as a
1-periodic orbit of the iterated Hamiltonian H#k.

Definition 3.2. We will call a Hamiltonian flow on W strongly index-definite
if there is a symplectic trivialization εW : W × R

2n → TW , and constants
c > 0, d, such that for every orbit of XH , we have

|μRS(x|[0,T ], ε)| ≥ cT + d.

The notion of strong index-positivity is obtained by dropping the abso-
lute value in the above definition, and similarly for strong index-negativity. As
in Introduction, we can also define it for Reeb flows. Here are some examples:

Lemma 3.3. Suppose that (M, g) is a closed Riemannian manifold with posi-
tive sectional curvature. Assume in addition that the contact structure (S∗M,
(ξ, dα)) admits a global symplectic trivialization. Then, (S∗M,dα) is strongly
index-positive.

2A description of the mean index can be found on page 1318 of of [35].
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Reprinted from the journal 989



A. Moreno, O. van Koert JFPTA

Other examples are complements of Donaldson hypersurfaces in mono-
tone symplectic manifolds provided that the degree is sufficiently high and
symplectically trivial: these manifolds are index negative.

3.3. Hamiltonian Floer homology and symplectic homology

Given Floer data (J,H) of an SFT-like J and an admissible H, we note the
following:

• There are no 1-periodic orbits of XH on the cylindrical end, because of
the spectrum assumption.

• Non-degenerate 1-periodic orbits of XH are isolated.

Then P(H) consists of finitely many 1-periodic orbits. Informally speaking,
we think of Floer homology as “Morse homology” of the following action
functional:

AH : W 1,2(S1 = R/Z, Ŵ ) −→ R, γ �−→
∫

S1
γ∗λ̂ −

∫ 1

0

H(γ(t), t)dt.

This functional has the property AH#k(x(k)) = kAH(x) for iterates. A com-
putation shows that critAH = P(H), and we define the Floer chain complex
as

CF•(Ŵ , λ̂,H, J) :=
⊕

γ∈P(H)

Z2〈γ〉.

We grade this chain complex by the Conley–Zehnder index, so deg γ :=
μCZ(γ, ε). We make a couple of comments:

• in the standard procedure, we choose a capping disk γ̃ of a contractible
1-periodic orbit γ, and a symplectic trivialization εγ̃ of γ̃∗TŴ . This gives
a trivialization et : (R2n, ω0) → Tγ(t)Ŵ by restriction. We then define
the Conley–Zehnder index of an orbit as in Sect. 3.2. Once the capping
disk γ̃ is fixed, this index is independent of the choice of trivialization
on a fixed capping disk. The index does depend on the choice of capping
disk but not if c1(W )|π2(W ) = 0.

• for non-contractible orbits, one needs to choose a reference loop c and
a reference symplectic trivialization εc for each free homotopy [c] ∈
π̃1(W ). Given a 1-periodic orbit x in the same free homotopy class as
c we choose a connecting cylinder S; the trivialization extends over S,
and we can then define the Conley–Zehnder index as before.

• we choose the simpler, but more restrictive approach to use a global
symplectic trivialization on some subdomain W̃ . The existence of such a
trivialization implies that c1(TW̃ ) = 0. This approach obviously reduces
to the previous approach provided that capping disks or connecting
cylinders can be chosen to lie in the domain of definition of the global
symplectic trivialization.

If we define an L2-metric on W 1,2(S1, x∗TŴ ) by

〈X,Y 〉 =
∫ 1

0

ω(X(t), Jt(x(t))Y (t) )dt,
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then the Floer equation is the L2-gradient “flow”3 of the above functional:
for a cylinder u : Z = R × S1 → Ŵ , this is

(du − XH ⊗ dt)0,1 = 0, lim
s→±∞ u(s, t) = x±(t). (3.1)

Solutions to this equation are called Floer trajectories. Given 1-periodic orbits
x+, x− ∈ P(H), the moduli space of Floer trajectories is

M(x+, x−) := {u : Z → Ŵ | u satisfies (3.1)}.

In general, this space does not need to have a manifold structure. To obtain
this extra structure, we first interpret Eq. (3.1) as a section of a vector bundle,
via

∂̄F : P(x+, x−) −→ E(x+, x−), u �−→ (du − XH ⊗ dt)0,1

∈ Lp(Z,Ω0,1(u∗TŴ ) ).

Here, P(x+, x−) is a Banach manifold of cylinders of class W 1,p that are
W 1,p-pushoffs of smooth cylinders that exponentially converge to the given
asymptotes x+ and x−, and E(x+, x−) is a Banach bundle over P(x+, x−)
whose fiber over u ∈ P(x+, x−) is Lp(Z,Ω0,1(u∗TŴ ) ). For details, see Chap-
ter 8 in [7]. We will denote the linearization of ∂̄F at u ∈ P(x+, x−) by Du∂̄F .

Proposition 3.4. For Floer data (J,H) and u ∈ M(x+, x−), Du∂̄F is a Fred-
holm operator of index

indDu∂̄F = μCZ(x+, ε) − μCZ(x−, ε),

where ε is a symplectic trivialization of u∗TŴ .

In addition, we can always choose suitable Floer data close to initial
Floer data such that all moduli spaces are transversely cut out:

Proposition 3.5. There is a dense set Jreg ⊂ J with the property for all J ∈
Jreg, the linearized operator Du∂̄F is surjective for all u ∈ M(x+, x−), and
so M(x+, x−) is a smooth manifold of dimension μCZ(x+, ε) − μCZ(x−, ε).

Floer data (J,H) as in Proposition 3.5 will be called regular Floer data.
We now have all the basic ingredients in place: choose regular Floer data
(J,H), and define the boundary operator for the chain complex CF•(Ŵ , λ̂,
H, J) via

∂x+ =
∑

x−∈P(H), deg(x−)=deg(x+)−1

#Z2 (M(x+, x−)/R) · x−.

Here, we have modded out M(x+, x−) by the reparametrization action in
the domain, and the resulting quotient spaces can be compactified, so the
coefficients in the above sum are actually finite.

Lemma 3.6. This linear map is a differential: ∂ ◦ ∂ = 0.

The Floer homology of (Ŵ , λ̂, J,H) is then defined as the homology

HF•(Ŵ , λ̂, J,H) := H•(CF•(Ŵ , λ̂, J,H), ∂).

3The flow is strictly speaking not defined, since it leads to an ill-posed initial value problem.
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Remark 3.7. In the case of closed symplectic manifolds, Floer homology is
independent of the choice of Floer data. This is not the case for Liouville
domains, and this is the next topic we will deal with.

3.4. Continuation maps and symplectic homology

Assume that H1 and H2 are admissible Hamiltonians on a Liouville manifold
Ŵ with slope(H1) ≤ slope(H2). We interpolate between them via

K : Ŵ × S1 × R −→ R, (w, t, s) �−→ Ks(w, t),

where we impose the monotonicity condition ∂sK ≤ 0, 4 and

Ks(w, t) =

{
H1(w, t), if s � 0
H2(w, t), if s � 0.

We then consider the parametrized Floer equation for u : Z → Ŵ :

(du − XK ⊗ dt)0,1 = 0, lim
s→∞ u(s, t) = x+(t) ∈ P(H1),

lim
s→−∞ u(s, t) = x−(t) ∈ P(H2).

The results of the Fredholm theory mentioned in the previous section also
apply in this setup, and we can define a continuation map as

c12 : CF•(Ŵ , λ̂, J, H1) −→ CF•(Ŵ , λ̂, J, H2),

x+ �−→
∑

x−∈P(H2), deg(x−)=deg(x+)

#Z2M(x+, x−, J, K) · x−,

where M(x+, x−, J,K) is the moduli space of Floer trajectories of the
parametrized Hamiltonian K.

Lemma 3.8. The map c12 is a chain map, and the induced map on homology
is independent of J,K.

We also write c12 for the induced map on Floer homology

c12 : HF•(Ŵ , λ̂, J,H1) −→ HF•(Ŵ , λ̂, J,H2).

Symplectic homology is then defined as the direct limit over a direct system
{Hi}i of admissible Hamiltonians for whose slopes slope(Hi) increase to ∞

SH•(W,λ, J, {Hi}i) := lim−→
cij , j>i

HF•(Ŵ , λ̂, J,Hi). (3.2)

Remark 3.9. Symplectic homology is independent of J , and the sequence of
Hamiltonians {Hi}i. We will henceforth write SH•(W,λ), or SH•(W ) (omit-
ting the dependence on λ for notational simplicity), for symplectic homology.
We similarly use the notation CF•(H) when (W,λ) is fixed.

4This is the monotonicity condition for the continuation map with our conventions for the
Floer equation. Our conventions agree with those in [14].
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3.5. Degenerate Hamiltonians and local Floer homology

In case there is a 1-periodic orbit of H that is degenerate, we perturb H to
a non-degenerate Hamiltonian H̃ with the same slope as H, choose regular
Floer data (J̃ , H̃), and define

HF•(Ŵ , λ̂,H) := HF•(Ŵ , λ̂, J̃ , H̃).

Lemma 3.10. This is well defined, i.e., it is independent of the choice of per-
turbation, and of J̃ .

Instead of choosing explicit perturbed Hamiltonians, we package them
in local Floer homology, which we now review. Suppose H is a Hamiltonian
and assume that x ∈ P(H) is isolated.5 We need the following lemma, which
we adapt from [12]:

Lemma 3.11. Suppose that γ is an isolated 1-periodic orbit of XH with an
isolating neighborhood U . Then, for every neighborhood V of γ with V ⊂ U ,
there is a C2-small perturbation H̃ of H with the following properties:

• All 1-periodic orbits of X
H̃

contained in U are already contained in V ;
• For a compatible almost complex structure J̃ , all Floer trajectories con-

tained in U are already contained in V .

Take a C2-small perturbation H̃ as in the lemma, so that 1-periodic
orbits in U are non-degenerate (via [35, Theorem 9.1]). As in [12], we define
the local Floer homology HF loc

• (γ,H) of γ as the homology of the complex
CF loc

• (U, H̃, J̃) generated by 1-periodic orbits of H̃, with differential count-
ing Floer solutions lying in U . This is well defined and independent of the
isolating neighborhood U , and the perturbed Floer data (J̃ , H̃).

We have the following (see, e.g., formula (3.1) in [18]):

suppHF loc
• (γ,H) ⊂ [Δ(γ) − n,Δ(γ) + n], (3.3)

where suppHF loc
• (γ,H) = {i : HF loc

i (γ,H) �= 0}, and n = dim(W )
2 .

Remark 3.12. We observe that the perturbation in Lemma 3.11 can chosen,
such that the 1-periodic orbits of the perturbed Hamiltonian H̃ have the
same free homotopy class as γ.

