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Dedication

Helmut Hofer, Alberto Abbondandolo, Urs Frauenfelder and
Felix Schlenk

This special volume on the occasion of Claude Viterbo’s 60th birthday
is a tribute to his mathematical work.

Claude was born in Geneva on April 20, 1961, and later grew up in
Paris. After studies at the École Normale Supérieure, he received his Ph.D.
working with Ivar Ekeland and François Laudenbach in 1985.

After postdoctoral positions at the Courant Institute in New York
(1986–1988) and the Mathematical Sciences Research Institute (MSRI) in
Berkeley (1988–1989), he returned to Paris where he held professorships at
the Université de Paris-Sud, the École Polytechnique and the École Normale
Supérieure. He is now a professor at the Université Paris-Saclay in Orsay.

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder and Felix Schlenk.
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Besides being a brilliant mathematician, Claude always showed a strong
sense of service to the scientific community. He not only has been a member of
numerous scientific boards and hiring committees in France as well as interna-
tionally, but also he has been the chairman of the Centre de Mathématiques
de l’École Polytechnique (2000–2006), President of the Mathematics Depart-
ment of the École Polytechnique (2009–2010) and chairman of the Mathe-
matics Department of École Normale Supérieure (2013–2017).

Claude has broadly impacted the development of symplectic geome-
try/topology and Hamiltonian dynamics as a mathematician, as a mentor,
and as a friend. He always considered mathematical research as both a social
activity and a solitary one—a deep mathematical discussion with friends fol-
lowed by a quiet contemplation.

He played a significant role in growing the symplectic community in
Europe by his work with students and his service. This is reflected in the wide
range of the contributions to this Festschrift, in which the authors express
their appreciation, gratitude and friendship.

Showing the same exquisite taste as his Ph.D. advisors, Claude worked
successfully on carefully chosen problems opening doors to important devel-
opments. In 1987, he proved the Weinstein conjecture for R

2n, which was
followed by joint work with Andreas Floer and Helmut Hofer utilizing pseu-
doholomorphic curve methods for more general cases of Weinstein’s conjec-
ture. In work with Hofer, before the existence of Gromov–Witten invariants,
it was shown in 1992 that the Weinstein conjecture holds in compact sym-
plectic manifolds provided the moduli spaces of rational curves are suitably
structured.

In another work in 1992, he used generating functions to construct spec-
tral invariants leading to an alternative construction of a bi-invariant metric
on the group of compactly generated Hamiltonian diffeomorphisms in R

2n.
This contribution led to a powerful tool in symplectic geometry, in particular
in the reformulation in terms of Floer homology by Schwarz and Oh.

Another important contribution is the ‘Viterbo Transfer Map’ intro-
duced in 1999 in his paper on functors and computations in Floer homology.
A year later, Claude formulated what is now called the ‘Viterbo Conjec-
ture’, an intriguing relation between convex and symplectic geometry with
far-reaching consequences.

There is also some unpublished work which had significant impact.
For example, Claude’s work in real algebraic geometry described in V.
Kharlamov’s Séminaire Bourbaki talk “Variétés de Fano Réelles [d’après C.
Viterbo]”. It is proved that the real locus of a strongly Fano manifold cannot
carry a metric of negative sectional curvature. An alternative shorter proof by
Eliashberg, based on SFT neck stretching, extends this to the uniruled case
(negatively solving the higher dimensional Nash conjecture in the smooth
case). The result is now called the Viterbo–Eliashberg Theorem. In an unpub-
lished sequel to the ‘functors and computations’ paper, Claude explained that
the Floer homology of a cotangent bundle is equal to the homology of the
loop space of the underlying manifold. Many improvements were later given

Reprinted from the journal2
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by several authors, among them Abbondandolo–Schwarz, Salamon–Weber,
Cieliebak–Latschev, and Abouzaid.

His work in 2008 on commuting Hamiltonians and Hamilton–Jacobi
multi-time equations with Franco Cardin initiated much work on Poisson
rigidity like the symplectic function theory of Entov and Polterovich.

Questions about fillings of contact manifolds start with Gromov’s pseu-
doholomorphic curves paper and in higher dimensions with the Eliashberg–
Floer–McDuff result. The 2012 paper of Claude with his former student
Alexandru Oancea on the topology of fillings was followed by developments
by Ghiggini–Niederkrüger–Wendl, Geiges, Zehmisch et al, and Bowden–
Gironella–Moreno.

In recent years, Claude’s interests include the relationship between the
Floer theoretic and sheaf theoretic approaches to symplectic geometry, sto-
chastic homogenization for variational solutions of the Hamilton–Jacobi equa-
tions, as well as C0-symplectic geometry, in particular the use of barcodes in
the understanding of area-preserving homeomorphisms.

We are grateful to Clemens Heine and Patricia Zuberbühler for their
help with preparing this Festschrift.

Alberto Abbondandolo, Urs Frauenfelder, Helmut Hofer and Felix Schlenk
April 20, 2022

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Helmut Hofer
Princeton
USA
e-mail: hofer@ias.edu

Alberto Abbondandolo
Bochum
Germany

Urs Frauenfelder
Augsburg
Germany

Felix Schlenk
Neuchâtel
Switzerland
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Symplectically convex and symplectically
star-shaped curves: a variational problem

Peter Albers and Serge Tabachnikov

Abstract. In this article, we propose a generalization of the 2-dimensional
notions of convexity resp. being star-shaped to symplectic vector spaces.
We call such curves symplectically convex resp. symplectically star-
shaped. After presenting some basic results, we study a family of varia-
tional problems for symplectically convex and symplectically star-shaped
curves which is motivated by the affine isoperimetric inequality. These
variational problems can be reduced back to two dimensions. For a range
of the family parameter, extremal points of the variational problem are
rigid: they are multiply traversed conics. For all family parameters, we
determine when non-trivial first- and second-order deformations of con-
ics exist. In the last section, we present some conjectures and questions
and two galleries created with the help of a Mathematica applet by Gil
Bor.

Mathematics Subject Classification. 49N99, 53D99, 53A15.

Keywords. Affine isoperimetric inequality, Symplectic space, Infinitesi-
mal rigidity.

1. Introduction

In the paper, we make a step toward expanding some notions and results of
equiaffine differential geometry of the plane to symplectic spaces.

Let γ be a smooth, closed, strictly convex, positively oriented plane
curve. One can give the curve a parameterization γ(t), such that [γ′(t), γ′′(t)] =
1 for all t, where the bracket denoted the determinant made by two vectors.
This is called an equiaffine parameterization and, accordingly, one defines the
equiaffine length of the curve.

The affine isoperimetric inequality between the equiaffine length L and
the enclosed area A asserts

L3 ≤ 8π2A,

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
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with equality if and only if γ is an ellipse; see, e.g., [6,11]. Note that the
inequality goes in the “wrong” direction, compared to the usual isoperimetric
inequality!

Assume that the origin is inside the curve, then γ is also star-shaped,
in addition to being convex. For any parameterization γ(s), one has a well-
defined (i.e., independent of the parameterization) differential 1-form and a
cubic form

[γ(s), γ′(s)] ds, [γ′(s), γ′′(s)] ds3,

such that

A =
1
2

∫
[γ(s), γ′(s)] ds, L =

∫
3
√

[γ′(s), γ′′(s)] ds.

Thus, the affine isoperimetric inequality relates the integrals of these two
1-forms along a convex closed curve.

Let γ(t) be a smooth closed curve in the standard symplectic vector
space (R2n, ω). Call γ symplectically star-shaped if ω(γ(t), γ′(t)) > 0 for all
t, and symplectically convex if ω(γ′(t), γ′′(t)) > 0 for all t.

Remark 1.1. We point out that an alternative definition of symplectically
star-shaped resp. convex is to require �= instead of > above. That this is
actually more general is explained in Sect. 2 where we construct examples of
curves with all possible sign combinations.

Similarly to the plane case, we may define two differential 1-forms along
a symplectically star-shaped and symplectically convex curve γ by

ω(γ, γ′) dt, 3
√

ω(γ′, γ′′) dt.

Both forms are well defined and have no zeroes. Inspired by the affine isoperi-
metric inequality, we are interested in the relative extrema of

∫
γ

3
√

ω(γ′, γ′′) dt

constrained by
∫

γ
ω(γ, γ′) dt. In fact, we consider a more general variational

problem: describe the curves γ that are the relative extrema of
∫

γ
ω(γ′, γ′′)a dt

constrained by
∫

γ
ω(γ, γ′) dt where a is a real exponent. We point out that

the case a = 1
3 corresponds to the affine isoperimetric inequality.

Before we come to our main results, we point out that the corresponding
metric problem, extremizing the L2-norm of the (metric) curvature on a class
of plane curves, is a widely studied topic going back to Bernoulli and Euler
and goes under the name of elastica, see [12]. In addition, we mention the
recent article [13] in which the Lp-norms of the curvature are studied and [7]
where the corresponding gradient flows are developed. The latter is a natural
next step also for the affine context from this article. See [11] for an affine
analog of the Euclidean curve shortening flow.

Main results We prove that such extremal curves of this variational problem
lie in symplectic affine 2-planes, and therefore, the problem reduces to a 2-
dimensional one (Proposition 3.4).

We then fix the constraint by giving the curve the centroaffine param-
eterization, i.e., we assume [γ(t), γ′(t)] = 1. Then, Hill’s equation γ′′(t) =
−p(t)γ(t) holds, and we may consider the functional Ba(γ) :=

∫
[γ′(t), γ′′(t)]a dt.

Reprinted from the journal6



For a ∈ [ 12 , 1], one has rigidity: the extremal curves are multiply tra-
versed conics (Propositions 3.7 and 3.8). The same rigidity result holds, al-
though for a different reason, in the case of the affine isoperimetric inequality,
a = 1

3 , (Theorem 3).
In Theorem 1, we describe non-trivial infinitesimal deformations of mul-

tiply traversed conics in the class of extremal curves: if a = 1
3 , then the n-fold

ellipse is infinitesimally rigid; otherwise, a non-trivial infinitesimal deforma-
tion of the n-fold ellipse exists if and only if

a =
k2 − 2n2

k2 − 4n2

for some positive integer k �= n.
Theorem 2 concerns the second-order deformations of conics: for a < 0,

the circle γ0 is a local minimum of Ba; for a ∈ (0, 1
3 ), it is a local maximum;

for a > 7
5 , it is a local minimum; and in other cases,the Hessian is not sign-

definite. The Hessian is degenerate (with 1-dimensional kernel) if and only
if

a =
k2 − 2
k2 − 4

for some positive integer k.
In Sect. 7, we present examples of extremal curves and formulate some

conjectures about them.
This introduction would not be complete if we failed to mention another

reason for our interest in centroaffine differential geometry, namely its close
relation with the Korteweg–de Vries equation, discovered by Pinkall [9] and
studied by a number of authors since then. When the exponent a equals 2, the
extremal curves are periodic solutions to Lamé’s equation thoroughly studied
in this context in a recent paper [4].

2. Examples of symplectically convex and symplectically
star-shaped curves

In this section, we construct curves γ with all possible sign combinations
of the quantities ω(γ, γ′) �= 0 and ω(γ′, γ′′) �= 0. In particular, we assume
that all curves are immersed. We start with a remark concerning symplecti-
cally star-shaped curves. The sphere S2n−1 ⊂ R

2n carries a contact structure
defined by the symplectic orthogonal complement to the position vector. A
symplectically star-shaped curve projects to a transverse curve in S2n−1. A
similar remark applies to the contact RP

2n−1, the projectivization of R2n. If
ω(γ, γ′) > 0, then γ is positively transverse and < corresponds to negatively
transverse. A somewhat similar interpretation for the condition ω(γ′, γ′′) �= 0
is derived in Lemma 2.2 in case of R4.

We consider the unit sphere S3 ⊂ C
2 = R

4 with its standard contact
structure. The standard contact form at a point q ∈ S3 is ω(q, ·)|TqS3 . Let
γ(t) be a smooth closed Legendrian curve in S3, i.e., ω(γ, γ′) = 0. Then,

Vol. 24 (2022) Symplectically convex and symplectically star-shaped curves
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Jγ′ is a vector normal to γ inside the contact plane. Here, J is the complex
structure on C

2. The following lemma is well known; see, e.g., [3].

Lemma 2.1. Pushing a closed Legendrian curve γ slightly in the direction of
Jγ′, resp. −Jγ′, inside S3 yields a negative, resp. positive, transverse curve.
Thus, a Legendrian curve in S3 ⊂ C

2 can be deformed into a symplectically
star-shaped curve.

Proof. Let us assume that γ is parametrized by arc-length and set Γ = γ +
εJγ′. Then

ω(Γ,Γ′) = ε
[
ω(γ, Jγ′′) + ω(Jγ′, γ′)

]
+ O(ε2).

If we denote by · the inner product, then ω(Jγ′, γ′) = −γ′ · γ′ = −1. From
γ · γ = 1, we conclude γ · γ′ = 0, i.e., ω(γ, Jγ′) = 0. Differentiating this
equality gives ω(γ, Jγ′′) + ω(γ′, Jγ′) = 0, and hence, ω(γ, Jγ′′) = ω(Jγ′, γ′).
It follows that for sufficiently small ε > 0, one has ω(Γ,Γ′) < 0. That is, Γ is
a negative transverse curve. The case of Γ = γ − εJγ′ is similar. �

Let us say that a Legendrian curve γ in S3 has an inflection point at
p ∈ γ if it is second-order tangent to its tangent great circle at p. A generic
curve in S3 does not have inflection points, but, as we shall see, a generic
Legendrian curve has finitely many of them.

The tangent Gauss map sends a Legendrian curve in S3 to the space of
oriented Legendrian great circles, that is, to the oriented Lagrangian Grass-
mannian Λ+

2 . The image of the Gauss map is a smooth curve which has van-
ishing differential precisely at the points corresponding to inflection points of
the Legendrian curve.

Lemma 2.2. A necessary and sufficient condition for a Legendrian curve γ
having an inflection point at γ(t) is ω(γ′(t), γ′′(t)) = 0.

Proof. The condition ω(γ′, γ′′) = 0 is invariant under reparameterization of
γ, so we may assume that γ is parameterized by arc length.

First, we claim that the orthogonal projection of γ′′ to S3 is γ + γ′′.
Indeed, γ · γ′ = 0 implies that γ′ · γ′ + γ · γ′′ = 0; hence, γ · γ′′ = −1.
Now, γ · (γ + γ′′) = 1 − 1 = 0, as claimed. Therefore, an inflection point is
characterized by the vanishing of γ + γ′′.

Next, we claim that the tangential acceleration vector γ + γ′′ lies in the
contact structure. Indeed, ω(γ, γ′) = 0; hence, after differentiating, ω(γ, γ′′) =
0. Therefore, ω(γ, γ + γ′′) = 0, as needed.

In addition, γ ·γ = γ′ ·γ′ = 1 implies that γ′ and γ+γ′′ are orthogonal to
each other. Finally, since γ is Legendrian, i.e., ω(γ, γ′) = 0, the tangent vector
γ′ lies also in the contact structure. To summarize, we have two orthogonal
vectors, γ′ and γ +γ′′, in the contact structure. In particular, ω(γ′, γ +γ′′) =
±‖γ′‖‖γ + γ′‖ = ±‖γ + γ′‖ since ‖γ′‖ = 1.

The Lemma now follows from ω(γ′, γ′′) = ω(γ′, γ + γ′′) = 0 if and only
if γ + γ′′ = 0, i.e., if and only if γ has an inflection point. �

It follows that if we find a closed Legendrian curve γ with ω(γ′, γ′′) �= 0,
then, according to Lemma 2.1, its small push in the normal direction in the
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contact plane will yield a curve with ω(γ, γ′) �= 0 and ω(γ′, γ′′) �= 0. Let
us show how to construct such a Legendrian curve γ. See [2,8] for related
matters.

Consider the Reeb field of the standard contact form on S3 and let
pr : S3 → S2 be the respective Hopf fibration. The projection pr takes the
Legendrian great circles in S3 to the great circles in S2. Closed Legendrian
curves are projected to closed immersed curves in S2 that bound a region
with signed area that is a multiple of 2π and, conversely, such a spherical
curve lifts (non-uniquely) to a closed Legendrian curve in S3.

Since pr is a Riemannian submersion, it follows that the inflections of a
Legendrian curve γ correspond to the inflections of the spherical curve pr(γ).
Accordingly, every closed spherical curve with everywhere positive geodesic
curvature and bounding area 2πk for some k ∈ Z lifts to a Legendrian curve
which is free from inflections. Starting with a closed spherical curve with
everywhere positive geodesic curvature, the area condition is easily arranged
by adding appropriately sized kinks to the curve.

Finally, we note that the map (z1, z2) �→ (z̄1, z̄2) of C
2 preserves the

contact structure and the property of γ being Legendrian, but changes the
sign of ω(γ′(t), γ′′(t)) to the opposite. Therefore, we can have all four com-
binations of signs of the quantities ω(Γ,Γ′) and ω(Γ′,Γ′′) where Γ is a small
push-off as in Lemma 2.1.

Remark 2.3. Another interpretation of the above construction is by looking
at a different Hopf fibration p̃r : S3 → S2, whose fibers are Legendrian. This
Hopf fibration takes Legendrian great circles to circles (of some, possibly zero
radius) on S2. The projection of a smooth Legendrian curve γ is a wave front,
possibly with cusps, and the inflections of γ correspond to the vertices of the
spherical curve p̃r(γ). If p̃r(γ) is smooth and convex, it must have at least
four vertices (the 4-vertex theorem), without convexity at least two vertices,
but if p̃r(γ) has cusps, it may be vertex-free.

3. Toward the solution of the variational problem

In this section, we describe the setting of our variational problem and prove
that extremizers are contained in symplectic affine 2-planes. This allows us
to reduce the problem to the 2-dimensional case.

The problem is to find the closed symplectically star-shaped and sym-
plectically convex curves that are extrema of Ba(γ) :=

∫
ω(γ′, γ′′)a dt ,

a ∈ R \ {0}, subject to the constraint given by A(γ) :=
∫

ω(γ, γ′) dt. More
precisely, we consider the space PT of T -periodic symplectically star-shaped
and symplectically convex curves in R

2n and consider A,Ba : PT → R and
ask for extrema of Ba subject to A = c0, that is, we want to describe the set

Crit(Ba|{A=c0}) ⊂ PT .

Let us note that both functionals, A and Ba, are translation invariant, that
is, do not depend on the choice of the origin (as long as the curve remains
star-shaped). We start with a few simple observations.
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Lemma 3.1. For c0 > 0 and c1 > 0, there is a natural bijection (by rescaling)
from PT to itself inducing a bijections

{A = c0} ∼= {A = c1}
and

Crit(Ba|{A=c0}) ∼= Crit(Ba|{A=c1}).

Proof. Let γ0 ∈ PT and consider

γ1(t) :=
(

c1
c0

) 1
2

γ0(t) ∈ PT .

If γ0 ∈ {A = c0}, then

A(γ1) = c1
c0

A(γ0) = c1,

i.e., γ1 ∈ {A = c1}. From

Ba

((
c1
c0

) 1
2

γ

)
=

(
c1
c0

)a

Ba(γ), (1)

it follows that the bijection γ �→
(

c1
c0

) 1
2

γ just rescales Ba by a fixed factor,
i.e., induces the claimed bijection Crit(Ba|{A=c0}) ∼= Crit(Ba|{A=c1}). �

Remark 3.2. Equation (1) implies that, if Ba has critical points at all, they
appear in R>0-family and the critical value is necessarily 0.

Lemma 3.3. The bijection PT → P1 given by Γ(t) := γ(t/T ) preserves A and
rescales Ba by 1

T 3a−1 .

Proof. We consider the bijection PT → P1 given by Γ(t) := γ(t/T ). Then

A(Γ) =
∫ 1

0

ω(Γ(t),Γ′(t)) dt =
∫ 1

0

ω
(
γ( t

T ), 1
T γ′( t

T )
)

dt

=
∫ T

0

ω
(
γ(s), γ′(s)

)
ds = A(γ),

as it has to be since A(Γ) = A(γ) is twice the enclosed area. Similarly, we
compute

Ba(Γ) =
∫ 1

0

ω(Γ′(t),Γ′′(t))a dt

=
∫ 1

0

1
T 3a ω

(
γ′( t

T ), γ′′( t
T )

)a dt = 1
T 3a−1

∫ T

0

ω
(
γ′(s), γ′′(s)

)a ds

= 1
T 3a−1 Ba(γ),

as claimed. �

Now, we begin to study the relative extrema of Ba constrained by A.
We call the extrema critical curves. The previous two lemmata imply that
we may consider curves of fixed period and with fixed constraint.

Proposition 3.4. A critical curve is contained inside a symplectic affine 2-
plane of (R2n, ω).
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Proof. We first derive the equation for a critical curve using a Lagrange
multiplier λ ∈ R. For that, let v(t) be a vector field along γ and consider an
infinitesimal deformation γε = γ + εv of γ. Then, γ is critical if for some λ
for all v

d
dε

∣∣∣∣
ε=0

[
λ

∫
ω(γε, γ

′
ε) dt +

∫
ω(γ′

ε, γ
′′
ε )a dt

]
= 0.

The derivative of the first integral in direction of v computes to∫
(ω(v, γ′) + ω(γ, v′)) dt = 2

∫
ω(v, γ′) dt,

where we used integration by parts and skew symmetry of the symplectic
form in the equality sign.

Similarly, setting F := ω(γ′, γ′′)a−1, the derivative of the second integral
can be expressed as

a

∫
F

(
ω(v′, γ′′) + ω(γ′, v′′)

)
dt = a

∫ (
F ′ω(v′, γ′) + 2Fω(v′, γ′′)

)
dt

= a

∫ (
F ′′ω(γ′, v) + 3F ′ω(γ′′, v) + 2Fω(γ′′′, v)

)
dt.

Since v is arbitrary and ω is non-degenerate, the criticality condition implies
that the vectors γ′, γ′′, γ′′′ are linearly dependent, and since F �= 0, one has
γ′′′ = fγ′ + gγ′′ for some periodic functions f(t), g(t).

It follows that the bivector γ′ ∧ γ′′ satisfies the differential equation
(γ′ ∧ γ′′)′ = g(γ′ ∧ γ′′), that is, remains proportional to itself. Hence, the
curve γ′ is planar. It follows by integration that the curve γ lies in an affine
2-plane, parallel to the plane spanned by γ′ and γ′′. �

Proposition 3.4 allows us to reduce the problem to two dimensions as
follows. A critical curve γ is contained in an affine 2-plane. Let V be the
two-dimensional linear space parallel to this affine 2-plane, and W be its
symplectic orthogonal. Then, we may write γ = γ1 ⊕ γ2 ∈ V ⊕ W . Since
γ′ ∈ V we conclude that γ2 is constant. We claim that γ1 is also a critical
curve. Indeed, since W is symplectically orthogonal to V , we compute

0 �= ω(γ, γ′) = ω(γ1 ⊕ γ2, γ
′
1) = ω(γ1, γ′

1),

i.e., γ is symplectically star-shaped and A(γ) = A(γ1). Trivially, γ1 is also
symplectically convex with Ba(γ) = Ba(γ1). Now, that we have reduced the
problem to two dimensions, we denote the symplectic form ω in the plane by
brackets [·, ·].
Convention 3.5. To fix the constraint A, from now on, we always parame-
trize a star-shaped curve, so that [γ, γ′] = 1, that is, γ is in its centroaffine
parameterization.

In centroaffine parameterization, we have γ′′ = −pγ. The function p
is called the centroaffine curvature of the curve γ. For some computations
below, we record that p = [γ′, γ′′] > 0 and γ′′′ = −p′γ − pγ′.
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Thus, we can reformulate our goal as describing all extremal curves of
the functional Ba(γ) :=

∫
pa(t)dt on the space of periodic curves in cen-

troaffine parameterization with p > 0. Here, a ∈ R \ {0} is fixed. To be quite
precise, we point out that we, of course, consider the space of all periodic
curves in centroaffine parameterization of a fixed period, mostly, 2π or a mul-
tiple of 2π. As explained in the introduction, the case a = 1

3 is of special
interest, since this corresponds to the affine isoperimetric inequality.

Lemma 3.6. The properties of a curve being symplectically star-shaped and
convex are invariant under point-wise multiplication by an element in SL(2,R)
and sufficiently small translation. For any value of a, the functional Ba is in-
variant under this SL(2,R) action. In addition, if a = 1

3 , the functional B 1
3

is
invariant under translations. This is the only value of a with this additional
symmetry.

Proof. Point-wise multiplication of a curve with a matrix from SL(2,R) does
not change its centroaffine parameterization nor its centroaffine curvature.

A sufficiently small translation of a curve γ keeps the properties of being
symplectically star-shaped and convex but in general not the centroaffine
parameterization of γ. After reparametrization, the shifted curve γ̄ = γ + c
is in centroaffine parameterization, i.e., γ̄(τ) = γ(t(τ)) + c and [γ̄, dγ̄

dτ ] = 1.
Its centroaffine curvature p̄ satisfies

p̄(τ) =
(

dt

dτ

)3

p(τ);

indeed

p̄ =
[
dγ̄

dτ
,
d2γ̄

dτ2

]
=

[
dt

dτ

dγ̄

dt
,

(
dt

dτ

)2 d2γ̄

dt2
+

d2t

dτ2

dγ̄

dt

]
=

(
dt

dτ

)3 [
dγ̄

dt
,
d2γ̄

dt2

]

=
(

dt

dτ

)3

p,

since dγ̄
dt = dγ

dt = γ′. We conclude that precisely for a = 1
3 the functional Ba

satisfies

Ba(γ̄) =
∫

p̄a(τ)dτ =
∫

pa(t)dt = Ba(γ)

for all symplectically star-shaped and convex curves γ. �

We now derive a critical point equation for Ba in terms of the function
F = pa−1.

Proposition 3.7. For a �= 1, the extremal curves γ of the functional
∫

pa(t)dt
satisfy

F ′′′ = −2(2 + b)F bF ′, (2)

where F = pa−1 and b = 1
a−1 . If a = 1 or a = 1

2 , then p is constant and γ is
therefore a conic.
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Proof. First, we describe the vector fields v along γ that preserve the cen-
troaffine parameterization of γ. Write such a field as v = gγ + fγ′. Since the
deformation by v is assumed to preserve the centroaffine parameterization,
we conclude that [γ, v′] + [v, γ′] = 0 and hence 2g + f ′ = 0. Thus, the vector
field v has the form − f ′

2 γ + fγ′; the deformations keeping the centroaffine
parameterization depend on one periodic function.

As in the proof of Proposition 3.4, linearizing
∫

pa(t)dt in v leads to∫
F

(
[γ′, v′′] + [v′, γ′′]

)
dt = 0

for every vector field v as above, where we recall that F = pa−1. Using
integration by parts twice and recalling that γ′′′ = −p′γ −pγ′, we rewrite the
integral as ∫ ((

F ′′ − 2pF
)
[γ′, v] − (

3pF ′ + 2p′F
)
[γ, v]

)
dt.

Using [γ, v] = f , [γ′, v] = 1
2f ′ and another integration by parts, this integral

becomes ∫ (
− 1

2F ′′′ − 2pF ′ − p′F
)
f dt.

The critically condition is that this integral vanishes for all f , and we conclude
that the integrand is zero.

If a = 1, then F ≡ 1, and hence, the criticality condition simply becomes
p′ = 0. Therefore, γ solves γ′′ = const · γ, i.e., γ is a conic.

Otherwise, recall that p = F b; hence, p′ = bF b−1F ′. Substitute this to
the integrand and collect terms to obtain the claimed formula (2).

If a = 1
2 , then b = −2, and Eq. (2) reduces to F ′′′ = 0. Since F is

periodic and positive, F is necessarily a constant, and so is p = F−2. Thus,
again, γ is a conic in this case. �

Proposition 3.8. For a ∈ ( 12 , 1), Eq. (2) has only constant solutions.

Proof. We can integrate Eq. (2) to

F ′′ = −2(b + 2)
b + 1

F b+1 + c (3)

with some constant c. Note that b �= −1. Since F is a positive and periodic
function, we get at the minimum m := min F and the maximum M := max F
of F the usual inequalities for F ′′, leading to

0 ≥ −2(b + 2)
b + 1

M b+1 + c and 0 ≤ −2(b + 2)
b + 1

mb+1 + c.

Thus, we arrive at the two inequalities⎧⎨
⎩

b + 2
b + 1

mb+1 ≤ b + 2
b + 1

M b+1

m ≤ M.
(4)

If b + 1 > 0 or b + 2 > 0 > b + 1, then the first inequality in (4) is consistent
with the second. However, the first inequality together with 0 > b+2 implies
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m ≥ M and we conclude m = M . That is, 0 > b + 2 implies that F is
constant. Now, recall that b = 1

a−1 . Therefore, F is constant if 1
2 < a < 1, as

claimed. �

Lemma 3.9. For a �∈ [12 , 1], Eq. (2) has non-constant positive, periodic solu-
tions.

Remark 3.10. The solutions we construct in the proof of the lemma below
are, by construction, often times multiply covered.

Proof. As a preparation, we consider the Hamiltonian formulation of the
ODE (3). Hamilton’s equations for the Hamiltonian function (c ∈ R is a
constant which we will choose appropriately below)

H(Q,P ) :=
1
2
P 2 +

2
b + 1

Qb+2 − cQ : R2 −→ R

are given by ⎧⎪⎪⎨
⎪⎪⎩

Ṗ = −∂H

∂Q
= −2(b + 2)

b + 1
Qb+1 + c

Q̇ =
∂H

∂P
= P,

and are, with Q = F and P = F ′, equivalent to the ODE (3). We compute

dH(Q,P ) = P dQ +
(

2(b + 2)
b + 1

Qb+1 − c

)
dQ

and

HessH(Q,P ) =
(

2(b + 2)Qb 0
0 1

)
.

Therefore, (Q,P ) is a critical point of H if and only if⎧⎨
⎩

P = 0

2(b + 2)
b + 1

Qb+1 = c,

and then is a local minimum if

(b + 2)Qb > 0.

Our assumption a �∈ (12 , 1) is equivalent to b ∈ (−2,−1) ∪ (−1, 0) ∪ (0,∞)
(since b = 1

a−1 and a �= 0).
We are searching for non-constant positive, periodic solutions of equa-

tion (2); i.e., we are looking for non-constant periodic orbits of H with
Q = F > 0.

In case b ∈ (0,∞), we choose c ∈ R very large and positive. Then, the

equation 2(b+2)
b+1 Qb+1 = c determines a local minimum of F at, say, (Q0, P0 =

0) with Q0 large and positive. Therefore, the linearized dynamics given by

HessH(Q0, 0) =
(

2(b + 2)Qb
0 0

0 1

)
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is a very fast rotation of R2. That is, the linearized dynamics is periodic with
very small periodic. Since (Q0, 0) is a local minimum, any level set {H = E}
with E slightly larger than the energy H(Q0, 0) = 2

b+1Qb+2
0 − cQ0 of (Q0, 0)

consists of a small circle (and potentially other connected components). This
small circle is then a periodic orbit with period approximately that of the
linearized dynamics. Since b �= 0, the Hamiltonian H is not quadratic and
therefore varying the energy value E also changes the period of the periodic
orbit in the level set {H = E} near (Q0, 0); i.e., by iterating and varying the
level set, we can arrange any period we wish.
In case b ∈ (−1, 0), we choose c ∈ R positive and small. Then, the equation

2(b+2)
b+1 Qb+1 = c determines a local minimum of F at (Q0, P0 = 0) with Q0

small and positive. The linearized dynamics is again given by

HessH(Q0, 0) =
(

2(b + 2)Qb
0 0

0 1

)
.

This is still a very fast rotation of R2, since b < 0, b + 2 > 0 and Q0 > 0 is
small. The argument proceeds as in the previous case.

In case b ∈ (−2,−1), we choose c ∈ R
2 negative and large in absolute

value. The equation 2(b+2)
b+1 Qb+1 = c determines a local minimum of F at

(Q0, P0 = 0) with Q0 small and positive. The linearized dynamics is yet
again a very fast rotation of R2, since b < 0, b + 2 > 0, and Q0 > 0 is small.
The argument proceeds as in the first case. �

Remark 3.11. Equation (2) can be further integrated, which is in terms of
the Hamiltonian formulation just expressing the preservation of H along so-
lutions

(F ′)2 = − 4
b + 1

F b+2 + 2cF + d. (5)

For a = 2, resp. a = 3
2 , we have b + 2 = 3, resp. b + 2 = 4, and hence F is

the Weierstrass elliptic function. Since p = F b, in the first case, p is also the
Weierstrass function, and in the second case, p is its square. In the former
case, the respective equation γ′′ = −pγ is called the Lamé equation, and it
was thoroughly studied, see, e.g., [14].

4. Infinitesimal rigidity of multiple conics as critical curves

As a multiple conic, we take the unit circle traversed n times. This is a critical
curve of the functional Ba(γ) =

∫ 2πn

0
padt, and we ask whether it admits a

non-trivial infinitesimal deformation in the class of critical curves.
The functional Ba is invariant under the action of SL(2,R); the respec-

tive deformations comprise a 3-dimensional space, and we consider them as
trivial. In addition, if a = 1

3 , the functional is invariant under parallel trans-
lations; see Lemma 3.6. In this case, we add this 2-dimensional space to the
deformations that we consider as trivial. The n-fold circle is infinitesimally
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rigid if it does not admit non-trivial infinitesimal deformations in the class
of critical curves.

Let γ0(t) = (cos t, sin t) be the unit circle traversed n times, and let
γ1 = − f ′

2 γ0 + fγ′
0 be a vector field along it that defines its infinitesimal

deformation. We assume that the period is 2πn, and accordingly, f(t) is a
2πn-periodic function.

The trivial deformations are described in the following lemma.

Lemma 4.1. The infinitesimal action of SL(2,R) corresponds to the functions
f that are linear combinations of 1, cos(2t), sin(2t), and parallel translations
to the functions f that are linear combinations of cos t, sin t.

Proof. The deformed curve is γ0 + εγ1. The case f = 1 corresponds to the
rotation of the unit circle.

Let f(t) = sin(2t). In this case, computing up to ε2, the curve γ0 + εγ1
is the ellipse (1 + 2ε)x2 + (1 − 2ε)y2 = 1, and likewise for f = cos(2t).

If f(t) = 2 sin t, then, again mod ε2, the curve γ0 + εγ1 is the unit circle
(x + ε)2 + y2 = 1, and likewise for f = 2 cos t. �

We are ready to describe the infinitesimal rigidity of the circle.

Theorem 1. If a = 1
3 , then the n-fold unit circle is infinitesimally rigid. Oth-

erwise, a non-trivial infinitesimal deformation of the n-fold unit circle exists
if and only if

a =
k2 − 2n2

k2 − 4n2

for some positive integer k �= n.

Proof. The calculations below are modulo ε2.
Let Γ = γ0 + εγ1. We have Γ′′ = −(p0 + εp1)Γ, and hence

p0 + εp1 = [Γ′,Γ′′] = [γ′
0 + εγ′

1, γ
′′
0 + εγ′′

1 ] = 1 + ε([γ′
0, γ

′′
1 ] + [γ′

1, γ
′′
0 ]).

Therefore

F = (p0 + εp1)a−1 = 1 + ε(a − 1)([γ′
0, γ

′′
1 ] + [γ′

1, γ
′′
0 ]).

We calculate

γ′
1 = −

(
f +

1
2
f ′′

)
γ0 +

1
2
f ′γ′

0, γ′′
1 = −

(
3
2
f ′ +

1
2
f ′′′

)
γ0 − fγ′

0;

hence

q := [γ′
0, γ

′′
1 ] + [γ′

1, γ
′′
0 ] = 2f ′ +

1
2
f ′′′.

Compare with [9], where the Korteweg-de Vries equation is interpreted as a
flow on centroaffine curves.

The case of a = 1 was considered earlier (the only solution of the vari-
ational problem is a conic); therefore, we assume that a �= 1.

Since the perturbed curve is critical, Eq. (3) holds. Write the constant
in this equation as c0 + εc1. Then, (3) implies

q′′ = −2(b + 2)q +
c1

a − 1
.
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Since q′′ and q have zero average, we conclude that c1 = 0. Therefore, q′′ =
−2(b + 2)q.

This equation has periodic solutions only when b+2 > 0, and then, q(t)
is a linear combination of cos(

√
2(b + 2)t) and sin(

√
2(b + 2)t). For q to be

2πn-periodic, one has to have
√

2(b + 2) = k
n , that is

b =
k2 − 4n2

2n2
or a =

k2 − 2n2

k2 − 4n2
(6)

for positive integers k, n. Note that since b �= 0, one has k �= 2n.
Let us show that if condition (6) holds, the desired infinitesimal defor-

mations of a multiple circle exist.
We find f(t) from the equation

2f ′ +
1
2
f ′′′ = A cos

(
kt

n

)
+ B sin

(
kt

n

)
.

It follows that, modulo the kernel of the differential operator 1
2d3 + 2d, the

function f is a linear combination of cos
(

kt
n

)
and sin

(
kt
n

)
. The kernel of the

differential operator contributes trivial deformations, and we end up with a
2-dimensional space of deformations.

It remains to see when these deformations are trivial. Since k �= 0 and
k �= 2n, the only “suspicious” case is k = n. In this case, a = 1

3 , and in-
deed, the first harmonics give trivial deformations, corresponding to parallel
translations. �

Remark 4.2. We note that in agreement with Lemma 3.8

a =
k2 − 2n2

k2 − 4n2

does not take values in [12 , 1]: if k > 2n, then a > 1, and if k < 2n, then
a < 1

2 .

5. Second-order deformations of conics

Here, we investigate how the functional Ba(γ) =
∫

p(t)adt changes under a
second-order deformation of the unit circle. We recall that the functional is
SL(2,R)-invariant; see Lemma 4.1.

We assume that the period is 2π and that the curves have the cen-
troaffine parameterization [γ, γ′] = 1. Let Γ = γ0 + εγ1 + ε2γ2, ignoring the
higher order terms in ε. As before, γ0(t) = (cos t, sin t), and hence, γ′′

0 = −γ0,
and γ1 = − f ′

2 γ0 + fγ′
0, where f(t) is a 2π-periodic function.

The condition [Γ,Γ′] = 1 implies

[γ0, γ′
2] + [γ1, γ′

1] + [γ2, γ′
0] = 0. (7)

We have Γ′′ = −PΓ, and hence

P = [Γ′,Γ′′] = [γ′
0 + εγ′

1 + ε2γ′
2, γ

′′
0 + εγ′′

1 + ε2γ′′
2 ] = 1 + εq(t) + ε2r(t),

where

q = [γ′
0, γ

′′
1 ] + [γ′

1, γ
′′
0 ], r = [γ′

0, γ
′′
2 ] + [γ′

1, γ
′′
1 ] + [γ′

2, γ
′′
0 ].
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Then

P a = 1 + εaq + ε2a

(
r +

a − 1
2

q2
)

.

As we already know

q = [γ′
0, γ

′′
1 ] + [γ′

1, γ
′′
0 ] = 2f ′ +

1
2
f ′′′.

We need to calculate∫ 2π

0

(
r +

a − 1
2

q2
)

dt.

Integrating by parts and using γ′′′
0 = −γ′

0, we get∫
rdt =

∫
([γ′

0, γ
′′
2 ] + [γ′

1, γ
′′
1 ] + [γ′

2, γ
′′
0 ])dt =

∫
(2[γ2, γ′

0] + [γ′
1, γ

′′
1 ])dt.

Integrate Eq. (7)

0 =
∫

([γ0, γ′
2] + [γ1, γ′

1] + [γ2, γ′
0])dt =

∫
(2[γ2, γ′

0] + [γ1, γ′
1])dt;

therefore ∫
rdt =

∫
([γ′

1, γ
′′
1 ] − [γ1, γ′

1])dt.

We calculate

[γ1, γ′
1] = f2 +

1
2
ff ′′ − 1

4
f ′2, [γ′

1, γ
′′
1 ] = f2 +

1
2
ff ′′ +

3
4
f ′2 +

1
4
f ′f ′′′;

hence ∫
rdt =

∫ (
f ′2 +

1
4
f ′f ′′′

)
dt =

∫ (
f ′2 − 1

4
f ′′2

)
dt.

Next∫
q2dt =

∫ (
2f ′ +

1
2
f ′′′

)2

dt =
∫ (

4f ′2 − 2f ′′2 +
1
4
f ′′′2

)
dt.

In the case of most interest, a = 1
3 , and we obtain∫ (

r +
a − 1

2
q2

)
dt =

∫ (
r − 1

3
q2

)
dt = − 1

12

∫
(4f ′2 − 5f ′′2 + f ′′′2)dt. (8)

Lemma 5.1. The integral in (8) is non-negative, and it equals zero if and only
if f is a first harmonic.

Proof. Let

f ′(t) =
∑

k

ckeikt, c−k = c̄k

be the Fourier expansion. Then∫ 2π

0

(4f ′2 − 5f ′′2 + f ′′′2)dt = 2
∑
k>0

(4 − 5k2 + k4)|ck|2.

We have 4 − 5k2 + k4 = (k2 − 1)(k2 − 4) ≥ 0, and the sum is positive unless
the only non-zero term is for k = 1, that is, f is a first harmonic. �
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Now, consider the general case∫ (
r +

a − 1
2

q2
)

dt =
∫ (

(2a − 1)f ′2 − 4a − 3
4

f ′′2 +
a − 1

8
f ′′′2

)
dt.

In terms of the Fourier coefficients of f ′, this is

2
∑
k>0

(
2a − 1 − 4a − 3

4
k2 +

a − 1
8

k4

)
|ck|2.

The expression in the parentheses equals
1
8
(k2 − 4)

[
(a − 1)k2 − 2(2a − 1)

]
. (9)

We also note that the quadratic term of P a contains the factor a.

Theorem 2. For a < 0, the circle γ0 is a local minimum of Ba; for a ∈ (0, 1
3 ),

it is a local maximum; for a > 7
5 , it is a local minimum, and in other cases, the

Hessian is not sign-definite. The Hessian is degenerate (with 1-dimensional
kernel) if and only if a = k2−2

k2−4 for some positive integer k.

Proof. Let a = 1. Then, the sign of (9) is that of −(k2 − 4), which is positive
for k = 1 and negative for k ≥ 3.

Let a > 1. Then, the sign of (9) is positive for sufficiently large k. The
Hessian is positive-definite if this sign is positive for all k. When k = 1,
the first factor in (9) is negative, and so is the second one: 1 − 3a. When
k ≥ 3, the first factor is positive, and the second one is positive if and only if
9(a − 1) − 2(2a − 1) > 0, that is, a > 7

5 .
Let 0 < a < 1. Then, the sign of (9) is negative for sufficiently large k.

The Hessian is negative-definite if this sign is negative for all k. When k = 1,
the first factor in (9) is negative, and the second factor equals 1 − 3a. Thus,
(9) is negative if and only if a < 1

3 . If this inequality is satisfied, then, for
k ≥ 3, the second factor in (9) is 2 − 4a − (1 − a)k2 < 0.

If a < 0, then the analysis of the preceding paragraph still holds, but
the factor a of the quadratic term in P a changes the sign to the opposite.

Finally, the Hessian is degenerate when (9) is zero for some k. Solving
this for a yields the last claim of the theorem. �

The last statement of the theorem agrees with Theorem 1. The numbers
a = k2−2

k2−4 form the sequence

1
3
,

7
5
,

7
6
,

23
21

, . . .

that converges to 1. Each time that a crosses an element of this “spectrum”;
the signature of the Hessian changes by 1.

6. The case of a = 1
3

We recall that we attempt to describe extremal curves of the functional Ba =∫
pa(t)dt on the space of periodic curves in centroaffine parameterization with

p > 0. The case a = 1
3 corresponds to the affine isoperimetric inequality. In
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particular, the functional then is translation invariant; see Lemma 3.6. In this
case, b = − 3

2 , and Eq. (3) reads

F ′′ = 2F− 1
2 + c. (10)

Since F ′′ ≤ 0 at the maximum and F > 0, we conclude that c < 0.
Next, integrate Eq. (10) to

(F ′)2 = 8F
1
2 + 2cF + d (11)

(this is the equation of a level curve of the Hamiltonian, see Sect. 3).
Let F (t) = G2(t) where G(t) is also a positive periodic function. Then,

(11) becomes

(GG′)2 =
c

2
G2 + 2G + d (12)

(again renaming the constants).
The right-hand side of (12) is a quadratic polynomial in G, and it has at

least two roots, because G is a periodic function that attains maximum and
minimum. Since a quadratic polynomial has at most two roots, G oscillates
between its maximum and minimum, and has no other critical values.

Example 6.1. Let us examine the case of a parallel translated n times tra-
versed circle, which is a critical curve

γ = (A + r cos α,B + r sin α),

where α(t) is a function of the centroaffine parameter t. We assume that the
range of t is [0, 2π], that of α is [0, 2πn], and the radius of the circle is r.

The range of the centroaffine parameter is twice the (algebraic) area

bounded by the curve, and hence, r = n− 1
2 .

We calculate

[γ, γα] = r2 + rA cos α + rB sinα,

and since [γ, γt] = 1, we have
dt

dα
= r2 + rA cos α + rB sin α.

This can be integrated

t = r2α + rA sin α − rB cos α + C,

or

α + A sin α + B cos α = nt + C ′,

with the constants renamed. Since

A sin α + B cos α = −
√

A2 + B2 cos(α + θ)

with

sin θ =
A√

A2 + B2
, cos θ = − B√

A2 + B2
,

we can change the parameter α to obtain a simplified equation

α(t) − A cos α(t) = nt + C (13)
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(once again renaming the constants). Then, dα/dt = n(1 + A sin α)−1.
Next

p = [γt, γtt] = [γα, γαα]
(

dα

dt

)3

= n2(1 + A sin α)−3.

Since G = p− 1
3 , we conclude that

G(t) = n− 2
3 (1 + A sin α(t)). (14)

Let us continue with the general case. Let 0 < m < M be the minimum
and the maximum of G, and let c = −2k2. Write the right-hand side of (12)
as k2(G − m)(M − G), then the differential equation becomes

GG′ = k
√

(G − m)(M − G), (15)

where we allow the square root to take values at its positive and negative
branches.

Set

μ =
M + m

2
, ε =

M − m

2
.

Note that since G > 0, we have ε < μ.
Since G oscillates between m and M , let us make another substitution

G(t) = μ + ε sin ϕ(t), (16)

where ϕ(t) is not necessarily a periodic function anymore. Since G is 2π-
periodic, ϕ(t + 2π) = ϕ(t) + 2πn where n is an integer.

Substitute (16) into (15) to obtain ϕ′(μ + ε sin ϕ) = k. This differential
equation integrates to

μϕ(t) − ε cos ϕ(t) = kt + C. (17)

Since 0 < ε < μ, the left-hand side is a monotonic function of ϕ; therefore,
this functional equation uniquely determines the function ϕ(t).

Substituting ϕ(t + 2π) in (17), we find that μ(ϕ(t + 2π) − ϕ(t)) = 2πk.
Since ϕ(t + 2π) = ϕ(t) + 2πn with n ∈ Z, we have k = μn. Thus, we have

ϕ(t) − ε cos ϕ(t) = nt + C, (18)

where, as before, we renamed the constants.

Theorem 3. If a = 1
3 , then the relative extrema of the functional Ba con-

strained by A are multiply traversed conics.

Proof. Let γ(t) be a 2π-periodic critical curve. Then, Eq. (18) holds for some
n, defining function ϕ(t). Observe that Eq. (18) is identical to Eq. (13) from
Example 6.1. Therefore, ϕ(t) coincides with the function α(t). Similarly, Eqs.
(16) and (14) coincide, and so, function G(t) coincides with that from Exam-
ple 6.1.

It follows that the centroaffine curvature p(t) of the curve γ(t) is the
same as that of the parallel translated n-fold circle γ0(t). Consider the contact
element (γ(0), γ′(0)). Acting on γ0(t) by an element of SL(2,R), we can
arrange for (γ0(0), γ′

0(0)) to coincide with (γ(0), γ′(0)). The action of SL(2,R)
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does not change the centroaffine curvature; hence, the two curves, γ and γ0,
satisfy the same second-order differential equation and have the same initial
data. Therefore, they coincide. �

Remark 6.2. The Lambert W function is the inverse function of the complex
function z = wew; see [5]. The function ϕ defined by equation (18) is related
to the Lambert function in the following way.

Let us assume that C = 0, n = 1 in (18). Consider the complex function
given by the equation ξ = η − εeiη. If η is real then Re ξ = η − ε cos η, the
expression that defines the function ϕ(t).

Let z = wew, and set z = −iεeiξ, w = −iεeiη. Then, ln z = w + lnw,
that is, ξ = η −εeiη. Therefore, the inverse function η(ξ) is conjugated to the
Lambert function w(z) by the exponential function.

7. Pictures and open problems

First, in Figs. 1, 2, 3, 4, we present extremal curves obtained in numerical
experiments using a Mathematica applet created by Gil Bor.

Let us comment on a common geometrical feature of these curves. Recall
the notion of the osculating circle of a smooth curve in Euclidean geometry:

Figure 1. Curves having a = −2, a = −1, a = 0.2 and the
rotation numbers 5, 5, 4, respectively

Figure 2. These curves have a = 1.2, a = 1.2, a = 1.4,
respectively
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Figure 3. These curves have a = 1.5, a = 1.5, a = 1.75,
respectively

Figure 4. These curves have a = 2, a = 2.5, a = 3 and the
rotation numbers 3, 4, 5, respectively

this is a circle that is 2-order tangent to a curve at a given point, that is,
it shares the curvature with the curve. Informally speaking, the osculating
circle passes through three infinitesimally close points of the curve.

In centroaffine geometry, the role of osculating circles is played by os-
culating central conics. The space of central conics is 3-dimensional, and for
every point of a star-shaped curve, there exists a central conic that is 2-
order tangent to it at this point. Central conics have constant centroaffine
curvature, and the osculating central conic at point γ(t0) has the constant
centroaffine curvature p(t0).

Similarly to the case of osculating circles, the osculating central conic
goes from one side of the curve to the other side if p′(t0) �= 0. If p has a non-
degenerate maximum or minimum at point t0, that is, γ(t0) is a centroaffine
vertex, then the osculating central conic lies on one side of the curve near
this point.

In the following lemma, we prove that the centroaffine curvature of ex-
tremal curves takes only two values at their centroaffine vertices, its maximum
and minimum.
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Figure 5. a = 7
6 , a = 23

21 , a = 17
16 , a = 47

45 , a = 31
30 , a = 79

77

Lemma 7.1. The function F , introduced in Sect. 3, and hence the centroaffine
curvature p, has only two critical values, its maximum and minimum.
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Proof. Since the curve is closed, the function F attains its maximum and
minimum. It has no other critical values, because the right-hand side of Eq.
(5), as a function of F , has no more roots than the number of sign changes
among its three coefficients; see [10] (part 5, chapter 1, §6, No 77). �

Looking again at the above figures it is fairly obvious that the case
a = 1.4 in Fig. 2, the “egg” lacks the same symmetry all other curves have.
This seems related to Theorem 1 asserting that for all a of the form a = k2−2

k2−4 ,
k ∈ Z>2, a circle (which is a critical curve for any a) admits a non-trivial
infinitesimal deformation. Indeed, 1.4 = 32−2

32−4 .

A more systematic computer experiment (again using the Mathemat-
ica applet by Gil Bor) leads to Fig. 5 where curves corresponding to k =
4, 5, 6, 7, 8, 9 are displayed. We recall that for any value a, the functional Ba

is invariant under SL(2,R). These correspond, of course, to trivial deforma-
tions.

Figure 5 leads us to the conjecture that for a = k2−2
k2−4 , there exists an

extremal curve which is a “rounded (k−1)-gon”. Unfortunately, our software
is currently not powerful enough to verify this. We hope to return to this
point in the future. It is worth pointing out that these (k − 1)-gons seem to
approach a circle for k very large. This is, at least, consistent with a → 1
when k → ∞ and the circle is indeed rigid for B1. As a rather special case,
the egg (case a = 1.4 in Fig. 2) should be considered a rounded 2-gon.

We collect some further questions.

• What is the minimal rotation number of a periodic solution of Ba in
dependence of a? It seems that this minimal rotation number goes to
infinity with a.

• In general, what happens if a → ∞ respectively, a → −∞?
• Is there some kind of duality for positive and negative values of a?
• Is there an appropriate gradient flow of Ba similar to the metric case,

see [7] and [13]?
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Appendix

In this appendix, we describe a curious symmetry of Eq. (5). In the discovery
of this symmetry, we were motivated by Bohlin’s theorem as described in
Appendix 1 of [1].

Consider the family of equations(
dF

dt

)2

= uF q + vF + w, (19)

where F (t) is an unknown function and u, v, w, q are parameters. We are
looking for changes of independent and dependent variables

F (t) = G(τ)μ,
dτ

dt
= Gλ

that preserve the form of Eq. (19), but possibly change the parameters u, v, w,
and q.

Theorem 4. These changes of variables form a group, the group of permuta-
tions S3. The orbit of the exponent q is{

q,
1
q
, 1 − q,

1
1 − q

,
q

q − 1
,
q − 1

q

}
.

We note that this is precisely how the permutations of four points in
the projective line affect their cross-ratio.

Proof. Denote the new parameters by ū, v̄, w̄, and q̄.
Using the chain rule, one obtains the differential equation on G(

dG

dτ

)2

=
u

μ2
Gμq−2μ−2λ+2 +

v

μ2
G2−2λ−μ +

w

μ2
G2−2λ−2μ.

For this equation to have the same form as (19), one needs the following
relation between the exponents to hold:

{0, 1} ⊂ {μq − 2μ − 2λ + 2, 2 − 2λ − μ, 2 − 2λ − 2μ}.

Thus, one needs to consider six cases. We present one of them{
μq − 2μ − 2λ + 2 = 0
2 − 2λ − μ = 1.

Hence

μ =
1

1 − q
, q̄ = 2 − 2λ − 2μ =

q

q − 1
, ū = w(q − 1)2, v̄ = v(q − 1)2,

w̄ = u(q − 1)2.

The other five cases are analyzed in a similar way. �

Returning to Eq. (5), one has q = b + 2 = 2a−1
a−1 . The S3-orbit of the

exponent a is as follows:{
a, 1 − a,

2a − 1
3a − 1

,
a

3a − 1
,
2a − 1
3a − 2

,
a − 1
3a − 2

}
.
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In particular, the orbit of 1 is {1, 1/2, 0} and the orbit of 1/3 is {1/3, 2/3,∞},
and these are special values in our study. All other orbits consist of six ele-
ments.

We end with the following remarks. First, the function G (or equiva-
lently F ) needs to be positive in order for dτ

dt = Gλ being an actual change of
coordinates. This is always satisfied in our situation. Moreover, F is periodic
if and only if G is. However, in the transition from a solution F of (5), a
special case of (19), to a curve γ, it seems hard to see if γ is again periodic.
Therefore, the groups of coordinate changes above might or might not map
closed curves to closed curves.
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Abstract. In this paper, we study the regularity of topological entropy,
as a function on the space of Riemannian metrics endowed with the C0

topology. We establish several instances of entropy robustness (persis-
tence of positive entropy after small C0 perturbations). A large part
of this paper is dedicated to metrics on the two-dimensional torus, for
which our main results are that metrics with a contractible closed geo-
desic have robust entropy (thus, generalizing and quantifying a result of
Denvir–Mackay) and that metrics with robust positive entropy on the
torus are C∞ generic. Moreover, we quantify the asymptotic behavior
of volume entropy in the Teichmüller space of hyperbolic metrics on a
punctured torus, which bounds from below the topological entropy for
these metrics. For general closed manifolds of dimension at least 2, we
prove that the set of metrics with robust and large positive entropy is
C0-large in the sense that it is dense and contains cones and arbitrarily
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1. Introduction

1.1. Context

In this paper, we study robustness properties for the topological entropy of
Riemannian geodesic flows with respect to the C0-topology on the space of
Riemannian metrics.

The space of metrics. Let Q be a closed manifold and G(Q) be the
space of C∞-smooth Riemannian metrics on Q. For g, g′ ∈ G(Q), we say that
g ≺ g′ if gx(v, v) � g′

x(v, v) for all x, v, and for C ∈ R we define Cg ∈ G(Q)
by Cgx(v, w) = C · gx(v, w), for all x ∈ Q, v,w ∈ TxQ. We consider on G(Q)
the metric dC0 defined by

dC0(g, g′) = inf
{

log(C) | 1
C

g ≺ g′ ≺ Cg; C > 0
}

. (1.1)

The metric dC0 defines the C0 topology on G(Q). dC0 is a variant of the Rie-
mannian Banach-Mazur distance from [41], see below for further discussion.
From a purely metric point of view, dC0 is natural since geometric quanti-
ties such as the volume of subsets of (Q, g), the diameter of (Q, g), and the
Riemannian distance function dg on Q, are all continuous with respect to
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dC0 .1 In studying these quantities, it is, therefore, more natural to consider
the dC0-distance than finer distance functions involving also derivatives of g.

Topological entropy. The topological entropy htop is a numerical invari-
ant of a dynamical system that measures orbit complexity, see Sect. 1.4 for
its definition. In this paper we study the topological entropy htop of Rie-
mannian geodesic flows ϕg, g ∈ G(Q), seen as a function on the metric space
(G(Q), dC0). We will show, especially when Q is two-dimensional, that htop

is more robust under perturbations of the metric than one could imagine
at first sight. The reason why this robustness is not clear is that the geo-
desic vector field depends on the first derivatives of g, and therefore does not
change continuously with dC0 : a dC0 -small change of the metric can result in
a large change of the geodesic flow, meaning that a priori it is reasonable to
believe that a dynamical quantity such as the topological entropy would be
subject to a large change. This view is reinforced by the lack of continuity in
topologies much stronger than C0: in [34], it is shown that on the class of Cr

maps, r < ∞, htop fails to be upper semi-continuous in the C∞ topology and
even smooth perturbations of smooth diffeomorphisms on closed 3-manifolds
can collapse topological entropy to 0, see [16, Section 2] and also [30].

Our investigations are part of the more general study of how the topo-
logical entropy of the geodesic flow behaves with respect to perturbations
of the metric. This is a long-standing problem, and greatly depends on the
topology considered on the space of metrics: see for example [25] and [15].
Nowadays, a satisfactory answer is given for metrics of negative curvature
and C1 perturbations, even for some non-compact manifolds [39].

Two continuous invariants. The first motivation to study the conti-
nuity properties of htop on (G(Q), dC0) is that there are two functions on
(G(Q), dC0) which bound htop from below and which are clearly continuous
in (G(Q), dC0): the volume entropy hvol and the exponential growth rate
ΓMorse of the Morse homology of the based loop space or the free loop space.
The fact that hvol is a lower bound for htop is due to Manning [27], and the
fact that ΓMorse is a lower bound for htop is due to Paternain [36] (in the
case of based loop spaces) and [29] (in the case of free loop spaces). These
two functions either vanish on all of G(Q) or are positive for every element of
G(Q). If one of these functions does not vanish, then the topological entropy
is robust for all g ∈ G(Q) in the sense that for any g ∈ G(Q), there is c > 0
and an open neighborhood Ug of g in (G(Q), dC0) such that

htop(ϕg′) > c for all g′ ∈ Ug. (1.2)

This shows that for manifolds with positive hvol or positive ΓMorse the topo-
logical entropy of geodesic flows cannot be destroyed by a C0-small perturba-
tions. Our main results show that some of this robustness persists for man-
ifolds with vanishing hvol and ΓMorse. See for example Theorem 10, which
shows that C∞ generic metrics on the two-dimensional torus have robust
htop.

1Moreover, the logarithms of these quantities are Lipschitz with respect to dC0 .
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Homogeneity. We proceed to discuss the differences between htop and
the functions hvol and ΓMorse. Recall that the volume entropy hvol(g) of (Q, g)
measures the exponential growth rate of the volume of Riemannian balls with
respect to the radius on the universal cover of (Q, g). To prove that hvol(g)
is continuous on (G(Q), dC0), we first observe that hvol is monotonous: if
g, g′ ∈ G(Q) and g � g′ then hvol(g) � hvol(g′). Furthermore, hvol is homoge-
neous: hvol(Cg) = C− 1

2 hvol(g). The continuity of hvol on (G(Q), dC0) follows
easily from these two properties. The function ΓMorse is also monotonous and
homogeneous on G(Q), and this was explored in [16] to study C0-robustness
of htop of geodesic flows, and more generally Reeb flows. Since monotonous
and homogeneous functions on G(Q) are either 0 or always positive, the ho-
mogeneous function htop cannot be monotonous for metrics on the torus.
Moreover, Theorem 12 shows that it is possible to increase htop arbitrarily
with C0-small perturbations on (G(Q), dC0). In particular, this implies that
C0-near any metric we can find another metric that doubles its entropy. It
follows that

Corollary 1. (From Theorem 12) The topological entropy of geodesic flows is
not homogeneous on any closed manifold of dimension at least 2.

The set of high entropy metrics. The results of this paper show that on
the other hand in many situations htop cannot be arbitrarily decreased by
small perturbations on (G(Q), dC0). Theorem 34 shows that on the 2-torus, a
generic metric has robust positive topological entropy and Theorem 12 shows
that on any manifold of dimension at least 2 the set of robust high entropy
metrics is C0-dense.

Our results and this discussion suggest the following conjecture:

Conjecture 2. If Q is a closed surface, then htop(g) is robust whenever it does
not vanish.

Although all methods presented in this paper yield robust lower bounds
which are not sharp, we ask also the following question, which, if answered
in the affirmative, implies Conjecture 2.

Question 3. Is, for any closed surface Q, htop lower semi-continuous on (G(Q),
dC0)?

The recent results in [3] provide some reason to expect a positive answer
to this question.

The C0 distance dC0 is a variant of the Riemannian Banach–Mazur
distance dRBM defined by Stojisavljević and Zhang [41], a pseudo-metric on
G(Q).2 dRBM is defined as dRBM(g, g′) := inf dC0(g, ϕ∗g′), where the infimum
is taken over all diffeomorphisms ϕ : Q → Q. The pseudo-metric dRBM itself
is an adaption to G(Q) of the symplectic Banach–Mazur distance, which was
first proposed by Ostrover and Polterovich to study the symplectic geom-
etry of Liouville domains and studied, e.g., in [41,42]. In [41] the authors

2We note that the continuity and local robustness results for htop in this paper still hold

when considering dRBM instead of dC0 .
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investigate the large-scale geometry of (G(Q), dRBM) and one of their result
is that for Q = T 2 and every n ∈ N, there is a quasi-isometric embedding
Φn : (Rn, | · |∞) → (G(T 2), dRBM)3, so informally speaking (G(T 2), dRBM)
is “very large” in the metric sense. The construction in [41] can be easily
modified to have its image in the set of large entropy metrics by adding a
C0-small modification, cf. Corollary 13. For different points of view on the
study of C0-stable properties of Riemannian metrics, we refer the reader to
[11,33].

Mañé’s formula for the topological entropy. In [31], Mañé established
the following remarkable formula for the topological entropy of the geodesic
flow of a C∞-smooth Riemannian metric g on a manifold Q:

htop(φg) = lim
T→+∞

1
T

∫
Q×Q

log(N g
T (p, q))dωg(p)dωg(q). (1.3)

Here, N g
T (x, y) denotes the number of geodesic chords of g from p to q with

length < T , dωg(p) means integration in the variable p with respect to the
Riemannian volume form ωg on Q associated with g, and dωg(q) means inte-
gration in the variable q with respect to ωg. This formula gives a character-
ization of htop(φg) in terms of the purely geometric quantity which appears
on the right side of (1.3).

The right-hand side of (1.3) is the exponential growth of the average
number of geodesics connecting two points of Q. Using Mañé’s formula, our
results provide surprising robustness of this exponential growth in case Q is a
surface. For example, Theorem 34 implies that for a C∞-generic metric g on
T 2 this exponential growth is positive and cannot be completely destroyed by
C0-small perturbation of g. This is far from obvious, given that the counting
function N g

T (p, q) can undergo dramatic changes when we make C0-small
perturbations.

1.2. Results, strategy, and layout of the paper

To find a metric g with robust entropy, we proceed in two steps. First, we
prove a forcing type argument, which is a geometric feature of g that implies
positivity of the entropy. One of the best-known examples is a theorem of
[18] stating that a metric on the torus that admits a contractible closed
(non-constant) geodesic must have positive entropy. Then, we show that the
forcing situation is C0 robust, that is, persists after dC0 -small perturbations
of g.

The analogy with [18] is not incidental. In Sect. 2, we describe how a
contractible closed geodesic in the two-torus forces robust topological entropy.
Here and throughout the paper, lg(γ) denotes the length of the curve γ with
respect to the metric g.

Definition 4. Let Π : R2 → T 2 = R
2/Z2 be the canonical projection and gflat

the push forward by Π of the euclidean metric. For any metric g ∈ G(T 2)

3In fact, it is an embedding into the space of metrics with fixed volume and diameter
bounded by a fixed constant.
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define

D(g) = edC0 (gflat,g) = inf
{

C | 1
C

g ≺ gflat ≺ Cg; C > 0
}

.

Note that 1√
D(g)

lg(γ) � lgflat(γ) �
√

D(g)lg(γ) for all curves γ.

Theorem 5. Let g0 be a Riemannian metric on T 2 with a contractible closed
geodesic γ0. Then, g0 has robust topological entropy.

Moreover, the following holds. Given δ > 0 there is ε > 0 such that for
all g with dC0(g, g0) < ε

(1) htop(g) >

(⌈√
D(g0)Λ

2 + δ

⌉√
D(g0) + δ

)−1

log 3, where Λ = lg0(γ0) if

g0 is bumpy and Λ = 2(lg0(γ0) +
√

D(g0)) in general.

(2) htop(g) > min
{

1√
4areag0 (T 2)+L2

, 2
3L

}
log 2, where L = lg0(γ0) if g0 is

bumpy and L = max{4
√

4areag0(T 2) + lg0(γ0)2, 3lg0(γ0)} in general.

The proofs of the two parts of this theorem have similar, yet different
core ideas. For a clean exposition, we prove the first part of this theorem first
in the case where g0 is bumpy in Sect. 2.1, then in Sect. 2.2 in the degenerate
case. We then prove the second part of the theorem in Sect. 2.3.

A corollary of Theorem 5 (2) which we believe to be interesting in its
own right is the following:

Corollary 6. Let g be a Riemannian metric on the 2-torus whose area is �
1 and which has a contractible closed geodesic whose length is � 1. Then,
htop(φg) � 1

20 .

An interesting question is to know whether this result remains true
without any assumption on the length of the contractible closed geodesic, i.e.,
if there is a lower bound for the htop of geodesic flows of Riemannian metrics
on the 2-torus with area 1 and which have a contractible closed geodesic.

One result which is needed for Theorem 5 and throughout the paper
is presented in Appendix A, where we prove C0-robustness of the length
spectrum of a Riemannian manifold with bumpy metric. In our proof, we aim
at using as little technology as possible. The main statement is the following,
for the definition of topological non-degeneracy see Definition 48.

Proposition 7. Suppose that 0 < e ∈ (a, b) is the only energy value in [a, b]
of a closed geodesic on a closed manifold and that all geodesics with energy
e are (topologically) non-degenerate. Then, any C0-close Riemannian metric
has a closed geodesic in the same homotopy class with energy close to e.

Remark 8. For the first bounds in Theorem 5, the condition for g0 to be
bumpy is stronger than necessary; it would suffice to ask that only γ0 is
non-degenerate. Correspondingly, in Proposition 7 one may ask that γ0 is
topologically non-degenerate and isolated in the loop space instead of its
energy value to be isolated in the energy spectrum. However, this would
significantly complicate the proof of the proposition, cf. Remark 49, and
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since we also treat the degenerate case, this additional complication would
yield no significant improvement for Theorem 5.

In Sect. 3, we turn our attention to the volume entropy (to be defined
in Paragraph 1.4) for hyperbolic metrics on the one-holed torus. The volume
entropy is a lower bound for the topological entropy, so that a metric with
robust hvol has in particular robust htop. Consider again the set of metrics on
the two-torus that admit a non-constant simple contractible closed geodesic.
This geodesic is in particular separating, one component of its complement is
a disk, the other is a one-holed torus. In Sect. 3, we assume that the metric
on the one-holed torus is hyperbolic (constant curvature −1). Denote by H
this set of metrics on the torus. We prove the following result.

Theorem 9. Any Riemannian metric g ∈ H has robust hvol and, thus, robust
htop.

Following the general approach (forcing plus robustness), in Sect. 4,
we show that a certain configuration of curves in the torus, which we call
a ribbon, forces robust topological entropy. Moreover, this condition is C∞

generic, leading to a series of results that are more precisely stated in Theo-
rems 30 and 34.

Theorem 10. Four closed geodesics on the two-torus that form a ribbon force
robust htop. A C∞ generic metric possesses four closed geodesics that form
a ribbon and has, thus, robust htop.

In Sect. 5, we find a robust (albeit non-generic) forcing condition, which
we call retractable neck with entropic body on a Riemannian manifold of any
dimension. The following theorem is more precisely stated in Theorem 42:

Theorem 11. Let the closed Riemannian manifold (M, g) (of any dimension)
have a retractable neck and entropic body. Then, g has robust htop.

This condition is readily arranged by an explicit construction, see Ex-
ample 43, which allows us to prove the following statements on the size of
the space of metrics with large entropy, which we denote by Ge(Q) = {g ∈
G(Q) | htop(g) > e}.

Theorem 12. Let Q be a closed manifold Q of dimension at least 2. For any
e > 0 and for any metric g ∈ G(Q), there is a C0-continuous path g(s) :
(0,∞) → Ge(Q) such that for all s ∈ (0,∞):

• dC0(g(s), g) < s,
• and Br(s)(g(s)) ⊂ Ge, where Br(s)(g(s)) is the dC0-ball of radius r(s) =

log s+3
2+(s+1)e−s/8 around g(s).

Please note that in our construction, r(s) does not depend on e, but the
path g(s) does.

Corollary 13. • For any e > 0, Ge(Q) = {g ∈ G(Q) | htop(g) > e} is
C0-dense in G(Q).
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• As lims→∞ r(s) = ∞, we find arbitrarily big balls of arbitrarily large
entropy.

• For Q = T 2 let G(T 2) be the set of metrics with volume 1 and diameter
� 101. Then, for every n ∈ N there is a quasi-isometric embedding
Φn : (Rn, | · |∞) → (G

e
(T 2), dRBM).

1.3. Related developments

In an ongoing joint project of the authors Alves, Dahinden and Meiwes with
Abror Pirnapasov, we are generalizing some of the results of the present
paper, such as item (1) of Theorems 5 and 34, to the category of Reeb flows.
Reeb flows on contact 3-manifolds are a generalization of geodesic flows of
Riemannian metrics on surfaces, and the C0-distance on the space of contact
forms considered in [16] generalizes to the space of Reeb flows on unit tangent
bundles of surfaces (endowed with the geodesic contact structure) the C0-
distance on the space of Riemannian metrics of surfaces that we consider
here. For this generalization, one must use symplectic topological methods
developed in [7] to study htop of Reeb flows.

On the other hand, Corollary 6 cannot be generalized to the category
of Reeb flows. Using the methods of [1], one can construct Reeb flows on the
3-torus (T 3, ξgeo) endowed with the geodesic contact structure contradicting
any reasonable generalization of Corollary 6.

The questions considered in the present paper were inspired by [16] and
[14].

1.4. Setup and definitions

Let (Q, g) be a compact Riemannian manifold. Throughout this paper, we
will be interested in ergodic properties of its geodesic flow. Let T 1Q denote
the unit tangent bundle of Q. For a vector v ∈ T 1Q, we consider the geodesic
γv defined by the initial condition γ′

v(0) = v.
The geodesic flow of (Q, g), denoted ϕt

g (we sometimes omit t or g when
the context is clear) is defined by

ϕt
g : T 1Q −→ T 1Q

v �−→ γv(t) .

When Q is a manifold with boundary, we restrict ϕt to the forward
recurrent set in T 1Q.

Entropies. Denote by Γtf(t) := lim supt
1
t log f(t) the exponential growth in

t of a function f(t). We use the following definition of topological entropy:

Definition 14. Let ϕ : (M,d) → (M,d) be a continuous self map of a compact
metric space. Define the dynamical metric

dk(x, y) = sup
0�l�k

d(ϕlx, ϕly).

A (δ, k)-separated set is a set whose points have pairwise dk-distance � δ.
The topological entropy of ϕ is then defined as follows:

htop(ϕ) = lim
δ→0

Γk sup
Δ

|Δ|,
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where the supremum runs over all (δ, k)-separated sets. There exists a “dual”
characterization of the entropy with spanning sets instead of separated sets.
Note that for any fixed δ > 0 any sequence Δk of (δ, k)-separated sets provides
the lower bound

htop(ϕ) � Γk|Δk|
on the entropy. This is how we obtain all lower bounds to the entropy in this
paper. The difficulty is to find a growing sequence, i.e., one that provides a
positive lower bound.

Topological entropy is well known to be independent of the choice of
metric d (generating the same topology). Further, if ϕ : R × M → M is an
autonomous flow, then it is well known that

htop(ϕ1) =
1
T

htop(ϕT )

for any T > 0.
We say the topological entropy htop(g) of a geodesic flow on a Riemann-

ian manifold is the topological entropy of the time-1 map of the geodesic flow
on the unit sphere bundle. �

Volume entropy is a related invariant, more geometric in nature. Let
M be a closed manifold (possibly with non empty boundary) and M̃ its
universal cover that we endow with the metric pulled-back from M . We choose
a basepoint x ∈ M̃ .

Definition 15. By a result of [27], the following limit exists and is independent
of the basepoint x. We call it the volume entropy of M .

hvol = lim
R→∞

log VolB(x,R)
R

,

where B(x,R) is the ball of radius R centered at x in the universal cover
M̃ . �

A comparison between hvol and htop is done in [27]: we have

hvol � htop

for any closed manifold M . Note that the result also applies to manifolds
with boundary. Even if this case is not stated in [27], the same proof extends
to this case. Equality happens, e.g., when M has nonpositive curvature.

In the context that we have in mind, the above inequality simply means
that a metric with robust hvol also has robust htop.

Length, energy, area and loop spaces. Let Q be a closed manifold. Let g
be Riemannian metric on Q. The length resp. the energy of a smooth curve
x : [0, 1] → Q with respect to g are

lg(x) =
∫ 1

0

√
g(x′(t), x′(t)) dt,

Eg(x) =
1
2

∫ 1

0

g(x′(t), x′(t)) dt.
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Note that, for C > 0, lg(x) = 1√
C

lCg(x), and Eg(x) = 1
C ECg(x), where Cg is

the metric Cg(v, w) := C(g(v, w)).
If Q is a surface and Σ ⊂ Q a subsurface, denote by areag(Σ) =

∫
Σ

σg

the area of Σ, where σg is the Riemannian volume form of g.
We use the following notations for various versions of loop spaces:

LQ := {γ : S1 → Q | γ smooth},

LQ<(�)a
g := {γ ∈ LQ | Eg(γ) < (�)a},

LαQ := {γ ∈ LQ | [γ] = α},

LαQ<(�)a
g := {γ ∈ LαQ | Eg(γ) < (�)a}.

Robustness. We are interested in conditions under which the entropy of the
geodesic flow is robust under C0-perturbations of the metric. Let us formulate
the robustness property in which we are interested. Let Q be closed manifold,
equipped with a metric g.

Definition 16. Let ε > 0. We say that g has ε-robust htop if there is c > 0
such that for all metrics g′ with dRBM(g, g′) < ε we have htop(g′) � c. We
say that g has robust htop if it has ε-robust htop for some ε > 0.

Remark 17. It seems that there is no established terminology for this prop-
erty in the literature. In other places, g is said to have stable htop or to be
entropy non-collapsing.

A preliminary robustness lemma

We describe the (classic) mechanism that deduces positive topological entropy
from many homotopically different periodic orbits.

Two free homotopy classes α, β are coprime if they are not multiples
of a common class γ. Equivalently, α and β do not possess representatives a
and b such that multiples na and mb are homotopic.

Lemma 18. Let Sg be a compact Riemannian manifold. Let Pg be a set of
periodic g−geodesics in pairwise coprime homotopy classes and let {PL

g }L∈R

be the filtration by g-length.
Suppose that ΓL(#PL

g ) � γ. Then, htop(g) � γ.

Proof. This follows from [2, Theorem 1]. It can also be obtained using the
argument used to prove Manning’s inequality in [27]. �

2. A robust version of the Denvir–MacKay theorem

The aim of this section is to prove Theorem 5. This builds upon [18], where
it is shown that the existence of a contractible simple closed geodesic implies
the existence of many other geodesics. We first prove in Sect. 2.1 item (1)
of Theorem 5 in case γ0 is topologically non-degenerate. For the notion of
topological non-degeneracy see Definition 48. In Sect. 2.3, we provide an
explicit robustness constant in terms of the area and of the minimal length
of a contractible closed geodesic that is item (2) in Theorem 5.
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2.1. Proof of item (1) of Theorem 5 in case γ0 is non-degenerate

The strategy is to combine the robustness of contractible closed geodesics
with the proof that a contractible closed orbit implies positive topological
entropy.

Before presenting the proof, we recall some preliminary notions which
will be needed in the proof. We fix, once and for all, a covering map Π :
R

2 → T 2, such that the group G of deck transformations associated to Π is
the group of translations of R2 by vectors (m,n), where m and n are integers.
In other words

G = {T(m,n) | m and n ∈ Z},

where T(m,n) : R2 → R
2 is given by T(m,n)(x, y) = (x+m, y+n). It is clear that

for any choice of real numbers a and b the unit square [a, a+1]×[b, b+1] ⊂ R
2

is a fundamental domain for the covering Π.
Let σ be an immersed contractible closed curve in T 2 with only trans-

verse self-intersections. A lift of σ is an immersed closed curve σ̃ in R
2 such

that for any parametrization f : S1 → σ̃ of σ̃ the composition Π ◦ f is a
parametrization of σ.

We will need the following elementary lemma.

Lemma 19. Let g be a Riemannian metric on T 2 and fix a number l > 0.
Then, if σ is an immersed closed curve in T 2 with only transverse self-
intersections and g-length < l, every lift σ̃ of σ is contained in a square

of the form [a, a + 

√

D(g)l

2 �] × [b, b + 

√

D(g)l

2 �].

Recall that we defined D(g) = edC0 (gflat,g).

Proof. Since the g-length of σ is < l, the gflat-length of σ is <
√

D(g)l, which
implies that any lift σ̃ of σ has length <

√
D(g)l with respect to the flat

metric in R
2. Let pleft be a leftmost point of σ̃ and pright be a rightmost point

of σ̃. Since σ has length <
√

D(g)l and has to travel from pleft to pright and
back to pleft by running a distance less than its length, we conclude that the

Euclidean distance between pleft to pright is <

√
D(g)l

2 . We conclude that σ̃ is

contained in a vertical strip of R2 with width <

√
D(g)l

2 .
Reasoning similarly for an uppermost point and a lowermost point of σ̃

we conclude that σ̃ must be contained in a horizontal strip of width <

√
D(g)l

2 .
This establishes the lemma. �

We are now ready to proceed with the proof.
Step 1: Robustness of the length spectrum. If γ0 is a contractible topo-

logically non-degenerate closed geodesic of g0, then for a sufficiently small δ >
0, there is an ε > 0 such that every Riemannian metric g whose dC0 -distance
to g0 is < ε has a contractible closed geodesic γ with |lg(γ) − lg0(γ0)| < δ
and |lg0(γ) − lg0(γ0)| < δ. Since D(g) also varies continuously with respect
to dC0 , we can choose ε > 0 to be small enough so that D(g) < D(g0) + δ.
We believe this to be well known to experts, but since we are unaware of
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a published proof of this precise statement, we provide a proof using very
low-tech methods in Appendix A.

Step 2: Simplifying the geodesic. We start with the contractible closed
geodesic γ for g from Step 1. Denote by γ̃ a lift to the universal cover R2, which
is a closed geodesic of g̃ := Π∗g because γ is contractible. Denote by S the
closure of the unbounded component of R2 \ γ̃, a set that is homeomorphic
to a plane minus an open disk. Let α be one of the two non-trivial free
homotopy classes of loops in S which contains embedded loops; these are the
classes of curves in S which encircle once the disk which was removed from
R

2. Using the curve shortening flow on S and reasoning as in the proof of
Lemma 2 of [6] one obtains a contractible simple closed geodesic γα of g̃ in
the homotopy class α, whose g-length is the minimal possible length for all
curves in the homotopy class α.

Combining this discussion with Lemma 19, we conclude that γ̃ is con-

tained in a square of the form [a, a + 

√

D(g)lg(γ)

2 �] × [b, b + 

√

D(g)lg(γ)

2 �]. For

simplicity, we let N := 

√

D(g)lg(γ)

2 �.
Let Ĝ be the subgroup of G generated by TN,0 and T0,N . Since γα is a

simple closed curve in R
2 contained in a fundamental domain [a, a + N ] ×

[b, b + N ] of Ĝ, it is a simple contractible closed geodesic in the quotient
Riemannian manifold (T̂ , ĝ) that is obtained by quotienting (R2, g̃ := Π∗g)
by the action of Ĝ.

Step 3: Many free homotopy classes. Since γ̃ is a simple contractible
closed geodesic in T̂ , it bounds a disk D̂ in T̂ . The surface S := T̂\D̂ is
diffeomorphic to the torus minus a disk, so that π1S is the free group with
two generators. Let α1 be the projection of [a, a + N ] × {b} to T̂ and α2 be
the projection of {a} × [b, b + N ] to T̂ : {α1, α2} is a basis of π1S.

We proceed to estimate the ĝ-length of α1 and α2. It is clear that

lĝ(α1) = Nlg̃([a, a + 1] × {b}) and lĝ(α2) = Nlg̃({a} × [b, b + 1]).

We know that max{lg̃({a} × [b, b + 1]), lg̃([a, a + 1] × {b})} �
√

D(g).
Recall that the set of free homotopy classes of loops Ω(S) in S equals

the set of conjugacy classes of π1S. Given a number n we denote by Ωn(S)
the set of elements in Ω(S) which have at least one representative in π1S
with word length � n with respect to {α1, α2, α

−1
1 , α−1

2 }. It is well known,
see, e.g., [17, VI.A.], that the number of elements in π1S of minimal word
length n > 0 is 4·3n−1. Since conjugation on cyclically reduced words in a free
group corresponds to a cyclic permutation, one obtains #Ωn(S) � 8·3n−2

n .
Let ρ ∈ Ωn(S). Because we can represent ρ as a word in α1 and α2

with word length � n, we can find curves in ρ whose length is � NeD(g)n.
Since (S, ĝ) is a Riemannian surface with geodesic boundary, there exists a
minimizing closed geodesic γρ of (S, ĝ) in ρ contained in the interior of S.
The length of γρ is � N

√
D(g)n

Step 4: Many geodesics lead to entropy. Let N C(ĝ) be the set of prime
minimizing closed geodesics of length � C in (S, ĝ) and Ñ C(ĝ) be the set
of minimizing closed geodesics of length � C in (S, ĝ). A simple argument
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shows that the exponential growths lim supC→+∞
log(#N C(ĝ))

C of N C(ĝ) and

lim supC→+∞
log(#Ñ C(ĝ))

C of Ñ C(ĝ) are the same.
But

lim sup
C→+∞

log(#Ñ C(ĝ))
C

� 1
N

√
D(g)

lim sup
n→+∞

log(#Ωn(S))
n

� log 3
N

√
D(g)

.

Let ϕĝ be the geodesic flow of ĝ on T 1T̂ . We consider the set of globally
minimizing geodesics of (S, ĝ). The lift C of this set is a compact ϕĝ-invariant
set that is completely contained in T 1S. The lift of every minimizing closed
geodesic of (S, ĝ) belongs to C. Reasoning as in the proof of Manning’s in-
equality one obtains that the exponential growth of N C(ĝ) is a lower bound
for htop(ϕĝ|C). Noting that two different prime closed geodesics of (S, ĝ) give
closed trajectories of ϕĝ in C which are not homotopic in T 1S, one can also
obtain that the exponential growth of N C(ĝ) is a lower bound for htop(ϕĝ|C)
by using Theorem 1 of [2]. We can, thus, conclude that

htop(ϕĝ) � htop(ϕĝ|C) � log 3
N

√
D(g)

.

Since htop(ϕĝ) = htop(ϕg) we have shown that for every Riemannian metric
g with dC0(g, g0) < ε we have htop(ϕg) � log 3

N
√

D(g)
, which completes the proof

of the theorem. �

2.2. Proof of item (1) of Theorem 5 in case γ0 is degenerate

In the degenerate case, we face the problem that the contractible closed geo-
desic may not persist after perturbation of the metric. It is easy to construct
examples where it does not. However, in the following proof, we are able
to show that there are different contractible geodesics that will persist. The
proof follows the scheme of the non-degenerate case.

Proof. Step 1: Simplifying the geodesic. First, it is sufficient to consider the
case where the lift γ̃0 to R

2 is a simple contractible closed curve. This follows
from [6] who proved that any Riemannian metric on T 2 with a contractible
closed geodesic α with length l has a contractible closed geodesic α′ whose
length is � l and whose lift to R

2 is simple. For completeness, we sketch
the proof of this fact. If a lift α̃ of α is simple there is nothing to be done.
Otherwise, letting Σ be the closure of the unbounded component of R2\α̃,
we know that ∂Σ is a geodesic polygon formed by pieces of α̃, and the length
of ∂Σ is < l. Perturbing ∂Σ to a curve completely contained in the interior
of Σ and applying the curve shortening flow one obtains the desired α′.

Reasoning as in the proof of the non-degenerate case, we obtain a square

of the form [a, a+

√

D(g0)

2 �]×[b, b+

√

D(g0)

2 �]. We let (T̂ 2, ĝ0) be the quotient
of (R2, π∗g0) by the group of translations generated T0,M and TM,0, where

M := 

√

D(g0)

2 �.
We denote by S the non-contractible component of T̂ 2\im(γ0) and by

D its complement. Note that ∂D ⊆ im(γ0).
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Figure 1. The construction of the curve ς

Step 2: Finding the geodesic.

Fix a lift γ̃0 and let γ̃0
′ be the closest lift of γ0 which does not intersect

γ̃0. The distance between γ̃0 and γ̃0
′ is �

√
D(g): this is an elementary

exercise that we leave to the reader. We let ι be the shortest geodesic of π∗g0

connecting γ̃0 and γ̃0
′. Let then ς be a simple closed curve in R

2 contained
in a small tubular neighborhood of γ̃0 ∪ γ̃0

′ ∪ ι, and such that the bounded
component of R2\ς contains both γ̃0 and γ̃0

′; see Fig. 1.
We denote by ρ the free homotopy class of loops in S which contain the

projection of ς to S. The class ρ has the following properties:

(1) curves in ρ are not contractible in S,
(2) curves in ρ are contractible in T 2,
(3) curves in ρ are not homotopic to ∂S in S.

Given any ε > 0, there are curves in ρ with length � 2(lg0(γ0) +
√

D(g0)) +
ε. This is obtained by considering curves homotopic to ς and contained in
sufficiently small neighborhoods of γ̃0 ∪ γ̃0

′ ∪ ι; see Fig. 1.
We define

σρ := inf
γ∈ρ

Eg0(γ).

By the remark above we know that σρ � (lg0(γ0) +
√

D(g0))2. The infimum
σρ is actually a minimum, and this can be proved using piecewise smooth
geodesics and the strategy to prove [24, Theorem 1.5.1]. Let Aρ be the set of
curves in S whose g0-energy is σρ. They are all smooth geodesics of g0.

Step 3: Repelling boundary. We show that energy minimizing curves
have to be contained in the interior of S.

Lemma 20. Given ρ as in the last step, there is δρ > 0 such that every loop
in ρ that intersects ∂S has energy > σρ + δρ.

Proof. If this is false, then we find a sequence τm of C∞ loops in ρ that
touch ∂S with Eg0(τm) → σρ. Then, it is possible to find a natural number
K and replace τm by a sequence of piecewise smooth geodesics τ̂m in ρ with
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at most K corners and satisfying Eg0(τ̂m) → σρ. 4 Then, τ̂m converges up to
a subsequence to a piecewise smooth geodesic τ that touches the boundary
and that has energy Eg0(τ) = σρ. Because Eg0(τ) = σρ it must be a smooth
geodesic and since it is contained in S and touches ∂S it must be tangent
to ∂S. This implies that τ is a geodesic tangent to the geodesic ∂S and
thus, τ coincides with ∂S. But this is impossible because curves in ρ are not
homotopic to the boundary. �

Step 4: Perturbing the metric. Consider now the open set Vδρ/2 of loops
contained in S and belonging to ρ with energy in the interval [σρ, σρ + δρ/2).
From Step 3, all loops in Vδρ/2 have image in the interior of S.

Denote by Uε the set of Riemannian metrics g satisfying (1 − ε)g0 <
g < (1 + ε)g0. For g ∈ Uε and any τ ′ ∈ W 1,2(S1, T 2) we have

(1 − ε)Eg0(τ) < Eg(τ ′) < (1 + ε)Eg0(τ).

Choose ε > 0 small enough such that

(1 + ε)σρ < (1 − ε)(σρ +
δρ

2
). (2.1)

Then, we can show that any g ∈ Uε has a contractible closed geodesic
which belongs to Vδρ/2. For this we reason as follows:

Let γρ be a geodesic of g0 in the class ρ and with Eg0(γρ) = σρ. The
curve γρ is in the interior of Vδρ/2. We have

Eg(γρ) < (1 + ε)σρ.

Let φg be the negative gradient flow of Eg. Then, φt
g(γρ) ∈ V δρ/2 for all t � 0

because Eg decreases along trajectories of φg and because for all τ ′ ∈ ∂V δρ/2

we have

Eg(τ ′) � (1 − ε)Eg0(τ
′) = (1 − ε)(σρ + δρ/2) � (1 + ε)σρ > Eg(γρ).

It follows that φt
g(γρ) cannot cross the boundary of Vδρ/2 and is, thus, trapped

in Vδρ/2. By Palais–Smale φt
g(γρ) converges to a geodesic γ of g which must

then be in Vδρ/2. The geodesic γ has image in the interior of S and belongs
to ρ.

Step 5: Uniform lower bound on the entropy. To obtain a uniform lower
bound on the topological entropy of metrics in Uε one uses an argument with
finite covers identical to the one used in the proof of the non-degenerate case.
The crucial point is that the Riemannian metric g has a contractible closed
geodesic whose length is very close to σρ � 2(lg0(γ0) +

√
D(g0)). �

2.3. A lower bound on topological entropy in terms of surface area

The lower bound on the topological entropy obtained in the proofs of the
first part of Theorem 5 depends on the number of fundamental domains a
lift of a contractible closed geodesic in the torus (T 2, g) of a fixed length may
intersect. A metric invariant that often appears naturally in the investigation
of lower bounds on entropy is the surface area. In this section, we observe that

4To guarantee that we can find a uniform bound on the number of corners one uses that
(S, g0) has geodesic boundary and that its convexity radius is therefore positive.
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Figure 2. Situation in Sect. 2.3

there is a lower bound depending only on the surface area and the minimal
length of contractible closed geodesics on (T 2, g0). Since surface area C0

continuously depends on the metrics on T 2 this gives an alternative robust
bound.

The main additional idea is to first find for a genus 1 surface (Σ, g)
with one (geodesic) boundary component γ two short curves u+ and u− that
generate exponential growth rate log 2 in the fundamental group of Σ, where
the length of u+ and u− are bounded in terms of the length of γ and the area
of (Σ, g).

Let Σ be a surface homeomorphic to a torus with connected boundary.
We endow Σ with a Riemannian metric g such that the boundary curve is a
geodesic. This is in particular the situation given by a closed geodesic on a
torus, of which we remove the simply connected component of the comple-
ment of the geodesic. We fix an orientation of Σ, which induces an orientation
on ∂Σ. Denote by L the length of ∂Σ and by A the area of (Σ, g).

We consider the following set of curves:

B = {β : I → Σ with β(∂I) ⊂ ∂Σ and
[β] non-trivial and not homotopic to ∂Σ}

and the quantity

d = inf {lg(β) , β ∈ B} .

The infimum is attained. Let α be a curve in B such that lg(α) = d. Let
x ∈ Σ be the point of α that divides it in two paths of equal length d/2, α−
the restriction of α to the path between α(0) and x; α+ the restriction of α
to the path between x and α(1).

We denote also by γ− and γ+ the paths in ∂Σ (disjoint up to the end-
points) with γ−(0) = γ+(0) = α(1) and γ−(1) = γ+(1) = α(0) (one of which
is constant if the endpoints of α(0) = α(1) are the same). We choose these
path such that γ+ follows ∂Σ in positive orientation and γ− follows ∂Σ in
negative orientation. See Fig. 2.
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We consider the two homotopy classes ξ± ∈ π1(Σ, x):

ξ± = [α+ · γ± · α−] .

We need to argue that, first, we can find representatives of ξ± of small
lengths and, second, that ξ± generate exponential growth in π1(Σ, x).

Representatives of small length. The strategy is to consider a family of
closed curves such that each one together with ∂Σ bounds an annulus in Σ.
Integration on their lengths will show that there is an upper bound on the
length of smallest representatives of ξ± in terms of A and L.

Lemma 21. There exist representatives of ξ±, both of length smaller than
M :=

√
L2 + 4A.

Proof. For t < d
2 , we introduce the sets

Gt = {x ∈ Σ; distg(x, ∂Σ) = t} .

It follows from a classical result of Hartman [22], see also [38, Theo-
rem 4.4.1], that there is a closed set of zero Lebesgues measure of exceptional
parameters E ⊂ [0, d/2] such that for all t ∈ R := [0, d/2]\E, Gt consists
of finitely many connected components, each being the image of a piecewise
smooth closed simple path. In particular, the length lg(Gt) of Gt is well defined
for t ∈ R. Moreover, if we denote Bt := {x ∈ Σ; distg(x, ∂Σ) � t}, which is a
subsurface in Σ bounded by ∂Σ and Gt, then for t ∈ R, d

dtareag(Bt) = lg(Gt).
It is straightforward to see that α is not contained in Bt. Note also that,

since t < d/2, Bt has genus zero. Take the collection of discs in Σ that any
component of Gt may bound in the complement of Bt, and attach it to Bt.
We denoted this surface by B̃t.

Claim 22. B̃t is an annulus that is bounded by ∂Σ and by one distinguished
connected component γt of Gt.

Proof. Assume by contradiction that the boundary of B̃t has more than one
connected component besides ∂Σ. Then, there exists a path β, completely
contained in Bt, with endpoints in ∂Σ, and which is not homotopic in Σ
relative to ∂Σ to a path in ∂Σ. Let l0 be the infimum of the lengths of such
paths. We claim that l0 < d, which contradicts the definition of d. For this,
choose β as above to have length l0 � lg(β) < l0 + (d − 2t). There is a point
y on β that divides β into two subpaths β0 and β1 of equal length lg(β)/2.
By the definition of Bt, there is a path β̂ from y to ∂Σ in Bt of length � t.
Either the concatenation of β0 · β̂ or β1 · β̂ is not homotopic relative ∂Σ to a
path in ∂Σ. Hence, l0 � lg(β)/2 + t < l0/2 + d/2, and hence l0 < d. �

Via the annulus that γt and ∂Σ bound we choose the orientation of γt

to be parallel to that of ∂Σ. For each t ∈ R, t < d
2 , both paths, α+ and α−,

intersect γt in some point, say zt
+ and zt

−, respectively. Let αt
− be the subpath

of α− from zt
− to x, and αt

+ be the subpath of α+ from x to zt
+. Let γt

+ and γt
−

be two path on γt (disjoint up to the endpoints) with γt
+(0) = γt

−(0) = zt
+

and γt
+(1) = γt

−(1) = zt
−. We choose these path such that γt

+ follows γt

in positive orientation and γt
− follows γt in negative orientation. Consider
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the loops ut
± = αt

+ · γt
± · αt

−. By the choice of orientations we have that
[ut

±] = ξ± ∈ π1(Σ, x). The point zt
± ∈ γt are at distance t from ∂Σ, by the

definition of γt. Hence, the length of ut
± satisfy

lg(ut
±) � d − 2t + lg(γt).

We will show that there is t ∈ R such that the length of both ut
± is

< M . (Note here, that also 0 ∈ R, and lg(u0
±) < L+d). Assume the contrary.

This means that for all t ∈ R,

lg(γt) � M + 2t − d.

Now, for any 0 � σ � d/2,

A � areag(Bd/2) − areag(Bd/2−σ) �
∫ d/2

d/2−σ

lg(γt) dt

�
∫ d/2

d/2−σ

M + 2t − d dt =
∫ σ

0

M − 2sds = Mσ − σ2,

(2.2)

hence for all 0 � σ � d/2,

0 � σ2 − Mσ + A =
(

σ − 1
2
(M −

√
M2 − 4A)

)(
σ − 1

2
(M +

√
M2 − 4A)

)
,

which means that

M −
√

M2 − 4A � d,

so M − L � d, and therefore M � d + L > lg(u0
±), a contradiction to our

assumption. �
Generating growth. With Lemma 21 we obtain

Lemma 23. The number of free homotopy classes of loops in Σ that have a
representative of length � Mn is � 2n−2

n .

Proof. π1(Σ, x) is a free group of two generators. It is straightforward to
check, e.g., with the help of the loops α and β of Fig. 3 below, that we can
choose two elements a, b ∈ π1(Σ, x) that freely generate π1(Σ, x) such that
ξ− = a and ξ+ = b−1ab. For a given word w of length n in the letters ξ+ and
ξ−, consider the word w̃ in the letters a and b that we obtain when expressing
ξ− as a and ξ+ as b−1ab and then reducing cyclically. It is straightforward to
check that, if w1 �= w2 are such words that are not of the form ξn

+ or ξn
−, then

w̃1 �= w̃2. The homotopy classes of free loops in Σ correspond to conjugacy
classes of elements in π1(Σ, x). The latter correspond to words in a and b
up to cyclic reduction and cyclic permutation. Hence by Lemma 21 and the
above considerations, the number of homotopy classes of loops in Σ that have
a representative of length � Mn is at least 2n−2

n .

With Lemmas 21 and 23 at hand, we prove the second part of Theo-
rem 5.

Proof. Assume first that g0 is bumpy. Then, as above, there is for all ε > 0
some δ > 0 such that for all g with dC0(g, g0) < δ there is a contractible
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closed geodesic γ for g with length lg(γ) < lg0(γ0)+ε. Furthermore, by a suf-
ficiently small δ, one can additionally assume that areag(T 2) < areag0(T

2)+ε.
Therefore, in this case it is enough to prove the lower bound for htop(ϕg0).

Denote by G the group of deck transformations for the covering Π :
T̃ 2 → T 2, and choose a lift γ̃0 : S1 → T̃ 2 of γ0.

We distinguish two cases:

(1) For all T ∈ G\{id}, T (im(γ̃0)) ∩ im(γ̃0) = ∅,
(2) There is T ∈ G\{id}, T (im(γ̃0)) ∩ im(γ̃0) �= ∅.

If case (1) holds, then, as in Step 2 of the proof presented in Sect. 2.1 for item
(1) of Theorem 5, we know that there is actually a contractible simple closed
geodesic γ for g0 with length lg0(γ) � lg0(γ0). Denote D ⊂ T 2 the disc that
is bounded by γ. Then, by Lemma 23 applied to Σ = T 2\D, and Lemma 18,
we obtain that

htop(ϕg0) >
1√

4areag0(Σ) + lg0(γ)2
log 2 >

1√
4A + lg0(γ0)2

log 2.

In case (2), fix T ∈ G\{id} with T (im(γ̃0))∩ im(γ̃0) �= ∅, and let k ∈ N,
k � 2, with k = min{l ∈ N | T l(im(γ̃0)) ∩ im(γ̃0) = ∅}. Consider the lifts
γ̃1 = T ◦ γ̃0 and γ̃k = T k ◦ γ̃0. Then, γ̃1 intersects both γ̃0 and γ̃k, hence
distΠ∗g0(im(γ̃0), im(γ̃k)) < lg0(γ0)/2.

Choose S ∈ G such that for all l ∈ Z\{0}, and all m ∈ Z, Sl(im(γ̃0)) ∩
T m(im(γ̃0)) = ∅. Denote T̂ 2 the quotient of T̃ 2 by the action of the subgroup
of G generated by S and T k, and Π̂ : T̂ 2 → T 2 the induced covering map.
By the choice of S, T and k, the projected curve γ̂0 of γ̃0 to T̂ 2 is a closed
geodesic of Π̂∗g0 that lies in one fundamental domain of the universal covering
of T̂ 2. So, as argued before, if γ̂0 is not simple, we may replace it by a simple
closed geodesic on (T̂ 2, Π̂∗g0) with length � lg0(γ0) that encircles im(γ̂0). Let
D̂ be the disc bounded by γ̂0 and let Σ̂ = T̂ 2\D̂. With analogous notation as
before,

B̂ :=
{

β : I → Σ with ∂I ⊂ ∂Σ̂ and

[β] non-trivial and not homotopic to ∂Σ̂
}

,

one has d̂ := inf
{

lΠ̂∗g0
(β) , β ∈ B̂

}
� distΠ∗g0(im(γ̃0), im(γ̃k)) < lg0(γ0)/2.

Then, following the construction in the proof of Lemma 21 and Lemma 23,
one proves that

htop(ϕ̂g0) >
1

3
2L

log 2,

where ϕ̂g0 denotes the geodesic flow on T̂ 2 with respect to the metric Π̂∗g0.
Since htop(ϕ̂g0) = htop(ϕg0), the assertion follows.

In the case that g is degenerate, one combines the argument in the
proof of the degenerate case of the first part of the theorem with the estimates
obtained in the previous paragraph, and observes that there is a locally energy
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Figure 3. One-holed torus, generators, heights and boundary

minimizing contractible closed geodesic γ whose lift to the universal cover
encircles two distinct lifts of γ0 and whose length satisfies

lg0(γ) < max
{

4
√

4areag0(T 2) + lg0(γ0)2, 3lg0(γ0)
}

.

The estimates for htop(g) stated in the theorem follow as in the previous
paragraph. �
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3. Robustness of volume entropy and hyperbolic geometry

We consider a torus with a boundary component Σ1,1, endowed with a hyper-
bolic metric. Associated with this holed torus is its volume entropy, denoted
hvol (cf. Definition 15). Note that the universal cover is not all of H

2 but
only a geodesically convex subset of H2 bounded by the lifts of the boundary
curve of length L. Hence hvol is in general smaller than 1.

Both hvol and L are considered as functions on the Teichmüller space
of Σ1,1.

We prove the following result.

Theorem 24. If the volume entropy h tends to 0 in the Teichmüller space,
then the boundary length L tends to ∞.

In other terms, to keep the entropy bounded away from 0, we need to
bound from above the boundary length. Note the analogy with Sect. 2 for
the topological entropy. In this setting, the bound on the area is implicit
because any hyperbolic metric on the one holed torus has area 2π by the
Gauss–Bonnet formula.

Proof. We rely on Fig. 3: we choose α and β some generators of the funda-
mental group π1(Σ1,1) = F2, for which we denote by 2a and 2b the lengths of
the respective geodesic realizations once we fix a hyperbolic metric on Σ1,1.
We also denote by γ the angle between the lifts of α and β.

We consider some heights associated to α and β: they are two geodesic
curves starting and ending at the boundary and meeting, respectively, α and
β orthogonally.

We then construct a fundamental domain for the action of π1 on H
2 as

in Fig. 3: it is an octagon made of (pieces of) lifts of heights and boundary
curves. Note that the lifts of α and β can be assumed to meet at their
midpoints and that L1 + L2 + L3 + L4 = 2L. The fundamental domain is a
union of four pentagons with one right angle and one angle γ or π − γ.

We may also assume that the two remaining angles in each pentagon
is also a right angle. Indeed, doing so decreases the lengths of the Li’s and
proving the result for four right-angled pentagons will yield the result.

For further use, assume that the remaining angle is γ in the pentagons
containing as a side L2 and L4 and π − γ in the two other pentagons.

In this case, hvol and L are functions of a, b and γ. We will use two facts
about these functions.

(1) The entropy h = hvol satisfies the inequality

1
1 + eha

+
1

1 + ehb
� 1

2
.

This is proved in [8].
(2) The boundary length is expressed as

cosh L2 = sinh a sinh b − cosh a cosh b cos γ.
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This formula comes from a trigonometric formula in the pentagon with
one side L2, similar formulas allow to express the other Lis. This for-
mula comes from, e.g., [12, p. 37 (iii)]. As γ → 0, this formula implies
that a and b tend to +∞5.
We now assume that h → 0 and we want to see that one of the Li’s

must tend to ∞. First notice that h is a continuous function of a, b and γ.
So in order to make h → 0, we need to make a, b and γ escaping compact
sets. Note that γ cannot tend to 0 while keeping a and b bounded (unless
L2 → ∞ and we are done) so a, b and γ escape compact sets if and only if a
and b escape compact sets. We argue differently depending on how a and b
escape compact sets. Without loss of generality, we assume that a � b. Note
that two cases are immediately excluded because of (1): the case a → 0 and
b → 0 and the case a → 0 and b bounded.

1st case: a in bounded and b → ∞. Formula (2) implies that

cosh L2 ∼ sinh a
eb

2
− cosh a

eb

2
cos γ.

To keep L2 bounded, we need that cos γ ∼ tanh a. But the same formula
applied to the top left pentagon would imply that to keep L1 bounded, we
need that cos γ ∼ − tanh a and both are not possible simultaneously.

2nd case: a → ∞ and b → ∞. Then formula (2) implies that

cosh L2 ∼ ea+b

4
(1 − cos γ) .

To keep L2 bounded, we need that γ → 0 and this is incompatible with
keeping L1 bounded.

3rd case: a → 0 and b → ∞. This is the most subtle case and we need
to dig more into formula (1). Formula (2) implies already that

cosh L2 ∼ a

2
eb

2
− eb

2
cos γ and cosh L1 ∼ a

2
eb

2
+

eb

2
cos γ.

Keeping both L1 and L2 bounded would imply that eba is bounded, or b �
c − log a, where c is a constant.

On the other hand, formula (1) with a → 0 and b → ∞ becomes

b � 1
h

log
(

4
ha

)
+ o(a)

(see [8]). Combining the two formulas, we get

c − log a � 1
h

log
(

4
ha

)
+ o(a).

Reordering, we have,

c +
(

1
h

− 1
)

log a � 1
h

log
(

4
h

)
+ o(a)

5Indeed, if a and b are both bounded and, we see that coshL2 is eventually negative as

γ → 0, which is absurd. If only a tends to +∞ and b stays bounded, the same argument
also applies because cosh a is arbitrarily close to sinh a, when a tends to +∞.
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which is absurd since the left-hand side tends to −∞ while the right hand
side tends to +∞ (when both a and h tend to 0).

Another, more intuitive, way to analyze this argument would be to
remark that b → ∞ is responsible for the fact that h → 0 and conversely
a → 0 has the tendency to keep h away from 0. The opposition is settled
by the relation aeb bounded (which means a wins, a and b do not have
a symmetric role). Hence, it is reasonable to reach a contradiction if we
moreover assume that h → 0. �

We conclude this paragraph by an example showing that we cannot
bound from below the volume entropy by an absolute constant. Those exam-
ples are well known, we only discuss them for completeness.

Proposition 25. There exists a sequence of hyperbolic metrics on the torus
with one boundary component whose volume entropy tends to zero.

Proof. On the Poincaré disk model for the hyperbolic plane, we consider two
orthogonal geodesics A and B meeting at the basepoint o. We denote by α
and β the loxodromic isometries whose axis are A and B respectively and with
the same translation length denoted 2a (the factor 2 makes the computations
a bit easier).

A classical ping-pong-type argument shows that, when a is big enough,
the group Γa generated by α and β is free, the quotient of the disk by Γa is
a torus with a funnel and the convex core of the latter is a torus with one
boundary component.

We will argue that, as a tends to infinity, the volume entropy of this
torus tends to 0. To achieve this computation, we will use that the volume
entropy is bounded above by the Hausdorff dimension of the limit set Λ(Γa)
[40] and actually compute the Hausdorff dimension.

Since the translation lengths of α and β are the same, the limit set is a
self-similar Cantor set and we may compute its dimension for instance with
[28, Theorem 4.14]. Since α is a Lipschitz map on the boundary, we look at
“the quarter of the limit set” given by α(Λ(Γa)).

The isometries α and β both move the point o to a point along their
axis at Euclidean distance tanh a. We deduce that the contraction ratios of
α and β on α(Λ(Γa)) are

rα = rβ

arccos
(
1 − (1−tanh a)2

2

)

arccos
(

1 − (1−tanh( a
2 ))2

2

) ∼
a→∞

1 + ea

1 + e2a

(we use the spherical distance on α(Λ(Γa)), which is bi-Lipschitz to the Eu-
clidean distance). Finally, the Hausdorff dimension is given by ([28, Theo-
rem 4.14])

Hdim(Λ(Γa)) =
− log 3
log rα

,

which tends to 0 (linearly) as a → ∞. �
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4. Robustness from intersection patterns of a family of
non-contractible geodesics on the two-torus

In this section, we discuss how a certain intersection pattern of closed (non-
contractible) geodesics on T 2 implies robustness of topological entropy. Re-
markably, and in contrast to the condition discussed in Sect. 2, this inter-
section pattern appears for a C∞-generic metric. In other words, we obtain
that topological entropy is C0 robust for C∞-generic metrics. The content
in this section is motivated by the work of Bolotin and Rabinowitz [10] and
Glasmachers and Knieper [20] and we use some of their results.

4.1. A definition of separation for lifts of two freely homotopic loops

Fix a free homotopy class α of loops in Q, g ∈ G(Q). Let γ, γ′ ∈ LαQ of
energy a = Eg(γ), a′ = Eg(γ′). Fix two lifts γ̃ and γ̃′ : R → Q̃ to the universal
cover Q̃ of Q. (This is understood as first lifting γ and γ′ to maps R → Q

and then lifting to Q̃.)

Definition 26. Define b0 = b0(γ̃, γ̃′) to be the infimum of the numbers b > 0
such that there is a continuous path in LαQ<b

g from γ to γ′ that lifts to a path
from (the fixed lift) γ̃ to (the fixed lift) γ̃′. We define the separation of γ̃ and γ̃′

to be the non-negative real number sepg(γ̃, γ̃′) = min{log( b0
a ), log( b0

a′ )} � 0.
�

The following robustness statement follows from the definitions.

Lemma 27. Let δ > 0, and g, g′ be two metrics with dC0(g, g′) < δ. Then
sepg′(γ̃, γ̃′) � sepg(γ̃, γ̃′) + 2δ.

Proof. Let a = Eg(γ) and a′ = Eg(γ′), and us a path from γ to γ′ in LQ<b
g

for some b > 0 with min(log( b
a ), log( b

a′ )) < sepg(γ̃, γ̃′)+ ε for some ε > 0, and
which lifts to a path from γ̃ to γ̃′. Then Eg′(γ) > e−δa, Eg′(γ′) > e−δa′, and
Eg′(us) < eδb for all s. In other words sepg′(γ̃, γ̃′) < min{log( e2δb

a ), log( e2δb
a′ )} <

sepg(γ̃, γ̃′) + 2δ + ε, and since ε > 0 was arbitrary the claim follows. �

4.2. The two-torus and an intersection pattern

In the following, let Q = T 2 be the two-torus equipped with the standard
orientation and α a non-trivial free homotopy class of loops in T 2. If a lift γ̃
of a closed oriented curve γ representing α is embedded, then it divides the
universal cover T̃ 2 in two connected components, the right R(γ̃) and the left
L(γ̃) of γ̃.

In the following definition, we formulate an intersection pattern of (lifts
of) four closed curves of class α, see also Fig. 4 below.

Definition 28. We say that four oriented closed curves γ1, γ2, γ3, γ4 in T 2 that
represent α form a ribbon if

(0) their lifts to T̃ 2 are embedded,

and if for some choice of lifts γ̃1, γ̃2, γ̃3, γ̃4 to T̃ 2,
(1) γ̃1 is on the left of γ̃3 and γ̃4; γ̃4 is on the right of γ̃1 and γ̃2.
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(2) γ̃1 and γ̃2 intersect, γ̃2 and γ̃3 intersect, and γ̃3 and γ̃4 intersect, and
all intersections are transverse.
Let ε > 0. We say that γ1, γ2, γ3, γ4 form an ε-ribbon (with respect to

the metric g), if in addition to (0), (1), and (2) (which is included in (4)
below) the four lifts γ̃1, . . . , γ̃4 satisfy that

(3) sep(γ̃i, γ̃j) � ε, for all i, j ∈ {1, . . . , 4}, i �= j.
(4) two lifts τ̃ and τ̃ ′ of two closed curves τ, τ ′ of class α intersect whenever

they satisfy one of the following
• sepg(τ̃ , γ̃1) < ε and sepg(τ̃ ′, γ̃2) < ε.
• sepg(τ̃ , γ̃2) < ε and sepg(τ̃ ′, γ̃3) < ε.
• sepg(τ̃ , γ̃3) < ε and sepg(τ̃ ′, γ̃4) < ε.

�
The following Proposition 29 states that an ε-ribbon is robust with

respect to the C0 topology on the metrics. The main difficulty is to guarantee
items (0) and (1) of a ribbon for a perturbed metric. Here results on the
analysis of the curve-shortening flow are used [4,5,21].

Proposition 29. Assume that there are four curves γ1, . . . , γ4 that form an
ε-ribbon for some ε > 0 with respect to g. Let δ > 0 with ε > 2δ > 0. Then
for any metric g′ with dC0(g′, g) < δ there are four closed geodesics γ′

1, . . . , γ
′
4

that form an (ε − 2δ)-ribbon with respect to g′.

Proof. The proof uses in an essential way the analysis of the curve shorten-
ing flow. Consider the space of embedded closed smooth curves Γ = {γ ∈
LQ | γ embedded}. The curve shortening flow is a continuous local semi-flow
Φt : Γ → Γ, Φt(γ0) = γt for t ∈ [0, Tγ0), defined by ∂Φ

∂t = ktNt, where kt

is the geodesic curvature of γt and Nt the unit normal vector. We need the
following properties (see [6]): Mutually non-intersecting curves γ0 and γ′

0 stay
non-intersecting along the flow [4,5]. Assume that Q is compact with geodesic
boundary, then for γ ∈ Γ, either the maximal Tγ is finite and Φ(γ) converges
to a point, or Tγ = +∞ and Φ(γ) converges to a geodesic [21]. The length is
strictly decreasing under Φt.

Let now ε > 0 and γ1, . . . , γ4 be the four curves representing α that
form an ε-ribbon with respect to g for lifts γ̃1, . . . , γ̃4, and let δ > 0 and g′

as in the proposition. Let T be the deck transformation corresponding to α

on the universal covering T̃ 2 of T 2. The quotient T̃ 2/T by the action of T is
an annulus, and we apply the curve shortening flow on T̃ 2/T with respect to
the metric g′ starting with the projection on T̃ 2/T of the four lifts. Note here
that since the lifts in T̃ 2 are embedded and are invariant under the action
of T their projections to T̃ 2/T are embedded (with respect to a suitable
parametrization). The images of the curve shortening flow of these curves
stay inside an annulus with geodesic boundary in T̃ 2/T . By the properties
mentioned above, the flow will converge to four embedded geodesics in T̃ 2/T
that project to four geodesics γ′

1, . . . , γ
′
4 in (T 2, g′). Moreover, the path of

curves given by the curve shortening flow lifts to a path from γ̃i to γ̃′
i, i =

1, 2, 3, 4. These four curves and their lifts form an (ε−2δ)-ribbon. Properties
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(0) and (1) follow immediately from the properties of the curve shorting
flow. Reparametrizing uniformly by arc-length does not increase the energy
along each of the four paths of closed curves given by the curve shortening
flow, nor does it increase the energy along the obtained path. In particular
the energy will be bounded from above by the energy of the starting curve.
Hence for i �= j, sepg′(γ̃′

i, γ̃
′
j) � sepg′(γ̃i, γ̃j). By Lemma 27, sepg′(γ̃i, γ̃j) �

sepg(γ̃i, γ̃j) − 2δ � ε − 2δ.
To see property (4), consider two closed curves τ and τ ′ with lifts τ̃ and

τ̃ ′ to T̃ 2 such that sepg′(τ̃ , γ̃′
1) < ε − 2δ and sepg′(τ̃ ′, γ̃′

2) < ε − 2δ. Since for
every b > Eg′(γ1), there is a path from γ1 to γ′

1 in LαQ<b
α,g′ , sepg′(τ̃ , γ̃1) <

ε−2δ, and hence sepg(τ̃ , γ̃1) < ε. Similarly, sepg(τ̃ ′, γ̃2) < ε. Therefore, τ̃ and
τ̃ ′ intersect. Similarly one checks the remaining cases of property (4). �
4.3. Robustness of entropy via ribbons

We will see that the intersection pattern of geodesics on T 2 considered above
implies that the metric has robust topological entropy.

Theorem 30. If (T 2, g) admits four closed geodesics γ1, . . . , γ4 that form a
ribbon, then the topological entropy of the geodesic flow ϕg is positive. More-
over, the topological entropy is bounded from below by 1

L log 2, where L =
min{l(γ1) + l(γ2), l(γ3) + l(γ4)}.
Proof. See [20, Lemma 4.2] for a similar argument. In the following consider
the strip S = R(γ̃1) ∩ L(γ̃4) ⊂ T̃ 2. By our assumptions, we can choose
U0 ⊂ S a connected component of R(γ̃1) ∩ L(γ̃2) and U1 ⊂ T̃ 2 a connected
component of L(γ̃4) ∩ R(γ̃3) such that U0 ∩ U1 �= ∅. Let T �= id be the
covering transformation corresponding to the free homotopy class α of the
geodesics γ1, . . . , γ4. Note that by the assumptions, for any i, j ∈ Z, i �=
j, T iU0 ∩ T jU0 = ∅, and T iU1 ∩ T jU1 = ∅. For any bi-infinite sequence
a = (ai)i∈Z, ai ∈ {0, 1}, consider the set D(a) = S\

⋃
i∈Z

T iUai
. For any

periodic a of period p we choose a closed curve γ in class pα which has a lift
in D(a). We can assume that γ is a geodesic, e.g., by applying Lemma 33
below, and has minimal energy, and hence also minimal length, among such
curves. In particular, the length of γ is bounded from above by pL, where
L = min{l(γ1) + l(γ2), l(γ3) + l(γ4)}. This follows since there exist both, a
closed curve in class pα of length smaller than p(l(γ1) + l(γ2)), and one of
length smaller than p(l(γ3)+ l(γ4)) whose lifts are contained in the boundary
of D(a).

These geodesics γ provide us with separating sets for the geodesic flow
of g: Let u be a compact connected set in S\

⋃
i∈Z

T i(U0 ∩U1) such that S\u

has two components, one of which contains the sets T i(U0∩U1), i � 0, and the
other the sets T i(U0 ∩ U1), i > 0. Furthermore, choose two disjoint compact
connected sets v0 ⊂ U0\U1 and v1 ⊂ U1\U0 such that v0 ∪ (U0 ∩ U1) ∪ v1

also divides S into two components. Lift the geodesic flow of (T 2, g) to a flow
on T 1T̃ 2 and denote it by ϕ̃g, i.e., ϕ̃g is the geodesic flow of (T̃ 2, g̃) of the
lifted metric g̃. Let P : T 1T̃ 2 → T 1T 2 be the covering map induced by the
universal covering T̃ 2 → T 2. Furthermore, denote by ũ, ṽ0, and ṽ1 the lifts to
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T 1T̃ 2 of u, v0, and v1, respectively. It is easy to see that there is a constant
k > 0, such that for every t0 > 0 there is a covering of

⋃
t∈[0,t0]

ϕ̃t
g(ũ) by less

than kt20 open sets such that for any of the sets B of this covering and any
x, y ∈ B, dg̃(x, y) = dg(P (x), P (y)).

By the discussion above, for any p-periodic binary word a = (ai)i∈Z

there is a lift γ̃ of a closed geodesic in (T 2, g) of length � pL that intersects
u, that intersects T i(vj) if and only if ai = j, and that intersects T i(Uj) if
and only if ai �= j. Hence for ε sufficiently small there is a set X ⊂ ũ of at least
2p points such that for all x, y ∈ X, supt∈[0,pL] dg̃

(
ϕ̃t

g(x), ϕ̃t
g(y)

)
� ε. Hence

there is an (ε, pL)-separated set of ϕg of cardinality at least 2p/(k(pL)2), and
therefore

htop(ϕg) � lim sup
p→∞

log(2p/(k(pL)2))
pL

=
1
L

log 2.

�

Theorem 30 together with Proposition 29 show that the existence of four
curves that form an ε-ribbon implies that the topological entropy is positive
in a C0 neighborhood of g. Of course, the intersection pattern of a ribbon
might not be robust. Nonetheless, the next result asserts that the existence of
four geodesics that form a ribbon implies another collection of four geodesics
that form an ε-ribbon for some ε > 0, and hence the topological entropy is
indeed positive in a C0 neighborhood of g.

Theorem 31. If there are four geodesics γ1, . . . , γ4 that form a ribbon for a
metric g, then there is ε > 0 and four geodesics η1, . . . , η4 that form an
ε-ribbon for the metric g.

From Theorem 31, 30 and Proposition 29 it follows that

Corollary 32. If there are four geodesics γ1, . . . , γ4 that form a ribbon for a
metric g, then there exists δ > 0 such that for all g′ with dC0(g′, g) < δ, the
topological entropy of the geodesic flow ϕg′ is positive.

In the proof of Theorem 31, we use the following lemma repeatedly.
For that let A be an annulus such that each boundary component b of A
is piecewise geodesic with at least one but finitely many non-smooth points,
that all have outer angle > π. We say that a boundary component b with
these properties is admissible.

Lemma 33. Let A have admissible boundary and let α be the free homotopy
class of curves in A provided by a choice of generator of π1(A) = Z. Then
there is a simple closed geodesic γ in A with Eg(γ) = d := inf{Eg(x) |x : S1 →
A, [x] = α} and there is ε > 0 such that d̃ = inf{Eg(x) |x : S1 → A, [x] =
α, x ∩ ∂A �= ∅} � eεd.

Proof. The statement of this lemma is well known and can be proved similarly
to Lemma 20. To that end, note that since the boundary components are
admissible, any closed piecewise geodesic γ in A that intersects a non-smooth
point x at some boundary component of A can be replaced by a piecewise
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Figure 4. γ̃1, γ̃2, γ̃3, γ̃4 are lifts of four geodesics that form
a ribbon. The paths η̃1, η̃2, η̃3, η̃4 are constructed in the proof
of Theorem 31, and are lifts of four geodesics that form an
ε-ribbon for some ε > 0

geodesic γ′ in A whose image coincides with that of γ outside a neighborhood
of b and that has strictly smaller energy. �

Proof of Theorem 31. Let γ1, . . . , γ4 be four curves with lifts γ̃1, . . . , γ̃4 that
form a ribbon. Choose U0 and U1 as in the proof before. Consider the four
bi-infinite sequences a1, . . . , a4 of period 3 by extending periodically the four
words 110, 011, 100, and 010, respectively. We find in two steps four closed
geodesic η1, . . . , η4 representing 3α in T 2 with four lifts η̃1, . . . , η̃4 that lie in
D(a1), . . . , D(a4), respectively, and that form an ε-ribbon for some ε > 0.

Finding η1 and η2: Note that D(a1) and D(a2) are invariant under the
shift T 3, where T denotes the shift corresponding to α. Hence D(a1) and
D(a2) project to annuli A1 resp. A2 in T̃ 2/T 3. Their boundary components
are admissible since the sequences a1 and a2 are non-constant. Fix choices
ε1 > 0 and ε2 > 0 of the ε provided by Lemma 33 for A1 resp. A2. Let η̂1

and η̂2 be energy minimizing geodesics in A1 and A2 respectively, η̃1, η̃2 be
some choice of lifts to T̃ 2, and η1, η2 their projections to T 2.

Finding η3 and η4: Consider now D(a3) ∩ R(η̃1) and D(a4) ∩ R(η̃1) ∩
R(η̃2). These sets are invariant under T 3 and project to annuli A3 resp. A4 in
T̃ 2/T 3. By the choice of the sequences a1, . . . , a4, one directly checks that the
boundary components of A3 and A4 are admissible. Let ε3 > 0 resp. ε4 > 0
be choices of ε for A3 resp. A4 provided by Lemma 33. Let η̂3, resp. η̂4 be
energy minimizing geodesics in A3, resp. A4, let η̃3, resp. η̃4 be some choice
of lifts to T̃ 2, and η3 resp. η4 their projections to T 2.

By the intersection properties of the annuli A1, A2, A3 and A4, one sees
that η̃1 and η̃2 intersect, that η̃2 and η̃3 intersect and that η̃3 and η̃4 intersect.
By construction, η̃4 is on the right of η̃1 and η̃2, and η̃3 is on the right of η̃1.
Hence, the geodesics η1, . . . , η4 form a ribbon.
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Moreover, with ε := min{ε1, ε2, ε3, ε4}, η1, . . . , η4 form an ε-ribbon. In-
deed, let us see that sepg(η̃1, η̃2) � ε1, the remaining conditions are checked
analogously. Choose a path u : [0, 1] → L3αT 2 that lifts to a path û from
η̂1 to η̂2. It is clear that there are s ∈ [0, 1] such that the lifted curve
û(s) touches the boundary of A1, and let s1 � 0 be the infimum in [0, 1]
of such s. By compactness, û(s1) touches the boundary of A1 and û(s1)
is contained in A1. Since η̂1 has minimal energy among all curves in class
3α in A1 we conclude with Lemma 33 that Eg(û(s1)) � eε1Eg(η̂1). Hence,

sepg(η̃1, η̃2) � log
(Eg(û(s1))

Eg(η̂1)

)
� ε1. �

4.4. Ribbons exist for C∞ generic metrics

Minimal geodesics on higher genus surfaces and on the two-torus T 2, i.e.,
geodesics minimizing the length between any two of its points on the univer-
sal covering, were first systematically studied by Morse [32] and Hedlund [23].
Bolotin and Rabinowitz [10] obtained results about the existence of certain
families of homoclinic and heteroclinic geodesics on T 2 that shadow minimal
heteroclinics, using a renormalized length functional. As we will explain be-
low, one can obtain from their work (more specifically [10, Theorem 4.2]) that
under certain assumptions there is a (non-closed) geodesic in the universal
cover which, after applying a family of covering transformations, provides a
family of geodesics of a certain intersection pattern, similar to our ribbons.
Furthermore, an argument analogous to the one in the proof of Theorem 31
then yields four closed curves that form a ribbon. The assumption in the
theorem above is satisfied for a C∞ generic metric. Hence one obtains the
following

Theorem 34. In the space of metrics on T 2 with positive topological entropy
equipped with the C∞ topology there is a co-meager set S such that any g ∈ S
has robust topological entropy.

We now discuss the result in [10] and its relation to the existence of
curves that form a ribbon. We keep mainly the notations in [10].

Assume that the metric g on T 2 is not flat. Then, there is a simple
free homotopy class of closed curves α in T 2 and two (possibly identical)
minimal geodesics v− and v+ of class α that form an annulus A ⊂ T 2 that
contains no minimal closed geodesics of class α in its interior, see [20]. Let
S ⊂ T̃ 2 be the strip that is the preimage of A under the covering map. Let
τ : T̃ 2 → T̃ 2 be the translation corresponding to α. Let σ : T̃ 2 → T̃ 2 be a
translation corresponding to a simple homotopy class such that, if v− = v+,
then σ(ṽ−) = ṽ+, and otherwise σ(ṽ−) lies on the left of ṽ+. Let ui, i ∈ Z, be
the lifts in S of a shortest geodesic u connecting v− and v+, with ui = τ iu0.
Consider the space αi of (rectifiable) curves x : [0, 1] → S with no constant
pieces and such that x(0) ∈ ui, x(1) ∈ ui+1, and let

Π = {y = (xi)i∈Z |xi ∈ αi, xi(1) = xi+1(0)} ⊂
∏
i∈Z

αi.
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Let c be the (common) length of v− and v+. Define the renormalized length
functional on Π as

J(y) :=
∑
i∈Z

(L(xi) − c),

whenever the series is convergent, otherwise J(y) := +∞. It is explained
in [10] that J can be extended to paths y : R → T̃ 2, and in particular to
y : R → T̃ 2 that are negative asymptotic to σi(ṽ−) and positive asymptotic
to σj(ṽ+) for some i, j ∈ Z. One defines a barrier function B+

− on S by

B+
−(q) := inf{J(y) | y : R → S goes through q

and is asymptotic to v∓ as t → ∓∞}.
One shows that B+

− is finite, and that the set of minimum points consists of
ṽ−∪ṽ+ and the set of minimal heteroclinics from ṽ− to ṽ+, which is, moreover,
non-empty. For minimal heteroclinics h : R → S one has B+

−(h(t)) = J(h).
Here minimal heteroclinics from ṽ− to ṽ+ are globally minimizing geodesics
h(t) that are asymptotic to ṽ∓ as t → ∓∞. Parts of the Theorems 4.1 and
Theorem 4.2 in [10] can be formulated as follows.

Theorem 35. [10] Assume that B+
− is non-constant, and let l ∈ N. Then, there

is a heteroclinic γ̃ : R → T̃ 2 from ṽ− to σl(ṽ+), and minimal heteroclinics
hi, i = 0, . . . , l from ṽ− to ṽ+ such that γ̃ shadows σi(hi), i = 0, . . . , l.

For the precise definition of shadowing, which is not important for our
considerations, we refer to [10]. The time intervals in R for which γ̃ shadows
σi(hi) might be very far apart from each other, and so are the two time
intervals in which γ̃ is close to ṽ− resp. σl(ṽ+). Furthermore, the heteroclinics
γ̃ constructed in the theorem are embedded. The assumptions that B+

− is non-
constant is equivalent to the assumption that there is no foliation of S by
minimal heteroclinics from ṽ− to ṽ+.

We now apply Theorem 35 and observe that it provides geodesics γ̃ :
R → T̃ 2 such that together with certain translates, an intersection pattern
similar to a ribbon appears, which we call ribbon∗, and we proceed with the
definition of this property, see Fig. 5 for an illustration. In the following, we
say that two distinct geodesics η1 and η2 in T̃ 2 intersect positively (resp.
negatively) at η1(t1) = η2(t2) if the orientation given by the tangent vectors
(η′

1(t1), η
′
2(t2)) coincides (resp., does not coincide) with the orientation of T 2.

Definition 36. Let γ be a (non-closed) geodesic in T 2, and γ̃ be a lift to T̃ 2.
Assume γ̃ is embedded. We say that γ : R → T 2 (or γ̃), and five covering
transformations θ1, θ2, θ3, θ4, T : T̃ 2 → T̃ 2 form a ribbon∗ if for some param-
eters si

j , t
i
j ∈ R, si

j < tij , j = 1, 4; i ∈ Z, and ui
j , v

i
j ∈ R, ui

j < vi
j , j = 2, 3; i ∈

Z, the lifts γ̃i
j = T i ◦ θj(γ̃), j = 1, . . . , 4; i ∈ Z satisfy, for all i ∈ Z, the

following:
(0) • γ̃i

1 and γ̃i+1
1 intersect negatively in γ̃i

1(t
i
1) = γ̃i+1

1 (si+1
1 ),

• γ̃i
4 and γ̃i+1

4 intersect positively in γ̃i
4(t

i
4) = γ̃i+1

4 (si+1
4 ).
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Figure 5. Schematic illustration of a heteroclinic from The-
orem 35 with shifts that form a ribbon∗. In non-horizontal
parts there is a shadowing of minimal heteroclinics. Solid
lines illustrate the course of η1 and η4 as given in Defini-
tion 36

(1) With ηi
j := γ̃i

1|[si
j ,ti

j ]
, j = 1, 4, the piecewise geodesic η1 := · · · η−1

1 η0
1η1

1 · · ·
is on the left of the piecewise geodesic η4 := · · · η−1

4 η0
4η1

4 · · · .
(2) • ηi

2 := γ̃i
2|[ui

2,vi
2]

intersect η1 only at the endpoints of ηi
2, first posi-

tively and then negatively, and does not intersect η4.
• ηi

3 := γ̃i
3|[ui

3,vi
3]

intersect η4 only at the endpoints of ηi
3, first nega-

tively and then positively, and does not intersect η1.
(3) ηi

2 and ηi
3 intersect.

(4) For all i, j ∈ Z with i �= j, ηi
2 and ηj

3 are disjoint, ηi
2 and ηj

2 are disjoint,
and ηi

3 and ηj
3 are disjoint.

�

It is now easy to see, and we leave it to the reader to check, see also
Fig. 5, that if γ̃ is a heteroclinic from ṽ− to σ4(ṽ+) obtained from Theorem
35, then for suitably chosen n2, n3, n4, n5 ∈ N, n3 < n2 < n5 < n4, the
geodesic γ̃ together with the shifts θ1 = id, θ2 = σ1 ◦ τn2 , θ3 = σ−2 ◦ τn3 ,
θ4 = σ−1 ◦ τn4 , T = σ3 ◦ τn5 form a ribbon∗. Hence we conclude:

Proposition 37. Assume that B+
− is non-constant. Then, there is a geodesic

γ and deck transformations θ1, θ2, θ3, θ4, T on T̃ 2 that form a ribbon∗.

An analogous argument as in the proof of Theorem 31 yields

Proposition 38. If there is a geodesic γ and shifts θ1, θ2, θ3, θ4, T that form a
ribbon∗, then there is ε > 0 and four closed geodesics τ1, . . . , τ4 that form an
ε-ribbon.
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Proof. The piecewise geodesics η1 and η4 form an infinite strip with piecewise
geodesic boundary with outer angles > π at the non-smooth points. Define
for all i ∈ Z the non-empty sets U i

0 = R(η1) ∩ L(γi
2), U i

1 = L(η4) ∩ R(γi
3).

By item (3) of the ribbon∗, U i
0 ∩ U i

1 �= ∅. One can define for any binary bi-
infinite sequence a as in the proof of Theorem 30 (using the shift T ) sets D(a)
which, by item (4) of the ribbon∗, are infinite strips with piecewise geodesic
boundary with outer angles > π at the non-smooth points. Now one can
proceed as in proof of Theorem 31 to obtain, for some ε > 0, closed geodesics
τ1, . . . , τ4 that form an ε-ribbon. �

Corollary 39. Let g be a metric on T 2. If there is a geodesic γ and shifts
θ1, θ2, θ3, θ4, T that form a ribbon∗, then there is δ > 0 such that for all g′

with dC0(g′, g) < δ the geodesic flow of g′ has positive topological entropy.

Note that for bumpy metrics closed minimal geodesics are hyperbolic,
and note that bumpy is a C∞ generic condition. In case B+

− is constant
on S, then S is foliated by minimal heteroclinics from v− to v+, in other
words the unstable manifold of v− and the stable manifold of v+ intersect,
but not transversely. One can perturb in a neighborhood of any point of
such a heteroclinic hvol, as was shown by Donnay [19] (C2 perturbation) and
Petroll [37] (C∞ perturbation) (for a sketch of the proof see also [13]), such
that hvol becomes a transverse heteroclinic connection from v− to v+. If such
a perturbation is sufficiently small, v− and v+ stay to be adjacent (minimal)
geodesics, where now B+

− is non-constant. So the assumptions in Theorem 35
hold C∞ generically, which assures that Theorem 34 holds.

5. Robustness by retractable neck on general manifolds

Consider a closed Riemannian manifold (M, g) that is not necessarily a torus.
As illustrated in Fig. 6, we assume that there exist nested nonempty open
sets U ⊆ V1 ⊆ V2 ⊆ W whose closures have smooth boundary such that

U ⊆ U ⊆ V1 ⊆ V 1 ⊆ V2 ⊆ V 2 ⊆ W

and such that there is a retraction ρ : M\U → M\W that is homotopic
to the identity relative M\W through the homotopy ρs. We define the two
numbers

d1 = max
x∈∂V2

lg(ρs(x)),

d2 = distg(∂V1, ∂V2).

We interpret this setup as follows: U is a head, that we intend to cut off. The
set W\U is a neck that is further divided into lower neck W\V2, middle neck
V2\V1 and upper neck V1\U . The numbers di are the length of the lower neck
d1 and the length of the middle neck d2, measured in a way that suits later
proofs.

Assumption 40. (Retractable neck and entropic body) If the following state-
ments are true, we say that the ”neck” W\U is (c, k)-retractable for a number
c ∈ (0, 1) and k � 3.
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Figure 6. A torus with retractable neck before decapitation

• The retraction ρ is a contraction: for any curve γ : I → M\U , we have
that lg(ρ ◦ γ) � lg(γ).

• The retraction ρ is a proper contraction in the middle and upper neck:
for any curve γ : I → V2\U we have lg(ρ ◦ γ) < c lg(γ).

• The lower neck is substantially shorter than the middle neck:
d1

d2
<

1 − c

k
. (5.1)

If the following statement is true, we say that M has an entropic body.
• There is a subset P ⊆ π̃1(M\U)\ιπ̃1(∂U) of the free homotopy classes

of M\U not homotopic to curves in ∂U , whose elements are mutually
coprime such that the subsets

Pg(T ) = {α ∈ P | ∃γ ∈ α : l(γ) � T}
grow exponentially: ΓT (#Pg(T )) > 0.

�

Remark 41. Note that even though ΓT (#Pg(T )) depends on the metric, the
positivity

ΓT (#Pg(T )) > 0
is a purely algebraic statement about the group growth of the free homotopy
classes seen as π̃1 = π1/conj. In particular, if π1 has a subgroup isomorphic
to Z ∗ Z, then the assumption is satisfied.

Theorem 42. Let the closed Riemannian manifold (M, g0) have a (c, k)-retractable
neck and an entropic body. Then, for C with 1 < C < k

2+(k−2)c , g0 has log C-
robust positive topological entropy and for dC0(g, g0) � log C we have

htop(ϕt
g) � 1√

C
Γ(#Pg0(T )).

Example 43. Let Mn be a manifold such that there exists a Riemannian met-
ric whose topological entropy vanishes. Fix c and k. Consider a submanifold L
such that M\L is an entropic body. We identify a tubular neighborhood of L
with the normal disk bundle DL with radial coordinate r ∈ [0, 3 + k

2+(k−2)c ].
We define the neck

U = {r < 1}, V1 = {r < 2}, V2 =
{

r < 2 +
k

2 + (k − 2)c

}
,
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W =
{

r < 3 +
k

2 + (k − 2)c

}

with the retraction defined by

ρs|M\W = id, ρs|W (r, x) = (rs, x),

where rs = min
{

r +
(
2 + k

2+(k−2)c

)
s, 3 + k

2+(k−2)c

}
. Endow the neck M\W

with a metric g such that

g|r∈(1,3+ k
2+(k−2)c ) = f(r)gSL + dr2,

where gSL is a metric of the normal sphere bundle over L and f is a function
in r with f(r) � f(3 + k

2+(k−2)c ) for all r ∈ (1, 3 + k
2+(k−2)c ) and c

√
f(r) �√

f(3 + k
2+(k−2)c ) for all r ∈ (1, 2+ k

2+(k−2)c ). With this metric, the neck has

the (c, k)-retractable neck property. Thus, any extension of g to M satisfies
the assumptions of the theorem.

In dimension 2, L is discrete. For S2 three points and for T 2 one point
suffice for having an entropic body. In dimension 3, L is a link. For S3 the
unlink with two components and for T 3 the unknot suffice. �

The following lemma is the C0-robust property that we derive from a
retractable neck.

Lemma 44. Let (M, g0) have a (c, k)-retractable neck. Let g be a metric with
dC0(g, g0) � log C for some number 1 < C < k

2+(k−2)c . Let α be a homotopy
class of a curve in M\U that is not homotopic to a curve in ∂U . Then, any
g-length minimizer of α has image in M\V1.

Proof. Let γ ∈ α. Assume that there exists a T such that γ(T ) ∈ V1\U .
We claim that γ is not a length minimizer of α. We prove this by explicitly
constructing a shorter curve homotopic to γ.

There is a maximal connected neighborhood I ⊆ S1 of T such that
γ(I) ⊆ V1\U . Since γ /∈ ιπ1∂U , the interval I is not the entire circle. Because
of maximality of I = [t1, t2] the end points lie in the boundary γ(t1), γ(t2) ∈
∂V1. This implies that that lg0(γ|I) � 2d2 by definition of d2.

We define the homotopy γs(t), s ∈ [0, 1] as the concatenation

γs(t) = γ|S1\I ◦ ρ|[0,s](γ(t1)) ◦ ρs(γ|I) ◦ ρ|[0,s](γ(t2)).

Obviously γ0 ∼ γ1. We rewrite the condition C < k
2+(k−2)c as 1−cC

2C > 1−c
k .

We compute

lg(γ0) − lg(γ1) = lg(γ|I) − lg(ρ ◦ γ|I) − lg(ρs(γ(t1))) − lg(ρs(γ(t2)))

� 1√
C

lg0(γ|I) −
√

Clg0(ρ ◦ γ|I) −
√

Clg0(ρs(γ(t1)))

−
√

Clg0(ρs(γ(t2)))

>
√

C

(
1

C
lg0(γ|I) − clg0(γ|I) − lg0(ρs(γ(t1))) − lg0(ρs(γ(t2)))

)
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�
√

C

((
1

C
− c

)
d2 − 2d1

)
=

√
C2

((
1 − cC

2C

)
d2 − d1

)

> 2
√

C

(
1 − c

k
d2 − d1

)

> 0.

We conclude that γ = γ0 is not a length minimizer. �

Proof of Theorem 42. Let dC0(g, g0) � log C and α ∈ P. Since α is non-
contractible, the infimal length of the homotopy class is positive, l(α) :=
inf{l(γ) | γ ∈ α} > 0. Let γk : S1 → M\U be a sequence of smooth
loops parametrized by constant speed with l(γk) → l(α). Since |γ̇| → l(α)
and since M\U is compact, we can apply Arzelà–Ascoli and find a subse-
quence that converges to a curve γα,g which satisfies l(γα,g) � l(α) by lower
semi-continuity of the length functional. By minimality of l(α) this implies
l(γα,g) = l(α). Thus, γα,g is a length minimizer. Lemma 44 tells us that the
image of a length minimizer is contained in M\V1, which is in the interior of
M\U . We conclude that γα,g is a geodesic.

Thus, for every g with dC0(g, g0) < log C and α ∈ P, there is a length
minimizing geodesic γα,g : lg(α)S1 → M\U , which we parametrize from now
on by arc length for convenience. Note that γα,g lifts to a periodic orbit
(γα,g, γ̇α,g) of ϕt

g of period lg(α).
The relation lg �

√
Clg0 implies

{α ∈ P | lg0(α) � T} ⊆ {α ∈ P | lg(α) �
√

CT}

and consequently the sets P̃g(T ) = {γα,g | lg(γα,g) < T} satisfy

Γ(#P̃g(T )) � 1√
C

Γ(#Pg0(T )).

The desired statement now follows from Lemma 18. �

Proof of Theorem 12. Let (Q, g) be a k � 2 dimensional Riemannian man-
ifold and let e > 0 be arbitrary. We search metrics g(s) ∈ Ge(Q) with
dC0(g, g(s)) < s that have a (c(s), k(s))-retractable neck, where lims→0(c(s),
k(s)) = (1, 3) and lims→∞(c(s), k(s)) = (0,∞). Theorem 42 then implies the
statement qualitatively. The formula in Theorem 12 comes from the specific
construction.

We first outline the argument: We prepare a small disk in which all
geodesics considered will be contained. Then, we construct some heads inside
such that the homotopy classes of curves in the disk minus the heads have
positive algebraic growth. The growth of homotopy classes filtered by length
will be at least the algebraic growth divided by the length of the longest
generator. Then, we scale the entire construction down inside the disk, leaving
the algebraic growth invariant but reducing the length of longest generator.
This way, we find arbitrarily large entropy. This construction can be done by
a C0-small perturbation of the metric that is parametric in s.

Step 1: Choice and manipulation of a small disk. For an arbitrary point
p, we choose a nearby metric g1 = g1(s) that is slightly reshaped around p:
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We flatten a small disk surrounded by a thin cylindrical annulus. To quantify
small, we choose 0 < ε1 and 0 < ε2 � ε1 in dependence of s: ε1(s) is a
continuous function that is linear for small s and constant � 1 for s > s0 for
some s0 � 1.

We then choose g1 such that
• g1 ≡ g0 on Q\B4ε1(p),
• g1 = f(r)gSk−1 + dr2 on B3ε1(p), where r is a radial coordinate,
• f(r) ≡ 4 on the annulus r ∈ (2ε1 − ε2, 2ε1 + ε2),
• f(r) = r2 on Bε1(p),
• dC0(g0, g1) < s/2,

where gSk−1 is the round metric on the euclidean sphere and where the radii
of balls are measured with respect to g1.

Note that choosing g1 is very easy starting from coordinates that are
orthonormal on TpQ since we allow C0-small perturbations. It would be im-
possible for C2-small perturbations, as curvature would be an obstruction.
The deformation around the annulus is a small deviation from the flat metric
as long as ε2 is small in comparison to ε1.

The condition on the annulus is to ensure that the disk Bε1(p) is sur-
rounded by a totally geodesic codimension 1 sphere, which will help to contain
minimizing curves in the interior of the disk.

Step 2: Choice of heads. Let ι : L ↪→ Bε1(0) be an embedded codimen-
sion 2 submanifold: If k = 2, then we choose L to be three points, if k > 2 then
let L = L1 ∪ L2 have two unknotted components with Li

∼= S1 × Sk−3. Note
that in both cases the group growth Γ(π1(Bε1(p)\ιL, p)) =: Γ is positive.
There is a length λ(ιL) such that there are generators of π1(Bε1(p)\ιL, p)
of length at most λ(ιL). To demonstrate the future argument, denote by
Pg1(ι, T ) the set of free homotopy classes of loops in Bε1(p)\ιL that are rep-
resented by a loop of length � T and that do neither retract onto ιL nor to
∂Bε1(p). Then we have

ΓT (#Pg1(ι, T )) � Γ/λ,

since for each free loop we find a (longer) representing based loop and the
conjugacy classes of the fundamental group grow as fast as the fundamental
group. If we postcompose the embedding ι with a dilation by a factor of t, the
algebraic growth Γ will obviously not change but the group will be generated
by loops of length λ(tιL) = tλ(ιL), implying that ΓT (#Pg1(tι, T )) → ∞ as
t → 0.

Step 3: Shaping the necks. The shape of the necks is determined similar
to the shape of the base disk. We choose in dependence of s the shape param-
eters of the neck (c(s), k(s)) such that c(s) < e−s/8 and k = 3+s. Further, we
choose new and even smaller 0 < ε3 and 0 < kε4 � ε3. We choose a nearby
metric g2 = g2(s) that is flattened in an ε3-tube around L, except for an ε4
wide annulus which imitates Example 43. More precisely,

• g2 ≡ g1 outside the tubular neighborhood V3ε3(N),
• g2 ≡ f(r)gSL + dr2 inside V2ε3(N),
• f(r) � f(ε3 + (3 + k

2+(k−2)c )ε4) for all r ∈ (ε3 + ε4, ε3 + (3 + 3
1−c )ε4),
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• c
√

f(r) �
√

f(ε3 + (3 + k
2+(k−2)c )ε4) for all r ∈ (ε3 + ε4, ε3 + (2 +

k
2+(k−2)c )ε4),

• dC0(g2, g1) < s/2,

where tubular neighborhoods are taken with respect to the metric g2 and
where gSL is the metric of the normal sphere bundle over L. Note that if f(r)
would equal r2, then the metric would be flat and the assumption would be
similar to the choice of the small disk.

Note that the crucial feature of our choice of c(s) is that log(1/c2) <
s/2 because the fourth point forces us to deviate by a factor of c from the
cylindrical metric, which forces dC0(g2, g1) > log(1/c2) and the fifth point
requires dC0(g2, g1) < s/2.

This new metric has a retractable neck with sets

U = {r < ε3 + ε4}, V1 = {r < ε3 + 2ε4},

V2 =

{
r < ε3 + (2 +

k

2 + (k − 2)c
)ε4

}
, W =

{
r < ε3 + (3 +

k

2 + (k − 2)c
)ε4

}
.

The inclusion Bε1(p)\U ↪→ Bε1(p)\L is obviously a homotopy equiva-
lence. The generators of the fundamental group are possibly a bit longer, but
2λ(ιL) suffices if ε3 is small enough.

Step 4: Shrinking for growth. Now, we employ the dilation by t men-
tioned in Step 2 for the metrics g2(s) from Step 3. To be more formal, denote
by δt the dilation by t in the flat model around p and by gt(s) the metric
which coincides with g2(s) on Q\δs(B2ε1−ε2) and with t2δ∗

1/tg2 in a small
neighborhood. Note that t2δ∗

1/tgEuc = gEuc and that the scaling leaves ratios
intact, so dC0(gt(s), g1) = dC0(g2(s), g1) and in total

dC0(gt(s), g0) < dC0(gt(s), g1(s)) + dC0(g1(s), g0) < s.

Let ρ be a free homotopy class of loops in the disk with the scaled
heads Us = δsU removed B2ε1(p)\Us, which neither retracts to ∂U nor to
∂B2ε1 . Choosing a length infimizing sequence, we find by Arzelà–Ascoli up
to passing to a subsequence a limit loop γ for ρ. This minimizer cannot
touch ∂U by construction of a retractable neck. Nor can it touch ∂B2ε1 as
otherwise, it would be tangent to a geodesic in the geodesic foliation of ∂B2ε1

that comes from the cylindrical metric on the annulus r ∈ (2ε1 − ε2, 2ε1 + ε2)
and, thus, would be a geodesic belonging to that foliation, contradicting our
assumption on its homotopy class. Thus, each class in Pg1(sι, T ) from Step
2 is represented by a geodesic.

As noted in Step 2, the fundamental group π1(Bε1(p)\Us, p) is generated
by loops of length < 2tλ(ιL). Thus, we may choose for each s a t so small that
Γ/(2tλ(ιL)) > e, where e is the exponential growth required in the statement
of the theorem. To describe the necessary choice in dependence of s, note
that by Theorem 42 for our choices c(s) < e−s/8 and k = 3 + s we obtain
that for

C <
s + 3

2 + (s + 1)e−s/8
,
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we can expect for dC0(gt(s), g) < log C that htop(ϕt
g) � 1√

C
Γ(#Pgt(s)(T )).

Thus, to enforce htop(ϕt
g) � e within the log s+3

2+(s+1)e−s/8 -balls, we must have
a dilation by at least

t ∼ const

√
2 + (s + 1)e−s/8

s + 3
,

where the constant is in dependence of Γ and λ for a specific value. This
gives us the required growth of minimizing geodesics which concludes the
argument. �

Proof of Corollary 13. The first two points in the corollary are immediately
clear. For the third point, we start with the quasi-isometric embedding Φn :
(Rn, | · |∞) → (G(T 2), dRBM) from [41], where the volume is fixed to 1 and
the diameter bound is 100. Note that if Φn is quasi-isometric and Φ̃n is dC0 -
close to Φn, then also Φ̃n is quasi-isometric. So, the statement is proved by
parametrically performing the above construction. Note that for this only the
first step needs to be done parametrically, as from then on the construction
is on the small disk which is flat for any starting metric. It is also sufficient
to choose one constant but small s and a corresponding constant parameter
t. As volume and diameter are C0-continuous, the perturbed metrics have
volume 1 after a rescaling by a factor close to 1 and the diameter still admits
the bound of 101 as stated in our corollary. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix A. Robustness of non-degenerate length spectrum

Here, we prove Proposition 7. The aim is to use only a low amount of tech-
nology.

Remark 45. Unfortunately, one cannot say anything about the position of
the geodesic that is found by Proposition 7. �

Before we start the proof, let us fix the setup: Let (M, g) be a closed
Riemannian manifold. Denote by Ω = H1(S1,M) the Hilbert manifold6 of
closed loops in M . The non-constant critical points of the energy functional
Eg : γ �→ 1

2

∫ 1

0
g(γ̇, γ̇) dt are exactly the closed geodesics. The negative gra-

dient flow ϕt
g of Eg has the Palais–Smale property in this space. Denote the

sublevel set {γ ∈ Ω | Eg(γ) � a} by Ωa
g .

That γ is non-constant and non-degenerate means that the connected
component of Crit Eg containing γ is a circle and Morse–Bott. If all geodesics
are non-degenerate, then the energy spectrum is discrete. The following state-
ment describes what happens topologically at a critical energy level.

6We use this setting to avoid working in the Fréchet manifold C∞(S1, M). However, by
bootstrapping every geodesic ends up being smooth.

Reprinted from the journal66



Proposition 46. ([9], see also [35]) Assume that c ∈ (a, b) is the only critical
value in [a, b]. Denote N1, . . . , Nr the components of Crit(E) with E(Ni) = c
and with indices λ1, . . . , λr. Assume they are Morse–Bott. Then

• Each manifold Ni carries a well defined vector bundle ν−Ni ⊂ TΩ|Ni

of rank λi consisting of negative directions of d2Eg.
• The sublevel set Ωb

g retracts onto a space homeomorphic to Ωa
g with the

disc bundles Dν−Ni disjointly attached to Ωa
g along their boundaries.

• The retraction r : Ωb
g → Ωa

g

⋃
∂Dν−Ni

Dν−Ni can be chosen such that
Eg ◦ r � Eg and such that r|Ni

= id and r|Ωa
g

= id.

Remark 47. This proposition gives inductive instructions to build a CW-
complex homotopy equivalent to Ω. The building blocks are disk bundles,
which are cell complexes. The retraction maps inductively provide the at-
taching maps.

Since we are only interested in the topology, we use the term topologically
non-degenerate for a curve for which the conclusions of Proposition 46 hold:

Definition 48. We assume that c �= 0 is the only critical value in (a, b). Denote
Ni the components of Crit(E) and assume that they are all isolated circles
representing reparametrizations of non-constant closed geodesic γi with en-
ergy c.

Then, we call γi topologically non-degenerate if there are vector bundles
ν−Ni ⊆ TΩ|N such that the sublevel set Ωb

g retracts onto a space homeomor-
phic to Ωa

g with the disc bundles Dν−Ni attached to Ωa
g along the boundary

via a retraction r with Eg ◦ r � Eg and such that r|Ni
= id and r|Ωa

g
= id.

�

Remark 49. The assumption that the spectral value is isolated is actually too
strong for our purpose; It would suffice to demand in Theorem 5 that a topo-
logically non-degenerate γ be isolated in the space of loops. The proof below
would then work by localizing the gradient flow. One can do this by multiply-
ing the gradient vector field with a bump function around a neighborhood of
Ni that is flow-invariant in the intended energy interval, and that separates γ
from other geodesics. The argument would become much more complicated
as the resulting flows only locally transport the respective sub-level sets into
each other.

We shall use a minimax principle. We use the following formulation from
Klingenberg [26]. A flow-family A for Eg is a collection of subsets of Ω such
that Eg|A is bounded for all A ∈ A and such that A ∈ A implies ϕt

gA ∈ A
for t � 0.

Proposition 50. ([26, Theorem 2.1.1]) Let A be a flow-family for Eg. Then

inf
A∈A

sup
A

Eg

is a critical value of Eg.

Vol. 24 (2022) C0-robustness of topological entropy for geodesic flows

Reprinted from the journal 67



M. R. R. Alves et al. JFPTA

Proof of Proposition 7. We use Proposition 46 to define a suitable flow-family.
For simplicity, assume that there is only one critical component. For Propo-
sition 7 it is enough to consider the case N1 = N ∼= S1. The fundamental
class of the transverse bundle relative its boundary [Dν−N ; ∂Dν−N ] has
nonempty intersection with the core N since it has nonempty intersection
with any interior point. By extension the same is true for the class ω :=
[Ωa

g

⋃
∂Dν−N Dν−N ; Ωa

g ]. Denote by r∗ω the set of maps u : (Dν−N ; ∂Dν−N)
→ (Ωb

g,Ω
a
g) such that [r ◦ u] = ω. Then, the set of images of u ∈ r∗ω defines

a flow-family.
The minimax value for r∗ω is the critical value c:

inf
u∈r∗ω

max Eg ◦ u � inf
u∈r∗ω

max Eg ◦ r ◦ u � Eg(N) = c.

The other inequality is trivial since Eg restricted to the unstable disk bundle
of N has maximum c.

The robustness statement now follows by using the very same retraction
r to define a flow family for the perturbed metric g̃: Let ε > 0 be so small
that c is the only critical value of Eg in [(1−3ε)c, (1+3ε)c]. Let g̃ be a metric
such that ‖v‖2

g̃ ∈ (1 − 1
2ε, 1 + 1

2ε)‖v‖2
g for all v. Note that for such ε the

following chain of inclusions holds

Ω(1−2ε)c
g̃ ⊆ Ω(1−ε)c

g ⊆ Ωc
g ⊆ Ω(1+ε)c

g̃ ⊆ Ω(1+2ε)c
g .

Let r : Ω(1+2ε)c
g → Ω(1−ε)c

g
⋃

∂Dν−N Dν−N be the retraction constructed
with ϕt

g and r∗ω the class described above. Define the subset ω̃ ⊂ r∗ω by

restriction of the target space u : (Dν−N ; ∂Dν−N) → (Ω(1+ε)c
g̃ ,Ω(1−2ε)c

g̃ ).
The set of images of maps in ω̃ is a flow-family for ϕt

g̃ since it is defined
through sub-level sets of Eg̃, and it is nonempty since it contains the ϕt

g-
unstable disk bundle around N . We have

inf
u∈ω̃

max Eg̃ ◦ u � inf max
u∈ω̃

(1 − ε)Eg ◦ u � (1 − ε)c.

On the other hand for u the ϕt
g-unstable disk bundle around N we have

max Eg̃ ◦ u � (1 + ε)c. Thus, the minimax principle produces some geodesic
γ̃ of Eg̃ with energy |Eg̃(γ̃) − c| � εc.

Note that for any u in the flow-family, every path in the image of u
is homotopic to a loop in N since the intersection of u and N is nonempty.
Thus, also γ̃ is homotopic to the unperturbed geodesic. �
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Bifurcations of balanced configurations for
the Newtonian n-body problem in R4

Luca Asselle, Marco Fenucci and Alessandro Portaluri

Dedicated to Claude Viterbo on the occasion of his sixtieth birthday.

Abstract. For the gravitational n-body problem, the simplest motions
are provided by those rigid motions in which each body moves along a
Keplerian orbit and the shape of the system is a constant (up to rota-
tions and scalings) configuration featuring suitable properties. While in
dimension d ≤ 3 the configuration must be central, in dimension d ≥ 4
new possibilities arise due to the complexity of the orthogonal group,
and indeed there is a wider class of S-balanced configurations, containing
central ones, which yield simple solutions of the n-body problem. Start-
ing from the recent results in [2], we study the existence of continua
of bifurcations branching from a trivial branch of collinear S-balanced
configurations and provide an estimate from below on the number of
bifurcation instants. In the last part of the paper, by using the continu-
ation method, we explicitly display the bifurcation branches in the case
of the three body problem for different choices of the masses.

Mathematics Subject Classification. 37J20 (=bifurcation in finite dimen-
sions), 58J30 (=spectral flows), 70F10 (=N-body problem).

Keywords. n-Body problem, balanced configurations, central configura-
tions, bifurcation of critical points, spectral flow of symmetric matrices.

1. Introduction

The Newtonian n-body problem concerns the motion of n point particles
with masses mj ∈ R+ and positions qj ∈ Rd, where j = 1, . . . , n and d ≥ 2,
interacting each other according to Newton’s law of inverses squares. The
particles thus move according to Newton’s equations of motion, which in this
case read

mj q̈j =
∂U

∂qj
where U(q1, . . . , qn) :=

∑

i<j

mimj

|qi − qj | .

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
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Letting M be the (nd × nd)-diagonal mass matrix defined by

M := diag(m1, . . . , m1︸ ︷︷ ︸
d-times

, . . . , mn, . . . , mn︸ ︷︷ ︸
d-times

)

the equations of motion can be equivalently written as

q̈ = M−1∇U(q). (1.1)

As the center of mass has an inertial motion, we can fix it without loss of
generality at the origin. Among all possible configurations of the system, a
crucial role is played by the so-called central configurations (CC for
short), namely by those configurations in which M−1∇U(q) is parallel to q:

M−1∇U(q) + λq = 0. (1.2)

In other words, the acceleration vector of each particle is pointing towards
the origin with magnitude proportional to the distance to the origin. As a
straightforward consequence of the homogeneity of the potential we obtain
that the proportionality constant λ is actually equal to −U(q)/〈Mq, q〉.

Equation (1.2) is a non-linear algebraic equation which is almost im-
possible to solve explicitly, and despite substantial progresses (starting from
the work of—among others—Smale, Conley, Albouy, Chenciner, McCord,
Moeckel, Pacella) have been made in the last decades, many basic questions
about CC still remain unsolved. Nevertheless, there are several reasons why
CC are of interest in the n-body problem and more generally in Celestial
Mechanics:

– Every CC defines a homothetic solution of (1.1), namely a solution
which preserves its shape for all time while receding from or collapsing
into the center of mass.

– Planar CC give rise to a family of periodic motions of (1.1), the so-called
relative equilibria, in which the configuration rigidly rotates at a
constant angular speed about the center of mass. More generally, any
such CC gives rise to a family of homographic solutions of (1.1)
in which each particle traverses an elliptical orbit with eccentricity e ∈
(0, 1).

– CC control the qualitative behavior of total colliding solutions (and
completely parabolic motions) of the n-body problem.

For the n-body problem in Rd, d ≤ 3, configurations which are not
central cannot produce homographic motions at all. If we instead allow di-
mensions d ≥ 4, then there is a wider class of so-called “S-balanced configu-
rations” which produces relative equilibria of the n-body problem. These new
high dimensional phenomena were first observed by Albouy and Chenciner
in [1] (cfr. also [13]) and are due to the higher complexity of the orthogonal
group, which allows, for example, to rotate in two mutually orthogonal planes
with different angular velocities, thus leading to new ways of balancing the
gravitational forces with centrifugal forces. We shall notice that, in contrast
with the case d = 2, the resulting relative equilibria will be periodic in time
only if the angular velocities are rationally dependent, and quasi-periodic
otherwise.
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We now define S-balanced configurations rigorously in the case d = 4,
which we will focus for the rest of the paper onto. Thus, fix a positive real
number s > 1 and consider the (4 × 4)-diagonal matrix

S = diag(s, s, 1, 1).

Any solution of

M−1∇U(q) + λŜq = 0, Ŝ := diag(S, ..., S), (1.3)

is called an S-balanced configuration, SBC for short, and gives rise to
a uniformly rotating relative equilibrium solution of Eq. (1.1) in R4. Clearly,
for s = 1, we obtain again (1.2). Also, Eq. (1.3) is, for every s > 1, invariant
under the non-free (actually, not even locally free) diagonal S1 × S1-action
given by rotations in the R2×{0} and {0}×R2 planes. In particular, solutions
always come in families, namely in S1-families if they are contained in one of
the two planes above and in S1 × S1-families otherwise.

Remark 1.1. For n = 3, there is a big class of planar non-equilateral and non-
collinear isosceles triangles which are SBC but not CC; for further details we
refer to [13]. From a physical viewpoint, the larger s is the faster the bodies
contained in the plane R2 ×{0} rotates. Such a rough physical interpretation
is paradigmatic of a deep stability issue which we are currently investigating.

In the study of Eq. (1.3) it is quite natural to interpret s as a bifurcation
parameter, and hence to try to understand if:

(i) there exist configurations which are SBC (possibly collinear) for every
choice of the parameter s (in other words, whether or not there are
trivial branches of solutions), and

(ii) how many (if any) bifurcation points one has along such trivial branches.
As far as Question (i) is concerned, we readily see that collinear CC in

the plane {0} × R2 are solutions of (1.3) independently of s > 1 and hence
define trivial branches of solutions (q̂s)s>1. Using the variational characteri-
zation of SBC (for more details see [2] or the following section) and the fact
that along the trivial branches the Morse index jumps at precisely charac-
terized values of the parameter s, we will provide the following answer to
Question ii). For a more precise statement we refer to Theorem 4.7.

Theorem A. For s1 sufficiently close to 1 and s2 large enough, there are at
least n! bifurcation instants from the trivial branches of solutions (q̂s)s∈[s1,s2]

corresponding to collinear CC in the {0} × R2-plane.

We shall notice already at this point that the non-trivial branches em-
anating from the trivial ones are genuine SBC (that is, not CC). This will
be clear from the construction, anyway this also follows from the fact that
collinear CC are isolated as central configurations in virtue of Moeckel’s 45◦-
theorem.

As already mentioned, the main idea behind the result above is that,
for variational problems in finite dimension (and, under suitable condition,
also in infinite dimension), bifurcation instants along some trivial branch are
detected by the jump of the Morse index as soon as the trivial branch is
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degenerate only in finitely many points. From a technical viewpoint, one dif-
ficulty to overcome is to rule out the degeneracy due to the S1×S1-symmetry
of Equation (1.3). This will be done by means of a reduction argument (see
Sect. 2).

In case n = 3, we will use numerical methods to provide a rather
complete description of the non-trivial branches bifurcating from the triv-
ial branches of collinear CC. Already in such an easy case, we observe some
very interesting and rather unexpected phenomena: besides a strong depen-
dence on the choice of the masses (which we recall is not the case for CC, as
for any choice of the masses one has precisely 4 CC up to symmetry, namely
the three Euler configurations, which are saddle points of U , and Lagrange’s
equilateral triangle, which is a global minimum of U), we e.g. observe the
presence of connections between Lagrange’s equilateral triangle and (some of
the) Euler configurations through paths of SBC which are for any s local
minima of U , as well as of turning points along some of the non-trivial
branches at which the Morse index jumps but from which no secondary
branches originate. This suggests that for larger values of n extremely inter-
esting new phenomena might occur. We plan to study these aspects further
in future work.

We shall also mention that other trivial branches can be constructed
from planar CC in the plane {0} × R2. Since the Morse index jumps also
along such branches, we should be able to find other bifurcations instants.
However, the problem is here more complicated since the degeneracy due to
the symmetry cannot be overcome by reduction, and hence a generalization
of the abstract bifurcation result (see Theorem 4.4) to an equivariant setting
is needed. We plan to address this issue in future work.

We end up this introduction with a brief summary of the content of this
paper: In Sect. 2 we define SBC and discuss their basic properties. In Sect. 3
we briefly recall the definition of the spectral flow in a finite dimensional
setting. In Sect. 4 we prove an abstract bifurcation result from the trivial
branch of a one parameter C 2-family of functions on a finite-dimensional
manifold and then apply it to the study of bifurcations of SBC. Finally,
in Sect. 5 we use numerical computations to study the non-trivial branches
bifurcating from a trivial branch of collinear CC in the case n = 3.

2. S-balanced configurations in the n-body problem

In this section we recall the definition of S-balanced configurations and their
basic properties, referring to [2,13] for the details. For n ≥ 2, we consider n
point-masses m1, ...,mn > 0, whose positions are denoted by q1, ..., qn ∈ R4

respectively, and which are supposed to interact with each other according
to Newton’s law of inverse squares. Setting the mass matrix M to be the
diagonal (4n × 4n)-matrix

M := diag (m1I4, ...,mnI4),
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where I4 is the 4-dimensional identity matrix, we readily see that the equa-
tions of motion read

Mq̈ = ∇U(q) (2.1)

where q = (q1, ..., qn) ∈ R4n is the configuration vector of the n point-
masses, ∇ denotes the gradient in R4n, and U is the Newtonian (gravi-

tational) potential

U(q) :=
∑

i<j

mimj

|qi − qj | .

The invariance of (2.1) under translations implies in virtue of Noether’s the-
orem that the center of mass

q :=
n∑

i=1

miqi

has an inertial motion, and hence it is not restrictive to fix it at the origin.
Therefore, we can without loss of generality suppose that U is defined over
the space of collision free configurations with center of mass at

the origin

X̂ :=
{

q = (q1, ..., qn) ∈ R4n
∣∣∣ q = 0, qi �= qj ∀i �= j

}
.

The set over which U is not defined, namely

Δ := {q ∈ R4n | q = 0} \ X̂,

is called the collision set. As it is nowadays well-known, Equation (2.1) is
extremely hard to solve, and indeed a complete solution is possible only for
n = 2. Therefore, instead of trying to solve (2.1) explicitly, one can try to
look for (simple) solutions with prescribed behavior.

The simplest possible solutions of (2.1) one can think of are those given
by homographic motions, i.e. rigid motions in which the configuration of the
bodies remains constant (up to rotations and scalings) in time. If one makes
such an Ansatz in dimension 2 or 3, then one finds that the configuration of
the bodies must be central, namely a solution of

M−1∇U(q) + λq = 0. (2.2)

In other words, any solution of (2.2) gives, for suitable choice of the initial
momentum, rise to a homographic motion. As it turns out, in this case, each
body must then move along a Keplerian orbit. In the particular case of the
zero angular momentum Keplerian orbit, we retrieve the so called homothetic
motions in which all masses collapse simultaneously at the origin or recede
from total collision. In case of the eccentricity zero Keplerian orbit instead,
we retrieve the so called relative equilibria, in which the configuration of the
bodies rigidly rotates around the origin at uniform speed while keeping its
size constant. In dimensions 2 and 3, there are no other possible homographic
motions. In dimension 4 instead new possibilities arise due to the higher com-
plexity of the orthogonal group O(4): Indeed, in R4 it is possible to rotate
simultaneously in two mutually orthogonal planes with different angular ve-
locities. This produces a new balance between gravitational and centrifugal
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forces, thus yielding new periodic or quasi-periodic motions. Thus, for d = 4
there is a wider class of configurations, the so called S-balanced configu-

rations, which contains central ones and provides simple solutions to (2.1).
More precisely, fix a positive real number s > 1 and consider the (4×4)-

diagonal matrix

S = diag(s, s, 1, 1).

Any solution of

M−1∇U(q) + λŜq = 0, Ŝ := diag(S, ..., S), (2.3)

is called an S-balanced configuration. Clearly, for s = 1 we obtain (2.2). It is
easily seen that any solution of (2.3) yields a relative equilibrium solution of
(2.1),

q(t) :=
(

ei
√

st 0
0 eit

)
· q,

which will then be a periodic solution if s ∈ Q and a quasi-periodic solution
otherwise. Notice also that (2.3) is invariant under the (diagonal) S1 × S1-
action on X̂ given by rotations in the R2 ×{0} and {0}×R2 planes, whereas
(2.2) is SO(4)-invariant. Both actions are not free (actually, not even locally
free).

Taking the scalar product of (2.3) with q and using Euler’s theorem, we
see that the constant λ appearing in (2.3) must be equal to

U(q)
IS(q)

,

where IS(q) := 〈ŜMq, q〉 is the S-weighted moment of inertia, and as a
direct consequence of the invariance under scalings of (2.3), we see that we
can always normalize an S-balanced configuration to satisfy IS(q) = 1. It is
therefore natural to introduce the collision free configuration sphere

Ŝ :=
{

q ∈ X̂

∣∣∣ IS(q) = 1
}

,

and to consider only normalized S-balanced configurations, i.e. solu-
tions of (2.3) which are contained in Ŝ. We notice that Equation (2.3) on Ŝ

reads

M−1∇U(q) + U(q)Ŝq = 0. (2.4)

To simplify the notation, we will hereafter refer to solutions of (2.4) simply
as S-balanced configurations. In other words, all S-balanced configurations
will be hereafter assumed to be normalized. We will also use the shorthand
notation SBC instead of S-balanced configuration.

Remark 2.1. The interest on S-balanced and central configurations goes far
beyond the fact that they yield simple solutions of (2.1). Indeed, their prop-
erties turn out to be useful to understand the qualitative behavior of many
other classes of solutions to (2.1), as e.g. colliding solutions. For more details
we refer to [2].
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Remark 2.2. S-balanced configurations have been introduced in the late
nineties by Albouy and Chenciner, see [1]. There, and also in [13], the matrix
S is supposed to be minus the square of a skew-symmetric matrix. As it turns
out, our definition of S-balanced configurations is completely equivalent to
that in [1]. Indeed, after replacing the standard basis of R4 with a (orthonor-
mal) spectral basis of S, we can suppose S to be in diagonal form. Also, the
invariance under scalings of the problem implies that we can suppose S to
be of the form considered above.

A key feature of SBC is that they admit a variational characterization:
Indeed, a configuration vector q ∈ Ŝ is a SBC if and only if it is a critical
point of the restriction of U to Ŝ, which with slight abuse of notation will be
hereafter denoted also with U .

The Hessian of U : Ŝ → R at a critical point q is the quadratic form
on TqŜ represented, with respect to the mass-scalar product 〈M ·, ·〉, by the
(4n × 4n)-matrix

H(q) = M−1D2U(q) + U(q)Ŝ.

A straightforward computation shows that (i, j)-th entry of D2U(q) is given
by

Dij =
mimj

r3ij

(
I4 − 3uiju

T
ij

)
, for i �= j, Dii = −

∑

j �=i

Dij ,

where as usual one sets

rij := |qi − qj |, uij :=
qi − qj

|qi − qj | .

As we already observed, Eq. (2.4) is S1 × S1-invariant, and hence SBC al-
ways appear in S1 × S1-families. In particular, the Hessian H(q) is always
degenerate as a quadratic form. Since we do not want to work in a setting
where a group of symmetries is acting, we proceed as follows using what in
[2] we called the reduction to (H1) argument : the submanifold

Ps :=
{

q ∈ Ŝ

∣∣∣ qk ∈ {0} × R2 × {0}, ∀k = 1, ..., n
}

⊂ Ŝ

of planar configurations in the plane {0} × R2 × {0} is invariant under the
gradient flow of U (actually, any submanifold of planar configurations in some
coordinate plane does). Ignoring all vanishing components, thus identifying
{0} × R2 × {0} with R2, we see that (2.4) on Ps reads

M−1∇U(q) + U(q) · diag
((

s 0
0 1

)
, ...,

(
s 0
0 1

))
q = 0, (2.5)

where with slight abuse of notation we denote the mass-matrix on Ps and
the restriction of U to Ps again with M and U respectively. The main ad-
vantage of such a reduction argument is that (2.5) is no longer invariant
under the S1 × S1-action, but rather only under the action of the discrete
group Z2 × Z2 given by reflections along the main axes. In particular, solu-
tions of (2.5), which are nothing else but planar SBC contained in the plane
{0}×R2 ×{0} ⊂ R4, do not a priori come in continuous families, but just in
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quadruples. We shall also observe that considering planar configurations in
R2×{(0, 0)} or in {(0, 0)}×R2 does not lead to anything interesting, since for
such configurations (2.4) reduces to the (normalized) central configurations
equation, whereas considering any other plane spanned by {v1, v2}, where
v1 ∈ R2 × {(0, 0)} and v2 ∈ {(0, 0)} × R2, do not produce different SBC by
the S1 × S1-invariance of (2.4).

Without further mentioning it, we will hereafter only consider SBC
which are contained in {0}×R2 ×{0} ∼= R2 (in other words, we will consider
only solutions of (2.5)), and refer to them simply as SBC. Starting point for
the results in [2], and for the results of the present paper as well, is a careful
study of the inertia indices of collinear SBC, in shorthand notation CSBC.
As one readily sees from (2.5), CSBC must be contained in one of the two
coordinate axes: we will henceforth call s − CSBC those CSBC which are
contained in R× {0} ⊂ R2, and 1 − CSBC those CSBC which are contained
in {0} × R ⊂ R2.

A straightforward computation shows that, after rearranging properly
the coordinates of the s−CSBC q, we have the following block decomposition
of the Hessian matrix

H(q) =
(−2M−1B(q) 0

0 M−1B(q)

)
+
(

sU(q)In 0
0 U(q)In

)
,

where B(q) is the (n × n)-matrix whose (i, j)-th entry is given by

bij(q) =
mimj

r3ij
, bii = −

∑

j �=i

mimj

r3ij
.

Similarly, we have the following block decomposition of the Hessian matrix
at any 1 − CSBC q̂:

H(q̂) =
(−2M−1B(q̂) 0

0 M−1B(q̂)

)
+
(

U(q̂)In 0
0 sU(q̂)In

)
.

Finally, we shall notice that 1 − CSBC are actually normalized collinear cen-
tral configurations, whereas s − CSBC are obtained by scaling normalized
collinear central configurations by a factor 1/

√
s. Putting these facts together,

we proved in [2, Section 2.2] the following result about the inertia indices of
CSBC. In what follows we denote by ι0(q̂), ι−(q̂), ι+(q̂) the nullity, Morse
index, and Morse coindex respectively of a 1 − CSBC q̂, with

ηk(q̂) < · · · < η1(q̂) < η0(q̂) := −U(q̂) < 0

the distinct eigenvalues of the matrix M−1B(q̂), where q̂ is a fixed 1−CSBC,
and by αk(q̂), ..., α1(q̂), α0(q̂) = 1 the corresponding multiplicities. Even if
the eigenvalues of M−1B(q̂) and their multiplicities depend on the choice of
q̂ in general, for the sake of readability we will hereafter drop the dependence
on q̂.

Proposition 2.3. For any s > 1, the inertia indices of any s − CSBC q are
given by

ι0(q̂) = 0, ι+(q̂) = n − 2, ι−(q̂) = n − 1.

For any 1 − CSBC q̂ we have:
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1. If − ηj

U(q̂)
< s < − ηj+1

U(q̂)
, for some j ∈ {0, ..., k − 1}, then

ι0(q̂) = 0, ι+(q̂) = n − 2 +
j∑

i=0

αi, ι−(q̂) = n − 1 −
j∑

i=0

αi.

2. If s = − ηj

U(q̂)
for some j ∈ {1, ..., k}, then

ι0(q̂) = αj , ι+(q̂) = n − 2 +
j−1∑

i=0

αi, ι−(q̂) = n − 1 −
j∑

i=0

αi.

In particular, q̂ is a degenerate critical point of U .
3. If s > − ηk

U(q̂)
, then

ι0(q̂) = 0, ι+(q̂) = 2n − 3,− ι−(q̂) = 0.

In particular, q̂ is a local minimum of U .

From the proposition above we can easily deduce several facts: First,
CSBC are generically non-degenerate. Second, the inertia indices of s−CSBC
do not depend on s, whereas those of 1 − CSBC strongly do. Even more, the
Morse index of a 1−CSBC q̂ jumps at precisely characterized values of s which
only depend on the spectrum of the matrix M−1B(q̂) and on the value of the
Newtonian potential at q̂. This will enable us in the next section to show the
existence of bifurcations of critical points of Û starting from 1 − CSBC.

We shall also notice that in general we have no information about the
eigenvalues of the matrix M−1B(q̂) and their multiplicities, besides the fact
that −U(q̂) is the largest non-zero eigenvalue and that it is simple. However,
it is reasonable to believe that, for generic choice of the masses m1, ...,mn > 0,
all eigenvalues of M−1B(q̂) are simple for any 1 − CSBC q̂.

Using Proposition 2.3 and the classical Morse inequalities, in [2, Section
4] we gave the following lower bounds on the number of non collinear SBC
assuming that all SBC are non-degenerate.

Theorem 2.4. Assuming that all SBC are non-degenerate, the following lower
bounds hold:

1. If s > max
{

− ηk(q̂)
U(q̂)

∣∣∣ q̂ is a 1 − CSBC
}
, then there are at least

3n! − 2(n − 1)! − 2

non collinear SBC.
2. In all other cases, there are at least

n! − 2(n − 1)!

non-collinear SBC.
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As a corollary, for every m1, ...,mn > 0 and s > 1 such that all SBC are
non-degenerate, we have at least n!− 2(n− 1)! relative equilibria of the form

q(t) =
(

ei
√

st 0
0 eit

)
· q, q is a SBC,

for the n-body problem in R4 which are not induced by central configurations.

The lower bound given in Part 2 can be significantly improved by con-
sidering different cases and implementing the asymptotic estimates on the
coefficients of the Poincaré polynomial of Ŝ proved in [2, Section 3]. We re-
frain to do it here to keep the exposition as simple as possible.

A celebrated result of Moeckel, known as the 45◦-Theorem, states that
for s = 1 (which we recall, corresponds to the central configurations case) the
manifold of configurations which are collinear along some line is an attrac-
tor for the gradient flow of U restricted to Ŝ; in particular, collinear central
configurations are isolated, and an isolating set is given by the space of con-
figurations for which the “collinearity angle” is less or equal to 45◦. This can
be seen as a global version of the fact that the Morse index of collinear cen-
tral configurations is always as large as possible, namely (d − 1)(n − 2) for
the n-body problem in Rd. In [2, Section 5] we generalized the 45◦-theorem
to SBC, proving (in the setting considered in the present paper) that the
manifold of configurations which are collinear along the x-axis is an attractor
for the gradient flow of U restricted to Ŝ. For the general 45◦-theorem for
SBC we refer to [2, Theorem 5.6].

Theorem 2.5. [45◦-theorem for SBC] The manifold
{

q = (q1, ..., qn) ∈ P | qk ∈ R × {0}, ∀k = 1, ..., n
}

⊂ P
is an attractor for the gradient flow of U . More precisely, the collinearity

function

θ(q) := max
i�=j

∠(qi − qj , ∂x)

is a Lyapunov function for the gradient vector field of U on the set {q ∈
P | 0 < θ(q) ≤ 45◦}.

We shall notice that a verbatim generalization of Moeckel’s 45◦-theorem
to SBC is not possible since 1 − CSBC are, for suitable values of s > 1, local
minima of U , and actually there is absolutely no reason why the manifold of
configurations which are collinear along some line in R2 should be invariant
under the gradient flow of U . In Sect. 4 we will strengthen these observations
by showing that, for increasing value of s > 1, we can find families of critical
points of U bifurcating from the set of 1 − CSBC.

We finish this section recalling that the 45◦-theorem for SBC can be
used to improve the lower bounds given in Theorem 2.4 on the number of
relative equilibria in R4 assuming non-degeneracy; for more details we refer
to [2, Section 6]. We shall notice that here, unlike in Theorem 2.4, we are not
able to exclude that such relative equilibria come from central configurations.
Nevertheless, the result is still noteworthy since the lower bound that we
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obtain is larger than the largest known lower bound on the number of planar
central configurations, see [10].

Theorem 2.6. For s > 1 fixed, if all SBC are non-degenerate there are at
least

n!

⎛

⎝1 +
1
n

+
3
2

n∑

j=3

1
j

⎞

⎠

relative equilibria of the form

q(t) =
(

ei
√

st 0
0 eit

)
· q, q is a SBC,

for the n-body problem in R4.

3. A brief recap on the spectral flow in finite dimension

The spectral flow is an integer-valued homotopy invariant of paths of self-
adjoint Fredholm operators introduced by Atiyah, Patodi and Singer in the
seventies in connection with the eta-invariant and spectral asymmetry. In
this section, we briefly recall the definition and the basic properties of the
spectral flow in a finite dimensional setting. An elementary and self-contained
introduction to the spectral flow for bounded selfadjoint Fredholm operators
in infinite dimensional real Hilbert spaces can be found in [5], whilst a quick
recap and description of the spectral flow in the more general setting of paths
of selfadjoint unbounded Fredholm operators having fixed domain appears in
the beautiful paper [19]. For further approaches we refer the interested reader
to [6–8] and references therein.

Let (H, 〈·, ·〉) be an Euclidean space and denote by Lsym(H) the vector
space of all linear maps T : H → H that are self-adjoint with respect to
〈·, ·〉. Roughly speaking, the spectral flow sf(Lt, t ∈ [a, b]) of a continuous
path L : [a, b] → Lsym(H) is the number of negative eigenvalues of La that
become positive minus the number of positive eigenvalues of La that become
negative as the parameter t runs from a to b. In other words, the spectral flow
measures the net change of eigenvalues crossing 0 and can be interpreted as a
sort of generalized signature. This informal description can be made rigorous
in very many different ways.

Definition 3.1. Let L : [a, b] → Lsym(H) be a continuous path of self-adjoint
operators having invertible endpoints. We term spectral flow of L on
the interval [a, b] the integer

sf(Lt, t ∈ [a, b]) := ι−(La) − ι−(Lb)

where ι− denotes the number of negative eigenvalues.

A path of operators having invertible ends will be usually referred to as
admissible. Under the non-degeneracy assumption on the endpoints (which
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is, for different reasons, always assumed throughout the paper) the (RHS) in
the equation defining the spectral flow, can be equivalently written as

1
2
[sgn(La) − sgn(Lb)],

thus pointing out why the spectral flow can be though of as a generalized
signature. In this respect we observe that, assuming more regularity on the
path L (for instance, that L is at least C 1) it is possible to prove that the
local contribution to the spectral flow is provided by the signature of a qua-
dratic form (usually called crossing form). More precisely, if t0 ∈ (a, b) is
a crossing instant, meaning that ker L(t0) �= {0}, and if the restriction
of the derivative of the path onto kerL(t0) is non-degenerate as a quadratic
form, then the spectral flow across the instant t0 can be computed as follows

sf(Lt, t ∈ [t0 − δ, t0 + δ]) = sgn L′(t0)|kerL(t0).

Here below we list some properties of the spectral flow that will be used
in this paper. In what follows, every path of self-adjoint operators is assumed
to be continuous.

1. Normalization. Let L : [a, b] → GLsym(H) be a path of invertible
operators. Then

sf(Lt, t ∈ [a, b]) = 0.

2. Invariance under Cogredience. If L : [a, b] → Lsym(H) is admis-
sible, then for any M : [a, b] → GLsym(H) we have

sf(Lt, t ∈ [a, b]) = sf(M∗
t LtMt, t ∈ [a, b]).

3. Concatenation. For c ∈ [a, b], if L : [a, b] → Lsym(H) is admissible
on both [a, c] and [c, b], then

sf(Lt, t ∈ [a, b]) = sf(Lt, t ∈ [a, c]) + sf(Lt, t ∈ [c, b])

4. Homotopy invariance property. If H : [0, 1] × [a, b] → Lsym(H) is
such that the path t �→ H(s, t) is admissible for each s ∈ [0, 1], then

sf(H(s, t), t ∈ [a, b]) = sf(H(0, t), t ∈ [a, b]), ∀s ∈ [0, 1].

We finish this section observing that in Definition 3.1 we required the
path L to have invertible endpoints. This assumption can be removed by
properly choosing the contribution of the endpoints. In this more general
setting, the spectral flow will be homotopy invariant with respect to end-
points or, more precisely, end-points stratum homotopy invariant, meaning
that the end-points are allowed to vary without changing the nullity.

4. Bifurcations of collinear S-balanced configurations

In this section, we prove an abstract bifurcation result from the trivial branch
of a one parameter C 2-family of functions on a finite-dimensional manifold
and then apply it to the study of bifurcations S-balanced configurations. We
start by introducing the natural geometric framework and some preliminary
definitions.
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Definition 4.1. A smooth family of finite-dimensional real smooth

manifolds (Xλ)λ∈I parameterized by the interval I := [a, b] ⊂ R is a fam-
ily of manifolds of the form Xλ = p−1(λ) where p : X → I is a smooth
submersion of a manifold X onto I.

For a smooth family (Xλ) as above, Xλ is a codimensional one subman-
ifold of X for every λ ∈ I. For each x ∈ Xλ, we have that TxXλ = ker Dpx

and

T vX := {ker Dpx|x ∈ X}
is a vector subbundle of the tangent bundle TX.

A smooth function F : X → R defines a smooth family of functions
Fλ : Xλ → R by restriction to the fibers of p. We assume that there exists a
smooth section σ : I → X of p such that, for every λ ∈ I, σ(λ) is a critical
point of Fλ, and in what follows we refer to such a σ as a trivial branch

of critical points.

Definition 4.2. We term λ∗ ∈ I a bifurcation instant from the trivial

branch σ(I) if there exists a sequence λn → λ∗ and a sequence (xn)n∈N ⊂ X
converging to σ(λ∗) such that p(xn) = λn and each xn is a critical point for
Fλn

not belonging to σ(I).