3.6. Spectral sequence

Suppose now that H is a Hamiltonian that is linear at infinity with slope(H) /∈
spec(α). We assume furthermore that the 1-periodic orbits of H are all iso-
lated. Hence, there are finitely many 1-periodic orbits with finite action
spectrum AH(P(H)). We order the action values in a strictly increasing se-
quence {ai}k

i=1. Choose a strictly increasing function f : N0 → R, such that
f(i) < ai+1 < f(i + 1).

5In general, we can define local Floer homology for an isolated invariant set.
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Proposition 3.13. There is a spectral sequence converging to the Floer homol-
ogy HF•(W,λ,H), whose E1-page is given by

E1
pq(H) =

⊕

γ∈P(H)
f(p−1)<AH(γ)<f(p)

HF loc
p+q(γ,H).

We will not give a detailed proof here, but refer to Appendix B of [27]
for an almost identical setup. The spectral sequence is the spectral sequence
associated with the action filtration given by f .

Remark 3.14. This description allows us to define Floer homology for Hamil-
tonians with isolated possibly degenerate orbits. In addition, we can directly
use the free homotopy class of a degenerate periodic orbit, since sufficiently
small perturbations cannot change this class as we already observed in Re-
mark 3.12. This means that we can decompose Floer homology also in this
degenerate setting into free homotopy classes.

A difficulty of this degenerate setup is that a single degenerate orbit can
be responsible for several generators in Floer homology. Formula (3.3) can
be used to retain some control.

This point of view is not new, and has been used extensively in for in-
stance [17] and [21]. The spectral sequence, although not used in [17] and
[21], just gives a convenient packaging, and only serves to make some argu-
ments shorter. The idea of perturbation in Floer theory to get statements of
degenerate orbits is even older, and was for example already used in [35].

3.7. Index-definiteness and grading

We shall need the following:

Lemma 3.15. Suppose that SH•(W,λ) is infinite dimensional, and assume
that λ|∂W is an index-definite contact form. Then, #{i | SHi(W,λ) �= 0} =
∞.

Proof. To prove this, choose a family {HN}N of admissible Hamiltonians
with increasing slopes, such that HN is independent of N on W , and so
that CF•(HN ) injects into CF•(HM ) for M > N . By non-degeneracy, each
CF•(HN ) is finitely generated, so the chain complexes get more generators
with increasing N (since dim SH•(W,λ) = ∞). By the index-definiteness as-
sumption, these new generators have a degree whose absolute value is strictly
increasing if N increases sufficiently. This settles the claim. �

4. Proof of the Generalized Poincaré–Birkhoff Theorem

Let (W,λ) be a Liouville domain with completion (Ŵ , λ̂), r the coordinate
in the cylindrical end, B = ∂W , α = λ|B , and τ a Hamiltonian twist map
generated by H = Ht. The symplectic form on the cylindrical end is d(rα),
so by the Hamiltonian twist condition, we get ht : B → R

+, such that
XHt

|B = htRα. This means that Ht|r=1 ≡ Ct > 0, with ∂rHt|r=1 = ht.
The family of Hamiltonians Ht is not necessarily linear at infinity, and might
hence be unsuitable to compute symplectic homology. To deal with this we
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will construct an extension Ĥ to the cylindrical end of Ŵ that is linear at
infinity. By assumption, we have a time-dependent Hamiltonian H defined
on W . In a collar neighborhood ν(B) of the boundary, we will write H :
(1 − ε, 1] × B × S1 → R, where r is the collar neighborhood parameter.
We extend H to Ĥ on Ŵ using the following procedure. First of all, define
H0(b, t) := H(r = 1, b, t) and H1(b, t) := ∂H

∂r |r=1,b,t. We put the remainder in

the function (r−1)2

2! H2, so in short, we define

H2 = (H − (H0 + (r − 1)H1))
2

(r − 1)2

on the collar neighborhood ν(B). By construction H2 is a smooth function on
a halfspace. The functions H0 and H1 are r-independent, so admit obvious
extensions to r > 1, but the function H2 is r-dependent, so we will appeal to
[36], which is based on reflection, to extend H2 to r > 1. We call this extension
H2. Now, choose δ1 > δ0 > 0 and choose a decreasing cut-off function ρ with
ρ|[1,1+δ0] = 1 and ρ(r) = 0 for r > 1 + δ1;

• put Ĥ2(r, b, t) = H2(r, b, t) · ρ(r);
• put Ĥ0(r, b, t) = C ≥ maxt(Ct), Ĥ1(r, b, t) = A ≥ maxt,b(ht(b)) for

r ≥ 1 + δ1;
• and put Ĥj(r, b, t) = Hj(b, t)·ρ(r)+(1−ρ(r) )Ĥj(1+δ1, b, t), for j = 0, 1.

The extension is then defined as

Ĥ := Ĥ0(r, b, t) + (r − 1)Ĥ1(r, b, t) +
(r − 1)2

2!
Ĥ2(r, b, t). (4.4)

By the above, we see that H0 = Ct and H1 = ht, so with our choices,
we conclude that Ĥ = A(r − 1) + C for large r. The extension Ĥ is therefore
linear at infinity, and by perturbing A, we can assume that A /∈ spec(α). The
same can be arranged for all iterates Ĥ#k by possibly changing the slope A.
The resulting Hamiltonians are then all linear at infinity, but they may have
1-periodic orbits that are degenerate. If all the degenerate 1-periodic orbits
are isolated, then we can still define the Floer homology HF•(Ŵ , λ̂, Ĥ#k)
using Remark 3.14. Let us call a Hamiltonian for which all 1-periodic orbits
are isolated, and that is linear at infinity with slope not in the spectrum
weakly admissible.

Since we will focus on return maps, it will be convenient to have some
shorthand notation. Define τ̂k := Fl

X
Ĥ#k

1 , and with the above remark in
mind, we put HF•(τ̂k) := HF•(Ŵ , λ̂, Ĥ#k). We summarize this discussion
in the following lemma:

Lemma 4.1. The extended Hamiltonians Ĥ#k are linear at infinity. Further-
more, if there is an increasing sequence {ki}i ⊂ N, such that each Hamilton-
ian Ĥ#ki is weakly admissible, then we have the following isomorphism:

SH•(W,λ) ∼= lim−→
ki

HF•(τ̂ki),

where τ̂k = Fl
X

Ĥ#k

1 . �
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For later purposes, we need the explicit form of X
Ĥt

. This is given by

X
Ĥt

=
(

∂rĤ0 + Ĥ1 + (r − 1)∂rĤ1 + (r − 1)Ĥ2 +
(r − 1)2

2
∂rĤ2

)

Rα

+
r − 1

r

(

Xξ

Ĥ1
+

r − 1
2

Xξ

Ĥ2
−
(

dĤ1(Rα) +
r − 1

2
dĤ2(Rα)

)

Y

)

.

(4.5)
Here, Y = r∂r is the Liouville vector field, and Xξ

h ∈ ξ is the ξ-component
of the contact Hamiltonian vector field Xh = hRα + Xξ

h of a Hamiltonian
h : B → R, defined implicitly by the equation dα(Xξ

h, ·) = −dh|ξ. Due to
our choice of interpolation, the second term will be smaller in C0-norm if we
choose δ1 smaller. We denote the coefficient of Rα by

F = ∂rĤ0 + Ĥ1 + (r − 1)∂rĤ1 + (r − 1)Ĥ2 +
(r − 1)2

2
∂rĤ2.

Lemma 4.2. If δ1 is chosen to be sufficiently small, then F is positive.

Proof. To see this, we note that the first three terms are non-negative, and
the second term is at least mint,b ht(b) > 0. To see that the last two terms
can be made sufficiently small, note that Ĥ2 has a bound independent of δ1,
and ∂rĤ2 is bounded by C2/δ1, where C2 is independent of δ1. Because this
term is multiplied by a factor (r − 1)2, which is bounded by δ2

1 , the claim
follows. �

As a result, we see that X
Ĥ

is mostly following the positive Reeb di-
rection if we choose δ1 sufficiently small. In the proof of Lemma 4.5, we will
investigate the linearization of X

Ĥ
, which ideally would require closeness to

a reparametrized Reeb flow in C1-norm rather than C0-norm. However, C1-
closeness does not hold, but we will perform a finer analysis with additional
assumptions, which will allow us to fix δ1.

Lemma 4.1 allows us to compute symplectic homology with the extended
Hamiltonian, but it does, by itself, not give any control over periodic orbits in
the extension. To prove our main theorem, we want to show that all generators
of SH•(W,λ) represent periodic points of τ (i.e., lie in W ). To do so, we need
to show that the additional periodic points of τ̂ do not contribute to the
symplectic homology. Depending on the situation, we will use a filtration by
homotopy classes or a filtration by index. More specifically, for p ∈ Fix(τ̂k),

consider the loop γp(t) = Fl
X

Ĥt
t (p). Then

• If dim W = 2, the free homotopy class of γp in π̃1(W ) can be used to
see that the additional periodic orbits do not contribute homologically;

• If dimW > 2, the CZ-index and the index-definiteness assumption will
be used to arrive at the same conclusion.

4.1. Filtration by homotopy class

Assume dim W = 2. Let Fix∂(τ̂k) := Fix(τ̂k) ∩ ([1,+∞) × B). Given p ∈
Fix∂(τ̂k), let [γp] be the free homotopy class in π̃1(∂pW ) ∼= Z, where ∂pW is
the connected component of ∂W containing p. We denote the absolute value
of this integer by |[γp]|.
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Lemma 4.3. Assume the hypothesis of Theorem A, and that dim W = 2.
Then, there is A > 0, independent of k, such that for all p ∈ Fix∂(τ̂k), we
have |[γp]| ≥ Ak.

Proof. On each circle component of B, choose an angular coordinate φ, such
that Rα = ∂φ. From Eq. (4.5) and Lemma 4.2, we see that the component of
X

Ĥ
in the ∂φ-direction is bounded from below by some constant A > 0, e.g.,

A = infB F . Iterating, we get a bound of the claimed form Ak. �
Corollary 4.4. Suppose W and τ are as in the assumptions of Theorem A,
with dim W = 2. Then, Theorem A holds.

Proof. To prove the statement, we will argue by contradiction, so we assume
that the periods of τ are bounded: denote the minimal periods by m0 = 1 <
m1 < . . . < mM ; we include m0 even if τ has no fixed points.

Fix a positive integer N and let A be as in Lemma 4.3. Let δ denote a
free homotopy class in π̃1(W ) that is represented by a simple Reeb orbit (a
boundary parallel simple loop). For i ∈ {1, . . . , N} and the iterate iδ, from
Corollary B.3, we have rkSHiδ

• (W ) = 2 (here, we use the notation from
Appendix B).

We now use the assumption that all fixed points of τ are isolated, and
choose k > mM , such that k is not divisible by m1, . . . ,mM (for example
choose a large prime). This choice of k forces the 1-periodic orbits of Ĥ#k

to be isolated on the interior of W . By construction, the Hamiltonian Ĥ#k

is linear at infinity, so we find r∞, such that Ĥ#k is linear on [r∞,∞) × B.
If there are non-isolated 1-periodic points of Ĥ#k on the cylindrical part
[1, r∞] × B, then we use Lemma 4.6 below to perturb the Hamiltonian Ĥ#k;
this perturbation makes all orbits on [1, r∞] × B non-degenerate, and does
not affect 1-periodic orbits on the interior of W . Hence, we obtain a weakly
admissible, possibly degenerate Hamiltonian, which we continue to denote by
Ĥ#k. For this Hamiltonian, we can define Floer homology using Remark 3.14.

By choosing an increasing sequence {k} of primes, we can then define
SHiδ

• (W ) = lim−→k
HF iδ

• (Ĥ#k). Hence, we find a sufficiently large k that

2 ≤ rk HF iδ
• (Ĥ#k) =

∑

p,q

E∞
pq(Ĥ#k) ≤

∑

p,q

E1
pq(Ĥ

#k) =
∑

p,q

rk HF loc,iδ
p+q (γ, Ĥ#k).

All of these sums are finite by the assumption that the fixed points are
isolated. We conclude that there is a 1-periodic orbit γk,iδ of Ĥ#k whose
free homotopy class equals iδ. From Lemma 4.3, every p ∈ Fix∂(τ̂k) has
[γp] = jδ with j ≥ Ak. If we choose k > N/A, we see that j > N , so the
1-periodic orbit γk,iδ is represented by a fixed point of τk.

This works for all N , so by sending k to infinity, we get infinitely many
periodic points of τ . To see that these are geometrically distinct, note that if
p ∈ Fix(τk) and a := [γp] = iδ is boundary parallel, then γ�

p has homotopy
class �a, so another orbit must represent the free homotopy class a. Taking
the limit in k, we see that new generators in the homotopy class a need to
appear to generate SHa(W ). This gives infinitely many geometrically distinct
interior periodic points (in different boundary parallel homotopy classes). �
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4.2. Filtration by index

We now deal with the second case, so we assume now that dim W > 2,
c1(W )|π2(W ) = 0, and that the Reeb flow is strongly index-definite. To set
up the argument, we first need to establish that index-definiteness of the lin-
earized Reeb flow equation at the boundary (in the sense of Definition E.1 in
Appendix E) implies index-definiteness of the linearized Hamiltonian equa-
tion along the cylindrical end:

Lemma 4.5. Assume that (ξ|B , dα|B) is symplectically trivial, and that the
linearized Reeb flow equation ψ̇ = ∇ψRα along B = ∂W is strongly index-
definite. Then, the linearized Hamiltonian flow equation ψ̇ = ∇ψX

Ĥ
of the

extension Ĥ given by Eq. (4.4) is also strongly index-definite along the cylin-
drical end [1,+∞) × B.

Proof. We prove this using a matrix representation. To do this, we need
to symplectically trivialize the full tangent bundle on the cylindrical ends.
Given a symplectic trivialization of (ξ|B , dα|B), we only need to trivialize the
symplectic complement of ξ. We do this using the trivialization L = 〈Y =
r∂r, R〉, where R = Rα/r is the Reeb vector field at the r-slice.

We will work with the usual formalism of time-dependent Hamiltonians,
and we do not include this time-dependence in the notation. Exterior and
covariant derivatives are computed using the base manifold only, and do not
involve time derivatives. We will also use the following notation:

Xξ := Xξ

Ĥ1
+

r − 1
2

Xξ

Ĥ2
,

G := dĤ1(Rα) +
r − 1

2
dĤ2(Rα).

To compute the linearization, we choose a convenient connection ∇, namely
the Levi–Civita connection for the metric 1/r2 · dr ⊗ dr + α ⊗ α + dα(·, J ·).
This connection has the following properties:

• ∇Y = 0. Keep in mind that Y is the Liouville vector field r∂r;
• ∇Rα

Rα = 0 and ∇Y Rα = 0;
• ∇XRα ∈ ξ for all X ∈ ξ.

With respect to this connection, we compute the linearization as

∇X
Ĥ

= F∇Rα + dF ⊗ Rα +
1
r2

dr

⊗(Xξ − GY ) +
r − 1

r
(∇Xξ − dG ⊗ Y ). (4.6)

Before we continue our analysis of the linearization, we first need to discuss
the behaviour of the Hamiltonians Ĥj and their derivatives under rescaling
the interpolation parameter δ1. We will write the terms in the expression (4.4)
as Ĥ ′

j if we use δ′
1 as interpolation parameter. For δ′

1 < δ1, we have the
following:
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• derivatives in the B-direction (denoted ∂b) admit a uniform bound, in-
dependent of δ1, that is

max
[1,+∞)×B

|∂k
b Ĥ ′

j | ≤ max
[1,+∞)×B

|∂k
b Ĥj | for all k ≥ 0;

• derivatives in the r-direction scale as follows:

max
[1,+∞)×B

|∂k
r Ĥ ′

j | ≤
(

δ1

δ′
1

)k

max
[1,+∞)×B

|∂k
r Ĥj | for all k ≥ 0.

Keeping this scaling behaviour in mind, we regroup terms in Eq. (4.6) to
obtain the following representation:

∇X
Ĥ

= L0 + L1,

where

L0 = F∇Rα + dF ⊗ Rα +
1
r2

dr ⊗ (Xξ − GY ) − r − 1
r2

dG(Y )dr ⊗ Y

+
r − 1
r2

dr ⊗ ∇Y Xξ

and

L1 =
r − 1

r

(∇ξXξ + α ⊗ ∇Rα
Xξ − Rα(G)α ⊗ Y − dξG ⊗ Y

)
.

Here, ∇ξ = Pξ∇|ξ, where Pξ is the orthogonal projection to ξ, and dξ = d|ξ.
We will explain below that the matrices L0 and L1 have the following matrix
representations, with respect to the decomposition TŴ = ξ ⊕ 〈Y,R〉:

L0 =

⎛

⎜
⎜
⎝

F · ∇ξRα
U 0
V 0

0 0
W Z

a 0
b c

⎞

⎟
⎟
⎠ , L1 =

r − 1
r

⎛

⎜
⎜
⎝

∇ξXξ
0 U ′

0 V ′

W ′ Z ′

0 0
0 a′

0 0

⎞

⎟
⎟
⎠ .

This is clear for L0. We further want to show that L0 ∈ sp(2n), which will
constrain the entries more. Since we know that L0 + L1 ∈ sp(2n), we will
show that L1 ∈ sp(2n), since the latter contains fewer terms. For this we note
the following:

• the matrix representation for ∇ξXξ is in sp(2n − 2). This is because
these entries come from the ξ-part of a contact Hamiltonian;

• the matrix representation for Rα(G)α ⊗ Y is in sp(2): the non-trivial
entry corresponds to the element a′;

• non-trivial entries in the matrix representation of −dξG⊗Y appear only
on the first row of the lower left block. These correspond to the elements
W ′, Z ′;

• non-trivial entries in the matrix representation of α ⊗ ∇Rα
Xξ appear

as the last column. We will show that these correspond to the elements
U ′ and V ′. We claim that 〈∇Rα

Xξ, Rα〉 = 0. Indeed, since the contact
structure is orthogonal to the Reeb vector field with our choice of metric,
we have

0 = Rα〈Xξ, Rα〉 = 〈∇Rα
Xξ, Rα〉 + 〈Xξ,∇Rα

Rα〉 = 〈∇Rα
Xξ, Rα〉.
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Similarly, we obtain 〈∇Rα
Xξ, Y 〉 = 0. This means that the L-entries in

the matrix representation of α ⊗ ∇Rα
Xξ are zero.

• we have (W ′, Z ′)T = J · (U ′, V ′)T = (−V ′, U ′)T . This follows, since
−dξG is dual to ∇Rα

Xξ, i.e., dα(∇Rα
Xξ, ·) = −dξG.

We conclude that L1 ∈ sp(2n), and hence, L0 is, too. Observe also that for
all ε > 0, we can choose δ1 > 0, such that ‖L1‖ < ε due to the scaling
behaviour we discussed earlier: this can be done in a way that is compatible
with Lemma 4.2, i.e., δ1 getting smaller as ε gets smaller.

Since J0L0 is symmetric, we can fix the terms of L0. They must neces-
sarily have the following form:

L0 =

⎛

⎜
⎜
⎝

F · ∇ξRα
U 0
V 0

0 0
V −U

a 0
b −a

⎞

⎟
⎟
⎠ ∈ sp(2n).

This matrix has precisely the form that we consider in Appendix E. More-
over, note that strong index-definiteness is invariant under scaling by a posi-
tive (possibly time-dependent) function of the generating matrix. Indeed, this
scaling has the effect of positively reparametrizing the flow, and so the new
flow intersects the Maslov cycle as often as the original one (although the
constants in the definition of strong index-definiteness might change). There-
fore, since the ODE ψ̇ = ∇ξ

ψRα is strongly index-definite by assumption and
F > 0, then so is the ODE ψ̇ = F · (∇ξ

ψRα). Lemma E.2 in Appendix E
now tells us that the system ψ̇ = L0ψ is strongly index-definite. By choos-
ing δ1 sufficiently small, we can make the matrix L0 get arbitrarily C0-close
to L0 + L1 = ∇X

Ĥ
. Since the system ψ̇ = L0ψ is strongly index-definite,

we can adapt Lemma 2.2.9 from [37] to see that ψ̇ = ∇ψX
Ĥ

is strongly
index-definite, too. This concludes the proof of Lemma 4.5. �

We need the following lemma to ensure that our Hamiltonians are
weakly admissible.

Lemma 4.6. Given an extension τ̂ : Ŵ → Ŵ as in the beginning of Sect. 4,
there is a Hamiltonian perturbation τ̃ = φ1

f ◦ τ̂ : Ŵ → Ŵ with the following
properties:
(1) φ1

f (x) = x for all x not in a neighborhood of [1, r∞] × B, for some fixed
r∞ > 1. In particular, all interior fixed points of τ are unaffected by the
perturbation;

(2) all fixed points of τ̃ |[1,r∞]×B are non-degenerate and hence isolated;
(3) by the standard composition rule for Hamiltonians τ̃ is the time 1-flow

of a Hamiltonian H̃. This Hamiltonian H̃ is C2-close to Ĥ, and its fixed
points have Robbin–Salamon index close to that of the unperturbed fixed
points.