Notation 4.3. We hereafter denote the Hessian of Fλ at the critical point
σ(λ) by hλ.

The family of Hessians (hλ)λ∈I defines a smooth function h on the total
space of the pull-back bundle H = σ∗(T vX) of the vertical tangent bundle.
Hence, the function h : H → R defines a family of (generalized) quadratic
forms hλ defined on T vXλ. Using the notation introduced in Sect. 3, we say
that the path λ �→ hλ is admissible if ha, hb are non-degenerate. Denoting by
sf(hλ, λ ∈ [a, b]) the spectral flow of the path h, we have the following

Theorem 4.4. If h = (hλ)λ∈[a,b] is admissible, then there exists at least one
bifurcation instant λ∗ ∈ (a, b) of critical points of F from the trivial branch.
Moreover, if ker hλ �= {0} only for finitely many λ, then there are at least

∣∣ sf(hλ, λ ∈ [a, b])
∣∣

m

distinct bifurcation instants in (a, b) where m := max {dim ker hλ}.
Remark 4.5. The singular set Σ(h) := {λ ∈ I| ker hλ �= 0} is finite as soon
as the data are analytic, which often occurs in the applications and is indeed
the case in the situation considered in the present paper.

Proof. We split the proof into three steps:

Step 1: (Reduction to a fixed Euclidean space) By the vector bundle
neighborhood theorem there exists a trivial Euclidean bundle E = I × H
over I = [a, b] and a fiber preserving smooth map ψ : E → X such that
ψ(λ, 0) = σ(λ) for every λ ∈ [a, b], and ψ is a diffeomorphism of E into an
open neighborhood O of σ(I) in X.
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Let F̃ : I × H → R be the map defined by composition F̃ := F ◦ ψ. So,
the map F̃ defines a smooth one parameter family of functions on H. Since
ψ is a fiber preserving diffeomorphism, u ∈ H is a critical point of F̃λ if and
only if x = ψλ(u) is a critical point of Fλ. In particular, 0 is a critical point
of F̃λ for each λ ∈ I.

The Hessian h̃λ of F̃λ at 0 is given by h̃λ(ζ) = hλ(D0ψλ)([ζ]). By the
cogredience and normalization properties of the spectral flow, see Section 3,
we get that

sf(h̃λ, λ ∈ I) = sf(hλ, λ ∈ I) = sf(Lλ, λ ∈ I) = ι−(La) − ι−(Lb)

where L : I → Ls(H) is a smooth path of self-adjoint operators representing
the quadratic form h̃ with respect to the scalar product of H, namely h̃λ(u) =
〈Lλu, u〉 for every u ∈ H.

Step 2: (Non-vanishing spectral flow implies bifurcation) We assume by
contradiction that

sf(Lλ, λ ∈ I) = ι−(La) − ι−(Lb) �= 0

and that there are no non-trivial critical points of the path λ �→ F̃λ close
to the trivial branch. Then, there exists δ > 0 such that 0 ∈ H is the only
critical point of F̃λ on Bδ for every λ ∈ I, where with Bδ ⊂ H we denote
the open ball with radius δ around the origin. Without loss of generality we
can suppose F̃λ(0) = 0 for every λ ∈ I. For any λ ∈ I and any non-negative
integer k, let Ck(F̃λ, 0) be the k-th local homology group associated to the
isolated critical point 0 of the functional F̃λ

Ck(F̃λ, 0) := Hk(F̃ 0
λ ∩ Bδ, F̃

0
λ ∩ Bδ \ {0})

where, as usually, Hk(·, ·) denote the k-th relative singular homology group
with integer coefficients, and

F̃ 0
λ := {x ∈ H|F̃λ(x) ≤ 0}

denotes the sublevel set of F̃λ. Since by assumption 0 is an isolated critical
point of Fλ for every λ ∈ I, for each k ∈ N0 the rank of the k-th local
homology group is independent of λ. Moreover, the admissibility of the path
implies in virtue of the Morse Lemma that

Ck(F̃a, 0) =
{
Z if k = ι−(La),
0 otherwise, Ck(F̃b, 0) =

{
Z if k = ι−(Lb).
0 otherwise.

However, since the spectral flow on the interval I does not vanish, we have
that ι−(La) �= ι−(Lb), in contradiction with the fact that the local homology
groups do not depend on λ.

Step 3: (Estimate from below on the number of bifurcation instants)
To prove this last assertion we proceed as follows. By assumption, there are
only finite many instants a < λ1 < . . . < λk < b for which the kernel of Lλ is
non-zero. Therefore, we can find δ > 0 such that for every j = 1, . . . , k, the
intervals Ij := [λj −δ, λj +δ] are pairwise disjoint and Lλ is non-degenerate at
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the endpoints of all such intervals. By the additivity property of the spectral
flow, we get that

sf(Lλ, λ ∈ I) =
k∑

j=1

sf(Lλ, λ ∈ Ij) =
k∑

j=1

[
ι−(Lλj−δ) − ι−(Lλj+δ)

]

Since dim ker Lλ ≤ m it follows that
∣∣ι−(Lλj−δ) − ι−(Lλj+δ)

∣∣ ≤ m.

Summing up, we immediately get that

∣∣ sf(Lλ, λ ∈ I)
∣∣ ≤

k∑

j=1

∣∣ sf(Lλ, λ ∈ Ij)
∣∣ ≤ dm

where d denotes the number of non-vanishing terms in the sum. Since by Step
2 any interval Ij having non-vanishing spectral flow contributes to the total
number of bifurcation instants at least by 1, we immediately get that there
must exist at least d = | sf(Lλ, λ ∈ I)|/m bifurcation points on the interval
I. �

Remark 4.6. A similar result holds in infinite dimensional separable Hilbert
spaces for a path of (bounded) self-adjoint Fredholm operators even in the
strongly indefinite case, meaning that the Fredholm operators are compact
perturbations of an invertible operator having an infinite dimensional positive
and negative eigenspace. In this case in fact both the Morse index and coindex
are infinite. For further details we refer the interested reader to [12,16–18]
and references therein for this more general functional analytic setting with
application e.g. to semi-Riemannian geodesics and conjugate points.

Theorem 4.4 will be the key ingredient for our bifurcation result for
SBC, where the bifurcation parameter is precisely the parameter s appearing
in the matrix S. Thus, for every s > 1 we consider the function U : Ps → R.
By the discussion provided in Sect. 2, SBC and in particular CSBC are critical
points of U . The latter turn out to be generically non-degenerate, see Propo-
sition 2.3, meaning that the Hessian of U at any CSBC is non-degenerate as
a quadratic form for all but finitely many values of s. Before stating the bi-
furcation theorem for SBC, we shall finally observe that 1−CSBC, which we
recall are nothing else but normalized collinear central configurations along
the y-axis, are solutions of (2.5) independently of s > 1. In particular, any
constant one-parameter family (q̂s = q̂)s>1, with q̂ a fixed 1−CSBC, provides
a trivial branch of critical points.

Theorem 4.7. For s1, s2 > 1, let J := [s1, s2] and let (q̂s)s∈J be the trivial
one-parameter family of SBC given by a fixed 1 − CSBC q̂, that is q̂s = q̂ for
every s ∈ J . Setting

α∗(q̂) := max{αj(q̂)|j = 1, . . . , k},

for s1 sufficiently close to 1 and s2 large enough there exist at least
⌊

n − 2
α∗(q̂)

⌋
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bifurcation instants from q̂. As a corollary, for s1 sufficiently close to 1 and
s2 large enough there are at least

n! ·
⌊

n − 2
α∗

⌋
, α∗ := max{α∗(q̂) | q̂ is a 1 − CSBC},

bifurcation instants from the trivial families of 1 − CSBC.

Remark 4.8. Even if we have no information about the αj ’s in general, it
is reasonable to believe that they are all equal one for generic choice of the
masses m1, ...,mn. In this case, Theorem 4.7 would provide the existence of at
least n!(n−2) bifurcation instants, namely at least n−2 bifurcation instants
for each choice of the ordering of the masses along the y-axis.

Proof. We denote by π : P → J the (trivial) ellipsoid bundle (topologically,
a sphere bundle) over J whose fiber π−1({s}) = Ps is the collision free con-
figuration sphere. Notice that Ps depends on the parameter s; in particular,
for s = 1 we obtain a round sphere in the mass metric, which for increas-
ing s is deformed into an ellipsoid having its major axes in the directions
corresponding to the eigenvalue 1 of the matrix S.

The Newtonian potential U defines a smooth bundle map U whose re-
striction Us to each fiber π−1({s}) is precisely U , and for each s ∈ J the
configuration vector q̂s = q̂ is a 1 − CSBC, hence a critical point of Us. By
Proposition 2.3, we infer that the path s �→ q̂s is admissible (meaning that the
associated path s �→ hs of quadratic forms pointwise defined by the Hessian
of U at q̂s is admissible) as soon as

1 < s1 < −η1(q̂)
U(q̂)

, s2 > −ηk(q̂)
U(q̂)

.

Moreover, by setting j = 0 in Proposition 2.3, Part 1, we get that the
ι−(q̂s1) = n − 2, whereas using Item iii) of Proposition 2.3, Part 2, we get
that ι−(q̂s2) = 0. In particular, the spectral flow of the path s �→ hs is easily
computed to be

sf(hs, s ∈ [s1, s2]) = ι−(hs1) − ι−(hs2) = n − 2

where ι−(hs1) := ι−(ξs1) and ι−(hs2) := ι−(ξs2). Theorem 4.4 now implies
the claim, observing that the kernel of hs is non-trivial only in correspondence
of the eigenvalues ηj(q̂) whose multiplicity is αj(q̂). �

5. Some explicit examples for n = 3

In this section we use numerical computations to study the non-trivial branches
bifurcating from a trivial branch of 1−CSBC. First, we introduce the contin-
uation method used to compute curves of solutions of a system of nonlinear
equations depending on a real parameter, then we describe how to use it to
follow the bifurcations branching from a trivial branch of 1− CSBC. Finally,
we provide some examples for n = 3.
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5.1. The continuation method

Let F : Rn × R → Rn be a differentiable function, and denote with q ∈ Rn

the spatial component and with s ∈ R the parameter. Take (qi, si)T ∈ Rn×R

such that F (qi, si) = 0: the purpose of a continuation method is to find a
zero of F for a different value of the parameter s, starting from the known
solution at si.

To this end, the pair (q, s)T is displaced by solving the equation
⎧
⎪⎪⎨

⎪⎪⎩

F (q, s) = 0,
∣∣∣∣∣

(
q

s

)
−
(

qi

si

)∣∣∣∣∣

2

− δ2 = 0,
(5.1)

where δ > 0 is small. A solution of Equation (5.1) can be computed using the
Newton method (see e.g. [20]), thus solving at each step a system of equations
given by the matrix

⎡

⎣
∂F

∂q

∂F

∂s

2(q − qi) 2(s − si)

⎤

⎦ .

A first guess (q̄, s̄) for the Newton method can be constructed starting from
the known solution (qi, si)T , and taking a tangent displacement along the
curve of solutions. The tangent line can be approximated by using two con-
secutive solutions (qi, si)T and (qi−1, si−1)T , hence the first guess can be
taken as(

q̄
s̄

)
=
(

qi

si

)
+ γ

(
qi − qi−1

si − si−1

)
, γ =

δ

|(qi, si)T − (qi−1, si−1)T | .

If not known, an additional solution (qi−1, si−1)T can be computed from
the known solution (qi, si)T by simply displacing si as si−1 = si + Δs, and
then solving the equation G(q) := F (q, si−1) = 0 with the Newton method,
constructing a first guess using a displacement of qi.

In the case of S-balanced configurations, the function F reads

F (q, s) = M−1∇U(q) + U(q)Ŝ(s)q,

where Ŝ(s) is the block-diagonal matrix

Ŝ(s) =
((

s 0
0 1

)
, ...,

(
s 0
0 1

))
.

To numerically study the bifurcations branching from a trivial branch
of 1 − CSBC in the case of three masses, we use the following scheme. Let
m1,m2,m3 be given positive masses, and let an ordering of the three masses
along the y-axis be fixed. Then,

1. we compute the corresponding 1 − CSBC (which we recall is nothing
else but a normalized collinear central configuration), namely using the
Newton method to find the unique zero of the Euler polynomial (see
e.g. [14]) corresponding to the chosen ordering of the masses.

2. We compute the eigenvalues of the matrix M−1B(q̂), and the value of
the potential U(q̂).
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3. We compute the (unique in virtue of Item ii) of Proposition 2.3) value
s̃ for which q̂ is a degenerate critical point of U .

4. We displace s̃ by s = s̃ + Δs, and search for a zero of F ( ·, s) using the
Newton method. A first guess is constructed by displacing q̂ along the
direction of the kernel of ∂F/∂q.

5. Using the previous two solutions, we start the continuation method with
respect to the parameter s.

The same scheme can be used also for n ≥ 4, modifying the first step for the
computation of the corresponding 1 − CSBC. Notice indeed that also in this
case there exists a unique 1 − CSBC for each ordering of the bodies [11]. We
plan to numerically investigate this case in future work.

5.2. Results of the computations

We produced a first example using three unitary equal masses. The corre-
sponding trivial branch of 1 − CSBC has a bifurcation at s̃ = 2.4, from
which two non-trivial branches originate. On these branches the parameter
s decreases, while the three masses move on isosceles configurations until
arriving at an equilateral configuration for s = 1. The two branches are sym-
metrical with respect to the y-axis, with the difference that the pair {q2 −
q1, q3−q1} is positively oriented on one branch and negatively oriented on the
other one. Moreover, all solutions found are local minima of the potential U .
Figure 1 shows one of the branches in the space (x, y, s); the other branch is
not displayed for visibility reasons. Observe that, due to the additional sym-
metries of the problem, changing the ordering of the masses does not yield
qualitatively different behaviors of the bifurcations branches. Also, a branch
(actually four branches due to the Z2 ×Z2-symmetry) of saddle points origi-
nating at s = 1 from Lagrange’s equilateral triangle is present but not shown
in the figure.

We produced a second example using one unitary mass and two smaller
equal masses, say m1 = 1, m2 = m3 = μ, 0 < μ < 1, for the ordering
of the masses given by taking the bigger mass outside the segment joining
the two smaller ones. Also here we have a unique bifurcation point s̃ from
which two non-trivial (again, symmetrical with respect to the y-axis) branches
originate. Along each non-trivial branch the parameter s decreases at first
until reaching a turning point sturn, where the three masses are placed on the
vertices of a symmetric with respect to the y-axis isosceles triangle. After the
turning point, the parameter s increases up to the bifurcation value s̃, and the
corresponding branch of SBC reaches for s ↑ s̃ the 1 − CSBC corresponding
to the ordering of the masses in which the two smaller masses are swapped.
In the (x, y) plane, the masses m2 and m3 appear to rotate around a common
point, while the mass m1 appears to oscillate. The oscillation becomes larger
and larger as the value μ approaches 1, and the isosceles configuration at
the turning point tends to an equilateral one, which is reached in the limit
μ ↑ 1. On the other hand, the oscillations are very small for μ � 1, making
the position of m1 almost constant. Also here, all configurations along the
branches are local minima of the potential U . In correspondence of the turning

Reprinted from the journal90



Vol. 24 (2022) Bifurcations of balanced configurations for the Newtonian. . .

Figure 1. The branches of SBC in the case of three equal
masses in the space (x, y, s). The three dashed vertical lines
represent the trivial branch of 1−CSBC, while the black and
the red thick curves represent the two non-trivial branches
originating from the bifurcation point

point sturn we also have two additional branches originating from the non-
trivial branches, namely a first one along which the parameter s decreases
to 1 reaching in the limit s ↓ 1 the equilateral configuration, and a second
one along which the parameter s increases to infinity reaching in the limit
s → +∞ a limit configuration. The critical points along the first secondary
branch are local minima of U , whereas along the latter one we have saddle
points. The non-trivial branches in the space (x, y, s) corresponding to the
cases μ = 0.99 and μ = 0.01 respectively are depicted in Fig. 2. In the limit
μ ↑ 1 the non-trivial branches “tend” to the non-trivial branches depicted in
Fig. 1.

In case the unitary mass is placed between the two smaller ones, the
behavior is similar to the three equal masses case: the parameter s decreases
down to 1, where the masses reach an equilateral configuration.

A third example has been produced using two unitary masses and a
smaller one, say m1 = m2 = 1, m3 = μ, 0 < μ < 1, for the ordering of
the masses in which the smaller mass lies outside the segment joining the
two bigger ones. Two non-trivial branches, symmetrical with respect to the
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Figure 2. The branches of SBC in the case m1 = 1, m2 =
m3 = μ, 0 < μ < 1, in the space (x, y, s). The left panel refers
to the case μ = 0.99, while the right one to μ = 0.01. The
black particle indicates the mass m1, while the blue and red
particles refer to m2 and m3 respectively. As in Fig. 1, the
dashed vertical lines represent the trivial branch of 1−CSBC,
whereas the thick black curve represents a branch originating
from the bifurcation point. Another branch, in which the
masses follow the same curve in the opposite direction, is also
present but not shown. The secondary branches originating
in correspondence of the turning point are drawn in red

y-axis, originate from the (unique) bifurcation point s̃: on these branches
the parameter s initially decreases, and the masses are placed on scalene
configurations corresponding to local minima of U . A turning point sturn is
reached during the continuation, and the differential of F is singular at sturn.
For μ ∼ 1, the turning point sturn is close to s = 1, and again the non-trivial
branches approach the non-trivial branches depicted in Fig. 1 in the limit
μ ↑ 1. On the other hand, the turning point becomes closer and closer to
the bifurcation value s̃ for μ → 0. After the turning point, the parameter s
increases to +∞, with the masses still placed on scalene configurations which
in this case, however, correspond to saddle points of U . Therefore, we have
a jump on the Morse index in correspondence of the turning point sturn. We
also looked for secondary branches at the turning point sturn. To construct an
initial guess for the Newton method, we displaced the configuration at sturn
in two different manners: 1) along the direction of the kernel of ∂F/∂q, and
2) displacing q1, q2, q3 along random directions v1, v2, v3 ∈ S1, respectively.
In both cases, we did not find any other branch. Observe that this does not
contradict Theorem 4.4, since the considered branch is not trivial. We plan to
examine the occurrence of bifurcation points on non-trivial branches in future
work. Following the non-trivial branch after the turning point, we see that the
configurations are asymptotic as s grows to infinity to a limit configuration.
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Figure 3. The branches of SBC in the case m1 = m2 =
1, m3 = μ, 0 < μ < 1, in the space (x, y, s). The left panel
refers to the case μ = 0.99, while the right panel to the case
μ = 0.01. The black particle indicates the mass m1, while
the blue and the red particles refer to m2 and m3, respec-
tively. As in Figs. 1 and 2, the dashed vertical line repre-
sents the trivial branch, while the thick black curve repre-
sent one branch originating from the bifurcation point. An-
other branch, symmetrical with respect to the y-axis, is also
present but not shown. The branch of saddle points originat-
ing from the equilateral triangle is drawn in red. The black
and red branches are asymptotic for s → +∞ to different
asymptotic configurations

As the left panel in Fig. 3 might suggest, the asymptotic configuration seems
to be the limit also of a branch of saddle points originating at s = 1 from the
equilateral triangle. This is in fact not the case, as it can be easily deduced
from the right panel. The branches in the space (x, y, s) corresponding to
μ = 0.99 and μ = 0.01 respectively are depicted in Fig. 3.

In the case that the mass m3 lies between m1 and m2, the result is
similar to the three equal masses case, with the bifurcation parameter s
decreasing to 1, where an equilateral configuration is reached.

Further examples have been produced using three different masses by
means of an additional parameter, but no qualitatively different behavior has
been observed. More precisely, for fixed parameters μ, λ < 1, we considered
masses (m1,m2,m3) = (1, λ, μ). As it turns out, the qualitative behavior of
the corresponding non-trivial branches only depends on λ: For λ < min{1, μ}
we are in situation analogous to the one depicted in Fig. 1, with two branches
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originating from Euler’s configuration on which s decreases to 1 reaching
in the limit s ↓ 1 Lagrange’s equilateral triangle along minima of U . For
λ = min{1, μ}, we have the same qualitative behavior as in Fig. 2: along
each non-trivial branch the parameter s decreases at first until reaching a
turning point. After the turning point, the parameter s increases up to the
bifurcation value s̃, and the corresponding branch of SBC reaches for s ↑ s̃
the 1 − CSBC corresponding to the ordering of the masses in which the
two smaller masses are swapped. In correspondence of the turning point two
additional branches originate, namely one along which s decreases reaching
for s = 1 Lagrange’s equilateral triangle on minima of U , and one along which
s increases to infinity on saddle points of U . Finally, in the case λ > min{μ, 1}
we have the same qualitative behavior as in Fig. 3: The parameter s decreases
until a turning point is reached, after which s grows indefinitely and the
configuration tends to an asymptotic configuration.

Videos showing how the position of the masses in the (x, y)-plane changes
along a non-trivial branch, for the cases discussed in this section, can be found
at [4].

5.3. Final comments

We are now in position to make some final comments on the numerical imple-
mentations discussed in the previous subsection and on their consequences
on the dynamics of the n-body problem in R4. Before doing that, we shall
recall that the bifurcations of SBC we found can be seen as planar SBC in
R4 contained in the plane {0} × R2 × {0} ⊂ R4, and as such define relative
equilibria for the n-body problem in R4 by

q(t) =
(

ei
√

st 0
0 eit

)
·

⎛

⎜⎜⎝

0
x
y
0

⎞

⎟⎟⎠ ,

where (0, x, y, 0)T = q is any planar SBC contained in {0} × R2 × {0}.
In Figure 1 we observe for the case of three equal masses a connection

between Lagrange’s equilateral triangle qLagr and Euler’s collinear configura-
tion qEul through a branch of SBC which are local minima of U . This yields
a continuum of relative equilibria (qs)s∈[1,s̃] for the 3-body problem in R4

qs(t) =
(

ei
√

st 0
0 eit

)
·

⎛

⎜⎜⎝

0
xs

ys

0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
x1

y1
0

⎞

⎟⎟⎠ = qLagr,

⎛

⎜⎜⎝

0
xs̃

ys̃

0

⎞

⎟⎟⎠ = qEul,

which is precisely the one found abstractly in [2, Corollary 2.15]. An illustra-
tion of q1 can be found in [15, Figure 9]. For s > s̃ such a continuum can be
extended simply by taking qs = qEul for all s > s̃. Finally, for s ∈ [1, s̃) ∩ Q

or s > s̃, the relative equilibrium qs is periodic, and it is quasi-periodic
otherwise.

A similar connection can be observed also for arbitrary masses, namely
between Lagrange’s equilateral triangle and Euler’s collinear configuration
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in which the smaller mass lies between the other two masses. Such connec-
tions cannot be found within the class of central configurations, as Euler’s
configurations are isolated in virtue of Moeckel’s 45◦-theorem.

As the implementations suggest, changes in the qualitative behavior of
the non-trivial branches are to be expected especially when deforming the
masses parameters by passing through a configuration of the masses that
forces additional symmetries of the problem, namely a configurations of the
masses in which at least two of the masses are equal. We plan to investigate
this aspect further for larger values of n.

Another interesting group of open questions concerns the stability of
relative equilibria generated by a SBC. As already observed, to a given pla-
nar CC it is possible to associate a relative equilibrium solution in which all
bodies rigidly rotate around their center of mass. In rotating coordinates, this
relative equilibrium reduces to an equilibrium (actually, to the CC originat-
ing the orbit through a circle action). So, it is quite natural to ask whether
there is or not a relation between the linear stability of the relative equilib-
rium (as a periodic orbit) and the Morse index of the associated CC (in the
rotating frame). Several results in this direction are nowadays available in the
literature: For instance, in [9] the authors provide a sufficient condition for
the linear instability of a relative equilibrium originated by a non-degenerate
CC in the plane in terms of the Morse index, which in [3] is generalized to a
broader class of singular operators as well as to the case of relative equilibria
generated by a possibly degenerate critical point. In this latter case, besides
the Morse index, a key role is played by the Jordan normal form associated
to the Floquet multiplier 1.

On the other hand, nothing seems to be known about the linear (and
spectral) stability for higher-dimensional relative equilibria, see e.g. [13]. In
higher-dimension, the situation is indeed much more involved: For relative
equilibria which are periodic in time (that is, for s ∈ Q) we expect, besides
Morse index and Jordan normal form, also the parameter s to play a key role
in the characterization of the stability properties. For relative equilibria which
are quasi-periodic in time (that is, for s ∈ R\Q) a similar characterization
relating the KAM stability of the relative equilibrium to the inertia indices
of the associated SBC should be possible as well. All these questions will be
addressed in future work.
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Università degli Studi di Torino
Largo Paolo Braccini, 2
Grugliasco 10095 Turin
Italy
e-mail: alessandro.portaluri@unito.it

Accepted: April 20, 2021.

Reprinted from the journal 97

http://www-users.math.umn.edu/~rmoeckel/notes/Notes.html
http://www-users.math.umn.edu/~rmoeckel/notes/Notes.html
http://www.scholarpedia.org/article/Central_configurations
http://www.scholarpedia.org/article/Central_configurations


J. Fixed Point Theory Appl. (2022) 24:44
https://doi.org/10.1007/s11784-022-00963-8
Published online May 13, 2022 Journal of Fixed Point Theory

and Applications

Relative Hofer–Zehnder capacity
and positive symplectic homology

Gabriele Benedetti and Jungsoo Kang

Dedicated to Claude Viterbo on the occasion of his 60th birthday.

Abstract. We study the relationship between a homological capacity
cSH+(W ) for Liouville domains W defined using positive symplectic ho-
mology and the existence of periodic orbits for Hamiltonian systems
on W : if the positive symplectic homology of W is non-zero, then the
capacity yields a finite upper bound to the π1-sensitive Hofer–Zehnder
capacity of W relative to its skeleton and a certain class of Hamilton-
ian diffeomorphisms of W has infinitely many non-trivial contractible
periodic points. En passant, we give an upper bound for the spectral
capacity of W in terms of the homological capacity cSH(W ) defined
using the full symplectic homology. Applications of these statements
to cotangent bundles are discussed and use a result by Abbondandolo
and Mazzucchelli in the appendix, where the monotonicity of systoles
of convex Riemannian two-spheres in R

3 is proved.
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1. Periodic orbits for Hamiltonian systems

In this paper, we prove new existence and multiplicity results for periodic
orbits of Hamiltonian systems on Liouville domains using positive symplectic
homology. We present our results in Sect. 2, and, to put them into context, we
give in this first section a brief (and incomplete) account of previous work on
the existence of periodic orbits for Hamiltonian systems that will be relevant
to our work. For more details, we recommend the excellent surveys [14,23,24].

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
With an appendix by Alberto Abbondandolo and Marco Mazzucchelli.
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1.1. From calculus of variation to pseudoholomorphic curves

From the end of the 1970s to the beginning of the 1990s, a series of tremendous
advances has been made in understanding the existence of periodic solutions
for smooth Hamiltonian systems in R

2n with standard symplectic form ωR2n

using variational techniques. Classically, two settings have been considered.
In the non-autonomous setting, one may consider a smooth Hamiltonian

function H which is periodic in time (say with period one) and compactly
supported, and study the set Pm(H) of periodic orbits of the Hamiltonian
vector field of H with some integer period m ∈ N. This is equivalent to looking
at periodic points of the Hamiltonian diffeomorphism obtained as the time-
one map of the Hamiltonian flow of H. The set Pm(H) surely contains trivial
orbits, namely those which are constant and contained in the zero-set of the
Hamiltonian, and the question is if there are non-trivial elements in this set.
In 1992, Viterbo proved the following remarkable result.

Theorem 1.1. (Viterbo [63]) Let ϕ : R
2n → R

2n be a compactly supported
Hamiltonian diffeomorphism different from the identity. Then, ϕ admits a
non-trivial one-periodic point and infinitely many distinct non-trivial periodic
points.

In the autonomous setting, the Hamiltonian function H is coercive and
independent of time. Thus, it is meaningful to study the set of periodic or-
bits having arbitrary real period and lying on a regular energy level Σ of H,
which is compact by coercivity. Let j0 : Σ ↪→ R

2n be the inclusion of Σ, and
denote the set of periodic orbits of H on Σ by P(Σ). This notation is justified
since periodic orbits of H on Σ correspond to closed characteristics of Σ, i.e.,
embedded circles in Σ which are everywhere tangent to the characteristic dis-
tribution ker(j∗

0ωR2n). In 1987 Viterbo [62] proved the existence of a closed
characteristic for a large class of hypersurfaces Σ in R

2n, namely those of
contact type (see [36] for the definition), thus confirming the Weinstein con-
jecture in R

2n [70]. This considerably extends previous results by Weinstein
[69] and Rabinowitz [49] for hypersurfaces being convex or starshaped, two
properties which are not invariant by symplectomorphisms.

Soon after, it was understood that Viterbo’s result is a manifestation
of more general phenomena which go under the name of nearby existence
and almost existence. In order to explain these phenomena, we consider a
thickening of j0 : Σ → R

2n, namely an embedding j : (−ε0, ε0) × Σ → R
2n

such that j(0, ·) = j0. We denote Σε = j({ε} × Σ) for ε ∈ (−ε0, ε0). For a
thickening of j0, the nearby existence theorem [35] ensures that for a sequence
of values εk → 0, there holds P(Σεk

) �= ∅. On the other hand, the almost
existence theorem [55] yields the stronger assertion that P(Σε) �= ∅ for almost
every ε ∈ (−ε0, ε0). Viterbo’s result follows from either of these two theorems
noticing that a contact, or more generally stable [36], hypersurface admits a
thickening such that the characteristic foliation of Σ is diffeomorphic to the
one of Σε for all ε ∈ (−ε0, ε0). A classical argument by Hofer and Zehnder
[36] proves the almost existence theorem by showing the finiteness of the
Hofer–Zehnder capacity for bounded domains of R

2n of which we now recall
the definition. If U ⊂ R

2n is a domain possibly with boundary, let H(U) be

Reprinted from the journal100



the set of Hamiltonians H : U → (−∞, 0] that vanish outside a compact set
of U\∂U and achieve their minimum on an open set of U . The Hofer–Zehnder
capacity of U is defined by

cHZ(U) := sup
H∈H(U)

{ − min H
∣
∣ P≤1(H) = Crit(H)

} ∈ (0,∞],

where we used the notation Crit(H) for the set of critical points of H and
P≤t(H) for the set of periodic orbits of the Hamiltonian vector field of H
with period at most t.

Much of research in Hamiltonian dynamics in the last 30 years has been
driven by considering the two settings described above for general symplectic
manifolds (M,ω). For instance, one can ask if the nearby or almost existence
theorems hold for a given hypersurface Σ ⊂ M . To this end, the Hofer–
Zehnder capacity, whose definition extends verbatim to open subsets of M ,
still plays a central role as the almost existence theorem holds for hypersur-
faces contained in a domain U ⊂ M of finite Hofer–Zehnder capacity [46]. It
is also sometimes useful to consider a refined quantity, called the π1-sensitive
Hofer–Zehnder capacity, given by

co
HZ(U) := sup

H∈H(U)

{ − min H
∣
∣ Po

≤1(H) = Crit(H)
} ∈ (0,∞],

where Po
≤1(H) is the set of elements in P≤1(H) which are contractible in

M . Clearly cHZ(U) ≤ co
HZ(U) and finiteness of co

HZ(U) implies the almost
existence theorem with the additional information that the periodic orbits
we find are contractible in M . However, verifying finiteness of cHZ(U) or
co
HZ(U) is usually highly non-trivial and there are also many examples where

these quantities are infinite [61].
The first relevant class of manifolds one encounters outside R

2n is given
by cotangent bundles T ∗Q over closed manifolds Q endowed with the stan-
dard symplectic form ωT ∗Q. Besides their importance as phase spaces in
classical mechanics, they give local models for Lagrangian submanifolds of
abstract symplectic manifolds by the Weinstein neighborhood theorem. This
implies that if Q admits a Lagrangian embedding into R

2n (for instance Q is
a torus), then any bounded subset U ⊂ T ∗Q can be symplectically embedded
into a bounded subset of R

2n and hence the almost existence theorem holds
for U , see for instance [37, Proposition 1.9]. For general manifolds Q, Hofer
and Viterbo [33] could carry over the variational setting employed in R

2n

by exploiting the fact that the fibers of T ∗Q are linear spaces to prove the
following remarkable result (see the work of Asselle and Starostka [8] for a
simplified approach).

Theorem 1.2. (Hofer and Viterbo [33]) The nearby existence theorem holds
for hypersurfaces Σ ⊂ T ∗Q which bound a compact region containing the
zero-section in its interior.

To go beyond cotangent bundles, one leaves the classical variational
approach and enters the theory of pseudoholomorphic curves initiated by
Gromov in [27]. For closed symplectic manifolds, the non-autonomous setting
is governed by the Arnold conjecture [4], giving a lower bound on the number
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of fixed points of Hamiltonian diffeomorphisms, and by the Conley conjecture,
asserting that for a large class of symplectic manifolds every Hamiltonian
diffeomorphism has infinitely many periodic points. These conjectures led to
a tremendous development in the field and have been settled by now in very
general forms, see, e.g., [17–19,32,39,40,48] for the Arnold conjecture and
[23,25] for the Conley conjecture.

Pseudoholomorphic curves have also been employed in the autonomous
setting starting from the pioneering work of Hofer and Viterbo [34], where
they are used to give an upper bound on co

HZ of certain symplectic manifolds.
Their approach has been further developed using Gromov–Witten invariants
in [41–44,60].

For both the non-autonomous and the autonomous setting on general
symplectic manifolds, a key role is played by the notion of displaceability and
of spectral invariants. Recall that a domain U is displaceable in M if there
exists a compactly supported Hamiltonian diffeomorphism φ1

K of M such that
φ1

K(U) ∩ U = ∅. Quantitatively speaking, one can define the displacement
energy of U by

e(U) := inf
{‖K‖ | φ1

K(U) ∩ U = ∅
}
,

where ‖K‖ is the Hofer norm of K, see [36]. Finiteness of e(U) is equivalent
to displaceability of U . If M is either closed or convex at infinity, one defines
the spectral capacity of U by

cσ(U) := sup{σ(H)},

where the supremum is taken over all Hamiltonian functions compactly sup-
ported in U\∂U and σ(H) represents the spectral invariant of H associated
with the fundamental class in Floer homology [21,47,53,63]. The chain of
inequalities

co
HZ(U) ≤ cσ(U) ≤ e(U) (1.1)

holds by [57,60] generalizing work contained in [15,21,36,53,54,63] (see also
[29] for an extension of this argument to some open, non-convex manifolds).
One significant implication of finiteness of cσ(U) is that every Hamiltonian
diffeomorphism ϕ compactly supported in U\∂U has finite spectral norm and
thus carries infinitely many non-trivial contractible periodic points.
Since a bounded domain in R

2n is displaceable, the latter inequality in (1.1)
generalizes Theorem 1.1.

Thus, displaceability gives a remarkable criterion to show that cσ(U)
and hence co

HZ(U) are finite. In many cases of interest, however, either it is
difficult to prove that a subset is displaceable or it can be shown that many
subsets are not displaceable even by topological reasons (see the notion of
stable displacement for a fix of this second difficulty [54]). A precious tool to
study periodic orbits in these cases is represented by symplectic homology,
see, e.g., [13]. It was originally defined for R

2n by Floer and Hofer [16] and
for more general manifolds by Cieliebak et al. [12], and further developed by
Viterbo in [66]. In the next subsection, we discuss how symplectic homology
can help us in finding periodic orbits on Liouville domains, an important
class of symplectic manifolds.
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1.2. Capacities and symplectic homology for Liouville domains

A Liouville domain (W,λ) is a compact manifold W with boundary ∂W
such that the exterior derivative dλ of the one-form λ is symplectic and the
Liouville vector field Y on W characterized by dλ(Y, ·) = λ points outwards
along ∂W . The one-form λ|∂W restricted to ∂W is a contact form and we
denote by spec(Rλ) the set of periods of periodic orbits of the Reeb vector
field Rλ of (∂W, λ|∂W ). It is a nowhere dense closed subset of R.

We define the skeleton Wsk of the Liouville domain to be the set of
α-limits of the flow φt

Y of Y on W , i.e.,

Wsk :=
⋂

t<0

φt
Y (W ).

The complement W\Wsk is symplectomorphic to the negative half of the
symplectization of (∂W, λ|∂W ) via the map

Ψ: ∂W × (0, 1] → W, (x, r) 
→ φlog r
Y (x),

where Ψ∗λ = rλ|∂W , and we can complete (W,dλ) by attaching a cylindrical
end

Ŵ := W ∪ (
∂W × [1,∞)

)
(1.2)

using Ψ and by setting λ̂ = rλ|∂W on the cylindrical end.
The simplest examples of Liouville domains are starshaped domains in

R
2n. In this case, Y is the radial vector field and the skeleton is a single

point. Other examples are fiberwise starshaped domains in the cotangent
bundle T ∗Q over a closed manifold Q with the canonical one-form. In this
case, Y is the fiberwise radial vector field and the skeleton is the zero-section.
Moreover, R

2n and T ∗Q are exactly the completions of the two examples we
just described.

The symplectic homology SH(W ;α) of (W,λ) in the free-homotopy class
α ∈ [S1,W ] is, roughly speaking, generated by periodic orbits of the Reeb
vector field Rλ and, when α = 1 is the class of contractible loops, also by a
Morse complex for (W,∂W ). We refer to Sect. 3 for the precise definition of
symplectic homology. One can also construct the positive symplectic homol-
ogy SH+(W ;α) which is generated just by the periodic Reeb orbits and not
by the Morse complex, so that SH+(W ;α) = SH(W ;α) for α �= 1.

Symplectic homology carries a natural filtration given by periods of
Reeb orbits. Using this filtration, several kinds of symplectic capacities can
be constructed. One of them is cSH(W ) ∈ (0,∞] which reads off the minimal
filtration level such that the Morse complex of (W,∂W ) is annihilated in
SH(W ;1), see (3.13), [66, Section 5.3], [31], and [28, Proposition 3.5]. It is
finite if and only if SH(W ;1) vanishes. We have the inequalities

c o
HZ(W ) ≤ cSH(W ) ≤ e(W ), (1.3)

where the displacement energy is taken with respect to the completion of
W . The former inequality is due to Irie [37]. The latter is due to Borman–
McLean [9, Theorem 1.5(ii)], Kang [38, Corollary A1] and Ginzburg–Shon
[28, Corollary 3.9], see also [28, Corollary 3.10] for an inequality involving
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the stable displacement energy, and [56, Theorem 2.2] for a similar inequality
in wrapped Floer homology. We complement (1.3) and (1.1) by the following
theorem which relies on Irie’s idea in [37].

Theorem 1.3. For a Liouville domain (W,λ), there holds cσ(W ) ≤ cSH(W ),
and thus

c o
HZ(W ) ≤ cσ(W ) ≤ cSH(W ) ≤ e(W ).

In particular, if SH(W ;1) = 0, then every Hamiltonian diffeomorphism sup-
ported in W\∂W admits a non-trivial fixed point and infinitely many distinct
non-trivial periodic points.

We see that vanishing of SH(W ;1), which is the case, e.g., if W is dis-
placeable in its completion, immediately implies the almost existence theorem
for contractible orbits and the statement of Theorem 1.1 for W . This line of
attack is however not suited to study finiteness of the Hofer–Zehnder capac-
ity for bounded fiberwise starshaped domains W in cotangent bundles T ∗Q,
since SH(W ;1) does not vanish in this case. Indeed by [1,5–7,59,64], there
exists Viterbo’s isomorphism

H(LαQ) ∼= SH(W ;α) (1.4)

over Z2-coefficients (which is sufficient for our purpose), where LαQ denotes
the free-loop space of Q in the class α ∈ [S1, Q] ∼= [S1,W ]. However, sym-
plectic homology can still be effectively used to prove the almost existence
theorem on cotangent bundles, and we describe two instances how this has
been done.

(a) For a large class of closed manifolds Q including those for which the
Hurewicz map π2(Q) → H2(Q; Z) is non-zero, Albers, Frauenfelder, and
Oancea [2] generalized an idea by Ritter in the simply connected case
[50, Corollary 8] and showed that the symplectic homology of W ⊂ T ∗Q
twisted by some local coefficients vanishes. The capacity cSH(W ) using
this twisted version still gives an upper bound for co

HZ(W ).
On the other hand, Frauenfelder and Pajitnov [20] considered the

S1-equivariant version HS1
(L1Q) ∼= SHS1

(W ;1) of isomorphism (1.4)
with α = 1 and rational coefficients. Generalizing an approach due to
Viterbo [65], they observe that when Q belongs to the class of rationally
inessential manifolds, for instance when Q is simply connected, then
HS1

(L1Q) with rational coefficients vanishes by Goodwillie’s theorem
and gives an upper bound on co

HZ(W ) by a finite capacity coming from
SHS1

(W ;1) similarly as above.
(b) The total homology

⊕
α SH(W ;α) admits a ring structure with unit e.

Irie [37] proved that cHZ(W ) is finite if there exists a free-homotopy class
α different from 1 such that e = x ∗ y for some x ∈ SH(W ;α) and y ∈
SH(W ;α−1). Moreover, using the fact that ∗ corresponds to the Chas–
Sullivan product in

⊕
α H∗(LαQ) through the Viterbo isomorphism, he

showed that such condition is fulfilled when the evaluation map LαQ →
Q, x 
→ x(0) has a section.
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Like the inequality co
HZ(W ) ≤ cSH(W ), also the inequality cσ(W ) ≤

cSH(W ) established in Theorem 1.3 holds when one twists the coefficients as
in [2]. We obtain, therefore, the following result in the spirit of Theorem 1.1.

Corollary 1.4. Let Q be a closed manifold such that the Hurewicz map
π2(Q) → H2(Q; Z) is non-zero. Then, every compactly supported Hamilton-
ian diffeomorphism on T ∗Q has a non-trivial one-periodic point and infinitely
many distinct non-trivial periodic points. �

The approach coming from inequality (1.3) and from (a) above are based
on the vanishing of symplectic homology. One can ask if knowledge on the
positive symplectic homology SH+(W ;α) can be translated into a bound
for some kind of Hofer–Zehnder capacity. For α �= 1, this idea has been
explored by Biran et al. in [10]. Inspired by the work of Gatien and Lalonde
[26], they introduced a relative capacity as follows. Let U be a symplectic
domain possibly with boundary, and let Z ⊂ U\∂U be a compact subset. Let
HBPS(U,Z) be the set of smooth Hamiltonians H : S1 × U → R such that
H vanishes outside a compact subset of U\∂U and maxS1×Z H is negative.
Then, the relative capacity with class α ∈ [S1, U ], α �= 1 introduced in [10]
is given by

cBPS(U,Z;α) := sup
H∈HBPS(U,Z)

{
− max

S1×Z
H

∣
∣ P1(H;α) = ∅

}
∈ (0,∞],

where P1(H;α) is the set of elements of P1(H) in the class α. By definition, if
cBPS(U,Z;α) is finite, we can infer the existence of a one-periodic orbit in the
class α for every H ∈ HBPS(U,Z) with −maxS1×Z H > cBPS(U,Z;α). More-
over, much as in the case of the Hofer–Zehnder capacity, finiteness of cBPS

implies the almost existence theorem for hypersurfaces Σ ⊂ U\∂U bounding
a compact region containing Z in its interior.

For the unit-disc cotangent bundle D∗Q of Q with Finsler metric F ,
there holds

�α = cBPS(D∗Q,Q;α), α �= 1 (1.5)

where �α is the minimal F -length of a closed curve in Q in the class α ∈
[S1, Q] ∼= [S1,D∗Q]. For Riemannian metrics, this is established by Biran
et al. in [10] for Q = T

n and by Weber [68] for all closed manifolds Q. For
general Finsler metrics, this is proved by Gong and Xue in [30]. As a result,
the almost existence theorem for non-contractible orbits holds for compact
hypersurfaces which bound a compact region containing the zero-section in
its interior. This strengthens the nearby existence Theorem 1.2 of Hofer and
Viterbo for non-simply connected manifolds Q.

For Liouville domains W and any class α ∈ [S1,W ], we can now use
SH+(W ;α) to define cSH+(W ;α) ∈ (0,∞] as the minimal filtration level at
which a non-zero class of SH+(W ;α) appears, see (3.14). Thus, the finiteness
of cSH+(W ;α) is equivalent to the non-vanishing of SH+(W ;α). For con-
tractible loops, we use the notation cSH+(W ) := cSH+(W ;1) and we have
cSH+(W ) ≤ cSH(W ) as observed in Lemma 3.3. For non-contractible loops,
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Weber proved in [68] (although the result is not explicitly stated) that

cBPS(W,Wsk;α) ≤ cSH+(W ;α), α �= 1. (1.6)

For cotangent bundles the filtered version of Viterbo’s isomorphism (1.4)
yields

�α = cSH+(D∗Q;α), α �= 1,

so that �α, cBPS(D∗Q,Q;α) and cSH+(D∗Q;α) all coincide.

2. Statement of main results

The present paper originates as an attempt to study a counterpart to the
inequality (1.6) for α = 1. To this purpose, we need to replace the Biran–
Polterovich–Salamon capacity with another relative Hofer–Zehnder capacity
which we now define following the work of Ginzburg and Gürel [22]. For a
symplectic manifold U possibly with boundary and a compact subset Z of
U\∂U , we define the set H(U,Z) of smooth Hamiltonians H : U → R such
that H vanishes outside a compact subset of U\∂U and H = min H < 0 on
a neighborhood of Z. Then, the relative Hofer–Zehnder capacity is given by

cHZ(U,Z) := sup
H∈H(U,Z)

{ − min H
∣
∣ P≤1(H) = Crit(H)

} ∈ (0,∞].

Considering only orbits in the class α∈[S1, U ], we can also define cHZ(U,Z;α).
By definition,

cHZ(U,Z;α) ≤ cBPS(U,Z;α), α �= 1. (2.1)

Moreover, for Liouville domains W , one can easily see

min spec(Rλ;α) ≤ cHZ(W,Wsk;α) ∀α ∈ [S1,W ] (2.2)

where spec(Rλ;α) is the set of periods of Reeb orbits of (∂W, λ|∂W ) with the
class α in W .

From now on, we focus on contractible orbits and write co
HZ(U,Z) :=

cHZ(U,Z;1). In order to deal with time-dependent Hamiltonians as well, we
introduce a slightly different version of co

HZ(U,Z) when the symplectic form
ω = dλ is exact on U . We consider the set H̃(U,Z) consisting of smooth
time-dependent Hamiltonians H : S1 × U → R such that H vanishes outside
a compact subset of S1 × (U\∂U) and H = min H < 0 on a neighborhood
of S1 × Z. The action of p-periodic loops γ : R/pZ → U with respect to
H : S1 × U → R is given by

AH(γ) =
∫ p

0

γ∗λ −
∫ p

0

H(t, γ(t)) dt. (2.3)

For all a ∈ (0,∞], we define

c̃ o
HZ(U,Z, a) := sup

H∈H̃(U,Z)

{ − min H
∣
∣ ∀x ∈ Po

1 (H),

AH(x) /∈ (−min H,−min H + a]
} ∈ (0,∞].
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By definition, there holds

c o
HZ(U,Z) ≤ c̃ o

HZ(U,Z, a) ∀a ∈ (0,∞]. (2.4)

Moreover, every H ∈ H̃(U,Z) with −min H > c̃ o
HZ(U,Z, a) has a (non-

constant) contractible one-periodic orbit x with

AH(x) ∈ (−min H,−min H + a]. (2.5)

Building on these two facts, we obtain the following implications of this newly
defined capacity to periodic orbits in the autonomous and non-autonomous
setting. To this end, recall that a free-homotopy class α ∈ [S1, U ] is called
torsion if αp = 1 for some p ∈ N.

Proposition 2.1. Let (U,dλ) be an exact symplectic manifold possibly with
boundary and let Z be a compact subset of U\∂U .

(a) If c̃ o
HZ(U,Z, a) < ∞ for some a ∈ (0,∞], then the almost existence

theorem for contractible orbits holds for every hypersurface in U\∂U
bounding a compact region containing Z in its interior.

(b) Assume that c̃ o
HZ(U,Z, a) < ∞ for some a < ∞. If H ∈ H̃(U,Z) has

only finitely many one-periodic orbits with torsion free-homotopy classes
and with action greater than −min H, then for every sufficiently large
prime number p, there exists a contractible, non-iterated, non-constant,
p-periodic orbit of H which has action greater than −p min H. In par-
ticular every H ∈ H̃(U,Z) carries infinitely many distinct contractible,
non-constant periodic orbits.

Proof. Suppose that c̃ o
HZ(U,Z, a) is finite for some a ∈ (0,∞]. Then, by (2.4),

co
HZ(U,Z) is also finite, and the almost existence theorem for contractible

orbits follows from [22, Theorem 2.14]. This proves (a).
To show (b), we assume that a is finite. Let H ∈ H̃(U,Z) be as in the

statement, and let γ1, . . . , γm be all one-periodic orbits of H with torsion free-
homotopy classes and with action greater than −min H. We choose ε > 0
such that

AH(γi) ≥ −min H + ε ∀i ∈ {1, . . . , m}.

For p ∈ N, we define the p-th iteration H�p : S1×W → R of H by H�p(t, z) :=
pH(pt, z) so that the Hamiltonian flow of H�p and that of H are related by
φt

H�p = φpt
H . Thus, one-periodic orbits of H�p can be viewed as p-periodic

orbits of H. If γ : S1 → W is a one-periodic orbit of H, then its p-th iter-
ation γp : S1 → W defined by γp(t) := γ(pt) is a one-periodic orbit of H�p.
Moreover, there obviously holds AH�p(γp) = pAH(γ). Let now p be a prime
number so large that

εp > a, −min H�p = −p min H > c̃o
HZ(U,Z, a).

By the definition of c̃o
HZ(U,Z, a), H�p has a contractible one-periodic orbit

γnew such that

−min H�p < AH�p(γnew) ≤ −min H�p + a.
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The first inequality shows that γnew is non-constant. The latter one yields
that γnew is non-iterated. Indeed if γnew is iterated, then it has to be the p-th
iteration of γi for some 1 ≤ i ≤ m and this is absurd since

AH�p(γp
i ) = pAH(γi) ≥ p(−min H + ε) > −min H�p + a, ∀i = 1, . . . , m.

This finishes the proof of (b). �

We are now ready to state our main result. It says that the π1-sensitive
Hofer–Zehnder capacity of a Liouville domain relative to its skeleton can be
bounded by the capacity obtained from positive symplectic homology in the
contractible class.

Theorem 2.2. For every Liouville domain W, there holds

c̃ o
HZ(W,Wsk, a) ≤ cSH+(W ) ∀a ∈ [

cSH+(W ),∞]
.

Hence if cSH+(W ) is finite, or equivalently SH+(W ;1) is non-zero, then the
same conclusion as in Proposition 2.1 holds for (U,Z) = (W,Wsk).

Remark 2.3. The hypothesis SH+(W ;1) �= 0 in Theorem 2.2 is indispens-
able. For example, if W is a fiberwise starshaped domain in T ∗S1, then
SH+(W ;1) = 0 and none of (a) and (b) in Proposition 2.1 is true.

Remark 2.4. For δ > 0, let

W δ := φlog δ
Y (W ). (2.6)

Then, the proof of Theorem 2.2 actually shows that for any δ ∈ (0, 1],

c̃ o
HZ(W,W δ, a) ≤ (1 − δ)cSH+(W ) ∀a ∈ [

(1 − δ)cSH+(W ),∞]

and this subsumes Theorem 2.2 since Wsk =
⋂

δ>0 W δ.

Theorem 2.2 will follow from Proposition 4.1, which provides a lower
bound on the number of contractible one-periodic orbits of H ∈ H̃(W,Wsk)
with action in a certain interval in terms of positive symplectic homology.
Combining Theorem 2.2 with the isomorphism (1.4), we immediately obtain
the following corollary in T ∗Q.

Corollary 2.5. Let Q be a closed manifold such that H(L1Q,Q) is non-zero.
(a) The almost existence theorem for contractible orbits holds for every

hypersurface of T ∗Q bounding a compact region containing the zero-
section.

(b) Every compactly supported smooth Hamiltonian H : S1 ×T ∗Q → R with
H = min H < 0 on S1 × U, where U is a neighborhood of the zero-
section, has infinitely many distinct non-constant, contractible periodic
orbits with action greater than −min H. �

Remark 2.6. Let Q be simply connected. By the theory of minimal models
of Sullivan [58,67], the group H(L1Q,Q) is infinite dimensional and, in par-
ticular, non-zero. As observed by Thomas Rot in a MathOverflow post [51],
using the (relative) Hurewicz theorem and the long exact sequence of the pair
(L1Q,Q) in homology and homotopy, one can show that Hk−1(L1Q,Q) �= 0,
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if k is the smallest integer such that πk(Q) �= 0. When π1(Q) ∼= Z condi-
tions on the homotopy groups of Q ensuring H(L1Q,Q) �= 0 are given in [3,
Corollary 1.9].

Remark 2.7. The corollary finds application also to exact twisted cotangent
bundles. Let dθ be an exact two-form on a closed manifold Q and consider the
twisted cotangent bundle (T ∗Q,ωT ∗Q +π∗(dθ)), where ωT ∗Q is the canonical
symplectic form on T ∗Q and π is the foot-point projection π : T ∗Q → Q. If
H(L1Q,Q) �= 0, then the statements in Corollary 2.5 hold by replacing the
zero-section with the graph of the one-form θ.

If D∗Q is the unit-disc cotangent bundle of a Riemannian metric g, the
exact value of cSH+(D∗Q) and of c̃o

HZ(D∗Q,Q, a) for a ≥ cSH+(D∗Q) can be
computed via Viterbo isomorphism if we know the homology of L1Q filtered
by the square root of the g-energy of loops sufficiently well. For instance,
applying a theorem of Ziller [71] and Lemma A.2 contained in the appendix
of the present paper written by Abbondandolo and Mazzucchelli, we get the
following statement.

Corollary 2.8. Let Q be a closed manifold endowed with a Riemannian metric
g. Let D∗Q be the unit-disc cotangent bundle of g and denote by �1 the length
of the shortest non-constant contractible geodesic for the metric. If (Q, g) is
a compact, non-aspherical homogeneous space (for instance a compact rank
one symmetric space) or (Q, g) is a two-sphere with positive curvature, then
there holds

�1 = c̃o
HZ(D∗Q,Q, a) = cSH+(D∗Q), ∀a ∈ [

cSH+(D∗Q),∞]
.

Finally, we can adapt [22, Theorem 3.2] to obtain weaker statements
on the existence of periodic orbits for H belonging to a class larger than
H̃(W,Wsk) of functions that are allowed to be time-dependent also on Wsk.
The definition of the Floer homology HF and the canonical map ιε,∞−∞ is given
in Sect. 3.

Theorem 2.9. Let (W,λ) be a Liouville domain, and let H : S1 ×W → R be a
Hamiltonian which is supported in S1 × (W\∂W ) and satisfies
maxS1×Wsk H < 0.

(a) For every small a > 0, there holds

rkHF(a,∞)(H) ≥ rk
[
ιε,∞−∞ : H(W,∂W ) → SH(W ;1)

]
.

In particular, if SH(W ;1) is non-zero, then H has a contractible one-
periodic orbit with positive action.

(b) Assume in addition that maxS1×W H = 0. For every small a > 0, there
exists a surjective homomorphism

HF(a,∞)(H) −→ H(W,∂W ).

In particular, H has a contractible one-periodic orbit with positive ac-
tion.
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Organization of the paper

In Sect. 3, we recall the precise definition of Hamiltonian Floer homology, of
symplectic homology, of the associated capacities. At the end of the section,
a proof of Theorem 1.3 is given. In Sect. 4, we prove Theorem 2.2, Theo-
rem 2.9, and Corollary 2.8. The appendix, written by Abbondandolo and
Mazzucchelli, shows the monotonicity of the systoles for convex Riemannian
two-spheres in R

3. In doing so, they prove Lemma A.2 which is needed in
Corollary 2.8.

3. Floer homologies and symplectic capacities

In this section, we define the capacities given by symplectic homology and
prove Theorem 1.3. Prior to this, we give a concise construction of Floer
homology and refer to [10,12,22,52,66,68] for details.

3.1. Hamiltonian Floer homology

For a Liouville domain (W,λ), let (Ŵ , λ̂) be its completion defined in (1.2)
and W δ ⊂ Ŵ for δ > 0 be the subset given in (2.6). We consider a smooth
Hamiltonian H : S1 × Ŵ → R with

H(t, r, x) = τr + η (t, r, x) ∈ S1 × (Ŵ\W δ) = S1 × (δ,∞) × ∂W (3.1)

for some δ > 0, τ ∈ (0,∞)\spec(Rλ) and η ∈ R. The constant τ is called
the slope of H. The action spectrum spec(H) is the set of action values of
all critical points of AH . This is a compact, nowhere dense subset of R. Let
a ≤ b be numbers in R := R∪{−∞,∞} not belonging to spec(H). We denote
by P(a,b)

1 (H;α) the set of one-periodic orbits of H with free-homotopy class
α and with action in (a, b). Suppose that all elements in P(a,b)

1 (H;α) are
nondegenerate. Then, this is a finite set due to τ /∈ spec(Rλ). The Floer
chain group is

CF(a,b)(H;α) :=
⊕

x∈P(a,b)
1 (H;α)

Z2〈x〉.

Let J be a smooth S1-family of almost complex structures on Ŵ with the
property that dλ̂(·, J(t, u)·) is an inner product on TuŴ for all (t, u) ∈ S1×Ŵ
and satisfying

J∗λ̂ = dr, on {r ≥ δ0} (3.2)

for some δ0 > 0 such that all element in P(a,b)
1 (H;α) are contained in the

interior of W δ0 . For x, y ∈ P1(H;α), we denote by M(x, y) the moduli space
of Floer cylinders connecting x and y, namely smooth solutions u : R×S1 →
Ŵ of

∂su − J(t, u)
(
∂tu − XH(t, u)

)
= 0 lim

s→−∞ u(s, ·) = x, lim
s→+∞ u(s, ·) = y,

(3.3)
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where (s, t) ∈ R × S1 and XH is the Hamiltonian vector field of H defined
via the equation dλ̂(XH , ·) = −dH. Unless x = y, there is a free R-action
on M(x, y) by translating solutions in the s-direction. We define n(x, y) as
the parity of M(x, y)/R if x �= y and it is a finite set. Otherwise we set
n(x, y) = 0. The differential ∂ : CF(a,b)(H;α) → CF(a,b)(H;α) is defined by
the linear extension of the formula

∂x :=
∑

y∈P(a,b)
1 (H;α)

n(x, y)y.

For a generic choice of J , we indeed have ∂ ◦ ∂ = 0 and denote the Floer
homology of H with action-window (a, b) ⊂ R and with free-homotopy class
α ∈ [S1, Ŵ ] by

HF(a,b)(H;α) := H(CF(a,b)(H;α), ∂).

Simplifying the notation we denote HF(H;α) = HF(−∞,∞)(H;α). As the
notation indicates, a different choice of J produces an isomorphic homology
via a continuation homomorphism.

Given a < b < c not belonging to spec(H), the exact sequence of chain
complexes

0 −→ CF(a,b)(H;α) −→ CF(a,c)(H;α) −→ CF(b,c)(H;α) −→ 0

induced by natural inclusion and projection gives rise to the long exact se-
quence

· · · δ→HF(a,b)(H;α) ι→HF(a,c)(H;α) π→HF(b,c)(H;α) δ→ HF(a,b)(H;α) ι→ · · · .

(3.4)

Let H,K : S1×Ŵ → R be two smooth Hamiltonians with the aforementioned
properties and H ≤ K. We choose a smooth monotone homotopy Hs, s ∈ R

from H to K, namely

Hs = H ∀s ≤ −1, Hs = K ∀s ≥ 1, ∂sHs ≥ 0 ∀s ∈ R,

and Hs has a constant slope, see (3.1), for every s ∈ R. Consider the moduli
space of solutions of (3.3) with H replaced by Hs and define the continuation
homomorphism

Φ = Φ(a,b)
H,K : HF(a,b)(H;α) −→ HF(a,b)(K;α) (3.5)

in an analogous way to defining the differential. Another choice of monotone
homotopy produces the same continuation homomorphism. Moreover, the
map Φ induces a commuting map from the exact sequence (3.4) for H to
that for K. If we consider another smooth Hamiltonian G : S1 × Ŵ → R

satisfying K ≤ G, then we have continuation homomorphisms Φ(a,b)
K,G and

Φ(a,b)
H,G and there holds Φ(a,b)

H,G = Φ(a,b)
K,G ◦ Φ(a,b)

H,K . In the case that H and K have
the same slope and (a, b) = (−∞,∞), continuation homomorphisms ΦH,K =
Φ(−∞,∞)

H,K and ΦK,H are still defined and satisfy ΦH,K ◦ ΦK,H = ΦK,K = Id
and ΦK,H ◦ ΦH,K = ΦH,H = Id. Thus, HF(H;α) ∼= HF(K;α) for H and K
with the same slope.
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In fact the above construction extends to smooth Hamiltonians H : S1×
Ŵ → R such that elements P(a,b)

1 (H;α) are not necessarily nondegenerate.
The nondegeneracy condition can be achieved by a small compact perturba-
tion K of H. Moreover, the Floer homology HF(a,b)(K;α) is independent of
the choice of a small perturbation up to continuation isomorphisms. To be
precise, if G is another small compact perturbation of H, then we have con-
tinuation homomorphisms Φ(a,b)

K,G and Φ(a,b)
G,K which are inverse to each other.

Here it is crucial that a, b /∈ spec(H), and K and G have the same slope.
Thus, we set HF(a,b)(H;α) := HF(a,b)(K;α).

Next we define the Floer homology of H : S1 × W → R with support in
S1 × (W\∂W ). We choose δ1 ∈ (0, 1) such that H = 0 on W\W δ1 . Then, we
smoothly extend H to Ĥ : S1 × Ŵ → R to satisfy

• Ĥ = H on W\W δ2 for some δ2 ∈ (δ1, 1);
• Ĥ(t, r, x) = h(r) on (t, r, x) ∈ Ŵ\W δ1 = S1 × (δ1,∞) × ∂W where

h : (δ1,∞) → R is a smooth convex function;
• h′(r) = ε for some 0 < ε < min spec(Rλ) on Ŵ\W .

Then, we define the Floer homology of H as that of Ĥ:

HF(a,b)(H;α) := HF(a,b)(Ĥ;α) (3.6)

where a, b ∈ R\spec(H) as usual. Due to the choice of slope ε, P1(H) = P1(Ĥ)
and furthermore the definition (3.6) is independent of the choice of Ĥ.

Finally, we make an action computation that will be repeatedly used.
Let H : S1 × W → R be such that there exist δ > 0 and a smooth function
h : (δ,∞) → R with the property that H = h on S1 × (W\W δ) = S1 ×
(δ,∞)×∂W . In this case, the action of one-periodic orbits x of H located on
∂W r for r ∈ (δ,∞) is explicitly computed as

AH(x) = rh′(r) − h(r), (3.7)

which is minus the y-intercept of the tangent line of h at r.

3.2. Symplectic homology

Let Ha,b for a ≤ b in R be the set of smooth Hamiltonians H : S1 × Ŵ → R

satisfying a, b /∈ spec(H), H|S1×W < 0, and (3.1) for some δ ≥ 1, τ ∈
(0,∞)\spec(Rλ), and η ∈ R. We endow Ha,b with the partial relation ≤
given by the pointwise inequality so that for every H,K ∈ Ha,b with H ≤ K,
we have the continuation homomorphism defined in (3.5). Floer homology
groups of elements in Ha,b together with continuation homomorphisms form
a direct system, and the direct limit is called the symplectic homology of W :

SH(a,b)(W ;α) := lim−→
H∈Ha,b

HF(a,b)(H;α).

We remark that the symplectic homology changes only when the action-
window crosses spec(Rλ), i.e., SH(a,b)(W ;α) ∼= SH(a′,b′)(W ;α) if (a, b) ∩
spec(Rλ) = (a′, b′) ∩ spec(Rλ). Let ε denote a constant such that 0 < ε <
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min spec(Rλ). Thus, (−∞, ε) ∩ spec(Rλ) = ∅, and there holds

SH(−∞,ε)(W ;α) ∼=
{

H(W,∂W ) α = 1 ,

0 α �= 1 ,
(3.8)

where H(W,∂W ) is the relative homology of the pair (W,∂W ). We denote

SH(W ;α) := SH(−∞,+∞)(W ;α), SH+(W ;α) = SH(ε,∞)(W ;α).

For any a ≤ b ≤ c in R\spec(Rλ), the exact sequence (3.4) leads to the exact
sequence

· · · δ→ SH(a,b)(W ; α)
ι→ SH(a,c)(W ; α)

π→ SH(b,c)(W ; α)
δ→ SH(a,b)(W ; α)

ι→ · · · .

(3.9)

We decorate ι to indicate involved action-windows as follows:

ιb,c
a : SH(a,b)(W ;α) −→ SH(a,c)(W ;α). (3.10)

This map is functorial in the sense that ιc,d
a ◦ ιb,c

a = ιb,d
a holds for any d ≥ c.

Indeed, the map ι in (3.4) defined for each H has such a property and is
compatible with the continuation homomorphism in (3.5). Thus, the desired
functorial property for symplectic homology follows. Applying the exact se-
quence (3.9) to (a, b, c) = (−∞, ε,∞), we deduce

SH+(W ;α) ∼= SH(W ;α), α �= 1

and

dim SH(W ;1) = ∞ ⇐⇒ dim SH+(W ;1) = ∞,

SH(W ;1) = 0 =⇒ SH+(W ;1) ∼= H(W ; ∂W ).

Symplectic homologies with finite action-window and the homomor-
phisms in (3.10) can be interpreted as Floer homologies of suitably cho-
sen Hamiltonians and continuation homomorphisms between them. For a ∈
(0,∞)\spec(Rλ), we consider the set Ga of smooth functions ga : Ŵ → R

such that there are positive numbers ε′, δ, c with δ < 1 depending on ga with

• ga = −ε′ on W 1−δ;
• on Ŵ\W 1−δ, the function ga depends only on r and there holds g′′

a(r) ≥
0;

• ga = a(r − 1) − c on Ŵ\W .

A non-constant one-periodic orbit of ga sits in ∂W r for r > 1 − δ such that
g′(r) ∈ spec(Rλ), and corresponds to a closed Reeb orbit of (∂W, λ|∂W ) with
period g′(r). If we consider the piecewise linear function

ḡa : Ŵ → R, ḡa|W = 0, ḡa|
Ŵ\W

= a(r − 1),

then choosing ε′, δ, c small enough, the function ga can be arbitrarily C0-close
to ḡa on Ŵ and C∞-close to ḡa away from ∂W , and furthermore the action of
a non-constant one-periodic orbit of ga can be arbitrarily close to the period
of the corresponding Reeb orbit by (3.7).
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Lemma 3.1. Let ε, a, b be real numbers such that

0 < ε < min spec(Rλ) < a < b, a, b /∈ spec(Rλ).

There exist ga ∈ Ga and gb ∈ Gb which can be taken arbitrarily C0-close to
ḡa and ḡb respectively such that the following diagram commutes

HF(ε,b)(gb;α)
∼=
φ

�� SH(ε,b)(W ;α)

HF(ε,b)(ga;α)

Φ

��

φ

��

HF(ε,a)(ga;α)

ι∼=

��

φ

∼= �� SH(ε,a)(W ;α).

ιa,b
ε

��
(3.11)

Here Φ is a continuation homomorphism, ι is a homomorphism from (3.4),
ιa,b
ε is from (3.10), and the maps φ are homomorphisms in the direct system.

Proof. For any increasing sequence (ai)i∈N ⊂ (0,∞)\spec(Rλ) with a1 = a,
we choose a sequence of functions gai

∈ Gai
such that (gai

) is cofinal in Hε,a

with gi+1 ≥ gi and for each i ∈ N there is a monotone homotopy (gs)s∈[0,1]

from gai
to gai+1 with the property that for all s ∈ [0, 1], the function gs

has no one-periodic orbit x with Ags(x) ∈ {ε, a}. Then, the continuation
homomorphism induced by (gs),

Φ: HF(ε,a)(gai
;α)

∼=−→ HF(ε,a)(gai+1 ;α)

is an isomorphism, see for instance [68, Lemma 2.8], and thus the lower
horizontal arrow in (3.11) is an isomorphism. The same argument shows that
the upper horizontal map is also an isomorphism. Moreover, the map ι is an
isomorphism since ga1 = ga does not have one-periodic orbits with action
greater than a. Finally, the commutativity of the diagram follows from the
definitions of the involved homomorphisms. �

Remark 3.2. The statement of Lemma 3.1 holds mutatis mutandis with ε
replaced by −∞ and a < b any pair of positive numbers not in spec(Rλ).

3.3. Capacities from Floer and symplectic homology

We now define the capacities mentioned in Sect. 1. To define the spectral
invariant, we take a function f : Ŵ → R in Gε where 0 < ε < min spec(Rλ).
As discussed above, we have

HF(f ;1) ∼= SH(−∞,ε)(W ;1) ∼= H(W,∂W ).

We denote by ef ∈ HF(f ;1) the homology class corresponding to the funda-
mental class in H(W,∂W ) through the above isomorphism. Let H : S1×W →
R be a smooth Hamiltonian supported in S1 × (W\∂W ) whose Floer homol-
ogy is defined as in (3.6). For a ∈ R\spec(H), we consider the chain of
homomorphisms

HF(f ;1)
Φf,H−−−→ HF(H;1) πa−→ HF(a,∞)(H;1), (3.12)
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where Φf,H is a continuation homomorphism, which is in fact an isomorphism
since f and H have the same slope. The map πa is from (3.4). The spectral
invariant of H is defined by

σ(H) := inf{a | πa ◦ Φf,H(ef ) = 0}.

The spectral capacity cσ(W ) of W is defined by the supremum of σ(H) over
all smooth Hamiltonians H : S1 × W → R supported in S1 × (W\∂W ).

Due to (3.8), we can view the homomorphism ιε,c−∞ defined in (3.10) as
a map

ιε,c−∞ : H(W,∂W ) −→ SH(−∞,c)(W ;1).

We consider the number

cSH(W ) := inf
{
c > 0

∣
∣ ιε,c−∞ = 0

} ∈ (0,∞]. (3.13)

We note that due to functoriality ιε,c−∞ = 0 for any c > cSH(W ). It is known
that SH(W ;1) admits a ring structure with unit given by the image of the
fundamental class of H(W,∂W ) under ιε,∞−∞, thus the quantity cSH(W ) is finite
if and only if SH(W ;1) vanishes. Using positive symplectic homology we can
also define the quantity

cSH+(W ; α) := inf{c > 0 | ιc,∞
ε : SH(ε,c)(W ; α) → SH+(W ; α) is non-zero} ∈ (0, ∞].

(3.14)

It is finite if and only if SH+(W ;α) �= 0. This is equivalent to SH(W ;α) �= 0
for α �= 1 and to SH(W ;1) �∼= H(W,∂W ) for α = 1 due to (3.9). We use the
notation cSH+(W ) = cSH+(W ;1).

Lemma 3.3. There holds cSH(W ) ≥ cSH+(W ). Moreover, the equality holds if
SH(W ;1) = 0 and rkH(W,∂W ) = 1.

Proof. This is an immediate consequence of the commutative diagram in-
duced by (3.9):

· · · �� SH(ε,c)(W ;1)

ιc,∞
ε

��

δ1 �� H(W,∂W )
ιε,c
−∞

��

ιε,ε
−∞=id

��

SH(−∞,c)(W ;1)

ιc,∞
−∞

��

�� · · ·

· · · �� SH+(W ;1)
δ2 �� H(W,∂W )

ιε,∞
−∞

�� SH(W ;1) �� · · ·
For any c > cSH(W ), we have ιε,c−∞ = 0. Thus, δ1 and also ιc,∞

ε are non-zero.
This shows that cSH+(W ) ≤ c, and hence cSH(W ) ≥ cSH+(W ).

Suppose SH(W ;1) = 0 and rkH(W,∂W ) = 1. Then, ιε,c−∞ = 0 if and
only if δ1 �= 0, and this is equivalent also to ιc,∞

ε �= 0 since δ2 is an isomor-
phism. �

Before showing the announced results about cSH+(W ) in Sect. 4, we
prove Theorem 1.3, which asserts cσ(W ) ≤ cSH(W ).
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Proof of Theorem 1.3

It suffices to show that σ(H) ≤ cSH(W ) for every smooth Hamiltonian
H : S1 × W → R with support in S1 × (W\∂W ) when cSH(W ) is finite.
For any a > cSH(W ) not belonging to spec(Rλ) ∪ spec(H), which is a closed
nowhere dense set, we extend H to a smooth function H̃ : S1 × Ŵ → R in
the same manner as in defining Ĥ in (3.6) but with h′(r) = ε replaced by
h′(r) = a. The homomorphisms in (3.12) can be completed to a commutative
diagram

HF(H̃;1)
π̃a �� HF(a,∞)(H̃;1)

HF(f ;1)
Φf,H

�����
���

Φ
f,H̃ ��������

HF(H;1)
πa ��

��

HF(a,∞)(H;1)

Φ∼=

��

where vertical arrows are continuation homomorphisms, and Φ is even an
isomorphism since H and H̃ have the same 1-periodic orbits in the action-
window (a,∞). We claim

Φ
f,H̃

(ef ) = 0.

Once the claim is verified, the diagram shows that πa ◦ Φf,H(ef ) = 0 which
implies σ(H) ≤ a and hence σ(H) ≤ cSH(W ) as we wanted. The claim now
is a consequence of the fact that by Lemma 3.1 and Remark 3.2, there is a
commutative diagram

HF(H̃;1)
Φ

H̃,g

∼=
�� HF(g;1) ∼=

�� SH(−∞,a)(W ;1)

HF(f ;1)

Φ
f,H̃

�������������

∼=
��

Φf,g

��

SH(−∞,ε)(W ;1)

ιε,a
−∞

��

(3.15)

for some function g ∈ Ga, where HF(g;1) = HF(−∞,a)(g;1) and HF(f ;1) =
HF(−∞,ε)(f ;1) since g and f have no one-periodic orbits outside the action-
windows (−∞, a) and (−∞, ε), respectively, by (3.7). Notice that the trian-
gular diagram is commutative since the maps involved are continuation maps
and that the horizontal arrow Φ

H̃,g
is an isomorphism since H̃ and g have

the same slope. Now, ιε,a−∞ = 0 since a > cSH(W ), and therefore, the claim
Φ

f,H̃
(ef ) = 0 follows by commutativity of the diagram. �

4. Proofs of the main results

In this section, we will be working exclusively with contractible loops. There-
fore, we will omit the symbol 1 from the notation to make formulas more read-
able and write for instance HF(H) and SH(W ) for HF(H;1) and SH(W ;1)
respectively. We start by proving the following fundamental result, which is
an adaptation of [22, Proposition 5.2] to our setting.
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Proposition 4.1. Let H ∈ H̃(W,Wsk) and let a ∈ (0,−min H)\spec(Rλ). We
assume that all elements of the set

Γ := {x ∈ Po
1 (H) | −min H < AH(x) < −min H + a}

are nondegenerate. Then, there holds

#Γ ≥ rk
[
ιa,∞
ε : SH(ε,a)(W ) → SH+(W )

]
,

where 0 < ε < min spec(Rλ) as usual.

Proof. Let us consider H as in the statement. There is no loss of generality in
assuming −min H + a /∈ spec(H). Indeed since spec(Rλ) is closed, for a′ < a

sufficiently close to a, we have a′ /∈ spec(Rλ), rk ιa
′,∞

ε = rk ιa,∞
ε . We choose

δ > 0 such that

H|W δ = −min H, H|
Ŵ\W 1−δ = 0.

Let Ĥ : Ŵ → R be a smooth function such that Ĥ = H on W 1−δ/2 and
Ĥ = ĥ on Ŵ\W 1−δ/2, where ĥ is a smooth function depending only on r
such that

ĥ′′ ≥ 0, ĥ|
Ŵ\W

= a(r − 1) + c

for some c > 0 small enough. All one-periodic orbits of Ĥ that are not one-
periodic orbits of H have action less than a by (3.7):

{x ∈ P1(Ĥ) | A
Ĥ

(x) > −min H} = {x ∈ P1(H) | AH(x) > −min H}.

In order to relate the Floer homology of H with the positive symplectic
homology of W , we introduce two auxiliary functions. First, we choose a
smooth function kb : Ŵ → R which is obtained by smoothening the piecewise
linear function that is equal to minH on W η for η < δ and to b(r−η)+min H

for b ∈ R\spec(Rλ) on W\W η. The function kb depends only on r on Ŵ\Wsk

and k′′
b (r) ≥ 0, see Fig. 1. Taking b large enough, we have kb ≥ Ĥ. The

constant one-periodic orbits of kb have action equal to −min H. We also
take ε and η small enough so that the following action estimate holds by
(3.7):

− min H + ε < Akb
(x) < −min H + a ∀x ∈ P1(kb)\Crit kb. (4.1)

Similarly, we take fa : Ŵ → R to be a convex, smooth approximation
of the piecewise linear function which is equal to min H on W and equal
to a(r − 1) + min H on Ŵ\W , see Fig. 1. We have fa ≤ Ĥ. All constant
one-periodic orbits of fa have action −min H and

− min H + ε < Afa
(x) < −min H + a ∀x ∈ P1(fa)\Crit fa. (4.2)
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Figure 1. The Hamiltonians Ĥ, kb and fa

We claim that there exists a commutative diagram

HF(− min H+ε/2,− min H+a)(kb)
∼= �� SH(ε,b)(W )

HF(− min H+ε/2,− min H+a)(Ĥ)

Φ2

��������������������

HF(− min H+ε/2,− min H+a)(fa)
∼= ��

Φ1

		������������������

Φ3

��

SH(ε,a)(W ),

ιa,b
ε

��

(4.3)

where ε > 0 is chosen so that −min H+ε/2 /∈ spec(Ĥ). The maps Φ1, Φ2, and
Φ3 are continuation homomorphisms induced by monotone homotopies and
satisfy Φ2 ◦ Φ1 = Φ3. Once the diagram (4.3) is established, the proposition
follows from

#Γ = #
{
x ∈ Po

1 (Ĥ) | −min H < A
Ĥ

(x) < −min H + a
}

≥ rkHF(− min H+ε/2,− min H+a)(Ĥ)

≥ rk
[
ιa,b
ε : SH(ε,a)(W ) → SH(ε,b)(W )

]

≥ rk
[
ιa,∞
ε : SH(ε,a)(W ) → SH+(W )

]
,

where the second inequality is due to (4.3), and the last inequality holds by
the identity ιa,∞

ε = ιb,∞
ε ◦ ιa,b

ε .
Let us now define the horizontal isomorphisms in (4.3) and show that

the rectangular diagram commutes. To this purpose, we define

k̃b := kb − min H − ε/2, f̃a := fa − min H − ε/2.
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We also consider a smooth family of functions k̃s
b : Ŵ → R for s ∈ [0, 1 − η]

such that
• k̃s

b = −ε/2 on W η+s,
• k̃s

b(r) := k̃s
b(r − s) for r > δ + s.

We note that k̃0
b = k̃b and k̃1−η

b ≥ f̃a. We define the rectangular diagram in
(4.3) as composition of the diagrams:

HF(− min H+ε/2,− min H+a)(kb)
Φ4

∼= �� HF(ε,∞)(k̃b) HF(ε,∞)(k̃1−η
b )

∼=
Φ7




∼= �� SH(ε,b)(W )

HF(− min H+ε/2,− min H+a)(fa)

Φ3

��

Φ5

∼= �� HF(ε,∞)(f̃a)
id

��

Φ6

��

HF(ε,∞)(f̃a)

Φ8

��

∼= �� SH(ε,a)(W )

ιa,b
ε

��

(4.4)

Since kb and fa do not have one-periodic orbits with action greater than
−min H + a,

HF(− min H+ε/2,− min H+a)(kb) = HF(− min H+ε/2,∞)(kb),

HF(− min H+ε/2,− min H+a)(fa) = HF(− min H+ε/2,∞)(fa).

The maps Φ4 and Φ5 are canonical isomorphisms: The functions kb (resp. fa)
and k̃b (resp. f̃a) have the same one-periodic orbits with action shifted by
−min H − ε/2 and the same Floer cylinders. These can also be understood
as continuation maps of monotone homotopies. The map Φ3 is a continua-
tion homomorphism, and Φ6 equals Φ3 with action shifted by −min H − ε/2.
Thus, leftmost rectangle readily commutes. The monotone homotopy k̃s

b be-
tween k̃1−η

b and k̃0
b = k̃b has no one-periodic orbit with action equal to ε

for all s. Therefore, the continuation homomorphism Φ7 induced by k̃s
b is

an isomorphism. The map Φ8 is also a continuation homomorphism induced
by a monotone homotopy, and the rectangle in the middle commutes since
all maps are continuation homomorphisms. Finally, the rightmost rectangle
follows from (3.11) since f̃a and k̃1−η

b can be taken as ga and gb respectively
given in Lemma 3.1 and, again by action reasons,

HF(ε,∞)(k̃1−η
b ) = HF(ε,b)(k̃1−η

b ), HF(ε,∞)(f̃a) = HF(ε,a)(f̃a).

�

4.1. Proof of Theorem 2.2

The statement is void if cSH+(W ) = ∞. Thus, we suppose cSH+(W ) < ∞. It
is enough to show

c̃ o
HZ

(
W,Wsk, cSH+(W )

) ≤ cSH+(W ).

We assume by contradiction that there is H ∈ H̃(W,Wsk) such that

− min H > cSH+(W ), AH(x) /∈ (− min H, − min H + cSH+(W )] ∀x ∈ Po
1 (H).

Since spec(H) is closed and spec(Rλ) is nowhere dense, there exists a ∈
(cSH+(W ),−min H), a /∈ spec(Rλ) such that

AH(x) /∈ (−min H,−min H + a) ∀x ∈ Po
1 (H).
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This contradicts Proposition 4.1, and thus the theorem is proved. �

4.2. Proof of Theorem 2.9(a)

Let H : S1 × W → R be a smooth Hamiltonian with support inside S1 ×
(W\∂W ) and such that H|S1×Wsk < 0. We extend H smoothly to Ĥ : S1 ×
Ŵ → R as in the definition of HF(a,b)(H) = HF(a,b)(Ĥ) in (3.6). We consider
two piecewise linear functions

f̄ : Ŵ −→ R, f̄ |W = −c, f̄ |
Ŵ\W

= ε(r − 1) − c

k̄ : Ŵ −→ R, k̄|W δ = −d, k̄|
Ŵ\W δ = b(r − δ) − d

for some positive numbers c, d, b, δ > 0 with b /∈ spec(Rλ) and for some
0 < ε < min spec(Rλ). Smoothening f̄ : Ŵ → R near ∂W and k̄ : Ŵ → R near
∂W δ, we obtain smooth functions f : Ŵ → R and k : Ŵ → R respectively,
both of which depend only on r on Ŵ\Wsk and convex. The assumption on
H ensures that for large b, c > 0 and for small d, δ > 0, we have

f(z) ≤ Ĥ(t, z) ≤ k(z) ∀(t, z) ∈ S1 × Ŵ .

Then, for any a ∈ (0, d)\spec(H), we have the commutative diagram

HF(a,∞)(k)
∼= �� SH(−∞,b)(W )

HF(a,∞)(Ĥ)

Φ2 ��������

HF(a,∞)(f)
∼= ��

Φ1��������
Φ3

��

SH(−∞,ε)(W ),

ιε,b
−∞

��

(4.5)

where the Φ’s are continuation homomorphisms induced by monotone ho-
motopies. The rectangular diagram is obtained as the rightmost one in (4.4)
noticing that HF(a,∞)(k) = HF(k) and HF(a,∞)(f) = HF(f) as k and f do
not have one-periodic orbits with action less than a by (3.7). The diagram in
(4.5) readily yields

rkHF(a,∞)(H) = rkHF(a,∞)(Ĥ) ≥ rkΦ3 = rk ιε,b−∞ = rk ιε,∞−∞

where the last equality holds for large b > 0. Since SH(−∞,ε)(W ) ∼= H(W,∂W )
by (3.8), the proof is complete. �

4.3. Proof of Theorem 2.9(b)

Let H : S1 × W → (−∞, 0] be a smooth Hamiltonian supported in S1 ×
(W\∂W ) such that H|S1×Wsk < 0. We extend H to Ĥ : S1 × Ŵ → R as in
the proof of Theorem 2.9(a). Let k : Ŵ → R be a smooth function obtained
also as before by smoothening a piecewise linear function

k̄ : Ŵ −→ R, k̄|W δ = −d, k̄|
Ŵ\W δ = ε(r − δ) − d

for d, δ > 0 and 0 < ε < min spec(Rλ). We take d, δ > 0 small enough and
choose a sufficiently large c > 0 to satisfy

(k − c)(z) ≤ Ĥ(t, z) ≤ k(z) ∀(t, z) ∈ S1 × Ŵ .
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Then, for any a ∈ (0, d)\spec(H), the following diagram commutes:

HF(a,∞)(k).

HF(a,∞)(Ĥ)

Φ2 ���������

HF(a,∞)(k − c)

Φ1		�����
Φ3∼=

��

where Φ’s are continuation homomorphisms induced by monotone homo-
topies. Moreover, Φ3 is an isomorphism since k and k − c have the same
slope and possess no one-periodic orbits with action less than a. Hence we
conclude that Φ2 is a surjective homomorphism, and this finishes the proof
since HF(a,∞)(k) = HF(k) ∼= H(W ; ∂W ). �

4.4. Proof of Corollary 2.8

Let Q be a closed manifold endowed with a metric g and denote by D∗Q the
associated unit-disc cotangent bundle. The foot-point projection π : T ∗Q →
Q gives a bijection between periodic Reeb orbits on ∂(D∗Q) with respect to
the canonical one-form λT ∗Q and closed geodesics on Q where the periods of
Reeb orbits correspond to the length of geodesics. In particular if �1 denotes
the length of the shortest non-constant, contractible closed geodesic, then

min spec(Rλ,1) = �1.

Let ε > 0 be a positive number smaller than this common value. Consider the
square root of the energy functional on the loop space of contractible loops

E : L1Q → R, E(x) =
( ∫ 1

0

‖ẋ(t)‖2
g dt

)1/2

,

where ‖ · ‖g is the norm induced by g. The functional E coincides with the
length on the set of geodesics and yields a filtration H(ε,a)(L1Q) of the sin-
gular homology of the loop space for a ≥ ε together with inclusion homomor-
phisms

ja,b
ε : H(ε,a)(L1Q) → H(ε,b)(L1Q)

for ε ≤ a ≤ b. By the action filtration version of Viterbo isomorphism [68,
Theorem 2.9], we have the commutative diagram

SH(ε,b)(D∗Q)
∼= �� H(ε,b)(L1Q)

SH(ε,a)(D∗Q)

ιa,b
ε

��

∼= �� H(ε,a)(L1Q).

ja,b
ε

��
(4.6)

By definition of ε, we have SH+(D∗Q) = SH(ε,∞)(D∗Q) and H(L1Q,Q) =
H(ε,∞)(L1Q). Thus,

cSH+(D∗Q) = c(E) := inf{a > 0 | ja,∞
ε �= 0}.

Since �1 ≤ cSH+(D∗Q) by constructing a suitable radial Hamiltonian, we are
left to show �1 ≥ c(E) in the two cases mentioned in the statement.
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• Let (Q, g) be a closed, non-aspherical homogeneous space. Since Q is
non-aspherical, �1 is finite by the classical Lusternik–Fet theorem and
the set of closed, non-constant, contractible geodesics with length �1 is
non-empty. By [71, Theorem 5], the map

j�1+ε,∞
ε : H(ε,�1+ε)(L1Q) → H(L1Q,Q)

is non-zero for small ε small. Thus, �1 + ε ≥ c(E) and the result follows
letting ε to 0.

• Let (Q, g) be a two-sphere with strictly positive Gaussian curvature.
Abbondandolo and Mazzucchelli show in Lemma A.2 below that there
is a continuous path u : [−1, 1] → {E ≤ �1} with u(−1), u(1) ∈ Q repre-
senting a non-trivial element in H1(L1Q,Q). Thus, j�1+ε,∞

ε �= 0 for all
ε sufficiently small and we conclude that �1 ≥ c(E).
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Appendix: The monotonicity of the systole of convex
Riemannian two-spheres (by Alberto Abbondandolo1 and
Marco Mazzucchelli)2

Throughout this appendix, the notion of convexity must be understood in
the differentiable sense: A compact three-ball B ⊂ R

3 with smooth bound-
ary is strictly convex when there exists a smooth function F : R

3 → [0,∞)
with positive definite Hessian at every point and such that ∂B = F−1(1).
Equivalently, the boundary sphere M = ∂B, which will always be equipped
with the Riemannian metric g that is the restriction of the ambient Euclidean
metric, has strictly positive Gaussian curvature. The systole sys(M) > 0 is
the length of the shortest closed geodesic of (M, g). The main result of this
appendix answers in dimension 3 a question that was posed to us by Yaron
Ostrover:
Theorem A.1. Let B1 ⊆ B2 be two compact strictly convex three-balls in R

3

with smooth boundary. Then, sys(∂B1) ≤ sys(∂B2).

1 Ruhr Universität Bochum, Fakultät für Mathematik, alberto.abbondandolo@rub.de.
2 CNRS, École Normale Supérieure de Lyon, UMPA, marco.mazzucchelli@ens-lyon.fr.
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The main ingredient of the proof is the observation that the systole of
positively curved Riemannian two-spheres coincides with the classical
Birkhoff min–max, as we will now prove. Let (M, g) be a Riemannian two-
sphere. We denote the energy functional on the W 1,2 free-loop space by

E : ΛM = W 1,2(S1,M) → [0,∞), E(ζ) =
∫

S1
‖ζ̇(t)‖2

gdt.

Here and in the following, we denote by S1 = R/Z the 1-periodic circle.
We consider the unit sphere S2 ⊂ R

3. For each z ∈ [−1, 1], we denote by
γz : S1 → S2 the parallel at latitude z, parametrized as

γz(t) =
(√

1 − z2 cos(2πt),
√

1 − z2 sin(2πt), z
)

.

For each continuous map u : [−1, 1] → ΛM such that E(u(0)) = E(u(1)) = 0,
there exists a unique continuous map ũ : S2 → M such that u(z) = ũ ◦ γz for
each z ∈ [−1, 1]. We denote by U the space of such maps u whose associated
ũ has degree 1. The Birkhoff min–max value

bir(M, g) = inf
u∈U

max
z∈[−1,1]

E(u(z))1/2

is the length of some closed geodesic of (M, g).

Lemma A.2. On every positively curved closed Riemannian two-sphere (M, g),
we have

bir(M, g) = sys(M, g).

Proof. Let γ : S1 → M be a shortest closed geodesic of (M, g) parametrized
with constant speed, so that E(γ) = L(γ)2 = sys(M, g)2. A theorem of
Calabi–Cao [11] implies that γ is simple, that is, an embedding γ : S1 ↪→
M . We fix an orientation on M , and consider the corresponding complex
structure of (M, g). Namely, for every non-zero v ∈ TxM , the tangent vector
Jv ∈ TxM is obtained by rotating v in the positive direction of an angle π/2.
We consider the vector field ν(t) = Jγ̇(t) orthogonal to γ̇(t). Notice that ν is
a parallel vector field, since the complex structure J is parallel. If Kg denotes
the Gaussian curvature of (M, g), we have

d2E(γ)[ν, ν] =
∫

S1

(‖∇tν‖2
g − Kg‖γ̇‖2

g‖ν‖2
g

)
dt = −

∫

S1
Kg‖γ̇‖4

gdt < 0.

(A.1)

We now consider Morse’s finite-dimensional approximation of the free
loop space (see, e.g., [45]). We fix a positive integer k that is large enough
so that d(ζ(t0), ζ(t1)) < injrad(M, g) for all ζ ∈ ΛM with E(ζ) ≤ E(γ) =
sys(M, g)2 and for all t0, t1 ∈ R with |t1 − t0| < 1/k. Here, d denotes the Rie-
mannian distance on (M, g). We consider the open finite-dimensional mani-
fold

ΛkM =
{
x = (x0, . . . , xk−1) ∈ M × · · · × M

∣
∣ d(xi, xi+1) < injrad(M, g) ∀i ∈ Zk

}
.

Such a manifold admits an embedding

ι : ΛkM ↪→ ΛM, ι(x) = γx ,
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where each restriction γx |[i/k,(i+1)/k] is the shortest geodesic parametrized
with constant speed joining xi and xi+1. We denote the restricted energy
functional by

Ek = E ◦ ι : ΛkM → [0,∞), Ek(x) = k
∑

i∈Zk

d(xi, xi+1)2.

Let x := ι−1(γ). We consider the tangent vector v := (v0, . . . , vk−1) ∈
Tx(ΛkM) such that vi = ν(i/k) for all i ∈ Zk. Inequality (A.1) readily implies
that dι(x)v lies in the negative cone of the Hessian d2E(γ), since

d2Ek(x)[v,v] = d2

dz2

∣
∣
z=0

E(ι(expx(zv))

≤ d2

dz2

∣
∣
z=0

E(expγ(·)(zν(·)))
= d2E(γ)[ν, ν]
< 0. (A.2)

Here, the exponential map in ΛkM is the one associated with the natural
Riemannian metric g ⊕ · · · ⊕ g.

The complement M\γ has two connected components B+ and B−, each
one diffeomorphic to a two-ball. The vector field ν points into one of them,
say B+. We define the continuous map

w : [−1/3, 1/3] → ΛkM, w(z) = expx(zεv).

Notice that w(0) = x. We fix ε > 0 small enough so that, for all z ∈ (0, 1/3],
the loop ι(w(±z)) is entirely contained in the open ball B±, and by Eq. (A.2),
we have

Ek(w(z)) < Ek(w(0)) = sys(M, g)2, ∀z ∈ [−1/3, 1/3]\{0}.

We now consider the open subspaces U+, U− ⊂ ΛkM given by

U± = ΛkM ∩ (B± × · · · × B±).

We have w(±1/3) ∈ U±. The flow φs of the anti-gradient −∇Ek is complete
in positive time s in the sublevel set E−1

k ([0, sys(M, g)2]). We claim that

φs(w(±1/3)) ∈ U±, ∀s ≥ 0.

Indeed, assume by contradiction that there exists s0 > 0 such that
φs0(w(±1/3)) ∈ ∂U±, and take s0 to be the minimal such time. If y :=
φs0(w(±1/3)), the components of the anti-gradient vector z := −∇Ek(y)
are given by

zi = 2(γ̇y ( i
k

+
) − γ̇y ( i

k

−
)), ∀i ∈ Zk.

Since y ∈ ∂U±, at least one of its components yi must belong to ∂B±. Assume
that all the yi’s belong to ∂B±, and therefore, they are of the form yi = γ(ti)
for some ti ∈ S1. In this case, we have zi = λiγ̇(ti) for some λi ∈ R; but this
is impossible, since it would imply that all the components of φs(w(±1/3))
belong to ∂B± for all s ∈ R, and thus that φs(w(±1/3)) belong to ∂U±
for all s ∈ R. Therefore, at least one component yi ∈ ∂B± is adjacent to a
component in the interior yi−1 ∈ B±. However, this implies that the vector
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zi points inside B±, and therefore, φs0−δ(w(±1/3)) �∈ U± for all δ > 0 small
enough, contradicting the minimality of s0.

We set δ := min{injrad(M, g), sys(M)/(4k)}. Since Ek(φs(w(±1/3))) <
sys(M, g)2 for all s ≥ 0, and since sys(M, g)2 is the smallest positive critical
value of Ek, we can fix a large enough s > 0 such that Ek(φs(w(±1/3))) < δ2.
We extend w to a map w : [−2/3, 2/3] → ΛkM by setting

w(±z) = φ(3z−1)s(w(±1/3)), ∀z ∈ [1/3, 2/3].

Notice that w(±z) ∈ U± for all z ∈ (0, 2/3], and Ek(w(±2/3)) < δ2. We set

y± = (y±
0 , . . . , y±

k−1) := w(±2/3).

For each r ∈ [0, 1], we define y±(r) = (y±
0 (r), . . . , y±

k−1(r)) by

y±
i (r) := expy±

0
((1 − r) exp−1

y±
0

(y±
i )).

Notice that y±(0) = y±, y±(r) ∈ U±, and

Ek(y±(r)) = k
∑

i∈Zk

d(y±
i (r), y±

i+1(r))
2 < 4k2δ2 ≤ sys(M, g)2, ∀r ∈ [0, 1],

Ek(y±(1)) = 0.

We extend w to a continuous map w : [−1, 1] → ΛkM by setting

w(±z) = y±(3z − 2), ∀z ∈ [2/3, 1].

Finally, we define u := ι ◦ w : [−1, 1] → ΛM . Notice that the associated
continuous map ũ : S2 → M has degree 1; indeed, the preimage u−1(γ(t)) is
a singleton for every t ∈ S1, and the restriction of u to a neighborhood of
u−1(γ) is a homeomorphism onto its image. Therefore, u ∈ U , and

bir(M, g) ≤ max
z∈[−1,1]

E(u(z))1/2 = E(u(0))1/2 = sys(M, g).

On the other hand, bir(M, g)2 is a positive critical value of E, and therefore,

bir(M, g) ≥ sys(M, g).

�

Proof of Theorem A.1. We set Mi := ∂Bi, i = 1, 2. Since the regions B1 ⊂
B2 are strictly convex, for each x ∈ M2, there exists a unique π(x) ∈ M1

such that

‖x − π(x)‖ = min
y∈M1

‖x − y‖.

The map π : M2 → M1 is a 1-Lipschitz homeomorphism with respect to the
Riemannian metrics gi on Mi that are restriction of the ambient Euclidean
metric. In particular, for every W 1,2 curve γ2 : S1 → M2, if we denote by
γ1 : = π ◦ γ2 its image in M1, we have

∫

S1

‖γ̇2(t)‖2dt ≥
∫

S1

‖γ̇1(t)‖2dt

We denote by U1 and U2 the family of maps involved in the definition of the
Birkhoff min–max values of M1 and M2 respectively. Notice that π ◦ u ∈ U1
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for all u ∈ U2. Therefore, if we denote the energy of W 1,2 loops γ : S1 → R
3

by

E(γ) =
∫

S1
‖γ̇(t)‖2 dt,

we have

bir(M2) = inf
u∈U2

max
z∈[−1,1]

E(u(z))1/2 ≥ inf
u∈U2

max
z∈[−1,1]

E(π ◦ u(z))1/2 ≥ bir(M1).

This, together with Lemma A.2, implies that sys(M2) ≥ sys(M1). �
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[67] Vigué-Poirrier, M., Sullivan, D.: The homology theory of the closed geodesic
problem. J. Differ. Geom. 11(4), 633–644 (1976)

[68] Weber, J.: Noncontractible periodic orbits in cotangent bundles and Floer ho-
mology. Duke Math. J. 133(3), 527–568 (2006)

[69] Weinstein, A.: Periodic orbits for convex Hamiltonian systems. Ann. Math. (2)
108, 507–518 (1978)

[70] Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J.
Differ. Equ. 33(3), 353–358 (1979)

[71] Ziller, W.: The free loop space of globally symmetric spaces. Invent. Math.
41(1), 1–22 (1977)

Reprinted from the journal 129

http://arxiv.org/abs/1805.01316


G. Benedetti and J. Kang JFPTA

Gabriele Benedetti
Mathematisches Institut
Ruprecht-Karls-Universität Heidelberg
Im Neuenheimer Feld 205
69120 Heidelberg
Germany
e-mail: gbenedetti@mathi.uni-heidelberg.de

Jungsoo Kang
Department of Mathematical Sciences, Research Institute in Mathematics
Seoul National University
Gwanak-Gu
Seoul 08826
South Korea
e-mail: jungsoo.kang@snu.ac.kr

Accepted: April 20, 2021.

Reprinted from the journal130



J. Fixed Point Theory Appl. (2022) 24:24

https://doi.org/10.1007/s11784-022-00934-z

Published online April 4, 2022 Journal of Fixed Point Theory
and Applications

An Arnold-type principle for non-smooth
objects

Lev Buhovsky, Vincent Humilière and Sobhan Seyfaddini

Dedicated to Claude Viterbo on the occasion of his 60th birthday.

Abstract. In this article, we study the Arnold conjecture in settings
where objects under consideration are no longer smooth but only con-
tinuous. The example of a Hamiltonian homeomorphism, on any closed
symplectic manifold of dimension greater than 2, having only one fixed
point shows that the conjecture does not admit a direct generalization
to continuous settings. However, it appears that the following Arnold-
type principle continues to hold in C0 settings: suppose that X is a
non-smooth object for which one can define spectral invariants. If the
number of spectral invariants associated to X is smaller than the num-
ber predicted by the (homological) Arnold conjecture, then the set of
fixed/intersection points of X is homologically non-trivial, hence it is in-
finite. We recently proved that the above principle holds for Hamiltonian
homeomorphisms of closed and aspherical symplectic manifolds. In this
article, we verify this principle in two new settings: C0 Lagrangians in
cotangent bundles and Hausdorff limits of Legendrians in 1-jet bundles
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1. Introduction and main results

The Arnold conjecture states that a Hamiltonian diffeomorphism of a closed
and connected symplectic manifold (M,ω) must have at least as many fixed
points as the minimal number of critical points of a smooth function on M .
The classical Lusternik–Schnirelmann theory shows that this minimal number
is always at least the cup length of M , a topological invariant of M defined
as1

cl(M) := max{k + 1 : ∃ a1, . . . , ak ∈ H∗(M), ∀i,deg(ai) �= dim(M)

and a1 ∩ · · · ∩ ak �= 0}.

Therefore, a natural interpretation of the Arnold conjecture, sometimes
referred to as the homological Arnold conjecture, is that a Hamiltonian diffeo-
morphism of (M,ω) must have at least cl(M) fixed points.2 Successful efforts
at resolving this conjecture were pioneered by Floer [7,8,10] and led to the
development of what is now called Floer homology. The original version of
the Arnold conjecture has been proven on symplectically aspherical manifolds
[9,12,33] while the homological version has been proven on a larger class of
manifolds, e.g., CPn by Fortune–Weinstein [11], and symplectic manifolds
which are negatively monotone by Lê–Ono [22].

The Arnold conjecture admits reformulations for symplectic objects
other than Hamiltonian diffeomorphisms: For example, a Lagrangian ver-
sion of the conjecture states that in a cotangent bundle T ∗N , a Lagrangian
submanifold which is Hamiltonian isotopic to the zero section must have at
least cl(N) intersection points with the zero-section ON (see [12,21]). Here
is a Legendrian reformulation of this last statement: a Legendrian submani-
fold in a 1-jet bundle J1N = T ∗N × R, which is isotopic to the zero section

1Here, ∩ refers to the intersection product in homology. The cup length can be equivalently
defined in terms of the cup product in cohomology.
2Note that we do not make any assumptions regarding non-degeneracy of Hamiltonian
diffeomorphisms here.
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through Legendrians, must have at least cl(N) intersections with the 0-wall
ON × R.3

The goal of this article is to understand the Arnold conjecture in settings
where objects under consideration are no longer smooth but only continuous.
Although the Arnold conjecture is true for Hamiltonian homeomorphisms of
surfaces [26], we showed in [3] that every closed and connected symplectic
manifold of dimension at least 4 admits a Hamiltonian homeomorphism with
a single fixed point. Analogously, an example of a continuous Lagrangian sub-
manifold Hamiltonian homeomorphic to the zero section and having a single
intersection point with the zero section can be constructed in the cotangent
bundle of any closed connected surface, see Proposition 1.2 below.

In spite of these counter-examples, it appears that certain reformula-
tions of the Arnold conjecture do survive in C0 settings. These reformulations,
which involve counting fixed/intersection points and certain “homologically
essential” critical values of the action, (i.e., spectral invariants), are inspired
by the following statement from Lusternik–Schnirelman theory:

Let f be a smooth function on a closed manifold M . If the number of
homologically essential critical values of f is smaller than cl(M), then the
set of critical points of f is homologically non-trivial.

The above statement can be deduced from Proposition 3.1. Homologi-
cally essential critical values, which are usually referred to as spectral invari-
ants in the symplectic literature, are defined in Sect. 3.1. A subset A ⊂ M
is homologically non-trivial if for every open neighborhood U of A the map
i∗ : Hj(U) → Hj(M), induced by the inclusion i : U ↪→ M , is non-trivial for
some j > 0. Clearly, homologically non-trivial sets are infinite.

The reformulations of the Arnold conjecture which continue to hold in
C0 settings may be summarized as follows:

Principle 1. Suppose that X is a non-smooth object for which one can define
spectral invariants. If the number of spectral invariants associated to X is
smaller than the number predicted by the homological Arnold conjecture, then
the set of fixed/intersection points of X is homologically non-trivial, hence it
is infinite.

In our recent article [2], we established the above principle for Hamil-
tonian homeomorphisms of symplectically aspherical manifolds: suppose that
(M,ω) is closed, connected, and symplectically aspherical. In Theorem 1.4
of [2] we prove that if φ is a Hamiltonian homeomorphism of (M,ω) with
fewer spectral invariants than cl(M), then the set of fixed points of φ is ho-
mologically non-trivial. A variant of this statement for negative monotone
symplectic manifolds and for complex projective spaces has been proven by
Y. Kawamoto in [18].

The main results of this article establish Principle 1 in two more con-
texts: C0 Lagrangians in cotangent bundles and Hausdorff limits of Legen-
drians in 1-jet bundles.

3Sandon has recently presented a reformulation of the Arnold conjecture for contactomor-
phisms; see [34,35].
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C0 Lagrangians: Consider the cotangent bundle T ∗N of a closed manifold N
and denote by ON its zero section. As we will see in Sect. 4, (Lagrangian)
spectral invariants can be defined for a C0 Lagrangian of the form L = φ(ON )
where φ is a compactly supported Hamiltonian homeomorphism of T ∗N ; this
is proven in Theorem 4.1. We call such a C0 Lagrangian “a C0 Lagrangian
Hamiltonian homeomorphic to the zero section”. It is not difficult to see that
in this setting our principle translates to the following statement.

Theorem 1.1. Let φ denote a compactly supported Hamiltonian homeomor-
phism of T ∗N and suppose that L = φ(ON ). If the number of spectral invari-
ants of L is smaller than cl(N), then L ∩ ON is homologically non-trivial,
hence it is infinite.

It is interesting to remark that, as for Hamiltonian homeomorphisms,
the Arnold conjecture breaks down for C0 Lagrangians; this is the content of
the next result.

Proposition 1.2. Let M be a closed connected surface. Then, there is a Hamil-
tonian homeomorphism ψ of T ∗M such that the C0-Lagrangian L = ψ(OM )
has only one intersection with the zero-section OM .

Note that although we expect a similar statement to hold in higher
dimensions, our proof is valid only for M of dimension two. However, the
argument we present is relatively simple compared to the construction in [3].

Remark 1.3. Of course, as a consequence of Theorem 1.1, a C0 submanifold
L as in Proposition 1.2 must have at least cl(N) distinct spectral invariants.

Remark 1.4. It is reasonable to ask if in the above theorem the hypothesis
L = φ(ON ) could be weakened to L being the Hausdorff limit of a sequence
Li, where each Li is Hamiltonian isotopic to the zero section. This is related
to a conjecture of Viterbo; see also Remark 4.4 below.

Hausdorff limits of Legendrians: Let L denote the Hausdorff limit of a se-
quence of Legendrians which are contact isotopic to the zero section in the
1-jet bundle J1N . We have not been able to verify whether it is possible
to define Legendrian spectral invariants for the Hausdorff limit L. However,
as we will now explain, it is still possible to make sense of the action spec-
trum of L: Let K be a smooth Legendrian submanifold of J1N which is
contact isotopic to the zero section. Then, as we explain in Sect. 3.3, the set
spec(K) = πR(K ∩(ON ×R)) is the set of critical values of the gfqi associated
to K. By analogy, we will define the spectrum of any subset L ⊂ J1N to be

spec(L) := πR(L ∩ (ON × R)).

Although our next theorem does not establish Principle 1 for Hausdorff
limits of Legendrians, it may still be viewed as a natural incarnation of our
principle.

Theorem 1.5. Let Li be a sequence of Legendrian submanifolds in J1N which
are contact isotopic to the zero-section ON × {0}. Suppose that this sequence
has a limit L for the Hausdorff distance, where L ⊂ J1N is a compact subset.
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Assume that the cardinality spec(L) is strictly less than cl(N). Then,
there exists λ ∈ spec(L) such that L∩(ON ×{λ}) is homologically non-trivial
in ON × {λ}. In particular, L ∩ (ON × R) is infinite.

Note that we make no assumptions with regards to regularity of L. In
fact, we do not even require L to be a C0 submanifold of J1N .

Remark 1.6. A careful examination of the proof of Theorem 1.5 reveals that
the assumption of Hausdorff convergence of Li to L can be relaxed to the
following: any neighborhood of L contains Li for i large.

Remark 1.7. In an ongoing project [17], the second author and N. Vichery
show that Principle 1 can also be established for singular supports of sheaves
(belonging to a certain subcategory of sheaves introduced by Tamarkin).
These singular supports can be seen as (singular) generalizations of Legen-
drian submanifolds.

Organization of the paper

In Sect. 2, we recall some basic notions from symplectic geometry. In Sect. 3,
we introduce preliminaries on Lusternik–Schnirelmann theory and spectral
invariants.

Section 4 is dedicated to establishing Principle 1 for C0 Lagrangians
Hamiltonian homeomorphic to the zero section. The main technical step for
doing so, which is of independent interest, consists of proving that Lagrangian
spectral invariants can be defined for such C0 Lagrangians. This is achieved
in Sect. 4.1; see Theorem 4.1 therein. Theorem 1.1 is proven in Sect. 4.2. We
prove Proposition 1.2 in Sect. 4.3. Lastly, Theorem 1.5 is proven in Sect. 5.

2. Preliminaries from symplectic geometry

For the remainder of this section (M,ω) will denote a connected symplec-
tic manifold. Recall that a symplectic diffeomorphism is a diffeomorphism
θ : M → M such that θ∗ω = ω. The set of all symplectic diffeomor-
phisms of M is denoted by Symp(M,ω). Hamiltonian diffeomorphisms con-
stitute an important class of examples of symplectic diffeomorphisms. These
are defined as follows: A smooth Hamiltonian H ∈ C∞

c ([0, 1] × M) gives
rise to a time-dependent vector field XH which is defined via the equation:
ω(XH(t), ·) = −dHt. The Hamiltonian flow of H, denoted by φt

H , is by defini-
tion the flow of XH . A compactly supported Hamiltonian diffeomorphism is a
diffeomorphism which arises as the time-one map of a Hamiltonian flow gen-
erated by a compactly supported Hamiltonian. The set of all compactly sup-
ported Hamiltonian diffeomorphisms is denoted by Hamc(M,ω); this forms
a normal subgroup of Symp(M,ω).

2.1. Symplectic and Hamiltonian homeomorphisms

We equip M with a Riemannian distance d. Given two maps φ, ψ : M → M,
we denote

dC0(φ, ψ) = max
x∈M

d(φ(x), ψ(x)).
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We will say that a sequence of compactly supported maps φi : M → M ,
C0–converges to φ, if there is a compact subset of M which contains the
supports of all φi’s and if dC0(φi, φ) → 0 as i → ∞. Of course, the notion of
C0–convergence does not depend on the choice of the Riemannian metric.

Definition 2.1. A homeomorphism θ : M → M is said to be symplectic if it
is the C0–limit of a sequence of symplectic diffeomorphisms. We will denote
the set of all symplectic homeomorphisms by Sympeo(M,ω).

The Eliashberg–Gromov theorem states that a symplectic homeomor-
phism which is smooth is itself a symplectic diffeomorphism. We remark that
if θ is a symplectic homeomorphism, then so is θ−1. In fact, it is easy to see
that Sympeo(M,ω) forms a group.

Definition 2.2. A symplectic homeomorphism φ is said to be a Hamiltonian
homeomorphism if it is the C0–limit of a sequence of Hamiltonian diffeo-
morphisms. We will denote the set of all Hamiltonian homeomorphisms by
Ham(M,ω).

It is not difficult to see that Ham(M,ω) forms a normal subgroup of
Sympeo(M,ω). It is a long standing open question whether a smooth Hamil-
tonian homeomorphism, which is isotopic to identity in Symp(M,ω), is a
Hamiltonian diffeomorphism; this is often referred to as the C0 Flux conjec-
ture; see [1,20,38].

We should add that alternative definitions for Hamiltonian homeomor-
phisms do exist within the literature of C0 symplectic topology. Most notable
of these is a definition given by Müller and Oh in [30]. A homeomorphism
which is Hamiltonian in the sense of [30] is necessarily Hamiltonian in the
sense of Definition 2.2 and thus, the results of this article apply to the home-
omorphisms of [30] as well.

2.2. Hofer’s distance

We will denote the Hofer norm on C∞
c ([0, 1] × M) by

‖H‖ =
∫ 1

0

(
max
x∈M

H(t, ·) − min
x∈M

H(t, ·)
)

dt.

The Hofer distance on Ham(M,ω) is defined via

dHofer(φ, ψ) = inf ‖H − G‖,

where the infimum is taken over all H,G such that φ1
H = φ and φ1

G = ψ.
This defines a bi-invariant distance on Ham(M,ω).

Given B ⊂ M , we define its displacement energy to be

e(B) := inf{dHofer(φ, Id) : φ ∈ Ham(M,ω), φ(B) ∩ B = ∅}.

Non-degeneracy of the Hofer distance is a consequence of the fact that e(B) >
0 when B is an open set. This fact was proven in [13,19,32].
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3. Preliminaries on spectral invariants

We fix a ground field F, e.g., Z2,Q, or C. Singular homology, Floer homology
and all notions relying on these theories depend on the field F.

3.1. Min–max critical values and Lusternik–Schnirelmann theory

Let f ∈ C∞(M) a smooth function on a closed and connected manifold M .
For any a ∈ R, let Ma = {x ∈ M : f(x) < a}. Let α ∈ H∗(M) be a non-zero
singular homology class and define

cLS(α, f) := inf{a ∈ R : α ∈ Im(i∗a)},

where i∗a : H∗(Ma) → H∗(M) is the map induced in homology by the natural
inclusion ia : Ma ↪→ M . The number cLS(α, f) is a critical value of f and
such critical values are often referred to as homologically essential critical
values.

The function cLS : H∗(M)\{0}×C∞(M) → R is called a min–max crit-
ical value selector. In the following proposition, [M ] denotes the fundamental
class of M and [pt] denotes the class of a point.

Proposition 3.1. The min–max critical value selector cLS possesses the fol-
lowing properties.

1. cLS(α, f) is a critical value of f ,
2. cLS([pt], f) = min(f) ≤ cLS(α, f) ≤ cLS([M ], f) = max(f),
3. cLS(α ∩ β, f) ≤ cLS(α, f), for any β ∈ H∗(M) such that α ∩ β �= 0,
4. Suppose that deg(β) < dim(M) and cLS(α∩β, f) = cLS(α, f). Then, the

set of critical points of f with critical value cLS(α, f) is homologically
non-trivial.

The above are well-known results from Lusternik–Schnirelmann theory
and hence we will not present a proof here. For further details, we refer the
reader to [6,25,42].

3.2. Spectral invariants for Lagrangians

Let N be a closed manifold. The canonical symplectic structure on the cotan-
gent bundle T ∗N is induced by the form ω0 = −dλ where λ = p dq. We
will denote by Lag the space of Lagrangian submanifolds of T ∗N which
are Hamiltonian isotopic to the zero section, i.e., Lag := {φ(ON ) : φ ∈
Hamc(T ∗N,ω0)}.

Consider φ ∈ Hamc(T ∗N,ω0) and let L = φ(ON ). We will briefly explain
how one may associate Lagrangian spectral invariants to the Hamiltonian
diffeomorphism φ. Pick a compactly supported Hamiltonian H ∈ C∞

c ([0, 1]×
T ∗N) such that φ = φ1

H . The action functional associated to H is defined by

AH : Ω(T ∗N) → R , z →
∫ 1

0

Ht(z(t)) dt −
∫

z∗λ

where Ω(T ∗N) = {z : [0, 1] → T ∗N | z(0) ∈ ON , z(1) ∈ ON}. The critical
points of AH are the chords of the Hamiltonian vector field XH which start
and end on ON . Note that such chords are in one-to-one correspondence with
L ∩ ON . The spectrum of AH consists of the critical values of AH . It is a
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nowhere dense subset of R which turns out to depend only on the time–1
map φ1

H , hence we will denote it by Spec(L;φ).
At a formal level, Lagrangian Floer homology is the Morse homology of

the above action functional and, in this setting, it is canonically isomorphic
to the usual singular homology of N . Now, in a manner similar to what was
done in the previous section, one can define a mapping

� : H∗(N)\{0} × Hamc(T ∗N,ω0) → R

which associates to a homology class a ∈ H∗(N) \ {0} a value in Spec(L;φ);
roughly speaking, the number �(a, φ) is the minimal action value at which
the homology class a appears in the Morse homology of AH .

These numbers are often referred to as the Lagrangian spectral invari-
ants of φ. They were first introduced by Viterbo in [42] via generating func-
tion techniques. The Floer theoretic approach was carried out by Oh [28].
Lagrangian spectral invariants have many properties some of which are listed
below. For a more comprehensive list of their properties, as well as a survey
of their construction, we refer the reader to [27]; see for example Theorems
2.11 and 2.17 in [27].

Proposition 3.2. The map � : H∗(N)\{0} × Hamc(T ∗N,ω0) → R, satisfies
the following properties:

1. �(a, φ) ∈ Spec(L;φ),
2. |�(a, φ1

H) − �(a, φ1
G)| ≤ ‖H − G‖,

3. �(a ∩ b, φψ) ≤ �(a, φ) + �(b, ψ),
4. �([pt], φ) ≤ �(a, φ) ≤ �([N ], φ),
5. �([N ], φ) = −�([pt], φ−1),
6. If φ(ON ) = ψ(ON ), then ∃ C ∈ R such that �(a, φ) = �(a, ψ)+C for all

a ∈ H∗(N)\{0},
7. Suppose that f : N → R is a smooth function and define the Lagrangian

Lf := {(q, ∂qf(q)) : q ∈ N}. Denote by F any compactly supported
Hamiltonian of T ∗N which coincides with π∗f = f ◦ π on a ball bundle
T ∗

RN of T ∗N containing Lf . Then, �(a, φ1
F ) = cLS(a, f) for all a ∈

H∗(N)\{0}.
8. For any other manifold N ′, the spectral invariants on T ∗(N×N ′) satisfy

�(a ⊗ a′, φ × φ′) = �(a, φ) + �(a′, φ′),

for all φ ∈ Hamc(T ∗N,ω), φ′ ∈ Hamc(T ∗N ′, ω), a ∈ H∗(N)\{0} and
a′ ∈ H∗(N ′)\{0}.
Note that the sixth property above tells us that spectral invariants

�(a, φ) are essentially invariants of the Lagrangian L := φ(ON ). As a conse-
quence of this property, the set of spectral invariants of L is well defined up
to a shift by a constant. In particular, we can make sense of the total number
of spectral invariants of any Lagrangian L which is Hamiltonian isotopic to
the zero section. Similarly, we see that γ : Lag → R, defined by

γ(φ(ON )) := �([N ], φ) − �([pt], φ) (1)

is well defined, i.e., it only depends on the Lagrangian φ(ON ) and not on φ.
Viterbo showed in [42] that γ induces a non-degenerate distance on Lag.
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Finally, we should mention that Lagrangian spectral invariants have
been constructed in settings more general than what is described above by
Leclercq [23] and Leclercq–Zapolsky [24].
Hamiltonian Spectral Invariants: To prove that Lagrangian spectral invari-
ants can be defined for C0 Lagrangians Hamiltonian homeomorphic to the
zero section, that is to prove Theorem 4.1 below, we will need to use cer-
tain results from the theory of Hamiltonian spectral invariants. Here, we will
briefly recall the aspects of this theory which will be needed below. For further
details on the construction of these invariants, see [29,36]. The specific result
used here, which compares Lagrangian and Hamiltonian spectral invariants,
was proven in [27].

Given φ ∈ Hamc(T ∗N,ω0) and a ∈ H∗(N)\{0}, using Hamiltonian
Floer homology, one can define the Hamiltonian spectral invariant c(a, φ);
this is a real number which belongs to the (Hamiltonian) action spectrum
of φ, i.e., there exists a fixed point of φ whose action is the value c(a, φ).
These spectral invariants satisfy a list of properties similar to those listed in
Proposition 3.2. We will be needing the following property which is proven
in [27]: For any φ ∈ Hamc(T ∗N,ω0) and any a ∈ H∗(N)\{0}, we have

c([pt], φ) ≤ �(a, φ) ≤ c([N ], φ). (2)

See Proposition 2.14 and item iv of Theorem 2.17 in [27].
Similarly to Eq. (1), we define γ : Hamc(T ∗N,ω0) → R via

γ(φ) := c([N ], φ) − c([pt], φ). (3)

Like its Lagrangian cousin, γ induces a non-degenerate distance on
Hamc(T ∗N,ω0). We will need the following properties:

1. Comparison inequality: As an immediate consequence of Eq. 2, the La-
grangian version of γ is smaller than the Hamiltonian version. More
precisely, for any φ ∈ Hamc(T ∗N,ω0), we have

γ(φ(ON )) ≤ γ(φ). (4)

2. Conjugacy invariance: For any φ ∈ Hamc(T ∗N,ω0) and any symplectic
diffeomorphism ψ of T ∗N , we have

γ(φ) = γ(ψφψ−1). (5)

3. Triangle inequality: For any φ, ψ ∈ Hamc(T ∗N,ω0), we have

γ(φψ) ≤ γ(φ) + γ(ψ). (6)

4. Energy-capacity inequality: Suppose that the support of φ can be dis-
placed, then

γ(φ) ≤ 2e(supp(φ)), (7)

where e(supp(φ)) is the displacement energy of supp(φ).
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3.3. Spectral invariants for Legendrians via generating functions

Once again let N be a closed manifold. The standard contact structure on
the 1-jet bundle J1N = T ∗N ×R is induced by the contact form α = dz −λ,
where z is the coordinate on R. We will denote by Leg the space of Legendrian
submanifolds of J1N which are contact isotopic to the zero section. It was
proven by Chaperon [4] and Chekanov [5] that for every L ∈ Leg there exists
a generating function quadratic at infinity (gfqi) S : N × E → R, where E is
some auxiliary vector space, such that

L =
{(

q,
∂S

∂q
(q, e), S(q, e)

)
:

∂S

∂e
(q, e) = 0

}
.

Observe that critical points of S correspond to the intersection points
of L with the zero wall ON × R: (q, e) is a critical point of S if and only if
(q, 0, S(q, e)) is a point on L. Note that one can obtain the critical value of
a given critical point of S by simply reading the z–coordinate of the corre-
sponding intersection point of L with the zero wall.

By applying a min–max construction similar to that of Sect. 3.1 to the
gfqi S, one can define Legendrian spectral invariants of the Legendrian L:

� : H∗(N)\{0} × Leg → R.

The fact that �(a, L) does not depend on the choice of the gfqi S is a conse-
quence of the uniqueness theorem of Théret and Viterbo [41,42]. For further
details on the construction, see [43].

We will now state those properties of Legendrian spectral invariants
which will be used below.

Proposition 3.3. (See [43]) The map � : H∗(N)\{0} × Leg → R, satisfies the
following properties:

1. �(a, L) is a critical value of the corresponding gfqi S,
2. The map �(a, ·) : Leg → R is continuous with respect to the C∞ topology,
3. �(a∩b, L+L′) ≤ �(a, L)+�(b, L′), for all L,L′ ∈ Leg such that L+L′ :=

{(q, p + p′, z + z′) : (q, p, z) ∈ L, (q, p′, z′) ∈ L′} is a smooth Legendrian
submanifold contact isotopic to the 0-section.

4. Suppose that f : N → R is a smooth function and define the Legendrian
Lf := {(q, ∂qf(q), f(q)) : q ∈ N}. Then, �(a, Lf ) = cLS(a, f) for all
a ∈ H∗(N)\{0}.

Remark 3.4. A proof of item 3 in Proposition 3.3 is based on the following
observation: If S, S′ are gfqi’s for L,L′, respectively, then S⊕S′ : N×E×E′ →
R defined by S ⊕ S′(q, e, e′) := S(q, e) + S′(q, e′) is a gfqi for the Legendrian
L + L′.

4. C0 Lagrangians, proof of Theorem 1.1 and Proposition 1.2

The first two subsections in this section are devoted to the proof of Theorem
1.1. In the third, we prove Proposition 1.2. We begin by giving a precise
definition of compactly supported Hamiltonian homeomorphisms of T ∗N .
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Equip N with a Riemannian metric and denote by T ∗
r N := {(q, p) ∈

T ∗N : ‖p‖ < r} the cotangent disc bundle of radius r > 0. We define
Hamc(T ∗

r N,ω0) to be the set of Hamiltonian diffeomorphisms whose support
is contained in T ∗

r N . A compactly supported Hamiltonian homeomorphism
is a homeomorphism which belongs to the uniform closure of Hamc(T ∗

r N,ω0)
for some r > 0; we will denote their collection by Hamc(T ∗N,ω0).

4.1. Spectral invariants for C0 Lagrangians

We will now prove that Lagrangian spectral invariants can be defined for C0

Lagrangians of the form L = φ(ON ) where φ ∈ Hamc(T ∗N,ω0). Below is
the continuity result which allows us to define spectral invariants for such C0

Lagrangians.

Theorem 4.1. Lagrangian spectral invariants satisfy the following two prop-
erties:

1. For any homology class a ∈ H∗(N)\{0}, the map

�(a, ·) : Hamc(T ∗N,ω0) → R

is continuous with respect to the C0 topology on Hamc(T ∗N,ω0) and
extends continuously to the closure Hamc(T ∗N,ω0).

2. If φ(ON ) = ψ(ON ), then ∃ C ∈ R such that �(a, φ) = �(a, ψ)+C for all
a ∈ H∗(N)\{0} and for any φ, ψ ∈ Hamc(T ∗N,ω0).

Note that as a consequence of the second item, we can define the spectral
invariants of a C0 Lagrangian Hamiltonian homeomorphic to the zero section,
up to shift. In particular, it makes sense to speak of the number of spectral
invariants of such a C0 Lagrangian.

The first part of the above theorem follows from techniques which have
by now become rather standard in C0 symplectic topology and hence, we
will only sketch a proof of this part of the theorem. The second part of the
statement, however, is based on a trick which was recently introduced in our
article [2] in the course of proving C0 continuity of spectral invariants for
Hamiltonian diffeomorphisms; see Theorem 1.1 therein.

Proof of Theorem 4.1. We begin with the proof of the first statement. We
will be needing the following claim.

Claim 4.2. For every r > 0, there exist constants C, δ > 0, depending on r,
such that for any ψ ∈ Hamc(T ∗

r N,ω0), if dC0(Id, ψ) ≤ δ, then |�(a, ψ)| ≤
CdC0(Id, ψ).

Proof of Claim 4.2. As a consequence of Inequality (2), it is sufficient to
prove the result for the Hamiltonian spectral invariants. This follows im-
mediately from [37, Theorem 5]. �

Claim 4.2 proves continuity of our map at the identity. Next, we consider
Id �= φ ∈ Hamc(T ∗

r N,ω0). Properties (3), (4) and (5) in Proposition 3.2 yield

�([pt], ψ) = −�([N ], ψ−1) ≤ �(a, φψ) − �(a, φ) ≤ �([N ], ψ).
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Thus,

|�(a, φψ) − �(a, φ)| ≤ max{|�([N ], ψ)|, |�([pt], ψ)|}.

Combining this with Claim 4.2, we conclude that for any φ, ψ ∈
Hamc(T ∗

r N,ω0)

dC0(Id, ψ) ≤ δ =⇒ |�(a, φψ) − �(a, φ)| ≤ CdC0(Id, ψ).

This proves that �(a, ·) : Hamc(T ∗
r N,ω0) → R is locally Lipschitz continuous.

Hence, it extends continuously to the closure Hamc(T ∗
r N,ω0). This finishes

the proof of the first statement of the theorem. �
We now turn our attention to the second statement of the theorem. We

begin with the following a priori weaker statement.

Theorem 4.3. Let φ ∈ Hamc(T ∗N,ω0) be a Hamiltonian homeomorphism. If
φ(ON ) = ON , then there exists a constant C such that �(a, φ) = C for all
a ∈ H∗(N)\{0}.

Note that in the case where φ is a smooth Hamiltonian diffeomorphism,
the above theorem reduces to Property (6) in Proposition 3.2.

Remark 4.4. It can be checked that Theorem 4.3 is a consequence of the
following conjecture of Viterbo: If Li ⊂ T ∗N is a sequence of Lagrangians
Hamiltonian isotopic to the zero section, which Hausdorff converges to the
zero-section ON , then γ(Li) → 0. This conjecture has been established in
several case by Shelukhin, e.g., N = Sn,CPn,Tn and others; See [39,40].

We will now prove that the second item in Theorem 4.1 follows from the
Theorem 4.3. Suppose that φ(ON ) = ψ(ON ), where φ, ψ ∈ Hamc(T ∗N,ω0).
First, note that, as a consequence of the third item in Proposition 3.2, we
have the following inequality:

−�([N ], φ−1ψ) ≤ �(a, φ) − �(a, ψ) ≤ �([N ], ψ−1φ).

Hence, it is sufficient to show that �([N ], ψ−1φ) = −�([N ], φ−1ψ). Now, by the
fifth item of Proposition 3.2, −�([N ], φ−1ψ) = �([pt], ψ−1φ) and by Theorem
4.3, we have �([pt], ψ−1φ) = �([N ], ψ−1φ).

It remains to prove Theorem 4.3. The proof we present below relies on
an idea similar to what was used in the proof of Theorem 1.1 of [2].

Proof of Theorem 4.3. Pick a sequence φi in Hamc(T ∗
ρ N,ω0) which converges

uniformly to φ (for some ρ > 0). By Theorem 4.1.1, it is enough to show that
there exists a constant C such that �(a, φi) → C for any a ∈ H∗(N)\{0}. De-
note Li := φi(ON ) and observe that, as a consequence of the fourth property
in Proposition 3.2, it is sufficient to show that γ(Li) converges to zero.

As we will now explain, we may assume without loss of generality that
φ admits a fixed point on the zero-section ON . Indeed, fix p ∈ ON . Then,
φ−1(p) ∈ ON , by assumption. Now, for any two points x1, x2 ∈ ON we can
find a Hamiltonian G which vanishes on ON and such that φ1

G(x1) = x2.
Taking x1 = p and x2 = φ−1(p), we obtain a Hamiltonian G which vanishes
on the zero section such that φ ◦ φ1

G(p) = p. For all i, we have γ(φi ◦ φ1
G) =
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γ(φi), by the sixth item of Proposition 3.2. Thus, we can replace φi by φi◦φ1
G

and φ by φ ◦ φ1
G.

Observe that the Lagrangians Li converge in Hausdorff topology to the
zero section, i.e., for any δ > 0 we have Li ⊂ T ∗

δ N for i sufficiently large. We
will reduce the theorem to the following lemma which was obtained jointly
with R. Leclercq. A variant of this lemma was established in [16]; see Lemma
8 therein.

Given B ⊂ N , we denote T ∗B := {(q, p) ∈ T ∗N : q ∈ B} and OB :=
{(q, 0) : q ∈ B}.

Lemma 4.5. Let Li denote a sequence of Lagrangians in T ∗N which are
Hamiltonian isotopic to ON . Suppose that there exists a ball B ⊂ N such
that Li ∩ T ∗B = OB. If the sequence Li Hausdorff converges to ON , then
γ(Li) → 0.

Proof. Pick φi ∈ Hamc(T ∗N,ω0) such that φi(ON ) = Li. We begin with the
following observation: Since Li ∩ T ∗B is connected, any two points (q1, 0),
(q2, 0) ∈ Li ∩ T ∗B have the same action. Let Ci denote this value.

For any given ε > 0, pick a smooth function f : N → R whose critical
points are all contained in B and such that max(f) − min(f) < ε. Denote by
π : T ∗N → N the natural projection and define F = β π∗f where β : T ∗N →
[0, 1] is compactly supported and β = 1 on T ∗

RN where R � 1.
Note that φt

F (q, p) = (q, p + t df(q)) for t ∈ [0, 1] and (q, p) ∈ T ∗
1 N .

Therefore, φ1
F φi(ON ) = Li + Lf where Li + Lf := {(q, p + df(q)) : (q, p) ∈

Li}. The Hausdorff convergence of the sequence Li to ON and the fact that
Li ∩ T ∗B = OB combine together to imply that (Li + Lf ) ∩ ON = {(q, 0) :
df(q) = 0} for i large enough.

It is easy to see that the action of (q, 0) ∈ (Li + Lf ) ∩ ON is given by
Ci + f(q) where Ci is the constant introduced above. Therefore,

γ(Li + Lf ) ≤ max(f) − min(f) < ε.

On the other hand, by the second property from Proposition 3.2, we have
|γ(Li + Lf ) − γ(Li)| ≤ 2(max(f) − min(f)) < 2ε. Combining this with the
previous inequality we obtain γ(Li) < 3ε for i large enough which proves the
lemma. �

The end of the proof of Theorem 4.3 will consist in reducing to Lemma
4.5. We will assume from now on that N has even dimension. The case where
N has odd dimension reduces to the even dimensional case by replacing N
with N × S

1 and all φi’s by φi × IdS1 .
We introduce for that the auxiliary maps

Φi = φi × φ−1
i : T ∗N × T ∗N → T ∗N × T ∗N,

(x, y) → (φi(x), φ−1
i (y)),

where we endow T ∗N × T ∗N with the symplectic form ω0 ⊕ ω0; observe
that this is canonically symplectomorphic to T ∗(N × N) equipped with its
canonical symplectic structure.
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Denote Li := φ−1
i (ON ) and note that Φi(ON×N ) = Li×Li. The map Φi

is a Hamiltonian diffeomorphism which is not compactly supported. To obtain
a compactly supported Hamiltonian diffeomorphism, we cut off the generat-
ing Hamiltonian of Φi far away from ON×N and obtain a new Hamiltonian
diffeomorphism which we will continue to denote by Φi. It is not difficult to
see that Φi remains unchanged on a large enough neighborhood of the zero
section and so Φi(ON×N ) continues to be Li × Li.

Properties 8 and 5 of Proposition 3.2 yield

γ(Li × Li) = γ(Li) + γ(Li) = 2γ(Li). (8)

Our proof crucially relies on the following lemma.

Lemma 4.6. Fix ε > 0. We can find a ball B ⊂ N , and Ψi ∈ Hamc(T ∗N ×
T ∗N,ω0 ⊕ ω0) such that the following properties hold :

(i) γ(Ψi(ON×N )) < ε for i sufficiently large,
(ii) ΨiΦi(ON×N ) converges in Hausdorff topology to ON×N ,
(iii) ΨiΦi(ON×N ) ∩ T ∗(B × B) = OB×B for i sufficiently large.

We now explain why this lemma implies that γ(Li) → 0. Fix ε > 0 and
let B and Ψi be as provided by Lemma 4.6. Using (8), the triangle inequality
and the fifth property in Proposition 3.2, we get

γ(Li) = 1
2γ(Li × Li) = 1

2γ(Φi(ON×N ))

≤ 1
2γ(Φi ◦ Ψi(ON×N )) + 1

2γ(Ψ−1
i (ON×N ))

< 1
2γ(Φi ◦ Ψi(ON×N )) + ε

2 .

The second and the third items of Lemma 4.6 allow us to apply Lemma
4.5 and conclude that γ(Φi ◦ Ψi(ON×N )) → 0. This implies that γ(Li) → 0.
This concludes the proof of Theorem 4.3 assuming Lemma 4.6. �

Proof of Lemma 4.6. Fix ε > 0. Pick a non-empty open ball B1 in N � ON

containing a fixed point p of φ and such that the displacement energy of
U1 := T ∗

1 B1 in T ∗N is less than ε
4 . Note that the displacement energy of

U1 × U1 inside T ∗(N × N) is also less than ε
4 .

The following claim asserts the existence of a convenient Hamiltonian
diffeomorphism which switches coordinates on a small open set.

Claim 4.7. There exist an open ball B2 ⊂ B1 containing the fixed point p,
0 < r2 < 1 and a Hamiltonian diffeomorphism f of T ∗N × T ∗N such that:

• f(ON×N ) = ON×N ,
• f is the time-1 map of a Hamiltonian supported in U1 × U1,
• for all (x, y) ∈ U2 × U2, we have f(x, y) = (y, x), where U2 := T ∗

r2
B2.

Proof. Since N is assumed even dimensional, there is an identity isotopy, say
ϕt, of N × N which is supported in B1 × B1 with the following property:
there exists a ball B2 ⊂ B1 containing p such that ϕ1(q1, q2) = (q2, q1) on
B2 × B2.

Let ϕ̃t denote the canonical lift of this isotopy to T ∗N × T ∗N . The
isotopy ϕ̃t is symplectic, it preserves ON×N , it is supported in T ∗B1 ×T ∗B1,
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and it can be checked that ϕ̃1(x, y) = (y, x) on T ∗B2 × T ∗B2. Furthermore,
the isotopy is Hamiltonian. Let H denote a generating Hamiltonian of the
isotopy which is supported in T ∗B1 × T ∗B1.

To construct our desired Hamiltonian diffeomorphism f , we simply re-
place H by βH where β is a smooth cutoff function on T ∗(N ×N) such that
β = 1 on T ∗

1−δ(N ×N), where δ is a small positive number, and β = 0 outside
T ∗
1 (N × N). We set f to be the time-1 map of the Hamiltonian flow of βH

and leave it to the reader to check that it satisfies the requirements of the
claim. �

We can now complete the proof of Lemma 4.6. Since p ∈ B2, there
exists a ball B3 ⊂ B2 and 0 < r3 < r2 such that φ(U3) � U2 (i.e., φ(U3) is
compactly contained in U2), where U3 := T ∗

r3
B3.

Let Υi = φi × IdT ∗N and let

Ψi = Υ−1
i ◦ f−1 ◦ Υi ◦ f.

We will first show that γ(Ψi(ON×N )) < ε. Note that by Eq. (4), we have
γ(Ψi(ON×N )) ≤ γ(Ψi), where γ(Ψi) is the Hamiltonian spectral invariant γ
which was introduced above in Eq. (3). Hence, it is sufficient to show that
γ(Ψi) < ε. The triangle inequality for γ (Eq. (6)) and its conjugacy invariance
(Eq. (5)) yield γ(Ψi) ≤ 2γ(f). Lastly, γ(f) < ε

2 because the displacement
energy of its support is smaller than ε

4 ; see Eq. (7). This implies Property (i)
in Lemma 4.6.

Next, we will verify the second property in Lemma 4.6. Define Ψ :=
Υ−1 ◦ f−1 ◦ Υ ◦ f , where Υ := φ × IdT ∗N , and let Φ := φ × φ−1. Since
f,Υ and Φ preserve ON×N , we conclude that Φ ◦ Ψ also preserves ON×N .
Now, there exists a neighborhood of ON×N where the sequences Ψi and Φi

converge uniformly to Ψ and Φ, respectively. It follows that Φi ◦ Ψi(ON×N )
converges in Hausdorff topology to ON×N .

It remains to verify the third property from the lemma. We will first
show that Φi◦Ψi(x, y) = (x, y) for all (x, y) ∈ U3×U3, when i is large enough.
To do so, it is sufficient to check that Ψi(x, y) = (φ−1

i (x), φi(y)), which we
now do:

Ψi(x, y) = Υ−1
i ◦ f−1 ◦ Υi ◦ f(x, y)

= Υ−1
i ◦ f−1 ◦ Υi(y, x)

= Υ−1
i ◦ f−1(φi(y), x)

= Υ−1
i (x, φi(y))

= (φ−1
i (x), φi(y)).

The above chain of identities is an immediate consequence of the following
observations: f(x, y) = (y, x) on U2×U2, U3×U3 ⊂ U2×U2, and Υi(U3×U3) ⊂
U2 × U2 for i large enough; the last statement is a consequence of the fact
that φ(U3) � U2.

Let B = B3 × B3 and r = r3, so that T ∗
r B = U3 × U3. As we have seen,

for i large, Φi ◦ Ψi coincides with the identity on T ∗
r B. We claim that this

implies the third property. Indeed, it clearly implies OB ⊂ Φi ◦ Ψi(ON×N ) ∩
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T ∗B. Furthermore, it also implies that if Φi ◦ Ψi(ON×N ) ∩ T ∗B contains a
point which is not in OB , then such a point is in T ∗B\T ∗

r B. But of course
this cannot happen for i large because of the Hausdorff convergence of Φi ◦
Ψi(ON×N ) to ON×N . This establishes the third property in Lemma 4.6. �

4.2. Proof of Theorem 1.1

By the assumptions of the theorem, one can find some r > 0 and a sequence
φi ∈ Hamc(T ∗

r N,ω0) such that φi converges uniformly to φ. Since the number
of Lagrangian spectral invariants of φ is assumed to be less than cl(N), there
exist some α, β ∈ H∗(N) with deg α,deg β < dim N and α∩β �= 0, such that
�(α, φ) = �(α ∩ β, φ) =: λ. By the continuity of spectral invariants (i.e. the
first item of Theorem 4.1), we have lim �(α, φi) = lim �(α ∩ β, φi) = λ, when
i → ∞.

Let U ⊂ ON be any neighborhood of L ∩ ON in ON . It is enough to
show that the closure U is homologically non-trivial in ON . For doing this,
pick a smooth function f : N → R such that f = 0 on U and f < 0 on N\U .
Denote by π : T ∗N → N the natural projection and define F = βπ∗f where
β : T ∗N → R is compactly supported and β = 1 on T ∗

RN where R is taken
to be large in comparison to r.

Claim 4.8. There exists an integer i0 such that for any i ≥ i0, and for suffi-
ciently small values of ε > 0,

�(α ∩ β, φε
F φi) = �(α ∩ β, φi).

Proof. Let Li = φi(ON ) and Lεf = φε
F (ON ). Note that φt

F (q, p) = (q, p +
t df(q)) for t ∈ [0, 1] and (q, p) ∈ T ∗

r N . Therefore, we have Lεf = {(q, εdf(q)) :
q ∈ N} and φε

F φi(ON ) = φε
F (Li) = Li + Lεf where Li + Lεf := {(q, p +

εdf(q)) : (q, p) ∈ Li}.
Since L ∩ π−1(ON\U) is compact and does not intersect ON , and since

the sequence φi converges uniformly to φ, we conclude that for small enough
ε and large enough i, (Li +Lεf )∩π−1(ON\U) does not intersect ON as well.
On the other hand, since f = 0 on U , we get that (Li + Lεf ) ∩ π−1(U) =
Li ∩ π−1(U). Therefore, for small enough ε > 0 and large enough i, the
Lagrangians Li and Li +Lεf have the same intersection points with the zero-
section ON . Moreover, it is easy to see that for each such intersection point,
the two action values corresponding to φi and φε

F φi coincide. Therefore, by
fixing i and ε > 0, and considering the family of Lagrangians Li + Lsεf

when s ∈ [0, 1], we see that the action spectra Spec(Li + Lsεf , φsε
F φi) do

not depend on s. In addition, recall that the action spectrum has an empty
interior in R. As a result, since the value �(α∩β, φε

F φi) depends continuously
on s, we conclude that it in fact does not depend on s ∈ [0, 1]. In particular,
�(α ∩ β, φi) = �(α ∩ β, φε

F φi). �

The triangle inequality of Proposition 3.2 implies that, for all i, �(α ∩
β, φε

F φi) − �(α, φi) ≤ �(β, φε
F ). Using the above claim, for i large and ε small

enough, we have �(α ∩ β, φi) − �(α, φi) ≤ �(β, φε
F ). Taking limit as i → ∞,

and recalling that lim �(α, φi) = lim �(α ∩ β, φi) = λ, we obtain 0 ≤ �(β, φε
F ).
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We can now conclude our proof as follows. By Proposition 3.2.7 and
Proposition 3.1, we have

0 ≤ �(β, φεF ) = cLS(β, εf) ≤ cLS([N ], εf) = max(εf) = 0.

Hence, cLS(β, εf) = cLS([N ], εf) = 0 and, by Proposition 3.1.4, it follows
that the zero level set of f , that is U , is homologically non-trivial.

4.3. Proof of Proposition 1.2

Let M be a closed surface. The aim of this section is to construct a Hamilton-
ian homeomorphism ψ of T ∗M such that the C0-Lagrangian L = ψ(OM ) has
a single intersection point with the zero section. This will establish Proposi-
tion 1.2.

According to [31], there exists a C1 function f : M → R, whose set of
critical points is an arc γ, i.e., is homeomorphic to [0, 1]. Let us fix such a
function f . Let F = f◦π where π denotes the canonical projection π : T ∗M →
M . The intersection between the C0-Lagrangian submanifold graph(df) =
φ1

F (OM ) and the zero section is exactly γ (where we canonically identify OM

with M). Note that such an arc γ must be very irregular. More precisely, it
must have infinite length (in particular it cannot be smooth). Indeed, if γ
had finite length, then f would have to be constant along γ, hence on the set
of its critical points. In particular, this would imply maxM f = minM f and
f would be constant over M , contradicting the fact that γ is an arc.

We will construct the C0-Lagrangian L roughly by “contracting the arc
to a point”. More precisely, given a point a ∈ γ, we will construct a map
h : T ∗M → T ∗M which is a symplectic diffeomorphism between T ∗M \ γ
and T ∗M\{a}, and satisfies h(γ) = a and h(OM ) = OM . We will then prove
that the map

ψ :

{
x → hφ1

F h−1(x), for x �= a

a → a.

is a Hamiltonian homeomorphism and that L = ψ(OM ) has a unique inter-
section point with OM .

Let us now start the construction. A version of the Jordan–Schoenflies
theorem (for instance its extension due to Homma [14]) implies that the arc
γ admits a basis of neighborhoods (Vi)i≥0, which are all homeomorphic to
open discs and satisfy Vi+1 ⊂ Vi for all i. Let (Ui)i≥1 be a decreasing basis
of neighborhoods of a. Finally, let (δi)i≥0 be a decreasing sequence of real
numbers converging to 0.

Let W0 = V0 and ε0 = δ0. Since the Vi’s form a basis of disc-like neigh-
borhoods, there exists a smooth (time-dependent) vector field X1 supported
in W0 whose time-one map ζ1 sends V1 into U1. We may also assume that ζ1
fixes p. We denote W1 = ζ1(V1) ⊂ U1.

The Hamiltonian function (q, p) → 〈p,X1(q)〉 vanishes on OM and its
flow is supported in T ∗W0. By multiplying it with an appropriate cutoff
function which equals 1 on a neighborhood of the support of X1 in T ∗M , we
obtain a Hamiltonian H1 supported in T ∗

ε0
W0. This Hamiltonian H1 vanishes

on OM , thus its flow preserves it. Moreover, by construction, the restriction
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of its flow to the zero section coincides with the flow of X1. We denote by
h1 = φ1

H1
its time-one map.

Repeating the above, we construct by induction a sequence of positive
real numbers εk converging to 0, a decreasing sequence of open subsets (Wk)
of M and a sequence of Hamiltonians (Hk) on T ∗M such that for each k ≥ 1,
the three following properties hold:

(i) Hk is supported in T ∗
εk−1

Wk−1,
(ii) the time-one map hk = φ1

Hk
preserves OM ,

(iii) Wk = hk ◦ · · · ◦ h1(Vk) is included in Uk,
(iv) T ∗

εk
Wk is included in hk ◦ · · · ◦ h1(T ∗

δk
Vk).

Indeed, assuming all the sequences built up to the order k, we let Xk+1

be a vector field on M which maps the disc hk ◦ · · · ◦ h1(Vk+1) into Uk+1.
The Hamiltonian Hk+1 is then obtained by cutting off (q, p) → 〈p,Xk+1(q)〉
appropriately, as above.

For any x ∈ γ, we have hk ◦ · · · ◦h1(x) ⊂ Uk thus the sequence (hk ◦ · · · ◦
h1(x)) converges to p. For any x /∈ γ, we have x /∈ T ∗

δk
Vk for k large enough.

It follows that for k large enough, hk ◦ · · · ◦ h1(x) does not belong to T ∗
εk

Wk,
hence does not belong to the support of any hi for i > k. Thus, the sequence
(hk ◦ · · · ◦ h1(x)) stabilizes to a point different from a.

We set h(x) = limk→∞ fk(x), where fk(x) := hk ◦ · · · ◦ h1(x). This
limit is uniform. Indeed, given ε > 0, there exists an integer N such that
diam(T ∗

εk
Uk) < ε for all k ≥ N . Let k ≥ N . Then for any x ∈ f−1

k (T ∗
εk

Wk),
we have fk(x) ∈ T ∗

εk
Wk, hence fk+�(x) ∈ T ∗

εk
Wk ⊂ T ∗

εk
Uk for any � ≥

1. Taking limit as � goes to infinity, we obtain fk(x), h(x) ∈ T ∗
εk

Uk hence
d(fk(x), h(x)) < ε. Now, for x /∈ f−1

k (T ∗
εk

Wk), we have fk(x) /∈ T ∗
εk

Wk, hence
fk+�(x) = fk(x) for all � ≥ 1. We deduce that h(x) = fk(x). We have shown
that for all x, d(fk(x), h(x)) < ε, which proves that the limit is uniform.

As a consequence, h is continuous. Moreover the restriction of h induces
a symplectic diffeomorphism T ∗M\γ → T ∗M\{a}. In addition, note that h
preserves the zero section OM . As announced in the beginning of the proof,
we now define

ψ :

{
x → hφ1

F h−1(x), for x �= a,

a → a.

Since φ1
F (OM ) ∩ OM = γ, and since h(OM ) = OM , we have ψ(OM ) ∩ OM =

{a}. Finally, ψ is a Hamiltonian homeomorphism because it is the C0-limit
of the Hamiltonian diffeomorphisms

(hk ◦ · · · ◦ h1) ◦ φ1
F ◦ (hk ◦ · · · ◦ h1)−1

as k goes to infinity. �

5. Hausdorff limits of Legendrians and proof of Theorem 1.5

This section is dedicated to the proof of Theorem 1.5. Recall that we con-
sider a sequence Li of Legendrian submanifolds, contact isotopic to the zero
section in J1N = T ∗N × R, which has a Hausdorff limit L. Denote by
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πR : J1N = T ∗N × R → R the natural projection. Recall that we have
defined the spectrum of L by spec(L) := πR(L ∩ (ON × R)).

Proof of Theorem 1.5. Observe that the Hausdorff convergence of Li’s to L
implies that the set Li∩(ON ×R) is contained in an arbitrarily small neighbor-
hood of L∩ (ON ×R) for large i. Since �(a, Li) corresponds to an intersection
point of Li with the zero wall, we conclude that the set of limit points of
{�(a, Li) : a ∈ H∗(N)\{0}, i ∈ N} is contained in spec(L).

Assume that spec(L) has less than cl(N) points. It follows from the
above discussion that there exist α, β ∈ H∗(N)\{0} and λ ∈ spec(L) such
that for a subsequence (ik) of indices, we have �(α,Lik) → λ and �(α ∩
β, Lik) → λ as k → ∞. By passing to this subsequence, we may further
assume that �(α,Li) → λ and �(α ∩ β, Li) → λ as i → ∞. Let us show that
L ∩ (ON × {λ}) is homologically non-trivial in ON × {λ}.

Pick any neighborhood V of L∩(ON ×{λ}) in J1N . Denote U := πN (V ),
where πN : J1N → N is the natural projection, and pick a smooth function
f : N → R such that f = 0 on U and f < 0 on N\U .

Claim 5.1. There exists an integer i0 such that for any i ≥ i0, and for suffi-
ciently small values of ε > 0,

�(α ∩ β, Li + Lεf ) = �(α ∩ β, Li).

Proof. By the Hausdorff convergence of Li to L, there exists some δ > 0 such
that for i large enough and ε � 0 small enough, we have

(Li + Lεf ) ∩ (ON × (λ − δ, λ + δ)) ⊂ V.

Furthermore, for any (q, p, z) ∈ V , we have that q ∈ U and thus f(q) = 0 and
df(q) = 0. This implies that (Li+Lεf )∩(ON ×(λ−δ, λ+δ)) = Li∩(ON ×(λ−
δ, λ+δ)), in particular spec(Li+Lεf )∩(λ−δ, λ+δ) = spec(Li)∩(λ−δ, λ+δ).

The continuity and spectrality properties of spectral invariants, together
with the fact that the spectrum of Li has an empty interior in R and that
�(α∩β, Li) ∈ (λ−δ, λ+δ) for i large enough, imply that the spectral invariant
�(α ∩ β, Li + Lεf ) is independent of ε. �

Now, the triangle inequality of Proposition 3.3 implies that, for all i,
�(α∩β, Li+Lεf )−�(α,Li) ≤ �(β, Lεf ). Using the above claim, for i large and
ε small enough, we have �(α ∩ β, Li) − �(α,Li) ≤ �(β, Lεf ). Taking limit as
i → ∞, and recalling that �(α∩β, Li), �(α,Li) → λ, we obtain 0 ≤ �(β, Lεf ).

We can now conclude our proof as follows. On the one hand, by Proposi-
tion 3.3.4, we have �(β, Lεf ) = cLS(β, εf). Note that cLS(β, εf) = cLS([N ] ∩
β, εf) and by the above paragraph this number is non-negative. On the other
hand, Proposition 3.1.2 gives cLS([N ], εf) = 0. Thus, using Proposition 3.1.3,
we obtain the equality cLS(β, εf) = cLS([N ] ∩ β, εf) = cLS([N ], εf). By
Proposition 3.1.4, it follows that the zero level set of f , that is the closure of
U = πN (V ), is homologically non-trivial in N . Since our choice of a neigh-
borhood V of L∩ (ON ×{λ}) was arbitrary, we conclude that L∩ (ON ×{λ})
is homologically non-trivial in ON × {λ}. �
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[13] Hofer, H.: On the topological properties of symplectic maps. Proc. R. Soc.
Edinb. Sect. A 115(1–2), 25–38 (1990)

[14] Homma, T.: An extension of the Jordan curve theorem. Yokohama Math. J. 1,
125–129 (1953)

[15] Howard, W.: Action Selectors and the Fixed Point Set of a Hamiltonian Dif-
feomorphism (2012). ArXiv: 1211.0580

[16] Humilière, V., Leclercq, R., Seyfaddini, S.: Coisotropic rigidity and C0-
symplectic geometry. Duke Math. J. 164(4), 767–799 (2015)

[17] Humilière, V., Vichery, N.: Cuplength estimates via microlocal sheaf theory. In
preparation

[18] Kawamoto, Y.: On C0-continuity of the spectral norm on non-symplectically
aspherical manifolds (2019). arXiv:1905.07809

[19] Lalonde, F., McDuff, D.: The geometry of symplectic energy. Ann. Math. (2)
141(2), 349–371 (1995)

[20] Lalonde, F., McDuff, D., Polterovich, L.: On the flux conjectures. In: Geome-
try, Topology, and Dynamics (Montreal, PQ, 1995), Volume 15 of CRM Proc.
Lecture Notes. Amer. Math. Soc, Providence, pp. 69–85(1998)

[21] Laudenbach, F., Sikorav, J.-C.: Persistance d’intersection avec la section nulle
au cours d’une isotopie hamiltonienne dans un fibré cotangent. Invent. Math.
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[41] Théret, D.: A complete proof of Viterbo’s uniqueness theorem on generating
functions. Topol. Appl. 96(3), 249–266 (1999)

[42] Viterbo, C.: Symplectic topology as the geometry of generating functions.
Math. Ann. 292, 685–710 (1992)

[43] Zapolsky, F.: Geometry of contactomorphism groups, contact rigidity, and con-
tact dynamics in jet spaces. Int. Math. Res. Not. IMRN 20, 4687–4711 (2013)

Lev Buhovsky
School of Mathematical Sciences
Tel Aviv University
Tel Aviv
Israel
e-mail: levbuh@tauex.tau.ac.il

Vincent Humilière and Sobhan Seyfaddini
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Quantitative h-principle in symplectic
geometry

Lev Buhovsky and Emmanuel Opshtein

Abstract. We prove a quantitative h-principle statement for subcriti-
cal isotropic embeddings. As an application, we construct a symplectic
homeomorphism that takes a symplectic disc into an isotropic one in
dimension at least 6.
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1. Introduction

Gromov’s h-principle lies at the core of symplectic topology, by reducing
many questions on the existence of embeddings or immersions to verify-
ing their compatibility with algebraic topology. Symplectic topology focuses
mainly on the other problems, that do not abide by an h-principle: La-
grangian embeddings, existence of symplectic hypersurfaces in specific ho-
mology classes, etc. In [2], we have proved a refined version of h-principle,
which in turn yielded applications to C0-symplectic geometry. For instance,
we proved in [2] that in dimension at least 6, C0-close symplectic 2-discs of
the same area are isotopic by a small symplectic isotopy, while in dimension
4, this does no longer hold. A similar quantitative h-principle was also used in
[1] to show that the symplectic rigidity manifested in the Arnold conjecture
for the number of fixed points of a Hamiltonian diffeomorphism completely
disappears for Hamiltonian homeomorphisms in dimension at least 4.

The goal of this note is to prove a quantitative h-principle for isotropic
embeddings and to derive some flexibility statements on symplectic homeo-
morphisms.

Theorem 1. (Quantitative h-principle for subcritical isotropic embeddings)
Let V be an open subset of C

n, k < n, u0, u1 : Dk ↪→ V be isotropic

Dedicated to Claude Viterbo, on the occasion of his 60th birthday. This article is part of
the topical collection “Symplectic geometry-A Festschrift in honour of Claude Viterbo’s
60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs Frauenfelder, and
Felix Schlenk.
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embeddings of closed discs. We assume that there exists a homotopy F :
Dk × [0, 1] → V between u0 and u1 (so F (·, 0) = u0, F (·, 1) = u1) of size less
than ε (i.e. DiamF ({z} × [0, 1]) < ε for all z ∈ Dk).

Then there exists a compactly supported in V Hamiltonian isotopy
(Ψt)t∈[0,1] of size 2ε (i.e. Diam {Ψt(z) | t ∈ [0, 1]} < 2ε for every z ∈ V ),
such that Ψ1 ◦ u0 = u1.

The proof shows that the theorem holds in the relative case, provided
u0, u1 are symplectically isotopic, relative to the boundary. The method of the
proof of theorem 1 follows a very similar track as the quantitative h-principle
for symplectic discs that we established in [2]. Paralleling the construction
of a symplectic homeomorphism whose restriction to a symplectic 2-disc is
a contraction in dimension 6, we can deduce from theorem 1 the following
statement:

Theorem 2. There exists a symplectic homeomorphism with compact support
in C

3 which takes a symplectic 2-disc to an isotropic one.

Of course, by considering products, we infer that there exists symplectic
homeomorphisms that take some codimension 4 symplectic submanifolds to
submanifolds which are nowhere symplectic.

The note is organized as follows. We prove theorem 1 in the next section.
The construction of a symplectic homeomorphism that takes a symplectic disc
to an isotropic one is explained in Sect. 3, where we also explain a relation
to relative Eliashberg-Gromov type questions, as posed in [2].

This paper is a result of the work done during visits of the first author at
Strasbourg University, and a visit of the second author at Tel Aviv University.
We thank both universities and their symplectic teams for a warm hospitality.
We thank Maksim Stokic for pointing our attention to a gap in our proofs in
a previous version of the paper. We thank the referee for careful reading and
useful comments. The first author was partially supported by ERC Starting
Grant 757585 and ISF Grant 2026/17.

Conventions and Notations We convene the following in the course of
this paper:

• All our homotopies and isotopies have parameter space [0, 1]. For instance
(gt) denotes an isotopy (gt)t∈[0,1].

• Similarly, by concatenation of homotopies we always mean reparametrized
concatenation.

• If F : [0, 1] × X → Y is a homotopy with value in a metric space,
Size (F ) := max{Diam

(
F ([0, 1] × {x})

)
, x ∈ X}.

• For A ⊂ B, Op (A,B) stands for an arbitrarily small neighbourhood of
A in B. To keep light notation, we omit B whenever there is no possible
ambiguity.

• A homotopy F : [0, 1] × N → M is said relative to A ⊂ N if for every
z ∈ A, F (t, z) is independent on t ∈ [0, 1].

• A homotopy G : [0, 1]2 × N → M between F0, F1 : [0, 1] × N → M (that
is a continuous map such that G(i, t, z) = Fi(t, z) for i = 0, 1) is said
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relative to A and {0, 1} if G(s, t, z) = F0(t, z) = F1(t, z) for all z ∈ A and
if G(s, i, z) = F0(i, z) for all s ∈ [0, 1].

2. Quantitative h-principle for isotropic discs

The aim of this section is to prove theorem 1.

2.1. Standard h-principle for subcritical isotropic embeddings

We recall in this section the main properties of the action of the Hamiltonian
group on isotropic embeddings, as described in [3,4]. For this purpose, we first
fix some notations. In the current note, a disk Dk is always assumed to be
closed, unless explicitly stated (hence an embedding of D inside an open set is
always compactly embedded). Since we only deal with isotropic embeddings,
it is enough to prove theorem 1 for subcritical isotropic embeddings of [−1, 1]k

rather than of a closed disc. By abuse of notation, in this section we denote
Dk = [−1, 1]k. The set of isotropic framings Giso(k, n) is the space of (k, 2n)-
matrices of rank k whose columns span an isotropic vector space in (R2n, ωst).

Recall that the h-principle for subcritical isotropic embeddings provides
existence of isotropic embeddings or homotopies whose derivatives realize ho-
motopy classes of maps to Giso(k, n). We will need a specialization of the
h-principle for subcritical isotropic embeddings to C

n, which in particular
addresses a relative setting. In order to present its formulation, we will use
the following terminology: if A ⊂ Dk, a homotopy of f : Dk → Giso(k, n)
rel Op (A) is a continuous map F : [0, 1] × Dk → Giso(k, n) such that
F (t, z) = f(z) for all z ∈ Op (A). A homotopy G : [0, 1]2 × Dk → Giso(k, n)
between F0, F1 : [0, 1] × Dk → Giso(k, n) (that is a continuous map such
that G(i, t, z) = Fi(t, z) for i = 0, 1) is said relative to Op (A) and {0, 1} if
G(s, t, z) = F0(t, z) = F1(t, z) for all z ∈ Op (A) and if G(s, i, z) = F0(i, z)
for all s ∈ [0, 1] and i ∈ {0, 1}.

Theorem 2.1. (Parametric C0-dense relative h-principle for isotropic embed-
dings [3]) Let k < n:

(a) Let ρ : Dk → C
n be a continuous map whose restriction to a neigh-

bourhood of a closed subset A ⊂ Dk is an isotropic embedding. As-
sume that dρ is homotopic to a map G : Dk → Giso(k, n) relative
to Op (A). Then, for any ε > 0, there exists an isotropic embedding
u : Dk ↪→ C

n which coincides with ρ on Op (A), dC0(ρ, u) < ε and such
that du : Dk → Giso(k, n) is homotopic to G rel Op (A).

(b) Let u0, u1 : Dk ↪→ C
n be isotropic embeddings, which coincide on a

neighbourhood of a closed subset A ⊂ Dk. Let G : [0, 1]×Dk → Giso(k, n)
be a homotopy between du0, du1 rel Op (A) and ρt : Dk → C

n a
homotopy between u0, u1 rel Op (A). For any ε > 0, there exists an
isotropic isotopy ut : Dk ↪→ C

n (t ∈ [0, 1]) relative to Op (A) such that
dC0(ρt, ut) < ε and {dut} is homotopic to G rel Op (A) and {0, 1}.
The next lemma will be used in the proof of the theorem 1.
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Lemma 2.2. Let A,B be two closed subsets of Dk. Let u0, u1 : Dk ↪→ C
n be

subcritical isotropic embeddings that coincide on Op (A). Assume that we are
given a homotopy Gt : Dk → Giso(k, n) between du0 and du1 rel Op (A). Let
vt : Dk ↪→ C

n be an isotropic isotopy between u0 and v1 rel Op (A), such that
v1|Op (B) = u1, and such that {dvt|Op (B)} is homotopic to {Gt|Op (B)} relative
to Op (A) and {0, 1}.1 Then dv1 and du1 are homotopic rel Op (A∪B) among
maps Dk → Giso(k, n).

Remark 2.3. In the setting of Lemma 2.2, since v1 and u1 are homotopic rel
Op (A ∪ B) (just consider the linear homotopy between them), the lemma
and theorem 2.1 immediately imply that v1 is in fact isotropic isotopic to u1

rel Op (A ∪ B).

Proof of lemma 2.2. Consider the homotopy Kt := dvt : Dk → Giso(k, n) be-
tween du0 and dv1 relative to Op (A), and the homotopy Gt : Dk → Giso(k, n)
between du0 and du1 rel Op (A), provided by the assumption. Letting Kt :=
K1−t, we now consider the concatenation Ht := Kt � Gt. Since {dvt|Op (B)}
is homotopic to {Gt|Op (B)} relative to Op (A) and {0, 1} (as assumed by the
lemma), there exists a homotopy Hs,t (s ∈ [0, 1]) between Ht|Op (B) and It

relative to Op (A) and {0, 1}, where It ≡ du1|Op (B) = dv1|Op (B) is a con-
stant homotopy. Let χ : Dk → [0, 1] be a continuous function such that
χ(x) = 0 on a complement of a sufficiently small neighborhood of B in Dk,
and χ(x) = 1 on a (smaller) neighborhood of B. Now define a homotopy
G̃t : Dk → Giso(k, n) (t ∈ [0, 1]) by

G̃t(z) :=
{

Hχ(z),t(z) when z ∈ Op (B),
Gt(z) otherwise.

Then G̃t is a desired homotopy between du1 and dv1 rel Op
(A ∪ B). �

We will also need the following lemma, which allows to achieve general
positions by Hamiltonian perturbations.

Lemma 2.4. Let V ⊂ C
n be an open set. We consider the following two pos-

sible scenarios:
1 Let Σ1,Σ2 be two smooth proper submanifolds of V , which are transverse

in a neighbourhood of ∂V . Then there exists an arbitrarily C1-small
Hamiltonian flow (φt)t∈[0,1] whose generating Hamiltonian is compactly
supported in V , such that φ1(Σ1) � Σ2.

2 Let Σ1 be a smooth proper submanifold of V , and let Σ2 be a smooth
manifold such that dim Σ1+dim Σ2 � 2n−2. Furthermore, let ιt : Σ2 →
V be a smooth proper family of embeddings for t ∈ [0, 1], such that Σ1

and ιt(Σ2) do not intersect near the boundary of V (uniformly in t).
Then there exists an arbitrarily C1-small Hamiltonian flow (φt)t∈[0,1]

1Recall that this means there exists a continuous map G : [0, 1]2×Op (B) → Giso(k, n) such
that G(0, t, z) = Gt(z) and G(1, t, z) = dvt(z) ∀(t, z) ∈ [0, 1] × Op (B), G(s, t, z) = du0(z)

∀(s, t, z) ∈ [0, 1]2×Op (A∩B),G(s, 0, z) = G0(z) = du0(z) andG(s, 1, z) = G1(z) = dv1(z)
∀(s, z) ∈ [0, 1] × Op (B).
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whose generating Hamiltonian is compactly supported in V , such that
φ1(Σ1) ∩ ιt(Σ2) = ∅ for any t ∈ [0, 1].

Proof. For both statements, it is enough to show the following claim: if Σ1,
Σ2 are smooth manifolds (possibly with boundary), and if f1 : Σ1 → V and
f2 : Σ2 → V are smooth proper maps such that f1 � f2 near ∂V , then there
exists an arbitrarily small Hamiltonian flow (φt)t∈[0,1] with compact support
in V , such that φ1 ◦ f1 � f2. Indeed, the first statement of the lemma readily
follows from this, and for the second statement we can apply the claim with
maps the maps f1 = Id : Σ1 → V and f2 : Σ2 × [0, 1] → V , f2(w, t) = ιt(w).

Now let us show the above claim. Assume that Σ1, Σ2 are smooth
manifolds (possibly with boundary), and let f1 : Σ1 → V and f2 : Σ2 → V
be smooth maps such that f1 � f2 on V \ K where K ⊂ V is a compact
subset. Pick a smooth compactly supported function h : V → R such that
h = 1 on a neighbourhood of K. Now define the smooth map F : Σ1 × Σ2 →
C

n by F (w1, w2) = f2(w2) − f1(w1). Then by the Sard theorem, the set of
critical values of F has measure zero. Hence there exist arbitrarily small (in
norm) regular critical values v ∈ C

n of F . Picking such a value v, define
the autonomous Hamiltonian function H : V → R by H(z) = h(z)ωstd(v, z),
where ωstd is the standard symplectic form of C

n. Then its Hamiltonian
flow verifies φt

H(z) = z + v for z ∈ Op (K), and it is now easy to see that
φ1

H ◦ f1 � f2 (provided that v is sufficiently close to the origin). �

We finally state a version of Theorem 2.1 which we will use later on:

Proposition 2.5. Let V ⊂ R
2n be an open set, u0, u1 :

◦
Dl × [−1, 1]k−l ↪→

V be proper subcritical isotropic embeddings which coincide on Op (∂Dl ×
[−1, 1]k−l), such that u0 and u1 are homotopic in V relative to Op (∂Dl ×
[−1, 1]k−l), and moreover their differentials du0, du1 are homotopic in
Giso(k, n) relative to Op (∂Dl × [−1, 1]k−l). We fix such a relative homotopy

G : [0, 1] ×
◦
Dl × [−1, 1]k−l → Giso(k, n) between du0 and du1. If l = 1,

we further assume that the curves given by restrictions of u0 and u1 to
◦
D1 × {0} = (−1, 1) × {0} ⊂ R

k have the same actions, i.e. for a 1-form
λ which is a primitive of ω in V ,

∫

(−1,1)×{0}
u∗

1λ − u∗
0λ = 0.

Then there exists a Hamiltonian isotopy (φt) with compact support in
V such that φ1 ◦ u0 = u1 and for the induced isotropic isotopy ut = φt ◦ u0,
{dut} is homotopic to G rel Op (∂Dl × [−1, 1]k−l) and {0, 1}.

Proof. Consider the closed ball D := Dl = B
l
(0, 1), denote D(r) := B

l
(0, r),

Aε′,ε := D(1 − ε′)\
◦
D(1 − ε) and Aε := D\

◦
D(1 − ε). By assumption, there

exists ε0 > 0 such that u0, u1 coincide on Aε0 × [−1, 1]k−l and moreover the
homotopy G is relative to Aε0 × [−1, 1]k−l and {0, 1}. We fix 0 < ε1 < ε0.
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The restrictions of the maps u0, u1 to D(1− ε1)× [−1, 1]k−l coincide on
A := Aε1,ε0 × [−1, 1]k−l, and G provides a homotopy between their differen-
tials relative to A. By theorem 2.1, there exists a compactly supported time-
dependent Hamiltonian function H : [0, 1] × V → R whose flow φt

H isotopes
u0|D(1−ε1)×[−1,1]k−l to u1 relative to A, with {d(φt

H ◦ u0)|D(1−ε1)×[−1,1]k−l}
homotopic to G relative to A and {0, 1}. The subcritical assumption allows
us to apply Lemma 2.4 and assume that

ϕt
H ◦ u0(D(1 − ε0) × [−1, 1]k−l) ∩ u0(Aε1 × [−1, 1]k−l) = ∅ (2.1.1)

for every t ∈ [0, 1]. Since we moreover have

φt
H ◦ u0|Aε1,ε0×[−1,1]k−l = u0, (2.1.2)

we obtain the family of embeddings

ut :
◦
Dl × [−1, 1]k−l −→ V

(x, y) 
−→
{

φt
H ◦ u0(x, y) if x ∈ D(1 − ε1),

u0(x, y) if x ∈ Aε1

that provides an isotropic isotopy between u0 and u1 relative to Aε0 ×
[−1, 1]k−l, whose differential realizes G. At this point a distinction is nec-
essary.

• If l ≥ 2, A is connected, pointwise fixed by φt
H , hence the differen-

tial of H(t, ·) vanishes on u0(A) and in particular H(t, ·) assumes a constant
value ct on u0(A). The Hamiltonian H ′(t, ·) := H(t, ·) − ct therefore van-
ishes on u0(A) together with its differential, and induces the same isotopy
between u0|D(1−ε1)×[−1,1]k−l and u1 relative to A. Then, (2.1.1) and (2.1.2)
guarantee that if we cut H ′ off away from a sufficiently small neighborhood
of ∪t∈[0,1]ut(D(1− ε0)× [−1, 1]k−l) then we obtain a compactly supported in
V Hamiltonian function F such that φt

F ◦ u0 = ut for each t ∈ [0, 1].
• If l = 1, A is not connected and the above argument cannot be carried

out unless we ensure that

αt :=
∫

(−1,1)×{0}
u∗

t λ − u∗
0λ (2.1.3)

vanishes. Since however this is not automatic because A is no longer con-
nected, we first alter ut to another isotopy u′

t that satisfies this property.
By assumption we have α0 = α1 = 0. Let K : V → R be a compactly

supported Hamiltonian function such that

K|Op (u0([−1+ε1,−1+ε0]×[−1,1]k−1)) ≡ 0

and K|Op (u0([1−ε0,1−ε1]×[−1,1]k−1)) ≡ 1. (2.1.4)

Then ũt := φ−αt

K ◦ ut agrees with u0 on A = ([−1 + ε1,−1 + ε0]∪
[1 − ε0, 1 − ε1]) × [−1, 1]k−1, we have ũ0 = u0, and by α1 = 0 we moreover
have ũ1 = u1. In addition, by (2.1.4) and (2.1.3) we get

∫

(−1+ε1,1−ε1)×{0}
ũ∗

t λ − u∗
0λ = −αt +

∫

(−1+ε1,1−ε1)×{0}
u∗

t λ − u∗
0λ = 0.

(2.1.5)
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for each t ∈ [0, 1]. Now, by applying Lemma 2.4 we may assume that

ũt((−1 + ε0, 1 − ε0) × [−1, 1]k−1) ∩ u0(Aε1) = ∅ (2.1.6)

for every t ∈ [0, 1], where Aε1 = ((−1,−1+ε1]∪ [1−ε1, 1))× [−1, 1]k−1. Since
we moreover have ũt = u0 on A, we can define the family of embeddings

u′
t : (−1, 1) × [−1, 1]k−1 −→ V

(x, y) 
−→
{

ũt(x, y) if x ∈ (−1 + ε1, 1 − ε1),
u0(x, y) if x ∈ (−1,−1 + ε1] ∪ [1 − ε1, 1)

that provides an isotropic isotopy between u0 and u1 relative to Aε0 ×
[−1, 1]k−1. To see that the path of differentials du′

t realizes G, consider the
family of isotropic immersions (u′

s,t)s,t∈[0,1] given by

u′
t,s (−1, 1) × [−1, 1]k−1 −→ V

(x, y) −→
{

φ−sαt
K ◦ ut(x, y) if x ∈ [−1 + ε1, 1 − ε1],

u0(x, y) if x ∈ [−1, −1 + ε1] ∪ [1 − ε1, 1]

and then the induced family of differentials du′
s,t provides us a homotopy

between the path dut = du′
0,t and du′

t = du′
1,t relative to Aε0 ×[−1, 1]k−1 and

{0, 1}, while the path dut is in turn homotopic to G relative to Aε0×[−1, 1]k−1

and {0, 1}.
Now we can proceed similarly as in the previous case (of l ≥ 2). Denoting

by H̃ the Hamiltonian function of the flow φ−αt

K ◦ φt
H , we have u′

t = φt
H̃

◦ u0

on [−1 + ε1, 1 − ε1] × [−1, 1]k−1. Then by (2.1.5) we have
∫

(−1+ε1,1−ε1)×{0}
(u′

t)
∗λ − u∗

0λ = 0

for each t ∈ [0, 1], and moreover the flow φt
H̃

= φ−αt

K ◦ φt
H is the identity

when restricted to u0(A) (where A = ([−1 + ε1,−1 + ε0] ∪ [1 − ε0, 1 − ε1])×
[−1, 1]k−1), therefore H̃(t, ·) assumes a constant value ct on u0(A) and its
differential vanishes on u0(A), for each t. Hence denoting H ′(t, ·) := H̃(t, ·)−
ct, the transversality property (2.1.6) implies that a Hamiltonian function
F obtained as a cutoff of H ′ away from a sufficiently small neighborhood
of ∪t∈[0,1]u

′
t([−1 + ε0, 1 − ε0] × [−1, 1]k−1), satisfies φt

F ◦ u0 = u′
t for each

t ∈ [0, 1]. �

2.2. Proof of theorem 1

Let k < n, Dk := [−1, 1]k,Dk(μ) := [−1−μ, 1+μ]k, u0, u1 : Dk ↪→ V ⊂ C
n be

smooth isotropic embeddings, and F : Dk × [0, 1] → V a homotopy between
u0, u1 with Size F < ε. We need to prove that there exists a Hamiltonian
isotopy of size 2ε, which takes u0 to u1 on Dk.

Before passing to the proof, we need to modify slightly the framework.
First, extend the isotropic embeddings and the homotopy to slightly larger
isotropic embeddings: u0, u1 : Dk(μ) ↪→ V , F : Dk(μ) × [0, 1] → V , where
Dk(μ) = [−μ, 1 + μ]k. By Lemma 2.4, we do not loose generality if we as-
sume that the images of u0 and u1 are disjoint (since k < n), which we do
henceforth. Next, the homotopy F can be turned into a more convenient
object:

Vol. 24 (2022) Quantitative h-principle in symplectic geometry
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Lemma 2.6. (see lemma A.1[2]) There exists a smooth embedding F̃ : Dk(μ)×
[0, 1] ↪→ V , with F̃ (x, 0) = u0(x), F̃ (x, 1) = u1(x), with Diam (F̃ ({x} ×
[0, 1])) < 2ε for all x ∈ Dk(μ). In other words, F̃ has size 2ε when considered
as a homotopy between u0, u1.

Now F̃ can be further extended to an embedding, still denoted F̃ ,

F̃ : Dk(μ) × [−μ, 1 + μ] × [−μ, μ]2n−k−1 ↪→ V.

Consider now a regular grid Γ0 := νZk ∩ Dk in Dk ⊂ Dk(μ), of step
ν � 1 (to be specified later), where ν−1 ∈ N. This grid generates a cellular
decomposition of Dk, whose l-skeleton Γl is the union of the l-faces. The set
of k-faces has a natural integer-valued distance, where the distance between
k-faces x and x′ is the minimal m such that there exists a sequence x =
x0, x1, . . . , xm = x′ of k-faces and xj ∩ xj+1 = ∅ for each j ∈ [0,m − 1]
(note that those intersections are not required to be along full (k − 1)-faces).
Fix some η < ν/2, and for each x ∈ Γ0, let Ux be the η-neighbourhood of
{x} × [0, 1] × {0}2n−k−1 in C

n, and then denote Wx := F̃ (Ux). Similarly, for
each k-face xk, denote by Uxk

the η-neighbourhood of xk × [0, 1]×{0}2n−k−1

in C
n, and then put Wxk

:= F̃ (Uxk
). For a k-face x and m � 0 we denote

Wm
x := ∪Wx′ , where the union is over all the k-faces x′ which are at distance

at most m from x. Note that W 0
x = Wx, and that Wm

x is a topological ball.
Finally, we put W := ∪xWx ⊂ V , where the union is over all the k-faces.
Hence, W = F̃ (U) where U is the η-neighborhood of Dk × [0, 1] × {0}2n−k−1

in C
n.
We will prove Theorem 1 by successively isotopying the l-skeleton with

a control on each isotopy. Precisely, arguing by induction on l, we prove the
following:

Proposition 2.7. There exist Hamiltonian isotopies (Ψt
l), l ∈ [0, k] with sup-

port in W , and modified embeddings v0 := Ψ1
0 ◦ u0, vl := Ψ1

l ◦ vl−1, such
that
(I1) vl ≡ u1 on a neighbourhood of the l-skeleton Γl, for every l ∈ [0, k].
(I2) vl(x) ⊂ W 3l−1

x for each k-face x and every l ∈ [0, k − 1].
(I3) Ψt

l(Wx) ⊂ W 2·3l−1

x for each k-face x and l ∈ [1, k − 1],
and Ψt

0(Wx) ⊂ Wx, Ψt
k(Wx) ⊂ W 3k(k+1)

x , for every k-face x.
(I4) vl(

◦
xl+1) ∩ u1(

◦
x′

l+1) = ∅ for every pair of distinct (l + 1)-faces, ∀l ∈
[0, k − 1].

(I5) dvl and du1 are homotopic rel Op (Γl) among maps Dk(μ) → Giso(k, n),
for each l ∈ [0, k − 1].

Proposition 2.7 readily implies Theorem 1. Indeed, denoting by (Ψt)t∈[0,1]

the (reparametrized) concatenation {Ψt
k} � · · · � {Ψt

1} of the flows, from (I3)

we conclude that for each k-face x and each t we have Ψt(Wx) ⊂ W 3k2+k+1

x

since
(∑k−1

j=1 2 · 3j
)

+ 3k(k+1) < 3k2+k+1. The flow (Ψt) is supported in
W = ∪x∈Γk

Wx ⊂ V , and if the step ν of the grid is chosen to be suffi-

ciently small, then for each k-face x, the diameter of W 3k2+k+1

x is less than
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2ε. Consequently, the size of the flow (Ψt)t∈[0,1] is less than 2ε. Moreover, by
(I1) we have Ψ1 ◦ u0 = vk = u1 on Dk. �

Proof of proposition 2.7. As already explained, the proof goes by induction
over the dimension of the skeleton Γl.

Since Dk(μ) is contractible, there exists a homotopy Gt : Dk → Giso(k, n)
between du0 and du1.

The 0-skeleton: Let x ∈ Γ0 be a 0-face, ρ < η, and Dρ(x) the ρ-
neighbourhood of x in Dk(μ). Then u0(Dρ(x)), u1(Dρ(x)) both lie in Wx,
and F̃ provides an isotopy between u0|Dρ(x) and u1|Dρ(x) in Wx. By theorem
2.1.b), there exists a Hamiltonian isotopy (ψt

x) with support in Wx, such that
ψ1

x ◦u0 = u1 on Dρ(x) and dψt
x ◦du0|Dρ(x) is homotopic to Gt rel {0, 1}. Since

Wx∩Wx′ = ∅ for different 0-faces x, x′, the isotopies ψx have pairwise disjoint
supports.

The flow ψt
0 := ◦xψt

x (where the composition runs over all 0-faces x of
Γ) and the disc v′

0 := ψ1
0 ◦ u0 verify (I1) by construction. Moreover, the flow

satisfies (I3) because it is supported inside the disjoint union ∪x∈Γ0Wx, and
for every x ∈ Γ0 and k-face x′ we have either Wx ⊂ Wx′ or Wx ∩ Wx′ = ∅.
In addition, dψt

0 ◦ du0|Op (Γ0) is homotopic to Gt rel {0, 1}. In the next steps
of the proof we will need proposition 2.5 for performing relative isotopies via
localized Hamiltonians. Note however that in the case of l = 1, in addition
to the formal obstructions, the proposition requires the actions of the edges
to coincide. Hence in order to proceed, we have to adjust the actions of the
edges.

Let us show that there exists a Hamiltonian isotopy (ψt
A), supported in

an arbitrarily small neighborhood v′
0(Γ0) = u1(Γ0), whose flow is the identity

on a (smaller) neighbourhood of Γ0, such that

A(
ψ1

A ◦ v′
0 ◦ γ

)
:=

∫

ψ1
A◦v′

0◦γ

λ =
∫

u1◦γ

λ = A(
u1 ◦ γ

)
for every edgeγofΓ,

where by an edge γ of Γ here we mean a parametrized 1-face of Γ. The
argument is very similar to the one for symplectic 2-discs given in [2, Page
17], however a small modification is needed since here we are dealing with
isotropic discs (instead of symplectic 2-discs). Look at the discs v′

0 and u1. For
any edge (i.e. a parametrized 1-face) γ of Γ, the actions A(v′

0 ◦ γ) =
∫

v′
0◦γ

λ

and A(u1 ◦γ) =
∫

u1◦γ
λ do not necessarily coincide. Fix a 0-face z0 ∈ Γ0, and

for any other 0-face z ∈ Γ0, choose a path γz made of successive edges of Γ
which joins z0 to z. Define

az :=
∫

u1◦γz

λ −
∫

v′
0◦γz

λ.

Notice that these numbers depend on the choice of z0 but not of γz since
v0, u1 are isotropic. Then, for each edge γ of Γ,

A(v′
0 ◦ γ) + aγ(1) − aγ(0) = A(u1 ◦ γ)

(because aγ(1) can be obtained by integrating λ along a path that joins z0 to
γ(0), concatenated with γ). Now choose disjoint spherical shells Az = {w ∈
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C
n | ρz < |w−z| < ρ′

z} ⊂ Wz, for all z ∈ Γ0. Consider a Hamiltonian function
HA with support in ∪zB(z, ρ′

z), and which is equal to −az on B(z, ρz). The
induced Hamiltonian isotopy (ψt

A) is supported inside ∪zWz, and its time-1
map ψ1

A is such that for every edge γ of Γ, the area between v′
0◦γ and ψ1

A◦v′
0◦γ

equals aγ(1) −aγ(0), hence now the actions of u1 and ψ1
A ◦v′

0 coincide on each
edge. Since ψt

A ≡ Id near Γ0, Ψ̃t
0 := (ψt

A) � (ψt
0) and ṽ0 := Ψ̃1

0 ◦ u0 = ψ1
A ◦ v′

0

still verify (I1), and the restriction of dΨ̃t
0 ◦du0 = dψt

A ◦dψt
0 ◦du0 to Op (Γ0)

is still homotopic to Gt rel {0, 1}. Also, since (ψt
A) is supported in ∪zWz, (I3)

remains to hold for the flow (Ψ̃t
0), and in addition we have A(ṽ0◦γ) = A(u1◦γ)

for every edge γ of Γ.
However, ṽ0 might not verify (I4). Still, since ṽ0 coincides with u1 on a

neighbourhood of Γ0, there exist closed balls Bx0 = B(u1(x0), r) ⊂ Wx0 for
each 0-face x0 of Γ, such that (I4) is verified inside these balls. Therefore the
traces of the submanifolds ṽ0(x1) and u1(x′

1) inside ∪
x0∈Γ0

(
Wx0\Bx0

)
verify

the hypothesis of Lemma 2.4 (1), for every pair of distinct 1-faces x1, x
′
1. Thus

an arbitrarily C1-small Hamiltonian flow (φt
0) whose generating Hamiltonian

is supported in ∪
x0∈Γ0

(
Wx0\Bx0

) ⊂ ∪
x0∈Γ0

Wx0 achieves φ1
0 ◦ ṽ0(x1) � u1(x′

1),

for every pair x1, x
′
1 of different 1-faces of Γ (hence these intersections are

empty). Now the (reparametrized) concatenation Ψt
0 := (φt

0) � (Ψ̃t
0) of the

flows verifies (I4), still verifies (I1), and (I3) still holds for v0 := Ψ1
0 ◦ u0.

Since φt
0 ≡ Id near Γ0, the restriction dΨt

0 ◦ du0|Op (Γ0) is still homotopic to
Gt rel {0, 1}. Since the flow φt

0 is generated by a Hamiltonian function that
vanishes on ∪

x0∈Γ0
Bx0 , the equality of actions A(v0 ◦ γ) = A(u1 ◦ γ) remains

to hold for every edge γ of Γ. Finally, (I2) follows immediately from (I3),
and v0 satisfies (I5) by direct application of Lemma 2.2.