Proof. We adapt the argument from [10, Lemma 2] to our setting. Set V :=
[1, r∞]×B, where r∞ > 1 is such that Ĥ is linear on [r∞,∞)×B. We need to
find a C2-small function f vanishing on the complement of a neighborhood
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of V , such that all fixed points of φ1
f ◦ τ̂ are non-degenerate on V . Consider

the map

j : V −→ V × V, x �−→ (x, τ̂(x)),

and denote its image by Γ. Define the diagonal Δ = {(v, v) ∈ V ×V | v ∈ V }.
Observe that v ∈ Fix(τ̂) is a non-degenerate fixed point of τ̂ if and only if Γ
and Δ intersect transversely at (v, v).

For all points (v, v) ∈ Γ ∩ Δ, choose a Darboux ball Bε(v) ⊂ Ŵ , such
that v corresponds to 0 in the Darboux ball. To choose ε, let λmax denote
the maximal (in absolute value) eigenvalue of dxτ̂ over all fixed points of τ̂
in the cylinder. In a formula

λmax := max{|λ| | λ eigenvalue of dxτ̂ , x ∈ Fix(τ̂) ∩ [1, r∞] × B}.

Note that λmax ≥ 1, since dxτ̂ is symplectic. Choose ε so small, such that the
following two properties hold:

• if x ∈ Bε/2λmax(v), then τ̂(x) ∈ B3ε/4(v).
• for all interior fixed points of τ , i.e., for x ∈ Fix(τ |int(W )) we have

d(x, [1,∞]×B) > ε, where d is some fixed reference metric (for example,
induced by the Riemannian metric ω̂(·, Ĵ ·)).

We give some intuition for these choices, before going into the computation.
By the first property, we retain some control after applying τ̂ to a point that
is sufficiently close to a fixed point. Intuitively, if x is close to the fixed point
v, then by the definition of λmax, the map τ̂ sends x approximately away
by a factor of at most λmax, and so we ensure that if x ∈ Bε/2λmax(v), then
τ̂(x) ∈ B3ε/4(v). Below, we will define Hamiltonian functions to perturb the
map τ̂ , and this property will ensure that we have maximal control over the
value of the Hamiltonian vector fields. This point is actually not essential,
but it makes the computation below a little more uniform.

We now come to our Hamiltonian perturbation functions. Choose func-
tions fv,i for i=1, . . . , 2n, such that, in Darboux coordinates z=(z1, . . . , z2n),
we have fv,i(z) = zi · ρv(z), and ρv is a cut-off function that equals 1 on
B3ε/4(v) and vanishes outside Bε(v). For the sake of explicitness, note that
the Hamiltonian vector field of fv,i is given by

Xfv,i
= ρv(z)J0 · ei + zi · Xρv

,

where ei is the ith standard basis vector, and J0 is the standard complex
structure on the Darboux ball Bε(v). By construction, this vector field van-
ishes on the complement of Bε(v). Moreover, for sufficiently small r, the time-
1 flow of the Hamiltonian vector field of rfv,i on the smaller ball Bε/2λmax(v)
is the map z �→ z + rJ0 · ei. If x ∈ Fix(τ̂) ∩ Bε/2λmax(v), we have

∂

∂r

∣
∣
∣
r=0

φ1
rfv,i

◦ τ̂(x) =
∂

∂r

∣
∣
∣
r=0

φr
fv,i

◦ τ̂(x) = Xfv,i
(τ̂(x)).

For completeness, we observe that each of these functions fv,i is a C∞ func-
tion defined on all of Ŵ , vanishing outside Bε(v).

Since Γ ∩ Δ is compact, we find a finite cover of its projection to V
of the form

⋃
v∈I Bε/2λmax(v). We make the following observation. Consider
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x ∈ Fix(τ̂) ∩ [1, r∞] × B. Then, there is v ∈ I, such that x ∈ Bε/2λmax(v). On
this small ball, the Hamiltonian vector fields associated with fv,1, . . . , fv,2n

are linearly independent, and form a basis of sections.
Define the finite-dimensional vector space

R :=
(
R

2n
)#I

= R
D,

where we have set D := 2n#I. We relabel the functions fv,i using a single
index j, and put f = (f1, . . . , fD). Define the projection p : V × V × R →
R, (x, y, r) �→ r, and consider the “universal” space

ΓR =

{

(x, y, r) ∈ V × V × R

∣
∣
∣
∣
∣

x ∈ V, r = (r1 . . . , rD) ∈ R,

y = φ1
r·f ◦ τ̂(x), r · f =

∑

j

rjfj

⎫
⎬

⎭
.

Note that the function r ·f is a C∞ function defined on all of Ŵ : this function
vanishes outside a neighborhood of [1, r∞] × B.
Claim: The space ΓR intersects the enlarged diagonal ΔR = {(v, v, r) ∈
V × V × R} transversely for r that are sufficiently close to 0. In particular,
VR := ΓR ∩ ΔR is a submanifold. �

Proof of claim. To verify the claim, we compute the derivatives of the map

jR : (x, r) �→ (x, φ1
r·f ◦ τ̂(x), r)

and the corresponding map for ΔR, jΔ : (x, r) �→ (x, x, r). For jR, we find
the derivative

dx,r=0jR =

⎛

⎝
idV 0
dxτ̂ Xf1(τ̂(x)), . . . , XfD

(τ̂(x))
0 idR

⎞

⎠ .

For jΔ, we find the derivative

dx,r=0jΔ =

⎛

⎝
idV 0
idV 0
0 idR

⎞

⎠ .

Given a point (x, x, 0) ∈ VR = ΓR∩ΔR (so τ̂(x) = x), there is v ∈ I, such that
x ∈ Bε/2λmax(v). By construction, the vector fields Xfv,1 ◦ τ̂ , . . . , Xfv,2n

◦ τ̂
are linearly independent on Bε/2λmax(v). This means that, taken together,
the matrix representations of dx,r=0jR and dx,r=0jΔ have full rank, namely
2n + 2n + D. We conclude that jR is transverse to the enlarged diagonal ΔR

for r = 0, and hence, by compactness, also for small r. �

Applying Sard’s theorem to the projection p|VR
, we find a regular value

r0 of p|VR
close to 0. We see that

Γr0 = {(x, y) ∈ V × V | y = φ1
r0·f ◦ τ̂(x)}

intersects Δ transversely. This means that all fixed points of φ1
f0

◦ τ̂ in V are
non-degenerate, where f0 = r0 ·f , so claim (2) holds. Since we can choose the
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regular value r0 arbitrarily small, and since the support of the perturbation
f0 is a small neighborhood of [1, r∞] × B, the claim (1) holds. To see that
claim (3) also holds, we note that the free homotopy class of a 1-periodic orbit
is not affected by this perturbation if it is sufficiently small. For the index, we
use the same argument as before. The unperturbed system is strongly index-
definite, and the same will be true for small perturbations. This concludes
the proof of the lemma. �
Proof of Theorem A (dim W > 2). Write τ = φ1

H for H as in Definition
1.1. Assuming its interior fixed points are isolated, we have finitely many
isolated interior 1-periodic orbits of H, say γ1, . . . , γk. The starting points
γ1(0), . . . , γk(0) are the fixed points of τ .

Assume by contradiction that the minimal periods of all interior periodic
points of τ are, in increasing order, given by m0 = 1,m1, . . . ,m�. Take an
increasing sequence {pi}∞

i=1 going to infinity, such that each pi is indivisible
by the m1, . . . ,m�. For instance, one can take the sequence {pi} to be an
increasing sequence of primes all of which are larger than maxj mj .

As in the proof of Corollary 4.4, we can appeal to Remark 3.14 to
define Floer homology for a possibly degenerate Hamiltonian. Indeed, due
to the choice of pi’s, all fixed points of τ̂pi are isolated, and we can apply
Lemma 4.6 if necessary to perturb the Hamiltonian Ĥ#pi on the cylindrical
part [1, r∞] × B, for some r∞. This ensures that the Hamiltonian Ĥ#pi is
weakly admissible, so we can use local Floer homology and the spectral se-
quence from Proposition 3.13, to define HF (Ĥ#pi). Hence, we can compute
symplectic homology as SH•(W ) = lim−→i

HF•(Ĥ#pi). By Lemma 3.15, for all
N > 2nk, where dim(W ) = 2n, we find distinct degrees i1, . . . , iN , such that
SHij

(W ) �= 0, ordered by increasing absolute value. By Lemma 4.5, we can
choose pi sufficiently large, such that the following holds:

(1) Each 1-periodic orbit of Ĥ#pi that is contained in Ŵ\int(W ) has RS-
index whose absolute value is larger than |iN | + 2n;

(2) the Floer homology groups HFij
(Ĥ#pi) are non-trivial for j = 1, . . . , N .

Now, consider the spectral sequence from Proposition 3.13 for Ĥ#pi . We
deduce from (2) that there must be non-trivial summands on E1

pq(Ĥ
#pi)

with p + q = ij for j = 1, . . . , N . Since the terms of the spectral sequence
are made up from local Floer homology groups, and we know from (1) that
no 1-periodic orbit in Ŵ\int(W ) can contribute to local Floer homology of
degree ij , we conclude that every term E1

pq(Ĥ
#pi) in the spectral sequence

with p + q = ij must come from the local Floer homology of an orbit γ in
int(W ).

Because we have assumed that the pi’s are indivisible by m1, . . . ,m�,
we conclude that each such orbit γ must be an iterate of one of the orbits
γ1, . . . , γk. Moreover, by (3.3) and Sect. 3.2:

suppHF loc
• (γpi

j , Ĥ#pi) ⊂ [piΔ(γj) − n, piΔ(γj) + n].

This covers at most 2nk different degrees, leaving some of the degree ij
uncovered as we had chosen N > 2nk. This is a contradiction. �
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Proof of Theorem B. We only need to show that dimSH•(W ) = ∞. Since
W ⊂ T ∗M is star-shaped, from Viterbo’s theorem [38], we have SH•(W ) ∼=
H•(LM ;Z2) where LM is the free loop space of M . The statement is more
subtle when using Z or Q-coefficients, see [4]. Now, we can apply the following
theorem due to Gromov: �
Theorem. [19, Sect. 1.4] Let (M, g) be a closed Riemannian manifold with
finite fundamental group. For a > 0, let LM be the free loop space of M , and
let L<aM ⊂ LM denote the space of free loops with length less than a. Let ιa :
L<aM ↪→ LM denote the inclusion, and ιak : Hk(L<aM ;R) → Hk(LM ;R)
be the map induced in real homology of degree k. Then, there exists a positive
constant C = C(M, g), such that

∑

k≥0

rank(ιak) ≥ Ca.

Together with the above, this tells us that SH•(W ) is infinite dimen-
sional. �
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Appendix A: Hamiltonian twist maps: examples and
non-examples

We will now discuss some examples that help clarify the nature of the Hamil-
tonian twist condition.

A.1. Examples

The following construction, an adaptation of a standard one, further illus-
trates that the Hamiltonian twist condition is not localized at B.

Proposition A.1. For each k, � ∈ N, there are strict contact manifolds
(Yk, αk,�) carrying adapted open books (Bk = B, πk), πk : Yk\B → S1, with
fixed page Σ, such that the following holds:
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• The return maps τk all agree in a collar neighborhood of B = ∂Σ, and
are generated by Hamiltonians Hk;

• Furthermore, there is a symplectomorphism φk from Σ̊, the interior of
the page Σ, to the open subset W2 of the Liouville completion Ŵ of a
fixed Liouville domain (W,λ) with ∂W = B, where

W2 = W ∪∂ ([1, 2) × B, d(rαB) ),

and αB = λ|B is the contact form at B, and r ∈ [1, 2).
• The return map φk ◦ τk ◦ φ−1

k extends to a Hamiltonian diffeomorphism
τ̄k on the closure W̄2, generated by Hamiltonians H̄k.

• The Hamiltonian twist condition holds for H̄k for k ≤ �, but not for
k > �.

Proof. Consider a Liouville domain (W,λ) with a 2π-periodic Reeb flow on its
boundary (e.g., D∗S2). We identify a collar neighborhood νW (B) of B = ∂W
with (1/2, 1]×B, where B = {r = 1}, via a diffeomorphism ε : (1/2, 1]×B −→
νW (B) ⊂ W . We assume λ = rαB along νW (B), αB = λ|B . Define the
smooth Hamiltonian

H(x) =

{
0, if x /∈ νW (B),
f(r), if x = ε(r, b) ∈ νW (B).

Here, f is a smooth, decreasing function with the property
• f(1/2) = 0;
• f ′(r) ≥ −2π and f ′(r) = −2π near r = 1.

The Hamiltonian vector field of H is given by

XH(x) =

{
0 if x /∈ νW (B),
f ′(r)Rα if x = ε(r, b) ∈ νW (B).

Define the fibered Dehn twist by τ(x) = FlXH
1 (x), where FlXH

t is the Hamil-
tonian flow of H with respect to dλ. We have τ∗λ = λ−dU , where we choose
the primitive U to be a negative function: with a computation, we can show
that it is possible to choose U(1) = −2π, and will do so. The iterate τk is
generated by Hk = kH, and (τk)∗λ = λ − dUk, with Uk =

∑k−1
j=0 (U ◦ τ j).

We consider the associated open book

Yk = OB(W, τk) := B × D2 ∪∂ Wτk ,

where Wτk = W × R/(x, t) ∼ (τk(x), t + Uk(x)) is the mapping torus. The
manifold Yk carries an adapted contact form αk,� which looks like αk,� = λ+
dθ along Wτk , and αk,� = h1(ρ)αB +h2(ρ)dθ along B×D2. Here, (ρ, θ) ∈ D2,
and h1 and h2 = h2,k,� are suitable profile functions, which we will fix now.
Choose h1 and h2, such that

• they do not depend on k for ρ ≤ 1/2;
• h′

1 ≤ 0 with equality only at ρ = 0. We may take h1(ρ) = 2 − ρ2 near
ρ = 0 (this is not essential but very convenient);

• near ρ = 0, we have −h′
2

h′
1
(ρ) = � + ε > 0 (non-singular) for some small

ε ∈ (0, 1).
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• h2 ≡ k, h1 = −ρ + 2 near ρ = 1 (so h2 depends on k on the interval
(1/2, 1]).

Note that, in the definition of Yk, the binding model is glued to the mapping
torus using the gluing map

Φglue : B × D2
ρ>1/2 −→ Wτk

(b; ρ, θ) �−→
(

2 − ρ, b;
−Uk(1)θ

2π

)

= (2 − ρ, b; kθ).

This pulls back dθ + λ to kdθ + (2 − ρ)αB . This explains the above choices.
The global hypersurface of section, i.e., a fixed page, is Σ = W ∪∂ B ×

[0, 1], with coordinate ρ ∈ [0, 1], and we can compute the return map τk

explicitly. We find

τk(x) =

{
τk(x), if x ∈ W,

(FlR−2πh′
2(ρ)/h′

1(ρ)(b), ρ), if x = (b, ρ) ∈ B × [0, 1],

where FlRt is the Reeb flow of αB at B. The Hamiltonian generating τk can
be obtained by patching Hk on W to a Hamiltonian that generates τk along
B×[0, 1]; we need to match the slopes on the boundary, which can be done by
rewriting τk(b, ρ) = (FlR−2π(h′

2(ρ)/h′
1(ρ)+k)(b), ρ). Then, Hk extends to Σ via

H̄k(r) = −2π
∫ ρ

1
(h′

2(s)/h′
1(s)+k)h′

1(s)ds+f(1) along B×[0, 1]. Note that the
form dλ also extends along B × [0, 1] via dαk,�|Σ = h′

1(ρ)dρ ∧ αB . Therefore,
Hk generates τk, and τk is independent of k on the collar neighborhood B ×
[0, 1/2].

To complete the proof, we first note that the 2-form d(h1(ρ)αB) is de-
generate on ∂Σ. However, the map

φk : Σ̊ −→ W2 = W ∪∂ ([1, 2) × B, d(rαB) ),

w �−→
{

w w ∈ W

(h1(ρ), b) w = (b, ρ) ∈ B × (0, 1]

is a symplectomorphism, and the closure of W2 is an actual Liouville domain.
Furthermore, due to our explicit choice h1(ρ) = 2 − ρ2 near ρ = 0, we find
ρ =

√
2 − r, so we can compute the conjugated return map φk ◦ τk ◦φ−1

k near
r = 0 as

φk ◦ τk ◦ φ−1
k (r, b) = (r, F lR2π(�+ε)(b)).

This map extends to a symplectomorphism τ̄k : W̄2 → W̄2. Here, note that
φ−1

k is not smooth at r = 2, but this is resolved by the explicit form of τk,
which does not contain any ρ dependence in the B-direction near ρ = 0. This
extended map is still Hamiltonian, and satisfies the twist condition for k ≤ �,
but not for k > �.

Therefore, it satisfies the claim of the proposition. �

Remark A.2. Given a return map τ that is Hamiltonian, we point out that
the Hamiltonian family generating τ is not unique, and more importantly,
that various dynamical properties depend on the choice of Hamiltonian. For
example, on the disk (D2, rdr ∧ dθ), the return map τ = id is generated by
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the autonomous Hamiltonians Hk = kπr2. For given k, the Robbin–Salamon
index of the 1-periodic orbit at ∂D2 is 2k, i.e., k-dependent. The associated
paths of symplectic matrices have the same endpoints, but are not homo-
topic rel endpoints. This also illustrates the interpretation of the RS-index
as a winding number. Note that D2 has a Hamiltonian circle action that
extends over the whole space. We do not know whether the same type of
phenomenon occurs for more general symplectic manifolds (i.e., without a
global Hamiltonian circle action).

A.2. Non-examples: Katok examples

In [25], Katok constructed examples of non-reversible Finsler metrics on Sn

with only finitely many simple closed geodesics. Here is a description of such
examples using Brieskorn manifolds. We consider

Σ2n−1 :=

⎧
⎨

⎩
(z0, . . . , zn) ∈ C

n+1

∣
∣
∣
∣
∣

∑

j

z2
j = 0

⎫
⎬

⎭
∩ S2n+1

1 ,

equipped with the contact form α = i
2

∑
j zjdz̄j − z̄jdzj . These spaces are

contactomorphic to S∗Sn with its canonical contact structure. The given
contact form is actually the prequantization form.

We describe the setup in detail when n = 2m + 1 is odd. We group the
coordinates in pairs, and make the following unitary coordinate transforma-
tion:

w0 = z0, w1 = z1, w2j =
√

2
2

(z2j + iz2j+1), w2j+1

=
i
√

2
2

(z2j − iz2j+1) for j = 1, . . . ,m.

Because this is a unitary transformation, the form α, expressed in w-
coordinates, still has the form

α =
i

2

∑

j

wjdw̄j − w̄jdwj .

For a tuple ε = (ε1, . . . , εm) ∈ (−1, 1)m, define the function Hε on a neigh-
borhood of Σ2n−1 via

Hε(w) = ‖w‖2 +
∑

j

εj(|w2j |2 − |w2j+1|2).

For ε sufficiently small, this function is positive, so we define a perturbed
contact form by

αε = H−1
ε · α.

The Reeb vector field of αε is

Rε = Xε + Xε,
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where

Xε = iw0
∂

∂w0
+ iw1

∂

∂w1
+
∑

j

(

i(1 + εj)
∂

∂w2j
+ i(1 − εj)

∂

∂w2j+1

)

,

Xε = −iw0
∂

∂w0
− iw1

∂

∂w1
−
∑

j

(

i(1 + εj)
∂

∂w2j
+ i(1 − εj)

∂

∂w2j+1

)

.

The Reeb flow is therefore given by

(w0, . . . , wn) �−→ (e2πitw0, e
2πitw1, e

2πit(1+ε1)w2, e
2πit(1−ε1)w3,

. . . , e2πit(1+εm)wn−1, e
2πit(1−εm)wn).

This flow has only n + 1 periodic orbits if all εj are rationally independent.
These are given by

γ0(t) =
(

1√
2
e2πit,

i√
2
e2πit, 0, . . . , 0

)

, t ∈ [0, 1]

β0(t) =
(

1√
2
e2πit,− i√

2
e2πit, 0, . . . , 0

)

, t ∈ [0, 1]

γj(t) =
(
0, 0, . . . , e2πit(1+εj), 0, . . . , 0, 0

)
, t ∈ [0, 1/(1 + εj)]

βj(t) =
(
0, 0, . . . , 0, e2πit(1−εj), . . . , 0, 0

)
, t ∈ [0, 1/(1 − εj)]

for j = 1, . . . ,m.

Remark A.3. As stated, we see that there are only finitely many periodic
orbits. Furthermore, since the unperturbed system, i.e., ε = 0, describes the
geodesic flow on the round sphere, and the perturbation αε is C2-small for
small ε, it follows that the Reeb flow of the contact form αε corresponds to
the geodesic flow of a Finsler metric. In Sect. A.3, we describe how to obtain
an explicit relation with the famous Katok examples for S∗S2.