The l-skeleton (1 � l < n − 1): Here we assume that Ψ1, . . . ,Ψl−1

have been constructed, and we proceed with the induction step. Recall that
vl−1 = Ψ1

l−1 ◦· · ·◦Ψ1
0 ◦u0 coincides with u1 on Op (Γl−1) and that vl−1(xk) ⊂

W 3l−1−1
xk

for every k-face xk. Recall also that we have a homotopy Gl
t : Dk →

Giso(k, n) between dvl−1 and du1 rel Op (Γl−1). Now our aim is to find a
Hamiltonian flow (Ψt

l) which in particular isotopes vl−1|Op (xl) to u1|Op (xl),
for each l-face xl.

Fix an l-face xl of Γ. By (I1), there exists an open box x̂l � ◦
xl such

that vl−1 and u1 coincide on Op (xl\x̂l). Choose a k-face xk which contains
xl. Since u1(x̂l) and vl−1(x̂l) both lie in the topological ball W 3l−1−1

xk
and

coincide near their boundary, there exists a homotopy

σxl
: x̂l × [0, 1] → W 3l−1−1

xk

such that σxl
(·, 0) = vl−1, σxl

(·, 1) = u1, and σxl
(z, t) = u1(z) ∀z ∈ Op (∂x̂l),

t ∈ [0, 1]. Since x̂l � ◦
xl and l < n, (I4) allows to use a general position

argument to ensure that moreover Imσxl
admits a regular neighbourhood

Vxl
⊂ W 3l−1−1

xk
(a topological ball), such that all these neighbourhoods Vxl

are pairwise disjoint when xl runs over the l-faces (this is the only point in
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the proof where we need that l < n − 1), and such that the restrictions of
vl−1 and u1 to x̂l are proper embeddings into Vxl

for every l-face xl of Γ.
By assumption, there exists a homotopy Gt

l : [0, 1] × Dk → Giso(k, n)
between dvl−1 and du1, with Gt

l|Op (Γl−1)
= du1 = dvl−1. Also, vl−1|Op (x̂l) is

clearly homotopic to u1|Op (x̂l) rel Op (∂x̂l) in Vxl
, and when l = 1, A(vl−1(x̂l))

= A(u1(x̂l)) (in this equality of actions, x̂l ⊂ xl is equipped with a chosen
orientation, and the equality holds since the actions of vl−1(xl) and u1(xl)
coincide and since vl−1 and u1 agree on xl\x̂l). Hence by Proposition 2.5,
there exist Hamiltonian diffeomorphisms ψt

xl
, where xl runs over the l-faces,

which have support in Vxl
, and are such that ψ1

xl
◦ vl−1|Op (x̂l) = u1, and

the restriction of d(ψt
xl

◦ vl−1) to Op (∂x̂l) is homotopic to Gt
l relative to

Op (∂x̂l) and {0, 1}. Let now ψt
l := ◦ψt

xl
and v̂l := ψ1

l ◦ vl−1. Since the (ψt
xl

)
have pairwise disjoint supports, we have v̂l|Op (xl) = u1|Op (xl) for each l-face
xl of Γ. Hence v̂l and u1 coincide on a neighbourhood of the l-skeleton of Γ,
so v̂l verifies (I1). By Lemma 2.2, v̂l verifies (I5) as well.

The flow (ψt
l ) is supported in the disjoint union ∪xl∈Γl

Vxl
. Let x be any

k-face, and assume that we have an l-face xl such that Vxl
∩Wx = ∅. Let xk ⊃

xl be a k-face as above, so that Vxl
⊂ W 3l−1−1

xk
. Then the distance between x

and xk is not larger than 3l−1, and we conclude Vxl
⊂ W 3l−1−1

xk
⊂ W 2·3l−1−1

x .
To summarise, for any k-face x, if xl is an l-face with Vxl

∩ Wx = ∅, then
Vxl

⊂ W 2·3l−1−1
x . As a result, we get

ψt
l (Wx) ⊂ W 2·3l−1−1

x . (2.2.7)

The embedding v̂l may fail to satisfy (I4): there might be two different
(l + 1)-faces xl+1, x

′
l+1 such that

v̂l(
◦
xl+1) ∩ u1(

◦
x′

l+1) = ∅.

Notice however that since v̂l and u1 coincide on a neighbourhood of Γl,
the set v̂l(xl+1) ∩ u1(x′

l+1) is compactly contained in W\u1(Γl). By Lemma
2.4 (1), there exists an arbitrarily small Hamiltonian flow (φt

l)t∈[0,1], with
compact support in W\Γl such that vl := φ1

l ◦v̂l verifies (I4). By the smallness
of the flow (φt

l) and by (2.2.7), the flow (Ψt
l) := (φt

l)� (ψt
l ) satisfies Ψt

l(Wx) ⊂
W 2·3l−1

x for any k-face x. Hence (I3) holds for (Ψt
l). Since the support of (φt

l)
is compactly contained in W\Γl, (I1) and (I5) still holds for vl. Finally, (I2)
follows as well: if x is any k-face, then by assumption, vl−1(x) ⊂ W 3l−1−1

x ,
hence by (2.2.7) and (I3) we get

vl(x) = Ψ1
l ◦ vl−1(x) ⊂ Ψ1

l (W
3l−1−1
x ) =

⋃

d(x,y)�3l−1−1

Ψ1
l (Wy) ⊂

⊂
⋃

d(x,y)�3l−1−1

W 2·3l−1

y = W 3l−1−1+2·3l−1

x = W 3l−1
x .

(2.2.8)

The k-skeleton: When k < n − 1, the procedure described above works
perfectly. However, when k = n − 1, the last step of the induction requires
some adjustment. As before, for every k-face xk, vk−1(xk) and u1(xk) both
lie in the topological ball W 3k−1−1

xk
and coincide near the boundary, hence
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there exist homotopies

σxk
: x̂k × [0, 1] → W 3k−1−1

xk

such that σxk
(·, 0) = vk−1|xk

, σxk
(·, 1) = u1|xk

and σxk
(z, t) = u1(z) for all

t ∈ [0, 1], z ∈ Op (∂xk) (as before, x̂k ⊂ ◦
xk is a closed box such that u1

and vk−1 coincide on Op (xk\
◦
x̂k)). The difference with the previous steps of

the induction is that general position does not make the sets Im σxk
pairwise

disjoint. Instead we proceed as follows.
By (I4), vk−1(x̂k) ∩ u1(x′

k) = u1(x̂k) ∩ u1(x′
k) = ∅ for every pair of

different k-faces xk, x′
k. By a standard general position argument, since k < n,

we can therefore assume that Im σxk
∩u1(x′

k) = ∅, and that we have a regular
neighbourhood Vxk

⊂ W 3k−1−1
xk

of Im σxk
, such that

Vxk
∩ u1(x′

k) = ∅ ∀xk = x′
k. (2.2.9)

By (I5), and since vk−1(x̂k), u1(x̂k) are homotopic relative to ∂x̂k in
Vxk

, there exists a Hamiltonian isotopy (ψt
xk

) with support in Vxk
such that

ψ1
xk

◦ vk−1|xk
= u1.

Consider now a partition of the set of k-faces into (2 · 3k−1)k = 2k ·
3k(k−1) subsets Fi (i = 1, . . . , 2k · 3k(k−1)), such that any two faces xk, x′

k ∈
Fi are at distance at least 2 · 3k−1 from each other. Then for any i and
any pair xk, x′

k ∈ Fi of distinct k-faces, we have W 3k−1−1
xk

∩ W 3k−1−1
x′

k
= ∅.

Define (ψt
k,i) := ◦

xk∈Fi

ψt
xk

, which is a composition of Hamiltonian isotopies,

compactly supported in the disjoint union ∪xk∈Fi
W 3k−1−1

xk
. For any k-face

x, if we have some xk ∈ Fi such that Wx ∩ W 3k−1−1
xk

= ∅, then the distance
between x and xk is at most 3k−1, and hence W 3k−1−1

xk
⊂ W 2·3k−1−1

x . We
conclude that for any k-face x we have ψt

k,i(Wx) ⊂ W 2·3k−1−1
x .

Now, letting (Ψt
k) := (ψt

k,2k·3k(k−1))�· · ·�(ψt
k,1) and arguing as in (2.2.8),

we get for any k-face x

Ψt
k(Wx) ⊂ WNk

x ⊂ W 3k(k+1)

x ,

where Nk = 2k · 3k(k−1) · (2 · 3k−1 − 1) < 3k(k+1). Therefore, (I3) holds for
(Ψt

k).
Finally, ψ1

k,i ◦ vk−1|Op (xk) = u1|Op (xk) for all xk ∈ Fi, and by (2.2.9),
ψ1

x′
k

◦ u1|Op (xk) = u1|Op (xk) for any pair of k-faces x′
k = xk. Thus,

Ψ1
k ◦ vk−1|Op (xk) = u1 for every k − face xk of Γ,

which just means that Ψ1
k ◦ vk−1|Op (Dk) ≡ u1|Op (Dk). We have verified (I1)

for vk := Ψ1
k ◦ vk−1. �
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3. Action of symplectic homeomorphisms on symplectic
submanifolds

3.1. Taking a symplectic disc to an isotropic one

We aim now at proving Theorem 2. The proof relies on Theorem 1 and is
similar to the proof of the flexibility of disc area in the context of symplectic
2-discs considered in [2].

Proof of theorem 2. Let

i0 : D −→ C × C × C = C
3,

x + iy 
−→ (x, y, 0)
u0 : D −→ C × C × C

z 
−→ (z, 0, 0)

be the standard isotropic and symplectic embeddings of D into C
3. Let also

fk : D(2) → D(1/2k) be an area-preserving immersion and

uk : D −→ C × C × C

x + iy −→ (x, y, fk(x + iy)).

Then, uk is a symplectic embedding of D into C
3 with dC0(uk, i0) < 1

2k . Let
finally consider an isotropic embedding ilk of D into C

3 with dC0(ilk, uk) < 1
2l .

Although less explicit than the previous embedding in dimension 6, it cer-
tainly exists because one can approximate the standard symplectic embed-
ding u0 by isotropic ones of the form z 
→ (z, fl(z), 0). We also define

Wk(δ) := {z ∈ C
3 | d(z, Im uk) < δ}

and W 0(ε) := {z ∈ C
3 | d(z, Im i0) < ε}.

It is enough to construct a sequence φ0, φ1, . . . of compactly supported
in C

3 symplectic diffeomorphisms, such that for an increasing sequence of
indices k0 = 0 < k1 < k2 < . . . we have φi ◦ uki

= uki+1 , and such that
moreover, the sequence Φi = φi ◦ φi−1 ◦ · · · ◦ φ0 uniformly converges to a
homeomorphism Φ of C3. We construct such a sequence φi by induction. Let
C

3 = U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ u0(D) be a decreasing sequence of open sets
such that ∩Ui = u0(D). In the step 0 of the induction, we let k1 = 1, and
choose φ0 to be any symplectic diffeomorphism with compact support in C

3

such that φ0 ◦ u0 = uk1 .
Now we describe a step i � 1. From the previous steps we get k1 < · · · <

ki, and symplectic diffeomorphisms φ0, . . . , φi−1. Denote Φi−1 = φi−1◦· · ·◦φ0.
By the step i − 1, we have uki

= Φi−1 ◦ u0 and Φi−1(Ui−1) ⊃ W 0(εi), where
εi = 1

2ki
(the inclusion Φi−1(Ui−1) ⊃ W 0(εi) clearly holds when i = 1 because

U0 = C
3, and for i > 1 it follows from (3.1.1) below which was obtained in

the previous step i − 1). The choice for εi implies that W 0(εi) ⊃ uki
(D),

and moreover by uki
= Φi−1 ◦ u0 we get Φi−1(Ui) ⊃ uki

(D), so we conclude
Φi−1(Ui) ∩ W 0(εi) ⊃ uki

(D). Hence we can choose a sufficiently large li � ki

such that Φi−1(Ui) ∩ W 0(εi) ⊃ Wki
(δi) ⊃ iliki

(D), where δi = 1
2li

� εi. Note
that

dC0(iliki
, i0) � dC0(iliki

, uki
) + dC0(uki

, i0) <
1
2li

+
1

2ki
� 2εi,

and moreover i0(D), iliki
(D) ⊂ W 0(εi). Hence by the convexity of W 0(εi) and

by theorem 1, there exists a Hamiltonian diffeomorphism φ′
i supported in
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W 0(εi) such that i0 = φ′
i ◦ iliki

and dC0(φ′
i, Id ) < 4εi. Note that in particular,

φ′
i(Wki

(δi)) ⊃ i0(D).
We claim that there exists a homotopy of a small size between the

(symplectic) disc φ′
i ◦ uki

and the (isotropic) disc i0, inside φ′
i(Wki

(δi)). In-
deed, the open set Wki

(δi) contains the discs uki
(D), iliki

(D). Also we have
dC0(uki

, iliki
) < δi. Hence the linear homotopy ρi(z, t) := (1−t)uki

(z)+tiliki
(z),

(z ∈ D, t ∈ [0, 1]), satisfies dC0(uki
(z), ρi(z, t)) < δi for all z ∈ D, t ∈ [0, 1],

and so by definition of the neighbouhood Wki
(δi), this homotopy ρi lies inside

Wki
(δi). We moreover conclude that the size of ρi is less than δi, and therefore

the homotopy φ′
i ◦ρi between φ′

i ◦uki
and φ′

i ◦ iliki
= i0, lies inside φ′

i(Wki
(δi)),

and has size less than δi + 8εi � 9εi (recall that dC0(φ′
i, Id ) < 4εi).

We therefore have φ′
i(Wki

(δi)) ⊃ i0(D), and moreover the homotopy
φ′

i ◦ ρi between φ′
i ◦ uki

and i0, lies inside φ′
i(Wki

(δi)), and is of size less
than 9εi. Hence by choosing a sufficiently large ki+1 > ki and denoting
εi+1 = 1

2ki+1
, we get

φ′
i(Wki

(δi)) ⊃ W 0(εi+1) ⊃ uki+1(D),

and moreover the homotopy between φ′
i ◦ uki

and uki+1 , given by the con-
catenation of φ′

i ◦ ρi and of the linear homotopy between i0 and uki+1 , lies
in φ′

i(Wki
(δi)) and still has size less than 9εi. Applying the quantitative

h-principle for symplectic discs [2, Theorem 2], we get a Hamiltonian diffeo-
morphism φ′′

i supported in φ′
i(Wki

(δi)), such that φ′′
i ◦ φ′

i ◦ uki
= uki+1 and

dC0(φ′′
i , Id ) < 18εi.
As a result, the composition φi := φ′′

i ◦ φ′
i is supported in W 0(εi) ⊂

Φi−1(Ui−1), we have φi ◦ uki
= uki+1 ,

φi◦Φi−1(Ui) = φ′′
i ◦φ′

i◦Φi−1(Ui) ⊃ φ′′
i ◦φ′

i(Wki
(δi)) = φ′

i(Wki
(δi)) ⊃ W 0(εi+1)

(3.1.1)
and

dC0(Id , φi) � dC0(Id , φ′
i) + dC0(Id , φ′′

i ) < 22εi.

This finishes the step i of the inductive construction.
To summarize, we have inductively constructed a sequence of Hamilton-

ian diffeomorphisms φ0, φ1, . . . with uniformly bounded compact supports in
C

3, such that:
(i) φi has support in W 0(εi) ⊂ Φi−1(Ui−1) where Φi−1 = φi−1 ◦ · · · ◦ φ0,
(ii) dC0(Id , φi) < 22εi = 22

2ki
,

(iii) uki+1 = φi ◦ uki
.

It follows by (ii) that Φi is a Cauchy sequence in the C0 topology, hence
uniformly converges to some continuous map Φ : C

3 → C
3. Next, since

uki+1 = φi ◦ uki
for every i � 0, we have i0 = Φ ◦ u0. Finally, we claim that

Φ is an injective map, hence a homeomorphism. To see this, consider two
points x = y ∈ U0 = C

3. If x, y ∈ u0(D), then by (iii), Φ(x) = i0 ◦ u−1
0 (x) =

i0 ◦ u−1
0 (y) = Φ(y). If x, y /∈ u0(D), then x, y ∈ cUi for i large enough, so by

(i), Φi(x) = Φi+1(x) = Φi+2(x) = · · · = Φ(x), and similarly Φi(y) = Φ(y)
(because for each j > i, the support of φj lies in Φj−1(Uj−1) ⊂ Φj−1(Ui)),
so Φ(x) = Φi(x) = Φi(y) = Φ(y). Finally, if x ∈ u0(D) and y /∈ u0(D), then
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y ∈ cUi for i large enough, and so Φ(y) = Φi(y) ∈ Φi(cUi) ⊂ cW 0(εi+1) by
(i). Since Φ(x) ∈ Im i0 ⊂ W 0(εi+1), we conclude that also in this case we
have Φ(x) = Φ(y). �
3.2. Relative Eliashberg–Gromov C0-rigidity

Here we address the following question which appeared in our earlier work [2]:

Question 1. Assume that a symplectic homeomorphism h sends a smooth sub-
manifold N to a submanifold N ′, and that h|N is smooth. Under which con-
ditions h∗ω|N ′ = ω|N

Of course, that question is non-trivial only when dimN is at least
2, which we assume henceforth. The question is particularly interesting in
the setting of pre-symplectic submanifolds. Recall that a submanifold N ⊂
(M,ω) is called pre-symplectic if ω has constant rank on M . The symplectic
dimension dimω N of a pre-symplectic submanifold N is the minimal dimen-
sion of a symplectic submanifold that contains N . One checks immediately
that dimω N = dim N + Corankω|N .

In [2], we answered question 1 in various cases of the pre-symplectic
setting. Theorem 2 allows to address almost all the remaining cases. Our
next result incorporates these remaining cases, together with those verified
in [2]:

Theorem 3. Let N ⊂ (M2n, ω) be a pre-symplectic disc. Then the answer to
question 1 is

• Negative if dimω N � 2n−4, or if dimω N = 2n−2 and Corank ω|N � 2.
• Positive if dimω N = 2n, or if dimω N = 2n − 2 and Corank ω|N = 0.

The only case that remains open is when dimω N = 2n−2 and Corankω|N
= 1 (i.e. dim N = 2n − 3, Corankω|N = 1).

Proof of theorem 3. When dimω N � 2n − 4 and N is not isotropic, the
answer is negative because we can find a symplectic homeomorphism that
fixes N and contracts the symplectic form (by [2]). When dimω N � 2n − 2
and r := corank ω|N � 2, there is a local symplectomorphism that takes N

to [0, 1]r × Dk × {0} ⊂ C
r
(z) × C

k
(z′) × C

m
(w), where m ≥ 1 and r ≥ 2. By

Theorem 2, we can find a symplectic homeomorphism f(z1, z2, w1) of C2 ×C

which takes [0, 1]2 × {0} to a symplectic disc. The induced map

f̃C2
(z1,z2)

× C(w1) × C
r−2 × C

k × C
m−1 → C

n

(z1, z2, w1, z3, . . . , zr, z
′
1, . . . , z

′
k, w2, . . . , wm) → f(z1, z2, w1) × Id

is obviously a symplectic homeomorphism which takes N to a submanifold
on which the co-rank of the symplectic form is reduced by 2. Note that this
argument also works when dimω N � 2n − 4 and N is isotropic. The second
item of the theorem was proved in [2]. �
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1. Introduction

The aim of this note is to revisit the classical issue to find in correspondence of
any fixed small (i.e. close to identity) symplectic diffeomorphism ψ a sequence
of compositions of time one flows Φ1

XFj
of autonomous Hamiltonian vector

fields XFj
,

· · · Φ1
XFj

◦ Φ1
XFj−1

◦ · · · ◦ Φ1
XF1

◦ Φ1
XF0

and to discuss its possible convergence to ψ. This subject is crucial in the Cω

Hamiltonian perturbation theory. There is a long history around this mat-
ter. After early pioneering papers [5,6], a rigorous setting has been provided
mainly in [8,9], and other interesting references therein quoted. More recently,
Giorgilli [10] introduces in a genuinely innovative way a ‘Lie transform’, gen-
eralizing the Lie series and having a number of nice algebraic properties; this
object appears as a useful tool which could give new help to a greater compre-
hension of the Baker-Campbell-Hausdorff (BCH) matter. Unlike the analytic
framework of the above quoted papers, the novelty in the present work is to
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act in a C1 environment for diffeomorphisms ψ, possibly for small compact
perturbations of the identity, which are typical in many questions of sym-
plectic topology. Our construction will lead to an infinite product converging
uniformly exponentially fast to the fixed ψ:

|Φ1
XFj

◦ · · · ◦ Φ1
XF1

◦ Φ1
XF0

− ψ|C0 ≤ |ψ − id|2j+1

C0 (1)

It will be provided by a global realization of Weinstein’s neighbourhood the-
orem in T ∗

R
n proposed by Viterbo (see [4,20]), and the exponential estimate

(1) will be produced by means of standard facts from mid-point approxima-
tion theory.

This results suggests that, by means of an adequate version of the BCH
theorem, one could solve the problem of the construction of an autonomous
Hamiltonian vector field XF whose time-one flow is a very fine approxima-
tion of an assigned symplectic diffeomorphism ψ, all this in a non analytic
category. The effort to obtain anyway some good approximations in such a di-
rection has been made inside the community of the Hamiltonian perturbation
theory, see the discussion in [2] and also [13] for allied topics in the analytic
category. As a matter of fact, the paper [2] by Benettin and Giorgilli is a point
of arrival in the analytic realm: the authors show that ε-small symplectic dif-
feomorphisms can be asymptotically, up to terms of order O(exp(−ε∗/ε)),
approximated by autonomous Hamiltonian time one flows.

2. Preliminary background. Time one flows of time dependent
Hamiltonians.

We start by illustrating the lines of thought about the (radically simpler)
comparison of the symplectomorphisms with the Hamiltonian time one flows
related to time dependent Hamiltonian systems. Let (M,ω) be a symplectic
manifold. Denote by Diffω,0(M) the component of the symplectomorphisms
Diffω(M) = {ϕ ∈ Diff(M) : ϕ∗ω = ω} in which the identity lies. The set of
all diffeomorphisms that can be obtained as the time one flow Φ1

XH
of some

possibly time dependent Hamiltonian vector field XH ,

iXH
ω = −dH, H : M × [0, 1] → R, (2)

is a subgroup of Diffω,0(M) called Ham(M,ω). As Polterovich and Rosen
point out [17], although in general the inclusion Ham(M,ω) ⊂ Diffω,0(M)
is strict, the difference between the two groups is ‘not too big’. Actually,
when ω = dϑ, the gap between Ham(M,ω) and Diffω,0(M), is essentially
cohomological one, and, e.g. as in [21], this fact can be seen directly in a clear
way: on one hand, given ψ ∈ Diffω,0(M), we have that ψ∗ϑ − ϑ is closed,

d(ψ∗ϑ − ϑ) = ψ∗dϑ − dϑ = 0, (3)
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on the other hand, if ψ = Φ1
XH

,

d
dt

(
Φt

XH

)∗
ϑ = (Φt

XH
)∗(LXH

ϑ)
= (Φt

XH
)∗(d iXH

ϑ + iXH
dϑ)

= (Φt
XH

)∗(d iXH
ϑ − dH)

= (Φt
XH

)∗d(iXH
ϑ − H)

= d(Φt
XH

)∗(iXH
ϑ − H),

(4)

so that

(Φ1
XH

)∗ϑ − ϑ = d

∫ 1

0

(Φt
XH

)∗(iXH
ϑ − H)dt (5)

is exact. In the cotangent bundle case, M = T ∗Q with ϑ = pdq, the generating
function in the r.h.s. of (5) becomes the well known

∫ 1

0
(pq̇ − H)dt. Hence we

can define the Flux map

Flux : Diffω,0(M) −→ H1(M,R)
ψ �−→ [ψ∗ϑ − ϑ] , (6)

and we have seen right now that

Ham(M,ω) ⊆ ker(Flux) (7)

Banyaga [1] showed that actually (see also [16] Sec. 14.1, and [21] Ex. 6.3 p.
23), since ω is exact,

Ham(M,ω) = ker(Flux) (8)

In a topologically trivial environment—like T ∗
R

n, where H1 = {0} —Banyaga’s
result tells us that Diffω,0(M) = Ham(M,ω), in other words, any symplecto-
morphism is the time one flow for some possibly time dependent Hamiltonian;
this fact has been known already for a long time inside the specific world of
the Hamiltonian perturbations theory—[5], [15]—, as we can read e.g. in [2].
The time dependence is crucial, because in such a case Ham(M,ω) turns out
to be even a subgroup of Diffω,0(M): the composition of several time one
flows related to (even time independent) Hamiltonian vector fields is a time
one flow, for some, possibly time dependent, Hamiltonian vector field.

In the next Sections we revisit the problem of the approximation of the
symplectomorphisms by time one flows related to time independent Hamil-
tonian systems. As already said, this subject has long been studied in the
context of the theory of perturbation of Hamiltonian systems. We tackle this
matter by investigation of simple techniques borrowed from symplectic topol-
ogy. More precisely, this note would represent an attempt to realise some first
steps towards a perturbative symplectic topology scheme; in other words, we
direct our attention towards reaching perturbation results starting from a
C1 context, even though iterated Lie brackets or vector fields do force us
immediately in a C∞ and then Gevrey environment, well adequate to con-
sider compactly supported objects, even though the first result, see (43) and
(45), is a purely topological one. By the way, we find along our road map a
quadratic estimate—see (35)—evoking an analogue one arising in Hamilton-
ian perturbation theory, producing in that context well known Newton-like
efficient approximation algorithms.
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3. Symplectomorphisms as Lagrangian submanifolds

The following Lemma is a summary of Weinstein’s Lagrangian neighborhood
theorem (see [22], and Prop. 3.4.13 - 14 of [14]) in a form that fits our needs.

Lemma 3.1. Let (M,ω) be a closed symplectic manifold. There exists a sym-
plectomorphism Ψ between a neighborhood N1(Δ) of the diagonal Δ in (M ×
M,ω⊕−ω) and a neighborhood N2(OT ∗M ) of the zero section OT ∗M of T ∗M :

Ψ : N1(Δ) ⊂ (M × M,ω ⊕ −ω) −→ N2(OT ∗M ) ⊂ (T ∗M,ωM ) (9)

and
Ψ(Δ) = OT ∗M (10)

Here and inafter, by ωM we mean the standard symplectic 2-form on
T ∗M . As a consequence of this Lemma, we have the next fact. Let ψ ∈
Diffω,0(M) be a symplectomorphism sufficiently C1-close to the identity,

graph(ψ) ⊂ N1(Δ), (11)

then the image by Ψ of the a Lagrangian submanifold graph(ψ) is Lagrangian
in T ∗M which is candidate to be transverse to the fibers of πM .

When M is topologically trivial, like M = T ∗
R

n = R
2n, versions of this

Lemma have been utilised in some directions. The following ingenious linear
symplectomorphism by Viterbo [20] realises explicitly the above task:

(T ∗
R

n × T ∗
R

n, pr∗
1ωRn − pr∗

2ωRn

︸ ︷︷ ︸
Ω

)
f−→ (T ∗(T ∗

R
n), ωT ∗Rn)

(q, p,Q, P ) �−→
(

q+Q
2 , p+P

2 , p − P,Q − q
)

(12)

We have denoted the standard projections by T ∗
R

n pr1←− T ∗
R

n × T ∗
R

n pr2−→
T ∗

R
n and we may easily verify the main property f∗(ωT ∗Rn) = Ω.

This transformation has been e.g. utilized in [3], other authors, as Traynor
[19] and Sandon [18], introduced the alternative symplectic map

τ : (q, p,Q, P ) → (q, P, P − p, q − Q), (13)

at first glance simpler, but not possessing the precious property leading us to
the midpoint finite reduction of Hamiltonian systems, see Theorem 3.1 right
below.

Coming back to our canonical transformation or symplectomorphism
ψ ∈ C1(T ∗

R
n;T ∗

R
n),

ψ : T ∗
R

n � (q, p) �−→ (Q(q, p), P (q, p)) ∈ T ∗
R

n, (14)

let us denote by 	 its deviation from the identity,

	 = ψ − id (15)

which we suppose compactly supported in T ∗
R

n, and we ask that

Lip(	) = sup
x∈T ∗Rn

|∇(ψ(x) − x)| < 2. (16)
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Set

graph(ψ) = {(x, ψ(x)) ∈ T ∗
R

n × T ∗
R

n : x = (q, p) ∈ T ∗
R

n} , (17)

we notice that f(graph(ψ)),
{(

q + Q(q, p)
2

,
p + P (q, p)

2
, p − P (q, p), Q(q, p) − q

)
: (q, p) ∈ T ∗

R
n

}
,

(18)
is a deformation of the null section, and also a Lagrangian submanifold Λ
of T ∗(T ∗

R
n). Indeed graph(ψ) is a Lagrangian submanifold (Ω|graph(ψ) = 0)

and f is a symplectomorphism, hence ωT ∗Rn

∣
∣
f(graph(ψ))

= 0.

By denoting as usual J =
(
O I

−I O

)
, we write the inclusion of this La-

grangian submanifold into T ∗(T ∗
R

n),

T ∗
R

n
j

↪−→ graph(ψ) ⊂ T ∗
R

n × T ∗
R

n
f

↪−→ T ∗(T ∗
R

n)
πT ∗Rn−−−−→T ∗

R
n

x �−→ (x, ψ(x)) �−→
(

x+ψ(x)

2
, J(x − ψ(x))

)
�−→ x+ψ(x)

2

(19)
The composed map

πT ∗Rn ◦ f ◦ j : x �−→ x + ψ(x)
2

(20)

is a diffeomorphism of T ∗
R

n into itself, which is a small deformation of the
identity. Indeed, it is a perturbation of the identity by the map �

2 which is
contractive by (16) : Lip( �

2 ) < 1. This fact is telling us that f(graph(ψ))
is globally transverse to the fibers of πT ∗Rn . Hence, there exists a generat-
ing function F ∈ C2(T ∗

R
n;R) for it (without Maslov-Hörmander auxiliary

parameters, see e.g. [4,12,23]),

F : T ∗
R

n → R, (ξ, η) �→ F (ξ, η), (21)

such that

f(graph(ψ)) = im(dF ) ⊂ T ∗(T ∗
R

n) (22)
Recalling im(dF ) is

{(
ξ, η,

∂F

∂ξ
(ξ, η),

∂F

∂η
(ξ, η)

)
: (ξ, η) ∈ T ∗

R
n

}
, (23)

linking (18) with (23) by the diffeomorphism

(q, p) = x �→ x + ψ(x)
2

= (ξ, η), (24)

we obtain ⎧
⎪⎨

⎪⎩

p − P (q, p) = ∂F
∂ξ

( q+Q(q,p)
2 , p+P (q,p)

2

)

Q(q, p) − q = ∂F
∂η

( q+Q(q,p)
2 , p+P (q,p)

2

) (25)

or

ψ − id = JdF

(
id + ψ

2

)
(26)
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Actually, from (26) we see that the generating function F can be inter-
preted as a genuine time-independent Hamiltonian function: more precisely,
the above discussion can be summarized in the following

Theorem 3.1. Let ψ be a C1(T ∗
R

n;T ∗
R

n) symplectic diffeomorphism satis-
fying Lip(ψ − id) < 2 with ψ − id compactly supported—see (16). Then there
exists a time independent Hamiltonian function F : R2n → R such that ψ
is exactly the solution ϕ1

XF
of the step one Euler midpoint1, related to the

Hamiltonian vector field XF = JdF :

ϕ1
XF

− id = JdF

(
id + ϕ1

XF

2

)
, (27)

that is, see (26): ψ = ϕ1
XF

.

Note that so far the compact support hypothesis has not yet been used:
this will instead be essential in the next Section to guarantee the completeness
of the flows.

4. Iterations and Euler midpoint estimates in action

4.1. Setting and definitions

We define
h := sup

R2n

|ψ(x) − x| = |ψ − id|C0 = |	|C0 (28)

In view of the iteration implemented in the next Sect. 4.2, we will insert the
‘zero’ subscript into the mathematical objects introduced above. From (25)
we see that

(h =)h0 = LipF0 = sup
(ξ,η)∈R2n

|∇R2nF0(ξ, η)| = |XF0 |C0 (29)

Moreover we define F0,

F0 = F0 h0 (Lip F0 = 1) (30)

so that (25) reads
⎧
⎪⎨

⎪⎩

p − P (q, p) = ∂F0
∂ξ

( q+Q(q,p)
2 , p+P (q,p)

2

)
h0

Q(q, p) − q = ∂F0
∂η

( q+Q(q,p)
2 , p+P (q,p)

2

)
h0

(31)

The hypothesis made above that ψ − id be compactly supported in T ∗
R

n

assures us that the C1 Hamiltonian vector field XF0 admits a complete flow
Φt

XF0
.

To look for time one flow of XF0 is equivalent to look for time h0 flow of XF0 :

Φ1
XF0

= Φh0
XF0

(flow) (32)

and analogously—by (31)—for the Euler midpoint:

ϕ1
XF0

= ϕh0
XF0

= ψ (Eulermidpoint) (33)

1See e.g. [7]. difference scheme reduction
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Note that if

d := diam supp(ψ − id),

by asking F0|R2n\supp (ψ−id) ≡ 0 (normalization), then

|F0|C0 ≤ d h0, and |F0|C1 ≤ (1 + d)h0 (34)

4.2. Main estimate and its iterations

Given ψ, by (25) we get a function F0 such that ψ is exactly the step one
Euler midpoint representation of the flow for XF0 , ψ = ϕ1

XF0
= ϕh0

XF0
. By

using the Euler midpoint approximation settled in Section A, the deviation
of ψ from Φ1

XF0
is estimated as follows (recall that h0 = |ψ−id|C0 = |XF0 |C0)

|Φ1
XF0

− ψ|C0 = |Φh0
XF0

− ψ|C0 =(33) |Φh0
XF0

− ϕh0
XF0

|C0 ≤(60) h2
0 = |ψ − id|2C0

(35)
We will iterate this procedure: instead of ψ, in the next step we consider

the symplectomorphism ψ ◦ Φ−1
XF0

, uniformly closer to the identity than ψ.
Preliminarily, recall that, for any function g : R

m → R
m with |g −

id|C0 < +∞ and any diffeomorphism f : Rm → R
m, we have that

|(g − id) ◦ f |C0 = |g − id|C0 , and, for g = f−1, |f − id|C0 = |f−1 − id|C0 .
(36)

Coming back to our task:

|ψ ◦ Φ−1
XF0

− id|C0 = |ψ − Φ1
XF0

|C0 ≤ h2
0. (37)

In the Sect. 3 above we asked on ψ, a given ’first order’ diffeomorphism
near the identity, the requirement (17) precisely to guarantee that 1

2 (id + ψ)
is a diffeomorphism too. Differently, now we observe that the composition
ψ ◦ Φ−1

XF0
is ‘second order’ diffeomorphism near to the identity, so we claim

that the analogous 1
2 (id + ψ ◦ Φ−1

XF0
) is safely a diffeomorphism of T ∗

R
n into

itself.

T ∗
R

n
j

↪−→ graph(ψ ◦ Φ−1
XF0

) ⊂ T ∗
R

n × T ∗
R

n
f

↪−→ T ∗(T ∗
R

n)
πT ∗Rn−−−−→ T ∗

R
n

x �→ (x, ψ ◦ Φ−1
XF0

(x)) �→
(

x+ψ◦Φ−1
XF0

(x)

2
, J

(
x − ψ ◦ Φ−1

XF0
(x)

))
�→ x+ψ◦Φ−1

XF0
(x)

2

(38)
The global transversality with respect to the fibers of πT ∗Rn is offering the
existence of a new generating function F1 : R2n → R, such that

f(graph(ψ ◦ Φ−1
XF0

)) = im(dF1), ϕ1
XF1

= ψ ◦ Φ−1
XF0

. (39)

We rewrite the relations (35) for this second step (note that h1 = |ψ ◦Φ−1
XF0

−
id|C0 = |XF1 |C0)

|Φ1
XF1

− ψ ◦ Φ−1
XF0

|C0 = |Φ1
XF1

− ϕ1
XF1

|C0 = |Φh1
XF1

− ϕh1
XF1

|C0 ≤(60) h2
1 (40)

We link h1 to h0,

h1 = |ψ ◦ Φ−1
XF0

− id|C0 = |(ψ − Φ1
XF0

) ◦ Φ−1
XF0

|C0 =(361)
|ψ − Φ1

XF0
|C0 ≤ h2

0

(41)
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and from

|Φ1
XF1

◦ Φ1
XF0

◦ ψ−1 − id|C0 = |(Φ1
XF1

− ψ ◦ Φ−1
XF0

) ◦ (Φ1
XF0

◦ ψ−1)|C0 ,

we obtain

|Φ1
XF1

◦Φ1
XF0

◦ψ−1−id|C0 = |Φ1
XF1

−ψ◦Φ−1
XF0

|C0 = |Φ1
XF1

−ϕ1
XF1

|C0 ≤ h2
1 ≤ h4

0

(42)
By iterating k-times this procedure, we get

|Φ1
XFk

◦ Φ1
XFk−1

◦ . . . Φ1
XF1

◦ Φ1
XF0

◦ ψ−1 − id|C0 ≤ |ψ − id|2k+1

C0 = h2k+1

0 (43)

Furthermore, recalling (25),

|XFα
|C0 = |Φ1

XFα−1
◦ . . . Φ1

XF1
◦ Φ1

XF0
◦ ψ−1 − id|C0 ≤ |ψ − id|2α

C0 = h2α

0 (44)

In other words, we achieve a sequence of time one Hamiltonian flows
{Φ1

XFk
}k∈N uniformly convergent (and highly fast) to the assigned ψ:

C0- limk→+∞Φ1
XFk

◦ Φ1
XFk−1

◦ . . . Φ1
XF1

◦ Φ1
XF0

= ψ (45)

Here below, we list the hierarchy of the steps giving the sequence, where
we denote by ϕ1

XFk
the solution of the step one Euler midpoint difference

reduction related to XFk
:

ψ − id = JdF0

(
id+ψ

2

)

ψ = ϕ1
XF0

, Φ1
XF0

ψ ◦ Φ−1
XF0

− id = JdF1

(
id+ψ◦Φ−1

XF0
2

)

ψ ◦ Φ−1
XF0

= ϕ1
XF1

, Φ1
XF1

ψ ◦ Φ−1
XF0

◦ Φ−1
XF1

− id = JdF2

(
id+ψ◦Φ−1

XF0
◦Φ−1

XF1
2

)

ψ ◦ Φ−1
XF0

◦ Φ−1
XF1

= ϕ1
XF2

, Φ1
XF2

. . .

(46)

Obviously, (45) does work if |ψ − id|C0 = h0 < 1, so that, together with
condition (16), we could summarize our requirements by

|ψ − id|C1 = |	|C1 < 1 (47)

The above discussion can be summarized in the following

Theorem 4.1. Let ψ be a C1(T ∗
R

n;T ∗
R

n) symplectic diffeomorphism satis-
fying |ψ − id|C1 < 1 with ψ − id compactly supported. Then there exists a
sequence of time independent Hamiltonian function Fk : R2n → R, k ∈ N,
such that ψ is represented by the uniform composition limit (45).

This result restores a further known fact: since Ham(T ∗
R

n, dθ) is a
group, any symplectomorphism ψ as above in (45) is generated by the time
one flow of some, possibly time dependent, Hamiltonian vector field.
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within the CRUI-CARE Agreement

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

A Synopsis on the implicit Euler midpoint scheme

A.1 Basic theory

What follows is standard in numerical analysis and we reproduce here for the
sake of clarity. Consider a curve x(t) and the discrete substitution t = nτ ,
with step τ > 0,

x(t), t ∈ R ⇒ xn = x(nτ), n ∈ Z (48)

The following approximations will be justified below:
⎧
⎨

⎩

x(t + τ
2 ) ≈ x(t)+x(t+τ)

2

(
or: xn+xn+1

2

)

ẋ(t + τ
2 ) ≈ x(t+τ)−x(t)

τ

(
or: xn+1−xn

h

) (49)

First at all, we have to give an estimate of the approximations ‘≈’ in (49).
Beginning from (49)1,

x(t + τ
2 ) = x(t) + ẋ(t)

τ

2︸ ︷︷ ︸
∗

+ 1
2 ẍ(t) τ2

4 + O(τ3),

x(t)+x(t+τ)
2 = x(t) + ẋ(t)

τ

2︸ ︷︷ ︸
∗

+ 1
4 ẍ(t)τ2 + O(τ3),

thus
x(t) + x(t + τ)

2
= x

(
t +

τ

2

)
+ O(τ2). (50)
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Considering (49)2,

ẋ(t + τ
2 ) = ẋ(t) + ẍ(t)

τ

2︸ ︷︷ ︸
∗∗

+ 1
2

...
x (t) τ2

4 + O(τ3),

x(t + τ) = x(t) + ẋ(t)τ + 1
2 ẍ(t)τ2 + O(τ3),

x(t+τ)−x(t)
τ = ẋ(t) + ẍ(t)

τ

2︸ ︷︷ ︸
∗∗

+O(τ2),

hence
x(t + τ) − x(t)

τ
= ẋ

(
t +

τ

2

)
+ O(τ2). (51)

Now, supposing the curve x(t) is solving the ode

ẋ(t) = X(x(t)), x(0) = x0, (52)

then

x(t + τ) − x(t)
τ

= ẋ(t +
τ

2
) + O(τ2) =

= X
(
x

(
t +

τ

2

))
+ O(τ2) = X

(
x(t) + x(t + τ)

2
+ O(τ2)

)
+ O(τ2),

and eventually:

x(t + τ) − x(t) = X

(
x(t) + x(t + τ)

2

)
τ + O(τ3). (53)

A.2 Estimates

Here we denote by y(t + τ) the τ Euler midpoint approximation:

y(t + τ) − x(t) = X

(
x(t) + y(t + τ)

2

)
τ (54)

and compare it with the general Euler midpoint representation (53) of the
exact solution x(t + τ):

x(t + τ) − x(t) = X

(
x(t) + x(t + τ)

2

)
τ + O(τ3). (55)

By the trivial identity

x(t) + z(t + τ)
2

= x(t) +
z(t + τ) − x(t)

2
, (56)

we can write (54) using (56) with z = y,

y(t + τ) − x(t) = X(x(t))τ + X ′(x(t))
y(t + τ) − x(t)

2
τ + O(τ3), (57)

analogously, we can write (55) using (56) with z = x,

x(t + τ) − x(t) = X(x(t))τ + X ′(x(t))
x(t + τ) − x(t)

2
τ + O(τ3) (58)
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Furthermore, since reasonably I − τ
2X ′(x(t))(≈ I) is invertible,

⎧
⎪⎨

⎪⎩

y(t + τ) − x(t) =
[
I − τ

2X ′(x(t))
]−1

X(x(t))τ + O(τ3)

x(t + τ) − x(t) =
[
I − τ

2X ′(x(t))
]−1

X(x(t))τ + O(τ3)

we get
y(t + τ) − x(t + τ) = O(τ3), (59)

and, for small τ ,

|y(t + τ) − x(t + τ)| ≤ τ2 (y(t) = x(t)) (60)
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Lagrangian skeleta and plane curve
singularities

Roger Casals

Dedicated to Claude Viterbo on the occasion of his 60th birthday.

Abstract. We construct closed arboreal Lagrangian skeleta associated to
links of isolated plane curve singularities. This yields closed Lagrangian
skeleta for Weinstein pairs (C2, Λ) and Weinstein 4-manifolds W (Λ)
associated to max-tb Legendrian representatives of algebraic links
Λ ⊆ (S3, ξst). We provide computations of Legendrian and Weinstein
invariants, and discuss the contact topological nature of the Fomin–
Pylyavskyy–Shustin–Thurston cluster algebra associated to a singular-
ity. Finally, we present a conjectural ADE-classification for Lagrangian
fillings of certain Legendrian links and list some related problems.

Mathematics Subject Classification. 53D12, 57K33, 14H20.

1. Introduction

The object of this note is to study a relation between the theory of isolated
plane curve singularities,1 as developed by Arnol’d and Gusein-Zade [8–10,61]
A’Campo [1–4] Milnor [76] and others, and arboreal Lagrangian skeleta of
Weinstein 4-manifolds. In particular, we construct closed Lagrangian skeleta
for the infinite class of Weinstein 4-manifolds obtained by attaching Weinstein
2-handles [28,108] to the link of f : C

2 −→ C, where f defines an isolated
plane curve singularity at the origin. These closed Lagrangian skeleta allow
for an explicit computation of the moduli of microlocal sheaves [60,80,98]
and also explain the symplectic topology origin of the Fomin–Pylyavskyy–
Shustin–Thurston cluster algebra [47] of an isolated singularity.

1.1. Main results

The advent of Lagrangian skeleta and sheaf invariants have underscored the
relevance of Legendrian knots in the study of symplectic 4-manifolds [21,

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
1The reader is referred to [54] for a beautiful and welcoming introduction to the subject.

A previous version of this chapter was published Open Access under a Creative Commons Attribution 

4.0 International License at https://link.springer.com/10.1007/s11784-022-00939-8. 
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28,49,97,98]. The theory of arboreal singularities, as developed by Nadler
[78,79], provides a local-to-global method for the computation of categories
of microlocal sheaves [80]. These invariants, in turn, yield results in terms
of Fukaya categories [49,50]. The existence of arboreal Lagrangian skeleta
has been crystallized by L. Starkston [100] in the context of Weinstein 4-
manifolds, where this article takes place.

Given a Weinstein 4-manifold (W,λst), it is presently a challenge to
describe an associated arboreal Lagrangian skeleta L ⊆ W . In particular,
there is no general method for finding closed arboreal Lagrangian skeleta,2

or deciding whether these exist. This manuscript explores this question by
introducing a new type of closed arboreal Lagrangian skeleta for Legendrian
links Λf ⊆ (S3, ξst) which are maximal-tb Legendrian representatives of the
smooth link of an holomorphic germ f in (C2, 0). In practice, we restrict to
studying polynomials f : C

2 −→ C, f ∈ C[x, y], which define an isolated
singularity at the origin, and also suppose that a real morsification f̃t ∈
R[x, y] of f exists, t ∈ (0, 1]. This is an assumption, and we will always
take f ∈ R[x, y] as our germs. For simplicity of notation, we denote by f̃

a real morsification f̃t ∈ R[x, y] for some generic but fixed choice of the
deformation parameter t ∈ (0, 1]. The discussion in this note unravels thanks
to the following geometric fact.

Theorem 1.1. Let f ∈ C[x, y] define an isolated singularity at the origin,
Λf ⊆ (S3, ξst) be its associated Legendrian link and f̃ ∈ R[x, y] a real
morsification. Then, the Weinstein pair (C2,Λf ) admits the closed arboreal
Lagrangian skeleton

L(f̃) = Lf̃ ∪ T (ϑf̃ ),

obtained by attaching the Lagrangian D
2-thimbles T (ϑf̃ ) of f̃ to an embedded

exact Lagrangian surface Lf̃ ⊆ C
2, where Lf̃ ⊆ C

2 is (compactly supported)
smoothly isotopic to the Milnor fiber Mf ⊆ C

2 of f . �

The two objects Λf and L(f̃) in the statement of Theorem 1.1 require
an explanation, which will be given. We rigorously define the notion of a
Legendrian link Λf ⊆ (S3, ξst) associated to the germ f ∈ C[x, y] of an isolated
curve singularity in Sect. 2. Note that the smooth link of the singularity f ∈
C[x, y], as defined by Milnor [76], and canonically associated to f , is naturally
a transverse link Tf ⊆ (S3, ξst) [38,53,56]. The Legendrian link Λf ⊆ (S3, ξst)
will be a maximal-tb Legendrian approximation of Tf . The notation (C2,Λf )
refers to the Weinstein pair (C2,R(Λf )), where R(Λf ) ⊆ (S3, ξst) is a small
(Weinstein) annular ribbon for the Legendrian link Λf .

The Lagrangian skeleton L(f̃) is also defined in Sect. 2. Note that the
Milnor fibration of f ∈ C[x, y] is a symplectic fibration on (C2, ωst), whose
symplectic fibers bound the transverse link Tf ⊆ (S3, ξst). Nevertheless, the
Lagrangian skeleton L(f̃) is built from an exact Lagrangian surface Lf̃ and
the vanishing cycles ϑf̃ associated to a real morsification f̃ . The Lagrangian

2That is, a compact arboreal Lagrangian skeleta L ⊆ (W λ) such that ∂L = 0.
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surface Lf̃ is also introduced in Sect. 2. Intuitively, in the same manner
that Λf ⊆ (S3, ξst) is a Legendrian approximation of Tf ⊆ (S3, ξst), the
exact Lagrangian surfaces Lf̃ ⊆ (C2, dλst) are Lagrangian analogues of the
symplectic Milnor fiber Mf ⊆ (C2, dλst). Indeed, Lf̃ are smoothly indistin-
guishable from Mf , and they only become different geometric objects once
we incorporate the symplectic structure (C2, dλst). Theorem 1.1 is a rela-
tive statement, being about a Weinstein pair (C2,Λf ) and not just about a
Weinstein 4-manifold. Hence, it is useful in the absolute context, as follows.
Consider a Legendrian knot Λ ⊆ (S3, ξst) in the standard contact 3-sphere
and the Weinstein 4-manifold W (Λ) = D

4 ∪Λ T ∗
D

2 obtained by performing a
2-handle attachment along Λ, i.e. its Weinstein trace. A front projection for Λ
(almost) provides an arboreal skeleton for the Weinstein 4-manifold W (Λ), as
explained in [100]. Nevertheless, the computation of microlocal sheaf invari-
ants from this model is far from immediate, nor exhibits the cluster nature of
the moduli space of Lagrangian fillings. The symplectic topology of a Wein-
stein manifold is much more visible, and invariants more readily computed,
from a closed arboreal Lagrangian skeleton, i.e. an arboreal Lagrangian skele-
ton which is compact and without boundary. In particular, Theorem 1.1 pro-
vides such a closed Lagrangian skeleton associated to a real morsification:

Corollary 1.2. Let f ∈ C[x, y] define an isolated curve singularity at the ori-
gin, Λf ⊆ (S3, ξst) be its associated Legendrian link and f̃ ∈ R[x, y] a real
morsification. The four-dimensional Weinstein manifold

W (Λf ) = D
4 ∪Λf

(T ∗
D

2∪ π0(Λf ). . . ∪T ∗
D

2))

admits the closed arboreal Lagrangian skeleton

L(f̃) ∪∂ (D2∪ π0(Λf ). . . ∪D
2),

obtained by attaching the Lagrangian D
2-thimbles of f̃ to the compactified

surface Lf̃ := Lf̃ ∪∂ (D2∪ π0(∂Lf̃ )
. . . ∪D

2). �

Let us see how Theorem 1.1 and Corollary 1.2 can be applied for two
simple singularities, corresponding to the D5 and the E6 Dynkin diagrams.
As we will see, part of the strength of these results is the explicit nature of
the resulting Lagrangian skeleta and the direct bridge they establish between
the theory of singularities and symplectic topology.

Example 1.3. (i) First, consider the germ of the D5-singularity f(x, y) =
xy2 + x4, the Legendrian link associated to this singularity is depicted in
Fig. 1 (Left). The Weinstein 4-manifold W (Λf ) = D

4 ∪Λf
(T ∗

D
2 ∪ T ∗

D
2)

admits the closed arboreal Lagrangian skeleton depicted in Fig. 1 (Right).
This Lagrangian skeleton is associated to a real morsification f̃(x, y) = (x +
1)(4x3 − 3x + 2y2 − 1) of f(x, y), whose divide {(x, y) ∈ R

2 : (x + 1)(4x3 −
3x + 2y2 − 1) = 0} is depicted in Fig. 4. The D5-Dynkin diagram is readily
seen in the unoriented intersection quiver of the boundaries of the Lagrangian
2-disks added to the (smooth compactification) of the genus 2 Milnor fiber;
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Figure 1. The D5-Legendrian link Λf ⊆ (S3, ξst) (Left)
and a closed Lagrangian arboreal skeleton for the Wein-
stein 4-manifold W (Λf ) (Right), obtained by attaching 5
Lagrangian 2-disks to the cotangent bundle (T ∗Σ2, λst)

Figure 2. Closed Lagrangian arboreal skeleton associated
to the simple E6-singularity f(x, y) = x3 + y4, according to
Corollary 1.2

this unoriented intersection quiver for the vanishing cycles is also drawn in
Fig. 4 (Left).

(ii) Second, consider the germ of the singularity f(x, y) = x3 + y4, the
link of the singularity is the maximal-tb positive torus knot Λf

∼= Λ(3, 4) ⊆
(S3, ξst). The Weinstein 4-manifold W (Λf ) = D

4 ∪Λf
T ∗

D
2 admits the closed

arboreal Lagrangian skeleton depicted in Fig. 2. This Lagrangian skeleton is
associated to a real morsification f̃(x, y) = 4x3 −3x+8y4 −8y2 +1 of f(x, y);
the Lagrangian skeleton is built by attaching six Lagrangian 2-disks to the
Lagrangian zero section Σ3 of the cotangent bundle (T ∗Σ3, λst) of a genus
3 surface. These 2-disks are attached along the six curves in Fig. 2, whose
intersection quiver is (mutation equivalent to) the E6 Dynkin diagram; this
unoriented intersection quiver is also drawn in Fig. 4 (Right). See also Fig. 3
for an alternative closed Lagrangian arboreal skeleton, also associated to the
simple E6-singularity f(x, y) = x3 + y4. �

In the two cases of Example 1.3, the real morsifications can be explicitly
obtained using Chebyshev polynomials Tn(w), which are (uniquely) defined
by the functional equations Tn(cos(t)) = cos(nt), n ∈ N∪{0}. It can be shown
that Tn(x)+Tm(y) is a real morsification of the singularity f(x, y) = xn +ym

and thus, for example, the expression T3(x)+T4(y) = 4x3−3x+8y4−8y2+1 is
a real morsification of E6, as used above and depicted in Fig. 4. In general, we
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Figure 3. Another closed Lagrangian arboreal skeleton for
the simple E6-singularity f(x, y) = x3 + y4. This is a more
symmetric alternative to the closed Lagrangian skeleton in
Fig. 2

Figure 4. The two divides associated to the real morsifica-
tions that yield the Lagrangian skeleta in Figs. 1 and 2. The
implicit equations for the divides are written in terms of the
Chebyshev polynomials Tn(w), determined by the relations
Tn(cos(t)) = cos(nt). The (unoriented) quivers associated
to these two divides are depicted with orange vertices and
red edges. Note that the diagram obtained for E6 is not the
E6 Dynkin diagram; once the quiver is properly oriented, it
is mutation equivalent to an orientation of the E6 Dynkin
diagram

will see that the vanishing cycles of a real morsification can be oriented, and
then an oriented quiver can be associated to the skew-symmetric intersection
form.

From now onward, we abbreviate “closed arboreal Lagrangian skeleton”
to Cal-skeleton.3 Let (W,λ) be a Weinstein 4-manifold, e.g. described by a

3This seems appropriate, as D. Nadler (UC Berkeley) and L. Starkston (UC Davis), the

initial developers of arboreal Lagrangian skeleta, hold their positions in the University of

California.
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Figure 5. Cal-skeleton RP
2 ∪S1 D

2 associated to Λ(31) ⊆
(∂D

4, λst)

Legendrian handlebody, a Lefschetz fibration or analytic equations in C
n.

There are two basic nested questions: Does it admit a Cal-skeleton? If so,
how do you find one ? For instance, consider a max-tb Legendrian represen-
tative Λ ⊆ (∂D

4, λst) of any smooth knot, does W (Λ) admit a Cal-skeleton
? It might be that not all these Weinstein 4-manifolds W (Λ) admit such a
skeleton: it is certainly not the case if the Legendrian knot Λ were stabi-
lized, hence the max-tb hypothesis is necessary. In general, the lack of exact
Lagrangians in W (Λ) would provide an obstruction.

Remark 1.4. For simplicity, we focus on oriented exact Lagrangians. Non-
orientable Cal-skeleta should also be of interest. For instance, consider the
max-tb Legendrian left-handed trefoil knot Λ(31) ⊆ (∂D

4, λst). Figure 5
(Right) depicts a planar front for it. Then the Weinstein 4-manifold W (Λ(31))
admits a Cal-skeleton RP

2 ∪S1 D
2 given by attaching a Lagrangian 2-disk to

a Lagrangian RP
2, as shown in Fig. 5. Indeed, the Weinstein 4-manifold

given by Fig. 5 (Left), described by one Weinstein 1-handle and the (black)
Weinstein 2-handle passing through it twice, is Weinstein equivalent to the
standard cotangent bundle (T ∗

RP
2, λst, ϕst), see e.g. [58]. The zero section

RP
2 is chosen as its Lagrangian skeleton, and then a Lagrangian 2-disk—

core of a Weinstein 2-handle—is attached along the blue circle depicted in
the Weinstein handlebody diagram in Fig. 5 (Left). At this stage, we simplify
the diagram by handle-sliding the black Legendrian knot along the blue Leg-
endrian boundary of the Lagrangian 2-disk, and then cancel the Weinstein
1-handle with this latter (blue) Weinstein 2-handle; see [21]. This yields a
front for the max-tb Legendrian left-handed trefoil knot Λ(31) ⊆ (∂D

4, λst),
as required. �

Symplectic invariants of Weinstein 4-manifolds W include (partially)
wrapped Fukaya categories [12,101] and categories of microlocal sheaves
[80]. Microlocal sheaf invariants should be particularly computable if a Cal-
skeleton L ⊆ W is given, yet worked out examples are scarce in the litera-
ture. In Sect. 4, we use4 Theorem 1.1 to compute the moduli space of simple
microlocal sheaves on some of the Cal-skeleta L from Corollary 1.2.

Finally, Theorem 1.1 provides a context for the study of exact
Lagrangian fillings of Legendrian links Λf ⊆ (S3, ξst) associated to isolated

4The correspondence [84, Theorem 1.3] and T. Kálmán’s description [66] of augmentation
varieties Aug(Λ) are also useful tools in this context.
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plane curve singularities. Indeed, let

L(f̃) = Lf̃ ∪ ϑ(f̃)

be a Cal-skeleton for the Weinstein pair (C2,Λf ) for a real morsification
f̃ , as produced in Theorem 1.1. The exact Lagrangian filling Lf̃ may serve
as a starting exact Lagrangian filling for the Legendrian link Λf , and then
performing Lagrangian disk surgeries [96,109] along the Lagrangian thimbles
in ϑ is a method to construct additional5 exact Lagrangian fillings. In general,
this strategy might be potentially obstructed, as the Lagrangian disks might
acquire immersed boundaries when the Lagrangian surgeries are performed.
That said, since Lagrangian disks surgeries yield combinatorial mutations of
a quiver, Theorem 1.1 might hint towards a structural conjecture: we expect
as many exact Lagrangian fillings Λf as elements in the cluster mutation
class of the intersection quiver for the vanishing thimbles ϑ. It should be
noted that C. Viterbo’s work is abundant in useful and remarkable results,
but also bountiful in insightful questions and conjectures6: trying to follow
his steps, Sect. 5 concludes with a discussion on such conjectural matters.

2. Lagrangian skeleta for isolated singularities

In this section we introduce the necessary ingredients for Theorem 1.1 and
prove it. We refer the reader to [9,54,75] for the basics of plane curve singu-
larities and [37,38,53,85] for background on 3-dimensional contact topology.

2.1. The legendrian link of an isolated singularity

Let f ∈ C[x, y] be a bivariate complex polynomial which defines an isolated
complex singularity at the origin (x, y) = (0, 0) ∈ C

2. The link of the singu-
larity Tf ⊆ (S3, ξst) is the intersection

Tf = V (f) ∩ S
3
ε = {(x, y) ∈ C

2 : f(x, y) = 0} ∩ {(x, y) ∈ C
2 : |x|2 + |y|2 = ε},

where ε ∈ R
+ is small enough. The intersection is transverse for ε ∈ R

+

small enough [31,76], and thus Tf is a smooth link. The link Tf is in fact a
transverse link for the contact structure ξst = TS

3∩i(TS
3), as is the boundary

of the (Milnor) fiber Mf for the Milnor fibration [53,56]. Equivalently, it is
the transverse binding of the contact open book generated by

f

‖f‖ : S
3\Tf −→ S

1.

The link of a singularity was first introduced by Wirtinger and Brauner [19]
and masterfully studied by Milnor [76]. The book [31] comprehensively devel-
ops7 the smooth topology of link of singularities and their connection to
3-manifold topology. The contact topological nature of the associated open
book was developed by Giroux [56].

5Potentially not Hamiltonian isotopic.
6E.g. I recently attended a conference at IMPA where several talks discussed “the Viterbo
conjecture”. As it turned out, the conjectures the speakers discussed were all different, yet
all clearly impactful in their respective areas.
7See also W. Neumann’s article in Kähler’s volume [65].
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Let us suppose that the germ of our singularity is irreducible.8 From
a smooth perspective, the smooth isotopy class of Tf is that of an iterated
cable of the unknot [31]. Let Kl,m be the oriented (l,m)-cable of a smooth
link K ⊆ S

3, i.e. an embedded curve in the boundary ∂Op(K) of the solid
torus Op(K) in the homology class l · [λ] + m · [μ], with λ the longitude and
μ the meridian of Op(K). It is shown in [31, Chapter IV.7] that an iterated
cable K(l1,μ1),(l2,μ2),...,(lr,μr) ⊆ S

3 is the link of an isolated singularity if and
only if μi+1 > (liμi)li+1, for 1 ≤ i ≤ r − 1.

Remark 2.1. Given an isolated singularity f(x, y), there are algorithms for
determining the smooth type of Tf , i.e., the sequence of pairs {(l1, μ1), (l2, μ2),
. . . , (lr, μr)}. For instance, by applying the Newton–Puiseux algorithm to
f(x, y) we may write

y = a1x
m1
n1 + a2x

m2
n1n2 + a3x

m3
n1n2n3 + . . . , ai ∈ C

∗

at each branch, where the exponents m1/n1 < m2/(n1n2) < m3/(n1n2n3) <
· · · are increasing and gcd(mi, ni) = 1, for all i ∈ N. The pairs (ni,mi) ∈ N

2

are called the Puiseux pairs. For reference, the Newton pairs are then (pi, qi)
with pi = ni, q1 = m1 and qi = mi − mi−1ni for i ≥ 2, and the cabling
algebraic condition reads pi, qi > 0. The topological pairs (li, μi) are given by
li = pi = ni, μ1 = q1 and μi+1 = qi+1 + pipi+1μi for i ≥ 1, and the cabling
algebraic condition translates into li = pi > 0 and qi+1 = μi+1 − lili+1μi > 0,
as above. The algorithm and these relations are explained in [31, Appendix
to Chapter I]. �

In the finer context of contact topology, the transverse link Tf ⊆ (S3, ξst)
is an iterated cable with maximal self-linking number sl(Tf ) = sl, as it bounds
the symplectic Milnor fiber Mf ⊆ C

2 of f ∈ C[x, y], equiv. the symplectic
page of the contact open book [39,56]. By the transverse Bennequin bound
[14], this self-linking must be equal to the Euler characteristc −χ(Mf ). A fact
about the smooth isotopy class of links of singularities is their Legendrian
simplicity:

Proposition 2.2. Let f ∈ C[x, y] define an isolated singularity at the origin
and Tf ⊆ (S3, ξst) be its associated transverse link. There exists a unique
maximal Thurston–Bennequin Legendrian approximation Λf ⊆ (S3, ξst) of
the transverse link Tf .

Proof. The classification of Legendrian representatives of iterated cables of
positive torus knots is established in [71, Corollary 1.6], building on [40,41].
The sufficent numerical condition for Legendrian simplicity is μi+1/li+1 >
tb(Ki), where Ki is the ith iterated cable in K(l1,μ1),(l2,μ2),...,(lr,μr) ⊆ S

3. The
maximal Thurston-Bennequin equals tb(Ki) = Ai −Bi, where Ai, Bi ∈ N are
given by

Ai :=
i∑

α=1

pα

i∏

β=α+1

qβ

i∏

β=α

qβ , Bi :=
i∑

α=1

⎛

⎝pα

i∏

β=α+1

qβ

⎞

⎠+
i∏

α=1

qα, i ∈ N,

8For the general case, we refer the reader to [31] and their splice diagrams.
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as defined in [71, Equation (2)], and satisfy μili > Ai − Bi. In particular, an
algebraic link satisfies μi+1/li+1 > μili > Ai − Bi = tb(Ki), for all 1 ≤ i ≤
r − 1, and its max-tb representative is unique. �

Proposition 2.2 implies that there exists a unique Legendrian link Λf ⊆
(S3, ξst), up to contact isotopy, whose positive transverse push-off τ(Λf ), as
defined in [53, Section 3.5.3], is transverse isotopic to the transverse link Tf .
Note that two distinct Legendrian approximations of a transverse link [35,
Theorem 2.1] differ by Legendrian stabilizations, which necessarily decrease
the Thurston-Bennequin invariant.

Remark 2.3. Proposition 2.2 does not hold for K ⊆ (S3, ξst) an arbitrary
smooth link. For instance, the smooth isotopy classes of the mirrors 52, 61 of
the three-twist knot and the Stevedore knot admit two distinct maximal-tb
Legendrian representatives each [27, Section 4]. That said, the knots 52, 61

are not links of singularities, as their Alexander polynomials are not monic,
and thus they are not fibered knots [83]. �

Proposition 2.2 allows us to canonically define a Legendrian link asso-
ciated to an isolated singularity:

Definition 2.4. Let f be the germ of an isolated singularity at the origin.
A Legendrian link Λf ⊆ (S3, ξst) is associated to f if it is a maximal-tb
Legendrian link Λf ⊆ (S3, ξst) whose positive transverse push-off τ(Λf ) is
transversely isotopic to the link of the singularity Tf ⊆ (S3, ξst). �

Proposition 2.2 shows that the Legendrian isotopy class of a Legendrian
link Λf ⊆ (S3, ξst) associated to f is unique. Thus, we refer to Λf ⊆ (S3, ξst)
in Definition 2.4 as the Legendrian link associated to the germ f .

Example 2.5. (ADE Singularities) Let us consider the three ADE families of
simple isolated singularities [11, Chapter 2.5]. Their germs are given by

(An) f(x, y) = xn+1 + y2, (Dn) f(x, y) = xy2 + xn−1, n ∈ N,

(E6) f(x, y) = x3+y4, (E7) f(x, y)=x3+xy3, (E8) f(x, y) = x3 + y5.

The Legendrian link associated to the An-singularity is the positive
(2, n + 1)-torus link, with tb = n − 1. These links are associated to the
braid σn+1

1 , as depicted in Fig. 6 (Left). The Legendrian link associated to
the Dn-singularity is the link consisting of the link associated to the An−3-
singularity and the standard Legendrian unknot, linked as in Fig. 6 (Right).
This is the topological consequence of the factorization f(x, y) = x(y2+xn−2).
These Dn-links are associated to the (rainbow closure of the) positive braid
σn−2

1 σ2σ
2
1σ2, n ≥ 3. Each of the three components K1,K2,K3 of the D2-

link is a max-tb Legendrian unknot, with K1 ∪ K2 and K2 ∪ K3 forming
each a (max-tb) Hopf link and K1 ∪ K3 forming the 2-unlink. The D3-link is
Legendrian isotopic to the A3-link, i.e. a max-tb positive T (2, 4)-torus link.

The Legendrian links associated to the E6 and E8 singularities are the
maximal-tb positive (3, 4)-torus Legendrian link and the Legendrian (3, 5)-
torus link, as depicted in Fig. 7. The E7 is a maximal-tb Legendrian link
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Figure 6. The Legendrian link for the An-singularity is the
max-tb (2, n + 1)-torus link (Left). The Legendrian link for
the Dn-singularity is the link given by the union of a max-tb
(2, n − 2)-torus link and a standard Legendrian unknot, in
orange, linked as in the Legendrian front on the right (Right)
(colour figure online)

Figure 7. The Legendrian links for the E6, E7 and E8 sim-
ple singularities

consisting of a trefoil knot and a standard Legendrian unknot, linked as in the
center Legendrian front in Fig. 7. This is implied by the f(x, y) = x(x2 + y3)
factorization of the E7 singularity. The Legendrian links for E6, E7 and E8

can also be obtained as the closure of the three braids σn−3
1 σ2σ

3
1σ2, n = 6, 7, 8.

Figure 7 also depicts generators of the first homology group of the minimal
genus Seifert surface; these generate the first homology of each Milnor fiber,
and the E6, E7 and E8 Dynkin diagrams are readily exhibited from their
intersection pattern. �

The singularities f(x, y) = xa + yb, a ≥ 3, b ≥ 6, or (a, b) = (4, 4), (4, 5),
yield an infinite family of non-simple isolated singularities for which the asso-
ciated Legendrian is readily computed to be the maximal-tb positive (a, b)-
torus link, confer Remark 2.1. Two more instances are illustrated in the
following:

Example 2.6. (Two Iterated Cables) Consider the isolated curve singularity

g(x, y) = x7 − x6 + 4x5y + 2x3y2 − y4.

The Puiseux expansion yields the Newton solution y = x3/2(1 + x1/4) and
thus Λf ⊆ (S3, ξst) is the maximal-tb Legendrian representative of the (2, 13)-
cable of the trefoil knot. This Legendrian knot is depicted in Fig. 8 (Left).
The reader is invited to show that the Legendrian knot Λf ⊆ (S3, ξst) of the
singularity

h(x, y) = x9 − x10 + 6x8y − 3x6y2 + 2x5y3 + 3x3y4 − y6,
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Figure 8. The Legendrian links Λg and Λh associated to
the singularity g(x, y) = x7 −x6 +4x5y +2x3y2 − y4, on the
left, and the singularity h(x, y) = x9 − x10 + 6x8y − 3x6y2 +
2x5y3 + 3x3y4 − y6, on the right

is the maximal-tb Legendrian representative of the (3, 19)-cable of the trefoil
knot [54], as depicted in Fig. 8 (Right). (For that, start by writing the relation
as y(x) = x3/2 + x5/3.) �

2.2. A’Campo’s divides and their conormal lifts

Let f ∈ C[x, y] define an isolated singularity at the origin, D
4
ε ⊆ C

2 be a
Milnor ball for this singularity [75, Corollary 4.5], ε ∈ R

+, R
2 = {(x, y) ∈

C
2 : �(x) = 0,�(y) = 0} ⊆ C

2 the real 2-plane, and D
2
ε = D

4
ε ∩ R

2 a real
Milnor 2-disk. First, we need the notion of a divide, called partage in [2], as
follows:

Definition 2.7. [2] Let D
2
ε ⊆ R

2 be the 2-disk of radius ε ∈ R
+. A divide is a

proper generic immersion γ : I −→ D
2 of a 1-manifold I into D

2. �
The image γ(I) ⊆ D

2
ε is also referred to as a divide, in a slight abuse

of notation. Definition 2.7 belongs to the realm of real differential topology.
A remarkable fact is that A’Campo explained how to associate a divide to
certain real morsifications of a singularity. For that, consider a real morsi-
fication f̃t(x, y), t ∈ [0, 1], such that, for t ∈ (0, 1], ft(x, y) has only A1-
singularities, its critical values are real and the level set f̃−1

t (0) ∩ D
4
ε, con-

tains all the saddle points of the restriction (f̃t)|D2
ε
. Then, the intersection

Df̃ := f̃−1(0) ∩ D
2
ε ⊆ R

2, where f̃ = f1, is a divide, and it is known as the
divide of the real morsification f̃t [3,9,63].

Let us denote by Df a divide Df̃ obtained from a real morsification f̃t of
f . A divide Df is also referred to as an A’Campo divide for the singularity f .
As in Definition 2.7, it is the image of a union of a smooth 1-manifold I under
an immersion i : I −→ R

2 [55,62,64], and it is a generic such immersion. In
this manuscript, we assume that the germs of singularities that we consider
admit such real morsifications. See [2,61] for the existence and details of real
morsifications, and see Fig. 4 for divides associated to real morsifications of
the simple singularities D5 and E6.

Let us now move towards contact topology. By considering a divide
Df ⊆ R

2 as a wavefront co-oriented in both conormal directions, its (biconor-
mal) Legendrian lift is a Legendrian link Λ0(Df ) in the (ideal) contact bound-
ary (∂(T ∗

R
2), λst|∂(T ∗R2)). In this case, (∂(T ∗

R
2), λst|∂(T ∗R2)) is considered
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with its Legendrian projection onto the zero section ∂(T ∗
R

2) −→ R
2, who

fibers are Legendrian 1-spheres S
1 ⊆ ∂(T ∗

R
2). See [8, Section 3.1] for fronts

and Legendrian fibrations and, e.g. [97, Section 2] and [53, Section 3.2].
The biconormal lift Λ0(Df ) ⊆ ∂(T ∗

R
2) of the immersed curve Df to

the (unit) boundary of the cotangent bundle T ∗
R

2 can be constructed using
the three local models:

(i) The biconormal lift near a smooth interior point P ∈ Df is defined as

{u = (q, uq) ∈ T ∗Op(P ) : ‖uq‖ = 1, TqDf ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

for an arbitrary fixed choice of metric in R
2, and neighborhood Op(P ) ⊆

R
2. See the first row of Fig. 9.

(ii) The biconormal lift near an immersed point P ∈ Df is defined as the
(disjoint) union of the conormal lifts of each of its embedded branches
through P . See the second row of Fig. 9.

(iii) Finally, at the endpoint P ∈ Df , the biconormal lift is defined as the
closure in T ∗

P R
2 of one of the components of

T ∗
P R

2 \ {u ∈ T ∗
P R

2 : ‖uq‖ = 1, TP Df ⊆ ker(uq) for q ∈ Df ∩ Op(P )},

where the tangent line TP Df is defined as the (ambient) smooth limit
of the tangent lines Tqi

Df for a sequence {qi}i∈N of interior points qi ∈
Df convering to P ∈ Df . There are two such components, but our
arguments are independent of such a choice. See the third row of Fig. 9.

Remark 2.8. The restriction of the canonical projection π : ∂(T ∗
R

2) −→ R
2

is finite two-to-one onto the image of the interior points of I. The pre-image
of π at (the image of) endpoints contains an open interval of the Legendrian
circle fiber. For instance, the full conormal lift of a point p ∈ R

2 is Legendrian
isotopic to the zero section S

1 ⊆ (J1
S

1, ξst), as is the conormal lift of an
embedded closed segment. �

These local models define the Legendrian biconormal lift Λ0(Df ) ⊆
(∂(T ∗

R
2), ξst) of the divide of the Morsification f̃ . Let ι0 : S

1 −→ (S3, ξst)
be a Legendrian embedding in the isotopy class of the standard Legendrian
unknot. A small neighborhood Op(ι(S1)) is contactomorphic to the 1-jet
space (J1

S
1, ξst) ∼= (T ∗

S
1 × Rt, ker{λst − dt}), yielding a contact inclusion

ι : (J1
S

1, ξst) −→ (S3, ξst). Note that there exists a contactomorphism Ψ :
(∂(T ∗

R
2), ξst) −→ (J1

S
1, ξst), where the zero section in the 1-jet space bijects

to the Legendrian boundary of a Lagrangian cotangent fiber in T ∗
R

2. This
leads to the following:

Definition 2.9. Let Df ⊆ R
2 be the divide associated to a real morsification

of a germ f defining an isolated singularity. The biconormal lift Λ(Df ) ⊆
(S3, ξst) is the image ι(Ψ(Λ0(Df ))). That is, the biconormal lift Λ(Df ) ⊆
(S3, ξst) is the satellite of the biconormal lift Λ0(Df ) ⊆ (∂(T ∗

R
2), ξst) with

companion knot the standard Legendrian unknot in (S3, ξst). �

The central result in N. A’Campo’s articles [3,4] is that the Legendrian
link Λ(Df ) ⊆ S3 is smoothly isotopic to the transverse link Tf , see also [64].
The formulation above, in terms of the satellite to the Legendrian unknot,

Reprinted from the journal192



Figure 9. Local models for the divides Df , on the left col-
umn, and their corresponding biconormal lifts, on the right
column. Note that we have depicted the biconormal lift in its
non-generic form (matching Df at the boundary), at the left
of the right column, and also after a Legendrian front per-
turbation, at the right of the right column. The local model
of the crossing is depicted in gray so that the conormal direc-
tion (in blue) is visible (colour figure online)

is not necessarily explicit in the literature on divides and their Legendrian
lifts, but probably known to the experts, as it is effectively being used in
Hirasawa’s visualization [62, Figure 2]. See also the work of Kawamura [70,
Figure 2], Ishikawa and Gibson [55,63] and others [26,64]. The phrasing in
Definition 2.9 might help crystallize the contact topological characteristics of
each object.

Example 2.10. (i) The A1-singularity admits two real morsifications f̃1(x, y) =
x2 + y2 − 1 and f̃2(x, y) = x2 − y2, with corresponding divides

D1 = {(x, y) ∈ R
2 : x2 + y2 − 1 = 0}, D2 = {(x, y) ∈ R

2 : x2 − y2 = 0}.

The biconormal lift Λ0(D1) ⊆ (∂(T ∗
R

2), ξst) consists of two copies of
the Legendrian fibers of the fibration π : ∂(T ∗

R
2) −→ R

2. Each of these
two copies is satellited to the standard Legendrian unknot, forming a
maximal-tb Hopf link Λ(D1) ⊆ (S3, ξst). Indeed, the second Legendrian
fiber can be assumed to be the image of the first Legendrian fiber under
the Reeb flow. Hence, the Legendrian link Λ(D1) ⊆ (S3, ξst) must consist
of the standard Legendrian unknot union a small Reeb push-off. Sim-
ilarly, the biconormal lift Λ0(D2) ⊆ (∂(T ∗

R
2), ξst) equally consists of

two copies of the Legendrian fibers of the fibration π : ∂(T ∗
R

2) −→ R
2,
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Figure 10. A co-oriented divide D for the A2-singularity
f(x, y) = x3 + y2, as a front for its Legendrian link Λ(D) ⊆
(∂(T ∗

D
2), ξst). That is, the biconormal lift of D is Λ(D). Its

satellite along the standard unknot is the (unique) max-tb
Legendrian trefoil Λ(2, 3) ⊆ (R3, ξst)

and thus both Legendrian links Λ(D1),Λ(D2) are Legendrian isotopic
in (S3, ξst).

(ii) The A2-singularity f(x, y) = x3 + y2 admits the real morsification
f̃(x, y) = x2(x − 1) + y2, whose divide is D = {(x, y) ∈ R

2 :
x2(x − 1) + y2 = 0}. The divide D ⊆ R

2 with its co-orientations
is depicted in Fig. 10 (upper left). It depicts a wavefront homotopy,
which yields a Legendrian isotopy in (∂(T ∗

R
2), ξst), and an additional

move equivalence (as in [47, Definition 8.2]). In the first row, the first
move separates the two conormals pictorially and the second move is
a Reidemeister II, i.e. a safe (non-dangerous) self-tangency. The tran-
sition to the second row starts with a Reidemeister III move, which
is a front homotopy. The first move in the second row is undoing the
kink, also known as a U-turn—see [47, Figure 30]—and the second is a
planar isotopy. Finally, the third row starts by depicting the change of
front projections induced by the contactomorphism Ψ, and performs the
satellite to the standard Legendrian unknot. The resulting Legendrian
Λf ⊆ (S3, ξst) is the max-tb Legendrian trefoil knot Λ(2, 3) presented in
one of its common fronts for (R3, ξst). �
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Remark 2.11. In general, divides for An-singularities are depicted in [47, Fig-
ure 4]. We invite the reader to study the A5-singularity f(x, y) = x5+y2 with
its divide

D = {(x, y) ∈ R
2 : x2(x3 + x2 − x − 1) + y2 = 0}

and discover the corresponding Legendrian isotopy, as in Fig. 10. The isotopy
should end with the max-tb Legendrian link Λ(2, 5) ⊆ (S3, ξst), e.g. expressed
as the (rainbow) closure of the positive braid σ5

1 , equiv. the (−1)-framed
closure of σ7

1 . The general case n ∈ N is similar. �
Before we proceed with the proof of Theorem 1.1, we note the following

contact topological property for the Legendrian links Λ(Df̃ ) associated to
divides of real morsifications f̃ :

Proposition 2.12. Let f ∈ C[x, y] define an isolated singularity, Df ⊆ R
2

be the divide associated to a real morsification and Λ(Df ) ⊆ (S3, ξst) its
biconormal lift. Then Λ(Df ) admits an embedded exact Lagrangian filling
in (D4, λst). In particular, the Thurston-Bennequin invariant of Λ(Df ) is
maximal.

Proof. Consider the plabic graph associated to the divide Df as in [47, Defini-
tion 6.11] and note that the alternating strand diagram associated to a plabic
graph is Legendrian isotopic to Λ(Df ). Indeed, they only differ by U -turns,
at the boundary endpoints, and safe tangencies [47, Section 8] at the interior
crossings. Now, from a smooth perspective, we can consider the Goncharov-
Kenyon conjugate surface [59, Section 2.1] associated to this plabic graph,
which bounds its alternating strand diagram. Thus, this is a smooth embed-
ded surface in S

3 bounding Λ(Df ) ⊆ S
3 which can be pushed into an embed-

ded surface D
4, relative to the boundary. In short, the conjugate surface is

a smooth surface filling for Λ(Df ). This surface can be turned in an embed-
ded exact Lagrangian, as done in [98, Proposition 4.9], which proves the first
statement. The statement on the Thurston-Bennequin invariant follows from
[24, Theorem 1.4]. �

Figure 11 depicts a piece of such a Lagrangian filling near a crossing of
the divide. See [98, Section 4] and [47, Section 6] for further details on the con-
struction. Observe that the plabic graph associated to Df is not unique, e.g.
it is possible to perform a square move at each crossing. The Hamiltonian iso-
topy of the Lagrangian filling, relative to the boundary, does typically depend
on this choice and one should expect to build more than one Hamiltonian
isotopy class of Lagrangian fillings with the method of Proposition 2.12.9

2.3. Proof of Theorem 1.1

There is an interesting dissonance at this stage. The Legendrian link Λ(Df ) ⊆
S

3 in Definition 2.9 and the transverse link Tf ⊆ S
3 of the singularity are

smoothly isotopic, yet certainly not contact isotopic. Their relationship is
described by the following:

9Naively applied, this method seems to yield finitely many possible Hamiltonian isotopy

classes of Lagrangian fillings. Note that we have proven in [20] that most max-tb Legendrian
algebraic links admit infinitely many such classes.
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Figure 11. A local depiction of the (Lagrangian) conjugate
surface near a crossing of the divide (Right). The surface is
depicted in darker blue, and it bounds a front, in blue, for the
Legendrian link. The plabic graph associated to a crossing
(Left) is shown the center. Note that there are two choices
of (bi)coloring for the vertices, and the two surfaces differ
by a square move, i.e., a Lagrangian mutation; both such
choices yield embedded exact Lagrangian fillings (though not
necessarily in the same Hamiltonian isotopy class)

Proposition 2.13. Let f ∈ C[x, y] define an isolated singularity and Df ⊆ R
2

be the divide associated to a real morsification. The positive transverse push-
off τ(Λ(Df )) ⊆ (S3, ξst) of the Legendrian link Λ(Df ) is contact isotopic to
the transverse link Tf ⊆ (S3, ξst). In particular, Λ(Df ) ⊆ (S3, ξst) is Legen-
drian isotopic to the Legendrian link Λf ⊆ (S3, ξst) associated to the isolated
singularity of f ∈ C[x, y]. �
Proof. First, we note that Λ(Df ) is a maximal-tb Legendrian representative
by Proposition 2.12. Thus the latter part of statement follows from the former
and Proposition 2.2. Hence we now focus on the first part of the statement.
In A’Campo’s isotopy [3, Section 3] from the link associated to the divide
to the link of the singularity, the key step is the almost complexification of
the Morsification f̃ : R

2 −→ R. This replaces the R-valued function f̃ by an
expression of the form

f̃C : T ∗
R

2 −→ C, f̃C(x, u) := f̃(x) + idf̃(x)(u) − 1
2
χ(x)H(f(x))(u, u),

which is a C-valued function, where u = (u1, u2) ∈ R
2 are Cartesian coordi-

nates in the fiber. Here H(f(x)) is the Hessian of f , which is a quadratic form,
and χ(x) is a bump function with χ(x) ≡ 1 near double-points of the divide
Df ⊆ R

2 and χ(x) ≡ 0 away from them. The results in [3], see also [63,64],
imply that the transverse link of the singularity is isotopic to the intersec-
tion ∂ε(T ∗

R
2)∩ f̃−1

C
(0) ⊆ (∂ε(T ∗

R
2), ξst) of the ε-unit cotangent bundle with

the 0-fiber of f̃C, ε ∈ R
+ small enough.10 It thus suffices to compare this

transverse link to the Legendrian lift Λ(Df ) ⊆ (∂ε(T ∗
R

2), ξst), which we can
check in each of the two local models: near a smooth interior point of the
divide Df and near each of its double points. Note that the case of boundary

10This mimicks S. Donaldson’s construction of Lefschetz pencils, where the boundary of a

fiber is a transverse link at the boundary, see also E. Giroux’s construction of the contact

binding of an open book [56,57].
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points can be perturbed to that of smooth interior points, as in the second
row of the local models depicted in Fig. 9 or the first perturbation in Fig. 10.
We detail the computation in the first local model, the case of double points
follows similarly.

The contact structure (∂ε(T ∗
R

2), ξst) admits the contact form ξst =
ker{cos(θ)dx1 − sin(θ)dx2}, (x1, x2) ∈ R

2 and θ ∈ S
1 is a coordinate in the

fiber – this is the angular coordinate in the (u1, u2)-coordinates above. The
divide can be assumed to be cut locally by D = {(x1, x2) ∈ R

2 : x2 = 0} ⊆
R

2, as we can write f̃(x1, x2) = x2, and thus its bi-conormal Legendrian lift
is

Λ(D) = {(x1, x2, θ) ∈ R
2 × S

1 : x2 = 0, θ = ±π/2}.

Note that the tangent space T(x1,x2)Λ(D) of Λ(D) is spanned by ∂x1 , which
satisfies

〈∂x1〉 = ker{cos(θ)dx1 − sin(θ)dx2}, as cos(θ) = 0 at θ = ±π/2.

Since the model is away from a double point, f̃C(x, u) := x2 + i(0, 1) ·
(u1, u2)t = x2 + iu2 becomes the standard symplectic projection R

2 ×R
2 −→

R
2 onto the second (symplectic) factor. The zero set is thus x2 = 0 and

u2 = 0 and so the intersection with T ε
R

2 is

κ = {(x1, x2, θ) ∈ R
2 × S

1 : x2 = 0, θ = 0, π},

as the points with |u1|2 = ε are at θ-coordinates θ = 0, π. The tangent space
Tκ = 〈∂x1〉 is spanned by ∂x1 , which is transverse to the contact structure
along κ:

(cos(θ)dx1 − sin(θ)dx2)(∂x1) = ±1, at θ = 0, π.

It evaluates positive for θ = 0 and negative for θ = π, which corresponds
to each of the two branches in the biconormal lift. It is readily verified [53,
Section 3.1] that κ is the transverse push-off, positive and negative,11 of Λ(D),
e.g. observe that the annulus {(x1, x2, θ) ∈ R

2 × S
1 : x2 = 0, 0 ≤ θ ≤ π} is a

(Weinstein) ribbon for the Legendrian segment {(x1, x2, θ) ∈ R
2 × S

1 : x2 =
0, θ = π/2}. �

Proposition 2.13 implies that real morsifications f̃ yield models for the
Legendrian link Λf ⊆ (S3, ξst) of a singularity f ∈ C[x, y], as introduced in
Definition 2.4. That is, given an isolated plane curve singularity f ∈ C[x, y],
the Legendrian link Λf ⊆ (S3, ξst) is Legendrian isotopic to the Legendrian
lift Λ(Df̃ ) ⊆ (S3, ξst) of a divide Df̃ ⊆ R

2 of a real morsification, and thus
we now directly focus on studying the Legendrian links Λ(Df̃ ) ⊆ (S3, ξst).

Let us now prove Theorem 1.1. For that, we use N. A’Campo’s descrip-
tion [4] of the set of vanishing cycles associated to a divide of a real mor-
sification. For each double point pi ∈ D in the divide D := Df̃ , there is a
vanishing cycle ϑpi

. For each bounded region of R
2 \ D, which we label by

qj , there is a vanishing cycle ϑqj
. These vanishing cycles are also naturally

oriented by choosing the counter-clockwise orientation in the plane. First, we

11The orientation for the negative branch is reversed when considering the global link κ.
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Figure 12. (Left) Two front homotopies from the pieces
of a divide to a (generic) Legendrian front, in line with the
local models in Fig. 9. The vanishing cycle ϑp is drawn in
the Lagrangian base R

2. (Right) A perturbation of a divide
for the E7-singularity. The vanishing cycles ϑp coming from
the double points of the divide are drawn in yellow, and the
vanishing cycles ϑq coming from each of the three bounded
interior regions are drawn in red (colour figure online)

visualize those vanishing cycles by perturbing the divide D ⊆ R
2 using the

local models in Fig. 9, e.g., as depicted in Fig. 12.(i) and (ii). Let us denote
this perturbed cooriented front by D′ ⊆ R

2, and note that D′ only uses
one conormal direction at a given point. This perturbation is a front homo-
topy from Λ(Df̃ ) and thus produces a Legendrian isotopy of the associated
Legendrian links Λ(Df̃ ) ∼= Λf in (S3, ξst).

Once the perturbation has been performed, we can draw the curves
ϑpi

, ϑqj
as in Fig. 12. For instance, Fig. 12.(iii) depicts the case of the E7-

singularity with a particular choice of divide D and its perturbation D′, with
ϑpi

in yellow and ϑqj
in red. That is:

1. For each double point pi ∈ D, i.e. a crossing, the curve ϑpi
is a closed

simple curve through the four new double points in D′,
2. For each closed region, ϑqj

is a simple closed curve which (exactly)
passes through the double points at the perturbed boundary in D′ of
the region qj .
The algorithm in [4] constructs a model for the topological Milnor fiber

of f by using the real morsification f̃ , as follows. First, start with the conical
Lagrangian conormal L(D′) ⊆ (T ∗

R
2, λst) of the perturbed divide D′. This

Lagrangian conormal intersects the unit cotangent bundle of T ∗
R

2 at Λ(D′)
and thus, being conical, the information of L(D′) is equivalent to the infor-
mation of the Legendrian link Λ(D′) ⊆ (∂(T ∗

R
2), λst|∂(T ∗R2)) with its front

D′ ⊆ R
2. The intersection L(D′)∩ R

2 = D′ with the zero section R
2 ⊆ T ∗

R
2

is the divide D′. Second, consider the bounded regions in R
2 \ D′ which are

not enclosed by either of the curves of type ϑpi
, ϑqj

, described in (1) and
(2) above. These are the bounded regions in R

2 \ D′ which do not come
from a bounded square obtained by resolving a crossing (as in Fig. 9) nor
from a bounded region in R

2 \ D. Each of these regions is represented by an
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Figure 13. (Left) A Lagrangian model for the Milnor fiber
of E7 using the biconormal lift L(D)′ and some of the
bounded regions in the zero section R

2 ⊆ (T ∗
R

2, λst), filled
in blue. (Right) The Lagrangian skeleton L(D′)∪R

2 previous
to trimming the unbounded region (also depicted in yellow)
and the result of applying a holonomy homotopy, where the
unbounded region is trimmed to L(f̃) (colour figure online)

embedded (exact) Lagrangian 2-disk, as they are contained in the Lagrangian
zero section (T ∗

R
2, λst). The topological surface obtained as the union of the

Lagrangian conormal L(D′) with these Lagrangian 2-disks is a surface (with
corners) which, upon smoothing, lies in the same smooth isotopy class of the
Milnor fiber of f . This explains, following [4], that the union of the Lagrangian
L(D′) with certain bounded Lagrangian regions in R

2 \D′ is a model for the
topological Milnor fiber.

Remark 2.14. For instance, in the example depicted in Fig. 12 (right), there
are 10 such regions in R

2 \ D′ out of 17. We have depicted these regions
in blue in Fig. 13 (left). Note that there are four crossings in D and three
bounded regions in R

2 \D. The union of these 10 regions with L(D′) yields a
topological surface of genus 4 and 2 boundary components – those of the 2-
component link Λ(Df ). Its first Betti number indeed matches μ(E7) = 7. �

In addition to the above model for the Milnor fiber, the article [4] also
guarantees that the curves ϑpi

, ϑqj
are vanishing cycles for the real morsifi-

cation f̃ . At this stage, the key fact that we use from A’Campo’s algorithm
is that our choice of immersion of the divide D′ ⊆ R

2, given by the pertur-
bation, exhibits Lagrangian 2-disks D

2
pi

, D2
qj

⊆ R
2 such that ∂D

2
pi

= ϑpi
and

∂D
2
qj

= ϑqj
. The union of all these Lagrangian 2-disks D

2
pi

, D2
qj

constitutes
the set T (ϑf̃ ) of Lagrangian D

2-thimbles in the statement of Theorem 1.1.
For the curves ϑpi

, this follows from Fig. 12.(i), or Fig. 9, where the 2-
disk D

2
pi

is (a small extension of) the square given by the four double points in
D′ appearing in the perturbation of pi ∈ D. For ϑqj

, the 2-disk D
2
qj

is chosen
to be a small extension of the bounded region itself. These disks are (exact)
Lagrangian because R

2 ⊆ (T ∗
R

2, λst) is exact Lagrangian. The Liouville
vector field in (T ∗

R
2, λst) vanishes at R

2 and is tangent to L(D′). Hence, the
inverse flow of the Liouville field retracts the Weinstein pair (R4,Λ(D′)) to
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L(D′) union the zero section R
2. This shows that L(D′)∪R

2 is a Lagrangian
skeleton of the Weinstein pair (R4,Λ(D′)). Figure 13 depicts this skeleton in
its center, where the R

2 is included in its entirety.
Now, the Lagrangian skeleton has an open piece at the unbounded part

of R
2. To complete our argument, it suffices to homotope the Lagrangian

skeleton so that the unbounded part is trimmed to match the boundary B
of the unbounded piece of R

2 \D′. These skeletal modifications are explained
in detail in [100, Section 3]. In a nutshell, one applies the holonomy modi-
fications from [28, Section 12] to homotope the boundary at infinity of R

2

until it coincides with B, modifying the pseudo-gradient field accordingly
and producing a Weinstein homotopy. In conclusion, the union of the conical
Lagrangian L(D′), some bounded regions12 of R

2 \ D′, and the Lagrangian
2-disks D

2
pi

, D2
qj

⊆ R
2 forms a Lagrangian skeleton of the Weinstein pair

(R4,Λ(D′)), as required. �

Remark 2.15. The referee also suggested the following (equivalent) viewpoint
to smoothly construct the Milnor fiber, which can also be helpful. Consider
the bipartite vertices of the AΓ-diagram [47, Definition 3.1] associated to the
divide D: by definition, this is a black vertex at each crossing and a white
vertex for each bounded region. In the perturbed front diagram D′, each
black (resp. white) vertex yields a bounded region in the complement R

2 \D′

whose boundary has all the conormals pointing outwards (resp. inwards). In
the two types of curve in the proof above, the curves ϑpi

correspond to the
black vertices and the curves ϑqj

correspond to the white vertices. A bounded
region in the complement R

2 \ D′ whose boundary has all the conormals
pointing outwards (resp. inwards) is called a source (resp. a sink); a region
which is not a sink or a source is said to be mixed.

From this viewpoint, the smooth Milnor fiber for the morsification f̃
associated to D = Df̃ can be constructed by consider a 2-disk for each
bounded mixed region of R

2 \ D′ and attaching 1-handles connecting two
such 2-disks for each intersection point of the pair of corresponding mixed
regions.13 It should be possible to make this construction in the embed-
ded and exact Lagrangian context: the 2-disks coming from the bounded
mixed regions of R

2 \ D′ are (embedded exact) Lagrangians by virtue of
being contained in the zero section of the cotangent bundle (T ∗

R
2, λst), and

one would just need to argue that the 1-handle attachment can be made an
exact Lagrangian 1-handle attachment with boundaries as dictated by the
fronts (i.e., that adding the conical Lagrangian piece L(D′) is tantamount to
adding these Lagrangian 1-handles). �

2.4. Lagrangian skeleta

Arboreal Lagrangian skeleta L ⊆ (W,λ) for Weinstein 4-manifolds are defined
in [79,100]. Given a Weinstein manifold W = W (Λ), the arborealization

12Namely, the bounded regions in R
2 \ D′ which do not come from a bounded square

obtained by resolving a crossing nor from a bounded region in R
2 \D; i.e. the blue bounded

regions, as depicted in Fig. 13.
13Some of these 1-handles might be attached between a region and itself.
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procedure in [100] yields an arboreal Lagrangian skeleton L ⊆ (W,λ) with
∂L �= ∅. Intuitively, those Lagrangian skeleta are obtained by attaching
2-handles to D

2 along a (modification of a) front for Λ, and thus roughly
contain the same information as a front π(Λ) ⊆ R

2 for Λ. Let Λ ⊆ (S3, ξst)
be a Legendrian link and (W,λ) a Weinstein manifold.

Definition 2.16. A compact arboreal Lagrangian skeleton L ⊆ C
2 for a Wein-

stein pair (C2,Λ) is said to be closed if ∂L = Λ. A compact arboreal
Lagrangian skeleton L ⊆ W for a Weinstein manifold (W,λ) is said to be
closed if ∂L = ∅.

The Lagrangian skeleta in Theorem 1.1 and Corollary 1.2 are arboreal
and closed. For reference, we denote the two Cal-skeleta associated to a real
morsification f̃ of an isolated plane curve singularity f ∈ C[x, y] by

L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃

i=1

D
2, L(f̃) := Mf ∪ϑ(f̃)

|ϑ(f̃)|⋃

i=1

D
2.

The former L(f̃) is a Lagrangian skeleton for the Weinstein pair (C2,Λf ),
and the latter for the Weinstein 4-manifold W (Λf ). The notation Mf stands
for the surface obtained by capping each of the boundary components of the
Milnor fiber Mf with a 2-disk. The notation L(f) and L(f) will stand for
any Cal-skeleton obtained from a real morsification f̃ as in Theorem 1.1 and
Corollary 1.2. Similarly, we will denote by ϑ(f) a collection of vanishing cycles
ϑ(f̃) obtained from a real morsification f̃ , without necessarily specifying f̃ .

Remark 2.17. In the context of low-dimensional topology, the 2-complexes
underlying these Lagrangian skeleta are often referred to as Turaev’s shad-
ows, following [103, Chapter 8]. In particular, it is known how to compute the
signature of a (Weinstein) 4-manifold from any Cal-skeleton by using [103,
Chapter 9]. Similarly, the SU(2)-Reshetikhin-Turaev-Witten invariant of the
three-dimensional (contact) boundary can be computed with the state-sum
formula in [103, Chapter 10]. It would be interesting to explore if such com-
binatorial invariants can be enhanced to detect information on the contact
and symplectic structures. �

3. Augmentation stack and the cluster algebra of
Fomin–Pylyavskyy–Shustin–Thurston

In the article [47], the authors develop a connection between the topology
of an isolated singularity f and the theory of cluster algebras. In concrete
terms, they associate a cluster algebra A(f) to an isolated singularity. An
initial cluster seed for A(f) is given by a quiver Q(Df̃ ) coming from the
AΓ-diagrams of a divide Df̃ of a real morsification f̃ of f . Equivalently,
by [4,61], the quiver Q(Df̃ ) is the intersection quiver for a set of vanishing
cycles associated to a real morsification of f . The conjectural tenet in [47]
is that different choices of Morsifications lead to mutation equivalent quivers
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and, conversely, two quivers associated to two real morsifications of the same
complex topological singularity must be mutation equivalent.

There are two varieties associated to a cluster algebra, the X -cluster
variety and the A-cluster variety [44,59,95]. In the case of the cluster alge-
bra A(f) from [47], one can ask whether either of these varieties has a par-
ticularly geometric meaning. Our suggestion is that either of these cluster
varieties is the moduli space of exact Lagrangian fillings for the Legendrian
knot Λf ⊆ (R3, ξst), with the appropriate additional data (e.g. local systems).
Equivalently, they are the moduli space of (certain) objects of a Fukaya cat-
egory associated to the Weinstein pair (C2,Λf ); for instance, the partially
wrapped Fukaya category of C

2 stopped at Λf . In this sense, these cluster
varieties are mirror to the Weinstein pair (R4,Λf ).14 Focusing on the Leg-
endrian link Λf ⊆ (R3, ξst), let us then suggest an alternative route from
a plane curve singularity f ∈ C[x, y] to a cluster algebra A(f), following
Definition 2.4 and Proposition 2.2 and 2.13.

Starting with f ∈ C[x, y], consider the Legendrian,15 Λf ⊆ (R3, ξst),
where (R3, ξst) is identified as the complement of a point in (S3, ξst) and the
Legendrian DGA A (Λf ), as defined by Y. Chekanov in [25] and see [36]. Then
we define A(f) to be the coordinate ring of functions on the augmentation
variety A(Λf ) of the DGA A (Λf ). Technically, the DGA A (Λf ) allows for a
choice of base points, and the augmentation variety depends on that. Thus,
it is more accurate to define:

Definition 3.1. Let f ∈ C[x, y] define an isolated singularity, the augmen-
tation algebra A(f) associated to f is the ring of k-regular functions on
the moduli stack of objects ob(Aug+(Λf )) of the augmentation category
Aug+(Λf ). �

The Aug+(Λ) augmentation category of a Legendrian link Λ ⊆ (R3, ξst)
is introduced in [84]. An exact Lagrangian filling16 defines an object in the
category Aug+(Λ), and the morphisms between two such objects are given by
(a linearized version of) Lagrangian Floer homology. In fact, there is a sense in
which any object in Aug+(Λ) comes from a Lagrangian filling [88,89], possibly
immersed, and thus ob(Aug+(Λ)) is a natural candidate for a moduli space
of Lagrangian fillings. The algebra A(f) is known to be a cluster algebra
[51] in characteristic two. The lift to characteristic zero can be obtained by
combining [22] and [51].

By Proposition 2.2, A(f) is a well-defined invariant of the complex topo-
logical singularity. For these Legendrian links Λ = Λf , the Couture-Perron
algorithm [30] implies that there exist a Legendrian front π(Λf ) ⊆ R

2 given
by the (−1)-closure of a positive braid βΔ2, where Δ is the half-twist; equiv-
alently the front is the rainbow closure of the positive braid β [20]. Hence,

14The difference between X - and A-varieties should be the decorations we require for the
Lagrangian fillings.
15In the context of plabic graphs [47, Section 6] the zig-zag curves [59,91] also provide a
front for the Legendrian link Λf .
16Throughout the text, exact Lagrangian fillings are, if needed, implicitely endowed with
a C

∗-local system.
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there is a set of non-negatively graded Reeb chords generating the DGA
A (Λf ) and ob(Aug+(Λf )) coincides with the set of k-valued augmentations
of A (Λf ) where exactly one base point per component has been chosen, k
a field. The articles [22,66] provide an explicit and computational model for
ob(Aug+(Λf )), and thus A(f), as follows.

First, suppose that Λ = Λf is a knot. Then, A(f) is the algebra of
regular functions of the affine variety

X(β) := {B(βΔ2) + diagi(β)(t, 1, . . . , 1) = 0} ⊆ C
|βΔ2|+1,

where B are the (i(β) × i(β))-matrices defined in [22, Section 3] and Com-
putation 3.2 below, i(β) is the number of strands of β,Δ, and |βΔ2| is the
number of crossings of βΔ2. In the case Λf is a link with l components, the
space ob(Aug+(Λf )) is a stack17, with isotropy groups of the form (C∗)k. If
the tenet [47, Conjecture 5.5] holds, the affine algebraic type of the augmenta-
tion stack ob(Aug+(Λf )) of a Legendrian link should recover the Legendrian
link Λf and the complex topological type of the singularity f . Here is how to
compute ob(Aug+(Λf )).

Computation 3.2. Let Λ = Λf be an algebraic knot, we can find a set of
equations for the affine variety ob(Aug+(Λf )), essentially using [67], see also
[22]. Consider a positive braid18 β◦ ∈ Br+n such that the (−1)-closure of β◦

is a front for Λ = Λ(β◦). For k ∈ [1, n − 1], define the following n × n matrix
Pk(z), with variable z ∈ C:

(Pk(z))ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 i = j and i �= k, k + 1
1 (i, j) = (k, k + 1) or (k + 1, k)
z i = j = k + 1
0 otherwise;

Namely, Pk(z) is the identity matrix except for the (2×2)-submatrix given by
rows and columns k and k + 1, where it is ( 0 1

1 z ). Suppose that the crossings
of β◦, left to right, are σk1 , . . . , σks

, s = |β◦| ∈ N, σi ∈ Br+n the Artin
generators. Then the augmentation stack ob(Aug+(Λf )) is cut out in C

s ×
C

∗ = Spec[z1, z2, . . . , zs, t, t
−1] by the n2 equations

diagn(t, 1, 1, . . . , 1) + Pk1(z1)Pk2(z2) · · · Pks
(zs) = 0. (3.1)

The matrix Pk1(z1)Pk2(z2) · · · Pks
(zs) is denoted by B(β◦). Equations 3.1

provide a computational mean to an explicit description of the affine varieties
ob(Aug+(Λf )) that yield the cluster algebra A(f). �

Example 3.3. Consider the plane curve singularity19 described by

f(x, y) = −12x10y2 − 4x9y2 − 2x7y4 + 6x6y4 − 4x3y6 + x14 − 2x13 + x12 + y8

=
(
2x3y2 − 4x5y + x7 − x6 − y4

) (
2x3y2 + 4x5y + x7 − x6 − y4

)

17Namely, it is isomorphic to a quotient of X(β) × (C∗)l by a non-free (C∗)l−1-action.
18Note that β◦ can be written in the form β◦ = βΔ2.
19We have chosen this example as a continuation of [30, Example 5.3] and [47, Figure 6].
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The Puiseux expansion yields y(x) = x3/2 + x7/4 and using the Couture-
Perron algorithm [30], or [47, Definition 11.3], a positive braid word associated
to this singularity is

β = (σ2σ1σ3σ2σ1σ3σ2σ1)σ3(σ1σ2σ3σ1σ2σ3σ1σ2)σ1σ3

The Legendrian Λf ⊆ (R3, ξ) is the rainbow closure of β, and the (−1)-
framed closure of β◦ = βΔ2. Note that Λf is a knot, and thus we will use one
base point t ∈ C

∗ in the computation of X(β) = ob(Aug+(Λf )). Following
Computation 3.2 above, we can write equations for affine variety X(β) as
a subset X(β) ⊆ C

31 × C
∗. We use coordinates (z1, z2, . . . , z31; t) ∈ C

31 ×
C

∗, (z1, z2, . . . , z19) corresponding to the 19 crossings of β and (z20, . . . , z31)
account for the 12 crossings of Δ2 ∈ Br+3 . There are a total of 16 equations,
the first two of which read as follows:

z11 + z9z12 + (z9 + (z11 + z9z12) z18) z20 + (z13 + z9z14 + (z11 + z9z12) z15) z21

+(z9z16 + (z11 + z9z12) z17 + (z13 + z9z14 + (z11 + z9z12) z15) z19 + 1) z23 = −t−1

z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18 + (z8 + z6z13 + (z7 + z6z9)z14

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z15)z22 + (z6 + (z7 + z6z9)z16

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z17

+(z8 + z6z13 + (z7 + z6z9)z14 + (z8z10 + z6z11

+(z7 + z6z9)z12 + 1)z15)z19)z24 + (z8z10 + z6z11 + (z7 + z6z9)z12

+(z7 + z6z9 + (z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z18)z20

+(z8 + z6z13 + (z7 + z6z9)z14

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z15)z21 + (z6 + (z7 + z6z9)z16

+(z8z10 + z6z11 + (z7 + z6z9)z12 + 1)z17

+(z8 + z6z13 + (z7 + z6z9)z14 + (z8z10 + z6z11

+(z7 + z6z9)z12 + 1)z15)z19)z23 + 1)z31 = 0

The remaining 14 equations are longer, but can be readily obtained. This
hopefully illustrates that the method is computationally immediate.20 �
Remark 3.4. (i) One may consider the moduli stack ob(Sh1

Λf
(R2)) of

sheaves with microlocal rank-1 along Λf , instead of ob(Aug+(Λf )). By
[84], there is an equivalence of categories Aug+(Λf ) ∼= Sh1

Λf
(R2). The

stack ob(Sh1
Λf

(R2)) is a X -cluster variety; the associated A-cluster vari-
ety in the cluster ensemble is the moduli of framed sheaves [95].21 In
short, the cluster algebra A(f) could have been defined in terms of
the moduli space of constructible sheaves microlocally supported in Λ,
instead of Floer theory.

(ii) The Aug+-category is Floer-theoretical in nature, e.g. its morphisms
are certain Floer homology groups. It would have also been natural to
consider the partially wrapped Fukaya category W (C2,Λf ), as defined
[50,101], or the infinitesimal Fukaya category Fuk(C2,Λ) [77,81]. These

20Even if the equations themselves, being rather long, may not be particularly enlightening.
21The cluster algebra structure for A(f) defined by [51] is obtained by pulling-back the
cluster algebra structure of the open Bott-Samelson cell associated to β. There should exist
a cluster algebra structure on A(f) defined strictly in Floer-theoretical terms.
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are Floer-theoretical Legendrian invariants associated to Λf , and thus
the singularity f ∈ C[x, y], which might be of interest on their own.

4. A few computations and remarks

Consider the derived dg-category ShΛ(M) of constructible sheaves in a
closed smooth manifold M microlocally supported at a Legendrian link
Λ ⊆ (∂(T ∗M), ξst), e.g. as introduced in [97, Section 1]. Equivalently, one
may consider a conical Lagrangian L ⊆ T ∗M instead of Λ ⊆ (∂(T ∗M), ξst);
in practice, the input data is a wavefront π(Λ) ⊆ M [8]. Let μ sh denote the
sheaf of microlocal sheaves defined22 in [80, Section 5]. There are two situa-
tions we consider, depending on whether the focus is on the Weinstein pair
(C2,Λf ) or on the Weinstein 4-manifold W (Λf ):

(i) Sheaf Invariants of the Weinstein pair (C2,Λf ).23 The category of
microlocal sheaves μ sh(L(f)) is an invariant of (C2,Λf ), as established
in [60,80,97].24 In this case, the global sections μ sh(L(f)) is a category
equivalent to the more familiar ShΛ(f)(R2). For simplicity, we focus on
the moduli stack S(f) ⊆ ob(ShΛ(f)(R2)) of sheaves whose microlocal
support is rank one, microlocally supported in the Legendrian link of
an isolated plane curve singularity f : C

2 −→ C. See [69, Section 7.5]
or [60, Section 1.10] for a detailed discussion on these sheaves. In our
case Λ = Λ(f), S(f) is an Artin stack of finite type [97, Prop. 5.20], and
typically is an algebraic variety or a G-quotient thereof, with G = (C∗)k

or GL(k, C). Note that μ sh(L(f)) is equivalent to the wrapped Fukaya
category of C

2 stopped at Λf [49].
(ii) Sheaf Invariants of the Weinstein 4-manifold W (Λf ). The category

μ sh(L(f)) of microlocal sheaves [80] on a Lagrangian skeleton L(f) ⊆
W (Λf ) is an invariant of W (Λf ), up to Weinstein homotopy [80]
and up to symplectomorphism [49]. This category is25 Shϑ(f)(Mf ),
or μloc(L(f)), in the notation of [96], i.e. the global sections of
the Kashiwara-Schapira sheaf of dg-categories [96, Prop. 3.5] on the
Lagrangian skeleton L(f). For simplicity, we focus on the moduli stack
θ(f) ⊆ μ sh(L(f)) of microlocal rank-1 sheaves as well. Note that
μ sh(L(f)) is equivalent to the wrapped Fukaya category of W (Λf ) by
[49].
The moduli stack S(f) in (i) is isomorphic to the stack of microlocal

rank-1 sheaves in ob(Shϑ(f)(Mf )). This is because the union of R
2 ⊆ T ∗

R
2

and the Lagrangian cone of Λ ⊆ (T+
R

2, ξst) is a Lagrangian skeleton
for the relative Weinstein pair (C2,Λ), so is L(f) by Theorem 1.1, and

22Thanks go to V. Shende for helpful discussions on sheaf invariants.
23Invariance up to Weinstein homotopy [28], and also symplectomorphism of Liouville
pairs.
24The category μ sh(L(f)) is likely not an invariant of the Weinstein 4-manifold W (Λf )

itself.
25Recall that we denote by ϑ(f) a collection of vanishing cycles ϑ(f̃) obtained from a real

morsification f̃ .
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Figure 14. A Cal-skeleta L(f2n+1) for the Weinstein 4-
manifolds W (Λ(A2n+1))

ob(Shϑ(f)(Mf )) is an invariant of the Weinstein pair (C2,Λ), independent
of the choice of Lagrangian skeleton. Thus, the difference between S(f) and
θ(f) is at the boundary, which for S(f) might give monodromy contributions
(and these become trivial on θ(f)). In other words, since L(f) is obtained
from L(f) by attaching 2-disks (to close the boundary of the Milnor fiber
Mf ), the category μ sh(L(f)) is a homotopy pull-back of μ sh(L(f)).

Remark 4.1. There are currently two methods for computing S(f): either by
direct means, as exemplified in [97], or by using the equivalence of categories
Aug+(Λ(f)) ∼= Sh1

Λf
(R2) from [84, Theorem 1.3], the latter being denoted by

C1(Λf ) in [84]. Thanks to the computational techniques available for augmen-
tation varieties, the moduli of objects ob(Aug+(Λ(f))) is readily computable
for (−1)-framed closures of positive braids as in Sect. 3 above, confer Com-
putation 3.2. Similarly θ(f) could be computed directly, or by means of the
isomorphism to the wrapped Fukaya category26 of W (Λf ). �

In this section, we take to opportunity to build on [80,96] and perform
an actual computation for a class of Cal-Skeleta coming from Theorem 1.1.

4.1. Cal-skeleta for An -singularities

Consider the An-singularity fn(x, y) = xn+1 + y2. The Legendrian Λ(An) ⊆
(R3, ξst) associated to the singularity is the max-tb Legendrian (2, n+1)-torus
link. By Theorem 1.1, a Lagrangian skeleton L(fn) for the Weinstein pair
(C2,Λf ) is obtained by attaching n 2-disks to a (3/2 − (−1)n/2)–punctured
�n−1

2 �–genus surface along an An-Dynkin chain of embedded curves. Simi-
larly, Corollary 1.2 implies that a Lagrangian skeleton L(fn) for the Weinstein
4-manifold Wn = W (Λ(An)) is given by attaching n 2-disks to a �n−1

2 �–genus
surface along an An-Dynkin chain, as depicted in orange in Fig. 15, see also
Fig. 14.

Let us compute θ(fn) for n ∈ N even, so that Λ(An) is a knot; the
n ∈ N odd case is similar. The key technical tool is the Disk Lemma [68,
Lemma 4.2.3]. The Disk Lemma explains, in precise terms, how to compute
the category of microlocal sheaves on a two-dimensional Lagrangian skeleton
S ∪γ D

2 in terms of the category for the corresponding Lagrangian skeleton
S, where D

2 is attached along an embedded smooth curve γ ⊆ S. In brief, the
Disk Lemma states that the microlocal sheaf category for S ∪γ D

2 has as its

26Should the reader be willing to use the surgery formula, this wrapped Fukaya category
may be presented as modules over the Legendrian DGA of Λf . (This is only informative

and not needed for the present purposes.)
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Figure 15. The Cal-skeleta L(f) for the Weinstein 4-
manifolds W (Λ(A2)) and W (Λ(A6)). The relative Cal-
skeleta L(f) for the corresponding Weinstein pairs
(C2,Λ(A2)) and (C2,Λ(A6)) are obtained by introducing one
puncture to the surfaces

objects pairs consisting of an object FS in the category for S and a (derived)
trivialization of the microlocal monodromy of FS along γ, i.e. a homotopy
from this microlocal monodromy to the identity.

The complement Mf \ ϑ(f) of the vanishing cycles is a 2-disk, and
the category of local systems is just C-mod. Thus, the moduli of simple
constructible sheaves on Mf microlocally supported on (the Legendrian lift
of) the vanishing cycles ϑ(f) consists of a vector space V = C and maps
x1, x2, . . . , xn ∈ End(V ), one associated to each vanishing cycle. This is
depicted in Fig. 15 for n = 2, 6, and note that n = |ϑ(f)|. Denote by
L(fn)0 ⊆ T ∗Mf the Lagrangian skeleton given by Mf union the conormal
lifts of ϑ(f). These maps are not necessarily invertible in μ sh(L(fn)0).

The skeleton L(fn) is obtained by attaching n Lagrangian 2-disks to
L(fn)0, i.e. L(fn) is the homotopy push-out of L(fn)0 and the disjoint union
of n 2-disks. In consequence, the category of microlocal sheaves on L(fn) is
given by the homotopy pull-back of the category of microlocal sheaves on
L(fn)0 and the category of microlocal sheaves on n disjoint 2-disks (which
are just copies of C-mod). Attaching a 2-disk along a vanishing Vi cycle in
ϑ(f), i ∈ [1, n], has the effect of trivializing the “monodromy” corresponding
map xi, by the Disk Lemman [68, Lemma 4.2.3] cited above; see [96, Section
4] and [68, Section 4.2] for the details. Here, the monodromy27 is given by
restricting a microlocal sheaf to (an arbitrarily small neighborhood of) Vi.
Note that in this restriction, we land into a 1-dimensional Lagrangian skeleton
given by a circle Vi

∼= S1 union conical segments coming from the adjacent
vanishing cycles. Let us call γi the composition of maps from cone(xi) to
itself obtained by going around Vi, each of the maps coming from traversing
a segment. Then, the trivialization is a homotopy to the identity, and it
translates into adding a map αi such that xiαi − 1 = γi.

Example 4.2. Consider the map x1 in Fig. 15 (Left), which is depicted trans-
versely to the vanishing cycle V1. The restriction of a microlocal sheaf to a

27We had written “monodromy” in quotations because it is not a priori necessarily
invertible.

Vol. 24 (2022) Lagrangian skeleta and plane curve singularities

Reprinted from the journal 207



R. Casals JFPTA

neighborhood of V1 gives a microlocal sheaf for the skeleton S
1 ∪ T ∗,+

p S
1 ⊆

T ∗
S

1, where T ∗,+
p S

1 is the positive half of the cotangent fiber at a point
p ∈ S

1. Such a microlocal sheaf is described by a (complex of) vector space(s)
and an endomorphism. In this case the vector space is V = C and this endo-
morphism is identified with γ1 = x2. Hence, trivializing along V1 adds a
map α1 ∈ End(C), which we can think of as a variable α1 ∈ C, such that
x1α1 + 1 = −x2. Similarly, trivializing along V2, with γ2 = −α1, adds a
variable α2 ∈ C such that 1 + x2α2 = −α1. Hence θ(f) is the affine variety

θ(f3) = {(x, y, z) ∈ C
3 : xyz + x − z − 1 = 0}.

This affine variety appears in the study of isomonodromic deformations of
the Painlevé I equation [105, Section 3.10], see also [18, Section 5]. �

The vanishing cycles V1, Vn have simpler monodromies γ1, γn, as they
only intersect one other vanishing cycle. Adding the 2-disks to the skeleton
L(fn)0 along V1, Vn yields a category of microlocal sheaves whose moduli
space of simple objects is described by that of L(fn)0 and the two equations
x1α1 + 1 = −x2 and xnαn + 1 = −αn−1. For each of the middle vanishing
cycles Vi, 2 ≤ i ≤ n − 1, we have the monodromy γi = αi−1xi+1. In con-
sequence, attaching the n 2-disks L(fn)0 along all the curves Vi, i ∈ [1, n],
leads to the moduli space

θ(f) ∼= {(xi, αi) ∈ (C2)n : x1α1 + 1 = −x2, xnαn + 1
= −αn−1, 1 + xjαj = αj−1xj+1, j ∈ [2, n − 1]}.

Remark 4.3. Consider (n + 3)-tuples of vectors (v1, . . . , vn+3) ∈ C
2, modulo

GL2(C), the equations for θ(f) above can be read directly by writing the
(n + 3)-tuple as
(

1
0

)
,

(
0
1

)
,

(−1
x1

)
,

(
α1

x2

)
,

(
α2

x3

)
,

(
α3

x4

)
,

(
α4

x5

)
, . . . ,

(
αn−1

xn

)
,

(
αn

−1

)
,

and imposing vi ∧ vi+1 = 1, where we have use the GL2(C) gauge group
to trivialize the first two vectors, and one component of the third and last
vectors. Boalch [18] names this moduli stack after Sibuya [99]. Note that [18,
Section 5] points out that some of these equations were initially discovered by
Euler [42]. In the context of open Bott–Samelson cells [95,98], these spaces
appear as the open positroid varieties {p ∈ Gr(2, n+3) : Pi,i+1(p) �= 0}, where
Pi,j is the Plücker coordinate given by the minor at the i and j columns, and
the index i is understood Z/(n + 3)-cyclically. �

Finally, we notice that the cohomology H∗(θ(f), C), or that of H∗(S(f), C),
can be an interesting invariant [97, Section 6]. For the case of An-singularities,
we can use the fact that these are actually cluster varieties of An-type in order
to compute their cohomology using [72, Section 6.2]. For n = 2m ∈ N even,
and removing any C

∗-factors coming from frozen variables, one obtains that
the Abelian graded cohomology group is isomorphic to Q[t]/tm+1, |t| = 2.
In general, the mixed Hodge structure for these moduli spaces can be non-
trivial, but for singularities of An-type, these cohomologies are of Hodge–Tate
type, and entirely concentrated in

⊕
k≥0 Hk,(k,k).
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Remark 4.4. It would be valuable to understand the relation between sheaf
invariants of a singularity f ∈ C[x, y], such as μ sh(L(f)) and μ sh(L(f)), and
classical invariants from singularity theory [3,9,10]. In particular, it could
be valuable to develop more systematic methods to compute μ sh(L(f)) and
μ sh(L(f)) both directly and from a divide. �

5. Structural conjectures on Lagrangian fillings

Let Λ ⊆ (S3, ξst) be a max-tb Legendrian link. The classification of embed-
ded exact Lagrangian fillings L ⊆ (D4, λst) with fixed boundary Λ, up to
Hamiltonian isotopy, is a central question. The only Legendrian Λ for which
a complete classification exists is the standard unknot [33]. In this case, the
standard Lagrangian flat disk is the unique filling: there is precisely one exact
Lagrangian filling, up to Hamiltonian isotopy.

The recent developments [20,22,23] show that such finiteness is actu-
ally rare: e.g. the max-tb torus links (n,m) admit infinitely many exact
Lagrangian filling, up to Hamiltonian isotopy, if n,m ≥ 4. It is proven in [20]
that Legendrian representatives of infinitely many types of either torus, satel-
lite or hyperbolic knots admit infinitely many Hamiltonian isotopy classes of
embedded exact Lagrangian fillings. This final section states and discusses
Conjectures 5.1 and 5.4, which might help towards our understanding of the
classification of exact Lagrangian fillings of Legendrian links.
Geometric strategy Given Λ ⊆ (S3, ξst), we would like to know whether it
admits finitely many Lagrangian fillings or not, and in the finite case provide
the exact count. Theorem 1.1 provides insight for the class of Legendrian
links Λ ⊆ (S3, ξst) that are algebraic links and, more generally, arise from
a divide. Indeed, Lagrangian fillings for Λ can be constructed by using the
Lagrangian skeleta for the Weinstein pair (C2,Λ) built in the statement. For
instance, the inclusion of the Lagrangian Milnor fiber Lf̃ ⊆ Lf̃ provides an
exact Lagrangian filling, and performing Lagrangian disk surgeries along the
Lagrangian 2-disks in Lf̃ \Lf̃ , which bound vanishing cycles, will potentially
yield new Lagrangian fillings. This strategy can be implemented in certain
cases but, in general, one must be able to find an embedded Lagrangian disk
in the new Lagrangian skeleton (with an embedded boundary curve), to per-
form the next Lagrangian disk surgery. Curves being immersed rather than
embedded28, might a priori represent a challenge.29 This geometric scheme
has the following algebraic incarnation.

Algebraic strategy Consider the intersection quiver Qϑ(f̃) of vanishing
cycles for a real morsification f̃ , Lagrangian disk surgeries induce mutations
of the quiver [96] and the (microlocal) monodromies of a local system serve
as cluster X -variables [23,98]. Thus, the cluster algebra A(Q(f)) associated

28Equivalently, the existence of curves with zero algebraic intersection but non-empty
geometric intersection.
29The vanishing cycles can be organized as a quiver Q, the additional data of a superpo-

tential (Q, W ) should be helpful in solving the disparity between immersed and embedded
curves in the Milnor fiber.
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to the quiver, as it appears in [47], governs possible exact Lagrangian fillings
for the Legendrian link Λ. That is, a Lagrangian filling L ⊆ (D4, λst) yields a
cluster chart for this algebra [51,98], and the Lagrangian skeleta from Theo-
rem 1.1 provide a geometric realization for the quiver in the form of an exact
Lagrangian filling with ambient Lagrangian disks ending on it.

The recent developments [20,51,96,98] and the existence of the
Lagrangian skeleta in Theorem 1.1 shyly hint towards the fact that, pos-
sibly, Lagrangian fillings are classified by the cluster algebra A(Q(f)). That
is, every cluster chart in A(Q(f)) is induced by precisely one exact Lagrangian
filling.30 It should be emphasized that this is not known for any Λ ⊆ (R3, ξst)
except the standard Legendrian unknot. It is possible that the case of the
Hopf link Λ(A1) can be solved by building on the techniques in [92], which
classifies exact Lagrangian tori near the Whitney sphere;31 this is currently
work in progress.

Having presented the available evidence, we state the following conjec-
tural guide:

Conjecture 5.1. (ADE Classification of Lagrangian Fillings) Let Λ ⊆ (R3, ξst)
be the Legendrian rainbow closure of a positive braid such that the mutable
part of its brick quiver is connected. Then one of the following possibilities
occur:

1. Λ is smoothly isotopic to the link of the An-singularity. Then Λ has
precisely 1

n+2

(
2n+2
n+1

)
exact Lagrangian fillings.

2. Λ is smoothly isotopic to the link of the Dn-singularity. Then Λ has
precisely 3n−2

n

(
2n−2
n−1

)
exact Lagrangian fillings.

3. Λ is smoothly isotopic to the link of the E6, E7 or the E8-singularities.
Then Λ has precisely 833, 4160, and 25080 exact Lagrangian fillings,
respectively.

4. Λ has infinitely many exact Lagrangian fillings.

The following comments are in order:
(i) In [45], Fomin and Zelevinsky classify cluster algebras of finite type. This

is an ADE-classification, parallel to the classification of simple singu-
larities [9], the Cartan–Killing classification of semisimple Lie algebras,
finite crystallographic root systems (via Dynkin diagrams) and the like.
Thus, Conjecture 5.1 first states that Λ will have finitely many exact
Lagrangian fillings, up to Hamiltonian isotopy, if and only if the associ-
ated quiver is ADE.

(ii) The case of Λ = Λf an algebraic link associated to a non-simple sin-
gularity f ∈ C[x, y] of a plane curve follows from [20], and the case of
a Legendrian Λ with a non-ADE underlying quiver has recently been
proven in [52]. These approaches are based on the following fact: if there
exists an embedded exact Lagrangian cobordism from Λ− to Λ+ and Λ−
admits infinitely many Lagrangian fillings, then so does Λ+. See [22,86]

30That is, two Lagrangian fillings inducing the same cluster chart in A(Q(f)) are Hamil-

tonian isotopic and every cluster chart is induced by at least one Lagrangian filling.
31See also [29], which appeared during the writing of this manuscript.
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and [20, Section 6]. This itself initiates the quest for finding the smallest
Legendrian link which admits infinitely many exact Lagrangian fillings.
At present, if we measure the size of a link Λ as π0(Λ)+2g(Λ), g(Λ) the
(minimal) genus of a (any) embedded Lagrangian filling, the smallest
known Legendrian link has g(Λ) = 1 and two components π0(Λ) = 2; it
is built in [22]. Intuitively, it is the geometric link corresponding to the
Ã2 cluster algebra.

(iii) According to (ii) above, the missing ingredient for Conjecture 5.1 is
showing that (1), (2) and (3) hold. For the An-case (1), it is known that
there are at least the stated Catalan number worth of exact Lagrangian
fillings, distinct up to Hamiltonian isotopy. This was originally proven
by Pan [87] and subsequently understood in [98,102] from the per-
spective of microlocal sheaf theory. It remains to show that any exact
Lagrangian filling of Λ(An) is Hamiltonian isotopic to one of those; the
first unsolved case is the Hopf link Λ(A1) having exactly two embed-
ded exact Lagrangian fillings.32 For the Λ(Dn),Λ(E6),Λ(E7) and Λ(E8)
cases in Conjecture 5.1, one needs to first find the corresponding num-
ber of distinct Lagrangian fillings, and then show these are all. The
construction part should be relatively accessible, in the spirit of either
[23,87,98], and it is reasonable to suspect that these many fillings can be
distinguished using either augmentations or microlocal monodromies.33

(iv) The numbers appearing in Conjecture 5.1. (i)–(iii) are the number
of cluster seeds for the corresponding cluster algebra. Precisely, con-
sider a root system of Cartan-Killing type Xn, e1, . . . , en its exponents
and h the Coxeter number. Then the numbers in Conjecture 5.1 are
N(Xn) =

∏n
i=1(ei + h + 1)(ei + 1)−1 for Xn = An,Dn, E6, E7, E8. It is

natural to strengthen Conjecture 5.1. (iv) to: 4. There exist a natural
bijection between Hamiltonian isotopy classes of exact Lagrangian fill-
ings of Λ and cluster seeds of the (natural) cluster A-structure on the
augmentation variety of Λ, decorated with one marked point per compo-
nent. (The bijection assigns to a Lagrangian filling L the set H1(L, C∗)
of C

∗-local systems on L, which is naturally a subset of the augmenta-
tion variety and a cluster chart.)

Note that Conjecture 5.1 has a natural analogue for W (Λ). Namely,
the Hamiltonian isotopy classes of closed exact Lagrangians in W (Λ) are
precisely given by the numerics above. This aligns with the spirit of the
nearby Lagrangian conjecture, now for surface skeleta: if we interpret W (Λ)
as “generalized cotangent bundle” T ∗

L, where L is a Cal-skeleton for Λ, then
the conjecture would be that any closed exact Lagrangian is Hamiltonian
isotopic to a Lagrangian which is either a subset of L or can be obtained
from it via (iterated) Lagrangian disk mutations.

32In particular, this would show that the two possible Polterovich surgeries [90] of a 2-
dimensional Lagrangian node are the only two exact Lagrangian cylinders near the node,
up to Hamiltonian isotopy.
33Showing these exhaust all fillings, up to Hamiltonian isotopy, is another matter, possibly
much more challenging.
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The brick graph of a positive braid is defined in [13,94], it can be
enhanced to a quiver, which we call the brick quiver, following the algorithm
in [95, Section 3.1] or [51, Section 4.2], which itself generalizes the wiring
diagram construction in [16,43].

Remark 5.2. The hypothesis of the mutable part of its brick quiver being
connected is necessary. We could otherwise add a meridian to any positive
braid, which would create a disconnected quiver; the resulting cluster algebra
would be a product with A1, which preserves being of finite type. It stands
to reason that adding a meridian to a Legendrian link Λ would yield a Leg-
endrian link Λ ∪ μ with exactly twice as many Lagrangian fillings. It is clear
that there are at least twice as many Lagrangian fillings for Λ ∪ μ, as there
are two distinct Lagrangian cobordisms from Λ to Λ ∪ μ. The simplest case
is Λ = Λ0 the standard Legendrian unknot and Λ∪μ ∼= Λ(A1) the Hopf link,
which should have 2 = 2 · 1 Lagrangian fillings, in accordance with Conjec-
ture 5.1. The next case would be Λ = Λ(A1), so that Λ(A1) ∪ μ ∼= Λ(D2), in
line with Λ(D2) conjecturally having 4 = 2 · 2 Lagrangian fillings. �

Note that the article [22] has provided the first examples of Legendrian
links Λ ⊆ (S3, ξst) which are not rainbow closures of positive braids and yet
they admit infinitely many Lagrangian fillings, up to Hamiltonian isotopy.
These Legendrian links have components which are stabilized, not max-tb,
and thus they cannot be rainbow closures of any positive braid. It would
be interesting to extend Conjecture 5.1 to a larger class of links, possibly
including (−1)-framed closures of certain positive braids, e.g., those with
Demazure product equal to a half-twist, as studied in [22].

Remark 5.3. To the author’s knowledge, [33,87], Theorem 1.1, and the recent
[20,22,23,51,52], constitute the current evidence towards Conjecture 5.1.
Hints towards Conjecture 5.1 might have appeared in the symplectic folk-
lore in one form or another: e.g. the advent of Symplectic Field Theory led
to the mantra of “pseudoholomorphic curves or nothing”34, the subsequent
arrival of microlocal sheaf theory to symplectic topology led to “sheaves or
nothing”. In the current zeitgeist, cluster algebras provide a new algebraic
invariant that one might hope to be complete.35 �

In the line of Remark 5.3, a natural strengthening of Conjecture 5.1,
under same the hypotheses, would be to speculate that there exists precisely
one Hamiltonian isotopy class of Lagrangian fillings per each cluster seed
in the augmentation variety associated to Λ ⊆ (R3, ξst). Given our current
understanding, this might as well be the case. The statement is correct for
the unknot and current work in progress indicates that it is correct for the
Hopf link.

34That is, if pseudoholomorphic invariants cannot distinguish two objects, they must be
equal.
35As with the previous two cases, there is no particularly hard evidence for “cluster algebras
or nothing”.
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Finally, an ADE-classification is often part of a larger classification,36 involv-
ing a few additional families. For instance, simple Lie algebras are classified by
connected Dynkin diagrams, which are An,Dn, E6, E7, E8, known as the sim-
ply laced Lie algebras, and Bn, Cn, F4 and G2. These latter cases, Bn, Cn, F4

and G2, are interesting on their own right. For instance, simple singularities
are classified according to An,Dn, E6, E7, E8, and Bn, Cn, F4 then arise in
the classification of simple boundary singularities [9, Chapter 17.4], as shown
in [10, Chapter 5.2]. (See also D. Bennequin’s [15, Section 8] and [7].) In
general, the tenet is that Bn, Cn, F4 and G2 arise when classifying the same
objects as in the ADE-classification with the additional data of a symmetry.37

This a perspective (and technique) called folding, ubiquitous in the study of
Bn, Cn, F4, G2, which is developed in [46, Section 2.4] for the case of cluster
algebras.

Let us consider a Legendrian Λ ⊆ (R3, ξst), a Lagrangian filling L ⊆
(R4, λst), ∂L = Λ, and a finite group G acting faithfully on (R4, λst) by exact
symplectomorphisms, inducing an action on the boundary piece (R3, ξst) by
contactomorphisms. For instance, s : R

4 −→ R
4, s(x, y, z, w) = (−x,−y, z, w)

is an involutive symplectomorphism which restricts to the contactomorphism
(x, y, z) �→ (−x,−y, z) on its boundary piece (R3, ker{dz − ydx}). Let us
define an exact Lagrangian G-filling of Λ to be an exact Lagrangian filling
L of Λ such that G(L) = L and G(Λ) = Λ setwise. Also, by definition, we
say Λ ⊆ (R3, ξst) admits a G-symmetry if there exists a faithful action of G
by contactomorphisms on (R3, ξst) such that G(Λ) = Λ setwise. Examples of
such symmetries can be readily drawn in the front projection, as shown in
Fig. 16 for Λ(A9),Λ(D8),Λ(E6) and Λ(D4). Following the tenet above, the
following classification might be plausible:

Conjecture 5.4. (BCFG Classification of Lagrangian Fillings) Let Λ(β) ⊆
(S3, ξst) the Legendrian rainbow closure of a positive braid β:

1. (Bn) If Λ(β) = Λ(A2n−1), the Z2-symmetry (x, z) −→ (−x, z) for the
front depicted in Fig. 16 lifts to a Z2-symmetry of Λ(A2n−1). Then
Λ(A2n−1) has precisely

(
2n
n

)
exact Lagrangian Z2-fillings.

2. (Cn) If Λ(β) = Λ(Dn+1), the Z2-symmetry (x, z) −→ (−x, z) for the
front depicted in Fig. 16 lifts to a Z2-symmetry of Λ(Dn+1). Then
Λ(Dn+1) has precisely

(
2n
n

)
exact Lagrangian Z2-fillings.

3. (F4) If Λ(β) = Λ(E6), the Z2-symmetry (x, z) −→ (−x, z) in the front
depicted in Fig. 16 lifts to a Z2-symmetry of Λ(E6). Then Λ(E6) has
precisely 105 exact Lagrangian Z2-fillings.

4. (G2) If Λ(β) = Λ(D4), the Z3-symmetry in the front depicted in Fig. 16
lifts to a Z3-symmetry of Λ(D4). Then Λ(D4) has precisely 8 exact
Lagrangian Z3-fillings.

36The larger classification is an ABCDEFG-classification, which admittedly does not roll
off the tongue.
37The study of boundary singularities can be understood as the study of singularities
taking into account a certain Z2-symmetry.
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Figure 16. Legendrian fronts for Λ(A2n−1),Λ(Dn+1),
Λ(E6),Λ(D4) with G-symmetries, G = Z2, Z3. The upper
row exhibits these symmetric fronts as divides of the asso-
ciated singularities, and the lower row depicts them in the
standard front projection (x, y, z) �→ (x, z) for a Darboux
chart (R3, ξst)

For the G2-case in Conjecture 5.4.(4), it might be helpful to notice that
the D4-singularity is topologically equivalent to f(x, y) = x3 + y3. The Z3-
symmetry cyclically interchanges the three linear branches of this singularity.
In particular, we can draw a front for the Legendrian Λ(D4) as the (3, 3)-torus
link, the rainbow closure of β = (σ1σ2)6.38

For the Bn-case in Conjecture 5.4.(1), the construction of
(
2n
n

)
distinct

Lagrangian Z2-fillings likely follows from adapting [87]. Indeed, in the Z2-
invariant front for Λ(A2n−1), as depicted in Fig. 16, there are n crossing to the
left, equivalently right, of the Z2-symmetry axis. We can construct a Z2-filling
of Λ(A2n−1) by opening those n crossings in any order, with the rule that we
simultaneously open the corresponding Z2-symmetric crossing.39 Should one
distinguish these Z2-fillings via their augmentations, as in [87], an appropri-
ate G-equivariant Floer theoretic invariant (e.g., G-equivariant DGA and its
augmentations) needs to be defined. The perspective of microlocal sheaves
[102] yields combinatorics closer to those of triangulations [45, Section 12.1],
modeling An-cluster algebras, and thus might provide a simpler route to dis-
tinguish these fillings. In either case, Conjecture 5.4 calls for a G-equivariant
theory of invariants for Legendrian submanifolds of contact manifolds.

5.1. Some questions

We finalize this section with a series of problems on Weinstein 4-manifolds
and their Lagrangian skeleta. To my knowledge, there are several unanswered

38The Z3-action should coincide with the loop Ξ1 ◦ (δ−1 ◦ Ξ1 ◦ δ) from [20, Section 2].
39The naive count of 312-pattern avoiding permutations from [32,87] would indicate that

there are 1
n

(2n
n

)
such Lagrangian Z2-fillings, instead of

(2n
n

)
. Thus, should Conjecture 5.4

hold, there must be an additional rule for Z2-fillings (not just those in [87, Lemma 3.10]),

possibly related to the fact that the crossing closest to the Z2-axis is different from the
rest.
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questions at this stage, including checkable characterizations of Weinstein 4-
manifolds of the form W (Λf ), where Λf is the Legendrian link of an isolated
plane curve singularity. Here are some interesting, yet hopefully reasonable,
problems:

Problem 1. Find a characterization of Legendrian links Λ ⊆ (S3, ξst) for
which (C2,Λ), or W (Λ), admits a Cal-skeleton. (Ideally, a verifiable char-
acterization.)

For instance, if Λ ⊆ (S3, ξst) is the rainbow closure of a positive braid,
then W (Λ) can be shown to admit a Cal-skeleton by methods similar to the
ones presented in this manuscript. In contrast, if Λ is a stabilized Legendrian
knot, then W (Λ) does not admit a Cal-skeleton.

Problem 2. Find necessary and sufficient conditions for a Lagrangian skeleton
L ⊆ (W,λ) to guarantee that the Stein manifold (W,λ) is an affine algebraic
manifold. Similarly, characterize Legendrian links Λ ⊆ (S3, ξst) such that
W (Λ) is an affine algebraic variety.

Note that the standard Legendrian unknot Λ0
∼= Λ(A0) ⊆ (S3, ξst) and

the max-tb Hopf link Λ(A1) ⊆ (S3, ξst) yield affine Weinstein manifolds, as
we have

W (Λ0) ∼= {(x, y, z) ∈ C
3 : x2 + y2 + z2 = 1},

W (Λ(A1)) ∼= {(x, y, z) ∈ C
3 : x3 + y2 + z2 = 1}.

By [21, Section 4.1], the trefoil Λ(A2) is also an example of such a Legendrian
link, as

W (Λ(A2)) ∼= {(x, y, z) ∈ C
3 : xyz + x + z + 1 = 0}.

Heuristic computations indicate that Λ(A3) and Λ(D4) also have this prop-
erty. See [73,74] for a source of necessary conditions, and [93] for (topological)
skeleta of affine hypersurfaces.

Problem 3. Find necessary and sufficient conditions for a Lagrangian skele-
ton40

L ⊆ (W,λ) to guarantee that the Stein manifold (W,λ) is flexible.41

(Again, a verifiable characterization.) Similarly, characterize Λ ⊆ (S3, ξst)
such that W (Λ) is flexible.

Note that affine manifolds W ⊆ C
N might be flexible [21, Theorem 1.1].

In particular, it could be fruitful to compare Lagrangian skeleta of Xm =
{(x, y, z) ∈ C

3 : xmy + z2 = 1} for m = 1 and m ≥ 2, e.g. the ones provided
in [93].

Problem 4. Suppose that a Weinstein 4-manifold W = W (Λ) is obtained
as a Lagrangian 2-handle attachment to (D4, ωst). Given a Cal-skeleton
L ⊆ (W,λ), devise an algorithm to find one such possible Legendrian
Λ ⊆ (∂D

4, ξst).

40Not closed in this case.
41See [28] for flexible Weinstein manifolds. In the 4-dimensional case above, we might just
define flexible as being of the form W = W (Λ) where Λ is a stabilized knot.
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(Note that such a Legendrian Λ might not be unique, i.e. it could be
possible that two non-isotopic Legendrian knots Λ1,Λ2 might have Weinstein
isomorphic traces W (Λ1) ∼= W (Λ2).)

Problem 5. Let L ⊆ (W,λ) be a closed exact Lagrangian surface. Study
whether there exists a Cal-skeleton L ⊆ (W,λ) such that L ⊆ L. In addition,
study whether there exists a Legendrian handlebody Λ ⊆ (#k

S
1 × S

2, ξst),
so that W = W (Λ), and L is obtained by capping a Lagrangian filling of a
Legendrian sublink of Λ.

See [106] for an interesting construction in the case of Bohr-Sommerfeld
Lagrangian submanifolds and see [34] for a general discussion on regular
Lagrangians. The nearby Lagrangian conjecture holds for W = T ∗

S
2, T ∗

T
2,

thus the answer is affirmative in these cases.

Problem 6. Characterize which cluster algebras A can arise as the ring of
functions of the augmentation stack of a Legendrian link Λ ⊆ (S3, ξ).

By using double-wiring diagrams [16], (generalized) double Bruhat cells
satisfy this property [95]. It is proven in [22,51] that the cluster algebras
A(D̃n) of affine Dn-type have this property. Heuristic computations indicate
that the affine types Ãp,q also verify this [22]. It might be reasonable to
conjecture that cluster algebras of surface type all have this property.

Here is a variation on this problem. Suppose that a cluster algebra
A arises, e.g., as an augmentation variety associated to a Legendrian link
Λ. An interesting problem might be to characterize those elements of the
cluster automorphism group of A which arise as Legendrian loops of Λ. In
certain cases, this is known to be the case for Grassmannian braid symmetries
[20,48], the square of the Donaldson–Thomas transformation [52] and the
Zamolodchikov operator [66].

In general, relating geometric properties of Lagrangian fillings to alge-
braic properties of cluster algebras should be fruitful. For instance, already
in Type A, it would be interesting to geometrically characterize those
Lagrangian fillings of the (2, n)-torus links that yield positive cluster seeds.
More ambitiously, it would seem useful to be able to access geometrically, e.g.
via holomorphic curve counts, the Z

t-tropical structure, or the R
+-positive

structure, of the cluster varieties associated to some Legendrian links.

Problem 7. Let a3(Λ) be the number of A3-arboreal singularities of a Cal-
skeleton L ⊆ (W,λ). Find the number a3(W ) := minL⊆W a3(L), where L ⊆
W runs amongst all possible Cal-skeleta. In particular, characterize Weinstein
4-manifolds (W,λ) with a3(W ) = 0.

Problem 8. Develop a combinatorial theory of symplectomorphisms in
Symp(W,dλ) in terms of Cal-skeleta L ⊆ (W,λ).

This is being developed in the case dim(W ) = 2 by using A’Campo’s
tête-à-tête twists [5, Section 3], see also [6, Section 5]. A (symplectic) mapping
class in Symp(W,dλ) is a composition of Dehn twists in this 2-dimensional
case. This is no longer the case in dim(W ) = 4, e.g., due to the existence of
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Biran-Giroux’s fibered Dehn twists, confer [104, Section 3] and [107, Section
2]. Note that π0(Symp(W )) might be infinite even if W contains no exact
Lagrangian 2-spheres [20].

Problem 9. Compare Cal-skeleta L1 ⊆ (W1, λ1), L2 ⊆ (W2, λ2) for exotic
Stein pairs W1,W2. That is, W1 is homeomorphic to W2, but not diffeomor-
phic. In particular, investigate skeletal corks: combinatorial modifications on
a Cal-skeleton that can produce exotic Stein pairs.

In [82], Naoe uses Bing’s house [17] to study some such corks.

Problem 10. Find a contact analogue of Turaev’s Shadow formula42 [103,
Chapter 10] for the contact 3-dimensional boundary in terms of the combi-
natorics of a Cal-skeleton L ⊆ (W,λ). That is, find a contact invariant43

of (∂W, λ|∂W ) which can be computed in terms of the combinatorics of
L ⊆ (W,λ).
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Reeb chords of Lagrangian slices

Baptiste Chantraine

Abstract. In this short note, we observe that the boundary of a prop-
erly embedded compact exact Lagrangian sub-manifold in a subcritical
Weinstein domain X necessarily admits Reeb chords. The existence of
a Reeb chord either follows from an obstruction to the deformation of
the boundary to a cylinder over a Legendrian sub-manifold or from the
fact that the wrapped Floer homology of the Lagrangian vanishes once
this boundary has been “collared”.

Mathematics Subject Classification. Primary 53D12, Secondary 57R17.

Keywords. Lagrangian sub-manifolds, reeb chords.

1. Introduction

Let Y be a contact manifold with contact form α, and a Lagrangian slice in Y
is a sub-manifold i : Λ ↪→ Y , such that their exists a Lagrangian embedding

C : (1 − ε, 1 + ε) × Λ ↪→ ((1 − ε, 1 + ε) × Y, d(tα))

satisfying

C ((1 − ε, 1 + ε) × Λ) � {1} × Y = C ({1} × Λ) .

It is the opinion of the author that such objects are interesting and
the aim of this note is to attract attention to those. Note that the definition
depends on the contact form as the transverse intersection condition depends
on the identification of the symplectisation with R+ × Y . Any Legendrian
sub-manifold of Y is a Lagrangian slice, since the trivial cylinder of such a
sub-manifold is Lagrangian (that this notion does not depend on the choice
of the contact forms comes from the fact that those are the slices giving
Lagrangians tangent to the Liouville vector field, they are therefore transverse
to any hyper-surface transverse to this vector field). Naturally Lagrangian
slices appear in the following manner : let L be a Lagrangian sub-manifold of
a symplectic manifold (M,ω). Let Y be a contact hyper-surface of M , such

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder, and Felix Schlenk.
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that L � Y . Then, Λ = Y � L is a Lagrangian slice. A Reeb chord of a
Lagrangian slice Λ is a trajectory of the Reeb vector field of α whose start
and end points are on Λ.

There is a seemingly related notion to Lagrangian slices which are prela-
grangian sub-manifolds (studied for instance in [12]). A prelagrangian sub-
manifold of (Y 2n−1, ker α) is an n-dimensional sub-manifold L transverse to
ker α, such that there is a function f on Y , such that the pullback of fα to
L is closed. In this situation, any preimage of regular values of f |L is a La-
grangian slice. As embedded projections of Lagrangians in R+ × Y to Y are
prelagrangian, the correspondence goes the other way around (note that one
can always arrange a transverse slice to have embedded image in Y playing
a bit with the Reeb flow).

A Lagrangian slice Λ is said to be fillable if there exists a filling X
of Y and a properly embedded Lagrangian sub-manifold L of X, such that
∂L = L � Y = Λ. Those are the slices that appear when intersecting closed
Lagrangians (or Lagrangians cylindrical at infinity in Liouville manifolds)
with a separating contact hyper-surface.

If one can deform the Liouville structure on (1 − ε, 1 + ε) × Y keeping
Y a contact hyper-surface and so that the Liouville vector field is tangent to
(1−ε, 1+ε)×Λ, then we say that the slice is collarable. In [4], we gave examples
of non-collarable fillable slices. Other examples of non-collarable slices appear
in [18] and [13] as a slice of a Lagrangian cap cannot be collarable near its
maxima.

Remark 1.1. One might find this definition of collarable unsatisfying from the
contact point of view: the contact structure on Y changes. In the compact (or
local) case, Moser–Gray type theorem implies that this is the same as asking
that there is an isotopy of Λ through Lagrangian slices to a Legendrian sub-
manifold of Y . We keep the definition this way as it is easier to manipulate,
it is more convenient to study Reeb chords of slices, and it relates more easily
to the notion of regular Lagrangian.

The question of collarability of slices is implicit in the question of de-
composability of cobordisms (see [11] and [8]) which appears prominently in
the literature about Lagrangian cobordisms in low dimension. In all dimen-
sions, the collarability question is a sub-question of the question of regularity
of Lagrangian sub-manifold from [14] (a Lagrangian is regular if one can
modify the Liouville vector field so that it is tangent to the Lagrangian) as
in low-dimension regular cobordisms are decomposable (as observed for in-
stance in [15]). The author believes that the quantitative study of Lagrangian
slice, particularely Inequality (2) from Sect. 4, could provide some tools to
study the question of regularity of cobordism.

There is a whole hierarchy of fillability that we can imagine and it is not
the purpose of this note to give a comprehensive overview of it. Our aim is
to suggest that even if such objects form a larger class than Legendrian sub-
manifolds, they still admits Reeb chords in a similar fashion as Legendrians
do (we do not claim here that all Legendrians admits Reeb chords). For
instance, we prove the following:
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Theorem 1.2. Let Λ be a compact Lagrangian slice in a compact contact man-
ifold Y , such that there exist a subcritical Weinstein manifold W of Y and
a proper exact Lagrangian embedding L ↪→ W , such that ∂L = Λ. Then, Λ
admits a Reeb chord.

In particular, if its sub-level is subcritical, the transverse intersection
of a compact exact Lagrangian with the level set of a convex Hamiltonian
always has trajectories of the Hamiltonian vector field starting and ending
on the Lagrangian on that level set.

In Sect. 5, we provide a proof of this theorem and it appears to be
ridiculously easy (it almost appears in [3, Section 5.1]), so the interest of the
paper lies somewhere else (if it lies anywhere). As mentioned before, the only
purpose of this note is to raise some interesting points about such objects
and discuss some of their Hamiltonian dynamics properties.

2. What does a Lagrangian slice look like?

Since they form a larger class than Legendrian sub-manifolds, it is a natural
question to ask what properties a Lagrangian slice must satisfy.

Let i : Λ → Y be a sub-manifold. If it is a Lagrangian slice (i.e., a
transverse intersection of a Lagrangian in the symplectisation with Y ), then
the general (linear) theory of symplectic reduction tells you that the Reeb
vector field is not tangent to Λ and that Λ projects to a (smooth) Lagrangian
immersion in the (singular) reduced symplectic space Y/Rα. Therefore, if it is
a Lagrangian slice, then we must have d(i∗α) = 0 and di(TΛ)∩ker dα = {0}.

Conversely, let i : Λ ↪→ Y a sub-manifold, such that the pull-back of α is
closed and di(TΛ) ∩ ker dα = {0}. Let V be a copy of a neighborhood of the
0-section in T ∗Λ, such that Λ corresponds to the 0-section and V is transverse
to Rα. The characteristic foliation of the hyper-surface (1 − ε, 1 + ε) × V in
(1 − ε, 1 + ε) × Y is transverse to {1} × V and crossing Λ with this foliation
realises Λ as a Lagrangian slice. We have proved

Lemma 2.1. Let i : Λn−1 → Y 2n−1 be an embedding. The Λ is a Lagrangian
slice iff di(TΛ) ∩ ker dα = {0} and i∗α is closed.

Remark 2.2. Observe that when Y is of dimension 3, then these conditions
reduce to asking that Λ is not tangent to the Reeb foliation which is a generic
condition.

Since for a Lagrangian slice i∗α is closed, one can define the notion
of exact Lagrangian slice by requiring i∗α to be exact (for instance, the
non-collarable examples from [4], [18] and [13] are exact). This implies that
the Lagrangian (1 − ε, 1 + ε) × Λ is exact. This notion is invariant under
modifications of the Liouville structure by Hamiltonian vector fields.

Explicit occurence of this construction appears in [21] and [18] in the
particular case of the standard symplectic 3-dimensional case where we see
that up to translation in the Reeb direction the shape of a Lagrangian is
determined by the symplectic reduction of its slices.
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3. Deformation of Liouville vector fields near the boundary

In this section, we study how to deform Liouville vector fields, so that they
remain transverse to a given contact hyper-surface, and such computations
are standard and appear in different forms in the literature; see for instance
[6, Lemma 12.1].

Let (W,λ; f) be a Weinstein cobordism with positive boundary i : Y ↪→
W , such that the contact form is given by i∗λ. Let (1 − ε, 1] × Y be a collar
neighbourhood of Y , such that the Liouville flow structure is given by t · α.
Let H be a function of the form H(t, x) = ρ(t)h(x) for a function h on
Y and a compactly supported increasing function ρ on (1 − ε, 1], such that
ρ(1) = 1. We denote the forms λH := λ + dH, it is still a Liouville form for
the symplectic structure on W the Liouville vector field for λH is Vλ + XH .
The contact hyper-surface Y is still transverse to XλH

iff at t = 1

dt(Vλ + XH) > 0.

Since dt(Vλ) = t, this condition becomes

dt(XH) > −1.

The symplectic form writes as dt ∧ α + t · dα; thus, we have that

dH = h · ρ′dt + ρ · dh = dt(XH)α + t(Xhιdα) − α(XH)dt.

Evaluating on Rα (the Reeb vector field of α) at t = 1, we obtain that
Y is transverse to VλH

iff

dh(Rα) > −1. (1)

4. Collarability of Lagrangian slices

Let i : Λ → Y be an exact Lagrangian slice. We want now to make a de-
formation similar to the preceding section, such that VλH

is tangent to the
Lagrangian j : (1− ε, 1+ ε)×Λ ↪→ X near {1}×Λ. Let f be a function, such
that df = i∗λ and let γ be a Reeb chord of Λ. We define the action of γ to
be (observe the order of 0 and 1 here)

a(γ) = f(γ(0)) − f(γ(1)).

Remark 4.1. This is a well-defined notion whenever γ(0) and γ(1) are on the
same connected component of Λ (we refer to such chords as pure, the other
type being called mixed). In the Legendrian case (i.e., when Λ is collarable),
the action of a chord is 0 (when it is pure); therefore, the action is not the
action of the corresponding intersection point when taking the Lagrangian
projection (when it make sense), and this last quantity is what we refer in
the present note as the length of the Reeb chord.

To have VλH
tangent to the Lagrangian (i.e., symplectically orthogonal

to it), we need to have (j∗λH) = 0 near {1} × Λ which gives

j∗λ + d(H ◦ j) = 0.
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This prescribes the value of H near {1}×Λ, in particular up to a constant
h = −f on {1}×Λ. To extend h to a function on Y satisfying Inequality (1),
we need to have that any pure chord γ of Λ satisfies

l(γ) > a(γ). (2)

Any Reeb chord that violates this inequality will be called small, if it is
not small a Reeb chord will be called long. We have proved

Lemma 4.2. If a Lagrangian slice is not collarable then it has a small (pure)
Reeb chords.

Remark 4.3. Observe that for any of the deformation λH of Λ as in Sect. 3,
the Reeb flow of the new contact form i∗(λ + dH) is given by a reparametri-
sation of the original Reeb flow, since dα does not change (an explicit com-
putation give another manifestation of Inequality (1)). This implies that the
question of existence of Reeb chord is unchanged.

Remark 4.4. When the Lagrangian slice is not exact, one can still try to
deform the Liouville form tα adding a closed 1-form. This closed form must
extend the restriction of α to the slices, so there is first a cohomological
condition on the embedding of Λ in Y . If this condition is satisfied, then one
can find a cover of Y , such that α restricted to the lift of Λ is exact and
proceed similarly as in the exact case.

5. Reeb chords of fillable slices

We are now ready to prove our main theorem.

Proof of Theorem 1.2. Let L be an exact filling of the slice Λ. If there are
no small Reeb chords, then from Sect. 4, we know that we can modify the
Liouville vector field, so that L becomes an exact filling of a Legendrian
sub-manifold. Assuming Λ has no chords at all (from Remarks 4.3, it means
that for either of the contact forms α and αH has no Reeb chords), and
then, we can positively wrap a small deformation of L without introducing
any intersection point outside the domain X. We can use this wrapped copy
to compute Wrapped Floer homology of L from [1] (either wrapping all at
once, or using a direct limit depending what is our favourite definition of
WF (L)). This implies that no high energy intersection points are involved in
the computation of the wrapped Floer homology; therefore, it is isomorphic
to the infinitesimally wrapped Floer homology, that is

WF (L) = H∗(L).

However, since W is subcritical, it has vanishing symplectic homology, SH(W )
= 0 (see [22]). This is a contradiction as WF (L) is a module over SH(W )
(see [20, Theorem 6.17]), and thus, WF (L) = 0.

This covers the collarable case, the other case is covered by Lemma 4.2,
and therefore, the proof is complete. �
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6. Concluding remarks

The proof of Theorem 1.2 applies to more general context depending on the
tools one wants to use and the information we have on the slice or the filling
to conclude existence of Reeb chords.

Obviously, one can replace the subcritical condition of W by the al-
gebraic condition that SH(W ) = 0. Also if SH(W ) �= 0, one can instead
require that the Lagrangian filling L does not intersect the Lagrangian skele-
ton of W , since such a condition guarantees that WF (L) = 0 by Viterbo’s
functoriality (see [7, Theorem 9.11] or [1, Section 5]).

We can also hope to relax the vanishing of SH(W ) to some more specific
case, as long as one can prove that WF (L) �= H∗(L), we can deduce the
existence of the Reeb chords. For that purpose, the structural results from
[7] can reveal to be useful.

In another direction, we can relax the fillability condition using [5] by
only requiring that the slice is at the top of a Lagrangian cobordism with
bottom being a Legendrian knot that admits an augmentation

It would be interesting if one could use considerations from Sects. 3 and
4 to investigate the regular Lagrangian question (and therefore the question
of decomposability of Lagrangian cobordisms).

In [2], Arnol’d conjectured that any Legendrian in the standard 3-sphere
admits a Reeb chord for any Reeb vector field. This version was proved in [19]
(for all standard contact spheres) and in [16] [17] (for any Legendrian in any
3-dimensional contact manifold). In the discussion following his conjecture,
he also discusses that some homological bounds might exist for the number
of such Reeb chords, and some instance of this can be found in [10] and [9]
where some estimate is given in terms of the topology of the Legendrian or
some of its Lagrangian fillings. The existence result from Theorem 1.2 falls
in between: the collarable case indeed gives the usual estimate coming from
wrapped Floer homology or linearised contact homology, but the obstruction
to collarability only provides one chord. Whether or not more can be found
in the non-collarable case is unknown to the author.
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I first met Claude at the seminar on contact and symplectic geometry
organised from 1982 on by Daniel Bennequin at the École normale supérieure.
It was much oriented towards the beautiful conjectures V.I. Arnold had stated
in the mid-60s, inspired by Poincaré’s “last geometric theorem.” What made
the seminar seminal1 is that its beginning coincided with the first break-
through in that direction: at the end of 1982, Charles Conley and Eduard
Zehnder proved [21] the conjecture on fixed points of Hamiltonian transfor-
mations of the standard symplectic 2n-torus stated in [2, Appendix 9].2

It so happened that, the summer before, I had thought about this conjec-
ture, seen how to deduce it from another statement about exact Lagrangian
isotopies of the zero section in T ∗

T
n and proved a symplectic isotopy exten-

sion lemma [7] implying that such an isotopy extends to a compactly sup-
ported Hamiltonian isotopy of the ambient space. Almost immediately after
reading the preprint of [21], I adapted the Conley–Zehnder proof to get [7]
the more general statement, of which I had just learned that a slightly less
precise form had also been conjectured by Arnold [1,3].

The two weeks spent on the proof of this Arnold conjecture brought
me more recognition than the two years of very hard work on my 1980 thèse

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
1Besides its audience, that comprised Michèle Audin, Abbas Bahri, Alain Chenciner, Nicole
Desolneux-Moulis, Ivar Ekeland, Albert Fathi, Michel Herman, Misha Gromov, François
Laudenbach, Jean-Claude Sikorav—plus the author and, soon, Claude Viterbo. . .
2Their simple, functional-analytic proof did not make our seminar unanimously happy:
not only had the topologists been dreaming of something more geometric, but Conley and
Zehnder had proved the conjecture without knowing that it existed: when telling John
Mather about their recent work, they had mentioned tori as a side remark, and Mather
had informed them that they had solved a famous problem.
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d’État [10,11,15]: soon after the Bourbaki seminar [7], I lectured on the
Arnold conjectures in Marseille–Luminy and published with Edi Zehnder an
expanded version [18] of these lectures. Having felt ill at ease when teach-
ing the fact (established by Amann and Zehnder) that the non C2 infinite
dimensional action functional, once reduced to finite dimensions, is as smooth
as the Hamiltonian of the isotopy, I found it urgent to design a purely finite
dimensional proof of “my” Arnold conjecture; this again took me two weeks
[8,9] and brought me much more recognition.

François Laudenbach liked this new proof; he had an extremely bright
(and nice) student of his, Jean-Claude Sikorav, work on its generalisations
and consequences. Jean-Claude first proved with François [27] what had been
the true aim of [8,9], namely, the extension of my result from the cotangent
bundle of the torus to that of an arbitrary closed manifold.3 He then noticed
that formula (7) in [8] means that my discretised action is a generating phase
for the deformed Lagrangian submanifold, and extended this to arbitrary
closed manifolds [36]. In [37], he generalised the result to Lagrangian immer-
sions and gave an easy proof of the Arnold conjecture on fixed points in
situations including surfaces, first obtained more painfully in [35].

At about the same time, the 25-year-old Claude, who had been the
student of Laudenbach and Ekeland, solved [39] a big problem: the Weinstein
conjecture in R

2n. Oddly enough, he did not use Jean Claude’s generating
phases, with which he would soon do wonders [40].

The last of my favourite Arnold conjectures had been proved [25] via
holomorphic disks, and Floer theory4 had taken off [24], leaving me with my
fear of flying. My belief that some room was left for earthlier methods5 now
rested mostly on Claude’s shoulders. He did not disappoint me.

1. Subharmonic bifurcations in real or complex dimension one

We first recall the simplest case of the most basic fact.

1.1. The period doubling bifurcation

Let h : (u, x) �→ hu(x) be a Ck local map (R2, 0) → (R, 0), k ≥ 2, such that
the derivative h′

0(0) = ∂xh(0, 0) equals −1.
The fixed point 0 of h0 is robust, meaning that every hu with u small

enough has a fixed point ϕ(u) nearby, depending Ck on the parameter u:

Proposition 1.1. The fixed points of the unfolding h̃ : (u, x) �→ (
u, hu(x)

)

form near 0 the graph of a Ck function ϕ : (R, 0) → (R, 0).

Proof. This follows from the implicit function theorem applied to the Ck

equation F (u, x) := x − hu(x) = 0, as F (0, 0) = 0 and ∂xF (0, 0) = 2
�= 0. �
Of course 0 is a 2-periodic point of h0, i.e. a fixed point of h2

0 := h0 ◦ h0.

3A little sooner, Helmut Hofer had done this [26] in an infinite dimensional framework.
Whatever its proof, I thought the result would be more central than it turned out to be.
4Whose idea owes as much to Charlie Conley as to Edi Zehnder, see the foreword of [12].
5A similar belief is at the origin of the present article.
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Proposition 1.2. Assume that α(u) := hu
′(ϕ(u)

)
satisfies α′(0) �= 0. Then,

near 0, the 2-periodic points of h̃ (solutions of h2
u(x) = x) form the union

of two curves intersecting transversally at 0: of course graphϕ, and a Ck−1

curve W of which h̃|W is an involution, implying that T0W is the x-axis.

Proof. Conjugating h̃ by the local diffeomorphism (u, x) �→ (
u, x−ϕ(u)

)
, we

may assume ϕ = 0—the new hu
′(0) is the old hu

′(ϕ(u)
)
.

By Taylor’s formula, hu(x) = xgu(x) near 0, where gu(x) =
∫ 1

0
hu

′(tx) dt,
hence gu(0) = α(u), and therefore, g0(0) = −1; the map g : (u, x) �→ gu(x)
is Ck−1 and the equation h2

u(x) = x writes xgu(x)gu

(
hu(x)

)
= x, which

means x = 0 (the fixed points) or G(u, x) := gu(x)gu

(
hu(x)

) − 1 = 0. As
G(0, 0) = 0 and ∂uG(0, 0) = d

du

∣
∣
u=0

gu(0)2 = −2α′(0) �= 0, there exist open
neighbourhoods U, V of 0 in R such that the zeros of G|U×V form the “graph”
W = {u = ψ(x)} of a Ck−1 implicit function ψ : V → U .

The map h̃ is by definition an involution of its set of 2-periodic points, of
which W\{0} is an open subset, which becomes h̃-invariant if W is replaced by
W ∩h̃(W ) (this means restricting conveniently the open subset V ). Invariance

writes ψ(x) = ψ
(
hψ(x)(x)

)
, hence ψ′(0) = limx→0

ψ
(
hψ(x)(x)

)
−ψ(x)

hψ(x)(x)−x = 0 since

the only fixed point of h̃ lying in W is 0; thus, T0W is the x-axis. �

Example. The curve W can have various positions with respect to T0W :
• If hu(x) = α(u)x, where α : (R, 0) → (R,−1) is a Ck function with

±α′(0) > 0, then W is the x-axis; the fixed point 0 of hu is attracting
for ±u < 0, repulsing for ±u > 0, and this cannot be called a bifurcation.

• If hu(x) = −(1 + u − x2)x, then the fixed point 0 of hu is attracting for
u < 0, repulsing for u > 0, and W is the parabola u = x2; for u > 0, the
attracting 2-periodic orbit {−√

u,
√

u}, born for u = 0, takes the place
of 0 as an attractor of hu, a genuine bifurcation.

• If hu(x) = −(1 + u + x2)x then, for u < 0, the repulsing 2-periodic
orbit {−√−u,

√−u} gradually “throttles” the attracting fixed point 0,
so that for u ≥ 0 no attractor of hu persists near 0, a true catastrophe.

The generic situations look like the last two examples (Fig. 1).

Figure 1. Bifurcation and catastrophe
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1.2. Subharmonic bifurcations, holomorphic case

Proposition 1.3. Let h : (u, z) �→ hu(z) be a local map (C2, 0) → (C, 0),
holomorphic and such that h′

0(0) = ∂zh(0, 0) is a qth root of unity ρ = e2πi p
q ,

0 < p < q. Then,
(i) The fixed points of the unfolding h̃ : (u, z) �→ (

u, hu(z)
)

form near 0 the
graph of a holomorphic function ϕ : (C, 0) → (C, 0).

(ii) Assume that α(u) := hu
′(ϕ(u)

)
satisfies α′(0) �= 0. Then, near 0, the q-

periodic points of h̃ (solutions (u, z) of the equation hq
u(z) = z) form the

union of two holomorphic curves intersecting transversally at 0: the fixed
point set graphϕ and a curve W on which h̃ induces a Z/qZ-action.

(iii) When ρ is a primitive qth root of unity, the curve W and the z-plane
are tangent to order q − 1 at 0.

Proof. (i) As h′
0(0) = ρ �= 1, just apply the holomorphic implicit function

theorem to the equation z − h(u, z) = 0.
(ii) As in the proof of Proposition 1.2, one can assume ϕ = 0, hence
hu(z) = z g(u, z) with g holomorphic this time and g(u, 0) = α(u). The
equation hq

u(z) = z writes zgu(z)gu

(
hu(z)

) · · · gu

(
hq−1

u (z)
)

= z, which means
either z = 0 (the fixed points) or

G(u, z) := gu(z)gu

(
hu(z)

) · · · gu

(
hq−1

u (z)
) − 1 = 0.

As G(u, 0) = α(u)q − 1 and α(0) = ρ, one has ∂uG(0) = qρq−1α′(0) �= 0 and
G(0) = 0, hence there exist open neighbourhoods U, V of 0 in C such that the
zeros of G|U×V form the “graph” W = {u = ψ(z)} of a holomorphic implicit
function ψ : V → U .

The map h̃ induces by definition an action of Z/qZ on its set of q-
periodic points, of which W \{0} is an open subset, that becomes h̃-invariant
if W is replaced by W ∩ h̃−1(W ) ∩ · · · ∩ h̃1−q(W ) (as before, this means
restricting conveniently the open subset V ). Invariance writes

ψ(z) = ψ
(
h
(
ψ(z), z

))
. (1.1)

(iii) Still assuming ϕ = 0, if we derivate (1.1), we get

ψ′(z) = ψ′
(
h
(
ψ(z), z

))(
∂1h

(
ψ(z), z

)
ψ′(z) + hψ(z)

′(z)
)
.

For z = 0, as the identity h(u, 0) = 0 implies that ∂1h(u, 0) = 0, this reads

ψ′(0) = ψ′(0)h′
0(0), that is, (ρ − 1)ψ′(0) = 0, hence ψ′(0) = 0,

which proves our result if q = 2. Otherwise assuming inductively that ψ
vanishes to order k−1 at 0 for some k ∈ {2, . . . , q−1} and derivating k times
(1.1) at 0, the Faà di Bruno formula and the identity ∂1h(u, 0) = 0 yield

ψ(k)(0) = ψ(k)(0)h′
0(0)k, that is, (ρk − 1)ψ(k)(0) = 0,

hence ψ(k)(0) = 0 as ρ is a primitive qth root of unity. �

Example. If hu(z) = α(u)z, where α : (C, 0) → (C, ρ) is a holomorphic
function such that α′(0) �= 0, then W is the z-plane.

If hu(z) = (ρ + u − zq)z, then W is the curve u = zq.
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1.3. Opening Pandora’s box

Under the hypotheses of Proposition 1.3 (ii)–(iii), α is a holomorphic local
diffeomorphism (C, 0) → (C, ρ). Viewing it as a local parameter change and
performing the variable changes in the proof of Proposition 1.3, the following
hypotheses are verified with u0 = ρ:
Hypotheses Given u0 ∈ S

1, set ũ0 := (u0, 0) ∈ C
2 and let h : (u, z) �→ hu(z)

be a holomorphic local map (C2, ũ0) → (C, 0) such that hu(0) = 0 and
hu

′(0) = u. Proposition 1.3 now reads as follows:

Proposition 1.4. If u0 = e2πi p
q , 0 < p < q, gcd(p, q) = 1, then the q-periodic

points of h̃ near ũ0 form the union of {z = 0} and the h̃-invariant “graph”
Wp/q = {u = ψp/q(z)} of a holomorphic ψp/q : (C, 0) → (C, u0) such that
ψp/q

(j)(0) = 0 for 1 ≤ j < q. The function ψ := ψp/q verifies (1.1), and h̃
generates a Z/qZ-action on Wp/q, namely

(
m,

(
ψ(z), z

)) �−→ h̃m
(
ψ(z), z

)
=

(
ψ(z), hψ(z)

m(z)
)
,

induced by the Z/qZ-action (m, z) �→ hψp/q(z)
m(z) on Dom ψp/q. �

When u0 is not a root of unity, the following result can apply to f = hu0 :

Theorem 1.5. (Brjuno [5,6], Yoccoz [41]) If u0 = e2πiω with ω ∈ [0, 1] \ Q,
the following two conditions are equivalent:

(i) ω is a Brjuno number, meaning that the convergents pn

qn
of its continued

fraction expansion verify
∑ log qn+1

qn
< ∞.

(ii) Every holomorphic germ f : (C, 0) → (C, 0) such that f ′(0) = u0 is
holomorphically linearisable. �

Notes. The implication (i)⇒(ii) is Brjuno’s. In 1942, Siegel [33] had
proved (ii) under the stronger condition sup log qn+1

log qn
< ∞. This already defines

a full measure set of numbers u0 ∈ S
1, but Theorem 1.5 provides the optimal

set.
Back to families, in the trivial case hu(z) = uz, every hu is linear(isable).

However, in general, hu0 is linearisable if u0 = e2πiω with ω Brjuno.
In that case, linearisability means that there exists a holomorphic local

coordinate (conjugacy) Zω : (C, 0) → (C, 0) such that Zω ◦ hu0 = u0Zω; as
the rotation z �→ u0z preserves each circle Sr = {|z| = r}, every closed curve
Cr = Z−1

ω (Sr) with r > 0 small enough is hu0 -invariant and, of course, Zω|Cr

conjugates hu0 |Cr
to the rotation z �→ e2πiωz restricted to Sr.

Question 1.6. Is this the limit of what happens near u = e2πipn/qn? Do the
holomorphic functions ψpn/qn

tend to the constant ψω = u0 = e2πiω in some
uniform neighbourhood of 0 and, for z ∈ C close to 0, do the periodic orbits{(

ψpn/qn
(z), hψpn/qn(z)

k(z)
)

: 0 ≤ k < qn

}
of h̃ tend to the closed h̃-invariant

curve {u0} × Cr such that z ∈ Cr?
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More precisely, does the (holomorphic) standard linearisation6

Zpn/qn
(z) =

1
qn

qn−1∑

k=0

e−2πikpn/qnhψpn/qn (z)
k(z)

of the Z/qnZ-action (m, z) �→ hψpn/qn (z)
m(z) tend to Zω when n → ∞?

Notes. If hu(z) = uz, the answer is trivially positive even when ω is not
Brjuno. The question is whether this holds for arbitrary families h.

My hope would be to deduce the Siegel–Brjuno theorem from the uni-
form convergence of ψpn/qn

and maybe Zpn/qn
in a uniform neighbourhood

of 0, at least for some well-chosen family h. One might get invariant fractals
at the limit when ω is irrational but not Brjuno, as in [20]—the Pérez-Marco
hedgehogs [29], independent of any arithmetic conditions, might be obtained
in this fashion.

2. Subharmonic bifurcations, Arnold tongues and KAM circles

Here, smooth means real analytic or C∞.

2.1. Subharmonic bifurcations in real dimension two

Let h : (u, z) �→ hu(z) be a smooth local map (R2 × R
2, 0) → (R2, 0) such

that the eigenvalues of the derivative Dh0(0) = ∂zh(0, 0) are primitive qth
roots of unity ρ = e2πi p

q , ρ̄ = e−2πi p
q , 1 ≤ p < q, q ≥ 3.

Proposition 2.1. (i) The fixed points of the unfolding h̃ : (u, z) �→ (
u, hu(z)

)

form near 0 the graph of a smooth function ϕ : (R2, 0) → (R2, 0).
(ii) There is a smooth local function α : (R2, 0) → (C, ρ) such that the

eigenvalues of Dhu

(
ϕ(u)

)
are α(u), α(u).

(iii) If Dα(0) : R2 → C is bijective then, near 0, the q-periodic points of h̃
form the union of two surfaces intersecting transversally at 0: of course
graphϕ, plus a Cq−3 surface W on which h̃|W induces a Z/qZ-action.

Proof. (i) follows from the implicit mapping theorem applied to the smooth
equation F (u, z) := z − h(u, z) = 0, as ∂zF (0, 0) : R2 → R

2 is invertible.
(ii) follows from the formula for the eigenvalues of a real 2 × 2 matrix with
no real eigenvalue.
(iii) We may assume ϕ = 0, and the new Dhu(0) is the old Dhu

(
ϕ(u)

)
.

Lemma 2.2. (a) An R-linear change of variables J(u) : R2 → C, depending
smoothly on u, yields h : (R2 × C, 0) → (C, 0) and Dhu(0)z = α(u)z.

(b) Modulo a change of variables, polynomial of degree q − 1 with respect to
z, z̄, whose coefficients are smooth functions of u, the Taylor polynomial
Qu of hu to order q − 1 at 0 for small u is of the form

Qu(z) = z

⎛

⎝α(u) +
[ q−1

2 ]∑

k=1

bk(u)|z|2k

⎞

⎠ + β(u)z̄q−1.

6The other holomorphic local linearisations Z satisfy Z ◦ Z−1
pn/qn

(z) = za(zqn ), a(0) �= 0.

Reprinted from the journal238



Proof of the lemma. (a) The isomorphism J(u) ∈ L(R2,C) is an eigenvector
of Dhu(0)T : λ �→ λ ◦ Dhu(0) associated to the eigenvalue α(u). Under the
condition, e.g. J(u)(1, 0) = 1, it is unique and depends smoothly on u.

(b) By normal form theory or direct computation, one can assume that
Qu(z)−α(u)z is a C-linear combination (depending smoothly on u) of mono-
mials zj z̄k with 1 < j + k ≤ q − 1 and uj

0ū
k
0 = u0, that is, e2πi(j−k−1)p/q = 1,

which writes (j − k − 1)p = 
q with 
 ∈ Z. As gcd(p, q) = 1, one has 
 = mp,
m ∈ Z, hence j − k − 1 = mq and either m = 0, hence zj z̄k = z|z|2k, or
m = −1 and j = 0, yielding zj z̄k = z̄q−1 . 

By Taylor’s formula,

hu(z) = Qu(z) +
q∑

j=0

zj z̄q−j

∫ 1

0

(1 − t)q−1

(q − 1)!

(
q
j

)
∂j

z∂q−j
z̄ hu(tz)dt

= z

(
a(u, z) + b(u, z)

z̄q−1

z

)

where a, b are smooth, a(u, 0) = α(u) and b(u, 0) = β(u). It follows that
hu(z) = zgu(z) with g : (u, z) �→ gu(z) only Cq−3 in general and gu(0) = α(u).

• For q > 3, the same arguments as in the proof of Proposition 1.3 yield
a Cq−3 implicit function ψ : (C, 0) → (R2, 0) whose graph W has the
required properties near the origin—in particular, (1.1) holds.

• If q = 3, then hu(z) = Au(z)z near 0, where Au(z) =
∫ 1

0
Dhu(tz) dt

(hence Au(0)z = α(u)z), and one can similarly apply the implicit map
theorem along r = 0 after dividing by r the equation h3

u(reiθ) = reiθ.7

The details are left to the reader. �

Example. If hu(z) = (ρ + u)z − z̄q−1, u, z ∈ C, then W is the surface
u = z̄q−1/z, which is Cq−3 but not Cq−2. Thus, our bound for the differ-
entiability of W is sharp. No such problem arised in the holomorphic case.

2.2. Arnold tongues

Under the hypotheses of Proposition 2.1 (iii), α is a smooth local diffeomor-
phism (R2, 0) → (C, ρ). Viewing it as a local parameter change, the following
hypotheses are verified with u0 = ρ, modulo the variable changes in the proof
of Proposition 2.1:
Hypotheses. For u0 ∈ S

1, setting ũ0 := (u0, 0) ∈ C
2, let h : (u, z) �→ hu(z) be

a smooth local map (C2, ũ0) → (C, 0) such that hu(0) = 0 and Dhu(0)z = uz.
Proposition 2.1 now reads as follows:

Proposition 2.3. If u0 = e2πi p
q , 0 < p < q, gcd(p, q) = 1, then, near ũ0,

the q-periodic points of h̃ form the union of {z = 0} and the h̃-invariant
“graph” Wp/q = {u = ψp/q(z)} of a Cq−3 function ψp/q : (C, 0) → (C, u0).
The function ψ := ψp/q verifies (1.1), and h̃|Wp/q

generates a Z/qZ-action
on Wp/q as in Proposition 1.4. �

7The “blown-up” surface W̆ = graph ψ̆ in polar coordinates is smooth, see Sect. 3.
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The functions ψ = ψp/q of Proposition 1.4, being holomorphic, are either
constant or open. Thus, the invariant manifold Wp/q, projected into parame-
ter space, is either {e2πip/q} or (in general) an open neighbourhood of e2πip/q.
The non-holomorphic case is altogether different:

Proposition 2.4. If u0 is a primitive qth root of unity e2πip/q, 0 < p < q,
q > 4, then:

(i) Up to a smooth local change of variables
(
C

2, ũ0

) → (
C

2, ũ0

)
, of the

form (u, z) �→ (u,Zu(z)) with Zu (real) polynomial of degree q − 2, one
has the following: near ũ0, the unfolding h̃ is tangent to order q − 2
along C × {0} to a smooth unfolding P̃ (u, z) = (u, Pu(z)) of the form

Pu(z) = z

⎛

⎜
⎝u −

[ q−3
2 ]∑

k=1

bk(u)|z|2k

⎞

⎟
⎠ .

(ii) For b1(u0) �= 0, the principal part of ψp/q(z) is u0 + b1(u0)|z|2. Thus,
for �(

ū0b1(u0)
) �= 0, the set Im ψp/q of those u near u0 for which hu

has a q-periodic orbit lies on one side of S1.
(iii) The function ψp/q is tangent to order q − 3 at ũ0 to a normal form

ψ̂p/q(z) = u0 +
[ q−3

2 ]∑

k=1

ak|z|2k =: χp/q(|z|), ak ∈ C, a1 = b1(u0).

Thus, when the first Birkhoff invariant b1(u0) is nonzero, restricting Dom ψp/q

if necessary, the set Im ψp/q is contained near u0 in an “Arnold tongue”⋃
0≤t≤ε

{
u ∈ C : |u − χp/q(t)| ≤ δεt

q−3
}

along the curve χp/q([0, ε]), with
ε > 0 small and limε→0 δε = 0.

Proof. (i) follows from Lemma 2.2 (b).
(ii)–(iii) As ψp/q(z) = ψp/q

(
h
(
ψp/q(z), z

))
by (1.1), the Taylor polynomial

ψ̂p/q(z) = u0 +
∑

1≤j+�≤q−3

cj�z
j z̄� =: u0 + ĉ(z)

satisfies ψ̂p/q(z) = ψ̂p/q

(
Pψ̂p/q(z)(z)

)
up to terms of degree greater than q−3.

Denoting the Taylor expansion of bk(u0 + v) at v = 0 by

b̂k(v) =
∑

m≥0

bkmnvmv̄n,

this means that, up to terms of degree greater than q − 3,

ĉ(z) = ĉ

⎛

⎜
⎝z

(
u0 + ĉ(z) −

[ q−3
2 ]∑

k=1

b̂k

(
ĉ(z)

)|z|2k
)
⎞

⎟
⎠ .

(ii) It follows that c10 = u0c10 = 0, c01 = ū0c01 = 0, c20 = u2
0c20 = 0,

c02 = ū2
0c02 = 0; thus, the first cj� that can be nonzero is c11 =: a1, and it is

equal to b100 = b̂1(0) = b1(u0).;
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(iii) Inductively, one can see that ĉ(z) = ĉ(u0z), hence ĉ(z) =
∑[ q−3

2 ]
k=1 ak|z|2k.

The reader can fill in the details as an exercise. �

Example. If hu(z) = z
(
u − ∑[ q−3

2 ]
k=1 ak|z|2k

)
then ψp/q = ψ̂p/q; thus, near u0,

Im ψp/q is the curve χp/q([0, ε]).

2.3. Opening Pandora’s box wider

Question 2.5. For diophantine ω with convergents pn/qn, if b1(u0) �= 0, one
can wonder as in the holomorphic case whether one has the following:

• The smooth functions ψpn/qn
tend to some ψω : (C, 0) → (C, u0) in a

uniform neighbourhood of 0; thus, the h̃-invariant surfaces Wpn/qn
tend

to the h̃-invariant surface Wω = {u = ψω(z)}.
• For small z, the periodic orbits

{(
ψpn/qn

(z), hψpn/qn (z)
k(z)

)
: 0 ≤ k < qn

}

of h̃ tend to a closed h̃-invariant curve {ψω(z)}×Cωz such that z ∈ Cωz

and that the rotation number of hψ(z)|Cωz
is ω.

• The standard linearisation of the Z/qnZ-action (m, z) �→ hψpn/qn (z)
m(z)

tends to a local transformation Zω linearising the local diffeomorphism
z �→ hψω(z)(z). Hence, the T-action (θ, z) �→ Z−1

ω

(
e2πiθZω(z)

)
leaves ψω

invariant,8 implying that Im ψω is a curve (with boundary), limit of the
narrower and narrower Arnold tongues Im ψpn/qn

.

Example (KAM invariant curves). Assume that h possesses the following
properties near some u0 = e2πiω0 with ω0 ∈ R \ Q:

(i) If |u| = 1, the transformation hu preserves the area.
(ii) hu = |u|hu/|u|, hence hu multiplies the area by |u|2.
(iii) One has b1(u0) �= 0.

By (ii), no hu with |u| �= 1 can have a closed invariant curve near 0. Thus,
if the answer to Question 2.5 is positive, then every ψω has modulus one,
hence b1(u0) = iλu0, λ ∈ R—which already follows from (i). Figure 2 shows
what happens for (u, z) = (e2πiω, z) ∈ S

1 ×C close to ũ0, in local coordinates
(ω, z). The ω-axis is in red and the “paraboloids” are the surfaces Wω with ω
Diophantine, which do lie in S

1 × C as |ψω(z)| = 1. These surfaces intersect
the slice u = u0 at the hu0-invariant closed curves (“KAM circles”) Cωz

with ψω(z) = u0, which occupy most of the room near z = 0, with maybe
complicated dynamics in between.

Notes. The limit surfaces Wω and the linearisations Zω in Question 2.5 might
be obtained as in [19] (where, however, the typical situation is b1(e2πiω) /∈ iR,
yielding normally hyperbolic invariant circles). Figure 2, which I like a lot,
most probably follows from standard KAM theory [23].

8Conjugating everything by Zω , one can assume hψω(z)(z) = e2πiωz, hence (1.1) reads

ψω(z) = ψω(e2πiωz), which yields ψω(z) = ψω(e2πikωz) for every integer k and, therefore,
ψω(z) = ψω(e2πiθz) for all θ ∈ T by density.
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Figure 2. Geometry of the KAM theorem

3. Higher dimensions

3.1. Statement of the hypotheses

Hypotheses. Given u0 ∈ C
d, d > 1, whose components are nonzero and all

different, set ũ0 := (u0, 0) ∈ C
d × C

d and let h : (Cd × C
d, ũ0) → (Cd, 0) be

a smooth local map (u, x) �→ hu(x) such that

hu(0) = 0 and Dhu(0) = diag u : z �→ (
u1z1, . . . , udzd

)
.

The case where h is holomorphic will be referred to as the holomorphic case.
Note. A general situation reduces to these hypotheses. Let h : (u, x) �→ hu(x)
be a smooth local map (R2d ×R

2d, 0) → (R2d, 0) such that the eigenvalues of
Dh0(0) are simple and not real. Near 0, the fixed points of h̃ form the graph
x = ϕ(u) of a smooth implicit function, which we may assume to be 0.

There is [13,16] a smooth local map J of R2d into the space of R-linear
isomorphisms R

2d → C
d, defined near 0, such that each J(u)Dhu(0)J(u)−1

is a diagonal automorphism diag α(u) : z �→ (
α1(u)z1, . . . , αd(u)zd

)
of C

d

(thus, the eigenvalues αj(u), αj(u) of Dhu(0), 1 ≤ j ≤ d, depend smoothly
on u). Via the identification (u, x) �→ (

u, J(u)x
)
, we can view h as a local

map (R2d × C
d, 0) → (Cd, 0) such that Dhu(0) = diag α(u).

Setting α(u) :=
(
α1(u), . . . , αd(u)

)
and assuming Dα(0) : R2d → C

d

invertible, the smooth local map α : (R2d, 0) → C
d is a local diffeomorphism.

If we view it as an identification, then u0 := α(0) satisfies our hypotheses.

3.2. Periodic orbits

Proposition 3.1. Assume that u0 = ρ = (ρ1, . . . , ρd), where ρj = e2πipj/q,
0 < pj < q. Let π :

(
R+×S

2d−1, {0}×S
2d−1

) → (Cd, 0) be the oriented blowup
π(r, y) := ry (“polar coordinates”). Then, setting ŭ0 := (u0, 0) ∈ C

d × R+

and denoting by S̊
2d−1 the complement of the coordinate hyperplanes in S

2d−1:

(i) Near ũ0, the map h lifts to a smooth local map h̆ : (u, r, y) �→ h̆u(r, y) of(
C

d × R+ × S
2d−1, {ŭ0} × S

2d−1
)

into
(
R+ × S

2d−1, {0} × S
2d−1

)
such

that π ◦ h̆u = hu ◦ π and h̆(ŭ0, y) =
(
0, (diag u0)y

)
for all y ∈ S

2d−1.
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(ii) The q-periodic points of the unfolding ˜̆
h : (u, r, y) �→ (

u, h̆u(r, y)
)

contain

{ŭ0} × S
2d−1 and the ˜̆

h-invariant “graph” W̆ = {u = ψ̆(r, y)} of a
smooth local map ψ̆ = ψ̆p/q :

(
R+ × S̊

2d−1, {0} × S̊
2d−1

) → (Cn, u0).
(iii) The non-fixed q-periodic points of h̃ contain the h̃-invariant “graph”

W = {u = ψ(z)} of a smooth ψ = ψp/q : π(Dom ψ̆) \ {0} → C
n \ {u0}.

(iv) In the holomorphic case, W is holomorphic.

Proof. (i) The relation π◦h̆u(r, y) = hu◦π(r, y) reads h̆u(r, y) = (Ru, Yu)(r, y)
with Ru(r, y) = |hu(ry)| and Yu(r, y) = hu(ry)/|hu(ry)| for r > 0; now, by
Taylor’s formula, hu(ry) = rAu(ry)y, where Au(ry) :=

∫ 1

0
Dhu(try) dt, hence

Yu(r, y) = Au(ry)y/|Au(ry)y| wherever Au(ry)y �= 0, including r = 0 near
u = u0 since Au(0) = diag u.
(ii) One has that hq

u(ry) = ry if and only if rGu(r, y) = 0, where
Gu(r, y) = G(u, r, y) = Au

(
hq−1

u (ry)
) · · · Au(ry)y − y, hence in particular

G(u, 0, y) = (diag u)qy − y. Forgetting the fixed points r = 0, the equation
hq

u(ry) = ry reads G(u, r, y) = 0. Now, all y ∈ S
2d−1 verify G(u0, 0, y) = 0 and

∂uG(u0, 0, y) = q diag(ρ̄1y1, . . . , ρ̄dyd), invertible if and only if y1 · · · yd �= 0,
i.e. y ∈ S̊

2d−1. Hence, there exist open neighbourhoods U of u0 in C
d and V̆

of {0}× S̊
2d−1 in R+ × S̊

2d−1 such that the zeros of G|U×V̆ form the “graph”
of a smooth implicit map ψ̆ : V̆ → U ; as before, this graph W̆ becomes
˜̆
h-invariant if it is replaced by W̆ ∩ ˜̆

h−1(W̆ ) ∩ · · · ∩ ˜̆
h1−q(W̆ ).

(iii) Recall that π is a diffeomorphism off the “exceptional divisor” π−1(0).
(iv) We can, therefore, “read” the equation Gu(r, y) = 0 via this diffeomor-
phism, that is, write it gu(z) := hq

u(z) − z = 0 for z �= 0; as the unfolding
(u, r, y) �→ (

u,Gu(r, y)
)

is a local diffeomorphism at every point of W̆ , so
is (u, r, y) �→ (

u, rGu(r, y)
)
, hence the unfolding g̃ : (u, z) �→ (

u, gu(z)
)

is a
diffeomorphism at every point of W ; the map g̃ being holomorphic, its local
inverses are, implying that W is holomorphic. �

Note. A nicer way to prove iv) is to use the complex blowup πC : (D, z) �→ z,
z ∈ D, D ⊂ C

d complex line through 0;9 the implicit function theorem yields
a holomorphic ψ̆C “upstairs”, defined on an open subset of the complement
of the closure of {(D, z) : z �= 0, z1 · · · zd = 0} and equal to u0 on π−1

C
(0).

Example. If hu(z) = diag
(
u+χ(zq1

1 , . . . , zqd

d )
)
z, where qj is the denominator

of pj/q in irreducible form and χ : (Cd, 0) → (Cd, 0) is holomorphic, then
ψ(z) = ρ − χ(zq1

1 , . . . , zqd

d ), which has contact of order at least min qk with
the constant ρ at 0.

Proposition 3.2. The automorphism diag ρ lifts via π to the diffeomorphism
˘diag ρ : (r, y) �→ (

r, (diag ρ)y
)
.

9In the standard jth local chart of CP
d−1, this blowup reads

(
zj , (wk)k �=j

) �→ z with

zk = zjwk for k �= j; the “forbidden” closed subset is the union of the hyperplanes wk = 0.
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(i) Restricting W̆ if required, there is a smooth diffeomorphism Z̆ = Z̆p/q of
W̆ onto an open ˘diag ρ-invariant subset Ω̆ ⊃ {0}× S̊

2d−1 of R+ × S̊
2d−1,

conjugating ˜̆
h|W̆ to ( ˘diag ρ)|Ω̆, with Z̆(ŭ0, y) = (0, y) for all y ∈ S̊

2d−1.
(ii) The map Z̆ induces a smooth diffeomorphism Z = Zp/q of W onto

the open diag ρ-invariant “trefoil” Ω := π(Ω̆) \ {0}, conjugating h̃|W to
diag ρ|Ω and tending to 0 when the variable in W tends to ũ0.

(iii) If h is holomorphic, so is Z.

Proof. (i) The conjugacy Z̆p/q is as in Question 1.6, but in polar coordinates:

Z̆p/q

(
ψ̆(r, y), (r, y)

)
=

(
r |C(r, y)|, C(r, y)

|C(r, y)|
)
,

where C(r, y) =
1
q

q−1∑

k=0

(diag ρ)−kAψ̆(r,y)

(
hk−1

ψ̆(r,y)
(ry)

) · · · Aψ̆(r,y)(ry)y.

For all y ∈ S̊
2d−1, one has that C(0, y) = y, hence Z̆(ŭ0, y) = (0, y) and

DZ̆p/q(0, y) =
(

1 0
∗ idy⊥

)
: R × y⊥ → R × y⊥

is invertible. It follows that Z̆p/q is a smooth local diffeomorphism, whose

domain can be made ˜̆
h-invariant as usual. It is not difficult to check that it

is a conjugacy, see equation (3.1) hereafter.
(ii) is obvious; by definition, the conjugacy Zp/q is as in Question 1.6:

Zp/q

(
ψp/q(z), z

)
=

1
q

q−1∑

k=0

(diag ρ)−khψp/q(z)
k(z). (3.1)

(iii) follows at once. �
Note. The diagonal action e : (t, z) �→ e2πi diag tz of Td on C

d preserves
diag ρ and lifts to the action ĕ : (t, r, y) �→ (r, e2πi diag ty) =: ĕt(r, y) of Td on
R+ × S

2d−1, which preserves ˘diag ρ. The open subset Ω̆ becomes ĕ-invariant
(and still ˘diag ρ-invariant) if it is replaced by

⋂
t∈Td ĕt(Ω̆), which contains

{0} × S̊
2d−1 and is open because T

d is compact.
Hence, denoting again by W̆ the inverse image of this new Ω̆ by Z̆, the

map ˜̆
h|W̆ is invariant under the Td-action Z̆∗ĕ :

(
t, Z̆−1(r, y)

) �→ Z̆−1ĕ(t, r, y);
in particular, it preserves each orbit, which orbits constitute a foliation of W̆
by d-tori Z̆−1

({r} × (x1S
1 × · · · × xdS

1)
)

with xj > 0 and x2
1 + · · · + x2

d = 1.
In general, these tori of course do not lie each in a slice u = constant

like the orbits of ˜̆
h|W̆ . The foliation, like the new W̆ , depends on the choice

of Z̆, which is far from unique since the set of ˘diag ρ-invariant smooth dif-
feomorphism germs

(
R+ × S

2d−1, {0} × S
2d−1

) → (
R+ × S

2d−1, {0} × S
2d−1

)

is infinite dimensional.10

10Indeed, the set of diag ρ-invariant smooth diffeomorphism germs (Cd, 0) → (Cd, 0) is
infinite dimensional, as any smooth germ η : (Cd, 0) → (Cd, 0) yields the diag ρ-invariant

germ 1
q

∑q
1(diag ρ)−k ◦ η ◦ (diag ρ)k.
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However, when p/q tends to some diophantine ω ∈ [0, 1]d, the orbits of
˜̆
h|W̆p/q

should “become denser and denser in such invariant tori”:

3.3. Passing to the limit in the holomorphic case?

In the holomorphic case, if u0 = (e2πiω1 , . . . , e2πiωd), ω = (ω1, . . . , ωd) ∈ T
d,

the following result may apply to hu0 :

Theorem 3.3. Assume ω diophantine in the sense that, for some large τ ,

inf
1≤j≤d

inf
|k|≥2

|k|τ ∣
∣e2πikω − e2πiωj

∣
∣ > 0,

where k ∈ N
d, |k| = k1 + · · · + kd and kω = k1ω1 + · · · + kdωd. Then,

every holomorphic germ f : (Cd, 0) → (Cd, 0) such that Df(0) = diag u0 is
holomorphically linearisable: there exists a holomorphic local diffeomorphism
Zω : (Cd, 0) → (Cd, 0) such that Zω ◦ hu0 = (diag u0)Zω.11 �

As the rotation z �→ (diag u0)z = (e2πiωj zj)1≤j≤d preserves each d-torus
Tr = {|z1| = r1, . . . , |zd| = rd}, every embedded torus Tωr = Z−1

ω (Tr) with
rj > 0 small enough is hu0 -invariant and, of course, Zω|Tωr

conjugates hu0 |Tωr

to the rotation z �→ (diag u0)z restricted to Tr.

Question 3.4. Applied to f = hu0 , is this the limit of what happens near
u = (e2πipj/q)1≤j≤d when p/q ∈ Q

d tends to ω?12 Do the maps ψp/q tend
to ψω = u0 in some uniform neighbourhood of 0? For z ∈ C

d close to 0,
does the periodic orbit

{(
ψp/q(z), hψp/q(z)

k(z)
)

: 0 ≤ k < q
}

of h̃ tend to the

closed h̃-invariant torus {u0} × Tωr such that z ∈ Tωr? More precisely, does
the holomorphic linearisation (3.1) of h̃|Wp/q

tend to Zω when n → ∞?

Note. This is not as simple as Question 1.6: indeed, unless I am mistaken,
the maps ψp/q are not a priori defined in a neighbourhood of 0, so that part
of the question is whether Dom ψp/q tends to such a neighbourhood. On the
other hand, it follows from normal form theory that, as in the case d = 1,
the map ψ = ψp/q has more and more contact with u0 at 0 when p/q → ω.13

3.4. Passing to the limit in the smooth case?

If u0 = (e2πiω1 , . . . , e2πiωd), where ω = (ω1, . . . , ωd) ∈ T
d is non-resonant,

meaning that ω1, . . . , ωd ∈ T are independent over Z, then, by normal form
theory, one has the following: for each positive integer N , up to smooth local
conjugacy (u, z) �→ (

u,Zu(z)
)
, every hu with u − u0 small enough is tangent

to order 2N + 1 at 0 to a polynomial map

Pu(z) = diag

(

u +
N∑

�=1

b�(u)
(|z1|2, . . . , |zd|2

)
)

z

11 One can assume DZω(0) = Id. Pöschel [31] attributes Theorem 3.3 to Siegel, who
certainly proved its analogue for vector fields [34]. The same applies to its improvement by
Brjuno. This “Siegel-Brjuno” theorem for maps and much more is proved in [30–32,38].
12For example, pj/q = pjn/qn can be the nth convergent of ωj .
13If one prefers, ψ̆C has more and more contact with u0 at points of π−1

C
(0).
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with b�(u) : Rd → R
d homogeneous of degree 
, depending smoothly on u. As

for d = 1, it follows that when p/q tends to ω the map ψp/q of Proposition 3.1
is tangent to higher and higher order at 0 to a polynomial normal form14

ψ̂p/q(z) = χp/q

(|z1|2, . . . , |zd|2
)
, χp/q(0) = ρ, Dχp/q(0) = b1(ρ).

Thus, if b1(u0) (and, therefore, b1(ρ) for small p
q − ω) is invertible then,

restricting ψp/q, the set Im ψp/q lies near ρ in a thinner and thinner “Arnold
tongue” along the smooth d-fold with corner χp/q([0, ε)d) for small ε > 0.

Question 3.5. Assume ω diophantine in the sense that, for some large τ ,

inf
m 
=0

|m|τ ∣
∣e2πimω − 1

∣
∣ > 0,

where m ∈ Z
d, |m| = m1+· · ·+md and mω = m1ω1+· · ·+mdωd. If b1(u0) is

invertible, one can wonder as in the holomorphic and one-dimensional cases
whether one has the following when p/q tends to ω:

• The ψ̆p/q’s tend to a map ψ̆ω of
(
R+ × S̊

2d−1, {0}× S̊
2d−1

)
into (Cn, u0)

in a uniform neighbourhood of {0}×S̊
2d−1; thus, the ˜̆

h-invariant surfaces

W̆p/q tend to the ˜̆
h-invariant 2d-fold W̆ω = {u = ψ̆ω(r, y)}.

• For each (r, y), the periodic orbits
{(

ψ̆p/q(r, y), h̆k
ψ̆p/q(r,y)

(r, y)
)}

0≤k<q

of ˜̆
h tend to a ˜̆

h-invariant embedded d-torus {ψ̆ω(r, y)}×Tωry such that
(r, y) ∈ Tωry.

• The “linearisation” Z̆p/q of Proposition 3.2 (i) tends to a local transfor-
mation Z̆ω “linearising” the local diffeomorphism (r, y) �→ h̆ψ̆ω(r,y)(r, y).

Hence, the T
d-action

(
θ, Z̆−1

ω (r, y)
) �→ Z̆−1

ω

(
r, e2πi diag θy

)
leaves ψ̆ω

invariant, implying that Im ψ̆ω is a d-fold (with corner), limit of the
narrower and narrower subsets Im ψ̆p/q.

Example. (KAM invariant tori) Assume that h possesses the following prop-
erties near some u0 = e2πiω0 with ω0 non-resonant:

(i) If |u1| = · · · = |ud| = 1, the transformation hu preserves the standard
symplectic form σ = 1

2i (dz̄1 ∧ dz1 + · · · + dz̄d ∧ dzd).
(ii) One has that hu = h(u1/|u1|,...,ud/|ud|)◦diag(|u1|, . . . , |ud|), and therefore,

h∗
uσ = 1

2i (|u1|2dz̄1 ∧ dz1 + · · · + |ud|2dz̄d ∧ dzd).
(iii) The linear map b1(u0) is an isomorphism.

Then, if the answer to question 3.5 is positive, it follows from (ii) that every
ψω takes its values in {|u1| = · · · = |ud| = 1}, yielding a 3d-dimensional
analogue of Figure 2, see [23,28].15

14If one prefers, ψ̆ has more and more contact with ψ̂p/q ◦ π at points of π−1(0).
15Note that the slices with ω ∈ Q

d close to ω0 contain invariant tori “far” away from 0.
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4. Comments and references

My interest in this part of the program sketched in [13] awoke when I heard
Abed Bounemoura talk about [4].

The dimension of both parameter and phase space, minimal here, can
be much higher16. Proposition 1.3 has been known (at least) to me for thirty
years, as well as the “blown-up” version of Proposition 2.1.17 I have no ref-
erence for the higher dimensional results in Sect. 3.4. The excision of the
coordinate hyperplanes in Propositions 3.1–3.2 corresponds to the closure of
manifolds of periodic orbits of lower period, which might tend to (manifolds
of) lower dimensional KAM tori à la Eliasson [22,23].

It is known that “good” periodic orbits accumulate on KAM tori. My
naive hope is to do it the other way round and get the mysterious objects as
limits of obvious ones, which would clarify a very intricate situation.

One of the sources of this article is an awfully biased reading of the
two papers [19,20] by Alain Chenciner, to whom my debt cannot be overes-
timated, though he certainly does not share my viewpoint that conservative
systems are essentially meant to deny the existence of death (and birth. . . ).

Last but not least, I thank Jacques Féjoz and Laurent Stolovitch for
very useful discussions and comments.
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[3] Arnold, V.I., Avez, A.: Problèmes ergodiques de la mécanique classique.
Gauthier-Villars, Paris (1967)

[4] Bounemoura, A., Fischler, S.: A Diophantine duality applied to the KAM and
Nekhoroshev theorems. Math. Z. 275(3), 1135–1167 (2013)

[5] Brjuno, A.D.: Analytical form of differential equations. Trans. Moscow Math.
Soc. 25, 131–288 (1971)

[6] Brjuno, A.D.: Analytical form of differential equations. Trans. Moscow Math.
Soc. 26, 199–239 (1972)

[7] Chaperon, M.: Quelques questions de géométrie symplectique [d’après, entre
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1. Introduction and main results

1.1. Introduction

In this paper, we give a different and simpler proof of a slightly modified
and weaker version of a recent theorem of Shelukhin [40], extending Franks’
“two-or-infinitely-many” theorem [14,15], to higher dimensions.

This celebrated theorem of Franks asserts that every area preserving dif-
feomorphism of S2 has either exactly two or infinitely many periodic points.
(Moreover, in the setting of Franks’ theorem, there are also strong growth rate
results; see, e.g., [16,30,32].) A generalization of Franks’ theorem conjectured
in [29, p. 263] is that a Hamiltonian diffeomorphism ϕ of a closed symplectic
manifold has infinitely many periodic points whenever ϕ has “more than ab-
solutely necessary” fixed points. (Hence, the title of [40] and of this paper.)
The vaguely stated lower bound “more than absolutely necessary” is usually
interpreted as a lower bound arising from some version of the Arnold conjec-
ture, e.g., as the sum of the Betti numbers. For CPn, the expected threshold
is n + 1 regardless of the non-degeneracy assumption and, in particular, it
is 2 for S2 = CP

1 as in Franks’ theorem. A slightly different interpretation
of the conjecture, not directly involving the count of fixed points, is that the
presence of a fixed or periodic point that is unnecessary from a homological
or geometrical perspective is already sufficient to force the existence of infin-
itely many periodic points. We refer the reader to [20,27,28] for some results
in this direction.

We note that whenever ϕ has finitely many periodic points, by passing
to an iterate, one can assume them to be fixed points. Furthermore, ϕ has
infinitely many periodic points if and only if it has infinitely many simple,
i.e., uniterated, periodic orbits and the results are often stated in these terms.
It is also worth keeping in mind that all known Hamiltonian diffeomorphisms
ϕ with finitely many periodic orbits are strongly non-degenerate, i.e., ϕk is
non-degenerate for all k ∈ N.

Volume preserving diffeomorphisms or flows with finitely many simple
periodic orbits play an important role in dynamics; see, e.g., [13] and ref-
erences therein. In the Hamiltonian setting, they are sometimes referred to
as pseudo-rotations. Recently, symplectic topological methods have been em-
ployed to study the dynamics of pseudo-rotations and its connections with
symplectic topological properties of the underlying manifold in all dimen-
sions; see [1,2,4,5,9,10,23,33,41,42].

The original proof of Franks’ theorem utilized methods from low-
dimensional dynamics, and the first purely symplectic topological proof was
given in [11]. However, that proof and also a different approach from [6]
were still strictly low-dimensional, and Shelukhin’s theorem [40, Thm. A], is
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the first sufficiently general higher dimensional variant of Franks’ theorem.
(Strictly speaking [40, Thm. A] and our Theorem 1.1 and Corollary 1.2, which
are overall slightly weaker, still fall short of completely reproving Franks’ the-
orem in dimension two; we will discuss and compare these results in Sect. 1.2.)
Similarly to [40], the key ingredient of our proof is Seidel’s Z2-equivariant
pair-of-pants product, [39]. (While we use the original version of the product,
[40] relies on its Zp-equivariant version from [43].) Our proof also uses several
simple ingredients from persistent homology theory in the form developed in
[45] (see also [36]), although to a much lesser degree than [40].

Finally, it is worth pointing out that Hamiltonian pseudo-rotations are
extremely rare and most of the manifolds do not admit such maps. This
statement is known as the Conley conjecture. The state-of-the-art result is
that the Conley conjecture holds for a manifold (M,ω) unless there exists
A ∈ π2(M), such that 〈c1(TM), A〉 > 0 and 〈ω, A〉 > 0; see [7,22]. For
example, the Conley conjecture holds when c1(TM)|π2(M) = 0 or when M is
negative monotone. For many manifolds, the conjecture is also known to hold
C∞-generically (see [18]); we refer the reader to [21] for a detailed survey and
further references.

1.2. Shelukhin’s theorem

Let ϕ be a Hamiltonian diffeomorphism of a closed monotone symplectic
manifold M . We view ϕ as the time-one map in a time-dependent Hamilton-
ian flow and denote by Pk(ϕ) the set of its k-periodic points, arising from
contractible k-periodic orbits. The Hamiltonian diffeomorphism ϕ is said to
be k-perfect if Pk(ϕ) = P1(ϕ) and perfect if ϕ is k-perfect for all k ∈ N. (We
refer the reader to Sect. 2 for further notation and definitions used here.) We
call ϕ a non-degenerate pseudo-rotation over a field F if it is non-degenerate,
perfect, and the differential in the Floer complex of ϕ over F vanishes. This
condition is independent of the choice of an almost complex structure and,
by Arnold’s conjecture, equivalent to that the number of 1-periodic orbits
|P1(ϕ)| is equal to the sum of Betti numbers of M over F. Denote by β(ϕ)
the boundary depth of ϕ over F, i.e., the length of the maximal finite bar in
the barcode of ϕ; see [44,45] and also Sect. 4.

One of the goals of this paper is to give a simple proof to the following
theorem proved in a slightly different form in [40].

Theorem 1.1. (Shelukhin’s Theorem [40]) Assume that ϕ is strongly non-
degenerate and perfect and that β(ψ) over F2 := Z2 is bounded from above for
all Hamiltonian diffeomorphisms ψ of M or at least for all iterates ψ = ϕ2k

(e.g., M = CP
n). Then, ϕ is a pseudo-rotation.

Applying this to the iterates ϕ2k

, we obtain

Corollary 1.2. [40] Assume that ϕ is strongly non-degenerate, β
(
ϕ2k)

over F2

is bounded from above (e.g., M = CP
n), and |P1(ϕ)| is strictly greater than

the sum of Betti numbers of M over F2. Then,
∣
∣P2k(ϕ)

∣
∣ → ∞ as k → ∞.

This theorem is proved in Sect. 3.2 as an easy consequence of Theo-
rem 3.1, a new result in this paper. (However, at least on the conceptual
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level, our proof of that theorem is also a subset of Shelukhin’s argument,
although the inclusion is rather implicit.)

In the rest of this section, we discuss the conditions of Theorem 1.1 and
also some of the differences between Corollary 1.2 and the original Shelukhin’s
theorem [40, Thm. A], which is in several ways more general and more precise.

First of all, in the most recent version of [40, Thm. A], there are no
restrictions on the ground coefficient field F, while here F = F2. When F is
Q, the assertion is that Pp(ϕ) contains a simple periodic orbit for every large
prime p. As a consequence, one obtains the growth of order at least O(k/ log k)
for the number of simple periodic orbits of period up to k. This difference
stems from the fact that the main tool used in [40] is the Zp-equivariant pair-
of-pants product introduced in [43], while we rely on a somewhat simpler
Z2-equivariant pair-of-pants product defined in [39]. We touch upon the p-
iterated analogues of Theorem 1.1 and Corollary 1.2 in Remark 5.5.

Secondly, [40, Thm. A] allows for some degeneracy of ϕ. Namely, in
the setting of Corollary 1.2, the number of 1-periodic orbits |P1(ϕ)| in the
condition that |P1(ϕ)| is strictly greater than the sum of Betti numbers is
replaced by

∑

x∈P1(ϕ)

dimF HF(x;F), (1.1)

where HF(x;F) is the local Floer (co)homology of x with coefficients in a field
F (see, e.g., [19]). Note that, as a consequence, Corollary 1.2 still holds with-
out the non-degeneracy assumption, provided that the number of 1-periodic
orbits with HF(x;F) �= 0 is greater than the sum of Betti numbers. In the
setting of this paper, one should take F = F2 and we will further discuss the
degenerate case of Theorem 1.1 and Corollary 1.2 in Sect. 5.2. Overall, the
role of the condition that HF(x;F) �= 0 is unclear to us beyond the case of S2.
Franks’ theorem has an analogue for a certain class of symplectomorphisms of
surfaces, and then, interestingly, this condition becomes essential; see [3,18].

However, from our perspective, the most important difference lies in the
proofs, which highlight different aspects of the dynamics and Floer theory of
ϕ. Our proof focuses on the behavior of the shortest bar βmin in the barcode
of ϕ (rather than the longest finite bar, a.k.a. the boundary depth, β ≥ βmin

[45]) or, to be more precise, of the shortest Floer arrow under the iteration
from ϕ to ϕ2; see Sect. 3.1. In particular, we show in Theorem 3.1 that when
ϕ is 2-perfect the shortest arrow persists under such an iteration, although
it may migrate into the equivariant domain for ϕ2, and the length of the
arrow doubles. The shortest non-equivariant arrow for ϕ2 is at least as long
as the equivariant one. Hence, βmin

(
ϕ2

) ≥ 2βmin(ϕ), and Theorem 1.1 readily
follows from Theorem 3.1 applied to a sequence of period doubling iterations;
see Sect. 3.2. The key ingredient in the proof of Theorem 3.1 is the equivariant
pair-of-pants product, introduced in [39], having a very strong non-vanishing
property also proved therein (see Proposition 2.3).

Finally, a few words are due on the requirement in Theorem 1.1 and
Corollary 1.2 that β(ψ) is bounded from above. First of all, note that while
it would be sufficient to only have an upper bound on βmin(ψ) where ψ = ϕ2k
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or, as in [40, Thm. A], on β(ψ) where ψ = ϕp, all relevant results proved to
date are more robust and give an upper bound on β(ψ) for all ψ. [This is the
curse (and the blessing) of symplectic topological methods in dynamics: they
are very robust and general, but not particularly discriminating; they often
tell the same thing about all maps. There are, however, exceptions.]

The simplest manifold for which such an a priori bound is established
is CP

n for any coefficient field (suppressed in the notation), and the result
essentially goes back to [12]. The argument is roughly as follows. (We use
here the notation and conventions from Sect. 2.1.) First, recall that

β(ψ) ≤ γ(ψ). (1.2)

Here, γ(ψ) is the γ-norm of ψ defined, using cohomology, as

γ(ψ) = −(
c1(ψ) + c1(ψ−1)

)
,

where cα(ψ) is the spectral invariant associated with a quantum cohomology
class α ∈ HQ(M) and 1 is the unit in the ordinary cohomology H(M) of M .
(We suppress the grading in the cohomology notation when it is irrelevant.)
The upper bound (1.2) holds for any closed monotone symplectic manifold
and its proof is similar to the proof in [44] of the upper bound for β by
the Hofer norm, but with continuation maps replaced by the multiplications
by the image of 1 in HF(ψ) and HF

(
ψ−1

)
. (We refer the reader to [31] for

some further results along these lines.) Applying the Poincaré duality in Floer
cohomology (see [12]), it is not hard to show that c1(ψ−1) = − c�(ψ) when
N ≥ n+1, where 	 is the generator of H2n(M) and N is the minimal Chern
number of M2n. In particular, this is true for M = CP

n, since then N =
n + 1. By construction, for any two classes α and ζ in HQ(M), the spectral
invariants satisfy the Lusternik–Schnirelmann inequality cα∗ζ(ψ) ≥ cα(ψ).
Thus, from the identity 	 ∗ ζ = q1 where ζ is the generator of HQ2(CPn),
we conclude that c1(ψ) ≤ c�(ψ) ≤ c1(ψ) + π. These inequalities, combined
with (1.2), show that

β(ψ) ≤ γ(ψ) ≤ π

for any Hamiltonian diffeomorphism ψ of CPn.
A similar upper bound on β holds for all closed monotone manifolds M ,

such that HQeven(M ;F) for some field F is semi-simple, i.e., splits as an algebra
into a direct sum of fields. This is [40, Thm. B] and, interestingly, this result
bypasses the upper bound (1.2) in its original form. In fact, HQ(S2 × S2;Q)
is semi-simple, but γ is not bounded from above for S2 ×S2; see [40, Rmk. 7]
and also [35, Thm. 6.2.6]. We are not aware of any algebraic criteria for an a
priori bound on the γ-norm. Nor do we know how large the class of monotone
symplectic manifolds with semi-simple HQeven(M ;F) is. In addition to CP

n

(with any F), the complex Grassmannians, S2×S2, and the one point blow-up
of CP2 with standard monotone symplectic structures are in this class when
charF = 0 (see [12] and references therein); but S2 × S2 is not for F = F2.

Vol. 24 (2022) Another look at the Hofer–Zehnder conjecture
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2. Preliminaries

2.1. Conventions and notation

For the reader’s convenience, we set here our conventions and notation and
briefly recall some basic definitions. The reader may want to consult this
section only as needed.

Throughout this paper, the underlying symplectic manifold (M,ω) is as-
sumed to be closed and strictly monotone, i.e., [ω]|π2(M) = λc1(TM)|π2(M) �=
0 for some λ > 0. The minimal Chern number of M is the positive generator
N of the subgroup 〈c1(TM), π2(M)〉 ⊂ Z and the rationality constant is the
positive generator λ0 = 2Nλ of the group 〈ω, π2(M)〉 ⊂ R.

A Hamiltonian diffeomorphism ϕ = ϕH = ϕ1
H is the time-one map

of the time-dependent flow ϕt = ϕt
H of a 1-periodic in time Hamiltonian

H : S1 × M → R, where S1 = R/Z. The Hamiltonian vector field XH of H
is defined by iXH

ω = −dH. In what follows, it will be convenient to view
Hamiltonian diffeomorphisms together with the path ϕt

H , t ∈ [0, 1], up to
homotopy with fixed end points, i.e., as elements of the universal covering of
the group of Hamiltonian diffeomorphisms.

Let x : S1 → M be a contractible loop. A capping of x is an equivalence
class of maps A : D2 → M , such that A|S1 = x. Two cappings of x are
equivalent if the integral of ω [or of c1(TM), since M is strictly monotone]
over the sphere obtained by clutching the cappings is equal to zero. A capped
closed curve x̄ is, by definition, a closed curve x equipped with an equivalence
class of cappings, and the presence of capping is indicated by a bar.

The action of a Hamiltonian H on a capped closed curve x̄ = (x,A) is

A(x̄) = −
∫

A

ω +
∫

S1
Ht(x(t)) dt.

The space of capped closed curves is a covering space of the space of con-
tractible loops, and the critical points of AH on this space are exactly the
capped 1-periodic orbits of XH .

The k-periodic points of ϕ are in one-to-one correspondence with the
k-periodic orbits of H, i.e., of the time-dependent flow ϕt. Recall also that a k-
periodic orbit of H is called simple if it is not iterated. A k-periodic orbit x of
H is said to be non-degenerate if the linearized return map Dϕk : Tx(0)M →
Tx(0)M has no eigenvalues equal to one. A Hamiltonian H is non-degenerate
if all its 1-periodic orbits are non-degenerate. We denote the collection of
capped k-periodic orbits of H by P̄k(ϕ).

Let x̄ be a non-degenerate capped periodic orbit. The Conley–Zehnder
index μ(x̄) ∈ Z is defined, up to a sign, as in [37,38]. In this paper, we
normalize μ, so that μ(x̄) = n when x is a non-degenerate maximum (with
trivial capping) of an autonomous Hamiltonian with small Hessian.

Fixing an almost complex structure, which will be suppressed in the
notation, we denote by (CF(ϕ), dFl) and HF(ϕ) the Floer complex and co-
homology of ϕ over F2 = Z2; see, e.g., [34,37]. (Throughout this paper, all
complexes and cohomology groups are over F2.) The complex CF(ϕ) is gener-
ated by the capped 1-periodic orbits x̄ of H, graded by the Conley–Zehnder
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index, and filtered by the action. The filtration level (or the action) of a chain
ξ ∈ CF(ϕ) is defined by

A(ξ) = min{A(x̄i)}, where ξ =
∑

x̄i. (2.1)

(Note that the filtration depends on H, not just on ϕ, making of the notation
CF(ϕ) somewhat misleading.) The differential dFl is the upward Floer differ-
ential: it increases the action and also the index by one. The Floer complex
CF(ϕ) is also a finite-dimensional free module over the Novikov ring Λ. There
are several choices of Λ; see, e.g., [34]. For our purposes, it is convenient to
take the field of Laurent series F2((q)) with |q| = 2N as Λ. With this choice,
Λ naturally acts on CF(ϕ) by recapping, and multiplication by q corresponds
to the recapping by A ∈ π2(M) with 〈c1(TM), A〉 = N . Furthermore, CF(ϕ)
is a finite-dimensional vector space over Λ with a preferred basis formed by
1-periodic orbits with arbitrarily fixed capping.

Notationally, it is convenient to equip CF(ϕ) with a non-degenerate F2-
valued pairing 〈 , 〉 for which P̄1(ϕ) is an orthogonal basis: 〈x̄, ȳ〉 = δx̄ȳ. Then,
essentially by definition

dFlx̄ =
∑

〈dFlx̄, ȳ〉 ȳ.

There is a canonical, grading-preserving isomorphism HF(ϕ)
∼=−→

HQ(M)[−n] where HQ(M) is the quantum cohomology of M ; see, e.g.,
[34,37] and references therein. (Depending on the context, this is the PSS-
isomorphism or the continuation map or a combination of the two.) The
cohomology groups HQ(M) and HF(ϕ) are also modules over a Novikov ring
Λ, and HQ(M) ∼= H(M) ⊗ Λ ∼= HF(ϕ) (as a module).

The Floer complex carries a pairing

CF(ϕ) ⊗ CF(ϕ) → CF
(
ϕ2

)
[n]

descending, on the level of cohomology, to the so-called pair-of-pants product

HF(ϕ) ⊗ HF(ϕ) → HF
(
ϕ2

)
[n],

which we denote by ∗. Thus, with our conventions, |α ∗ β| = |α| + |β| + n.
In quantum cohomology, this product corresponds to the quantum product,
also denoted by ∗, which makes it into a graded-commutative algebra over
Λ with unit 1. This product is a deformation (in q) of the cup product:
α ∗ β = α ∪ β + O(q).

2.2. Equivariant Floer cohomology and the pair-of-pants product

2.2.1. Equivariant Floer cohomology: a brief introduction. The equivariant
Floer cohomology HFeq

(
ϕ2

)
, introduced in [39], is the homology of a certain

complex
(
CFeq

(
ϕ2

)
, deq

)
called the equivariant Floer complex. As a graded

F2-vector space or as a Λ-module

CFeq

(
ϕ2

)
= CF

(
ϕ2

)
[h],

where |h| = 1, and the differential deq has the form

deq = dFl + h d1 + h2 d2 + · · · = dFl + O(h).
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This differential is Λ[h]-linear and non-strictly action-increasing. It is
roughly speaking defined as follows, mimicking Borel’s construction of the
Z2-equivariant Morse cohomology.

Fix a family J̃ of 2-periodic in t almost complex structures on M
parametrized by the unit infinite-dimensional sphere S∞ ⊂ R

∞. Here, R∞ is
the direct sum of infinitely many copies of R, i.e., its elements ξ = (ξ0, ξ1, . . .)
have only finitely many non-zero components, and S∞ = {‖ξ‖ = 1} with
‖ξ‖2 =

∑
k |ξk|2. The almost complex structure J̃ is required to satisfy the

symmetry condition J̃−ξ = J̃ ′
ξ, where J̃ ′

ξ is obtained from J̃ξ by the time-shift
t �→ t+1. Consider the self-indexing quadratic form f(ξ) =

∑
k k|ξk|2 on S∞

and an antipodally symmetric metric, such that the natural equatorial em-
bedding S∞ → S∞ given by (ξ0, ξ1, . . .) �→ (0, ξ0, . . .) is an isometry. (Note
also that the pull back of f by this embedding is f +1.) The almost complex
structure J̃ must furthermore be constant in ξ near the critical points of f ,
invariant under the equatorial embedding, and satisfy a certain regularity
requirement. Denote by w±

k the critical points of f of index k.
Next, consider the hybrid Morse–Floer complex of A + f with respect

to J̃ and the metric on S∞. This complex has pairs (x̄, w±
k ) with x̄ ∈ P̄2(ϕ)

as generators and carries a natural Z2-action, free on the generators, send-
ing (x̄, w±

k ) to (x̄′, w−±
k ), where x̄′ is the time-shift of x̄. It is easy to see

that the homology of this hybrid complex is equal to HF(ϕ2). By definition,
CFeq

(
ϕ2

)
is the Z2-invariant part of this hybrid complex, where we write

x̄ hk for (x̄, w+
k ) + (x̄′, w−

k ). The fact that the differential is h-linear follows
from the requirement that f (up to a constant) and the auxiliary data are
invariant under the equatorial embedding. Thus, in self-explanatory notation

dkx̄ =
∑ 〈

dkx̄, hkȳ
〉
ȳ, where μ(ȳ) = μ(x̄) + 1 − k

and
〈
dkx̄, hkȳ

〉
counts mod 2 the total number of continuation Floer trajec-

tories from x̄ to ȳ along gradient lines of f connecting w+
0 to w+

k and from
x̄ to ȳ′ along gradient lines of f connecting w+

0 to w−
k . Clearly, the complex

(and hence its cohomology) is filtered by the action A in addition to the fil-
tration by A+f . On the level of (co)chains, the filtration is defined similarly
to (2.1), but with the powers of h ignored

A(ξ) = min{A(x̄i)}, where ξ =
∑

hmi x̄i.

The equivariant complex and the cohomology have natural continuation prop-
erties; see [39].

Example 2.1. Assume that ϕ is 2-perfect and ϕ2 admits a regular 1-periodic
almost complex structure J , i.e., for every pair x̄ and ȳ of 2-periodic orbits,
the space of Floer trajectories connecting x̄ to ȳ has dimension μ(ȳ) − μ(x̄).
In particular, this space is empty when μ(ȳ) ≤ μ(x̄), except when ȳ = x̄

and the space comprises one constant trajectory. Set J̃ = J to be a constant
(i.e., independent of ξ) almost complex structure. Then, J̃ is also regular and
dj = 0 for j ≥ 1, since continuation trajectories for a constant homotopy
are just Floer trajectories. Thus, in this case, HFeq

(
ϕ2

)
= HF(ϕ)[h] for any
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interval of action. These conditions are met, for instance, when ϕ = ϕH

is generated by a C2-small autonomous Hamiltonian H. As a consequence,
for any ϕ, the global cohomology HFeq

(
ϕ2

)
is not a particularly interesting

object: it is simply isomorphic to HQ(M)[h] via the equivariant continuation
(or the PSS map); see [46,47] for further details.

Remark 2.2. (Polynomials vs. formal power series) One difference between
our definition of CFeq

(
ϕ2

)
and the one in [39] is that there CFeq

(
ϕ2

)
=

CF
(
ϕ2

)
[[h]]; for in that setting, the expansion deqx̄ =

∑
k hkdkx̄ may have

infinitely many non-vanishing terms. However, as already pointed out in [39,
Sect. 7], when M is strictly monotone, this expansion is necessarily finite.
Indeed, otherwise, it would involve capped orbits ȳ ∈ P̄2(ϕ) with arbitrarily
small index μ(ȳ). However, due to monotonicity and since P2(ϕ) is finite, such
orbits would eventually have action strictly smaller than that of x̄, which is
impossible. This difference is essential for our proof as at some point in the
argument we evaluate the elements of CFeq

(
ϕ2

)
at h = 1.

2.2.2. Equivariant pair-of-pants product. For our purposes, the most impor-
tant feature of the equivariant Floer complex is that it is the target space
of the equivariant pair-of-pants product, also defined in [39]. On the level of
complexes this product is a chain map

℘ : CC
(
Z2; CF(ϕ) ⊗ CF(ϕ)

) → CFeq

(
ϕ2

)
.

The domain of ℘ is the group cochain complex

CC
(
Z2; CF(ϕ) ⊗ CF(ϕ)

)
:= CF(ϕ) ⊗ CF(ϕ)[h]

with the differential

dZ2 = dFl + h(id + τ).

Here, τ is the involution τ(x̄ ⊗ ȳ) = ȳ ⊗ x̄ and the first term is induced by
the Floer differential on CF(ϕ) ⊗ CF(ϕ). Note also that in these formulas
and throughout the paper, all tensor products are over F2 unless specified
otherwise. Furthermore, we distinguish between F2 and Z2: the former is a
field and the latter is a group.

The equivariant pair-of-pants product is bilinear over Λ[h] and respects
the action filtration. In particular, it can also be defined for a fixed action
interval [a, b] in the domain and [2a, 2b] in the target, but here we will not
need the filtered version of this construction. The map ℘ is a perturbation of
the ordinary pair-of-pants product

℘(x̄ ⊗ ȳ) = x̄ ∗ ȳ + O(h), (2.2)

and the O(h) part is again polynomial in h involving only finitely many terms
(depending on x̄ and ȳ).

The cohomology of the domain of ℘ is the group cohomology H
(
Z2;

CF(ϕ)⊗CF(ϕ)
)

of Z2 with coefficients in CF(ϕ)⊗CF(ϕ). Thus, on the level
of cohomology, the equivariant pair-of-pants product turns into a homomor-
phism

H
(
Z2; CF(ϕ) ⊗ CF(ϕ)

) ∼= H
(
Z2; HF(ϕ) ⊗ HF(ϕ)

) → HFeq

(
ϕ2

)
. (2.3)
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(The first isomorphism is a consequence of the fact that CF(ϕ) ⊗ CF(ϕ) and
HF(ϕ)⊗HF(ϕ) are equivariantly quasi-isomorphic.) The map (2.3) obviously
kills the h-torsion in the domain; it is a deformation in h of the standard pair-
of-pants product due to (2.2) and is closely related to a quantum deformation
of the Steenrod squares; see [39,46,47] and also [10] for a short introduction.
The map (2.3) is a monomorphism modulo h-torsion; [40]. For symplectically
aspherical manifolds, but not in the strictly monotone case, (2.3) is also onto
and hence an isomorphism modulo h-torsion i.e., the kernel and the cokernel
are torsion modules; see [39].

On the level of complexes ℘ has the following extremely important fea-
ture:

Proposition 2.3. (Seidel’s non-vanishing theorem [39, Prop. 6.7]) For every
x̄ ∈ P̄1(ϕ), we have

℘(x̄ ⊗ x̄) = hmx̄2 + · · · , (2.4)
where x̄2 ∈ P̄2(ϕ) is the second iterate of x̄ and m = 2μ(x̄) − μ

(
x̄2

)
+ n and

the dots stand for a sum of capped orbits with action strictly greater than
2A(x̄).

This non-vanishing property points to a stark difference between the
equivariant and non-equivariant pair-of-pants products: x̄∗ x̄ = x̄2 + · · · only
when μ

(
x̄2

)
= 2μ(x̄) + n, i.e., m = 0 in (2.4); cf. [9].

Remark 2.4. A generalization of the equivariant pair-of-pants product to the
p-th iterates ϕp, where p is a prime, replacing Z2 by Zp and F2 by Fp

is constructed in [43]. This construction and the analogue of Seidel’s non-
vanishing theorem for the pth iterate play a crucial role in the original proof
of Shelukhin’s theorem in [40]; cf. Remark 5.5.

3. Floer graphs

3.1. Main result

The key to the statement of our main result is the following admittedly naive
and obvious construction which has been used, at least on an informal level,
for quite some time.

Let ϕ be a non-degenerate Hamiltonian diffeomorphism of a closed
monotone symplectic manifold M . Consider the directed graph Γ(ϕ) whose
vertices are capped fixed points of ϕ, and two vertices x̄ and ȳ are connected
by an arrow (from x̄ to ȳ) if and only if μ(ȳ) = μ(x̄) + 1 and there is an odd
number of Floer trajectories from x̄ to ȳ, i.e., 〈dFlx̄, ȳ〉 = 1. The length of an
arrow is the difference of actions of ȳ and x̄. We call Γ(ϕ) the Floer graph of
ϕ.

When M is strictly monotone as is always assumed in this paper, the
group Z acts freely on Γ(ϕ) by simultaneous recapping, preserving the ar-
row length. Sometimes, it is convenient to consider the reduced Floer graph
Γ̃(ϕ) := Γ(ϕ)/Z. The length of an arrow in Γ̃(ϕ) is still well defined. Note
that, unless M is symplectically aspherical, both Γ(ϕ) and Γ̃(ϕ) are infinite,
but the latter has finitely many arrows. In particular, if dFl �= 0, there exists
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a shortest arrow. Such an arrow might not be unique, although it is unique
for a generic ϕ, but obviously all shortest arrows have the same length.

The equivariant Floer graph Γeq

(
ϕ2

)
of ϕ2 is defined in a similar fash-

ion. (We are assuming that ϕ2 is non-degenerate, and hence, ϕ is also non-
degenerate.) Its vertices are capped two-periodic orbits of ϕ. The vertices x̄
and ȳ are connected by an arrow if and only if ȳ enters deq(x̄) with non-
zero coefficient. In other words, now, we do not require the index difference
to be 1, and x̄ and ȳ are connected by an arrow if and only if x̄ and hmȳ,
where m = μ(x̄) − μ(ȳ) + 1, are connected by an odd number of equivari-
ant Floer trajectories. The length of an arrow is again the difference of ac-
tions. As in the non-equivariant case, the reduced equivariant Floer graph
Γ̃eq

(
ϕ2

)
:= Γ̃eq

(
ϕ2

)
/Z has only finitely many arrows, and hence, the shortest

arrows exist.
We note that Γ

(
ϕ2

)
and Γeq

(
ϕ2

)
(and their reduced counterparts) have

the same vertices. Furthermore, since deq = dFl+O(h), every arrow in Γ
(
ϕ2

)
is

also an arrow in Γeq

(
ϕ2

)
, i.e., the equivariant Floer graph is obtained from its

non-equivariant counterpart by adding arrows. Note that in the process, the
shortest arrow length can only get shorter or remain the same. Also, observe
that there is a natural one-to-one map from the vertices of Γ̃(ϕ) to the vertices
of Γ̃

(
ϕ2

)
sending x̄ to x̄2; likewise for unreduced graphs. However, even when

ϕ is 2-perfect, this map is not onto unless M is symplectically aspherical.
The main new result of the paper is the following theorem which relates

the Floer graphs for ϕ and its second iterate ϕ2.

Theorem 3.1. Assume that ϕ is 2-perfect and ϕ2 is non-degenerate. Then, x̄
and ȳ are connected by one of the shortest arrows in Γ(ϕ) if and only if x̄2

and ȳ2 are connected by one of the shortest arrows in Γeq

(
ϕ2

)
.

This theorem is proved in Sect. 5.1 after we recall in Sect. 4 a few
relevant facts about barcodes.

Remark 3.2. (The role of an almost complex structure) The Floer graph of
ϕ depends on the choice of an almost complex structure J , and hence should
rather be denoted by Γ(ϕ, J). Likewise, the equivariant Floer graph depends
on the parametrized almost complex structure. However, in both cases, the
collection of shortest arrows is independent of this choice. This fact implic-
itly follows from Theorem 3.1 or can be proved directly by a continuation
argument.

Note also that Floer graphs are stable under small perturbations of ϕ
and J . To be more precise, Γ(ϕ, J) = Γ(ϕ̃, J̃) whenever ϕ̃ is sufficiently close
to ϕ and J̃ is close to J . The same is true in the equivariant setting.

3.2. Implications and the proof of Theorem 1.1

Theorem 3.1 shows that when ϕ is perfect, the shortest arrow (or, to be
more precise, every shortest arrow) persists from ϕ to ϕ2, although in the
process, it might move to the equivariant domain. This happens exactly when
the difference of indices changes: μ(ȳ) − μ(x̄) = 1 but μ

(
ȳ2

) − μ
(
x̄2

) �= 1.
Moreover, in this case, we necessarily have μ

(
ȳ2

) − μ
(
x̄2

)
< 1. On the other
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E. Çineli et al. JFPTA

hand, if the difference of indices remains equal to one, the orbits continue to
be connected by one of the shortest non-equivariant arrows.

Denote by βmin(ϕ) = A(ȳ) − A(x̄) the length of a shortest arrow. As
follows from Proposition 4.3, βmin(ϕ) is exactly equal to the shortest bar
in the barcode of ϕ. Since every non-equivariant arrow for ϕ2 is also an
equivariant arrow, the shortest equivariant arrow length βeq

min

(
ϕ2

)
for ϕ2 does

not exceed βmin

(
ϕ2

)
, that is

βeq
min

(
ϕ2

) ≤ βmin

(
ϕ2

)
.

In the setting of Theorem 3.1

βeq
min

(
ϕ2

)
= A(

ȳ2
) − A(

x̄2
)

= 2βmin(ϕ).

We conclude that

2βmin

(
ϕ2k) ≤ βmin

(
ϕ2k+1)

as long as the iterates of ϕ remain perfect and non-degenerate, and hence

2kβmin(ϕ) ≤ βmin

(
ϕ2k)

.

In particular, when ϕ is perfect, the longest finite bar β(ϕ) (and even the
shortest bar) in the barcode cannot be bounded from above for the iterates
of ϕ. This proves Theorem 1.1.

Remark 3.3. An interesting question that arises from Theorem 3.1 is if a
shortest arrow could persist in the non-equivariant domain for all iterates ϕ2k

,
assuming that ϕ is perfect. As discussed above, this would be the case if and
only if μ

(
ȳ2k)−μ

(
x̄2k)

= 1 for all k ∈ N. Using a slightly simplified version of
the index divisibility theorem from [24], one can show that this is impossible
when ϕ is replaced by a suitable iterate ϕm. (This is non-obvious.) Passing
to an iterate is apparently essential because there exist pairs of strongly non-
degenerate elements A and B in S̃p(2n), such that μ

(
A2k) − μ

(
B2k)

= 1 for
all k = 0, 1, 2, . . . .

4. A few words about the shortest bar

In this section we recall a few facts, well known to experts, about persistent
homology in the context of Hamiltonian Floer theory. All results discussed
here are contained in, e.g., [45], although in some instances implicitly and
usually in a much more general setting. A reader sufficiently familiar with
the material can easily skip this section. There are, however, two points the
reader might want to keep in mind. Namely, our emphasis here is on the
shortest bar rather than the longest finite bar (aka the boundary depth)
which is more frequently used in applications to dynamics. Second, our sign
conventions are different from those in [45] due to the fact that we are working
with Floer cohomology.

Consider the Floer complex C := CF(ϕ) of a non-degenerate Hamilton-
ian diffeomorphism ϕ of a strictly monotone symplectic manifold, equipped
with the standard action filtration. Clearly, C is a finite-dimensional vector
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space over Λ and the collection of 1-periodic orbits of ϕ with fixed capping
forms a basis of C.

A finite set of vectors ξi ∈ C is said to be orthogonal if, for any collection
of coefficients λi ∈ Λ, we have

A
(

∑
λiξi

)

= min A(λiξi).

(Recall that with our conventions

A(ξ) := min A(x̄i) when ξ =
∑

x̄i;

see (2.1).) It is not hard to show that an orthogonal set is necessarily linearly
independent over Λ.

Example 4.1. Assume that all capped 1-periodic orbits of ϕ have distinct
actions. Write ξi = x̄i + · · · , where the dots stand for the orbits with action
strictly greater than x̄i. Then, it is easy to see that the set ξi is orthogonal
if and only if the capped orbits x̄i are distinct.

Definition 4.2. A basis B = {αi, ηj , γj} of C over Λ is said to be a singular
decomposition if

• dFlαi = 0,
• dFlηj = γj ,
• B is orthogonal.

It is shown in [45, Sections 2 and 3] that C admits a singular decompo-
sition. For the sake of brevity, we omit the proof of this fact. In what follows
we will order the pairs (ηj , γj), so that:

A(γ1) − A(η1) ≤ A(γ2) − A(η2) ≤ · · · . (4.1)

This increasing sequence is usually referred to as the barcode of ϕ (or to be
more precise the collection of finite bars). The maximal entry in the sequence
is called the boundary depth β(ϕ), [44]. The barcode is independent of the
choice of a singular decomposition (see, e.g., [45]), but here we do not use
this fact. Instead, we need the following characterization of the shortest bar
βmin = βmin(ϕ):

Proposition 4.3. [45] Set

βmin := A(γ1) − A(η1).

Then

βmin = inf {A(ȳ) − A(x̄) | 〈dFlx̄, ȳ〉 = 1} (4.2)

= inf {A(dFlξ) − A(ξ) | ξ ∈ C, ξ �= 0} . (4.3)

Here, in the first equality, the infimum is taken over all capped 1-periodic
orbits x̄ and ȳ, such that ȳ enters dFlx̄ with non-zero coefficient and, in the
second, over all non-zero ξ ∈ C. In particular, βmin(ϕ) is the shortest arrow
length in Γ(ϕ).
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Note that the infimums in (4.2) and (4.3) are actually attained and
thus can be replaced by minima, and that the proposition can be thought
of as an analogue for C of the Courant–Fischer minimax theorem giving a
variational interpretation of the eigenvalues of a quadratic form. For the sake
of completeness, we include a proof of Proposition 4.3.

Proof. Let us denote the right-hand sides in (4.2) and (4.2) by β′
min and,

respectively, β′′
min. We claim that β′

min = β′′
min. Indeed, setting ξ = x̄, in (4.3),

it is easy to see that β′′
min ≤ β′

min. On the other hand, writing ξ = x̄1+x̄2+. . .
in the order of increasing action and dFlξ =

∑
dFlx̄i = ȳ + . . ., we observe

that 〈ȳ, dFlx̄i〉 = 1 for some i. Then

A(dFlξ) − A(ξ) = A(ȳ) − A(x̄1)

≥ A(ȳ) − A(x̄i)

≥ β′
min,

and thus, β′′
min ≥ β′

min.
Next, clearly, βmin ≥ β′′

min. Therefore, it remains to show that βmin ≤
β′′

min. To this end, let us decompose ξ in the basis B over Λ

ξ =
∑

λjηj +
∑

λ′
jγj +

∑
λ′′

i αi.

Then

dFlξ =
∑

λjγj .

By orthogonality

A(dFlξ) = min A(λjγj) = A(λkγk)

for some k, and again by orthogonality

A(ξ) ≤ min A(λjηj) ≤ A(λkηk).

Therefore

A(dFlξ) − A(ξ) ≥ A(λkγk) − A(λkηk)

= A(γk) − A(ηk)

≥ A(γ1) − A(η1) = βmin.

As a consequence, βmin ≤ β′′
min, which finishes the proof of the proposition.

�

Remark 4.4. In conclusion, we point out that all results in this section are
purely algebraic and extend in a straightforward way to any ungraded finite-
dimensional complex over Λ with an “action filtration” having expected prop-
erties; see [45].

5. Proof of Theorem 3.1 and further remarks

5.1. Proof of Theorem 3.1

We begin by proving the theorem under the additional background assump-
tion that all actions and action differences for ϕ and ϕ2 are distinct modulo
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the rationality constant λ0. Then, in the last step of the proof, we will show
how to remove this extra assumption. Note that, in particular, this assump-
tion guarantees that the shortest arrow is unique for Γ(ϕ) and Γeq

(
ϕ2

)
.

Remark 5.1. It is worth pointing out that while this background assumption
is satisfied C∞-generically, it is not quite innocuous in the context of pseudo-
rotations or perfect Hamiltonian diffeomorphisms. Indeed, in this case, one
can expect certain “resonance relations” between actions or actions and mean
indices to hold; see [18,26].

The proof is carried out in three steps.
Step 1: The shortest arrow for ϕ. In this step we simply apply the machinery
from Sect. 4 to CF(ϕ). Let B = {αi, ηj , γj} be a singular decomposition for
CF(ϕ) over Λ; see Definition 4.2. Due to the background assumption, the
inequalities in (4.1) are strict

A(γ1) − A(η1) < A(γ2) − A(η2) < · · · . (5.1)

Let us write

γ1 = ȳ∗ + · · · and η1 = x̄∗ + · · · ,

where dots stand for higher action terms, and x̄∗ and ȳ∗ are unique by the
background assumption. Then, by definition

A(γ1) = A(ȳ∗) and A(η1) = A(x̄∗),

and hence

βmin := A(γ1) − A(η1) = A(ȳ∗) − A(x̄∗).

We claim that
〈dFlx̄∗, ȳ∗〉 = 1. (5.2)

Indeed, 〈 dFlx̄, ȳ∗〉 = 1 for some x̄ entering η1. Then

βmin = A(ȳ∗) − A(x̄∗) ≥ A(ȳ∗) − A(x̄) ≥ βmin.

It follows that the first inequality is in fact an equality and x̄ = x̄∗ due to
the background assumption.

Therefore, by Proposition 4.3 and (5.2), x̄∗ and ȳ∗ are connected by the
shortest arrow in Γ(ϕ).
Step 2: The shortest arrow for ϕ2. In the previous step, we have shown that
x̄∗ and ȳ∗ are connected by the shortest arrow in CF(ϕ). Our goal now is to
prove the following key fact.

Lemma 5.2. The iterated orbits x̄2
∗ and ȳ2

∗ are connected by the shortest arrow
in Γeq

(
ϕ2

)
.

Since under the background assumption, the shortest arrows in Γ̃(ϕ)
and Γeq

(
ϕ2

)
are unique, this will establish the theorem.

Proof of Lemma 5.2. In the notation from Sect. 2.2, set

α̂i = ℘(αi ⊗ αi),

η̂j = h℘(ηj ⊗ ηj) + ℘(ηj ⊗ γj),

γ̂j = ℘(γj ⊗ γj).
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Then, by Seidel’s non-vanishing theorem (Proposition 2.3)

η̂1 = hmx̄2
∗ + · · · and γ̂1 = hm′

ȳ2
∗ + · · ·

for some m ≥ 0 and m′ ≥ 0, where the dots again stand for higher action
terms.

Since ℘ is a chain map, i.e., ℘ ◦ dZ2 = deq ◦ ℘, we have

deqα̂i = 0

and

deqη̂j = h℘(γj ⊗ ηj) + h℘(ηj ⊗ γj)

+ ℘(hηj ⊗ γj + hγj ⊗ ηj)

+ ℘(γj ⊗ γj)
= γ̂j .

This indicates that the collection B̂ := {α̂i, η̂j , γ̂j} can be thought of as
a singular decomposition of CFeq

(
ϕ2

)
with the minimal bar given by

A(γ̂1) − A(η̂1) = A(
ȳ2

∗
) − A(

x̄2
∗
)
,

and, arguing similarly to Step 1, we should be able to show that x̄2
∗ and ȳ2

∗
are connected by the shortest arrow. A minor technical difficulty that arises
at this stage is that CFeq

(
ϕ2

)
does not fit in with the algebraic framework

of Sect. 4 or [45]. Namely, CFeq

(
ϕ2

)
is not finite-dimensional over Λ; it is

finite-dimensional over Λ[h], but the latter is not a field. We circumvent this
difficulty by a trick which essentially amounts to setting h = 1. (This is the
point where our choice of working with polynomials in h rather than formal
power series as in [39] is essential; cf. Remark 2.2.)

Consider the ungraded complex C̃ defined as follows: C̃ := CF
(
ϕ2

) ⊂
CFeq

(
ϕ2

)
as a vector space over Λ with the differential d̃α := deqα|h=1 for

α ∈ C̃. Since deq is h-linear, we have d̃2 = 0. More formally, C̃ is the quotient
complex in the short exact sequence of ungraded complexes

0 −→ CFeq

(
ϕ2

) 1+h−→ CFeq

(
ϕ2

) π−→ C̃ −→ 0

over Λ, where π is the h = 1 evaluation map.

Remark 5.3. This exact sequence, for any action interval, gives rise to the
exact triangle in Floer cohomology relating H(C̃) and HFeq

(
ϕ2

)
via multipli-

cation by 1 + h. As any map of the form id + O(h), this multiplication map
in Floer cohomology is one-to-one, and thus

H(C̃) ∼= HFeq

(
ϕ2

)
/(1 + h)HFeq

(
ϕ2

)
,

and hence, dimF2 H(C̃) = rkF2[h] HFeq

(
ϕ2

)
, for any action interval. For global

cohomology, H(C̃) ∼= HF
(
ϕ2

)
as ungraded Λ-modules by the continuation

argument and Example 2.1.
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Since, by construction, C̃ is a finite-dimensional vector space over Λ, now
the machinery from [45] applies literally; see Remark 4.4. In self-explanatory
notation

〈deqz̄,hmz̄′〉 �= 0 where m = μ(z̄) − μ(z̄′) + 1 ⇐⇒ 〈
d̃z̄, z̄′〉 �= 0

for z̄ and z̄′ in P̄2(ϕ). Furthermore, we can also form the Floer graph for C̃
and this graph is identical to the equivariant Floer graph Γeq

(
ϕ2

)
.

Claim 5.4. The subset B̃ := π(B̂) in C̃ formed by α̃i := π(α̂i) and η̃j := π(η̂j)
and γ̃j := π(γ̂j) is a singular decomposition for C̃.

Putting aside the proof of the claim, let us first show how Lemma 5.2
follows from it. Observe that

A(γ̃j) − A(η̃j) = 2
(A(γj) − A(ηj)

)
. (5.3)

Indeed, set

ηj = x̄j + · · · ,

γj = ȳj + · · · ,

where as usual the dots stand for strictly higher action terms. (Thus, x̄∗ = x̄1

and ȳ∗ = ȳ1.) By Seidel’s non-vanishing theorem (Proposition 2.3), we have

η̂j = hmj x̄2
j + · · · ,

γ̂j = hm′
j ȳ2

j + · · ·
for some mj ≥ 0 and m′

j ≥ 0, and hence

η̃j = x̄2
j + · · · ,

γ̃j = ȳ2
j + · · · .

Therefore

A(γ̃j) − A(η̃j) = A(
ȳ2

j

) − A(
x̄2

j

)
= 2

(A(ȳj) − A(x̄j)
)

= 2
(A(γj) − A(ηj)

)
,

which proves (5.3).
In particular, similarly to (5.1), we have

A(γ̃1) − A(η̃1) < A(γ̃2) − A(η̃2) < · · · .

Therefore

βmin(C̃) := A(γ̃1) − A(η̃1) = A(
ȳ2

∗
) − A(

x̄2
∗
)

is the shortest bar for C̃. As in Step 1, we infer that
〈
d̃x̄2

∗, ȳ
2
∗
〉

= 1.

Hence, there is an arrow connecting these two orbits in the Floer graph for C̃
and this is the shortest arrow. The Floer graph for C̃ is defined similarly and in
fact identical to the equivariant Floer graph Γeq

(
ϕ2

)
. Therefore, this arrow

is also the shortest arrow in Γeq

(
ϕ2

)
, completing the proof of Lemma 5.2

modulo Claim 5.4.
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Proof of Claim 5.4. Since π is a homomorphism of complexes, we have d̃α̃i =
0 and d̃η̃j = γ̃j . Therefore, we only need to show that B̃ is an orthogonal basis.
For this, we do not need to distinguish between different types of elements of
B. Write B = {ξi}, where ξi = z̄i + · · · with the dots denoting the entries of
strictly higher action. Then, by the definition of B̂ and Seidel’s non-vanishing
theorem, B̃ = {ξ̃i} comprises the elements

ξ̃i := π(ξ̂i) = z̄2
i + · · · .

Now, as in Example 4.1, the orthogonality for B is equivalent to that
the orbits z̄i are distinct. Similarly, the orthogonality for B̃ is equivalent to
that the orbits z̄2

i are again distinct. It follows that B̃ is orthogonal if (in fact,
iff) B is orthogonal which is a part of its definition. As a consequence, B̃ is
linearly independent over Λ.

Finally, since C̃ = CF
(
ϕ2

)
as Λ-modules and ϕ is 2-perfect, we have

dimΛC̃ = dimΛ CF
(
ϕ2

)
= dimΛ CF(ϕ) = |B| = |B̃|,

and B̃ is a basis. �
This concludes the proof of Lemma 5.2. �

Step 3: Removing the background assumption. Recall that the Floer graphs
Γ(ϕ) and Γeq

(
ϕ2

)
are stable under small perturbations of ϕ. With this in

mind, we can replace ϕ by a C∞-small perturbation ϕ̃ meeting the back-
ground assumption, since the latter is a C∞-generic condition. More precisely,
one can change the action of a single orbit by a small amount (positive or
negative) using a localized C∞-small perturbation ϕ̃. Hence, given any arrow
in the Floer graphs Γ̃(ϕ) and Γ̃eq

(
ϕ2

)
, pick some small ε > 0. Then, one can

apply local perturbations at the two ends to shorten its length by 2ε while
not changing the lengths of the remaining arrows more than ε. It follows that
every shortest arrow in the Floer graphs Γ̃(ϕ) and Γ̃eq

(
ϕ2

)
can be perturbed

into the unique shortest arrow. Now, Theorem 3.1 for ϕ follows from that
theorem for ϕ̃.

Remark 5.5. (The Zp-equivariant analogue) This argument extends with
only very minor changes to the pth iterates ϕp, where p is a prime, proving
the analogue of Theorem 3.1 for Zp-equivariant cohomology of ϕp over Fp

and relying on the results from [43]; cf. Remark 2.4. As a consequence, as
in the proof of Theorem 1.1, if ϕ is strongly non-degenerate, β is a priori
bounded from above and |P(ϕ)| is greater than the sum of Betti numbers of
M over Q, then there exists a simple p-periodic orbit for every sufficiently
large prime p as is shown in [40].

5.2. Degenerate case

Perhaps, the simplest way to extend our arguments and, in particular, The-
orem 1.1 and Corollary 1.2 to include some degenerate Hamiltonian diffeo-
morphisms as in [40] is by bypassing Theorem 3.1 and using a somewhat less
precise argument. Below, we outline the key steps of this generalization, some
of which again overlap with [40]. The account is deliberately brief. The main
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new point here is the construction of the (equivariant) Floer graph in the
degenerate case.

Assume that ϕ is 2-perfect and that the second iteration is admissible:
−1 is not an eigenvalue of Dϕx for any x ∈ P1(ϕ). (The latter requirement
is satisfied once ϕ is replaced by its sufficiently high iterate ϕ2k

.) Then, as
shown in [19], for every x̄ ∈ P̄1(ϕ), we have a canonical isomorphism in local
Floer cohomology

HF(x̄)
∼=−→ HF

(
x̄2

)
(5.4)

up to a shift of grading. By the Smith inequality in local Floer cohomology,
which can be proved by exactly the same argument as in [39] (see also [8,40]),
we have HFeq

(
x̄2

) ∼= HF
(
x̄2

)
[h], where, strictly speaking, on the left, we have

the graded module associated with the h-adic filtration of HFeq

(
x̄2

)
. (We

expect that in this situation deq = dFl, and hence HFeq

(
x̄2

) ∼= HF
(
x̄2

)
[h]

literally, without passing to graded modules, but we have not been able to
prove this.)

For every x̄ ∈ P̄1(ϕ), fix a basis ξi,x̄ in HF(x̄), so that this system of
bases is recapping-invariant. Applying (5.4) to this system, we obtain bases
ξ′
i,x̄ in HF

(
x̄2

)
with x̄ ∈ P̄1(ϕ), and this system extends to a recapping-

invariant system over the entire P̄2(ϕ).
We also have a recapping-invariant system of bases in HFeq

(
x̄2

)
arising

from ℘(ξi,x̄ ⊗ξi,x̄) ∈ HFeq

(
x̄2

)
. To be more precise, it is convenient to replace

the equivariant cohomology (local or global) by the homology of the ungraded
complex C̃ obtained by setting h = 1 as in the proof of Theorem 3.1. For the
sake of brevity, we keep the notation HFeq for this cohomology suppressing
the projection π in the notation. Set ξeq

x̄,i := ℘(ξi,x̄ ⊗ ξi,x̄). We claim that
this is a basis in HFeq

(
x̄2

)
which is now just a vector space over F2. Then,

extending, we get a recapping invariant family of bases over P̄2(ϕ).
To show that {ξeq

x̄,i} is indeed a basis, we first recall that, without chang-
ing Dϕx and the local cohomology, ϕ can be deformed near x to the direct
product of degenerate and totally non-degenerate maps; see [19, Sect. 4.5].
This essentially reduces the question to the case, which for the sake of brevity,
we will focus on, where x is totally degenerate, i.e., all eigenvalues of Dϕx

are equal to 1 and in particular ϕ can be made C1-close to the identity. Fur-
thermore, recall that HF(x̄) ∼= HF(ϕf ) ∼= HM(f) by [17, Sect. 3.3 and 6],
where HM stands for the local Morse cohomology, f is the generating func-
tion of ϕ and ϕf is the germ of the Hamiltonian diffeomorphism generated
by f . These isomorphisms come from continuation maps and there are sim-
ilar isomorphisms (equivariant and non-equivariant) for x̄2 and ϕ2f = ϕ2

f ,
where we can replace the generating function for ϕ2 by 2f ; see [19, Sect. 4.3].
Now, as in Example 2.1 and Remark 5.3, we arrive at the continuation map
identifications

HFeq

(
x̄2

) ∼= HF
(
x̄2

) ∼= HF(x̄) ∼= H(Yf ), (5.5)

where Yf is a certain topological space (the Conley index) associated with
the critical point x of f . Furthermore, the map α �→ ℘(α ⊗ α) turns into
the Steenrod square Sq on H(Yf ); see [47]. Thus, with these identifications
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in mind, ξx̄,i = ξ′
x̄,i and

ξeq
x̄,i = Sq(ξx̄,i) = ξx̄,i + · · · , (5.6)

where the dots stand for the terms of higher degree in H(Yf ). It follows
that the vectors ξeq

x̄,i are linearly independent and, since dimF2 HFeq

(
x̄2

)
=

dimF2 HF(x̄) by (5.5), this system is a basis.
The action filtration spectral sequence in Floer cohomology has E1 =⊕

x̄ HF(x̄) and converges to HF(ϕ). With bases fixed, we can canonically
collapse this spectral sequence into one complex with the same features as
the ordinary Floer complex including the action filtration and cohomology
equal to HF(ϕ); cf. [25, Sect. 2.1.3 and 2.5]. These data are sufficient to
define the Floer graph Γ(ϕ) of ϕ with vertices ξx̄,i. (Note that the orbits
with HF(x̄) = 0 do not contribute to Γ(ϕ) and the graph depends on the
choice of the bases {ξx̄,i}.) It is also worth keeping in mind that even in the
non-degenerate case, this graph and the complex might differ from the Floer
graph as defined in Sect. 3 and from the Floer complex. However, they have
the same formal properties as CF(ϕ) and the original graph, and the resulting
homology is isomorphic to the Floer cohomology HF(ϕ); cf. [25].

A similar construction applies to ϕ2 in the ordinary and equivariant
settings and ξ′

x̄,i ↔ ξeq
x̄,i gives rise to an action-preserving one-to-one corre-

spondence between the vertices of Γ
(
ϕ2

)
and Γeq

(
ϕ2

)
. The condition that

the sum (1.1) with F = F2 is strictly greater than the sum of Betti numbers
guarantees that the graph Γ(ϕ), and hence Γ

(
ϕ2

)
and Γeq

(
ϕ2

)
, have at least

one arrow.
Denote by βmin the length of the shortest arrows in a Floer graph.

Our goal is to show that ϕ cannot be 2k-perfect, where k is sufficiently large,
assuming an a priori upper bound on βmin

(
ϕ2k)

as in Theorem 1.1. (Note that
in contrast with the non-degenerate case, the Floer graphs are now sensitive
to small perturbations of ϕ and we usually cannot make the shortest arrow
unique without changing the graph unless dimF2 HF(x) = 1 for all x ∈ P1(ϕ).)

The equivariant pair-of-pants product ℘ extends to the complexes we
have constructed, and Seidel’s non-vanishing theorem takes the form

℘(ξx̄,i ⊗ ξx̄,i) = ξeq
x̄,i + · · · , (5.7)

where now the dots stand for terms with action greater than or equal to the
action of ξeq

x̄,i, but with the provision that the first term enters the whole
sum with non-zero coefficient. (This is a consequence of (5.6) and Seidel’s
non-vanishing theorem applied to the non-degenerate part in the splitting of
ϕ at x.)

Pick one of the shortest arrows, say v, in Γeq

(
ϕ2

)
. After recapping, we

can ensure that the beginning of v has the form ξeq
x̄,i. Using (5.7) and the facts

that ℘ is a chain map and v is a shortest arrow, it is not hard to see that
ξx̄,i is the beginning of an arrow in Γ(ϕ) whose length is at most βeq

min

(
ϕ2

)
/2.

Hence
2βmin(ϕ) ≤ βeq

min

(
ϕ2

)
. (5.8)

(This proves a somewhat weaker version of Theorem 3.1: every shortest equi-
variant arrow comes from an arrow for ϕ.)
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On the other hand

βeq
min

(
ϕ2

) ≤ βmin

(
ϕ2

)
. (5.9)

Indeed, dimF2 HFI
(
ϕ2

) ≥ rkF2[h] HFI
eq

(
ϕ2

)
for any action interval I, as is

easy to see from the h-adic filtration spectral sequence. Applying this to an
interval tightly enclosing one of the shortest arrows in Γ

(
ϕ2

)
, we obtain (5.9).

In fact, we expect that, as in the non-degenerate case, Γeq

(
ϕ2

)
incorporates

all arrows of Γ
(
ϕ2

)
(and, perhaps, more). This is a stronger statement than

(5.9), but (5.9) is sufficient for our purposes.
Combining (5.8) and (5.9), we see that 2βmin(ϕ) ≤ βmin

(
ϕ2

)
. (This

inequality can also be extracted from some of the results in [40].) As a conse-
quence, βmin

(
ϕ2k) ≥ 2kβmin(ϕ) as long as ϕ is 2k-perfect. When βmin

(
ϕ2k)

is bounded from above, this is impossible for large k.
We note in conclusion that in the non-degenerate case, this proof reduces

to an argument which does not rely on persistence homology and is ultimately
simpler and more direct, although arguably less structured, than our proof
of Theorem 1.1 via Theorem 3.1.
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Higher symplectic capacities and the stabilized
embedding problem for integral elllipsoids

Daniel Cristofaro-Gardiner, Richard Hind and Kyler Siegel

Abstract. The third named author has been developing a theory of
“higher” symplectic capacities. These capacities are invariant under tak-
ing products, and so are well suited for studying the stabilized embed-
ding problem. The aim of this note is to apply this theory, assuming
its expected properties, to solve the stabilized embedding problem for
integral ellipsoids, when the eccentricity of the domain has the opposite
parity of the eccentricity of the target and the target is not a ball. For
the other parity, the embedding we construct is definitely not always
optimal; also, in the ball case, our methods recover previous results of
McDuff, and of the second named author and Kerman. There is a simi-
lar story, with no condition on the eccentricity of the target, when the
target is a polydisc: a special case of this implies a conjecture of the
first named author, Frenkel, and Schlenk concerning the rescaled poly-
disc limit function. Some related aspects of the stabilized embedding
problem and some open questions are also discussed.
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1. Introduction

1.1. The main results

Let X1 and X2 be four-dimensional symplectic manifolds. There has recently
been considerable interest in understanding the stabilized symplectic embed-
ding problem, namely the question of whether or not there exists a symplectic
embedding

X1 × CN s
↪→ X2 × CN . (1)

Indeed, certain techniques which are available for studying four-dimensional
embedding problems do not have a clear analogue in higher dimensions, and
so it is interesting to understand how different the stabilized problem is from
the four-dimensional one. For more about the problem, we refer the reader
to [7,8,14,15,21], the references therein, and the discussion below.

The embedding problem (1) is already quite subtle when X1 and X2

are simple shapes, like ellipsoids

E(a, b) :=
{

π|z1|2
a

+
π|z2|2

b
≤ 1

}
⊂ C2,

balls B(c) := E(c, c), polydiscs

P (a, b) :=
{

π|z1|2
a

≤ 1,
π|z2|2

b
≤ 1

}
⊂ C2,

and cubes C(c) := P (c, c). (Here, CN is equipped with its standard symplectic
form.) For example, what is known about the stabilized ellipsoid-into-ball
problem has a curious mix of rigidity and flexibility: much about this question
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remains unknown. In contrast, the stabilized polydisc-into-ball problem is
completely solved [29, Thm. 1.3.5] (for another approach, see [13]) and the
answer is described by a very simple function, namely a piecewise linear
function with two pieces.

The starting point for our investigations here is the stabilized ellipsoid-
into-ellipsoid problem. This is a special case of Problem 44 in the influential
problem list [22, Ch. 14] by McDuff and Salamon, which asks for a solution to
the symplectic embedding problem for 2n-dimensional symplectic ellipsoids:
we can view stabilized ellipsoids as 2n-dimensional ellipsoids with most ar-
guments infinite. Consider the function cN

b,ell(a), defined to be the infimum,
over λ, such that there exists an embedding

E(1, a) × CN s
↪→ λ · E(1, b) × CN , (2)

where we write λ ·E(a, b) for E(λa, λb). This function for a, b ≥ 1 completely
determines the stabilized ellipsoid-into-ellipsoid problem, and we would ide-
ally like to compute it.

At present, this looks out of reach. As mentioned above, even the case
b = 1 seems quite subtle; in fact, it is the focus of a conjecture by McDuff
[21]. And, when b > 1, almost nothing is currently known. However, it turns
out that when a and b are integers, there is a lot more traction.

Theorem 1.1. Assume that b > 1 is an integer, and let a ≥ b + 1 be any
integer with parity the opposite of b. Then, for N ≥ 1

cN
b,ell(a) =

2a

a + b − 1
.

We discuss the hypothesis a ≥ b + 1 here in Sect. 1.2.2, where we show
that it is essentially necessary.

A key aspect of our proof of the above theorem, which is one of the
motivations for writing this note, involves the obstructions required to prove
it. Symplectic embedding problems are profitably studied by symplectic ca-
pacities; see, e.g., [3]. The third named author has recently defined a new
sequence of symplectic capacities gk which play a starring role here. These
capacities gk are invariant under taking products with C and so give obstruc-
tions to the stabilized problem. As we will see in the proof of Theorem 1.1,
the gk are very well adapted to proving Theorem 1.1, and the obstructive
side of the proof follows quite quickly once we can marshal them to our ben-
efit. The constructive side of the proof comes from a variant of the stabilized
folding construction pioneered by the second named author.

Disclaimer 1.2. Our high-level discussion of symplectic capacities in Sect. 2
follows [28], which in turn assumes the existence of rational symplectic field
theory with its expected functoriality properties as outlined in [9]. Apart
from simple special cases, such a formalism is known to require a virtual
perturbation framework such as the theory of polyfolds; for the current status
of this and related projects, we refer the reader to, e.g., [1,10,16,18,19,26]
and the references therein.

The proofs of our main results on embedding obstructions in Sect. 3 take
the properties of the capacities gk summarized in Theorem 2.1 as a black box,
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together with some computations from [28] which we recall in Sect. 3.1.2. Our
proof of Theorem 1.1 furthermore requires the formula for gk(E(1, a)) which
will appear in the forthcoming work [25]. The latter reference also constructs
an ersatz version of these capacities in the special case of ellipsoids without
appealing to virtual perturbations; these give equivalent obstructions for sta-
bilized embeddings between four-dimensional ellipsoids, and the method also
readily adapts to the case of ellipsoid domain and polydisk target. Our proof
of Proposition 1.7 further depends on the formalism of [29], which is based
on [28] and the forthcoming [30].

In dimension four, when b is integral, there is an equivalence of embed-
dings

E(1, a)
s

↪→ λP (1, b), E(1, a)
s

↪→ λE(1, 2b), (3)

that is, one of these embeddings exists if and only if the other does, see for
example [6, Rmk. 1.2.1]. Therefore, it is natural to compare Theorem 1.1
with the stabilized ellipsoid-into-polydisc problem. Here, we get a somewhat
parallel, but in fact stronger result. Define cN

b,poly(a) to be the infimum, over
λ, such that an embedding

E(1, a) × CN s
↪→ λ · P (1, b) × CN (4)

exists.

Theorem 1.3. Let a ≥ 2b − 1 be any odd integer. Then, for N ≥ 1

cN
b,poly(a) =

2a

a + 2b − 1
.

We remark that, in contrast to Theorem 1.1, there is no requirement here
that b is an integer. As with the previous theorem, the hypothesis a ≥ 2b − 1
is discussed in Sect. 1.2.2, where it is shown to be necessary.

1.2. Applications and remarks

1.2.1. Steps and the rescaled embedding function. One of our motivations
for studying Theorem 1.3 is that it readily implies a conjecture of the first
author, Frenkel, and Schlenk about the stabilized ellipsoid-into-polydisc func-
tion, namely Conjecture 1.4 in [6], which we now explain.

First, we explain the motivation behind that conjecture. As alluded to
above, at present, fully computing the function cN

b,poly(a) for N ≥ 1 seems
quite difficult. However, there is a related function, called the rescaled limit
function ĉN

b,poly, see (5), that looks more tractable and in particular could be
computed given a resolution of the aforementioned Conjecture 1.4.

To elaborate, the function c0
b,poly(a) for b ∈ Z≥2 was previously com-

puted by the first author, Frenkel and Schlenk in [6]. It was shown that the
function c0

b,poly(a) is given by the volume constraint
√

a
2b , except on finitely

many intervals. On all but one of these intervals, the function c0
b,poly(a) is

given by a “linear step”: it is piecewise linear, with a single non-smooth
point, called its corner, where its graph changes from lying on a line through
the origin to being horizontal. On the remaining interval, it is also piecewise
linear with a single non-smooth point, but the linear piece does not lie on
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a line through the origin—it has an intercept, and so we call it the “affine
step”. For more detail, see [6].

Conjecture 1.4 asserts that the linear steps from above are “stable”. Of
course, for any a, we have cN

b,poly(a) ≤ c0
b,poly(a), by taking the product with

the identity mapping. The conjecture, then, is that for a in the domain of the
linear steps, we have cN

b,poly(a) = c0
b,poly(a). To state that conjecture precisely,

we define, for k ∈ {0, 1, 2, . . . , �
√

2b	}, the numbers

ub(k) =
(2b + k)2

2b
, vb(k) = 2b

(
2b + 2k + 1

2b + k

)2

.

We always have ub(k) < vb(k) except if k2 = 2b; for ub(k) < a < vb(k), the
graph of cN

b,poly(a) is precisely the linear steps mentioned above.

Corollary 1.4. (Conj. 1.4 of [6]) Assume that b is an integer and

ub(k) ≤ a ≤ vb(k).

Then

c0
b,poly(a) = cN

b,poly(a) = c0
2b,ell(a) = cN

2b,ell(a).

The final two equalities here, concerning the ellipsoid-into-ellipsoid func-
tion, were not actually part of Conjecture 1.4; however, they fall out imme-
diately from our proof.

We now state the relevance of this to the rescaled limit function. The
background is that [6] defined1 the rescaled functions

ĉN
b,poly(a) := 2bcN

b,poly(a + 2b) − 2b, a ≥ 0, (5)

to capture the qualitative behavior of the obstructive part of the embedding
function c0

b,poly that goes beyond Gromov’s non-squeezing theorem. It was
shown in [6, Eq. 1.3] that the functions ĉ0

b,poly(a) converge, as b → ∞, uni-
formly on bounded sets to a pleasing answer, namely the “infinite regular
staircase” described by the function c∞(a) : [0,∞) → R whose graph consists
of infinitely many linear steps of width 2; see [6, Fig. 1.7] and Fig. 1 below.
For more about the motivation for studying the rescaled function, we refer
the reader to the discussion in [6, Sec. 1.2].

Corollary 1.5. The rescaled limit function is stable. That is, for any N ∈ Z≥0

and integral b, we have

lim
b→∞

ĉN
b,poly(a) = c∞(a), a ∈ [0,∞)

uniformly on bounded sets.

We will explain the proofs of these corollaries in Sect. 3.2.

1Actually, only the N = 0 case of these functions was defined, but the definition extends
verbatim to general N , and that will be our working definition here.
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Figure 1. The rescaled limit function. Each step has width
two, and consists of a line of slope one and a horizontal line

1.2.2. The first step. We next remark that, in the context of Theorem 1.1,
the lower bound on a is essentially necessary. Indeed, if a ≤ b, then inclusion
gives an embedding which Gromov’s non-squeezing theorem shows is optimal.
That is, cN

b,ell(a) = 1 for all N ≥ 0. There is a similar story for Theorem 1.3
for a ≤ 2b − 1, but it requires a more interesting embedding. With a little
more work, we can extend the range of a to work out at least part2 of the
“first step” of the embedding functions considered in this note.

Proposition 1.6. Let b ∈ R≥1. Then:
• The function cN

b,ell starts as follows:
– We have cN

b,ell(a) = 1, 1 ≤ a ≤ b.

– We have cN
b,ell(a) = a

b , b ≤ a ≤ �b	 + 1.

• The function cN
b,poly starts as follows. Let a0 be the smallest odd integer

that is no less than 2b − 1.
– We have cN

b,poly(a) = 1, 1 ≤ a ≤ a0−1
2 + b.

– We have cN
b,poly(a) = 2

a0+2b−1a, a0−1
2 + b ≤ a ≤ a0.

Note that there is no restriction above that a or b be integral, in contrast
to the theorems in the previous section.

1.2.3. The case b = 1. In view of Theorem 1.1, it is natural to ask about the
case b = 1. This was previously studied by McDuff [21], who proved an anal-
ogous result for any integer congruent to two, modulo three; we can recover
this result with our methods, as well; see Example 1 in Sect. 3.1. Compar-
ing our result to McDuff’s, it is interesting to note the switch from three
periodicity to two periodicity as b increases from one. There is a substantial

2In fact, Proposition 1.6 likely describes the entirety of the first step, although we do not
address this here.
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mystery about the structure as b ranges from 1 to 2, see Sect. 4.3, which we
plan to investigate in follow-up work.

1.2.4. The other parity. In view of the above results, it is natural to ask:
what happens for a an integer of a parity not covered by our theorems. We
certainly do not have a satisfactory answer to this at present. However, using
the more general calculus of [29], together with the aid of the computer, we
can show for example:

Proposition 1.7. For 6 ≤ a ≤ 100 an even integer, the conclusion of Theo-
rem 1.1 holds for b = 2, that is for N ≥ 1, we have

cN
2,ell(a) =

2a

a + 1
.

Similarly, for 6 ≤ a ≤ 100 an even integer, the conclusion of Theorem 1.3
holds for b = 1, that is for N ≥ 1, we have

cN
1,poly(a) =

2a

a + 1
.

Remark 1.8. The assumption a ≥ 6 in Proposition 1.7 is necessary. Indeed,
for a, less than the squared silver ratio σ2 ≈ 5.83, c0

1,poly(a) is an infinite
staircase [11]. In particular, we have cN

1,poly(a) ≤ c0
1,poly(a), and c0

1,poly(a) is
strictly less than 2a

a+1 for a = 2, 4. The same applies for cN
2,ell, since we have

c0
2,ell = c0

1,poly.
For more examples, suppose that a = 2b + 2k + 2 is an even integer.

Referring to Sect. 1.2.1, we see that vb(k) ≤ a ≤ ub(k + 1) which for k ≥ 2
implies that c0

b,poly(a) =
√

a
2b , that is, there is a volume filling embedding

from E(1, a) into a scaling of P (1, b) (the point a = 2b + 4 lies in the affine
step). By (3), this is equivalent to the existence of a volume filling embedding
from E(1, a) into a scaling of E(1, 2b). Now, volume filling embeddings in
dimension 4 improve on the folding construction giving Theorem 1.1 when
a < b + 1 + 2

√
b. Hence, the conclusion of Theorem 1.1 is false when a and b

are even and b + 4 < a < b + 1 + 2
√

b.

Structure of the note

In Sect. 2, we review the construction of the higher symplectic capacities of
the third named author; our discussion here includes some informal elements
to help convey the intuition. Then, in Sect. 3, we give the proofs of our results.
The final Sect. 4 discusses some natural follow-up questions to this work.

2. New capacities

We first briefly review the capacities gk defined for k ∈ Z≥1 in [28]. These
are part of a more general family of capacities gb indexed by elements in the
symmetric tensor algebra SQ[t] =

⊕∞
k=1(⊗kQ[t])/Σk. We give here only an

impressionistic sketch, omitting some of the more technical details. In addi-
tion to the computations described in Sect. 3.1.2, the key structural properties
we will need are summarized in the following:

Vol. 24 (2022) Higher symplectic capacities
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Theorem 2.1. [28] For any Liouville domain X and k ∈ Z≥1, we have gk(X) ∈
R>0 with the following properties:
(1) symplectomorphism invariance: if X ′ is another Liouville domain which

is symplectomorphic to X, we have gk(X) = gk(X ′)
(2) scaling: if X ′ is the Liouville domain obtained by scaling the Liouville

form of X by a constant c ∈ R>0, we have gk(X ′) = cgk(X)
(3) monotonicity: if X ′ is another Liouville domain and there exists a sym-

plectic embedding X
s

↪→ X ′, then we have gk(X) ≤ g(X ′)
(4) stabilization: we have gk(X × B2(S)) = gk(X), provided that S >

gk(X).3

Note that (3) actually implies (1).

2.1. The first approximation

Suppose that X is a Liouville domain. We work with almost complex struc-
tures J on the symplectic completion X̂ which are admissible in the sense
of symplectic field theory (SFT). Fix a point p ∈ X along with a local J-
holomorphic divisor D passing through p. To first approximation, gk(X) is
simply the minimal energy of a punctured J-holomorphic sphere u : Σ → X̂
with some number l ≥ 1 of positive ends asymptotic to Reeb orbits in ∂X,
such that u passes through p and is tangent to D to order k − 1. We denote
this tangency constraint by <T k−1p> (see [24] and the references therein for
more details).

To see why this should be monotone with respect to symplectic embed-
dings, the basic point is that given such a curve u in X̂ and a symplectic
embedding X ′ s

↪→ X, we can neck-stretch along ∂X ′. This forces u to break
into a pseudoholomorphic building consisting of

• a curve utop (possibly disconnected) in the completed symplectic cobor-
dism ̂X \ X ′ with the same positive asymptotics as u

• a curve ubot in X̂ ′ which inherits the tangency constraint <T k−1p>.

Since ubot is a candidate minimizer for gk(X ′) and it has energy at most that
of u, this shows that gk(X ′) ≤ gk(X).

2.2. Behavior under stabilization

One role of the local tangency constraint in the definition of gk is to cut
down the dimension of families of curves, thereby giving access to curves
of higher Fredholm index. There are certainly other natural geometric con-
straints which lower the index, the most obvious being to impose k distinct
point constraints. In fact, doing so leads to the “rational symplectic field
theory capacities” (RSFT) first considered in [17].

However, point constraints behave in a rather complicated way under
dimensional stabilization. The RSFT capacities are therefore perhaps not well
suited for stabilized problems (although they may have other applications yet

3Strictly speaking, X × B2(S) is not a Liouville domain, since it has corners, although

these can be removed by an arbitrarily small smoothing. See [28, §5.4] for a more precise
formulation. Property (1) is of course automatic given property (3).
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to be discovered). For example, note that each point constraint is codimension
2 when dim X = 4, but is generally codimension 2n − 2 when dim X = 2n.
This means that the same curve with the same point constraints has negative
total index after stabilizing by CN with N large enough.

By contrast, local tangency constraints behave quite well with respect
to stabilization. This is closely related to the observation of Hind and Kerman
from [14] that punctured rational curves with exactly one negative end have
stable Fredholm index. The stabilization property in Theorem 2.1 is also
closely related to the stabilization theorems appearing in the works [7,8,21].

2.3. The naive chain complex

Unfortunately, the definition given in Sect. 2.1 is not particularly robust, since
it might depend on the choice of almost complex structure J . Indeed, if we
try to deform J to some other almost complex structure J ′, somewhere along
the way the curve u might degenerate into a pseudoholomorphic building and
then disappear. Therefore, to get something which is truly a symplectomor-
phism invariant, we have to be a bit more “homological”. This is where the
chain complexes coming from Floer theory or symplectic field theory become
essential.

The idea is to associate with X a filtered chain complex C(X), where
• as a vector space, C(X) is the (graded) polynomial algebra on the (not

necessarily primitive) Reeb orbits of ∂X
• the differential is defined by counting rigid-up-to-translation connected

rational curves in R × ∂X with several positive ends and one negative
end

• the filtration is by the symplectic action functional, or equivalently by
the periods of Reeb orbits.

Similarly, given an exact4 symplectic cobordism W with positive end ∂+W =
∂X and negative end ∂−W = ∂X ′, we define a chain map from C(X) to
C(X ′) by counting rigid possibly disconnected rational curves in W , such
that each component has several positive ends and one negative end. By
Stokes’ theorem, both the differential and the cobordism map are action-
nondecreasing and hence preserve the filtrations.

However, the above prescription does not work on face value due to
transversality issues. Namely, to show that the differential squares to zero
and that the cobordism map is a chain map, the typical strategy is to an-
alyze analogous moduli spaces of dimension one and show that (after com-
pactifying) their boundaries give precisely the desired relations. However, it
is well known that the relevant SFT moduli spaces are rarely transversely
cut out for any choice of generic J . Multiply covered curves tend to appear
with higher-than-expected dimension, and this spoils our strategy.

2.4. Input from symplectic field theory

One way is get around this issue is to count curves in a “virtual” sense, by
introducing suitable abstract perturbations which allow more room to achieve

4There is also a nice story extending the theory to non-exact symplectic cobordisms, but

we will ignore this for simplicity.

Vol. 24 (2022) Higher symplectic capacities

Reprinted from the journal 283



D. Cristofaro-Gardiner et al. JFPTA

transversality. This is the basic strategy being pursued to define SFT in full
generality by various groups, with much recent progress but consensus not
yet achieved (see, e.g., [1,10,16,18,19,26] and the references therein).

In the setting of SFT, the desired invariant C(X) can be written as
C̄Hlin(X). Here, CHlin(X) is the linearized contact homology of X, which
is roughly the chain complex generated by Reeb orbits of ∂X with differen-
tial counting cylinders in the symplectization R × ∂X.5 Linearized contact
homology only involves curves with one positive end, but by incorporating
curves with several positive ends, we get an L∞ structure, consisting of l-
to-1 operations for all l ≥ 1 satisfying various compatibility conditions. We
can conveniently package this L∞ structure into one large chain complex
C̄Hlin(X), the bar complex.

2.5. From spectral invariants to capacities

Getting back to the high-level viewpoint, we have a filtered chain complex
C(X) for each Liouville domain X, and filtration-preserving chain maps Ξ :
C(X) → C(X ′) for any (exact) symplectic embedding X ′ s

↪→ X. Now, for
any class α in the homology of C(X), define cα(X) to be the minimal action
of any closed element of C(X) which represents α. By a simple diagram
chase, we have c[Ξ](α)(X ′) ≤ cα(X), where [Ξ] denotes the homology-level
map induced by Ξ.

At first glance, this construction appears to give a new family of sym-
plectic capacities indexed by homology classes of C(X). However, there is
still one issue, which is that we need a canonical way to reference these ho-
mology classes. Indeed, in principle, the homology level map [Ξ] might be
quite nontrivial, so how do we know when two numbers cα(X) and cβ(X ′)
can be compared to each other?

This is where the tangency constraints come in. The claim is that by
counting possibly disconnected curves in X̂ with each component ui satisfying
a <T ki−1p> constraint for some ki ∈ Z>0, we get a chain map

εX<T •> : C(X) → SQ[t].

For example, a term t3  t2  t5 in SQ[t] corresponds to counting curves with
three components which satisfy constraints <T 3p>, <T 2p>, and <T 5p>,
respectively. Moreover, these maps are natural in the sense that the compo-
sition εX′<T •> ◦ Ξ agrees with εX<T •> up to filtered chain homotopy.

Now, for any b ∈ SQ[t], we define the capacity gb(X) ∈ R>0 by

gb(X) := inf{cα(X) : [εX<T •>](α) = b}.

This defines a symplectomorphism invariant which scales like symplectic area,
and for any symplectic embedding X ′ s

↪→ X, we have gb(X ′) ≤ gb(X). In
the case that X is Liouville deformation equivalent to a ball, one can show
that εX<T •> is actually a chain homotopy equivalence, so every spectral
invariant of C(X) corresponds to some choice of b.

5More precisely, we only allow “good” Reeb orbits, and we count cylinders which are
additionally “anchored” in X.
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Finally, to define the simplified capacities gk, let π1 : SQ[t] → Q[t]
denote the projection to tensors of length 1 (e.g., t2 + t3  t2  t5 maps to
t2). We define

gk(X) := inf
b: π1(b)=tk−1

gb(X).

In essence, this means we look for the collection of Reeb orbits in ∂X of mini-
mal action which is closed with respect to the differential of C(X), and which
bounds a connected rational curve in X̂ satisfying a <T k−1p> constraint (but
disregarding any disconnected curves bounded by the same collection).

2.6. The case of ellipsoids

To get some intuition for gb(X), we note that when X is an irrational ellipsoid
E(a1, . . . , an), the differential on C(X) vanishes for degree parity reasons.
This means that C(X) already agrees with its homology, and the map

εX<T •> : C(X) → SQ[t]

is in fact an isomorphism. Then, gb(X) is simply the action of the unique ele-
ment (εX<T •>)−1 (b) ∈ C(X) which corresponds to b. However, recall that
the map εX<T •> is defined by counting curves in E(a1, . . . , an) satisfying
local tangency constraints, so it could be quite nontrivial even in the case
n = 2. Indeed, in the very special case of the nearly round ball E(1, 1 + ε),
a closely related problem is to count rational curves in CP2 satisfying local
tangency constraints, which was recently solved in [24]. For other ellipsoids,
including those in higher dimensions, and for more general Liouville domains,
computing gb seems to involve some very interesting and challenging enumer-
ative problems.

We discuss the computation of the capacities gk for four-dimensional
ellipsoids in Sect. 3.1.2, based on the forthcoming work [25]. As for the larger
family of capacities gb, a general recursive algorithm for their computation
is given in [29], and this will be utilized in the proof of Proposition 1.7.

3. Optimal embeddings

3.1. The main theorems

We now prove our main results. To prove Theorem 1.1, we need a new con-
struction and new obstructions. These two parts of our argument are logi-
cally independent of each other and can be done in either order. To prove
Theorem 1.3, we can use an existing construction and so we just need the
obstructions.

3.1.1. The construction. We begin with the construction.

Proposition 3.1. For all a > 1 and S > 0, let a
a+1 ≤ μ ≤ a

2 and λ =
1 − μ

a . There exists a symplectic embedding of E(a, 1, S) into an arbitrary
neighborhood of

{(z1, z2) | π|z1|2 ≤ λ + μ, π|z2|2 ≤ f(π|z1|2)} × C,
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where

f(t) =

{
2λ − t/2 when 0 ≤ t ≤ 2μ 2λ−1

λ+μ−1 ;
1 − (1−λ)(t−2λ+1)

1−λ+μ when 2μ 2λ−1
λ+μ−1 ≤ t ≤ λ + μ.

Remark 3.2. Using the work of Pelayo-Vũ Ngo.c [27, Theorem 4.4], we can
extend to S = ∞ and embed the interior of the ellipsoid into the domain
itself, rather than into a neighborhood.

We defer the proof for a moment, first stating some key corollaries we
will need.

Corollary 3.3. For any N ≥ 1 and a ≥ 1, 1 ≤ b ≤ 2, there exists a symplectic
embedding

intE(a, 1) × CN s
↪→ a(b + 2)

(a + 1)b
·
(
E(b, 1) × CN

)
.

Here, “int” denotes the interior.

Proof of Corollary 3.3. It clearly suffices to prove this when N = 1. In Propo-
sition 3.1, set μ = a

a+1 so λ = 1 − μ
a = μ. In this case, f(t) = 2λ − t/2 for

all 0 ≤ t ≤ 2λ = λ + μ and we see that the domain {(z1, z2) | π|z1|2 ≤
λ + μ, π|z2|2 ≤ f(π|z1|2)} is simply P (2λ, 2λ) ∩ E(4λ, 2λ). This sits inside
E(cb, c) when c ≥ a(b+2)

(a+1)b .
This deals with the case when a > 1. When a = 1, we still have an

embedding into an arbitrarily small neighborhood, and so can still apply [27]
for the precise result. �

Corollary 3.4. Let b ∈ R≥2. Then, for any N ≥ 1 and a ≥ b − 1, there exists
a symplectic embedding

intE(a, 1) × CN s
↪→ 2a

a + b − 1
·
(
E(b, 1) × CN

)
.

Proof of Corollary 3.4. Note that when a > 1, we have 1−λ
1−λ+μ < 1

2 , and
so the graph of f(t) is convex. Hence, f(t) is bounded above by the linear
function between (0, 2λ) and (λ + μ, λ) and our domain is a subset of P (λ +
μ, 2λ) ∩ E(2(λ + μ), 2λ).

In the context of Proposition 3.1, set μ = a(b−1)
a+b−1 . We note that a

a+1 ≤
μ ≤ a

2 exactly when 2 ≤ b ≤ a+1. Then, λ = a
a+b−1 and we find a symplectic

embedding

E(a, 1) × C
s

↪→
(

P

(
ab

a + b − 1
,

2a

a + b − 1

)
∩ E

(
2ab

a + b − 1
,

2a

a + b − 1

))
× C

⊂ 2a

a + b − 1
E(b, 1) × C.

�

We now give the promised proof of the proposition.
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Proof of Proposition 3.1. Before the proof, we fix some notation.
Write A ⊂ε B to mean that the set A lies in an ε neighborhood of B,

or z ∈ε B to mean that a point z lies ε close to B.
Let π : C3 → C be the projection onto the z1 plane.
In the z1 plane, we fix sets W0 = [0, 1]×[0, μ] and Wi = [2i, 2i+1]×[0, λ]

for i ≥ 1.
Finally, D(a) denotes the round closed disk in the plane centered at the

origin of area a, and Ai are the subsets of the z3 plane given by A1 = D(S+ε)
and Ai = D(i(S + ε))\D((i − 1)(S + ε)) for i ≥ 2. �
Proof. The condition μ ≥ a

a+1 is equivalent to μ ≥ 1 − μ
a = λ, and the

condition μ ≤ a
2 is equivalent to 2λ ≥ 1. Both of these inequalities will be

used in our construction.
We apply a slightly generalized version of Lemma 2.2 from [12]. This

says that, given ε, there exists a large K and a symplectomorphism φ from
E(a, 1, S) to a set FK with the following properties. For z ∈ C, we write
Fz = π−1(z) ∩ FK .

(1) π(FK) ⊂ε

⋃K
i=1([2i − 1, 2i] × {0})

⋃K
i=0 Wi;

(2) if z = (u, v) ∈ε W0 then Fz ⊂ε D(1 − uμ
a ) × A1;

(3) if z ∈ε [2i − 1, 2i] × {0} and i is odd, then Fz ⊂ε D(λ) × Ai;
(4) if z ∈ε [2i − 1, 2i] × {0} and i is even, then Fz ⊂ε (D(2λ)\D(λ)) × Ai;
(5) if z = (2i+u, v) ∈ε Wi and i is odd, then Fz ⊂ε D((1+u)λ)×(Ai∪Ai+1);
(6) if z = (2i + u, v) ∈ε Wi and i ≥ 2 is even, then Fz ⊂ε D((2 − u)λ) ×

(Ai ∪ Ai+1).
Apart from slight changes of notation, the modification from Lemma 2.2

consists in increasing the area of W0 (the original lemma fixed μ = λ = x
x+1 )

and a refined description of the fibers over W0. The estimate in item (2)
follows easily, because π−1(W0) is the set {π|z1|2 ≤ μ} ⊂ E(a, 1, S) and
restricted to this set φ takes the form φ(z1, z2, z3) = (ψ(z1), z2, z3) where
we may assume for all 0 ≤ u ≤ 1 that ψ maps points with π|z1|2 ≤ μu
(outside of which the fiber lies in π|z2|2 < 1 − uμ

x ) to an ε neighborhood of
the set [0, u] × [0, μ]. Then, if ψ(z1) = (u, v), we have π|z1|2 ≥ μu − ε and so
π|z2|2 ≤ 1 − uμ

a + ε.
The next step is to follow Step 3 of the proof from [12, page880] and

apply a symplectic immersion τ : π(FK) → C. This can be arranged to restrict
to an embedding on each of the Wi and each of the intervals [2i−1, 2i]×{0},
so that the Wi with i odd map into a neighborhood of [−1, 0]× [0, λ], the Wi

with i even map into [0, 1] × [0, μ], and the ε neighborhoods of the intervals
[2i − 1, 2i] × {0} map close to the origin, remaining disjoint from the image
of the Wi. The condition on Wi with i even is possible, since λ ≤ μ.

Let ι23 be the identity map on the (z2, z3)-plane. Then, we note that
(τ × ι23) : FK → C3 is an embedding. Indeed, the fibers of π over Wi and
Wj intersect only if |i − j| ≤ 1 [since otherwise by items (5) and (6) their z3

coordinates lie in different Ak], and in particular are disjoint if i and j have
the same parity. Also, the fibers over neighborhoods of different intervals
[2i − 1, 2i] × {0} are disjoint by items (3) and (4).

We refine the immersion τ slightly to also satisfy the following.

Vol. 24 (2022) Higher symplectic capacities

Reprinted from the journal 287



D. Cristofaro-Gardiner et al. JFPTA

• if z = (2i + u, v) ∈ Wi and i is odd, then τ(z) ∈ε [−1 + u, 0] × [0, λ];
• if z = (u, v) ∈ W0, then τ(z) ∈ε [0, u] × [0, μ]
• if z = (2i + u, v) ∈ Wi and i ≥ 2 is even, then τ(z) ∈ε [0, uλ

μ ] × [0, μ].

The following describes the fibers of the image of τ × ι23.

Lemma 3.5. Let (z1, z2, z3) lie in the image of τ × ι23 and z1 = (u, v).
If −1 ≤ u ≤ 0, then Fz ⊂ε D((2 + u)λ) × C;
if 0 ≤ u ≤ 2λ−1

λ+μ−1 , then Fz ⊂ε D(2λ − uμ) × C;
if 2λ−1

λ+μ−1 ≤ u ≤ 1, then Fz ⊂ε D(1 − uμ
a ) × C.

Proof. The description of the fibers when u ≤ 0 follows directly from item
(5) in the description of FK and the properties of τ . Also, if λ

μ ≤ u ≤ 1,
then by our description of τ restricted to the Wi, we see that (u, v) is the
image of a point in W0, and so, the property follows from item (2). (Note
that λ

μ ≥ 2λ−1
λ+μ−1 because λ < 1 and μ ≥ λ.)

If 0 < u ≤ λ
μ , then either (u, v) = τ(u′, v′) where (u′, v′) ∈ W0 and

u′ ≥ u, or (u, v) = τ(2i + u′, v′) where (2i + u′, v′) ∈ Wi for i ≥ 2 even and
u′ ≥ uμ

λ . In the first case, by item (2), the z2 coordinate of the fiber lies in
D(1 − uμ

a ) and in the second case, by (6), the z2 coordinate of the fiber lies
in D(2λ − uμ). Thus, the lemma follows from the fact that 2λ − uμ ≥ 1 − uμ

a

exactly when u ≤ 2λ−1
λ+μ−1 (using the assumption that 2λ ≥ 1). �

Finally, we apply the map σ × ι23, where σ is an embedding of a neigh-
borhood of ([−1, 0]× [0, λ])∪ ([0, 1]× [0, μ]) in the z1 plane to a neighborhood
of the disk D(λ + μ). We can choose σ to satisfy the following.

• if u ∈ [−μ
λ t, t] and 0 ≤ t ≤ 2λ−1

λ+μ−1 , then σ(u, v) ∈ε D(2tμ) for all v;

• if u ∈ [− 2λ−1+(1−λ)t
λ , t] and 2λ−1

λ+μ−1 ≤ t ≤ 1, then σ(u, v) ∈ε D((2λ −
1) + (1 − λ + μ)t) for all v.

Such a map σ exists, because the intersection of ([−1, 0]×[0, λ])∪([0, 1]×
[0, μ]), the image of τ , with {u ∈ [−μ

λ t, t]} has area 2μt and the intersection
of the image of τ with {u ∈ [− 2λ−1+(1−λ)t

λ , t]} has area (2λ−1)+(1−λ+μ)t.
When t = 2λ−1

λ+μ−1 , we have that μ
λ t = 2λ−1+(1−λ)t

λ , and so, we are imposing a
condition on the image of all (u, v).

Claim. The image of σ × ι23 lies in an ε neighborhood of {(z1, z2) |
π|z1|2 ≤ λ + μ, π|z2|2 ≤ f(π|z1|2)} × C, concluding the proof.

Proof of the claim. We check the fibers of π over points w ∈ D(λ + μ).
First, if w is in the image of a point in one of the segments [2i − 1, 2i] × {0}
then w is close to 0 and the z2 coordinate of the fiber lies in D(2λ).

Next, suppose that π|w|2 = s+ε where s ≤ 2μ 2λ−1
λ+μ−1 . Then, w = σ(u, v)

where either u > s
2μ or u < − s

2λ (since by our conditions on σ points with
u ∈ [− s

2λ , s
2μ ] are mapped into D(s)). By Lemma 3.5, in the first case, the

z2 coordinate of the fiber lies ε close to D(2λ − s
2 ), and in the second case,

the z2 coordinate of the fiber also lies in an ε neighborhood of D((2 − s
2λ )λ).

Hence, π|z2|2 ≤ 2λ − π|z1|2/2.
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Finally, suppose that π|w|2 = s + ε where 2μ 2λ−1
λ+μ−1 ≤ s ≤ λ + μ. Then,

we see that w = σ(u, v) where either u > s−(2λ−1)
1−λ+μ or u < − (2λ−1)μ+(1−λ)s

λ(1−λ+μ) .
This again follows from our conditions on σ. Indeed, if

u ∈
[
− (2λ − 1)μ + (1 − λ)s

λ(1 − λ + μ)
,
s − (2λ − 1)
1 − λ + μ

]
,

then, rewriting, u ∈ [− 2λ−1+(1−λ)t
λ , t] with t = s−(2λ−1)

1−λ+μ . The bounds on s

imply that 2λ−1
λ+μ−1 ≤ t ≤ 1 and so by the second bullet point in our description

of σ points with u in this range are mapped into D((2λ−1)+(1−λ+μ)t) =
D(s).

Concluding by Lemma 3.5, if u > s−(2λ−1)
1−λ+μ , then the z2 coordinate of

the fiber lies ε close to D(1 − s−(2λ−1)
1−λ+μ

μ
a ) = D(1 − (1−λ)(s−2λ+1)

1−λ+μ ), recalling
that λ = 1 − μ

a . If u < − s
2λ , then the z2 coordinate of the fiber lies ε close to

D(2λ − (2λ−1)μ+(1−λ)s
1−λ+μ ) which we check is also D(1 − (1−λ)(s−2λ+1)

1−λ+μ ). Hence,

π|z2|2 ≤ 1 − (1−λ)(π|z1|2−2λ+1)
1−λ+μ + ε. �

With the claim proven, we have completed the proof of the proposition.
�

3.1.2. Some obstructions. We now turn our attention to the obstructive side.
Notably, this will be quite short, because we can cite work on these higher
capacities that has previously been done or is forthcoming. Namely, here,
we only recall the following computations for the capacities of ellipsoids and
polydisks from [28, §6.3]:

gk(P (1, a)) = min(k, a + �k−1
2 �) for a ≥ 1, k ≥ 1 odd (6)

gk(E(1, a)) = k for a ≥ 1, 1 ≤ k ≤ a. (7)

It seems plausible that the computation for P (1, a) is also valid for k even.
This would follow if we knew that the capacities gk are nondecreasing with
k, although this is not yet clear.

We will also need the following more general expected formula for ellip-
soids, which will be proved in [25]. For 1 ≤ a ≤ 3/2, we have

gk(E(1, a)) =

⎧⎪⎨
⎪⎩

1 + ia for k = 1 + 3i with i ≥ 0
a + ia for k = 2 + 3i with i ≥ 0
2 + ia for k = 3 + 3i with i ≥ 0.

(8)

For a > 3/2, we have

gk(E(1, a)) =

⎧⎪⎨
⎪⎩

k for 1 ≤ k ≤ �a	
a + i for k = �a� + 2i with i ≥ 0
�a� + i for k = �a� + 2i + 1 with i ≥ 0.

(9)
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3.1.3. The proofs. We now give the promised proofs.

Proof of Theorem 1.1. Let a, b, and N be as in the statement of the theorem.
Then, by Corollary 3.4, we have

cN
b,ell(a) ≤ 2a

a + b − 1
.

To prove the opposite inequality, we use the higher capacities gk. That is,
take k = a. Then, by (7) and (9), we have

gk(E(1, a)) = a, gk(E(1, b)) =
a + b − 1

2
.

Hence, by the scaling, monotonicity, and stabilization properties of the gk in
Theorem 2.1, we have

cN
b,ell(a) ≥ 2a

a + b − 1
,

hence the theorem. �

Remark 3.6. Note that in the above proof, we only need the inequality
ga(E(1, b)) ≤ a+b−1

2 , and in the case that b is even (and hence, a ≥ b + 1
is odd), this can be deduced directly from (6). Indeed, by (3), there is an
embedding E(1, b)

s
↪→ P (1, b/2), whence we have

ga(E(1, b)) ≤ ga(P (1, b/2)) = b/2 + �(a − 1)/2� =
a + b − 1

2
.

Proof of Theorem 1.3. The proof is similar to the previous one. Let a, b, and
N be as in the statement of the theorem.

The bound

cN
b,poly(a) ≤ 2a

a + 2b − 1
follows from the existence of a variant of the embedding from above, which
was previously shown to exist in [6, Lem.1.3].

To show that no better embedding exists, we use the above capacities.
Namely, let k = a. Then, by (6) and (7), we have

gk(E(1, a)) = a, gk(P (1, b)) = b +
a − 1

2
.

The theorem now follows by the same argument as above. �

Example 1. It is interesting to compare the above methods with the case
b = 1. For this, we recall for the convenience of the reader an argument from
[28, §1.4]. There, a variant of the embedding used in the previous theorems,
constructed in [12], gives

cN
1,ell(a) ≤ 3a

a + 1
.

On the other hand, if a is an integer congruent to two, modulo three, then
taking k = a as above yields

gk(E(1, a) × Cn) = a, gk(E(1, 1) × Cn) =
1 + a

3
.
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Hence, combining these inequalities, we get that for a congruent to two mod-
ulo three

cN
1,ell(a) =

3a

a + 1
.

This recovers the result of McDuff [21, Thm. 1.1].

3.2. The rescaled embedding function

We now provide the proofs of the promised corollaries regarding the conjec-
ture of the second named author, Frenkel, and Schlenk.

Proof of Corollary 1.4. We will first prove the statement about cN
b,poly, after

which the result about cN
b,ell will follow easily.

The function cN
b,poly(a) is nonincreasing in N . We want to show that

it is in fact constant in N for a in the intervals given by the theorem. The
computation of c0

b,poly(a) from [6], together with Theorem 1.3 from above,
shows that it does not depend on N for the exterior (middle) corner of each
linear step.

Now, note that if an embedding

E(1, a) × Cn s
↪→ λP (1, b) × Cn

exists, then for any a′ > a, by scaling, there is an embedding

E(1, a′) × Cn s
↪→ a′

a
λP (1, b) × Cn.

Thus, cN
b,poly(a′) ≤ a′

a cN
b,poly(a). Therefore, given y0 = cN (a), the graph of

cN (a′) for a′ > a cannot lie above the line through (a, y0) and the origin. For
future reference, we call this the subscaling property. We can now prove the
corollary.

Consider any linear step for c0
b,poly(a). Recall that this consists of a

linear part, then an exterior corner, and then a horizontal part. Consider the
linear part. We want to show that this stabilizes. We know that cN

b,poly(a) ≤
c0
b,poly(a). If there were any a value for which strict inequality held, then by

the linearity property above, at the exterior corner a0 of the step, we would
have cN

b,poly(a0) < c0
b,poly(a0). However, above we saw in Theorem 1.3 that

the exterior corner is stable. Hence, the whole linear part must stabilize. As
for the horizontal part, we know that we must have cN

b,poly ≤ c0
b,poly, but on

the other hand the function cN
b,poly is nondecreasing, and so must be constant

here. Thus, the whole step stabilizes, so all the linear steps do.
In view of Theorem 1.1, the exact same argument implies the result

about cN
2b,ell, since for N = 0, there is an equivalence of embeddings (3). �

Proof of Corollary 1.5. Corollary 1.4 shows that, after the initial part of the
graph, where cN

b,poly(a) = 1, the graph has �
√

2b� + 1 linear steps that are
all stable. The length of these steps is given by the formula �b(k) from [6,
p.6]. In particular, as explained there, the length of the kth step converges
to 2 as b tends to infinity. Since the steps are centered at the odd numbers,
increase in number without bound as b increases, and our rescaled function
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is centered, so that the initial part of the graph with height one, that is, the
part determined by Gromov’s non-squeezing theorem, does not appear, the
result follows. �

3.3. The first step

We now prove Proposition 1.6.

Proof of Proposition 1.6. The key is the following lemma.

Lemma 3.7. Let a0 be the smallest odd integer that is no less than 2b − 1.
There is a symplectic embedding

int
(

E

(
1,

a0 − 1
2

+ b

))
s

↪→ P (1, b). (10)

Proof. We first explain why it suffices to prove the lemma for b rational.
Given an irrational b, we can choose rational numbers bn converging to b
from below. Then, if the lemma is true for each bn and the bn are sufficiently
close to b, composing with the inclusion P (1, bn) ⊂ P (1, b) gives embeddings
int

(
E

(
1, a0−1

2 + bn

)) s
↪→ P (1, b), hence the desired embedding (10) by [4,

Cor. 1.6].
We thus henceforth assume that b is rational. Then, by for example

[4][Thm. 2.1], it is equivalent to find an embedding

int (E(1, b)) ∪ int
(

E

(
1,

a0 − 1
2

))
s

↪→ P (1, b). (11)

Indeed, the argument for [4, Thm. 2.1] implies that both (10) and (11) are
equivalent to ball packing problems of the P (1, b), where in the first case,
the size of the balls is given by the weight sequence defined in [4, §2] for
(a0 − 1)/2 + b, and in the second case, the size of the balls is given by the
union of the weight sequence for b and for (a0 − 1)/2. Since (a0 − 1)/2 is an
integer, the first (a0 − 1)/2 of the weights for (a0 − 1)/2 + b will be 1, so (10)
and (11) are equivalent to the same ball packing problem.

We know that a0 ≤ 2b + 1, and hence
a0 − 1

2
≤ b. (12)

We can therefore find an embedding as in (11) as follows. We think the mo-
ment image of P (1, b) as a union of two triangles, joined along the diagonal
that does not contain the origin. The triangle with legs on the axes con-
tains an E(1, b) factor by inclusion. As for the other triangle, it is affine
equivalent to the first, via multiplication by −I2, where I2 is the two-by-two
identity matrix. Hence, by the Traynor trick, see for example [31] and [2,
Lem. 1.8], it also contains a copy of an int(E(1, b)), disjoint from the interior
of the first E(1, b). Now, by (12), this latter int(E(1, b)) contains a copy of
int (E(1, (a0 − 1)/2)) . �

We can now prove the proposition. We first prove the second bullet
point. By Lemma 3.7, we know that cN

b,poly ≤ 1, for a in the given range.
However, by Gromov’s non-squeezing theorem, we also know that cN

b,poly ≥ 1,
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for a in this range. As for the rest of the second bullet point, this follows
from the subscaling property of cN

b,poly, as in the proof of Corollary 1.4 above,
given the lower bound on cN

b,poly(a0) coming from Theorem 1.3.
We now prove the first bullet point. The result for 1 ≤ a ≤ b follows,

because inclusion gives an embedding for a in this range, which is optimal
by Gromov’s non-squeezing theorem. Similarly, for b ≤ a ≤ �b	 + 1, scaling
gives an embedding as in the subscaling property, which is optimal by the
(�b	+1)st Ekeland–Hofer capacity; see, e.g., [3][§2.3.1, §4.1.1] for the relevant
formula. �

3.4. The other parity

The proof of the remaining proposition, Proposition 1.7, requires the gb and
computer assistance as well. It turns out that the simplified capacities gk do
not suffice in these cases. For example, for E(1, 6) × CN s

↪→ λ · P (1, 1) × CN ,
one can check that the simplified capacities give only λ ≥ 5/3, whereas we
have in fact cN

1,poly(6) = 12/7 for N ∈ Z≥1.
On the other hand, we have the more general capacities gb, which could

in principle give sharp obstructions for all a ∈ R≥1 and b ∈ Z≥1 in (2) and (4).
This is related to the discussion at the end of [28, §6.3], where it is observed
that the simplified capacities gk do not generally give sharp obstructions for
E(1, a) ×CN s

↪→ λ · E(1, 1) ×CN , but the capacities gb necessarily give sharp
obstructions at least for a ≤ τ4. Moreover, the formalism from [29] gives
an explicit recursive algorithm to compute the capacities gb for all convex
toric domains, although, unfortunately, it appears to be somewhat difficult
to compute with “by hand”.

Proof of Proposition 1.7. We begin with the computation of cN
1,poly(a) for

a = 6, 8, . . . , 100. By [12], we have the upper bound cN
1,poly(a) ≤ 2a

a+1 , so it
suffices to establish the lower bound cN

1,poly(a) ≥ 2a
a+1 . Suppose that we have

a symplectic embedding E(1, a) × CN s
↪→ λ · P (1, 1) × CN .

Following the notation and exposition of [29], the idea is as follows. By
[29, Cor. 1.2.3], there is a filtered L∞ homomorphism Q : VP (λ,λ) → VE(1,a)

which is unfiltered L∞ homotopic to the identity. Here, V is an explicit DGLA
with generators αi,j for i, j ∈ Z≥1 and βi,j for i, j ∈ Z≥0 not both zero. The
filtered DGLA VP (λ,λ) is just V as an unfiltered DGLA, and its filtration is
specified by

AP (λ,λ)(αi,j) = AP (λ,λ)(βi,j) = λi + λj.

Similarly, the filtered DGLA VE(1,a) is just V as an unfiltered DGLA, with
filtration specified by

AE(1,a)(αi,j) = AE(1,a)(βi,j) = max(i, aj).

Recall that an L∞ homomorphism Q : VP (λ,λ) → VE(1,a) consists of a se-
quence of maps Ql : lVP (λ,λ) → VE(1,a) for l = 1, 2, 3, . . . , and these must
satisfy an infinite sequence of certain quadratic relations.

Any element of the form βi1,j1  · · ·  βik,jk defines a cycle in the bar
complex V̄P (λ,λ). In particular, Q̂(βi1,j1  · · ·  βik,jk) must be homologous
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to βi1,j1  · · ·  βik,jk in V̄E(1,a). Moreover, there is a filtered L∞ homomor-
phism Φ1,a : VE(1,a) → V can

E(1,a), where V can
E(1,a) denotes the homology of VE(1,a)

(viewed as a filtered L∞ algebra with trivial L∞ operations), and hence,
(Φ̂1,a ◦ Q̂)(βi1,j1  · · ·  βik,jk) is homologous to Φ̂1,a(βi1,j1  · · ·  βik,jk) in
V̄ can

E(1,a).
Now, suppose that we have a = p/q with p + q = 2d for some p, q, d ∈

Z≥1. Consider some d1, d2 ∈ Z≥0 satisfying d1 +d2 = d, and suppose that we
have

Φd
1,a(d1β1,0  d2β0,1) �= 0. (13)

Then, we claim that we have λ ≥ 2a
a+1 , which gives the desired lower bound.

Indeed, for a general input of the form βi1,j1  · · ·  βik,jk , it follows by
degree considerations that Φk

1,a(βi1,j1  · · ·  βik,jk) is either trivial, or else
it is the unique element up to scaling in V can

E(1,a) of its given degree. In the
latter case, its action is given by the lth Ekeland–Hofer capacity of E(1, a),
i.e., cEH

l (E(1, a)), for l =
∑k

m=1(im + jm) + k − 1. Also, the action of the
input is given by

AP (λ,λ)(βi1,j1  · · ·  βik,jk) =
k∑

m=1

AP (λ,λ)(βim,jm) =
k∑

m=1

(λim + λjm).

Specializing to the case of input d1β1,0  d2β0,1 and l = 2d − 1,
using a = p/q and p + q = 2d, it is straightforward to check that we have
cEH
l (E(1, a)) = p. Since Φ̂1,a ◦ Q̂ is filtration-preserving and Φd(d1β1,0 

d2β0,1) is a summand of the image of [d1β1,0  d2β0,1] under [Φ̂1,a ◦ Q̂],
we must have λ(d1 + d2) ≥ p, and hence

λ ≥ p

d
=

2p

p + q
=

2a

a + 1
,

as claimed.
Let us now specialize to the case that a is an even integer. Then, we

have a = p/q for p = 2a and q = 2, and hence, p + q = 2d for d = a + 1.
By computer calculations, (13) holds for d1 = 3 and d2 = d − d1 = a − 2 for
a = 6, . . . , 100. Geometrically, this corresponds to a nonvanishing count of
rational curves in CP1 ×CP1\ 1

λ ·E(1, a) of bidegree (d1, d2) with one negative
puncture asymptotic to the p = 2a fold cover of the short simple Reeb orbit.
Curiously, the analogous counts for d1 = 1, 2 vanish.

The computation of cN
2,ell(a) for a = 6, 8, . . . , 100 is similar. In this case,

we suppose that we have a symplectic embedding E(1, a)×CN s
↪→ λ·E(1, 2)×

CN , and we take our input cycle to be of the form 3β2,1  d−3β1,0, for
d = a − 2. By computer calculation, we have

Φd
1,a(3β2,1  d−3β0,1) �= 0 (14)

for a = 6, 8, . . . , 100. The action of the output is that of the lth Ekeland–
Hofer capacity of E(1, a) for l = 5 + 2d, and we have cEH

l (E(1, a)) = 2a.
Meanwhile, the action of the input is

AE(1,2)(3β2,1  d−3β1,0) = 6 + (d − 3) = a + 1,
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whence the lower bound λ ≥ 2a
a+1 readily follows. �

4. Discussion

We close by discussing some natural follow-up questions to our work.

4.1. Beyond the rescaled function

One can of course ask whether the function cN
b,poly(a) can in any sense be

computed completely. As explained in [6, Lem.1.3], and mentioned previously
here, a previous folding construction of the second named author gives the
bound

cN
b,poly(a) ≤ 2a

a + 2b − 1
.

This bound cannot be optimal for all a. For example, as we have seen in this
paper, there are sometimes four-dimensional embeddings beating this bound,
and these can be stabilized by taking the product with the identity. For a
sufficiently large with respect to b, though, in particular for

a ≥ (
√

2b + 1)2, (15)

the above folding bound beats the four-dimensional volume obstruction, and
so must give a better construction than any stabilized four-dimensional one.
The main question at the moment here is as follows.

Question 4.1. Is it the case that either cN
b,poly(a) = c0

b,poly(a), or

cN
b,poly(a) =

2a

a + 2b − 1
?

If this is true, it looks hard to prove. For example, if a < (
√

2b + 1)2,
then the volume bound is strictly below the folding bound from above. On
the other hand, for b ∈ Z≥2, it is known that there are entire intervals of
the subset a < (

√
2b + 1)2 for which the volume bound is optimal for c0

b,poly:
for example, for b = 2, [6, Thm.1.1] states that there is an interval on which
c0
b,poly is given by the volume starting at a = 7.84, but on the other hand by

(15), the folding curve is above the volume curve up until a = 9. Finding the
holomorphic curves needed to show that this volume bound stabilizes would
be a completely new phenomenon.

The same question, but concerning cN
b,ell is also open and just as inter-

esting.

4.2. The opposite parity

It is also natural to ask what happens for the stabilized embedding problem
for ellipsoids, when the parity of the domain and target are the same. For
example, one might hope that an analogue of our Proposition 1.7 holds in
the case b > 2. If this is true, however, it is not so clear how to prove it: our
preliminary computer search to generalize the method required to prove it
has not turned up promising candidates. It would be very interesting to find
a candidate of curves to solve this problem, or to find another embedding.
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4.3. The region from b = 1 to b = 2

For b ≥ 2, our Corollary 3.4 produces an embedding, such that

cN
b,ell(a) ≤ 2a

a + b − 1
.

Meanwhile, for 1 ≤ b ≤ 2, Corollary 3.3 shows

cN
b,ell(a) ≤ a(b + 2)

(a + 1)b
. (16)

It is interesting to ask when this bound is sharp, for instance whether there
are sequences of a where this holds. We now list some facts, suggesting that
the answer may not be straightforward.

Note that when b = 1, the bound gives

cN
1,ell(a) ≤ 3a

a + 1
,

which as mentioned above is sharp when a ≡ 2 modulo 3, [21]. There is
another sequence starting at a = 2 where (16) is an equality. By work of the
first and second named authors, [7], we have cN

1,ell(a) = c0
1,ell(a) for all 1 ≤ a ≤

τ4. This region of the graph is an infinite staircase, that is, piecewise linear
with infinitely many singular points accumulating at τ4, see [23]. Between
these singular points the graph alternates between being constant and sitting
on a line through the origin. One can check the corners of the stairs, the left
endpoints of the constant intervals, lie on the folding graph 3a

a+1 .
When b = 2, our bound gives

cN
2,ell(a) ≤ 2a

a + 1
.

The graph of c0
2,ell also begins with an infinite staircase, see [5,11], and again,

the tips of the stairs lie on the graph 2a
a+1 . It seems extremely likely that at

such a, we have cN
2,ell(a) = c0

2,ell(a) for all N , so the bound (16) is again
sharp.

However, when b = 3/2, the situation is mysterious. Now, our bound
gives

cN
3/2,ell(a) ≤ 7

3
a

a + 1
.

Here again, work of the first named author and Kleinman shows that c0
3/2,ell(a)

has an infinite staircase [5], but now, the tips of the stairs lie on the graph
2a

a+1 . Moreover, the gk show that cN
3/2,ell(a) ≥ 2a

a+1 at integer a. It is unclear
whether an improved construction can show this lower bound is indeed sharp,
or whether enhanced obstructions can be used to show that even though the
folding graph (16) lies strictly above the infinite staircase, it is still asymp-
totically sharp.

Reprinted from the journal296



4.4. A combinatorial rule?

While the functions c0
b,ell and c0

b,poly themselves are known to be quite com-
plicated (see for example [23,32]), they are governed by simple to state com-
binatorial rules. For example, McDuff shows in [20] that c0

b,ell is completely
determined by the combinatorics of the sequence N(a, b), whose kth term is
the (k + 1)st smallest entry among the nonnegative integer linear combina-
tions of a and b. It would be extremely interesting if the functions cN

b,ell and
cN
b,poly are also governed by some kind of relatively simple to state combina-

torial rule. It might be easier to find such a rule than to actually compute
these functions explicitly.
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1. Introduction

Since the seminal work of Hadamard [21], Poincaré [40], Birkhoff [9], and
Morse [36], it became evident that closed Riemannian manifolds of dimen-
sion at least 2 tend to have many closed geodesics (that is, periodic orbits of
the geodesic flow). This evidence was supported by celebrated theorems of
Gromoll–Meyer [19] and Vigué-Poirrier–Sullivan [43], which together assert
that simply connected closed Riemannian manifolds with a non-monogenic
rational cohomology ring always have infinitely many closed geodesics. This
statement covers a large class of simply connected closed manifolds, leaving
out those with the cohomology of a compact rank-one symmetric space: Sn,
CPn,HPn, and CaP2. As of 2019, it is an open conjecture whether these
spaces admit infinitely many closed geodesics for any choice of the Riemann-
ian metric. The only known case is the one of S2, for which the proof required
a combination of spectacular work by Bangert [8], Franks [16], and Hingston
[22] (either Franks’ or Hingston’s work, together with Bangert’s one, pro-
vide the full result). The starting point for this work is another celebrated
result due to Lusternik–Schnirelmann [30], asserting that every Riemann-
ian 2-sphere possesses at least three simple closed geodesics (that is, closed
geodesics that are embedded circle in the Riemannian manifold). For many
decades Lusternik–Schnirelmann’s theorem was considered controversial due
to a gap in their construction of a pseudo-gradient flow for the length function
of simple closed curves, that have been subsequently addressed by many au-
thors [6,23,25,26,28,42]. Nowadays, the gap is considered filled, for instance
thanks to the work of Grayson [20] on the curve shortening flow.

The closed geodesic problem can be studied on closed Finsler mani-
folds as well. A Finsler metric on a manifold M is a continuous function
F : TM → [0,∞), smooth outside the zero section of TM , positively homo-
geneous of degree 1 (i.e., F (x, λv) = λF (x, v) for all (x, v) ∈ TM and λ ≥ 0),
and such that the restriction of its square F 2 to any fiber of TM has positive
definite Hessian everywhere outside the origin. In the literature, a more gen-
eral notion of Finsler metric is sometimes employed, but the one given here
is the most appropriate for the study of geodesic flows. Many results, such
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as Gromoll–Meyer’s one, remain valid essentially with the same proof in the
Finsler category (see [31] and references therein). However, a striking example
due to Katok [27], and further explored by Ziller [45], shows that Lusternik–
Schnirelmann’s and Bangert–Franks–Hingston’s theorems fail: there exists a
Finsler metric on S2 having only two closed geodesics.

A Finsler metric F : TM → [0,∞) is called reversible when F (x,−v) =
F (x, v) for all (x, v) ∈ TM . The Katok’s Finsler metric does not satisfy this
property. In the current paper, we show that all the above mentioned results
valid for Riemannian 2-spheres remain valid for reversible Finsler 2-spheres.

1.1. The curve shortening semi-flow

In [39], Oaks provided a generalization of Grayson’s curve shortening flow
[20]. As remarked by Angenent [5], such generalization allows to provide a
curve shortening flow on orientable reversible Finsler surfaces: a tool to shrink
embedded circles without creating self-intersections. In this section, we state
a theorem that summarizes all the properties of this flow (actually, a semi-
flow) that we will need for the application to the closed geodesics problem.

Let M be a closed oriented surface, equipped with a reversible Finsler
metric F . We denote by S1 := R/Z the 1-periodic circle, and by Emb(S1,M)
the space of smooth embedded loops γ : S1 ↪→ M , endowed with the C∞

topology (that is, the topology whose basis is given by the open sets U ⊂
Emb(S1,M) of the Ck topology, for all k ∈ N). We consider the Finsler
length functional

L : Emb(S1,M) → (0,∞), L(γ) =
∫ 1

0

F (γ(u), γ̇(u)) du. (1.1)

The group of diffeomorphisms Diff(S1) acts freely on Emb(S1,M) by repara-
metrizations. Notice that, since the Finsler metric F is homogeneous of degree
1 and reversible, the length functional is invariant by the Diff(S1)-action, i.e.,
L(γ) = L(γ ◦ θ) for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).

We fix an auxiliary Riemannian metric g on M , and we will simply
write ‖ · ‖ or ‖ · ‖g for its associated norm on tangent vectors. Since (M, g)
is an orientable Riemannian surface, it admits a canonical complex structure
J ∈ End(TM), i.e., Jv is obtained by rotating v ∈ TxM of a positive angle
π/2 measured with g. The positive normal to γ ∈ Emb(S1,M) is the vector
field

Nγ(u) :=
1

‖γ̇(u)‖Jγ̇(u),

where ‖ · ‖ is the Riemannian norm associated to g. We set

Vγ(u) :=

(
d
duFv(γ(u), γ̇(u)) − Fx(γ(u), γ̇(u))

)
Nγ(u)

‖γ̇(u)‖ . (1.2)

In the expression of Vγ , the terms Fx and Fv denote the partial derivatives
of F with respect to some local coordinates on M (or, more precisely, lo-
cal coordinates on TM induced by local coordinates on M). However, the
covector

d
duFv(γ(u), γ̇(u)) − Fx(γ(u), γ̇(u)) ∈ T∗

γ(u)M (1.3)
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is independent of the choice of local coordinates, and vanishes identically if
and only if γ is a closed geodesic of (M,F ). Since γ̇ is always in the kernel
of this covector, we actually conclude that Vγ vanishes identically if and only
if γ is a closed geodesic of (M,F ). Therefore, for each � ≥ injrad(M,F ) and
ε > 0, the open subset

U(�, ε) :=
{

γ ∈ Emb(S1,M)
∣∣∣ L(γ) ∈ (� − ε2, � + ε2), max

s∈S1
|Vγ(s)| < ε

}
,

(1.4)

is a neighborhood of the set of simple closed geodesics of (M,F ) with length
�. We will employ the notation

Emb(S1,M)<� := {γ ∈ Emb(S1,M) | L(γ) < �}
to denote the sublevel sets of the length functional.

Remark 1.1. In the literature, closed geodesics γ are usually required to
be parametrized with constant positive speed, that is, the function t 	→
F (γ(t), γ̇(t)) is required to be constant and positive. In this paper, instead,
we allow closed geodesics to be parametrized arbitrarily as immersed curves.
Indeed, the equation Vγ ≡ 0 is independent of the parametrization of γ
(Lemma 2.3). From Sect. 4 on, we will often consider closed geodesics that
are non-trivial critical points of the energy function, and thus parametrized
with constant speed. �

We consider the evolution equation

∂tγt = Vγt
Nγt

with prescribed initial condition γ0 ∈ Emb(S1,M), where γt ∈ C∞(S1,M)
for all t for which it is defined. Up to slowing down the time evolution when
γt becomes short, the solutions of this equation give rise to a curve shortening
semi-flow, whose properties are summarized in the next statement.

Theorem 1.2. Let (M,F ) be a closed, orientable, reversible Finsler manifold,
and ρ0 > 0. There exists a continuous map

ψ : [0,∞) × Emb(S1,M) → Emb(S1,M), ψ(t, γ) = ψt(γ),

with the following properties:
(i) It is a semi-flow, i.e., ψ0 = id and ψt2 ◦ ψt1 = ψt1+t2 for all t1, t2 ≥ 0.
(ii) It is equivariant with respect to the action of circle diffeomorphisms, i.e.,

ψt(γ ◦ θ) = ψt(γ) ◦ θ for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).
(iii) The length function is not increasing along the trajectories of ψt. More

precisely, d
dtL(ψt(γ)) ≤ 0 with equality if and only if γ is a closed geo-

desic or L(γ) ≤ ρ0.
(iv) For each � > 2ρ0 and ε > 0, there exists δ > 0 and a continuous function

τ : Emb(S1,M)<�+δ → (0,∞)

such that

ψt(γ) ∈ U(�, ε) ∪ Emb(S1,M)<�−δ, ∀γ ∈ Emb(S1,M)<�+δ, t ≥ τ(γ).
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(v) If there are no simple closed geodesics with length in [�1, �2] ⊂ (2ρ0,∞),
then there exists a continuous function

τ : Emb(S1,M)<�2 → (0,∞)

such that

ψt(γ) ⊂ Emb(S1,M)<�1 , ∀γ ∈ Emb(S1,M)<�2 , t ≥ τ(γ).

Most of the points in this theorem follow from Oaks [39], except point
(iv), which is crucial for the applications.

1.2. Closed geodesics on Finsler 2-spheres

We already anticipated that the semi-flow of Theorem 1.2 allows to extend the
celebrated Lusternik–Schnirelmann’s theorem [30] to the reversible Finsler
setting. Actually, it will also allow to extend the characterization of simple
Zoll geodesic flows on the 2-sphere, originally claimed in the Riemannian
case by Lusternik [29] and rigorously proved in [37]. We recall that a Finsler
manifold is called Zoll when all its unit-speed geodesics are closed with the
same minimal period, and simple Zoll if, in addition, all the geodesics are
simple closed. We denote by σs(S2, F ) the simple length spectrum of a Finsler
2-sphere, which is the set of lengths of its simple closed geodesics.

Theorem 1.3. Every reversible Finsler 2-sphere (S2, F ) has at least three ge-
ometrically distinct simple closed geodesics. More precisely:

(i) If σs(S2, F ) is a singleton, then (S2, F ) is simple Zoll.
(ii) If σs(S2, F ) contains exactly two elements, then there exists � ∈ σs(S2, F )

such that every point of S2 lies on a simple closed geodesic of length �.
(iii) Assume that, for any compact interval [�1, �2] ⊂ (0,∞), (S2, F ) has

only finitely many simple closed geodesics with length in [�1, �2]. Then,
(S2, F ) has three simple closed geodesics γ1, γ2, γ3 with lengths L(γ1) <
L(γ2) < L(γ3) and such that, for each i = 1, 2, 3, γi has non-trivial local
homology in degree i with Z2 coefficients.

For the definition of the local homology of a closed geodesic, we refer
the reader to Sect. 4.3. Point (iii) in Theorem 1.3 may look technical, but it is
a crucial ingredient for the proof of Theorem 1.5 here below. Even though it
is claimed in [22], it does not have a proper proof in the published literature.

Remark 1.4. As it was pointed out in [17] and [15, Remark 5.3], a Zoll re-
versible Finsler 2-sphere is actually simple Zoll provided it has a simple closed
geodesic. This, together with Theorem 1.3, implies that any Zoll reversible
Finsler 2-sphere is automatically simple Zoll. �

Finally, we can state the last result, that generalizes Bangert–Franks–
Hingston’s theorem.

Theorem 1.5. Every reversible Finsler 2-sphere (S2, F ) has infinitely many
geometrically distinct closed geodesics.
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The main ideas for this theorem remain the same as in the Riemannian
case, but nevertheless we provide a full and rather self-contained account,
which insures that certain arguments of the original proof that looked Rie-
mannian can indeed be carried over in the Finsler case. At the same time,
our treatment fills some expository gaps present in the literature.

Finally, we would like to mention a related problem that saw major ad-
vances in recent years. Closed geodesics on Riemannian surfaces are in partic-
ular minimal hypersurfaces. In 1982, Yau [44] conjectured that every closed
Riemannian 3-manifold has infinitely many smooth, closed, immersed mini-
mal hypersurfaces. An even stronger statement was proved by Irie–Marques–
Neves [24]: on any closed n-manifold, with 3 ≤ n ≤ 7, equipped with a
C∞-generic Riemannian metric, the union of all smooth, closed, embedded
minimal hypersurfaces is dense. We refer the reader to the survey [32] for
more background and details.

1.3. Organization of the paper

In Sect. 2, we provide a construction of the curve shortening semi-flow, and
prove Theorem 1.2. In Sect. 3, we prove Theorem 1.3, except the technical
point (iii). In Sect. 4, we provide the background on the classical critical point
theory for the Finsler energy function, and we will prove Theorem 1.3(iii) at
the end of the section. Finally, in Sect. 5, we prove Theorem 1.5.

2. The curve shortening semi-flow

2.1. The evolution equation

We consider a 1-parameter family of curves γt ∈ Emb(S1,M) evolving ac-
cording to the partial differential equation

∂tγt(u) = wt(u)nt(u) (2.1)

where wt := Vγt
and nt := Nγt

. For every γ0 ∈ Emb(S1,M), we denote by
τγ0 ∈ [0,∞] the largest extended real number such that there is a well-defined
solution γt ∈ Emb(S1,M) of (2.1) for all t ∈ [0, τγ0), with γt|t=0 = γ0. We
set

U :=
{
(t, γ0)

∣∣ γ0 ∈ Emb(S1,M), t ∈ [0, τγ0)
}
.

Theorem 2.1. There is a unique map

φ : U → Emb(S1,M), φ(t, γ0) = φt(γ0) = γt,

where γt is the solution of (2.1) with initial condition γ0, satisfying the fol-
lowing properties:

(i) The subset U ⊂ [0,∞) × Emb(S1,M) is an open neighborhood of {0} ×
Emb(S1,M), and φ is continuous.

(ii) The map φ is equivariant under the action of Diff(S1) on Emb(S1,M),
i.e., φt(γ ◦ θ) = φt(γ) ◦ θ for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).

(iii) For each γ ∈ Emb(S1,M) we have d
dtL(φt(γ)) ≤ 0, with equality if and

only if γ is a closed geodesic of (M,F ).
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(iv) For each γ ∈ Emb(S1,M), if

�γ := lim
t→τ−

γ

L(φt(γ)) > 0

then τγ = ∞.

The proof of this theorem will be carried out in the rest of the section:
point (i) will be proved in Sect. 2.3; point (ii) is a consequence of Lemma 2.3;
point (iii) will be proved in Sect. 2.2. The fact that φ is well defined as a
map of the above form (i.e., mapping the space Emb(S1,M) into itself) and
point (iv) will be proved in Sect. 2.4. In analogy with the Riemannian case,
we call φt the curve shortening semi-flow of (M,F ). Notice that φt is not a
flow (despite in the Riemannian literature it is often called a flow): indeed,
it is only defined for t ≥ 0, and thus satisfies φt1 ◦ φt2 = φt1+t2 only for
t1, t2 ≥ 0.

All closed geodesics of a closed Finsler surface (M,F ) have length
strictly larger than the injectivity radius injrad(M,F ). It is sometimes conve-
nient to have a well-defined curve shortening semi-flow defined for all positive
times even for those trajectories that are not converging to a closed geodesic.
We can achieve this by slowing down the curve shortening semi-flow lines in
the sublevel set {L < injrad(M,F )}, as follows. We fix a constant

ρ0 > 0, (2.2)

which will be chosen smaller than injrad(M,F ) in the applications. We con-
sider a monotone increasing smooth function χ : [0,∞) → [0, 1] such that
supp(χ) = [ρ0,∞) and χ(�) = 1 for all � ∈ [2ρ0,∞). We define

ψ : [0,∞) × Emb(S1,M) → Emb(S1,M), ψ(t, γ0) = ψt(γ0) = γt,

where γt is the solution of the partial differential equation

∂tγt(u) = χ(L(γt))Vγt
(u)Nγt

(u) (2.3)

The semi-flow ψt is the one that we employ for Theorem 1.2. Its properties,
except Theorem 1.2(iv) and (v), will be direct consequences of the above
Theorem 2.1 by means of the following lemma.

Lemma 2.2. There exists a smooth function T : Emb(S1,M) × [0,∞) →
[0,∞) monotone increasing in the second variable such that T (γ, ·) < τγ and

ψt(γ) = φT (γ,t)(γ), ∀γ ∈ Emb(S1,M), t ∈ [0,∞).

Moreover,
(i) T (γ, t1 + t2) = T (φT (γ,t1)(γ), t2),
(ii) T (γ, t) = t if L(φt(γ)) ≥ 2ρ0,
(iii) T (γ, t) = 0 if L(γ) ≤ ρ0,
(iv) T (γ ◦ θ, t) = T (γ, t) for all θ ∈ Diff(S1).

Proof. We denote γ0 := γ and γt := φt(γ0). The smooth map (s, t) 	→
γT (γ,t)(s) is a solution of (2.3) if and only if

χ(L(γT (γ,t)))VγT (γ,t)NγT (γ,t) = ∂tγT (γ,t) = (∂tT (γ, t))VγT (γ,t)NγT (γ,t) .
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Therefore, the desired function t 	→ T (γ, t) is a solution of the ordinary
differential equation

∂tT (γ, t) = χ(L(γT (γ,t))),
T (γ, 0) = 0. (2.4)

This readily implies that T is smooth as a function of (γ, t), and not decreas-
ing. Point (i) readily follows from the semi-flow property φt1+t2 = φt1 ◦ φt2

of the curve shortening. If L(γT (γ,t)) ≥ 2ρ0, then L(γT (γ,t′)) ≥ 2ρ0 and
χ(L(γT (γ,t′))) = 1 for all t′ ∈ [0, t], which implies point (ii). If L(γ) ≤ ρ0,
then L(γt) ≤ ρ0 and χ(L(γT (γ,t))) = 0 for all t ∈ (0, τγ), which implies
point (iii). Finally, if we set Tθ(γ, t) := T (γ ◦ θ, t) for some θ ∈ Diff(S1), we
readily see that Tθ is also a solution of the ordinary differential equation (2.4).
Since such equation has a unique solution, we have point (iv). �

The function Vγ is a generalization of the Riemannian curvature of
immersed curves in oriented Riemannian surfaces. Theorem 2.1(ii) readily
follows from the following statement.

Lemma 2.3. For each θ ∈ Diff(S1), we have

Nγ◦θ = sign(θ̇)Nγ ◦ θ, Vγ◦θ = sign(θ̇)Vγ ◦ θ.

Proof. The statement concerning the normal vector Nγ is clear. Since the
Finsler metric F is 1-homogeneous in the fibers TxM , we have Fv(x, λv) =
Fv(x, v) for all λ > 0. Moreover, we have Fx(x, λv) = λFx(x, v), Fxv(x, λv) =
Fxv(x, v), Fvv(x, v) = λFvv(x, λv). Therefore, if we set r = θ(u),

Vγ◦θ(u) :=

(
d
duFv(γ(θ(u)), γ̇(θ(u))) − θ̇(u)Fx(γ(θ(u)), γ̇(θ(u)))

)
Nγ◦θ(u)

‖γ̇(θ(u))‖ |θ̇(u)|

=
θ̇(u)

(
d
dr Fv(γ(r), γ̇(r)) − Fx(γ(r), γ̇(r))

)
Nγ◦θ(u)

‖γ̇(r)‖ |θ̇(u)|

= sign(θ̇(u))

(
d
drFv(γ(r), γ̇(r)) − Fx(γ(r), γ̇(r))

)
Nγ(r)

‖γ̇(r)‖
= sign(θ̇(s))Vγ(θ(u)).

�
2.2. The anti-gradient of the length

The space Emb(S1,M), equipped with the C∞ topology, is a Fréchet mani-
fold (indeed, it is an open subset of the Fréchet manifold C∞(S1,M)). The
tangent space TγEmb(S1,M) is precisely the space of smooth 1-periodic vec-
tor field X along γ. The length function

L : Emb(S1,M) → (0,∞), L(γ) =
∫ 1

0

F (γ(u), γ̇(u)) du

is Gateaux differentiable (it is actually smooth, but we will not need it
throughout this paper). Its differential can be computed as

dL(γ)X =
∫ 1

0

(
Fx(γ(u), γ̇(u)) − d

duFv(γ(u), γ̇(u))
)
X(u) du. (2.5)

G. De Philippis et al. JFPTA

Reprinted from the journal308



Lemma 2.4. For each a ∈ C∞(S1,R), we have dL(γ)aγ̇ = 0.

Proof. If we set γε(u) := γ(u + εa(u)), we have aγ̇ = ∂εγε|ε=0. Since, for all
|ε| small enough, γε is an embedded curve obtained by reparametrization of
γ, we have L(γε) = L(γ) and dL(γ)aγ̇ = d

dε

∣∣
ε=0

L(γε) = 0. �

The Riemannian metric g introduces an L2 Riemannian metric on
Emb(S1,M) given by

〈〈X,Y 〉〉γ =
∫

S1
g(X(u), Y (u))‖γ̇(u)‖du, ∀X,Y ∈ TγEmb(S1,M). (2.6)

Thanks to the factor ‖γ̇(u)‖ in the integrand, the inner product is invariant
under the action of Diff(S1), i.e.,

〈〈X ◦ θ, Y ◦ θ〉〉γ◦θ = 〈〈X,Y 〉〉γ , ∀θ ∈ Diff(S1). (2.7)

We denote by ∇L the gradient of the length functional with respect to this
inner product. Namely, ∇L(γ) is the 1-periodic vector field along γ defined
by

dL(γ)X = 〈〈∇L(γ),X〉〉γ .

Lemma 2.5. ∇L(γ) = −VγNγ .

Proof. Consider an arbitrary X ∈ TγEmb(S1,M), which we can uniquely
write as X(u) = a(u)γ̇+b(u)Nγ , where b(u) = g(X(u), Nγ(u)). By Lemma 2.4
and Eq. (2.5), we compute

dL(γ)X = dL(γ)aγ̇ + dL(γ)bNγ = dL(γ)bNγ

=
∫ 1

0

(
Fx(γ(u), γ̇(u)) − d

duFv(γ(u), γ̇(u))
)
b(u)N(u) du

=
∫ 1

0

g(−Vγ(u)Nγ(u),X(u)) ‖γ̇(u)‖du.

�

Therefore, the curve shortening equation (2.1) can be seen as the anti-
gradient flow equation of L associated to the L2-Riemannian metric on
Emb(S1,M), i.e.,

∂tγt = −∇L(γt). (2.8)

The invariance (2.7), together with Lemma 2.5, provides an alternative proof
of Lemma 2.3. Moreover, if a solution γt is well defined for t ∈ [a, b], then

L(γa) − L(γb) =
∫ b

a

‖∇L(γt)‖2dt =
∫ b

a

∫
S1

Vγt
(u)2 ‖γ̇t(u)‖du dt. (2.9)

It is well known that the closed geodesics of (M,F ) are critical points of L,
that is, those γ such that Vγ ≡ 0. Therefore, ∂tL(γt) ≤ 0 with equality if and
only if γt is a closed geodesic of (M,F ). This settles Theorem 2.1(iii).
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Remark 2.6. (Alternative curve shortening) The PDE (2.1) of the curve short-
ening is not canonically associated to the Finsler metric F , as it also involves
the auxiliary Riemannian metric g. This choice of curve shortening semi-flow
turns out to be the most convenient for the later computations. Alternatively,
one could also study a curve shortening semi-flow whose definition does not
involve an auxiliary Riemannian metric: this is done by replacing, in (2.8),
the gradient ∇ with the one induced by the following Riemannian metric on
Emb(S1,M)

〈〈X,Y 〉〉′
γ =

∫
S1

F (γ(u), γ̇(u))
(

1
2F 2

)
vv

(γ(u), γ̇(u))[X(u), Y (u)] du,

∀X,Y ∈ TγEmb(S1,M).

For each v ∈ TqM , we define vF to be the positive orthogonal to v with
respect to the inner product (F 2)vv(q, v)[·, ·] with norm F (q, vF ) = F (q, v).
If we set

Zγ(u) :=

(
d
duFv(γ(u), γ̇(u)) − Fx(γ(u), γ̇(u))

)
γ̇(u)F

F (γ(u), γ̇(u))
,

the alternative curve shortening semi-flow is precisely given by

∂tγt(u) =
Zγt

(u)
F (γt(u), γ̇t(u))

γ̇t(u)F .

�

2.3. Short-time existence

To prove Theorem 2.1(i), it is convenient to work in suitable local coordinates
around a fixed curve γ0 ∈ Emb(S1,M). We denote by exp : TM → M the
exponential map of (M, g). There exists ρ > 0 and an open set U ⊂ M of
γ0(S1) such that the map

ξ : S1 × (−ρ, ρ) → U, ξ(u, r) = expγ0(u)(r Nγ0(u))

is a diffeomorphism.
We define the smooth map

Ξ : C∞(S1, (−ρ, ρ)) → Emb(S1,M), Ξ(z)(u) = ξ(u, z(u)).

Let us show that this map is open and injective. We first define the vector
field N on U by

N(ξ(u, r)) =
d
dr

ξ(u, r) = d expγ0(u)(r Nγ0(u))Nγ0(u),

and notice that ‖N(q)‖ = 1 for all q ∈ U . Thus, we have dΞ(z)w = W , where

W (u) = w(u)N(Ξ(z)(u)),

and this latter vector field along Ξ(z) is non-zero provided the function w is
non-zero. Hence Ξ is an immersion. Clearly, Ξ is injective, for ξ is a diffeo-
morphism. Finally, the equality

dist(Ξ(z)(u), γ0(u)) = |z(u)|, ∀z ∈ C∞(S1, (−ρ, ρ)), u ∈ S1

implies that Ξ is an open map onto its image.
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Since Diff(S1) acts freely on Emb(S1,M), the map

Ψ : C∞(S1, (−ρ, ρ)) × Diff(S1) → Emb(S1,M),
Ψ(z, θ)(u) = Ξ(z)(θ(u)) = expγ0(θ(u))

(
z(θ(u))Nγ0(θ(u))

)
is open and injective onto a neighborhood of γ0. The differential of Ψ is given
by

dΨ(z, θ)(v, τ) = V,

where

V (u) = v(θ(u))N(Ψ(z, θ)(u)) + τ(θ(u))Ξ(z)·(θ(u)).

Here, we have denoted Ξ(z)·(u) := ∂
∂uΞ(z)(u)

The map Ψ pulls-back the L2 inner product (2.6) to

〈〈〈(v, τ), (w, σ)〉〉〉(z,θ)

:= 〈〈dΨ(z, θ)(v, τ),dΨ(z, θ)(w, σ)〉〉Ψ(z,θ)

=
∫

S1

(
v(u)w(u) + v(u)σ(u) az(u) + w(u) τ(u) az(u)

+ τ(u)σ(u) bz(u)2
)

bz(u) du,

where

az(u) := g(N(Ξ(z)(u)),Ξ(z)·(u)),

bz(u) := ‖Ξ(z)·(u)‖.

Notice that this inner product is actually independent of θ ∈ Diff(S1), and
therefore, we will simply write

〈〈〈(v, τ), (w, σ)〉〉〉(z,θ) = 〈〈〈(v, τ), (w, σ)〉〉〉z. (2.10)

To write expressions in local coordinates, let us pull-back the Finsler
metric F by ξ. We obtain the Finsler metric G := ξ∗F on S1 × (−ε, ε) given
by

G(q, v) = F (ξ(q),dξ(q)v), ∀q ∈ S1 × (−ρ, ρ), v ∈ R2.

The composition of the length functional L with Ψ reads

L ◦ Ψ(z, θ) = L ◦ Ξ(z) =
∫

S1
F

(
d
duΞ(z)(u)

)
du

=
∫

S1
G((u, z(u))︸ ︷︷ ︸

q

, (1, ż(u))︸ ︷︷ ︸
v

) du.

Let us compute the derivative

d(L ◦ Ξ)(z)w =
∫

S1

(
Gq2 w + ∂v2Gẇ

)
du

=
∫

S1

(
Gq2 − Gq1v2 − Gq2v2 ż − Gv2v2 z̈

)
w du. (2.11)
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We denote by (vz, τz) := ∇(L ◦ Ψ)(z) the gradient of L ◦ Ψ with respect to
the inner product (2.10), i.e.,

〈〈〈(vz, τz), (w, σ)〉〉〉z = d(L ◦ Ψ)(z, θ)(w, σ).

Since L ◦ Ψ(z, θ) is independent of θ ∈ Diff(S1), we have

0 = 〈〈〈(vz, τz), (0, σ)〉〉〉z =
∫

S1

(
vz(u) az(u) bz(u) + τz(u) bz(u)3

)
σ(u) du,

which implies that

τz(u) = −vz(u)
az(u)
bz(u)2

, ∀u ∈ S1.

On the other hand, we have

〈〈〈(vz, τz), (w, 0)〉〉〉z =
∫

S1

(
vz(u) + τz(u) az(u)

)
bz(u)w(u) du

=
∫

S1

(
1 − az(u)2

bz(u)2

)
vz(u) bz(u)w(u) du

= d(L ◦ Ξ)(z)w. (2.12)

Notice that the quotient az(u)/bz(u) is well defined. Indeed, the curve s 	→
Ξ(z)(u) is transverse to the vector field N , and therefore

az(u)2

bz(u)2 = g
(
N(Ξ(z)(u)), Ξ(z)·(u)

|Ξ(z)·(u)|Ξ(z)(u)

)2
< 1.

Equations (2.11) and (2.12) imply that

vz =
(
1 − a2

z

b2z

)−1

bz(u)−1
(
Gq2 − Gq1v2 − Gq2v2 ż − Gv2v2 z̈

)
.

The integral curves of the anti-gradient −∇(L ◦ Ξ) are solutions

(z, θ) : [0, T ) × S1 → (−ρ, ρ) × S1

of the partial differential equation

∂t(z, θ) = (−vz, vza/b2). (2.13)

In particular, z is a solution of the partial differential equation

∂tz = bz

b2z−a2
z

(
Gv2v2 ∂2

uz + Gq2v2 ∂uz + Gq1v2 − Gq2

)
. (2.14)

Since G is a Finsler metric, the second derivative Gvv(q, v) is positive semi-
definite and its kernel is generated by v. Therefore, Gv2v2((u, z(u)), (1, ż(u))) �=
0, and (2.14) is a parabolic partial differential equation. The local theory for
this class of equations (see, e.g., [35]) provides the following statement.

Proposition 2.7. For each z0 ∈ C∞(S1, (−ρ, ρ)), there exists ε > 0 and a
unique smooth solution z : [0, ε) × S1 → (−ρ, ρ) of (2.14) such that z(0, ·) =
z0. Moreover, z depends continuously on the initial condition z0 in the C∞

topology. �
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Assume that z : [0, ε) × S1 → (−ρ, ρ) is the smooth solution given by
Proposition 2.7. Up to reducing ε > 0, we can easily find a smooth θ : [0, ε)×
S1 → S1 such that (z, θ) is a solution of the curve shortening equation (2.13)
with θ(0, ·) = id. Indeed, for each s ∈ S1, such a θ is the unique smooth
solution of the ordinary differential equation

∂tθ(t, s) = −τz(θ(t, s)).

The smooth map

γ : [0, ε) × S1 → M, γ(t, s) = Ψ(z(t, ·), θ(t, ·))(s) = ξ(θ(t, s), z(t, θ(t, s)))

is thus the unique smooth solution of the curve shortening equation (2.1) with
γ(0, ·) = Ξ(z) = γ0. Summing up, we have proved the following statement,
which implies Theorem 2.1(i).

Theorem 2.8. (Local existence and uniqueness) For each γ0 ∈ Emb(S1,M),
there exists ε > 0 and a unique smooth solution γ : [0, ε) × S1 → M of the
curve shortening equation (2.1) such that γ(0, ·) = γ0. Moreover, γ depends
continuously on the initial condition γ0 in the C∞ topology. �

2.4. Long-time existence

We denote by SM the unit tangent bundle of M with respect to the auxiliary
Riemannian metric g, i.e.,

SM =
{
(x, v) ∈ TM

∣∣ ‖v‖ = 1
}
. (2.15)

To prove that φ is well defined as a map onto Emb(S1,M), and that there
is long-time existence of solutions of the curve shortening equation (Theo-
rem 2.1(iv)), it suffices to show that the factor wt in the right-hand side
of (2.1) can be expressed by means of a suitable smooth function

V : R × SM → R, V (κt(u), γt(u), τt(u)),

and invoke the general results of Angenent [3] and Oaks [39]. Here, κt de-
notes the Riemannian curvature of γt measured with respect to the auxiliary
Riemannian metric g, and τt(u) := γ̇t(u)/‖γ̇t(u)‖ its unit tangent vector. By
expanding the definition of wt, we have

wt =

(
d
duFv(γt, γ̇t) − Fx(γt, γ̇t)

)
nt

‖γ̇t‖
= Fvv(γt, τt)[γ̈t/‖γ̇t‖2, nt] + Fxv(γt, τt)[τt, nt] − Fx(γt, τt)nt.

Since Fvv(x, v)v = 0, the first summand in the last line can be rewritten as

Fvv(γt, τt)[γ̈t/‖γ̇t‖2, nt] = Fvv(γt, τt)[nt, nt] g(γ̈t/‖γ̇t‖2, nt)

= Fvv(γt, τt)[nt, nt]κt − Fvv(γt, τt)[nt, nt]g(Γγt
[τt, τt], nt).

Here,

Γx[v, w] = Γk
ij(x)viwj∂xk

,
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where Γk
ij are the Christoffel symbols of the metric g with respect to the

local coordinates employed in the above expression. Inserting this into the
expression of wt, we obtain

wt = Fvv(γt, τt)[nt, nt]κt − Fvv(γt, τt)[nt, nt]g(Γγt
[τt, τt], nt)

+ Fxv(γt, τt)[τt, nt] − Fx(γt, τt)nt.

Notice that the first summand Fvv(γt, τt)[nt, nt]κt is well defined indepen-
dently of the local coordinates, as Fvv is simply the fiberwise Hessian of F .
Therefore, since wt is also well defined, the remaining summands

−Fvv(γt, τt)[Jτt, Jτt]g(Γγt
[τt, τt], Jτt) + Fxv(γt, τt)[τt, Jτt] − Fx(γt, τt)

are well defined independently of the local coordinates as well. The expression
above shows that wt is of the form wt = V (κt, γt, τt), where V : R×SM → R

is the smooth function

V (κ, x, v) = Fvv(x, v)[Jv, Jv]κ − Fvv(x, v)[Jv, Jv]g(Γx[v, v], Jv)
+Fxv(x, v)[v, Jv] − Fx(x, v)Jv

=: A(x, v)κ + B(x, v). (2.16)

The reversibility of F readily imply that V (κ, x, v) = −V (−κ, x,−v). The
function V thus satisfies in particular the assumptions required in [3,39].
By [4, Theorem 1.3], the map φ takes values inside Emb(S1,M). Finally,
Theorem 2.1(iv) follows from [39, Corollary 6.2].

2.5. L∞ bounds on Vγ

For any γ0 ∈ Emb(S1,M), we will write the corresponding solution of (2.1)
by

γt = φt(γ0)

and its length by

�t := L(γt).

We denote by ∇t, ∇u, and ∇s the covariant derivatives associated with the
Levi-Civita connection of g. It is convenient to introduce the vector field

Ds = ‖γ̇t(u)‖−1∂u

on R × S1, which acts on smooth real-valued functions f : R × S1 → R,
f(t, u) = ft(u) by

Dsft(u) =
∂uft(u)
‖γ̇t(u)‖ .

We recall the classical Frenet formulas from plane Riemannian geometry:

∇uτt = κt‖γ̇t‖nt, ∇unt = −κtγ̇t.

By means of the PDE (2.1), we also have the following formulas.

Lemma 2.9. ∇tτt = (Dswt)nt, ∇tnt = −(Dswt)τt.
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Proof. Let us compute the covariant derivative ∇tτt. Since ‖τt‖ = ‖nt‖ ≡ 1,
we have

g(∇tτt, τt) = g(∇tnt, nt) = g(∇unt, nt) = g(∇uτt, τt) = 0.

Moreover

g(∇tγ̇t, nt) = g(∇u∂tγt, nt) = g(∇u(wtnt), nt) = ẇt,

which readily implies

∇tτt = g(∇tτt, nt)nt =
ẇt

‖γ̇t‖nt = (Dswt)nt,

∇tnt = g(∇tnt, τt)τt = −g(nt,∇tγ̇t)
‖γ̇t‖ τt = − ẇt

‖γ̇t‖τt = −(Dswt)τt.

�
Lemma 2.10. ∂t‖γ̇t(u)‖ = −κt(u)wt(u)‖γ̇t(u)‖.
Proof. By means of the commutativity ∇t∂u = ∇u∂t and of the PDE (2.1),
we compute

∂t‖γ̇t(u)‖ =
g(∇tγ̇t(u), γ̇t(u))

‖γ̇t(u)‖ =
g(∇u∂tγt(u), γ̇t(u))

‖γ̇t(u)‖ =
g(∇u(wtnt), γ̇t(u))

‖γ̇t(u)‖
= wt(u)

g(∇unt, γ̇t(u))
‖γ̇t(u)‖ = −wt(u)

g(∇uγ̇t, nt(u))
‖γ̇t(u)‖

= −κt(u)wt(u)‖γ̇t(u)‖.

�
Lemma 2.11. The curvature κt evolves according to the PDE

∂tκt(u) = D2
swt(u) + wt(u)κ2

t (u) + wt(u)kg(γt(u)),

where kg denotes the Gaussian curvature of (M, g), i.e., kg(x) = g(R(v, Jv)v,
Jv) for all v ∈ SxM .

Proof. The lemma follows by direct computation:

∂tκt = ∂t
g(∇uτt, nt)

‖γ̇t‖
=

(
∂t

1
‖γ̇t‖

)
κt‖γ̇t‖ +

1
‖γ̇t‖g(∇t∇uτt, nt) +

1
‖γ̇t‖ g(∇uτt,∇tnt)︸ ︷︷ ︸

=0

=
κtwt‖γ̇t‖

‖γ̇t‖2
κt‖γ̇t‖ +

1
‖γ̇t‖g(∇u∇tτt, nt) +

1
‖γ̇t‖g(R(γ̇t, ∂tγt)τt, nt)

= wtκ
2
t + D2

swt + wtkg ◦ γt.

�
We set �t := L(γt), and denote by Γt : R/�tZ → M the reparametrized

γt with unit speed with respect to the auxiliary Riemannian metric g. Namely
Γt(s) = γt ◦ σ−1

t (s), where

σt(u) =
∫ u

0

‖γ̇t(r)‖dr,
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and therefore, �t = σt(1). We also set

Wt(s) := wt ◦ σ−1
t (s),

Nt(s) := nt ◦ σ−1
t (s),

Kt(s) := κt ◦ σ−1
t (s). (2.17)

Notice that

Kt(s) = g(∇sΓ̇t, Nt), Wt(s) = V (Kt(s), Γ̇t(s)).

Moreover

Ẇt ◦ σt = Dswt, K̇t ◦ σt = Dsκt.

If f : SM → R is a smooth function, we will denote by ∇hf and ∇vf the
duals of the horizontal and vertical projections, respectively, of its gradient
with respect to the Sasaki metric of SM induced by g. These operators allow
to express ∂twt as

∂twt = (∂κV )∂tκt + (∇hV )∂tγt + (∇vV )∇tτt

= (∂κV )
(
D2

swt + wtκ
2
t + wtkg(γt)

)
+ (∇hV )nt wt + (∇vV )nt Dswt.

We set

A(x, v) := ∂κV (x, v) = Fvv(x, v)[Jv, Jv].

Notice that A is uniformly bounded from below by a positive constant. From
now on, we will consider it evaluated at (γt(u), τt(u)). Notice that AD2

swt =
Ds(ADswt) − (DsA)(Dswt), and

DsA = 1
‖γ̇t‖

(
(∇hA)γ̇t + (∇vA)∇uτt

)
= (∇hA)τt + (∇vA)nt κt.

Therefore, ∂twt can be written as

∂twt = AD2
swt + Awtκ

2
t + B Dswt + C wt

= Ds(ADswt) + Awtκ
2
t + E Dswt + H κtDswt + C wt,

where B, C, E, and H are smooth functions on SM evaluated at (γt(u), τt(u)).
We are now going to employ the open sets U(�, ε) defined in (1.4).

Lemma 2.12. For all � > 2ρ0, there exists a constant c ≥ 1 with the following
properties: for all ε > 0 small enough, γ0 ∈ Emb(S1,M), and t ≥ 0 such that

‖W0‖L2 ≤ ε, � − ε2 ≤ �t ≤ �0 ≤ � + ε2,

we have ‖Wt‖L2 ≤ c ε.

Proof. We require ε > 0 to be small enough so that �−ε2 > 2ρ0, where ρ0 > 0
is the constant fixed in (2.2). We consider an arbitrary γ0 ∈ Emb(S1,M) such
that ‖W0‖L2 ≤ ε and �0 ∈ (�− ε2, �+ ε2), and its evolution γt. We recall that
the corresponding wt has the form wt = V (κt, γt, τt), where τt := γ̇t/‖γ̇t‖.
We compute

∂t‖Wt‖2
L2 =

∫ 1

0

(
2wt (∂twt) σ̇t + w2

t (∂tσ̇t)
)
du
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=
∫ 1

0

(
2wt Ds(ADswt) + 2Aw2

t κ2
t + 2E wt Dswt + 2H κtwtDswt

+ 2Cw2
t − κtw

3
t

)
σ̇t du

=
∫ �t

0

(
− 2A(Ẇt)2 + 2AW 2

t K2
t + 2EWtẆt + 2HKtWtẆt

+ 2CW 2
t − KtW

3
t

)
ds.

From now on, we will denote by c ≥ 1 a positive constant (independent of
γt), that may increase along the different inequalities. The above expression
for ∂t‖Wt‖2

L2 readily implies

∂t‖Wt‖2
L2 ≤ −c−1‖Ẇt‖2

L2 + c
(‖WtẆt‖L1 + ‖KtWtẆt‖L1 + ‖W 2

t K2
t ‖L1

+‖KtW
3
t ‖L1 + ‖Wt‖2

L2

)
. (2.18)

By the Peter–Paul inequality, for every ρ > 0, the term ‖WtẆt‖L1 can
be bounded as

‖WtẆt‖L1 ≤ ρ2‖Ẇt‖2
L2 + 1

4ρ2 ‖Wt‖2
L2 ,

and the term ‖KtWtẆt‖L1 as

‖KtWtẆt‖L1 ≤ ρ2‖Ẇt‖2
L2 + 1

4ρ2 ‖KtWt‖2
L2

≤ ρ2‖Ẇt‖2
L2 + 1

4ρ2 ‖Kt‖2
L∞‖Wt‖2

L2 .

We will fix a sufficiently small constant ρ > 0 so that, in the inequality (2.18),
the term −c−1‖Ẇt‖2

L2 will be able to absorb the terms ρ2‖Ẇt‖2
L2 , still pro-

ducing a negative factor in front of ‖Ẇt‖2
L2 .

Equation (2.16) readily implies that the curvature Kt is related to Wt

by Kt = A−1Wt + P , where, once again, P is a smooth function on SM
evaluated at (Γt(s), Γ̇t(s)). Therefore, ‖Kt‖L∞ ≤ c (‖Wt‖2

L∞ + 1).
Inserting these estimates in (2.18), we obtain

∂t‖Wt‖2
L2 ≤ c‖Wt‖2

L2 + c‖Wt‖2
L∞‖Wt‖2

L2 − c−1‖Ẇt‖2
L2 .

We require c > 0 to be large enough so that, since � − ε2 ≤ �t ≤ � + ε2, we
have

c−1 ≤ �t ≤ c.

If we bound from above the term −c−1‖Ẇt‖2
L2 by means of the inequality

‖Wt‖2
L∞ ≤ 2�−1

t ‖Wt‖2
L2 + 2�t‖Ẇt‖2

L2 ≤ c‖Wt‖2
L2 + c‖Ẇt‖2

L2 ,

we further obtain

∂t‖Wt‖2
L2 ≤ c‖Wt‖2

L2 + c‖Wt‖2
L∞(‖Wt‖2

L2 − c−1).

We claim that, if ε > 0 is small enough (independently of γ), then
‖Wt‖2

L2 < c−1 for all t ≥ 0 such that �t ≥ � − ε2. Indeed, assume that this is
not the case. If ε2 < 1/c, since ‖W0‖2

L2 ≤ ε2 < c−1, there must be τ > 0 such
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that ‖Wt‖2
L2 < c−1 for all t ∈ [0, τ), ‖Wτ‖2

L2 = c−1, and �τ ≥ � − ε2. For all
t ∈ [0, τ ] we have the inequality ∂t‖Wt‖2

L2 ≤ c‖Wt‖2
L2 , and thus

c−1 = ‖Wτ‖2
L2 ≤ ecτ‖W0‖2

L2 ≤ ecτ ε2.

If ε2 ≤ e−cc−1, then τ ≥ 1. Therefore, since ‖Wτ‖2
L2 ≤ ec(τ−t)‖Wt‖L2 for all

t ∈ [0, τ ], by (2.9) we have

c−1 = ‖Wτ‖2
L2 ≤ ec

∫ τ

τ−1

‖Wt‖2
L2dt = ec(�τ−1 − �τ ) ≤ 2ε2ec,

which is impossible if ε2 < 1/(2ecc).
Summing up, we showed that ∂t‖Wt‖2

L2 ≤ c‖Wt‖2
L2 provided �t ≥ �−ε2,

and therefore

‖Wt‖2
L2 ≤ ect

∫ t

0

‖Wr‖2
L2 dr ≤ ec(�0 − �t) ≤ 2ε2ec,

∀t ≥ 0 such that �t ≥ � − ε2.

�

Lemma 2.13. For all � > 2ρ0, there exists a constant c ≥ 1 with the fol-
lowing properties: for all ε > 0 small enough, γ0 ∈ Emb(S1,M), and t ≥
c log(‖Ẇ0‖2

L2ε−2) such that

‖W0‖L2 ≤ ε, � − ε2 ≤ �t ≤ �0 ≤ � + ε2,

we have ‖Ẇt‖L2 ≤ c ε.

Proof. We require ε > 0 to be small enough so that Lemma 2.12 holds, and
in particular so that �−ε2 > 2ρ0. We consider an arbitrary γ0 ∈ Emb(S1,M)
such that ‖W0‖L2 ≤ ε and �0 ∈ (� − ε2, � + ε2), and its evolution γt. Once
again, we will denote by c ≥ 1 a large enough constant independent of γt and
ε, possibly growing throughout the computations.

We estimate

∂t‖Ẇt‖2
L2 =

∫ 1

0

(
2(Dswt)∂t(Dswt) σ̇t − (Dswt)2κtwtσ̇t

)
du

=
∫ 1

0

(
2(Dswt)∂tẇt + (Dswt)2κtwtσ̇t

)
du

=
∫ 1

0

(
2(Dswt)Ds

(
AD2

swt + Awtκ
2
t + B Dswt + C wt

)

+ (Dswt)2κtwt

)
σ̇tdu

=
∫ �t

0

(
− 2A(Ẅt)2 − 2AẄtWtK

2
t − 2BẄtẆt − CẄtWt

+ (Ẇt)2KtWt

)
ds

≤ −c−1‖Ẅt‖2
L2 + c

(‖ẄtWtK
2
t ‖L1 + ‖ẄtẆt‖L1 + ‖ẄtWt‖L1

+ ‖(Ẇt)2KtWt‖L1

)
.

G. De Philippis et al. JFPTA

Reprinted from the journal318



By employing the Peter–Paul inequality and expressing Kt as an affine func-
tion of Wt, we have

∂t‖Ẇt‖2
L2 ≤ −c−1‖Ẅt‖2

L2 + c
(‖W 3

t ‖2
L2 + ‖W 2

t ‖2
L2 + ‖Wt‖2

L2 + ‖Ẇt‖2
L2

+‖(Ẇt)2W 2
t ‖L1 + ‖(Ẇt)2Wt‖L1

)
= −c−1‖Ẅt‖2

L2 + c
(‖W 6

t ‖L1 + ‖W 4
t ‖L1 + ‖Wt‖2

L2 + ‖Ẇt‖2
L2

+‖(Ẇt)2W 2
t ‖L1 + ‖(Ẇt)2Wt‖L1

)
. (2.19)

We require c > 1 to be large enough so that c−1 ≤ �t ≤ c.
By Lemma 2.12, we have ‖Wt‖2

L2 < c ε2 for all t > 0 such that �t > �−ε2.
We introduce a large constant d ≥ 1 that we will fix later. We introduce the
set

I :=
{
t ∈ [0,∞)

∣∣ �t ≥ � − ε2, ‖Ẇt‖2
L2 ≥ d‖Wt‖2

L2

}
.

and consider t ∈ I. By means of an integration by parts and Cauchy–
Schwarz’s inequality, we have

‖Ẇt‖2
L2 ≤ −

∫ �t

0

WtẄt ds ≤ ‖Wt‖L2‖Ẅt‖L2 ≤ d−1‖Ẇt‖L2‖Ẅt‖L2 ,

and thus

‖Ẇt‖L2 ≤ d−1‖Ẅt‖L2 .

We employ this inequality to bound from above the positive terms in (2.19)
as follows.

‖W 4
t ‖L1 ≤ ‖Wt‖2

L2‖Wt‖2
L∞ ≤ c ε2

(‖Wt‖2
L1 + ‖Ẇt‖2

L1

) ≤ c ε2‖Ẇt‖2
L2 ,

‖W 6
t ‖L1 ≤ ‖Wt‖2

L2‖Wt‖4
L∞ ≤ c ε2

(‖Wt‖4
L1 + ‖Ẇt‖4

L1

)
≤ c ε2

(‖Wt‖4
L1 + ‖WtẄt‖2

L1

) ≤ c ε2
(‖Wt‖4

L1 + ‖Wt‖2
L2‖Ẅt‖2

L2

)
≤ c ε4

(‖Ẇt‖2
L2 + ‖Ẅt‖2

L2

)
,

‖(Ẇt)
2Wt‖L1 ≤ ‖Wt‖L1‖Ẇt‖2

L∞ ≤ c‖Wt‖L2‖Ẅt‖2
L2 ≤ c ε‖Ẅt‖2

L2 ,

‖(Ẇt)
2W 2

t ‖L1 ≤ ‖Wt‖2
L2‖Ẇt‖2

L∞ ≤ c ε2‖Ẅt‖2
L2 .

We require ε > 0 to be small enough so that the negative term −c−1‖Ẅt‖2
L2

can absorb the terms c ε‖Ẅt‖2
L2 , c ε2‖Ẅt‖2

L2 , c ε4‖Ẅt‖2
L2 , thus obtaining

∂t‖Ẇt‖2
L2 ≤ −c−1‖Ẅt‖2

L2 + c‖Ẇt‖2
L2 ≤ (−c−1d + c)‖Ẇt‖2

L2 , ∀t ∈ I.

We now fix d > c2, so that −b := (cd−1 − c−1) < 0 and

∂t‖Ẇt‖2
L2 ≤ −b‖Ẇt‖2

L2 , ∀t ∈ I. (2.20)

Now, consider a time value t ≥ b−1 log(‖Ẇ0‖2
L2ε−2) such that �t ≥ �−ε2.

If [0, t] ⊂ I, then (2.20) and Gronwall’s lemma imply

‖Ẇt‖2
L2 ≤ e−bt‖Ẇ0‖2

L2 ≤ ε2.

If instead [0, t]\I �= ∅, we set t0 := sup([0, t]\I), and we have

‖Ẇt‖2
L2 ≤ e−b(t−t0)‖Ẇt0‖2

L2 ≤ ‖Ẇt0‖2
L2 ≤ d‖Wt0‖2

L2 ≤ dc2ε2.

�
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The analogue of Theorem 1.2(iv) is well known in the classical setting of
Lusternik–Schnirelmann theory: it is based on the fact that a smooth function
drops of at least a fixed amount along a gradient flow line that crosses a given
shell around a critical set at a given level. In the context of the Riemannian
curve shortening semi-flow, the analogous property is claimed1 by Grayson
[20]. We now employ the bounds of Lemmas 2.12 and 2.13 to provide a
complete proof of Theorem 1.2(iv) in our general reversible Finsler setting.

Proof of Theorem 1.2(iv). Let � > 2ρ0 and ε > 0 be given. For any embed-
ded circle γ0 ∈ Emb(S1,M), we denote by γt = φt(γ0) the corresponding
evolution under the curve shortening semi-flow, by �t = L(γt) the length,
and by Wt the associated functions as defined in (2.17). We denote by c ≥ 1
the maximum among the two constants c given by Lemmas 2.12 and 2.13.

Assume now that γ0 ∈ Emb(S1,M) has length �0 ∈ (� − δ, � + δ) for
some constant δ ∈ (0, � − 2ρ0) that we will fix later. We claim that there
exists t0 ∈ [0, 2] such that

�t0 < � − δ or ‖Wt0‖L2 ≤
√

δ.

Indeed, if ‖Wt‖L2 >
√

δ for all t ∈ [0, 2], we have

�2 = �0 −
∫ 2

0

‖Wt‖2
L2dt < �0 − 2δ < � − δ.

By Lemma 2.12, for each t ≥ t0 such that �t ≥ � − δ, we have

‖Wt‖L2 ≤ c
√

δ.

In particular, since t0 ≤ 2, this holds for t = 2. Therefore, we can apply
Lemma 2.13: for each t ≥ 2 + c log(‖Ẇ2‖2

L2c−2δ−1) such that �t ≥ � − δ, we
have

‖Ẇt‖L2 ≤ c2
√

δ,

and in particular

‖Wt‖L∞ ≤ ‖Ẇt‖L1 + min |Wt| ≤ ‖Ẇt‖L1 + �−1
t ‖Wt‖L1

≤ �
1/2
t ‖Ẇt‖L2 + �

−1/2
t ‖Wt‖L2 ≤ (

(� + δ)1/2 + (� − δ)−1/2
)
c2

√
δ;

we now fix δ ∈ (0, � − 2ρ0) small enough so that ε ≥ (
(� − δ)−1/2 + (� +

δ)1/2
)
c2

√
δ, which together with the previous L∞ bound implies γt ∈ U(�, ε).

The desired positive function τ is, therefore, given by

τ : Emb(S1,M)<�+δ → (0,∞), τ(γ0) = 2 + c log(‖Ẇ2‖2
L2c−2δ−1).

�

1Quoted from the last sentence in [20, page 109]: “Any curve leaving a small neighborhood
of a geodesic shortens a fixed amount before moving very far.”
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2.6. Compactness

Finally Theorem 1.2(v) will be a consequence of the following compactness
result. We denote by PTM → M the projectivized tangent bundle of M ,
whose fiber over any x ∈ M is the real projective space

P(TxM) =
TxM\{0}

∼ ,

where v ∼ λv for all v ∈ TxM\{0} and λ ∈ R.

Lemma 2.14. Let K ⊆ PTM be a compact subset. If no element of K is
tangent to a simple closed geodesic of (M,F ) of length �, then for all ε > 0
small enough no element in K is tangent to some curve γ ∈ U(�, ε).

Proof. If the Lemma does not hold, then there exists a sequence γn ∈ U(�, 1/n)
such that F (γn, γ̇n) ≡ L(γn) and [γ̇n(0)] ∈ K. The lifted curves (γn, γ̇n/L(γn))
are contained in the Finsler unit tangent bundle {(x, v) ∈ TM | F (x, v) = 1},
which is a compact subset of TM . We consider the function Vγ defined
in (1.2). Since ‖Vγn

‖L∞ < 1/n → 0 as n → ∞, the sequence γn is bounded
in the C2-topology. Therefore, up to a subsequence, γn converges in the C1-
topology to some γ such that F (γ, γ̇) ≡ L(γ) = � and γ̇(0) ∈ K. Now,
consider the Finsler energy

E : W 1,2(S1,M) → [0,∞), E(ζ) =
∫

S1
F (ζ(u), ζ̇(u))2 du,

Since each γn has constant speed, we have

dE(γn)X = 2
∫

S1
F (γn(u), γ̇n(u))

(
Fx(γn(u), γ̇n(u))

− d
duFv(γn(u), γ̇n(u))

)
X(u) du

= 2L(γn) dL(γn)X = 2L(γn)∫
S1

Vγn
(u) g(Nγn

(u),X(u)) ‖γ̇n(u)‖g du.