We construct a supporting open book for the contact form αε using the
map

Θ : Σ2n−1 −→ C, (w0, w1, . . . , wn) �−→ w0.

The zero set of Θ defines the binding, the pages are the sets of the form Pθ =
{arg Θ = θ}, θ ∈ S1, which are all copies of D∗Sn−1, and the monodromy is
τ2 where τ is the Dehn–Seidel twist. The (boundary extended) return map
for the page P0 = Θ−1(R>0) ∼= D

∗Sn−1 is

Φ : P0 −→ P0,

p = (r0, w1, w2, w3, . . . , wn−1, wn) �−→ (r0, w1, e
2πiε1w2, e

−2πiε1w3, . . . ,

e2πiεmwn−1, e
−2πiεmwn).

Here, w0 = r0 ∈ R≥0 is a real non-negative number, and note that the
first return time is constant equal to 1 (which follows by looking at the first
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coordinate). If all εj are irrational and rationally independent, this map has
only two periodic points, both actually fixed, given by

p0 =
(

1√
2
,

i√
2
, 0, . . . , 0

)

q0 =
(

1√
2
,− i√

2
, 0, . . . , 0

)

.

Note that p0, q0 are both interior fixed points, and irrationality of the εj

implies that there are no boundary fixed points. We will explain now why
this map is Hamiltonian with boundary preserving Hamiltonian flow. The
symplectic form on the interior of the page P0 is the restriction of dαε. To
manipulate this, let us define

H = ‖w‖2, Δε =
∑

j

εj(|w2j |2 − |w2j+1|2),

so Hε = H + Δε. Observe that the return map Φ is generated by the 2π-flow
of the vector field

X = i

m∑

j=1

εj

(

w2j
∂

∂w2j
− w̄2j

∂

∂w̄2j
− w2j+1

∂

∂w2j+1
+ w̄2j+1

∂

∂w̄2j+1

)

.

This vector field is tangent to the page and preserves H and Δ, and hence
also Hε. Plug X in into dαε. We find

ιX(dH−1
ε ∧ α + H−1

ε dα) = −α(X)dH−1
ε + H−1

ε ιXdα

= −ΔεdH−1
ε − H−1

ε dΔε = −d(H−1
ε Δε).

This means that the Hamiltonian generating the return map is H−1
ε Δε. More-

over, index-positivity follows, by observing that it holds for the round metric
on S2 and the fact that it is an open condition. It follows from Theorem
B that Φ does not satisfy the twist condition for any Liouville structure on
D

∗S2.

Remark A.4. The setup for n even is very similar: we drop the w0-coordinate.

A.3. Relation with the Katok examples

We explain how to see that the above dynamical systems indeed correspond
to the Katok examples in case of S∗S2 (i.e., n = 2). More precisely, we will
show that the geodesic flow of the Katok examples is conjugated to the Reeb
flow of αε. We need some preparation, which applies to all dimensions, before
we specialize to dimension 3. First of all, we fix positive weights (a1, . . . , an) ∈
R

n
>0. Then, we define the 1-forms on the sphere S2n−1 given by

β0 = ι∗
(∑

j xjdyj − yjdxj
∑

k ak(x2
k + y2

k)

)

= ι∗

⎛

⎝ 1
∑

k ak|zj |2
i

2

∑

j

zjdz̄j − z̄jdzj

⎞

⎠

and

β1 = ι∗

⎛

⎝
∑

j

1
aj

(xjdyj − yjdxj)

⎞

⎠ = ι∗

⎛

⎝ i

2

∑

j

1
aj

(zjdz̄j − z̄jdzj)

⎞

⎠ ,
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where ι is the inclusion map S2n−1 → R
2n. We will show that the first form

is a contact form and that it is strictly contactomorphic to the latter. For
this, consider the map

ψ : S2n−1 −→ S2n−1

(z1, . . . , zn) �−→
(√

a1∑
k ak(x2

k + y2
k)

z1, . . . ,

√
an∑

k ak(x2
k + y2

k)
zn

)

.

We find

ψ∗β1 =
∑

j

1
aj

√
aj∑

k ak(x2
k + y2

k)

×
(√

aj∑
k ak(x2

k + y2
k)

(xjdyj − yjdxj)

+(xjyj − yjxj)d
(√

aj∑
k ak(x2

k + y2
k)

))

= β0.

This also shows that β0 is a contact form, as ψ is a diffeomorphism. We have
shown:

Lemma A.5. The form β0 is a contact form, and it is strictly contactomorphic
to β1. The Reeb field for βk for k = 0, 1 is given by

R =
∑

j

aj

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

We now specialize to the 3-dimensional situation, for which in w-
coordinates (cf. Remark A.4), we have

Σ3 =
{
(w1, w2, w3) ∈ C

3 : w2
1 − 2iw2w3 = 0

} ∩ S3.

Consider the explicit covering map

π : S3 −→ Σ3, (z0, z1) �−→
(
w1 =

√
2z0z1, w2 = z2

0 , w3 = −iz2
1

)
.

We quickly verify that this is a covering map
• we have w2

1 − 2iw2w3 = 2z2
0z2

1 − 2z2
0z2

1 = 0;
• we have |w1|2+|w2|2+|w3|2 = 2|z0|2|z1|2+|z0|4+|z1|4 = (|z0|2+|z1|2)2 =

1;
• the map is two to one, since all entries are quadratic.

We compute the pullback π∗αε

π∗αε =
1

2|z0|2|z1|2 + |z0|4 + |z1|4 + ε|z0|4 − ε|z1|4 2(|z0|2 + |z1|2) i

2

∑

j

(zjdz̄j − z̄jdzj)

=
2(|z0|2 + |z1|2)

(|z0|2 + |z1|2)((1 + ε)|z0|2 + (1 − ε)|z1|2)
i

2

∑

j

(zjdz̄j − z̄jdzj)

=
2

((1 + ε)|z0|2 + (1 − ε)|z1|2)
i

2

∑

j

(zjdz̄j − z̄jdzj).

By Lemma A.5, the form π∗αε to strictly contactomorphic to the contact
form β1 with weights a1 = 1 + ε and a2 = 1 − ε, which is just the ellipsoid
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model for the contact 3-sphere. To complete the argument, we use a result
due to Harris and Paternain [20, Sect. 5], which relates the ellipsoids to the
Katok examples.

Appendix B: Symplectic homology of surfaces

Let us consider connected Liouville domains in dimension 2. The simplest
such Liouville domain is D2, which has vanishing symplectic homology. For
all other surfaces, note:

Lemma B.1. Let (W,λ) be a connected Liouville domain of dimension 2. As-
sume that W is not diffeomorphic to D2. Take a periodic Reeb orbit δ on one
of the boundary components of W . Then, [δ] ∈ π̃1(W ) is non-trivial. Further-
more, if δ1 and δ2 are periodic Reeb orbits on different boundary components,
then [δ1] �= [δ2] as free homotopy classes. �

Assume W �= D2, and denote the completion by Ŵ . Then, the chain
complex for an admissible Hamiltonian Ĥ that is both negative and C2-small
on W has the form

CF•(Ĥ) =
⊕

δ∈π̃1(W )

CF δ
• (Ĥ),

where CF δ
• (Ĥ) is generated by 1-periodic orbits in the free homotopy class

δ. The direct summand corresponding to contractible orbits needs as least as
many generators as rkH•(W ) by the Morse inequalities.

Lemma B.2. For each class δ, the direct summand CF δ
• (Ĥ) forms a subcom-

plex, and so, we have a splitting

HF•(Ĥ) =
⊕

δ∈π̃1(W )

HF δ
• (Ĥ).

In addition, as ungraded modules, we have

HF
δ
• (Ĥ)

∼=

⎧
⎪⎨

⎪⎩

Z
2 if δ is a positive boundary class, and slope(Ĥ)is sufficiently large,

H•(W ) if δ is the trivial class,

0 otherwise.

Here, a positive boundary class just means a homotopy class of a positive
multiple of a boundary component (oriented according the positive boundary
orientation).

Proof. The first assertion follows from the fact that Floer cylinders do not
change the free homotopy class. For the second claim, we use:

• The Floer differential of a C2-small Hamiltonian between critical points
is the Morse differential, which implies the second case.
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• After a suitable Morse perturbation (a Morse function on S1 with pre-
cisely two critical points) breaking the S1-symmetry given by time-
shifts, each positive boundary class gives two generators, corresponding
to the critical points of the Morse function on S1; as shown in [12],
the differential is the Morse differential, which vanishes. Moreover, this
symmetry-breaking process preserves the homotopy classes of periodic
orbits, as observed in Remark 3.12. �

Corollary B.3. Suppose that W is a connected Liouville domain of dimension
2. Assume that W is not diffeomorphic to D2. Then, as an ungraded module,
we have

SH•(W ) ∼= H•(W ) ⊕
⊕

δ positive boundary class

Z
2.

Appendix C: On symplectic return maps

In this appendix, for convenience of the reader, we collect some standard facts
concerning return maps arising from a given Reeb dynamics on some contact
manifold (cf. the construction of the Calabi homomorphism, e.g., in [28, Sect.
10.3], or [2, Sect. 3.3] for the case of the 2-disk). In particular, we show that
long Hamiltonian orbits on a global hypersurface of section correspond to
long Reeb orbits on the ambient contact manifold.

Consider a map τ : int(Σ) → int(Σ) defined on the interior of a 2n-
dimensional Liouville domain Σ. We assume that Σ arises as a (connected)
global hypersurface of section for some Reeb dynamics on a 2n+1-dimensional
contact manifold (M,α), and τ is the associated return map. Let Rα be the
Reeb vector field of α. Denote by B = ∂Σ, which we assume to be a contact
submanifold of M with induced contact form αB = α|B , so that Rα|B is
tangent to B. Let λ = α|Σ, which is a Liouville form on int(Σ), since Rα is
assumed to be positively transverse to the interior of Σ. That is, the two-
form ω = dλ is symplectic on int(Σ). The 1-form λB = λ|B coincides with
the contact form αB . Note that it is degenerate along B. By Stokes’ theorem,
the symplectic volume of Σ then coincides with the contact volume of B

vol(Σ, ω) =
∫

Σ

ωn =
∫

Σ

d(λ ∧ dλn−1) =
∫

B

αB ∧ dαn−1
B = vol(B,αB).