This, together with ‖Vγn
‖L∞ → 0 and the fact that E is a C1,1 function,

readily implies that the limit curve γ is a critical point of E, and therefore,
a closed geodesic. To reach a contradiction, we simply have to show that γ is
simple closed.

On an orientable reversible Finsler surface, a closed geodesic that is
the C1-limit of embedded circles is itself simple. Indeed, γ cannot have a
transverse self-intersection, for the same would be true for γn for n large
enough. Moreover, γ cannot have a self-tangency with opposite orientation,
i.e., of the form γ(u1) = γ(u2) and γ̇(u1) = −γ̇(u2) for some u1 < u2; indeed,
since F is reversible, we would have γ̇(u1 + r) = γ̇(u2 − r) for all r > 0,
and then γ̇(u1+u2

2 ) = 0, contradicting the fact that γ is a geodesic. Finally, γ
cannot be an iterated curve, i.e., of the form γ(u) = ζ(mu) for some simple
closed geodesic ζ : S1 → M and m ≥ 2; otherwise, since M is an orientable
surface, a tubular neighborhood of ζ would be diffeomorphic to the annulus
S1 × (−1, 1), ζ being its zero section S1 × {0}; any closed curve sufficiently
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C1-close to γ would wind m ≥ 2 times around the annulus S1 × (−1, 1), and
therefore, would have self-intersections. �

Proof of Theorem 1.2(v). By choosing K = PTM in Lemma 2.14, we infer
that, for each � ∈ [�1, �2], there exists ε > 0 such that U(�, ε) = ∅; notice that
this readily implies that U(�′, ε/

√
2) = ∅ for all �′ ∈ [� − 1

2ε2, � + 1
2ε2]. Theo-

rem 1.2(v) is a direct consequence of this fact, together with Theorem 1.2(iv)
and the compactness of the interval [�1, �2].

3. Existence of simple closed geodesics

3.1. Lusternik–Schnirelmann theory

Let (M,F ) be a closed, orientable, reversible, Finsler surface. We consider the
space of embedded loops Emb(S1,M) and the space of circle diffeomorphisms
Diff(S1), both endowed with the C∞ topology. We introduce the space of
unparametrized embedded loops

Π =
Emb(S1,M)

Diff(S1)
,

endowed with the quotient topology. Here, Diff(S1) acts by reparametrization
on Emb(S1,M). From now on, the length functional (1.1) will be considered
as a continuous function on Π, i.e.,

L : Π → [0,∞).

For any subset W ⊂ Π and � ∈ (0,∞], we set

W<� := {γ ∈ W | L(γ) < �}. (3.1)

Throughout this paper, we shall denote by H∗( · ;F) the singular homology
with coefficients in a field F; we shall remove F from the notation whenever
the arguments will not require a specific field. If σ is a singular chain in Π, we
denote by supp(σ) its support, which is a compact subset of Π. Each non-zero
homology class h ∈ H∗(Π<b,Π<a), where 0 < a < b ≤ ∞, defines a min-max
value

�(h) := inf
[σ]=h

max L|supp(σ) ∈ [a, b).

Such value turns out to be the (positive) length of a simple closed geodesic
of (M,F ). This will be a rather direct consequence of the existence of the
semi-flow of Theorem 1.2 and of the following statement. We will employ
the open subsets U(�, ε) ⊂ Emb(S1,M) defined in (1.4), which depend on an
auxiliary Riemannian metric g on M . Since such open subsets are invariant
under the action of Diff(S1), we can consider their quotients

W(�, ε) :=
U(�, ε)

Diff(S1)
,

which are open subset in Π.
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Lemma 3.1. For each non-zero h ∈ H∗(Π<b,Π<a), the associated min-max
� = �(h) is the length of a simple closed geodesic of (M,F ). For each ε > 0,
there exists δ ∈ (0, ε2) such that h can be represented by a relative cycle σ
with

supp(σ) ⊂ Π<�−δ ∪ W(�, ε). (3.2)

Moreover, if there are only finitely many simple closed geodesics with length
in (�− ε2, �+ ε2), there exists a simple closed geodesic γ of length � such that,
if we denote by V(γ, ε) the connected component of W(�, ε) containing γ,
the inclusion induces a non-zero homomorphism H∗(V(γ, ε),V(γ, ε)<�−δ) →
H∗(Π,Π<�).

Proof. We set ρ0 := a/3, and consider the semi-flow ψt of Theorem 1.2. Since,
by Theorem 1.2(ii), ψt is equivariant with respect to the action of Diff(S1),
it induces a well-defined continuous semi-flow on the quotient of its domain,
which we still denote by ψt : Π → Π. Given ε > 0, we consider the associated
δ ∈ (0, ε2) provided by Theorem 1.2(iv). By the definition of the min-max
value � := �(h), we can find a relative cycle σ representing h and such that
max L|supp(σ) < �+δ. For each t > 0, the relative cycle (ψt)∗σ still represents
h. Since supp(σ) is compact, Theorem 1.2(iv) implies that, if we choose t > 0
large enough, we have supp((ψt)∗σ) ⊂ Π<�−δ ∪ W(�, ε). This proves (3.2).

Now, assuming by contradiction that � is not the length of a simple
closed geodesic of (M,F ), by choosing K = PTM in Lemma 2.14 we would
have that W(�, ε) = ∅ for all ε > 0 small enough. However, by the result
of the previous paragraph, this would allow us to find a relative cycle σ
representing h and such that supp(σ) ⊂ Π<�−δ, contradicting the definition
of � = �(h).

We are left to prove the moreover part of the statement. For that, notice
that we can assume that ε > 0 is arbitrarily small (if the theorem holds for
some ε, it also holds for larger values of ε). In particular, we assume that
ε is small enough so that, by our assumptions, there are only finitely many
simple closed geodesics γ1, . . . , γk with length in the interval [� − ε2, � + ε2],
and they all have length �. We denote by Vε,i the connected component of
Wε := W(�, ε) containing γi. If needed, we further lower ε > 0, so that
Vε,i ∩ Vε,j = ∅ if i �= j. We set

Vε := Vε,1 ∪ · · · ∪ Vε,k.

We can also lower δ > 0 so that a ≤ �− δ. The inclusions induce the commu-
tative diagram

H∗(Π<�−δ ∪ Wε,Π<a) H∗(Π,Π<a)

H∗(Π<�−δ ∪ Wε,Π<�−δ) H∗(Π,Π<�)

H∗(Wε,W<�−δ
ε )

i∗

j∗

∼=
k∗
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The homology class h is contained in the image of i∗ according to (3.2),
and the lower vertical arrow is an isomorphism by excision. Moreover, by
the very definition of the min-max value � = �(h), we have that j∗(h) �= 0.
Overall, this shows that the homomorphism k∗ is non-zero.

We set W ′
ε := Wε\(Vε,1 ∪ · · · ∪ Vε,k), and claim that

ε′ := inf
{‖Vγ‖L∞

∣∣ γ ∈ W ′
ε

}
> 0,

where Vγ is the function defined in (1.2). Otherwise, we could find a sequence
γn ∈ W ′

ε with ‖Vγn
‖L∞ < 1/n. As in the proof of Lemma 2.14, one can easily

show that, up to extracting a subsequence, γn converges to a simple closed
geodesic γ with length L(γ) ∈ [� − ε2, � + ε2]. But this would imply that
Vγ ≡ 0 and L(γ) = �, and thus that γ ∈ Vε,1 ∪ · · · ∪ Vε,k, which is impossible
since γn ∈ W ′

ε for all n ∈ N.
Notice that Wε′ ⊂ Vε, and once again the inclusion induces a non-zero

homomorphism H∗(Wε′ ,W<�−δ
ε′ ) → H∗(Π,Π<�), and therefore, a non-zero

homomorphism
k⊕

i=1

Hd(Vε,i,V<�−δ
ε,i ) → Hd(Π,Π<�).

We denote by Iε ⊆ {1, . . . , k} the subset of those i such that the homomor-
phism Hd(Vε,i,V<�−δ

ε,i ) → Hd(Π,Π<�) is non-zero. Notice that Iε1 ⊆ Iε2 if
0 < ε1 < ε2. Therefore, there exists

i ∈
⋂

ε∈(0,ε0]

Iε,

and the simple closed geodesic γi satisfies the desired properties. �

Assume now to have a homology class h ∈ Hd+i(Π,Π<ρ) and a coho-
mology class w ∈ Hi(Π) whose cap product w � h ∈ Hd(Π,Π<ρ) is non-zero.
Given any relative cycle σ representing h we can produce a relative cycle σ′

representing w � h and such that supp(σ′) ⊂ supp(σ). This readily implies
that

�(w � h) ≤ �(h).

We can now state a version of the classical Lusternik–Schnirelmann theorem
for the length functional.

Theorem 3.2. If w � h �= 0 and �(w � h) = �(h), then for every ε > 0 we
have w|W(�(h),ε) �= 0 in H∗(W(�(h), ε)).

Proof. Let ε > 0 be given, and set � := �(h) and W := W(�, ε). By Lemma 3.1,
h can be represented by a relative cycle σ such that supp(σ) ⊂ W ∪ Π<�. By
applying sufficiently many barycentric subdivisions to the singular simplexes
in σ, we can assume that the relative cycle decomposes as σ = σ′ +σ′′, where
σ′ and σ′′ are chains with supp(σ′) ⊂ Π<� and supp(σ′′) ⊂ W. Let w ∈ H∗(Π)
be a cohomology class such that w|W = 0 in H∗(W) and w � h �= 0. The
cohomology long exact sequence of the pair W ⊂ Π provides a relative cocycle
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μ representing w that vanishes on all singular simplexes contained in W. This
implies

w � h = [μ � (σ′ + σ′′)] = [μ � σ′].

Namely, w � h is represented by the relative cycle μ � σ′ whose support is
contained in the sublevel set Π<�, which implies that �(w � h) < �.

3.2. Topology of the space of embedded circles on the 2-sphere

Once the results of the previous subsection are established, the proofs of
points (i) and (ii) in Theorem 1.3 are analogous to ones of the Riemannian
case in [37]. In this subsection, we provide the arguments for the reader’s
convenience. We will adopt the notation of the previous section, with M
equal to the unit sphere S2 ⊂ R3. It will be crucial to consider the singular
homology H∗ with coefficients in Z2 = Z/2Z, and therefore, we will specify
the coefficients in the notation.

We first recall, from [6,37], some basic information concerning the topol-
ogy of the space of its unparametrized embedded loops Π. It is convenient
to slightly enlarge this space as follows: we denote by Π0 the space of con-
stant loops on S2, and set Π := Π ∪ Π0. We endow Π with the quotient
C∞-topology as a subspace of C∞(S1,M)/Diff(S1). The relevant topology
of Π, at least for what concerns the application to Theorem 1.3, is provided
by the subspace of round circles. More precisely, let

E =
{
([x], λx) ∈ RP2 × R3 | x ∈ S2, λ ∈ [−1, 1]

}
.

Namely, E is the total space of the canonical line bundle π : E → RP2 with
fiber [−1, 1]. We consider the embedding

ι : E → Π, ι(e) = γe,

where, if e = ([x], y), γe ∈ Π is the (possibly constant) loop in the intersection
of S2 with the affine plane orthogonal to x and passing through y. The
fundamental group of this space is

π1(E) ∼= π1(RP2) ∼= Z2.

Its cohomology ring with Z2 coefficient is given by

H∗(E;Z2) = Z2[u]/(u3),

where u is the generator of H1(E;Z2) ∼= H1(RP2;Z2) ∼= Z2. Moreover, by
the Thom isomorphism theorem,

H∗(E, ∂E;Z2) ∼= H∗−1(E;Z2) = 〈v, v � u, v � u2〉,
where v ∈ H1(E, ∂E) denotes the Thom class of the bundle π : E → RP2.
Since we work with Z2 coefficients, the homology is simply the dual of the
cohomology, and in particular, there exists k3 ∈ H3(E, ∂E;Z2) such that
(v � u2)k3 = 1. Therefore, we also have the classes k2 := u � k3 and
k1 := u � k2, and overall we have

H∗(E, ∂E;Z2) = 〈k1, k2, k3〉.
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Lemma 3.3. The map ι induces injective homomorphisms

ι∗ : π1(E) ↪→ π1(Π), ι∗ : H1(E;Z2) ↪→ H1(Π;Z2),

and a surjective homomorphism

ι∗ : H1(Π;Z2) � H1(E;Z2).

Proof. We introduce the following double covering map p : C → Π. The
preimage of an embedded circle γ ∈ Π is the two-element set p−1(γ) =
{D1,D2}, where D1 and D2 are the connected components of S2\γ; namely,
p−1(Π) is the space of the interiors of embedded compact disks in S2. The
preimage of a constant γ ∈ Π0 is the two-element set p−1(γ) = {∅γ , S2\γ};
intuitively, ∅γ is the “empty filling disk” of the constant γ. The space C,
endowed with the obvious topology, makes p : C → Π a covering map.

Notice that both E and Π are path-connected. We fix an arbitrary base-
point e0 = ([x0], 0) ∈ E and a corresponding base-point γe0 := ι(e0) ∈ Π for
the fundamental groups of E and Π, respectively. We define a homomorphism

A : π1(Π) → Z2

as follows. For any continuous path μ : [0, 1] → Π such that μ(0) = μ(1) =
γe0 , we consider an arbitrary continuous lift μ̃ : [0, 1] → C, i.e., p ◦ μ̃ = μ.
The homomorphism A is defined by

A([μ]) =
{

0, if μ̃(0) = μ̃(1),
1, if μ̃(0) �= μ̃(1).

For the generator k ∈ π1(E) ∼= Z2, we readily see that A◦ ι∗(k) = 1. Namely,
the composition

A ◦ ι∗ : π1(E)
∼=−→Z2

is an isomorphism. In particular, ι induces an injective homomorphism

ι∗ : π1(E) ↪→ π1(Π).

Since Z2 is abelian, the commutator subgroup [π1(Π), π1(Π)] is contained in
the kernel of A. This readily implies that ι induces an injective homomor-
phism

ι∗ : H1(E;Z2) ↪→ H1(Π;Z2).

Indeed, we have

H1(E;Z2) ∼= π1(E, e0) ∼= Z2, H1(Π;Z2) ∼= π1(Π)
[π1(Π), π1(Π)]

⊗ Z2.

Assume by contradiction that ι∗(k) = 0 in H1(Π;Z2), where k is the gen-
erator of π1(E, e0) ∼= H1(E;Z2). This is equivalent to ι∗(k) = a ∗ a ∗ b in
π1(Π) for some a ∈ π1(Π) and b ∈ [π1(Π), π1(Π)]; here, ∗ denotes the group
multiplication in π1(Π). However, this implies A ◦ ι∗(k) = 2A(a) + A(b) = 0,
contradicting the fact that A ◦ ι∗ is an isomorphism.

Finally, since the homomorphism ι∗ : H1(E;Z2) ↪→ H1(Π;Z2) is injec-
tive, its dual ι∗ : H1(Π;Z2) � H1(E;Z2) is surjective. �
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We fix, once for all, a cohomology class w ∈ H1(Π;Z2) such that
ι∗w = u. Since ∂E = Π0

∼= S2 is simply connected, the long exact se-
quence of homology groups readily implies that H1(E, ∂E;Z2) ∼= H1(E;Z2)
and H1(Π,Π0;Z2) ∼= H1(Π;Z2). This, together with Lemma 3.3, implies that
ι induces an injective homomorphism of relative homology groups

ι∗ : H1(E, ∂E;Z2) ↪→ H1(Π,Π0;Z2).

Therefore, ι∗k2 and ι∗k3 are both non-zero in H∗(Π,Π0;Z2), since

w2 � ι∗k3 = w � ι∗(u � k3) = w � ι∗k2 = ι∗(u � k2) = ι∗k1 �= 0.

Now, let us get rid of the space of constant curves Π0. We recall that
the systole sys(S2, F ) is the length of the shortest closed geodesic of (S2, F ).

Lemma 3.4. For all ρ ∈ (0, sys(S2, F )), the inclusion Π0 ⊂ Π<ρ is a homo-
topy equivalence. Therefore, the inclusions induce the homology isomorphisms

H∗(Π,Π0;Z2)
j∗−→∼= H∗(Π,Π<ρ;Z2)

l∗←−∼= H∗(Π,Π<ρ;Z2).

Proof. We fix ρ = ρ2 ∈ (0, sys(S2, F )). We claim that, for any ρ1 ∈ (0, ρ2),
the inclusion Π<ρ1 ⊂ Π<ρ2 is a homotopy equivalence. Indeed, since there are
no simple closed geodesics of (S2, F ) with length in [ρ1, ρ2], Theorem 1.2(v)
with choice of parameter ρ0 ∈ (0, ρ1/2) implies that there exists a continuous
function τ : Π<ρ2 → (0,∞) and a continuous map

κ : Π<ρ2 → Π<ρ1 , κ(γ) := ψτ(γ)(γ).

The map κ is a homotopy inverse of the inclusion Π<ρ1 ⊂ Π<ρ2 .
We consider S2 as the unit sphere in R3, equipped with its round metric

g0 induced by the Euclidean metric of R3. We denote by ‖ · ‖ the Euclidean
norm on R3, and by expx the exponential maps of (S2, g0). We fix a suffi-
ciently large constant a ≥ 1 so that

a−1‖v‖ ≤ F (x, v) ≤ a‖v‖, ∀(x, v) ∈ TS2.

If ρ1 > 0 is small enough, each γ ∈ Π<ρ2 has average outside the origin;
namely, if we parametrize γ with constant speed F (γ, γ̇) ≡ L(γ), we have∫

S1
γ(u) du �= 0.

We denote by π : R3\{0} → S2 the radial projection π(x) = x/‖x‖, and set

γ̂ := π

(∫
S1

γ(u) du

)
∈ S2.

Notice that

max
u∈S1

‖γ(u) − γ̂‖ ≤ aL(γ) < aρ1. (3.3)

For each x ∈ S2, we set

Bx :=
{
v ∈ TxS2

∣∣ ‖v‖ < π
}
, Ux := expx(Bx) ⊂ S2.
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From now on we will restrict the exponential map of (S2, g0) as a diffeomor-
phism of the form expx : Bx → Ux. We require ρ1 < π/a so that, by (3.3),
we have γ ⊂ Uγ̂ whenever L(γ) < ρ1.

We define the continuous homotopy

rt : Π<ρ1 → Π, rt(γ)(u) = expγ̂

(
(1 − t) exp−1

γ̂ (γ(u))
)
.

Notice that the time-1 map is a retraction

r1 : Π<ρ1 → Π0.

Moreover, if b > 0 is a constant larger than ‖d expx(v)‖ and ‖d exp−1
x (y)‖ for

all x ∈ S2, v ∈ Bx, and y ∈ Ux, we have

L(rt(γ)) ≤ a2b2

∫
S1

‖γ̇(u)‖du ≤ a2b2L(γ) < a2b2ρ1.

We require ρ1 < ρ2a
−2b−2, so that every rt is a map of the form

rt : Π<ρ1 → Π<ρ2 .

Overall, this implies that the inclusion Π0 ⊂ Π<ρ is a homotopy equiva-
lence. The homology long exact sequence of the triple Π0 ⊂ Π<ρ ⊂ Π readily
implies that j∗ is an isomorphism. Finally, the excision property implies that
l∗ is an isomorphism as well. �

We consider the isomorphisms j∗ and l∗ provided by Lemma 3.4, and
define the non-zero relative homology classes

hi := l−1
∗ j∗ι∗ki ∈ H∗(Π,Π<ρ;Z2), i = 1, 2, 3. (3.4)

Notice that

w|Π � hi+1 = hi.

We denote by E0 ⊂ E the zero section of the line bundle π : E → RP2.
Notice that ι restricts as a map of the form ι0 := ι|E0 : E0 → Π.

Lemma 3.5. For each z ∈ H2(Π;Z2) such that ι∗0z �= 0 in H2(E0;Z2), we
have

z � h3 = h1.

Proof. For each r ∈ [0, 1], we consider the subset

Er =
{
([x], λx) ∈ E | λ ∈ [−r, r]

}
. ⊂ E,

Notice that this notation agrees with the definition of E0 as the zero section
of the line bundle π : E → RP2. We fix r ∈ (0, 1) sufficiently close to 1 so
that ι(∂Er) ⊂ Π<ρ. By deformation and excision, we have that the inclusions
induce isomorphisms

H∗(E, ∂E;Z2)
∼=−→H∗(E,E\E0;Z2)

∼=←−H∗(Er, Er\E0;Z2)
∼=←−H∗(Er, ∂Er;Z2).
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We denote by k′
i ∈ H∗(Er, ∂Er;Z2) the image of ki ∈ H∗(E, ∂E;Z2) under

the composition of the above isomorphisms. Notice that k′
1 = u|Er

� k′
3. The

restriction ιr = ι|Er
: Er → Π induces a homomorphism

(ιr)∗ : H∗(Er, ∂Er;Z2) → H∗(Π,Π<ρ;Z2),

which allows to express the homology classes (3.4) as hi = (ιr)∗k′
i. Since

the inclusion E0 ⊂ Er is a homotopy equivalence, a cohomology class z ∈
H2(Π;Z2) satisfies ι∗0z �= 0 if and only if ι∗rz �= 0, and thus if and only if
ι∗rz � k′

3 = k′
1. Therefore, if this is the case, we have

z � h3 = z � (ιr)∗k′
3 = (ιr)∗(ι∗rz � k′

3) = (ιr)∗k′
1 = h1.

�

We set

�i := �(hi), i = 1, 2, 3. (3.5)

Since every �i is the length of a simple closed geodesic of (S2, F ), if the simple
length spectrum σs(S2, F ) is a singleton we have �1 = �2 = �3. In this case
Theorem 1.3(i) is a consequence of the following statement.

Theorem 3.6. If �1 = �2 = �3, then (S2, F ) is simple Zoll.

Proof. We consider a circle bundle pr : P → Π, whose total space is given
by P = {(γ, x) ∈ Π × S2 | x ∈ γ} and whose projection is pr(γ, x) = γ. We
consider the projectivized tangent bundle

PTS2 =
{
Vx

∣∣ x ∈ S2, Vx 1-dimensional vector subspace of TxS2
}
,

and define the continuous evaluation map ev : P → PTS2, ev(γ, x) = Txγ.
Since PTS2 is a closed 3-manifold, we have H3(PTS2;Z2) ∼= Z2, and we
denote by m a generator of H3(PTS2;Z2). We consider the pull-back bundle

P0 = ι∗0P =
{
(e, p) ∈ E0 × P | ι0(e) = pr(p)

}
,

and the commutative diagram

P0 P PTS2

E0 Π

ι̃0

pr|P0

ev

pr

ι0

Here, ι̃0(e, p) = p is the projection onto the second factor. Notice that ev ◦ ι̃0
is a homeomorphism. Moreover, since H3(E0;Z2) and H4(E0;Z2) are trivial,
the Gysin sequence of the pull-back bundle pr|P0 : P0 → E0 readily implies
that

(pr|P0)∗ : H3(P0;Z2) → H2(E0;Z2)

is an isomorphism. This implies that (pr|P0)∗ι̃∗0ev
∗m �= 0 in H2(E0;Z2). We

set

z := pr∗ev
∗m ∈ H2(Π;Z2).

Since ι∗0z = (pr|P0)∗ι̃∗0ev
∗m �= 0, Lemma 3.5 implies that h1 = z � h3.
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Now, assume by contradiction that �1 = �2 = �3 =: �, but there exists
(x, v) ∈ SS2 such that the geodesic γx,v(t) := expx(tv) is not a simple closed
geodesic of minimal period � (namely, γx,v is not a closed geodesic, or it is
closed but not simple closed, or it is simple closed but its length is not �).
By Lemma 2.14, there exists ε > 0 small enough so that v is not tangent
to any curve γ ∈ W := W(�, ε) passing through x. Namely, if we set P ′ :=
pr−1(W), the restriction ev|P ′ : P ′ → PTS2 is not surjective. Since �1 = �3
and h1 = z � h3, Theorem 3.2 implies that z|W �= 0 in H2(W;Z2). However,
since z|W = (pr|P ′)∗ev|∗P ′m, this implies that the homomorphism

ev|∗P ′ : H3(PTS2;Z2) → H3(P ′;Z2)

is non-zero, which is impossible since ev|P ′ is not surjective. �

If the simple length spectrum σs(S2, F ) contains exactly two elements,
we must have �1 = �2 or �2 = �3. In this case Theorem 1.3(i) is a consequence
of the following statement.

Theorem 3.7. If �i = �i+1 for some i ∈ {1, 2}, then every point of S2 lies on
a simple closed geodesic of (S2, F ) of length �i.

Proof. Assume by contradiction that � := �i = �i+1, but that some point
x ∈ S2 does not lie on a simple closed geodesic of length �. We consider the
subset U = {γ ∈ Π | x �∈ γ}. It is easy to see that U is contractible: if we
denote by B2 ⊂ R2 the unit open ball, and we consider a homeomorphism
θ : S2\{x} → B2, the homotopy rt : U → U , t ∈ [0, 1], given by

rt(γ) = θ−1((1 − t)θ(γ))

defines a contraction of U onto a point curve in Π0∩U . In particular H1(U ;Z2)
is trivial.

By applying Lemma 2.14 with K = P(TxS2), we infer that there exists
W = W(�, ε), for ε > 0 small enough, such that none of the curves γ ∈ W
passes through x. Since hi = w|Π � hi+1 and �i = �i+1, Theorem 3.2 implies
that w|W �= 0 in H1(W;Z2). However, since W ⊂ U , we have w|U �= 0 in
H1(U ;Z2) as well, contradicting the conclusion of the previous paragraph.

4. Critical point theory of the energy functional

In this section, we shall recall the background on the variational theory of
Finsler closed geodesics. The reader can find more details and proofs in [1,
10,14,41] and references therein. Throughout the section, we shall consider
a closed Finsler manifold (M,F ) of arbitrary dimension, except in certain
statements where we will assume M to be a surface. The Finsler metric F is
not required to be reversible, unless specifically stated.

4.1. The energy functional

We denote by Λ = W 1,2(S1,M) the free loop space of M of regularity W 1,2,
and consider the energy functional

E : Λ → [0,∞), E(γ) =
∫

S1
F (γ(u), γ̇(u))2 du.
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Unlike in the Riemannian case, in the Finsler setting E is C1,1, but possi-
bly not C2. Its critical points with positive critical value are precisely those
γ ∈ Λ that are closed geodesics of (M,F ) parametrized with constant speed
F (γ, γ̇) ≡ E(γ)1/2. For each γ ∈ Λ, we denote by

γm ∈ Λ, γm(t) = γ(mt)

its m-th iterate, whose energy is E(γm) = m2E(γ). Clearly, iterates of critical
points of E are again critical points. Identifying different iterates of the same
closed geodesic detected with global variational methods is the crux of the
matter in the closed geodesics problem.

The C1 regularity of E is actually enough to define a smooth pseudo-
gradient flow of E on Λ. It is well known that E satisfies the Palais–Smale
condition with respect to a suitable complete Riemannian metric on Λ, and
therefore, we can perform the usual deformations of critical point theory.
Since E is even C1,1, it has a well-defined Gateaux Hessian d2E(γ) at ev-
ery critical point. However, the C2 regularity would be needed to apply the
classical Morse–Gromoll–Meyer lemma [18]. A simple way to circumvent the
potential lack of C2 regularity and, at the same time, work in a finite di-
mensional setting consists in employing Morse’s finite dimensional approxi-
mations of Λ. We consider the (non-symmetric) Finsler distance

d : M × M → [0,∞), d(x, y) = min
γ

∫ 1

0

F (γ(u), γ̇(u)) du, (4.1)

where the minimum ranges over all absolutely continuous curves γ : [0, 1] →
M joining x and y. For each integer k ≥ 2, we consider the space

Λk =

⎧⎨
⎩x = (x0, . . . , xk−1) ∈ M×k

∣∣∣∣∣∣
∑

i∈Zk

d(xi, xi+1)2 < injrad(M, F )2 ∀i ∈ Zk

⎫⎬
⎭ .

There is a smooth embedding ι : Λk ↪→ Λ defined as follows: every x ∈ Λk is
mapped to the curve γx := ι(x) ∈ Λ such that each restriction γx |[i/k,(i+1)/k],
for i ∈ Zk, is the shortest geodesic parametrized with constant speed joining
xi and xi+1. In the following, we will identify Λk with it image ι(Λk) ⊂ Λ,
and indistinctively write x or γx for the same object. The restriction of the
energy to Λk has the form

Ek = E|Λk
: Λk → [

0, k injrad(M,F )2
)
, Ek(x) = k

∑
i∈Zk

d(xi, xi+1)2.

Since the distance d is smooth away from the diagonal, Ek is smooth on
the subspace of those x with xi �= xi+1 for all i ∈ Zk. The critical points
of Ek are precisely those x such that γx is a closed geodesic of (M,F )
parametrized with constant speed and having energy Ek(x) = E(γx) <
k injrad(M,F )2. In particular Ek is smooth on a sufficiently small neigh-
borhood of its critical points with positive energy. For each compact interval
[a, b] ⊂ (−∞, k injrad(M,F )2

)
, the preimage E−1

k [a, b] is compact, which al-
lows us to apply the gradient flow deformations from critical point theory. For
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each a > 0, up to choosing k ∈ N large enough, the inclusion of the energy
sublevel sets E−1

k (−∞, a) ↪→ E−1(−∞, a) admits the homotopy inverse

r : E−1(−∞, a) → E−1
k (−∞, a), r(γ) = (γ(0), γ( 1

k ), . . . , γ(k−1
k )).

4.2. The Morse index and nullity

Let h : V × V → R be a symmetric bilinear form on a vector space V . Its
index ind(h) is defined as the supremum of the dimension of the subspaces
W ⊂ V such that h|W is negative definite. Its nullity nul(h) is defined as the
dimension of ker(h) = {v ∈ V | h(v, ·) = 0}. Notice that the sum ind(h) +
nul(h) is the supremum of the dimension of the subspaces Z ⊂ V such that
h|Z is negative semi-definite.

Let us consider a closed geodesic γ ∈ crit(E) ∩ E−1(0,∞), and the
associated Gateaux Hessian h := d2E(γ). The Morse index and nullity of γ
are defined by

ind(γ) := ind(h), nul(γ) := nul(h) − 1.

It is well known that the indices are always finite. The reason for the −1
appearing in the definition of the nullity is that nul(h) is always larger than
or equal to 1, as the vector field γ̇ belongs to ker(h). If x0 := γ(0), we denote
by

Ω := {ζ ∈ Λ | ζ(0) = x0}
the space of loops based at x0. The critical points of E|Ω are the geodesic
loops, that is, those ζ ∈ Λ whose restriction ζ|(0,1) is a geodesic parametrized
with constant speed. The Morse index and nullity of γ in the based loop
space are defined as

indΩ(γ) := ind(h|TγΩ), nulΩ(γ) := nul(h|TγΩ).

The behavior of the Morse indices under iteration of the closed geodesic
has been thoroughly studied since the seminal work of Bott [11]. Without
invoking Bott’s theory, one has the following properties, which are rather
immediate or can be proved as an exercise.

Lemma 4.1. Let (M,F ) be a Finsler manifold with a closed geodesic γ ∈
crit(E). The Morse indices of γ satisfy the following properties.

(i) ind(γ) ≥ indΩ(γ).
(ii) ind(γ) + nul(γ) ≥ indΩ(γ) + nulΩ(γ).
(iii) If ind(γ) > 0, then ind(γm) → ∞ as m → ∞.
(iv) ind(γm) ≥ ind(γ) and nul(γm) ≥ nul(γ) for all m ∈ N.
(v) indΩ(γm) ≥ m indΩ(γ) and indΩ(γm) + nulΩ(γm) ≥ m (indΩ(γ) +

nulΩ(γ)) for all m ∈ N.
�

The following proposition summarizes those subtler results concerning
the Morse indices of closed geodesics that we will need in the proof of Theo-
rem 1.5. In the literature, most of these results are proved in the Riemannian
setting: points (i–iv) can be found in [12], point (vi) in [28], and point (vii) in
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[8]. In the Finsler setting, the differences in the proofs are essentially cosmetic,
but we include them for the reader’s convenience.

Proposition 4.2. Let (M,F ) be an orientable Finsler manifold, and γ ∈
crit(E) ∩ E−1(0,∞) a closed geodesic. The indices of γ satisfy the follow-
ing properties.

(i) nul(γ) ≤ 2 dim(M) − 2.
(ii) nulΩ(γ) ≤ dim(M) − 1.
(iii) ind(γ) ≤ indΩ(γ) + dim(M) − 1.
(iv) ind(γ) + nul(γ) ≤ indΩ(γ) + nulΩ(γ) + dim(M) − 1.
Moreover, if M is an orientable surface, they further satisfy the following
properties.
(v) If nulΩ(γ) = 1 then indΩ(γm) = m indΩ(γ) + m − 1 and nulΩ(γm) =

nulΩ(γ) for all m ∈ N,
(vi) If nul(γ) = 2 then nul(γm) = 2 and ind(γm) is odd for all m ∈ N.
(vii) If indΩ(γm) > 0 for some m ≥ 1, then ind(γ) > 0 and indeed there exists

a nowhere-vanishing smooth vector field ζ along γ that is 1-periodic,
everywhere transverse to γ̇, and such that d2E(γ)(ζ, ζ) < 0.

Proof. We can assume without loss of generality that E(γ) = 1, so that
F (γ, γ̇) ≡ 1. We set

G : TM → [0,∞), G(x, v) = 1
2F (x, v)2,

which is a C1,1 function, smooth outside the zero section, and fiberwise pos-
itively homogeneous of degree 2. The function G defines a 1-form λ on TM
by

λ(x,v)(w) = Gv(x, v) ◦ dπ(x, v)w, ∀w ∈ T(x,v)(TM).

The 2-form −dλ is a symplectic form on the complement of the zero section in
TM . We treat G as a Hamiltonian, and consider its associated Hamiltonian
vector field X defined by −dλ(X, ·) = dG. We denote by φt : TM → TM
the associated Hamiltonian flow of X. Its flow lines are the speed vectors
of the geodesics of (M,F ) parametrized with constant speed. In particular,
the curve γ̃(t) := (γ(t), γ̇(t)) is the periodic orbit of φt corresponding to the
closed geodesic γ. Since G is autonomous, the Hamiltonian flow φt preserves
each level set G−1(�2). The energy level of γ̃ is

G(γ̃(t)) = 1
2F (γ̃(t))2 = 1/2,

and we denote by SM := G−1(1/2) = F−1(1) the corresponding energy
hypersurface, which is the unit tangent bundle of (M,F ). The 1-form λ re-
stricts to a contact form α := λ|SM , and X restricts to the Reeb vector field
of (SM,α). Namely α(X) = 1 and dα(X, ·) = 0. In particular φ∗

t α = α. We
denote by

ξ := ker(α) ⊂ T(SM)

the contact distribution of α. Notice that

dπ(γ̃(t))ξγ̃(t) = ker(Gv(γ̃(t))).
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Let L be the vector field on TM defined by

L(x, v) = d
dt

∣∣
t=1

(x, tv).

This is a Liouville vector field, meaning that dλ(L, ·) = λ, and is transverse
to SM . Over SM , the vector bundle T(TM) splits as a direct sum

T(TM)|SM = span{X,L} ⊕ ξ, (4.2)

and this decomposition is symplectically orthogonal, i.e.,

dλ(V,W ) = 0, ∀V ∈ span{X,L}, W ∈ ξ.

We recall that a Jacobi vector field ζ : R → γ∗TM is a solution of
the Jacobi equation, which is the linearization of the Hamiltonian equation
˙̃γ = X ◦ γ̃ at γ̃. In local coordinates, the Jacobi equation reads

∂t(Gvv ζ̇ + Gxv ζ) − Gxx ζ − Gvx ζ̇ = 0.

Here and in the following, the second derivatives Gxx, Gxv, Gvx, Gvv are
meant to be evaluated at γ̃(t). We denote by Φt := dφt(γ̃(0)) : Tγ̃(0)TM →
Tγ̃(t)TM the linearized Hamiltonian flow along γ̃. Its flow lines are lifts of
Jacobi vector fields ζ, that is, in local coordinates they can be written as

ζ̃(t) = Φt(ζ̃(0)) = (ζ(t), ζ̇(t)).

The linearized flow Φt preserves the splitting (4.2). Indeed, φ∗
t α = α im-

plies that Φt(ξ) = ξ. Moreover, Φt(X) = X and Φt(L) = tX + L, that is,
Φt|span{X,L} can be written in the frame X,L as the symplectic matrix

Φt|span{X,L} =
(

1 t
0 1

)
∈ Sp(2). (4.3)

Let W 1,2(S1, γ∗TM) be the Hilbert space of 1-periodic W 1,2-vector
fields along γ. The Hessian h := d2E(γ) is the symmetric bilinear form on
W 1,2(S1, γ∗TM) given by

h(ζ, η) = 2
∫

S1

(
〈Gxx ζ, η〉 + 〈Gvx ζ̇, η〉 + 〈Gxv ζ, η̇〉 + 〈Gvv ζ̇, η̇〉

)
dt. (4.4)

In this expression, we adopt a common abuse of notation: we write the inte-
grand in local coordinates (this can be made precise by splitting the domain
of integration S1 as a finite union of intervals over which the local coor-
dinates are available). A bootstrap argument, together with an integration
by parts, implies that the kernel of h is precisely given by the 1-periodic
Jacobi vector fields. In particular nul(h) = dim ker(Φ1 − I), and therefore,
nul(γ) = nul(h) − 1 = dim ker(Φ1|ξγ̃(0) − I), which implies point (i).

We consider the subspace

Z =
{
ζ ∈ W 1,2(S1, γ∗TM)

∣∣ Gv(γ, γ̇)ζ ≡ 0
}
.

We claim that

ind(h|Z) = ind(h), nul(h|Z) = nul(h) − 1.

Indeed, a straightforward computation shows that the h-orthogonal

Zh :=
{
ζ ∈ W 1,2(S1, γ∗TM)

∣∣ h(ζ, ·)|Z = 0
}
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is precisely the space of those ζ ∈ W 1,2(S1, γ∗TM) of the form ζ(t) = f(t)γ̇(t)
for some f : S1 → R, and we have W 1,2(S1, γ∗TM) = Z⊕Zh, ind(h|Zh) = 0,
ker(h|Zh) = spanR{γ̇}, and nul(h|Zh) = 1. From now on, we will simply write
h for the restriction h|Z , so that in particular

nul(γ) = nul(h) = dim ker(Φ1|ξγ̃(0) − I).

Analogously, if we set

Z0 =
{
ζ ∈ Z

∣∣ ζ(0) = ζ(1) = 0
}
,

we have

indΩ(γ) = ind(h|Z0), nulΩ(γ) = nul(h|Z0).

The kernel of h|Z0 is the space of Jacobi fields ζ such that ζ(0) = ζ(1) = 0
and Gv(γ, γ̇)ζ ≡ 0, and thus

nul(h|Z0) ≤ dim ker Gv(γ(t), γ̇(t)) = dim(M) − 1,

which proves point (ii).
Let us reduce the setting to finite dimension. Let k ≥ 2 be a large

enough integer such that no restriction γ|[a,b] with b − a < k−1 contains
conjugate points; namely, there are no Jacobi vector fields along γ vanishing
on more than one point of [a, b]. We consider the finite dimensional vector
space V ⊂ Z of those vector fields ζ ∈ Z such that, for all i = 0, . . . , k − 1,
each restriction ζ|[i/k,(i+1)/k] is a Jacobi vector field. The Morse indices of h
and h|V are the same

ind(h|V ) = ind(h), nul(h|V ) = nul(h).

Indeed, an integration by parts in (4.4) shows that the h-orthogonal to V is
the subspace

V h =
{
ζ ∈ Z

∣∣ h(ζ, ·)|V = 0
}

=
{
ζ ∈ Z

∣∣ ζ( i
k ) = 0 ∀i = 0, . . . , k − 1

}
,

and we have Z = V ⊕ V h and ind(h|V h) + nul(h|V h) = 0. Analogously, if we
set V0 := V ∩ Z0, we have

ind(h|V0) = ind(h|Z0)

nul(h|V0) = nul(h|Z0). (4.5)

From now on, we will simply write h for the restriction h|V .
The h-orthogonal V h

0 =
{
ζ ∈ V

∣∣ h(ζ, ·)|V0 = 0
}

is precisely the space
of vector fields ζ ∈ Z such that ζ|(0,1) is a Jacobi vector field. We denote by
Ver := ker dπ ⊂ TTM the vertical sub-bundle of TTM . Each intersection

(ξ ∩ Ver)γ̃(t) = (SM ∩ Ver)γ̃(t)

has dimension dim(M) − 1. For each ζ ∈ V h
0 , we set

ζ̃(t) := (ζ(t), ζ̇(t)) = Φt(ζ̃(0+)), ∀t ∈ (0, 1).

Notice that there is an isomorphism

V h
0 → (Φ1 − I)|−1

ξγ̃(0)
(ξ ∩ Ver)γ̃(0), ζ 	→ ζ̃(0+).
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In particular

dim(V h
0 ) ≤ dim ker(Φ1 − I)|ξγ̃(0) + dim(ξ ∩ Ver)γ̃(0)

= nul(h) + dim(M) − 1. (4.6)

Moreover, the evaluation map V h
0 → ker(Gv(γ̃(0))), ζ 	→ ζ(0) is surjective,

and its kernel is precisely ker(h|V0). Therefore,

dim(V h
0 ) = dim ker(h|V0) + dim ker(Gv(γ(0), γ̇(0)))

= nul(h|V0) + dim(M) − 1. (4.7)

The general formula relating the Morse indices of a quadratic form to the
ones of its restriction to a subspace (see, e.g., [34, Section A.2]) gives

ind(h) = ind(h|V0) + ind(h|V h
0

) + nul(h|V h
0

) − nul(h). (4.8)

In particular, by (4.6), we have

ind(h) ≤ ind(h|V0) + dim(V h
0 ) − nul(h) ≤ ind(h|V0) + dim(M) − 1,

which proves point (iii). By (4.7) and (4.8), we have

ind(h) + nul(h) ≤ ind(h|V0) + dim(V h
0 )

≤ ind(h|V0) + nul(h|V0) + dim(M) − 1,

which proves point (iv).
From now on, let us now assume that M is an orientable surface. The

classical index theorem of Morse [36] allows us to express ind(h|Z0) and
nul(h|Z0) as

ind(h|V0) =
∑

t∈(0,1)

dim
(
Φt(Verγ̃(0)) ∩ Verγ̃(t)

)
,

nul(h|V0) = dim
(
Φ1(Verγ̃(0)) ∩ Verγ̃(1)

)
.

Notice that the Liouville vector field L takes values in the vertical sub-bundle
Ver, and Eq. (4.3) implies that

Φt(Verγ̃(0)) ∩ Verγ̃(t) = Φt((ξ ∩ Ver)γ̃(0)) ∩ (ξ ∩ Ver)γ̃(t), ∀t �= 0.

Since the fibers of the bundle ξ ∩Ver have dimension 1, we can express these
index formulas by means of a single vector field η, as follows. Let us fix an
arbitrary non-zero vector η̃0 ∈ (ξ ∩ Ver)γ̃(0), and define

η̃(t) = (η(t), η̇(t)) := Φt(η̃0),

so that η is a Jacobi field along γ such that η(0) = 0 and Gv(γ, γ̇)η ≡ 0.
Since M is an orientable surface, the normal bundle of γ is trivial, and we
can find a nowhere-vanishing 1-periodic smooth vector field μ along γ such
that Gv(γ, γ̇)μ ≡ 0, so that we can express η as

η(t) = f(t)μ(t)

for some smooth function f : R → R. Notice that, since η is a Jacobi vector
field that does not vanish identically, it has isolated zeroes, and in particular
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ḟ(t) �= 0 whenever f(t) = 0. The index theory of Morse reduces to

ind(h|Z0) = #{t ∈ (0, 1) | f(t) = 0}, nul(h|Z0) =
{

1 if f(1) = 0,
0 if f(1) �= 0.

If nul(h|Z0) = 1, then η(1) = 0, and therefore,

η̃(t + 1) = ḟ(1)

ḟ(0)
η̃(t), ∀t ∈ R

This readily implies that nulΩ(γm) = 1 and

indΩ(γm) = #{t ∈ (0,m) | f(t) = 0} = m indΩ(γ) + m − 1.

This proves point (v).
With an integration by parts in (4.4), we readily see that the quadratic

form h on the space V h
0 can be expressed in local coordinates as

h(ζ, ζ) = 〈Gvv ζ̇(1−) + Gxvζ(1) − Gvv ζ̇(0+) − Gxvζ(0), ζ(0)〉
= dλ((Φ1 − I)ζ̃(0+), ζ̃(0+)). (4.9)

Let us assume that nul(γ) = 2, so that Φ1|ξγ̃(0) = I, (Φ1 − I)ζ̃(0+) = 0 for
all ζ ∈ V h

0 , and nul(h|V0) = 1. Equation (4.9) implies that h|V h
0

= 0. Since
dim(V h

0 ) = 1+nul(h|V0) = 2, this implies that ind(h|V h
0

) = 0 and nul(h|V h
0

) =
2. Therefore, Eq. (4.8) becomes ind(h) = ind(h|V0). Since Φ1|ξγ̃(0) = I, in
particular the above Jacobi field η is (smoothly) 1-periodic, and so is the
function f . Therefore, since f has non-zero derivative at its zeroes, it must
vanish an odd number of times in the open interval (0, 1). Equation (4.5)
allows to conclude that ind(γ) = ind(h) = ind(h|V0) is odd. We can now
repeat the same argument for all the iterates γm, since

nul(γm) = dim ker(Φ1|mξγ̃(0)
− I) = 2,

and conclude that ind(γ)m is odd as well for all m ∈ N. This proves point
(vi).

Finally, let us assume that indΩ(γm) > 0 for some m ≥ 1, which is
equivalent to the fact that the Jacobi field η introduced above vanishes at
some positive time. Let τ > 0 be the minimum t > 0 such that η(t) = 0. Up
to replacing μ with −μ, we can assume that f |(0,τ) > 0, so that ḟ(0) > 0 and
ḟ(τ) < 0. If τ ≤ 1, we consider the 1-periodic vector field along γ

θ(t) =
{

η(t), if t ∈ [0, τ ],
0, if t ∈ [τ, 1],

which satisfies h(θ, θ) = 0 and

h(θ, μ) = 〈Gvv η̇(τ) − Gvv η̇(0), μ(0)〉
= ḟ(τ) 〈Gvv μ(τ), μ(τ)〉 − ḟ(0) 〈Gvv μ(0), μ(0)〉
< 0.

For each ε > 0 the piecewise smooth vector field θ + εμ is 1-periodic and
everywhere transverse to γ̇. Moreover,

h(θ + εμ, θ + εμ) = 2εh(μ, θ) + ε2h(μμ)
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which is negative if ε > 0 is sufficiently small. Assume now that τ > 1. In
this case, there exists t > 0 such that f(t) = f(t + 1) > 0, ḟ(t) > 0 and
ḟ(t + 1) < 0. We define θ to be the 1-periodic vector field along γ such that
θ|[t,t+1] = η|[t,t+1]. Notice that θ is everywhere transverse to γ̇, and satisfies

h(θ, θ) = 〈Gvv η̇(t + 1), η(t + 1)〉 − 〈Gvv η̇(t), η(t)〉
= 〈Gvv (η̇(t + 1) − η̇(t)), η(t)〉
= (ḟ(t + 1) − ḟ(t)) f(t) 〈Gvv μ(t), μ(t)〉
< 0.

In both cases, we can approximate θ with a C0-close 1-periodic smooth vector
field ζ. Such a ζ will still be everywhere transverse to γ̇ and will still satisfy
h(ζ, ζ) < 0. This completes the proof of point (vii). �

4.3. Local homology

The last index that is usually employed in critical point theory is the local
homology, whose construction we now recall for closed geodesics of Finsler
manifolds (M,F ). Actually, the theory of local homology is very general,
and essentially does not see the difference between the Riemannian and the
Finsler settings. We refer the reader to [1,10,41], and in particular to [1,
Section 3], for a more comprehensive treatment.

For any U ⊂ Λ, U ⊂ Λk, and � > 0, we set

U<� :=
{
γ ∈ U ∣∣ E(γ) < �2

}
, U<� :=

{
x ∈ U

∣∣ Ek(x) < �2
}
.

Notice that U<� and U<� are sublevel sets of the energy functional E, whereas
in (3.1) we denoted by W<� a sublevel set of the length functional L. Nev-
ertheless, the notation is consistent: W was indeed a subset of the space of
unparametrized loops Π, and if we parametrize any γ ∈ W with constant
speed and period 1 we have L(γ)2 = E(γ).

The energy functional E is invariant under the circle action

u · γ = γ(u + ·) ∈ Λ, ∀u ∈ S1, γ ∈ Λ.

Therefore, every closed geodesic γ ∈ crit(E) ∩ E−1(�2) (with � > 0) belongs
to a circle of critical points of E

S1 · γ :=
{
γ(u + ·) ∈ Λ

∣∣ u ∈ S1
}

A closed geodesic γ is said to be isolated when the critical circles of its iterates
S1 · γm are isolated in crit(E). Under this assumption, the local homology of
γ and of S1 · γ are the relative homology groups

C∗(γ) := H∗(Λ<� ∪ {γ},Λ<�), C∗(S1 · γ) := H∗(Λ<� ∪ S1 · γ,Λ<�).

As we already mentioned, we will specify the coefficient field in the notation
only when we will need to employ a specific one.

Even though the energy function E may not be C2, the local homology
of an isolated closed geodesic C∗(γ) is isomorphic to the local homology of a
smooth function on a finite dimensional manifold at an isolated critical point
of index ind(γ) and nullity nul(γ). Indeed, if k ∈ N is large enough so that
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the isolated closed geodesic γ ∈ crit(E)∩E−1(�2) belongs to Λk, the inclusion
induces the homology isomorphism

H∗(Λ<�
k ∪ {γ},Λ<�

k )
∼=−→ C∗(γ).

The energy Ek = E|Λk
is smooth in a neighborhood of the critical point γ

(indeed, Ek is smooth at all those ζ ∈ Λk such that ζ( i
k ) �= ζ( i+1

k ) for all
i ∈ Zk). Let Σ ⊂ M be an embedded hypersurface intersecting γ transversely
at x0 := γ(0). We define the smooth hypersurface

Σk :=
{
ζ ∈ Λk

∣∣ ζ(0) ∈ Σ
} ⊂ Λk.

It turns out that γ is an isolated critical point of Ek|Σk
of index ind(γ) and

nullity nul(γ), and the inclusion induces the homology isomorphism

H∗(Σ<�
k ∪ {γ},Σ<�

k )
∼=−→C∗(γ), (4.10)

see [1, Prop. 3.1].
Since γ is an isolated critical point of Ek|Σk

, its local homology can also
be expressed by means of the so-called Gromoll–Meyer neighborhoods [18]:
these are suitable arbitrarily small compact path-connected neighborhoods
W ⊂ Σk of γ such that, for some δ′ > 0 and for all δ ∈ [0, δ′], the inclusion
induces the homology isomorphisms

H∗(Σ<�
k ∪ {γ},Σ<�

k )
∼=←−H∗(W<� ∪ {γ},W<�−δ)

∼=−→H∗(W,W<�−δ).
(4.11)

Indeed, a homotopy inverse of these inclusion can be built by suitably “push-
ing” in the direction given by a pseudo-gradient of the energy functional E,
see e.g., [13, Theorem 5.2]. Gromoll–Meyer neighborhoods are particularly
useful to prove certain technical statements concerning the local homology.
For instance the following one that we will employ in the proof of Corol-
lary 5.7.

Lemma 4.3. Let γ ∈ crit(E) ∩ E−1(�2), with � > 0, be an isolated closed
geodesic. Assume that, for any sufficiently small open neighborhood U ⊂ Λ or
U ⊂ Λk of γ, the open subset U<� is not connected. Then, the local homology
C1(γ) is non-zero.

Proof. We prove the lemma in the infinite dimensional setting of Λ, the proof
for the setting of Λk being entirely analogous. Let U0 ⊂ Λ be an open neigh-
borhood of γ such that, for every open neighborhood U ⊂ U0 of γ, the open
subset U<� is not connected. Let U ⊂ U0 be one such open neighborhood. We
consider the connected components U1, . . . ,Ur ⊂ U<� such that γ �∈ U i for all
i = 1, . . . , r. The subset V := U\(U1 ∪ · · · ∪ Ur) is still an open neighborhood
of γ contained in U0, and therefore, V<� is not connected.

Let W ⊂ Σk be a Gromoll–Meyer neighborhood of γ that is small
enough so that W ⊂ V. We claim that, for each connected component V ′ ⊂
V<�, we have

V ′ ∩ W �= ∅. (4.12)
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This implies that W<� is not path-connected. Since W is path-connected,
the long exact sequence

... H1(W,W<�) H0(W<�) H0(W ) ...

0

implies that H1(W,W<�) is non-zero. This latter relative homology group is
isomorphic to C1(γ), according to (4.10) and (4.11).

It remains to establish (4.12). Since γ ∈ ∂V ′, there exists ζ0 ∈ V ′ ar-
bitrarily close to γ and such that ζ0(0) ∈ Σ. For each s ∈ (0, 1], we define
ζs ∈ Λ to be the unique loop such that, for each i = 0, . . . , k − 1, the seg-
ment ζs|[i/k,(i+s)/k] is a length-minimizing geodesic, while ζs|[(i+s)/k,(i+1)/k] =
ζ0|[(i+s)/k,(i+1)/k]. Notice that s 	→ ζs is a continuous path in Λ, and ζ1 ∈ Σk.
Up to choosing the initial loop ζ0 to be sufficiently close to γ, every ζs is
contained in the neighborhood V. Since E(ζs) ≤ E(ζ0) < �, we actually have
that every ζs is contained in V ′. Finally, if we choose ζ0 to be sufficiently
close to γ, we have that ζ1 ∈ W . �

The local homology groups of the critical circles of closed geodesics are
the “building blocks” for the homology of the free loop space Λ. Indeed, if
γ ∈ crit(E) ∩ E−1(�2) is an isolated closed geodesic and the interval (�, � +
ε) does not contain critical values of E, the inclusion induces an injective
homomorphism

C∗(S1 · γ) ↪→ H∗(Λ<�+ε,Λ<�),

see, e.g., [19, proof of Lemma 4].
The local homology of an isolated closed geodesic γ does not vary (up

to a shift in degree) under iterations that preserve the nullity. In particular,
if ind(γ) = ind(γm) and nul(γ) = nul(γm), the iteration map ψm : Λ ↪→ Λ,
ψm(ζ) = ζm induces the local homology isomorphisms

ψm
∗ : C∗(γ)

∼=−→C∗(γm), ψm
∗ : C∗(S1 · γ)

∼=−→ C∗(S1 · γm).

This is actually a consequence of a general Morse-theoretic result due to
Gromoll–Meyer [18, Lemma 7].

The local homology of an isolated closed geodesic often embeds into the
local homology of its critical circle. More precisely, the following statement
holds. A closed geodesic γ ∈ crit(E) ∩ E−1(0,∞) is said to be prime when
γ = ζm if and only if ζ = γ and m = 1.

Lemma 4.4. If γ ∈ crit(E) ∩ E−1(0,∞) is an isolated prime closed geodesic,
then for all odd numbers m ∈ N the inclusion induces an injective homomor-
phism

C∗(γm;Q) ↪→ C∗(S1 · γm;Q).

Proof. The proof of this fact is rather long, and we only provide its main steps.
Let m > 0 be a positive integer. We denote by μ : Λ → Λ the continuous
map μ(γ) = γ( 1

m + ·). There is an exact sequence

0 −→ (μ∗ − id)C∗(γm;Q) −→ C∗(γm;Q) −→ C∗(S1 · γm;Q), (4.13)
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where all the homomorphisms are induced by the inclusion, see [1, Lemma 3.4].
The homomorphism μ∗ : C∗(γm;Q) → C∗(γm;Q) turns out to be equal to

μ∗ = (−1)ind(γm)−ind(γ)id, (4.14)

see [1, Lemma 3.5]. Bott’s iteration theory [11] implies that the Morse indices
ind(γ) and ind(γm) have the same parity provided m is odd. This, together
with (4.13) and (4.14), implies that the inclusion induces an injective homo-
morphism C∗(γm;Q) ↪→ C∗(S1 · γm;Q) for all odd integers m > 0. �

We close this section by proving the following proposition relating the
local homology in Λ = W 1,2(S1,M) to the one in Π = Emb(S1,M)/Diff(S1)
of Sect. 3. By applying the proposition to the three min-max values �(hi), for
i = 1, 2, 3, defined in (3.5), we will infer Theorem 1.3(iii).

Proposition 4.5. Let (M,F ) be a closed, orientable, reversible Finsler surface,
ρ > 0 a constant, and h ∈ Hd(Π,Π<ρ) a non-trivial homology class. Assume
that there are only finitely many simple closed geodesics of (M,F ) having
length in a neighborhood of �(h). Then, there exists a simple closed geodesic
γ ∈ crit(E) ∩ E−1(�(h)1/2) with non-zero local homology Cd(γ) �= 0.

Proof. We first apply Lemma 3.1 and obtain a simple closed geodesic γ of
length � := �(h) and, for every ε > 0, an open neighborhood V(γ, ε) ⊂ Π and
a constant δ ∈ (0, ε2) such that the homomorphism

H∗(V(γ, ε),V(γ, ε)<�−δ) → H∗(Π,Π<�)

induced by the inclusion is non-zero.
Let Σ ⊂ M be an embedded open hypersurface (i.e., an open segment)

intersecting γ transversely. We choose Σ and ε0 > 0 small enough so that
every ζ ∈ V(γ, ε0) intersect Σ in a single point and, by the implicit function
theorem, the map V(γ, ε0) → Σ, ζ 	→ ζ ∩ Σ is continuous. Throughout this
section, we uniquely parametrize every ζ ∈ V(γ, ε0) so that

ζ : S1 → M, F (ζ, ζ̇) ≡ L(ζ), ζ(0) ∈ Σ.

With this choice of parametrizations, we identify V(γ, ε0) with a subset of the
space of embeddings Emb(S1,M), endowed as usual with the C∞-topology.
Notice that V(γ, ε0) is relatively compact in the C1 topology. Moreover, every
C1-open neighborhood of γ contains V(γ, ε) for a sufficiently small ε ∈ (0, ε0].

Let us consider an embedding M ↪→ R3, which exists since M is an
orientable closed surface. Let U ⊂ R3 be a tubular neighborhood of M with
associated smooth retraction π : U → M . We consider a family of mollifiers
θs(u) = θ(u/s)/s, where s ∈ (0, 1) and θ : S1 → [0,∞) is a smooth function
supported in (−1/2, 1/2) and with integral 1. We denote by ∗ the convolution
operation. Since V(γ, ε0) is relatively C1-compact and θs tends to the Dirac
delta as s → 0, there exists s0 > 0 and ε1 ∈ (0, ε0] such that we have a
well-defined continuous map

c : [0, s0] × V(γ, ε1) → Emb(S1,M), c(s, ζ)(u) = cs(ζ)(u) = π(ζ ∗ θs(u)).
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Notice that c0(ζ) = ζ for all ζ ∈ V(γ, ε1). Since the length function is con-
tinuous on the relatively C1-compact subset V(γ, ε1), there exists s1 ∈ (0, s0]
such that

L(cs(ζ)) < L(ζ) + δ/2, ∀s ∈ [0, s1], ζ ∈ V(γ, ε). (4.15)

By the continuity of the convolution, there exists an open subset U ⊂ W 1,2

(S1,M) containing V(γ, ε) such that cs1 extends as a continuous map

cs1 : U → Emb(S1,M), cs1(ζ)(u) = π(ζ ∗ θs1(u)),

and

L(cs1(ζ)) < L(ζ) + δ, ∀ζ ∈ U . (4.16)

We consider an integer

k >
� + ε21

injrad(M,F )

that we will soon fix, and the space Σk of broken closed geodesics intersecting
Σ at time 0. We define a continuous homotopy

rt : V(γ, ε1) → W 1,2(S1,M), t ∈ [0, 1],

as follows: we uniquely parametrize every ζ ∈ V(γ, ε0) so that

F (ζ, ζ̇) ≡ L(ζ), ζ(0) ∈ Σ;

for all i = 0, . . . , k − 1, we define

rt(ζ)|[i/k,(i+1−t)/k] := ζ|[i/k,(i+1−t)/k],

and rt(ζ)|[(i+1−t)/k,(i+1)/k] as the shortest geodesic of (M,F ) parametrized
with constant speed and joining its endpoints. We require k to be large enough
so that every rt has image inside the open subset U ⊂ W 1,2(S1,M). Clearly,

E(rt(ζ)) ≤ E(ζ) = L(ζ)2, ∀t ∈ [0, 1].

We consider a Gromoll–Meyer neighborhood W ⊂ Σk ∩ U of γ = r1(γ).
Notice that, by (4.16), we have

L(cs1(ζ)) < L(ζ) + δ ≤ E(ζ)1/2 + δ, ∀ζ ∈ W,

and in particular cs1(W
<�−δ) ⊂ Π<�. We fix a constant ε2 ∈ (0, ε1] small

enough so that r1(V(γ, ε1)) ⊂ W . Overall, we have the homomorphisms

H∗(V(γ, ε2),V(γ, ε2)<�−δ) H∗(Π,Π<�)

H∗(W,W<�−δ)

i∗

(r1)∗ (cs1 )∗

(4.17)
where i∗ is the non-zero homomorphism induced by the inclusion (see the
first paragraph of the proof). All we need to do to complete the proof is to
show that the diagram (4.17) commutes. This is a consequence of the fact
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that the inclusion i is homotopic to the composition cs1 ◦r1 via the continuous
homotopy

ht : V(γ, ε2) → Π, ht =
{

c2ts1 , if t ∈ [0, 1/2],
cs1 ◦ r2t−1, if t ∈ [1/2, 1],

which satisfies h0 = i, h1 = cs1 ◦ r1, and ht(V(γ, ε2)<�−δ) ⊂ Π<� for all
t ∈ [0, 1] according to (4.15) and (4.16). �

5. Infinitely many closed geodesics

5.1. The Birkhoff map

Let (S2, F ) be a reversible Finsler sphere, and SS2 = {(x, v) | F (x, v) = 1} its
Finsler unit tangent bundle with base projection π : SM → M , π(x, v) = x.
As we already recalled in the proof of Proposition 4.2, SS2 admits the contact
form α = Gv dπ, where G(x, v) = 1

2F (x, v)2, and the associated Reeb vector
field X on SM defined by α(X) ≡ 1 and dα(X, ·) ≡ 0. The flow φt : SM →
SM of X is precisely the geodesic flow of (S2, F ).

Let γ : S1 ↪→ S2 a simple closed geodesic of (S2, F ). Without loss
of generality, let us assume that F (γ, γ̇) ≡ 1. The complement S2\γ is the
disjoint union of two open balls B0, B1 ⊂ S2. We consider the open annuli

Ai :=
{
(x, v) ∈ SS2

∣∣ x ∈ γ(S1), v � γ̇(t) and points inside Bi

}
, i = 0, 1.

Since the Reeb vector field X is transverse to Ai, we readily see that

dα|Ai
= (X�(α ∧ dα))|Ai

is a symplectic form on Ai. We assume that the first return time

τi : Ai → (0,∞], τi(x, v) := inf
{
t > 0

∣∣ φt(x, v) ∈ A1−i

} ∈ (0,+∞]

is finite for all (x, v) ∈ Ai (here, we adopt the usual convention inf ∅ = +∞).
Under this assumption, there is a well-defined first return map

ψi : Ai → A1−i, ψi(x, v) = φτi(x,v)(x, v),

which is a diffeomorphism. Since

ψ∗
i α − α = φ∗

t α|t=τi
+ α(∂tφt(z))|t=τi

dτi − α = α + α(X)dτi − α = dτi,

the first return map is an exact symplectomorphism ψi : (Ai,dα) → (A1−i,dα).
Notice that

∂A0 = ∂A1 = {(γ(t), γ̇(t)), (γ(t),−γ̇(t)) | t ∈ S1},

and we readily see that dα|Ai
vanishes on ∂Ai.

For each t ∈ [0, 1), we choose a non-zero wt ∈ ker dπ(γ̃(0)) depending
smoothly on t, and we extend it to a vector field

η̃t(s) = (ηt(s), η̇t(s)) := dφs−t(γ̃(t))wt. (5.1)

Namely, ηt is a non-trivial Jacobi vector field along γ such that Gv(γ, γ̇)ηt ≡ 0
and ηt(t) = 0. We recall that the points γ(t), γ(s), with t �= s, are conjugate
when ηt(s) = 0. For each t ∈ [0, 1), we set

t−1 := sup{s < t | ηt(s) = 0}, t1 := inf{s > t | ηt(s) = 0},
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and t±2 := (t±1)±1 (here, once again, we set sup ∅ = −∞ and inf ∅ = +∞).
Namely, ti is the time of the |i|-th conjugate point to γ(t) after t if i > 0, or
before t if i < 0.

Lemma 5.1. Assume that, for some t ∈ [0, 1), t1 is finite. Then, for all t ∈
[0, 1) both t1 and t−1 are finite, and the first return maps ψi can be extended
as homeomorphisms

ψi : Ai → A1−i, ψi(γ(t),±γ̇(t)) = (γ(t±1),±γ̇(t±1)). (5.2)

Proof. Let μ be a nowhere-vanishing 1-periodic vector field along γ such that
Gv(γ, γ̇)μ ≡ 0. The Jacobi fields ηt can be written as ηt(s) = f(t, s)μ(s) for
some smooth function f : R × R → R. Up to replacing μ with −μ, we can
assume that f(t, t + ε) > 0 for all t ∈ S1 and ε > 0 small enough. Since the
Jacobi fields ηt are non-trivial, we have ∂sf(t, s) �= 0 whenever f(t, s) = 0.
This readily implies that, if t1 is finite for some t ∈ R, the same is true for all
t ∈ R, and the function t 	→ t1 is continuous and monotone increasing. Since
(t1)−1 = t, we infer that the function t 	→ t−1 is well-defined, continuous and
monotone increasing as well.

We fix an arbitrary t ∈ [0, 1) and (x, v) := (γ(t), γ̇(t)). To complete
the proof, we are left to show that, for each sequence vn ∈ SxS2 of vectors
pointing inside Ai and such that vn → ±v, we have τi(x, vn) → ±(t±1 − t).
Indeed, this implies that φτi(x,vn)(x, vn) → (γ(t±1),±γ̇(t±1)), and therefore,
the extension (5.2) of ψi is continuous and bijective. Since the annuli Ai and
Ai−1 are compact and Hausdorff, such an extension is a homeomorphism.

Let us focus on the case vn → v, the other one being analogous. We set
γn(s) := expx((s − t) vn) and σn := τi(x, vn). We claim that

lim inf
n→∞ σn ≥ t1 − t.

Otherwise, we could extract a subsequence such that σn → σ ∈ (0, t1 −
t); however, since the geodesic γ|[t,t+σ] has no conjugate points, this would
contradict the fact that the exponential map expx is a local diffeomorphism
at σv. The fact that f(t1 + ε) < 0 if ε > 0 is small enough readily implies
that γn(t1 + ε) ∈ A1−i for all n large enough, and therefore, σn < t1 − t + ε.
This implies that σn → t1 − t. �

We set A := A0. The previous lemma implies that the annulus A is a
surface of section for the geodesic flow: a surface that is transverse to the
vector field X on its interior, and whose boundary is the union of periodic
orbits of the flow. The composition ψ := ψ1 ◦ ψ0 : A → A is the first return
map of the surface of section A, and extends to a homeomorphism of A as

ψ(γ(t),±γ̇(t)) = (γ(t±2),±γ̇(t±2)).

As customary in the Riemannian literature, we will call ψ the Birkhoff map of
γ. With a suitable change of coordinates, A becomes the standard symplectic
annulus.

Lemma 5.2. There exists a smooth homeomorphism

σ : S1 × [−1, 1] → A
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v

v0

sv

0

SxM

Figure 1. The value of s ∈ [0, 1] such that v0 − s v ∈
ker Gv(x, v) can be found geometrically: the parallel to the
tangent line Tv(SxM) passing through v0 intersects the seg-
ment joining the origin and v at sv

of the form σ(t, s) = (γ(t), ν(t, s)), where ν(t, s) ∈ Sγ(t)M is the unique
tangent vector (pointing inside B0 or tangent to γ) such that

γ̇(t) − s ν(t, s) ∈ ker Gv(γ(t), ν(t, s)).

The map σ restrict to a diffeomorphism σ : S1×(−1, 1) → A, and σ∗α = sdt.

Proof. We fix x = γ(t) and v0 = γ̇(t). For each v ∈ SxM there is a unique
s(v) ∈ [−1, 1] such that v0 − s(v)v ∈ ker Gv(x, v), see Fig. 1. Clearly, s(v)
depends smoothly on v. We choose an arbitrary parametrization of the fiber

v : [0, 1]
∼=−→ A ∩ SxM

such that v(0) = v0 and v(1) = −v0. Notice that v̇(r) ∈ ker Gv(x, v(r)), and
there exists λ(r) ∈ R such that v0 = s(v(r))v(r) + λ(r)v̇(r). By the strict
convexity of SxM , we have λ(r) = 0 if and only if r ∈ {0, 1}. Since

Gv(x, v)v0 = Gv(x, v)s(v)v = s(v),

we have

ds(v(r))v̇(r) = d
dr s(v(r)) = d

dr Gv(x, v(r))v0 = Gvv(x, v(r))v̇(r) v0

= s(v(r))Gvv(x, v(r))v̇(r) v(r) + λ(r)Gvv(x, v(r))v̇(r) v̇(r)

= s(v(r))Gv(x, v(r))v̇(r) + λ(r)Gvv(x, v(r))v̇(r) v̇(r)

= λ(r)Gvv(x, v(r))v̇(r) v̇(r).

The last term is non-zero for all r ∈ (0, 1). Therefore, s : A∩SxM → [−1, 1] is
a diffeomorphism that restricts to a diffeomorphism s : A ∩ SxM → (−1, 1).
We set σ(x, ·) to be the inverse homeomorphism. The obtained map σ :
S1× [−1, 1] → A is thus a homeomorphism that restricts to a diffeomorphism
σ : S1 × (−1, 1) → A. The pull-back of the contact form α by σ is

(σ∗α)(t,s) = Gv(γ(t), ν(t, s))γ̇(t) dt = Gv(γ(t), ν(t, s))s ν(t, s) dt = sdt.

�
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From now on, the annulus S1 × [−1, 1] will be implicitly equipped with
the Euclidean area form ds ∧ dt. By means of Lemma 5.2, we will always
consider the Birkhoff map of a simple closed geodesic γ as a homeomorphism
ψ : S1 × [−1, 1] → S1 × [−1, 1] that restricts to a symplectomorphism of
(S1 × (−1, 1),ds ∧ dt) and acts on the boundary as ψ(t,±1) = (t±2,±1).

5.2. Periodic points of twist maps

Let ψ : S1 × [−1, 1] → S1 × [−1, 1] be an area preserving homeomorphism
preserving the boundary components S1 × {−1} and S1 × {1}. Such a ψ is
called a twist map when it admits a lift

ψ̃ : R × [−1, 1] → R × [−1, 1], ψ̃(t, s) = (a(t, s), b(t, s)), (5.3)

satisfying the twist conditions a(t, 1) < t and a(t,−1) > t for all t ∈ R.
If ψ is the Birkhoff map of a simple closed geodesic γ of (S2, F ), the set
of its periodic orbits in S1 × (−1, 1) is in one-to-one correspondence with
the set of closed geodesics intersecting γ (other than γ itself). In particular,
the existence of infinitely many periodic points of ψ implies the existence of
infinitely many closed geodesics on (S2, F )

By the celebrated Poincaré–Birkhoff theorem [9], any twist map has at
least two fixed points in the interior of the annulus. Indeed, more is true:
any lift (5.3) satisfying the twist condition has at least two fixed points. A
simple argument due to Neumann [38] further implies that any twist map ψ
has infinitely many periodic points. Indeed, consider the translation

τ : R × [−1, 1] → R × [−1, 1], τ(t, s) = (t + 1, s).

For each integer q > 0 there exists another relatively prime integer p > 0
that is large enough so that

p min
x∈R

(
x − a(x, 1)

)
> q.

This condition guarantees that φ̃ := ψ̃p ◦ τ q is a lift of φ = ψp satisfying the
twist condition, and therefore, has at least a fixed point z ∈ R× [−1, 1]. Such
a z projects to a p-periodic point [z] of ψ, and since p, q are relatively prime
the minimal period of [z] is p.

Let us now apply this results to the Birkhoff map of a simple closed
geodesic γ of (S2, F ). For each t ∈ S1, we denote t · γ := γ(t + ·) the closed
geodesic γ with the parametrization translated by t, and by indΩ(t · γ) the
Morse index of t·γ in its corresponding based loop space Ωt = {ζ ∈ Λ | ζ(0) =
γ(t)} (see Sect. 4.2).

Theorem 5.3. If the simple closed geodesic γ satisfies indΩ(t · γ) ≥ 2 for all
t ∈ S1 and has a well defined Birkhoff map ψ, then ψ is a twist map, and in
particular (S2, F ) has infinitely many closed geodesics.

Proof. Let us consider the family of Jacobi fields ηt introduced in (5.1). As
we already mentioned in the proof of Proposition 4.2, the classical Morse
index theorem [36] allows to relate indΩ(t · γ) to the zeros of ηt by

indΩ(t · γ) = #{s ∈ (t, t + 1) | ηt(s) = 0} = #{s ∈ (t − 1, t) | ηt(s) = 0}.
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Figure 2. Example of geodesic ray ζ on a reversible Finsler
sphere intersecting the simple closed geodesic γ at subse-
quent points γ(t), γ(t′) and γ(t′′), with t′ = t+a′ ∈ (t, t+1]
and t′′ = t′ + a′′ ∈ (t′, t′ + 1], such that i′ = 1 and i′′ = 0

Therefore, indΩ(t · γ) ≥ 2 is equivalent to t2 − t < 1 and t − t−2 < 1. If this
holds for all t ∈ R, we claim that the Birkhoff map ψ is a twist map. Indeed,
ψ can be lifted to a continuous map

ψ̃ : R × [−1, 1] → R × [−1, 1],

as follows. Let σ : S1 × [−1, 1] → A, σ(t, s) = (γ(t), ν(t, s)) be the homeomor-
phism of Lemma 5.2. For each (t, s) ∈ R × (−1, 1), we consider the geodesic
ray ζ starting at ζ(0) = γ(t) with speed ζ̇(0) = ν(t, s). Let a′, a′′ ∈ (0, 1] be
such that the first intersection of ζ at positive time with γ is at γ(t+a′), and
the second one is at γ(t + a′ + a′′). Let 0 < b′ < b′′ be the first positive times
such that ζ(b′) = γ(t+a′) and ζ(b′′) = γ(t+a′ +a′′). We denote by i′, i′′ ∈ Z

the algebraic count of (transverse) self-intersections of the geodesics ζ|(0,b′)
and ζ|(b′,b′′), respectively (Fig. 2); here a double-point intersection is counted
positively if and only if ζ crosses itself from left to right (up to isotoping
ζ|[0,b′′] without moving ζ(0), ζ(b′), and ζ(b′′), we can assume that all the
self-intersections of ζ|[0,b′′] are double points).

We define the lift

ψ̃(t, s) = (a(t, s), b(t, s)),

by setting the first component to be

a(t, s) = t + a′ + a′′ + i′ + i′′ − 1.

It is straightforward to verify that such a function a is continuous. Since
indΩ(t · γ) ≥ 2, if |s| is close to 1 (that is, if ζ̇(0) is close to ±γ̇(0)), we have
i′ = i′′ = 0. Moreover, if s is close to 1 we have a′ + a′′ ∈ (0, 1), whereas if s
is close to −1 we have a′ + a′′ ∈ (1, 2). Therefore,

a(t, 1) − t = t2 − t − 1 ∈ (−1, 0), a(t,−1) − t = 1 − (t − t−2) ∈ (0, 1),
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namely ψ̃ satisfies the twist condition. Since ψ is a twist map, it has infinitely
many periodic points corresponding to infinitely many closed geodesics of
(S2, F ). �

5.3. Hingston’s theorems

A celebrated theorem due to Hingston [22], that extends previous results of
Bangert [7,8], implies the existence of infinitely many closed geodesics on
(S2, F ) when there is a simple closed geodesic with non-zero local homology
in degree 3 and a Birkhoff map not of twist type. Hingston’s original proof
was phrased for Riemannian manifolds, but is valid as well in the Finsler
setting, and indeed even in the non-reversible Finsler setting. We include the
full argument here for the reader’s convenience.

Theorem 5.4. Let (M,F ) be a closed Finsler manifold of dimension d ≥ 2,
and γ ∈ crit(E) a closed geodesic satisfying the following two conditions:

(i) The local homology Ci(γ) with coefficient in some field is non-zero in
degree i = ind(γ) + nul(γ).

(ii) ind(γm)+nul(γm) ≤ m(ind(γ)+nul(γ))− (d−1)(m−1) for all m ∈ N.
Then, (M,F ) has infinitely many closed geodesics.

The proof of Theorem 5.4 will employ the following arithmetic state-
ment, which is also due to Hingston.

Lemma 5.5. Let (M,F ) be a Finsler manifold, � > 0 a positive real number,
and K ⊆ N a k-dense subset for some k > 0, that is,

(n − k, n + k) ∩ K �= ∅, ∀n ∈ N.

Assume that for all ε > 0, there exists m > 0 and, for all m ∈ K with m ≥ m,
a closed geodesic ζm ∈ crit(E) whose length satisfies

m� < E(ζm)1/2 ≤ m� + ε.

Then (M,F ) has infinitely many closed geodesics.

Proof. Up to replacing the Finsler metric F with �−1F , we can assume that

� = 1.

We recall that a closed geodesic γ ∈ crit(E) is called prime when it is not
the iterate of another closed geodesic, that is, γ = ζm implies m = 1 and
ζ = γ. We prove the lemma by contradiction, by assuming that (M,F ) has
only finitely many prime closed geodesics γ1, . . . , γr ∈ crit(E). We denote by
�i := E(γi)1/2 the length of such closed geodesics, and we reorder them so
that �i �∈ Q for all i = 1, . . . , s, and �i = pi/qi ∈ Q for all i = s + 1, . . . , r.
Here, pi and qi are positive integers.

If s > 0, that is, there are closed geodesics of irrational length, we set

c :=
(s + 1)(2k − 2) + 1

min{�1, . . . , �s} ,

and

δ1 := min
{

|m1�i − m2|
∣∣∣ m1,m2 ∈ N with m1 ≤ c, i = 1, . . . , s

}
> 0.
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If s < r, that is, there are closed geodesics of rational length, we have

δ2 := min
{∣∣m1�i − m2

∣∣ ∣∣∣ m1,m2 ∈ N with m1�i − m2 �= 0, i = s + 1, . . . , r
}

≥ 1
max{qs+1, . . . , qr} > 0.

If s = 0 we simply set δ1 := +∞, and likewise if s = r we set δ2 := +∞.
Now, we fix ε ∈ (0,min{δ1, δ2, 1}). By the assumptions of the lemma,

there exists m and, for all m ∈ K with m ≥ m, a closed geodesic ζm ∈ crit(E)
such that

m < E(ζm)1/2 ≤ m + ε. (5.4)

Since γ1, . . . , γr are the only prime closed geodesics in (M,F ), up to a shift
in the parametrization each closed geodesic ζm must be of the form ζm = γμ

i

for some i = i(m) ∈ {1, . . . , r} and μ = μ(m) ∈ N. In particular, the length
of ζm is

E(ζm)1/2 = μ(m)�i(m).

We must have i(m) ≤ s, that is, every γi(m) must have irrational length �i(m);
indeed, the inequality (5.4) implies

0 < μ(m)�i(m) − m < ε < δ2.

Since K is k-dense in N, for any m1 ∈ K, there exists m2 ∈ K such that

m1 < m2 ≤ m1 + 2k − 2.

This, together with the fact that γ1, . . . , γs are the only prime closed geodesics
with irrational length, implies that we can find two integers m1,m2 ∈ K

both larger than m and such that m1 < m2 ≤ m1 + (s + 1)(2k − 2) and
i := i(m1) = i(m2). The inequalities in (5.4) applied to these two integers
give

m1 < μ(m1)�i ≤ m1 + ε, m2 < μ(m2)�i ≤ m2 + ε. (5.5)

Therefore,

|(μ(m2) − μ(m1))�i − (m2 − m1)| ≤ ε < δ1,

which implies

μ(m2) − μ(m1) > c

according to the definition of δ1. This gives a contradiction, since the inequal-
ities (5.5) imply

μ(m2) − μ(m1) <
m2 − m1 + ε

�i
<

(s + 1)(2k − 2) + 1
min{�1, . . . , �r} = c.

�

Proof of Theorem 5.4. Condition (ii), together with Lemma 4.1(ii,v), implies
that

indΩ(γ) + nulΩ(γ) ≤ 1
m

(
indΩ(γm) + nulΩ(γm)

)
≤ ind(γ) + nul(γ) − m−1

m (d − 1).
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In the limit m → ∞ the latter term converges to d − 1. This, together with
the opposite inequality provided by Proposition 4.2(iv), implies

indΩ(γ) + nulΩ(γ) = ind(γ) + nul(γ) − (d − 1). (5.6)

Let Σ ⊂ M be an embedded hypersurface diffeomorphic to a compact
(d − 1)-dimensional disk intersecting in its interior the closed geodesic γ
transversely at γ(0). As in Sect. 4.3, we introduce the space

Σk := {ζ ∈ Λk | ζ(0) ∈ Σ},

for an integer k large enough so that γ ∈ Λk. Since we are looking for infinitely
many closed geodesics, we can assume that γ is an isolated closed geodesic.
Therefore, γ is an isolated critical point of the restricted energy functional
E|Σk

with non-trivial local homology

Hi(Σ<�
k ∪ {γ},Σ<�

k ) ∼= Hi(Λ<� ∪ {γ},Λ<�) = Ci(γ),

where �2 := E(γ).
Since i = ind(γ) + nul(γ), by the Morse–Gromoll–Meyer lemma [18],

there exists a smooth embedded ball B ⊂ Σk of dimension i containing γ
in its interior, and such that E|B\{γ} < �2. Any such ball B represents a
generator of the local homology Ci(γ). This can be easily seen as follows. Let
N ⊂ Σk be a tubular neighborhood of B diffeomorphic to the normal bundle
of B in Σk. The restriction of the energy functional E to any fiber F of N
has a non-degenerate local minimizer at F ∩ B. Thus, the local homology
of E at γ is isomorphic to the local homology of E|B at its local maximizer
γ, and the local homology at a local maximizer is generated by the relative
cycle covering the whole domain (see, e.g., [33, Proposition 2.6] for a detailed
proof of this general Morse-theoretic fact). This argument is independent of
the choice of the coefficient field, and in particular [B] �= 0 in Ci(γ;Q) as
well.

We consider the evaluation map ev : B → Σ, ev(ζ) = ζ(0), whose
differential has the form

d ev(γ) : TγB → Tγ(0)Σ, d ev(γ)ξ = ξ(0).

We claim that d ev(γ) is surjective. Indeed, if as usual Ω =
{
ζ ∈ Λ | ζ(0) =

γ(0)
}

denotes the based loop space, we have

ker(d ev(ζ)) = TγΩ ∩ TγB.

Since the Hessian d2E(γ) is negative semi-definite on TγB, Eq. (5.6) implies

dim ker(d ev(ζ)) ≤ indΩ(γ) + nulΩ(γ)

≤ ind(γ) + nul(γ) − (d − 1)

= dim(B) − (d − 1).

Since dim(Σ) = d − 1, we infer that d ev(γ) is surjective. By the implicit
function theorem, up to shrinking B around γ, we find a diffeomorphism
φ : Σ × U → B such that ev ◦ φ(x, y) = x.

If ζi : [0, τi] → M are continuous paths such that ζi(τi) = ζi+1(0) for all
i ∈ Zm, we define ζ := ζ0 ∗ · · · ∗ ζm−1 ∈ Λ to be the 1-periodic curve obtained
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by first concatenating the ζi’s with their original parametrization, and then
by linearly reparametrizing the resulting curve so that it becomes 1-periodic.
Namely,

ζ(t) = ζ̃((τ0 + · · · + τm−1)t),

where

ζ̃(τ0 + · · · + τi−1 + u) = ζi(u), ∀u ∈ [0, τi].

If the ζi’s are W 1/2 paths, the energy of ζ0 ∗ · · · ∗ ζm−1 is

E(ζ0 ∗ · · · ∗ ζm−1) = (τ0 + · · · + τm−1)
m−1∑
i=0

∫ τi

0

F (ζi, ζ̇i)2 dt. (5.7)

We now employ φ to construct a relative cycle representing a non-zero
element of the local homology group of γm. We first define the smooth em-
bedding

φm : Σ × U×m ↪→ Σmk, φm(x, y0, . . . , ym−1) = φ(x, y0) ∗ · · · ∗ φ(x, ym−1),

where U×m = U × · · · × U denotes the m-fold Cartesian product. The fact
that φm is a smooth embedding can be easily seen if we identify the loops ζi =
φi(x, yi) ∈ Σk with the tuple xi = (ζi(0), ζi( 1

k ), . . . , ζi(k−1
k )) as explained in

Sect. 4.1: indeed, the curve φm(x, y0, . . . , ym−1) ∈ Σmk is then identified with
the juxtaposition (x0, . . . ,xm−1). The image of φm is a smooth embedded
ball

Bm := φm(Σ × U×m) ⊂ Σmk

containing γm in its interior. By assumption (ii) of the lemma, its dimension
is bounded from below as

dim(Bm) = d − 1 + m(i − (d − 1)) ≥ ind(γm) + nul(γm). (5.8)

Since our ζi’s are 1-periodic loops (that is, we consider them as closed paths
parametrized on [0, 1]), Eq. (5.7) reduces to

E(ζ0 ∗ · · · ∗ ζm−1) = m
(
E(ζ0) + · · · + E(ζm−1)

)
.

Since E(ζi) < E(γ), we have

E|Bm\{γm} < E(γm) = m2�2.

This, together with (5.8), implies that dim(Bm) = ind(γm) + nul(γm) =: im.
Therefore, as we explained above for B, the ball Bm represents a generator
of the local homology group

Him
(Σ<m�

mk ∪ {γm},Σ<m�
mk ;Q) ∼= Cim

(γm;Q).

We claim that, for each ε > 0 sufficiently small, there exists m = mε ∈ N

such that, for all integers m ≥ m, the homomorphism

Cim
(γm;Q) → Him

(Λ<m�+ε/�,Λ<m�;Q)

induced by the inclusion is the zero one. Indeed, let ε ∈ (0, 1) be small enough
so that

max
Σ×∂U

E ◦ φ < �2 − ε.
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If needed, we shrink Σ around γ(0) so that

diam(Σ) := max
x1,x2∈Σ

d(x1, x2) <
ε

2(�2 + 2)
,

where d : M × M → [0,∞) denotes the (possibly non-symmetric) distance
(4.1) induced by the Finsler metric F . Let δ > 0 be such that

max
∂Σ×U

E ◦ φ = �2 − δ,

and notice that

max
∂Σ×U×m

E ◦ φm = m2(�2 − δ).

We define the continuous map

ψm : Σ × Σ × U×
m/2� × U×�m/2 → Λ,

ψm(x1, x2, y1, y2) = φ
m/2�(x1, y1) ∗ γx1x2 ∗ φ�m/2(x2, y2) ∗ γx2x1 ,

where γxixj
: [0, d(xi, xj)] → M is the shortest geodesic parametrized with

unit speed joining xi and xj . Let us compute the composition E ◦ ψm. If we
set

ζ1 := φ
m/2�(x1, y1), ζ2 := φ�m/2(x2, y2), ζ := ψm(x1, x2, y1, y2),

we have

E(ζ) =
(
m + d(x1, x2) + d(x2, x1)

) (
E(ζ1)
�m

2 � + d(x1, x2) +
E(ζ2)
�m

2 � + d(x2, x1)
)

≤ (
m + 2diam(Σ)

)(
m�2 + 2diam(Σ)

)
< m2�2 + 2diam(Σ)(m + �2m + 2diam(Σ))

< m2�2 + mε < (m� + ε/�)2.

If y1 ∈ ∂U×
m/2� or y2 ∈ ∂U×�m/2, we have the estimate

E(ζ) <
(
m + 2diam(Σ)

) (
m�2 − ε + 2diam(Σ)

)
= m2�2 + m

(
2 diam(Σ)(1 + �2) − ε

)
+ 2diam(Σ)

(
2 diam(Σ) − ε

)
< m2�2.

If instead x1 ∈ ∂Σ or x2 ∈ ∂Σ, we have

E(ζ) ≤ (
m + 2diam(Σ)

) (
m�2 − �m

2 �δ + 2diam(Σ)
)

≤ m2�2 +
(
2 diam(Σ)(2 + �2) − �m

2 �δ)m
≤ m2�2 +

(
ε − �m

2 �δ)︸ ︷︷ ︸
(∗)

m,

and the term (∗) is negative for m ≥ m = 2ε/δ + 2. Summing up, our map
ψm satisfies

E ◦ ψm|∂(Σ×Σ×Um) < m2�2. (5.9)

The relative cycle diagΣ × Um is null-homologous in

H∗(Σ × Σ × Um, ∂(Σ × Σ × Um);Q),
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Figure 3. The shaded region in a is the relative cycle
diagΣ × Um, which is null-homologous in H∗(Σ × Σ ×
U×m, ∂(Σ × Σ × U×m);Q), for instance because it is ho-
mologous to the shaded region in b

since it is homologous to a relative cycle contained in ∂(Σ × Σ × Um), see
Fig. 3. Therefore, (5.9) implies that the relative cycle Bm = φm(Σ × Um) =
ψm(diagΣ × Um) is null-homologous in Him

(Λ<m�+ε/�,Λ<m�;Q), i.e.,

[Bm] = 0 in Him
(Λ<m�+ε/�,Λ<m�;Q). (5.10)

From now on, we assume that our integer m ≥ m is odd, and employ
Morse theory. Since m is odd, Lemma 4.4 implies that the inclusion induces
an injective homomorphism C∗(γm;Q) ↪→ C∗(S1 · γm;Q). Therefore, the
commutative diagram

Cim
(γm;Q) Cim

(S1 · γm;Q)

Him
(Λ<m�+ε/�,Λ<m�;Q)

0
ι∗

whose homomorphisms are all induced by the inclusion, implies that ι∗ is
not injective. This, in turn, implies that there exists a closed geodesic ζm ∈
crit(E) of length E(ζm)1/2 ∈ (m�,m� + ε/�].

Summing up, we showed that for every ε > 0 small enough there exists
m > 0 and, for all odd integers m ≥ m, a closed geodesic ζm ∈ crit(E) such
that m� < E(ζm)1/2 ≤ m� + ε. We can now invoke Lemma 5.5 with K being
the set of odd positive integers, and conclude that (M,F ) has infinitely many
closed geodesics. �

We now derive the two corollaries that we will need for proving Theo-
rem 1.5.

Corollary 5.6. Let (M,F ) be an orientable Finsler surface, and γ ∈ crit(E)
a closed geodesic such that indΩ(γ) = nulΩ(γ) = 1 and the local homology
C3(γ) with some coefficient field is non-zero. Then, (M,F ) has infinitely
many closed geodesics.

Proof. Since C3(γ) is non-trivial, we have

ind(γ) ≤ 3 ≤ ind(γ) + nul(γ).
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We now employ Proposition 4.2. Since nulΩ(γ) = 1, we have

indΩ(γm) = m indΩ(γ) + (m − 1)nulΩ(γ) = 2m − 1, nulΩ(γm) = 1.

Moreover

ind(γ) ≤ indΩ(γ) + 1 = 2, nul(γ) ≥ 3 − ind(γ) ≥ 1.

If nul(γ) = 2, then nul(γm) = 2 and ind(γm) is odd for all m ∈ N; since
indΩ(γm) ≤ ind(γm) ≤ indΩ(γm) + 1, we infer

ind(γm) = indΩ(γm) = 2m − 1.

If instead nul(γ) = 1, then ind(γ) = 2, and

ind(γm) + nul(γm) ≤ indΩ(γm) + nulΩ(γm) + 1
= 2m + 1

= m(ind(γ) + nul(γ)) − (m − 1).

In both cases, γ satisfies the assumptions of Theorem 5.4, and we infer that
(S2, F ) has infinitely many closed geodesics. �

The second corollary of Theorem 5.4 was established in the Riemannian
case by Bangert [7,8]. Even though we present it here as a corollary of The-
orem 5.4, Bangert’s proof came historically earlier than [22]. Let us recall,
once again, the classical notion of conjugate points: two points γ(t) and γ(s)
along a geodesic γ : [t, s] → M are conjugate when there exists a Jacobi
field along γ that is not identically zero, but vanishes at both γ(t) and γ(s).
When dim(M) = 2 this condition can be expressed in terms of the Jacobi
field ηt introduced in Eq. (5.1): γ(t) and γ(s) are conjugate points if and only
if ηt(s) = 0. A closed geodesic γ on a Finsler surface has no conjugate points
if and only if indΩ(t · γm) = nulΩ(t · γm) = 0 for all t ∈ S1 and m ∈ N;
equivalently, ind(γm) = 0 for all m ∈ N, according to Lemma 4.1(iii) and
Proposition 4.2(iii).

Corollary 5.7. Any reversible Finsler 2-sphere with a simple closed geodesic
without conjugate points possesses infinitely many closed geodesics.

Proof. Let γ ∈ crit(E) ∩ E−1(�2) be a simple closed geodesic without con-
jugate points in the reversible Finsler 2-sphere (S2, F ). We claim that there
exists a neighborhood U ⊂ Λ of the critical circle S1 ·γ := {t ·γ | t ∈ S1} such
that every ζ ∈ U that intersects the curve γ has energy E(ζ) ≥ E(γ). Indeed,
if this were not true, we could find a sequence ζn ∈ Λ such that ζn(0) = γ(tn),
E(ζn) < E(γ), tn → t and ζn → t · γ as n → ∞. We consider the based loop
spaces

Ωs := {ζ ∈ Λ | ζ(0) = γ(s)}, s ∈ S1,

and the space of broken closed geodesics Λk introduced in Sect. 4.1. Here
k ∈ N must be large enough so that γ ∈ Λk. Since γ has no conjugate points,
indΩ(s · γ) = nulΩ(s · γ) = 0. Therefore, every s · γ is a non-degenerate local
minimizer of E|Λk∩Ωs

. Since Ek := E|Λk
is smooth in a neighborhood of

the critical circle of γ, we can apply the parametric Morse lemma, which
provides an ε > 0 and an open neighborhood U ⊂ Λk of γ such that, for all
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Figure 4. a The simple closed geodesic γ (dotted), and
a curve ζ ∈ Λ close to γ2 with a self-intersection. b The
support of the curve ζ can be decomposed as the union of
ζ1 (dashed curve) and ζ2 (solid curve), both close to γ

t ∈ (−ε, ε), t · γ is the unique global minimizer of E|U∩Ωt
. Let γn ∈ Λk ∩ Ωtn

be the sequence of broken closed geodesics such that γn(i/k) = ζn(i/k) for
all i ∈ Zk, which have energy E(γn) ≤ E(ζn) < E(γ). Since ζ → t ·γ in Λ, we
would have that γn → γ in Λk, and in particular γn ∈ U for all n ∈ N large
enough, contradicting the fact that E|U∩Ωtn

has a strict global minimizer at
tn · γ.

We denote by B0 and B1 the connected components of S2\γ, and by
Bi ⊂ Λ the open subset of those ζ ∈ Λ such that ζ(S1) ⊂ Bi. Since we
are looking for infinitely many closed geodesics, we can assume that γ is an
isolated closed geodesic (i.e., the critical circle of each iterate γm is isolated
in crit(E)). We set �2 := E(γ). We have two possible cases, which we deal
with separately.

Case 1: For every open neighborhood V ⊂ Λ of γ, the intersections
V ∩B0 ∩Λ<� and V ∩B1 ∩Λ<� are both non-empty. If we choose V contained
in the above open subset U , we infer that every connected component of
V<� := V ∩ Λ<� is contained in either V<� ∩ B0 or V<� ∩ B1. In particular
V<� is not connected. Since V can be chosen arbitrarily small, Lemma 4.3
implies that the local homology C1(γ;Q) is non-zero. Since ind(γm) = 0,
Proposition 4.2(vi) implies that nul(γm) < 2 for all m ∈ N. Since the local
homology C1(γ;Q) is non-zero, we must have ind(γ) + nul(γ) ≥ 1, and thus
nul(γ) = 1. Since nul(γ) ≤ nul(γm) < 2, we infer that nul(γm) = 1 for all
m ∈ N. Therefore, γ satisfies the assumptions of Theorem 5.4, which implies
that (S2, F ) has infinitely many closed geodesics.

Case 2: For some i ∈ {0, 1}, there exists an open neighborhood V ⊂ Λ
of γ such that V ∩Bi ∩Λ<� = ∅. This implies the analogous property for γm:
there exists an open neighborhood Vm ⊂ Λ of γm such that Vm∩Bi∩Λ<� = ∅.
Indeed, since we are on an orientable surface, a tubular neighborhood of
the simple closed geodesic γ is diffeomorphic to the annulus S1 × (−1, 1),
γ being its zero section S1 × {0}. Therefore, any curve ζ sufficiently close
to the iterated curve γm has at least m − 1 self-intersections counted with
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multiplicity (see Fig. 4). The support of ζ can be decomposed as the union
of the supports of ζ1, . . . , ζm ∈ V, and E(ζ) = m(E(ζ1) + · · · + E(ζm)), see
for instance [2, Lemma 4.2]. If E(ζ) < E(γm) = m2E(γ), we would have
E(ζj) < E(γ) for some j, contradicting the fact that V ∩ Bi ∩ Λ<� = ∅.

Since γ is an isolated closed geodesic, we can choose Vm to be small
enough so that Vm ∩ Bi ∩ crit(E) = ∅. This implies that

E(ζ) > E(γm), ∀ζ ∈ Vm ∩ Bi.

Indeed, by the previous paragraph we know that E(ζ) ≥ E(γm) for any
ζ ∈ Vm ∩ Bi. If we had equality E(ζ) = E(γm) then ζ would be a local
minimizer, and in particular ζ ∈ crit(E).

Let us fix a homotopy u : [0, 1] → Bi ∪ {γm}, u(t) = ut, such that
u0 = γm and E(u1) = 0; namely, ut defines a contraction of γ to a point
within the disk Bi. We choose an integer

k >
max{E ◦ u}

injrad(S2, F )2
,

and consider the space of broken closed geodesics Λk and the restricted energy
functional Ek = E|Λk

. We have the associated retraction

r : Λ<
√

k injrad(S2,F ) → Λk, r(ζ) = ζ̃,

where ζ̃ ∈ Λk is the broken closed geodesics such that ζ̃(i/k) = ζ(i/k) for
all i ∈ Zk. We recall that Ek ◦ r ≤ E. Since the boundary of the disk Bi is
geodesic, we readily see that r preserves Bi. Consider an open neighborhood
V ⊂ Λk of γm with compact closure V ⊂ Vm. Since ∂V is compact, we have

b2 := min
∂V ∩Bi

Ek > Ek(γm).

Let W ⊂ V be a small enough open neighborhood of γm such that

Ek(γm) < a2 := max
W

Ek < b2.

We consider

c2 := inf
v

max{Ek ◦ v},

where the infimum ranges over all homotopies v : [0, 1] → Λk ∩ Bi ∪ {γm},
v(t) = vt, such that v0 = γm and Ek(v1) = 0. Notice that the space of
such homotopies is non-empty, as it contains r ◦ u. We have c ≥ b, since
every such a homotopy v must eventually intersect ∂V ∩ Bi. We fix an ar-
bitrary d ∈ (c, k injrad(S2, F )1/2). Notice that E−1

k [a2, d2] ∩ Bi is compact,
since it is a closed subset of the compact set E−1

k [a2, d2]\W . Therefore, the
classical min-max theorem implies that c2 is a critical value of Ek. Since
we are looking for infinitely many closed geodesics, we can assume that
(S2, F ) has only isolated closed geodesic (i.e., any critical circle is isolated in
crit(E)∩E−1(0,∞)). Under this assumption, there exists at least one closed
geodesic ζm ∈ crit(Ek) ∩ E−1

k (c2) ∩ Bi such that every open neighborhood
Z ⊂ Λk ∩ Bi of ζm has a non-connected intersection Z<c = Z ∩ Λ<c

k . Indeed,
if no closed geodesic in crit(Ek) ∩ E−1

k (c2) ∩ Bi satisfied this property, we
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could find a homotopy v as above such that max{Ek ◦ v} < c2, contradict-
ing the definition of the min-max value c2. Lemma 4.3 implies that the local
homology C1(ζm;Q) is non-trivial.

Now, either the family {ζm | m ∈ N} that we found contains infinitely
many geometrically distinct closed geodesics, or there exists a non-iterated
closed geodesic ζ, an infinite subset K ⊂ N, and a function μ : K → N such
that μ(m) → ∞ as m → ∞ and ζm = ζμ(m) for all m ∈ N. Since every iterate
ζμ(m) has non-trivial local homology C1(ζμ(m)), we have ind(ζμ(m)) ≤ 1 for all
m ∈ K, and therefore, ind(ζm) = 0 for all m ∈ N according to Lemma 4.1(iii).
We cannot have nul(ζ) = 0, for otherwise ζ would be a local minimizer of
Ek, and the same would be true for all its iterates according to analogous
argument of Fig. 4. Therefore, 1 ≤ nul(ζ) ≤ nul(ζm) ≤ 2 for all m ∈ N. By
Proposition 4.2(vi), since the Morse indices ind(ζm) vanish, we must have
nul(ζm) = 1 for all m ∈ N.

Since ind(ζ) = ind(ζm) and nul(ζ) = nul(ζm) for all m ∈ N, we have an
isomorphism of local homology groups C∗(ζ;Q) ∼= C∗(ζm;Q). In particular
C1(ζ;Q) does not vanish. Therefore, ζ satisfies the assumptions of Theo-
rem 5.4, which implies that (S2, F ) has infinitely many closed geodesics. �

5.4. Bangert’s theorem

As it turns out, the statements proved so far allow us to conclude the existence
of infinitely many closed geodesics on any reversible (S2, F ), except when
none of its simple closed geodesics has a well-defined Birkhoff map. We recall
that a simple closed geodesic γ of a reversible (S2, F ) does not have a well-
defined Birkhoff map when, for some x = γ(t) and v ∈ TxS2 transverse to
γ̇(t), the geodesic ζ(t) = expx(tv) does not intersect γ at any positive time
t > 0. In this section, we show that this last case is covered by Corollary 5.7.
For Riemannian 2-spheres, this is a theorem due to Bangert [8].

Theorem 5.8. Any reversible Finsler 2-sphere having a simple closed geo-
desic without a well-defined Birkhoff map possesses infinitely many closed
geodesics.

The proof is based on the following lemma of independent interest.

Lemma 5.9. Let (M,F ) be a (not necessarily reversible) Finsler surface, and
γ : [−T, T ] → M a geodesic parametrized with constant speed. If there exists
a sequence of geodesics γn : [−T, T ] → M parametrized with constant speed,
not intersecting γ, and such that (γn(0), γ̇n(0)) → (γ(0), γ̇(0)) in TM, then
γ|(−T,T ) has no conjugate points.

Proof. Since the problem is local to γ, we can assume without loss of gen-
erality that M = R2 and γ(t) = (t, 0) for all t ∈ [−T, T ], so that we can
write expressions in coordinates. Without loss of generality, we can assume
that F (γ, γ̇) ≡ 1. We reparametrize the geodesics γn so that they have speed
F (γn, γ̇n) ≡ 1. By doing this, we change the interval of definition of γn: the
reparametrized curve has the form γn : [−Tn, Tn] → M with Tn → T as
n → ∞.
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We set (x, v) = (γ(0), γ̇(0)) = (0, γ̇(0)), G = 1
2F 2, and consider the line

Σ := {y ∈ R2 | y ∈ ker Gv(x, v)}.

For all n ∈ N large enough, the geodesic γn : [−Tn, Tn] → R2 intersects Σ in
a unique point xn, and clearly xn → x. We shift the parametrization of γn,
so that we have a sequence of geodesics γn : [−Tn + εn, Tn + εn] → R2 not
intersecting γ and such that εn → 0 and vn := γ̇n(0) → v. Up to extracting a
subsequence, we can assume that each γn lies on the same side of γ. Therefore,
we have a well-defined non-zero vector

w′ :=
xn − x

‖xn − x‖ ∈ Σ

independent of n. Here, ‖ · ‖ denotes the Euclidean norm. We consider the
vectors

zn :=
vn − v

‖xn − x‖ .

Since the geodesics γn and γ do not intersect on the time interval [−T/2, T/2]
and the second derivative of γn − γ is uniformly bounded on [−T/2, T/2]
independently of n, we readily obtain that the sequence ‖zn‖ is uniformly
bounded from above. In particular, up to extracting a subsequence, we have
zn → z′ as n → ∞.

We set λ := (1 + ‖z′‖2)−1/2, w := λw′, and z := λz′, so that

lim
n→∞

(xn, vn) − (x, v)
‖(xn, vn) − (x, v)‖ = lim

n→∞
(xn, vn) − (x, v)

‖xn − x‖√
1 + ‖zn‖2

= (w, z) ∈ T(x,v)SR
2,

where SR2 = {(x′, v′) ∈ TR2 | F (x′, v′) = 1}. Therefore,

lim
n→∞

φt(xn, vn) − φt(x, v)
‖(xn, vn) − (x, v)‖ = dφt(x, v)(w, z).

The Jacobi field ζ : (−T, T ) → R2 along γ defined by

(ζ(t), ζ̇(t)) = dφt(x, v)(w, z)

satisfies Gv(γ(t), γ̇(t))ζ(t) = 0.
We claim that ζ is nowhere vanishing. Indeed, let ν : (−T, T ) → R2 the

smooth vector field along γ defined by ν(t) ∈ ker Gv(γ(t), γ̇(t)), ‖ν(t)‖ = 1,
and ν(t) pointing to the side of γ containing the γn’s. We can write ζ(t) =
z(t)ν(t) for some continuous function z = (−T, T ) → R. Notice that

ζ(t) = lim
n→∞

γn(t) − γ(t)
‖(xn, vn) − (x, v)‖ .

If ζ(t) = 0 for some t, since γn(t) − γ(t) and ν(t) point to the same side
of γ, we readily obtain that z(t) = 0 and ż(t) = 0. But this would imply
that ζ(t) = ζ̇(t) = 0, and since ζ is a Jacobi field we would conclude that ζ
vanishes identically, contradicting ζ(0) = w.

If γ had conjugate points γ(t1), γ(t2) for some −T < t1 < t2 < T , there
would exists a Jacobi field η : [t1, t2] → R2 such that η(t1) = η(t2) = 0,
η̇(t1) �= 0, and η(t) ∈ ker Gv(γ(t), γ̇(t)) for all t ∈ [t1, t2]. Since we are
on a surface, kerGv(γ(t), γ̇(t)) is 1-dimensional. Therefore, by the Sturm
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separation theorem, η and ζ would have alternating zeroes, contradicting the
fact that ζ is nowhere vanishing. �

Proof of Theorem 5.8. Let γ0 ∈ crit(E) ∩ E−1(0,∞) be a simple closed geo-
desic that does not have a well-defined Birkhoff map. We only need to consider
the case in which γ0 has conjugate points (i.e., indΩ(γm

0 ) > 0 for some integer
m ≥ 1), for otherwise the existence of infinitely many closed geodesics is al-
ready provided by Corollary 5.7. The fact that γ0 does not have a well-defined
Birkhoff map means that, for some x0 = γ0(t0) and v0 ∈ SxS2 transverse to
γ̇0(t0), the geodesic ζ : (0,∞) → S2, ζ(t) = expx0

(tv0) does not intersect
γ0 in positive time, and therefore, stays trapped in a connected component
B ⊂ S2\γ0(S1). We consider the compact subset

K :=
⋂
t>0

ζ[t,∞) ⊂ B.

We claim that

K ∩ γ0(S1) = ∅.

Otherwise we can find a sequence tn → ∞ and s ∈ R such that ζ(tn) → γ0(s).
Since ζ does not intersect γ0 in positive time, up to extracting a subsequence
we must have ζ̇(tn) → γ̇0(s). Since γ0 has conjugate points, there exists
δ > 0 such that γ0|(s−δ,s+δ) has conjugate points. Lemma 5.9 thus provides
a contradiction: since ζ|[tn−δ,tn+δ] does not intersect γ0|[s−δ,s+δ], γ0|(s−δ,s+δ)

cannot have conjugate points.
Let U ⊂ B\K be the connected component whose closure contains

γ0(S1). One would expect this open set to be locally geodesically convex.
We prove a slightly weaker convexity: for all x, y ∈ U that can be joined
by means of an absolutely continuous curve in U of length strictly less than
ρ := injrad(S2, F ), the shortest geodesic joining x and y is entirely contained
in U . Indeed, let γx,y : [0, 1] → S2, γx,y(t) = expx(t exp−1

x (y)) be such a
geodesic, and assume by contradiction that some z = γx,y(s) belongs to K.
Then, by the definition of K, there exists a sequence tn → ∞ such that
ζ(tn) → z. Up to extracting a subsequence, the sequence ζ̇(tn) converges to
some w ∈ SzS

2 that is transverse to γ̇x,y(s), since the geodesic θ : R → S2,
θ(t) = expz(tw) is entirely contained in K. We denote the geodesic balls
centered at z by

B(z, r) :=
{
z′ ∈ S2

∣∣ d(z, z′) < r
}
, r > 0,

where d : S2×S2 → [0,∞) is the distance (4.1) induced by the Finsler metric
F . The points x and y are contained in different connected components of
B(z, ρ)\ζ(−ρ, ρ). Therefore, every continuous curve θ : [0, 1] → U such that
θ(0) = x and θ(1) = y must leave the geodesic ball B(z, ρ); since d(x, z) +
d(z, y) < ρ, we readily obtain that the length of such a θ is larger than ρ,
contradicting our assumption on x, y.

We consider the space

W :=
{
γ ∈ Λ

∣∣ γ(S1) ⊂ U, γ not contractible in U, E(γ) < E(γ0)
}
.
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We claim that W is not empty. Indeed, since γ0 has conjugate points, by
Proposition 4.2(vii) there exists a nowhere-vanishing 1-periodic vector field
ξ along γ such that d2E(γ)[ξ, ξ] < 0, and ξ(t) points inside U for all t ∈ S1.
We define γs ∈ Λ by

γs(t) = expγ0(t)(sξ(t)).

If s > 0 is small enough, then γs is contained in U , non-contractible in U
(since it is homotopic to γ0 within U ∪ γ0(S1)), and since

E(γs) ≤ E(γ0) + 1
2s2 d2E(γ)[ξ, ξ] + o(s2)

we have E(γs) < E(γ0). Thus, any such γs belongs to W .
We fix k ∈ N large enough so that γ0 is contained in the space of

broken closed geodesics Λk ⊂ Λ. We define the continuous map r : W → Λk

by r(γ)( i
k ) = γ( i

k ) for all i ∈ Zk. The above convexity property of U implies
that, for each γ ∈ W , r(γ) is a curve contained in U and homotopic to γ within
U . Therefore, r is a retraction r : W → W ∩ Λk. Since E(r(γ)) ≤ E(γ), we
have

�2 := inf
W

E = inf
W∩Λk

E.

We choose a sequence γn ∈ W ∩ Λk such that E(γn) → �2. We can as-
sume that each γn is without self-intersection. Indeed, if γn has self-intersecti-
ons, we can find an interval [a, b] � [0, 1] such that γn|[a,b] is a non-contractible
loop in U . If i0, i1 are positive integers such that

[ i0+1
k , i1−1

k ] ⊆ [a, b] ⊆ [ i0
k , i1

k ],

we define γ̃n ∈ W ∩ Λk by setting γ̃n( i
k ) = γn(a) for all i ∈ {0, . . . , i0} ∪

{i1, . . . , k − 1}, and γ̃n( i
k ) = γn( i

k ) for all i ∈ {i0 + 1, . . . , i1 − 1}. The curve
γ̃n has less self-intersections than γn, and energy E(γ̃n) ≤ E(γn). Since a
broken closed geodesic has only finitely many self-intersections, by repeating
this procedure a finite number of times we eliminate all of them.

Since W ∩ Λk is compact, up to extracting a subsequence we have that

γn → γ ∈ W ∩ Λk,

and E(γ) = �2. We claim that γ is a closed geodesic. This is clear if γ is
contained in W ∩Λk, for in this case it would be a critical point of the energy
functional E. Assume now that γ ∈ ∂(W ∩ Λk), and consider the unique
θ, θn ∈ Λk such that

θ( i
k ) = γ( i+1/2

k ), θn( i
k ) = γn( i+1/2

k ), ∀i ∈ Zk.

Clearly, θn → θ. Moreover, E(θ) ≤ E(γ) with equality if and only if γ is a
closed geodesic. The above convexity property of U implies that θn ∈ W ∩Λk.
Therefore, E(θn) ≥ inf E|W = E(γ) and E(θ) = E(γ), and we conclude that
γ is a closed geodesic.

Since the approximating loops γn are without self-intersections, γ is a
simple closed geodesic. Therefore, the union γ0(S1) ∪ γ(S1) bounds an open
annulus A ⊂ U . Since E(γ) = inf E|W , in particular there is no γ̃ ∈ Λ freely
homotopic to γ with energy E(γ̃) < E(γ) and support γ̃(S1) ⊂ A. Therefore,
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by applying Proposition 4.2(vii) as above, we infer that γ has no conjugate
points. Corollary 5.7 implies that (S2, F ) has infinitely many closed geodesics.

�

Proof of Theorem 1.5. By Theorem 1.3, if (S2, F ) has only finitely many sim-
ple closed geodesics, there exists at least one simple closed geodesic γ ∈
crit(E) with non-zero local homology C3(γ;Z2). If γ does not have a well-
defined Birkhoff map, Theorem 5.8 implies that there are infinitely many
closed geodesics. Assume now that γ has a well-defined Birkhoff map. Since
C3(γ;Z2) is non-zero, C3(t · γ;Z2) is non-zero as well, and

ind(t · γ) ≤ 3 ≤ ind(t · γ) + nul(t · γ), ∀t ∈ S1.

By Proposition 4.2(iv), we have

indΩ(t · γ) + nulΩ(t · γ) ≥ ind(t · γ) + nul(t · γ) − 1 ≥ 2, ∀t ∈ S1. (5.11)

Since nulΩ(t · γ) ≤ 1 according to Proposition 4.2(ii), the inequality in (5.11)
implies that indΩ(t·γ) ≥ 1. If indΩ(t·γ) ≥ 2 for all t ∈ S1, Theorem 5.3 implies
that there are infinitely many closed geodesics. If instead indΩ(t · γ) = 1
for some t ∈ S1, the above inequality implies that nulΩ(t · γ) = 1, and
Corollary 5.6 implies that there are infinitely many closed geodesics. �
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Families of Legendrians and Lagrangians
with unbounded spectral norm

Georgios Dimitroglou Rizell

Abstract. Viterbo has conjectured that any Lagrangian in the unit co-
disc bundle of a torus which is Hamiltonian isotopic to the zero-section
satisfies a uniform bound on its spectral norm; a recent result by
Shelukhin showed that this is indeed the case. The modest goal of our
note is to explore two natural generalisations of this geometric setting
in which the bound of the spectral norm fails: first, passing to Legen-
drian isotopies in the contactisation of the unit co-disc bundle (recall
that any Hamiltonian isotopy can be lifted to a Legendrian isotopy)
and, second, considering Hamiltonian isotopies but after modifying the
co-disc bundle by attaching a critical Weinstein handle.
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1. Introduction and results

Spectral invariants were introduced in Viterbo’s seminal work [31]. Since
their appearance they have become one of the most fundamental tools of
quantitative symplectic topology. We do not intend to give an overview of
its development and many applications here; instead we direct the reader to
work by Oh [23] for a thorough introduction to the subject from a modern
perspective.

Very briefly, spectral invariants in the symplectic case consist of func-
tions from the group of Hamiltonian diffeomorphisms

c : Ham(X,ω) → R

that take values in the real numbers, and which satisfy a list of axioms that
will be omitted. The spectral invariants that we consider here are constructed
as follows. For a pair of exact Lagrangian submanifolds L0, L1 ⊂ (X, dλ) (the
symplectic manifold is thus necessarily exact) one can associate the Floer
complex CF (L0, φ(L1)) to any Hamiltonian diffeomorphism φ ∈ Ham(X,ω)
endowed with its canonical action filtration. Spectral invariants are certain
real numbers that encode information about this filtered chain complex. To
make this precise, we utilise the language of the barcode from the theory of
persistent homology in topological data analysis, which goes back to work by
Carlsson–Zomorodian–Collins–Guibas [8]. This theory has been proven to be
very useful in quantitative symplectic topology, where it was introduced by
Polterovich–Shelukhin [25] and Usher–Zhang [30]; also see the recent work
[24] by Polterovich–Rosen–Samvelyan–Zhang for a systematic introduction.
Here we give a quick definition of the barcode of a filtered complex that will
suit our needs in Sect. 2.2.

The barcode can be defined for any chain complex (C, ∂, a) with a fil-
tration by subcomplexes

C<c
∗ := a−1[−∞, c) ⊂ C∗

defined by an “action” function

a : C → {−∞} ∪ R,

Reprinted from the journal366



Vol. 24 (2022) Families of Legendrians and Lagrangians...

where a−1(−∞) = {0}. Phrased in this language, the spectral invariants
are the values of the starting points of the semi-infinite bars of the barcode
associated to the Floer complex. In fact, the main interest here is not the
spectral invariants themselves, but rather the following derived quantities
(see Definition 2.7):

• The spectral range of a filtered complex, denoted by

ρ(C, ∂, a) ∈ {−∞} ∪ [0,+∞].

This quantity is defined as the supremum of the distances between the
starting points of two semi-infinite bars in the corresponding barcode.
(It takes the value −∞ if and only if there are no semi-infinite bars.)

• The boundary depth of a filtered complex, denoted by

β(C, ∂, a) ∈ {−∞} ∪ [0,+∞].

This quantity is defined as the supremum of the lengths of a finite bar in
the corresponding barcode. (It takes the value −∞ if and only if there
are no bars of finite length.)

For the Floer complex CF (L, φ1
H(L)) of a closed embedded exact Lagrangian

and its Hamiltonian deformation, the spectral range coincides with a quantity
called the spectral norm. This can be seen using Leclercq’s results from [20,
Corollary 1.7], after relating the spectral invariants used in that article to
the endpoints of semi-infinite bars in the relevant barcode. Since we will not
use any of the particular features satisfied by the spectral norm here, we will
gloss over the difference between these two concepts and simply define the
spectral norm as

γ(CF (Λ, φ1
H(Λ))) := ρ(CF (Λ, φ1

H(Λ))),

i.e. we prescribe it to be equal to the spectral range.

Remark 1.1. The correct way to define the spectral norm in the setting of
Legendrians would be to define γ as the difference of action levels of the
classes that correspond to the unit for the cup-product and its image under
Poincaré duality. We do not go into details of products and Poincaré duality
here, but when Λ is a Legendrian without Reeb chords, we again expect an
equality between spectral norm and spectral range. In general there should
be an inequality γ ≤ ρ.

We also need a generalisation of the above spectral invariants to contact
manifolds. Since we will only consider contact manifolds of a very particular
type, namely contactisations

(Y, α) = (X × R, dz + λ)

of exact symplectic manifolds (X, dλ) (see Sect. 2.1), this can be done by
relying on well-established techniques. From our point of view, the spectral
invariants of a contact manifold are defined for the group of contactomor-
phisms which are contact-isotopic to the identity, and yield functions

c : Cont0(Y, α) → R.
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Note that the value does depend on the choice of contact form α here, and
not just on the contact structure kerα ⊂ TY . It should be noted that
spectral invariants in the contact setting are much less studied and devel-
oped than the symplectic version. However, the original formulation of the
spectral invariants, which appeared in [31] for symplectic cotangent bundles
(X,ω) = (T ∗M,d(p dq)), admits a straightforward generalisation to the stan-
dard contact jet-space

(J1M = T ∗M × R, dz − p dq),

as shown by Zapolsky [33]. In fact, the spectral invariants in [31] are based
on a version of Floer homology defined using generating families, and this
theory can be generalised to invariants of Legendrian isotopies inside jet-
spaces by work of Chekanov [7]. Note that jet-spaces are particular cases of
contactisations.

The spectral invariants considered here can be defined either by using
generating families as in [33], or using a Floer homology constructed using the
Chekanov–Eliashberg algebra as first done in [13] by Ekholm–Etnyre–Sabloff;
also see work [4] by the author together with Chantraine–Ghiggini–Golovko.
The Chekanov–Eliashberg algebra is a Legendrian isotopy invariant in the
form of a unital differential graded algebra (DGA) that is freely generated
by the Reeb chords on the Legendrian, which are all assumed to be trans-
verse. Given a pair of Legendrians Λ0 and Λ1, the spectral invariants that we
consider are associated to the barcode of the Floer complex CF (Λ0, φ(Λ1))
where φ is a contactomorphism that is contact isotopic to the identity. See
Sect. 2.3 for the definition of this Floer complex.

Viterbo conjectured in [32] that the spectral norm γ(CF (0Tn , φ(0Tn)))
of the Floer complex of the zero section 0Tn ⊂ T ∗Tn satisfies a uniform
bound whenever φ ∈ Ham(T ∗Tn) maps the zero section φ(0Tn) ⊂ DT ∗Tn

into the unit-disc cotangent bundle. In recent work by Shelukhin [28,29] this
property was finally shown to be the case, even for a wide range of cotangent
bundles beyond the torus case. The main point of our work here is to give
examples of geometric settings beyond symplectic co-disc bundles, where the
analogous boundedness of the spectral norm fails. It should be stressed that,
in the time of writing of this article, there are still many cases of cotangent
bundles for which the problem remains open: does the spectral norm of an
exact Lagrangian inside DT ∗M which is Hamiltonian isotopic to the zero-
section satisfy a uniform bound for an arbitrary closed smooth manifold M?

As a first result, in Part (1) of Theorem A, we show that the spectral
norm of Legendrians inside the contactisation D∗S1 × R ⊂ J1S1 which are
Legendrian isotopic to the zero section does not satisfy a uniform bound.
Recall that any Hamiltonian isotopy of 0S1 ⊂ DT ∗S1 lifts to a Legendrian
isotopy of the zero section j10 ⊂ J1S1 (see Lemma 2.1); consequently, one
way to formulate Part (1) of Theorem A is by saying that Viterbo’s conjecture
cannot be generalised to Legendrian isotopies.

Below we denote by

Fθ0,z0 := {θ = θ0, z = z0} ⊂ J1S1
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a Legendrian lift of the Lagrangian cotangent fibre T ∗
θ0

S1.

Theorem A.

(1) There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|j10 : j10 ↪→ DT ∗S1 × R = (S1 × [−1, 1]) × R,

and for which CF (j10, φt(j10)) all are generated by precisely two mixed
Reeb chords, whose difference in length grows indefinitely as t → +∞.
In particular, the spectral norm γ(CF (j10, φt(j10))) becomes arbitrarily
large as t → +∞.

(2) There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|Λst : Λst ↪→ DT ∗S1 × R>0 = (S1 × [−1, 1]) × R>0 ⊂ J1S1,

where Λst ⊂ J1S1 is the standard Legendrian unknot shown in Fig. 1,
and for which the boundary depth β(CF (φt(Λst), Fθ0,0)) becomes arbi-
trarily large as t → +∞. In addition, we may assume that φt is sup-
ported inside some subset {z ≥ c}, where c > 0, and for which the
inclusion {z ≥ c} ∩ Λst � Λst is a strict subset.

In recent work [2, Section 6.2] Biran–Cornea showed that a bound
γ(CF (0M , L)) ≤ C on the spectral norm of the Floer complex of a Lagrangian
L ⊂ T ∗M , where L is Hamiltonian isotopic to the zero section, implies the
bound β(CF (L, T ∗

ptM)) ≤ 2C on the boundary depth of the Floer complex of
L and a cotangent fibre. The Legendrians produced by Part (2) of Theorem
A can be used to show that the analogous result cannot be generalised to
Legendrian isotopies. More precisely,

Corollary B. There exists a contact isotopy φt : J1S1 → J1S1 that satisfies

φt|j10 : j10 ↪→ DT ∗S1 × R = (S1 × [−1, 1]) × R,

and for which the spectral norm γ(CF (j10, φ1(j10))) is uniformly bounded for
all t ≥ 0, while the boundary depth β(CF (φ1(0S1), Fθ0,z0)) becomes arbitrarily
large as t → +∞.

Proof. Take a cusp-connected sum of a C1-small perturbation of the zero-
section j10 and any unknot Λt

st from the family produced by Part (2) of
Theorem A; the case of Λst is shown in Fig. 1. We refer to [9] for the definition
of cusp-connected sum (also called ambient Legendrian 0-surgery) along a
Legendrian arc (the so-called surgery disc). We perform the cusp-connected
sum along a Legendrian arc contained inside the region {z < c}, and which is
disjoint from the support of the Legendrian isotopy of the unknots. Note that
the Legendrian resulting from the cusp-connected sum is Legendrian isotopic
to the zero-section, as shown in Fig. 1. It follows that the same is true for
the cusp-connected sum of j10 and any Legendrian Λt

st from the family.
Finally, to evaluate the effect of the ambient surgery on the barcodes

of the Floer complexes we apply Theorem C. To that end, the following two
facts are needed. First, CF (Λst, j

10) is acyclic, and thus its barcode consists
of only finite bars. The acyclicity of the Floer complex is a consequence of the
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Λst

j10
Λ− Λ+

zzz

θθθ
c 1

2− 1
2

Figure 1. Left: the front projection of the zero section
j10 ⊂ J1(R/Z) = J1S1 and a standard Legendrian unknot
Λst. Middle: the result of a Legendrian RI -move on each
component, Λ− denotes the union of the two components.
Right: the Legendrian Λ+ which is the result after a cusp-
connected sum along the dotted arc shown in the middle
picture. Λ+ is Legendrian isotopic to the zero section (Λ+ is
obtained by performing two RI -moves on the zero-section)

invariance under Legendrian isotopy. (After a translation of Λst sufficiently far
in the p-coordinate, all generators of the Floer complex disappear.) Second,

CF (j1f ∪ Λt
st, j

10) = CF (j1f, j10) ⊕ CF (Λt
st, j

10)

is a direct sum of complexes. The barcode of the complex on the left-hand side
is thus the union of the barcodes of the two complexes in the direct sum on
the right-hand side. Here we have suppressed the choices of augmentations,
since these Floer complexes do not depend on these choices (up to action
preserving automorphism); see Remark 1.2. �

To define Floer homology for a pair of Legendrians Λ0, Λ1, it is necessary
to also include the data of augmentations εi : A(Λi) → k of their Chekanov–
Eliashberg algebras; these are unital DGA-morphisms onto the ground field.
We write CF ((Λ0, ε0), (Λ1, ε1)) for the induced complex, which in general
does depend on the choices of augmentations; we refer to Sect. 2.4 for more
details.

Remark 1.2. There are Legendrian isotopy classes for which different choices
of augmentations always give rise to Floer complexes that are isomorphic as
filtered chain complexes; this can be characterised using the invariance of the
augmentation category of Chantraine–Bourgeois from [3]. Cases include the
Legendrian isotopy class of the zero section j10, the Legendrian fibre Fθ,z,
and the standard Legendrian unknot. The property is a consequence of the
fact that these Legendrian isotopy classes admit representatives for which the
Chekanov–Eliashberg algebra admits a unique augmentation.

Theorem C. Let Λ+ be a Legendrian obtained from Λ− by a Legendrian ambi-
ent surgery. After making the surgery-region sufficiently small, we can assume
that there is an action-preserving isomorphism

CF ((Λ+, ε+), (Λ, ε)) → CF ((Λ−, ε−), (Λ, ε))

of complexes, where (Λ, ε) is an arbitrary but fixed Legendrian equipped with
an augmentation ε of its Chekanov–Eliashberg algebra A(Λ), and where the

Reprinted from the journal370



augmentation ε+ of A(Λ+) is induced by pulling back the augmentation ε− of
A(Λ−) under the unital DGA-morphism induced by the standard Lagrangian
handle-attachment cobordism. In particular, the barcodes of the two Floer
complexes coincide.

In the setting of exact Lagrangian cobordisms in the sense of Arnol’d
between exact Lagrangian submanifolds similar results were found in [2, Sec-
tion 5.3] .

Finally we present a Hamiltonian isotopy of a closed exact Lagrangian
inside a Liouville domain for which the spectral norm becomes arbitrarily
large. The simplest examples of such a Liouville domain is the 2-torus with
an open ball removed; we denote this space by (Σ1,1, dλ) and depict it in
Fig. 13. The detailed construction is given in Sect. 2.1.2. As kindly pointed
out to the author by the anonymous referee, this fact is not new. The same
phenomenon was exhibited in, e.g. Zapolsky’s work [34, Lemma 1.10], as well
as the more recent [19, Remark 6] by Kislev–Shelukhin.

Theorem D. There exists a closed exact Lagrangian submanifold L ⊂ (Σ1,1, ω)
and a compactly supported Hamiltonian H : Σ1,1 → R for which the induced
compactly supported Hamiltonian isotopy φt

H : (Σ1,1, ω) → (Σ1,1, ω) satisfies
the property that the spectral norm γ(CF (L, φt

H(L))) becomes arbitrarily large
as t → +∞.

1.1. Why the proofs of uniform bounds fail for Legendrians

The techniques that are used in [29] and [2] to prove the results in the case of
the cotangent bundle are not yet fully developed in the case of Legendrians in
contactisations. This includes the closed-open map, which is a crucial ingre-
dient in [29], and a unital A∞-structure on the Floer complex with relevant
PSS-isomorphisms, which is crucial in [2]. Nevertheless, we still do expect
that these operations can be defined also for the Floer homology of Legendri-
ans in contactisations. In fact the A∞-structure was recently extended to this
setting by Legout [21]. Assuming the possibility to define these operations
in the Legendrian setting, what goes wrong when one tries to generalise the
proofs to the Legendrian case?

First we recall the properties of the Floer homology complex of a Leg-
endrian and itself; see, e.g. [13] for the details. To define CF (Λ,Λ) one must
first make the mixed Reeb chords transverse by a Legendrian perturbation
of the second copy of Λ. We do this by replacing Λ with a section j1f in its
standard contact jet-space neighbourhood, where f : Λ → R is a C1-small
Morse function. In this manner, we obtain

CF (Λ,Λ) = CMorse(f ;k) ⊕
⊕

c∈Q(Λ)

kpc ⊕ kqc

where Q(Λ) denotes the set of Reeb chords on Λ, and CMorse(f ;k) is the
Morse homology complex with basis given by the critical points of the func-
tion f : Λ → R. The action of the former chords are approximately equal
to a(pc) = (c) and a(qc) = −(c) while the action of the latter is equal
to a(x) = f(x). What is important to notice here is that the generators of
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CMorse(f ;k) may be assumed to have arbitrarily small action, while this is
not the case for the generators that correspond to pure Reeb chords. When
Λ is the Legendrian lift of a Lagrangian embedding, there are of course only
generators of the type CMorse(f ;k). This turns out to be the crucial difference
between the symplectic and the contact case.

Example in Part (1) of Theorem A: The proof in [29] uses the closed-
open map. More precisely, a crucial ingredient in the proof is the action-
preserving property of the operations P ′

a on the Floer homology CF (0M , φ1
H

(0M )), which are defined using the length-0 part φ0(a) and length-1 part
φ1(a, ·) of the closed open map for certain elements a ∈ SH(T ∗M) in sym-
plectic cohomology (by this we mean the unital version of the symplectic
invariant, which is contravariant with respect to inclusion of exact Liouville
subdomains). In the case when the Legendrian has pure Reeb chords (i.e. it is
not the lift of an exact Lagrangian embedding), the chain φ0(a) ∈ CF (Λ,Λ)
may consist of generators whose action does not vanish (since they do not
correspond to Morse generators). In this case the action-preserving property
of P ′

a can no longer be determined from the aciton of a ∈ SH(T ∗M) alone.
Example in Part (2) of Theorem A: The proof in [2, Section 6.2] uses

the fact that there are continuation elements a ∈ CF (φ1
H(0M ), 0M ) and

b ∈ CF (0M , φ1
H(0M )) for which μ2(a, b) ∈ CF (φ1

H(0M ), φ1
H(0M )) is the

unique maximum of a suitable Morse function. In the Legendrian case the
element μ2(a, b) ∈ CF (φ1(j10), φ1(j10)) is still a homology unit; however, it
not necessarily a sum of Morse chords, and can, therefore, have significant
action. In particular, multiplication with the element μ2(a, b) is not necessar-
ily identity on the chain level, nor is it necessarily homotopic to the identity
by a chain homotopy of small action. The geometrically induced chain homo-
topy μ3(a, b, ·) between μ2(a, μ2(b, ·)) and μ2(μ2(a, b), ·) increases action by
at most the spectral norm, and is used in [2] for establishing the bound on
the boundary depth. However, this chain homotopy does not do the job any
more, since we also need an additional chain-homotopy (of unknown action
properties) to take us from the map μ2(μ2(a, b), ·) to the chain level identity.

2. Background

2.1. Contact geometry of jet-spaces and contactisations

An exact symplectic manifold is a smooth 2n-dimensional manifold (X2n, dλ)
equipped with a choice of a primitive one-form λ for an exact symplectic two-
form ω = dλ, i.e. ω is skew-symmetric, non-degenerate, and closed. Note that
the primitive λ should be considered as part of the data describing the exact
symplectic manifold. A compact exact symplectic manifold with boundary
(W,dλ) is a Liouville domain if the Liouville vector field, i.e. the vector field
ζ given as the symplectic dual of λ via the equation ιζdλ = λ, is transverse
to the boundary ∂W . The flow generated by ζ is called the Liouville flow
and satisfies (φt

ζ)
∗λ = etλ. An open exact symplectic manifold (W,dλ) is

a Liouville manifold if the all critical points of the Liouville vector field are
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contained inside some compact Liouville domain W ⊂ (W,dλ), and if the
Liouville flow is complete.

A Hamiltonian isotopy is a smooth isotopy of X which is generated by
a time-dependent vector field Vt ∈ Γ(TX) that satisfies ιVt

dλ = −dHt for
some smooth time-dependent function

H : X × Rt → R

which is called the Hamiltonian; a diffeomorphism of X which is the time-t
flow generated by such a vector field preserves the symplectic form (but not
necessarily the primitive) and is denoted by

φt
H : (X,ω) → (X,ω);

we call such a map a Hamiltonian diffeomorphism, and the corresponding
flow a Hamiltonian isotopy. Conversely, any choice of Hamiltonian function
induces a Hamiltonian isotopy φt

H in the above manner. Since we consider
exact symplectic manifolds, a smooth isotopy φt : X → X is a Hamiltonian
isotopy if and only if (φt)∗λ = λ + dGt ∈ Ω1(X) holds for some smooth
function

G : X × Rt → R.

Note that the Hamiltonian function that corresponds to a Hamiltonian iso-
topy is determined only up to the addition of a function that only depends
on t.

Any exact 2n-dimensional symplectic manifold (X2n, dλ) gives rise to a
2n + 1-dimensional contact manifold (X × Rz, dz + λ) called its contactisa-
tion, which is equipped with the canonical contact one-form αst := dz + λ.
The contactisations induced by choices of primitives of the symplectic form
λ and λ′ = λ + df that differ by the exterior differential of f : X → R are
isomorphic via the coordinate change z �→ z − f . Recall that the contact
condition is equivalent to dαst being non-degenerate on the contact planes
ker αst ⊂ T (X × R). A contact isotopy is a smooth isotopy which preserves
the distribution kerαst (but not necessarily the contact form). The contrac-
tion ιVt

αst of the contact form and the infinitesimal generator gives a bijective
correspondence between contact isotopies and smooth time-dependent func-
tions on X × R, the latter are called contact Hamiltonians. We refer to [18]
for more details.

Lemma 2.1. A Hamiltonian isotopy φt
H : (X, dλ) → (X, dλ) with a choice of

Hamiltonian Ht : X → R lifts to a contact isotopy

X × R → X × R,

(x, z) �→ (φt
H(x), z − Gt(x)),

where the function G : X × Rt → R is defined by

Gt(x) =
∫ t

0

λ(Vs(φs
H(x))) − Hs(φs

H(x))ds

and satisfies the property

(φt
H)∗λ = λ + dGt.
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Moreover, this contact isotopy preserves the contact form αst and is generated
by the time-dependent contact Hamiltonian Ht ◦ prX : X × Rz → R.

A smooth immersion of an n-dimensional manifold

Λ � (X2n × R, dz + λ)

in the contactisation is Legendrian if it is tangent to kerαst, while a smooth
n-dimensional immersion L � (X2n, λ) in an exact symplectic manifold is
exact Lagrangian if λ pulls back to an exact one-form. The following relation
between Legendrians and exact Lagrangians is immediate:

Lemma 2.2. The canonical projection of a Legendrian immersion to (X,λ) is
an exact Lagrangian immersion. Conversely, any exact Lagrangian immer-
sion lifts to a Legendrian immersion of the contactisation X ×R. Moreover,
the lift is uniquely determined by the choice of a primitive f : L → R of the
pull-back λ|TL = df , via the formula z = −f .

Transverse double points of Lagrangian immersions are stable. On the
other hand, generic Legendrian immersions are in fact embedded. However,
there are stable self-intersections of Legendrians that appear in one-parameter
families. Recall the following standard fact; again we refer to, e.g. [18] for
details.

Lemma 2.3. A compactly supported smooth isotopy φt(Λ) ⊂ X × R through
Legendrian embeddings, also called a Legendrian isotopy, can be generated by
an ambient contact isotopy.

2.1.1. The cotangent bundle and jet-space. There is a canonical exact sym-
plectic two-form −d(p dq) on any smooth cotangent bundle T ∗M , whose prim-
itive −p dq is the tautological one-form with a minus sign. The cotangent
bundle is a Liouville manifold and any co-disc bundle is a Liouville domain.
The zero-section 0M ⊂ T ∗M is obviously an exact Lagrangian embedding.

The contactisation of T ∗M is the one-jet space J1M = T ∗M ×Rz with
the canonical contact one-form dz − p dq. The zero-section in T ∗M lifts to
the one-jet j1c of any constant function c (obviously the one-jet j1f of an
arbitrary function f : M → R is Legendrian isotopic to j10). For us the most
relevant example is actually the two-dimensional symplectic cotangent bundle
T ∗S1 = S1 ×Rp equipped with the exact symplectic two-form −d(p dθ), and
its corresponding contactisation, i.e. the three-dimensional contact manifold

(J1S1 = T ∗S1 × Rz, dz − p dθ)

(note the sign convention for the Liouville form).
To describe Legendrians in J1M we will make use of the front-projection,

by which one simply means the canonical projection

ΠF : J1M → M × Rz.

A Legendrian immersion can be uniquely determined by its post-composition
with the front projection. A generic Legendrian knot in J1S1 has a front
projection whose singular locus consists of

• non-vertical cubical cusps and
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Figure 2. RI: the first Legendrian Reidemeister move in
the front projection

zz

RII

xx

Figure 3. RII: the second Legendrian Reidemeister move
in the front projection

• transverse self-intersections.

Note that the front projection cannot be tangent to ∂z by the Legendrian
condition (i.e. there are no vertical tangencies).

Two sheets of the front projection that have the same slopes (i.e. p-
coordinates) above some given point in the base, project to a double-point
inside T ∗M . There is a bijection between double points of this projection
and Reeb chords, where a Reeb chord is an integral curve of ∂z with both
endpoints on the Legendrian. The difference of z-coordinate of the endpoint
and starting point of a Reeb chord c is called its length and is denoted by
(c) ≥ 0.

Double-points of the Legendrian immersion itself correspond to self-
tangencies of the front projection. This is not a stable phenomenon, and
double-points of Legendrians generically arise only in one-parameter families.
These double-points can be considered as Reeb chords of length zero.

Two Legendrian knots inside J1R or J1S1 with generic fronts are Leg-
endrian isotopic if and only if their front projections can be related by a
sequence of Legendrian Reidemeister moves [26] together with an ambient
isotopy of the front inside S1 ×Rz; see [15] for an introduction to Legendrian
knots.

For convenience we will also introduce a composite move that we will
make repeated use of; this is the one shown in Fig. 5, which involves taking
two cusp edges with different slopes, and making them cross each other (it is
important that the cusps have different slopes).
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zz

RIII

xx

Figure 4. RIII: the third Legendrian Reidemeister move in
the front projection

zz

2 × RII

xx

Figure 5. A composite move: the front to the right is ob-
tained by performing two consecutive RII -moves on the front
to the left together with an isotopy

2.1.2. The punctured torus. Here we construct an example of a two-dimen
sional non-planar Liouville domain: the two torus minus an open ball, which
we denote by (Σ1,1, dλ).

First, consider the primitive

λ0 = −1
2
(p dq − q dp)

of the standard linear symplectic form dq ∧ dp on R2. We have the identities

λ0 + d
(pq

2

)
= q dp,

λ0 − d
(pq

2

)
= −p dq.

Take a smooth function σ : R2 → R which in the standard coordinates la-
belled by (p, q) ∈ R2 is given by

• σ(p, q) = pq/2 on {|q| ≤ 1, |p| > 2}, while it is of the form g(p)q/2 for
some smooth function g that satisfies g(p), g′(p) ≥ 0 on {|q| ≤ 1, |p| ≥
1};

• σ(p, q) = −pq/2 on {|q| > 2, |p| ≤ 1}, while it is of the form −g(q)p/2 for
some smooth function g that satisfies g(q), g′(q) ≥ 0 on {|q| ≥ 1, |p| ≤
1};

• σ(p, q) = 0 on {|q| < 1, |p| < 1}; and
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Consider the exact symplectic manifold (X, dλ) which is obtained by taking
the cross-shaped domain

{p ∈ [−2, 2], q ∈ [−1, 1]} ∪ {q ∈ [−2, 2], p ∈ [−1, 1]} ⊂ R2

and identifying {p = 2} with {p = −2}, and {q = −2} with {q = 2} in the
obvious manner. Topologically the result is a punctured torus. The Liouville
form λ0 + dσ on R2 extends to a Liouville form λ on this punctured torus.
The punctured torus has a skeleton Sk ⊂ X which is the image of the cross
{pq = 0} under the quotient; in other words, Sk ⊂ X is the union of two
smooth Lagrangian circles that intersect transversely in a single point. Note
that

Sk =
∞⋂

T=1

φ−T (X).

We claim that the sought Liouville domain (Σ1,1, dλ) can be realised as a
suitable subset of this exact symplectic manifold, simply by smoothing its
corners; see Fig. 13.

Since (Σ1,1, λ) is a surface with non-empty boundary, it admits a sym-
plectic trivialisation of its tangent bundle. This implies that the all La-
grangian submanifolds of Σ1,1 have a well-defined Maslov class; see Sect.
2.5 for more details. We will make heavy use of the fact that the Maslov class
depends on the choice of a symplectic trivialisation; in this case, symplectic
trivialisations up to homotopy can be identified with homotopy classes of
maps

Σ1,1 → S1

i.e. cohomology classes H1(Σ1,1;Z).

2.2. Barcode of a filtered complex and notions from spectral invariants

A (strict) filtered complex over some field k is a chain complex (C, ∂, a) in
which each element is endowed with an action a(c) ∈ R � {−∞} and such
that the following properties are satisfied:

• a(c) = −∞ if and only if c = 0,
• a(r · c) = a(c) for any r ∈ k∗,
• a(a + b) ≤ max{a(a), a(b)}, and
• a(∂(a)) < a(a) for any a �= 0.

The subset

C<a = a−1({−∞} ∪ (−∞, a))

is a k-subspace by the first three bullet points; this subspace is a subcomplex
by the last bullet point.

We say that a basis {ei} is compatible with the filtration, if the action
of a general element c ∈ C is given by

a(r1e1 + · · · + rnen) = max{a(ei); ri �= 0}, ri ∈ k, (2.1)

i.e. the action function is determined by its values on elements in the basis.
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Remark 2.4. The non-trivial condition in the definition is the equality “=”
in Formula (2.1); for a general basis the above equality gets replaced with an
inequality “≤”.

The existence of a compatible basis for any filtered complex was proven
by Barannikov [1]; see [30] for a more general version (in that article they are
called “orthogonal bases”), as well as [24]. For proof adapted to the notation
used here, see [10, Lemma 2.2].

Given a basis with a specified action on each basis element, one can
also use the above formula to construct a filtration on the entire complex,
under the assumption that the differential decreases action. The Floer com-
plexes described below get endowed with filtrations in precisely this manner,
i.e. by specifying an action for each canonical and geometrically induced basis
element.

For every filtered complex there is a notion of a barcode; we refer to
[10, Section 2] for the details of the presentation that we rely on here. The
barcode is a set of intervals of the form [a, b) and [a,+∞), where a, b ∈ R, and
we allow multiplicities. Instead of giving the usual definition of the barcode,
we give it the following alternative characterisation.

Lemma 2.5. (Lemma 2.6 in [10]) The barcode can be recovered from the fol-
lowing data:
(1) For any basis which is compatible with the action filtration, there is a

bijection between the set of actions of basis elements and the union of
start and endpoints of bars (counted with multiplicities).

(2) For any two numbers a < b, the number of bars of C∗ whose endpoints
e satisfy e ∈ (b,+∞] and starting points s satisfy s ∈ [a, b) is equal to
dim H(C<b/C<a).

Corollary 2.6. Assume that the barcode contains a finite bar [a, b). Then, for
any compatible basis {ei}, we can deduce the existence of basis elements ei

and ej with a(ei) = b, a(ej) = a, such that 〈∂ei, ej〉 �= 0.
Conversely, if there exists a compatible basis {ei} for which ∂ei = rej for

some coefficient r �= 0, then the barcode contains the finite bar [a(ej), a(ei)).

Note that the barcode considered here is independent of the grading.
An efficient way to deduce properties of the barcode is thus to find (possibly
several different) gradings for the complex, for which the differential remains
an operation of degree −1. The existence of such gradings imposes restrictions
on the differential, which in view of the previous corollary imposes restrictions
on the barcode. This technique will be used in the proofs given in Sects. 3.1
and 3.3.

For a filtered complex as above we can associate the following important
notions.

Definition 2.7.

(1) The spectral range ρ(C, ∂, a) ∈ {−∞} ∪ [0,+∞] is the supremum of
the distances between starting points of the semi-infinite bars in the
barcode.
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(2) The boundary depth β(C, ∂, a) ∈ {−∞} ∪ [0,+∞] is supremum of the
lengths of the finite bars in the barcode.

Note that the above quantities automatically are equal to −∞ in the
case when the supremum is taken over the empty set (i.e. when there are no
semi-infinite and finite bars, respectively).

An important feature of the barcode is that remains invariant under
simple bifurcations of the complex, i.e. action preserving handle-slides and
birth/deaths. Legendrian isotopies induce one-parameter families of the Floer
complex considered here, which undergoes bifurcations of precisely this type;
hence the corresponding barcode undergoes continuous deformations under
Legendrian isotopies. Since this property will not be needed, we do not give
more details here, but instead direct the interested reader to [10].

2.3. Outline of Floer homology and generating family homology for Legen-
drians

Floer homology for pairs (L0, L1) of closed exact Lagrangian submanifolds
of cotangent bundles was originally defined by Floer [16]. For any such pair
one obtains the Floer chain complex CF (L0, L1) with a basis given by the
intersections L0 ∩ L1, which here are assumed to be transverse. Floer also
showed that the homology of the complex—the so-called Floer homology
HF (L0, L1)—is invariant under Hamiltonian isotopy of either Lagrangian
Li. Moreover, in the case when L1 is a C1-small Hamiltonian perturbation
of L0 the Floer complex CF (L0, L1) = CMorse(f) is the Morse complex for a
C1-small Morse function f : L0 → R and suitable auxiliary data; see Floer’s
original computation [17]. (This property might not hold for the Floer ho-
mology of a Legendrian, due to additional generators corresponding to Reeb
chords; see Sect. 1.1.)

Nowadays there are several different techniques available for construct-
ing Floer homology. Here we will consider the setting of Legendrian submani-
folds of contactisations (W ×R, αst) of a Liouville manifold (W,dλ), in which
Floer homology associates a chain complex CF (Λ0,Λ1) to a pair of Legen-
drian submanifolds equipped with additional data. In this case, the homology
of the complex is invariant under Legendrian isotopy of either Legendrian Λi.
This is the version that we will use also in the case of exact Lagrangian em-
beddings in (W,dλ). To that end, recall that exact Lagrangians admit lifts to
Legendrians by Lemma 2.2, and that a Hamiltonian isotopy of the Lagrangian
induces a Legendrian isotopy of the Legendrian lift by Lemma 2.1.

In the case when W = T ∗M , and thus W × R = J1M , in [33] Zapol-
sky relied on generating family homology defined for generating families due
to Chekanov [7] to define spectral invariants. Generating family homology
is a Hamiltonian isotopy invariant obtained by Morse functions on finite-
dimensional spaces, which behaves very similarly to Floer homology. In cer-
tain cases these two invariants have even been shown to be equivalent. Since
we will work with contactisations that are more general than jet-spaces, we
instead follow the techniques from [13] by Ekholm–Etnyre–Sabloff, where
the Floer chain complex is constructed as the linearised Legendrian contact-
homology complex associated to the Chekanov–Eliashberg algebra [6], [12].
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First we outline the general set-up Floer homology in the setting of
Legendrians, which applies equally well to either the version used here or the
version defined using generating families (when applicable). Given a pair of
Legendrians Λ0,Λ1 ⊂ W × R, equipped with additional data denoted by εi

to be specified below (in the version defined using generating families, these
additional data are simply the choice of a generating family), one obtains a
graded (grading is in Z or Z/μZ depending on the Maslov class as described
in Sect. 2.5) filtered chain complex

(CF∗((Λ0, ε0), (Λ1, ε1)), ∂, a)

with a canonical compatible basis as a k-vector space given by the
• Reeb chords c from Λ0 to Λ1 of action a(c) = (c) equal to the Reeb

chord length; together with the
• Reeb chords c from Λ1 to Λ0 of action a(c) = −(c) equal to minus the

Reeb chord length.

We assume that all Reeb chords are transversely cut out, and hence that
they form a discrete subset, which thus is finite whenever the Legendrians
are closed. With our conventions the differential is strictly action decreasing
and of degree −1. In the case of generating family homology, the differential is
the Morse homology differential for a Morse function on a finite-dimensional
manifold that is constructed using the generating family. Below we give more
details of the Floer complex defined via the Chekanov–Eliashberg algebra, for
which the differential counts pseudoholomorphic strips in W with boundary
on the Lagrangian projections ΠW (Λi) ⊂ W (these are exact Lagrangian im-
mersions with transverse self-intersections). In this case the strips are more-
over allowed to have corners that map to the double points of the Lagrangian
projections; the strips are then counted with weights given by the value of
the augmentations on the corresponding pure Reeb chords. More details are
given in Sect. 2.4 below.

The Floer complex satisfies the following important properties; see [13]
for details.

• A Legendrian isotopy of the Legendrian Λi induces a canonical continua-
tion of the additional data εi, and the resulting one-parameter family of
Floer complexes undergoes only simple bifurcations, i.e. handle-slides
and births/deaths. In particular, the homology of the complex is not
changed under such a deformation.

• In the case when Λ ⊂ W ×R has no Reeb chords (i.e. it is the lift of an
exact Lagrangian embedding), and when Λ′ is a C1-small Legendrian
perturbation, then the induced Floer complex

(CF ((Λ, ε), (Λ′, ε′)), ∂, a) = CMorse(f ;k)

is the Morse homology complex of some C1-small Morse function f : Λ →
R.

Again we refer to Sect. 1.1 for a description of the complex under the presence
of pure Reeb chords; in this case the Morse complex is only realised as a
quotient complex of a subcomplex.
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2.4. Floer complex as the linearised Chekanov–Eliashberg algebra

Here we present the relevant technical details for the particular construction
of Floer homology used in this paper, i.e. relying on the Chekanov–Eliashberg
algebra for Legendrians in contactisation from [12]. Using the Chekanov–
Eliashberg algebra to define Floer homology for Legendrian submanifolds is
not new, it goes back to work [13] by Ekholm–Etnyre–Sabloff; also see [22]
by Lanzat–Zapolsky for a nice application of this theory together with a
systematic treatment.

Assume that Λ0,Λ1 ⊂ W ×R are two Legendrian submanifolds. Further,
assume that the Chekanov–Eliashberg algebras of Λi admit augmentations

εi : (A(Λi), ∂) → k;

recall that the Chekanov–Eliashberg algebra is a unital DGA generated by
the Reeb chords of the Legendrian, and that an augmentation is a unital
DGA morphism to the ground field. In particular, when the Legendrian Λi

has no Reeb chords, the Chekanov–Eliashberg algebra takes the simple form
A(Λi) = k, and there is a canonical augmentation. An important property
of augmentations is that they can be pushed forward under a Legendrian
isotopy; see, e.g. [4] and [6].

Typically one wants more additional data than just an augmentation.
For instance, to use coefficients in a field of characteristic different from two,
one also needs to fix the choice of a spin structure on both Legendrians Λi. To
endow the Floer complex a Z-grading, we need to specify a Maslov potential;
we refer to Sect. 2.5 for more details concerning the grading, which will play
an important role for us.

The Floer complex

CF ((Λ0, ε0), (Λ1, ε1))

is generated by the chords that have one endpoint on Λ0 and one endpoint
on Λ1 (either being a starting point). These Reeb chords on Λ0 ∪ Λ1 are
called the mixed Reeb chords. To define the differential, we will identify the
above vector space with the underlying vector space linearised Legendrian
contact homology complex of the link Λ0 ∪ φT

∂z
(Λ1), where the latter is the

k-vector space is generated by all Reeb chords that start on Λ0 and end on
the translation φT

∂z
(Λ1) of Λ1 in the positive z-direction. Note that the mixed

chords on Λ0 ∪ Λ1 are in bijective correspondence with the mixed chords on
Λ0 ∪ φT

∂z
(Λ1) for any choice of T ∈ R. In the following we take T � 0 to

be sufficiently large, so that no chord starts on φT
∂z

(Λ1) and ends on Λ0. Of
course, the length of a mixed chord c above depends on the parameter T and
will not be equal to the action a(c) defined above; the relation between action
and length is given by

(c) = a(c) + T.

The remaining Reeb chords on the link Λ0 ∪ φT
∂z

(Λ1) have both endpoints
either on Λ0 or φT

∂z
(Λ1), and are called pure. Note that the Reeb chords

on φT
∂z

(Λ1) are in bijective correspondence with those of Λ1. In fact, their
Chekanov–Eliashberg algebras are even canonically isomorphic.
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The differential is the Linearised Legendrian contact homology differ-
ential induced by a choice of almost complex structure, together with the
augmentations εi for the Chekanov–Eliashberg algebras A(Λi) generated by
the pure chords. This version of a Floer complex defined via the Chekanov–
Eliashberg algebra was originally considered in [13]; also see [4] for a more
recent realisation. We now give a sketch of the definition of the differential.
It is roughly speaking defined by counts of rigid pseudoholomorphic discs in
(W,dλ), for some choice of compatible almost complex structure, where the
disc has

• boundary on the exact Lagrangian immersion ΠW (Λ0 ∪ φT
∂z

(Λ1)) ⊂
(W,λ);

• precisely one positive puncture at a double point which corresponds to
a mixed chord—this is the input;

• precisely one negative puncture at a double point which corresponds to
a mixed chord—this is the output; and

• several additional negative punctures at double points which correspond
to pure chords.

By positive (resp. negative) boundary puncture, one means a point where
the boundary of the pseudoholomorphic disc makes a jump that increases
(resp. decreases) the z-value of the Legendrian Λ0 ∪φT

∂z
(Λ1) ⊂ W ×Rz when

following the boundary according to the orientation of the disc induced by the
almost complex structure. When counting the strip, one weighs the count by
the value of the augmentation εi on the pure chords from the last point. This
is a part of the so-called linearised differential induced by the augmentation,
as defined in [6]; also see the notion of the bilinearised Legendrian contact
homology as defined by Bourgeois–Chantraine in [3].

From positivity of symplectic area of such pseudoholomorphic discs to-
gether with Stokes’ theorem one obtains that the Reeb chord length of the
input chord must be larger than the Reeb chord of the output. In other words,
the complex is strictly filtered in the sense defined in Sect. 2.2, and the Reeb
chords constitute a compatible basis.

From the index formula for the expected dimension of the moduli space
of pseudoholomorphic discs, it follows that the degree of the input is one
greater than the degree of the output; i.e. the differential is of degree −1.

2.5. Maslov potential and grading

The Maslov potential is a useful framework for introducing gradings in La-
grangian Floer homology which originally is due to Seidel [27]. The choice of
a Maslov potential gives a well-defined grading in Z. In general the potential
is only well-defined modulo the Maslov number μ ∈ Z (the positive generator
of the subgroup of Z which is the image of the Maslov class); in that case the
grading is only defined in Z/μZ. Here we describe a grading for which the
differential of the Floer complex considered above becomes a map of degree
−1, i.e. it decreases the degree.
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Assume that W has vanishing first Chern class; this is, e.g. the case when
W has a symplectic trivialisation, which is automatic when dimR W = 2. The
Z–grading of the generators is defined as follows.

Consider the determinant bundle

C∗ → detC TW → W

induced by some choice of a compatible almost complex structure. The quo-
tient

C∗/R∗ = (R2\{0})/R∗ = RP 1 = R/πZ

gives rise to an induced RP 1-bundle that we denote by

L = (detC TW )/R∗ → W.

Note that the bundle L is trivial when W has vanishing first Chern class
(actually, the first Chern class being two-torsion is sufficient). In this case
there might be several choices of homotopy classes of trivialisations.

First, we make the choice of a trivialisation of the above determinant
bundle. This choice gives rise to a trivialisation L = RP 1 × W → W of the
RP 1-bundle as well. Then, taking the fibre-wise universal cover of this trivial
RP 1-bundle, we obtain the affine R-bundle L̃ = R × W → W . The fibre of
this bundle is thus the choice of an R-lift of the angle in RP 1 = R/πZ of an
unoriented real line.

Second, one makes the choice of a Maslov potential for each of the
Legendrians Λi. This is the lift of the canonically defined section

(detR TΠW (Λi))/R∗ ⊂ (detC TW )/R∗

along Λi of the above RP 1-bundle L to the associated R-bundle L̃. Recall
that a non-zero Maslov class is the obstruction to the existence of such a lift.
When a Maslov potential exists and the Legendrian is connected, there is a
natural free and transitive Z-action on its Maslov potentials.

Given choices of Maslov potentials, the grading of a generator c ∈
CF∗((Λ0, ε0), (Λ1, ε1)) is finally obtained in the following manner. Denote
by ϕ̃i ∈ L̃c the R-lift of the angle of the real determinant line

(detR TcΠW (Λi))/R∗ ⊂ (detC TcW )/R∗

specified by the choices of Maslov potentials. Consider a compatible almost
complex structure J on TcW for which J · TcΠW (Λ0) = TcΠW (Λ1) to-
gether with the induced family of Lagrangian planes eitTcΠW (Λ0) ∈ TcW ,
t ∈ [0, π/2], that joins TcΠW (Λ0) to

eiπ/2TcΠW (Λ0) = J · TcΠW (Λ0) = TcΠW (Λ1).

There is a continuous path of real determinant lines ϕt
0 ∈ Lc; denote by

ϕ̃t
0 ∈ L̃c the continuous lift to the fibre-wise universal cover R → RP 1, where

ϕ̃0
0 = ϕ̃0. In particular, ϕ̃

π/2
0 is a lift of the determinant line ϕ1. The degree

of the generator c is finally defined by

|c| = (ϕ̃π/2
0 − ϕ̃1)/π ∈ Z.
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In the below examples we provide some useful techniques for specifying
Maslov potentials and computing degrees in the cases that we are interested
in here.

Example 2.8.
(1) In the case of W = T ∗M there is a trivialisation of detC T (T ∗M) in

which the tangent planes to the zero section all coincide with the real
part R∗ ⊂ C∗ of the fibres. The zero-section Λ0 = j10 can be induced
with the Maslov potential ϕ̃0 which is zero in each R-fibre of L̃.

(2) A choice of Maslov potential for a general Legendrian Λ1 ⊂ J1M for
the trivialisation from Part (1) above (if it exists) can be described by
comparing it to the canonical Maslov potential for the zero section j10.
More precisely, the difference between the Maslov potential at a point
x ∈ Λ1 for which TxΠW (Λ1) is transverse to the Lagrangian fibre of
T ∗M and the canonical Maslov potential for j10 = Λ0 at the point
p(x) ∈ Λ0, where p : J1M → M is the bundle projection, can be de-
scribed by an integer m(x) ∈ Z in the following manner.
The fibre-wise rescaling of J1M induces an isotopy of Legendrian tan-
gent planes that isotopes any tangent plane TxΛ1 which is transverse to
the fibre to the tangent plane Tp(x)j

10 of the zero section. There is an
induced continuous path of determinant lines ϕt

1 ∈ L where

ϕ0
1 = (detR TxΠW (Λ1))/R∗ ⊂ (detC Tx(T ∗M))/R∗,

and ϕ1
1 is the determinant line of the zero-section at the point p(x).

Consider the continuous choice of lifts ϕ̃t
1 ∈ L̃ that extend the choice of

Maslov potential for Λ1. The difference

m(x) = (ϕ̃1
1 − ϕ̃0)/π ∈ Z

is an integer that uniquely recovers the choice of Maslov potential at
x ∈ Λ1 (for x where the Lagrangian projection is transverse to the
fibre).
The integer m(x) is locally constant in the open subsets of Λ1 for which
the Lagrangian projection is transverse to the fibres, and changes by +1
as one traverses a cusp-edge in the direction of decreasing z-value. This
is illustrated in Fig. 6.

(3) In the case when detC TW is trivial, the homotopy classes of trivial-
isations of detC TW are in bijection with homotopy classes of maps
W → C∗, which is the same as classes in H1(W ;Z). In the particular
case W = T ∗S1, the description of the Maslov potential given in Part (2)
is only valid above a simply connected subset, e.g. T ∗(−π, π) ⊂ T ∗S1.
The Maslov potential for a general Legendrian in this setting can be de-
scribed by the choice of numbers m(x) as above, that, however, satisfy
the additional property that they make a jump by a fixed value l ∈ 2Z
when traversing the hypersurface {θ = π} in the direction of increasing
θ-value. (The case l = 0 corresponds to the canonical trivialisation for
which the zero-section admits a Maslov potential.) This is illustrated in
the top of Fig. 7.
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(4) Let Λi ⊂ J1M , i = 0, 1, be two Legendrians with choices of Maslov
potentials that have the form j1fi over some subset in M (i.e. the La-
grangian projections are transverse to the fibre there), where the Maslov
potentials are determined by integers mi ∈ Z in the manner described
above. If f1 −f0 has a non-degenerate critical point at p ∈ M (i.e. there
is a transverse Reeb chord c there), then the above degree formula be-
comes

|c| = indexMorse
p (f1 − f0) + m0 − m1

where the first term on the right-hand side is the Morse index of the
critical point. We refer to [11, Lemma 3.4] for the computation.

Lemma 2.9.

(1) Let φ1 : W ×R → W ×R be the time-one map of a compactly supported
contact isotopy. For any choice of Maslov potential on the Legendrian Λ
there an induced Maslov potential on its image φ1(Λ) ⊂ W ×R uniquely
defined by the property that the Maslov potentials extend over the exact
Lagrangian cobordism from Λ to φ1(Λ) induced by the isotopy.

(2) If φ1 is a generic C1-small contact isotopy, then the small chords of
Λ ∪ φ1(Λ) are in bijective correspondence with the critical points of a
C1-small Morse function f : Λ → R, and the above grading coincides
with the Morse index, if φ1(Λ) is endowed with the Maslov potential
induced from Λ via the isotopy φt as in Part (1).

Proof. (1) The trace of the Legendrian isotopy can be made into a Lagrangian
cylinder inside the symplectisation

(Rt × W × Rz, d(etαst))

with cylindrical ends over the initial and final Legendrian; see work [5] by
Chantraine. The Maslov potential of Λ induces a Maslov potential on the
negative end of this cobordism. This Maslov potential can be extended to the
entire cobordism by elementary topology (it is a Lagrangian cylinder). The
induced Maslov potential on the positive end is the sought Maslov potential
on φ1(Λ).

(2) This computation is standard, and can be performed in a small
neighbourhood of Λ. In particular, for a small perturbation of the zero-section
j10 ⊂ J1M by a section j1f , this is an immediate consequence of Part
(4) of Example 1. In general, recall that any Legendrian Λ has a standard
neighbourhood which is contactomorphic to a neighbourhood of the zero
section j10 ⊂ J1Λ, under which Λ, moreover, is identified with j10; see [18].
The perturbation can be assumed to be given by the one-jet j1f of some
C1-small smooth function f : Λ → R in the same neighbourhood. �

3. Examples that exhibit unbounded spectral norms

The following basic auxiliary results facilitate our computations, and will be
invoked repeatedly.
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Lemma 3.1.

(1) Let φt : Λ0 ↪→ W × R be a Legendrian isotopy of a closed Legendrian
Λ0 that admits a Maslov potential, and endow φ1(Λ0) with the Maslov
potential induced from Λ0 via the isotopy, as described in Part (1) of
Lemma 2.9. Further assume that Λ0 has no Reeb chords. If the complex
CF (Λ0, φ

1(Λ0)) in degrees 0 and dim Λ0 consists of unique Reeb chord
generators c and d, then the spectral range satisfies

ρ(CF (Λ0, φ
1(Λ0))) ≥ |(c) − (d)|.

(In fact, it is even true that the spectral range is equal to (c) − (d),
where this quantity, moreover, is positive, but we will not show this.)

(2) Consider a Floer complex CF (Λ0,Λ1) which is Z-graded and acyclic.
Furthermore, assume that there is a choice of symplectic trivialisation
and Maslov potential for which there are no generators in degrees i + 1
or i − 2, while there are unique Reeb chords c, d in the degrees |c| = i
and |d| = i − 1. Then the boundary depth satisfies the bound

β(CF (Λ0,Λ1)) ≥ (c) − (d).

Proof. (1): This follows from invariance properties of the Floer homology.
Note that the homology of CF (Λ0,Λ0) has unique generators in degrees 0
and dim Λ which represent the point class and fundamental class in Morse
homology. It follows by degree reasons that the Reeb chord generators c and
d must both be cycles which are not boundaries. The two corresponding semi-
infinite bars in the barcode have endpoints that are separated by precisely
|(c) − (d)| as sought.

(2): Acyclicity together with the degree assumptions implies that ∂c = d.
The statement then follows by the second part of Corollary 2.6 since the Reeb
chords form a compatible basis. �

3.1. Legendrian isotopy of the unknot (Proof of Part (2) of Theorem A)

Consider the contact manifold J1R = Rq ×Rp ×Rz with coordinates q, p, z
and contact form dz − p dq. Under the quotient Rq → R/2πZ = S1 we
obtain the angular coordinate θ induced by θ ≡ q mod 2π. In other words,
the aforementioned contact manifold J1R is the universal cover of the contact
manifold J1S1 = S1 × Rp × Rz equipped with the standard contact form
dz − p dθ.

First consider the standard Legendrian unknot Λst ⊂ J1S1 with front
projection as shown in Fig. 6, which thus is contained inside the subset
J1(−π, π) ⊂ J1S1. The p-coordinate of this particular representative can
be seen to be estimated in terms of the ratio of a and b, which yields

Λst ⊂ {|p| ≤ 2a/b}.

Recall the well-known fact that Λst has vanishing Maslov class and hence
admits a Maslov potential; see Fig. 6. Further, this Legendrian has a unique
transverse Reeb chord and its Chekanov–Eliashberg algebra is equal to the
polynomial algebra in one variable of degree 1 with no differential (either
for k = Z2 or for arbitrary k and the choice of bounding spin structure);
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see [14]. In particular, its Chekanov–Eliashberg algebra admits the trivial
augmentation.

We also fix a Legendrian fibre

F = F(π/4,0) = {π/2} × Rp × {0} ⊂ J1(−π, π) ⊂ J1S1.

Note that the Reeb chords between any Legendrian Λ and F are in bijective
correspondence with the intersection points of Λ and the hypersurface {θ =
π/4}. Note that the image of F under the front projection is given by the
point {(π/4, 0)}; Reeb chords correspond to lines contained inside {θ = π/4}
in the front projection that have one endpoint on {(π/4, 0}) and one endpoint
on the projection of Λ. These chords are depicted in Fig. 6.

Since F that has no Reeb chords, its Chekanov–Eliashberg algebra
trivially admits an augmentation. We can thus define the Floer homology
complex CF (Λst, F ) which is generated by two Reeb chords c and d, where
0 > (c) > (d) and |c| = |d| + 1. Note that CF (Λst, F ) is an acyclic complex
by invariance under Legendrian isotopy; after shrinking the unknot suffi-
ciently, all mixed chords disappear.

The goal is to construct a Legendrian isotopy Λt
st ⊂ J1S1 of the unknot

confined to the subset

{|p| ≤ 2a/b} ⊂ J1S1

for which the boundary depth of CF (ΛT
st, F ) becomes arbitrarily large as

t → +∞. This isotopy will be constructed as the projection of an isotopy
Λ̃t

st ⊂ J1R of the unknot inside the universal cover J1R → J1S1. In fact,
the Legendrian isotopy Λ̃t

st is very simple; it is the rescaling of

Λ̃st = Λst ⊂ J1(−π, π) ⊂ J1R

under the contact isotopy (q, p, z) �→ (et · q, p, et · z) defined on the universal
cover; note that this contact isotopy simply rescales the front projection.

It is easy to check that CF (Λ̃t
st, F ) satisfies the property that the bound-

ary depth goes to +∞ as t → +∞. Indeed, these complexes are generated
by the two unique transversely cut out Reeb chords ct and dt between Λ̃t

st

and F for all values t > 0. These chords, moreover, satisfy the property that
(ct) − (dt) becomes arbitrarily large as t → +∞; c.f. Part (2) of Lemma
3.1.

What remains to prove is the following two claims for the projection
Λt

st ⊂ J1S1 of the Legendrian rescaling Λ̃t ⊂ J1R. First, we claim that Λt
st

indeed is a Legendrian isotopy. Second, we show that the boundary depth of
CF (Λt

st, F ) goes to +∞ as t → +∞
The fact that Λt

st is a Legendrian isotopy can be seen by considering
the sequence of front projections; see Figs. 7 and 8. Except for an isotopy of
the front, the front also undergoes a sequence RIII -moves together with the
composite move shown in Fig. 5. The Lagrangian projection of Λ̃2 is shown
in Fig. 9.

Then we need to estimate the boundary depth of the sequence of Floer
complexes CF (Λt

st, F ). In addition to Reeb chords ct and dt, which corre-
spond to the Reeb mixed Reeb chords on the lift and have exactly the same
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a

b

Λst
d0

m − 1

m

c0F

z

θ
π−π

Figure 6. The standard Legendrian unknot Λst and the
Legendrian fibre F . Note that there are precisely two trans-
verse Reeb chords c0, d0 between F and Λst. The choice of
m ∈ Z determines a Maslov potential on Λst as described in
Part (2) of Example 1

actions, there are additional Reeb chords between Λt
st and F that appear as

t → +∞. Nevertheless, we claim that the boundary depth of CF (Λt
st, F ) still

is bounded from below by the boundary depth β(CF (Λ̃t
st, F )).

To see the last claim, we will consider different gradings of the complexes
CF (Λt

st, F ), obtained by changing the symplectic trivialisation of T ∗S1. Note
that Λst is null-homotopic inside J1S1 and thus has a vanishing Maslov class
independently of the choice of symplectic trivialisation. Moreover, the chords
ct and dt always satisfy |ct| − |dt| = 1 regardless of the choice of Maslov
potential and symplectic trivialisation; see the top of Fig. 7.

We claim that, after changing the symplectic trivialisation of T ∗S1 by
introducing a sufficiently large number l/2 � 0 of full rotations of the stan-
dard symplectic frame as one traverses the hypersurface {θ = π} in the
direction of increasing θ-coordinate, all generators c′ in the complex except
different from ct and dt acquire degrees that satisfy

|c′| − |ct| /∈ [−10, 10].

To see this, we note that the Maslov potential of these sheets acquire an
additional term kl where k ∈ Z\{0}; see Parts (3) and (4) of Example 1.

Since these degree properties can be achieved, the statement now follows
directly by Part (2) of Lemma 3.1. �
3.2. Legendrian isotopy of the zero-section (Proof of Part (1) of Theorem A)

We use the same coordinates as in the above Sect. 3.1. In fact, the sought
Legendrian isotopy is also constructed in a manner similar to the construction
of Λt given there, by performing a rescaling of a part of the front inside the
universal cover J1R (and then projecting back to J1S1). The isotopy is shown
in Figs. 10 and 11. One starts by considering a Legendrian perturbation
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Λ2
st

m +m l− l

m − 1 − l m − 1 + l

F

F

Λ̃2
st

d2

c2

d2

c2

z

z

θ

q
π

m

m − 1

−π

π−π

Figure 7. Above: Λ̃2
st has a front which is a linear rescaling

of the front of Λst inside J1R. The number m defines a
choice of Maslov potential for Λ2

st, where l ∈ 2Z depends on
the homotopy class of the trivialisation of detC(T (T ∗S1)).
Below: Λ2

st is the projection of Λ̃2
st inside J1S1. Except for

the mixed chords ct and dt that exist for the lift, there are
now additional mixed chords

j1f of j10 which has precisely two chords. Then one performs a RII -move.
Rescaling the front of the Legendrian introduced by the RII -move in the
universal cover R2 and then projecting back to S1 ×R is again a Legendrian
isotopy. In Fig. 11 one sees that there are exactly two chords between j10
and the produced Legendrians, while the difference in action between these
two generators grows indefinitely as t → +∞. �

3.3. Hamiltonian isotopy on the punctured torus (Proof of Theorem D)

Here we consider the exact Lagrangian embedding L ⊂ (Σ1,1, dλ) of S1 which
is given as the image of {p = 0} ⊂ R2 under the quotient construction in Sect.
2.1.2; see Fig. 13. We perform a Hamiltonian perturbation L′ that intersects
the original Lagrangian transversely in precisely two points c and d. The
spectral norm is thus γ(CF (L,L′)) = (c) − (d).
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Λt
st

dt

ct

z

θ
π−π

Figure 8. This shows the projection Λt
st of the rescaling

Λ̃t
st under the universal cover J1R → J1S1

Λ̃2
st

p

q
π−π

Figure 9. The figure depicts the Lagrangian projection of
Λ̃2

st to T ∗R. The Lagrangian projection of Λ2
st to T ∗S1 is

induced by the quotient projection R → S1. The Lagrangian
projection of Λ̃t

st is obtained by rescaling the q-coordinate of
T ∗R followed by the canonical projection to T ∗S1

Then consider the autonomous Hamiltonian

ρ : Σ1,1 → R≤0

with support inside {q ∈ [−δ, δ]} for some small δ > 0, and which is equal to
the smooth bump-function ρ(q) ≤ 0 in one variable of the form

• ρ(q) ≡ −1 in a neighbourhood of q = 0;
• ρ(q) = ρ(−q);
• and ρ′(q) ≤ 0 for q < 0.
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z

θ

z

θ
π−π π−π

d d

c

d d

c0

Λ Λ0

Figure 10. Left: a Legendrian perturbation of the zero sec-
tion. The vertical chords denote the two Reeb chords be-
tween the zero-section j10 and the perturbation. Right: the
perturbed version of the zero-section after a suitable Legen-
drian RI -move

The Hamiltonian isotopy φt
ρ wraps the region q ∈ (−δ, 0) in the negative

p-direction, while it wraps the region q ∈ (0, δ) in the positive p-direction.
We claim that CF (L, φt

ρ(L
′)) has a spectral norm which becomes arbi-

trarily large as t → +∞. What is clear is that (c)− (d) → +∞ as t → +∞.
(Use, e.g. Lemma 2.1.) Again there are additional generators that appear as
t → +∞, so knowing that (c) − (d) → +∞ is not sufficient.

As in Sect. 3.1 a change of symplectic trivialisation can again give us
what we need. First consider the canonical symplectic trivialisation, induced
by the trivialisation of R2 and the quotient projection. Then deform this
trivialisation by adding a number l/2 � 0 of full rotations of the standard
symplectic frame (relative the constant one) as one traverses the {p = 1}.
Note that the Lagrangian corresponding to {p = 0} still has a Maslov poten-
tial after this change of trivialisation. Similarly to the computation in Sect.
3.1, it is now readily seen that all generators c′ different from c and d satisfy
the property that

|c′| − |c| /∈ [−10, 10],

after we have chosen l � 0 sufficiently large. In the meantime, |c| − |d| = 1
is always satisfied.

The spectral norm can now finally be computed by invoking Part (1) of
Lemma 3.1.

4. Proof of Theorem C

By definition, our two Floer complexes are the linearised Legendrian contact
homology complexes generated as a k-vector space by the mixed Reeb chords
on the Legendrian link

Λ± ∪ φT
∂z

(Λ).

Here T � 0 is fixed but sufficiently large.
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π 2π−2π −π

z

z

θ

q

π−π

d d

ct

d d
Λt

Figure 11. Λt is obtained from Λ0 by a linear rescaling of
the front inside {z ≥ 0} in the universal cover J1R2 followed
by the canonical projection J1R → J1S1. The front of Λt

undergoes the composite move shown in Fig. 5 consisting of
two consecutive RII -moves along with RIII -moves

The cusp-connected sum performed on Λ− ∪ φT
∂z

(Λ) produces Λ+ ∪
φT

∂z
(Λ) (of course, only the first component is affected). There is an associated

exact standard Lagrangian handle-attachment cobordism

L ⊂ (Rt × W × Rz, d(etαst))

inside the symplectisation as constructed in [9]. This is a cobordism with
cylindrical ends from

Λ− ∪ φT
∂z

(Λ) to Λ+ ∪ φT
∂z

(Λ),

i.e. from the Legendrian link before surgery (at the concave end) to the link
after surgery (at the convex end). One component of this cobordism is simply
the trivial cylinder R× φT

∂z
(Λ). This Lagrangian cobordism induces a unital

DGA-morphism

ΦL : A(Λ+ ∪ φT
∂z

(Λ)) → A(Λ− ∪ φT
∂z

(Λ))
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Λ̃t

p

q
π 2π−π−2π

Figure 12. The Lagrangian projection in T ∗R of the uni-
versal cover Λ̃ ⊂ J1R of Λt ⊂ J1S1 shown in Fig. 11, where
Λ̃t

∼= R. The interval shown in dark blue is a fundamental
domain for Λ̃t

q

p

d cL

L′

Σ1,1

L′
L

Figure 13. The left depicts a domain in R2 with piecewise
smooth boundary. After identifying the two horizontal pieces
of the boundary, as well as the two vertical pieces, one ob-
tains the Liouville domain shown on the right, with Liouville
form described in Sect. 2.1.2. The closed exact Lagrangian
L is the image of {p = 0} and L′ is a small Hamiltonian
perturbation of L

of the Chekanov–Eliashberg algebras. In particular, the choice of augmenta-
tion ε− of the Chekanov–Eliashberg algebra of Λ− pulls back to an augmen-
tation ε+ = ε− ◦ ΦL of the Chekanov–Eliashberg algebra of Λ+.
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q

p

q

p

d c LL

φt
ρ(L

′) φt′
ρ (L′)

Figure 14. A Hamiltonian isotopy that wraps the La-
grangian {p = 0} around the one-handle with core {q = 0},
while fixing a neighbourhood of the latter core. Note that
the Hamiltonian function is positive but constant near q = 0.
Here t′ > t

The above DGA-morphism ΦL of the Chekanov–Eliashberg algebras
after and before the surgery was computed in [9, Theorem 1.1] under the as-
sumption that the handle-attachment is sufficiently small. This computations
in particular shows that the mixed chords c on Λ+ ∪ φT

∂z
(Λ) are mapped to

ΦL(c) = c +
∑

i

ridi, ri ∈ k,

where di are words of Reeb chords that each contain an odd number of mixed
chords of Λ−∪φT

∂z(Λ), and in which every mixed chord, moreover, is of length
strictly less than (c). It now follows by pure algebraic considerations that
the map

CF∗((Λ+, ε+), (Λ, ε)) → CF∗((Λ−, ε−), (Λ, ε))

induced by linearising the DGA-morphism ΦL using the augmentations ε,
ε+, and ε− (see [3] and [4]) is an action-preserving isomorphism of the Floer
complexes as claimed. �
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1. Introduction and main results

1.1. Interlinking

In the present paper, we discuss a new facet of a method, introduced in [8,28],
of finding orbits of Hamiltonian systems connecting a pair of disjoint subsets
(X0,X1) in the phases space. The method manifests a dynamical phenomenon
called interlinking, which involves a quadruple of subsets (X0,X1, Y0, Y1) in a
symplectic manifold (M,ω) satisfying X0 ∩X1 = Y0 ∩Y1 = ∅. A Hamiltonian
H : M × S

1 → R separates Y0, Y1 if

Δ(H,Y0, Y1) := inf
Y1×S1

H − sup
Y0×S1

H > 0. (1)

Let μ > 0. According to the definition in [28], (Y0, Y1) μ-interlinks (re-
spectively, autonomously μ-interlinks) (X0,X1), if for every Hamiltonian (re-
spectively, every autonomous Hamiltonian) H separating Y0, Y1 and generat-
ing a flow {φt}t∈R on M , there exist t0 ∈ R, x ∈ M and a positive T ≤ μ/Δ,
so that φt0x ∈ X0 and φt0+T x ∈ X1. The piece of the trajectory {φtx},
t ∈ [t0, t0 + T ] is called a chord of time-length T connecting X0 and X1.

The pair (Y0, Y1) interlinks (respectively, autonomously interlinks) the
pair (X0,X1) if it μ-interlinks (respectively, autonomously μ-interlinks) it for
some μ > 0.
Important remark: In this paper, we will consider only autonomous interlink-
ing and for brevity will omit the word “autonomous”. Thus, “interlinking”
further on in this paper is the same as “autonomous interlinking” in [28].

We will focus on quadruples of a special form lying in the symplecti-
zation SΣ of a contact manifold (Σ, ξ), and its fillings. Let λ be a contact
form on Σ. Recall that SΣ is Σ × R+(s) equipped with the symplectic form
ω = d(sλ). We set Y0 = {s = s−} and Y1 = {s = s+} for some 0 < s− ≤ s+,
and take X0 and X1 to be disjoint Lagrangian cobordisms whose boundaries
project to Legendrian submanifolds in Σ. We mainly concentrate on the case
of cylindrical cobordisms
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Xi = Λi × [s−, s+] (2)

for some disjoint Legendrians Λ0,Λ1. The main result of the present paper
provides a sufficient condition for interlinking in terms of contact topology of
this pair of Legendrians.

A very rough sketch of the method of [8,28] is as follows. Using Poisson
bracket invariants coming from function theory on symplectic manifolds, one
deduces the desired interlinking from obstructions to some special deforma-
tions of the symplectic form ω constant near Z := X0 ∪ X1 ∪ Y0 ∪ Y1. The
constraints on such deformations are often provided by pseudo-holomorphic
curves with the boundary on Z. The main new idea of the present paper
is to extract such curves from filtered Legendrian contact homology of Λ0

and Λ1. Thus our main point is to deduce “dynamical interlinking” from
“contact-topological interlinking”.

The realization of this idea requires tools from the relative symplec-
tic field theory (RSFT) [27] combined with the theory of persistence modules
which originated in topological data analysis [20,45] and brought to symplec-
tic topology in [41]. RSFT associates with a (non-degenerate) pair formed by
a Legendrian submanifold and a contact form on the manifold an algebraic
object, called the Legendrian contact homology, and to an exact Lagrangian
cobordism between Legendrian submanifolds a morphism between the corre-
sponding Legendrian contact homologies. In the simplest setting (say, where
a contact manifold is the contactization of an exact symplectic manifold), the
enhancement of the RSFT using the action filtration gives rise to the filtered
relative symplectic field theory (FRSFT). Namely, the Legendrian contact ho-
mology can be viewed as a persistence module formed by vector spaces (over
Z2), while an exact Lagrangian cobordism between Legendrian submanifolds
defines a morphism between the corresponding persistence modules; see pa-
pers [16,18] by Dimitroglou Rizell and Sullivan. In the present paper, we rely
on some special instances of this theory only leaving more general results for
a forthcoming manuscript [30].

In fact, theory of persistence modules enables us, in certain situations,
to detect chords of contact flows even in the absence of interlinking, provided
that the contact Hamiltonians have a sufficiently small oscillation in the uni-
form norm. This robustness of the existence mechanism for contact chords
with respect to C0-small perturbations of contact Hamiltonians is a feature
of our approach.

Let us mention also that in a special case when the cobordisms are
cylindrical as in (2) and the Hamiltonian H : SΣ → R is R+-homogeneous
and positive, interlinking reduces to existence of Reeb chords of a modified
contact form λ/H connecting Legendrian submanifolds Λ0 and Λ1. Exis-
tence of such a chord with a good upper bound on its time-length would
follow from a Legendrian contact homology theory valid for arbitrary con-
tact forms. At the moment, such a theory is still under construction, though
it sounds likely that Pardon’s work [40] on foundations of absolute contact
homologies will be eventually extended to the relative (i.e., Legendrian) case.
Meanwhile, our results yield existence of Reeb chords for arbitrary forms on
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certain contact manifolds. Applications of these results include, in particular,
contact-topological methods in non-equilibrium thermodynamics [29].

1.2. The pool of contact manifolds

In the present paper, we focus on contact manifolds of the form Σ = P ×R(z),
where (P 2n, dϑ), n ∈ Z>0, is an exact symplectic manifold with a symplectic
form dϑ and bounded geometry at infinity (see [3,25] for the definition of
this notion) and the contact structure on Σ is defined by the contact form
λ = dz + ϑ. We will call such contact manifolds nice: to the best of our
knowledge, this is the largest class of contact manifolds for which the details
of the Legendrian contact homology theory have been worked out rigorously
in the published literature. Note that the Reeb vector field R of λ is ∂/∂z
and its flow has no periodic orbits.

A specific example of a nice contact manifold is the 1-jet space J1Q =
T ∗Q(p, q) × R(z) of a closed manifold Q equipped with the contact form
dz ± pdq. The forms corresponding to different choices of the sign are related
by the involution p → −p. We freely use both forms depending on the context,
hoping that this will not cause a confusion. Note that a neighborhood of the
zero section in J1Q provides the universal model for a neighborhood of any
Legendrian copy of Q in an arbitrary contact manifold [36, Example 2.5.11].

Write ST ∗
R

n for the space of co-oriented contact elements of Rn, identi-
fied with the unit cotangent sphere bundle of Rn with respect to the Euclidean
metric. There exists a contactomorphism

(J1
S

n−1, dz − pdq) → (ST ∗
R

n, pdq) (3)

(known as “the hodograph map”, see, e.g., [2, pp. 48–49]) identifying the
standard contact forms on both spaces: it sends a point (p, q, z) ∈ J1

S
n−1

to the unit cotangent vector q in the cotangent space of zq + p ∈ R
n. (Here,

p, q, z are local Darboux vector-coordinates on J1
S

n−1.)

1.3. Sample applications: chords of symplectic Hamiltonians

Before discussing our results in a general setting, let us give a few basic
definitions and present a sample of dynamical applications. In Remark 1.3,
we discuss the relation between these applications and the dynamical results
in our previous work.

A (time-dependent) Hamiltonian on a symplectic manifold is called
complete if its Hamiltonian flow is defined for all times. Similarly, a (time-
dependent) contact Hamiltonian (with respect to a contact form) on a contact
manifold is called complete if its contact flow is defined for all times.

We extend the definition of a chord of a symplectic Hamiltonian (see
Sect. 1.1) to the contact setting as follows: given a (time-dependent) contact
Hamiltonian h (with respect to a contact form λ) on a contact manifold Σ
and two-disjoint subsets Z0, Z1 of Σ, a chord of h from Z0 to Z1 of time-length
T > 0 (with respect to λ) is a trajectory of the contact flow of h (with respect
to λ) that passes through Z0 at a time t0 and through Z1 at the time t0 +T .
If h > 0, such a chord is a Reeb chord of the contact form λ/h of the same
time-length. Given a chord a, we write |a| for its time-length.
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Consider R
2n(p, q) = R

n(p) ×R
n(q) with the standard symplectic form

dp ∧ dq. We view R
2n as the symplectization of the contact manifold ST ∗

R
n

filled by the zero section {p = 0}. Let | · | denote the Euclidean norm on
R

n(q).
Let 0 < s− < s+. Let x0, x1 ∈ R

n(q), x0 	= x1. If n = 1, assume that
x0 < x1.

Define X0,X1, Y0, Y1 ⊂ R
2n as follows.

If n > 1, set

X0 := {(p, x0) ∈ R
2n | s− ≤ |p| ≤ s+},

X1 := {(p, x1) ∈ R
2n | s− ≤ |p| ≤ s+},

Y0 := {|p| = s−},

Y1 := {|p| = s+}.

If n = 1, set

X0 := {(p, x0) ∈ R
2n | s− ≤ p ≤ s+},

X1 := {(p, x1) ∈ R
2n | s− ≤ p ≤ s+},

Y0 := {(s−, q) ∈ R
2n | x0 ≤ q ≤ x1},

Y1 := {(s+, q) ∈ R
2n | x0 ≤ q ≤ x1}.

Let H : R2n × S
1 → R be a complete Hamiltonian.

Set

cmin := min
X0×S1

H, cmax := max
X0×S1

H.

Theorem 1.1. A. Assume Δ(H;X1,X0) > 0 and the following conditions are
satisfied:

H is time-independent, (4)
H|X0 ≥ 0, (5)
supp H ∩ {s− ≤ |p| ≤ s+} is compact. (6)

Then, there exists a chord of H from Y0 to Y1 of time-length bounded

from above by
|x0 − x1|(s+ − s−)

Δ(H;X1,X0)
.

In the case n = 1, the claim holds even without assuming (4), (5), and
(6).
B. Assume Δ(H;Y0, Y1) =: Δ > 0, and for some 0 < e < 1/2, the following
condition is satisfied:

sup
cmin−eΔ≤H≤cmax+eΔ

∣
∣
∣
∣

∂H

∂t

∣
∣
∣
∣
<

(1 − 2e)eΔ2

(s+ − s−)|x0 − x1| . (7)

Then, there exists a chord of H from X0 to X1 of time-length bounded

from above by
|x0 − x1|(s+ − s−)

(1 − 2e)Δ(H;Y0, Y1)
.

In particular, if H is time-independent (and thus, (7) holds for all

0 < e < 1/2), then the time-length of the chord is ≤ |x0 − x1|(s+ − s−)
Δ(H;Y0, Y1)

.
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In the case n = 1, the claim holds even without assuming (7).

For the proof, see Sect. 7.

Remark 1.2. In the case of autonomous Hamiltonians, part B of Theorem 1.1
implies that (Y0, Y1) μ-interlinks (X0,X1), where μ = |x0−x1|(s+−s−). Part
A of Theorem 1.1 does not imply that (Y0, Y1) μ-interlinks (X0,X1), but is
a somewhat weaker claim.

In the proofs of the two parts, we use two slightly different Poisson
bracket invariants—the tools used for detecting interlinking in Sect. 2.2. The
appearance of the same constant μ = |x0 − x1|(s+ − s−) in both parts of
Theorem 1.1 is due to the fact that the proofs of both claims are based on the
same lower bound on both Poisson bracket invariants, coming from areas of
certain pseudo-holomorphic curves used in the theory of Legendrian contact
homology. In fact, one can think of μ as the area of a (pseudo-holomorphic)
quadrilateral whose edges lie in X0,X1, Y0, Y1.

Remark 1.3. In the case n = 1, the claim of Theorem 1.1 follows rather
directly from the results in [28] (cf. [8, Thm. 1.20])—see the proof of Theo-
rem 1.1 in Sect. 7.

In the case n > 1, we do not know any way to obtain Theorem 1.1 from
the results in [28]. (Basically, the obstacle is the non-existence of a positive
Legendrian isotopy between unit cotangent spheres at different points in the
unit cotangent bundle of Rn—see [12,13].)

Let us note that the existence of chords as in Theorem 1.1 for similarly
defined sets in the cotangent bundle of the torus and compactly supported
Hamiltonians can be proved along the lines of the proof of [8, Thm. 1.13]
using symplectic quasi-states, with the upper bound on the time-length of the
chord depending on the size of the support of the Hamiltonian. The methods
of this paper do not allow us to treat this case because the foundations of
the Legendrian contact homology have not been worked out rigorously yet
for the relevant setting.

Remark 1.4. For (time-independent) mechanical Hamiltonians H, the exis-
tence of Hamiltonian chords of H from X0 to X1, as in part B of Theorem 1.1,
can be obtained by the classical Maupertius’s least action principle (see, e.g.,
[1, p.247]).

Namely, assume that H is a complete mechanical Hamiltonian of the
form H(p, q) = |p|2/2 + U(q), where 0 ≤ sup

Rn |U | < +∞. Let x0, x1 ∈ R
n,

0 < s− < s+, and assume that for some C > sup
Rn |U |, the level set {H = C}

intersects the sets X0, X1.
Consider the Riemannian metric g̃ on R

n of the form g̃ =
√

C − U(q)g,
where g is the Euclidean metric (the metric g̃ is called the Jacobi metric).
It is not hard to verify that the metric g̃ is complete, and therefore, by the
Hopf-Rinow theorem, there exists a minimal geodesic of g̃ from x0 to x1. By
Maupertius’s least action principle, the lift of the geodesic to the level set
{H = C} of H in T ∗

R
n = R

2n is a Hamiltonian chord of H from X0 to X1.

1.4. Sample applications: contact dynamics

Let us present sample applications to contact dynamics.

Reprinted from the journal402



1.4.1. Contact interlinking. Let (Σ, ξ) be a contact manifold equipped with a
contact form λ. An ordered pair (Λ0,Λ1) of disjoint Legendrian submanifolds
Λ0,Λ1 ⊂ Σ is called μ-interlinked if there exists a constant μ = μ(Λ0,Λ1, λ) >
0, such that every bounded strictly positive contact Hamiltonian h on Σ with
h ≥ c > 0 possesses an orbit of time-length ≤ μ/c starting at Λ0 and arriving
at Λ1. The pair (Λ0,Λ1) is called interlinked if it is μ-interlinked for some
μ > 0. The pair (Λ0,Λ1) is called robustly interlinked, if every pair (Λ′

0,Λ
′
1)

of Legendrians obtained from (Λ0,Λ1) by a sufficiently C1-small Legendrian
isotopy is interlinked.

Write Rt for the Reeb flow of λ. Given two Legendrian submanifolds
Λ0,Λ1 ⊂ Σ, a Reeb chord Rtx, t ∈ [0, τ ] with x ∈ Λ0 and y := Rτx ∈ Λ1 is
called non-degenerate if

DxRτ (TxΛ0) ⊕ TyΛ1 = ξy , (8)

where ξy stands for the contact hyperplane at y.
Let Σ be the jet space J1Q = T ∗Q(p, q) × R(z) of a closed manifold Q

equipped with the contact form dz − pdq. Let R = ∂/∂z be the Reeb vector
field of λ. Let Λ0 = {p = 0, z = 0} be the zero section.

Theorem 1.5. (i) Let ψ be a positive function on Q, and let
Λ1 := {z = ψ(q), p = ψ′(q)} be the graph of its 1-jet. Then, the pair
(Λ0,Λ1) is robustly interlinked.

(ii) Assume that Λ1 ⊂ Σ = J1Q is a Legendrian submanifold Legendrian
isotopic to Λ0, with the following property: there is a unique chord of
the Reeb flow Rt starting on Λ0 and ending on Λ1, and this chord is
non-degenerate. Then, the pair (Λ0,Λ1) is interlinked.

The proof is given in Sect. 5.

Remark 1.6. The assumption in part (ii) of Theorem 1.5 that Λ1 is Legen-
drian isotopic to Λ0 can be considerably weakened. The actual assumption
that we need for the proof is that the Legendrian contact homology of Λ1 is
not zero—see Sect. 6.

1.4.2. Beyond interlinking. Let ψ be a positive function on Q, and let Λ :=
{z = ψ(q), p = ψ′(q)} be the graph of its 1-jet in T ∗Q × R. Let us note that
for every critical point q of ψ, there is a Reeb chord of the time-length ψ(q)
from the zero section Λ0 to Λ. As we have seen in Theorem 1.5(i), the pair
(Λ0,Λ) is interlinked. Note that the order matters: the pair (Λ,Λ0) is not
interlinked—indeed, there is no Reeb chord from Λ to Λ0. Assume now that
K is Legendrian isotopic to Λ outside Λ0, and that there exist exactly two
Reeb chords A, a starting on K and ending on Λ0. Assume further that both
chords are non-degenerate, and their time-lengths |A|, |a| satisfy

0 < |A| − |a| < |b|, (9)

for every Reeb chord b starting and ending on Λ0 �K. The next result states
that for contact Hamiltonians with a sufficiently small oscillation (i.e., for
small perturbations of the constant contact Hamiltonian 1), one can establish
existence of a chord even in the absence of interlinking.

Vol. 24 (2022) Legendrian persistence modules and dynamics
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Figure 1. Isotopy from Λ to K (left); K zoomed in (right)

Theorem 1.7. Let h be any positive bounded contact Hamiltonian on Σ with
c := infΣ h ≤ h ≤ supΣ h =: C. If

C

c
<

|A|
|a| , (10)

then there is a chord of h starting on K and ending on Λ0 of time-length
≤ |a|(|A| − |a|)/(|A|c − |a|C).

The proof is given in Sect. 6. For an example of a Legendrian subman-
ifold K ⊂ T ∗S1 × R satisfying the assumption of Theorem 1.7, we refer to
Fig. 1 describing the front projection of K. As we shall see later on, the proof
of this result involves the machinery of persistence modules.

1.4.3. Chords of contact Hamiltonians. Next, we relax the setting of con-
tact interlinking and work with contact Hamiltonians which may be time-
dependent, unbounded, and may change sign.

Let l ∈ R, l > 0. Let Λ0, Λ1 be the following Legendrian submanifolds of
(Σ, ξ): if Σ = ST ∗

R
n, then Λ0 is the unit cotangent sphere at some x0 ∈ R

n

while
(i) either Λ1 is the image of Λ0 under the time-l Reeb flow;
(ii) or Λ1 is the unit cotangent sphere at some x1 ∈ R

n, |x0 − x1| = l, in
which case there exists a unique non-degenerate Reeb chord starting at
Λ0 and ending on Λ1.

Note that these pairs (Λ0,Λ1) are interlinked by Theorem 1.5(i) and (ii),
respectively. We shall also allow Σ = J1Q, where Λ0 is the zero section and Λ1

is its image under the time-l Reeb flow, as in Theorem 1.5(i). We shall discuss
applications concerning the existence of chords of contact Hamiltonians from
Λ0 to Λ1.

Assume h : Σ × S
1 → R is a complete (time-periodic) contact Hamil-

tonian (with respect to λ). Write ht := h(·, t), t ∈ S
1. Denote by vt, t ∈ S

1,
the (time-periodic) contact Hamiltonian vector field of h with respect to the
contact form λ. If vt is time-independent, we write just v. Let {ϕt} be the
flow of vt—that is, the contact Hamiltonian flow of h.

Definition 1.8. Let us say that h : Σ × S
1 → R is C-cooperative with Λ0, Λ1

for C > 0 if either of the following conditions holds:
(a) h < C on Λ1 × S

1 and dht(R) ≥ 0 on {ht ≥ C} for all t ∈ S
1.

(b) h < C on Λ0 × S
1 and dht(R) ≤ 0 on {ht ≥ C} for all t ∈ S

1.
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We will say that h is cooperative with Λ0, Λ1 if it is C-cooperative with
Λ0, Λ1 for some C > 0.

Note that conditions (a) and (b) hold, in particular, for a sufficiently
large C if supΣ×S1 h < +∞. Conditions (a) and (b) guarantee that a chord
of h from Λ0 to Λ1, if it exists, does not leave the set {h ≤ C} at any time.

Theorem 1.9 (cf. Rem. 1.14 in [28]). Assume that h is cooperative with Λ0,
Λ1 and that infΣ×S1 h > 0. Assume also that for some 0 < e < 1/2

sup
Σ×S1

|∂h/∂t| <
(1 − 2e)e

(

infΣ×S1 h
)3

(

maxΛ0×S1 h + e infΣ×S1 h
)

l
.

Then, there exists a chord of h from Λ0 to Λ1 of time-length bounded

from above by
l

(1 − 2e) infΣ×S1 h
.

In particular, if h is time-independent, then the time-length can be

bounded from above by
l

infΣ×S1 h
.

For the proof of Theorem 1.9, see Sect. 7.
For other results on the existence of Reeb chords between different Leg-

endrian submanifolds (or equivalently, chords of positive contact Hamiltoni-
ans), see the papers of Dimitroglou Rizell and Sullivan [17,18] (for a compar-
ison of their results with the results in [28] and here, see [18, Sec. 1.3]).

Theorem 1.9, together with a basic dynamical assumption, allows to
obtain the following results concerning the chords of contact Hamiltonians
that are not everywhere positive.

Corollary 1.10. Assume that h is cooperative with Λ0, Λ1 and there exists
a (possibly non-compact or disconnected) closed codimension-0 submanifold
Ξ ⊂ Σ with a (possibly non-compact or disconnected) boundary ∂Ξ, so that
(1) infΞ×S1 h > 0 (but h may be negative outside Ξ × S

1).
(2) sup∂Ξ×S1 h < +∞.
(3) For each t ∈ S

1, the vector field vt is transverse to ∂Ξ (in particular,
∂Ξ is a convex surface in the sense of contact topology—see [37]) and
either points inside Ξ everywhere on ∂Ξ or points outside Ξ everywhere
on ∂Ξ.

(4) Both Λ0 and Λ1 lie in Ξ.
Assume also that for some 0 < e < 1/2

sup
Ξ×S1

|∂h/∂t| <
(1 − 2e)e

(

infΞ×S1 h
)3

(

maxΛ0×S1 h + e infΞ×S1 h
)

l
.

Then, there exists a chord of h from Λ0 to Λ1 whose time-length is

bounded from above by
l

(1 − 2e) infΞ×S1 h
.

If h is time-independent, then the time-length of the chord is bounded
from above by l/ infΞ h.

For the proof of Corollary 1.10, see Sect. 7.
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Remark 1.11. Assume h is time-independent and Ξ := {h ≥ c} for some
c > 0. Then, the conditions (1) and (2) are satisfied automatically, while
condition (3) is equivalent to ∂Ξ being transverse to the Reeb vector field R,
because dh(v) = hdh(R).

Example 1.12. An example satisfying the assumptions of Corollary 1.10 can
be constructed as follows. Write Rt for the Reeb flow on J1Q. Let Λ0 and Λ1

be the images of the zero section under Rc and Rc+l, respectively, with c, l >
0. Note that Λ0,Λ1 ⊂ Ξ := {z ≥ c}. Thus, condition (4) in Corollary 1.10 is
satisfied.

Consider a time-independent contact Hamiltonian h = az + g on Σ =
J1Q = T ∗Q × R, where a > 0, z is the coordinate along the R-factor and
g is a smooth bounded function on T ∗Q. Assume that infΞ h > 0—this can
be achieved if a is sufficiently large compared to ||g||L∞ . Then, condition (1)
in Corollary 1.10 is satisfied. Condition (2) is satisfied, since g is bounded.
Finally, condition (3) is satisfied, since the Reeb vector field R of the standard
contact form on J1Q is ∂/∂z and therefore dh(v) = hdh(R) = ah > 0 on
∂Ξ = {z = c}. It is also easy to verify that h is C-cooperative with Λ0,Λ1

for a sufficiently large C.
We have verified that the objects above—and accordingly their preim-

ages under ψ—satisfy the assumptions of Corollary 1.10. Consequently, Corol-
lary 1.10 yields the existence of a chord of h from Λ0 to Λ1 of time-length
≤ l/ infΞ h.

1.4.4. Contact flows with large conformal factor. Our next result illustrates
that contact Hamiltonians separating (in a suitable sense) certain pairs of
Legendrian submanifolds generate contact flows with an arbitrarily large con-
formal factor. Here, Λ0 and Λ1 are as in the beginning of Sect. 1.4.3.

Theorem 1.13. Assume that h is time-independent, compactly supported, and

h|Λ0≥0, h|Λ1<0.

Then, the conformal factor of ϕt takes arbitrarily large values as t varies
between 0 and +∞:

inf
t∈(0,+∞),y∈Σ

(

ϕ−1
t

)∗
λ (ϕt (y))

λ (ϕt (y))
= +∞.

Recall that the conformal factor is an important dynamical character-
istic playing the role of the contact Lyapunov exponent. For the proof, see
Sect. 7.

1.5. Scheme of the proof: homologically bonded pairs

Let us outline a key property of Σ, λ, Λ0, Λ1 above that allows to prove the
results in Sects. 1.3, 1.4 and outline the general scheme of the proofs.

Let Λ0,Λ1 ⊂ Σ be disjoint Legendrian (not necessarily connected)
compact submanifolds without boundary of a nice contact manifold (see
Sect. 1.2). Let Λ := Λ0 �Λ1. Assume that the pair (Λ, λ) is non-degenerate—
that is, there are only finitely many Reeb chords of Λ and they are all non-
degenerate (this can be always achieved by a C∞-small Legendrian perturba-
tion of either of the two Legendrian submanifolds). Then, one can associate
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with the pair (Λ = Λ0 �Λ1, λ) its (full) Chekanov–Eliashberg algebra—a free
non-commutative unital algebra over Z2 generated by all the Reeb chords
of Λ. The algebra is filtered by the action (the action of a Reeb chord is its
time-length; the action of a monomial, or a product of the Reeb chords, is
the sum of the actions of its factors).

We consider a vector subspace of the Chekanov–Eliashberg algebra,
which we will call the 01-subspace—it is generated by the monomials a1·. . .·ak,
k ∈ Z>0, where a1 starts at Λ0, ak ends at Λ1, and for each m = 1, . . . , k −1,
the end of am lies in the same component of Λ as the origin of am+1.

Recall that the differential ∂J on the Chekanov–Eliashberg algebra de-
pends on an almost complex structure J on the symplectization of (Σ, ker λ)
and is defined as follows: the differential of a generator (that is, a Reeb chord)
is defined using the count of J-holomorphic disks in the symplectization with
one positive and possibly several negative punctures on the boundary, whose
boundary lies in Λ and that converge near the punctures to cylinders over
Reeb chords of Λ; the differential is then extended to the whole algebra using
the Leibniz rule and the condition ∂J(1) := 0 (see Sect. 4.2).

The differential preserves the 01-subspace and lowers the filtration. This
allows to view the resulting homology of the 01-subspace—the filtered Legen-
drian contact homology of (Λ := Λ0 �Λ1, λ)—as a persistence module defined
over (−∞,+∞) and apply the theory of persistence modules to its study. In
particular, one can associate with it its barcode—a collection of intervals,
called bars, lying in (0,+∞).

For s ∈ (1,+∞), let lmin,s(Λ0,Λ1, λ) denote the smallest left end of a
bar of multiplicative length greater than s in the barcode. (The multiplica-
tive length of a bar in (0,+∞) is the ratio of its right and left ends; note
that it may be infinite.) Let lmin,∞(Λ0,Λ1, λ) denote the smallest left end
of an infinite bar. If there are no such bars, set lmin,s(Λ0,Λ1, λ) := +∞ or,
respectively, lmin,∞(Λ0,Λ1, λ) := +∞.

If the pair (Λ = Λ0 � Λ1, λ) is degenerate, then Λ = Λ0 � Λ1 can be
approximated by Legendrian submanifolds Λ′ = Λ′

0 � Λ′
1 obtained from Λ by

a C∞-small Legendrian isotopy, so that the pair (Λ′, λ) is non-degenerate.
Extend the definition of lmin,s(Λ0,Λ1, λ), s ∈ (1,+∞], to all pairs (Λ =
Λ0 � Λ1, λ) as follows:

lmin,s(Λ0,Λ1, λ) := lim inf lmin,s(Λ′
0,Λ

′
1, λ),

where the lim inf is taken over all such Λ′ = Λ′
0 � Λ′

1 converging to Λ (in the
C∞-topology). One can show that for non-degenerate pairs
(Λ = Λ0 �Λ1, λ), this definition and the original one yield the same lmin,s(Λ0,
Λ1, λ)—cf. Remark 4.8.

If lmin,s(Λ0,Λ1, λ) < +∞ for all s ∈ (1,+∞), we will say that the pair
(Λ0 � Λ1, λ) is weakly homologically bonded. If lmin,∞(Λ0,Λ1, λ) < +∞, we
will say that the pair (Λ0 �Λ1, λ) is homologically bonded. If the pair is non-
degenerate, these conditions mean that the corresponding barcode contains
bars of arbitrarily large multiplicative length, or, respectively, an infinite bar.

The key property of the setting in Sects. 1.3, 1.4 is that the pair
(Λ0 � Λ1, λ) is homologically bonded.
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Consider the stabilization of Σ which is the manifold
Σ̂ := Σ × R(r) × S

1(τ) equipped with the contact form λ̂ := λ + rdτ . This
contact manifold is also nice. For a Legendrian submanifold Δ ⊂ Σ, define a
Legendrian submanifold Δ̂ ⊂ Σ̂ by

Δ̂ := Δ × {r = 0}.

For each s ∈ (1,+∞], define

l̂min,s(Λ0,Λ1, λ) := lmin,s(Λ̂0, Λ̂1, λ̂).

The pair (Λ0 � Λ1, λ) is said to be stably homologically bonded if
l̂min,∞(Λ0,Λ1, λ) < +∞.

Remark 1.14. It is likely that homological bondedness implies stable homo-
logical bondedness. If Σ is the standard contact R3, this follows from a result
of Ekholm-Kálmán [24, Thm. 1.1], but, to the best of our knowledge, the case
of a general (nice) contact manifold has not been worked out so far.

For the Legendrian submanifolds Λ = Λ0 � Λ1 in Sect. 1.4, the pair
(Λ = Λ0 �Λ1, λ) is homologically bonded and stably homologically bonded—
see Sects. 6, 7.

Let us now explain how (stable) homological bondedness is used to prove
the results in Sects. 1.3, 1.4.

For a pair (Λ0�Λ1, λ) in a general nice contact manifold (Σ, λ), consider
the trivial exact Lagrangian cobordism (Λ0 � Λ1) × [s−, s+] in the trivial
exact symplectic cobordism (Σ × [s−, s+], d(sλ)). For instance, in the setting
of Theorem 1.1, the latter exact symplectic cobordism can be identified with
the manifold {(p, q) ∈ R

2n | s0 ≤ |p| ≤ s1} whose boundary components—
the sets Y0, Y1—are identified, respectively, with Σ × s− and Σ × s−. The
parts Λ0 × [s−, s+], Λ1 × [s−, s+] of the trivial exact Lagrangian cobordism
(Λ0 � Λ1) × [s−, s+] are then identified, respectively, with the sets X0, X1.

If the pair (Λ0 � Λ1, λ) is non-degenerate, the exact Lagrangian cobor-
dism defines a cobordism map (in the category of the persistence modules)
from the persistence module associated to (Λ = Λ0 � Λ1, s+λ) to the one
associated with (Λ = Λ0 � Λ1, s−λ). These persistence modules are multi-
plicative shifts of each other and the cobordism map is the multiplicative
shift by s+/s−.

If the pair (Λ0 � Λ1, λ) is weakly homologically bonded (and, in partic-
ular, if it is homologically bonded), then the cobordism map is not the zero
morphism between persistence modules and the pseudo-holomorphic curves
used to define the map can be also used to prove that a version of the Poisson
bracket invariant of quadruples of sets is positive for the following quadruple
of sets: Λ0×[s−, s+], Λ1×[s−, s+], Σ×s−, Σ×s+. This is the key result in the
paper—see Sect. 2 for the precise definition of the Poisson bracket invariant
(it is a version of the invariant defined previously in [8,28]) and Theorem 4.9
for the precise statement of the result. If the pair (Λ0 � Λ1, λ) is degenerate
but still weakly homologically bonded, the same result is obtained using a
semi-continuity property of the Poisson bracket invariant.
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The existence of chords for time-independent symplectic Hamiltonians
as in Theorem 1.1 follows then from the positivity of the Poisson bracket in-
variant by Fathi’s dynamical Urysohn lemma (see Theorem 2.1 for its state-
ment).

If the pair (Λ0 � Λ1, λ) is stably homologically bonded, then a similar
argument yields the existence of chords as in part B of Theorem 1.1 for
time-dependent Hamiltonians.

The existence of a chord from Λ0 to Λ1 for a contact Hamiltonian co-
operative with Λ0, Λ1, as in Sect. 1.4.3, is deduced then from the existence
of the chords of the corresponding homogeneous symplectic Hamiltonian on
the symplectization of Σ.

Remark 1.15. The claims of Theorem 1.1 (and its analogues for other homo-
logically bonded pairs) on the existence of Hamiltonian chords remain true if
X0, X1 are perturbed as exact Lagrangian cobordisms (cylindrical near the
boundaries) in the trivial exact symplectic cobordism {(p, q) ∈ R

2n | s0 ≤
|p| ≤ s1}, so that the Legendrian isotopies, induced on the boundaries by the
exact Lagrangian isotopies, are sufficiently small—e.g., sufficiently C∞-small.
(Note that away from the boundary, the perturbations may be arbitrarily.
large, as long as the perturbed X0, X1 are disjoint!). The upper bound on
the time-length of the Hamiltonian chords between the perturbed X0, X1 is
then only slightly larger than the one for the original X0,X1.

Similarly, the claims of the results in Sect. 1.4 remain true if the Legen-
drian submanifolds Λ0, Λ1 are perturbed by sufficiently C∞-small Legendrian
isotopies into Legendrian submanifolds Λ′

0, Λ′
1. The upper bound on the time-

length of the chord between Λ′
0, Λ′

1 is then only slightly larger than the one
for the original Λ0, Λ1 and tends to it as the sizes of the Legendrian isotopies
tend to zero.

Let us also remark that the scheme of the proof can be extended to
a more general setting and, in particular, to non-trivial exact Lagrangian
cobordisms; one can also use the linearized Legendrian contact homology
instead of the full one [30].

For more details and a reference to the proofs, see more general Re-
marks 4.8, 4.13, 5.8.

1.6. Plan of the paper

Let us outline the plan of the paper.
In Sect. 2, we define a Poisson bracket invariant of a quadruple of sets

(a modified version of the invariant defined previously in [8,28]) and state a
recent theorem of Fathi (a generalization of the result in [31]), which allows
to deduce the existence of a Hamiltonian chord from the positivity of the
invariant.

In Sect. 3, we recall basic facts about persistence modules.
In Sect. 4, we describe the Legendrian contact homology setting that we

need and explain how to associate a persistence module, and a corresponding
barcode, to a (non-degenerate) pair formed by a Legendrian submanifold
and a contact form. Then, we show how the existence of bars of sufficiently
large multiplicative length in the barcode implies the positivity of the Poisson
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bracket invariant for appropriate quadruples of sets, which in turn yields the
existence of the wanted chords.

In Sect. 5, we discuss applications of the result proved in Sect. 4 to
contact dynamics.

In Sects. 6, 7, we explain how the results of Sect. 4 can be applied to
the Legendrian submanifolds in J1Q and ST ∗

R
n, which yields the results of

Sects. 1.3, 1.4.

2. A modified pb+-invariant and Hamiltonian chords

In this section, we discuss a Poisson bracket invariant of quadruples of sets
in a symplectic manifold. The proof of the result relating the Poisson bracket
invariant to the existence of Hamiltonian chords is based on the theorems of
Fathi in general smooth/topological dynamics [31,32] and is similar to the
proof of the relevant results in [28] (with the only difference that we can now
use the results from [32] that were unavailable when [28] was written). Let
us recall these results of Fathi.

2.1. Chords of smooth vector fields

In this section, let M be any smooth manifold (without boundary), v a com-
plete smooth time-independent vector field on M (meaning that its flow is
defined for all times) and X0,X1 ⊂ M disjoint closed subsets of M . De-
note by T (X0,X1; v) the infimum of the time-lengths of the chords (that
is, integral trajectories) of v from X0 to X1. If there is no such chord, set
T (X0,X1; v) := +∞.

The following theorem (a “dynamical Urysohn lemma”) was proved by
Fathi in [31] in the case when X0,X1 are compact and in [32] in the case
when X0,X1 are arbitrary closed sets.

Theorem 2.1 (Fathi, [31,32]). Assume T > T (X0,X1; v).
Then, there exists a smooth function F : M → R, such that F |X0 ≤ 0,

F |X1 > 1, and LvF < 1/T .
If X0,X1 are compact, then F can be chosen to be compactly supported.

Define

S(X0,X1) := {F ∈ C∞(M) | F |X0 ≤ 0, F |X1 ≥ 1}, (11)
S ′(X0,X1)

:= {F ∈ C∞(M) | Im (F ) ⊂ [0, 1], F |Op(X0) = 0, F |Op(X1) = 1},

(12)

where Op(·) denotes some open neighborhood of a set. Define

K(X0,X1) := S(X0,X1) ∩ C∞
c (M), K′(X0,X1) := S ′(X0,X1) ∩ C∞

c (M),

where C∞
c (M) is the space of compactly supported smooth functions on M .

Define

L(X0,X1; v) := inf
F∈S(X0,X1)

sup
M

LvF,

Reprinted from the journal410



and

Lc(X0,X1; v) := inf
F∈K(X0,X1)

sup
M

LvF.

If X1 is non-compact, the set K(X0,X1) is empty. Our convention is that
inf ∅ = +∞. Clearly

L(X0,X1; v) ≤ Lc(X0,X1; v).

Proposition 2.2. In the definition of L(X0,X1; v) and Lc(X0,X1; v), one can
replace S(X0,X1) and K(X0,X1), respectively, by S ′(X0,X1) and K′(X0,X1)

L(X0,X1; v) = inf
F∈S′(X0,X1)

sup
M

LvF,

and if X0 and X1 are compact

Lc(X0,X1; v) = inf
F∈K′(X0,X1)

sup
M

LvF.

Proof of Proposition 2.2. Let us prove the claim for L(X0,X1; v)—the case
of Lc(X0,X1; v) is similar.

Clearly, L(X0,X1; v) ≤ infF∈S′(X0,X1) supM LvF , and thus, it suffices
to prove that

inf
F∈S′(X0,X1)

sup
M

LvF ≤ L(X0,X1; v). (13)

Let δ > 0. Pick a non-decreasing smooth function χ : R → R so that
supt∈R

χ′(t) ≤ 1 + δ, and for some ε > 0, we have χ(t) = 0 on (−∞, ε] and
χ(t) = 1 on [1 − ε,+∞).

Then, χ ◦ F ∈ S ′(X0,X1) for any F ∈ S(X0,X1) and

Lv(χ ◦ F ) = (χ′ ◦ F )LvF ≤ (1 + δ)LvF.

Taking the infimum over F ∈ S(X0,X1) in both sides, we get

inf
F∈S′(X0,X1)

sup
M

LvF ≤ (1 + δ)L(X0,X1; v).

Since this is true for any δ > 0, we obtain (13) and this finishes the proof of
the proposition. �

The following corollary follows readily from Theorem 2.1.

Corollary 2.3. T (X0,X1; v) = 1/L(X0,X1; v).
Consequently, if L(X0,X1; v) > 0, then for any ε > 0, there exists a

chord of v from X0 to X1 of time-length ≤ 1/L(X0,X1; v) + ε (if supp v is
compact, then one can drop ε from the bound).

If X0,X1 are compact, then L(X0,X1; v) = Lc(X0,X1; v) and
T (X0,X1; v) = 1/Lc(X0,X1; v).

Consequently, if X0 and X1 are compact and Lc(X0,X1; v) > 0, then
there exists a chord of v from X0 to X1 of time-length ≤ 1/Lc(X0,X1; v).

Vol. 24 (2022) Legendrian persistence modules and dynamics

Reprinted from the journal 411



M. Entov and L. Polterovich JFPTA

2.2. Poisson bracket invariant

Let (M,ω) be a (not necessarily compact) connected symplectic manifold,
possibly with boundary.

We use the following sign conventions in the definitions of a Hamilton-
ian vector field and the Poisson bracket on M : the Hamiltonian vector field
sgrad H of a Hamiltonian H is defined by

isgrad Hω = −dH,

and the Poisson bracket of two Hamiltonians F , G is given by

{F,G} := ω(sgrad G, sgrad F ) = dF (sgrad G) = −dG(sgrad F ) =
= Lsgrad GF = −Lsgrad F G.

Assume X0,X1, Y0, Y1 are closed subsets of M , such that

X0 ∩ X1 = Y0 ∩ Y1 = ∅.

Such a collection of sets X0,X1, Y0, Y1 will be called an admissible
quadruple.

Consider the following conditions on pairs (F,G) ∈ C∞(M) × C∞(M):

(1) supM{F,G} < +∞ and the vector field F sgrad G on M is complete.
(1′) supp F is compact and supp (F sgrad G) lies in the interior of M .
(2) F |X0 ≤ 0, F |X1 ≥ 1, G|Y0 ≤ 0, G|Y1 ≥ 1.
(2′) F |X0 ≤ 0, F |X1 ≥ 1, G|Op(Y0) ≡ 0, G|Op(Y1) ≡ 1. (Here, Op(·) denotes

some open neighborhood of a set.)
(2′′)F |Op(X0) ≡ 0, F |Op(X1) ≡ 1, G|Op(Y0) ≡ 0, G|Op(Y1) ≡ 1.
(3) Im F ⊂ [0, 1].

Note that (1′) ⇒ (1), since supp {F,G}⊂supp (FdG)=supp (F sgrad G).
Define

FM (X0, X1, Y0, Y1) :={(F,G) ∈ C∞(M) × C∞(M) | (F,G) satisfies (1) and (2)},
F ′

M (X0, X1, Y0, Y1) :={(F,G) ∈ C∞(M)×C∞(M)|(F,G) satisfies (1),(2) and (3)},
F ′′

M (X0, X1, Y0, Y1) :={(F,G)∈C∞(M)×C∞(M)|(F,G) satisfies (1),(2”) and (3)},
GM (X0, X1, Y0, Y1) := {(F,G) ∈ C∞(M) × C∞(M)|(F,G) satisfies (1′) and (2)},
G′

M (X0, X1, Y0, Y1) := {(F,G) ∈ C∞(M) × C∞(M) | (F,G) satisfies (1′), (2′)},
G′′

M (X0, X1, Y0, Y1) :={(F,G)∈C∞(M)×C∞(M)|(F,G) satisfies (1′), (2′′) and (3)}.

For brevity, we will omit the sets X0,X1, Y0, Y1 from this notation, when
needed.

Clearly

G′′
M ⊂ G′

M ⊂ GM ⊂ FM , F ′′
M ⊂ F ′

M ⊂ FM ,

G′
M ⊂ F ′

M , G′′
M ⊂ F ′′

M .

It is also easy to see that the sets GM , G′
M and G′′

M are non-empty if only if
X1 is compact.

Set
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pb+
M (X0,X1, Y0, Y1) := inf

FM

sup
M

{F,G},

pb+
M,comp(X0,X1, Y0, Y1) := inf

GM

max
M

{F,G}.

If the set over which the infimum is taken is empty, we set the infimum to be
+∞.

Clearly

pb+
M (X0,X1, Y0, Y1) ≤ pb+

M,comp(X0,X1, Y0, Y1).

Remark 2.4. The quantities pb+
M , pb+

M,comp are versions of the pb4 invariant of
quadruples of sets defined originally in [8] (where the C0-norm of {F,G} was
used instead of maxM{F,G}) and of the pb+

4 invariant defined in [28] (where
the sets X0,X1, Y0, Y1 were assumed to be compact, and both F and G were
assumed to be compactly supported). See also [35] for a result that allows to
define pb+

4 (X0,X1, Y0, Y1) in terms of the topology of the set X0∪X1∪Y0∪Y1.
Note that, unlike pb4 and pb+

4 , the invariants pb+
M , pb+

M,comp are not symmetric
with respect to the permutation (X0,X1, Y0, Y1) �→ (Y0, Y1,X1,X0).

Similarly to Proposition 2.2 (also see [8]), one can prove that the sets
FM , GM in the definitions of pb+

M , pb+
M,comp can be replaced, respectively, by

F ′
M , F ′′

M and by G′
M , G′′

M :

pb+
M (X0,X1, Y0, Y1) = inf

F ′
M

sup
M

{F,G} = inf
F ′′

M

sup
M

{F,G},

pb+
M,comp(X0,X1, Y0, Y1) = inf

G′
M

max
M

{F,G} = inf
G′′

M

max
M

{F,G}.

We will need the following basic properties of pb+
M , pb+

M,comp.

Monotonicity

Proposition 2.5 (cf. [8,28]). Assume that M is a codimension-zero submani-
fold (with boundary) of a symplectic manifold N (without boundary), which is
closed as a subset of N . Let U ⊂ N be an open set. Assume that X0,X1, Y0, Y1

is an admissible quadruple lying in M , so that X0,X1 ⊂ U ∩ M , Y0 ∩ U, Y1 ∩
U 	= ∅ and ∂M ⊂ Y0 ∪ Y1.

Then

pb+
N (X0,X1, Y0, Y1) ≥ pb+

M (X0,X1, Y0, Y1), (14)

pb+
N,comp(X0,X1, Y0, Y1) ≥ pb+

M,comp(X0,X1, Y0, Y1), (15)

pb+
M∩U,comp(X0,X1, Y0 ∩ U, Y1 ∩ U) ≥ pb+

M,comp(X0,X1, Y0, Y1). (16)

Proof. If (F,G) ∈ F ′′
N (X0,X1, Y0, Y1), then it follows easily from the defini-

tions that (F |M , G|M ) ∈ F ′′
M (X0,X1, Y0, Y1). This yields (14). The inequality

(15) follows similarly.
Let us prove (16). Assume (F,G) ∈ G′′

M∩U (X0,X1, Y0 ∩ U, Y1 ∩ U). In
particular, this means that supp F ⊂ M ∩ U is compact and G is equal to 0
and 1 on some open neighborhoods (in U) of, respectively, Y0 ∩U and Y1 ∩U .
Extend F by zero outside M ∩ U to a smooth compactly supported function
F̃ : M → [0, 1] and extend G to a smooth function G̃ : M → R, so that G̃
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is equal to 0 and 1 on some open neighborhoods (in M) of, respectively, Y0

and Y1. Then, (F̃ , G̃) ∈ G′′
M (X0,X1, Y0, Y1), while {F̃ , G̃} = {F,G} (because

outside U both Poisson brackets vanish, while on U they coincide, since F̃ |U =
F , G̃|U = G). This immediately yields (16).

The following property follows from the definitions (cf. [8,28]).

Semi-continuity
Suppose that (X0,X1, Y0, Y1) is an admissible quadruple in (M,ω),

X0,X1 are compact, and {X
(j)
0 }, {X

(j)
1 }, j ∈ N, are sequences of compact

subsets of M converging (in the sense of the Hausdorff distance between
sets), respectively, to X0, X1, so that the quadruples (X(j)

0 ,X
(j)
1 , Y0, Y1) are

admissible for all j ∈ N.
Then

lim sup
j→+∞

pb+
M (X(j)

0 ,X
(j)
1 , Y0, Y1) ≤ pb+

M (X0,X1, Y0, Y1), (17)

lim sup
j→+∞

pb+
M,comp(X(j)

0 ,X
(j)
1 , Y0, Y1) ≤ pb+

M,comp(X0,X1, Y0, Y1). (18)

The next proposition is proved as in [28] using Corollary 2.3.

Proposition 2.6. Assume that M is a codimension-zero submanifold (with
boundary) of a symplectic manifold N (without boundary), so that M is closed
as a subset of N . Assume that X0,X1, Y0, Y1 is an admissible quadruple lying
in M , so that ∂M ⊂ Y0 ∪ Y1.

Let H : N → R be a complete time-independent Hamiltonian. Then, the
following claims hold:
I. Assume Δ(H;Y0, Y1) =: Δ > 0. If pb+

M (X0,X1, Y0, Y1) =: p > 0, then for

any ε > 0, there exists a chord of H from X0 to X1 of time-length ≤ 1
pΔ

+ ε.

If X0, X1 are compact and pb+
M,comp(X0,X1, Y0, Y1) =: pcomp > 0, then there

exists a chord of H from X0 to X1 of time-length ≤ 1
pcompΔ

.

II. Assume that X0, X1 are compact, supp H ∩ M is compact, H|X0 ≥ 0 and
H|X1 ≤ −Δ for some Δ > 0. Assume also that pb+

M,comp(X0,X1, Y0, Y1) =:
pcomp > 0. Then, there exists a chord of H from Y0 to Y1 of time-length

≤ 1
pcompΔ

.

Proof of Proposition 2.6. Let us prove part I. We may assume without loss of
generality that H|Y0 ≤ 0, H|Y1 ≥ 1 (this can be always achieved by replacing
H with aH + b for some a, b ∈ R, a 	= 0). For any F ∈ S(X0,X1) (see (11))
satisfying supN Lsgrad HF = supN{F,H} < +∞, we have (F,H) ∈ F ′

N , and
if supp F is compact, then (F,H) ∈ GN . Indeed, since the vector field sgrad H
is complete, then so is the vector field F sgrad H, since 0 ≤ F ≤ 1. Hence, by
(14) and (15)

sup
N

Lsgrad HF = sup
N

{F,H} ≥ pb+
N (X0,X1, Y0, Y1)

≥ pb+
M (X0,X1, Y0, Y1),
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or, if supp F is compact

sup
N

Lsgrad HF = sup
N

{F,H} ≥ pb+
N,comp(X0,X1, Y0, Y1)

≥ pb+
M,comp(X0,X1, Y0, Y1).

Taking the infimum over all such F , we get

L(X0,X1; sgrad H) ≥ pb+
M (X0,X1, Y0, Y1),

and if X0,X1 are compact

Lc(X0,X1; sgrad H) ≥ pb+
M,comp(X0,X1, Y0, Y1).

Now, the claims of part I follow from Corollary 2.3.
Let us prove part II. We may assume without loss of generality that

H|X0 ≥ 0, H|X1 ≤ −1 (this can be always achieved by replacing H with
H/Δ). For any G ∈ S ′(Y0, Y1) (see (12)), we have (−H|M , G|M ) ∈ G′

M .
Recall that here supp H ∩ M is assumed to be compact and G is constant
near Y0 and Y1, since G ∈ S ′(Y0, Y1). Hence

sup
N

Lsgrad HG ≥ sup
M

Lsgrad HG = sup
M

{−H,G} ≥ pb+
N,comp(X0,X1, Y0, Y1).

Taking the infimum over all G ∈ S ′(Y0, Y1) and using Proposition 2.2, we
get

L(Y0, Y1; sgrad H) ≥ pb+
N,comp(X0,X1, Y0, Y1)

≥ pb+
M,comp(X0,X1, Y0, Y1) = pcomp.

Now, the claim of part II follows from Corollary 2.3. �

Let us now discuss an implication of Proposition 2.6 for the existence
of chords of time-dependent Hamiltonians.

Let E > 0. Let r ∈ (−E,E) and τ ∈ S
1 = R/Z be the coordinates,

respectively, on (−E,E) and S
1. Set

M̃E := M × (−E,E) × S
1

and equip M̃E with the product symplectic form ω ⊕ dr ∧ dτ . Let X0,X1, Y0,
Y1 ⊂ M be an admissible quadruple, such that X0,X1 are compact. Set

X̃0 := X0 × {r = 0}, X̃1 := X1 × {r = 0},

Ỹ0(E) := Y0 × (−E,E) × S
1, Ỹ1(E) := Y1 × (−E,E) × S

1.

Proposition 2.7. Assume that ∂M = ∅. With an admissible quadruple X0,X1,
Y0, Y1 ⊂ M as above, let H : M × S

1 → R be a complete Hamiltonian and
{φt}t∈R its flow. Let E > 0. Assume that

(a) pb+

M̃E ,comp
(X̃0, X̃1, Ỹ0(E), Ỹ1(E)) =: p̃E > 0.

(b) Δ(H;Y0, Y1) =: Δ > 2E.
(c) supt0∈R

(

supt∈[t0,t0+T ] H(φt(x), t) − inft∈[t0,t0+T ] H(φt(x), t)
)

< E for

any x ∈ X0, where T :=
1

p̃E(Δ − 2E)
.

Vol. 24 (2022) Legendrian persistence modules and dynamics

Reprinted from the journal 415



M. Entov and L. Polterovich JFPTA

Then, there exists a chord of H from X0 to X1 of time-length ≤ T =
1

p̃E(Δ − 2E)
.

Proof of Proposition 2.7. In view of (c), we can pick 0 < E1 < E2 < E, so
that

sup
t∈[t0,t0+T ]

H(φt(x), t) − inf
t∈[t0,t0+T ]

H(φt(x), t) < E1 for all t0 ∈ R. (19)

Pick a smooth cut-off function χ : R → R, such that χ(x) = 0 if |x| ≥ E2

and χ(x) = 1 if |x| ≤ E1.
Define a time-independent Hamiltonian H̃ : M̃E → R as H̃(x, r, τ) :=

r + H(x, τ). One easily verifies that the Hamiltonian χH̃ is complete and in
view of (b)

Δ
(

χH; Ỹ0(E), Ỹ1(E)
)

≥ Δ − 2E > 0.

Together with (a), this implies, by part I of Proposition 2.6, that there exists

a chord γ of χH̃ from X̃0 to X̃1 of time-length ≤ T =
1

p̃E(Δ − 2E)
.

We claim that γ is, in fact, a chord of H̃ from X̃0 to X̃1—this would
imply that the projection of γ to M is a chord of H from X0 to X1 of
time-length ≤ T .

Indeed, note that χH̃ = H̃ = H on M × [−E1, E1] × S
1 ⊂ M̃E and the

projection to M of each trajectory of the Hamiltonian flow of H̃ on M̃E is a
trajectory of the Hamiltonian flow of H on M . Since the time-independent
Hamiltonian H̃ is preserved by its own Hamiltonian flow, (19) implies that
for any t0 ∈ R, any time-[t0, t0 + T ] trajectory of the Hamiltonian flow of H̃

passing at some moment t ∈ [t0, t0+T ] through X̃0 stays in M×[−E1, E1]×S
1

for all t ∈ [t0, t0+T ]. Therefore, for any t0 ∈ R any time-[t0, t0+T ], trajectory
of the Hamiltonian flow of χH̃ passing at some moment t ∈ [t0, t0+T ] through
X̃0 is, in fact, a trajectory of the Hamiltonian flow of H̃ for all t ∈ [t0, t0 +T ].
In particular, γ is a chord of H̃ from X̃0 to X̃1, which proves the claim and
finishes the proof of the proposition. �

Remark 2.8. Proposition 2.7 admits an analogue for the case when X0,X1

are not necessarily compact—in that case, one should replace the quan-
tity pb+

M̃E ,comp
(X̃0, X̃1, Ỹ0(E), Ỹ1(E)) in the claim by pb+

M̃E
(X̃0, X̃1, Ỹ0(E),

Ỹ1(E)) =: pb+

M̃E
, and then, there would exist a chord of H from X0 to X1 of

time-length ≤ T =
1

pb+

M̃E
(Δ − 2E)

. The proof of this claim virtually repeats

the proof of Proposition 2.7.

3. Persistence modules

In this section, we recall basic facts about persistence modules. For a more
detailed introduction to persistence modules, see, e.g., [19], [10], [39], or [42].
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We work over the base field Z2.
Let I := (a,+∞), −∞ ≤ a < +∞. (In fact, we will be concerned only

with I = (0,+∞) and I = (−∞,∞).)

Definition 3.1. A persistence module over I is given by a pair

(V = {Vt}t∈I, π = {πs,t}s,t∈I,s≤t) ,

where all Vt, t ∈ I, are finite-dimensional Z2-vector spaces and πs,t : Vs → Vt

are linear maps, so that

(i) (Persistence) πt,t = Id, πs,r = πt,r ◦ πs,t, for all s, t, r ∈ I, s ≤ t ≤ r.
(ii) (Discrete spectrum and semi-continuity) There exists a (finite or count-

able) discrete closed set of points

spec(V ) = {lmin(V ) := t0 < t1 < t2 < . . . < +∞} ⊂ I,

called the spectrum of V , so that
• for any r ∈ I \ spec(V ), there exists a neighborhood U of r in I

such that πs,t is an isomorphism for all s, t ∈ U , s ≤ t;
• for any r ∈ spec(V ), there exists ε > 0, such that πs,t is an isomor-

phism of vector spaces for all s, t ∈ (r − ε, r] ∩ I.
(iii) (Semi-bounded support) For the smallest point lmin(V ) := t0 of spec(V ),

one has lmin(V ) > a and Vt = 0 for all t ≤ lmin(V ).

In [42], such persistence modules are called persistence modules of finite
type.

The zero (or trivial) persistence module (over I) is a persistence module
formed by zero vector spaces and trivial maps between them.

The notions of a persistence submodule, the direct sum of persistence
modules, and a morphism/isomorphism between persistence modules (over
I) are defined in a straightforward manner.

Recall that two morphisms Φi : Vi → Wi, i = 1, 2 between persistence
modules are called right-left equivalent (or, for brevity, simply equivalent)
if there exist isomorphisms Ψ : V1 → V2 and Θ : W1 → W2, such that
ΘΦ1 = Φ2Ψ.

Example 3.2. A persistence module V over (0,+∞) can be extended to a
persistence module over (−∞,+∞) by setting Vs = 0 and πs,t = 0 for all
s ∈ (−∞, 0].

Example 3.3. Let J ⊂ I be either of the form (aJ, bJ] for some 0 < aJ < bJ <
+∞, or of the form (aJ,+∞). Define an interval (persistence) module

(Q(J), π) := ({Q(J)}t∈I, {πs,t}s,t∈I,s≤t) ,

over I as follows: Q(J)t = Z2 for t ∈ J and Q(J)t = 0 for t ∈ I \ J, while the
morphisms πs,t are the identity maps for s, t ∈ J and zeroes otherwise.

The following structure theorem for persistence modules can be found in
[45], [10, Thm. 2.7,2.8], [14]. Its various versions appeared prior to invention
of persistence modules; see [4–6,34,43,44].
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Theorem 3.4. For every persistence module (V, π) over I, there exists a unique
(finite or countable) collection of intervals Jj ⊂ I—where the intervals may
not be distinct, but each interval appears in the collection only finitely many
times—so that (V, π) is isomorphic to ⊕jQ(Jj):

(V, π) = ⊕jQ(Jj).

The collection {Jj} of the intervals is called the barcode of V . The in-
tervals Jj themselves are called the bars of V . Note that the same bar may
appear in the barcode several (but finitely many) times (this number of times
is called the multiplicity of the bar)—in other words, a barcode is a multiset
of bars.

The barcode of the trivial persistence module is empty. Set

V∞ := (Z2)k,

where k ∈ N ∪ {0,+∞} is the number of the infinite bars in the barcode of
V .

Example 3.5. Let I = (−∞,+∞) and let V be a persistence module over I.
Let c ∈ R.

Define a new persistence module V [+c] over I by adding c to all indices
of Vt and πs,t—in particular

V
[+c]
t := Vt+c.

The barcode of V [+c] is the barcode of V shifted by c to the left.
If c ≥ 0, one can also define a morphism

ShV [+c] : V → V [+c],

called the additive shift of V by c, as follows:

ShV [+c] :=
{

πt,t+c : Vt → V
[+c]
t

}

t∈I

.

Example 3.6. Let I = (0,+∞) and let V = (V, π) be a persistence module
over I. Let c > 0. Define a new persistence module V [×c] over I by multiplying
all the indices of Vt and πs,t by c—in particular

V
[×c]
t := Vct.

The barcode of V [×c] is the barcode of V divided by c.
If c ≥ 1, one can also define a morphism

ShV [×c] : V → V [×c],

called the multiplicative shift of V by c, as follows:

ShV [×c] :=
{

πt,ct : Vt → V
[×c]
t

}

t∈I

.

Remark 3.7. One easily sees that additive/multiplicative shifts of isomorphic
persistence modules by the same constant are also isomorphic. Thus, one can
speak about additive/multiplicative shifts of isomorphism classes of persis-
tence modules.
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4. Legendrian contact homology

Let (P 2n, dϑ), n ∈ Z≥0, be an exact symplectic manifold with bounded ge-
ometry at infinity (see [3] for the definition of this class of manifolds; in
particular, this class includes symplectic manifolds that are convex in the
sense of [25]). Consider the contactization of (P, dϑ): Let

Σ := P × R(z), (20)

and let ξ = ker λ be the contact structure on Σ defined by the contact form

λ := dz + ϑ.

Let {Rt} be the Reeb flow of λ—each Rt is a shift by t in the coordinate z.
Further on, we will always assume that P , and consequently Σ, are

connected.
Consider a compact (not necessarily connected) Legendrian submanifold

Λ ⊂ (Σ, ξ) without boundary.
If Λ = Λ0�Λ1 is a disjoint union of compact (not necessarily connected)

Legendrian submanifolds Λ0, Λ1 without boundary, we call Λ a two-part
Legendrian submanifold and Λ0,Λ1 the (0- and 1-) parts of Λ.

Denote the set of all Reeb chords of (Λ, λ) by R(Λ, λ).
If Λ = Λ0 � Λ1 is a two-part Legendrian submanifold, we say that a

Reeb chord of (Λ, λ) is an ij-chord for i, j = 0, 1 if it starts on Λi and ends
on Λj . Denote the set of all ij-chords of (Λ, λ) by Rij(Λ, λ). The ii-chords
will be called pure, while ij-chords for i 	= j will be called mixed.

We say that the pair (Λ, λ) is non-degenerate if the following conditions
are satisfied:

• For each Reeb chord a : [0, T ] → Σ, a(t) = Rt(a(0)), a(0), a(T ) ∈ Λ, of
Λ with respect to λ, the tangent spaces of the Legendrian submanifolds
RT (Λ) and Λ are transversal inside the contact hyperplane at the point
a(T ) = RT (a(0)).

• Each trajectory of the Reeb flow {Rt(x)}, −∞ < t < +∞, x ∈ Σ,
intersects Λ at most in two points. (Equivalently, the images of distinct
Reeb chords are disjoint.)

If (Λ, λ) is non-degenerate and Λ is compact, then the set R(Λ, λ) is
finite.

4.1. Exact Lagrangian cobordisms

The symplectization of (Σ, ξ) can be identified with
(

Σ × R+(s), d(sλ)
)

.
Let 0 < s− < s+.
Consider the manifold with boundary Σ × [s−, s+] ⊂ Σ × R+ equipped

with the symplectic form ω := d(sλ)—it is a trivial exact symplectic cobordism
whose positive and negative boundaries and the restrictions of sλ to them are
identified, respectively, with (Σ, s+λ) and (Σ, s−λ).

A differential 1-form θ on Σ× [s−, s+] will be called a cobordism 1-form
if the following conditions are satisfied:

• dθ = ω;
• θ coincides with sλ near the boundaries of Σ × [s−, s+];
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In particular, sλ itself is a cobordism 1-form.
Let Λ± ⊂ (Σ, ξ) be compact Legendrian submanifolds without bound-

ary, viewed, respectively, as submanifolds of Σ × s±. A Lagrangian cobor-
dism L in (Σ × [s−, s+], sλ) between Λ± is a smooth compact cobordism in
Σ × [s−, s+] between Λ+ ⊂ Σ × s+ and Λ− ⊂ Σ × s− which is a Lagrangian
submanifold of (Σ × R+, ω), so that there exist δ± > 0 for which

L ∩ Σ × [s+ − δ+, s+] = Λ+ × [s+ − δ+, s+],
L ∩ Σ × [s−, s− + δ−] = Λ− × [s−, s− + δ−].

The sets L ∩ Σ × [s+ − δ+, s+] and L ∩ Σ × [s−, s− + δ−] will be called
the positive and the negative collars of L. The Legendrian submanifolds Λ−

and Λ+ will be called, respectively, the negative and the positive boundary of
L.

We say that L as above is a two-part Lagrangian cobordism if L is a
disjoint union of two (not necessarily connected) Lagrangian cobordisms L0

and L1

L = L0 � L1,

where L0 is a Lagrangian cobordism between the Legendrian submanifolds
Λ+

0 := Λ+ ∩ L0 and Λ−
0 := Λ− ∩ L0 and L1 is a Lagrangian cobordism

between the Legendrian submanifolds Λ+
1 := Λ+ ∩L1 and Λ−

1 := Λ− ∩L1. In
particular, Λ± = Λ±

0 � Λ±
1 are two-part Legendrian submanifolds.

Note that in our terminology, a two-part Lagrangian cobordism includes
a numbering of its parts.

Let θ be a cobordism 1-form. We say that a two-part Lagrangian cobor-
dism L = L0 � L1 is θ-exact if θ|Li

= dfi, i = 0, 1, for a smooth function
fi : Li → R which is zero on the negative collar of L and is identically equal
to a constant Ci on the positive collar of Li.

If a two-part Lagrangian cobordism L is θ-exact for some cobordism
1-form θ, we call it just exact.

The constant C := C1 − C0 will be called the gap of L with respect to
θ. We will also say that L is C-gapped (with respect to θ).

We say that a two-part Lagrangian cobordism L is belted if there exists
a null-homologous piecewise-smooth closed path γ in Σ × [s−, s+] tracing
Σ × s+ from Λ+

0 = L0 ∩ (Σ × s+) to Λ+
1 = L1 ∩ (Σ × s+), then tracing L1

from Λ+
1 = L1 ∩ (Σ × s+) to Λ−

1 = L1 ∩ (Σ × s−), then following possibly
several arcs in L1 connecting points in Λ−

1 , then tracing Σ × s− from Λ−
1 =

L1 ∩ (Σ × s−) to Λ−
0 = L0 ∩ (Σ × s−), then following possibly several arcs in

L0 connecting points in Λ−
0 , and finally tracing L0 from Λ−

0 = L0 ∩ (Σ × s−)
to Λ+

0 = L0 ∩ (Σ × s+). We will call such a γ a belt path of L.
We claim that if L is belted, then the gap of L with respect to a cobor-

dism 1-form (with respect to which L is exact) does not depend on the form.
Indeed, assume that θ and θ′ are cobordism 1-forms on Σ × [s−, s+],

so that L is exact with respect to both θ and θ′. Then, θ − θ′ is a closed 1-
form vanishing near the positive and the negative boundaries of Σ× [s−, s+].
Since a belt path γ of L is null-homologous, the integral of θ − θ′ over γ
vanishes. Since θ − θ′ vanishes near the positive and the negative boundaries

Reprinted from the journal420



of Σ × [s−, s+], the latter zero integral is the sum of the integrals of θ − θ′

over the parts of γ lying in L0 and L1, which readily implies the claim.
A trivial Lagrangian cobordism in (Σ × [s−, s+], sλ) is a cobordism Λ ×

[s−, s+] where Λ is a Legendrian submanifold of (Σ, ξ).
A trivial two-part Lagrangian cobordism

L = (Λ0 � Λ1) × [s−, s+]

is belted: to construct a belt path γ for L, take a path Γ in Σ from x ∈ Λ0

to y ∈ Λ1 (it exists, since, by our assumption, Σ is connected). Now, define γ
as the path tracing Γ × s+ from x × s+ ∈ Λ0 × s+ to y × s+ ∈ Λ1 × s+, then
tracing y × [s−, s+] from y × s+ to y × s−, then tracing Γ × s− from y × s−
to x × s−, and finally tracing x × [s−, s+] from x × s− to x × s+. Note also
that L is (sλ)-exact with the gap 0.

Given a (two-part exact) Lagrangian cobordism L ⊂ Σ × [s−, s+] be-
tween Λ±, consider the Lagrangian submanifold L ⊂ (

Σ×R+, d(sλ)
)

defined
as

L :=
(

Λ− × (0, s−]
) ∪ L ∪ (

Λ+ × [s+,+∞)
)

.

We call L the completion of L.
Let L ⊂ (Σ × [s−, s+], sλ) be an exact two-part Lagrangian cobordism

between two-part Legendrian submanifolds Λ± ⊂ (Σ, ξ). By an exact La-
grangian cobordism isotopy of L, we mean a smooth family {Lτ , θτ}0≤τ≤T ,
where {Lτ}0≤τ≤T is a Lagrangian isotopy of L = L0 in Σ × [s−, s+] and
{θτ}0≤τ≤T is a smooth family of cobordism 1-forms, so that
(1) Each Lτ is a two-part θτ -exact Lagrangian cobordism between its pos-
itive and negative boundaries that will be denoted by Λ±

τ . In particular,
{Λ±

τ }0≤τ≤T are Legendrian isotopies in (Σ±, ξ±). We will say that these are
the Legendrian isotopies induced by the exact Lagrangian cobordism isotopy
{Lτ , θτ}0≤τ≤T .
(2) There exist δ± > 0, such that for all τ ∈ [0, T ]

Lτ ∩ Σ × [s+ − δ+, s+] = Λ+
τ × [s+ − δ+, s+],

Lτ ∩ Σ × [s−, s− + δ−] = Λ−
τ × [s−, s− + δ−].

Note that the gaps C(τ) of Lτ , 0 ≤ τ ≤ T , with respect to θτ form a
smooth function of τ .

Clearly, if L0 is belted, then so are all Lτ , 0 ≤ τ ≤ T .

4.2. Chekanov–Eliashberg algebra and the corresponding persistence mod-
ules

Let us recall the definition of the Chekanov–Eliashberg algebra associated
to a non-degenerate pair (Λ, λ), where Λ ⊂ (Σ, ξ) is a compact Legendrian
submanifold without boundary. See [22] (cf. [15,21,23]) for more details and
[11,26,27] for the original ideas underlying the construction.

Denote by A(Λ, λ) a free non-commutative unital algebra over Z2 gen-
erated by the elements of Z2 and by R(Λ, λ).

The algebra A(Λ, λ) comes with a filtration defined by the action: the
action of a Reeb chord is its time-length and the action of a monomial which
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is a product of Reeb chords is the sum of the actions of the factors. The action
of the constant monomial 1 ∈ Z2 is set to be zero and the action of 0 is defined
as −∞. For r ∈ (−∞,+∞), define Ar(Λ, λ) as the vector subspace of A(Λ, λ)
spanned over Z2 by the monomials whose action is smaller than r. It is easy
to see that for a finite r, the vector space Ar(Λ, λ) is finite-dimensional. For
any r ≤ r′, there is a natural morphism Ar(Λ, λ) → Ar′(Λ, λ) induced by the
inclusion of the generators.

For an appropriate (a so-called cylindrical) almost complex structure
J on Σ × R+, one can define a differential ∂J on A(Λ, λ) using a count
of J-holomorphic maps of a disk with one positive and several (possibly
no) negative boundary punctures into Σ × R+. Such a map should send the
boundary of the disk to Λ×R+ and converge near positive/negative puncture
to a positive/negative cylinder over a Reeb chord in R(Λ, λ).

The set J (Λ) of J for which ∂J is well-defined and ∂2
J = 0 is connected

and dense in the space of all cylindrical almost complex structures on Σ×R+

[22]; see also [15,21,23].
Let J ∈ J (Λ).
A computation using Stokes’ theorem and similar to [7, Lemma 5.16]

and [22, Lemma B.3] shows that for all r, the spaces Ar(Λ, λ) are invariant
under ∂J .

For each r ∈ (−∞,+∞), define a vector space Vr(Λ, λ) over Z2

Vr(Λ, λ, J) :=
Ker ∂J |Ar(Λ,λ)

Im ∂J |Ar(Λ,λ)
.

The inclusion maps Ar(Λ, λ) → Ar′(Λ, λ), r ≤ r′, induce morphisms
Vr(Λ, λ, J) → Vr′(Λ, λ, J).

It is easy to see that the vector spaces Vr(Λ, λ, J), r ∈ (0,+∞), together
with the morphisms between them, form a persistence module V (Λ, λ, J) over
(0,+∞).

One can show (see [30]) that for fixed Λ, λ, a different choice of J ∈ J (Λ)
does not change the isomorphism class of the persistence module V (Λ, λ, J).
The isomorphism class of this persistence module will be denoted by V (Λ, λ).
The vector space V∞(Λ, λ) is then isomorphic to the (non-filtered) Legendrian
contact homology of (Λ, λ)—that is, Ker ∂J/Im ∂J . The dimension of the vec-
tor space V∞(Λ, λ) is invariant under Legendrian isotopies of Λ [22]; see also
[15,21,23].

Assume now that Λ = Λ0 � Λ1 is a two-part Legendrian submanifold.
A sequence of Reeb chords a1, . . . , ak ∈ R(Λ, λ) is called ij-composable

for i, j = 0, 1, if a1 starts at Λi, ak ends at Λj , and for each m = 1, . . . , k − 1,
the end of am lies in the same part of Λ as the origin of am+1. Note that an
ij-composable sequence of Reeb chords must contain at least one chord from
Rij(Λ, λ). The corresponding monomial a1 · . . . · ak in A(Λ, λ) will be also
called ij-composable.

Denote by A(Λ0,Λ1, λ) the vector subspace of A(Λ, λ) (over Z2) gener-
ated by all the 01-composable monomials a1 · . . . · ak, k ∈ Z>0. (Note that
the polynomials appearing in A(Λ0,Λ1, λ) have no constant terms!). We will
call A(Λ0,Λ1, λ) the 01-subspace of A(Λ, λ).
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Set

Ar(Λ0,Λ1, λ) := A(Λ0,Λ1, λ) ∩ Ar(Λ, λ).

Let J ∈ J (Λ = Λ0 � Λ1). Then, in particular, J ∈ J (Λ0) ∩ J (Λ1).
It is easy to see that A(Λ0,Λ1, λ) is invariant under ∂J and hence so are

the spaces Ar(Λ0,Λ1, λ) for all r. For each r ∈ (−∞,+∞), define a vector
space Vr(Λ0,Λ1, λ) over Z2

Vr(Λ0,Λ1, λ, J) :=
Ker ∂J |Ar(Λ0,Λ1,λ)

Im ∂J |Ar(Λ0,Λ1,λ)
.

The inclusion maps Ar(Λ0,Λ1, λ) → Ar′(Λ0,Λ1, λ), r ≤ r′, induce morphisms
Vr(Λ0,Λ1, λ, J) → Vr′(Λ0,Λ1, λ, J).

It is easy to see that the vector spaces Vr(Λ0,Λ1, λ, J), r ∈ (0,+∞),
together with the morphisms between them, form a persistence module over
(0,+∞). We will denote this persistence module by V (Λ0,Λ1, λ, J). Below,
whenever needed, we will also view V (Λ0,Λ1, λ, J) as a persistence module
over (−∞,+∞) using the trivial extension as in Example 3.2.

Similarly to the above, one can show (see [30]) that
– For fixed Λ = Λ0 � Λ1, λ a different choice of J ∈ J (Λ) does not change
the isomorphism class of the persistence module V (Λ0,Λ1, λ, J). The isomor-
phism class of this persistence module will be denoted by V (Λ0,Λ1, λ).
– The dimension of the vector space V∞(Λ0,Λ1, λ) is invariant under Legen-
drian isotopies of Λ.

Abusing the terminology, we will call V (Λ0,Λ1, λ) the LCH persistence
module associated to (Λ, λ), where LCH stands for “Legendrian contact ho-
mology”.

It is easy to see that if c > 0, then

V (Λ0,Λ1, cλ) = V [×1/c](Λ0,Λ1, λ),

where V [×1/c](Λ0,Λ1, λ) is the isomorphism class of persistence modules ob-
tained from V (Λ0,Λ1, λ) by the multiplicative shift by 1/c (see Remark 3.7).

4.3. Morphisms of persistence modules defined by Lagrangian cobordisms

Let L = L0 � L1 ⊂ (

Σ × [s−, s+], ω = d(sλ)
)

, s− < s+, be a two-part exact
Lagrangian cobordism between two-part Legendrian submanifolds Λ± = Λ±

0 �
Λ±

1 ⊂ (Σ, ξ).
Assume the pairs (Λ±, λ) are non-degenerate—in this case, we will say

that L is non-degenerate.
For an appropriate—a so-called adapted (to L and ω)—almost complex

structure I on Σ × R+ define a unital algebra morphism

ΦL,I : A(Λ+, s+λ, I+) → A(Λ−, s−λ, I−)

by prescribing its values on the generators

ΦL,I(1) := 1

and for any a ∈ R(Λ+, s+λ)

ΦL,I(a) :=
∑

dim ML,I(a;b1,...,bm)=0

|ML,I(a; b1, . . . , bm)|b1 · . . . · bm,
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where ML,I(a; b1, . . . , bm) is the moduli space of I-holomorphic maps of a
disk with one positive and m ≥ 0 negative boundary punctures into Σ × R+

that send the boundary of the disk to L and converge near the positive
puncture to a cylinder over a and the negative punctures to the cylinders
over the chords b1, . . . , bm ∈ R(Λ−, s−λ). Here, I± are cylindrical almost
complex structures on Σ ×R+ induced by the restrictions of I at the ends of
Σ × R+. See [22], cf. [23], for more details.

The set I(L) of I for which ΦL,I is a well-defined unital algebra mor-
phism is dense in the space of all adapted almost complex structures on
Σ × R+ and the map

I(L) → J (Λ+) × J (Λ−), I �→ (I+, I−)

is surjective [22], cf. [23].
The map ΦL,I is called the cobordism map associated to L, I.

Remark 4.1. Assume that I ∈ I(L) and the restriction of ΦL,I to the 01-
subspace A(Λ+

0 ,Λ+
1 , s+λ) is not the zero map. Then, for some 01-chord a and

some non-empty set of chords b1, . . . , bm, the moduli space ML,I(a; b1, . . . , bm)
is non-empty. Rescale an I-holomorphic map of a disk D′, with boundary
punctures, that defines an element of the moduli space and obtain a map of
D′ into Σ × [s−, s+]. Concatenating the image of ∂D′ under the latter map
with the chords a, b1, . . . , bm, we get a belt path for the two-part Lagrangian
cobordism L. In other words, we have obtained that, unless L is belted, ΦL,I

has to be the zero map.

The following two claims are proved in [30] using [23, Lemma 3.14] (a
chain homotopy result for the cobordism maps, which is a version of [22,
Lemma B.15])—see the proof of Proposition 4.5 for a similar use of the same
result.

Proposition 4.2 [30]. Assume that L is a non-degenerate belted two-part exact
Lagrangian cobordism. Let I ∈ I(L) and assume that the restriction of the
cobordism map ΦL,I to A(Λ+

0 ,Λ+
1 , s+λ) is non-trivial. Let C be the gap of L

(since L is belted, the gap is independent of the cobordism 1-form with respect
to which L is exact).

Then, ΦL,I maps Ar(Λ0,Λ1, s+λ, I+) into Ar−C(Λ0,Λ1, s−λ, I−) for
each r ∈ (−∞,+∞) and, accordingly, defines a morphism of persistence
modules over (−∞,+∞):

ΦL,I
∗ : V (Λ0,Λ1, s+λ, I+) → V [−C](Λ0,Λ1, s−λ, I−),

where V [−C](Λ0,Λ1, s−λ, I−) is the isomorphism class of persistence modules
over (−∞,+∞) obtained from V (Λ0,Λ1, s−λ, I−) by the additive shift by −C
(see Remark 3.7).

If the restriction of the cobordism map ΦL,I to A(Λ+
0 ,Λ+

1 , s+λ) is the
zero map, we set ΦL,I

∗ to be the zero morphism into the trivial persistence
module.

Proposition 4.3 [30]. The morphism ΦL,I
∗ is independent of I ∈ I(L) up to

the right–left equivalence in the category of persistence modules over (−∞,+∞).
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Further on, we will denote the equivalence class of the persistence mod-
ule morphism ΦL,I

∗ by ΦL
∗ .

Abusing the terminology, we will not distinguish between an isomor-
phism class of a persistence module and a specific persistence module repre-
senting it, as well as between an equivalence class of morphisms of persistence
modules and a specific morphism representing it. In particular, we will write

ΦL
∗ : V (Λ0,Λ1, s+λ) → V [−C](Λ0,Λ1, s−λ).

Note that compositions of equivalence classes of morphisms of persistence
modules are well-defined.

The following proposition is proved in [30] using the well-known results
(see [22]) about the cobordism map associated to a trivial exact Lagrangian
cobordism.

Proposition 4.4 [30]. Assume L = (Λ0 � Λ1) × [s−, s+] is a trivial non-
degenerate two-part exact Lagrangian cobordism. Set

U := V (Λ0,Λ1, s+λ).

Then

ΦL
∗ = ShU [×s+/s−].

�

Having recalled the needed preparational statements, we present now
the key result of this section.

Proposition 4.5. With L being a non-degenerate belted two-part exact La-
grangian cobordism as above, suppose that {Lτ = Lτ

0 � Lτ
1 , θτ}0≤τ≤T is an

exact Lagrangian cobordism isotopy of L with fixed boundary. Assume that
ΦL

∗ is non-trivial.
Let C(τ) be the gap of Lτ , 0 ≤ τ ≤ T (since L is belted, it is independent

of the cobordism 1-form with respect to which Lτ is exact). Let

U := V (Λ0,Λ1, s+λ),
W := V (Λ0,Λ1, s−λ),
Cmin := min

τ∈[0,T ]
C(τ),

C0 := C(0) − Cmin, CT := C(T ) − Cmin.

Then

ShW [−C(0)] [+C0] ◦ ΦL0

∗ = ShW [−C(T )] [+CT ] ◦ ΦLT

∗ . (21)

Here, the equality is between equivalence classes of morphisms U → W [−Cmin].

Proof of Proposition 4.5. Pick I0 ∈ I(L0), IT ∈ I(LT ). It follows from [23,
Lemma 3.14] (which is a version of [22, Lemma B.15]) that there exists an
Z2-linear map:

K : A(Λ+, s+λ) → A(Λ−, s−λ),

such that
K ◦ ∂I+

0
+ ∂I−

T
◦ K = ΦLT ,IT − ΦL0,I0 . (22)
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The map K is defined on each monomial a1 · . . . ·ak, a1, . . . , ak ∈ R(Λ+, s+λ),
as

K(a1 · . . . · ak) :=
k∑

j=1

ΦLT ,IT (a1 · . . . · aj−1)K(aj)ΦL0,I0(aj+1 · . . . · ak), (23)

so that for each a ∈ R(Λ+, s+λ)

K(a) :=
∑

b1,...,bm∈R(Λ−,s−λ)

n{LT },{IT }(a; b1, . . . , bm)b1 · . . . · bm, (24)

where {Iτ}0≤τ≤T is a generic family of adapted almost complex structures on
M connecting I0 and IT , and n{LT },{IT }(a; b1, . . . , bm) is the mod-2 number of
elements (counted using an abstract perturbation scheme, see [22] for details)
of a certain moduli space which is non-empty only if

∪0≤τ≤T MLτ ,Iτ
(a; b1, . . . , bm) 	= ∅.

Here, MLτ ,Iτ
(a; b1, . . . , bm) is the moduli space of pseudo-holomorphic maps

of the disk with boundary punctures into Σ×R+ used to define ΦLτ ,Iτ . This
moduli space is non-empty only for some finite set of τ ∈ [0, T ]—the cor-
responding pseudo-holomorphic maps have index −1. See [23, Lemma 3.14]
and [22, Lemma B.15] for the details.

Using the energy inequality and the Stokes theorem, one can show that
if MLτ ,Iτ

(a; b1, . . . , bm) 	= ∅, then
m∑

i=1

s−l(bi) < s+l(a) − C(τ) for a ∈ R(Λ+
0 ,Λ+

1 , s+λ),

m∑

i=1

s−l(bi) < s+l(a) + C(τ) for a ∈ R(Λ+
1 ,Λ+

0 , s+λ),

m∑

i=1

s−l(bi) < s+l(a) for a ∈ R(Λ+
i ,Λ+

i , s+λ), i = 0, 1,

where l(·) is the action (time-length) of a Reeb orbit. Using these inequali-
ties together with (23), (24) it is not hard to see that K maps the subspace
Ar(Λ+

0 ,Λ+
1 , s+λ) into Ar−Cmin(Λ−

0 ,Λ−
1 , s−λ) for any r ∈ (−∞,+∞). There-

fore, the chain homotopy formula (22) implies that the restrictions of ΦLT ,IT

and ΦL0,I0 to Ar(Λ+
0 ,Λ+

1 , s+λ) induce the same map on homology—that is,
a map

Vr(Λ+
0 ,Λ+

1 , s+λ, I+
0 ) → Vr−Cmin(Λ−

0 ,Λ−
1 , s−λ, I−

T )

for any r ∈ (−∞,+∞). This latter map equals, on one hand, the composition
of

ΦL0

r,∗ : Vr(Λ+
0 ,Λ+

1 , s+λ, I+
0 ) → Vr−C(0)(Λ−

0 ,Λ−
1 , s−λ, I−

T )

and the shift

Vr−C(0)(Λ−
0 ,Λ−

1 , s−λ, I−
T ) → Vr−Cmin(Λ−

0 ,Λ−
1 , s−λ, I−

T )
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and, on the other hand, the composition of

ΦLT

r,∗ : Vr(Λ+
0 ,Λ+

1 , s+λ, I+
0 ) → Vr−C(T )(Λ−

0 ,Λ−
1 , s−λ, I−

T )

and the shift

Vr−C(T )(Λ−
0 ,Λ−

1 , s−λ, I−
T ) → Vr−Cmin(Λ−

0 ,Λ−
1 , s−λ, I−

T ).

The equality between the two compositions yields (21). This finishes the proof
of the proposition. �

4.4. An invariant of two-part Legendrians via LCH persistence modules

With Σ and λ as above, assume Λ = Λ0 � Λ1 is a two-part Legendrian
submanifold in (Σ, ξ = Ker λ).

Definition 4.6. If the pair (Λ, λ) is non-degenerate, then for each s > 1, define
lmin,s(Λ0,Λ1, λ) as the smallest left end of the bars of multiplicative length
greater than s in the barcode of V (Λ0,Λ1, λ). Denote by lmin,∞(Λ0,Λ1, λ) the
smallest left end of the infinite bars in the barcode of V (Λ0,Λ1, λ). If there are
no such bars, set lmin,s(Λ0,Λ1, λ) := +∞ or, respectively, lmin,∞(Λ0,Λ1, λ) :=
+∞.

For a general, possibly degenerate, pair (Λ, λ) and s > 1, define

lmin,s(Λ0,Λ1, λ) := lim inf lmin,s(Λ′
0,Λ

′
1, λ),

lmin,∞(Λ0,Λ1, λ) := lim inf lmin,∞(Λ′
0,Λ

′
1, λ),

where each Λ′ = Λ′
0 � Λ′

1 is a two-part Legendrian submanifold obtained
from Λ by a C∞-small Legendrian isotopy and such that the pair (Λ′, λ)
is non-degenerate, and the liminf is taken over all such Λ′ as the C∞-size
of the Legendrian isotopy converges to zero. (One can show—see [30]—that
for a non-degenerate pair (Λ = Λ0 � Λ1, λ), both definitions yield the same
lmin,s(Λ0,Λ1, λ) and lmin,∞(Λ0,Λ1, λ)).

For an example where lmin,s can be computed explicitly, see Proposi-
tion 6.5.

Note that lmin,s(Λ0,Λ1, λ) is a non-decreasing function of s with values
in (0,+∞]. In particular

lmin,s(Λ0,Λ1, λ) ≤ lmin,∞(Λ0,Λ1, λ) for all s ∈ (1,+∞),

and therefore, if the number lmin,∞(Λ0,Λ1, λ) is finite, then so is
lmin,s(Λ0,Λ1, λ).

Recall from Sect. 1.5 that the stabilization of Σ is the manifold Σ̂ := Σ×
T ∗

S
1(r, τ), τ ∈ S

1, equipped with the contact form λ̂ := λ+rdτ = dz+ϑ+rdτ .
Since (Σ = P ×R(z), λ = dz + ϑ) is nice, so is (Σ̂, λ̂) (if (P, dϑ) has bounded
geometry at infinity, then so does (P × T ∗

S
1, dϑ + dr ∧ dt)). For a two-part

Legendrian submanifold Λ0 � Λ1 ⊂ Σ and s > 1, write

Λ̂i := Λi × {r = 0} ⊂ Σ̂, i = 0, 1,

l̂min,s(Λ0,Λ1, λ) := lmin,s(Λ̂0, Λ̂1, λ̂),

l̂min,∞(Λ0,Λ1, λ) := lmin,∞(Λ̂0, Λ̂1, λ̂).
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Definition 4.7. We say that the pair (Λ0 � Λ1, λ) is weakly homologically
bonded, if lmin,s(Λ0,Λ1, λ) < +∞ for all s > 1—that is, there are bars of
arbitrarily large multiplicative length in the barcode of V (Λ0,Λ1, λ).

We say that the pair (Λ0 � Λ1, λ) is homologically bonded, if lmin,∞
(Λ0,Λ1, λ) < +∞—that is, there are infinite bars in the barcode of V (Λ0,Λ1, λ).

We say that the pair (Λ0 � Λ1, λ) is stably homologically bonded, if
l̂min,∞(Λ0,Λ1, λ) < +∞.

Clearly, homological bondedness implies weak homological bondedness.
We do not know whether homological bondedness implies stable homological
bondedness—see Remark 1.14.

Remark 4.8. Assume that lmin,s(Λ0,Λ1, λ) < +∞ for some s ∈ (1,+∞]. Let
Λ′ = Λ′

0 � Λ′
1 be a two-part Legendrian submanifold in (Σ, ξ) obtained from

Λ = Λ0 � Λ1 by a contact isotopy {φt} with the conformal factor satisfying
||(φ∗

t )
−1λ/λ−1|| < δ for all t. If δ = δ(s) is small enough, then lmin,s(Λ′

0,Λ
′
1, λ)

is also a finite number which tends to lmin,s(Λ0,Λ1, λ) as δ → 0. The proof
will appear in [30].

4.5. A lower bound on pb+ via LCH persistence modules

With Σ as in (20) and 0 < s− < s+, denote for brevity

M := Σ × [s−, s+].

Recall that ω := d(sλ). Assume Λ = Λ0 � Λ1 is a two-part Legendrian
submanifold in (Σ, ξ). Let L = Λ × [s−, s+] be the corresponding trivial two-
part exact Lagrangian cobordism in (M = Σ × [s−, s+], sλ).

Define an admissible quadruple X0,X1, Y0, Y1 ⊂ M as follows:

X0 := Λ0 × [s−, s+], X1 := Λ1 × [s−, s+], (25)
Y0 := Σ × s−, Y1 := Σ × s+. (26)

Theorem 4.9. Assume that lmin,s+/s−(Λ0,Λ1, λ) < +∞.
Then

pb+
M (X0,X1, Y0, Y1) ≥ 1

(s+ − s−)lmin,s+/s−(Λ0,Λ1, λ)
> 0.

Proof of Theorem 4.9. Assume first that the pair (Λ, λ) is non-degenerate.
Set

V := V (Λ0,Λ1, λ),

U := V [×1/s+] = V (Λ0,Λ1, s+λ),

W := V [×1/s−] = U [×s+/s−] = V (Λ0,Λ1, s−λ).

Let (F,G) ∈ F ′′
M (X0,X1, Y0, Y1). We need to show that

sup
M

{F,G} ≥ 1
(s+ − s−)lmin,s+/s−(Λ0,Λ1, λ)

. (27)

Following [8], consider the deformation

ωτ := ω + τdF ∧ dG, τ ∈ R,
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of ω. A direct calculation shows that

dF ∧ dG ∧ ωn−1 = − 1
n

{F,G}ωn,

and therefore

ωn
τ = (1 − τ{F,G})ωn.

Thus, ωτ is symplectic for any τ ∈ I := [0, 1/supM{F,G}). Note that L is
Lagrangian with respect to ωτ for all τ ∈ I.

Following the idea underlying Moser’s method [38], define a (time-de-
pendent) vector field vτ , τ ∈ I, on M by

FdG = −ivτ
ωτ .

One can check that

vτ =
F

1 − τ{F,G}sgrad G.

Since (F,G) ∈ F ′′
M (X0,X1, Y0, Y1), the vector field F sgrad G is complete.

Also, the function 1 − τ{F,G} is bounded from below by the constant 1 −
τ supM{F,G} which is positive since τ ∈ I. Thus, for each T ∈ I, the time-
dependent vector field vτ , 0 ≤ τ ≤ T , equals to the product of F sgrad G
with a non-negative function bounded from above by a constant depending
on F,G and T . Therefore, the time-[0, T ] flow στ0 : M → M of vτ , 0 ≤ τ ≤ T ,
is well-defined. It is identity near the boundary of M , because vτ vanishes
there (since G is constant near the positive and negative boundaries of M).

For each τ ∈ I, define

Lτ := (στ )−1(L).

A direct check shows that σ∗
τωτ = ω for all τ ∈ I. Therefore, Lτ is Lagrangian

with respect to ω for all τ ∈ I.
For each τ ∈ I, set

θτ := σ∗
τ (sλ + τFdG).

Since d(sλ + τFdG) = ωτ and σ∗
τωτ = ω and since G is constant and στ

is identity near the positive and negative boundaries of M , one readily gets
that each θτ is a cobordism 1-form.

Since the trivial cobordism L is (sλ)-exact and F is 0 near L0 and 1
near L1, we get that (sλ + τFdG)|Li

= dfi, i = 0, 1, for a smooth function
fi : Li → R equal to 0 near the negative boundary of Li and to some constant
near the positive boundary of Li. Consequently, for each τ ∈ I, the two-part
Lagrangian cobordism Lτ is θτ -exact.

Therefore, for each T ∈ I, the family {Lτ , θτ}0≤τ≤T is an exact La-
grangian cobordism isotopy.

Since L0 = L is a trivial exact Lagrangian cobordism, Proposition 4.4
yields

ΦL0

∗ = ShU [×s+/s−] : U → W.
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Note that since Lτ is belted, the gap C(τ) of Lτ is independent of the cobor-
dism 1-form with respect to which Lτ is exact. Using the assumptions on F
and G, one easily sees that

C(τ) = τ.

Since C0 = Cmin = C(0) = 0 and CT = C(T ) = T , by Proposition 4.5

ShU [×s+/s−] = ShW [−T ] [+T ] ◦ ΦLT

∗ .

Therefore, for each t > 0 the morphism Ut → Uts+/s− in the persistence
module, U is a composition of a linear map Ut → U(t−T )s+/s− , given by ΦLT

∗ ,
and a morphism U(t−T )s+/s− → Uts+/s− in the persistence module U .

Assume that for some t > 0, both t and ts+/s− lie in a bar J in the
barcode of U . Denote by πs,ts+/s−,J : Ut ∩ Q(J) = Qt(J) → Uts+/s− ∩ Q(J) =
Qts+/s−(J) the restriction of the morphism Ut → Uts+/s− restricted to the
interval persistence submodule Q(J) of Ut (see Example 3.3). The persistence
morphism πs,ts+/s−,J is an isomorphism. By the conclusion above, this iso-
morphism is the composition of a map Ut ∩ Q(J) = Qt(J) → U(t−T )s+/s−
and a morphism U(t−T )s+/s− ∩ Q(J) → Uts+/s− ∩ Q(J) in the persistence
module Ut ∩Q(J), which also has to be an isomorphism. This is possible only
if (t − T )s+/s− ∈ J, which yields an upper bound on T in the following way.
Namely, take J to be a bar of multiplicative length greater than s+/s− in the
barcode of U whose left end is s+lmin,s+/s−(Λ0,Λ1, λ) (this is the smallest
left end of the bars of multiplicative length greater than s+/s− in the bar-
code of U) and let t be arbitrarily close from above to the left end of J—that
is, to s+lmin,s+/s−(Λ0,Λ1, λ). Then, t and ts+/s− lie in the same bar J and,
therefore, as we have shown above, (t − T )s+/s− lies in J and, in particular,
is greater or equal than the left end of J:

(t − T )s+/s− ≥ s+lmin,s+/s−(Λ0,Λ1, λ).

Hence

T ≤ (s+ − s−)lmin,s+/s−(Λ0,Λ1, λ).

Since this is true for any T ∈ I = [0, 1/maxM{F,G}), we obtain (27) as
required. This finishes the proof of the theorem for the case where the pair
(Λ, λ) is non-degenerate.

The general case now follows from the non-degenerate one by the semi-
continuity of the Poisson bracket invariant—see (17). �

As in Sect. 4.4, let

Σ̂ := Σ × R(r) × S
1(τ) = Σ × T ∗

S
1(r, τ)

be the stabilization of Σ equipped with the contact form

λ̂ := λ + rdτ = dz + ϑ + rdτ.

Set

M̃ := M × T ∗
S

1(r, τ), M = Σ × [s−, s+],

and equip M̃ with the symplectic form ω + dr ∧ dτ = d(sλ) + dr ∧ dτ .
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For each E > 0 define M̃E ⊂ M̃ as

M̃E := M × (−E,E) × S
1 ⊂ M̃.

With the admissible quadruple X0,X1, Y0, Y1 ⊂ M as above, set

X̃0 := X0 × {r = 0}, X̃1 := X1 × {r = 0} ⊂ M̃E ⊂ M̃,

Ỹ0 := Y0 × T ∗
S

1, Ỹ1 := Y1 × T ∗
S

1 ⊂ M̃,

Ỹ0(E) := Y0 × (−E,E) × S
1, Ỹ1(E) := Y1 × (−E,E) × S

1 ⊂ M̃E .

Theorem 4.10. Assume that l̂min,s+/s−(Λ0,Λ1, λ) < +∞.
Then, for each E > 0

pb+

M̃E ,comp

(

X̃0, X̃1, Ỹ0(E), Ỹ1(E)
)

≥ pb+

M̃,comp
(X̃0, X̃1, Ỹ0, Ỹ1)

≥ 1

(s+ − s−)l̂min,s+/s−(Λ0,Λ1, λ)
> 0.

Proof of Theorem 4.10. Consider the exact symplectic cobordism

M̂ :=
(

Σ̂ × [s−, s+], d(sλ̂)
)

.

Define X̂0, X̂1, Ŷ0, Ŷ1 ⊂ M̂ by

X̂0 := Λ0 × S
1 × [s−, s+] = Λ̂0 × [s−, s+],

X̂1 := Λ1 × S
1 × [s−, s+] = Λ̂1 × [s−, s+],

Ŷ0 := Σ × T ∗
S

1 × s−,

Ŷ1 := Σ × T ∗
S

1 × s+.

Since l̂min,s+/s−(Λ0,Λ1, λ) < +∞, Theorem 4.9, applied to M̂ , X̂0, X̂1, Ŷ0, Ŷ1,
together with the inequality pb+

M̂,comp
(X̂0, X̂1, Ŷ0, Ŷ1) ≥ pb+

M̂
(X̂0, X̂1, Ŷ0, Ŷ1),

yields

pb+

M̂,comp
(X̂0, X̂1, Ŷ0, Ŷ1) ≥ 1

(s+ − s−)l̂min,s+/s−(Λ0,Λ1, λ)
> 0. (28)

Consider a map

M̂ = Σ̂ × [s−, s+] = Σ × T ∗
S

1(r, τ) × [s−, s+]

→ M̃ = Σ × [s−, s+] × T ∗
S

1(u, τ)

that sends each (x, r, τ, s) ∈ Σ × T ∗
S

1(r, τ) × [s−, s+] to (x, s, u = sr, τ) ∈
Σ×[s−, s+]×T ∗

S
1. (We use two copies of T ∗

S
1—one with the coordinates r, τ

and one with the coordinates u, τ). It is a symplectomorphism—it identifies
the symplectic form

d(sλ̂) = d (s(λ + rdτ)) = d(sλ) + d(srdτ) = ω + d(srdτ)

on M̂ with the symplectic form

ω + du ∧ dτ
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on M̃ . This symplectomorphism maps the sets X̂0, X̂1, Ŷ0, Ŷ1 ⊂ M̂ , respec-
tively, to the sets X̃0, X̃1, Ỹ0, Ỹ1 ⊂ M̃ . Therefore, (28) yields

pb+

M̂,comp
(X̂0, X̂1, Ŷ0, Ŷ1) = pb+

M̃,comp
(X̃0, X̃1, Ỹ0, Ỹ1)

≥ 1

(s+ − s−)l̂min,s+/s−(Λ0,Λ1, λ)
> 0.

Combining this with the inequality

pb+

M̃E ,comp

(

X̃0, X̃1, Ỹ0(E), Ỹ1(E)
)

≥ pb+

M̃,comp
(X̃0, X̃1, Ỹ0, Ỹ1)

(that follows from (16)) finishes the proof of the theorem. �

Assume that (M,d(sλ)) is a codimension-zero symplectic submanifold
with boundary of a symplectic manifold (N, Ω) which is closed as a sub-
set of N . Consequently, X0,X1, Y0, Y1 can be viewed as subsets of N . Let
H : N × S

1(t) → R be a complete Hamiltonian.

Corollary 4.11. Assume that the Hamiltonian H is time-independent and
lmin,s+/s−(Λ0,Λ1, λ) < +∞.

Then, the following claims hold:
A. If Δ(H;Y0, Y1) > 0, then there exists a chord of H from X0 to X1 of

time-length ≤ (s+ − s−)lmin,s+/s−(Λ0,Λ1, λ)
Δ(H;Y0, Y1)

.

B. If supp H ∩ M is compact and H|X0 ≥ 0 and Δ(H;X1,X0) > 0, then
there exists a chord of H from Y0 to Y1 of time-length bounded from above by
(s+ − s−)lmin,s+/s−(Λ0,Λ1, λ)

Δ(H;X1,X0)
.

Proof of Corollary 4.11. Follows directly from (14), Proposition 2.6, and The-
orem 4.9. �

Let us now consider the case where H is time-dependent. For each t0 ≤ t,
denote by φt0,t : N → N the time-[t0, t] flow of H. Set

Δ := Δ(H;Y0, Y1),

l̂min,s+/s− := l̂min,s+/s−(Λ0,Λ1, λ),
cmin := min

X0×S1
H, cmax := max

X0×S1
H.

Corollary 4.12. Let 0 < e < 1/2. Set

E := eΔ,

T :=
(s+ − s−)l̂min,s+/s−

(1 − 2e)Δ
.

Assume that
(a) l̂min,s+/s− < +∞,
(b) Δ > 0,

(c) sup
cmin−E≤H≤cmax+E

|∂H/∂t| < E/T =
e(1 − 2e)Δ2

(s+ − s−)l̂min,s+/s−

.
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Then, there exists a chord of H from X0 to X1 of time-length bounded

from above by T =
l̂min,s+/s−(s+ − s−)

(1 − 2e)Δ
.

Proof of Corollary 4.12. Define

ÑE := N × (−E,E) × S
1,

and equip it with the symplectic form Ω+dr∧dτ , where r, τ are, respectively,
the coordinates on (−E,E) and S

1. Then, M̃E = M × (−E,E) × S
1 is a

closed codimension-zero symplectic submanifold with boundary of ÑE . With
X̃0, X̃1, Ỹ0(E), Ỹ1(E) ⊂ M̃E ⊂ ÑE defined as above, we get, by (14),(15) and
Theorem 4.10, that

p̃E := pb+

ÑE ,comp

(

X̃0, X̃1, Ỹ0(E), Ỹ1(E)
)

≥

≥ pb+

M̃E ,comp

(

X̃0, X̃1, Ỹ0(E), Ỹ1(E)
)

≥ 1

(s+ − s−)l̂min,s+/s−

> 0.

Note that for any x ∈ N and t0 ∈ R

d
dt

H(φt0,t(x), t) =
∂H

∂t
(φt0,t(x), t).

Therefore, condition (c) implies that for any x ∈ X0 and any t0 ∈ R, t ∈
[t0, t0 + T ],

φt0,t(x) ∈ {cmin − E ≤ H ≤ cmax + E}
and

|∂H/∂t(φt0,t(x), t)| < E/T.

In particular, this means that

sup
t0∈R

(

sup
t∈[t0,t0+T ]

H(φt0,t(x), t) − inf
t∈[t0,t0+T ]

H(φt0,t(x), t)

)

<
E

T
· T = E.

This inequality, together with the positivity of p̃E and of Δ, allows to apply
Proposition 2.7 to H, N , and ÑE , which yields the existence of the chord of

H from X0 to X1 of time-length ≤ 1
p̃E(Δ − 2E)

≤ T . �

Remark 4.13. The claim on the positivity of pb+
M (X0,X1, Y0, Y1) in Theo-

rem 4.9 can be generalized to arbitrary two-part exact Lagrangian cobor-
disms, with (s+ − s−)lmin,s+/s−(Λ0,Λ1, λ) being replaced by a certain invari-
ant associated with the morphism of the persistence modules defined by the
cobordism. In particular, the positivity of pb+

M (X0,X1, Y0, Y1) remains true if
the sets X0, X1 as in Theorem 4.9 are perturbed as exact Lagrangian cobor-
disms in (M,d(sλ)) (cylindrical near the boundaries), so that the Legendrian
isotopies, induced on the boundaries by the exact Lagrangian isotopies, are
sufficiently C1-small (note that away from the boundary the perturbations
may be arbitrarily large, as long as the perturbed X0, X1 are disjoint!). The
lower bound on pb+

M (X0,X1, Y0, Y1) for the perturbed X0, X1 is then only

Vol. 24 (2022) Legendrian persistence modules and dynamics

Reprinted from the journal 433



M. Entov and L. Polterovich JFPTA

slightly larger than the one appearing in Theorem 4.9—the difference be-
tween the bounds tends to zero as the sizes of the Legendrian isotopies above
tend to zero. In the particular case where a trivial Lagrangian cobordism is
deformed among trivial Lagrangian cobordisms, the robustness follows from
Theorem 4.9 and Remark 4.8.

For the proofs and details, see [30].
Consequently, the results of Theorem 4.10 and Corollaries 4.11 and 4.12

are also robust with respect to the above perturbations.

5. Applications to contact dynamics

With Σ and λ as above, assume that Λ = Λ0 � Λ1 is a two-part Legendrian
submanifold in (Σ, ξ = ker Λ).

Let h : Σ×S
1 → R be a complete (time-dependent) contact Hamiltonian

(with respect to λ). Set ht := h(·, t) : Σ → R. Let vt, t ∈ S
1, denote the

contact vector field of ht. If h and v are time-independent, we write v instead
of vt. Denote by {ϕt} the time-[0, t] contact flow of h—that is, the time-
[0, t] flow of vt. The flow {ϕt} lifts to a Hamiltonian flow {φt} on (Σ ×
R+, d(sλ)) equivariant with respect to the multiplicative R+-action on Σ×R+

and generated by the Hamiltonian H : Σ×R+×S
1 → R, H(y, s, t) := s·h(y, t).

The flow {φt} has the form

φt(y, s) =

(

ϕt (y) , s

(

ϕ−1
t

)∗
λ (ϕt (y))

λ (ϕt (y))

)

. (29)

Since the contact flow {ϕt} of h is defined for all times, so is the Hamiltonian
flow {φt} of H, meaning that H is complete.

Let us recall Definition 1.8.

Definition 5.1. Let us say that h : Σ × S
1 → R is C-cooperative with Λ0, Λ1

for C > 0 if either of the following conditions holds:
(a) h < C on Λ1×S

1 and either the set {h ≥ C} =
⋃

t∈S1{ht ≥ C} is empty
or dht(R) ≥ 0 on {ht ≥ C} for all t ∈ S

1.
(b) h < C on Λ0×S

1 and either the set {h ≥ C} =
⋃

t∈S1{ht ≥ C} is empty
or dht(R) ≤ 0 on {ht ≥ C} for all t ∈ S

1.
We will say that h is cooperative with Λ0, Λ1 if it is C-cooperative with

Λ0, Λ1 for some C > 0.

5.1. Largeness of the conformal factor of ϕt

Theorem 5.2. Assume that h is time-independent and compactly supported.
Assume also that

h|Λ0≥0, h|Λ1<0.

and the pair (Λ0 � Λ1, λ) is weakly homologically bonded.
Then, the conformal factor of ϕt takes arbitrarily large values as t varies

between 0 and +∞:

inf
t∈(0,+∞),y∈Σ

(

ϕ−1
t

)∗
λ (ϕt (y))

λ (ϕt (y))
= +∞.
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Remark 5.3. It would be interesting to generalize Theorem 5.2 to contact
Hamiltonians h that are not necessarily compactly supported but rather are
constant outside a compact set K ⊂ Σ, meaning that the contact Hamiltonian
flow of such an h outside K is a reparameterized Reeb flow and the conformal
factor of the flow outside K is identically equal to 1, since the Reeb flow
preserves the contact form. (Recall that, by our assumptions, the Reeb flow
is defined for all times, so such an h would be complete). Such a generalization
would be true if in this particular setting—for Y0 = Σ× s−, Y1 = Σ× s+ and
the vector field sgrad (sh) on (Σ × R+, d(sλ))—Fathi’s Theorem 2.1 would
provide a function G : Σ × R+ → R, G ∈ S ′(Y0, Y1) (see Proposition 2.2), so
that the flow of sgrad G on Σ × [s−, s+] is complete.

Proof of Theorem 5.2. Pick 0 < s− < s+. Let X0,X1, Y0, Y1 ⊂ Σ × [s−, s+]
be the admissible quadruple defined for s−, s+ as in (25),(26).

Clearly, H|X0 ≥ 0, Δ(H;X1,X0) > 0.
We claim that there is a chord of H from Y0 to Y1. Indeed, consider

a cut-off function χ : R+ → [0, 1] which equals 1 on [s−, s+] and 0 outside
(s− − ε, s+ + ε) for some 0 < ε < s−. Since h : Σ → R is compactly sup-
ported, the Hamiltonian χ(s)h : Σ × R+ → R is also compactly supported
and coincides with H = sh on Σ × [s−, s+]. In particular, χ(s)H|X0 ≥ 0,
Δ(χ(s)H;X1,X0) > 0. Together with the assumption that the pair (Λ0 �
Λ1, λ) is weakly homologically bonded, this allows to apply part B of Corol-
lary 4.11 to the symplectic manifold (N, Ω) = (Σ × R+, d(sλ)) and the Hamil-
tonian χ(s)h. This yields the existence of a chord of χ(s)h from Y0 to Y1 in
N . An easy topological argument then yields that there exists a chord of
χ(s)h from Y0 to Y1 in N that lies in Σ × [s−, s+] and therefore is a chord
H. This proves the claim.

The existence of the chord of H from Y0 to Y1, together with (29),
implies that

(

ϕ−1
t

)∗
λ (ϕt (y)) /λ (ϕt (y)) ≥ s+/s−.

Since s+/s− can be made arbitrarily large, we get that

inf
t∈(0,+∞),y∈Σ

(

ϕ−1
t

)∗
λ (ϕt (y))

λ (ϕt (y))
= +∞,

which finishes the proof of the theorem. �

5.2. Existence of chords of h from Λ0 to Λ1

Theorem 5.4. (Cf. Rem. 1.14 in [28]) Assume

0 < inf
Σ×S1

h ≤ sup
Σ×S1

h < +∞,

and let

s+ >
supΣ×S1 h

infΣ×S1 h
≥ 1.

Then, the following claims hold:
A. Assume that h is time-independent and
lmin,s+(Λ0,Λ1, λ) =: lmin,s+ < +∞.
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Then, there exists a chord of h from Λ0 to Λ1 of time-length bounded

from above by
(s+ − 1)lmin,s+

s+ infΣ h − supΣ h
.

B. Assume that l̂min,s+(Λ0,Λ1, λ) =: l̂min,s+ < +∞. Let

Δs+ := s+ inf
Σ×S1

h − sup
Σ×S1

h.

Assume also that for some 0 < e < 1/2

sup
Σ×S1

|∂h/∂t| <
(1 − 2e)eΔ2

s+
infΣ×S1 h

(s+ − 1)(s+ maxΛ0×S1 h + eΔs+)l̂min,s+

. (30)

Then, there exists a chord of h from Λ0 to Λ1 of time-length bounded

from above by
(s+ − 1)l̂min,s+

(1 − 2e)Δs+

.

Proof of Theorem 5.4. Pick s− := 1 < s+. Let X0,X1, Y0, Y1 ⊂ Σ × [1, s+]
be the admissible quadruple defined for s− = 1, s+ as in (25),(26). Clearly

Δ(H;Y0, Y1) := Δs+ = s+ inf
Σ

h − sup
Σ

h.

Since by the hypothesis of the theorem

0 < inf
Σ×S1

h ≤ sup
Σ×S1

h < +∞,

we get that Δ(H;Y0, Y1) = Δs+ > 0 if s+ >
supΣ×S1 h

infΣ×S1 h
.

Let us now prove part A of the theorem. Its hypothesis allows to apply
part A of Corollary 4.11 to (N, Ω) = (Σ × R+, d(sλ)) and the Hamiltonian H

on it as long as s+ >
supΣ×S1 h

infΣ×S1 h
. This yields the existence of a Hamiltonian

chord of H from X0 to X1 of time-length bounded from above by
(s+ − 1)lmin,s+(Λ0,Λ1, λ)

s+ infΣ h − supΣ h
.

The projection of this Hamiltonian chord to Σ is a chord of h from Λ0 to Λ1

of the same time-length. This finishes the proof of part A the theorem.
Let us prove part B of the theorem. Similarly to the setting of Corol-

lary 4.12, for a given 0 < e < 1/2, define

E := eΔs+ ,

T :=
(s+ − 1)l̂min,s

(1 − 2e)Δs+

,

cmin := min
X0×S1

H = min
Λ0×S1

h.

cmax := max
X0×S1

H = s+ max
Λ0×S1

h.

Consider the set S := {cmin − E ≤ H = sh ≤ cmax + E}. We would
like to apply Corollary 4.12, and in order to do this, we need to verify that
the upper bound on the restriction of the function |∂H/∂t| to S, required in
Corollary 4.12, does hold in our case.
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Note that on S

s ≤ cmax + E

infΣ×S1 h
.

Together with the upper bound on the restriction of the function |∂H/∂t| =
s|∂h/∂t| to S in the hypothesis of part B of the theorem, this yields the
following upper bound on the function |∂H/∂t| = s|∂h/∂t| on the set S:

sup
S

s|∂h/∂t| ≤ cmax + E

infΣ×S1 h
· sup
Σ×S1

|∂h/∂t|

<
cmax + E

infΣ×S1 h
· (1 − 2e)eΔ2

s+
infΣ×S1 h

(s+ − 1)(s+ maxΛ0×S1 h + eΔs+)l̂min,s+

=
cmax + E

infΣ×S1 h
· (1 − 2e)eΔ2

s+
infΣ×S1 h

(s+ − 1)(cmax + E)l̂min,s+

=
(1 − 2e)eΔ2

s+

(s+ − 1)l̂min,s+

=
E

T
,

yielding the bound required in Corollary 4.12. Thus, Corollary 4.12 can be
applied to (N, Ω) = (Σ × R+, d(sλ)) and the Hamiltonian H on it (since, by
our assumptions, l̂min,s+ < +∞ and Δs+ > 0), which yields the existence of

a chord of h from Λ0 to Λ1 of time-length ≤ T =
(s+ − 1)l̂min,s

(1 − 2e)Δs+

.

This finishes the proof of part B of the theorem. �

Corollary 5.5. Assume that h is time-independent and infΣ h > 0.
If h is C-cooperative with Λ0,Λ1 for some C > infΣ h (see Defini-

tion 1.8) and the pair (Λ0 � Λ1, λ) is weakly homologically bonded,
then there exists a chord of h from Λ0 to Λ1 of time-length

≤ inf
s>C/ infΣ h

(s − 1)lmin,s(Λ0,Λ1, λ)
s infΣ h − C

.

Furthermore, if h is cooperative with Λ0,Λ1 and the pair (Λ0 � Λ1, λ) is
homologically bonded, the time-length of the chord can be also bounded from
above by μ := lmin,∞(Λ0,Λ1, λ)/ infΣ h. In particular, the pair (Λ0,Λ1) is
μ-interlinked.

Proof of Corollary 5.5. Let us assume that condition (a) from Definition 1.8
of C-cooperativeness is satisfied—that is, h < C on Λ1 and either the set
{h ≥ C} is empty or dh(R) ≥ 0 on {h ≥ C} (the case of condition (b) from
the same definition is similar).

Consider a smooth increasing function χ : R+ → R, such that χ(s) = s
for s ∈ [0, C] and χ(s) = C+ε for some ε > 0 and all sufficiently large s ∈ R+.
Consider the time-independent contact Hamiltonian h̃ := χ ◦ h. One readily
sees that it is complete and satisfies 0 < infΣ h̃ ≤ supΣ h̃ ≤ C+ε < +∞. Since
the pair (Λ0 �Λ1, λ) is weakly homologically bonded, part A of Theorem 5.4,
applied to h̃, shows that there exists a chord γ : [0, T ] → Σ of h̃, such that
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γ(0) ∈ Λ0 and γ(T ) ∈ Λ1 for T ≤ T0 := inf
s

(s − 1)lmin,s(Λ0,Λ1, λ)

s infΣ h̃ − supΣ h̃
, where

the infimum is taken over all s >
supΣ h̃

infΣ h̃
.

We claim that γ([0, T ]) lies in the set {h̃≥C}. Indeed, for all t

d(h̃ ◦ γ)/dt = dh̃(R) · h̃ = (χ′ ◦ h) · dh(R) · h̃.

Therefore, if h̃ (γ(t0)) >C for some t0 ∈ [0, T ], then h̃ (γ(t)) ≥ C for all
t ∈ [t0, T ], in contradiction to h̃ (γ(T )) = h (γ(T )) < C (the latter holds,
since γ(T ) ∈ Λ1 and h < C on Λ1). Thus, γ([0, T ]) lies in {h̃≤C} where h̃
coincides with h, meaning that γ is, in fact, the chord of h of time-length T

bounded from above by T0. Since infΣ h = infΣ h̃, supΣ h̃ ≤ C+ε and ε can be

taken arbitrarily small, we get that T0 ≤ inf
s>C/ infΣ h

(s − 1)lmin,s(Λ0,Λ1, λ)
s infΣ h − C

,

yielding the required upper bound on the time-length of the chord.
If the pair (Λ0 � Λ1, λ) is homologically bonded, then we can replace in

the bound above lmin,s(Λ0,Λ1, λ) by lmin,∞(Λ0,Λ1, λ), remove the infimum
and let s go to +∞. This shows that the time-length of the chord is bounded
from above by lmin,∞(Λ0,Λ1, λ)/ infΣ h.

This finishes the proof of the corollary. �

Corollary 5.6. Assume that infΣ×S1 h > 0, h is cooperative with Λ0,Λ1 and
the pair (Λ0 � Λ1, λ) is stably homologically bonded. Denote
l̂min,∞ := l̂min,∞(Λ0,Λ1, λ) > 0. Assume also that for some 0 < e < 1/2

sup
Σ×S1

|∂h/∂t| <
(1 − 2e)e

(

infΣ×S1 h
)3

(

maxΛ0×S1 h + e infΣ×S1 h
)

l̂min,∞
.

Then, there exists a chord of h from Λ0 to Λ1 of time-length bounded

from above by
l̂min,∞

(1 − 2e) infΣ×S1 h
.

Proof of Corollary 5.6. Let us assume that h is C-cooperative with Λ0,Λ1

for some C > 0 and condition (a) from Definition 1.8 of C-cooperativeness
is satisfied (the case of condition (b) from the same definition is similar).
Without loss of generality, assume C > infΣ×S1 h.

Similarly to the proof of Corollary 5.5, consider a smooth increasing
function χ : R+ → R, such that χ(s) = s for s ∈ [0, C] and χ(s) = C + ε for
some ε > 0 and all sufficiently large s ∈ R+. Consider the time-dependent
contact Hamiltonian h̃ := χ ◦ h. One readily sees that it is complete and
satisfies

0 < inf
Σ×S1

h = inf
Σ×S1

h̃ ≤ sup
Σ×S1

h̃ ≤ C + ε < +∞.

Note that for any sufficiently large s+ > 1

Δs+ := s+ inf
Σ×S1

h̃ − sup
Σ×S1

h̃ > 0.
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Also note that

lim
s+→+∞

(1 − 2e)eΔ2
s+

infΣ×S1 h

(s+ − 1)(s+ maxΛ0×S1 h + eΔs+)
=

(1 − 2e)e
(

infΣ×S1 h
)3

maxΛ0×S1 h + e infΣ×S1 h

and for all s+ > 1

l̂min,s+(Λ0,Λ1, λ) ≤ l̂min,∞(Λ0,Λ1, λ).

Therefore, the upper bound on supΣ×S1 |∂h/∂t| in the hypothesis of the corol-
lary implies that for any sufficiently large s+, we can bound supΣ×S1 |∂h̃/∂t|
from above as in (30):

sup
Σ×S1

|∂h̃/∂t| <
(1 − 2e)eΔ2

s+
infΣ×S1 h

(s+ − 1)(s+ maxΛ0×S1 h + eΔs+)l̂min,s+

.

Since the pair (Λ0 � Λ1, λ) is stably homologically bonded, part B of Theo-
rem 5.4, applied to h̃, shows that there exists a chord γs+ : [ts+ , ts++Ts+ ] → Σ
of h̃, for some ts+ ∈ R, so that γs+(ts+) ∈ Λ0 and γs+(ts+ + Ts+) ∈ Λ1 for

Ts+ ≤ (s+ − 1)l̂min,s+

(1 − 2e)Δs+

. Similarly to the proof of Corollary 5.5, we get that

γs+ is in fact a chord of h.
Note that

lim
s+→+∞

(s+ − 1)l̂min,s+

(1 − 2e)Δs+

≤ lim
s+→+∞

(s+ − 1)l̂min,∞
(1 − 2e)Δs+

=
l̂min,∞

(1 − 2e) infΣ×S1 h
.

Also note that since h is time-periodic with period 1, we can assume that
ts+ ∈ [0, 1] for all s+. Now, since Λ0 is compact, a standard compactness
argument allows to obtain the existence of a chord of h from X0 to X1 of

time-length ≤ (s+ − 1)l̂min,∞
(1 − 2e)Δs+

. �

The following corollary yields the existence of a chord of h in case where
h is not necessarily everywhere positive.

Corollary 5.7. Assume there exists a (possibly non-compact or disconnected)
closed codimension 0 submanifold Ξ ⊂ Σ with a (possibly non-compact or
disconnected) boundary ∂Ξ, so that

(1) infΞ×S1 h > 0 (but h may be negative outside Ξ × S
1).

(2) sup∂Ξ×S1 h < +∞.
(3) For each t ∈ S

1, the contact Hamiltonian vector field vt of h is transverse
to ∂Ξ (in particular, ∂Ξ is a convex surface in the sense of contact
topology—see [37]) and either points inside Ξ everywhere on ∂Ξ or points
outside Ξ everywhere on ∂Ξ.

(4) Both Λ0 and Λ1 lie in Ξ.

Then, the following claims hold:
(I) Assume the pair (Λ0 �Λ1, λ) is weakly homologically bonded. Assume also
that h is time-independent and C-cooperative with Λ0,Λ1 for C > infΞ h.
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Then, there exists a chord of h from Λ0 to Λ1 of time-length bounded

from above by inf
s>C/ infΞ h

(s − 1)lmin,s(Λ0,Λ1, λ)
s infΞ h − C

.

If the pair (Λ0 � Λ1, λ) is homologically bonded, then the time-length of

the chord can be bounded from above by
lmin,∞(Λ0,Λ1, λ)

infΞ h
.

(II) Assume that the pair (Λ0 � Λ1, λ) is stably homologically bonded and
set l̂min,∞ := l̂min,∞(Λ0,Λ1, λ). Assume also that h is time-dependent and
cooperative with Λ0,Λ1 and for some 0 < e < 1/2

sup
Ξ×S1

|∂h/∂t| <
(1 − 2e)e

(

infΞ×S1 h
)3

(

maxΛ0×S1 h + e infΞ×S1 h
)

l̂min,∞
.

Then, there exists a chord of h from Λ0 to Λ1 whose time-length is

bounded from above by
l̂min,∞

(1 − 2e) infΞ×S1 h
.

Proof of Corollary 5.7. Let us assume that h is C-cooperative with Λ0, Λ1

for C ≥ sup∂Ξ×S1 h (this is possible, since, by (2), sup∂Ξ×S1 h < +∞).
For any sufficiently small ε > 0, one can find a new contact Hamiltonian

h̃ε : Σ × S
1 → R, so that h̃ = h on a neighborhood of Ξ and infΞ×S1 h − ε ≤

h̃ε ≤ supΞ×S1 h on (Σ\Ξ)×S
1. Since C ≥ sup∂Ξ×S1 h, the contact Hamiltonian

h̃ε satisfies the assumptions of Corollary 5.5 (in case (I)), or of Corollary 5.6
(in case (II)). Consequently, by these corollaries, there exists a chord γε(t) of
h̃ε, γε(tε) ∈ Λ0, γε(tε + Tε) ∈ Λ1, so that
– In case (I):

Tε ≤ inf
s

(s − 1)lmin,s(Λ0,Λ1, λ)

s infΣ h̃ε − C
≤ inf

s

(s − 1)lmin,s(Λ0,Λ1, λ)
s(infΞ h − ε) − C

(the infimum is taken over all s > C/ infΣ h̃ε), and

Tε ≤ lmin,∞(Λ0,Λ1, λ)

infΣ h̃ε

≤ lmin,∞(Λ0,Λ1, λ)
infΞ h − ε

.

– In case (II):

Tε ≤ l̂min,∞
(1 − 2e) infΣ×S1 h̃ε

≤ l̂min,∞
(1 − 2e) infΞ×S1 h − ε

.

Here, in both cases, we have used that infΣ h̃ε ≥ infΞ h − ε for all
(sufficiently small) ε > 0.

The chord γε cannot cross ∂Ξ. Indeed, by (3), if it had crossed ∂Ξ, it
would have had to cross it transversally from Ξ to M \ Ξ. This would mean
that vt (the contact Hamiltonian vector field of h̃ε|Ξ = h|Ξ) points outside Ξ
everywhere on ∂Ξ for all t ∈ S

1. But then, the chord would not have been
able to return to Ξ to reach Λ1. Thus, the chord lies in the interior of Ξ and
is, in fact, a chord of h from Λ0 to Λ1.

We have such a chord γε of h from Λ0 to Λ1 for any sufficiently small
ε > 0 and the time-lengths of the chords admit a bound continuous in ε.

Reprinted from the journal440



We can also assume that for all ε > 0 tsε
= 0 in case (I) (since h is time-

independent) and tsε
∈ [0, 1] in case (II) (since h is 1-periodic in time). Now,

since Λ0 is compact, a standard compactness argument allows to obtain the
existence of the chord of h from X0 to X1 of time-length T , so that
– In case (I):

T ≤ inf
s>C/ infΞ h

(s − 1)lmin,s(Λ0,Λ1, λ)
s infΞ h − C

and if the pair (Λ0 � Λ1, λ) is homologically bonded, then

T ≤ lmin,∞(Λ0,Λ1, λ)
infΞ h

.

– In case (II)

T ≤ l̂min,∞
(1 − 2e) infΞ×S1 h

.

This finishes the proof of the corollary. �

Remark 5.8. The claim of Theorem 5.4 is robust—for a fixed h—with re-
spect to perturbations of Λ = Λ0 � Λ1 by Legendrian isotopies, as long as
the perturbation is sufficiently C1-small, depending on s+—this follows from
Remark 4.8.

Accordingly, the claims of Corollaries 5.5, 5.6, and 5.7 are robust—for
a fixed h—with respect to perturbations of Λ = Λ0 � Λ1 by Legendrian
isotopies, as long as the perturbation is sufficiently C1-small, depending on

C

infΣ×S1 h
, where C is the constant, such that h is C-cooperative with Λ0,

Λ1.
Namely, if the pair (Λ0 � Λ1, λ) is weakly homologically bonded, then

lmin,s(Λ0,Λ1, λ) < +∞ for any s >
C

infΣ×S1 h
. Fix such an s. Then, by

Remark 4.8, lmin,s(Λ′
0,Λ

′
1, λ) is finite and close to lmin,s(Λ0,Λ1, λ) for any

Λ′ = Λ′
0 �Λ′

1 obtained from Λ by a Legendrian isotopy, as long as the isotopy
is small (depending on the chosen s). The proofs of Corollaries 5.5, 5.6, and
5.7 then go through for Λ′ instead of Λ and yield the existence of a chord of
h between Λ′

0 and Λ′
1. The cases when the pair (Λ0 � Λ1, λ) is homologically

bonded or stably homologically bonded are similar.

6. The case of J1Q

In this section, let Σ = J1Q = T ∗Q × R(z) be the 1-jet space of a smooth
manifold Q, together with the standard contact form λ on it. The Reeb flow
of λ is the shift in the z-coordinate. This is a nice contact manifold.

Let Λ0 be the zero section of J1Q.

Proposition 6.1. Assume that Λ1 ⊂ Σ = J1Q is a Legendrian submanifold,
such that V∞(Λ1, λ) 	= 0 and satisfying the following property: there is unique
Reeb chord starting on Λ0 and ending on Λ1, and this chord is non-degenerate
in the sense of (8).
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Then, the pair (Λ0 � Λ1, λ) is homologically bonded.

Proof. Denote by a the unique Reeb chord going from Λ0 to Λ1.
For each i, j = 0, 1 write Aij for the subalgebra of A(Λ0 � Λ1, λ) gener-

ated by all ij-composable monomials. We call a monomial in A(Λ0 � Λ1, λ)
good if it is 11-composable and contains no a. Note that each such monomial
lies in A(Λ1, λ).

Let J ∈ J (Λ0 �Λ1). Then, J also lies in J (Λ1). Consequently, J defines
both a differential d := ∂J on A(Λ0 �Λ1, λ) and a differential d′ on A(Λ1, λ).

Note that da = 0. Indeed, d should map a into a sum of 01-composable
monomials whose actions are smaller than the action of a, but there are no
such monomials.

Lemma 6.2. There is no x ∈ A11, such that dx = 1.

Proof of Lemma 6.2. Since V∞(Λ1, λ) 	= 0, there exists no x′ ∈ A(Λ1, λ),
such that d′x′ = 1. Indeed, otherwise, every d′-closed element y is d′-exact:
d′(yx′) = y.

Now, assume by contradiction that there exists x ∈ A11, such that dx =
1. Then, x is a sum of 11-composable monomials of the either of the following
two types: either b1ab2a . . . bka (type I) for some k > 0, or b1ab2a . . . bkac
(type II) for some k ≥ 0, where b1, . . . , bk are 10-composable monomials not
containing a and c is a good monomial.

Since da = 0 and A10 is d-invariant, applying d to a monomial b1ab2a . . .
bka of type I, we get that d(b1ab2a . . . bka) is again a sum of monomials of
type I, or zero. Similarly, applying d to a monomial b1ab2a . . . bkac of type II,
we get that d(b1ab2a . . . bkac) is a sum of monomials of type II, with at least
one a in each of them, or zero—unless k = 0 and the original monomial of
type II to which d is applied is just a good monomial c. Since dx = 1, we get
that x can be written as x = x′ + x′′, where x′ is a non-trivial sum of good
monomials and x′′ is a sum of monomials (of types I and II) containing a.

Each good monomial c lies in A(Λ1, λ), and therefore, x′, which is a sum
of good monomials, also lies in A(Λ1, λ). For each good monomial c, we can
write dc = d′c + y, where y is a sum of 11-composable monomials containing
a. At the same time, the discussion above shows that dx′′ is a (possibly
trivial) sum of 11-composable monomials containing a. Since dx = 1 and
d′c is a sum of 11-composable monomials that do not contain a and cannot
cancel out monomials containing a, we get that d′x′ = 1, which yields a
contradiction.

This finishes the proof of the lemma. �

Let us now finish the proof of the proposition.
Note that there are no 00-chords (since Λ0 is the zero section). Therefore,

any 01-composable monomial has to be of either of the following two types:
either aB1aB2 . . . aBka (type 1) for some k > 0, or aB1aB2 . . . aBkaC (type
2) for some k ≥ 0, where B1, . . . , Bk are 10-composable monomials containing
no a and C is a good monomial.

We claim that there exists no z ∈ A(Λ0,Λ1, λ), such that dz = a—since
da = 0, this would readily imply the proposition.

Reprinted from the journal442



Let us prove the claim. Assume, by contradiction, that such a z exists.
It is a sum of 01-composable monomials, each of which is either of type 1 or
of type 2.

Since da = 0, the differential of any monomial of type 1 or 2 is a (possibly
zero) sum of monomials of the same type each of which contains more than
one a, except for the case where the monomial to which d is applied is a
monomial of type 2 of the form aC, where C is a good monomial—then
d(aC) = a · dC. Thus, the only way dz can contain a monomial a is that z
is a sum of monomials one of which is of the form aC, where C is a good
monomial, such that dC = 1. This leads to a contradiction with Lemma 6.2.

This finishes the proof of the claim and of the proposition. �
Further on in this section, assume that l > 0 and Λ1 is the image of Λ0

under the time-l Reeb flow.

Proposition 6.3. The pair (Λ0 � Λ1, λ) is homologically bonded and

lmin,s(Λ0,Λ1, λ) ≤ l

for all s ∈ (1,+∞].

Proof of Proposition 6.3. The pair (Λ0 � Λ1, λ) is degenerate and we have to
perturb, say, Λ1 to make it non-degenerate.

Namely, consider a Morse function f : Q → R which is a C∞-small
perturbation of the constant function z+. Its 1-jet is a Legendrian subman-
ifold Λ′

1 ⊂ J1Q which is a small perturbation of Λ1. It is not hard to check
that the pair (Λ0 � Λ′

1, λ) is non-degenerate: the Reeb chords of Λ = Λ0 � Λ′
1

are then the Reeb chords from Λ0 to Λ′
1 corresponding to the critical points

of f and their actions are the critical values of f shifted down by z+. The
01-subspace is then the Z2-span of the Reeb chords of Λ.

One can show that, under the identification between the Reeb chords
of Λ and the critical points of f , the differential in the Chekanov–Eliashberg
algebra is identified with the Morse differential in the Morse chain complex
of f (over Z2). More precisely, the differential in the Chekanov–Eliashberg
algebra is identified with the differential in the Lagrangian Floer complex
of the projections of Λ0 and Λ′

1 to T ∗Q (that are embedded Lagrangian
submanifolds) and the latter is identified with the Morse differential by the
original work of Floer [33]—see, e.g., the comment preceding Cor. 1.10 in [9].

Thus, the persistence module associated with (Λ0,Λ′
1, λ) is the Morse

homology persistence module associated with f . The corresponding barcode
contains infinite bars—their number is equal to the sum of the Betti num-
bers of Q over Z2. Hence, lmin,s(Λ0,Λ′

1, λ) ≤ maxQ for all s ∈ (1,+∞].
Letting f converge uniformly to the constant function l, we readily get that
lmin,s(Λ0,Λ1, λ) ≤ l for all s ∈ (1,+∞], meaning that the pair (Λ0 � Λ1, λ) is
homologically bonded. �

Proof of Theorem 1.5. The Legendrian submanifolds appearing in the formu-
lation of the theorem are homologically bonded. For item (i) of the theorem,
this follows from Proposition 6.3 combined with the fact that the property of
being homologically bonded is invariant under a Legendrian isotopy of a pair.
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For item (ii), this follows from Proposition 6.1. Therefore, the pair (Λ0,Λ1)
is interlinked by Corollary 5.5. �

Proposition 6.4. The pair (Λ0 � Λ1, λ) is stably homologically bonded and
l̂min,∞(Λ0,Λ1, λ) ≤ l.

Proof of Proposition 6.4. There is a natural identification Σ̂ = J1Q×T ∗
S

1 =
J1(Q × S

1) identifying the contact forms, and hence, the contact structures.
The Legendrian submanifold Λ̂0 is then the zero section of J1(Q × S

1) and
Λ̂1 is its image under the time-l Reeb flow. Now, the result follows from
Proposition 6.3. �

Let ψ be a positive function on Λ0, and let Λ := {z = ψ(q), p = ψ′(q)}
be the graph of its 1-jet in J1Q. Assume that K is a Legendrian submanifold
of J1Q Legendrian isotopic to Λ outside the zero section Λ0, so that there
exist exactly two Reeb chords A, a starting on K and ending on Λ0, both
non-degenerate, and with their time-lengths |A|, |a| satisfying

0 < |A| − |a| < |b|, (31)

for every Reeb chord b starting and ending on K � Λ0.

Proposition 6.5. For any s < |A|/|a|,
lmin,s(K,Λ0, λ) = |a|. (32)

Proof. For each i, j = 0, 1 write Aij for the subalgebra of A(K � Λ0, λ)
generated by all ij-composable monomials. Warning: with our notation 01-
chords are the ones going from K to Λ0 etc. Observe that

A01 = Span{ua, uA, u ∈ A00},A11 = 0.

By the invariance of V∞ under Legendrian isotopies of the two-part
Legendrians and by Proposition 6.3, we get

V∞(K,Λ0, λ) = V∞(Λ,Λ0, λ) = 0,

V∞(Λ0,K, λ) = V∞(Λ0,Λ, λ) = V∞(Λ0,Λ1, λ) 	= 0,

where Λ1 is defined before Proposition 6.3. Let J ∈ J (K�Λ0) and let d := ∂J

be the corresponding differential on A(K � Λ0, λ).
Note that da = 0 as there is no 01-composable monomial with a smaller

action. In what follows we write |b| for the action of a monomial b.
Since there are no 11-chords, we can write dA = ua+vA with u, v ∈ A00.

Note that v = 0, since otherwise |vA| ≥ |A|, while d lowers the action. By
assumption (31), |ua| > |A| for a non-scalar u, and hence, either u = 0 or
u = 1 (recall that the base field is Z2).

Case 1 u = 0, i.e., dA = 0. We claim that in this case, a 	= dx for any x.
Indeed, otherwise, write x = pa + qA, where p, q ∈ A00. Then, a = (dp)a +
(dq)A yielding dp = 1. But then, for every closed y ∈ A10, we have y = d(yp),
meaning that y is exact, in contradiction to V∞(Λ0,K, λ) 	= 0.

Case 2 u = 1, i.e. dA = a. Note that by assumption (31), A has the minimal
action among all 01-monomials of action > |a|. It follows that the barcode
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of the persistence module V (K,Λ0, λ) contains a bar (|a|, |A|]. Moreover,
since |a| is the minimal action among all 01-chords, we get that (32). This
completes the proof.

Proof of Theorem 1.7. Using if necessary small perturbations of the Legen-
drians, we may assume without loss of generality that all the chords are
non-degenerate. The theorem immediately follows from Proposition 6.5 and
Theorem 5.4A. �

7. The case of ST ∗
R

n

In this section, let

Σ := ST ∗
R

n, n > 1.

Denote by ξ the standard contact structure on Σ defined by the contact form

λ := pdq.

Let x0, x1 ∈ R
n(q), x0 	= x1. Consider the Legendrian submanifolds

Λi := {q = xi, |p| = 1}, i = 0, 1,

of (Σ, ξ). Set

Λ := Λ0 � Λ1.

One easily checks that the pair (Λ = Λ0 � Λ1, λ) is non-degenerate.
Consider also the manifold

Σ̂ := Σ × T ∗
S

1(r, τ),

and the 1-form

λ̂ := pdq − rdτ,

where r ∈ R, τ ∈ S
1, are the standard coordinates on T ∗

S
1 = R × S

1. Let
S

1 := {r = 0} ⊂ T ∗
S

1 be the zero section. One easily sees that λ̂ is a contact
form, defining a contact structure ξ̂ on Σ̂ and the Reeb vector field of λ̂ can
be described as follows: its projection to the ST ∗

R
n factor is the Reeb vector

field of λ, while its projection to the T ∗
S

1 factor is zero. Denote

Λ̂0 := Λ0 × S
1, Λ̂1 := Λ1 × S

1,

Λ̂ := Λ̂0 � Λ̂1 = Λ × S
1.

For each δ > 0, denote

Λ̂1,δ := Λ1 × graph (δdf) ⊂ Σ̂,

Λ̂δ := Λ̂0 � Λ̂1,δ,

where graph (δdf) ⊂ T ∗
S

1 is the graph of d(δf) for a Morse function f :
S

1 → R that has only two critical points. The set Λ̂δ is a two-part Legendrian
submanifold of (Σ, ker λ̂). Since the pair (Λ, λ) is non-degenerate, so is the
pair (Λ̂δ, λ̂).
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Proposition 7.1. The barcode of the persistence module V (Λ0,Λ1, λ) consists
of infinitely many infinite bars, of multiplicity 1, whose left ends are
(2k − 1)|x0 − x1|, k ∈ Z>0.

Consequently, the pair (Λ0 � Λ1, λ) is homologically bonded and

lmin,s(Λ0,Λ1, λ)= lmin,∞(Λ0,Λ1, λ) = |x0 − x1|
for all s ∈ (1,+∞].

Proof of Proposition 7.1. The set R(Λ, λ) consists only of two Reeb chords:
a 01-chord a and a 10-chord b, which are the lifts of the Euclidean geodesics
in R

n going from x0 to x1 and from x1 to x0. Thus, A(Λ0,Λ1, λ) is spanned
over Z2 by the monomials of the form abab · . . . · ba, where each monomial
contains k factors a and k − 1 factors b, for k ∈ Z>0. For each k ∈ Z>0, there
is exactly one such monomial of length 2k − 1. The actions of a and b are
both equal to |x0 − x1|, and therefore, the action of the monomial of length
2k − 1 is (2k − 1)|x0 − x1|.

Let J ∈ J (Λ). Since the differential ∂J on A(Λ0,Λ1, λ) lowers the ac-
tion, we immediately get that ∂J(a) = ∂J(b) = 0 and therefore ∂J is identi-
cally zero on A(Λ0,Λ1, λ). Therefore, the barcode of the persistence module
V (Λ0,Λ1, λ) consists of infinitely many infinite bars of multiplicity 1 whose
left ends are (2k − 1)|x0 − x1|, k ∈ Z>0. This finishes the proof. �

Proposition 7.2. The barcode of the persistence module V (Λ̂0, Λ̂1,δ, λ̂) consists
of infinitely many infinite bars whose left ends are (2k−1)|x0 −x1|, k ∈ Z>0.
The multiplicity of the bar with the left end (2k − 1)|x0 − x1| is 22k−1.

Consequently, the pair (Λ0 � Λ1, λ) is stably homologically bonded and

l̂min,s(Λ0,Λ1, λ) = l̂min,∞(Λ0,Λ1, λ) = |x0 − x1|
for all s ∈ (1,+∞].

Proof of Proposition 7.2. Let a, b ∈ R(Λ, λ) be the 01-chord and the 10-chord
of Λ as above. The Reeb chords of Λ̂δ are the direct products of the Reeb
chords of R(Λ, λ) lying in Σ and the constant paths in T ∗

S
1 corresponding

to the 2 critical points of f (that is, the intersections of the graph of df

with the zero section). Thus, R(Λ̂δ, λ̂) consists only of exactly 4 Reeb chords:
01-chords a1, a2 and 10-chords b1, b2, where a1, a2 project onto a and b1, b2

project onto b under the projection Σ̂ = Σ × T ∗
S

1 → Σ.
Thus, A(Λ̂0, Λ̂1,δ, λ) is spanned over Z2 by the monomials of the form

aj1bj2 · . . . ·bj2k−2aj2k−1 , where each monomial contains k factors aji
, ji = 1, 2,

and k − 1 factors bji
, ji = 1, 2, for k ∈ Z>0. There are 22k−1 such monomials

of length 2k − 1. The actions of all aj and bj , j = 1, 2, are equal to |x0 − x1|,
and therefore, the action of a monomial as above is (2k − 1)|x0 − x1|.

Let J ∈ J (Λ̂δ). Since the differential ∂J on A(Λ̂0, Λ̂1,δ, λ̂) lowers the
action, we immediately get that ∂J(aj) = ∂J(bj) = 0 for all j = 1, 2, and
therefore, ∂J is identically zero on A(Λ̂0, Λ̂δ, λ̂). Therefore, the barcode of
the persistence module V (Λ̂0, Λ̂1,δλ̂) consists of infinitely many infinite bars
whose left ends are (2k − 1)|x0 − x1|, k ∈ Z>0. The multiplicity of the bar
with the left end (2k − 1)|x0 − x1| is 22k−1.
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Consequently, for any s ∈ (1,+∞] and δ > 0

lmin,s(Λ̂0, Λ̂1,δ, λ̂) = |x0 − x1|
and

l̂min,s(Λ0,Λ1, λ) = lim inf
δ→0

lmin,s(Λ̂0, Λ̂1,δ, λ̂) = |x0 − x1|.
This finishes the proof. �

Proof of Theorem 1.1. In the case n = 1, the claim follows from the results in
[28]. Namely, in this case, the sets X0,X1, Y0, Y1 form a Lagrangian tetragon
in (R2(p, q), dp ∧ dq) built from the point x0 ∈ R for T = x1 − x0 (see [28,
Sec. 5.1]). In the terminology of [28], this Lagrangian tetragon is stably κ-
interlinked, for κ = |x0 − x1|(s+ − s−)—this follows, e.g., from Cor. 5.3 and
Thm. 5.8 in [28] (see [8, Thm. 1.20, Prop.1.21] for a different approach to the
proof). By the definition of a κ-interlinked Lagrangian tetragon (see [28, Sec.
1.2]), this yields the dynamical claims of Theorem 1.1 in the case n = 1.

Assume now that n > 1.
By Propositions 7.1 and 7.2

lmin,s+/s−(Λ0,Λ1, λ) = l̂min,s+/s−(Λ0,Λ1, λ) = |x0 − x1|.
The symplectization Σ×R+(s) is identified symplectically with R

2n(p, q)\
{p = 0} by the map (p, q, s) �→ (sp, q). Thus, (Σ × [s−, s+], d(sλ)) can be
viewed as a codimension-zero submanifold with boundary of (N = R

2n,Ω =
dp ∧ dq).

Now, the claims of the theorem follow from Corollaries 4.11, 4.12 applied
to the Hamiltonian H on (N, Ω).

This finishes the proof of the theorem. �

Proofs of Theorems 1.13, 1.9 and Corollary 1.10. We need to prove Theo-
rems 1.13, 1.9 and Corollary 1.10 in the following three cases:
(I) Λ0 is the zero section of J1Q and Λ1 is its image under the time-l Reeb

flow.
(II) Λ0 is a cotangent unit sphere in ST ∗

R
n and Λ1 is its image under the

time-l Reeb flow.
(III) Λ0,Λ1 ⊂ ST ∗

R
n are the cotangent unit spheres at x0, x1 ∈ R

n,
|x0 − x1| = l.
The needed results in cases (I), (II), (III) follow from the corresponding

general results in Theorem 5.2, Corollaries 5.5, 5.6 and Corollary 5.7, as soon
as we check that in all the three cases lmin,∞(Λ0,Λ1, λ) ≥ l, l̂min,∞(Λ0,Λ1, λ) ≥
l.

In case (I), these inequalities are proved in Propositions 6.3, 6.4.
In the case (II), they also follow from Propositions 6.3, 6.4, because the

cases (I) and (II) can be identified by a contactomorphism preserving the
contact forms—namely, the contact identification of ST ∗

R
n and J1

S
n−1 (see

(3)) can be easily adjusted, so that Λ0 ⊂ ST ∗
R

n is identified with the zero
section of J1

S
n−1.

In case (III) the inequalities follow from Propositions 7.1, 7.2. �
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A Lagrangian Klein bottle you can’t squeeze

Jonathan David Evans

Dedicated to Claude Viterbo, on his fifty-tenth birthday.

Abstract. Suppose you have a nonorientable Lagrangian surface L in
a symplectic 4-manifold. How far can you deform the symplectic form
before the smooth isotopy class of L contains no Lagrangians? I solve
this question for a particular Lagrangian Klein bottle. I also discuss
some related conjectures.

Mathematics Subject Classification. 53D12, 53D35, 53D42.
Keywords. Lagrangian submanifold, symplectic geometry, Klein bottle,
genus, pseudoholomorphic curve.

1. Introduction
Here are two overlapping questions:

Question 1.1. (Minimal nonorientable genus) Given a symplectic 4-manifold
(X,ω) and a Z/2-homology class β ∈ H2(X;Z/2), what is the minimal
nonorientable genus of a nonorientable Lagrangian surface L ⊂ X with
[L] = β?

Question 1.2. (Nonsqueezing) Given a symplectic 4-manifold (X,ω) and a
nonorientable Lagrangian surface L ⊂ X, how far can you deform ω in co-
homology before there is no Lagrangian smoothly isotopic to L?

If L is orientable then these questions are less interesting: the genus is
determined by [L]2 = −χ(L) and, in Question 1.2, it is necessary to deform
ω subject to the cohomological condition

∫
L
[ω] = 0. By contrast, if L is

nonorientable, we have H2(L;R) = 0, which means that it is possible to
deform ω, keeping L Lagrangian, in such a way that [ω] ranges over an open
set in H2(X;R).

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.

A previous version of this chapter was published Open Access under a Creative Commons Attribution 

4.0 International License at https://link.springer.com/10.1007/s11784-022-00945-w.  
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I will give some general discussion of these questions in turn, then give
a concrete example of a Lagrangian Klein bottle for which Question 1.2 can
be answered completely (Theorem 3.1).

One running theme throughout the discussion is the use of visible and
tropical Lagrangians in almost toric 4-manifolds: these provide a rich source
of Lagrangian submanifolds coming respectively from straight lines and trop-
ical curves in integral affine surfaces. I have found them useful for thinking
about some of the phenomena under discussion, and for formulating conjec-
tures. Visible Lagrangians were introduced in Symington’s work [16]; tropical
Lagrangians were introduced independently by Mikhalkin [9] and Matessi [8].

2. The minimal genus question
2.1. Review
Definition 2.1. Define the nonorientable genus of the nonorientable surface
#kRP2 to be k. Proposition 1.1 of [4] shows that any Z/2-homology class in
a symplectic 4-manifold can be represented by some embedded nonorientable
Lagrangian, so Question 1.1 has a well-defined answer, which I will denote1
by N(X,ω, β).
Remark 2.2. Audin [1] showed that

P2(β) = χ(L) = 2 − k mod 4,

where P2 denotes the Pontryagin square operation and χ is the Euler char-
acteristic. If you find a Lagrangian with nonorientable genus k then you can
perform a Hamiltonian finger move locally to introduce pairs of intersec-
tions with index difference 1 and then perform Polterovich surgery [13] on
these self-intersections to get an embedded Lagrangian with nonorientable
genus k + 4. This means that the set of genera which can be realised is
{N(X,ω, β), N(X,ω, β) + 4, . . .}.
Remark 2.3. The quantity N(X,ω, β) is known in a small range of cases, the
lower bound being the principal difficulty.

1. When X satisfies [ω] · c1(X) > 0, we know that N(X,ω, 0) = 6. This
follows from Givental’s construction [5] of a Lagrangian #6RP2 in the
4-ball and from the fact, proved by Shevchishin [14] that X contains no
nullhomologous Lagrangian Klein bottles (see also the beautiful papers
by Nemirovski [11,12]).

2. Let Xa,b,c be the blow-up of the 4-ball in three subballs so that the sym-
plectic areas of the exceptional spheres E1, E2, E3 are a, b, c. Shevchishin
and Smirnov [15] show that E1 + E2 + E3 contains a Lagrangian RP2

if and only if the following inequalities all hold

a < b + c, b < c + a, c < a + b.

They call these the symplectic triangle inequalities. This gives the lower
bound N(Xa,b,c, ω, E1 + E2 + E3) ≥ 5 when a, b, c violate the triangle
inequalities.

1“ng” is the International Phonetic Alphabet symbol for the ”ng” sound.
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Figure 1. Almost toric base diagrams for Xa,b,c with a
tropical curve in red. Left: The symplectic triangle inequali-
ties and the associated tropical Lagrangian is diffeomorphic
to RP2 (with the core circle of a cross-cap living over the
point marked by the cross-hair symbol). Right: The sym-
plectic triangle inequalities are violated and the associated
tropical Lagrangian is diffeomorphic to a disc

Remark 2.4. After the fact, we see that there is a tropical or almost toric
motivation for the Shevchishin-Smirnov triangle inequalities. The almost toric
base diagram in Fig. 1 depicts the blow-up Xa,b,c; the affine lengths a, b, c
indicated correspond to the sizes of the exceptional spheres E1, E2, E3. In red
you can see a tropical curve; using the ideas of Mikhalkin [9] and Matessi [8],
we can construct a Lagrangian submanifold L living over a (small thickening
of a) tropical curve. This tropical Lagrangian is diffeomorphic to RP2 if
and only if the inequalities all hold: the preimage of the point marked with
cross-hairs is a circle in L whose neighbourhood is a Möbius strip.

2.2. S2 × S2

Let X = S2 × S2. Modulo an overall scale factor, any symplectic form on X
is diffeomorphic to one from the family λp∗

1σ+p∗
2σ, where p1, p2 : X → S2 are

the two projections and σ is an area form on S2. We know that N(X,ω, 0) =
6, which leaves two interesting Z/2-homology classes up to diffeomorphism:
β = [� × S2] and the class Δ of the diagonal. The Pontryagin squares are
P2(β) = 0 and P2(Δ) = 2, so there is a chance to represent β by Lagrangian
Klein bottles.

Lemma 2.5. If λ < 2 then β is represented by a Lagrangian Klein bottle.

Proof. The rectangle in Fig. 2 is the toric moment polygon for the standard
Hamiltonian torus action on S2 × S2 with symplectic form ωλ. There is a
Lagrangian Klein bottle living over the line � (slope 1/2) in the diagram.
To see this, consider the two S2 factors sitting inside R

3 and let (pj , θj) be
cylindrical coordinates on the jth factor (j = 1, 2). These are action-angle
coordinates, so ω =

∑
dpj ∧ dθj . The line � is given by 2p2 = p1 and the

Reprinted from the journal 453



J. D. Evans JFPTA

Lagrangian Klein bottle is cut out by this equation together with θ2 = −2θ1.
This is certainly Lagrangian for this symplectic form. To see that L is a
Klein bottle, notice that the regular level sets of p1 restricted to L are circles
θ2 = −2θ1 in the (θ1, θ2)-torus, which collapse 2-to-1 onto the circles of
maxima and minima at p1 = ±λ (as the torus collapses to the circle with
coordinate θ2). The projections of these circles are denoted with cross-hairs
in Fig. 2. �

Remark 2.6. This L is a visible Lagrangian in the sense of Symington [16] as
well as being a tropical Lagrangian in the sense of Matessi [8] and Mikhalkin
[9]. This Klein bottle is well-known: it appears in [3] as a Hamiltonian min-
imal Lagrangian, in [6] as a Hamiltonian suspension, and in [4] as a fibre
connect-sum of RP2s. It has minimal Maslov number 1 and has a monotone
representative in its Lagrangian isotopy class if λ = 1.

If λ ≥ 2 then the line � does not fit into the rectangle. The following
conjecture seems natural; while I cannot prove it, it inspired Theorem 3.1
below.

Conjecture 2.7. There is no Lagrangian Klein bottle in the class β if λ ≥ 2.

It is interesting to consider what happens for large λ. We have essentially
no tools to prove lower bounds when the Lagrangians are of high genus and
may be Floer-theoretically obstructed. The most pessimistic conjecture is
that Lagrangians with high genus become flexible enough that:

Conjecture 2.8. limλ→∞ N(X,ωλ, β) < ∞.

The following lemma gives an upper bound on N(X,ωλ, β), but it goes
to infinity with λ.

Lemma 2.9. We have N(X,ωλ, β) ≤ 20� + 2 when λ < 10� + 2.

Proof. If λ < 10� + 1 then there is a tropical Lagrangian in the class β with
nonorientable genus 20� + 2. We show the tropical curve for � = 2 in Fig. 3
below; for general � we simply repeat the pattern between the vertical blue
bars as often as required to get from the left-hand side to the right-hand side
of the rectangle.

The edges of this tropical curve are:
• internal edges parallel to either (3, 1) or (2,−1),

λ

⊗

⊗

Figure 2. A visible Lagrangian Klein bottle in (S2×S2, ωλ)
for λ < 2. The cores of two cross-caps are indicated with
cross-hairs
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Figure 3. A tropical curve giving a Lagrangian of genus
20� + 2 in the case � = 2

• external edges parallel to (2,−1) or (1, 2).
The corresponding tropical Lagrangian intersects the horizontal spheres with
even multiplicity and the vertical spheres with odd multiplicity, so it inhabits
the class β. The vertices of the tropical curve are not smooth2: each has self-
intersection equal to 2. By [9, Theorem 3.2], this tropical curve therefore
yields an immersed Lagrangian with 8� double points and 2 + 4� cross-caps
where it hits the boundary (marked with cross-hairs in Fig. 3). When we
perform Polterovich surgery at the double points, we obtain a Lagrangian
which is topologically a surface of genus 8� with 4� + 2 cross-caps. This has
Euler characteristic 2 − 16� − 4� − 2 = −20�, so the nonorientable genus is
2 + 20�. �

Remark 2.10. It seems harder to make the genus significantly smaller us-
ing tropical Lagrangians, but there is no reason to believe that tropical La-
grangians should give a sharp upper bound for N.

3. Nonsqueezing
3.1. Statement
For each connected open interval I ⊂ R (length |I|), let CI denote the cylinder
I×(R/2πZ) with coordinates (p, θ), equipped with the symplectic form 1

2π dp∧
dθ; this has total area |I|. Let S2 denote the 2-sphere equipped with its area
form σ satisfying

∫
S2 σ = 2.

Let UI = S2 × CI . Note that UI is obtained from (S2 × S2, ω|I|) by
excising the spheres S2 × {n, s}, where n, s denote the poles of the second
factor. Arguing as in Lemma 2.5, we see that if |I| > 1, the only nontrivial
class β ∈ H2(UI ;Z/2) is represented by a Lagrangian Klein bottle (see Fig.
4).

Theorem 3.1. Suppose that |I| ≤ 1. If ι : K → UI is a Lagrangian embedding
of the Klein bottle in the class β then ι∗ : Q = H1(K;Q) → H1(UI ;Q) = Q

is the zero map.

Remark 3.2. The proof of Theorem 3.1 will occupy the rest of the paper. It
uses SFT and neck-stretching.

2At each vertex of a tropical curve, the outgoing edges v1, v2, v3 must sum to zero; if we
write m for the determinant |v1 ∧ v2| = |v2 ∧ v3| = |v3 ∧ v1| then the self-intersection of
this vertex is defined to be m−1

2
. Smoothness means all vertices have self-intersection zero.
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Remark 3.3. Note that if |I| > 1 then H1(L;Q) → H1(UI ;Q) is an isomor-
phism for the Lagrangian Klein bottle L coming from Lemma 2.5. To see this,
take either one of the circles living over the points marked with cross-hairs
in Fig. 4; this is a generator for both H1(L;Q) and H1(UI ;Q). We deduce:

Corollary 3.4. The Lagrangian Klein bottle in U(0,1+ε) from Lemma 2.5 can-
not be squeezed into U(0,1).

Remark 3.5. To reduce Conjecture 2.7 to this result, you would need to pro-
duce a pair of symplectic spheres in the class [S2 × �] which “link” your La-
grangian Klein bottle in an appropriate way. Since this class has non-minimal
symplectic area, it is difficult to control the SFT limit of such spheres.

We now proceed to the proof of Theorem 3.1.

3.2. Mohnke’s almost complex structure
Pick a flat metric g on the Klein bottle. There is a contact form (the canonical
1-form) on the unit cotangent bundle M ⊂ T ∗K whose closed Reeb orbits
correspond to closed geodesics on K. We will not distinguish notationally
between geodesics and the corresponding Reeb orbits and we will write −γ for
the geodesic obtained by reversing γ. There are two isolated simple geodesics
γ0, γ1 which are the core circles for two disjoint embedded Möbius strips in
K. Any isolated geodesic is a multiple cover of one of these and all other
geodesics occur in one-parameter families. We call the isolated geodesics odd
and the other geodesics even.

Theorem 3.6. (Mohnke [10, Section 2.1]) There exists an almost complex
structure J− on the cotangent bundle T ∗K with the following properties:

1. J− is cylindrical at infinity and suitable for neck-stretching.
2. For any geodesic γ there is a finite-energy J−-holomorphic cylinder fγ

in T ∗K asymptotic to γ and −γ.
3. [10, Lemma 7(2)] Any J−-holomorphic cylinder in T ∗K which intersects

the zero-section is one of these fγ for some closed geodesic γ.

Remark 3.7. If we let W := T ∗K denote the compactification of the cotan-
gent bundle obtained by gluing on its ideal contact boundary M then there
is a well-defined intersection pairing H2(W,M ;Z/2) ⊗ H2(W ;Z/2) → Z/2.
The cylinders fγ define elements of H2(W,M ;Z/2) and we have [10, Lemma

2

|I|
⊗

⊗

Figure 4. The visible Lagrangian Klein bottle in UI when
|I| > 1
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7(3)]

fγ · K =

{
1 if γ is odd
0 if γ is even.

Remark 3.8. [10, Lemma 7(1)] Note that there are also no finite energy planes
in T ∗K, nor in the symplectisation R × M , for any cylindrical almost com-
plex structure adapted to our chosen contact form. This is because there
are no contractible Reeb orbits, and a finite energy plane would provide a
nullhomotopy of its asymptote.

3.3. Neck-stretching
Let I = (0, 1) and Ī = [0, 1]. Suppose there is a Lagrangian Klein bottle
K ⊂ UI such that Q = H1(K;Q) → H1(UI ;Q) = Q is nonzero (in particular,
it is injective). Think of K sitting inside UĪ and make symplectic cuts to UĪ

at p = 0, 1 to obtain a Lagrangian Klein bottle K living in the manifold
X = S2 × S2 equipped with the product symplectic form giving the factors
areas 2 and 1 respectively. Crucially, the symplectic cut introduces symplectic
spheres S0 and S1 (at the p = 0, 1 cuts respectively) which are disjoint from
K.

Pick a sequence of almost complex structures Jt, t ∈ R, on X with the
following properties:

• on a Weinstein neighbourhood of K, Jt coincides with Mohnke’s almost
complex structure J−;

• on a neck-stretching region (at, bt)×M around K, Jt is a neck-stretching
sequence;

• the spheres S0, S1 are Jt-holomorphic for all t ∈ R.

Pick a point k on K which does not lie on any of the cylinders fγ for an
odd geodesic γ. Let ut : S2 → X be a Jt-holomorphic curve representing the
class α = [� × S2] and such that ut(0) = k; there is a unique such ut up to
reparametrisation by a theorem of Gromov [7, 2.4.C], since α is a minimal
area sphere class in X.

By the SFT compactness theorem [2], there is a sequence ti such that
uti converges (after reparametrisations) to a holomorphic building with com-
ponents in T ∗K (the completion of the Weinstein neighbourhood of K), com-
ponents in R×M (the completion of the neck) and components in X\K (the
completion of the complement of the Weinstein neighbourhood).

3.4. SFT limit analysis
The components v1, . . . , vn of the SFT limit building living in X\K can be
compactified, yielding topological surfaces in X with boundary on K; we will
still denote these by v1, . . . , vn. The sum of the ω-areas of the vi (weighted by
multiplicities if the SFT limit involves a branched cover) equals the ω-area
of α, which is 1.

Lemma 3.9. There must be at least two planar components amongst the vi,
possibly geometrically indistinct (i.e. having the same image).
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Proof. First note that the limit building intersects K because ut(0) = k ∈ K
for all t. It also necessarily has at least one component in X\K because T ∗K is
exact and so contains no closed holomorphic curves. A genus zero holomorphic
building with at least two levels must have two planar components (just
for topological reasons) though these could be geometrically indistinct. Any
planar components live in X\K. �

Lemma 3.10. There are two components v0, v1 of the limit building such that
vi · Sj = δij. These components are planar and there are no further compo-
nents of the limit building in X\K.

Proof. Since α intersects S0 and S1 there must be components of the limit
building which intersect S0 and S1. By positivity of intersections, either:
(A) there is one component v1 which hits both S0 and S1 once transversely

and all other components are disjoint from S0, S1.
(B) there are two components v0, v1 such that v0 intersects S0 once trans-

versely and is disjoint from S1 and vice versa for v1.
Moreover, each of these components occurs with multiplicity one in the SFT
limit in order to get the correct intersection numbers α · S0, α · S1.

If v2 is a component which does not intersect S0 or S1 then it defines
a class in H2(UI ,K;Z). By assumption, the kernel of the map Z ⊕ Z/2 =
H1(K;Z) → H1(UI ;Z) = Z is precisely the torsion part. Therefore the long
exact sequence

· · · → H2(UI ;Z) → H2(UI ,K;Z) → H1(K;Z) → H1(UI ;Z) → · · ·
splits off a sequence

· · · → Z → H2(UI ,K;Z) → Z/2 → 0.

This implies that the areas of classes in H2(UI ,K;Z) are half-integer multi-
ples of the area of the generator β ∈ H2(UI ;Z), which is 2. Therefore v2 has
integer area.

The area of α is 1, so the (weighted) sum of the ω areas of the vi equals
1. Since v1 has positive area, v2 must have positive area strictly less than 1,
but this is not possible if v2 has integer area. Therefore there cannot be any
component v2 disjoint from S0 and S1.

By Lemma 3.9, there are at least two planar components (or one planar
component with multiplicity two) in the limit building. This is not compatible
with Case (A), so we must be in Case (B) and v0, v1 must additionally be
planes. �

Lemma 3.11. 1. All the remaining parts of the limit building are cylinders.
2. At least one of these cylinders lives in T ∗K and has the form fγ for an

odd geodesic γ.
3. There are no other cylindrical components of the SFT limit building in

T ∗K.

Proof. 1 If a component has three or more punctures then the limit build-
ing must contain at least three planar components (counted with mul-
tiplicity) but we have seen that all the planar components must live in
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X\K (Remark 3.8) and that there are precisely two such components
(Lemma 3.10).

2 Since ut(0) = k for all t, the limit building contains a component in
T ∗K, which must be a cylinder of the form fγ by Theorem 3.6(3). At
least one of these cylindrical components must correspond to an odd
geodesic because α has odd intersection with K in H2(X;Z/2) and the
intersection number picks up contributions from each component of the
building inside T ∗K, which are nontrivial if and only if γ is odd (Remark
3.7).

3 If there are two or more cylindrical components in T ∗K then there
must be a further cylindrical component in R × M which connects the
asymptotes of two of these cylinders. Since this cylinder has no positive
asymptote, this cannot exist by the maximum principle. �

Proof of Theorem 3.1. We chose k ∈ K not to lie on any of the cylinders fγ

for γ an odd geodesic, but we have showed that these are the only cylinders
which can arise as components of the SFT limit building. Since the SFT limit
building must pass through k, we get a contradiction. �
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Abstract. The notion of linear K-system was introduced by the present
authors as an abstract model arising from the structure of compactified
moduli spaces of solutions to Floer’s equation in the book (Fukaya et al.
in Springer monographs in mathematics, Springer, Berlin, 2020). The
purpose of the present article is to provide a geometric realization of
the linear K-system associated with solutions to Floer’s equation in the
Morse–Bott setting. Immediate consequences [when combined with the
abstract theory from Fukaya et al. (Springer monographs in mathemat-
ics, Springer, Berlin, 2020)] are the construction of Floer cohomology
for periodic Hamiltonian systems on general compact symplectic man-
ifolds without any restriction, and the construction of an isomorphism
over the Novikov ring between the Floer cohomology and the singular
cohomology of the underlying symplectic manifold. The present arti-
cle utilizes various analytical results on pseudoholomorphic curves es-
tablished in our earlier papers and books. However, the paper itself is
geometric in nature, and does not presume much prior knowledge of
Kuranishi structures and their construction but assumes only the ele-
mentary part thereof, and results from Fukaya et al. (Surv Differ Geom
22:133–190, 2018) and Fukaya et al. (Exponential decay estimate and
smoothness of the moduli space of pseudoholomorphic curves) on their
construction, and the standard knowledge on Hamiltonian Floer the-
ory. We explain the general procedure of the construction of a linear
K-system by explaining in detail the inductive steps of ensuring the
compatibility conditions for the system of Kuranishi structures leading
to a linear K-system for the case of Hamiltonian Floer theory.

Mathematics Subject Classification. 53D40, 53D35, 58D27, 57P99.

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
Kenji Fukaya is supported partially by Simons Collaboration on homological mirror sym-
metry, Yong-Geun Oh by the IBS project IBS-R003-D1, Hiroshi Ohta by JSPS Grant-
in-Aid for Scientific Research Nos. 15H02054, 21H00983, 21K18576, 21H00985 and Kaoru
Ono by JSPS Grant-in-Aid for Scientific Research, Nos. 26247006, 19H00636.

Reprinted from the journal 461

c© The Author(s), under exclusive licence to
Springer Nature Switzerland AG 2022, corrected
publication 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19111-4_17&domain=pdf
https://doi.org/10.1007/s11784-022-00960-x


K. Fukaya et al. JFPTA

Contents

1. Introduction 2
2. Floer’s equation and moduli space of solutions 6
3. Stable map compactification of Floer’s moduli space 11

3.1. Definition of M�(X,H;α−, α+) 11
3.2. Topology on M�(X,H;α−, α+) 15

4. Construction of Kuranishi structure 19
4.1. Statement 19
4.2. Obstruction bundle data 20
4.3. Smoothing singularities and ε-closeness 25
4.4. Kuranishi chart 31
4.5. Coordinate change 35

5. Compatibility of Kuranishi structures 37
5.1. Outer collar 37
5.2. Proof of Proposition 5.5 I: Obstruction space with outer collar 43
5.3. Proof of Proposition 5.5 II: Kuranishi chart and coordinate

change 49
6. Construction of morphism 51

6.1. Statement 51
6.2. Proof of Theorem 6.4 (1)(2): Kuranishi structure 53
6.3. Proof of Theorem 6.4 (3)(4): Kuranishi structure with outer

collar 60
7. Construction of homotopy 64
8. Composition of morphisms 70

8.1. Statement 70
8.2. Proof of Theorem 8.6 (1): Kuranishi structure 74
8.3. Proof of Theorem 8.6 (2): Kuranishi structure with outer collar 80

9. Well-definedness of Hamiltonian Floer cohomology 85
10. Calculation of Hamiltonian Floer cohomology 91
References 108

1. Introduction

The technique of virtual fundamental cycles or chains now provides us with
a general and powerful method for studying certain moduli spaces in sym-
plectic geometry and gauge theory. In [25], the first author and the fourth
of this article introduced the notion of Kuranishi structure and constructed
the virtual fundamental cycle of the moduli space of stable maps from a
marked semi-stable curve to a general closed symplectic manifold based on
the theory of Kuranishi structures, and applied it to Floer theory for peri-
odic Hamiltonian systems. After that, in [10,11], the authors of the present
article constructed the virtual fundamental chain of the moduli space of sta-
ble maps from a marked bordered semi-stable curve to a closed symplec-
tic manifold with Lagrangian boundary condition using the theory of Ku-
ranishi structures, and applied it to Lagrangian intersection Floer theory.
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In these two studies, we had to construct a certain compatible system of
Kuranishi structures on these moduli spaces.

Recently in [23], the authors developed a systematic foundation of the
theory of Kuranishi structures and virtual fundamental chains in a general
abstract setting. In particular, we axiomatized the properties of two systems,
called a linear K-system and a tree-like K-system, consisting of abstract para-
compact metrizable spaces equipped with Kuranishi structures satisfying cer-
tain compatibility conditions.

A tree-like K-system [23, Definition 21.9] is a model arising from the
moduli spaces of stable maps from a marked bordered semi-stable curve with
Lagrangian boundary condition which are used in Lagrangian Floer theory.
In fact, in [20,21], we carried out a geometric realization of the tree-like
K-system using the moduli spaces of stable maps from a marked bordered
semi-stable curve. Namely, we constructed a system of Kuranishi structures
on the moduli spaces which indeed satisfies the axioms of the tree-like K-
system given in [23]. In the procedure of constructing the required Kuranishi
structures we introduced the notion of obstruction bundle data assigned to
each point of the moduli space [20, Definition 5.1] and showed that we can
associate a Kuranishi structure on each moduli space to any obstruction
bundle data in a canonical way [20, Theorem 7.1]. In addition, if the sys-
tem of the obstruction bundle data satisfies certain compatibility conditions
(disk-component-wise system of obstruction bundle data in the sense of [21,
Definition 5.1]), then the obtained system of Kuranishi structures associated
to the system of obstruction bundle data defines a tree-like K-system [21,
Theorem 5.3].

On the other hand, a linear K-system [23, Definition 16.6] is the model
that is used in Floer theory for periodic Hamiltonian systems which arises
from the moduli spaces of solutions to Floer’s equation. The purpose of the
present article is to give a geometric realization of the linear K-system using
the moduli spaces of solutions to Floer’s equation. The strategy to achieve
this realization lies on the line similar to that for the tree-like K-system.
Namely, we introduce the notion of obstruction bundle data at each point for
the moduli spaces of solutions to Floer’s equation in Definition 4.11. Since we
explained the construction of a Kuranishi structure associated to obstruction
bundle data in [20,21] in detail and since such a construction is similar for
the case of a linear K-system, we mainly present the way to equip moduli
spaces with suitable obstruction bundle data in this article. In Sect. 5, we will
construct a system of obstruction bundle data satisfying certain compatibility
conditions which gives rise to a linear K-system. Comparing to [21], we take
a slightly different way for constructing the compatible system of obstruction
bundle data in order to demonstrate that both methods are applicable to
both cases. Here we use outer collars of the moduli spaces to describe the
compatibility. This method is outlined in [17, Remark 4.3.89]. The notion
of outer collars is introduced and used in [23, Chapter 17] in the abstract
setting.

Now our main theorem in this article is summarized as follows.
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Theorem 1.1. (Theorem 2.9) Let (X,ω) be a closed symplectic manifold and
H : X × S1 → R a smooth function. Suppose that the set Per(H) of all
contractible 1-periodic orbits of the time dependent Hamiltonian vector field of
H is Morse–Bott non-degenerate (see Condition 2.2). Then, we can construct
a linear K-system FX(H) such that the critical submanifolds are connected
components of ˜Per(H) (which are copies of connected components of Per(H),
see Definition 2.3), and the spaces of connecting orbits are the outer collared
spaces of the moduli spaces of solutions to Floer’s equation (2.4).

We also construct morphisms of linear K-systems. Combining these re-
sults with general properties concerning linear K-systems proved in [23], we
have the following theorems:

Theorem 1.2. (Theorem 9.1) Under the assumption of Theorem 1.1, we can
define the Floer cohomology HF (X,H; Λ0,nov) of a periodic Hamiltonian sys-
tem, also called the Hamiltonian Floer cohomology, which is independent of
various choices involved in the definition.

Here Λ0,nov is the Novikov ring defined by

Λ0,nov =

{ ∞
∑

i=0

aiT
λi

∣

∣

∣

∣

∣

ai ∈ C, λi ∈ R≥0, lim
i→∞

λi = ∞
}

. (1.1)

We define the Novikov field Λnov as its field of fractions by allowing λi to be
negative.

Theorem 1.3. (Theorem 9.2, Corollary 10.3) Suppose that two functions
H1,H2 : X × S1 → R satisfy the assumption in Theorem 1.1. Then the
Floer cohomologies HF (X,Hr; Λnov) over the Novikov field Λnov associated
to Hr (r = 1, 2) are isomorphic as Λnov-modules:

HF (X,H1; Λnov) ∼= HF (X,H2; Λnov).

Moreover, they are isomorphic to H(X; Λnov).

More specifically, in Theorem 2.9, we associate an inductive system of
linear K-systems in the sense of [23, Section 16] to a periodic Hamiltonian
system. Together with [23, Theorem 16.39], we obtain the Floer cohomology
of a periodic Hamiltonian system in Theorem 9.1. In Sect. 6 we construct a
morphism between two linear K-systems associated to different Hamiltonians
in Theorem 6.4. Together with [23, Theorem 16.39], it implies that the Floer
cohomology of a periodic Hamiltonian system is independent of the Hamil-
tonian function (Theorem 9.2). We then calculate the Floer cohomology of a
periodic Hamiltonian system on any compact symplectic manifold in Sect. 10.
See Corollary 10.3. It gives a proof of the homological version of Arnold’s
conjecture [2] about the number of periodic orbits of a periodic Hamiltonian
system. This proof is the same as those in the literature [25,29,33], modulo
technical detail. All the proofs in the literature as well as the one in this ar-
ticle, first define the Floer cohomology of a periodic Hamiltonian system. In
the generality we discuss here, we need to use virtual fundamental chain tech-
niques. The references [25,29,33] use various versions of virtual fundamental
chain techniques ([23,28,36] etc.) for this purpose.
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A significant difference lies in the way we prove that the Floer cohomol-
ogy of a periodic Hamiltonian system on a symplectic manifold X is isomor-
phic to the cohomology of X itself. In the literature there appeared basically
three different ways to prove it. (We mention only the methods which are
established to work for arbitrary compact symplectic manifolds.)
(1) Morse–Bott method:

(a) We first include the case when the set Per(H) of periodic orbits
of the periodic Hamiltonian H : X × S1 → R does not necessarily
consist of isolated points but is a submanifold. Technically speaking
we include the case when Floer’s functional AH (see (2.9)) is not
necessarily a Morse function but only a Morse–Bott function.

(b) We prove the independence of the Floer cohomology of the periodic
Hamiltonian H.

(c) We next consider the case when H ≡ 0 and prove that the Floer
cohomology of the periodic Hamiltonian system is isomorphic to
the cohomology of X.

(2) Method to reduce to a small Morse function:
We consider the case when the Hamiltonian H is sufficiently small

in the C2 sense and is time independent. We prove that the Floer coho-
mology of the periodic Hamiltonian system is isomorphic to the (Morse)
homology of X in that case.

(3) Reduction to Lagrangian Floer cohomology ([8]) of the diagonal:
(a) We consider the diagonal Δ ⊂ X × X in the direct product of X

with itself with symplectic form −ω ⊕ ω.
(b) We prove that Lagrangian intersection Floer cohomology

HF ((Δ, b), (Δ, b); Λ0,nov)

is well-defined in the sense of [10].
(c) We prove that HF ((Δ, b), (Δ, b); Λ0,nov) is isomorphic to

H(X; Λ0,nov) for a certain choice of a bounding cochain b.
The method of this article (Sect. 10) is a variation of the Morse–Bott method
(1). We do not use S1 equivariant Kuranishi structures explicitly. This is the
point where our discussion is slightly different from those in the literature
but is the same as in [31]. The method (2) was used in [25]. We provided its
technical details in [13, Part 5]. The method (3) is [10, Theorem H]. See also
[18, Subsection 6.3.3].

Any of those methods implies the following inequality due to [25,29,33]:

#Per(H) ≥
∑

k

rankHk(X;Q), (1.2)

which was proved by several people for some special cases of X, for example,
[7,9,26,30]. The case when the coefficient field Q is replaced by a finite field
is studied in a recent paper by Abouzaid–Blumberg [1].

In the present paper, we presume that readers have only basic knowl-
edge concerning the theory of Kuranishi structures, for example, some basic
definitions and terminology contained in the quick survey [22, Part 7] or in
the much shorter summary [20, Section 6]. While we use some part of [23],
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we refer to it in a pinpointed way, so readers do not have to understand
the details of the proof therein. We also use the notion of outer collaring
introduced in [23, Chapter 12], but do not assume readers’ knowledge of the
contents thereof. As for the analytic arguments, we employ the results from
[16]. We also use the arguments in [16, Chapter 8] to prove smoothness of the
coordinate change. In other words, we use the exponential decay estimates
but do not use its proof. In this way [16] (except Chapter 8) and most parts
of [23] are used as a ‘black box’ in this article.

Then, based on the arguments and results in [20] (See also [15,19].),
we will construct the desired Kuranishi structures. Although there are some
parts, especially Part 5 in [13] related to this article, we do not assume the
contents of [13] for reading this article. Indeed we will repeat and describe
the arguments here if necessary.

Throughout this paper, a K-space means a paracompact metrizable
space with a Kuranishi structure. A K-system is an abbreviation for a sys-
tem of K-spaces. We assume that X is any closed symplectic manifold, unless
otherwise mentioned.

The authors would like to thank a referee for careful reading and useful
comments.

2. Floer’s equation and moduli space of solutions

We review Floer’s moduli space in this section. Our discussion is mostly the
same as [13, Section 29], except that we include the case when the space of
contractible periodic orbits has positive dimension. We repeat several parts
for the reader’s convenience.

Let H : X × S1 → R be a smooth function on a symplectic manifold
(X,ω). We put Ht(x) = H(x, t) where t ∈ S1 and x ∈ X. The function Ht

generates the Hamiltonian vector field XHt
defined by

iXHt
ω = dHt.

It defines a one parameter family of diffeomorphisms expH
t : X → X by

expH
0 (x) = x,

(

d expH
t

dt

)

(x, t0) = XHt0
(expH

t0(x)).
(2.1)

We denote by Per(H) the set of all 1-periodic orbits of the time dependent
vector field XHt

. We can identify

Per(H) ∼= Fix(expH
1 ) = {x ∈ X | expH

1 (x) = x}. (2.2)

From now on, Per(H) denotes the set of contractible 1-periodic orbits. Our
assumption that Per(H) is non-degenerate in the Morse–Bott sense is as
follows:

Condition 2.1. We say that Per(H) is Morse–Bott non-degenerate if the fol-
lowing holds.
(1) Fix(expH

1 ) is a smooth submanifold of X.
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(2) Let x ∈ Fix(expH
1 ) and consider the linear map: dxexpH

1 : TxX → TxX.
We require

Tx(Fix(expH
1 )) = {V ∈ TxX | (dxexpH

1 )(V ) = V }. (2.3)

Remark 2.2. The typical examples where Condition 2.1 is satisfied are the
following two cases.
(1) Per(H) is discrete. In this case, Condition 2.1 is equivalent to the con-

dition that the graph of expH
1 is transversal to the diagonal in X × X.

(2) The case H = 0.
To prove (1.2) it suffices to study these two cases only.

Definition 2.3. We put
˜Per(H) = {(γ,w) | γ ∈ Per(H), w : D2 → X, w(e2πit) = γ(t)}/ ∼,

where (γ,w) ∼ (γ′, w′) if and only if γ = γ′ and

ω([w] − [w′]) = 0, c1(TX)([w] − [w′]) = 0.

We have a natural surjection � : ˜Per(H) 
 [(γ,w)] → γ ∈ Per(H). We put
G = π2(X)/ ∼, where α ∼ α′ if and only if ω[α] = ω[α′] and c1(TX)[α] =
c1(TX)[α′]. Then the group G acts on˜Per(H) by changing the bounding disk
w : D2 → X so that the action on the fiber �−1(∗) is simply transitive.

Following [9], we consider maps u : R×S1 → X satisfying the equation

∂u

∂τ
+ J

(

∂u

∂t
− XHt

◦ u

)

= 0 (2.4)

which we call Floer’s equation. Here τ and t are the coordinates of R and S1 =
R/Z, respectively. For γ̃± = (γ±, w±) ∈ ˜Per(H) we consider the boundary
condition

lim
τ→±∞ u(τ, t) = γ±(t). (2.5)

Proposition 2.4. We assume Condition 2.1. Then for any solution u of (2.4)
with

∫

R×S1

∥

∥

∥

∥

∂u

∂τ

∥

∥

∥

∥

2

dτdt < ∞

there exists γ± ∈ Per(H) such that (2.5) is satisfied.

Proof. In the case of Remark 2.2 (1) this is proved by Floer [9, Proposition
3b]. In the case Remark 2.2 (2) this follows from the removable singularity
theorem for pseudo-holomorphic curves. The general case can be proved in
the same way as in [25, Lemma 11.2]. We omit the details of the proof of
the general case since to prove (1.2) it suffices to consider the two cases in
Remark 2.2. �
Remark 2.5. The convergence (2.5) is of exponential order. Namely we have

‖u(τ, t) − γ±(t)‖Ck ≤ Cke−ck|τ |

for some ck > 0, Ck > 0.
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We decompose ˜Per(H) into connected components and write

˜Per(H) =
∐

α∈A

Rα. (2.6)

Here A is the index set for connected components of ˜Per(H). We denote by
Rα ⊂ X the image of Rα under the projection � : [(γ,w)] ∈ ˜Per(H) →
γ(0) ∈ Fix(expH

1 )(∼= Per(H)), see (2.2). In the Morse–Bott situation,1 we
need to use certain local systems on the space of 1-periodic orbits to equip
the moduli spaces of solutions to Floer’s equation for defining Floer complexes
and chain homomorphisms with the orientation isomorphisms in the sense of
linear K-systems [23, Condition 16.1 (VII)]. Gluing D2 and [0,∞) × S1 by
identifying e2π

√−1t ∈ ∂D2 and (0, [t]) ∈ {0} × S1, we obtain a capped half
cylinder Z.

For each 1-periodic orbit γ ∈ Rα, let Pγ(Rα) be the set of trivializations
of γ∗TX as a symplectic vector bundle and write P(Rα) = ∪γ∈Rα

Pγ(Rα).
Pick t ∈ Pγ(Rα). Using t, we extend γ∗TX to a symplectic vector bundle over
D2. Gluing it with (γ◦pr2)∗TX on [0,∞)×S1, we obtain a symplectic vector
bundle E(t) on Z. Here pr2 : [0,∞)×S1 → S1 is the second factor projection.
We extend γ∗J∂D2={0}×S1 to a complex structure, which is also denoted by
J of the vector bundle E(t). The pull-back of the unitary connection induces
a holomorphic vector bundle structure on E(t) → Z. Pick a cut-off function
χ : [0,∞) → R such that χ = 0 near 0 and χ(τ) = 1 for sufficiently large τ .

Based on [9, section 2e] and [25, section 21], we define the map P (γ; t) :
Γ(Z;E(t)) → Γ(Z;E(t) ⊗ Λ0,1) by

P (γ; t)ξ

=

{

∂E(t)ξ on D2,

(1 − χ(τ)) ∂E(t)ξ(dτ − √−1dt) + χ(τ)Dγ∂J,Hξ on [0,∞) × S1.

(2.7)

Here Dγ∂J,H is the linearization operator for Floer’s equation of connecting
orbits at the stationary solution u(τ, t) = γ(t), i.e.,

Dγ∂J,Hξ =
(

∇ ∂
∂τ

ξ + ∇ ∂
∂t

(Jξ) − ∇ξ(JXH)
)

(dτ − √−1dt).

Pick a positive number δ such that δ is less than the absolute values of
the non-zero eigenvalues of the self adjoint differential operator ζ �→ Aζ =
∇ ∂

∂t
(Jζ)−∇ζ(JXH) on S1. We use eδτ for defining weighted Sobolev spaces

and regard the operator P (γ; t) as an operator

P (γ; t) : W 1,p
δ (Z;E(t)) → Lp

δ(Z;E(t) ⊗ Λ0,1).

For two trivializations t1, t2, the operators P (γ; t1) and P (γ; t2) may have
different Fredholm indices, in general. However, the real determinant bun-
dles as O(1)-bundles are canonically identified. These operators coincide on
[0,∞)×S1, where we do not use trivializations. They may differ on D2. Note

1In the non-degenerate case, the issue discussed here was written in [9,25]. Here we extend
the argument to the Morse–Bott case.
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that there exists a complex vector bundle F on CP 1 such that E(t2) is isomor-
phic to the gluing and smoothing of E(t1) and F along the fibers on 0 ∈ D2

and ∞ ∈ CP 1. Since the Dolbeault operator ∂F on CP 1 with coefficients
in F is a complex Fredholm operator, its index is a virtual complex vector
space and the coincidence condition for sections of E(t1) and F at 0 ∈ D2

and ∞ ∈ CP 1 is required in the complex vector space E(t1)|0 = F |∞. Hence
its real determinant is canonically oriented (complex orientation). Thus the
real determinant lines for the operator P (γ; t1) and P (γ; t2) are canonically
isomorphic. The determinant line bundle for the family P (γ; t) on P(Rα)
descends to an O(1)-bundle on Rα, which we denote by oRα

. (In the case of
Floer theory for Lagrangian intersections, see [11, Proposition 8.8.1].)

Definition 2.6. We call oRα
on Rα the orientation system of the critical sub-

manifold Rα (see [23, Condition 16.1 (VII) (i)]).

Definition 2.7. Let α1, α2 ∈ A. We denote by ˜Mreg(X,H;α−, α+) the set of
all maps u : R × S1 → X with the following properties:
(1) u satisfies (2.4).
(2) There exist γ̃± = (γ±, w±) ∈ Rα± such that (2.5) and

w−#u ∼ w+

are satisfied. Here # is the obvious concatenation.

The translation along τ ∈ R defines an R action on ˜Mreg(X,H;α−, α+). This
R action is free unless α− = α+. We denote by Mreg(X,H;α−, α+) the quo-
tient space of this action. For the case α− = α+, the set Mreg(X,H;α−, α+)
is the empty set by definition.

We define the evaluation map

ev = (ev−, ev+) : Mreg(X,H;α−, α+) → Rα− × Rα+ (2.8)

by

ev(u) = ((γ−, w−), (γ+, w+)).

Remark 2.8. Note that w− can not be determined by the map u only. In fact if
[v] ∈ π2(X) then u may be also regarded as an element of Mreg(X,H; [v]#α−,

[v]#α+). More precisely, an element of ˜Mreg(X,H;α−, α+) should be re-
garded as a pair (u, α−). We write u instead of (u, α−) in the case no confu-
sion can occur.

The main result we will prove in Sects. 3–5 is the following.

Theorem 2.9. We assume Condition 2.1.
(1) The space Mreg(X,H;α−, α+) has a compactification M(X,H;α−, α+).
(2) The compact space M(X,H;α−, α+) has a Kuranishi structure with

corners. The evaluation map ev is extended to it as a strongly smooth
map in the sense of [23, Definition 3.40].

(3) There exists a linear K-system FX(H), whose critical submanifold is Rα

(α ∈ A) and whose space of connecting orbits is M(X,H;α−, α+)�1.
Here M(X,H;α−, α+)�1 is the outer collaring of M(X,H;α−, α+).
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See Definition 5.1 for the notion of the outer collaring. (We use oRα
in

Definition 2.6 as the orientation on Rα.)
(4) The Kuranishi structure on M(X,H;α−, α+)�1 in (3) coincides with

one in (2) on M(X,H;α−, α+) ⊂ M(X,H;α−, α+)�1.

In later sections, we consider a slightly general case when we include ad-
ditional interior marked points on the domain. We will denote such a moduli
space by M�(X,H;α−, α+) where � is a number of interior marked points.
See Sect. 3 for the precise definition.

Definition 2.10. Theorems 2.9 and [23, Theorem 16.39] define a Λ0,nov-
module. We call the resulting Λ0,nov-module the Floer cohomology of a peri-
odic Hamiltonian system and write HF (X,H; Λ0,nov).

See Theorem 9.1 for the well-definedness of the Floer cohomology group
HF (X,H; Λ0,nov).

The proof of Theorem 2.9 occupies Sects. 3–5. In the rest of this section,
we discuss an easy part of the construction.

Definition 2.11. We define group homomorphisms E : π2(X) → R and μ :
π2(X) → Z by E(β) = ω[β], μ(β) = 2c1(TX)[β]. We recall that the image
of (E,μ) : π2(X) → R × Z is isomorphic to the group G in Definition 2.3.
We also denote by E : G → R and μ : G → Z the induced homomorphisms,
respectively.

The map E : A → R is defined by E(α) = ω[w] where (γ,w) ∈ Rα.

Remark 2.12. It is easy to see that E : A → R is well-defined. Namely ω[w]
is independent of the element (γ,w) but depends only on Rα. In the case of
Remark 2.2 (1) this is trivial. In the case of Remark 2.2 (2) this follows from
the fact that G = A in this case. In the general case, it follows from the fact
that Rα is a critical submanifold of Floer’s functional AH defined by

AH(γ,w) =
∫

D2
w∗ω +

∫

S1
H(γ(t), t)dt. (2.9)

To define μ : A → Z we recall that the linearized operator of the Eq.
(2.4) is given by

Du∂ − ∇·(JXH) ⊗ (dτ − √−1dt) : L2
m+1,δ(R × S1;u∗TX)

→ L2
m,δ(R × S1;u∗TX ⊗ Λ0,1).

(2.10)

Here V �→ ∇V (JXH) is the covariant derivative of JXH with respect to the
tangential vector V . Here L2

m,δ is the completion of the space of smooth
sections with respect to the weighted L2

m norm with weight eδ|τ |. (Here δ > 0
and τ is the coordinate of R. We assume that m is sufficiently large, say
> 100.)

Definition 2.13. We define the virtual dimension of Mreg(X,H;α−, α+) by

dim Mreg(X,H;α−, α+) = Index(2.10) + dimRα− + dimRα+ − 1.

Here u is an element of Mreg(X,H;α−, α+).
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Let (γ,w) ∈ Ra. Recall w : D2 → X. We take a smooth map R× S1 →
D2 such that it is the projection to ∂D2 = S1 on R≥0 × S1, is constantly
equal to 0 on R≤−T × S1 and defines a diffeomorphism from (−T, 0) × S1

onto IntD2\{0}. We compose it with w to obtain uw : R × S1 → X. Let
χ : R → [0, 1] be a smooth function such that χ(τ) = 0 for τ < −1 and
χ(τ) = 1 for τ > 1. We modify (2.10) to define

Du∂ − χ(τ)∇·(JXH) ⊗ (dτ − √−1dt) : L2
m+1,δ(R × S1;u∗

wTX)

→ L2
m,δ(R × S1;u∗

wTX ⊗ Λ0,1).
(2.11)

Let (γ,w) ∈ Ra. Note that w : D2 → X induces a trivialization of w∗TX →
D2, hence the one of γ∗TX, which is denoted by tw.

Definition 2.14. We define μ : A → Z by

μ(α) = IndexP (γ, tw).

Lemma 2.15. (1) For β ∈ π2(X) and α ∈ Rα. We have

μ(βα) = μ(α) + 2c1(TX)[β].

(2) In the case H ≡ 0, A = G and μ(β) = 2c1(TX)[β].
(3) We have

dim Mreg(X,H;α−, α+) = μ(α+) − μ(α−) − 1 + dimRα+ .

Proof. (1) follows from the excision property of the index.
Let (γ±, w±) ∈ Rα± . To prove (3) it suffices to show that

Index(2.10) + dimRα− + IndexP (γ−, tw−) = IndexP (γ+, tw+). (2.12)

We can prove (2.12) as follows. We remark that our operator is of the form
d
dτ + Qτ where Qτ is a family of elliptic differential operators on S1. If we
write P (γ−, tw−) in this form, then in the limit τ → ∞, the multiplicity of
zero eigenvalue of the operator Qτ is exactly equal to dim Rα− . If we write
(2.10) in this form, then in the limit τ → −∞, the operator Qτ has exactly
dim Rα− as the multiplicity of zero eigenvalue. (2.12) is a consequence of this
observation and a well established result on spectral flow [4, section 7].