Note that τ is automatically a symplectomorphism with respect to ω.
Indeed, denote the time-t Reeb flow by ϕt, and let T : int(Σ) → R

+

T (x) = min{t > 0 : ϕt(x) ∈ int(Σ)}
denote the first return time function. Then, τ(x) = ϕT (x)(x), and so, for
x ∈ int(Σ), v ∈ TxΣ, we have

dxτ(v) = dxT (v)Rα(τ(x)) + dxϕT (x)(v).
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Using that ϕt satisfies ϕ∗
t α = α, we obtain

(τ∗λ)x(v) = ατ(x)(dxτ(v))

= dxT (v) + (ϕ∗
T (x)α)x(v)

= dxT (v) + λx(v).
(C.7)

Therefore
τ∗λ = dT + λ, (C.8)

which in particular implies that τ∗ω = ω.
Moreover, the average of the return time function gives the contact

volume of M , i.e., we have the identity
∫

Σ

Tωn = vol(M,α). (C.9)

This may be proved as follows. We have a smooth embedding

ψ : R/Z × int(Σ) → M,

given by ψ(s, x) = ϕsT (x)(x), which is a diffeomorphism onto M\B. It satis-
fies

(ψ∗α)(∂s) = α(TRα) = T,

and, for v ∈ T int(Σ),

(ψ∗α)(v) = α(sdT (v)Rα + dϕsT (v)) = sdT (v) + α(v).

Then

ψ∗α = Tds + sdT + λ = d(sT ) + λ,

and so

ψ∗(α ∧ dαn) = (d(sT ) + λ) ∧ dλn = Tds ∧ ωn.

Integrating, and using the fact that B is codimension 2 in M , we obtain

vol(M,α) =
∫

M\B

α ∧ dαn =
∫

R/Z×int(Σ)

ψ∗(α ∧ dαn)

=
∫

R/Z×int(Σ)

Tds ∧ ωn =
∫

int(Σ)

Tωn =
∫

Σ

Tωn,

where we have used that ωn|B ≡ 0, and the claim follows. In case where τ is
Hamiltonian, we want to relate the Hamiltonian action of a periodic orbit of
τ to the Reeb action of the corresponding Reeb orbit in the ambient contact
manifold.

Let H : S1 × Σ → R
+ be a Hamiltonian generating τ , i.e., the isotopy

φt defined by φ0 = id, d
dtφt = XHt

◦ φt satisfies φ1 = τ . The sign convention
for the Hamiltonian vector field is iXHt

ω = −dHt. We usually view this
Hamiltonian isotopy as defining an element φ = φH = [{φt}] in the universal
cover D̃iff(Σ, ω) of the space of symplectomorphisms Diff(Σ, ω). By Cartan’s
formula, we have

∂tφ
∗
t λ = φ∗

t LXHt
λ = φ∗

t (iXHt
ω + d(iXHt

λ)) = φ∗
t d(iXHt

λ − Ht),
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and so integrating, we obtain

τ∗λ − λ = dFH , (C.10)

where

FH =
∫ 1

0

(iXHt
λ − Ht) ◦ φt dt. (C.11)

Combining (C.8) and (C.10), we deduce that

τ = FH + C (C.12)

for some constant C (assuming Σ is connected).
We determine the constant C under a suitable assumption, which we

assume holds in all what follows. Namely, assume that τ extends to Σ with
the same formula, i.e., via an extension of the return time function T to Σ.
Assume also that Ht|B ≡ const := Ct > 0 for some H generating τ . Equiv-
alently, XHt

|B = htRB for some (not necessarily positive) smooth function
ht on B, satisfying ht = dHt(Vλ)|B where Vλ is the Liouville vector field as-
sociated with λ. In this case, denoting γx(t) = φt(x) for x ∈ B and t ∈ [0, 1],
we get

FH(x) =
∫

γx

λB −
∫ 1

0

Ctdt =
∫ 1

0

(ht(φt(x)) − Ct)dt, (C.13)

On the other hand, let βx(t) = ϕt(x) be the Reeb orbit through x ending
at βx(1) = τ(x), for t ∈ [0, 1], which we assume parametrized, so that β̇x =
T (x)RB(βx). Note that βx is a reparametrization of γx, and so we obtain

τ(x) =
∫

βx

λB =
∫

γx

λB .

This means that T is the unique primitive of τ∗λ−λ satisfying T (x) =
∫

γx
λB

for x ∈ B. Combining (C.12) and (C.13), we conclude that

C =
∫ 1

0

Ctdt > 0,

a positive constant.
By the above computation, T is what is usually called the action of

φ = φH with respect to λ, and is independent of the isotopy class (with fixed
endpoints) of the path φH . The Calabi invariant is then by definition the
average action CAL(φH , ω) =

∫
Tωn, which is independent of λ; cf. [2,28].

Combining with (C.9), we obtain

CAL(φH , ω) = vol(M,α).

Let γ : S1 = R/kZ → Σ, defined by γ(t) = φt(x), be a k-periodic
Hamiltonian orbit associated to the k-periodic point x of τ . That is, we have
x = γ(0), γ(1) = τ(x), . . . , γ(k) = τk(x) = x, and assume that k is the
minimal period of x. We then get

k∑

i=1

FH(τ i(x)) = AH#k(γ)
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is precisely the Hamiltonian action of γ with respect to the Hamiltonian

H#k
t =

k∑

i=1

Ht ◦ φ−i
t

generating τk. If β : S1 = R/Z → M is the Reeb orbit corresponding to γ,
(C.12) implies that its period is

∫

S1
β∗α =

k∑

i=1

T (τ i(x)) =
k∑

i=1

FH(τ i(x)) + kC = AH#k(γ) + kC.

Since C > 0, this implies the following: if the Hamiltonian action of every
k-periodic orbit γ grows to infinity with k, then the period of the associated
Reeb orbits β also. In other words, long Hamiltonian periodic orbits in the
global hypersurface of section give long Reeb orbits in the ambient contact
manifold.

We summarize the above discussion in the following:

Lemma C.1. Let (M2n+1, α) be a contact manifold, (Σ2n, ω = dα|Σ) a Li-
ouville domain which is a global hypersurface of section for the Reeb flow,
(B2n−1, αB) = (∂Σ, α|B), τ : int(Σ) → int(Σ) the Poincaré return map, and
T : int(Σ) → R

+ the first return time. Then:

(1) vol(Σ, ω) = vol(B,αB).
(2) vol(M,α) =

∫
Σ

Tωn.
(3) τ is an exact symplectomorphism.
(4) If τ is Hamiltonian with generating isotopy φH = [{φt}] ∈ D̃iff(Σ, ω),

and extends to Σ as a (not necessarily positive) reparametrization of the
Reeb flow at B, then:

(i) CAL(φH , ω) = vol(M,α).
(ii) The period of a Reeb orbit β on M corresponding to a k-periodic

Hamiltonian orbit γ on Σ is
∫

S1
β∗α = AH#k(γ) + kC

for some positive constant C > 0, where

AH#k(γ) =
∫

S1
γ∗λ −

∫ 1

0

H#k
t (γ(t))dt

is the Hamiltonian action of γ with respect to the Hamiltonian

H#k
t =

k∑

i=1

Ht ◦ φ−i
t

generating τk. In particular, if γ has large action, then β has large
period.
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Appendix D: Strong convexity implies strong index-positivity

In this appendix, we give a general condition for index-positivity to hold,
which is also relevant for the restricted three-body problem. A connected
compact hypersurface Σ ⊂ R

4 is said to bound a strongly convex domain
W ⊂ R

4 whenever there exists a smooth function φ : R4 → R satisfying:

(i) (Regularity) Σ = {φ = 0} is a regular level set;
(ii) (Bounded domain) W = {z ∈ R

4 : φ(z) ≤ 0} is bounded and contains
the origin; and

(iii) (Positive-definite Hessian) ∇2φz(h, h) > 0 for z ∈ W and for each non-
zero tangent vector h ∈ TΣ.

In this case, the radial vector field is transverse to Σ, and so Σ is a contact-
type 3-sphere, inheriting a contact form α induced by the standard Liouville
form in R

4.

Lemma D.1. Suppose that Σ bounds a strongly convex domain. Then, Σ is
strongly index-positive.

Remark D.2. In the planar restricted three-body problem, the values of en-
ergy/mass ratio (c, μ) for which the Levi–Civita regularization bounds a
strictly convex domain is called the convexity range, which in particular im-
plies that the dynamics is dynamically convex (cf. [5,6,24]). It follows that
index-positivity holds in the convexity range for the quotient RP 3, which is
part of the assumptions of Theorem A.

Proof. Write Σ = φ−1(0) as in the definition above. Denote the contact form
on Σ by α := λ|Σ. We will use the standard quaternions I, J,K, where I is
chosen to coincide with the standard complex structure.

The tangent space of Σ is spanned by the vectors

R=Xφ/α(Xφ)=I∇φ/α(Xφ)=Iw, U = Jw − α(Jv)R, V = Kw − α(Kv)R.

We note that U and V give a symplectic trivialization ε of (ξ = ker α, dα).
To see this, we compute

dα(U, V ) = dα(Jw,Kw) = wtJ tItKw = wtKtKw = wtw = 1.

To prove the claim, we investigate the rate of change of a version of the
rotation number. See Chapter 10.6 in [16] for a detailed standard description
of the Robbin–Salamon index in terms of the rotation number. We will detail
the version that we will use below.

We look at the linearization of the Hamiltonian flow:

Ẋ = ∇XXφ = I∇2φ · X. (D.14)

Starting with X(0) ∈ ξ, we compute how quickly the vector X rotates with
respect to the frame. Define the angular form

Θ =
udv − vdu

u2 + v2
=

udα(U, ·) + vdα(V, ·)
u2 + v2

=
dα(uU + vV, ·)

u2 + v2
,
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where (u, v) are cartesian coordinates on the plane spanned by the frame
(U, V ), so we may write X = uU + vV . We plug in Ẋ and find

Θ(Ẋ) =
dα(X, Ẋ)
u2 + v2

=
(uU + vV )tItI∇2φ · (uU + vV )

u2 + v2

=
∇2φ(uU + vV, uU + vV )

u2 + v2
≥ λmin > 0, (D.15)

where λmin is the minimal eigenvalue of ∇2φ over the compact hypersurface
Σ. After we have set up some notation, we will see that this is enough to get
a lower bound on the growth rate of the Robbin–Salamon index. With our
global trivialization ε, we can define the matrix

ψ(t) = ε ◦ dF lRt ◦ ε−1.

By applying Eq. (D.14) to the initial vectors ε−1(1, 0) and ε−1(0, 1), we get
a linear evolution equation for the matrix ψ(t)

ψ̇ = A(t)ψ, (D.16)

where A is a time-dependent matrix. We will view this ODE as a vector field
on Sp(2): the linearized Reeb flow along each Reeb orbit will give rise to such
a vector field.