We finally prove (2). In view of (1)(3), it suffices to show the case β = 0.
Namely, γp is the constant periodic orbit at p for H = 0 and the constant
bounding disk wp : D2 → X induces the canonical trivialization ttri, i.e.,
(γp)∗TX ∼= S1 × TpX. In that case we can see directly that the index of
P (γp, ttri) is 0 by, e.g., the Atiyah–Patodi–Singer index formula [3]. �

3. Stable map compactification of Floer’s moduli space

3.1. Definition of M�(X, H;α−, α+)
We define a compactification of the space Mreg(X,H;α−, α+) in this section.
This compactification is classical. The description of this section is mostly the
same as that of [13, Section 30]. We repeat the argument for reader’s conve-
nience and to fix the notation. We need to stabilize the domain sometimes in
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later constructions. For this purpose we treat the case when we include inte-
rior marked points on the domain. We will denote it by M�(X,H;α−, α+)
where � is a number of interior marked points.

Remark 3.1. Including marked points also has applications to symplectic
topology [12]. Especially it is used in the construction of the spectral in-
variant with bulk, which is now known to contain more informations than
the version without bulk. (See [22,37].)

We consider (Σ, (z−, z+, �z)), a genus zero semistable curve Σ with 2 + �
marked points z−, z+ and �z = (z1, . . . , z�). Two marked points z−, z+ will
play different roles.

Definition 3.2. • Let Σ0 be the union of the irreducible components of Σ
such that
(1) z−, z+ ∈ Σ0.
(2) Σ0 is connected.
(3) Σ0 is the smallest among those satisfying (1),(2) above.

We call Σ0 the mainstream of (Σ, (z−, z+, �z)), or simply, of Σ. An irre-
ducible component of the mainstream Σ0 is called a mainstream compo-
nent. Other irreducible components of Σ are called bubble components.

• Let Σa ⊂ Σ be a mainstream component. If z− /∈ Σa, then there exists
a unique singular point za,− of Σ contained in Σa such that
(1) z− and Σa\{za,−} belong to the different connected component of

Σ\{za,−}.
(2) z+ and Σa\{za,−} belong to the same connected component of

Σ\{za,−}.
In case z− ∈ Σa we set z− = za,−. We define za,+ in the same way.

We call za,± the transit points. We call other singular points non-
transit singular points.

• A parametrization of the mainstream of (Σ, (z−, z+, �z)) is ϕ = {ϕa},
where ϕa : R × S1 → Σa for each irreducible component Σa of the
mainstream such that:
(1) ϕa is a biholomorphic map ϕa : R × S1 ∼= Σa\{za,−, za,+}.
(2) limτ→±∞ ϕa(τ, t) = za,±.

• A union of one mainstream component and all the trees of the bubble
components rooted on it is called an extended mainstream component.
We sometimes denote by ̂Σa the extended main stream component con-
taining the mainstream component Σa. Here and hereafter we call each
of ̂Σa\{za,−, za,+} an interior of extended mainstream component. See
Fig. 1.

Let A be as in (2.6) and α± ∈ A.

Definition 3.3. The set ̂M�(X,H;α−, α+) consists of triples ((Σ, (z−, z+, �z)),
u, ϕ) satisfying the following conditions: Here � = #�z.

(1) (Σ, (z−, z+, �z)) is a genus zero semistable curve with �+2 marked points.
(2) ϕ is a parametrization of the mainstream.
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z− z+

Transit points

Main stream

Bubble

Bubble

zi ∈ z

Non-transit double point

Figure 1. (Σ, (z−, z+, �z))

(3) For each extended main stream component ̂Σa, the map u induces ua :
̂Σa\{za,−, za,+} → X which is a continuous map.2

(4) If Σa is a mainstream component and ϕa : R × S1 → Σa is as above,
then the composition ua ◦ ϕa satisfies the Eq. (2.4).

(5)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

dτdt < ∞.3

(6) If Σb is a bubble component, then u is pseudo-holomorphic on it.
(7) If ̂Σa1 and ̂Σa2 are extended mainstream components and if za1,+ =

za2,−, then

lim
τ→+∞(ua1 ◦ ϕa1)(τ, t) = lim

τ→−∞(ua2 ◦ ϕa2)(τ, t)

holds for each t ∈ S1. ((5) and Proposition 2.4 imply that both of the
left and right hand sides converge.)

(8) If ̂Σa, ̂Σa′ are extended mainstream components and za,− = z−, za′,+ =
z+, then there exist (γ±, w±) ∈ Rα± such that

lim
τ→−∞(ua ◦ ϕa)(τ, t) = γ−(t),

lim
τ→+∞(ua′ ◦ ϕa′)(τ, t) = γ+(t).

Moreover,

[u∗[Σ]]#w− = w+

where # is the obvious concatenation.

2In other words u is a continuous map from the complement of the set of the transit points.
3Condition (5) follows from the rest of the conditions in Definition 3.3.
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(9) We assume ((Σ, (z−, z+, �z)), u, ϕ) is stable in the sense of Definition 3.5
below.

To define stability we first define the group of automorphisms.

Definition 3.4. We assume that ((Σ, (z−, z+, �z)), u, ϕ) satisfies (1)–(8) above.
The extended automorphism group Aut+((Σ, (z−, z+, �z)), u, ϕ) of ((Σ, (z−, z+,
�z)), u, ϕ) consists of maps v : Σ → Σ with the following properties:
(1) v(z−) = z− and v(z+) = z+. In particular, v preserves each of the

mainstream component Σa of Σ. Moreover, v fixes each of the transit
points.

(2) u = u ◦ v holds outside the set of the transit points.
(3) If Σa is a mainstream component of Σ, then there exists τa ∈ R such

that

(v ◦ ϕa)(τ, t) = ϕa(τ + τa, t). (3.1)

on R × S1.
(4) There exists σ ∈ Perm(�) such that v(zi) = zσ(i). Here Perm(�) denotes

the group of permutations of � elements.
The automorphism group Aut((Σ, (z−, z+, �z)), u, ϕ) of ((Σ, (z−, z+, �z)),

u, ϕ) consists of the elements of Aut+((Σ, (z−, z+, �z)), u, ϕ) such that σ in
Item (4) is the identity.

Definition 3.5. We say ((Σ, (z−, z+, �z)), u, ϕ) is stable if Aut((Σ, (z−, z+, �z)),
u, ϕ) is a finite group. (This is equivalent to the finiteness of Aut+((Σ, (z−, z+,
�z)), u, ϕ).)

Lemma 3.6. An element ((Σ, (z−, z+, �z)), u, ϕ) satisfying (1)–(8) of Defini-
tion 3.3 is stable if and only if, for each irreducible component Σi of Σ, one
of the following holds.
(1) Σi is a bubble component, and u is nonconstant on Σi.
(2) Σi is a bubble or a mainstream component, and

#((�z ∪ {z−, z+}) ∩ Σi) + #(Singular points on Σi) ≥ 3.

(3) Σi is a mainstream component Σa, and
d
dτ

(u ◦ ϕa)

is nonzero at some point. Here τ is the coordinate of the R factor in
R × S1.

The proof is left to the reader.

Definition 3.7. On the set ̂M�(X,H;α−, α+) we define two equivalence rela-
tions ∼1, ∼2 as follows.

((Σ, (z−, z+, �z)), u, ϕ) ∼1 ((Σ′, (z′
−, z′

+, �z′)), u′, ϕ′) if and only if there
exists a biholomorphic map v : Σ → Σ′ with the following properties:
(1) v(z−) = z′

− and v(z+) = z′
+. In particular v sends the mainstream of

Σ to the mainstream of Σ′. Moreover, v sends transit points to transit
points.
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(2) u′ = u ◦ v holds outside the transit points.
(3) If Σa is a mainstream component of Σ and v(Σa) = Σ′

a′ , then we have

v ◦ ϕa = ϕ′
a′ (3.2)

on Σa\{za,−, za,+}.
(4) v(zi) = z′

i.
The equivalence relation ∼2 is defined replacing (3.2) by existence of

τa ∈ R such that

(v ◦ ϕa)(τ, t) = ϕ′
a′(τ + τa, t). (3.3)

We put

˜M�(X,H;α−, α+) = ̂M�(X,H;α−, α+)/ ∼1,

M�(X,H;α−, α+) = ̂M�(X,H;α−, α+)/ ∼2 .

In case � = 0 we write M(X,H;α−, α+) etc.

Definition 3.8. For the case X = one point and H ≡ 0, we obtain the space
M�(one point, 0;α0, α0). Here α0 is the unique point in Per(0). We denote
this space by M�(source).

Remark 3.9. The parametrization ϕa : R × S1 → Σa\{za,−, za,+} of each
mainstream component Σa is automatically determined by the marked curve
(Σ, z−, z+, �z) up to the ambiguity ϕa(τ, t) �→ ϕa(τ +τ0, t+t0) where (τ0, t0) ∈
R× S1. In other words, the choice of parametrization of the mainstream one
to one corresponds to the choice of one additional marked point on each
mainstream component. We can use this fact to define the structure of an
orbifold with corner on M�(source).

Example 3.10. (1) M0(source) = ∅. M1(source) ∼= S1. In fact, its point is
determined by the S1 factor of the marked point.

(2) M2(source) ∼= S1 × S1 × [0, 1]. To see this let us first consider the case
when there is only one mainstream component. In that case let ϕ(τi, ti)
(i = 1, 2) be the marked points. Because of translation symmetry t1, t2
and τ2 − τ1 parametrize such elements of M2(source). (Note in case
these two marked points coincide there occurs bubble.) The boundary
S1 × S1 × ∂[0, 1] then corresponds to the situation where there are two
mainstream components.

Definition 3.11. An element [(Σ, (z−, z+, �z)), u, ϕ] of M�(X,H;α−, α+) is
said to be source stable if (Σ, (z−, z+, �z)) is stable as genus zero marked
curve.

3.2. Topology on M�(X, H;α−, α+)
We next define a topology on the moduli space M�(X,H;α−, α+). It is
mostly the same as the topology of the moduli space of stable maps which
was introduced in [25, Definitions 10.2 and 10.3]. However, since the notion
of equivalence relation ∼2 is slightly different (namely the condition (3.3) is
included) it is slightly different.
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We here recall the following well-known fact. Suppose that a sequence
of genus 0 stable curves (Σj , (zj

−, zj
+, �zj)) converges to (Σ, (z−, z+, �z)) in the

moduli space of stable curves. Then for a sufficiently small ε > 0 and a large
j we have a biholomorphic embedding

ψj,ε : Σ\(ε neighborhood of singular points) → Σj , (3.4)

�zj,ε ⊂ Σ and R(ε) > 0 such that the following holds.

Condition 3.12. (1) limj→∞,ε→0 zj,ε
i = zi for each i ∈ {1, . . . , �,+,−}.

(2) limε→0 R(ε) = ∞.
(3) ψj,ε(z

j,ε
i ) = zj

i .
(4) Any connected component of the complement of the image of ψj,ε is

biholomorphic to one of [0, R] × S1 with R > R(ε), (−∞, 0] × S1, or
[0,∞) × S1.

We can use Margulis’ lemma to prove it. (See [5, Chapter 4], [32, Chapter
11], [27, Chapter IV], for example.) In fact, we can use this condition as the
definition of the topology of the moduli space of marked stable curves of
genus 0.

Definition 3.13. Suppose that elements [(Σ, (z−, z+, �z)), u, ϕ] and [(Σj , (zj
−,

zj
+, �zj)), uj , ϕj ] of M�(X,H;α−, α+) are source stable. We say [(Σj , (zj

−, zj
+

, �zj)), uj , ϕj ] converges to [(Σ, (z−, z+, �z)), u, ϕ] and write

lims
j→∞

[(Σj , (zj
−, zj

+, �zj)), uj , ϕj ] = [(Σ, (z−, z+, �z)), u, ϕ]

if there exist ψj,ε, �zj,ε ⊂ Σ and R(ε) > 0 as in (3.4) with the following
properties.
(1) Condition 3.12 (1)–(4) are satisfied.
(2) For each ε > 0

lim
j→∞

sup{d(uj(ψj,ε(z)), u(z)) | z ∈ Dom(ψj,ε)} = 0. (3.5)

Here Dom(ψj,ε) = Σ\(Union of ε neighborhoods of singular points) is
the domain of ψj,ε as in (3.4) and d is a metric on X.4

(3) For each mainstream component Σa of Σ there exist a mainstream com-
ponent Σj

a(j) of Σj and Tj → ∞, τj ∈ R such that

lim
j→∞

sup{d((ϕ−1
aj

◦ ψj,ε ◦ ϕa)(τ − τj , t), (τ, t)) | (τ − τj , t) ∈ [−Tj , Tj ] × S1} = 0.

(3.6)

Here d is the standard metric on R × S1.
(4) The ‘diameter’ of the image of uj of each connected component W of

Σj\ψj,ε(Dom(ψj,ε)) converges to 0 in the sense of Condition 3.16 below.

To state Condition 3.16 below we need some notation. Let

((Σ, (z−, z+, �z)), u, ϕ) ∈ ̂M�(X,H;α−, α+)

4This condition is independent of d since X is compact.

Reprinted from the journal476



and define

û : Σ → X

as follows. We use the flow map expH
t : X → X defined in (2.1). We identify

t ∈ [0, 1) ⊂ S1 ∼= R/Z.
(1) If z ∈ Σ is in the mainstream component Σa and is not a transit point,

then we take (τ, t) with ϕa(τ, t) = z and put

û(z) = (expH
t )−1(u(z)).

(2) Suppose z ∈ Σ is in a bubble component. Let z0 be the root of the
bubble tree containing z. We take (τ, t) with ϕa(τ, t) = z0. Then we
put

û(z) = (expH
t )−1(u(z)).

(3) (1) and (2) define û outside the set of the singular points. It is easy to
see that it extends to a map û : Σ → X.

Remark 3.14. (1) The map u does not extend continuously to the transit
point. In fact, the image of the neighborhood of the transit point con-
tains a periodic orbit which may not consist of a point. After composing
(expH

t )−1 it can be extended to a continuous map because of (2.5).
(2) The map û is not continuous at t = [0] = [1] ∈ S1. This is because

ϕH
1 �= ϕH

0 = identity. However, it is continuous at the transit point.

Definition 3.15. We call û the redefined connecting orbit map.

Condition 3.16. In the situation of Definition 3.13 we require the following.
There exists o(ε, j) > 0 with limj→∞,ε→0 o(ε, j) → 0 such that for each
connected component W of Σj\ψj,ε(Dom(ψj,ε)) we have either

(i) Diam(ûj(W)) < o(ε, j) for the case when W corresponds to a transit
point of (Σ, (z−, z+, �z)), u, ϕ), or

(ii) Diam(uj(W)) < o(ε, j) for the case when W corresponds to a non-transit
singular point of (Σ, (z−, z+, �z)), u, ϕ).

Here ûj is the redefined connecting orbit map of ((Σj , (zj
−, zj

+, �zj)), uj , ϕj).

Definition 3.17. We say a sequence [(Σj , (zj
−, zj

+, �zj)), uj , ϕj ] in M�(X,H;
α−, α+) converges to [(Σ, (z−, z+, �z)), u, ϕ] ∈ M�(X,H;α−, α+) and write

lim
j→∞

[(Σj , (zj
−, zj

+, �zj)), uj , ϕj ] = [(Σ, (z−, z+, �z)), u, ϕ],

if there exist �wj ⊂ Σj and �w ⊂ Σ such that [(Σj , (zj
−, zj

+, �zj ∪ �wj)), uj , ϕj ]
and [(Σ, (z−, z+, �z ∪ �w)), u, ϕ] are source stable and

lims
j→∞

[(Σj , (zj
−, zj

+, �zj ∪ �wj)), uj , ϕj ] = [(Σ, (z−, z+, �z ∪ �w)), u, ϕ]

in the sense of Definition 3.13.

Remark 3.18. We define the topology by defining the notion of convergence
of sequences. We can do so by the following reason. We can define the notion
of combinatorial or topological type of an element of M�(X,H;α−, α+). (See
[25, Section 19] for example.) If we fix a combinatorial type, we can embed
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the set of elements M�(X,H;α−, α+) to a space obtained as a stable pair of
a curve and a map from it with the fixed combinatorial type. The topology in
Definition 3.17 coincides with one which is defined by the standard topology
of the moduli space of marked curves and, say, the C∞ topology of the maps.
Obviously, the latter topology is metrizable. Also there exist only countably
many combinatorial types.

Theorem 3.19. The space M�(X,H;α−, α+) is compact and Hausdorff with
respect to the topology of Definition 3.17.

The proof is the same as that of [25, Lemma 10.4 and Theorem 11.1],
which relies on Proposition 2.4, and so is omitted.

We close this section with a few small remarks.
The evaluation map (2.8) is extended to

(ev−, ev+) : M�(X,H;α−, α+) → Rα− × Rα+ . (3.7)

Moreover, we define evaluation maps

(ev1, . . . , ev�) : M�(X,H;α−, α+) → X� (3.8)

by

evi([(Σ, (z−, z+, �z ∪ �w)), u, ϕ]) = u(zi).

They are continuous.
Let α− = α0, α1, . . . , αm−1, αm = α+ ∈ A. We consider the fiber

product

M�1(X,H;α0, α1) ev+ ×ev− M�2(X,H;α1, α2) ev+ ×ev− . . .ev+ ×ev−

M�i+1(X,H;αi, αi+1) ev+ ×ev− . . . ev+ ×ev− M�m
(X,H;αm−1, αm)

(3.9)

and denote it by

M(�1,...,�m)(X,H;α0, α1., . . . , αm).

See Fig. 2. In case �i are all 0 we write M(X,H;α0, α1., . . . , αm).
We also define a map

M(�1,...,�m)(X,H;α0, α1., . . . , αm) → M�1+···+�m
(X,H;α−, α+) (3.10)

· · · · · ·
γα1 γα2

γαi−1 γαi
γαi+1

γαm−1

××

×
×

×××

1 = 1 2 = 2 i i+1 m

γα− = γα0
γαm = γα+

Figure 2. M(�1,...,�m)(X,H;α0, α1., . . . , αm)
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as follows. Let [(Σa, (za
−, za

+, �za)), ua, ϕa] ∈ M�a
(X,H;αa−1, αa) for a =

1, . . . ,m. We assume
ev+([(Σa, (za

−, za
+, �za)), ua, ϕa])

= ev−([(Σa+1, (za+1
− , za+1

+ , �za+1)), ua+1, ϕa+1]).
(3.11)

On the disjoint union
⊔m

a=1 Σa we identify za
+ and za+1

− to obtain Σ. We put
z− = z0

− and z+ = zm
+ . We also put �z =

⋃m
a=1 �za, and u and ϕ to be the

union of ua and ϕa, respectively. They obviously satisfy Definition 3.3 (1)–
(6). Definition 3.3 (7) is a consequence of (3.11). We thus obtain the map
(3.10). This map is obviously continuous, injective and is a homeomorphism
onto its image.

4. Construction of Kuranishi structure

4.1. Statement

In this section we present technical details of the proof of the next theorem.

Theorem 4.1. (1) The space M�(X,H;α−, α+) has a Kuranishi structure
with corners together with an isomorphism

ev∗
+(det TRα+) ⊗ ev∗

+(oRα+
) ∼= oM�(X,H;α−,α+) ⊗ ev∗

−(oRα− )

of principal O(1)-bundles. Here oM�(X,H;α−,α+) is the orientation bun-
dle defined by the Kuranishi structure as in [23, Definition 3.10 (1)] and
oRα± are defined in Definition 2.6.

(2) Its codimension k normalized corner5 is the union of the images of the
map (3.10) with a certain Kuranishi structure on M(�1,...,�m)(X,H;α0,
α1., . . . , αk).

(3) The evaluation maps (3.7) and (3.8) are induced from a strongly smooth
map6 of Kuranishi structures. The map ev+ is weakly submersive.

(4) The dimension (as a K-space) is given by

dim M�(X,H;α−, α+) = μ(α+) − μ(α−) − 1 + dimRα+ + 2�.

Remark 4.2. The Kuranishi structure on M(�1,...,�m)(X,H;α0, α1., . . . , αm)
mentioned in Theorem 4.1 (2) is not in general the fiber product Kuranishi
structure. The method we give in this section does not provide such a system
of Kuranishi structures compatible with the fiber product yet. In Sect. 5 we
will modify the Kuranishi structures on M�i

(X,H;αi−1, αi) at their outer
collars so that they are consistent with the fiber product. Then we will obtain
a required K-system so that M(�1,...,�m)(X,H;α0, α1., . . . , αm) has indeed a
fiber product Kuranishi structure. We will carry out this procedure in Sect. 5.

Remark 4.3. The group G in Definition 2.3 acts on ˜Per(H) so that it induces
a simply transitive action on the index set A in (2.6). Then we have a nat-
ural identification between M�(X,H;α−, α+) and M�(X,H; g(α−), g(α+))
for any g ∈ G and α± ∈ A. Since our construction of Kuranishi structures

5See [23, Definition 24.18] for the definition of normalized corner.
6See [23, Definition 3.40] for the definition of strongly smooth map.
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given below is independent of the choice of the bounding disk w : D2 → X in
the definition of ˜Per(H), the resulting Kuranishi structures for other choices
of w’s are isomorphic under this identification.

4.2. Obstruction bundle data

The detail of the proof of Theorem 4.1 (1)(2) given in this section is mostly
the same as the one given in [20] (see also [13, Parts 4 and 5] if necessary).
We repeat the proof for the completeness and also to prepare notations for
the discussion in the next section. More specifically, in [20, Definition 5.1]
we introduced the notion of obstruction bundle data for the moduli space of
bordered stable maps of genus 0 and showed the existence [20, Theorem 11.1]
and that we can associate a Kuranishi structure for any obstruction bundle
data in a canonical way [20, Theorem 7.1]. The strategy of this article is
the same. So we first discuss a version of the obstruction bundle data in our
situation with Hamiltonian perturbation.

Definition 4.4. A symmetric stabilization of ((Σ, (z−, z+, �z)), u, ϕ) is an or-
dered set �w of points in Σ with the following properties.
(1) The set �w is contained in the union of bubble components.
(2) �w ∩ �z = ∅. None of the points in �w is a singular point.
(3) For each bubble component Σb we have the inequality

#( �w ∩ �z) + #(Singular point on Σb) ≥ 3.

(4) For any v ∈ Aut+((Σ, (z−, z+, �z)), u, ϕ) we have σ ∈ Perm(# �w) such
that v(wi) = wσ(i).

(5) If v ∈ Aut((Σ, (z−, z+, �z)), u, ϕ) and σ = id in (4), then v = id also.
(6) For each wi the map u is an immersion at wi.

Remark 4.5. Condition (5) is assumed only to simplify the notations in later
discussion. By this condition we have an embedding Aut((Σ, (z−, z+, �z)), u, ϕ)
→ Perm(m) where m = # �w.

Lemma 4.6. There exists a symmetric stabilization for any
((Σ, (z−, z+, �z)), u, ϕ).

The proof is similar to that for the case of the moduli space of stable
maps, which is now standard. So we omit the proof.

Note that (Σ, {z−, z+} ∪ �z ∪ �w) may not yet be a stable marked curve
because there can be a mainstream component Σa which contains only transit
points or z±. (Namely Σa may not contain any of non-transit singular point
or a point of �z.) In Definition 4.4 we do not put additional marked points �w
on such a component. Actually it is in general impossible to find wi on such
a component satisfying Definition 4.4 (6). However, we can find a ‘canonical’
marked point on such a component. Namely we use a function fH,u,Σa

to
find the canonical position in the R coordinate and the parametrization ϕa

to find the S1 coordinate. This is the way taken in [13, page 204], which we
repeat below.

Let Σa be a mainstream component of Σ which does not contain non-
transit singular point or marked point ∈ �z. We define a function fH,u,Σa

:
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R → R as follows. We first define an element (γa,−, wa,−) ∈ ˜Per(H). Here
γa,− is a closed orbit which corresponds to the transit point za,− by

γa,−(t) = lim
τ→−∞ u(ϕa(τ, t)).

We consider the connected component of Σ\{za,−} which contains z−. The
restriction of u to this connected component together with w− (which is a disk
that bounds a curve, an element in Rα−) determines a homotopy class of maps
wa,− : D2 → X which bounds γa,−. We thus obtain (γa,−, wa,−) ∈˜Per(H).

We define a function

fH,u,Σa
(τ0) =

∫

D2
w∗

a,−ω +
∫ τ=τ0

τ=−∞

∫

t∈S1
(u ◦ ϕa)∗ω +

∫

t∈S1
H(u(τ0, t), t)dt.

(4.1)

Proposition 2.4 implies that this integral converges and both limits limτ→±∞
fH,u,Σa

(τ) exist. Furthermore, using the fact that u◦ϕa satisfies (2.4) we can
show that fH,u,Σa

is nondecreasing. Since Σa does not contain non-transit
singular points or marked points ∈ �z, the stability implies that fH,u,Σa

is
strictly increasing. In fact, the first derivative dfH,u,Σa

(τ)/dτ is strictly pos-
itive unless (γa,−, wa,−) = (γa,+, wa,+). Thus we have proved:

Lemma 4.7. There exists a unique τa ∈ R such that

fH,u,Σa
(τa) =

1
2

(

lim
τ→−∞ fH,u,Σa

(τ) + lim
τ→+∞ fH,u,Σa

(τ)
)

. (4.2)

Definition 4.8. We call the point wa,can = ϕa(τa, 0) the canonical marked
point on Σa. (Note that by our assumption that Σa has no marked or singular
points other than transit points or z±, the point wa,can is neither a marked
nor a singular point.)

We denote by �wcan the totality of wa,can for each mainstream component
Σa which does not contain any non-transit singular point or a point of �z.

The above discussion also proves the next lemma.

Lemma 4.9. If ((Σ, (z−, z+, �z)), u, ϕ) ∈ M�(X,H;α−, α+) and �w is its sym-
metric stabilization, then (Σ, {z−, z+} ∪ �z ∪ �w ∪ �wcan)) is stable.

Now we define the notion of obstruction bundle data.7

Notation 4.10. • We denote by Mcl
� the moduli space of stable curves of

genus zero without boundary and with � marked points, and by
◦

Mcl
� its

subset consisting of elements with only one irreducible component.

• We denote by
◦

M�(source) the set of points of M�(source) which have
only one irreducible component, (which is necessarily a mainstream com-
ponent).

7This notion was originally introduced in [13, Definition 31.1] The difference is that we

include the Morse–Bott case in this article, while in [13, Definition 31.1] we assumed [13,
Definition 29.4] which implies that all the periodic orbits are isolated.
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• We denote by π : Cuniv
� → Mcl

� the universal family of stable curves of
genus zero with � marked points. See [20, Theorem 2.2] for example.

Definition 4.11. Obstruction bundle data Ep centered at

p = [(Σ, (z−, z+, �z)), u, ϕ] ∈ M�(X,H;α−, α+)

are the data
(

�w, {V(xv ∪ �wv ∪ �wcan,v)}v, {(ψv, φv)}v, {Kobst
v }v, {Ep,v(yv)}v, {Di}wi∈ �w

)

(4.3)

satisfying the conditions described below. We put

x = (Σ, {z−, z+} ∪ �z).

Let Irr(Σ) be the set of the irreducible components of Σ and, for v ∈ Irr(Σ),
we denote by Σv the corresponding irreducible component.
(1) A symmetric stabilization �w of ((Σ, z−, z+, �z), u, ϕ).
(2) A neighborhood V(xv ∪ �wv ∪ �wcan,v) of

xv ∪ �wv ∪ �wcan,v = (Σv, {zv,−, zv,+} ∪ �zv ∪ �wv ∪ �wcan,v)

for each v ∈ Irr(Σ): Here
• xv ∪ �wv ∪ �wcan,v is an irreducible component of x.
• {zv,−, zv,+} = {transit points on Σ} 8 ∩Σv.
• �zv = (�z ∪ {non-transit singular points on Σ}) ∩ Σv.
• �wv = �w ∩ Σv and �wcan,v = �wcan ∩ Σv.

Namely:
(a) In the case Σv is a mainstream component Σa, we include the

parametrization ϕa to xv and V(xv∪ �wv∪ �wcan,v) is an open subset of
◦

M�v+�′
v+�′′

v
(source) where �v = #�zv, �

′
v = # �wv and �′′

v = # �wcan,v.
(b) In the case Σv is a bubble component, V(xv ∪ �wv ∪ �wcan,v) is an

open subset of
◦

Mcl
�v+�′

v+�′′
v

where �v = #�zv, �
′
v = # �wv and �′′

v =
# �wcan,v = 0.

(3) Local trivialization data {(ψv, φv)}v at x ∪ �w ∪ �wcan in the sense of [20,
Definition 3.8]: Namely, denoting by Vv the neighborhood V(xv ∪ �wv ∪
�wcan,v) taken in (2) above, ψv,z : Vv × Int D2 → Cuniv

� is an analytic
family of coordinates at each non-transit singular point z of Σ which
is contained in Σv (see [20, Definition 3.1]), and φv : Vv × (xv ∪ �wv ∪
�wcan,v) → π−1(Vv) is a C∞ trivialization over Vv of the universal family
π : Cuniv

� → Mcl
� of marked stable curves (see [20, Definition 3.6]), which

is compatible with the analytic family of coordinates in the sense of [20,
Definition 3.7 (1)]. We also require the following additional conditions
on a part of the local trivialization data.
(a) Let za be a transit point contained in Σa and Σa+1. Then the

coordinate near za given by the local trivialization data is the
parametrization ϕa or ϕa+1 up to the R action. Namely it is
(τ, t) �→ ϕa(τ + τ0, t) (resp. ϕa+1(τ + τ0, t)) for some τ0 ∈ R.

8Containing z±, see Definition 3.2.
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(b) Let z be a non-transit singular point contained in Σv. Since Σv is
a sphere, there exists a biholomorphic map

φ : Σv
∼= C ∪ {∞}

such that φ(z) = 0. Then the coordinate around z given by the
local trivialization data is

(τ, t) �→ φ−1(e−2π(τ+
√−1t)),

for some choice of φ.
(4) A compact subset Kobst

v of Σv such that V(xv∪ �wv∪ �wcan,v)×Kobst
v is con-

tained in a compact subset of π−1(Vv) under the C∞ trivialization φv:
We assume that ∪v∈Irr(Σ)K

obst
v is invariant under the Aut+((Σ, (z−, z+

, �z)), u, ϕ) action. We call Kobst
v the support of the obstruction bundle.

(5) A yv ∈ V(xv ∪ �wv ∪ �wcan,v)-parametrized smooth family of finite di-
mensional complex linear subspaces Ep,v(yv) ⊂ C∞

0 ( IntKobst
v ;u∗TX ⊗

Λ0,1Σyv): Here C∞
0 denotes the set of smooth sections with compact

support in IntKobst
v . We also regard Kobst

v as a subset of Σyv by using
the C∞ trivialization of the analytic family of coordinates given as a
part of the local trivialization data. (Here Σyv is the source curve of yv.)

We assume that the direct sum
⊕

v∈Irr(Σ) Ep,v(yv) is invariant un-
der the Aut+((Σ, (z−, z+, �z)), u, ϕ) action in the sense of [20, Definition
5.5].

When yv = xv∪ �wv∪ �wcan,v which is the center of the neighborhood
V(xv ∪ �wv ∪ �wcan,v), we denote Ep,v(yv) by Ep,v.

(6) For each p we consider a linear differential operator

Dp∂
whole

J,H :
⊕

v∈Irr(Σ)

L2
m+1,δ(Σv;u∗TX) →

⊕

v∈Irr(Σ)

L2
m,δ(Σv;u∗TX ⊗ Λ0,1Σv)

(4.4)

defined as follows. Here we use the above weighted Sobolev spaces in
the same way as in [16, Definition 3.4] for the case ∂Σi = ∅ there.
(a) On L2

m+1,δ(Σv;u∗TX) for v ∈ Irr(Σ) being a mainstream compo-
nent and v ∈ V(xv ∪ �wv ∪ �wcan,v), it is the linearized operator of
Floer’s equation (see (2.10) for this operator)

DFloer
u := Du∂ − ∇·(JXH) ⊗ (ϕ∗

v)
−1(dτ − √−1dt) : L2

m+1,δ(Σv;u∗TX)

→ L2
m,δ(Σv;u∗TX ⊗ Λ0,1Σv).

(4.5)

(b) On L2
m+1,δ(Σv;u∗TX) for v ∈ Irr(Σ) being a bubble component

and v ∈ V(xv ∪ �wv ∪ �wcan,v), it is the linearization

Du∂ : L2
m+1,δ(Σv;u∗TX) → L2

m,δ(Σv;u∗TX ⊗ Λ0,1Σv) (4.6)

of the nonlinear Cauchy–Riemann operator.
We consider the following subspace

L2
m+1,δ(p) := {s = (sv) ∈

⊕

v

L2
m+1,δ(Σv; u∗TX) | s satisfies the condition (♥)}
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of the domain of the operator in (4.4), where (♥) is the coincidence
condition at each singular point z ∈ Σv+ ∩ Σv− on Σ such that

(evv+

+ )∗(sv+) = (evv−
− )∗(sv−)

for a transit point z = zv+,+ = zv−,− and

(evv+

z )∗(sv+) = (evv−
z )∗(sv−)

for a non-transit point z. Here at a transit point the maps

(evv±
± )∗ : L2

m+1,δ(Σv;u∗TX) → Tγ±
v±

Per(H)

are differentials of the evaluation maps as in (3.7) and

γ±
v± = lim

τ→±∞ u(ϕv±(τ, t)).

Restricting the domain to the subspace L2
m+1,δ(p), we have a Fredholm

operator

Dp∂J,H : L2
m+1,δ(p) →

⊕

v

L2
m,δ(Σv;u∗TX ⊗ Λ0,1Σv) (4.7)

and call it the linearization operator at p. Then in this item we require
that the linearization operator Dp∂J,H is surjective mod ⊕v Ep,v,
and Aut+((Σ, (z−, z+, �z)), u, ϕ) acts on (Dp∂J,H)−1(⊕vEp,v) effectively.
Here Ep,v is introduced at the end of (5) above.

(7) For each wi ∈ �w ∈ Σ we take a codimension 2 submanifold Di of X
such that u(wi) ∈ Di and

u∗Twi
Σ + Tu(wi)Di = Twi

X.

Moreover, the set {Di} is invariant under the Aut+((Σ, (z−, z+, �z)), u, ϕ)
action in the following sense. Let v ∈ Aut+((Σ, (z−, z+, �z)), u, ϕ) and
v(wi) = wσ(i) then

Di = Dσ(i).

(Note u(wi) = u(wσ(i)) since u ◦ v = u.) We note that we do not take
such submanifolds for the canonical marked points ∈ �wcan. (In fact,
since u is not necessarily an immersion at the canonical marked points,
we can not choose such submanifolds.)

Remark 4.12. (1) The condition (6) and the coincidence condition (♥)
therein imply that the restrictions of differential of the evaluation map
⊕z,v(evv

z)∗, where z is any singular point, to (DFloer
u )−1(⊕vEp,v) and

(D∂u)−1(⊕vEp,v) are surjective. Here DFloer
u and D∂u are the linearized

operators in (4.5) and (4.6), respectively.
(2) In Item (5), we consider the family of finite dimensional complex sub-

sapaces Ep,v(yv) over yv ∈ V(xv ∪ �wv ∪ �wcan,v), while we impose the
condition in (6) only at xv ∪ �wv ∪ �wcan,v. However, if we start with
the finite dimensional complex subspace Ep,v in (6), we can obtain
a smooth family of finite dimensional complex subspaces Ep,v(yv) of
C∞

0 (Int Kobst
v ;u∗TX ⊗ Λ0,1Σyv) at yv in the neighborhood V(xv ∪ �wv ∪

�wcan,v) satisfying the property in (6) as well using the composition of
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the inclusion map Λ0,1
x (Σv) → Λ1

x(Σv)⊗C and the projection Λ1
x(Σv) →

Λ0,1
x (Σyv) for x ∈ Kobst

v .

Note in [13, page 204 line 6 to 4 from the bottom] we wrote
<< We require that the data Kobst

v , Ep,v(y, u) depend only on the
mainstream component pi = [(Σi, zi−1, zi), u, ϕ] (where zi is the i-th transit
point) that contains the v-th irreducible component. We call this condition
mainstream-component-wise. >>

This point is very much related to the main theme of the study in
Sect. 5, which is a construction of Kuranishi structure compatible with the
fiber product description of the boundary and corners. As we mentioned
in Remark 4.2, the Kuranishi structure we construct in this section is not
compatible with fiber product description of the boundary and corners. The
same proof given in [20, Theorem 11.1] (see also [13, Lemma 17.11]) yields
the following.

Lemma 4.13. For each p ∈ M�(X,H;α−, α+) there exist obstruction bundle
data Ep centered at p in the sense of Definition 4.11.

4.3. Smoothing singularities and ε-closeness

We put

x = [Σ, (z−, z+, �z), ϕ] ∈ M�(source).

Let xv be an irreducible component Σv of Σ together with marked and singular
points on it. It is an element of an appropriate moduli space of marked
curves of genus zero if Σv is a bubble component. It is in Mm(source) if it
is a mainstream component. (More precisely, they may not be stable. They
become stable after we add �wv ∪ �wcan,v that are parts of �w ∪ �wcan on this
irreducible component.)

We recall from [20, Lemma 3.9]9 the way how to smooth the singularity
of the curve Σ and fix the local trivialization of the universal family (outside
the node). Namely it determines a map:

Φp :
∏

v

V(xv ∪ �wv ∪ �wcan,v) × D(k; �T0) ×
m
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)

→ M�+�′+�′′(source)

(4.8)

that is a homeomorphism onto an open neighborhood of [x ∪ �w ∪ �wcan] in
M�+�′+�′′(source). (See Definition 3.8 for this notation.) Here �′ = # �w and
�′′ = # �wcan. The map Φp is defined in [13, (31.4)]. We recall its definition
together with the other notations appearing in (4.8) from [13, Section 30]
below:

9 [20, Lemma 3.9] treats the case of bordered stable curves with interior and boundary
marked points. In our case, smoothing at a non-transit point corresponds to that at an
interior marked point which has a two dimensional parameter space. On the other hand,
at a transit point the parameter space of smoothing is only one dimensional, because the
equation on the main stream component is not S1 invariant of the rotational action. In

this way smoothing at a transit point can be treated similarly to the case of smoothing at

a boundary marked point of a bordered stable curve described in [20].
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• k is the number of transit points except {z−, z+} of Σ.
• A manifold with corner ˜D(k; �T0) is defined as follows. For any �T0 =

(T0,(1), . . . , T0,(k)) ∈ R
k
>1 we put

◦̃
D(k; �T0) = {(T1, . . . , Tk+1) ∈ R

k+1 | Ta+1 − Ta > T0,(a)} (4.9)

and partially compactify it to ˜D(k; �T0) by admitting Ta+1 − Ta = ∞ as
follows. We put s′

a = 1/ log(Ta+1 −Ta). Then T1 and s′
1, . . . , s

′
k−1 define

another parameters. So (4.9) is identified with R×∏k
i=1(0, 1/ log T0,(a)).

We partially compactify it to R ×∏k
a=1[0, 1/ log T0,(a)). By taking the

quotients of
◦̃
D(k; �T0) and ˜D(k; �T0) by the R action T (T1, . . . , Tk+1) =

(T1 + T, . . . , Tk+1 + T ), we obtain
◦
D(k; �T0) and D(k; �T0), respectively.

Remark 4.14. We take the logarithm of Ta+1 − Ta to define our coordinate
s′

a. By doing so we can stay in the category of admissible orbifolds or ad-
missible Kuranishi structures in the sense of [23, Chapter 25]. We also take
e2πt

√−1/ log T for the coordinate of the ((T0,∞] × S1)/ ∼ factor. This is a
slightly different choice from [11, Appendix A1.4].

• The space D(k; �T0) is used to parametrize the ways of smoothing the
transit point singularities as follows. We consider the case when the pa-

rameter �T is in
◦
D(k; �T0). Taking a section of the projection ̂M∗(source)

→ M∗(source), we have a parametrization ϕa : R × S1 → Σa for each
mainstream component Σa with a = 1, . . . , k + 1 as in Definition 3.3
(4). Let us consider

[−5T0,(a−1), 5T0,(a)]a × S1
a

where T0,(0) = T0,(k+1) = +∞ as convention, and regard it as a subset
of the domain of the parametrization ϕa : R × S1 → Σa. We define

ϕ0 :
⋃

a

([−5T0,(a−1), 5T0,(a)]a × S1
a) → R × S1

as follows. If (τ, t) ∈ [−5T0,(a−1), 5T0,(a)]a × S1
a, then

ϕ0(τ, t) = (τ + 10Ta, t).

We use ϕ0◦ϕ−1
a to identify (a part of) Σa with a subset of R×S1. Under

this identification marked points on Σa can be moved to R×S1. Adding
z−, z+, we have a marked Riemann surface. Taking the equivalence class
by ∼2 in Definition 3.7, we obtain an element of M∗(source) so the map
Φp in the case m = 0. See Fig. 3.

• m in (4.8) is the number of non-transit singular points. The factor
((T0,j ,∞] × S1)/ ∼ (j = 1, . . . , m) is the space to parametrize the way
to smooth these singular points. Here ∼ is the equivalence relation such
that (T, t) ∼ (T ′, t′) if and only if T = T ′ = ∞ or (T, t) = (T ′, t′).
The way to use this parameter to smooth non-transit singular points is
written in [20, Lemma 3.9]
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+10Ta+1+10Ta

−5T0,(a) + 10Ta+1

−5T0,(a−1) + 10Ta

5T0,(a) −5T0,(a)−5T0,(a−1) 5T0,(a+1)

5T0,(a) + 10Ta

5T0,(a+1) + 10Ta+1

10(Ta+1 − Ta − T0,(a))

Figure 3. The map ϕ0

We have thus defined all notations appearing in (4.8).

Notation 4.15. Suppose

(Y ∪ �w′, ϕ′) = Φp(y, �T , �θ) ∈ M�+�′+�′′(source). (4.10)

Here
• y = (yv) where v is the index in the set of irreducible components of Σ

in p as in Definition 4.11.
• �w′ is the set of the additional marked points corresponding to �w and

�wcan.
• The notation Y includes the marked points corresponding to �z and z±.
• The pair of parameters ( �T , �θ) ∈ D(k; �T0) ×∏m

j=1

(

((T0,j ,∞] × S1)/ ∼)
and the map ϕ′ is a parametrization of the mainstream of Σ′. Here Σ′

is the source curve of Y.

Of course, the left hand side depends on p and y, �T , �θ in the right hand side
also depend on p as well as the left hand side.

In the situation of Notation 4.15, since Σ′ is obtained from the source
curves Σyv by first removing neighborhoods of singular points and then gluing
them, there exists an embedding

vY,y;v : Kobst
v → Σ′. (4.11)

Actually the embedding to Σ′ is defined in a larger region called the core
of the source curve Σy. (It is the complement of the neck region. See [20,
Definition 4.12] for the definition of neck region.)

Definition 4.16. Let (Y ∪ �w′, ϕ′) = Φp(y, �T , �θ) ∈ M�+�′+�′′(source) and u′ :
Σ′\{transit points} → X. We assume that (Y, u′, ϕ′) satisfies Definition 3.3
(1)(2)(3)(7) and (8). We say that (Y, u′, ϕ′) ∪ �w′ is ε-close to p∪ �w ∪ �wcan if
the following holds.
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Σa1
Σa2

Σb1

Σb1

Σb2

Σb2

Σa

∼=

t

t

ExpH
t

−1

∗ J-holomorphic

Figure 4. Neck regions on mainstream components

(1) ‖u′ ◦ vY,y;v − u‖ < ε on the core of Σy. Here ‖ · ‖ is the C10 norm.
(2) The map u′ ◦ϕ′ satisfies the Eq. (2.4) in the neck regions corresponding

to transit points. For a bubble component Σ′
b′ , there is a non-transit

point on a mainstream component Σ′
a′ such that Σ′

b′ is joined to Σ′
a′

by a tree of bubble components. Then the map u′|Σ′
b′ is J-holomorphic

on some neighborhoods of nodes. When a non-transit point on a main-
stream component Σ′

a′ is smoothed, u′ ◦ϕ′ satisfies the Eq. (2.4) on the
corresponding neck region on the mainstream component. See Fig. 4.

(3) Let û′ be the redefined connecting orbit map of u′ (see Definition 3.15).
For a non-transit point ϕa′(τ0, t0) on a mainstream component Σ′

a′ , set
u′#(z) = (expH

t )−1(u(z)) for z = ϕa(τ, t), t0 − 1/2 < t < t0 +1/2. Then
for each connected component W of the complement of the core, we
have either

Diam(û′(W)) < ε, for W around transit points, (4.12)

or

Diam(u′#(W)) < ε, for W around non-transit points. (4.13)

(4) For each component T0,(a) of �T0 we have T0,(a) > ε−1 and T0,j > ε−1

for any j = 1, . . . ,m.

Remark 4.17. Definition 4.16 is the same as the definition of ε-closeness ap-
pearing in [13, page 215], [20, Definition 4.12]. Note that we do not assume
Condition (5)’ in [13, page 215], since it is a consequence of Definition 4.16
(1) above, and so is unnecessary to be assumed.
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Situation 4.18. Let p ∈ M�+�′+�′′(X,H;α−, α+). We fix obstruction bundle
data Cp centered at p. Let (Y ∪ �w′, ϕ′) = Φp(y, �T , �θ) ∈ M�+�′+�′′(source)
and u′ : Σ′ → X, where Σ′ is the source curve of Y as in Notation 4.15. We
assume that (Y, u′, ϕ′) ∪ �w′ is ε-close to p ∪ �w ∪ �wcan. �

Definition 4.19. Suppose we are in Situation 4.18. We say that (Y, u′, ϕ′)∪ �w′

satisfies the transversal constraint if the following holds.

(1) If w′
i corresponds to wi ∈ �w, then u′(w′

i) ∈ Di.
(2) Let w′

j = ϕ′
a′(τ ′

j , t
′
j) ∈ �w′ ∩ Σ′

a′ be the marked point corresponding to
the canonical marked point wa,can = ϕa(τa, 0) ∈ �wcan. Then we require:

fH,u′,Σ′
a′ (τ

′
j) = fH,u,Σa

(τa) =
1
2

(

lim
τ→−∞ fH,u,Σa

(τ) + lim
τ→+∞ fH,u,Σa

(τ)
)

.

(4.14)

Here fH,u,Σa
is the function (4.1) for the mainstream component Σa of

Σ.
(3) In the situation of (2) we require also t′j = [0].

Remark 4.20. (1) The second equality of (4.14) is the definition of τa (see
Lemma 4.7). So the actual condition is the first equality.

(2) Note that Σ′
a′ may have a sphere bubble (or may contain one of the

marked points of Y) even in the case when Σa has no sphere bubble
(or does not contain one of the marked points of �z). In fact, Σa may be
glued with other mainstream component that has a sphere bubble when
we obtain Σ′ form Σ. Therefore, Σ′

a′ may not have a canonical marked
point.

(3) Even in the case when Σ′
a′ has a canonical marked point, it may be

different from w′
j . In fact Σ′

a′ may be obtained by gluing several main-
stream components which have no sphere bubbles or points of �z.

Suppose we are in Situation 4.18. Let z ∈ Kobst
v . Recall from Defi-

nition 4.11 (5) that Kobst
v contains a support of elements of Ep,v(y). Let

vY,y;v : Kobst
v → Σ′ be an embedding as in (4.11). By ε-closeness we have

d(u′(vY,y;v(z)), u(z)) < ε.

We may choose ε > 0 smaller than the injectivity radius of X. Therefore, there
exists a unique minimal geodesic �z in X joining u(z) with u′(vY,y;v(z)). The
complex linear part of the parallel transport along �z defines a complex linear
map

Palz : Tu(z)X → Tu′(vY,y;v(z))X. (4.15)

Definition 4.21. Suppose we are in Situation 4.18. Using the map in (4.15),
we have a complex linear embedding

Ip,v;Σ′,u′,ϕ′ : Ep,v(y) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1).
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In Definition 4.25 we will define an obstruction space E((Y∪⋃c∈B �w′
c, u

′,
ϕ′);q;B) (see also Definition 4.25 for the notations used in this notation) for
any q ∈ M�(X,H;α−, α+) as a sum of images of the maps in Definition 4.21
for suitable choices of p’s. To carry out this argument we first observe the
following.

Lemma 4.22. Suppose we are in Situation 4.18. Then for any p ∈ M�(X,H;
α−, α+) there exist εp > 0 and a closed neighborhood W (p) of p in M�(X,H;
α−, α+) such that for any q ∈ W (p) there exists �wq

p uniquely with the fol-
lowing properties:
(1) q ∪ �wq

p is εp-close to p ∪ wp ∪ �wcan.
(2) q ∪ �wq

p satisfies the transversal constraint. (Definition 4.19.)
(3) The linearization operator Dq∂J,H at q in (4.7) is surjective mod ⊕v

Im Ip,v;q, where Ip,v;q is the map in Definition 4.21 for the case q =
(Σ′, u′, ϕ′).

Proof. If wp,i ∈ �wp, the unique existence of wq
p,i satisfying Definition 4.19

(1) can be proved in the same way as in [20, Lemma 9.9].
In case wq

p,i corresponds to a canonical marked point, the unique exis-
tence of wq

p,i satisfying Definition 4.19 (2)(3) is a consequence of the following
two facts:

(i) uq is C1 close to up.
(ii) The first derivative of the function fH,u,Σa

in (4.1) is strictly positive at
τi. Here ϕa(τi, 0) is the canonical marked point on p which corresponds
to wq

p,i.
Furthermore by taking W (p) small enough, the property (3) is satisfied be-
cause the surjectivity is an open condition. �

Then we make the following choices.

Choice 4.23. We fix �, α−, α+.
• We take a finite set

A�(α−, α+) = {pc | c ∈ C�(α−, α+)} ⊂ M�(X,H;α−, α+).

Here C�(α−, α+) is an index set which will be taken as in Remark 4.24.
• For each c ∈ C�(α−, α+) we take obstruction bundle data Epc

centered
at pc.

• For each c ∈ C�(α−, α+) we take a closed neighborhood W (pc) of pc

in M�(X,H;α−, α+) with the following property. For any q ∈ W (pc)
there exists �wq

pc
such that q ∪ �wq

pc
is εc-close to pc ∪ wpc

∪ �wcan. Here
εc > 0 depends on c, which will be determined later. Moreover, the
linearization operator Dq∂J,H in (4.7) is surjective mod ⊕v Im Ipc,v;q

where Im Ipc,v;q is the map in Definition 4.21 for the case p = pc,
q = (Σ′, u′, ϕ′).

• We require
⋃

c∈C�(α−,α+)

Int W (pc) = M�(X,H;α−, α+). (4.16)

Reprinted from the journal490



Remark 4.24. The logical order to make such choices is as follows. First
for each p ∈ M�(X,H;α−, α+) we take obstruction bundle data Ep by
Lemma 4.13. We take εp > 0 and a closed neighborhood W (p) as in Lemma 4.22.
Then we have

⋃

p

Int W (p) = M�(X,H;α−, α+).

Finally, by compactness of the moduli space, we can take a finite set
C�(α−, α+) such that c ∈ C�(α−, α+) satisfies the properties in Choice 4.23.

Definition 4.25. (1) For each q ∈ M�(X,H;α−, α+) we put

E(q) = {c ∈ C�(α−, α+) | q ∈ W (pc)}.

(2) Let B ⊂ E(q) be a nonempty subset.
(3) We consider (Y ∪⋃c∈B �w′

c, u
′, ϕ′) such that for each c, (Y ∪ �w′

c, u
′, ϕ′)

is ε-close to q ∪ �wq
c . If ε > 0 is small, then (Y ∪ �w′

c, u
′, ϕ′) is ε-close to

pc ∪ �wc and we can define the map

Ipc,v;Σ′,u′,ϕ′ : Epc,v(ypc
) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1)

in Definition 4.21 for each irreducible component v of pc. Here (Y ∪
�w′

c, ϕ
′) = Φpc

(ypc
, �Tpc

, �θpc
) and Σ′ is the source curve of Y as in Nota-

tion 4.15.10 We now put

E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′);q;B) =
⊕

c∈B

⊕

v

Im Ipc,v;Σ′,u′,ϕ′ . (4.17)

We can perturb Epc,v(ypc
) slightly so that the right hand side of (4.17)

is a direct sum. (See [20, Lemma 11.7], [13, Lemma 18.8].)

4.4. Kuranishi chart

In this subsection we construct a Kuranishi chart for any q ∈ M�(X,H;
α−, α+). We refer [23, Definition 3.1] for the definition of Kuranishi chart.

Definition 4.26. Stabilization data centered at q ∈ M�(X,H;α−, α+) are
(

�w, {V(xv ∪ �wv ∪ �wcan,v)}v, {(ψv, φv)}v, {Di}wi∈ �w
)

in Definition 4.11 (1)(2)(3) and (7), which are sub-data of the obstruction
bundle data at q.

Situation 4.27. Suppose we are in the situation of Definition 4.25. We also
take stabilization data at q. Let (Y ∪ ⋃c∈E(q) �w′

c, u
′, ϕ′) be as in Defini-

tion 4.25 (3) and �w′
q be additional marked points on Y such that (Y∪ �w′

q, ϕ′)
is ε-close to q ∪ �wq ∪ �wq,can. Here �wq is the additional marked points on Y
taken as a part of the stabilization data centered at q and �wq,can are canonical
marked points we put on the mainstream component without sphere bubble
or marked points. �
Definition 4.28. In Situation 4.27 we consider the following conditions on an
object (Y ∪⋃c∈E(q) �w′

c ∪ �w′
q, u′, ϕ′):

10As we noticed in Notation 4.15, ypc etc depend on the choice of pc. Here we put the

suffix c ∈ B in the notations to remember the dependence.
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(1) If Σa is the mainstream component and ϕ′
a is a parametrization of

this mainstream component (which is a part of given ϕ′), the following
equation is satisfied on R × S1.

∂(u′ ◦ ϕ′
a)

∂τ
+ J

(

∂(u′ ◦ ϕ′
a)

∂t
− XHt

◦ u′ ◦ ϕ′
a

)

≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′);q;B).
(4.18)

(2) If v is a bubble component, the following equation is satisfied on Σ′
v.

∂u′ ≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′);q;B). (4.19)

(3) For each c ∈ E(q) the additional marked points �w′
c satisfy the transversal

constraint in Definition 4.19 with respect to the obstruction bundle data
Epc

centered at pc. (Namely, for each c ∈ E(q) (Y, u′, ϕ′) ∪ �w′
c satisfies

the transversal constraint in Definition 4.19.)
(4) The additional marked points �w′

q satisfy the transversal constraint in
Definition 4.19 with respect to the stabilization data centered at q in
Situation 4.27. (Namely, (Y, u′, ϕ′) ∪ �w′

q also satisfies the transversal
constraint in Definition 4.19.)11

(5) (Y ∪⋃c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′) is ε1-close to q ∪⋃c∈E(q) �wq
c ∪ �wq.

We define an orbifold ([34])

V (q, ε1,B)

to be the set of isomorphism classes of (Y∪⋃c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′) satisfying
the conditions (1)–(5) above. Here (Y ∪⋃c∈E(q) �w′

c ∪ �w′
q, u′, ϕ′) is said to be

isomorphic to (Y′′ ∪⋃c∈E(q) �w′′
c ∪ �w′′

q, u′′, ϕ′′) if there exists a biholomorphic
map v : Σ′ → Σ′′ with the following properties.

(a) u′′ = u′ ◦ v holds outside the set of the transit points.
(b) If Σ′

a is a mainstream component of Σ′ and v(Σ′
a) = Σ′′

a′ , then we have
(v ◦ ϕ′

a)(τ, t) = ϕ′′
a′(τ + τa, t) on R× S1 where τa ∈ R is independent of

(τ, t).
(c) v(z′

i) = z′′
i and v(w′

i) = w′′
i .

Lemma 4.29. If ε1 > 0 and εc > 0 are small enough, then V (q, ε1,B) is a
smooth manifold with boundary. Its dimension is

dim M�(X,H;α−, α+) +
∑

c∈B

∑

v∈Irr(pc)

rankEpc,v(ypc
). (4.20)

Here Irr(pc) is the set of irreducible components of pc.
If q has k+1 mainstream components, then the element [q∪⋃c∈E(q) �wq

c ∪
�wq] of V (q, ε1,B) is in a codimension k corner.

11We take the stabilization data for q in Situation 4.27. This is enough to define the
transversal constraint.
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Proof. We first consider the set of isomorphism classes of (Y ∪⋃c∈E(q) �w′
c ∪

�w′
q, u′, ϕ′) satisfying Definition 4.28 (1)(2)(5) and denote it by ̂V (q, ε1,B).12

We can prove that ̂V (q, ε1,B) is a smooth manifold with boundary and
corner in the same way as in [16, Chapter 8]. We use the map

Φq :
∏V((xq)v ∪ �wq,v ∪ �wq,can,v) × D(k; �T0) ×∏m

j=1

(

((T0,j ,∞] × S1)/ ∼)

→ M�+�′+�′′(source)
(4.21)

to work out the gluing analysis in [16, Chapters 5,6]. (The map (4.21) is
the same map as (4.8) except we use the stabilization data at q.) (4.21)
parametrizes the source curve (plus marked points) of elements of ̂V (q, ε1,B).
For each fixed source curve we can perform the gluing construction as in [16,
Chapters 5,6]13 to find that ̂V (q, ε1,B) is a smooth manifold strata-wise. To
obtain a smooth structure on the union of the strata, we use the exponential
decay estimate which we can prove in the same way as in [16, Chapter 8].14

The way to use this exponential decay estimate is the same as in [20, Sections
9 and 10], [16, Chapter 8].

We note that the only difference for the gluing analysis in the current
situation is the presence of the Hamiltonian term XHt

◦ u′ ◦ ϕ′
v. This term

is also nonzero on the neck region where we glue two solutions. However,
the Hamiltonian term is small in the exponential order on the neck region.
We can prove it easily by looking at the coordinate change from S1 × [0,∞)
to D2 \ {0}. Namely the derivatives of this map decays exponentially as
the second component of the domain goes to infinity. (See for example [13,
Lemma 30.24] for the detail.) So it does not affect the argument here.

Once we proved that ̂V (q, ε1,B) is a smooth manifold, we can prove
that V (q, ε1,B) is a smooth manifold by the implicit function theorem. In
fact, Definition 4.19 (1) cuts out a smooth submanifold transversally because
of the implicit function theorem [23, Lemma 25.32]. (See also [13, Section
20], especially Lemma 20.7.) We can use the facts (i)(ii) appearing in the
proof of Lemma 4.22 to show that Definition 4.19 (2)(3) cut out a smooth
submanifold transversally. We have thus proved that V (q, ε1,B) is a smooth
manifold.15

We assume that the source curve of q has exactly k mainstream compo-
nents. Note that the space D(k; �T0) in (4.8) is a manifold with boundary. The
point corresponding to the source curve of [q∪⋃c∈E(q) �wq

c ∪ �wq] corresponds

12A similar moduli space appeared in [13, Definition 18.15] and was called the thickened
moduli space. The Hamiltonian term XHt ◦ u′ ◦ ϕ′

v did not appear there.
13See [13, Part 3] (simple case), [13, Section 19] (the general case) for more detailed ex-
planation if necessary.
14See [13, Theorem 13.2] (simple case) or [13, Theorem 19.5] (general case) for more details.
15In [13, Sections 19, 20, 21] we first cut out by the transversality constraint strata-wise
and then show that those strata-wise smooth structure gives the smooth structure on the
whole space. So the order of the proof there is slightly different from one we mention
above. There is no mathematical issue on this point and we can do either way. The order
is changed only for the convenience of the exposition.
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to the codimension k boundary point of D(k; �T0). In fact, it corresponds to
the point (T,∞, . . . ,∞) on the compactification of the image of the map
(T0, . . . , Tk) �→ (T0, T1 − T0, . . . , Tk − Tk−1). See the discussion right before
Fig. 3. Therefore, [q∪⋃c∈E(q) �wq

c ∪ �wq] is on the codimension k boundary of
V (q, ε1,B).

The dimension formula follows from Lemma 2.15. �
We note that the group Aut+(q) acts on V (q, ε1,B) since the stabi-

lization data are assumed to be preserved. In particular, Aut(q) acts on it.
We also note that by the condition in Definition 4.11 (6) this action is effec-
tive. Therefore, the quotient space V (q, ε1,B)/Aut(q) is an effective orbifold,
which we denote by U(q, ε1,B).

We define a vector bundle

E(q, ε1,B) → U(q, ε1,B)

whose fiber at (Y∪⋃c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′) is E((Y∪⋃c∈B �w′
c, u

′, ϕ′);q;B).
We define its section s(q,ε1,B) by

s(q,ε1,B)(Y ∪
⋃

c∈E(q)

�w′
c ∪ �w′

q, u′, ϕ′)

=

{

∂u′ on a bubble component Σv,
∂(u′◦ϕ′

v)

∂τ + J
(

∂(u′◦ϕ′
v)

∂t − XHt
◦ u′ ◦ ϕ′

v

)

on a mainstream component Σv.

Note that the right hand side is an element of E(q, ε1,B) by Definition 4.28.
By definition if s(q,ε1,B)(Y∪⋃c∈E(q) �w′

c ∪ �w′
q, u′, ϕ′) = 0, then (Y, u′, ϕ′)

represents an element of M�(X,H;α−, α+). We thus obtain a map

ψ(q,ε1,B) : s−1
(q,ε1,B)(0) → M�(X,H;α−, α+).

Proposition 4.30. If ε1 > 0 is small, then (U(q, ε1,B), E(q, ε1,B), s(q,ε1,B),
ψ(q,ε1,B)) is a Kuranishi chart of M�(X,H;α−, α+) at q.

Proof. Taking into account of the point mentioned in the proof of Lemma 4.29,
the proof is the same as in [16, Chapter 8]. �
Lemma 4.31. We assume that q ∈ Sk(M�(X,H;α−, α+)). Then
Sk(V (q, ε1,B)) is the set of (Y ∪ ⋃c∈E(q) �w′

c ∪ �w′
q, u′, ϕ′) ∈ V (q, ε1,B, u)

such that Y has at least k + 1 mainstream components.

Proof. As explained in the proof of Lemma 4.29, the codimension k corner of
M�(X,H;α−, α+) corresponds to the codimension k corner of the D(k; �T0)
factor of the left hand side of (4.8). Lemma 4.31 immediately follows from
this fact. �

We also observe the following fact.

Lemma 4.32. If q ∈ Sk(M�(X,H;α−, α+)) and c ∈ E(q), then we have pc ∈
Sk(M�(X,H;α−, α+)).

Proof. This follows from the following fact. If q is ε-close to p, then the
number of mainstream components of q is not greater than the number of
mainstream components of p. �
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4.5. Coordinate change

Next we discuss coordinate changes of the Kuranishi charts. We refer [23,
Definition 3.6] for the definition of coordinate changes.

Lemma 4.33. For each q1 ∈ M�(X,H;α−, α+) there exists ε1 > 0 such that
the following holds. Suppose q2 ∈ Im(ψ(q1,ε1,B)), then
(1) E(q2) ⊆ E(q1).
(2) Let B2 ⊆ E(q2), B1 ⊆ E(q1) and B2 ⊆ B1. Then there exists ε2 > 0

such that there exists a coordinate change from

(U(q2, ε2,B2), E(q2, ε2,B2), s(q2,ε2,B2), ψ(q,ε2,B2))

to

(U(q1, ε1,B1), E(q1, ε1,B1), s(q1,ε1,B1), ψ(q,ε1,B1)).

Proof. The proof is the same as [20, Sections 9 and 10] [16, Section 8.3]. �
Lemma 4.34. We may choose ε1 > 0 and ε2 > 0 in Lemma 4.33 such that
the following holds.
(1) When we replace q1, ε1 by q2, ε2 in Lemma 4.33, the same conclusion

as Lemma 4.33 holds.
(2) If q3 ∈ Im(ψ(q2,ε2,B2)), then there exists ε3 > 0 such that we have the

conclusion of Lemma 4.33 with q1, ε1, q2 and ε2 replaced by q2, ε2, q3

and ε3, respectively.
We also have the conclusion of Lemma 4.33 with q1, ε1, q2 and ε2

replaced by q1, ε1, q3 and ε3, respectively.
(3) Let (i, j) be one of (i, j) = (1, 2), (2, 3), (1, 3) and Φqi,qj

be the coordinate
change from

(U(qj , εj ,Bj), E(qj , εj ,Bj), s(qj ,εj ,Bj), ψ(q,jεj ,Bj))

to

(U(qi, εi,Bi), E(qi, εi,Bi), s(qi,εi,Bi), ψ(q,iεi,Bi))

obtained by Lemma 4.33. Then we have

Φq1,q3 = Φq1,q2 ◦ Φq2,q3 .

Proof. The proof is the same as in [20, Section 7]. �
We can use Lemmas 4.30, 4.33 and 4.34 to construct a required Kuran-

ishi structure on M�(X,H;α−, α+) in exactly the same way as in [20].
The isomorphism on the orientation bundle stated in Theorem 4.1 (1)

can be proved as follows. Since the marked points are parametrized by com-
plex coordinates, hence even dimensional and canonically oriented, it is enough
to consider the case that � = 0. The fiber of the orientation bundle of
M(X,H;α−, α+) at p ∈ M(X,H;α−, α+) is defined by

oM(X,H;α−,α+)|p ⊗ Rα−,α+ = det Tγ+Rα+ ⊗ det Dp∂J,H ⊗ det Tγ−Rα− ,

(4.22)

where Dp∂J,H is the linearized operator at p in (4.7) with fixed asymptotics
γ± ∈ Rα± and Rα−,α+ stands for the translation action on ˜M(X,H;α−, α+).
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Since the linearization operator (4.6) for bubble components is deformable to
a complex linear Fredholm operator and the matching condition (♥) is taken
in complex vector spaces, we concentrate on the linearization operator (4.5)
for mainstream components with fixed asymptotics γ± here.

For Dp∂J,H , we have

det Dp∂J,H ⊗ detTRα− ⊗ det P (γ−; tw−) ∼= det P (γ+; tw+). (4.23)

Fixing16 an orientation on R once and for all, we can drop the factor Rα−,α+

from the left hand side of (4.22). (This factor is important for (16.8) in [23,
Condition X] as we will see below.) Combining (4.22) and (4.23), we obtain

det Tγ+Rα+ ⊗ det P (γ+; tw+) ∼= oM(X,H;α−,α+)|p ⊗ det P (γ−; tw−).
(4.24)

Recalling the definition of oRα
from Definition 2.6, it is the desired orientation

isomorphism.
Next we prove (16.8) in [23, Condition X]. Suppose that p ∈ M(X,H;

α−, α+) decomposes into (p1,p2) ∈ M(X,H;α−, α+) ×Rα
M(X,H;α−, α).

Then we find that

det Dp∂J,H
∼= det Dp2∂J,H ⊗ det TγRα ⊗ det Dp1∂J,H , (4.25)

where γ is the positive asymptotic limit of p1 and the negative asymptotic
limit of p2. Then we have the following

oM(X,H;α−,α+)|p ⊗ Rα−,α+

∼= det Tγ+Rα+ ⊗ det Dp∂J,H ⊗ det Tγ−Rα−

∼= det Tγ+Rα+ ⊗ det Dp2∂J,H ⊗ TγRα ⊗ det Dp1∂J,H ⊗ det Tγ−Rα−

∼= oM(X,H;α−,α+)|p2 ⊗ Rα,α+ ⊗ det Dp1∂J,H ⊗ det Tγ−Rα−
∼= oM(X,H;α,α+)|p2 ⊗ Rα,α+ ⊗ (det TγRα)∗ ⊗ oM(X,H;α−,α)|p1 ⊗ Rα−,α

∼= (−1)dim M(X,H;α,α+)
Rα,α+ ⊗ oM(X,H;α,α+)×Rα M(X,H;α−,α) ⊗ Rα−,α

∼= (−1)dim M(X,H;α,α+)
Rout ⊗ oM(X,H;α,α+)×Rα M(X,H;α−,α) ⊗ Rα−,α+ .

(4.26)

Here Rout is the outward normal direction of ∂M(X,H;α−, α+). The first,
third and fourth isomorphisms follows from (4.22). The second follows from
(4.25). The fifth is due to the definition of the fiber product orientation on
K-spaces, see [11, Convention 8.2.1 (4)]. For the sixth isomorphism, see the
proof of [11, Proposition 8.3.3]. Thus we have proved Theorem 4.1 (1).

To prove Theorem 4.1 (2) we can use Lemmas 4.31 and 4.32 to show that
the Kuranishi structure constructed above induces a Kuranishi structure on
the codimension k − 1 normalized corner ̂Sk−1(M�(X,H;α−, α+)) which is
the disjoint union of the spaces M(�1,...,�k)(X,H;α0, α1., . . . , αk) for various
α− = α0, α1, . . . , αk−1, αk = α+ ∈ A. Thus we have Theorem 4.1 (2).

Theorem 4.1 (3) follows from Definition 4.11 (6) and Remark 4.12 (1).
Theorem 4.1 (4) is a consequence of Lemma 2.15.

Therefore, the proof of Theorem 4.1 is complete. �
16See [11, Convention 8.3.1].
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Remark 4.35. In [20] we introduced ambient ‘set’ and used it to prove cocycle
condition for the coordinate changes between Kuranishi charts. We can adopt
the method in our situation as follows.

We first define the set X�(X,H;α−, α+) as the set of equivalence classes
of (Σ, (z−, z+, �z), u, ϕ) which satisfies the conditions in Definition 3.3 ex-
cept (4)(5)(6)(9). In other words, we do not require the condition that the
equations (pseudo-holomorphic curve equation or Floer’s equation) are sat-
isfied or the stability. The definition of two such objects being equivalent
is the same as ∼2 in Definition 3.7. By definition M�(X,H;α−, α+) is a
subset of X�(X,H;α−, α+). For any p ∈ M�(X,H;α−, α+) we define its ε-
neighborhood in X�(X,H;α−, α+) as the subset consisting of element which
is ε-close to p in the sense of Definition 4.16. It then defines a partial topology
of the pair (X�(X,H;α−, α+),M�(X,H;α−, α+)) in the sense of [20, Defini-
tion 4.1]. (This is a consequence of Lemma 4.34.) Thus in the same way as
in [20, Section 7] we obtain a Kuranishi structure.

5. Compatibility of Kuranishi structures

In this section we complete the proof of Theorem 2.9. Namely, we modify
the Kuranishi structures in Theorem 4.1 for the Morse–Bott case so that
Kuranishi structures are compatible on boundary and corners under the fiber
product. The argument presented here has not been given in detail for the
moduli space of solutions to Floer’s Eq. (2.4) in the previous literature. For
the case of the moduli spaces of pseudo-holomorphic disks it is written in
detail in [21]. The method of [21] is different from that of this section. We
take a different route to illustrate two different methods. Both methods in
[21] and in this section can be applied to both situations.

5.1. Outer collar

The statements (1) (2) of Theorem 2.9 are a part of Theorem 4.1 and al-
ready proved in Sect. 4. To prove (3) we will introduce an enhanced space
M�(X,H;α−, α+)�1 of M�(X,H;α−, α+) by putting a collar ‘outside’ of
M�(X,H;α−, α+) and modify the Kuranishi structure on the outer collar
M�(X,H;α−, α+)�1\M�(X,H;α−, α+) in the sense of [23, Chapter 17]. As
a topological space we define the space M�(X,H;α−, α+)�1 as follows.17

Definition 5.1. We consider (Σ, (z−, z+, �z), u, ϕ; �t) where
• ((Σ, (z−, z+, �z), u, ϕ) ∈ M�(X,H;α−, α+),
• �t assigns a number tz ∈ [−1, 0] to each transit point z of Σ.

We denote by M�(X,H;α−, α+)�1 the set of isomorphism classes of such
objects (Σ, (z−, z+, �z), u, ϕ; �t). We call it the outer collaring of
M�(X,H;α−, α+).

We say a sequence (Σj , (zj
−, zj

+, �z j), uj , ϕj ; �t j) ∈ M�(X,H;α−, α+)�1

converges to (Σ, (z−, z+, �z), u, ϕ; �t) if the following holds.

17See [23, Lemma-Definition 17.29] for the definition of the outer collar for a general K-
space.
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(1) (Σj , (zj
−, zj

+, �z j), uj , ϕj) converges to (Σ, (z−, z+, �z), u, ϕ) in the sense of
Definition 3.17.

(2) Let z be a transit point of Σ.
(a) Suppose jn → ∞ and there exists a sequence of transit points zn ∈

Σjn which converges to z in an obvious sense, then tjn
zjn

converges
to tz.

(b) If there is no such a sequence then tz = 0.

It is easy to see that we can define a topology in this way.

We can show that M�(X,H;α−, α+)�1 is compact and Hausdorff. The
evaluation map also extends to the outer collar so that it does not depend
on �t. Moreover, by inspecting the discussion in [23, Chapter 17] we can show
that M�(X,H;α−, α+)�1 is the underlying topological space of the outer
collared space of M�(X,H;α−, α+) with respect to the Kuranishi structure
defined in the last section. (However, we do not use this fact in this paper.)

Now the main part of this construction is Proposition 5.5. To state it
we prepare some notations. Let

α− = α0, α1, . . . , αm−1, αm = α+ ∈ A.

In Sect. 3 we denoted by M(�1,...,�m)(X,H;α0, α1., . . . , αm) the fiber product
(3.9)

M�1(X,H;α0, α1) ev+ ×ev− M�2(X,H;α1, α2) ev+ ×ev− . . .

ev+ ×ev− M�i+1(X,H;αi, αi+1) ev+ ×ev− · · · ×ev− M�m
(X,H;αm−1, αm).

(5.1)

Hereafter we write (5.1) as

M ��(X,H; �α).

We will construct a certain Kuranishi structure on M ��(X,H; �α)×[−1, 0]m−1.

Definition 5.2. We put m − 1 = {1, . . . , m − 1}. Let

A � B � C = m − 1

be a decomposition into a disjoint union. We put B = {j1, . . . , jb}. We define
an embedding

IA,B,C : [−1, 0]b → [−1, 0]m−1

by IA,B,C(t1, . . . , tb) = (s1, . . . , sm−1) where

si =

⎧

⎪

⎨

⎪

⎩

−1 if i ∈ A,

tk if i = jk, (k = 1, . . . , b),
0 if i ∈ C.

(5.2)

We put

Part3(m − 1) = {(A,B,C) | A � B � C = m − 1}.
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We note that the set of images of IA,B,C for various (A,B,C) ∈
Part3(m − 1) coincides with the set of cells of the standard cell decompo-
sition of [−1, 0]m−1.

The compatibility condition we formulate below (Condition 5.4) de-
scribes the restriction of the Kuranishi structure ̂U ��(X,H; �α) on the product
space M ��(X,H; �α) × [−1, 0]m−1 to the image of the embedding:

id × IA,B,C : M ��(X,H; �α) × [−1, 0]b → M ��(X,H; �α) × [−1, 0]m−1. (5.3)

We need more notations. We write elements of the set A as A = {i(A, 1),
. . . , i(A, a)} with i(A, 1) < i(A, 2) < · · · < i(A, a − 1) < i(A, a) and consider
the fiber product

M ��A,1
(X,H;α0, . . . , αi(A,1))

ev+ ×ev− M ��A,2
(X,H;αi(A,1), . . . , αi(A,2)) ev+ ×ev− . . .

ev+ ×ev− M ��A,j+1
(X,H;αi(A,j), . . . , αi(A,j+1)) ev+ ×ev− . . .

ev+ ×ev− M ��A,a+1
(X,H;αi(A,a), . . . , αm). (5.4)

Here

��A,j = (�i(A,j−1)+1, . . . , �i(A,j)), (5.5)

and i(A, 0) = 0 and i(A, a+1) = m by convention. Actually the fiber product
(5.4) is nothing but M ��(X,H; �α). Therefore, we can use (5.4) to define a fiber
product Kuranishi structure on M ��(X,H; �α).

Notation 5.3. Let (A,B,C) ∈ Part3(m − 1) and j = 1, . . . , a + 1.

(1) We put

M ��(X,H; �α)+ = M ��(X,H; �α) × [−1, 0]m−1,

where m+1 is the number of components of �α. Note that M ��(X,H; �α)�1

in Definition 5.1 is a union of M ��(X,H; �α)+ for various �α.
(2) For a, b ∈ Z we put [a, b]Z = [a, b] ∩ Z and (a, b)Z = [a, b]Z\{a, b}.
(3) We decompose C into C ′

j(A) = [i(A, j−1), i(A, j)]Z∩C and put Cj(A) =
{i − i(A, j − 1) | i ∈ C ′

j(A)}, cj(A) = #Cj(A). (Recall i(A, 0) = 0 and
i(A, a + 1) = m as above.)

(4) We also put

�αA,j = (αi(A,j−1), . . . , αi(A,j)).

We put α0 = α− and αm = α+ by convention. We include them as
elements of �αA,0 and �αA,a+1, respectively. Note that

M ��A,j
(X,H;αi(A,j−1), . . . , αi(A,j)) = M ��A,j

(X,H; �αA,j). (5.6)

See Fig. 5.
(5) We remove {αi | i ∈ C ′

j(A)} from �αA,j to obtain �αA,j,C .
(6) We put mj(A) = i(A, j) − i(A, j − 1) and

mj(A,C) = #(B ∩ (i(A, j − 1), i(A, j))Z) + 1.
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· · ·
· · ·

×
×

×

××
· · ·

· · ·× ×

γαi(A,j−1)+i

γαi(A,j−1)+i−1
γαi(A,j−1)+1

γαi(A,j−1)
γαi(A,j)

γαi(A,j)−1

i(A,j−1)+1

i(A,j−1)+i

i(A,j)

A,j = (αi(A,j−1), . . . , αi(A,j)) A,j = ( i(A,j−1), . . . , i(A,j)),

Figure 5. M ��A,j
(X,H;αi(A,j−1), . . . , αi(A,j))

Then we have
a+1
∑

j=0

(mj(A,C) − 1) = #B = b. (5.7)

(7) We define ��A,j,C as follows. Let �αA,j,C = {αi(A,j−1)+ks
| s = 0, . . . ,

mj(A,C)}. Here k0 = 0 < k1 < · · · < kmj(A,C) = i(A, j) − i(A, j − 1).
Note if i ∈ (i(A, j − 1) + ks, i(A, j − 1) + ks+1)Z, then i ∈ C ′

j(A). We
put

�A,j,C,s = �i(A,j−1)+ks−1+1 + · · · + �i(A,j−1)+ks

for s = 1, . . . ,mj(A,C) and ��A,j,C = (�A,j,C,1, . . . , �A,j,C,mj(A,C)). See
Fig. 6.

Now the compatibility condition we require is described as follows.

Condition 5.4. The restriction of the Kuranishi structure ̂U ��(X,H; �α) on the
space M ��(X,H; �α)+ to the image of the embedding (5.3) coincides with the
fiber product of the restrictions of the Kuranishi structures ̂U ��A,j,C

(X,H;
�αA,j,C) to M ��A,j

(X,H; �αA,j) × [−1, 0]mj(A,C)−1.

We note that ̂U ��A,j,C
(X,H; �αA,j,C) is a Kuranishi structure on the direct

product space M ��A,j,C
(X,H; �αA,j,C)+ = M ��A,j,C

(X,H; �αA,j,C)
× [−1, 0]mj(A,C)−1 (j = 1, . . . , a + 1) and M ��A,j

(X,H; �αA,j) is a component
of the normalized corner18

̂Scj(A)(M ��A,j,C
(X,H; �αA,j,C)).

Therefore, we can restrict the Kuranishi structure ̂U ��A,j,C
(X,H; �αA,j,C)

to a Kuranishi structure on M ��A,j
(X,H; �αA,j) × [−1, 0]mj(A,C)−1.

18See [23, Definition 24.18] for the normalized corner.
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γαi(A,j−1)
γαi(A,j)

γαi(A,j−1)+k1

γαi(A,j−1)+ks

γαi(A,j−1)+kmj(A,C)−1
Type C Type C

Type B

· · · · · ·
· · ·

γαi(A,j−1)+ks−1
γαi(A,j−1)+ksType C

A,j,C = (αi(A,j−1), αi(A,j−1)+k1 , . . . , αi(A,j−1)+kmj(A,C)−1
, αi(A,j))

Type B

Type BType B

Figure 6. �αA,j,C and ��A,j,C

We take the fiber product of them for various j using (5.4) and obtain a
Kuranishi structure on M ��(X,H; �α) × [−1, 0]b. (Note we use (5.7) here.)

Condition 5.4 requires that this Kuranishi structure coincides with the
restriction of ̂U ��(X,H; �α) to the image of (5.3). Let us elaborate on Condi-
tion 5.4. Formula (5.2) shows that at the image of (5.3) we have si = −1 for
i ∈ A and si = 0 for i ∈ C.

We are taking a fiber product over Rαi(A,j) . Therefore, we take the fiber
product corresponding to the singular points for which si = −1. This is
related to the compatibility of the Kuranishi structures at the boundary and
corners. (Theorem 2.9 (3) and [23, Condition 16.1 (X)].)

Let us consider the part si = 0. For simplicity of notation, we explain the
case m = 2 and C = {1}. We consider M(X,H;α−, α)×Rα

M(X,H;α, α+)×
{0}. Condition 5.4 in this case means that the Kuranishi structure there is
the restriction of the Kuranishi structure on M(X,H;α−, α+). This con-
dition is used to glue M(X,H;α−, α) ×Rα

M(X,H;α, α+) × [−1, 0] with
M(X,H;α−, α+) there.

Proposition 5.5. There exists a K-system

{(M ��(X,H; �α)+, ̂U ��(X,H; �α))}

for various ��, �α with the following properties.

(1) They satisfy Condition 5.4.
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− τ − τ
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τ − 1

τ − 1

τ − 1 τ − 1

Figure 7. C-collared-ness and the retraction I(S,M,L) →
[−1 + τ,−τ ]#M

(2) Let C be19 the union of the components of ∂M ��(X,H; �α)+ which are
in M ��(X,H; �α) × ∂([−1, 0]m−1). Then ̂U ��(X,H; �α) is C-collared in the
sense of Remark 5.6 below.

(3) For the case �α = (α−, α+), ̂U�(X,H; (α−, α+)) coincides with the Ku-
ranishi structure we produced in Theorem 4.1.

We remark that M�(X,H; (α−, α+))+ = M�(X,H; (α−, α+)). So the
statement (3) above makes sense.

Remark 5.6. (1) The definition of C-collared-ness of a K-space can be seen
in [23, Definition 18.9] in the abstract setting. However, in our current
situation we can describe the C-collared-ness of the Kuranishi structure
more explicitly as follows:

For a decomposition of the set m − 1 into three disjoint union
(S,M,L) ∈ Part3(m − 1), we define I(S,M,L) to be the set of (t1, . . . ,
tm−1) ∈ [−1, 0]m−1 such that ti ∈ [−1,−1 + τ ] if i ∈ S, ti ∈ [−τ, 0]
if i ∈ L, and ti ∈ [−1 + τ,−τ ] if i ∈ M . We consider the retraction
I(S,M,L) → [−1 + τ,−τ ]#M by forgetting ti for i /∈ M . We embed
[−1 + τ,−τ ]#M into I(S,M,L) by putting ti = −1 if i ∈ S, ti = 0
if i ∈ L. Let π : ∂M ��(X,H; �α)+ → [−1, 0]m−1 be the obvious pro-
jection. Now we require that the restriction of our Kuranishi structure
to π−1(I(S,M,L)) is obtained by a pull back of one on the image of
π−1([−1 + τ,−τ ]#M ). See Fig. 7.

(2) Indeed we use the C-collared-ness in the proof of Theorem 2.9 below.

19In [23, Situation 18.1] the symbol C is used to indicate a certain specific set of components
among boundary components and to define the notion of ‘C-partial outer collars’ ([23,

Definition 18.9]). In the current situation this C stands for the boundary components
arising from the [−1, 0]m−1 factors.
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Proof of Theorem 2.9 assuming Proposition 5.5. We note that there is a re-
traction:

R : M�(X,H; (α−, α+))�1 → M�(X,H; (α−, α+)). (5.8)

This is a map which sends (Σ, (z−, z+, �z), u, ϕ, �t) to (Σ, (z−, z+, �z), u, ϕ). It
is easy to see that the inverse image R−1(z) is [−1, 0]m if and only if z ∈
◦
Sm(M�(X,H; (α−, α+))) Here

◦
Sm(M�(X,H; (α−, α+))) is the set of points

in codimension m corners of M�(X,H; (α−, α+)) which do not lie in higher

codimension corners. In fact,
◦
Sm(M�(X,H; (α−, α+))) consists of (Σ, (z−, z+,

�z), u, ϕ) such that Σ has exactly m transit points.
By definition the original Kuranishi structure on M ��(X,H; �α)+ is the

direct product of the Kuranishi structure on M ��(X,H; �α) (which is the re-
striction of the Kuranishi structure on M ��(X,H;α−, α+) given in Theo-
rem 4.1) and the trivial Kuranishi structure on [−1, 0]m−1. (See [23, Lemma-
Definition 17.38].)

We replace the direct product Kuranishi structure on M ��(X,H; �α) ×
[−1, 0]m−1 by ̂U ��(X,H; �α) given in Proposition 5.5.

We first check that those Kuranishi structures ̂U ��(X,H; �α) can be glued
to give a Kuranishi structure on M�(X,H; (α−, α+))�1.

Because of Proposition 5.5 (2), it suffices to check that they are compat-
ible for various M ��(X,H; �α) × [−1, 0]m−1 at their intersection points. (Here
the C-collared-ness is used as we mentioned in Remark 5.6 (2).)

The compatibility of two different members of the set { ̂U ��(X,H; �α)} at
the overlapped part is a consequence of Condition 5.4. Indeed it follows from
the case when A = ∅ of Condition 5.4. (Note that they are glued at the part
where a certain coordinate of the [−1, 0]m−1 factor is 0.) The compatibility
of ̂U ��(X,H; �α) with the Kuranishi structure on M�(X,H;α−, α+) given by
Theorem 4.1 follows from Condition 5.4 and Proposition 5.5 (3).

We thus obtain a Kuranishi structure on M�(X,H; (α−, α+))�1. It is
immediate from construction that it satisfies Theorem 2.9 (4).

It remains to prove Theorem 2.9 (3). The main point we need to prove is
the compatibility of our Kuranishi structures at the boundary and corners [23,
Conditions 16.1 (X) (IX)]. This is the condition on the Kuranishi structure at
the point where a certain coordinate of the [−1, 0]m−1 factor is −1. This is a
consequence of Condition 5.4. More precisely, the case C = ∅ of Condition 5.4
implies [23, Conditions 16.1 (X) (IX)].

The other defining conditions for our Kuranishi structures to form a
linear K-system are easy to check. (The periodicity of linear K-system [23,
Conditions 16.1 (VIII)] follows from Remark 4.3.) The proof of Theorem 2.9
is now complete. �

5.2. Proof of Proposition 5.5 I: Obstruction space with outer collar

This subsection and the next are occupied with the proof of Proposition 5.5.
In this subsection we define an obstruction space of Kuranishi chart at each
point in M ��(X,H;α)+ (Definition 5.17). Then we will construct a desired
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Kuranishi structure and complete the proof of Proposition 5.5 in the next
subsection.

Proof of Proposition 5.5. Let (A,B,C) ∈ Part3(m−1), #B = b and (D,E, F )
∈ Part3(b). We define (A,B(D,E, F ), C) ∈ Part3(m − 1) as follows. We put
B = {j1, . . . , jb}. Then (A,B(D,E, F ), C) = (A′, B′, C ′) such that
(1) A′ ⊇ A, C ′ ⊇ C.
(2) ji ∈ A′ if i ∈ D.
(3) ji ∈ B′ if i ∈ E.
(4) ji ∈ C ′ if i ∈ F .

Note (1)–(4) above is equivalent to IA,B,C ◦ ID,E,F = IA′,B′,C′ .

Definition 5.7. We consider a system of closed subsets V(A,B,C) of [−1, 0]m−1

over m = 1, 2, . . . and (A,B,C) ∈ Part3(m−1) with the following properties.
(1)

⋃

(A,B,C)∈Part3(m−1)

Int V(A,B,C) = [−1, 0]m−1.

(2) If (A,B(D,E, F ), C) = (A′, B′, C ′), then

(IA,B,C)−1(V(A′, B′, C ′)) = V(D,E, F ).

(3) If σ ∈ Perm(m − 1), then

σ(V(A,B,C)) = V(σA, σB, σC).

Here σ acts on [−1, 0]m−1 by permutation of the factors and to Part3
(m − 1) in an obvious way.

(4) If (A,B,C), (A′, B′, C ′) ∈ Part3(m−1) and V(A,B,C)∩V(A′, B′, C ′) is
nonempty, then either Im(IA,B,C) is a face of Im(IA′,B′,C′) or
Im(IA′,B′,C′) is a face of Im(IA,B,C).

(5) Let �t = (t1, . . . , tm−1) ∈ V(A,B,C). If ti = −1 then i ∈ A. If ti = 0
then i ∈ C.

(6) V(A,B,C) is a direct product in each sufficiently small neighborhood
of the strata of [−1, 0]m−1 in the following sense. Let �t ∈ S�([−1, 0]m−1)
and take its neighborhood which is isometric to σ(U×(−ε, 0]p×[−1,−1+
ε)q) for some σ ∈ Perm(m−1), ε > 0 with p+q = �. (Here U is isometric
to an open set of Rm−1−�.) We then require

V(A,B,C) ∩ (σ(U × (−ε, 0]p × [−1,−1 + ε)q))

is isometric to the direct product (V(A,B,C)∩σ(U×{0}×{0}))×[0, ε)�.

Lemma 5.8. There exists a system of closed subsets V(A,B,C) satisfying (1)–
(6) in Definition 5.7.

Proof. The proof is by induction on m. There is nothing to prove in the case
m = 1. In the case m = 2 we consider the interval [−1, 0] = [−1, 0]2−1.
Part3(1) consists of exactly 3 elements such that the barycenter of the image
of IA,B,C are −1,−1/2, 0, respectively. We take V(A,B,C) = [−1,−3/5],
[−4/5,−1/5], [−2/5, 0], respectively, for example.
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Figure 8. V(A,B,C)

Suppose we defined V(A,B,C) for (A,B,C) ∈ Part3(m′ − 1) with
m′ < m. We consider V(A,B,C) for (A,B,C) ∈ Part3(m − 1). The induc-
tion hypothesis and Definition 5.7 (2)(5) determine V(A,B,C)∩∂[−1, 0]m−1.
For example, in the case A0 = (A,B,C) where B = m − 1, A = C = ∅,
we have V(A0) ∩ ∂[−1, 0]m−1 = ∅. We can define V(A,B,C) for the case
(A,B,C) �= A0 by taking a small neighborhood of V(A,B,C) ∩ ∂[−1, 0]m−1.
Properties (2)(4)(5) hold by construction and we can choose V(A,B,C) so
that (3)(6) hold also. The union of the interiors of such V(A,B,C)’s contains
∂[−1, 0]m−1. Now we can choose V(A0) so that all of (1)–(6) are satisfied.
See Fig. 8. �

Example 5.9. Here is an example of V(A,B,C). Recall b = #B. If i ∈ A,
−1 ≤ ti ≤ (1 − 3b+1)/3b+1. If i ∈ B, (2 − 3b+1)/3b+1 ≤ ti ≤ −2/3b+1. If
i ∈ C, −1/3b+1 ≤ ti ≤ 0.

Now we take and fix a system {V(A,B,C)} of closed subsets in Defini-
tion 5.7. Let (q, �t) ∈ M��(X,H; �α)+.

Definition 5.10. For each given point �t ∈ [−1, 0]m−1, we put

B(�t) = {(A,B,C) ∈ Part3(m − 1) | �t ∈ V(A,B,C)}.

To each (q, �t) ∈ M ��(X,H; �α)+ and A ∈ B(�t), we are going to define a
finite dimensional linear subspace

E(q,�t)(q;A) ⊂ C∞(Σq, u∗
qTX ⊗ Λ0,1).

Their direct sum will be the obstruction space of the Kuranishi chart at (q, �t).
See Definition 5.17. The way we do so is similar to the argument in Sect. 4
but is slightly more complicated because of describing combinatorial patterns
of corners of the moduli spaces in terms of outer collars.
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We recall

α− = α0, α1, . . . , αm−1, αm = α+ ∈ A

and put

�α = (α0, . . . , αm).

Let B ⊆ m − 1. We will construct a Kuranishi structure on M�(X,H; �α).
The way we do so is the same as the proof of Theorem 4.1. The construction
in the proof of Theorem 4.1 involves various choices. We take different choices
for different B. The choice in the case when A = ∅ and B = ∅ is exactly the
same as one taken during the proof of Theorem 4.1. The detail follows. First
we consider the case A = ∅.20

Choice 5.11. (1) We take a finite set.

A ��(�α;B) = {pc | c ∈ C ��(�α,B)} ⊂ M ��(X,H; �α).

Here C ��(�α,B) is a certain index set which will be taken as in Condi-
tion 5.12.

(2) For each pc ∈ A ��(�α;B) we take its closed neighborhood W (pc; ��, �α,B)
in M ��(X,H; �α) which is sufficiently small so that Lemma 4.22 holds for
p = pc. We also take obstruction bundle data Epc

(��, �α,B) centered at
pc for each c ∈ C ��(�α,B).

Let B = {i(B, 1), . . . , i(B, b)} with 1 ≤ i(B, 1) < · · · < i(B, b) ≤ m − 1
and we put

�α(B) = (α−, αi(B,1), . . . , αi(B,b), α+),

�j(B) = �i(B,j−1)+1 + · · · + �i(B,j),

��(B) = (�1(B), . . . , �b+1(B)).

Here we put i(B, 0) = 0 and i(B, b + 1) = m by convention. We note

M ��(X,H; �α) ⊆ M ��(B)(X,H; �α(B)).

Condition 5.12. We require that the objects taken in Choice 5.11 have the
following properties.

(1) If �α = (α−, α+), the choices are exactly the same as we took during the
proof of Theorem 4.1. Namely the choices of A�(α−, α+),C�(α−, α+)
and W (pc) are made as in Choice 4.23.

(2)

A ��(�α;B) = A ��(B)(�α(B); b) ∩ M ��(X,H; �α). (5.9)

20When A �= ∅, we will apply Choice 5.11 for each moduli space
M(X, H, αi(A,j−1), αi(A,j)) by restricting B to the subset B′

j(A) := B ∩ (i(A, j −
1), i(A, j))Z with j = 1, . . . , a + 1.
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(3) If pc is an element of (5.9), we have

W (pc; ��, �α,B) = W (pc; ��(B), �α(B), b) ∩ M ��(X,H; �α).

Moreover,

Epc
(��, �α,B) = Epc

(��(B), �α(B), b).

(4) For each B
⋃

pc∈A ��( �α,B)

Int W (pc; ��, �α,B) = M ��(X,H; �α). (5.10)

We need to require one more condition (Lemma 5.15 Condition (∗))
which will be given later.

Now we describe the procedure of associating an obstruction space to
an element (q, �t) when Choice 5.11 is given. We first review the procedure
we have taken in Sect. 4. Let q ∈ M ��(X,H; �α).

(i) We put

G(q; ��, �α,B) = {pc | q ∈ W (pc; ��, �α,B)}. (5.11)

This is the same as in Definition 4.25 (1).
(ii) For each pc ∈ G(q; ��, �α,B) we take �wq

pc
⊂ Σq such that q ∪ �wq

pc

is εc-close to pc ∪ �wpc
∪ �wcan and satisfies the transversal constraint.

(Definition 4.19.) We note that such �wq
pc

uniquely exists if we take
W (pc; ��, �α,B) sufficiently small. (Lemma 4.22.)

(iii) If (Y, u′, ϕ′) ∪ �w′
c is ε-close to q ∪ �wq

pc
, then by Definition 4.21 we have

a complex linear embedding

I
��, �α,B
pc,v;Σ′,u′,ϕ′ : Epc,v(ypc

; ��, �α,B) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1). (5.12)

See Definition 4.25 (3). Here (Y ∪ �w′
c, ϕ

′) = Φpc
(ypc

, �Tpc
, �θpc

) as in
Notation 4.15. We include ��, �α,B in the notation since the map depends
on them.

Now we go back to our situation. We will sum up the images of the maps
(5.12) not only for various pc and v but also for various (A,B,C) ∈ B(�t). We
describe this process now.

Let (q, �t) ∈ M ��(X,H; �α)+ and �α = (α0, . . . , αm) as before. Since
M ��(X,H; �α) is a fiber product with m-factors, q is decomposed into fac-
tors qi, i = 1, . . . ,m. Let (A,B,C) ∈ B(�t). We put A = {i(A, 1), . . . , i(A, a)}
with i(A, 1) < · · · < i(A, a). We define

q(A,j) = (qi(A,j−1)+1, . . . ,qi(A,j)) ∈ M ��A,j
(X,H; �αA,j). (5.13)

Recall �αA,j = (αi(A,j−1), . . . , αi(A,j)) and ��A,j = (�i(A,j−1)+1, . . . , �i(A,j)).
We put mj(A) = i(A, j) − i(A, j − 1). We also put B′

j(A) = B ∩ (i(A, j −
1), i(A, j))Z and

Bj(A) = {i − i(A, j − 1) | i ∈ B′
j(A)}.

Note that we made choices for ��A,j , �αA,j and Bj(A) as in Choice 5.11.
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Definition 5.13. For (q, �t) ∈ M ��(X,H, �α)+ we define a set ˜F(q, �t) by

˜F(q, �t) = {((A,B,C), j) | (A,B,C) ∈ B(�t), j = 1, . . . , a + 1 = #A + 1}.

We define an equivalence relation ∼ on it as follows. Let ((A(k), B(k), C(k)),
j(k)) be elements of this set for k = 1, 2. Then

((A(1), B(1), C(1)), j(1)) ∼ ((A(2), B(2), C(2)), j(2))

if and only if the following (1) (2) hold. We put A(k) = {i(A(k), 1), . . . , i(A(k),
a(k))} with i(A(k), 1) < · · · < i(A(k), a(k)).

(1) i(A(1), j(1) − 1) = i(A(2), j(2) − 1). i(A(1), j(1)) = i(A(2), j(2)).
(2) B(1) ∩ (i(A(1), j(1)− 1), i(A(1), j(1)))Z = B(2) ∩ (i(A(2), j(2) − 1),

i(A(2), j(2)))Z.

(Note that it automatically implies ��A(1),j(1) = ��A(2),j(2).) The conditions
(1)(2) imply that the map (5.14) below is independent of the ∼ equivalence
class.

Now we put21

F(q, �t) = ˜F(q, �t)/ ∼ .

For z ∈ F(q, �t) the three objects �αA,j , Bj(A), ��A,j and q(A,j) are de-
termined in a way independent of the representatives. We write them as �αz,
B(z), ��z and qz.

Let z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)). Then we obtain the linear
map (5.12) which is

I
��z, �αz,B(z)
pc,v;Σqz ,uqz ,ϕqz

: Epc,v(ypc
; ��, �α,B) → C∞(Σqz ;u

∗
zTX ⊗ Λ0,1). (5.14)

Here (Σqz ∪ �zqz ∪ �wqz
pc) = Φpc

(ypc
, �Tpc

, �θpc
)22 and Σqz , uqz , ϕqz are the source

curve, the map to X, and the parametrization of the mainstream, which are
parts of qz, respectively. Note that the target space of the map (5.14) is a
subset of C∞(Σq;u∗TX ⊗ Λ0,1) and is the sum of the set of smooth sections
of the irreducible components.

Remark 5.14. The notion of stabilization data is similar to the obstruction
bundle data (Definition 4.11), except we do not include obstruction spaces
(Definition 4.11 (5)(6)).

Lemma 5.15. We can achieve the choices laid out in Choice 5.11 so that
Condition 5.12 and the following condition (∗) are satisfied.

(*) The sum of the images of the map (5.14) for various z ∈ F(q, �t), pc ∈
G(qz; ��z, �αz, B(z)) and irreducible components v of pc is a direct sum in
C∞(Σq;u∗TX ⊗ Λ0,1).

21The sets V(A, B, C) are used to define B(�t). Then B(�t) is used to define ˜F(q, �t).
22As we noticed in Notation 4.15, ypc etc on the right hand side also depend on qz in this

case, but we omit qz from the notations when no confusion can occur.
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We will prove Lemma 5.15 in the next subsection. Assuming it for the
moment, we continue the proof of Proposition 5.5.

Note that for each z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)) we took
additional marked points �wqz

pc on qz. These marked points can be regarded
as marked points on q. We also take stabilization data centered at q. In
particular, we take �wq.

Situation 5.16. • We have (Y, u′, ϕ′) and marked points �w′
pc

on the source
curve of Y′ for each z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)). We also take �w′

q.
• For each z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)), we assume that (Y, u′, ϕ′)∪
�w′
pc

is ε1-close to q ∪ �wqz
pc .

• We assume that (Y, u′, ϕ′) ∪ �w′
q is ε1-close to q ∪ �wq.

• We assume that Y is decomposed into m extended mainstream components
Yi (i = 1, . . . , m), and (Yi, u

′, ϕ′)∪ ( �w′
q ∩Yi) is ε1-close to qi ∪ ( �wq ∩qi). �

In Situation 5.16 we have

I
��z, �αz,B(z)
pc,v;Σ′,u′,ϕ′ : Epc,v(y′

pc
; ��, �α,B) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1) (5.15)

in the same way as in (5.12). Here Y ∪ �w′
pc

= Φpc
(y′

pc
, �T ′

pc
, θ′

pc
) so this map

depends also on �w′
pc

.

Definition 5.17. For each (q, �t) ∈ M ��(X,H; �α)+ we define a linear subspace
E((Y, u′, ϕ′) ∪ ⋃ �w′

pc
;q) of C∞(Σ′; (u′)∗TX ⊗ Λ0,1) by the sum of all the

images of the map (5.15) for various v, z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)).
We call it the obstruction space of Kuranishi chart at (q, �t).
5.3. Proof of Proposition 5.5 II: Kuranishi chart and coordinate change

We now define Kuranishi charts of our Kuranishi structure.

Definition 5.18. Let (q, �t) ∈ M��(X,H; �α)+. In Situation 5.16 we consider the
following conditions on an object (((Y, u′, ϕ′) ∪⋃z,c �w′

pc
∪ �w′

q), �t′):
(1) If Σa is the mainstream component of Y and ϕ′

a is a parametrization of
this mainstream component (which is a part of given ϕ′), the following
equation is satisfied on R × S1.

∂(u′ ◦ ϕ′
a)

∂τ
+ J

(

∂(u′ ◦ ϕ′
a)

∂t
− XHt

◦ u′ ◦ ϕ′
a

)

≡ 0 mod E((Y, u′, ϕ′) ∪
⋃

�w′
pc

;q).
(5.16)

(2) If Σ′
v is a bubble component of Y, the following equation is satisfied on

Σ′
v.

∂u′ ≡ 0 mod E((Y, u′, ϕ′) ∪
⋃

�w′
pc

;q). (5.17)

(3) For each z ∈ F(q, �t) and pc ∈ G(qz; ��z, �αz, B(z)) the additional marked
points �w′

pc
satisfy the transversal constraint in Definition 4.19 with re-

spect to pc.
(4) The additional marked points �w′

q satisfy the transversal constraint in
Definition 4.19 with respect to q.
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(5) For each z and c ∈ E(q), (Y, u′, ϕ′)∪ �w′
pc

∪ �w′
q is ε1-close to q∪ �wqz

pc ∪ �wq.
(6) |�t′ − �t| < ε1.

The set of isomorphism classes of (((Y, u′, ϕ′) ∪⋃z,c �w′
pc

∪ �w′
q), �t′) sat-

isfying Conditions (1) - (6) above is denoted by

V ((q, �t), ε1)
where the isomorphism is defined in the same way as in Definition 4.28.

We can prove that V ((q, �t), ε1) is a smooth manifold in the way similar
to Lemma 4.29. It is easy to see that it is Aut(q) invariant and so we obtain
an orbifold U((q, �t), ε1) = V ((q, �t), ε1)/Aut(q). We define a vector bundle
E((q, �t), ε1) on it by taking E((Y, u′, ϕ′) ∪ ⋃ �w′

pc
;q) as the fiber. Then the

left hand side of (5.16) and (5.17) define its smooth section, which we denote
by s(q,�t),ε1 . An element of its zero set determines an element of M ��(X,H; �α)+.
We thus obtain ψ(q,�t),ε1 .

We can prove that (U((q, �t), ε1), E((q, �t), ε1), s(q,�t),ε1 , ψ(q,�t),ε1) is a Ku-
ranishi chart of (q, �t) in the same way as in Proposition 4.30.

We can define a coordinate change among them and show the com-
patibility among them in the same way as in Lemmas 4.33 and 4.34. We
finally adjust the size of the Kuranishi neighborhoods {V ((q, �t), ε1)}(q,�t) to
obtain a Kuranishi structure on M ��(X,H; �α)+ in the same way again as in
Lemmas 4.33 and 4.34.

Condition 5.4 is a consequence of the Property (5) in Definition 5.7 and
the way we used V(A,B,C) to define B(�t) and F(q, �t). Let us elaborate on
this point.

If ti = 0, then i ∈ C. Therefore, we can apply Condition 5.12 (2)(3)
to see that the obstruction spaces are restrictions on those which we defined
on the moduli space obtained by performing the gluing at the corresponding
transit points.

If ti = −1, then i ∈ A. Therefore, we are taking fiber product Kuranishi
structure at the corresponding transit points. (See (5.13) and Definition 5.13.)

Proposition 5.5 (2) is a consequence of Definition 5.7 (6) and the con-
struction.

Proposition 5.5 (3) is a consequence of Condition 5.12 (1).
Therefore, to complete the proof of Proposition 5.5 and of Theorem 2.9

it remains to prove Lemma 5.15.

Proof of Lemma 5.15. The proof is by induction on m, where we recall #�α =
m − 1. If m = 1 then Choice 5.11 is given during the proof of Theorem 4.1.
We suppose that we made the choice for m′ that is smaller than m and we
will prove the case of m. We also assume that, as a part of the induction
hypothesis, the conclusion of Lemma 5.15 holds if the number of components
of �α is strictly smaller than m + 1.

We now consider �α with (m + 1) components and ��. Let �t ∈ [−1, 0]m−1

and q ∈ M ��(X,H; �α). We define a relation < on the set B(�t) in Definition 5.10
such that (A′, B′, C ′) < (A,B,C) if and only if ∂(Im IA,B,C) ⊇ Im IA′,B′,C′ .
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By Definition 5.7 (4) the set B(�t) is linearly ordered by this relation <.
Therefore, there exists a maximal element, which we denote by (A0, B0, C0).
Case 1: B0 �= m − 1.
Case 1-1: A0 �= ∅. Let i ∈ A0. We note that if (A,B,C) ∈ B(�t) then
Im IA,B,C is a face of Im IA0,B0,C0 . Since Im IA0,B0,C0 ⊆ {ti = −1}, we
have Im IA,B,C ⊆ {ti = −1}. Therefore, i ∈ A by Definition 5.7 (4).

We consider �α1 = (α0, . . . , αi), �α2 = (αi, . . . , αm) and ��1 = (�0, . . . , �i),��2 = (�i, . . . , �m). We have

(q, �t) ∈ M ��1(X,H; �α1)+ ×Rαi
M ��2(X,H; �α2)+.

We decompose (q, �t) into (q1, �t1) and (q2, �t2). Since i ∈ A for all the elements
(A,B,C) ∈ B(�t), we find easily that

F(q, �t) ∼= F(q1, �t1) � F(q2, �t2).
Therefore, by induction hypothesis we can show that Lemma 5.15 Condition
(∗) holds at this element (q, �t).
Case 1-2: C0 �= ∅. Let i ∈ C0. In the same way as in Case 1-1 we can show
i ∈ C for all (A,B,C) ∈ B(�t). Then we put �α′ = (α0, . . . , αi−1, αi+1, . . . , αm),
��′ = (�1, . . . , �i−1, �i+�i+1, �i+2, . . . , �m). We may identify (q, �t) as an element
(q′, �t′) of M ��′(X,H; �α′)+. Then we have F(q′, �t′) ∼= F(q, �t). Therefore, we can
check Lemma 5.15 Condition (∗) by induction hypothesis.
Case 2: B0 = m − 1. In this case A0 = C0 = ∅. Let (A1, B1, C1) be the max-
imal element of B(�t)\{(A0, B0, C0)}. Using the argument of Case 1, we can

show that the sum of the images of I
��z, �αz,B(z)
pc,v;Σqz ,uqz ,ϕqz

for z ∈ B(�t)\{(A0, B0, C0)},

pc ∈ G(q; ��, �α,B) and v (irreducible components of pc), is a direct sum.
Now we can make our choice for (A0, B0, C0) so that Lemma 5.15 Con-

dition (∗) also holds in this case. (See [23, Lemma 11.7] for example.)
The proof of Lemma 5.15 is now complete. �

The proof of Proposition 5.5 is now complete. �

6. Construction of morphism

6.1. Statement

Let H1,H2 be two functions X × S1 → R which are Morse–Bott non-
degenerate in the sense of Condition 2.1. We put

˜Per(Hj) =
∐

α∈Aj

Rj
α (6.1)

as in (2.6) for j = 1, 2. We define a local system oRj
α

on each Rj
α as in

Definition 2.6. Let J1, J2 be two almost complex structures tamed by ω.
Using them we obtain linear K-systems Fj := FX(Hj , Jj) (j = 1, 2) by
Theorem 2.9 whose spaces of connecting orbits are M(X,Jj ,H

j ;α−, α+)�1.
In this section we will construct a morphism N21 : F1 → F2 of linear K-
systems [23, Definition 16.19].
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Situation 6.1. We consider a smooth function23 H21 : X ×R× S1 → R such
that:
(1) If τ < −1, then H21(x, τ, t) = H1(x, t).
(2) If τ > 1, then H21(x, τ, t) = H2(x, t).

We put H21
τ,t(x) = H(x, τ, t) and denote by XH21

τ,t
the Hamiltonian vector field

associated to Hτ,t.
We also consider a one parameter family J 21 = {J21

τ } of almost complex
structures tamed by ω such that:

(i) If τ < −1, then J21
τ = J1.

(ii) If τ > 1, then J21
τ = J2.

When no confusion can occur, we simply write J = J 21 in this section. �

Definition 6.2. Suppose we are in Situation 6.1. Let α− ∈ A1 and α+ ∈ A2.
We consider the set of smooth maps u : R × S1 → X with the following
properties.
(1) It satisfies

∂u

∂τ
+ J21

τ

(

∂u

∂t
− XH21

τ,t
◦ u

)

= 0. (6.2)

Here τ and t are the coordinates of R and S1 = R/Z, respectively.
(2) There exist γ̃− = (γ−, w−) ∈ R1

α− and γ̃+ = (γ+, w+) ∈ R2
α+

such that

lim
τ→±∞ u(τ, t) = γ±(t) (6.3)

and w−#u ∼ w+.
We denote by N reg(X,J ,H21;α−, α+) the totality of such maps u. We

define ev± : N reg(X,J ,H21;α−, α+) → R1
α− , R2

α+
by ev±(u) = γ̃±.

Lemma 6.3. Suppose u : R × S1 → X satisfies (6.2). We assume
∫

R×S1

∥

∥

∥

∥

∂u

∂τ

∥

∥

∥

∥

2

dτdt < ∞.

Then there exist γ̃− = (γ−, w−) ∈ R1
α− and γ̃+ = (γ+, w+) ∈ R2

α+
such that

(6.3) is satisfied.

The proof is similar to the proof of Proposition 2.4 and is omitted.

Theorem 6.4. Suppose we are in the situation of Definition 6.2.
(1) The space N reg(X,J ,H21;α−, α+) has a compactification

N (X,J ,H21;α−, α+).

(2) The compact space N (X,J ,H21;α−, α+) has a Kuranishi structure with
corners. The map ev is extended to it as a strongly smooth map.

(3) There exists a morphism of linear K-systems N21 : F1 → F2 whose
interpolation space is N (X,J ,H21;α−, α+)�1 given in Definition 6.10
(2).

23The reason we put 2, 1 in this order in the notations H21 and N21 is to be consistent
with the order of compositions.
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(4) The Kuranishi structure on N (X,J ,H21;α−, α+)�1 in (3) coincides
with the given one in (2) on N (X,J ,H21;α−, α+) ⊂ N (X,J ,H21;
α−, α+)�1.

Proof. The proof of Theorem 6.4 occupies the rest of this section.

6.2. Proof of Theorem 6.4 (1)(2): Kuranishi structure

We begin with defining the compactification N�(X,J ,H21;α−, α+). Let
(Σ, (z−, z+, �z)) be a genus zero semistable curve with � + 2 marked points.
We define the notion of mainstream as in Definition 3.2. Let Σa and Σa′ be
two mainstream components.

Definition 6.5. We say a < a′ if the connected component of Σ\{za′,−} con-
taining z− contains Σa.24

We observe that one of a < a′, a′ < a or a = a′ holds for any pair of
mainstream components (Σa,Σa′).

Definition 6.6. The set ̂N�(X,J ,H21;α−, α+) consists of triples

((Σ, (z−, z+, �z), a0), u, ϕ)

satisfying the following conditions: Here � = #�z.

(1) (Σ, (z−, z+, �z)) is a genus zero semi-stable curve with �+2 marked points.
(2) ϕ is a parametrization of the mainstream.
(3) Σa0 is one of the mainstream components. We call it the main compo-

nent.
(4) For each extended mainstream component ̂Σa, the map u induces ua :

̂Σa\{za,−, za,+} → X which is a continuous map.25

(5) If Σa is a mainstream component and ϕa : R × S1 → Σa is as above,
then the composition ua ◦ ϕa satisfies the equation

∂(ua ◦ ϕa)
∂τ

+ Ja,τ

(

∂(ua ◦ ϕa)
∂t

− XHa
τ,t

◦ (ua ◦ ϕa)
)

= 0, (6.4)

where

Ha
τ,t =

⎧

⎪

⎨

⎪

⎩

H1
t if a < a0,

H21
τ,t if a = a0,

H2
t if a > a0,

and

Ja,τ =

⎧

⎪

⎨

⎪

⎩

J1 if a < a0,

J21
τ if a = a0,

J2 if a > a0.

24za′,− and za′,+ are transit points of Σa′ which are defined in Definition 3.2.
25In other words u is a continuous map from the complement of the set of the transit
points.
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(6)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

ddτdt < ∞.26

(7) Suppose Σv is a bubble component in ̂Σa. Let ϕa(τ, t) be the root of
the tree of sphere bubbles containing Σv. Then u is J-holomorphic on
Σv where

J =

⎧

⎪

⎨

⎪

⎩

J1 if a < a0,

J21
τ if a = a0,

J2 if a > a0.

(8) If Σa1 and Σa2 are mainstream components and za1,+ = za2,−, then

lim
τ→+∞(ua1 ◦ ϕa1)(τ, t) = lim

τ→−∞(ua2 ◦ ϕa2)(τ, t)

holds for each t ∈ S1. ((6) and Lemma 6.3 imply that the left and right
hand sides both converge.)

(9) If Σa, Σa′ are mainstream components and za,− = z−, za′,+ = z+, then
there exist (γ±, w±) ∈ Rα± such that

lim
τ→−∞(ua ◦ ϕa)(τ, t) = γ−(t),

lim
τ→+∞(ua′ ◦ ϕa′)(τ, t) = γ+(t).

Moreover,

[u∗[Σ]]#w− = w+,

where # is the obvious concatenation.
(10) We assume that ((Σ, (z−, z+, �z), a0), u, ϕ) is stable in the sense of Defi-

nition 6.9 below.

To define stability we first define the group of automorphisms.

Definition 6.7. Assume that ((Σ, (z−, z+, �z), a0), u, ϕ) satisfies (1)–(9) above.
The extended automorphism group Aut+((Σ, (z−, z+, �z), a0), u, ϕ) of ((Σ, (z−,
z+, �z), a0), u, ϕ) consists of maps v : Σ → Σ with the following properties:
(1) v(z−) = z− and v(z+) = z+. In particular, v preserves each of the

mainstream component Σa of Σ. Moreover, v fixes each of the transit
points.

(2) u = u ◦ v holds outside the set of the transit points.
(3) If Σa is a mainstream component of Σ, there exists τa ∈ R such that

(v ◦ ϕa)(τ, t) = ϕa(τ + τa, t) (6.5)

on R × S1.
(4) We require τa0 = 0.
(5) There exists σ ∈ Perm(�) such that v(zi) = zσ(i).

26Condition (6) follows from the rest of the conditions in Definition 6.6 using, e.g., [30,
(2.14)]. The same remark holds for Definitions 8.3, 10.4, 10.7, 10.12, 10.14, 10.16.
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The automorphism group denoted by Aut((Σ, (z−, z+, �z), a0), u, ϕ) of
((Σ, (z−, z+, �z), a0), u, ϕ) consists of the elements of Aut+((Σ, (z−, z+, �z), a0),
u, ϕ) such that σ in Item (5) above is the identity.

Remark 6.8. Definition 6.7 is mostly the same as Definition 3.4. The most
important difference is Item (4) where we assume τa0 = 0. Note the equation
(6.4) is not invariant under the translation of the R direction on the main
component.

Definition 6.9. We say ((Σ, (z−, z+, �z), a0), u, ϕ) is stable if Aut((Σ, (z−, z+, �z),
a0), u, ϕ) is a finite group. (This is equivalent to the finiteness of Aut+

((Σ, (z−, z+, �z), a0), u, ϕ).)

Definition 6.10. (1) On the set ̂N�(X,J ,H21;α−, α+) we define two equiv-
alence relations ∼1, ∼2. The definition of ∼1 is the same as Defini-
tion 3.7. The definition of ∼2 is the same as Definition 3.7 except we
require τa0 = 0, in addition. We put

˜N�(X,J ,H21;α−, α+) = ̂N�(X,J ,H21;α−, α+)/ ∼1,

N�(X,J ,H21;α−, α+) = ̂N�(X,J ,H21;α−, α+)/ ∼2 .

In the case � = 0 we write N (X,H;α−, α+) etc.
(2) We define N (X,J ,H21;α−, α+)�1 in the same way as in Definition 5.1.

Namely, it is the set of equivalence classes of objects (((Σ, (z−, z+, �z), a0),
u, ϕ), �t) where ((Σ, (z−, z+, �z), a0), u, ϕ) ∈ N (X,J ,H21;α−, α+) and �t
assigns numbers tp ∈ [−1, 0] to each transit points.27

Definition 6.11. We put X = one point and H21 ≡ 0. Then we obtain the
space N�(one point,J , 0;α0, α0). Here α0 is the unique point in Per(0). We
denote this space by N�(source).

We remark that N�(source) is similar to but is different from M�(source).
In fact, N�(source) includes the data that specify which mainstream compo-
nent is the main component and also the isomorphism between two elements
of N�(source) is required to be strictly compatible with the parametrization
of the main component.

Example 6.12. N0(source) is one point. N1(source) is S1 × [0, 1]. In fact, if
there is only one mainstream component and the marked point is ϕ(τ, t), then
the coordinates (τ, t) determine an element of N1(source). We compactify it
by including the case when there are two mainstream components. In such a
case the marked point can not be on the main component. So the S1 factor
of the coordinates of the marked points determine an element of N1(source).
There are two cases: a < a0 or a > a0. (Here a is the mainstream component
which is not the main component.) Thus N1(source) is a union of R×S1 and
two copies of S1.

We can define a topology on N�(X,J ,H21;α−, α+) in the same way as
in Definition 3.17 and can prove the following:

27 This space is the outer collaring of N (X, J , H21; α−, α+) in the sense of [23, Definition
17.29].
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Lemma 6.13. The space N�(X,J ,H21;α−, α+) is compact and Hausdorff.

Next, we define a Kuranishi structure on the compactification N�(X,J ,
H21;α−, α+). We define the notion of symmetric stabilization of an element
[((Σ, (z−, z+, �z), a0), u, ϕ)] of N�(X,J ,H21;α−, α+) in exactly the same way
as in Definition 4.4.

We define the notion of canonical marked point wa,can of a mainstream
component Σa of Σ such that there is no marked or singular points on Σa

other than transit point, as follows. If a �= a0, the definition of wa,can is
exactly the same as Definition 4.8. For a = a0, we do not define canonical
marked points.

Remark 6.14. Note that M0(source) = ∅. This is the reason we need to in-
troduce the canonical marked points. On the other hand, N0(source) consists
of one point and is not an empty set. Namely the unique element in it is rep-
resented by a stable object. This is the reason we do not need to introduce
the canonical marked points on the main component.

Let �wcan be the totality of all the canonical marked points. In the same
way as in Lemma 4.9, we can prove that ((Σ, (z−, z+, �z), a0) ∪ �w ∪ �wcan, ϕ) is
stable28, where [((Σ, (z−, z+, �z), a0), u, ϕ)] ∈ N�(X,J ,H21;α−, α+) and �w is
a symmetric stabilization.

We then define the notion of obstruction bundle data Cp for each element
p ∈ N�(X,J ,H21;α−, α+) in the same way as in Definition 4.11. Its existence
can be proved easily. (See for example [13, Lemma 17.11].)

We next explain how we use the obstruction bundle data Cp to define
an obstruction space for each object close to p ∈ N�(X,J ,H21;α−, α+).

Let p = [((Σ, (z−, z+, �z), a0), u, ϕ)]. We assume that Σ has exactly k
transit points. Taking the condition that the main component is equipped
with the parametrization ϕa0 into account, we obtain a map

Φp :
∏

v

V(xv ∪ �wv ∪ �wcan,v) × (T0,∞]k ×
m
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)

→ N�+�′+�′′(source)

(6.6)

in the same way as in (4.8). Here V(xv ∪ �wv ∪ �wcan,v) is an open subset of
◦

Mcl
∗ or

◦
M∗(source). See Definition 4.11 (2) (a)(b).

The factor (T0,∞]k parametrizes the way how we smooth the singular
points that are the transit points. In (4.8) the similar factor is D(k; �T0). The
difference is that in the situation of (4.8) the isomorphism v : Σ → Σ includes
the translation, which is a map v such that v ◦ ϕa(τ, t) = ϕa(τ + τ0, t). This
shifts Ti ∈ (T0,j ,∞] by τ0. (Here τ0 is independent of a.) On the other hand,
the isomorphism v here is required to commute strictly with ϕa0 . So there is
not such a shift. Taking this point into account, the map (6.6) is defined in
the same way as in (4.8).

28We say ((Σ, (z−, z+, �z), a0) ∪ �w ∪ �wcan, ϕ) is stable if the automorphism group

Aut+((Σ, (z−, z+, �z), a0), ϕ) defined as in Definition 6.7 by removing u (the condition (2))
is finite.
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Now let

(Y ∪ �w′, ϕ′, a′
0) = Φp(y, �T , �θ) ∈ N�+�′+�′′(source) (6.7)

where y = (yv). (v is in the set of irreducible components of p.) Here �w′ is
the set of the additional marked points corresponding to �w and �wcan. The
notation Y includes the marked points corresponding to �z and z±. a′

0 is the
datum to specify the main component and ϕ′ is the parametrization of the
mainstream. ( �T , �θ) ∈ (T0,∞]k ×∏m

j=1

(

((T0,j ,∞] × S1)/ ∼) .
Let u′ : Σ′\{transit points} → X. We assume that (Y, u′, ϕ′, a′

0) sat-
isfies Definition 6.6 (1)(2)(3)(4)(8)(9). We can then define the notion that
(Y ∪ �w′, u′, ϕ′, a′

0) is ε-close to p ∪ �w ∪ �wcan in the same way as in Defini-
tion 4.16. (Note Definition 4.16 (2) is the pseudo-holomorphicity (or pseudo-
holomorphicity with Hamiltonian term) at the neck region. We use the almost
complex structure specified in Definition 6.6 (5).)

Definition 6.15. We define the transversal constraint for (Y∪ �w′, u′, ϕ′, a′
0) as

follows. Let w′
i be one of the points of �w′. If w′

i corresponds to a point in �w,
we require Definition 4.19 (1). If w′

i corresponds to wa,can with a �= a′
0, we

require Definition 4.19 (2)(3).

Suppose (Y ∪ �w′, u′, ϕ′, a′
0) is ε-close to p ∪ �w ∪ �wcan. In the same way

as in (4.21), we define a map

Ip,v;Σ′,u′,ϕ′,a′
0

: Ep,v(y) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1) (6.8)

where y is as in (6.7) and v is its irreducible component, and Ep,v(y) is defined
as a part of the obstruction bundle data Cp as in (4.3) (see Definition 4.11
(5)).

Now in the same way as in Choice 4.23, we proceed as follows. We first
observe that for any p ∈ N�(X,J ,H21;α−, α+) there exist εp > 0 and a
closed small neighborhood W (p) of p such that if q ∈ W (p) there exists �wq

p

uniquely with the following properties:
(1) q ∪ �wq

p is εp-close to p ∪ wp ∪ �wcan.
(2) q ∪ �wq

p satisfies the transversal constraint.
(3) The linearization operator Dq∂J,H21 at q as in (4.7) is surjective

mod ⊕v Im Ip,v;q, where Ip,v;q is the map in (6.8) for q = (Σ′, u′, ϕ′).
The proof of this fact is the same as that of Lemma 4.22. Then we have

⋃

p

Int W (p) = N�(X,J ,H21;α−, α+).

Therefore, by compactness of the moduli space we can take a finite subset
indexed by a finite set C�(H21,J ;α−, α+)

A�(H
21, J ; α−, α+) = {pc | c ∈ C�(H

21, J ; α−, α+)} ⊂ N�(X, J , H21; α−, α+)

such that for each c ∈ C�(H21,J ;α−, α+) we take obstruction bundle data
Epc

centered at pc, and a closed neighborhood W (pc) of pc in N�(X,J ,H21;
α−, α+) with the following property. For each element q ∈ W (pc) there exists
�wq
pc

such that
(1) q ∪ �wq

pc
is εc-close to pc ∪ wpc

∪ �wcan.
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(2) q ∪ �wq
pc

satisfies the transversal constraint.
(3)

⋃

c∈C�(H21,J ;α−,α+)

Int W (pc) = N�(X,J ,H21;α−, α+). (6.9)

Definition 6.16. (1) For each q ∈ N�(X,J ,H21;α−, α+) we put

E(q) = {c ∈ C�(H21,J ;α−, α+) | q ∈ W (pc)}.

(2) Let B ⊂ E(q) be a nonempty subset.
(3) We consider (Y∪⋃c∈B �w′

c, u
′, ϕ′, a′

0) such that for each c, (Y∪ �w′
c, u

′, ϕ′,
a′
0) is ε-close to q∪ �wq

c . If ε > 0 is small, then (Y∪ �w′
c, u

′, ϕ′, a′
0) is ε-close

to pc ∪ �wc and we can define the map

Ipc,v;Σ′,u′,ϕ′,a′
0

: Epc,v(ypc
) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1)

as in (6.8) for each irreducible component v of pc. Here (Y∪ �w′
c, ϕ

′, a′
0) =

Φpc
(ypc

, �Tpc
, �θpc

) as in Notation 4.15. We now put

E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0);q;B) =

⊕

c∈B

⊕

v

Im Ipc,v;Σ′,u′,ϕ′,a′
0
. (6.10)

We can define the notion of the stabilization data centered at q ∈
N�(X,J ,H21;α−, α+) in the same way as in Definition 4.26.

Using those data we fixed, we will define a Kuranishi chart of q as
follows.

Definition 6.17. We consider the following conditions on an object (Y ∪
⋃

c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′, a′
0):

(1) If Σ′
a is the mainstream component and ϕ′

a is a parametrization of this
mainstream component, the following equation is satisfied on R × S1.

∂(u′ ◦ ϕ′
a)

∂τ
+ J1

(

∂(u′ ◦ ϕ′
a)

∂t
− XH1

t
◦ u′ ◦ ϕ′

a

)

≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0);q;B)

(6.11)

for a < a′
0,

∂(u′ ◦ ϕ′
a)

∂τ
+ J2

(

∂(u′ ◦ ϕ′
a)

∂t
− XH2

t
◦ u′ ◦ ϕ′

a

)

≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0);q;B)

(6.12)

for a > a′
0,

∂(u′ ◦ ϕ′
a)

∂τ
+ J21

τ

(

∂(u′ ◦ ϕ′
a)

∂t
− XH21

(τ,t)
◦ u′ ◦ ϕ′

a

)

≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0);q;B)

(6.13)

for a = a′
0.
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(2) If Σ′
v is a bubble component, the following equation is satisfied on Σ′

v.

∂Ju′ ≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0);q;B). (6.14)

Here the almost complex structure J is as follows. Let ̂Σ′
a be the ex-

tended mainstream component containing Σ′
v. If a < a′

0, then J = J1.
If a > a′

0, then J = J2. If a = a′
0 and ϕa′

0
(τ, t) is the root of the tree of

sphere components containing Σ′
v, then J = J21

τ .
(3) For each c ∈ E(q) the additional marked points �w′

c satisfy the transversal
constraint with respect to pc.

(4) The additional marked points �w′
q satisfy the transversal constraint with

respect to q.
(5) (Y ∪⋃c∈E(q) �w′

c ∪ �w′
q, u′, ϕ′, a′

0) is ε1-close to q ∪⋃c∈E(q) �wq
c ∪ �wq.

The set of isomorphism classes of (Y ∪⋃c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′, a′
0) sat-

isfying the conditions (1)–(5) above is denoted by

V (q, ε1,B),

where (Y′ ∪ ⋃c∈E(q) �w′
c ∪ �w′

q, u′, ϕ′, a′
0) is said to be isomorphic to (Y′′ ∪

⋃

c∈E(q) �w′′
c ∪ �w′′

q, u′′, ϕ′′, a′′
0) if there exists a biholomorphic map v : Σ′ → Σ′′

such that
(a) u′′ = u′ ◦ v holds outside the set of the transit points.
(b) If Σ′

a is a mainstream component of Σ′ and v(Σ′
a) = Σ′′

a′ , then we have
(v ◦ ϕ′

a)(τ + τa, t) = ϕ′′
a′(τ, t) for some τa.

(c) We assume that if a = a′
0 and v(Σ′

a) = Σ′′
a′ , then a′ = a′′

0 . Moreover,
τa′

0
= 0.

(d) v(z′
i) = z′′

i and v(w′
i) = w′′

i .

In the same way as in Lemma 4.29, we can prove that V (q, ε1,B) is a
smooth manifold with boundary and corner if ε1 > 0 and εc > 0 are small
enough.

We note that the group Aut+(q) acts on V (q, ε1,B) since the stabiliza-
tion data are assumed to be preserved by it. In particular, Aut(q) acts on it.
By the condition in Definition 4.11 (6) this action is effective. Therefore, the
quotient space V (q, ε1,B)/Aut(q) is an effective orbifold, which we denote
by

U(q, ε1,B).

We define a vector bundle on U(q, ε1,B) such that its fiber at (Y, u′,
⋃

c∈E(q)

�w′
c ∪ �w′

q, ϕ′, a′
0) is E((Y ∪ ⋃c∈B �w′

c, u
′, ϕ′, a′

0);q;B). We denote this vector
bundle by

E(q, ε1,B).

We can define its section s(q,ε1,B) by using the left hand side of (6.11)–(6.14).
An element of its zero set represents an element of N�(X,J ,H21;α−, α+).
Thus we obtain:

ψ(q,ε1,B) : s−1
(q,ε1,B)(0) → N�(X,J ,H21;α−, α+).
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We thus obtain a Kuranishi chart

(U(q, ε1,B), E(q, ε1,B), s(q,ε1,B), ψ(q,ε1,B)).

In the way similar to the proof of Lemmas 4.33, 4.34, and also using the expo-
nential decay estimates in the same way as in [16], we can define coordinate
change among them. We thus obtain a Kuranishi structure on N�(X,J ,H21;
α−, α+). We have proved Theorem 6.4 (1)(2).

6.3. Proof of Theorem 6.4 (3)(4): Kuranishi structure with outer collar

The strategy of the proof of Theorem 6.4 (3)(4) is similar to that in Sect. 5.
Namely we first take the outer collaring N�(X,J ,H21;α−, α+)�1 as in Sect. 5
and modify them on Sk(N�(X,J ,H21;α−, α+)) × [−1, 0]k. (Note that the
union of Sk(N�(X,J ,H21;α−, α+)) × [−1, 0]k for various k is N�(X,J ,H21;
α−, α+)�1.) The details are as follows.

Let Ar be the index set of the critical submanifolds of Hr (r = 1, 2).
Let

α− = α1,0, α1,1, . . . , α1,m1−1, α1,m1 ∈ A1,

α2,1, . . . , α2,m2 , α2,m2+1 = α+ ∈ A2.

We consider the fiber product

M�1,1(X,J1,H
1;α1,0, α1,1) ev+ ×ev− . . .

. . . ev+ ×ev− M�1,m1
(X,J1,H

1;α1,m1−1, α1,m1)

ev+ ×ev− N�′(X,J ,H21;α1,m1 , α2,1)

ev+ ×ev− M�2,2(X,J2,H
2;α2,1, α2,2) ev+ ×ev− . . .

. . . ev+ ×ev− M�2,m2+1(X,J2,H
2;α2,m2 , α2,m2+1)

(6.15)

which we denoted by N ��1,�′, ��2(X,J ,H21; �α1, �α2). We observe that

Sm(N�(X,J ,H21;α−, α+))

=
⋃

��1,�′, ��2
| ��1|+�′+| ��2|=�

⋃

�α1, �α2
m1+m2=m, α1,0=α−,α2,m2+1=α+

N ��1,�′, ��2(X,J ,H21; �α1, �α2).

Note the sum is taken for m1 = #�α1 − 1 ≥ 0 and m2 = #�α2 − 1 ≥ 0. We
will construct a Kuranishi structure for each of

N ��1,�′, ��2(X, J , H21; �α1, �α2)
+ = N ��1,�′, ��2(X, J , H21; �α1, �α2) × [−1, 0]m1 × [−1, 0]m2 .

Let Ar�Br�Cr = mr for r = 1, 2. It induces IAr,Br,Cr
: [−1, 0]br → [−1, 0]mr

by (5.2).
We will formulate the compatibility condition below (Condition 6.20),

which describes the restriction of the Kuranishi structure ̂U ��1,�′, ��2(X,J ,H21;
�α1, �α2) of the product space N ��1,�′, ��2(X,J ,H21; �α1, �α2)+ to the image of the
embedding:

id × IA1,B1,C1 × IA2,B2,C2 : N ��1,�′, ��2(X,J ,H21; �α1, �α2) × [−1, 0]b1+b2

→ N ��1,�′, ��2(X,J ,H21; �α1, �α2)+.
(6.16)
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We put Ar = {i(Ar, 1), . . . , i(Ar, ar)} with i(Ar, 1) < i(Ar, 2) < · · · <
i(Ar, ar − 1) < i(Ar, ar) and consider the fiber product

M ��1,A1,1
(X,J1,H

1;α1,0, . . . , α1,i(A1,1))

ev+ ×ev− M ��1,A1,2
(X,J1,H

1;α1,i(A1,1), . . . , αi(A1,2)) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,j+1
(X,J1,H

1;αi(A1,j), . . . , αi(A1,j+1)) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,a1
(X,J1,H

1;α1,i(A1,a1−1), . . . , α1,i(A1,a1))

ev+ ×ev− N ��1,A1,a1+1,�′, ��2,A2,1
(X,J ,H21;

(α1,i(A1,a1), . . . , α1,m1), (α2,1, . . . , α2,i(A2,1)))

ev+ ×ev− M ��2,A2,2
(X,J2,H

2;α2,i(A2,1), . . . , αi(A2,2)) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,j+1
(X,J2,H

2;αi(A2,j), . . . , αi(A2,j+1)) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,a2+1
(X,J2,H

2;α2,i(A2,a2), . . . , α2,m2+1). (6.17)

Here ��r,Ar,j = (�r,i(Ar,j−1)+1, . . . , �r,i(Ar,j)).

Remark 6.18. Here and hereafter i(A1, 0) = 0 and i(A2, a2 + 1) = m2 + 1 by
convention.

The fiber product (6.17) is nothing but M ��1,�′, ��2(X,J ,H21; �α1, �α2).
Therefore, we can use (6.17) to define a fiber product Kuranishi structure
on the space N ��1,�′, ��2(X,J ,H21; �α1, �α2).

We need more notation. Although the notation is rather heavy, its
geometric meaning is simple. Namely we will consider the moduli space
M ��r,Ar,j,Cr

(X,Jr,H
r; �αr,Ar,j,Cr

) etc., which is obtained by allowing to smooth
the singularities at the transit points corresponding to the indices belonging
to Cr.

Notation 6.19. Let j = 1, . . . , ar + 1 (r = 1, 2).
(1) We decompose Cr into C ′

j(Ar) = [i(Ar, j − 1), i(Ar, j)]Z ∩ Cr and put
Cj(Ar) = {i − i(Ar, j − 1) | i ∈ C ′

j(Ar)}, cj(r,Ar) = #Cj(Ar). Here for
r = 1

0 = i(A1, 0) < i(A1, 1) < · · · < i(A1, a1) ≤ m1

with i(A1, 0) = 0, i(A1, a1 + 1) = m1 as convention. For r = 2,

i(A2, 0) = 1 ≤ i(A2, 1) < · · · < i(A2, a2) < m2 + 1

with i(A2, 0) = 1, i(A2, a2 + 1) = m2 + 1 as convention.
(2) We put �αr,Ar,j = (αr,i(Ar,j−1), . . . , αr,i(Ar,j)). Note that29

M ��Ar,j
(X,Jr,H

r;αr,i(Ar,j−1), . . . , αr,i(Ar,j))

= M ��Ar,j
(X,Jr,H

r; �αr,Ar,j).
(6.18)

(3) We remove {αr,i | i ∈ C ′
j(Ar)} from �αr,Ar,j to obtain �αr,Ar,j,Cr

.

29In case i(A1, a1) = i(A1, a1 + 1) or i(A2, 0) = i(A2, 1), we do not consider
M ��r,j

(X, Jr, Hr; �αr,Ar,j).
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(4) Noticing i(A1, a1 + 1) = m1 for r = 1, we apply (2)(3) to obtain
�α1,A1,a1+1, �α1,A1,a1+1,C1 . Also noticing i(A2, 0) = 1 for r = 2, we apply
(2)(3) to obtain �α2,A2,1, �α2,A2,1,C2 .

Note that �αA1,0, �α1,A1,0,C1 and �α2,A2,a2 , �α2,A2,a2,C2 are defined
according to Remark 6.18.

(5) We put mj(r,Ar) = i(Ar, j) − i(Ar, j − 1),

mj(r,Ar, Cr) = #(Br ∩ (i(Ar, j − 1), i(Ar, j))Z) + 1.

Therefore,
ar+1
∑

j=1

(mj(r,Ar, Cr) − 1) = #Br = br. (6.19)

(6) We define ��r,Ar,j,Cr
as follows. Let

�αr,Ar,j,Cr
= {αr,i(Ar,j−1)+ks

| s = 0, . . . ,mj(r,Ar, Cr)}.

Here 0 ≤ k0 < k1 < · · · < kmj(r,Ar,Cr).30

Note if i ∈ (i(Ar, j −1)+ks, i(Ar, j −1)+ks+1)Z, then i ∈ C ′
j(Ar).

We put

�r,Ar,j,Cr,s = �r,i(Ar,j−1)+ks−1+1 + · · · + �r,i(Ar,j−1)+ks

and
��r,Ar,j,Cr

= (�r,Ar,j,Cr,1, . . . , �r,Ar,j,Cr,mj(r,Ar,Cr))

Finally we put
�′′ = �1,i(A1,a1)+kma1 (1,A1,C1)+1 + · · · + �1,m1+

+ �′ + �2,2 + · · · + �2,min(i(A2,1),i(B2,1)).
(6.20)

See Fig. 9.
It is easy to check

∑

r,s,j

�r,Ar,j,Cr,s + �′′ =
∑

r,i

�r,i + �′. (6.21)

We note that in Proposition 5.5, we determined a Kuranishi structure
on

M ��r,Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
)+

= M ��r,Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
) × [−1, 0]mj(r,Ar,Cr)−1.

(6.22)

We denote it by ̂U ��r,Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
). By construction we have

M ��r,Ar,j
(X,Jr,H

r; �αr,Ar,j) ⊆ ̂Scj(r,Ar)(M ��r,Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
)).

By restriction, ̂U ��r,Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
) determines a Kuranishi

structure of (6.17) times [−1, 0]∗ except one of the factors

N ��1,A1,a1+1,�′, ��2,A2,1
(X,J ,H21; �α1,A1,a1+1, �α2,A2,1). (6.23)

30 Note that ks depends on r, Ar, Br, Cr. We also note that k0 = 0 holds unless r = 2, j = 1
and i(A2, 1) = 1. Also kmj(r,Ar,Cr) = i(Ar, j) − i(Ar, j − 1) holds unless r = 1, j = a1 + 1

and i(A1, a1) = m1.
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· · ·

Type C

Type A or B

· · ·
· · ·

· · ·
· · ·

γ1,i(A1,a1)+kma1 (1,A1,C1)

γ1,i(A1,a1+1)

γ2,min{i(A2,1),i(B2,1))}

γ2,A2,1

Type C

Type A or B

{ 2,2

Figure 9. The case m1 ∈ C1 and 1 ∈ C2

By construction, we can easily show that (6.23) is a component of

̂Sca1+1(1,A1)+c1(2,A2)(N ��1,A1,a1+1,C1 ,�′′, ��2,A2,1,C2
(X, J , H21; �α1,A1,a1+1,C1 , �α2,A2,1,C2)).

(See Notation 6.19 (1) for the notations.) Note the sum of the exponent
[−1, 0] of appearing in (6.22) plus ma1+1(1, A1, C1) − 1 + m1(2, A2, C2) − 1
is b1 + b2. This is a consequence of (6.19).

Now the compatibility condition we require is described as follows.

Condition 6.20. We require the K-system

{(N ��1,�′, ��2(X,J ,H21; �α1, �α2)+, ̂U ��1,�′, ��2(X,J ,H21; �α1, �α2)+)}
satisfies the following.

Its restriction to the image of the embedding (6.16) is the fiber product
of the following factors. (Here we use the fiber product description (6.17).)

(1) The restriction of the Kuranishi structure ̂U ��r,Ar,j ,Cr
(X,Jr,H

r;
�αr,Ar,j,Cr

) to M ��r,Ar,j
(X,Jr,H

r; �αr,Ar,j) × [−1, 0]mj(r,Ar,Cr)−1.
(2) The restriction of the Kuranishi structure

̂U ��1,A1,a1+1,C1 ,�′′, ��2,A2,1,C2
(X,J ,H21; �α1,A1,a1+1,C1 , �α2,A2,1,C2)

to (6.23) ×[−1, 0]ma1+1(1,A1,C1)−1 × [−1, 0]m1(2,A2,C2)−1.

Proposition 6.21. There exists a K-system

{(N ��1,�′, ��2(X,J ,H21; �α1, �α2)+, ̂U ��1,�′, ��2(X,J ,H21; �α1, �α2))}
for various ��1, �′, ��2, �α1, �α2 with the following properties.

(1) They satisfy Condition 6.20.
(2) Let C be the union of the components of N ��1,�′, ��2(X,J ,H21; �α1, �α2)+

which are in N ��1,�′, ��2(X,J ,H21; �α1, �α2) × ∂([−1, 0]m−1). Then the Ku-

ranishi structure ̂U ��1,�′, ��2(X,J ,H21; �α1, �α2) is C-collared in the sense of
Remark 5.6 (by replacing M ��(X,H; �α)+ by N ��1,�′, ��2(X,J ,H21; �α1, �α2)+).
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(3) For the case �α1 = (α−) and �α2 = (α+), ̂U∅,�,∅(X,J ,H21; �α1, �α2) co-
incides with the Kuranishi structure we constructed during the proof of
Theorem 6.4s (1)(2).

Proof. The proof is entirely the same as the proof of Proposition 5.5. �

Now we replace the Kuranishi structures of Sm(N�(X,J ,H21;α−, α+))
× [−1, 0]m with ones in Proposition 6.21 to obtain the Kuranishi structures
in Theorem 6.4 (3)(4). The proof of Theorem 6.4 is complete. �

Remark 6.22. We may choose H21 so that

H21(x, τ, t) = (1 − χ(τ))H1(x, t) + χ(τ)H2(x, t),

where τ : R → [0, 1] is an increasing function which is 0 when τ < −1 and
is 1 when τ > 1. In this case the energy loss of the morphism obtained in
Theorem 6.4 is estimated from above by

∫

t∈S1
sup
x∈X

|H1(x, t) − H2(x, t)|dt.

This is a well established result. See for example, [6, Section 2, 3◦] [35, Lemma
4.1], [22, Lemma 9.3] for a proof of this inequality.

7. Construction of homotopy

Situation 7.1. (1) Let H1, H2 be two Hamiltonians X × S1 → R which are
Morse–Bott non-degenerate in the sense of Condition 2.1. We consider
a family of Hamiltonians parametrized by an interval [0, 1].

(2) Suppose H21,[0,1] : X × R × S1 × [0, 1] → R is a smooth function and
J [0,1] = {Jτ,s | τ ∈ R, s ∈ [0, 1]} is an R × [0, 1] parametrized smooth
family of tame almost complex structures on X.

(3) For each s ∈ [0, 1] we assume the pair (H21,s,J s(= J 21,s)) is as in
Situation 6.1.

(4) We assume that the families H21,[0,1] and J [0,1] are collared in the fol-
lowing sense: We consider the retraction R : [0, 1] → [τ, 1− τ ] such that
R(s) = τ if s ∈ [0, τ ], R(s) = 1 − τ if s ∈ [1 − τ, 1] and R(s) = s
otherwise. Then H21,s = H21,R(s) and J s = J R(s).

�

We note that such families always exist. More precisely, we have the
following.

Lemma 7.2. Suppose we are given H21,s0 and J s0 for s0 = 0, 1. Then there
exist H21,[0,1] and J [0,1] as in Situation 7.1, whose restrictions to s0 coincide
with H21,s0 and J s0 for s0 = 0, 1, respectively.

Proof. This is an immediate consequence of the facts that the set of tame
almost complex structures is contractible and the set of smooth functions is
contractible. �
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Definition 7.3. Let Rα− ∈˜Per(H1) and Rα+ ∈˜Per(H2). We put

N�(X,J [0,1],H21,[0,1];α−, α+) =
⋃

s∈[0,1]

N�(X,J s,H21,s;α−, α+) × {s}.

Here N�(X,J s,H21,s;α−, α+) is defined in Definition 6.10.

We can define a topology of N�(X,J [0,1],H21,[0,1];α−, α+) in the way
similar to one in Definition 3.17 and show that it is Hausdorff and compact.

We consider the boundary components of N�(X,J [0,1],H21,[0,1];α−, α+)
consisting of the disjoint union
(N�(X,J 0,H21,0;α−, α+) × {0}) � (N�(X,J 1,H21,1;α−, α+) × {1}) .

We call it the vertical boundary and denote it by Cv. We consider the projec-
tion N�(X,J [0,1],H21,[0,1];α−, α+) → [0, 1]. In the definition of C-collared-
ness (see Remark 5.6) we replace [−1, 0]m−1 by [0, 1] to define Cv-collared-
ness. Then N�(X,J [0,1],H21,[0,1];α−, α+) → [0, 1] is Cv-collared, by Situa-
tion 7.1 (4). (This is the collared-ness in the [0, 1] direction.)

The complement of the vertical boundary is written as Ch and we call
it the horizontal boundary. We denote by N�(X,J [0,1],H21,[0,1];α−, α+)C

h�1

the space
⋃

s∈[0,1]

N�(X,J s,H21,s;α−, α+)�1 × {s}.

This space coincides with the ‘partial outer collaring’ of N�(X,J [0,1],H21,[0,1];
α−, α+) in the horizontal direction, which is introduced in [23, Chapter 19].
(However, we do not use [23, Chapter 19] in this article. The symbol Ch�1

here can be regarded just as a notation.)

Theorem 7.4. We can define a Kuranishi structure on

N�(X,J [0,1],H21,[0,1];α−, α+)C
h�1

so that it will be an interpolation spaces of a [0, 1]-parametrized family of
morphisms between linear K-systems associated to H1 and H2 obtained by
Theorem 2.9 in the sense of [23, Condition 16.21].

We need certain additional properties on our morphism for applications.
We will state them below.

Proposition 7.5. We may choose our Kuranishi structure on

N�(X,J [0,1],H21,[0,1];α−, α+)C
h�1

so that it is Cv-collared.

Proof of Theorem 7.4 and Proposition 7.5. We are given morphisms associ-
ated to s0 = 0, 1. We made various choices in Sect. 6. Below we will show that
we can define a [0, 1] parametrized morphism so that its boundary becomes
the union of two morphisms associated to s0 = 0, 1.

Again the proof is by two steps. In the first step we construct a Kuran-
ishi structure on N�(X,J [0,1],H21,[0,1];α−, α+) which may not be compatible
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with the fiber product description at the horizontal boundary.
(We construct our Kuranishi structure on N�(X,J [0,1],H21,[0,1];α−, α+) so
that it is compatible with the given Kuranishi structure at the vertical bound-
ary {0, 1} = ∂[0, 1].) We then modify it on the collar so that it becomes a
[0, 1]-parametrized interpolation space. The details are as follows.

Remark 7.6. Since the proof is a repetition of the construction in the previous
sections, the readers may skip it and go directly to Sect. 8. We provide the
details of the proof here for the sake of completeness.

We first define the notion of ε-closeness. Let

q̂ = (q, sq) ∈ N�(X,J s,H21,s;α0, α+) × {sq}
and we take stabilization data at q. Hereafter we omit the symbol ̂, and
write

q = (q, sq)

by an abuse of notation. Then we consider

(Y ∪ �w′, ϕ′, a0) = Φq(y, �T , �θ) ∈ N�+�′+�′′(source)

as in (6.7). We consider (Y ∪ �w′, u′, ϕ′, a′
0, s

′) where u′ is a map from the
curve Y to X and s′ ∈ [0, 1]. We say that it is ε-close to q ∪ �w ∪ �wcan if
Definition 4.16 (1)–(4) hold and |sq − s′| < ε. In (2) we use the Hamiltonian
H21,s′

and the family of almost complex structures Js′ as in Definition 6.6
(5). In (3) we also use H21,s′

to define the redefined connecting orbit map.
Next, for a point p ∈ N�(X,J ,H21;α−, α+) we suppose to be given

obstruction bundle data Ep and (Y∪ �w′, u′, ϕ′, a′
0, s

′) is εp-close to p∪ �w∪ �wcan

for a sufficiently small εp > 0. Then we can define a complex linear map

Ip,v;Σ′,u′,ϕ′,a′
0

: Ep,v(yp) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1) (7.1)

in the same way as in the parametrized version of Definition 4.21.
We recall from the paragraph around (6.9) that we took a finite set

indexed by the set C�(H21,J ;α−, α+)

A�(H21,J ;α−, α+) = {pc | c ∈ C�(H21,J ;α−, α+)} ⊂ N�(X,J ,H21;α−, α+)

and for each c ∈ C�(H21,J ;α−, α+) we took obstruction bundle data Epc

centered at pc. It corresponds to the case s0 = 0, 1 in the current circum-
stances. We write A�(H21,s0 ,Js0 ;α−, α+), C�(H21,s0 ,Js0 ;α−, α+), Epc,s0 to
specify s0. We also took W (pc) such that (6.9) is satisfied. We denote them by
W (pc, s0) here. Note it is a neighborhood of pc in N�(X,J s0 ,H21,s0 ;α−, α+).

We take a closed neighborhood W (pc) of pc in N�(X,J [0,1],H21,[0,1];
α−, α+) such that

W (pc) ∩ N�(X,J s0 ,H21,s0 ;α−, α+) = W (pc, s0).

Moreover, using Situation 7.1 (4) we may assume

W (pc) = W (pc, s0) × [0, ε) for s0 = 0,

W (pc) = W (pc, s0) × (1 − ε, 1] for s0 = 1.
(7.2)
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Now we similarly take a finite set

A�(H21,[0,1],J [0,1];α−, α+) = {pc | c ∈ C�(H21,[0,1],J [0,1];α−, α+)}
⊂ N�(X,J [0,1],H21,[0,1];α−, α+)\∂Cv (N�(X,J [0,1],H21,[0,1];α−, α+))

and a closed neighborhood W (pc) of pc in N�(X,J [0,1],H21,[0,1];α−, α+) for
each c ∈ C�(H21,[0,1],J [0,1];α−, α+) such that the following conditions are
satisfied.

Condition 7.7. (1)

N�(X,J [0,1],H21,[0,1];α−, α+)

=
⋃

c∈C�(H21,[0,1],J [0,1];α−,α+)

Int W (pc)∪
⋃

s0∈{0,1}

⋃

c∈C�(H21,s0 ,J s0 ;α−,α+)

Int W (pc, s0).

(2) If c ∈ C�(H21,[0,1],J [0,1];α−, α+), then

W (pc) ∩ ∂Cv (N�(X,J [0,1],H21,[0,1];α−, α+)) = ∅.

(3) Any element of W (pc) together with certain marked points is εc-close
to pc ∪ �w ∪ �wcan.

Let q ∈ N�(X,J [0,1],H21,[0,1];α−, α+). We put

E(q) = {pc ∈ A�(H21,[0,1],J [0,1];α−, α+)

∪
⋃

s0=0,1

A�(H21,s0 ,Js0 ;α−, α+) | q ∈ W (pc, s0)}.

By taking A�(H21,[0,1],J [0,1];α−, α+) suitably, we may take εc > 0 in Con-
dition 7.7 (3) small enough as we wish. Therefore, for each pc ∈ E(q) we can
uniquely find �wq

c for any q ∈ W (pc) such that q ∪ �wq
c is ε′

c-close to pc ∪
�wpc

∪ �wpc,can and �wq
c satisfies the transversal constraint, and, moreover, the

linearization operator Dq∂J,H at q in (4.7) is surjective mod ⊕v Im Ipc,v;q,
where Ipc,v;q is the map in (7.1) for p = pc, q = (Σ′, u′, ϕ′).

Now let us consider (Y∪⋃pc∈E(q) �w′
c, u

′, ϕ′, a′
0, s

′) such that (Y∪ �w′
c, u

′,
ϕ′, a′

0, s
′) is ε-close to q ∪ �wq

c for each pc ∈ E(q). We may choose ε > 0 and
εc > 0 small so that we obtain a complex linear map

Ipc,v;Σ′,u′,ϕ′,a′
0,s′ : Epc,v(ypc

) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1)

as in (7.1). We now put

E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0, s

′);q;B) =
⊕

c∈B

⊕

v

Im Ipc,v;Σ′,u′,ϕ′,a′
0,s′ , (7.3)

where B is a subset of {c | pc ∈ E(q)}. By perturbing the bundle part of the
obstruction bundle data Epc

for pc ∈ A�(H21,[0,1],J [0,1];α−, α+) slightly we
may assume that the right hand side of (7.3) is a direct sum.31 (We can do

31See [20, Subsection 11.4].
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so without changing the obstruction bundle data which was already fixed at
s0 = 0, 1.)

Now we define V (q, ε1,B) to be the set of the isomorphism classes of
(Y∪ �w′

c, u
′, ϕ′, a′

0, s
′) satisfying Definition 6.17 (1)–(5) and |s′−sq| < ε1. Note

that we use s′ to parametrize a Hamiltonian and a family of almost complex
structures appearing in Definition 6.17 (1),(2) and sq is the [0, 1] component
of q.

In the same way as in Lemma 4.29, we can show that V (q, ε1,B) is
a smooth manifold with corners by choosing various constants sufficiently
small. Then in the same way as the proof of Theorem 6.4 (2), we can find
other objects so that V (q, ε1,B) together with them is a Kuranishi chart of q.
We can also show the existence of coordinate changes in the same way as in
Lemmas 4.33 and 4.34. We shrink the Kuranishi neighborhood and discuss
in the same way as in Lemmas 4.33, 4.34 and [16, Chapter 8] to obtain a
Kuranishi structure on N�(X,J [0,1],H21,[0,1];α−, α+). Using Condition 7.7
(2) and (7.2) we can show that this Kuranishi structure is Cv-collared and its
restriction to ∂[0, 1] = {0, 1} coincides with the given one. See the paragraphs
after Definition 7.3 for the Cv-collared-ness.

We next define the Kuranishi structure on N�(X,J [0,1],H21,[0,1];
α−, α+)�1 extending the one on N�(X,J [0,1],H21,[0,1];α−, α+) in the way
as in the previous sections as follows.

We consider the following fiber product. (Here and in the next condition
we use Notation 6.19.)

M ��1,A1,1
(X,J1,H

1; �α1,A1,1)

ev+ ×ev− M ��1,A1,2
(X,J1,H

1; �α1,A1,2) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,j
(X,J1,H

1; �α1,A1,j) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,a1+1
(X,J1,H

1; �α1,A1,a1+1)

ev+ ×ev− N ��1,A1,a1+1,�′, ��2,A2,1
(X,J [0,1],H21,[0,1]; �α1,A1,a1+1, �α2,A2,1)

ev+ ×ev− M ��2,A2,2
(X,J2,H

2; �α2,A2,2) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,j
(X,J2,H

2; �α2,A2,j) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,a2+1
(X,J2,H

2; �α2,A2,a2+1). (7.4)

(Recall �α1,A1,a1+1 = (α1,i(A1,a1), . . . , α1,m1) and �α2,A2,a2+1 = (α1,i(A2,a2), . . . ,
α2,m2+1) and other notations in Notation 6.19.) The fiber product (7.4) is
the same as in (6.17) except one of the factors in (6.17) is replaced by

N ��1,A1,a1+1,�′, ��2,A2,1
(X,J [0,1],H21,[0,1]; (�α1,A1,a1+1, �α2,A2,1)). (7.5)

We use the embedding

id × IA1,B1,C1 × IA2,B2,C2 : N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2) × [−1, 0]b1+b2

→ N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)+
(7.6)

which is defined in the same way as in (6.16).
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We use the fact that (7.5) is a component of

̂Sca1+1(1,A1)+c1(2,A2) (N ��1,A1,a1+1,C1 ,�′′, ��2,A2,1,C2
(X,J [0,1],H21,[0,1];

�α1,A1,a1+1, �α2,A2,1)).

As we mentioned already, the fiber product factor of (7.4) other than
(7.5) is

M ��r,Ar,j
(X,Jr,H

r; �αr,Ar,j), (7.7)

which is a component of
̂Scj(r,Ar)(M ��r,A1,j ,Cr

(X,Jr,H
r; �αr,Ar,j,Cr

)).

We put

N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)+

= N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2) × [−1, 0]m−1,

where m = #�α1 + #�α2 − 2.

Condition 7.8. We require the K-system

{(M ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)+, ̂U ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2))}
satisfies the following.
(1) The restriction of ̂U ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2) to the image of the

embedding (7.6) is the fiber product of the following Kuranishi stru-
crures. (Here we use the fiber product description (7.4).)
(a) The restrictions of the Kuranishi structure

̂U ��Ar,j,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
)

on M ��r,Ar,j ,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
)+ to the space which is a direct

product (7.7) ×[−1, 0]mj(r,Ar,Cr)−1.
(b) The restrictions of the Kuranishi structure

̂U ��1,A1,a1+1,C1 ,�′′, ��2,A2,1,C2
(X,J [0,1],H21,[0,1]; �α1,A1,a1+1, �α2,A2,1)

on N ��1,A1,a1+1,C1 ,�′′, ��2,A2,1,C2
(X,J [0,1],H21,[0,1]; �α1,A1,a1+1, �α2,A2,1)+

to the space which is a direct product

(7.5) × [−1, 0]ma1 (1,A1,C1) × [−1, 0]m0(2,A2,C2).

(2) The restriction of ̂U ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2) to the vertical

boundary ∂Cv (N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)C
h�1) is isomorphic to

the Kuranishi structure
⋃

s0=0,1
̂U ��1,�′, ��2(X,J s0 ,H21,s0 ; �α1, �α2), which

we produced in Proposition 6.21.

Proposition 7.9. There exists a K-system

{(N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)+, ̂U ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2))}
satisfying the following properties.
(1) They satisfy Condition 7.8.

Vol. 24 (2022) Construction of a linear K-system

Reprinted from the journal 529



K. Fukaya et al. JFPTA

(2) Let C be the union of the components of N ��1,�′, ��2(X,J [0,1],H21,[0,1];
�α1, �α2)+ which are in N ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)×∂([−1, 0]m−1).

Then the Kuranishi structure ̂U ��1,�′, ��2(X,J [0,1],H21,[0,1]; �α1, �α2)+ is C-
collared in the sense of Remark 5.6.

(3) For the case �α1 = (α−) and �α2 = (α+), ̂U∅,�,∅(X,J [0,1],H21,[0,1]; �α1, �α2)+

coincides with the Kuranishi structure we constructed in the first half of
the proof of Theorem 7.4 and Proposition 7.5.

Proof. The proof is the same as that of Proposition 5.5. �

Now using Proposition 7.9 we modify the Kuranishi structures on the
spaces N�(X,H21,[0,1],J [0,1];α−, α+)�1 and complete the proof of Theorem 7.4
and Proposition 7.5. �

Remark 7.10. In this section we have constructed a homotopy between two
morphisms. We can continue this process to obtain a homotopy of homotopies
etc. In this paper we do not need such a higher homotopy by the following
reason: First we note that what we obtain in this paper is a linear K-system.
In [23, Chapter 16] we introduced the notion of an inductive system of linear
K-systems.32 Sometimes such a structure is easier to obtain since we need
to study only a finite number of moduli spaces at each stage. The proof we
provide in this paper defines a system of Kuranishi structures on infinitely
many moduli spaces at once. This is the reason we do not need to study
homotopy of homotopies. On the other hand, to construct a system of CF-
perturbations on such infinitely many moduli spaces, we need to stop at a
certain energy level and use a homotopy inductive limit argument. Such an
argument is given in [23, Chapter 19]. (We can quote the statements of [23]
literary.) Homotopy of homotopies we used in the homotopy inductive limit
argument of [23, Chapter 19] is a direct product of the homotopy obtained
in Theorem 7.4 and an interval [0, 1] in our case.

8. Composition of morphisms

8.1. Statement

Situation 8.1. (1) Let Hr (r = 1, 2, 3) be periodic Hamiltonian functions
which are Morse–Bott non-degenerate in the sense of Condition 2.1.

(2) For each pair of r, r′ with r �= r′ ∈ {1, 2, 3}, let Hr′r : X × R × S1 → R

be a smooth function and J r′r = {Jτ ;r′r | τ ∈ R} be an R-parametrized
smooth family of tame almost complex structures on X.

(3) We assume that Hr′r, J r′r are as in Situation 6.1 with H1,H2, J1, J2,
J replaced by Hr,Hr′

, Jr, Jr′ , J r′r, respectively.
(4) Let Fr := FX(Hr, Jr) be the linear K-system constructed by Theo-

rem 2.9 from Hr and Jr. We made the choices during the constructions.

32It is a structure which gives a sequence of the partial version of the linear K-system for
which the moduli spaces of energy ≤ En (n = 0, 1, . . . , ) are used. It gives also a homotopy

equivalence (modulo En) between the structure with the moduli spaces of energy ≤ En

and that with the moduli spaces of energy ≤ En+1.
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(5) Let Nr′r : Fr → Fr′ be the morphism defined by Theorem 6.4 using
Hr′r and J r′r in place of H21 and J . We made the choices during the
construction.

�

In this section, we prove the following.

Theorem 8.2. In Situation 8.1 the composition N32 ◦ N21 is homotopic to
N31.

Proof. By Lemma 7.2 and Theorem 7.4, the homotopy class of Nr′r is inde-
pendent of J r′r, Hr′r or other choices we made during the construction. So
it suffices to prove Theorem 8.2 for certain fixed choices of them. We take
the choices as follows. We first take J 21, H21 and J 32, H32. We assume that
they satisfy Situation 6.1 (1)(2)(i)(ii) with ±1 replaced by ±1/4. We then
define J 31, H31 as follows.

H31
τ =

{

H21
τ+1/2 if τ ≤ 0,

H32
τ−1/2 if τ ≥ 0.

(8.1)

J31
τ =

{

J21
τ+1/2 if τ ≤ 0,

J32
τ−1/2 if τ ≥ 0.

(8.2)

It is easy to see that they satisfy Situation 6.1.

We will construct a homotopy between N32 ◦ N21 and N31 where N32,
N21, N31 are obtained by Theorem 6.4 using those choices.

The interpolation space of the homotopy is obtained by compactifying
the solution space of the τ, t, T dependent Hamiltonian perturbed pseudo-
holomorphic curve equation. We will use the following two parameter family
of Hamiltonians. Let T ≥ 0 and τ ∈ R. We put

H31,T
τ =

{

H21
τ+1/2+T if τ ≤ 0,

H32
τ−1/2−T if τ ≥ 0,

(8.3)

J31
τ,T =

{

J21
τ+1/2+T if τ ≤ 0,

J32
τ−1/2−T if τ ≥ 0.

(8.4)

We put J 31,T = {J31
τ+1/2+T } and consider
⋃

T≥0

N�(X,J 31,T ,H31,T ;α−, α+) × {T}, (8.5)

where N�(X,J 31,T ,H31,T ;α−, α+) is as in Definition 6.10. We can define a
topology on it in the same way as in Definition 3.17. This space then becomes
Hausdorff. However, it is not compact since the domain [0,∞) of T is not
compact. We compactify it by adding certain space at T = ∞ as follows.

Definition 8.3. Let α− ∈ A1 and α+ ∈ A3. (Here Ar be the index set of the
critical submanifolds of the linear K-system Fr.) The set ̂N�(X,J 31,∞,H31,∞;
α−, α+) consists of ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfying the following con-
ditions:
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(1) (Σ, (z−, z+, �z)) is a genus zero semi-stable curve with �+2 marked points.
(2) ϕ is a parametrization of the mainstream.
(3) Σa1 , Σa2 are two of the mainstream components. We call them the first

main component and the second main component.
(4) For each extended main stream component ̂Σa, the map u induces ua :

̂Σa\{za,−, za,+} → X which is a continuous map.
(5) We define the relation < on the set of mainstream components as in

Definition 6.5. We require a1 < a2. If Σa is a mainstream component
and ϕa : R×S1 → Σa is as above, then the composition ua ◦ϕa satisfies
the equation

∂(ua ◦ ϕa)
∂τ

+ Ja,τ

(

∂(ua ◦ ϕa)
∂t

− XHa
τ,t

◦ (ua ◦ ϕa)
)

= 0, (8.6)

where

Ha
τ,t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1
t if a < a1,

H21
τ,t if a = a1,

H2
t if a1 < a < a2,

H32
τ,t if a = a2,

H3
t if a > a2,

and

Ja,τ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

J1 if a < a1,

J21
τ if a = a1,

J2 if a1 < a < a2,

J32
τ if a = a2,

J3 if a > a2.

(6)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

dτdt < ∞.

(7) Suppose Σv is a bubble component in ̂Σa. Let ϕa(τ, t) be the root of
the tree of sphere bubbles containing Σv. Then u is J-holomorphic on
Σv where

J =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

J1 if a < a1,

J21
τ if a = a1,

J2 if a1 < a < a2,

J32
τ if a = a2,

J3 if a > a2.

(8) If Σa and Σa′ are mainstream components and za,+ = za′,−, then

lim
τ→+∞(ua ◦ ϕa)(τ, t) = lim

τ→−∞(ua′ ◦ ϕa′)(τ, t)

holds for each t ∈ S1. ((6) and Lemma 6.3 imply that the left and right
hand sides both converge.)
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(9) If Σa, Σa′ are mainstream components and za,− = z−, za′,+ = z+, then
there exist (γ±, w±) ∈ Rα± such that

lim
τ→−∞(ua ◦ ϕa)(τ, t) = γ−(t)

lim
τ→+∞(ua′ ◦ ϕa′)(τ, t) = γ+(t).

Moreover,

[u∗[Σ]]#w− = w+

where # is the obvious concatenation.
(10) We assume ((Σ, (z−, z+, �z), a1, a2), u, ϕ) is stable in the sense of Defini-

tion 8.4 below.

Assume that ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfies (1)–(9) above. The
extended automorphism group Aut+((Σ, (z−, z+, �z), a1, a2), u, ϕ) of
((Σ, (z−, z+, �z), a1, a2)), u, ϕ) consists of maps v : Σ → Σ satisfying (1)(2)(3)
(5) of Definition 6.7 and τa1 = τa2 = 0. The automorphism group denoted
by Aut((Σ, (z−, z+, �z), a1, a2), u, ϕ) of ((Σ, (z−, z+, �z), a1, a2), u, ϕ) consists of
the elements of Aut+((Σ, (z−, z+, �z), a1, a2), u, ϕ) such that σ in (5) of Defi-
nition 6.7 is the identity.

Definition 8.4. An element ((Σ, (z−, z+, �z), a1, a2), u, ϕ) in Definition 8.3 is
said to be stable if the group Aut((Σ, (z−, z+, �z), a1, a2), u, ϕ) is a finite group.

We can define the equivalence relation ∼2 on ̂N�(X,J 31,∞,H31,∞;
α−, α+) in the same way as in Definition 3.7 except we require τa1 = τa2 = 0.
We put

N�(X,J 31,∞,H31,∞;α−, α+) = ̂N�(X,J 31,∞,H31,∞;α−, α+)/ ∼2 . (8.7)

Definition 8.5. The set N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) is the union of (8.5)
and N�(X,J 31,∞,H31,∞;α−, α+).

We can define a topology on N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) in the
same way as in Definition 3.17 and show that it is Hausdorff and compact.
Theorem 8.2 will follow from the next result. We define the topological space

N�(X,J 31,[0,∞],H31,[0,∞];α−, α+)�1

in the same way as in Definition 5.1.

Theorem 8.6. (1) There exists a Kuranishi structure on the compact space
N�(X,J 31,[0,∞],H31,[0,∞];α−, α+).

(2) The Kuranishi structure in (1) extends to a Kuranishi structure on the
space N�(X,J 31,[0,∞],H31,[0,∞];α−, α+)�1, which becomes the interpo-
lation space of a homotopy between N32 ◦ N21 and N31.
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8.2. Proof of Theorem 8.6 (1): Kuranishi structure

Proof. The proof of Theorem 8.6 occupies the rest of this section. In this
subsection we prove (1). The construction of the Kuranishi structure on the
space N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) is mostly the same as that of the
first half of the proof of Theorem 7.4, where we constructed the Kuranishi
structure on

M�(X,J [0,1],H21,[0,1];α−, α+).

In fact, we are studying [0,∞)×R×[0, 1]-parametrized family of Hamiltonians
and almost complex structures and we are also given the choices which we
need for the definition of the Kuranishi structure at 0 ∈ ∂[0,∞).

The main difference is that we also include T = ∞. So we here concen-
trate on constructing a Kuranishi neighborhood of a point at N�(X,J 31,∞,
H31,∞;α−, α+).

Let p = ((Σ, (z−, z+, �z), a1, a2), u, ϕ) be a representative of an element
of the moduli space N�(X,J 31,∞,H31,∞;α−, α+). We assume that Σ has
k1 + k2 + k3 + 2 mainstream components. Namely there exit k1 mainstream
components Σa with a < a1, k2 mainstream components Σa with a1 < a < a2

and k3 mainstream components Σa with a2 < a. So there are k1 + k2 +
k3 + 1 transit points. We consider Σ\Σa1\Σa2 which has three connected
components. Among those transit points k1, k2 + 1, k3 lie on the closure of
each of those connected components. We take T1,1, . . . , T1,k1 , T2,0, . . . , T2,k2 ,
T3,1, . . . , T3,k3 which are parameters ∈ (T0,∞] to smooth those transit points.

We consider the moduli space N�(source) as in Definition 6.11. We
also define N�(source,∞) as follows. In Definition 8.3 we consider the case
when X is one point and H1 = H2 = H3 = 0. The space we obtain as
N�(X,J 31,∞,H31,∞;α−, α+) in that case is the space N�(source,∞) by def-
inition. We put

N�(source, (T 0,∞]) = N�(source,∞) ∪
⋃

T>T0

(N�(source) × {T}). (8.8)

We go back to the situation where we have p = ((Σ, (z−, z+, �z), a1, a2),
u, ϕ) ∈ N�(X,J 31,∞,H31,∞;α−, α+). We take stabilization data at p. Es-
pecially we fix a symmetric stabilization �w of p. We also take the canonical
marked point wa,can on each mainstream component Σa where there is at
most two special points, (that are za,− and zz,+.) The canonical marked
point wa,can is defined as in Definition 4.8 if a �= a1, a2. We do not define
canonical marked points in case a = a1, a2. (See Remark 6.14.) The total-
ity of the canonical marked points is denoted by �wcan. We can prove that
(Σ, (z−, z+, �z))∪ �w ∪ �wcan is stable in the same way as in Lemma 4.9. We will
define a map

Φp :
∏

v V(xv ∪ �wv ∪ �wcan,v) × (T0, ∞]k1+k2+k3+1 ×∏m
j=1

(

((T0,j , ∞] × S1)/ ∼)

→ N�+�′+�′′(source, (T ′0, ∞]).

(8.9)
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We first explain the notation in (8.9). Σv is an irreducible components of Σ.
xv is Σv together with the part of marked points (z−, z+, �z) on it. �wv and
�wcan,v are intersection of �w and �wcan with Σv, respectively. V(xv∪ �wv∪ �wcan,v)
is a neighborhood of xv ∪ �wv ∪ �wcan,v in the moduli space of pointed curves.
Namely:

(1) If Σv is a bubble component, then V(xv ∪ �wv ∪ �wcan,v) is an open set of
◦

Mcl
�v

for certain �v. (It is the number of marked or singular points on
Σv.)

(2) If Σv is a main stream component Σa and a �= a1, a2, then V(xv ∪ �wv ∪
�wcan,v) is an open set of

◦
M�v(Source). (We include the parametrization

ϕv in xv in this case.)
(3) If Σv is a main stream component Σa and a ∈ {a1, a2}, then V(xv ∪ �wv ∪

�wcan,v) is an open set of
◦
N �v(Source). (We include the parametrization

ϕv in xv in this case.)

Here we use Notation 4.10 and m is the number of non-transit singular points
of Σ.

Recall that the stabilization data at p contain the local trivialization
data in Definition 4.11 (3), which contain the data of a coordinate at each
singular point. (See [20, Definition 3.8 (1)].) Using it we can associate a
marked Riemann surface to each element of the domain in (8.9). Let Σ′ be
this curve. Other than Σ′ and marked points on it we need to associate a
few more data to obtain an element of N�+�′+�′′(source, (T ′0,∞]). We will
explain how to associate those data to an element of the domain in (8.9).

Recall that we take the parameters T1,1, . . . , T1,k1 , T2,0, . . . , T2,k2 ,
T3,1, . . . , T3,k3 ∈ (T0,∞] to smooth the transit points.
Case 1: We first consider the case when T2,0 + · · · + T2,k2 = ∞. This is
equivalent to the condition that at least one of T2,i is infinity. We will obtain
an element of N�(source,∞) in this case as follows.

In this case Σ′ contains two different components Σ′
a′
1

and Σ′
a′
2

which
are obtained by gluing Σa1 and Σa2 with other components, respectively. We
take them as the first and the second main components, respectively. Using
marked points on Σ′ corresponding to z± ∈ Σ, we can define the notion of
mainstream components of Σ′. It is easy to see that Σ′

a′
1

and Σ′
a′
2

are contained
in the mainstream.

As mentioned in Definition 4.11 (3), we assume the conditions (a) (b)
for the local coordinates at singular points. Since we use them for our gluing,
that is, the construction of the map (8.9), we can show the next lemma about
the relationship of parametrization of the mainstreams of Σ and of Σ′.

Lemma 8.7. Let ϕa : R × S1 → Σa be a parametrization of a mainstream
component. We take a biholomorphic map ϕ′

a′ : R × S1 → Σ′
a′\{z′

a′,−, z′
a′,+}

such that

lim
τ→±∞ ϕ′

a′(τ, t) = z′
a′,±.
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We use the diffeomorphism v from a complement of the neck region of Σ
to Σ′, which we obtain using the local trivialization data contained in the
stabilization data at p. Then if the image of v ◦ ϕa and ϕ′

a′ intersect, we
have

ϕ′
a′(τ, t) = (v ◦ ϕa)(τ + τ0, t + t0) (8.10)

for certain τ0 ∈ R and t0 ∈ S1.

Using this lemma we can take parametrizations of the main components
ϕa′

i
(i = 1, 2) so that τ0, t0 become zero for them. By our choice of the local

coordinates at transit points given by Definition 4.11 (3) (a) we can choose
parametrizations of all the mainstream components so that the number t0
in (8.10) becomes 0. Note other than the first and second main components,
the parametrization of the mainstream component is well-defined only up to
a shift on R direction. Therefore, by Lemma 8.7 we obtain a parametrization
of the mainstream. We thus obtain an element of N�(source,∞) in this case.
Case 2: We next consider the case when T2,0 + · · · + T2,k2 �= ∞. We will
obtain an element of N�(source) × {T} for a certain number T ∈ (T ′0,∞).
(The number T is determined by the data in the domain of the map (8.9)).

In this case Σa1 and Σa2 are glued to become a part of single mainstream
component of Σ′, which we write as Σ′

a′
0
. This will be our main component.

We apply Lemma 8.7 to a = a1 or a2, and a′ = a′
0. By Definition 4.11

(3) (a) we may take the same t0 for both. (Note we use the same ϕ′
a′
0

for both
a = a1 or a2.) We then have

ϕ′
a′
0
(τ, t) = (v ◦ ϕai

)(τ − τi, t).

We put

2T + 1 = τ2 − τ1. (8.11)

Then by shifting ϕ′
a′
0

in R direction, we may assume

ϕ′
a′
0
(τ, t) = (v ◦ ϕa1)(τ + T + 1/2, t),

ϕ′
a′
0
(τ, t) = (v ◦ ϕa2)(τ − T − 1/2, t).

By comparing this formula with (8.3), the Hamiltonian term of our Eq. (8.6) is
consistent with v by this choice. We thus determine the parametrization of the
mainstream. Together with T and a′

0 we already defined, this parametrization
gives an element of N�(source) × {T}.

We have thus defined (8.9). We find that this map defines a structure
of cornered orbifolds to N�(source, (T ′0,∞]) for which (8.9) becomes a diffeo-
morphism onto its image. We can use this fact to obtain an appropriate co-
ordinate. Namely we identify (T0,∞]k1+k2+k3+1 with [0, 1/ log T0)k1+k2+k3+1

by Ti �→ 1/ log Ti. (See Sect. 4.)

Remark 8.8. Note that T is not a part of the coordinate function in a neigh-
borhood of T = ∞. It is easy to see that T = T2,0 + · · · + T2,k2+ bounded
function. 1/ log T is not a smooth function of 1/ log Ti. (See [11, page 778]
[23, Chapter 25] for a related issue.) When we are away from T = ∞, T can
be taken as a part of coordinates.

Reprinted from the journal536



The construction of the Kuranishi structure of N�(X,J 31,[0,∞],
H31,[0,∞];α−, α+) in a neighborhood of N�(X,J 31,∞,H31,∞;α−, α+), is sim-
ilar to the first half of the proof of Theorem 7.4 using the construction we
gave above and proceed as follows.

We take a finite set
A�(H32,∞,J 32,∞;α−, α+) = {pc | c ∈ C�(H32,∞,J 32,∞;α−, α+)}

⊂ N�(X,J 32,∞,H32,∞;α−, α+).

For each c ∈ C�(H32,∞,J 32,∞;α−, α+) we take obstruction bundle data Epc

centered at pc
33 and a closed neighborhood W (pc) of pc in our moduli space

N�(X,J 31,[0,∞],H31,[0,∞];α−, α+)

with the following property. For each element q ∈ W (pc) there exists �wq
pc

such that q∪ �wq
pc

is εc-close to pc∪wpc
∪ �wcan. (We can use (8.9) to define the

notion of ε-closeness in the same way as in Definition 4.16.) We also require
⋃

c∈C�(H32,∞,J 32,∞;α−,α+)

Int W (pc) ⊃ N�(X,J 32,∞,H32,∞;α−, α+).

(8.12)

We can choose εc > 0 above such that for any q ∈ W (p) there exists
�wq
p uniquely with the following properties:
(1) q ∪ �wq

p is εp-close to pc ∪ wpc
∪ �wcan.

(2) q ∪ �wq
p satisfies the transversal constraint. (The transversal constraint

is defined in the same way as in Definition 6.15.)
(3) For each irreducible component Σv of the source curve of p there exist

a finite dimensional complex subspace Im Ip,v;q of L2
m,δ(Σv;u∗TX ⊗

Λ0,1Σv) such that the linearization operator of the differential equation
at q in Definition 8.3 (5) (7) is surjective mod ⊕v ImIp,v;q.

The proof of this fact is similar to that of Lemma 4.22.
For each q ∈ N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) which lies in a neigh-

borhood of N�(X,J 32,∞,H32,∞;α−, α+), we put

E(q) = {pc | q ∈ W (pc)}.

Let B be a nonempty subset of {c | pc ∈ E(q)}. We consider (Y∪⋃c∈B �w′
c, u

′,
ϕ′, a′

1, a
′
2) (resp. (Y ∪ ⋃c∈B �w′

c, u
′, ϕ′, a′

0, T
′)) such that for each c, (Y ∪

�w′
c, u

′, ϕ′, a′
1, a

′
2) and (Y ∪ �w′

c, u
′, ϕ′, a′

0, T
′) (resp. (Y ∪ �w′

c, u
′, ϕ′, a′

1, a
′
2)) are

ε-close to q ∪ �wq
c . If ε > 0 is small, then (Y ∪ �w′

c, u
′, ϕ′, a′

0, T
′) (resp. (Y ∪

�w′
c, u

′, ϕ′, a′
1, a

′
2)) is ε-close to pc ∪ �wc. Therefore, we can define a complex

linear map

Ipc,v;Σ′,u′,ϕ′,a′
0,T ′ : Epc,v(ypc

) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1)

(resp.

Ipc,v;Σ′,u′,ϕ′,a′
1,a′

2
: Epc,v(ypc

) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1))

33The notion of obstruction bundle data for an element of N�(X, J 32,∞, H32,∞; α−, α+)
can be defined in the similar way as before.
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in the same way as in (6.8) for each irreducible component v of pc. (We use
the map (8.9) here while we used the map (6.6) in (6.8).) We put

E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0, T

′);q;B) =
⊕

c∈B

⊕

v

Im Ipc,v;Σ′,u′,ϕ′,a′
0,T ′ ,

(8.13)

or

E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
1, a

′
2);q;B) =

⊕

c∈B

⊕

v

Im Ipc,v;Σ′,u′,ϕ′,a′
1,a′

2
.

(8.14)

In the next definition we fix stabilization data at q. Especially the marked
points �wq are fixed.

Definition 8.9. We define V (q, ε1,B) to be the union of isomorphism classes
of the following (A) and (B).

(A) An object (Y∪⋃c∈B �w′
c ∪ �w′

q, u′, ϕ′, a′
1, a

′
2) which satisfies the following.

(1) If Σ′
a is an irreducible component and ϕa : R × S1 → Σ′

a is as
above, then the composition ua ◦ ϕa satisfies the equation

∂(ua ◦ ϕa)
∂τ

+ Ja,τ

(

∂(ua ◦ ϕa)
∂t

− XHa
τ,t

◦ (ua ◦ ϕa)
)

≡ 0

mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
1, a

′
2);q;B).

(8.15)

Here Ha
τ,t and Ja,τ are as in Definition 8.3 (5).

(2) If Σ′
v is a bubble component, the following equation is satisfied on

Σ′
v.

∂Ju′ ≡ 0 mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
1, a

′
2);q;B). (8.16)

Here the almost complex structure J is as follows. Let ̂Σ′
a be the

extended mainstream component containing Σ′
v. If a < a′

1, then
J = J1. If a′

1 < a < a′
2, then J = J2. If a′

2 < a, then J = J3. If
a = a′

1 and ϕa′
1
(τ, t) is the root of the tree of sphere components

containing Σ′
v then J = J21

τ . If a = a′
2 and ϕa′

2
(τ, t) is the root of

the tree of sphere components containing Σ′
v, then J = J32

τ .
(3) For each c ∈ E(q) the additional marked points �w′

c satisfy the
transversal constraint with respect to pc. (The transversal con-
straint is defined in the same way as in Definition 6.15.)

(4) The additional marked points �w′
q satisfy the transversal constraint

with respect to q.
(5) (Y∪⋃c∈E(q) �w′

c∪ �w′
q, u′, ϕ′, a′

1.a
′
2) is ε1-close to q∪⋃c∈E(q) �wq

c ∪ �wq.
(B) An object (Y∪⋃c∈B �w′

c ∪ �w′
q, u′, ϕ′, a′

0, T
′) which satisfies the following.
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(1) If Σ′
a is an irreducible component and ϕa : R × S1 → Σa is as

above, then the composition ua ◦ ϕa satisfies the equation

∂(ua ◦ ϕa)
∂τ

+ Ja,τ

(

∂(ua ◦ ϕa)
∂t

− XHa
τ,t

◦ (ua ◦ ϕa)
)

≡ 0

mod E((Y ∪
⋃

c∈B

�w′
c, u

′, ϕ′, a′
0, T

′);q;B).
(8.17)

Here Ja,τ and Ha
τ,t are as follows. (See (8.3) and (8.4).)

Ja,τ =

⎧

⎪

⎨

⎪

⎩

J1 if a < a′
0,

J31
τ,T ′ if a = a0,

J3 if a > a′
0.

Ha
τ,t =

⎧

⎪

⎨

⎪

⎩

H1
t if a < a′

0,

H31,T ′
τ,t if a = a′

0,

H3
t if a > a′

0.

(2) If Σ′
v is a bubble component, the following equation is satisfied on

Σ′
v:

∂Ju′ ≡ 0 mod E((Y ∪ �w′
c, u

′, ϕ′, a′
0, T

′);q;B). (8.18)

Here the almost complex structure J is as follows. Let ̂Σ′
a be the

extended mainstream component containing Σ′
v. If a < a′

0, then
J = J1. If a′

0 < a, then J = J3. If a = a′
0 and ϕa′

0
(τ, t) is the root

of the tree of sphere components containing Σ′
v, then J = J31

τ,T ′ .
(3) The same as (3) of (A).
(4) The same as (4) of (A).
(5) (Y∪⋃c∈E(q) �w′

c∪ �w′
q, u′, ϕ′, a′

0, T
′) is ε1-close to q∪⋃c∈E(q) �wq

c ∪ �wq.
In particular, T ′ > 1/ε1.

The isomorphism among the objects of (A) is defined in the same way as the
equivalence relation ∼2 on ̂N�(X,J 31,∞,H31,∞;α−, α+), which is the same
as Definition 3.7, except we require τa1 = τa2 = 0. The isomorphism among
objects of (B) is defined in the same way as in Definition 6.17 (a)(b)(c)(d).
(We require T ′ coincides for two objects to be equivalent.) An object of (A)
is never equivalent to an object of (B).

In the same way as in Lemma 4.29, we can prove that V (q, ε1,B) is a
smooth manifold with boundary and corner if ε1 > 0 and εc > 0 are small
enough. (We use the fact that (8.9) is an open embedding here.)

Then in the same way as in Sect. 4, we can find other data so that
V (q, ε1,B) together with them is a Kuranishi chart of q. We can also show
the existence of coordinate changes. We shrink the Kuranishi neighborhood
and discuss in the same way as in Lemmas 4.33, 4.34 and use the exponen-
tial decay estimates in the same way as in [16, Chapter 8] to obtain a Ku-
ranishi structure on N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) on a neighborhood of
N�(X,J 31,∞,H31,∞;α−, α+). We can extend it to the whole N�(X,J 31,[0,∞],
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H31,[0,∞];α−, α+) in the same way as in the proof of Theorem 7.4. We have
thus proved Theorem 8.6 (1).

8.3. Proof of Theorem 8.6 (2): Kuranishi structure with outer collar

In this subsection we prove Theorem 8.6 (2).