To relate the above angle to the Conley–Zehnder index, we also need
to recall the Iwasawa decomposition, also known as KAN decomposition, of
Sp(2). Write

KAN :=

{((
cos(φ) − sin(φ)
sin(φ) cos(φ)

)

,

(
a 0
0 a−1

)

,

(
1 t
0 1

)) ∣∣
∣
∣
∣

φ ∈ [0, 2π), a ∈ R>0, t ∈ R

}

.

And put

kan : KAN −→ Sp(2), (φ, a, t) �−→
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
a 0
0 a−1

)(
1 t
0 1

)

.

This map has the inverse

kan−1 : Sp(2) −→ KAN
(

a b
c d

)

�−→
(

1√
a2 + c2

(
a −c
c a

)

,

(√
a2 + c2 0

0 1√
a2+c2

)

,

(
1 ab+cd√

a2+c2

0 1

))

.

The KAN angle can locally be determined as

arg(kan−1(ψ)) = atan(c/a),

so we see that the change in angle equals

d
dt

arg(kan−1(ψ)) =
d
dt

atan(c/a) =
aċ − cȧ

a2 + c2
.

On the other hand, the rate of change of the KAN angle equals Θ(Ẋ). Indeed,

the first column of ψ(t) is the vector Z(t) := ε(X(t)) =
(

u
v

)

if we put

X(0) = ε−1(1, 0).
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By Eq. (D.15), this rate of change is at least λmin, where λmin is the
minimal eigenvalue of −IA (which we assume to be positive-definite). This
means that each slice

Sφ = kan

({((
cos(φ) − sin(φ)
sin(φ) cos(φ)

)

,

(
a 0
0 a−1

)

,

(
1 t
0 1

)) ∣∣
∣
∣
∣

a ∈ R>0, t ∈ R

})

is a global surface of section for the vector field associated with Eq. (D.16):
the maximal return time is 2π

λmin
. Now, take a matrix ψ(0) in the slice S0, and

let ψ(t) denote the solution to Eq. (D.16).
Claim: Each crossing is regular and contributes positively.

To see this, recall that the crossing form of a path ψ in Sp(2) at a
crossing t is defined as the bilinear form

ω0(·, ψ̇(t)·)|ker(ψ(t)−id).

Since U , V is a symplectic frame, we have with Z = (u, v) (i.e., X = uU+vV ),
the following inequality:

ω0(Z, ψ̇Z) = dα(X, Ẋ) ≥ λmin(u2 + v2),

by Eq. (D.15). This establishes the claim.
Let t� denote the �-th return time to S0 of the path ψ. The symplectic

path ψ|[0,t�] is not necessarily a loop, but we can make it into a loop by
connecting ψ(t�) to ψ(0) while staying in the slice S0. We can and will do this
by adding at most one crossing, which we make regular. Call the extension to
a loop ψ̃. The additional crossing that we may have inserted can contribute
negatively.

Now, use the loop axiom for the Robbin–Salamon index. This tells us
that

μRS(ψ̃) = 2μ�(ψ̃) = 2�.

By the catenation property of the Robbin–Salamon index and positivity of
all but the last (potential) crossing, we have

μRS(ψ) ≥ 2� − 2.

Now, consider a symplectic path ψ of length T . We can bound the winding
number as

� ≥
⌊

λmin

2π
T

⌋

.

With this in mind, we obtain for a Hamiltonian arc γ of length T

μRS(γ; ε) ≥ 2λmin

2π
T − 4.

When this Hamiltonian arc γ is viewed as a Reeb arc γR with Reeb action
TR, we can rewrite this bound as follows, using:

TR =
∫ T

0

α(Xφ)dt ≤ T · max α(Xφ).
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We find

μRS(γR; ε) ≥ λmin

π max α(Xφ)
TR − 4.

�

Remark D.3. Observe that the proof actually shows the stronger claim that
index-positivity holds when the Hessian of φ restricted to the contact struc-
ture is positive-definite. Note also that the latter condition is not enough for
dynamical convexity.

Finally, we note that the bound obtained can be sharpened, since the
index is necessarily positive by observing that ψ(0) = id, so it is a crossing
and using that each crossing of the path ψ contributes positively.

Appendix E: Strongly index-definite symplectic paths

In this appendix, we prove a crucial index growth estimate needed to rule out
non-relevant boundary orbits via index considerations (needed in Lemma 4.5
in the main body of the paper).

Definition E.1. Consider the linear ODE ψ̇(t) = A(t)ψ(t), where A : R≥0 →
sp(2n) and A(0) = 0. Its solution is a path of symplectic matrices with
ψ(0) = 1. We say that the ODE is strongly index-definite if there exist
constants c > 0, d ∈ R, such that

|μRS(ψ|[0,t])| ≥ ct + d,

where μRS is the Robbin–Salamon index [33].

Note that we make no non-degeneracy assumptions on the symplectic
paths in the above definition.

We now consider the specific family of linear ODEs ψ̇(t) = A(t)ψ(t),
where the matrix A has the special form

A(t) =

⎛

⎜
⎜
⎝

R(t)
X(t) 0
Y (t) 0

0 0
Y (t) −X(t)

a(t) 0
b(t) −a(t)

⎞

⎟
⎟
⎠ ∈ sp(2n).

Here, we use the notation (X,Y ) = (X1, Y1, . . . , Xn−1, Yn−1), and we
assume R(t) ∈ sp(2n − 2), A(0) = 0.

Lemma E.2. Assume that the linear ODE Ṁ(t) = R(t)M(t) is strongly index-
definite as an ODE in dimension 2n− 2. Then, the same holds for the linear
ODE ψ̇(t) = A(t)ψ(t).

Proof. One may check that

g =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

R
X 0
Y 0

0 0
Y −X

a 0
b −a

⎞

⎟
⎟
⎠ : R ∈ sp(2n − 2)

⎫
⎪⎪⎬

⎪⎪⎭
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is a Lie subalgebra of sp(2n). The corresponding Lie subgroup of Sp(2n) is

G =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

M
x 0
y 0

0 0
u v

α 0
β α−1

⎞

⎟
⎟
⎠ : M ∈ Sp(2n − 2), α>0, (−y, x) · M+α · (u, v)=0

⎫
⎪⎪⎬

⎪⎪⎭
.

We deduce that ψ ∈ G. We then write

ψ =

⎛

⎜
⎜
⎝

M
x 0
y 0

0 0
u v

α 0
β α−1

⎞

⎟
⎟
⎠ ∈ G,

where M is a solution to Ṁ = RM , and consider the following homotopy of
paths:

ψs =

⎛

⎜
⎜
⎝

M
sx 0
sy 0

0 0
su sv

α 0
β α−1

⎞

⎟
⎟
⎠ .

Note that ψs is a path in G ⊂ Sp(2n) for every s, and ψ0 has no off-diagonal
terms. For any given t, this gives a homotopy in G relative endpoints of
ψ|[0,t] to a concatenated path of the form ψ0|[0,t]#φt, where φt(s) = ψs(t).
We therefore have

μRS(ψ|[0,t]) = μRS(ψ0|[0,t]) + μRS(φt). (E.17)

On the other hand, from the block decomposition of ψ0 and the fact that the
lower block can be homotoped to a symplectic shear by joining α(t) to 1, we
have

μRS(ψ0|[0,t]) = μRS(M |[0,t]) ± 1
2
sign(β(t)), (E.18)

where the sign depends on conventions. Moreover, one may easily check that
the characteristic polynomial of an element in G is completely independent
of the off-diagonal terms. In particular, we obtain that

det(ψs − 1) = det(ψ0 − 1) = det(M − 1)(α − 1)(α−1 − 1)

is independent of s. In other words, ψ(t) is an intersection point with the
Maslov cycle if and only if ψ0(t) is, and the eigenvalue 1 has the same al-
gebraic multiplicity for both such intersections. Moreover, if ψ(t) is not an
intersection, then φt does not intersect the Maslov cycle at all.

One may check that if α(t) �= 1, then the geometric multiplicity of 1
as an eigenvalue of φt(s) is independent of s (and, therefore, μRS(φt) = 0
for such t). If α(t) = 1, this may not necessarily still hold. However, we may
appeal to the following general fact, whose proof was provided to the authors
by Alberto Abbondandolo:

Lemma E.3. There exists a universal bound C = C(n) (depending only on
dimension), such that, if φ : [0, 1] → Sp(2n) is a continuous path of symplectic
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matrices for which the algebraic multiplicity of the eigenvalue 1 of the matrix
φ(t) is independent of t, then

|μRS(φ)| ≤ C.

Proof of Lemma E.3. Step 1. We first reduce to the case where φ has 1 as the
only eigenvalue. We have a continuous symplectic splitting R

2n = V (t)⊕W (t)
where V (t) is the generalized eigenspace of φ(t) corresponding to 1, and W (t)
is the direct sum of the generalized eigenspaces of φ(t) corresponding to the
other eigenvalues (here, the dimensions of V (t) and W (t) are t-independent
by assumption), for which φ(t) = φV (t) ⊕ φW (t) splits symplectically. Since
φW does not intersect the Maslov cycle by construction, we have μRS(φ) =
μRS(φV ) + μRS(φW ) = μRS(φV ).

Step 2. A loop φ of symplectic matrices having 1 as the only eigenvalue
is nullhomotopic in Sp(2n), and hence, μRS(φ) = 0. This follows for instance
by the interpretation of the Robbin–Salamon index as the total winding num-
ber of the Krein-positive eigenvalues on the unit circle (see, e.g., [1, Lemma
1.3.7]).

Step 3. The identity matrix may be joined to any symplectic matrix M
satisfying spec(M) = {1} via a path M(t) satisfying spec(M(t)) = {1}, and
for which |μRS(M(t))| ≤ C for some universal bound C. Indeed, we may write
M = eJS where S is a symmetric matrix having 0 as the only eigenvalue,
and consider the path M(t) = etJS . This satisfies the required properties,
since M(t) changes strata of the Maslov cycle only at t = 0, the geometric
multiplicity of 1 jumping from 2n at t = 0 to perhaps a lower one at t > 0, and
so the contribution of this wall-crossing to μRS(M) is universally bounded.

The proof finishes by combining the previous steps, where we join the
endpoints of a path φ as in Step 1 to the identity as in Step 3, use the
concatenation property of μRS, and appeal to Step 2. �

Combining Eqs. (E.17) and (E.18) with Lemma E.3, we conclude that

|μRS(ψ|[0,t]) − μRS(M |[0,t])| ≤ C

for some universal constant C = C(n), from which the conclusion of Lemma
E.2 is immediate. �
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