Remark 8.10. Since the rest of the proof is again a repetition of the construc-
tion of previous sections, the readers may safely skip it and go directly to
Sect. 9. We provide the details of the proof here for the sake of completeness.
The formulas appearing during the proof are lengthy but the argument is a
straightforward analogue.

We will modify the Kuranishi structure of N�(X,J 31,[0,∞],H31,[0,∞];
α−, α+)�1 in the collar so that it will be compatible with the fiber product
description of its boundary and corners. The way to modify our Kuranishi
structure is entirely the same as the proof of Theorem 6.4 (3)(4) except at
the boundary corresponding to T = ∞. (Namely the subset described in
Definition 8.3.) We denote this boundary component C∞ and discuss our
construction only on

̂SC∞
m (N�(X,J 31,[0,∞],H31,[0,∞];α−, α+)�1).

Let Ar be the index set of the critical submanifolds of Hr (r = 1, 2, 3). Let

α− = α1,0, α1,1, . . . , α1,m1−1, α1,m1 ∈ A1,

α2,1, . . . , α2,m2−1, α2,m2 ∈ A2,

α3,1, . . . , α3,m3 , α3,m3+1 = α+ ∈ A3.

We put �α1 = (α1,0, α1,1, . . . , α1,m1−1, α1,m1), �α2 = (α2,1, . . . , α2,m2−1, α2,m2)
and �α3 = (α3,1, . . . , α3,m3 , α3,m3+1).

We consider the fiber product

M�1,1(X,J1,H
1;α1,0, α1,1) ev+ ×ev− . . .

ev+ ×ev− M�1,m1
(X,J1,H

1;α1,m1−1, α1,m1)

ev+ ×ev− N�(12)(X,J 21,H21;α1,m1 , α2,1)

ev+ ×ev− M�2,2(X,J2,H
2;α2,1, α2,2) ev+ ×ev− . . .

. . . ev+ ×ev− M�2,m2
(X,J2,H

2;α2,m2−1, α2,m2)

ev+ ×ev− N�(23)(X,J 32,H32;α2,m2 , α3,1)

ev+ ×ev− M�3,2(X,J3,H
3;α3,1, α3,2) ev+ ×ev− . . .

. . . ev+ ×ev− M�3,m3+1(X,J3,H
3;α3,m3 , α3,m3+1), (8.19)

which we denote by N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3).

We note that a neighborhood of ̂SC∞
m (N�(X,J 31,[0,∞],H31,[0,∞];

α−, α+)�1) is a union of the direct products

N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3) × [−1, 0]m−2
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for various ��1, �(12), ��2, �(23), ��3, �α1, �α2, �α3 such that

|��1| + |��2| + |��3| + �(12) + �(23) = �,

#�α1 + #�α2 + #�α3 = m.

Note mr + 1 = #�αr for r = 1, 3 and m2 = #�α2.
We will construct a Kuranishi structure for each of

N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3)+

= N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3)

× [−1, 0]m1 × [−1, 0]m2 × [−1, 0]m3 .

Let Ar � Br � Cr = mr for r = 1, 2, 3. It induces IAr,Br,Cr
: [−1, 0]br →

[−1, 0]mr by (5.2). We will formulate compatibility conditions below (Condi-
tions 8.11–8.13), which describe the restriction of the Kuranishi structure

̂U ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3) (8.20)

of the product space N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3)+ to
the image of the embedding id × IA1,B1,C1 × IA2,B2,C2 × IA3,B3,C3 .

We put Ar = {i(Ar, 1), . . . , i(Ar, ar)} with

i(Ar, 1) < i(Ar, 2) < · · · < i(Ar, ar − 1) < i(Ar, ar).

We define C ′
j(Ar), Cj(Ar), �αr,Ar,j , �αr,Ar,j,Cr

in the same way as in Nota-
tion 6.19 (1)(2)(3). Here we put i(Ar, ar + 1) = mr, i(r,Ar, 0) = 1, except
i(A1, 0) = 0, i(A3, a3+1) = m3+1. (Compare Remark 6.18 and Notation 6.19
(1).)
Case 1: We first consider the case A2 �= ∅. We consider the fiber product

M ��1,A1,1
(X,J1,H

1; �α1,A1,1)

ev+ ×ev− M ��1,A1,2
(X,J1,H

1; �α1,A1,2) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,j
(X,J1,H

1; �α1,A1,j) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,a1
(X,J1,H

1; �α1,A1,a1)

ev+ ×ev− N ��1,A1,a1+1,�(12), ��2,A2,1
(X,J 21,H21; �α1,A1,a1+1.�α2,A2,1)

ev+ ×ev− M ��2,A2,2
(X,J2,H

2; �α2,A2,2) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,j
(X,J2,H

2; �α2,A2,j) ev+ ×ev− . . .

ev+ ×ev− M ��2,A2,a2
(X,J2,H

2; �α2,A2,a2)

ev+ ×ev− N ��2,A2,a2+1,�(23), ��3,A3,1
(X,J 32,H32; �α2,A2,a2+1, �α3,A3,1)

ev+ ×ev− M ��3,A3,2
(X,J3,H

3; �α3,A3,2) ev+ ×ev− . . .

ev+ ×ev− M ��3,A3,j
(X,J3,H

3; �α3,A3,j) ev+ ×ev− . . .

ev+ ×ev− M ��3,A3,a3+1
(X,J3,H

3; �α3,A3,a3+1). (8.21)

Here ��r,Ar,j = (�r,i(Ar,j−1)+1, . . . , �r,i(Ar,j)).
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We define mj(r,Ar) and mj(r,Ar, Cr) as in Notation 6.19 (5). Then
(6.19) holds. We define ��r,Ar,j,Cr

in the same way as in Notation 6.19 (6). We
put

�′
(rr+1) = �r,i(Ar,ar)+kmar (r,Ar,Cr)+1 · · · + �r,mr

+

+ �(rr+1) + �r+1,2 + · · · + �r+1,min(i(Ar+1,1),i(Br+1,1)).
(8.22)

We remark that in Proposition 5.5 we determined the Kuranishi structure
on

M ��r,Ar,j ,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
)+

= M ��r,Ar,j ,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
) × [−1, 0]mj(r,Ar,Cr)−1.

(8.23)

By construction we have

M ��r,Ar,j
(X,Jr,H

r; �αr,Ar,j) ⊆ ̂Scj(r,Ar)(M ��r,Ar,j ,Cr
(X,Jr,H

r; �αr,Ar,j,Cr
))

and the left hand side is a factor in (8.21).
By restriction it determines a Kuranishi structure of (8.21) times [−1, 0]∗

except two of the factors

N ��r,Ar,ar+1,�(rr+1), ��r+1,Ar+1,1
(X,J r+1r,Hr+1r; �αr,Ar,ar+1, �αr+1,Ar+1,1).

(8.24)

By construction, we can easily show that (8.24) is a component of

̂Scar+1(r,Ar)+c1(r+1,Ar+1)(N ��r,Ar,ar+1,Cr ,�′
(rr+1),

��r+1,Ar+1,1,Cr+1

(X,J r+1r,Hr+1r; �αr,Ar,ar+1,Cr
, �αr+1,Ar+1,1,Cr+1).

(8.25)

Note that we defined the Kuranishi structure on

N ��r,Ar,ar+1,Cr ,�′
(rr+1),

��r+1,Ar+1,1,Cr+1
(X,J r+1r,

Hr+1r; �αr,Ar,ar+1,Cr
, �αr+1,Ar+1,1,Cr+1)

+

during the construction of the morphism Nr+1r in Proposition 6.21. We write
it as

̂U ��r,Ar,ar+1,Cr ,�′
(rr+1),

��r+1,Ar+1,1,Cr+1

(X,J r+1r,Hr+1r; �αr,Ar,ar+1,Cr
, �αr+1,Ar+1,1,Cr+1).

(8.26)

Condition 8.11. In the case A2 �= ∅ we require the restriction of the Kuranishi
structure (8.20) to the image of id × IA1,B1,C1 × IA2,B2,C2 × IA3,B3,C3 is the
fiber product of the following Kuranishi structures. (Here we use the fiber
bundle description (8.21).)
(1) The Kuranishi structure on M ��r,Ar,j

(X,Jr,H
r; �αr,Ar,j)

× [−1, 0]mj(r,Ar,Cr)−1 which is a restriction of those on (8.23) produced
in Proposition 5.5.

(2) The Kuranishi structure on (8.24)×[−1, 0]mar+1(r,Ar, Cr) +
m1(r + 1, Ar+1, Cr+1) − 2 which is a restriction of those on (8.26) pro-
duced in Proposition 6.21.
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Case 2: We next consider the case A2 = ∅ but B2 �= ∅.
We consider the fiber product

M ��1,A1,1
(X,J1,H

1; �α1,A1,1)

ev+ ×ev− M ��1,A1,2
(X,J1,H

1; �α1,A1,2) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,j
(X,J1,H

1; �α1,A1,j) ev+ ×ev− . . .

ev+ ×ev− M ��1,A1,a1
(X,J1,H

1; �α1,A1,a1)

ev+ ×ev− N ��1,A1,a1+1,�(12), ��2,�(23), ��3,A3,1
(X,J 21,J 32,H21,H32

; �α1,A1,a1+1, �α2, �α3,A3,1)

ev+ ×ev− M ��3,A3,2
(X,J3,H

3; �α3,A3,2) ev+ ×ev− . . .

ev+ ×ev− M ��3,A3,j
(X,J3,H

3; �α3,A3,j) ev+ ×ev− . . .

ev+ ×ev− M ��3,A3,a3+1
(X,J3,H

3; �α3,A3,a3+1).

(8.27)

We define �α2,C2 by removing α2,i, i ∈ C2 from �α2.
We define ��2,C2 as follows. We put �α2,C2 = {α2,ks

| s = 0, . . . , m2,C2},
k0 < k1 < · · · < km2,C2

. (Here m2,C2 = #�α2,C2 − 1.) Note if i ∈ (ks, ks+1)Z,
then i ∈ C2. We put

�2,C2,s = �2,ks−1+1 + · · · + �2,ks

and ��2,C2 = (�2,C2,1, . . . , �2,C2,m2,C2
). Now we consider the factor

N ��1,A1,a1+1,�(12), ��2,�(23), ��3,A3,1
(X,J 21,J 32,H21,H32

; (�α1,A1,a1+1, �α2, �α3,A3,1))
(8.28)

in (8.27) and lies in the corner of

N ��1,A1,a1+1C1 ,�′
(12),

��2,C2 ,�′
(23),

��3,A3,1,C3
(X,J 21,J 32,H21,H32;

�α1,A1,a1+1,C1 , �α2,C2 , �α3,A3,1,C3),
(8.29)

where
�′
(12) = �1,i(A1,a1)+kma1 (1,A1,C1)+1 + · · · + �1,m1 + �(12) + �2,1 + · · · + �2,i(A2,1),

�′
(23) = �2,i(A2,a2)+kma2 (2,A2,C2)+2 + · · · + �2,m2 + �(23) + �3,1 + · · · + �3,i(A3,1).

We have a Kuranishi structure
̂U ��1,A1,a1+1,C1 ,�′

(12),
��2,C2 ,�′

(23),
��3,A3,1,C3

(X,J 21,J 32,H21,H32;

�α1,A1,a1+1,C1 , �α2,C2 , �α3,A3,1,C3)
(8.30)

on (8.28)×[−1, 0]∗. (More precisely, we are during the process of producing
it. Here ∗ = #�α1,A1,a1+1,C1 + #�α2,C2 + #�α3,A3,1,C3 − 2.)

Condition 8.12. In the case A2 = ∅, B2 �= ∅, we require the restriction of the
Kuranishi structure (8.20) to the image of id×IA1,B1,C1×IA2,B2,C2×IA3,B3,C3

is the fiber product of the following Kuranishi structures. (We use the fiber
product description (8.27).)
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(1) The Kuranishi structure on M ��r,Ar,j
(X,Jr,H

r; �αr,Ar,j)
× [−1, 0]mj(r,Ar,Cr)−1 which is a restriction of those on (8.23) produced
in Proposition 5.5.

(2) The Kuranishi structure on (8.28)×[−1, 0]∗ (∗ = #�α1,A1,a1+1,C1+#�α2,C2

+ #�α3,A3,1,C3 − 2) which is a restriction of (8.30).

Case 3: We finally consider the case when A2 = B2 = ∅.
In this case, using the notation above, we have �α2,C2 = ∅. We require

the compatibility with the Kuranishi structures on the part T < ∞ in this
case, as follows.

We denote the fiber product:

M�1,1(X,J1,H
1;α1,0, α1,1) ev+ ×ev− . . .

. . . ev+ ×ev− M�1,m1
(X,J1,H

1;α1,m1−1, α1,m1)

ev+ ×ev− N�′(X,J 31,[0,∞],H31,[0,∞];α1,m1 , α3,1)

ev+ ×ev− M�3,2(X,J3,H
3;α3,1, α3,2) ev+ ×ev− . . .

. . . ev+ ×ev− M�3,m3+1(X,J3,H
3;α3,m3 , α3,m3+1)

(8.31)

by N ��1,�′, ��3(X,H31,[0,∞],J 31,[0,∞]; �α1, �α3). Note this is also a component of
the corner of N�(X,J 31,[0,∞],H31,[0,∞];α−, α+) if |��1|+�′+|��2| = �. So we are
during the process of constructing Kuranishi structures on N�(X,J 31,[0,∞],
H31,[0,∞];α−, α+)+, which is the direct product of N�(X,J 31,[0,∞],H31,[0,∞];
α−, α+) with [−1, 0]∗. (∗ = #�α1 + #�α3 − 2.) Let us denote by ̂U ��1,�′, ��3
(X,J 31,[0,∞],H31,[0,∞]; �α1, �α3) the Kuranishi structure on it.

We put

�′
2 = � − |��1,C1 | − |��3,C3 |.

We then observe that (8.28) lies in the corner of

N ��1,A1,a1+1,C1 ,�′
2, ��3,A3,1,C3

(X,J 31,[0,∞],H31,[0,∞]; �α1,A1,a1+1,C1 , �α3,A3,1,C3).

(8.32)

Condition 8.13. In the case A2 = B2 = ∅, we require the restriction of the
Kuranishi structure (8.20) to the image of id×IA1,B1,C1×IA2,B2,C2×IA3,B3,C3

is the fiber product of the following Kuranishi structures. (We use the fiber
product description (8.27).)
(1) The Kuranishi structure on M ��r,Ar,j

(X,Jr,H
r; �αr,Ar,j)

× [−1, 0]mj(r,Ar,Cr)−1 which is a restriction of those on (8.23) produced
in Proposition 5.5.

(2) The Kuranishi structure on (8.28)×[−1, 0]∗ which is a restriction of the
Kuranishi structure

̂U ��1,A1,a1+1,C1 ,�′
2, ��3,A3,1,C3

(X,H31,[0,∞],J 31,[0,∞]; �α1,A1,a1+1,C1 , �α3,A3,1,C3),

on (8.32)×[−1, 0]∗. Here ∗ = #�α1,A1,a1+1,C1 + #�α3,A3,1,C3 − 2.
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We have thus described the conditions we require at T = ∞.
There are similar compatibility conditions at T < ∞ and T = 0.

We require such conditions to the Kuranishi structure ̂U ��1,�′, ��3(X,J 31,[0,∞],

H31,[0,∞]; �α1, �α3). We omit the detailed description of this compatibility con-
dition since it is the same as that for the case of Condition 6.20 and Propo-
sition 6.21.

Proposition 8.14. There exists a K-system

{(N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3)+,

̂U ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3))}
whose Kuranishi structure is as in (8.20) with the following properties.
(1) They satisfy Conditions 8.11–8.13.
(2) There exists a K-system

{(N ��1,�′, ��3(X,J 31,[0,∞],H31,[0,∞]; �α1, �α3),

̂U ��1,�′, ��3(X,J 31,[0,∞],H31,[0,∞]; �α1, �α3))}
which satisfies a compatibility condition similar to Condition 6.20.

(3) A similar compatibility condition is satisfied at T = 0.
(4) Let C be the union of the boundary components of the underlying topolog-

ical space N ��1,�(12), ��2,�(23), ��3(X,J 21,J 32,H21,H32; �α1, �α2, �α3)+

corresponding to ∂([0, 1]∗). Then (8.20) is C-collared.
(5) If �α1 = {α−} and �α3 = {α+}, then ̂U∅,�,∅(X,J 31,[0,∞],H31,[0,∞];

α−, α+) coincides with the Kuranishi structure we produced in Theo-
rem 8.6 (1).

Proof. The proof is entirely similar to the proof of Proposition 6.21 etc. �

We can use Proposition 8.14 to complete the proof of Theorem 8.6 (2)
in the same way as before. (We use smoothing of corners and [23, Lemma
18.40] to show that at T = ∞ we get the Kuranishi structure used to define
the composition.) �

The proof of Theorem 8.2 is complete. �

9. Well-definedness of Hamiltonian Floer cohomology

We now use the results of the previous sections to conclude the well-
definedness of the Floer cohomology of a periodic Hamiltonian system. Namely
we prove the next theorems.

Theorem 9.1. Let H : X × S1 → R be a smooth function such that Per(H)
is Morse–Bott non-degenerate in the sense of Condition 2.1. Then we can
associate the Floer cohomology HF (X,H; Λ0,nov) which is independent of
various choices involved in the definition.

Recall Λ0,nov is the Novikov ring defined in (1.1). We define the Novikov
field Λnov as its field of fractions by allowing λi to be negative.
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Theorem 9.2. Let Hr : X × S1 → R (r = 1, 2) be as in Theorem 9.1. Then
the Floer cohomologies HF (X,Hr; Λnov) = HF (X,Hr; Λ0,nov) ⊗Λ0,nov Λnov

(r = 1, 2) over the Novikov field Λnov satisfy

HF (X,H1; Λnov) ∼= HF (X,H2; Λnov).

Remark 9.3. Using Remark 6.22, we can prove the Lipschitz continuity of
torsion exponent of the Floer cohomology over Λ0,nov with respect to the
distance

d(H1,H2) =
∫

t∈S1
sup
x∈X

|H1(t, x) − H2(t, x)|dt

on the set of the Hamiltonians. We omit the discussion about it since we
can derive it from a similar result on the Floer cohomology of Lagrangian
intersection. (See [14].) We can also use Remark 6.22 to derive more precise
results about the filtration of the Floer cohomology of a periodic Hamiltonian
system. We discussed it in detail in [22].

The proofs of Theorems 9.1, 9.2 occupy the main part of this section.

Situation 9.4. (1) Let H : X × S1 → R be a smooth function such that
Per(H) is Morse–Bott non-degenerate. We write H = H1. We define
H11 : X × R × S1 → R by H11(x, τ, t) = H1(x, t).

(2) Let J and J ′ be two choices of tame almost complex structures. We
define J = {Jτ} such that Jτ = J for τ < −1 and Jτ = J ′ for τ > 1.
�

Construction 9.5. Suppose we are in Situation 9.4.

(1) We use H and J and apply Theorem 2.9 (1) to obtain a linear K-system
FX(H,J) whose space of connecting orbits is M((X,J),H;α−, α+).
(We made choices to define it.)

(2) We then apply [23, Theorem 16.9] to obtain a chain complex (we made
choices to define it) and then use [23, Definition 16.12] to obtain a
cochain complex over the universal Novikov ring Λ0,nov, which we denote
by CF ((X,J),H; Λ0,nov). By [23, Theorem 16.9 (2)] the cohomology of
this cochain complex is independent of the choices made in Item (2).
We denote this cohomology group as

HF ((X,J),H; Λ0,nov).

(3) We start from H and J ′ and make choices in Item (2) to obtain

HF ((X,J ′),H; Λ0,nov).

However, [23, Theorem 16.9 (2)] does not imply that HF ((X,J),
H; Λ0,nov) is independent of the choices made in Item (1). The statement
of Theorem 9.1 is independence of the Floer cohomology (over Λ0,nov) of the
choices made in Item (2) as well as the almost complex structure J . The
statement of Theorem 9.2 is independence of the Floer cohomology (over
Λnov) of the choices made in Item (1) as well as Item (2).
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Construction 9.6. Suppose we are in Situation 9.4. We also assume that we
have made all the choices involved in Construction 9.5 (1)(2)(3).

We apply Theorem 6.4 to obtain a morphism from FX(H,J) to
FX(H,J ′). Here FX(H,J) is defined in Situation 9.4 (1) and FX(H,J ′) is
defined in Situation 9.4 (3). We denote this morphism by N11(J ,H11).

We make choices to define N11(J ,H11). The interpolation space of
N11(J ,H11) is N (X,J ,H11;α−, α+)�1.

Lemma 9.7. We can make the choice in Construction 9.6 so that N11(J ,H11)
is a morphism of energy loss 0. Namely we have
(1) N (X,J ,H11;α−, α+)�1 = ∅ if E(α−) > E(α+) or E(α−) = E(α+),

α− �= α+.
(2) N (X,J ,H11;α, α)�1 = Rα. The evaluation maps on it are the identity

maps.

Proof. Using the fact that H11
τ,t = H1

t and is τ independent, (1) is an im-
mediate consequence of Remark 6.22. To prove (2) we first observe that
N (X,J ,H11;α, α) = Rα set-theoretically. In fact, N (X,J ,H11;α, α) con-
sists of ((Σ, �z±), ϕ, u) where Σ = S2 (without bubbles) and u(ϕ(τ, t)) = γ(t)
with γ ∈ Rα. We also remark that this moduli space is Fredholm regular.
Therefore, we can make our choice so that the obstruction bundle is 0 in this
particular case. (Since ∂N (X,J ,H11;α, α) = ∅, we do not need to study
the compatibility with the choices made in Construction 9.5 (1)(3).) Item (2)
holds for this choice. �

Proof of Theorem 9.1. We now apply [23, Theorem 16.31] to the morphism
obtained by taking the choice made in Lemma 9.7. We then obtain a chain
map

ψJ ,H11 : CF ((X,J),H; Λ0,nov) → CF ((X,J ′),H; Λ0,nov). (9.1)

We note that

CF ((X,J),H; Λ0,nov) = CF ((X,J ′),H; Λ0,nov)

as Λ0,nov-modules. (Floer’s boundary operator may be different, however.)
Using the fact that energy loss of N11(J ,H11) is zero, especially Lemma 9.7

(2), we find that

ψJ ,H11 ≡ id mod T εΛ0,nov

for some ε > 0. Therefore, ψJ ,H11 has an inverse, which automatically be-
comes a chain map. Therefore, we have

HF ((X,J),H; Λ0,nov) ∼= HF ((X,J ′),H; Λ0,nov),

as required. �

Proof of Theorem 9.2

Situation 9.8. (1) Let Hr : X × S1 → R (r = 1, 2) be smooth functions
such that Per(Hr) are Morse–Bott non-degenerate. Let Jr (r = 1, 2) be
tame almost complex structures.
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(2) For r = 1, 2 we make choices as in Construction 9.5 to define chain
complexes CF ((X,Jr),Hr; Λ0,nov) with Λ0,nov coefficients, and their
cohomology groups HF ((X,Jr),Hr; Λ0,nov).

(3) We take H21 : X×R×S1 → R and J 21 as in Situation 6.1. We exchange
the role of H1, J1 and H2, J2 and take H12, J 12. �

We now apply Theorem 6.4 to H21,J 21 and obtain a morphism

N21 : FX(H1, J1) → FX(H2, J2).

We also apply Theorem 6.4 to H12,J 12 and obtain a morphism

N12 : FX(H2, J2) → FX(H1, J1).

We apply [23, Theorem 16.31 (1)] to obtain chain maps

ψ12 : CF ((X,J1),H1; Λnov) → CF ((X,J2),H2; Λnov)

and

ψ21 : CF ((X,J2),H2; Λnov) → CF ((X,J1),H1; Λnov).

We consider the particular case of J = J ′ = J1 in Situation 9.8. Then
we obtain

N11 : FX(H1, J1) → FX(H1, J1).

In a similar way we obtain

N22 : FX(H2, J2) → FX(H2, J2).

We denote the chain map (9.1) in this case by

ψ0,rr : CF ((X,Jr),Hr; Λ0,nov) → CF ((X,Jr),Hr; Λ0,nov). (9.2)

This is a chain isomorphism in the proof of Theorem 9.1 by Lemma 9.7. We
change the coefficient ring to Λnov by taking tensor product and obtain

ψrr : CF ((X,Jr),Hr; Λnov) → CF ((X,Jr),Hr; Λnov). (9.3)

This is also a chain isomorphism.

Lemma 9.9. The composition N12 ◦ N21 (resp. N21 ◦ N12) is homotopic to
N11 (resp. N22).

Proof. This is a special case of Theorem 8.2. �

Lemma 9.9 and [23, Theorem 16.31 (3)] imply that ψ21 ◦ ψ12 (resp.
ψ12 ◦ ψ21) is chain homotopic to ψ22 (resp. ψ11). Since ψ22, ψ11 are chain
homotopy equivalences, it implies that ψ21 is a chain homotopy equivalence.
Therefore,

ψ21∗ : HF ((X,J1),H1; Λnov) ∼= HF ((X,J2),H2; Λnov) (9.4)

as required. �
We will discuss the well-definedness of the isomorphisms in Theorems 9.1

and 9.2 of various choices more precisely below.
In Situation 9.8 we obtain a chain map ψ21 (of Λnov coefficients) which

induces an isomorphism of the Floer cohomology (9.4).
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In Situation 9.4 we obtain a chain map between two chain complexes of
Λ0,nov coefficients, which we denote by

ψ0;J ′J : CF ((X,J),H; Λ0,nov) → CF ((X,J ′),H; Λ0,nov). (9.5)

This is nothing but the chain map (9.1).34 It induces an isomorphism ψ0;J ′J∗
on cohomology groups.

Finally when we use the same almost complex structure J and the other
choices for the domain and the target, we obtain (9.2) and (9.3).

Lemma 9.10. The maps ψ21∗, ψ0;J ′J∗ and ψrr∗ are independent of various
choices involved in the construction.

Proof. We consider the two choices to define the morphism N21. We denote
by Na

21 and Nb
21 the morphism obtained by those two choices. By Lemma 7.2

and Theorem 7.4, two morphisms Na
21 and Nb

21 are homotopic each other.
The isomorphism (9.4) is induced from N21 using [23, Theorem 16.31 (1)].
We can use [23, Theorem 16.31 (2)] that the homomorphism ψa

12 induced
from Na

21 is chain homotopic to the homomorphism ψb
12 induced from Nb

21.
This implies the independence of ψ21∗ of the choices.

The independence of ψ0;J ′J∗ and ψrr∗ are proved in the same way. We
only need to note that in that situation we can take the homotopy to be of
energy loss zero. �

This lemma together with the next lemma imply that the group
HF (X,H; Λnov) is independent of H, J and other choices up to canonical
isomorphism.

Lemma 9.11. (1) We consider Hr, Jr for r = 1, 2, 3 and isomorphisms
ψ21∗, ψ32∗, ψ31∗ as above. Then

ψ31∗ = ψ32∗ ◦ ψ21∗.

(2) We fix H and take three choices J1, J2 and J3 of almost complex struc-
tures as well as other choices in Construction 9.5. Then we have

ψ0,J3J1∗ = ψ0,J3J2∗ ◦ ψ0,J2J1∗.

(3) ψ0,rr induces the identity map

ψ0,rr∗ : HF ((X,Jr),Hr; Λ0,nov) → HF ((X,Jr),Hr; Λ0,nov).

Proof. (1) is a consequence of Theorem 8.2 and [23, Theorem 16.31 (3)]. The
proof of (2) is similar. (We again note that in this situation we obtain a
homotopy with energy loss 0.)

(3) We first observe that Nrr ◦ Nrr is homotopic to Nrr. This is a
consequence of Theorem 8.2. Furthermore by its proof we can show that the
energy loss of the homotopy between them is 0. Therefore, by [23, Theorem
16.31 (2)] we find that ψ0,rr∗◦ψ0,rr∗ = ψ0,rr∗. Since ψ0,rr∗ is an isomorphism,
this implies that ψ0,rr∗ is the identity map. �
34The domain and the target of the map (9.5) are different not only because we use
different almost complex structures but also we made various choices to define the linear
K-system and various choices to define a map between spaces of differential forms via
smooth correspondence by K-spaces.
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Remark 9.12. We did not use the identity morphism in this section. (In sev-
eral results such as [23, Theorem 16.9 (2)], we used the identity morphism
in their proofs.) We can actually prove the following. See also [23, Section
18.11].

Claim 9.13. In the case J and H11 are τ independent families, the morphism
N11(J ,H11) is homotopic to the identity morphism.

This immediately implies Lemma 9.11 (3) for example.
The strata of N11(J ,H11) is actually the same as the ones appearing

in the definition of the identity morphism. Let us explain this fact below.
Recall that we used τ ∈ R independent H11 and J to define our morphism
N11(J ,H11). Therefore, an element ((Σ, �z±), u) of the interpolation space
N (X,J ,H11;α−, α+) is the same as an element of M(X,J,H;α−, α+), ex-
cept we add the data to specify the main component and fix a parametrization
of the main component. (Namely the isomorphism between two elements is
required to commutes strictly with the parametrization of the main compo-
nent.) This causes two points where N (X,J ,H11;α−, α+) is different from
M(X,J,H;α−, α+).

(1) In the case the main component represents an element of N reg(X,H;
α, α′) α �= α′, it has an extra parameter ∈ R other than those in
Mreg(X,H;α, α′) which specify the parametrization ϕa0 of the main
component Σa0 .

(2) There is a case when the main component corresponds to an element of
N reg(X,H;α, α).

In the case (1) the moduli parameter of the main component is N reg

(X,H;α, α′) which is isomorphic to Mreg(X,H;α, α′) × R. Thus the strata
[23, Definition 18.55 (1)(a)] appears.

In the case (2) we have Rα as the parameter space of the main com-
ponent. In this case Mreg(X,H;α, α) is an empty set. The map which is
constant in the R direction corresponds to an element of Rα. Thus the strata
[23, Definition 18.55 (1)(b)] appears.

Thus we find a K-space N (X,H;α, α′) which is similar to the interpo-
lation space of the identity morphism. We remark, however, that to prove
Claim 9.13, we need to show not only the underlying topological space but
also their Kuranishi structures coincide. In other words, the Kuranishi struc-
ture on N (X,J ,H11;α−, α+) should be induced by the forgetful map

N (X,J ,H11;α−, α+) → M(X,J,H;α−, α+).

It is possible to find such a Kuranishi structure on N (X,J ,H11;α−, α+).
However, since we postpone the thorough detail of the discussion of the for-
getful map to [24], we do not prove Claim 9.13 here. For this reason, we
organize the proof in this section in a slightly different way.
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10. Calculation of Hamiltonian Floer cohomology

Definition 10.1. Let (X,ω) be a compact symplectic manifold. We define the
trivial linear K-system of X as follows. Here we use the same item numbers
and the notation in [23, Condition 16.1].
(I) We define an additive group G = π2(X)/ ∼, where α ∼ α′ if and only

if ω[α] = ω[α′] and c1(TX)[α] = c1(TX)[α′]. Group homomorphisms
E : G → R and μ : G → Z are induced by [α] �→ ω[α] and μ([α]) =
2c1(TX)[α], respectively.

(II) As a set A = G with left multiplication as the G action on A itself. The
maps E : A → R and μ : A → Z are as above.

(III) For each α ∈ A, Rα = X.
(IV) M(α−, α+) = ∅ always.

(VII) oRα
is the canonical orientation of the symplectic manifold X. The

orientation isomorphism OIα−,α+ in [23, (16.2)] is trivial.
Other items in [23, Condition 16.1] are satisfied in a trivial way. We denote
the trivial linear K-system of X by F tri

X .

The main result of this section is the following.

Theorem 10.2. Suppose we are in Situation 9.4. Let FX(H,J) be as in Con-
struction 9.5 (1). Then there exist morphisms of linear K-systems N∗(H,J) :
FX(H,J) → F tri

X and N(H,J)∗ : F tri
X → FX(H,J) with the following proper-

ties.
(1) The composition N∗(H,J) ◦ N(H,J)∗ : F tri

X → F tri
X is homotopic to a

morphism of energy loss 0.35

(2) The composition N(H,J)∗◦N∗(H,J) : FX(H,J) → FX(H,J) is homotopic
to the morphism N11(J ,H11) in Construction 9.6, where J is the trivial
family and H11 ≡ H is constant in the R factor.

Corollary 10.3.

HF ((X,H); Λnov) ∼= H(X; Λnov).

The corollary is an immediate consequence of Theorem 10.2, [23, The-
orem 16.39 (4)(5)], [23, Lemma 19.45] and an obvious fact that the Floer
cohomology of the trivial linear K-system is H(X; Λnov). We note that Corol-
lary 10.3 implies (1.2).

Proof of Theorem 10.2. We consider a smooth function H∗1 : X×R×S1 → R

such that:
(1) If τ < −1 then H∗1(x, τ, t) = H(x, t).
(2) If τ > 1 then H∗1(x, τ, t) = 0.

Since we already proved J independence of the Floer cohomology, we fix J
in this section and do not include it in the notation.

Let α− ∈ A where A is the index set of the space of contractible periodic
orbits of FX(H,J). Let α+ ∈ G = π2(X)/ ∼ as in Definition 10.1.

35Namely it satisfies Lemma 9.7 (1)(2).
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Definition 10.4. The set ̂N ′
�(X,H∗1;α−, α+) consists of triples

((Σ, (z−, z+, �z), a0), u, ϕ)

satisfying the following conditions:

(1) (Σ, (z−, z+, �z)) is a genus zero semi-stable curve with �+2 marked points.
(2) Σa0 is one of the mainstream components. We call it the main compo-

nent.
(3) ϕ = (ϕa) where ϕa : R × S1 → Σa\{za,−, za+} is a parametrization of

mainstream component Σa with a ≤ a0 and ϕa is a biholomorphic map
such that

lim
τ→± ϕa(τ, t) = za,±.

(4) For each extended mainstream component ̂Σa, the map u induces ua :
̂Σa\{za,−, za,+} → X which is a continuous map

(5) If Σa is a mainstream component with a ≤ a0 and ϕa : R× S1 → Σa is
as in (3), then the composition ua ◦ ϕa satisfies the equation

∂(ua ◦ ϕa)
∂τ

+ J

(

∂(ua ◦ ϕa)
∂t

− XHa
τ,t

◦ (ua ◦ ϕa)
)

= 0 (10.1)

where

Ha
τ,t =

{

H1
t if a < a0,

H∗1
τ,t if a = a0.

(6)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

dτdt < ∞.

(7) If Σv is a bubble component or a mainstream component Σa with
a > a0, then u is pseudo-holomorphic on Σv.

(8) Let Σa1 and Σa2 be mainstream components and za1,+ = za2,−. Then

lim
τ→+∞(ua1 ◦ ϕa1)(τ, t) = lim

τ→−∞(ua2 ◦ ϕa2)(τ, t)

holds for each t ∈ S1 if a2 ≤ a0. ((6) and Lemma 6.3 imply that the left
and right hand sides both converge.)

If a2 > a0 then we require that u is continuous at za1,+ = za2,−.
(9) If Σa is a mainstream component and za,− = z−, then there exists

(γ−, w−) ∈ Rα− such that

lim
τ→−∞(ua ◦ ϕa)(τ, t) = γ−(t).

Moreover, [u∗[Σ]]#w− represents the class [α+], where # is the obvious
concatenation.

(10) We assume that ((Σ, (z−, z+, �z), a0), u, ϕ) is stable in the sense of Defi-
nition 10.5 below.
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Assume that ((Σ, (z−, z+, �z), a0), u, ϕ) satisfies (1)–(9) above. The ex-
tended automorphism group Aut+((Σ, (z−, z+, �z), a0), u, ϕ) of ((Σ, (z−, z+, �z),
a0)), u, ϕ) consists of map v : Σ → Σ such that it satisfies (1)(2)(5) of Defi-
nition 6.7, and (3) of Definition 6.7 for ϕa with a ≤ a0, and τa0 = 0.

Definition 10.5. An object ((Σ, (z−, z+, �z), a0), u, ϕ) satisfies (1)–(9) above is
said to be stable if Aut+((Σ, (z−, z+, �z), a0), u, ϕ) is a finite group.

We can define the equivalence relation ∼2 on ̂N ′
�(X,H∗1;α−, α+) in the

same way as in Definition 3.7 except we require τa0 = 0 and require (3) only
for a ≤ a0. We put

N ′
�(X,H∗1;α−, α+) = ̂N ′

�(X,H∗1;α−, α+)/ ∼2 . (10.2)

This space N ′
�(X,H∗1;α−, α+) (more precisely, N ′

�(X,H∗1;α−, α+)�1) will
be the underlying topological space of the interpolation space of the morphism
N∗(H,J).

Remark 10.6. We use the R×S1 parametrized family of Hamiltonians H∗1 in
exactly the same way as in Definition 6.6 etc. and obtain the space N�(X,J ,
H∗1;α−, α+) as in Definition 6.10. (Here J is the family Jτ,t = Jt of almost
complex structures.)

The main difference between N�(X,J ,H∗1;α−, α+) and N ′
�(X,H∗1;

α−, α+) is that in the latter we do not put parametrizations on the main-
stream components Σa with a > a0. Note because of the equivalence relation
∼2 the parametrizations of the mainstream components Σa (for a �= a0) is a
part of the data of elements of N�(X,J ,H∗1;α−, α+) up to the translation
of the R direction. So for a given element of N�(X,J ,H∗1;α−, α+) which
has exactly m mainstream components Σa with a > a0, the corresponding
element in N ′

�(X,H∗1;α−, α+) is parametrized by (S1)m. In other words,
there exists a map

π : N�(X,J ,H∗1;α−, α+) → N ′
�(X,H∗1;α−, α+)

whose fibers are (S1)m. (Note π is not a fiber bundle and the dimension of the
fiber m depends on the strata.) In this article, however, we do not define an
equivariant Kuranishi structure of N�(X,J ,H∗1;α−, α+) by the strata-wise
(S1)m action, but can use the Kuranishi structure on the ‘quotient space’ of
this action, which is nothing but N ′

�(X,H∗1;α−, α+). This is the reason we
do not need to study an S1 equivariant Kuranishi structure in this article.

We will discuss Kuranishi structure on N ′
�(X,H∗1;α−, α+). Before do-

ing so we define another moduli space which will be the interpolation space
of N(H,J)∗.

We put

H1∗(x, τ, t) = H∗1(x,−τ, t).

Let α+ ∈ A where A is the index set of contractible periodic orbits of
FX(H,J). Let α− ∈ G = π2(X)/ ∼ as before.

Definition 10.7. The set ̂N ′
�(X,H1∗;α−, α+) consists of triples ((Σ, (z−, z+,

�z), a0), u, ϕ) satisfying the following conditions:
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(1) The same as Definition 10.4 (1).
(2) The same as Definition 10.4 (2).
(3) The same as Definition 10.4 (3), except we replace a ≤ a0 by a ≥ a0.
(4) The same as Definition 10.4 (4).
(5) The same as Definition 10.4 (5), except we replace a ≤ a0 by a ≥ a0

and we put

Ha
τ,t =

{

H1
t if a > a0,

H1∗
τ,t if a = a0.

(6) The same as Definition 10.4 (6).
(7) The same as Definition 10.4 (7), except we replace a > a0 by a < a0.
(8) Let Σa1 and Σa2 be mainstream components. If za1,+ = za2,−, then

lim
τ→+∞(ua1 ◦ ϕa1)(τ, t) = lim

τ→−∞(ua2 ◦ ϕa2)(τ, t)

holds for each t ∈ S1 if a1 ≥ a0. ((6) and Lemma 6.3 imply that the left
and right hand sides both converge.)

If a1 < a0, then we require that u is continuous at za1,+ = za2,−.
(9) If Σa is mainstream components and za,+ = z+, then there exist

(γ+, w+) ∈ Rα+ such that

lim
τ→+∞(ua ◦ ϕa)(τ, t) = γ+(t).

Moreover, [u∗[Σ]]#[α−] ∼= [w+] where # is the obvious concatenation.
(10) We assume that ((Σ, (z−, z+, �z), a0), u, ϕ) is stable, which can be defined

in the same way as in Definition 10.5 above.

We can define an equivalence relation ∼2 in the same way and define

N ′
�(X,H1∗;α−, α+) = ̂N ′

�(X,H1∗;α−, α+)/ ∼2 . (10.3)

When X is a point, we denote N ′
�(X,H∗1;α−, α+) (resp. N ′

�(X,H1∗;
α−, α+)) in this case by N ′

�(source, right) (resp. N ′
�(source, left)).

Example 10.8. The space N ′
1(source, right) is homeomorphic to the disc D2.

In fact, N ′
1(source, right) consists of three strata. One is the case when there

is one mainstream component. This stratum is homeomorphic to R × S1.
The second is the case when there are two mainstream components Σa, Σa0

with a < a0. (Here Σa0 is the main component.) The marked point is on
Σa. If it is ϕa(τ, t), then t is the well-defined parameter of this stratum,
which is homeomorphic to S1. The third is the case when there are two
mainstream components Σa, Σa0 with a > a0. The marked point is on Σa.
Since the parametrization of Σa is not a part of the data of an element of
N ′

1(source, right), this stratum is one point.
We remark that N1(source) is homeomorphic to S1 × [0, 1]. We shrink

one of the boundary components by the S1 action to obtain N ′
1(source, right).

The next proposition proves a part of Theorem 10.2.

Proposition 10.9. (1) We can define topologies on N ′
�(X,H∗1;α−, α+) and

N ′
�(X,H1∗;α−, α+) so that they are compact and Hausdorff.
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(2) We can define Kuranishi structures on them.
(3) We can define Kuranishi structures on the spaces36 N ′

�(X,H∗1;
α−, α+)�1 and N ′

�(X,H1∗;α−, α+)�1.
(4) Together with other objects N ′

�(X,H∗1;α−, α+)�1 defines a morphism
N∗(H,J) : FX(H,J) → F tri

X , of which it will be an interpolation space.
(5) Together with other objects N ′

�(X,H1∗;α−, α+)�1 defines a morphism
N(H,J)∗ : F tri

X → FX(H,J), of which it will be an interpolation space.

Proof. We prove the case of N ′
�(X,H∗1;α−, α+) since the case of N ′

�(X,H1∗;
α−, α+) is entirely similar.

The proof is classical and similar to that of Theorem 6.4. Indeed Propo-
sition 10.9 (1) can be proved in the same way as the proof of Lemma 6.13.
(See Definitions 3.13, 3.17 and [25, Lemma 10.4 and Theorem 11.1] etc.) Thus
we will describe the point where the proof is different below.

The notion of symmetric stabilization �w is slightly different. We put
marked points not only on bubble components but also on the mainstream
components Σa with a > a0 such that Σa contains no singular or marked
points other than transit points.

We put canonical marked points only on the mainstream component Σa

with a < a0 (such that Σa contains no singular or marked points other than
transit points.)

The notation of obstruction bundle data is modified as follows. Defini-
tion 4.11 (1) (symmetric stabilization) is modified as above. Definition 4.11
(2),(a) is changed as follows. Let Σv = Σa be a mainstream component.

(i) V(xa ∪ �wcan,a) is an open subset of
◦

M�a+�′
a+�′′

a
(source) if a < a0.

(ii) V(xa ∪ �wa) is an open subset of
◦
N �a+�′

a+�′′
a
(source) if a = a0.

(iii) V(xa ∪ �wa) is an open subset of
◦

Mcl
�a+�′

a+�′′
a

if a > a0.
Definition 4.11 (3) is mostly the same but Definition 4.11 (3) (a) for

transit points za,− with a > a0 (or za,+ with a > a0, za,+ �= z+) is slightly
modified as follows. As we mentioned in Remark 10.6, we did not fix a
parametrization ϕa for each mainstream component Σa with a > a0. In-
stead we take any biholomorphic map ϕa : R × S1 → Σa\{za,−, za,+} such
that limτ→±∞ ϕa(τ, t) = za,±. It is determined up to the R × S1 action on
the source.

For transit points with extra S1 factor, we perform the process of outer
collaring for the factor (T0,j ,∞] ∼= [0, s0,j), where s0,j = 1/ log T0,j . Namely,
we change

∏

([0, s0,j) × S1)/ ∼ to
∏

([−1, s0,j) × S1)/ ∼′, where ∼′ is the
equivalence relation given by

(s1, t1) ∼′ (s2, t2) if and only if either (s1, t1) = (s2, t2) or s1 = s2 = −1.

Write Dj = ([−1, s0,j) × S1)/ ∼′. Namely, we fill a smaller disk around the
origin of ([0, s0,j)×S1)/ ∼. We call this procedure the fattening of the origin
of the complex smoothing parameter. See Fig. 10.

36This is defined from N ′
�(X, H∗1; α−, α+) in the same way as before by including tz ∈

[−1, 0] for any transit point z. See also Remark 5.6.
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Note that the boundary of
∏

Dj is empty and does not contribute to
the coodimension one boundary of the moduli spaces, which we are dealing
with in this proof. Recall that the exponential decay estimates [16, Chapter 8]
were used during the outer collar construction in Sects. 5, 6. We also have the
exponential decay estimates for derivatives involving the S1 directions in the
smoothing parameters [16, Chapter 8]. Therefore, the fattening construction
goes in a similar way to the outer collar construction. The same is also for
the interpolation of Kuranishi structures among various Kuranishi structures.
Hence we have (3).

Definition 4.11 (4)–(6) are the same.
Definition 4.11 (7) is slightly changed as follows. We also take codi-

mension 2 submanifolds Di for the additional marked points wi lying on the
mainstream components Σa with a > a0.

We have thus defined the notion of obstruction bundle data. We define
the notion of stabilization data in Definition 4.26 as a part of the obstruction
bundle data modified above.

Let p = [((Σ, (z−, z+, �z), a0), u, ϕ)] ∈ N ′
�(X,H1∗;α−, α+) and we take a

symmetric stabilization �w and the canonical marked points �wcan in the above
sense. Suppose we have obstruction bundle data or stabilization data on p.
We will define a map

Φp :
∏V(xv ∪ �wv ∪ �wcan,v) × (T0,∞]k1 ×∏m+k2

j=1

(

((T0,j ,∞] × S1)/ ∼)

→ N ′
�+�′+�′′(source, left),

(10.4)

which is similar to but slightly different from (6.6). Here k1 is the number of
transit points za,+ with a < a0, k2 is the number of transit points za,− with
a > a0. (Note k1 + k2 is the number of all transit points. m is the number of
non-transit singular points.)

The definition of (10.4) is mostly the same as (6.6). The main difference
is that we have an extra S1 factor for each transit point za,− with a > a0. We
use this parameter as follows. In the case when the components will not be
glued with the main component, the role of the S1 factor is the same as that
for the case of non-transit singular points in the definition of the map (4.8).
So we consider the case when all the parameters Tj corresponding to transit
points za,− with a > a0 are finite. In this case we first use the parameters
(Tj , θj) ∈ ((T0,j ,∞] × S1)/ ∼ (which is associated to those transit points)
with local coordinates at those transit points to glue the spaces to obtain
Σ′. We define the parametrization of the main component Σ′

a′
0

as follows. We
identify Σa0

∼= R × S1. Then we can embed [−T0, T0] × S1 ⊂ Σa0 into Σ′
a′
0

for sufficiently large number T0 in a canonical way. Let v be this embedding.
We require that ϕ′

a′
0

= ϕa0 ◦ v on [−T0, T0] × S1. This condition determines
ϕ′

a′
0

uniquely.
The definition of (10.4) is the same as (6.6) in the other points.
Using (10.4) we can define the notion of ε-closeness in the same way as

in (4.16).
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The definition of the notion of transversal constraint is the same as
Definition 4.19, except we apply Definition 4.19 (1) to the marked points w′

i

corresponding to ones on the mainstream component Σa with a > a0 also.
We can then define an embedding

Ip,v;Σ′,u′,ϕ′ : Ep,v(y) → C∞(Σ′; (u′)∗TX ⊗ Λ0,1)

of obstruction spaces in the same way as in Definition 4.21.
In the rest of the construction of the Kuranishi structure, there is noth-

ing to change the proof of Theorem 4.1 (1) and we obtain a Kuranishi struc-
ture on N ′

�(X,H∗1;α−, α+) in the same way.
Note that the normalized corner ̂Sm(N ′

�(X,H∗1;α−, α+)) of this K-
space is the disjoint union of the following fiber products.

M�1,1(X,J1,H
1;α1,0, α1,1) ev+ ×ev− . . .

. . . ev+ ×ev− M�1,m
(X,J1,H

1;α1,m−1, α1,m)

ev+ ×ev− N ′
�′(X,H∗1;α1,m, α+),

(10.5)

where α− = α1,0, α1,1, . . . , α1,m−1, α1,m ∈ A1 and �1,1 + · · · + �1,m + �′ = �.
The important remark here is that there is no fiber product factor ap-

pearing to the ‘right’ of N ′
�′(X,H∗1;α1,m, α+). Note the fiber product factors

such as M�1,j
(X,J1,H

1;α1,j−1, α1,j) are attached to the main component at
the part where τ → −∞. One of the factors of (T0,∞]k1 in (10.4) parametrizes
the way we glue it on the transit points (which are za,+ with a < a0). On
the other hand, the way we glue mainstream components Σa with a > a0

at the transit points (which are za,− with a > a0) are parametrized by one
of the factors in

∏m+k2
j=1

(

((T0,j ,∞] × S1)/ ∼) in (10.4). Because of the S1

factors, this parameter does not correspond to the boundary or the corner of
the K-space. This is the reason there is no fiber product factor appearing to
the ‘right’ in (10.5).

We have thus completed the construction of the Kuranishi structure on

N ′
�(X,H∗1;α−, α+).

So we have proved Proposition 10.9 (2).
We next modify the Kuranishi structure of N ′

�(X,H∗1;α−, α+)�1 to
obtain an interpolation space of the morphism N∗(H,J) : FX(H,J) → F tri

X ,
(which is the proof of Proposition 10.9 (3) (4).) For this purpose we modify
the Kuranishi structure of N ′

�(X,H∗1;α−, α+)�1 obtained by [23, Lemma-
Definition 17.38] on (10.5) ×[−1, 0]m. The way to modify it is the same as the
proof of Theorem 6.4 (3)(4). So we do not repeat it here. We remark again
that the boundary and corner in (10.5) appear only to the ‘left’ from the
main component. This implies that the spaces N ′

�(X,H∗1;α−, α+)�1 (after
adjusting the Kuranishi structure so that it is compatible with the fiber prod-
uct description (10.5)) will become the interpolation space of the morphism
: FX(H,J) → F tri

X . In fact, in the trivial linear K-system F tri
X all the spaces

of connecting orbits M(α−, α+) are empty sets.
The proof of Proposition 10.9 is now complete. �
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S1 S1

0
0s0,j

s0,j−1

Figure 10. Flattering of the origin of the complex smooth-
ing parameter

Remark 10.10. The constructed Kuranishi structures on N ′
�(X,H∗1;

α−, α+)�1 and N ′
�(X,H∗1;α−, α+)�1 are C-collared in the sense of Remark 5.6.

The Kuranishi structures on N ′
�(X,H∗1;α−, α+)�1 and N ′

�(X,H1∗;α−, α+)�1

are also compatible with the fattening in the following sense.

Definition 10.11. We call a Kuranishi structure ̂U on Z ×D2 compatible with
the fattening if ̂U is the product of a Kuranishi structure on Z and the trivial
Kuranishi structure on D2.

We have thus constructed morphisms in Theorem 10.2. We will prove
their properties (1)(2) of Theorem 10.2. The proof is similar to that of The-
orem 8.2. We will define the interpolation space of the homotopy.

We use smooth functions H∗1∗,· : X × [0,∞) × R × S1 → R, H1∗1,· :
X × [0,∞) ×R× S1 → R as follows. (Here H∗1∗,·(x, T, τ, t) = H∗1∗,T (x, τ, t)
and H1∗1,·(x, T, τ, t) = H1∗1,T (x, τ, t). )
(1) H∗1∗,0(x, τ, t) ≡ 0 and H1∗1,0(x, τ, t) ≡ H(x, t).
(2)

H1∗1,T (x, τ, t) =

{

H∗1(x, τ + T, t) if τ ≤ 0,

H1∗(x, τ − T, t) if τ ≥ 0,

for sufficiently large T .
(3)

H∗1∗,T (x, τ, t) =

{

H1∗(x, τ + T, t) if τ ≤ 0,

H∗1(x, τ − T, t) if τ ≥ 0,

for sufficiently large T .
We define the moduli space N ′

�(X,H1∗1,T ;α−, α+) for each T by Defini-
tion 6.10. We next define N ′

�(X,H∗1∗,T ;α−, α+). Let α± ∈ π2(X)/ ∼, where
π2(X)/ ∼ is as in Definition 10.1.
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Definition 10.12. The set ̂N ′
�(X,H∗1∗,T ;α−, α+) consists of triples

((Σ, (z−, z+, �z), a0), u, ϕ)

satisfying the following conditions:
(1) (Σ, (z−, z+, �z)) is a genus zero semi-stable curve with �+2 marked points.
(2) Σa0 is one of the mainstream components. We call it the main compo-

nent.
(3) ϕ = ϕa0 where ϕa0 : R × S1 → Σa0\{za0,−, za0+} is a parametrization

of the main component Σa0 and ϕa0 is a biholomorphic map such that

lim
τ→± ϕa0(τ, t) = za0,±.

(4) For each extended mainstream component ̂Σa, the map u induces ua :
̂Σa\{za,−, za,+} → X which is a continuous map.

(5) If Σa0 is the main component and ϕa0 : R× S1 → Σa0 is as in (3), then
the composition ua0 ◦ ϕa0 satisfies the equation

∂(ua0 ◦ ϕa0)
∂τ

+ J

(

∂(ua0 ◦ ϕa0)
∂t

− XH∗1∗,T
τ,t

◦ (ua0 ◦ ϕa0)
)

= 0. (10.6)

(6) Void. (In our situation, the finiteness of the energy is a consequence of
the continuity of u in Item (8) below. See [30, (2.14)].)

(7) If Σv is a bubble component or a mainstream component Σa with
a �= a0, then u is pseudo-holomorphic on Σv.

(8) u defines a continuous map on Σ.
(9) [u∗[Σ]]#[α−] = [α+].

(10) We assume that ((Σ, (z−, z+, �z), a0), u, ϕ) is stable in the sense of Defi-
nition 10.13 below.

Assume that ((Σ, (z−, z+, �z), a0), u, ϕ) satisfies (1)–(9) above. The
extended automorphism group Aut+((Σ, (z−, z+,
�z), a0), u, ϕ) of ((Σ, (z−, z+, �z), a0)), u, ϕ) consists of map v : Σ → Σ such
that it satisfies (1)(2)(5) of Definition 6.7, and (3) of Definition 6.7 for ϕa0 ,
and τa0 = 0.

Definition 10.13. An object ((Σ, (z−, z+, �z), a0), u, ϕ) satisfies (1)–(9) above
is said to be stable if Aut+((Σ, (z−, z+, �z), a0), u, ϕ) is a finite group.

We can define the equivalence relation ∼2 on ̂N�(X,H∗1∗;α−, α+) in
the same way as in Definition 3.7 except we require τa0 = 0 and require (3)
only for a = a0. We put

N ′
�(X,H∗1∗,T ;α−, α+) = ̂N ′

�(X,H∗1∗,T ;α−, α+)/ ∼2 . (10.7)

When X is a point, we denote the space N ′
�(X,H∗1∗,T ;α−, α+) by N ′

�(source;
∗1∗,finite).

For a later purpose, we introduce the following moduli space, which
is one-dimensional higher than N ′

�(X,H1∗1,T ;α−, α+). By the definition of
H1∗1,T , when T > 1, we have H1∗1,T (x, τ, t) = 0 for |τ | < T − 1. So we can
consider the following condition in place of (10.6) in Definition 10.12 (5)

∂(ua0 ◦ ϕa0)
∂τ

+ J

(

∂(ua0 ◦ ϕa0)
∂t

− XH1∗1,T
τ,t

◦ (ua0 ◦ ϕa0)
)

= 0 for τ ≤ 0,
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and
∂(ua0 ◦ ϕa0)

∂τ
+ J

(

∂(ua0 ◦ ϕa0)
∂t

− XH1∗1,T
τ,t+t0

◦ (ua0 ◦ ϕa0)
)

= 0 for τ ≥ 0,

where t0 ∈ R/Z. Then we consider the space of

((Σ, (z−, z+, �z), a0), u, ϕ, t0)

satisfying Conditions in Definition 10.12 with (5) replaced by the condi-
tion above and obtain the moduli space N •

� (X,H1∗1,T ;α−, α+). (In a later
argument, we only need such a one-dimensional higher moduli space for
N ′

�(X,H1∗1,T ;α−, α+) but not for N ′
�(X,H∗1∗,T ;α−, α+).)

We consider
⋃

T∈[0,∞)

N ′
�(X,H∗1∗,T ;α−, α+) × {T}, (10.8)

⋃

T∈[0,∞)

N ′
�(X,H1∗1,T ;α−, α+) × {T}, (10.9)

⋃

T∈[10,∞)

N •
� (X,H1∗1,T ;α−, α+) × {T}, (10.10)

and will compactify them by adding certain spaces at T = ∞ as follows.

Definition 10.14. The set ̂N ′
�(X,H∗1∗,∞;α−, α+) consists of triples

((Σ, (z−, z+, �z), a1, a2), u, ϕ)

satisfying the following conditions:
(1) (Σ, (z−, z+, �z)) is a genus zero semi-stable curve with �+2 marked points.
(2) Σa1 ,Σa2 are mainstream components such that a1 < a2. We call them

the first main component and the second main component.
(3) ϕ = (ϕa) where ϕa : R×S1 → Σa\{za,−, za+} is a parametrization of the

mainstream component Σa with a1 ≤ a ≤ a2 and ϕa is a biholomorphic
map such that

lim
τ→± ϕa(τ, t) = za,±.

(4) For each extended mainstream component ̂Σa, the map u induces ua :
̂Σa\{za,−, za,+} → X which is a continuous map.

(5) If Σa is a mainstream component with a1 ≤ a ≤ a2 and ϕa : R×S1 → Σa

is as in (3), then the composition ua ◦ ϕa satisfies the equation

∂(ua ◦ ϕa)
∂τ

+ J

(

∂(ua ◦ ϕa)
∂t

− XHa,∞
τ,t

◦ (ua ◦ ϕa)
)

= 0. (10.11)

Here Ha,∞ = H∗1 if a = a1, Ha,∞ = H1 if a1 < a < a2, and Ha,∞ =
H1∗ if a = a2.

(6)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

dτdt < ∞.
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(7) If Σv is a bubble component or a mainstream component Σa with
a < a1 or a > a2, then u is pseudo-holomorphic on Σv.

(8) Let Σa and Σa′ be mainstream components. If za,+ = za′,− and a1 ≤
a < a′ ≤ a2, then

lim
τ→+∞(ua ◦ ϕa)(τ, t) = lim

τ→−∞(ua′ ◦ ϕa′)(τ, t)

holds for each t ∈ S1. ((6) and Lemma 6.3 imply that the left and right
hand sides both converge.)

If a < a1, then we require that u is continuous at za,+. If a > a2,
then we require that u is continuous at za,−.

(9) [u∗[Σ]]#[α−] = [α+].
(10) We assume that ((Σ, (z−, z+, �z), a1, a2), u, ϕ) is stable in the sense of

Definition 10.15 below.

Assume that ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfies (1)–(9) above. The
extended automorphism group Aut+((Σ, (z−
, z+, �z), a1, a2), u, ϕ) of ((Σ, (z−, z+, �z), a1, a2)), u, ϕ) consists of map v : Σ →
Σ such that it satisfies (1)(2)(5) of Definition 6.7, and (3) of Definition 6.7
for ϕa with a1 ≤ a ≤ a2, and τa = 0 if a = a1 or a = a2.

Definition 10.15. An object ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfies (1)–(9)
above is said to be stable if Aut+((Σ, (z−, z+, �z), a1, a2), u, ϕ) is a finite group.

Definition 10.16. The set ̂N ′
�(X,H1∗1,∞;α−, α+) consists of triples

((Σ, (z−, z+, �z), a1, a2), u, ϕ)

satisfying the following conditions:
(1) (Σ, (z−, z+, �z)) is a genus zero semistable curve with �+2 marked points.
(2) Σa1 ,Σa2 are mainstream components such that a1 < a2. We call them

the first main component and the second main component.
(3) ϕ = (ϕa) where ϕa : R × S1 → Σa\{za,−, za+} is a parametrization

of mainstream component Σa with a ≤ a1 or a ≥ a2, and ϕa is a
biholomorphic map such that

lim
τ→± ϕa(τ, t) = za,±.

(4) For each extended mainstream component ̂Σa, the map u induces ua :
̂Σa\{za,−, za,+} → X which is a continuous map

(5) If Σa is a mainstream component with a ≤ a1 or a ≥ a2 and ϕa :
R × S1 → Σa is as in (3), then the composition ua ◦ ϕa satisfies the
equation

∂(ua ◦ ϕa)
∂τ

+ J

(

∂(ua ◦ ϕa)
∂t

− XHa,∞
τ,t

◦ (ua ◦ ϕa)
)

= 0. (10.12)

Here Ha,∞ = H1∗ if a = a1, Ha,∞ = H1 if a < a1 or a > a2, and
Ha,∞ = H∗1 if a = a2.

(6)
∫

R×S1

∥

∥

∥

∥

∂(u ◦ ϕa)
∂τ

∥

∥

∥

∥

2

dτdt < ∞.
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(7) If Σv is a bubble component or a mainstream component Σa with
a1 < a < a2, then u is pseudo-holomorphic on Σv.

(8) Let Σa and Σa′ be mainstream components. If za,+ = za′,− and a ≤
a′ ≤ a1 or a2 ≤ a ≤ a′, then

lim
τ→+∞(ua ◦ ϕa)(τ, t) = lim

τ→−∞(ua′ ◦ ϕa′)(τ, t)

holds for each t ∈ S1. ((6) and Lemma 6.3 imply that the left and right
hand sides both converge.)

If a1 < a ≤ a2, then we require that u is continuous at za,−.
(9) If Σa is mainstream components and za,− = z− (resp. za,+ = z+), then

there exist (γ−, w−) ∈ Rα− (resp. (γ+, w+) ∈ Rα+) such that

lim
τ→±∞(ua ◦ ϕa)(τ, t) = γ±(t)

Moreover, [u∗[Σ]]#w− ∼ w+.
(10) We assume that ((Σ, (z−, z+, �z), a1, a2), u, ϕ) is stable in the sense of

Definition 10.17 below.

Assume that ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfies (1)–(9) above. The
extended automorphism group Aut+((Σ, (z−, z+, �z), a1, a2), u, ϕ) of ((Σ, (z−,
z+, �z), a1, a2)), u, ϕ) consists of map v : Σ → Σ such that it satisfies (1)(2)(5)
of Definition 6.7, and (3) of Definition 6.7 for ϕa with a ≤ a1 or a2 ≤ a, and
τa = 0 if a = a1 or a = a2.

Definition 10.17. An object ((Σ, (z−, z+, �z), a1, a2), u, ϕ) satisfies (1)–(9)
above is said to be stable if Aut+((Σ, (z−, z+, �z), a1, a2), u, ϕ) is a finite group.

We can define the equivalence relation ∼2 on the spaces ̂N ′
�(X,H∗1∗,∞;

α−, α+) and ̂N ′
�(X,H1∗1,∞;α−, α+) in the same way as in Definition 3.7

except we require τa1 = τa1 = 0 and require (3) only for a for which ϕa is
defined. We put

N ′
�(X,H∗1∗,∞;α−, α+) = ̂N ′

�(X,H∗1∗,∞;α−, α+)/ ∼2,

N ′
�(X,H1∗1,∞;α−, α+) = ̂N ′

�(X,H1∗1,∞;α−, α+)/ ∼2 .
(10.13)

As in the case of T < ∞, we have the moduli space

N •
� (X,H1∗1,∞;α−, α+)

by replacing Condition (5) in Definition 10.16 by the following condition:
For a ≤ a1, u ◦ ϕa satisfies

∂(ua ◦ ϕa)
∂τ

+ J

(

∂(ua ◦ ϕa)
∂t

− XHa,∞
τ,t

◦ (ua ◦ ϕa)
)

= 0.

For a ≥ a2, u ◦ ϕa satisfies
∂(ua ◦ ϕa)

∂τ
+ J

(

∂(ua ◦ ϕa)
∂t

− XHa,∞
τ,t+t0

◦ (ua ◦ ϕa)
)

= 0,

for some t0 ∈ R/Z.
When X is a point, we denote by

N ′
�(source; ∗1∗,∞), N ′

�(source; 1 ∗ 1,∞), N •
� (source; 1 ∗ 1,∞)
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the spaces N ′
�(one point,H∗1∗,∞;α−, α+), N ′

�(one point,H1∗1,∞;α−, α+) and
N •

� (one point,H1∗1,∞;α−, α+), respectively.

Definition 10.18. We put

(10.8) ∪ N ′
�(X,H∗1∗,∞;α−, α+) = N ′

�(X,H∗1∗;α−, α+), (10.14)
(10.9) ∪ N ′

�(X,H1∗1,∞;α−, α+) = N ′
�(X,H1∗1;α−, α+) (10.15)

and

(10.10) ∪ N •
� (X,H1∗1,∞;α−, α+) = N •

� (X,H1∗1;α−, α+). (10.16)

When X is a point, they are written as N ′
�(source; ∗1∗), N ′

�(source; 1∗1)
and N •

� (source; 1 ∗ 1), respectively.

Proposition 10.19. (1) We can define topologies on N ′
�(X,H∗1∗;α−, α+)

and N ′
�(X,H1∗1;α−, α+) so that they are compact and Hausdorff.

(2) We can define Kuranishi structures on them.
(3) We can define Kuranishi structures on the spaces N ′

�(X,H∗1∗;α−, α+)�1

and N ′
�(X,H1∗1;α−, α+)�1.

(4) Together with other objects N ′
�(X,H∗1∗;α−, α+)�1 defines a homotopy

between N∗(H,J) ◦ N(H,J)∗ : F tri
X → F tri

X and a morphism of energy loss
0, of which it will be an interpolation space.

(5) Together with other objects N ′
�(X,H1∗1;α−, α+)�1 defines a homotopy

between N(H,J)∗ ◦N∗(H,J) : FX(H,J) → FX(H,J) and N11(J ,H11), of
which it will be an interpolation space.

Proof. The proof is a straight forward generalization of that of Theorem 8.6
etc. by taking the points we discussed in the proof of Proposition 10.9 into
account. So we only explain the point where the proof is different from that
of Theorems 8.6 etc..

When we define the notion of symmetric stabilization, we put marked
points to each unstable component37 of the source curve which is either
a bubble component or a mainstream component where we do not put a
parametrization ϕa. We define a canonical marked point on each unstable
mainstream component on which we define a parametrization ϕa as a part
of the data and which is not a main component.

When we define obstruction bundle data, the neighborhood V(xv ∪ �wv ∪
�wcan,v) is an open subset of

(i)
◦

Mcl
�v

if Σv is a bubble component or a mainstream component on which
we do not define a parametrization ϕ,

(ii)
◦

M�v(Source) if Σv is a mainstream component on which we define the
parametrization ϕv and which is not a main component,

(iii)
◦
N �v(Source) if Σv is a main component.

37We call an irreducible component of the source curve unstable if the set of biholomorphic

map of this component preserving all the marked and singular points on it is of infinite

order.
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We also include a codimension 2 submanifold Di as in Definition 4.11 (7)
for each i if wi corresponds to an additional marked point which is not a
canonical marked point.

We will define a map Φp similar to (10.4) as follows.
Case 1: p = [((Σ, (z−, z+, �z), a1, a2), u, ϕ)] ∈ N ′

�(X,H∗1∗,∞;α−, α+). Let k1

be the number of mainstream components Σa with a1 < a < a2. Then the
map Φp is

Φp :
∏V(xv ∪ �wv ∪ �wcan,v) × (T0,∞]k1+1 ×∏m+k2

j=1

(

((T0,j ,∞] × S1)/ ∼)

→ N ′
�(source; ∗1∗,∞).

(10.17)

We note that k1 + 1 is the number of transit points which lie between Σa1

and Σa2 . Moreover, k2 is the number of other transits points and m is the
number of non-transit singular points. The reason we have the S1 factors for
the transits points which do not lie between Σa1 and Σa2 is the same as the
case of (10.4).
Case 2: p = [((Σ, (z−, z+, �z), a0), u, ϕ), T ] ∈ N�(X,H∗1∗,T ;α−, α+) × {Tp}
with Tp > 0. The map Φp is

Φp :
∏V(xv ∪ �wv ∪ �wcan,v)×

m+k
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)× (Tp − ε, Tp + ε)

→ N ′
�(source; ∗1∗,∞).

(10.18)

Here k is the number of transit points and m is the number of non-transit
singular points. We defined the parametrization of the mainstream only on
the component Σa0 . This is the reason all the factors (T0,j ,∞] come with
the S1 factors. Note in this case p is an interior point of our moduli space
N ′

�(source; ∗1∗,∞).
Case 3: p = [((Σ, (z−, z+, �z), a1, a2), u, ϕ)] ∈ N •

� (X,H1∗1,∞;α−, α+). The
map Φ•

p is

Φ•
p :
∏

V(xv ∪ �wv ∪ �wcan,v) × (T0,∞]m1+m2 ×
m
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)

×
⎛

⎝

m∗
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)
⎞

⎠→ N •
� (source; 1 ∗ 1,∞).

(10.19)

Here m∗ is the number of transit points which lie between Σa1 and Σa2 and
m1 (resp. m2) is the number of transit points which lie ‘left’ (resp. ‘right’)
from Σa1 (resp. Σa2). Also m is the number of non-transit singular points.
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For p = [((Σ, (z−, z+, �z), a1, a2), u, ϕ)] ∈ N ′
�(X,H1∗1,∞;α−, α+), we

have

Φp :
∏

V(xv ∪ �wv ∪ �wcan,v) × (T0,∞]m1+m2 ×
m
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)

×
⎛

⎝

m∗
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)
⎞

⎠

′

→ N ′
�(source; 1 ∗ 1,∞),

(10.20)

where
⎛

⎝

m∗
∏

j=1

(

((T0,j ,∞] × S1)/ ∼)
⎞

⎠

′

(10.21)

is the subset of
∏m∗

j=1

(

((T0,j ,∞] × S1)/ ∼) defined by

θ1 + · · · + θm∗ = 0 in S1 = R/Z.

Here θj , j = 1, . . . ,m∗ are the coordinates of the S1 factors. The way the
factors appear in the left hand side of (10.20) is similar to other cases except
the factor (10.21). We explain the way this factor appears.

Suppose all the (T0,j ,∞] components in this factor are finite. In this
case we use this parameter together with θj ∈ S1 to glue Σa1 , Σa2 and the
components Σa with a1 < a < a2. We then obtain a component which we
write as Σa0 . This will be the main component of the resulting element of
N ′

�(source; ∗1∗,∞). (More precisely, it may be glued with other mainstream
components.)

Note we defined the parametrizations ϕa1 , ϕa2 but not defined parametri
zations for other Σa with a1 < a < a2. We consider a parametrization ϕa0 :
R × S1 → Σa0\{za0,−, za0,+} such that limτ→±∞ ϕa0(τ, t) = za0,±.

We can identify [−T0, T0] × S1 ⊂ Σa1 ⊂ Σa0 . Let v1 be this map. We
also take an embedding v2 from [−T0, T0] × S1 ⊂ Σa2 to Σa0 . There exist t1,
t2 such that

(vj ◦ ϕaj
)(τ, t) = ϕa0(τ + τj , t + tj)

for j = 1, 2. Note the choice of ϕa0 is not unique. Namely we may change it
by the R action. We may choose ϕa0 so that τ1 = −τ2. Then τ2 − τ1 +1 = T .
(See (8.11).) Here T is the second factor in (10.9).

We consider tj . We may choose the representative ϕa0 so that one of
them, say t1 to be 0. However, it is impossible to take the representative ϕa0

for which both of tj are zero. The notation ′ stands for the constraint that
t1 = t2. Under this assumption we may choose both of t1 and t2 are zero.
Note if we change the S1 factor in ((T0,j ,∞] × S1)/ ∼ by θj , then t2 − t1
changes by

∑m∗
j=1 θj .

We remark that the point [∞, . . . ,∞] in (10.21) is a boundary point of
(10.21). In fact, if we remove ′ then it will be an interior point. Because of the
constraint t1 = t2 this point becomes the boundary points. This is consistent
to the fact that N ′

�(source; 1∗1,∞) lies at the part T = ∞ of N ′
�(source; 1∗1).
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Note that there exists T0 > 0 such that the closed neighborhoods W (pc)
of pc ∈ N ′

�(X,H1∗1,∞;α−, α+) cover ∪T≥T0N�(X,H1∗1,T ;α−, α+)×{T}. For
a sufficiently large T > T0, the obstruction space for q ∈ ∪T≥T0N�(X,H1∗1,T ;
α−, α+) × {T} is the direct sum of Ipc,v;q(Epc,v(y)) with q ∈ W (pc).
Case 4: p ∈ N�(X,H1∗1,T ;α−, α+) × {Tp}. This case is entirely the same as
the case of (8.9). Using this map Φp, we define the notion of ε-closeness. Then
we can define an obstruction space using them. The definition of transversal
constraint is similar. We then take an appropriate closed finite covering of
our moduli space by {W (pc)}c and use it to define a Kuranishi structure in
the same way as in the proof of Theorems 8.6.

We note that the boundary of it has the form required by Proposi-
tion 10.19 (4)(5). In fact, the boundary of the space N ′

�(X,H∗1∗;α−, α+) is
only at T = 0 and T = ∞. This is the consequence of the description of the
domain of the maps (10.17), (10.18), especially of the fact that the domain
of (10.18) has no boundary.

The boundary of the space N ′
�(X,H1∗1;α−, α+) other than those which

are at T = 0 and T = ∞ can be described using the space of connecting orbits
of FX(H,J). Moreover, the part of N ′

�(X,H1∗1;α−, α+) which appears at the
part T = ∞ is the union of various spaces

M�1,1(X,H1;α1,0, α1,1) ev+ ×ev− . . .

. . . ev+ ×ev− M�1,m1
(X,H1;α1,m1−1, α1,m1)

ev+ ×ev− N ′
�′(X,H1∗;α1,m1 , α∗,1)

ev+ ×ev− Mcl
�∗,1+2(X;α∗,1, α∗,2) ev+ ×ev− . . .

ev+ ×ev− Mcl
�∗,m∗+2(X;α∗,m∗−1,α∗,m∗)

ev+ ×ev− N ′
�′′(X,H∗1;α∗,m∗ , α2,1)

M�2,1(X,H1;α2,1, α2,2) ev+ ×ev− . . .

. . . ev+ ×ev− M�2,m2+1(X,H1;α2,m2 , α2,m2+1).

(10.22)

Here Mcl
� (X,α) is the moduli space of stable maps of genus 0 with � marked

points and of homology class α.
The situation at T = ∞ is analogous to the space forget−1([Σ0]) in [17,

Section 2.6, Lemmas 2.6.3, 2.6.27], which is examined in detail in [17, Section
4.6]. We remark that (10.22) lies in a codimension m1 + m2 + 1 locus. This
is a consequence of the discussion on (10.20).

For N •
� (X,H1∗1;α−, α+), we perform the collar construction as well as

the fattening of origins of complex smoothing parameters at transit points
between Σa1 and Σa2 as in the proof of Proposition 10.9 to obtain the desired
Kuranishi structure on N •

� (X,H1∗1;α−, α+)�1.
We regard the part of N ′

�(X,H1∗1;α−, α+) with T ∈ [T,∞] as a sub-
space of N •

� (X,H1∗1;α−, α+) defined by θ1+ · · ·+θm∗ = 0. For the construc-
tion of Kuranishi structures, we take a finite subset {pc} ⊂ N ′

�(X,H1∗1,T ;
α−, α+) such that the union of Int W (pc) contains N ′

�(X,H1∗1,T ;α−, α+),
and a finite subset {pc′} ⊂ N •

� (X,H1∗1;α−, α+)\N ′
�(X,H1∗1;α−, α+) such

that W (pc′)’s are disjoint from N ′
�(X,H1∗1;α−, α+) and N •

� (X,H1∗1;α−, α+)
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is covered by Int W (pc)’s and Int W (pc′)’s. By the construction, the Kuran-
ishi structure on N •

� (X,H1∗1,T ;α−, α+) is compatible with the fattening on
Dj(δ) for a sufficiently small δ > 0 (Definition 10.11).

The Kuranishi structure on N •
� (X,H1∗1;α−, α+)�1 restricts to the one

on the subspace defined by
∑k2

j=1 θj = 0 and T ∈ [T,∞]. Our choice of pc,
we see that the Kuranishi structure on N ′

�(X,H1∗1;α−, α+) with T ∈ [T,∞]
can be arranged to match with the part T ∈ [0,T + 1]. Thus we obtain
N ′

�(X,H1∗1;α−, α+)�1 with the desired Kuranishi structure.
We approximate N�(X,H1∗1,∞;α−, α+)�1 in N •

� (X,H1∗1;α−, α+)�1

using a family of smooth submanifolds S
(k)
ε of codimension 2 in

∏k2
j=1 D2

j

given below.
Let ρ : [−1, 0] → R be a non-decreasing smooth function such that

ρ(t) = 3(t + 1)/2 for −1 ≤ t ≤ −1 + δ/2 and ρ(t) = δ for t ≥ −1 + δ. Choose
ε < δ/10 and define S

(k)
ε by

∏k
j=1 ρ(tj) = εδk−1 and

∑k
j=1 θj = 0 in R/Z.

Then S
(k)
ε approaches to ∪k

j=1D
2
1 × · · · × Ď2

j × · · · × D2
k.

The space N •
� (X,H1∗1;α−, α+)�1 is obtained by gluing various

(10.22) × [−1, 0]m1+m2 ×
m∗
∏

j=1

D2
j (10.23)

to N •
� (X,H1∗1;α−, α+).
We define (N •

� (X,H1∗1;α−, α+)�1)ε by the union of (10.22) ×∏m1+m2
j=1

{−1}×S
(m∗)
ε . In order to define the smooth correspondence (see [23, Section

9.5, (9.17)]), we need to take a CF-perturbation (see [23, Chapter 7]). Since
the Kuranishi structure is C-collared as in Proposition 5.5 and Remark 5.6
and compatible with the fattening on D2

j (δ), we can take a CF-perturbation,
which is τ -collared for a small τ > 0 with respect to C (see [23, Lemma 17.40
(2)]). In the same way, we arrange the CF-perturbation such that it is com-
patible with the fattening, i.e., the product type, on D2

j (δ/2). Then the con-
tribution to the smooth correspondence from the part with tj ∈ [−1,−1+δ/2]
is zero and the smooth correspondence given by (N •

� (X,H1∗1;α−, α+)�1)ε

equipped with the CF-perturbation is equal to the smooth correspondence
given by (10.22).

In fact, the composition of N(H,J)∗ ◦N∗(H,J) is given by ((Σ, (z−, z+, �z),
a1, a2), u, ϕ) in Definition (10.14) with a choice of one of za,+ = za+1,−,
a1 ≤ a ≤ a2 − 1, i.e., a transit point between Σa1 and Σa2 . (This choice
determines the output of N∗(H,J) and the input of N(H,J)∗. Adding this choice
in the data to the object, ((Σ, (z−, z+, �z), a1, a2), u, ϕ, a), a ∈ {a1, . . . , a2 −1},
the intersection of ∪k

j=1D
2
1 × · · · × Ď2

j × · · · × D2
k in the fattening factor is

resolved (normalization) and (N •
� (X,H1∗1;α−, α+)�1)ε becomes the K-space

giving the smooth correspondence for N(H,J)∗ ◦ N∗(H,J). Since our choice
of the CF-perturbation makes such intersections do not contribute to the
smooth correspondence, we can also use (N •

� (X,H1∗1;α−, α+)�1)ε.
The proof of Proposition 10.19 is complete. �

The proof of Theorem 10.2 is now complete. �
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Remark 10.20. In Theorem 10.2 we did not claim that the composition
N∗(H,J) ◦ N(H,J)∗ : F tri

X → F tri
X is homotopic to the identity morphism. We

can prove it. In fact, it follows from Claim 9.13, but we do not provide the
technical details of the proof of Claim 9.13 in this article.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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What does a vector field know about
volume?

Hansjörg Geiges

To Claude Viterbo on the occasion of his 60th birthday.

Abstract. This note provides an affirmative answer to a question of
Viterbo concerning the existence of nondiffeomorphic contact forms that
share the same Reeb vector field. Starting from an observation by Croke–
Kleiner and Abbondandolo that such contact forms define the same total
volume, we discuss various related issues for the wider class of geodesi-
ble vector fields. In particular, we define an Euler class of a geodesible
vector field in the associated basic cohomology and give a topological
characterisation of vector fields with vanishing Euler class. We prove
the theorems of Gauß–Bonnet and Poincaré–Hopf for closed, oriented
2-dimensional orbifolds using global surfaces of section and the volume
determined by a geodesible vector field. This volume is computed for
Seifert fibred 3-manifolds and for some transversely holomorphic flows.
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1. Introduction

This paper is concerned with a question about Reeb flows posed to me by
Claude Viterbo: are there nondiffeomorphic contact forms with the same Reeb
vector field? Viterbo’s question was prompted by Alberto Abbondandolo’s
discovery of a miraculous identity on differential forms.
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Lemma 1.1. (Abbondandolo) Given two differential 1-forms α, β on the same
manifold, the identity

α ∧ (dα)n − β ∧ (dβ)n =

(α − β) ∧
n∑

j=0

(dα)j ∧ (dβ)n−j + d
(
α ∧ β ∧

n−1∑

j=1

(dα)j ∧ (dβ)n−1−j
)

(1)

holds for any n ∈ N0.

Identity (1), whose verification is straightforward, has the following
striking consequence, which—as we learned in the meantime—has been ob-
served earlier by Croke and Kleiner [10, Lemma 2.1]. They do not state
identity (1), but give a quite similar proof.

Proposition 1.2. (Croke–Kleiner) Let X be a nonsingular vector field on a
closed, oriented manifold M of dimension 2n + 1. Let α, β be 1-forms on M
that are invariant under the flow of X and satisfy

α(X) = β(X) = 1. (2)

Then,
∫

M

α ∧ (dα)n =
∫

M

β ∧ (dβ)n. (3)

Proof. Given (2), the invariance condition LXα = LXβ = 0 is equivalent to

iXdα = iXdβ = 0 (4)

by the Cartan formula. Then, (3) is immediate from (1) and Stokes’s
theorem. �

In particular, this proposition says that any two contact forms on a
closed, oriented manifold that share the same Reeb vector field give rise to
volume forms that integrate to the same total volume. In other words, this
total volume is determined by the Reeb vector field alone. Abbondandolo has
raised the question whether one can compute this volume from a given Reeb
vector field, not knowing a contact form it is associated with.

Remark 1.3. Croke and Kleiner used this proposition to conclude that two
compact Riemannian manifolds with C1-conjugate geodesic flows have the
same volume [10, Proposition 1.2]. This follows by considering the canonical
contact form on the unit cotangent bundle, whose Reeb vector field generates
the cogeodesic flow [11, Theorem 1.5.2].

As we shall see, the existence of a 1-form α as in Proposition 1.2 is
equivalent to the vector field X being geodesible (Definition 3.1, Proposi-
tion 3.3).
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Definition 1.4. We write volX for the real number defined by (3) and call it
the volume of X, even though α ∧ (dα)n is not, in general, a volume form.

Much of this paper is a rumination on the consequences and ramifica-
tions of Proposition 1.2, leading us ultimately towards an affirmative answer
to Viterbo’s question (Theorem 10.1), which shows that Proposition 1.2 is
indeed a nontrivial statement, even within the class of Reeb vector fields. We
pay special attention to the cases where the geodesible vector field X gener-
ates an S1-action, or where the flow of X admits a global surface of section.
In these cases, one can compute volX and give it a geometric interpretation.

Along the way, we introduce the Euler class eX of a geodesible vector
field X in the basic cohomology of the foliation it determines, and we argue
that Proposition 1.2 ought to be interpreted as a statement in basic coho-
mology (Proposition 5.6). These considerations will allow us to establish a
criterion for the vanishing of eX in terms of the existence of a transverse
invariant foliation (Theorem 5.7). Geodesible vector fields X with eX = 0
exist precisely on manifolds that fibre over S1 (Corollary 5.8).

In Sect. 6, we compute volX for vector fields that define a Seifert fibra-
tion on a 3-manifold. This computation involves the use of global surfaces of
section. With similar arguments we prove the theorems of Gauß–Bonnet and
Poincaré–Hopf for closed, oriented 2-dimensional orbifolds in Sect. 7.

For certain geodesible vector fields X whose flow admits a transverse
holomorphic structure, we can relate volX to the Bott invariant of that struc-
ture. This is the content of Section 8.

In Sect. 9, we derive a formula for volX when X admits a global surface
of section. After presenting the answer to Viterbo’s question in Sect. 10, we
end the paper in Sect. 11 with a brief discussion of orbit equivalent geodesible
vector fields.

2. Dimension three

In dimension three, the answer to Viterbo’s question is negative.

Proposition 2.1. Let α0, α1 be two contact forms on a closed 3-manifold M
sharing the same Reeb vector field R. Then, α0 and α1 define the same ori-
entation of M . Furthermore, there is an isotopy (ψt)t∈[0,1] of M , starting at
ψ0 = idM , such that ψ∗

1α1 = α0 and (ψ∗
t )−1α0 is a contact form with Reeb

vector field R for all t ∈ [0, 1].

Proof. The fact that α0 and α1 define the same orientation of M follows from
Proposition 1.2, since by (3), the two volume forms αi ∧ dαi must have the
same sign.

Set αt := (1 − t)α0 + tα1, t ∈ [0, 1]. Since dα0 and dα1 restrict to
nondegenerate 2-forms defining the same orientation on any tangent 2-plane
field transverse to R, so does dαt. It follows that αt is likewise a contact
form with Reeb vector field R. Now, apply the Moser trick [11, p. 60] to the
equation

ψ∗
t αt = α0, (5)
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where we would like the isotopy (ψt) to be the flow of a time-dependent vector
field Xt ∈ ker αt. Under this last assumption, by differentiating (5), we find

α1 − α0 + iXt
dαt = 0,

which has a unique solution Xt ∈ ker αt. �

Nonetheless, the question how to compute volR for the Reeb vector field
R on a closed contact 3-manifold (M,α) is extremely interesting. Cristofaro-
Gardiner, Hutchings and Ramos [9, Theorem 1.2] have established a deep
connection between volR and embedded contact homology (ECH). For a con-
tact 3-manifold (M,α) with nonzero contact ECH invariant and finite ECH
capacities ck(M,α), k ∈ N0, the volume of R can be computed as

volR = lim
k→∞

ck(M,α)2

2k
.

Through this asymptotic formula, volR is determined in a subtle way by the
periodic Reeb orbits and their actions.

3. Geodesible vector fields and taut foliations

As shown by Wadsley [31], for a nonsingular vector field X, the existence
of a 1-form α satisfying conditions (2) and (4) is equivalent to X being
geodesible. Here, we briefly recall the proof of this result, since it is essential
to our discussion; see also [16,28]. Notice that volX is only defined for vector
fields X on closed manifolds of odd dimension, but all the considerations
about geodesible vector fields in this and the following two sections make
sense, unless stated otherwise, for manifolds of arbitrary dimension.

Definition 3.1. (a) A nonsingular vector field X on a manifold M is called
geodesible if there exists a Riemannian metric on M with respect to which
X has unit length and the flow lines of X are geodesics.

(b) A 1-dimensional foliation F on a manifold M is called taut if
there exists a Riemannian metric on M for which the leaves of F (suitably
parametrised) are geodesics.

Lemma 3.2. Let
(
M, 〈 . , . 〉

)
be a Riemannian manifold with Levi-Civita con-

nection ∇. Let X be a vector field of unit length, and set α = 〈X, . 〉. Then,

LXα = 〈∇XX, . 〉.

Proof. The claimed identity is a pointwise statement. Locally, one can always
extend a tangent vector Yp ∈ TpM to an X-invariant vector field Y , i.e. a
vector field satisfying [X,Y ] = 0. Therefore, it suffices to verify the identity

(LXα)(Y ) = 〈∇XX,Y 〉

for such X-invariant vector fields Y . Notice that ∇ being torsion-free then
translates into ∇XY = ∇Y X. Using the fact that the Lie derivative commutes
with contraction, we compute
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(LXα)(Y ) = LX(α(Y )) − α(LXY ) = LX(α(Y ))
= X〈X,Y 〉
= 〈∇XX,Y 〉 + 〈X,∇XY 〉
= 〈∇XX,Y 〉 + 〈X,∇Y X〉

= 〈∇XX,Y 〉 +
1
2
Y 〈X,X〉

= 〈∇XX,Y 〉.
�

In the following proposition, the equivalence of (i) with (iv) is due to
Sullivan [28], who gives an entirely geometric proof. A more formal proof is
given in [30, Proposition 6.7]; the proof I give is a little more direct.

Proposition 3.3. (Wadsley, Sullivan) Let X be a nonsingular vector field on
a manifold M . Then, the following are equivalent:

(i) X is geodesible;
(ii) there exists a 1-form α on M with α(X) = 1 and LXα = 0;
(iii) there exists a 1-form α on M with α(X) = 1 and iXdα = 0;
(iv) there is a hyperplane field η transverse to X and invariant under the

flow of X.

Proof. The equivalence of (ii) and (iii) is clear from the Cartan formula. We
first prove the equivalence of (i) and (ii).

Assuming (i), we take 〈 . , . 〉 to be the metric for which the flow lines
of X are geodesics parametrised by arc length and set α = 〈X, . 〉. Then,
∇XX = 0, and (ii) follows from the lemma.

Conversely, given α as in (ii) we choose a metric 〈 . , . 〉 on M with
〈X,X〉 = 1 and X ⊥ ker α. Then, α = 〈X, . 〉, and the vanishing of LXα
implies, by the lemma, that ∇XX = 0.

Next, we show the equivalence of (ii) and (iv). Given (ii), the hyperplane
field η := ker α satisfies (iv). Conversely, given η as in (iv), define a 1-form
α on M by the conditions α(X) = 1 and kerα = η. Then, iXdα = LXα,
and the latter equals fα for some f ∈ C∞(M) by the invariance of η. Thus,
iXdα vanishes on η. Since TM = η ⊕ 〈X〉, the Lie derivative LXα = iXdα
vanishes identically. �

Example 3.4. The Reeb vector field of a contact form or a stable Hamiltonian
structure [7] is geodesible.

The following characterisation of oriented taut 1-dimensional foliations,
first observed in [28], is then immediate. We write F = 〈X〉 with any non-
singular vector field X whose flow lines are the leaves of F .

Proposition 3.5. The oriented 1-dimensional foliation F = 〈X〉 is taut if and
only if there is a 1-form α on M with α(X) > 0 and iXdα = 0.

Proof. If F = 〈X〉 is taut, rescale X to a vector field of length 1 with respect
to the metric that makes the leaves of F geodesics. Then, the existence of
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the desired 1-form α follows from the equivalence of (i) and (iii) in Proposi-
tion 3.3.

Conversely, given α, the rescaled vector field X/α(X), which likewise
spans F , satisfies (iii) in Proposition 3.3. �

Remark 3.6. (1) Alternatively, one can derive the equivalence of (i) and (iii)
in Proposition 3.3 from the identity

iXdα = 〈∇XX, . 〉 − d
(
〈X,X〉/2

)
,

where again α = 〈X, . 〉; this identity holds for any vector field X, see [7,
Section 2.3].

(2) The main point of Sullivan’s article [28] is a characterisation of taut
foliations in terms of the absence of “tangent homologies”. I refer to [16] for
a beautiful discussion of Sullivan’s theorem; there one can find examples of
1-dimensional oriented foliations that are not taut.

4. Basic cohomology

Here are the elementary notions of basic differential forms and basic cohomol-
ogy associated with a foliation. I restrict attention to oriented 1-dimensional
foliations F = 〈X〉; for a more comprehensive treatment see [30, Chapter 4].

Definition 4.1. A differential form ω on (M,F) is called basic if

iXω = 0 and iXdω = 0.

Notice that this definition does not depend on the choice of vector field
X spanning F . We write Ωk

B(F) for the vector space of basic k-forms on
(M,F). The usual exterior differential d restricts to

dB : Ωk
B −→ Ωk+1

B ,

and the basic cohomology groups Hk
B(F) are defined as the cohomology groups

of the complex
(
Ω•

B(F),dB

)
. The cohomology class of a k-form ω ∈ ker dB is

written as [ω]B ∈ Hk
B(F).

The following definitions are motivated by Propositions 3.3 and 3.5. The
notation CX , CF is chosen because the 1-form α = 〈X, . 〉 (with X of unit
length) is the characteristic form of F [30, p. 69] with respect to the metric
〈 . , . 〉. We adapt this definition to the case of geodesible vector fields, where
it is reasonable to consider only those metrics for which the flow lines of X
are geodesics.

Definition 4.2. Let X be a geodesible vector field. Any 1-form α with α(X) =
1 and iXdα = 0 is called a characteristic 1-form of X. We write charX for
the space of these characteristic forms.

Definition 4.3. (a) Let X be a geodesible vector field on a manifold M . Set

Ω1
X :=

{
α ∈ Ω1(M) : α(X) = c for some c ∈ R

+, iXdα = 0
}

and

CX := Ω1
X/∼,
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where

α ∼ β :⇐⇒ α(X) = β(X).

The equivalence class of α ∈ Ω1
X is written as [α]X ∈ CX . Obviously, there

is a canonical identification of CX with R
+.

(b) Let F = 〈X〉 be an oriented taut 1-dimensional foliation on M . Set

Ω1
F :=

{
α ∈ Ω1(M) : α(X) > 0, iXdα = 0

}

and

CF := Ω1
F/∼,

where the equivalence relation ∼ is defined as in (a). The equivalence class
of α ∈ Ω1

F is written as [α]F . Notice that these definitions do not depend on
the choice of X.

The assumptions on geodesibility and tautness, respectively, guarantee
that we are not talking about empty sets.

The spaces Ω1
X , charX and Ω1

F are obviously convex. The proof of Propo-
sition 3.3 shows that, for a geodesible vector field X, the map

MetX −→ charX

〈 . , . 〉 −→ α = 〈X, . 〉
from the space MetX of metrics for which X has unit length and geodesic flow
lines is a Serre fibration with fibre the space of metrics on a hyperplane field
transverse to X, which can be seen as follows. Given a family αq,t ∈ charX ,
where t ∈ [0, 1] and q varies in some parameter space, and a family of metrics
〈 . , . 〉q,0 with 〈X, . 〉q,0 = αq,0, one simply defines 〈 . , . 〉q,t by the following
requirements:

(i) 〈X,X〉q,t = 1;
(ii) ker αq,t ⊥ X with respect to 〈 . , . 〉q,t;
(iii) 〈 . , . 〉q,t|ker αq,t

= 〈 . , . 〉q,0|ker αq,0 under the identification of kerαq,t

with kerαq,0 given by projection along X.

Of course, this Serre fibration property is not terribly useful, since all spaces
in question are contractible.

Proposition 4.4. Let M be a closed, oriented manifold of dimension m.

(a) Let X be a geodesible vector field on M . Set F = 〈X〉. Then, the map

CX × Hm−1
B (F) −→ R(

[α]X , [σ]B
)

−→ [α]X • [σ]B :=
∫

M
α ∧ σ

is well defined.
(b) Let F be an oriented taut 1-dimensional foliation on M . Then, the map

CF × Hm−1
B (F) −→ R(

[α]F , [σ]B
)

−→ [α]F • [σ]B :=
∫

M
α ∧ σ

is well defined.

Vol. 24 (2022) What does a vector field know about volume?
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Proof. We prove (b); the proof of (a) is completely analogous. Write F = 〈X〉
with some nonsingular vector field X spanning F .

(i) We have iXσ = 0, since σ ∈ Ωm−1
B (F). Suppose [α]F = [α′]F , which

means that the function α(X) − α′(X) is identically zero. It follows that the
m-form (α − α′) ∧ σ vanishes identically, since its interior product with the
nonsingular vector field X vanishes.

(ii) Suppose [σ]B = [σ′]B ∈ Hm−1
B (F), that is, σ − σ′ = dτ for some

τ ∈ Ωm−2
B (F). Then,

∫

M

α ∧ (σ − σ′) =
∫

M

α ∧ dτ

= −
∫

M

d(α ∧ τ) +
∫

M

dα ∧ τ.

The first summand vanishes by Stokes’s theorem; the integrand of the second
summand vanishes identically, since iX(dα ∧ τ) = 0. �

Observe that the maps defined in this proposition are positively homo-
geneous of degree 1 on the first factor, and linear in the second factor.

5. The Euler class of a geodesible vector field

Let X be a geodesible vector field on a manifold M and set F = 〈X〉. Choose
a characteristic 1-form α for X.

Lemma 5.1. The basic cohomology class eX := −[dα]B ∈ H2
B(F) is deter-

mined by X.

Proof. Let β be a further characteristic 1-form. Then, γ := α − β ∈ Ω1
B(F),

and dα − dβ = dγ = dBγ, hence [dα]B = [dβ]B. �

I do not know whether the following definition has been made before,
but it is certainly a very natural one.

Definition 5.2. The class eX ∈ H2
B(F) is called the Euler class of the geode-

sible vector field X.

Example 5.3. (1) If the flow of X generates a principal S1-action, where we
think of S1 as R/Z, then eX can be naturally identified with the real Euler
class e ⊗ R ∈ H2(M/S1;R) of the S1-bundle M → M/S1. Our definition
accords with the usual sign convention, cf. [24, Section 6.2], [11, Section 7.2].

(2) If the flow of X generates a locally free S1-action, then H•
B(F) may

be thought of as the orbifold cohomology of the orbifold M/S1, and eX as
the real Euler class of the S1-orbibundle M → M/S1. We discuss examples of
this kind in detail in Sects. 6 and 7. For more information on S1-orbibundles
in the general sense see [18].

We shall meet further examples in Section 9, where we discuss surfaces
of section for the flow of X.

The next lemma is the generalisation of a result for connection 1-forms
of principal S1-bundles.
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Lemma 5.4. Let X be a geodesible vector field and ω ∈ Ω2
B(F) a basic 2-form

with −[ω]B = eX . Then, there is a characteristic 1-form β with dβ = ω.

Proof. Since [ω]B = [dα]B, we find a basic 1-form γ ∈ Ω1
B(F) with ω =

dα + dγ. Then, β := α + γ is the desired characteristic form. �

This lemma implies the following proposition.

Proposition 5.5. A geodesible vector field X on a manifold M of dimension
2n + 1 is the Reeb vector field of a contact form if and only if the Euler class
eX has an odd-symplectic representative, i.e. if there is a closed basic 2-form
ω ∈ Ω2

B(M) with −[ω]B = eX and ωn �= 0.

The following expression of the volume volX in terms of the Euler class
is immediate from the definitions. This is the promised cohomological inter-
pretation and generalisation of Proposition 1.2.

Proposition 5.6. Let X be a geodesible vector field on a closed, oriented man-
ifold M of dimension 2n + 1, and α a characteristic form for X. Then,

volX = (−1)n[α]X • en
X .

If X generates a free S1-action, we have—with e ∈ H2(B;Z) denoting the
Euler class of the fibration M → M/S1 =: B—

volX = (−1)n〈en, [B]〉,
where [B] denotes the fundamental class of B and 〈 . , . 〉 the Kronecker pair-
ing.

Here is a useful vanishing criterion for the Euler class. For the flow of
X to be globally defined, we assume M to be closed.

Theorem 5.7. The Euler class eX ∈ H2
B(F) of a geodesible vector field X on

a closed manifold M vanishes if and only if X admits a transverse foliation
T invariant under the flow of X.

Proof. Suppose that eX = 0. As before we write F = 〈X〉. Choose a 1-form
α with α(X) = 1 and iXdα = 0. Then, [dα]B = −eX = 0, so there is a basic
1-form γ ∈ Ω1

B(F) with dγ = dα. Then, β := α − γ is a closed 1-form with
β(X) = 1. In particular, kerβ defines a foliation T transverse to X, and T
is invariant under the flow of X since LXβ = d(β(X)) + iXdβ = 0.

Conversely, let T be a transverse invariant foliation. Define a 1-form α
by α(X) = 1 and ker α = TT , where TT denotes the distribution of tangent
spaces to T . Then, iXdα = LXα, and the latter equals fα for some f ∈
C∞(M) by the invariance of T . This implies dα(X,Y ) = 0 for Y ∈ Γ(TT ).

Given two (local) vector fields Y1, Y2 ∈ Γ(TT ), we compute

dα(Y1, Y2) = Y1α(Y2) − Y2α(Y1) − α([Y1, Y2]) = 0.

Thus, we conclude that dα = 0, and hence eX = 0. �

Corollary 5.8. A closed manifold M admits a geodesible vector field X with
eX = 0 if and only if M fibres over S1.

Vol. 24 (2022) What does a vector field know about volume?
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Proof. If M admits a geodesible vector field with eX = 0, the fact that M
fibres over S1 follows from the existence of a closed, nonsingular 1-form on
M , established in the foregoing proof, and a result of Tischler [29], cf. [8,
Section 9.3].

Conversely, a manifold M that fibres over S1 always admits a geodesible
vector field [16]. Such a manifold M can be written as [0, 1] × F/(1, x) ∼
(0, ψ(x)), where F denotes the fibre and ψ the monodromy of the bundle.
Let gθ, θ ∈ [0, 1] be any smooth family of metrics on F with ψ∗g0 = g1. Then,
dθ2 + gθ defines a metric on [0, 1] × F for which the segments [0, 1] × {x} are
geodesics, and this metric descends to M .

Alternatively, let α be the pull-back of the 1-form dθ under the bundle
projection M → S1. Then, dα = 0, so any vector field X on M with α(X) =
1, i.e. any lift of ∂θ, is geodesible, and clearly eX = 0. �

Example 5.9. For Seifert fibred 3-manifolds (see the next section), the state-
ment of Corollary 5.8 can be found in [26, Theorem 5.4].

6. Seifert fibred 3-manifolds

In this section, we take M → B to be a Seifert fibration of a closed, oriented
3-manifold M over a closed, oriented 2-dimensional orbifold B. Let X be the
vector field whose flow defines an S1-action on M with orbits equal to the
Seifert fibres, where the minimal period of the regular fibres is assumed to
be equal to 1. I refer to [15] and [17] for the basic terminology of Seifert
fibrations.

Suppose the Seifert invariants of M → B are
(
g; (α1, β1), . . . , (αn, βn)

)
,

where g ∈ N0 is the genus of B, and the (αi, βi), i = 1, . . . , n, are pairs
of coprime integers with αi �= 0. Here the αi give the multiplicities of the
singular fibres; the pairs with αi = 1 do not correspond to singular fibres,
but contribute to the Euler class of the fibration.

Concretely, M is recovered from these Seifert invariants as follows. Let
B be the closed, oriented surface of genus g, and remove n disjoint discs to
obtain

B0 = B \ Int
(
D2

1 � . . . � D2
n

)
.

Over this surface with boundary, we take the trivial S1-bundle M0 = B0 ×
S1 → B0. Write the boundary ∂B0 with the opposite of its natural orientation
as

−∂B0 = S1
1 � . . . � S1

n.

We write the fibre class of this trivial fibration as h = {∗} × S1, and on ∂M0

we consider the curves

qi = S1
i × {0}, i = 1, . . . , n;

recall that we think of the fibre S1 as R/Z. The labels h, q1, . . . , qn should be
read as isotopy classes of curves on ∂M0.
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Choose integers α′
i, β

′
i, i = 1, . . . , n, such that

∣∣∣∣
αi α′

i

βi β′
i

∣∣∣∣ = 1.

Further, take n copies Vi = D2 × S1 of a solid torus, where D2 is the unit
disc in R

2, with respective meridian and longitude

μi = ∂D2 × {0}, λi = {1} × S1 ⊂ ∂Vi.

Then, glue the Vi to M0 along the boundary, where ∂Vi is identified with the
component S1

i × S1 of ∂M0 via

h = −α′
iμi + αiλi, qi = β′

iμi − βiλi. (6)

Notice that the fibration of M0 given by the fibre class h extends to a fibration
of Vi with the central fibre of multiplicity αi. This is the description of M → B
with the given Seifert invariants.

The Euler number e of the Seifert fibration with the given Seifert invari-
ants, defined as the obstruction to the existence of a section (in the Seifert
sense) [17, Section 3], is

e = −
n∑

i=1

βi

αi
.

We now want to use a global surface of section (in a slightly generalised sense)
to derive this formula.

Proposition 6.1. Let X be a vector field on a closed, oriented 3-manifold M
defining a Seifert fibration of regular period 1 with invariants

(
g; (α1, β1), . . . , (αn, βn)

)
.

Then,

〈eX , [B]〉 = −
n∑

i=1

βi

αi
,

where 〈 . , . 〉 denotes the Kronecker pairing between H2
B(F) and H2(B).

Recall that a global surface of section (s.o.s.) for the flow of X is an
embedded compact surface Σ ⊂ M whose boundary consists of orbits of X,
whose interior Int(Σ) is transverse to X, and such that the flow line of X
through any point not on ∂Σ hits Int(Σ) in forward and backward time. We
now describe such an s.o.s. for the situation at hand.

Proof of Proposition 6.1. In M0, we can take B0×{0} as section. The boundary
of this section consists of the curves −qi, i = 1, . . . , n, which are identified
with −β′

iμi +βiλi on ∂Vi. Thus, by isotoping these respective curves radially
towards the spine σi = {0} × S1 of Vi, we sweep out a surface Σ that is not
quite an s.o.s. in the sense of the definition above, but which has the following
properties:

– the inclusion Σ ⊂ M is an embedding on Int(Σ);
– the boundary of Σ is made up of the curves σi, each covered βi times;
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– the interior Int(Σ) is intersected positively in a single point by each
X-orbit different from the σi.

We now choose a specific connection 1-form α on M → B, i.e. a characteristic
1-form for X. On Vi = D2 × S1 we write (r, 2πφ) for polar coordinates on
the D2-factor, and θ ∈ S1 = R/Z. It follows from (6) that on Vi we may
assume X to be given by −α′

i∂φ + αi∂θ. So we choose the 1-form α equal to
α = dθ/αi near the spine of Vi, and then extend arbitrarily as a connection
form over M (using a partition of unity).

We then compute

〈eX , [B]〉 = −
∫

B

dα = −
∫

Σ

dα = −
∫

∂Σ

α = −
n∑

i=1

βi

αi
.

Notice that the integral
∫

B
dα is well defined, since dα is a basic form. �

Remark 6.2. As in Proposition 5.5, one argues that if the Euler number e of
the Seifert fibration is nonzero, one can choose α as a contact form (defining
the correct orientation of M if e < 0, the opposite one if e > 0).

Corollary 6.3. The volume volX of a vector field X defining a Seifert fibration
on a closed, orientable 3-manifold, with the regular fibres having minimal pe-
riod 1, equals minus the Euler number of that Seifert fibration. In particular,
with m denoting the least common multiple of the multiplicities α1, . . . , αn,
we have that m · volX is an integer.

Proof. The value of the integral of α ∧ dα over M does not change when
we remove the singular fibres of the Seifert fibration. But then the integral
equals

∫

Int(Σ)×S1
α ∧ dα =

∫

Σ

dα = −e.

�

Remark 6.4. The integrality statement has been observed in greater gener-
ality by Weinstein [32].

Example 6.5. The positive Hopf fibration

C
2 ⊃ S3 −→ CP1 = S2

(z1, z2) −→ [z1 : z2]

is given by the vector field X = 2π(∂ϕ1 + ∂ϕ2) of period 1, where ϕ1, ϕ2 ∈
R/2πZ. The corresponding connection 1-form is

α =
1
2π

(
r2
1 dϕ1 + r2

2 dϕ2

)
.

With r2 = r2
1 + r2

2, one computes

r dr ∧ α ∧ dα =
1

2π2
(r2

1 + r2
2) · (r1 dr1 ∧ dϕ1 ∧ r2 dr2 ∧ dϕ2).

Reprinted from the journal582



So along the unit sphere S3 = {r = 1}, the 3-form α ∧ dα restricts to the
standard volume form up to a factor 1/2π2, hence

∫

S3
α ∧ dα =

1
2π2

Vol(S3) = 1.

A section of the Hopf fibration over C ∼= CP1 \ {[0 : 1]} is defined by

reiϕ −→
[
1 : reiϕ

]
−→

( 1√
1 + r2

,
reiϕ

√
1 + r2

)
.

Under this map, dα pulls back to

1
π

· r

(1 + r2)2
dr ∧ dϕ.

This yields
∫

S2
dα =

1
π

∫ 2π

0

∫ ∞

0

r

(1 + r2)2
dr dϕ = 1.

Thus, both computations confirm that the positive Hopf fibration has
Euler number e = −1, see also [5, Lemma 2.2].

7. The theorems of Gauß–Bonnet and Poincaré–Hopf

In this section, we formulate and prove the theorems of Gauß–Bonnet and
Poincaré–Hopf for oriented 2-dimensional orbifolds, using an s.o.s. argument
as in the preceding section. Versions of these theorems for higher-dimensio-
nal orbifolds (including those with boundary) can be found in [25] and [27].
To avoid confusion with formulas found elsewhere, in this section, we follow
the usual convention that the regular fibres in the unit tangent bundle of a
2-dimensional orbifold have length 2π.

Thus, let B be a closed, oriented 2-dimensional Riemannian orbifold
with underlying surface of genus g and n cone points of multiplicities α1, . . . ,
αn. There is a well-defined unit tangent bundle STB, cf. [13], which is a
Seifert manifold with invariants

(
g, (1, 2g − 2), (α1, α1 − 1), . . . , (αn, αn − 1)

)
.

The orbifold Euler characteristic χorb(B) is the Euler number of the Seifert
fibration π : STB → B, so by Proposition 6.1, we have

χorb(B) = 2 − 2g − n +
n∑

i=1

1
αi

.

This formula can also be derived combinatorially, using the Riemann–Hurwitz
formula for coverings, see [26, p. 427].

Just like the unit tangent bundle of a smooth surface, the unit tangent
bundle STB of an orbifold admits a pair of Liouville–Cartan forms λ1, λ2

and a connection 1-form α̃ satisfying the structure equations
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dλ1 = −λ2 ∧ α̃,

dλ2 = −α̃ ∧ λ1,

dα̃ = −(π∗K)λ1 ∧ λ2,

where K is the Gauß curvature of the Riemannian metric on B. See [3, Sec-
tion 2.1] for the surface case, and [12, Section 7] for a discussion of Liouville–
Cartan forms for orbifolds.

Theorem 7.1. (Gauß–Bonnet) The total curvature of a closed, oriented 2-
dimensional Riemannian orbifold B equals

∫

B

K dA = 2πχorb(B).

Proof. The characteristic 1-form α for the vector field X that makes the
regular fibres of STB of length 1 is α = α̃/2π. Therefore, with e = χorb(B),
we obtain

∫

B

K dA = −
∫

Σ

dα̃ = −2π

∫

Σ

dα = 2πχorb(B),

where Σ is as in the proof of Proposition 6.1. �

Now, let Y be a vector field with isolated zeros on the orbifold B. To
formulate the Poincaré–Hopf theorem we need to give a definition of the
index indpY in an orbifold singularity p ∈ B, cf. [25, Section 3.2]. First, let
p ∈ B be a smooth point where Y has a zero. Choose a small disc Dε(p) ⊂ B
not containing other zeros of Y (and hence, as we shall see, in particular no
orbifold points of B). Choose a trivialisation TDε(p) ∼= Dε(p) × R

2. Then,
indpY is the degree of the map ∂Dε(p) → S1, x → Y (x)/|Y (x)|.

When the zero of Y happens to be an orbifold singularity pi ∈ B of
order αi, we consider a local description παi

: D2 → D2/Zαi
∼= D2 of the

singularity, where the cyclic group Zαi
is generated by the rotation about

0 ∈ R
2 through an angle 2π/αi.
We drop the index i for the time being; there should be little grounds

for confusing α in the following discussion with the connection 1-form.
The fibre of STB over the singular point p ∈ B has Seifert invariants

(α, β = α−1), so we may take α′ = β′ = 1. Then, cf. [15], the local description
of the fibration STB → B near the orbifold point p is given by

π : D2 × S1 −→ D2
(
reiϕ, eiθ

)
−→ rei(αϕ+θ),

where we identify p with 0 ∈ D2. Notice that the fibres of π are described by
αϕ + θ = const., or in parametric form as

t −→
(
ϕ(t), θ(t)

)
= (ϕ0 − t, θ0 + αt).

This accords with (6).
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Now, consider the following commutative diagram,

D2 × S1 �
(
reiϕ̃, eiθ̃

) π̃α � (
reiϕ, eiθ

)
∈ D2 × S1

D2

π̃

�
� rei(ϕ̃+θ̃)

�
πα � rei(αϕ+θ)

�
∈ D2,

π

�

where the quotient map πα under the Zα-action is given by

πα(reit) = reiαt,

its lift π̃α to the unit tangent bundle by

π̃α : (ϕ̃, θ̃) −→ (ϕ, θ) = (ϕ̃, αθ̃).

Up to homotopy, the section Y/|Y | of π over ∂D2 is of the form
(
ϕ(t), θ(t)

)
=

(
2πkt, 2π(1 − kα)t

)
, t ∈ [0, 1], (7)

for some k ∈ Z; notice that αϕ(t) + θ(t) goes from 0 to 2π as t goes from
0 to 1. The lift of the α-fold traversal of this curve under the map π̃α is
described by

(
ϕ̃(t), θ̃(t)

)
=

(
2πkt, 2π

1 − kα

α
t
)
, t ∈ [0, α]; (8)

here ϕ̃(t) + θ̃(t) = 2π
α t goes from 0 to 2π as t goes from 0 to α.

The fibres of π̃ are described by ϕ̃+θ̃ = const., and a single right-handed
Dehn twist along a meridional disc of D2 × S1,

(ϕ̃′, θ̃′) := (ϕ̃ + θ̃, θ̃),

will bring these fibres into the form ϕ̃′ = ϕ̃′
0, and the curve (8) becomes

(
ϕ̃′(t), θ̃′(t)

)
=

(2π

α
t, 2π

1 − kα

α
t
)
, t ∈ [0, α].

The index indpY at an orbifold point of multiplicity α is defined as
indp̃Ỹ /α, where p̃ = π−1

α (p) and Ỹ is the lifted vector field. Our considerations
show that, in dependence on k ∈ Z, this index is

indpY =
1
α

− k.

Notice that k = 0 corresponds to a rotationally symmetric source or
sink of Y , which lifts to an identically looking zero of Ỹ . Also, for α > 1 the
term 1 − kα in the θ-component of (7) never equals zero, no matter what
k ∈ Z, which means that orbifold points always must be zeros of Y .

Theorem 7.2. (Poincaré–Hopf) Let Y be a vector field with isolated zeros on
a closed, oriented 2-dimensional orbifold B. Then,

∑

p∈B
Y (p)=0

indpY = χorb(B).
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Proof. The idea is simply to compute the Euler number e = χorb(B) of the
Seifert fibration STB → B with the help of an s.o.s. ΣY adapted to Y .

Outside small disc neighbourhoods of the zeros of Y we may normalise
the vector field and regard it as a section ΣY

0 of STB → B outside this set of
discs in B. This surface ΣY

0 extends to an s.o.s. ΣY of STB, with boundary
components certain multiple covers of the fibres over the zeros p of Y , as in
the proof of Proposition 6.1. The multiplicity of the covering is determined by
the number of full turns the boundary component makes in the θ-direction.
Notice that the orientation of the collection of circles π(∂ΣY

0 ) is the opposite
of the orientation as boundaries of the removed discs. Thus, the multiplicity
is −indpY at a smooth point and, by (8), equal to −(1 − kiαi) = −αi indpY
at an orbifold point of order αi, where ki ∈ Z is the integer describing that
particular zero of Y , see also Remark 7.3.

With a connection 1-form α corresponding to regular fibres having
length 1 as in the proof of Proposition 6.1, that is, equal to dθ/2π near
the fibres over smooth zeros of Y , and equal to dθ/2παi over an orbifold
point of order αi, we have

χorb(B) = e = −
∫

ΣY

dα = −
∫

∂ΣY

α =
∑

p∈B
Y (p)=0

indpY.

�

Remark 7.3. It may be helpful to reformulate the first part of the proof in
terms of meridians and longitudes, similar to the discussion of the topology
of surfaces of section in [5].

First, consider a zero of Y at a smooth point p ∈ B. Let V be a tubular
neighbourhood of the fibre STpB. Let μ be the meridian on ∂V , and λ the
longitude determined by the parallel fibres. We orient λ as the fibres, and μ
in such a way that (μ, λ) gives the positive orientation of ∂V . The component
of ∂ΣY

0 on ∂V is (−1,−indpY ) in terms of the (μ, λ)-basis. Therefore, this
component is isotopic to −indpY times the spine of V . In addition, notice that
the intersection number of the fibre (0, 1) with (−1,−indpY ) is +1, which is
consistent with ΣY

0 being a section.
For a zero of Y at a singular point of order αi, we take a neighbourhood

Vi of STpi
B with μi, λi as in Section 6. Now, the component of ∂ΣY

0 on ∂Vi is
(−ki,−1+kiαi) by (7), which is isotopic to −1+kiαi times the spine. Again,
the intersection of the fibre (−1, α), see (6), with (−ki,−1 + kiαi) is +1.

8. Transversely holomorphic foliations and the Bott invariant

In [14] with Jesús Gonzalo, we proved a generalised Gauß–Bonnet theorem for
transversely holomorphic 1-dimensional foliations on 3-manifolds. In certain
situations, which I am going to describe now, this can be interpreted as a
statement about volX for a vector field X whose flow defines such a foliation.

The following definition is from [12].
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Definition 8.1. A pair of contact forms (ω1, ω2) on a closed, oriented 3-mani-
fold M is called a Cartan structure if

ω1 ∧ dω1 = ω2 ∧ dω2 �= 0
ω1 ∧ dω2 = ω2 ∧ dω1 = 0.

Such structures exist in abundance, see [12, Theorem 1.2]. They are
special cases of what we christened taut contact circles in that paper: any
linear combination λ1ω1 + λ2ω2 with (λ1, λ2) ∈ S1 ⊂ R

2 is again a contact
form defining the same volume form. The defining equations for a Cartan
structure can be rephrased as saying that there is a uniquely defined nowhere
vanishing 1-form α such that

dω1 = ω2 ∧ α,

dω2 = α ∧ ω1.

In terms of the complex-valued 1-form ωc := ω1 + iω2, these equations can
be rewritten as

dωc = iα ∧ ωc.

Observe that

0 �= ω1 ∧ dω1 = ω1 ∧ ω2 ∧ α,

so α is nonzero on the common kernel of ω1 and ω2.

Lemma 8.2. Let X be the vector field defined by X ∈ ker ω1 ∩ ker ω2 and
α(X) = 1. Then, iXdα = 0. Hence, by Proposition 3.3, X is geodesible.

Proof. By taking the exterior derivative of the defining equations for α we
find

0 = d2ω1 = dω2 ∧ α − ω2 ∧ dα = −ω2 ∧ dα,

and similarly

0 = dα ∧ ω1.

This implies that iXdα must be a multiple both of ω1 and ω2, but these forms
are pointwise linearly independent. �

The 1-form ωc is formally integrable in the sense that ωc ∧ dωc = 0. In
[14] it is shown that this is equivalent to saying that ωc defines a transverse
holomorphic structure for the 1-dimensional foliation defined by the flow
of X.

In general, the formal integrability of a complex-valued 1-form ωc only
implies the existence of a (not uniquely defined) complex-valued 1-form αc

such that

dωc = αc ∧ ωc.

A Godbillon–Vey type argument shows that the complex number
∫

M

αc ∧ dαc,

called the Bott invariant, is an invariant of the transversely holomorphic
foliation that does not depend on the choice of ωc and αc.
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The generalised Gauß–Bonnet theorem [14, Theorem 3.3] says that for
transversely holomorphic foliations coming from a Cartan structure, this Bott
invariant depends only on the 1-dimensional foliation defined by the common
kernel flow, not on the specific transverse holomorphic structure. As observed
before, for ωc coming from a Cartan structure we can take αc = iα. Thus,
the generalised Gauß–Bonnet theorem from [14] can be rephrased as follows.

Theorem 8.3. If the vector field X derives from a Cartan structure as de-
scribed, then volX equals the negative of the Bott invariant of any transversely
holomorphic structure on the foliation 〈X〉.

The paper [14] contains examples which show this to be a nontriv-
ial statement. There are instances of the generalised Gauß–Bonnet theorem
where the transverse holomorphic structure is indeed not unique. In [14], one
can also find a complete classification of the transversely holomorphic folia-
tions on S3, originally due (for all 3-manifolds) to Brunella and Ghys, and a
computation of their Bott invariant.

9. Global surfaces of section

We now want to compute volX under the assumption that the geodesible
vector field X admits a global surface of section Σ ⊂ M . For simplicity,
we assume that M is a closed, oriented manifold of dimension 3, although
our considerations extend in an obvious manner to global hypersurfaces of
section in manifolds of higher odd dimension for an appropriate definition of
that concept.

Given such an s.o.s., we can associate with each point p ∈ Int(Σ) its
return time τ(p) ∈ R

+, i.e. the smallest positive real number with φτ(p)(p) ∈
Int(Σ), were φt denotes the flow of X.

Proposition 9.1. Let σ be a basic 2-form on M that represents the Euler
class eX . Then,

volX = −
∫

Int(Σ)

τσ,

where we interpret σ as a 2-form on the transversal Int(Σ) for the flow of X.

Proof. Let α be a characteristic 1-form of X. By Proposition 4.4, we have

volX =
∫

M

α ∧ dα = −
∫

M

α ∧ σ.

To compute the integral on the right, we consider the injective immersion

Φ: [0, 1) × Int(Σ) −→ M
(t , p) −→ φtτ(p)(p).
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Since TΦ(∂t) is a multiple of X, and σ a basic differential form, we can
compute

∫

M

α ∧ σ =
∫

M\∂Σ

α ∧ σ

=
∫

[0,1)×Int(Σ)

Φ∗(α ∧ σ)

=
∫

Int(Σ)

(∫ 1

0

(
Φ∗α

)
(t,p)

(∂t) dt

)
σ

=
∫

Int(Σ)

τσ.

In the last line, we used that
(
Φ∗α

)
(t,p)

(∂t) = αΦ(t,p)

(
TΦ(∂t)

)
= αΦ(t,p)

(
τ(p)X

)
= τ(p).

Hence, volX = −
∫

Int(Σ)

τσ, as claimed. �

Example 9.2. On D2 with polar coordinates (r, ϕ) we write λ = r2 dϕ/2 for
the primitive 1-form of the standard area form ω = dλ = r dr ∧ dϕ. On
R/Z × D2, we consider the 1-form

α = H dθ + λ,

where H is a smooth function of r2. In the sequel, it will always be understood
that H or its derivative H ′ is evaluated at r2. Then,

dα = 2rH ′ dr ∧ dθ + ω

and

α ∧ dα = (H − r2H ′) dθ ∧ ω.

We assume that H − r2H ′ > 0; then α is a contact form. As discussed in [4],
this 1-form descends to a contact form (still denoted α) on S3, obtained from
S1 × D2 by collapsing the circle action on the boundary S1 × ∂D2 generated
by

∂θ − 2H(1)∂ϕ ∈ ker α|T (S1×∂D2).

The Reeb vector field of α (on S1 × D2) is

X =
∂θ − 2H ′∂ϕ

H − r2H ′ . (9)

Thus,

volX =
∫

S3
α ∧ dα =

∫

S1×D2
α ∧ dα =

∫

D2
(H − r2H ′)ω.

On the other hand, the disc {0} × D2 descends to an s.o.s. for the Reeb flow
on S3, and by (9) the return time is

τ = H − r2H ′.
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Therefore, we see that volX can likewise be computed as

volX =
∫

D2
τσ

with σ = dα|TD2 or any other 2-form that differs from dα by the differential
of a basic 1-form for X on S3 (not just on S1 × D2).

Remark 9.3. For an expression of volX in the preceding example in terms of
the Calabi invariant of the return map on the s.o.s., see [2].

10. Contact forms with the same Reeb vector field

In this section, we present examples of nondiffeomorphic contact forms with
the same Reeb vector field.

Theorem 10.1. In any odd dimension ≥ 9, there is a closed manifold admit-
ting a countably infinite family of contact forms that are pairwise nondiffeo-
morphic but share the same Reeb vector field.

Proof. We construct these manifolds as Boothby–Wang bundles [6], [11, Sec-
tion 7.2] over integral symplectic manifolds. Starting point for our construc-
tion are examples of symplectic manifolds, in any even dimension ≥ 8, with
cohomologous but nondiffeomorphic symplectic forms, devised by McDuff
[22]. In dimension eight, one begins with the manifold S2 × T 2 × S2 × S2

with the standard split symplectic form. We think of T 2 as (R/Z)2. One then
twists this symplectic form by a diffeomorphism

(p1; s2, t2; p3; p4) −→
(
p1; s2, t2, ψk(p1, t2)(p3); p4

)
,

where ψk(p1, t2) : S2 → S2 is the rotation of S2 about the axis determined
by ±p1 through an angle 2πkt2. Finally, one takes the symplectic blow-up
of these forms along S2 × T 2 × {(p3, p4)} with the same blow-up parameter
(giving the ‘size’ of the blow-up) for all k ∈ N0.

The resulting symplectic forms ωk on the blown-up manifold W are
cohomologous and homotopic through (noncohomologous) symplectic forms,
but they are pairwise nondiffeomorphic. By taking products with copies of
S2, one obtains similar examples in higher dimensions.

The cohomology class of the symplectic form on a manifold obtained
as a blow-up has been computed in [21], and from there one sees that the
blow-up can be chosen in such a way that this cohomology class is rational.
Hence, after a constant rescaling, we may assume the symplectic forms ωk to
be integral, i.e. their de Rham cohomology class [ωk] lies in the image of the
inclusion H2(W ;Z) ⊂ H2(W ;R) = H2

dR(W ).
Now, choose a class e ∈ H2(W ;Z) with e⊗R = −[ωk], and let π : M →

W be the S1-bundle over W of Euler class e. One then finds, for each k ∈ N0,
a connection 1-form αk on M with curvature form ωk, that is, dαk = π∗ωk,
see [11, Section 7.2]. (This normalisation corresponds to thinking of S1 as
R/Z.) Hence, the αk are contact forms with Reeb vector field given by the
unit tangent vector field along the fibres.
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The αk, k ∈ N0, are pairwise nondiffeomorphic, because any diffeomor-
phism between αk and α
 would preserve the Reeb vector field and hence
descend to a diffeomorphism between ωk and ω
. �

Remark 10.2. (1) I do not know whether the contact structures ker αk are
diffeomorphic. They all have the same underlying almost contact structure.

(2) I hedge my bets concerning dimensions 5 and 7.
(3) Contact forms with all Reeb orbits closed and of the same minimal

period are also called Zoll contact forms [1,2].

11. Orbit equivalence

A slighty weaker question than the one asked by Viterbo is the following: are
there examples of contact forms with the same Reeb vector field up to scaling
by a function? Or, put differently, one asks for nondiffeomorphic contact forms
whose Reeb flows are smoothly orbit equivalent. For the more general class of
geodesible vector fields, this problem is best phrased as follows: on a manifold
M , is there a geodesible vector field X and a function f ∈ C∞(M,R+) such
that fX is likewise geodesible? Of course, one should exclude the trivial case
of f being constant, where one simply rescales the metric by the inverse
constant.

This is related, but not equivalent to the question about nontrivially
geodesically equivalent metrics, where two Riemannian metrics share the
same geodesics up to reparametrisation (so the geodesic flows are orbit equiv-
alent), but one metric is not a constant multiple of the other.

Matveev [19] has shown that among closed, connected 3-manifolds, ex-
amples of nontrivially geodesically equivalent metrics exist only on lens spaces
and Seifert manifolds with Euler number zero. See also [20] for a discussion
of this phenomenon in the context of general relativity.

Our question asks about the nontrivial equivalence of two foliations by
geodesible vector fields. In some sense, this is a weaker question; on the other
hand, a nontrivial equivalence between two Riemannian metrics may well
become trivial when restricted to any geodesic foliation.

Example 11.1. On the 2-torus T 2 = (R/Z)2, we consider the standard flat
metric g1 = dx2

1 + dx2
2 and a second flat metric g2 = dx2

1 + adx2
2 with

a ∈ R
+ \ {1}. Then, g2 is not a constant multiple of g1, but the two metrics

are geodesically equivalent: the geodesics in both cases are the images of
straight lines in R

2 under the projection to T 2. A geodesic foliation is given
by the straight lines of some constant slope, and along those parallel lines
the unit vector fields for the two metrics differ by a constant.

Using an idea going back to Beltrami and explained in [19], we can
exhibit a simple example of geodesically equivalent metrics on S3 that give
rise to a geodesible vector field admitting nontrivial rescalings into likewise
geodesible vector fields. Here, by construction, the vector fields are diffeo-
morphic. As I shall explain, rescalings of geodesible vector fields that define
an S1-fibration will always be diffeomorphic.
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Example 11.2. For a1, a2 ∈ R
+, consider the linear map A = Aa1,a2 : (z1, z2)

→ (a1z1, a2z2) on C
2 = R

4. Then, define φ = φa1,a2 : S3 → S3 by φ(p) =
A(p)/|A(p)|. Let ga1,a2 = φ∗g0 be the pull-back of the round metric g0 on S3.
Since φ takes great circles to great circles, the metric φ∗g0 is geodesically
equivalent to g0, nontrivially so unless a1 = a2.

A straightforward computation yields the following expression for ga1,a2 :

ga1,a2 =
a2
1

Δ
(
dx2

1 + dy2
1

)
+

a2
2

Δ
(
dx2

2 + dy2
2

)

− a4
1

Δ2

(
x1 dx1 + y1 dy1

)2 − a4
2

Δ2

(
x2 dx2 + y2 dy2

)2

−2a2
1a

2
2

Δ2

(
x1 dx1 + y1 dy1

) (
x2 dx2 + y2 dy2

)
,

where we write

Δ = Δa1,a2(r1, r2) = a2
1r

2
1 + a2

2r
2
2.

Recall that in terms of polar coordinates we have dx2
i + dy2

i = dr2
i + r2

i dϕ2
i

and xi dxi + yi dyi = ri dri.
The positive Hopf fibration is generated by X0 = ∂ϕ1 +∂ϕ2 . This vector

field has constant length 1 with respect to all the metrics ga1,a2 , so from the
viewpoint of geodesic foliations this yields nothing new. Also, the correspond-
ing contact forms

αa1,a2 = ga1,a2(X0, . ) =
a2
1r

2
1 dϕ1 + a2

2r
2
2 dϕ2

Δ

all have X0 as Reeb vector field, and so they are just diffeomorphic deforma-
tions of the standard contact form α1,1 by Proposition 2.1.

A more interesting choice is to take the great circle foliation generated
by

X1 = x1∂x2 − x2∂x1 + y1∂y2 − y2∂y1 .

We write L = La1,a2 =
(
ga1,a2(X1,X1)

)1/2 for the length of X1 with respect
to ga1,a2 . One computes

L2 =
a2
1r

2
2 + a2

2r
2
1

Δ
− (a2

1 − a2
2)

2

Δ2
(x1x2 + y1y2)2.

Thus, we have found the nontrivial family of geodesible vector fields
X1/La1,a2 , with corresponding metric ga1,a2 , all generating the same foliation
of S3 by great circles. The corresponding 1-form

α = αa1,a2 = ga1,a2(X1/La1,a2 , . )

can be computed explicitly as
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Lα = −a2
1

Δ
(x2 dx1 + y2 dy1) +

a2
2

Δ
(x1 dx2 + y1 dy2)

+
a4
1 − a2

1a
2
2

Δ2
(x1x2 + y1y2) (x1 dx1 + y1 dy1)

−a4
2 − a2

1a
2
2

Δ2
(x1x2 + y1y2) (x2 dx2 + y2 dy2).

I did not check whether these are contact forms for all a1, a2 ∈ R
+, but

by the openness of the contact condition they certainly are for a1, a2 close
to 1. Then, X1/La1,a2 will be the Reeb vector field of αa1,a2 .

The following proposition gives a more systematic statement about
rescalings of geodesible vector fields that define an S1-fibration. This is es-
sentially due to Wadsley [31] (in greater generality); for the case at hand it
can be retraced to the work of Boothby and Wang [6].

Proposition 11.3. Let X be a geodesible vector field on a closed manifold M
such that the flow lines of X are the fibres of a principal S1-bundle M →
M/S1. Then, after a constant rescaling of X all orbits have (minimal) pe-
riod 1, so that the flow of X defines the S1-action. A rescaling fX of X is
likewise geodesible if and only if all orbits have the same period. When this
period is 1, the vector fields X and fX are diffeomorphic by a diffeomor-
phism that sends each fibre to itself and is isotopic to the identity via such
diffeomorphisms.

Proof. If X is geodesible, we find a 1-form α with α(X) = 1 and iXdα = 0
by Proposition 3.3. Then, [11, Lemmas 7.2.6 and 7.2.7], which fill a gap in [6],
show that the orbits of X all have the same period. Notice that Lemma 7.2.7
in [11] is formulated for Reeb vector fields, but the proof only uses the prop-
erty iXdα = 0, not the nondegeneracy of dα|ker α.

If fX is geodesible, the same argument applies. Conversely, if the orbits
of fX all have the same period, then the flow of X defines an S1-bundle
structure, and any connection 1-form for this bundle is a characteristic 1-
form for fX, which makes fX geodesible.

Now, suppose the period of fX equals 1. Given a local section U ∼= D2

of X, the flow of X defines a trivialisation U × S1 of the bundle, and f
gives rise to a family of 1-periodic velocity functions vu : [0, 1] → R

+ with∫ 1

0
vu(t) dt = 1 for every u ∈ U . (I refrain from writing vu as a function on S1,

since the time parameter t should not be confused with the fibre parameter
defined by the flow of X.) Let ψ : D2 → [0, 1] be a bump function equal to 1
on a disc of radius 1/2, say, and supported in the interior of D2. Then,

μ
(
ψ(u)vu + 1 − ψ(u)

)
+ 1 − μ

defines for each u ∈ U and μ ∈ [0, 1] a 1-periodic velocity function [0, 1] → R
+

of integral 1. This gives rise to an isotopy along fibres whose time-1 map sends
X to fX on fibres where ψ(u) = 1, and which is stationary on fibres along
which f = 1. This allows us to patch together such local isotopies to obtain
the desired result. �

The next corollary also applies to Example 11.2.
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Corollary 11.4. If R and fR are Reeb vector fields on a closed 3-manifold
with all orbits periodic of the same period 1, then any corresponding contact
forms are related via a fibre-preserving isotopy.

Proof. This follows immediately by combining the last statement of Propo-
sition 11.3 with Proposition 2.1.

Alternatively, one can give a direct proof, using a refinement of the proof
of Proposition 2.1. Let α0 be a contact form with Reeb vector field R, and
α1 a contact form for fR. Set αt := (1 − t)α0 + tα1. We would like to find
an isotopy (ψt)t∈[0,1] satisfying (5) as in the proof of Proposition 2.1.

The αt are contact forms with Reeb vector field Rt proportional to R.
We try to find an isotopy (ψt) generated by a vector field Xt of the form

Xt = htRt + Yt

with Yt ∈ ker αt. Differentiating (5), we find

α1 − α0 + dht + iYt
dαt = 0. (10)

When we plug R into this equation, we find

f−1 − 1 + dht(R) = 0. (11)

The condition that the period of fR be 1 translates into f−1 integrating
to 1 along any fibre of the S1-bundle. This allows us to define a family of
functions ht satisfying (11), and then there is a unique vector field Yt ∈ ker αt

satisfying (10). Both α1 − α0 + dht and dαt are lifts of differential forms on
the quotient surface M/S1, hence the flow of Yt preserves fibres. �

Remark 11.5. If R is the Reeb vector field of a contact form α (on a connected
manifold M), then the rescaled vector field f−1R is never the Reeb vector
field of fα, unless the function f is constant, for the identity

0 = iRd(fα) = iR(df ∧ α) = df(R)α − df

implies that df vanishes on all vectors tangent to the contact structure ker α,
and by [11, Theorem 3.3.1] any two points in M can be joined by a curve
tangent to the contact structure.
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On the symplectic fillings of standard real
projective spaces
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Abstract. We prove, in a geometric way, that the standard contact struc-
ture on RP

2n−1 is not Liouville fillable for n ≥ 3 and odd. We also prove
for all n that semipositive fillings of such contact structures are always
simply connected. Finally, we give yet another proof of the Eliashberg–
Floer–McDuff theorem on the diffeomorphism type of the symplectically
aspherical fillings of the standard contact structure on S2n−1.
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1. Introduction

The standard contact structure ξ on S2n−1 is described in coordinates by the
equation

ξ = ker
n∑

j=1

(xj dyj − yj dxj).

Geometrically, ξp is the unique complex hyperplane in TpS
2n−1 for every

p ∈ S2n−1. The antipodal involution of S2n−1 preserves ξ, and therefore
induces a contact structure on RP

2n−1 which we still denote by ξ. The disc
bundle of the line bundle OPn−1(−2) on CP

n−1 is a strong symplectic filling
of (RP2n−1, ξ). On the other hand, RP

2n−1 cannot be the boundary of a
2n-dimensional manifold with the homotopy type of an n-dimensional CW
complex if 2n − 1 ≥ 5; see [3, Section 6.2]. This implies that a real projective
space of dimension at least 5 does not admit any Weinstein fillable contact
structure. Our main result is the following.

This article is part of the topical collection “Symplectic geometry - A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder, and Felix Schlenk.
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Theorem 1.1. The standard contact structure on RP
2n−1 admits no symplec-

tically aspherical fillings for n > 1 and odd. In particular, it is not Liouville
fillable.

These are the first examples of strongly but not Liouville fillable contact
structures in high dimension. Examples in dimension three were given by
the first author in [4] using Heegaard Floer homology. In contrast with the
high dimensional situation, the standard contact structure on RP

3 is the
canonical contact structure on the unit cotangent bundle of S2 and, therefore,
is Weinstein fillable.

After a preliminary version of our result (originally for RP
5 only) was

announced, Zhou proved in [11] that (RP2n−1, ξ) is not Liouville fillable if n �=
2k. He also proves similar nonfillability results for some other links of cyclic
quotient singularities. Zhou’s proof uses advanced properties of symplectic
cohomology; in contrast our proof is more direct, as it relies on the analysis
of how a certain moduli space of holomorphic spheres can break, in the spirit
of McDuff’s classification of symplectic fillings of RP3 in [7].

The strategy is the following. The standard contact structure ξ on
RP

2n−1 admits a contact form whose Reeb orbits are the fibres of the Hopf
fibration RP

2n−1 → CP
n−1. If (W,ω) is a strong symplectic filling of (RP2n−1,

ξ), by a symplectic reduction of ∂W (informally speaking, by replacing ∂W
with its quotient by the Reeb flow) we obtain a closed symplectic manifold
(W, ω) with a codimension two symplectic submanifold W∞ ∼= CP

n−1 (cor-
responding to the quotient of ∂W ) such that W \W∞ is symplectomorphic to
int(W ); that is, ω|W\W∞ = ω|int(W ). The normal bundle of W∞ is isomorphic
to OPn−1(2).

We fix a point and a hyperplane in W∞, and we consider the moduli
space of holomorphic spheres in W which are homotopic to a projective line
and pass both through the point and the hyperplane. We prove by topological
considerations that if the compactification of that moduli space contains only
nodal curves with at most two irreducible components each of which intersect
W∞ nontrivially, then some of these nodal curves will be composed of two
spheres that represent identical homology classes up to torsion. This implies
in particular that the homology class of a projective line in W∞ is the double
of some homology classes in W up to torsion.

If n is odd this is a contradiction because the first Chern class of a
line is n + 2; only at this step we use the hypothesis on the parity of n.
This implies that there is either a nodal holomorphic sphere in W in the
homology class of a line of W∞ with at least three irreducible components or
a nodal holomorphic sphere with an irreducible component which is disjoint
from W∞. Since a nodal sphere intersects W∞ in exactly two points, in either
case at least one irreducible component must lie entirely in int(W ), which,
therefore, is not symplectically aspherical.

If (W,ω) is not symplectically aspherical we lose control on the compact-
ification of the moduli space, which is not surprising, given that (RP2n−1, ξ)
does admit spherical fillings. However, if W is semipositive (and maybe
even more generally, using some abstract perturbation scheme), we still have
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enough control to be able to draw conclusions about the fundamental group
of W .

Theorem 1.2. If (W,ω) is a semipositive symplectic filling of (RP2n−1, ξ),
then W is simply connected.

If we apply the same techniques to a symplectically aspherical filling
of the standard contact structure on S2n−1, we obtain that the filling must
be diffeomorphic to the ball, a result originally due to Eliashberg, Floer and
McDuff. This is, at least, the fifth proof, after the original one in [8], a very
similar one in [10], the one in [5] using moduli spaces of holomorphic discs
with boundary on a family of LOB’s, and the one in [1]. The proof given here
is close to the original one, but uses a different compactification of the filling
and is slightly simpler.

2. The moduli space of lines

2.1. The smooth stratum

By the Weinstein neighbourhood theorem, W∞ has a tubular neighbourhood
that is symplectomorphic to a neighbourhood of the zero section in the total
space of OPn−1(2). Let J be the space of almost complex structures on W
which are compatible with ω and coincide with the natural (integrable) com-
plex structure on OPn−1(2) on a fixed neighbourhood of W∞.

For any almost complex structure J ∈ J , any line � ⊂ CP
n−1 ∼= W∞ is

a J-holomorphic sphere. Moreover,

TW |� ∼= OP1(2) ⊕ OP1(1) ⊕ · · · ⊕ OP1(1)︸ ︷︷ ︸
n−2

⊕OP1(2) (1)

as holomorphic vector bundle, where the first OP1(2) summand is the tangent
bundle of �, the (n − 2)-many OP1(1)-summands correspond to the normal
bundle of � in CP

n−1 ∼= W∞ and the last OP1(2)-summand is the normal
bundle of W∞ in W restricted to �.

We fix a point p0 ∈ W∞ and a hyperplane H∞ ∼= CP
n−2 ⊂ W∞ such

that p0 /∈ H∞. We denote the moduli space of unparametrised J-holomorphic
spheres in W that are homotopic to the lines in W∞ ∼= CP

n−1 with point-
wise constraints at p0 and H∞ by M(p0,H∞). We also consider the moduli
space Mz(p0,H∞) of unparametrised J-holomorphic spheres as above with
an extra free marked point z. There is a projection

f : Mz(p0,H∞) → M(p0,H∞).

that forgets the marked point.

Lemma 2.1. M(p0,H∞) has expected dimension 2n−2 and Mz(p0,H∞) has
expected dimension 2n, where dim W = 2n.

Proof. The decomposition (1) gives 〈c1(TW ), [�]〉 = n + 2. The expected
dimension of M(p0,H∞) is

vir-dim M(p0,H∞) = 2〈c1(TW ), [�]〉 + 2n + 4 − 2n − 4 − 6 = 2n − 2.
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The first two terms compute the index of the linearised Cauchy-Riemann
operator, the third is the contribution of two extra marked points, the fourth
and the fifth come from the condition that the marked points be mapped to
p0 and H∞, and the last is the dimension of the biholomorphism group of
the sphere. �

The main reason for keeping the almost complex structure integrable
near W∞ is to have positivity of intersection between W∞ and J-holomorphic
spheres. This fact makes our moduli space particularly well behaved, as the
following lemma shows.

Lemma 2.2. All J-holomorphic spheres of M(p0,H∞) are simply covered and
are either lines in W∞ or intersect W∞ transversely in exactly two points.

Proof. Since the algebraic intersection between W∞ and � is 2, positivity of
intersection implies that a sphere of M(p0,H∞) is either contained in W∞, in
which case it is a line and, therefore, simply covered, or it intersect W∞ with
total multiplicity two. Since the constraints force two distinct intersection
points, positivity of intersection implies that they are the only ones and that
they each have multiplicity one. �
Proposition 2.3. For a generic almost complex structure J ∈ J , the moduli
spaces M(p0,H∞) and Mz(p0,H∞) are smooth manifolds of dimension 2n−
2 and 2n, respectively.

Proof. The J-holomorphic spheres of M(p0,H∞) which are contained in the
neighbourhood of W∞ where J is integrable correspond to holomorphic sec-
tions of OPn−1 and therefore admit a decomposition of the restriction of TW
as in Eq. (1). Since the decomposition is into positive holomorphic line bun-
dles, those spheres are Fredholm regular for every almost complex structures
J ∈ J , because the Cauchy-Riemann operator on a positive line bundle over
CP

1 is surjective by Serre duality; see [9, Lemma 3.3.1]
All other J-holomorphic spheres of M(p0,H∞) are Fredholm regular

for a generic J ∈ J , because they are simply covered and intersect the region
where J is generic. Moreover, the pointwise constraints cut out M(p0,H∞)
transversely for a generic J : for spheres near W∞ this is an explicit compu-
tation, and for all other spheres of M(p0,H∞) it follows from [9, Theorem
3.4.1] and [9, Remark 3.4.8]. Therefore M(p0,H∞) is a smooth manifold of
the dimension predicted by Lemma 2.1. The corresponding statements for
Mz(p0,H∞) follow from those for M(p0,H∞). �
2.2. The compactified moduli space

Let M(p0,H∞) and Mz(p0,H∞) be the Gromov compactifications of M(p0,
H∞) and Mz(p0,H∞), respectively, and let

f : Mz(p0,H∞) → M(p0,H∞),

be the forgetful map. We denote Mred(p0,H∞) = M(p0,H∞)\M(p0,H∞)
and Mred

z (p0,H∞) = Mz(p0,H∞)\Mz(p0,H∞).

Lemma 2.4. If W\W∞ is symplectically aspherical, then every nodal sphere of
Mred(p0,H∞) has exactly two irreducible components, one of which intersects
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W∞ only at p0 and the other one which intersects W∞ only at a point of
H∞. Both components are simply covered and their intersection with W∞ is
transverse.

Proof. None of the irreducible components of nodal spheres in M(p0,H∞)
is contained in W∞ because any bubble component needs to have positive
symplectic area strictly smaller than the symplectic area of �, but the homol-
ogy class of � has the smallest positive symplectic area in CP

n−1. Then, by
positivity of intersection with W∞ a nodal sphere must intersect W∞ in at
most two points. Moreover, if W \W∞ is symplectically aspherical, every irre-
ducible component must intersect W∞. This implies that there are exactly
two irreducible components and the intersection of each with W∞ has mul-
tiplicity one. Therefore, both components are simply covered. �

This lemma implies that we have enough topological control on the
nodal curves to show that they have smooth moduli spaces.

Lemma 2.5. The moduli space Mred(p0,H∞) is a smooth manifold of dimen-
sion 2n − 4. The forgetful map

fred : Mred
z (p0,H∞) → Mred(p0,H∞),

is a locally trivial fibration with fibre S2 ∨ S2.

Proof. By Lemma 2.4, the irreducible components of the nodal spheres of
the moduli space Mred(p0,H∞) are simply covered and intersect the region
where the almost complex structure can be made generic. Then, the statement
follows from [9, Theorem 6.2.6]. �

What we have shown so far about Mz(p0,H∞) is enough to show that
the image of the evaluation is a pseudocycle in W (see [9, Section 6.5]). While
pseudocycles are good enough for certain degree arguments, as for example in
Sect. 4, in the proof of our main theorem, we will need a differentiable struc-
ture on the compactified moduli spaces. The reason is that our proof is based
on studying the properties of the homology class [ev−1(�)] in Mz(p0,H∞),
and we have found no better way to show that ev−1(�) is well-behaved than
by the implicit function theorem. Since there is no reason to expect that �
can be made disjoint from the image of Mred

z (p0,H∞) by the evaluation map,
we need a smooth structure on the whole compactified moduli space, and not
only in its irreducible part. Luckily our moduli space is simple enough that
standard gluing theory (as explained, for example, in [9]) already produces a
smooth structure.

In the rest of the section, we will sketch the construction of a C1-
structure, which in turn can be promoted to a smooth structure by a classical
result in differential topology; see for example [6, Section 2.2, Theorem 2.10].

To endow M(p0,H∞) and Mz(p0,H∞) with the structure of a C1-
manifold, we exhibit them as union of two open manifolds which are patched
together by a diffeomorphism of class C1. The two patches are the irreducible
strata M(p0,H∞) and Mz(p0,H∞) on one side, and suitable fibrations over
the reducible strata Mred(p0,H∞) and Mred

z (p0,H∞) on the other hand. The
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fibres of those fibrations are, roughly speaking, spaces of gluing parameters.
We are going to define them momentarily.

The first step in our construction is to introduce local gauge fixing con-
ditions to simplify the presentation of the moduli spaces, so that they almost
become spaces of parametrised J-holomorphic spheres. Identify the neigh-
bourhood of W∞ in W with a neighbourhood of the 0-section of OPn−1(2) as
already discussed above. The hyperplane H∞ is the 0-set of a holomorphic
section σ in OPn−1(1), and it follows that σ2 is a section of OPn−1(2) that
has a zero of order two along H∞. Multiplying σ2 with a small constant, we
can assume that its image lies in an arbitrarily small neighbourhood of the
0-section. Its graph is a J-holomorphic hypersurface in W that we will call
W̃∞. In particular W̃∞ ∩W∞ = H∞ and TW̃∞|H∞ = TW∞|H∞ . Then, every
sphere of M(p0,H∞) which is not contained in W∞ intersects W̃∞ in two
points: one in H∞ and one in W̃∞ \ H∞.

Let M̃(p0,H∞) be the open subset of M(p0,H∞) consisting of those
spheres which are not contained in W∞ and M̃z(p0,H∞) the corresponding
open subset of Mz(p0,H∞). By the discussion in the previous paragraph,
we can fix a parametrisation for every element in M̃(p0,H∞) identifying
this moduli space with the set of J-holomorphic maps u : S2 → W whose
image is homotopic to � but not contained in W∞, and such that u(0) = p0,
u(1) ∈ W̃∞\H∞ and u(∞) ∈ H∞.

We also denote by M̃red(p0,H∞) the set of pairs of J-holomorphic maps
(u0, u∞), with u0, u∞ : S2 → W , such that

u0(0) = p0 , u0(∞) = u∞(0) , u∞(∞) ∈ H∞ ,

u0(1) ∈ W̃∞ \ H∞ , |d∞u∞| = 1

and the image of the “connected sum map” u0#u∞ : S2#S2 ∼= S2 → W is
homotopic to �. Here |d∞u∞| denotes the norm of the differential of u∞ at
∞ ∈ S2 computed with respect to the round metric on S2 and the metric
induced by J and ω on W . Only the component u0 meets W̃∞ \H∞, because
u1 already intersects W̃∞ in H∞.

The group of complex numbers of modulus 1 acts on M̃red(p0,H∞) by

θ · (u0, u∞) =
(
u0, u∞(θ−1·)),

and the quotient by this action is Mred(p0,H∞). This implies that the pro-
jection M̃red(p0,H∞) → Mred(p0,H∞) is a principal S1-bundle which need
not be trivial.

The second step is to define the fibrations over Mred(p0,H∞) and
Mred

z (p0,H∞) which give one of the two patches. Let π : S2 × S2 ��� S2

be the rational map π(x, y) = y/x, which is not defined at the points (0, 0)
and (∞,∞). If we make S1 act on S2×S2 by θ · (x, y) = (x, θy) and on S2 by
θ ·w = θw, then π is S1-equivariant. Let X be the smooth variety obtained by
blowing up S2×S2 at (0, 0) and (∞,∞). The action of S1 on S2×S2 induces
an action on X, and π extends to a smooth S1-equivariant map π : X → S2.
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We denote by Dε the disc with centre in 0 and radius ε in C ⊂ S2 and
Xε = π−1(Dε). We define Eε = M̃red(p0,H∞)×S1Dε and Xε = M̃red(p0,H∞)
×S1 Xε. Both Eε and Xε are fibre bundles over Mred(p0,H∞) and there is a
bundle map

Xε
� ��

����
���

���
���

Eε

�����
���

���
��

Mred(p0,H∞).

The zero section E0 of E is, of course, diffeomorphic to Mred(p0,H∞).
Let us denote X0 = π−1(0) and X0 = 
−1(E0). We observe that X0 is
diffeomorphic to Mred

z (p0,H∞). In fact X0 = M̃red(p0,H∞) ×S1 X0 and
X0 = {y = 0} ∪ {x = ∞}, so we can identify the sphere {y = 0} with the
domain of u0 and the sphere {x = ∞} with the domain of u∞.

The third, and last, step is the definition of the gluing maps between
the two patches. Let Ėε denote Eε with the zero section removed, and Ẋε

the preimage of Ėε. We can identify Ėε
∼= [ε−1,+∞) × M̃red(p0,H∞), and

therefore, standard gluing theory (see for example [9, Chapter 10]) yields
a C1-embeddings g : Ėε → M̃(p0,H∞): if (r, (u0, u∞)) ∈ [ε−1,+∞) × M̃red

(p0,H∞) ∼= Ėε, then g(r, (u0, u∞)) ∈ M̃(p0,H∞) is the J-holomorphic sphere
obtained by gluing u0 and u∞ with gluing parameter R =

√
r; see [9, Sec-

tion 10.1].
We can also define a C1-embedding G : Ẋε → M̃z(p0,H∞) such that

the diagram

Ẋε

G
��

� �� Ėε

g

��
M̃z(p0,H∞)

f �� M̃(p0,H∞)

,

commutes. To define G it is enough to identify 
−1(e) with the domain
of g(e) for all e ∈ Ėε. We recall that g(e) is obtained by deforming a
preglued map p(e) with the same domain, so it is enough to identify (in
a smooth way) 
−1(e) with the domain of the preglued map p(e), whose
construction we sketch now. Denote e = [((u0, u∞), t)] with t ∈ Dε and
(u0, u∞) ∈ M̃red(p0,H∞), and St = π−1(t). We define p̃(u0, u∞, t) : St → W
by

p̃(u0, u∞, t)(x, y) =

⎧
⎨

⎩

u0(x) if |x| < 1

2
√

|t| ,

u∞(y) if |x| > 2√
|t| ,

and in the region
{

(x, y) ∈ St : 1

2
√

|t| ≤ |x| ≤ 2√
|t|

}
we interpolate between

u0 and u∞ while remaining close to u0(∞) = u∞(0). It is possible to chose
the interpolation compatibly with the S1-actions on M̃red(p0,H∞) and Xε

so that the map p̃(u0, u∞, t) induces a well defined map p(e) : 
−1(e) → W .
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If we choose a representative (u0, u∞, t) of e where t is real positive and we
define R = 1√

t
, we see that the pregluing p(e) is the same as the pregluing

defined in [9, Section 10:2], up to a holomorphic change of coordinates and
the introduction of a constant δ, which is necessary for the gluing estimates,
but does not change in any significant way the geometric picture we have
described.

Combining [9, Theorem 6.2.6] with the discussion above we obtain the
following structural result for the moduli spaces we are interested in.

Proposition 2.6. The moduli spaces M(p0,H∞) and Mz(p0,H∞) are closed
and orientable C1-manifolds and there is a C1-map

f : Mz(p0,H∞) → M(p0,H∞),

which forgets the marked point.

While M(p0,H∞) is not a priori connected, since we have not ruled out
that a J-holomorphic sphere could be homotopic to a line � ⊂ W∞ but not
homotopic through J-holomorphic spheres, we can assume without loss of
generality that M(p0,H∞) is connected by restricting our attention to the
connected component which contains a line � ⊂ W∞.

3. Proof of the main theorem

3.1. Degree of the evaluation map

Let ev : Mz(p0,H∞) → W be the evaluation map at the free marked point.

Lemma 3.1. There is an open subset U ⊂ W such that every J-holomorphic
sphere of M(p0,H∞) passing through a point of U belongs to M(p0,H∞) and
its image is contained in the neighbourhood of W∞ on which J is integrable.

Proof. Choose a point q0 ∈ W∞\H∞ such that q0 �= p0. The unique line �0
in W∞ passing through p0 and q0 also intersects H∞, and therefore deter-
mines an element of M(p0,H∞). Moreover, any sphere of M(p0,H∞) passing
through q0 intersects W∞ in three points, and therefore must be contained
in it, so it is equal to �0.

Since none of the nodal spheres passes through q0, and since Mred
z (p0,

H∞) is compact, there is a neighbourhood U of q0 in W such that ev−1(U) ⊂
Mz(p0,H∞).

After possibly reducing the size of U , we can assume that every J-
holomorphic sphere of M(p0,H∞) passing through U is contained in the
neighbourhood of W∞ on which J is integrable. Suppose on the contrary
that there is a sequence [un] of elements of M(p0,H∞) and a sequence of
points qn ∈ W converging to q0 such that the image of un contains qn,
but is not contained in some fixed neighbourhood of W∞. Then, by Gro-
mov compactness, there is a subsequence of [un] converging to a (possibly
nodal) J-holomorphic sphere of M(p0,H∞) passing through q0 and not con-
tained in the fixed neighbourhood of W∞. This is a contradiction, because
the only element of M(p0,H∞) passing through q0 is �0, which is contained
in W∞. �
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Lemma 3.2. The evaluation map ev : Mz(p0,H∞) → W has degree one.

Proof. Let U be the neighbourhood defined in Lemma 3.1. We will show that
# ev−1(q) = 1 for every q ∈ U .

Since all J-holomorphic spheres passing through U are contained in the
neighbourhood where J is integrable, we can pretend we are working in the
total space of OPn−1(2). Given q ∈ U , let q be its projection to CP

n−1 ∼= W∞.
Any J-holomorphic sphere of M(p0,H∞) passing through q projects to the
unique line �q in W∞ passing through p0 and q. The sphere itself corresponds
then to a section of OPn−1(2)|�q ∼= OP1(2) which vanishes at p0 and at p∞ =
�q ∩H∞. The space of sections of OP1(2) vanishing at p0 and p∞ has complex
dimension one, and thus there is a unique such section for any point q in the
fibre of OP1(2) over q.

This shows that # ev−1(q) = 1 for every q ∈ U , and since U is open, by
Sard’s theorem it contains a regular value of the evaluation map. This proves
that ev has degree one. �

It is important to have a degree one map because such maps induce
surjections in homology. More generally, we have the following lemma.

Lemma 3.3. Let f : X → Y be a smooth map between closed oriented smooth
manifolds of the same dimension. Assume that f has degree d, and let S ⊂ Y
be a compact, oriented k-dimensional submanifold that is transverse to f .

Then it follows that S′ := f−1(S) has an induced orientation and, with
that orientation, we have the equality

f∗
(
[S′]

)
= d [S],

in Hk(Y ;Z).

Proof. A submanifold S is transverse to a map f if, for every y ∈ S and
x ∈ f−1(y) we have TyS ⊕ dxf(TxX) = TyY . This property implies that

• S′ = f−1(S) is a compact submanifold of X, and
• df defines an isomorphism between the normal bundle of S′ and the

normal bundle of S.

The orientations of S and Y determine an orientation of the normal bundle
of S. This in turn induces an orientation of the normal bundle of S′ via df
which, combined with the orientation of X, induces the orientation of S′.

Let fS : S′ → S be the restriction of f . The condition on the normal
bundles implies that the regular values of fS are also regular values of f . If
y is a regular value of fS , then

deg(fS) =
∑

x∈f−1
S (y)

sign(dxfS)

deg(f) =
∑

x∈f−1(y)

sign(dxf).

Since f−1
S (y) = f−1(y) by the definition of fS and sign(dxfS) =

sign(dxf) because df is an orientation preserving isomorphism between the
normal bundles, we obtain deg(fS) = deg(f) = d.
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Now we consider the commutative diagram

Hk(S′;Z)

��

(fS)∗ �� Hk(S;Z)

��
Hk(X;Z)

f∗ �� Hk(Y ;Z)

,

where the vertical arrows are induced by the inclusions. The fundamental
class of S′ is mapped by (fS)∗ to deg(fS) times the fundamental class of
S. The homology classes [S′] and [S] are the images of the fundamental
classes of S′ and S in Hk(X;Z) and Hk(Y ;Z), respectively, and therefore
f∗[S′] = deg(fS) [S] = d [S]. �
3.2. Decomposition of the line

The following lemma is a warm up which illustrates how to derive topological
implications from Lemma 3.2.

Lemma 3.4. The moduli space Mz(p0,H∞) is not compact.

Proof. The moduli space Mz(p0,H∞) is an S2-bundle over M(p0,H∞) with
two distinguished sections ev−1(p0) and ev−1(H∞). Then Mz(p0,H∞)\ ev−1

(H∞) retracts onto ev−1(p0). This implies that

ev∗ : Hk

(Mz(p0,H∞) \ ev−1(H∞);Z
) → Hk(W ;Z),

is trivial whenever k > 0.
Let � ⊂ W be an embedded sphere which is homologous to a line in W∞

but disjoint from H∞. It is possible to find such a sphere, because H∞ has
codimension 4 in W , but, in general, � will not be holomorphic. We perturb
� to be transverse to the evaluation map and we denote ev−1(�) by �′. If
Mz(p0,H∞) is compact, ev∗([�′]) = [�] by Lemma 3.3. Since � ∩ H∞ = ∅, it
follows that �′ does not intersect ev−1(H∞). The previous paragraph implies
then that [�] = ev∗([�′]) = 0. This is a contradiction, because � is homologous
to a symplectic sphere, and therefore, is nontrivial in homology. �

Lemma 3.4 tells us thus that Mred(p0,H∞) is nonempty. We decompose
it into connected components

Mred(p0,H∞) = M(1)(p0,H∞) � · · · � M(N)(p0,H∞),

and, correspondingly, we decompose the moduli space with a free marked
point into connected components

Mred
z (p0,H∞) = M(1)

z (p0,H∞) � · · · � M(N)
z (p0,H∞).

Each M(i)
z (p0,H∞) is an S2∨S2-bundle over M(i)(p0,H∞) with three distin-

guished sections: one, denoted S(i)
0 , where the free marked point is mapped

to p0, one, denoted S(i)
∞ , where the free marked point is mapped to H∞, and

one, denoted S(i)
n , where the free marked point lies on the node.1 Therefore,

we can see each M(i)
z (p0,H∞) as the union of two sphere bundles N (i)

0 and

1Strictly speaking ghost bubbles appear in these three cases and we tacitly contract them.
We ignore this technical complication as it has no topological consequence.
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N (i)
∞ over M(i)(p0,H∞) glued together along the section S(i)

n . An element of
M(i)

z (p0,H∞) belongs to N (i)
0 when the free marked point lies in the domain

of the irreducible component passing through p0, and to N (i)
∞ when the free

marked point lies in the domain of the irreducible component passing through
H∞. We denote the homology classes representing the fibres of N (i)

0 and of
N (i)

∞ by A
(i)
0 and by A

(i)
∞ , respectively.

Our aim is to show that there is a nodal curve in the compactification
of M(p0,H∞) that is composed of two holomorphic spheres representing
homology classes which are equal up to torsion.

A nodal curve in M(i)(p0,H∞) is composed of two holomorphic spheres
that are fibres of N (i)

∗ for ∗ = 0 or ∗ = ∞ so that ev∗
(
A

(i)
0

)
+ ev∗

(
A

(i)
∞

)
= [�]

in H2(W ;Z).
The pull-back of the symplectic form ω is cohomologically nontrivial on

the fibres of N (i)
∗ for any i = 1, . . . , N and ∗ ∈ {0,∞}. Therefore, by the

Leray-Hirsch Theorem (see [2, Theorem 5.11] for its cohomological form),

H2(N (i)
∗ ;Z) ∼= H2

(S(i)
∗ ;Z

) ⊕ H2(S2;Z) ∼= H2

(S(i)
n ;Z

) ⊕ H2(S2;Z), (2)

where the summand H2(S2;Z) is generated by a fibre of N (i)
∗ .

In the next two lemmas, we use the Leray-Hirsch Theorem to gain homo-
logical information on the evaluation maps, and on the components of the
nodal curves. Given homology classes A and B of complementary degrees (in
the same manifold), we denote by A ·B their intersection product. If A and B
are represented by closed, oriented submanifolds which intersect transversely,
A · B is the algebraic count of intersection points.

Lemma 3.5. The map

(ev |S(i)
n

)∗ : H2

(S(i)
n ;Z

) → H2(W ;Z),

is trivial for every i = 1, . . . , N .

Proof. By Eq. (2) every class c ∈ H2(S(i)
n ;Z) can be written as the sum of

a class in H2(S(i)
0 ;Z) and a multiple of the class of the fibre. Since S(i)

0 is
mapped to p0, we obtain (ev |S(i)

0
)∗ = 0, and thus ev∗(c) = k ev∗

(
A

(i)
0

)
. By

Lemma 2.4 ev
(S(i)

n

) ∩ W∞ = ∅ while ev∗
(
A

(i)
0

) · [W∞] = 1 so that

0 = ev∗(c) · [W∞] = k ev∗
(
A

(i)
0

) · [W∞] = k.

�
Let ev(i)

∞ : S(i)
∞ → H∞ be the restriction of ev : Mz(p0,H∞) → W .

Lemma 3.6. If deg(ev(i)
∞ ) �= 0, then [�] = 2 ev∗

(
[A(i)

∞ ]
)

modulo torsion.

Proof. Let � be now a line that lies in H∞ and perturb it (inside H∞) to
make it transverse to ev(i)

∞ : S(i)
∞ → H∞. Then, �′

i := (ev(i)
∞ )−1(�) is a smooth

submanifold of S(i)
∞ which, by Lemma 3.3, satisfies

(
ev(i)

∞
)
∗([�

′
i]) = κi [�] with

κi := deg
(
ev(i)

∞ ). Using that ev and ev(i)
∞ commute with the corresponding

inclusions, we also obtain ev∗([�′
i]) = κi [�].
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According to Equation (2), we can represent [�′
i] as

[�′
i] = d A(i)

∞ + c,

for some d ∈ Z and c ∈ H2(S(i)
n ;Z). This combined with Lemma 3.5 shows

that d ev∗
(
A

(i)
∞

)
= κi [�], and by intersecting with W∞ we obtain d = 2κi so

that

κi

(
2 ev∗

(
A(i)

∞
) − [�]

)
= 0.

�

The next step is to show that deg(ev(i)
∞ ) �= 0 for at least one i ∈

{1, . . . , N}. This will be the goal of the next lemmas.

Lemma 3.7. Let X be a compact oriented n-dimensional manifold containing
two closed oriented submanifolds S and Y . Suppose that dim S + dim Y = n,
that dim Y ≥ 2, and that S and Y intersect transversely.

Then, there is an oriented submanifold S′ that is homologous to S and
that intersects Y transversely in exactly

∣∣[S] · [Y ]
∣∣ many points.

More precisely, we can choose an arbitrarily small neighbourhood of Y
such that S and S′ agree outside this neighbourhood. Furthermore, given a
compact subset Y ′ ⊂ X that is disjoint from S, and that intersects Y in a
codimension 2 submanifold, we can additionally assume that S′ is also disjoint
from Y ′.

Proof. We obtain S′ by attaching certain 1-handles to S.
If the number of intersection points of S and Y does not agree with∣∣[S]·[Y ]

∣∣, then there needs to be a pair of intersection points {x−, x+} ⊂ S∩Y
of opposite sign. Choose an embedded path γ in Y with end points x− and
x+ that avoids any other intersection point in S ∩ Y and also Y ′ ∩ Y , if such
a Y ′ has been chosen.

Identify a tubular neighbourhood of Y with the normal bundle of Y , and
assume that S corresponds in this neighbourhood to the fibres of the normal
bundle over the points in S ∩ Y . Note that the normal bundle is naturally
oriented by the orientations of Y and X.

The restriction of the disk bundle over γ is a solid cylinder Dk × [0, 1]
such that Dk ×{0, 1} is a neighbourhood of {x−, x+} in S. The solid cylinder
is naturally oriented, and the orientation of S at {x−, x+} is equal to the
boundary orientation of Dk × [0, 1].

Remove Dk×{0, 1} from S, and glue instead the tube (∂Dk)×[0, 1] along
the boundary of the two holes that we have created in S (abstractly this cor-
responds to performing an index 1 surgery). This yields, after smoothing, an
oriented closed manifold S′ that agrees outside the chosen tubular neighbour-
hood of Y with S. We can do this construction also avoiding Y ′ if necessary.
Note that S′ ∩ Y = (S ∩ Y )\{x−, x+}, and that S and S′ are homologous,
because [S′] − [S] =

[
∂(Dk × [0, 1])

]
.

By repeating this construction as often as necessary, we can cancel all
pairs of intersection points of opposite sign until all points in S′ ∩Y have the
same sign. This then implies as desired that #

(
S ∩ Y

)
=

∣∣[S] · [Y ]
∣∣. �
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Lemma 3.8. Let � be a surface in W that is transverse to the evaluation
map ev. Denote the oriented submanifold ev−1(�) in Mz(p0,H∞) by �′.

If the intersection product [�′] · [N (i)
∞ ] is trivial for all i = 1, . . . , N , then

it follows that � is null-homologous.

Proof. Generically, � is disjoint from H∞, so we may assume that �′ does not
intersect ev−1(H∞), and after a further perturbation we can assume that �′

is transverse to N (i)
∞ without changing the homology class of �′.

If [�′] · [N (i)
∞ ] = 0, we can apply Lemma 3.7 to find a surface �′′ in

Mz(p0,H∞) that is homologous to �′ and that does not have any inter-
section points either with N (i)

∞ or with ev−1(H∞). Furthermore, since this
modification has been performed in an arbitrarily small neighbourhood of
N (i)

∞ , we may assume that we have not created any new intersection points
with one of the other components N (j)

∞ for j �= i.
Thus, if the intersection product [�′] · [N (i)

∞ ] is trivial for all i = 1, . . . , N ,
we obtain by successively applying this construction for each i a surface �′′

in Mz(p0,H∞) with [�′′] = [�′] that does not intersect any of the N (i)
∞ or

ev−1(H∞).
We then have that ev∗([�′′]) = 0 as in the proof of Lemma 3.4, because

Mz(p0,H∞)\(⋃
i N (i)

∞ ∪ev−1(H∞)
)

retracts to ev−1(p0), but due to Lemma 3.3
we see that ev∗([�′]) = [�]. Since [�′′] = [�′], it follows that [�] = 0.

�

Lemma 3.9. Let � ⊂ W be a surface that is transverse to the evaluation
map ev and that represents the homology class of a line in W∞. Then, it
follows for �′ = ev−1(�) that

[�′] · [N (i)
∞

]
= deg(ev(i)

∞ ).

Proof. Let y ∈ H∞ be a regular value of ev(i)
∞ for all i = 1, . . . , N , and let

�0 be a line in W∞ intersecting H∞ transversely at y. It follows that �0 is
transverse to ev |N (i)

∞
at y, that is, for every x ∈ ev−1(y) ∩ N (i)

∞ we have

Ty�0 ⊕ dx ev
(
TxN (i)

∞
)

= TyW, (3)

because the nodal J-holomorphic spheres in M(p0,H∞) are all transverse to
W∞.

By construction
(
ev(i)

∞
)−1(y) =

(
ev |N (i)

∞

)−1(�0). If x ∈ (
ev |N (i)

∞

)−1(�0),
we define sign(x) = +1 if the equality of Equation (3) preserves the orien-
tation, and sign(x) = −1 otherwise. Then sign(x) = sign(dx ev(i)

∞ ) because
dx ev is complex linear in the extra direction TxN (i)

∞ /TxS(i)
∞ .

Now let � be a small perturbation of �0 which is transverse to ev. By
Equation (3), we can assume that the perturbation is supported away from
y and that no new intersection points between ev−1(�) and N (i)

∞ are created.
Then
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[N (i)
∞ ] · [ev−1(�)] =

∑

x∈
(
ev |N(i)∞

)−1
(�0)

sign(x) =
∑

x∈
(
ev

(i)
∞

)−1
(y)

sign(dx ev(i)
∞ ) = deg(ev(i)

∞ ).

�

Lemma 3.10. There exists an i ∈ {1, . . . , N} such that deg(ev(i)
∞ ) �= 0.

Proof. Let � be a surface in W that is transverse to the evaluation map ev
and that represents the homology class of a line in W∞. Denote ev−1(�) by
�′. By Lemma 3.9, deg(ev(i)

∞ ) = [�′] · [N (i)
∞

]
. Thus, if deg(ev(i)

∞ ) were 0 for
every i = 1, . . . , N , it would follow from Lemma 3.8 that [�] = 0. But this is
impossible because the symplectic form evaluates positively on [�]. �

After all this preparation, the proof of Theorem 1.1 is falling at our feet
like a ripe fruit.

Proof. (Proof of Theorem 1.1) By Lemma 3.10 there exists an i ∈ {1, . . . , N}
such that deg(ev(i)

∞ ) �= 0. Then, by Lemma 3.6, [�] = 2 ev∗
(
[A(i)

∞ ]
)

modulo
torsion. If we evaluate the first Chern class of TW on [�] we obtain

n + 2 =
〈
c1(TW ), [�]

〉
= 2

〈
c1(TW ), ev∗

(
[A(i)

∞ ]
)〉

,

which is a contradiction when n is odd. �

4. Fundamental group of semipositive fillings

In this section, let (W,ω) be a semipositive filling of (RP2n−1, ξ). We recall
that (W,ω) is semipositive if every class A in the image of the Hurewicz
homomorphism π2(W ) → H2(W ;Z) satisfying the conditions 〈ω,A〉 > 0 and
〈c1(TW ), A〉 ≥ 3 − n also satisfies 〈c1(TW ), A〉 ≥ 0. See [9, Definition 6.4.1].

We use the same compactification (W, ω) and the same set of almost
complex structures J as in the previous sections, but now that (W,ω) does
not need to be symplectically aspherical we cannot assume anymore that
M(p0,H∞) is a manifold or that its elements have no irreducible compo-
nent contained completely inside W \W∞. The irreducible components which
intersect W∞ must be simply covered because the intersections are simple,
and therefore are Fredholm regular for a generic almost complex structure
J ∈ J , but the irreducible components which are contained in W\W∞ can
be multiply covered. However, according to [9, Theorem 6.6.1], the image of
Mred(p0,H∞) under the evaluation map is contained in the union of images
of finitely many compact codimension two smooth manifolds for a generic
J ∈ J because the irreducible components intersecting W∞ are Fredholm
regular and the irreducible components contained in W \ W∞ are controlled
by semipositivity. In particular, W\ ev(Mred(p0,H∞)) is open, dense and
connected. Moreover the restriction of the evaluation map

ev : M(p0,H∞) \ ev−1
(
ev(Mred(p0,H∞))

) → W \ ev
(Mred(p0,H∞)

)
,

is proper by Gromov compactness, and therefore its degree is well defined.
Then, Lemma 3.2 can be rephrased as follows.
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Lemma 4.1. If (W,ω) is semipositive and y ∈ W\ ev(Mred(p0,H∞)) is a
regular value of ev, then

∑

x∈ev−1(y)

sign(dx ev) = 1.

In particular, ev : Mz(p0,H∞) → W is surjective.

If we apply the argument of Lemma 3.4 to a 1-dimensional submanifold
of W we obtain the following result.

Lemma 4.2. If (W,ω) is a semipositive symplectic filling of (RP2n−1, ξ), then
the inclusion ι : RP2n−1 → W induces a surjective map ι∗ : π1

(
RP

2n−1
) →

π1(W ).

Proof. Recall that W \ W∞ is equal to W\∂W . Instead of proving that
π1(∂W ) maps surjectively onto π1(W ), we can equivalently show that for
a sufficiently small neighbourhood Uε of W∞, π1(Uε \ W∞) is surjective in
π1(W \ W∞).

Choose a base point b for π1(W\W∞) that lies in the neighbourhood U
of Lemma 3.2, and use b′ = ev−1(b) as the base point for π1(Mz(p0,H∞)).

We can represent every element of π1

(
W\W∞

)
by a smooth embedding

γ : S1 ↪→ W,

that avoids ev
(Mred(p0,H∞)

)
by a codimension argument and that is trans-

verse to the evaluation map. Using the fact that ev is a diffeomorphism of U
onto its image and arguing as in point (i) of the proof of [5, Lemma2.3] we
obtain a loop Γ: S1 → Mz(p0,H∞) such that Γ(1) = b′ and ev∗([Γ]) = [γ]
in π1(W\W∞). Furthermore Γ does not intersect any singular stratum or
ev−1(W∞).

We can isotope Mz(p0,H∞)\ev−1(H∞) into an arbitrarily small neigh-
bourhood of ev−1(p0) by pushing the marked point in every holomorphic
sphere from ∞ towards 0. This isotopy restricts to Mz(p0,H∞)\ ev−1(W∞),
so that Γ is homotopic in Mz(p0,H∞) \ ev−1(W∞) to a loop in a neighbour-
hood of ev−1(p0).

Then, it follows that [γ] is homotopic in W \ W∞ to a loop that lies in
an arbitrarily small neighbourhood of p0 and π1(Uε\W∞) → π1

(
W\W∞

)
is

surjective. �
Combining this with the argument found in [3, Section 6.2] we obtain

the main result of this section.

Theorem 4.3. Any semipositive symplectic filling of (RP2n−1, ξ) is simply
connected.

Proof. Let (W,ω) be a semipositive symplectic filling of (RP2n−1, ξ). By
Lemma 4.2 the map π1(∂W ) → π1(W ) induced by the inclusion ι : ∂W ↪→ W
is surjective so that π1(W ) is either trivial or isomorphic to Z/2Z.

In the latter case, ι induces an isomorphism between the fundamental
groups, and thus

ι∗ : H1(W ;Z/2Z) → H1
(
∂W ;Z/2Z

)
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is also an isomorphism. Let α ∈ H1(W ;Z/2Z) be the nontrivial element.
Then ι∗α ∈ H1

(
∂W ;Z/2Z

)
is also nontrivial and, since H∗(RP2n−1;Z/2Z)

is generated as an algebra by the nontrivial element of degree one, (ι∗α)2n−1

is the nontrivial element of H2n−1
(
∂W ;Z/2Z

)
.

By the naturality of the cup product (ι∗α)2n−1 = ι∗(α2n−1). However

ι∗ : H2n−1

(
∂W ;Z/2Z

) → H2n−1(W ;Z/2Z),

is trivial, and consequently ι∗ : H2n−1(W ;Z/2Z) → H2n−1
(
∂W ;Z/2Z

)
is

also trivial by duality because we are working over a field. This contradicts
ι∗(α2n−1) �= 0 and therefore shows that W is simply connected. �

5. Yet another proof of the Eliashberg-Floer-McDuff theorem

In this section we apply the constructions of this article to the symplectic
fillings of the standard contact structure ξ on S2n−1. This will lead to small
changes in the meaning of the notation. If (W,ω) is a symplectic filling of
(S2n−1, ξ) and we perform symplectic reduction of its boundary, we obtain a
closed symplectic manifold (W, ω) with a codimension two symplectic sub-
manifold W∞ ∼= CP

n−1 whose normal bundle is isomorphic to OPn−1(1). We
choose an almost complex structure J on W which is integrable near W∞ and
generic elsewhere. Let p0 ∈ W∞ be a point; we denote by M(p0) the moduli
space of unparametrised J-holomorphic spheres in W that are homotopic to
a line in W∞ and pass through p0. If � is a line in W∞, then

TW |� ∼= OP1(2) ⊕ OP1(1) ⊕ · · · ⊕ OP1(1)︸ ︷︷ ︸
n−1

.

Since [�] · [W∞] = 1 all elements of M(p0) are simply covered, and there-
fore M(p0) is a smooth manifold by the analogue of Proposition 2.3. Let
Mz(p0) is the moduli space obtained by adding a free marked point to the
elements of M(p0). A Riemann-Roch calculation gives dimM(p0) = 2n − 2
and dimMz(p0) = 2n.

Lemma 5.1. If (W,ω) is symplectically aspherical, then Mz(p0) is compact.

Proof. As the algebraic intersection between a line with W∞ is one, any nodal
J-holomorphic curve representing the homology class of a line must have an
irreducible component in W\W∞ ∼= W . �

Lemma 3.2 still holds with the minimal necessary modifications, and
therefore, the evaluation map ev : Mz(p0) → W has degree one.

Lemma 5.2. If (W,ω) is a symplectically aspherical filling of (S2n−1, ξ), then
H∗(W ;Z) = 0 for ∗ > 0.

Proof. The moduli space Mz(p0) is an S2-bundle over M(p0) and ev−1(p0)
is a section. Let W̃∞ be a J-holomorphic hypersurface of W contained in the
neighbourhood of W∞ where J is integrable and obtained as the graph of a
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section of OPn−1(1). We choose W̃∞ such that p0 �∈ W̃∞: then ev−1(W̃∞) is
a section of Mz(p0) which is disjoint from ev−1(p0). The map

ev∗ : H∗
(Mz(p0) \ ev−1(W̃∞);Z

) → H∗
(
W \ W̃∞;Z

) ∼= H∗(W ;Z), (4)

is surjective by Lemma 3.3.
That lemma, strictly speaking, is about homology classes represented

by submanifolds, but there are several ways to extend it to general homology
classes.

On the other hand Mz(p0)\ ev−1(W̃∞) retracts onto ev−1(p0), and
therefore the map (4) is trivial for ∗ > 0. �

The proof of Lemma 4.2 works with the obvious modifications more or
less unchanged for fillings of (S2n−1, ξ), and therefore W is simply connected.
Then the h-cobordism theorem implies the following corollary.

Corollary 5.3. (Eliashberg–Floer–McDuff; see [8, Theorem 1.5]) If (W,ω) is
a symplectically aspherical filling of (S2n−1, ξ), then W is diffeomorphic to
the ball D2n.
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Abstract. Reflection in planar billiard acts on oriented lines. For a
given closed convex planar curve γ, the string construction yields a one-
parameter family Γp of nested billiard tables containing γ for which γ
is a caustic: the reflection from Γp sends each tangent line to γ to a line
tangent to γ. The reflections from Γp act on the corresponding tangency
points, inducing a family of string diffeomorphisms Tp : γ → γ. We say
that γ has the string Poritsky property, if it admits a parameter t (called
the Poritsky string length) in which all the transformations Tp with
small p are translations t �→ t + cp. These definitions also make sense
for germs of curves γ. The Poritsky property is closely related to the fa-
mous Birkhoff Conjecture. Each conic has the string Poritsky property.
Conversely, each germ of planar curve with the Poritsky property is a
conic (Poritsky, 1950). In the present paper, we extend this result of
Poritsky to curves on surfaces of constant curvature and to outer bil-
liards on all these surfaces. For curves with the Poritsky property on a
surface with arbitrary Riemannian metric, we prove the following two re-
sults: 1) the Poritsky string length coincides with Lazutkin parameter up
to additive and multiplicative constants; (2) a germ of C5-smooth curve
with the Poritsky property is uniquely determined by its 4-jet. In the
Euclidean case, the latter statement follows from the above-mentioned
Poritsky’s result on conics.
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1. Introduction and main results

Consider the billiard in a bounded planar domain Ω ⊂ R
2 with a strictly con-

vex smooth boundary. The billiard dynamics T acts on the space of oriented
lines intersecting Ω. Namely, let L be an oriented line intersecting Ω, and let
A be its last point (in the sense of orientation) of its intersection with ∂Ω. By
definition, T (L) is the image of the line L under the symmetry with respect
to the tangent line TA∂Ω, being oriented from the point A inside the domain
Ω. A curve γ ⊂ R

2 is a caustic of the billiard Ω if each line tangent to γ is
reflected from the boundary ∂Ω again to a line tangent to γ; in other words,
if the curve formed by oriented lines tangent to γ is invariant under the bil-
liard transformation T . In what follows, we consider only smooth caustics (in
particular, without cusps).

It is well known that each planar billiard with sufficiently smooth strictly
convex boundary has a Cantor family of caustics [15]. An analogous state-
ment for outer billiards was proved in [2]. Every elliptic billiard is Birkhoff
caustic integrable, that is, an inner neighborhood of its boundary is foliated by
closed caustics. The famous Birkhoff Conjecture states the converse: the only
Birkhoff caustic integrable planar billiards are ellipses. The Birkhoff Conjec-
ture together with its extension to billiards on surfaces of constant curvature
and its outer and projective billiard versions (due to Sergei Tabachnikov) are
big open problems, see, e.g., [8,9,13,25] and references therein for history
and related results. Recently, a Riemannian generalization of the Birkhoff
Conjecture was suggested in [10, conjecture 1.2].

It is well known that each smooth convex planar curve γ is a caustic for
a family of billiards Ω = Ωp, p ∈ R+, whose boundaries Γ = Γp = ∂Ωp are
given by the p-th string constructions, see [24, p. 73]. Namely, let |γ| denote
the length of the curve γ. Take an arbitrary number p > 0 and a string of
length p + |γ| enveloping the curve γ. Let us put a pencil between the curve
γ and the string, and let us push it out of γ to a position such that the string
that envelopes γ and the pencil becomes tight. Then, let us move the pencil
around the curve γ so that the string remains tight. Moving the pencil in this
way draws a convex curve Γp that is called the p-th string construction, see
Fig. 1.

For every A ∈ γ by GA, we denote the line tangent to γ at A. If γ
is oriented by a vector in TAγ, then we orient GA by the same vector. The
billiard reflection Tp from the curve Γp acts on the oriented lines tangent to
γ. It induces the mapping Tp : γ → γ acting on tangency points and called
string diffeomorphism. It sends each point A ∈ γ to the point of tangency of
the curve γ with the line Tp(GA).

Consider the special case, where γ is an ellipse. Then, for every p > 0,
the curve Γp given by the p-th string construction is an ellipse confocal to
γ. Every ellipse γ admits a canonical bijective parametrization by the circle
S1 = R/2πZ equipped with a parameter t such that for every p > 0 small
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Figure 1. The string construction

enough one has Tp(t) = t + cp, cp = cp(γ), see [24, the discussion before
corollary 4.5]. The property of existence of the above parametrization will
be called the string Poritsky property, and the parameter t will be called the
Poritsky–Lazutkin string length.

In his seminal paper [21], Hillel Poritsky proved the Birkhoff Conjecture
under the additional assumption called the Graves (or evolution) property: for
every two nested caustics γλ, γμ of the billiard in question the smaller caustic
γλ is also a caustic of the billiard in the bigger caustic γμ. His beautiful
geometric proof was based on his remarkable theorem stating that in the
Euclidean plane only conics have the string Poritsky property [21, section 7].

In the present paper, we extend this theorem by Poritsky to billiards
on simply connected complete surfaces of constant curvature (Sects. 1.1 and
4) and prove its version for outer billiards and area construction on these
surfaces (Sects. 1.2 and 5). All the results of the present paper will be stated
and proved for germs of curves, and thus, in Sect. 1.1 (1.2), we state the
definitions of the Poritsky string (area) property for germs. We also study the
Poritsky property on arbitrary surfaces equipped with a Riemannian metric.
In this general case, we show that the Poritsky string length coincides with
the Lazutkin parameter

tL(s) =
∫ s

s0

κ
2
3 (ζ)dζ (1.1)

introduced in [15, formula (1.3)], up to multiplicative and additive constants
(Theorem 1.15 in Sect. 1.3, proved in Sect. 6). Here, κ is the geodesic curva-
ture. This explains the name “Poritsky–Lazutkin length”.

Recall that the billiard ball map acting on the space of oriented geodesics
preserves the canonical symplectic form (see the background material in Sect.
7.1). The above-mentioned Theorem 1.15 concerns the family of reflections
from the string curves Γp, which is a family of symplectomorphisms having
a common invariant curve: the curve of geodesics tangent to γ. In Sect. 7, we
extend Theorem 1.15 to a more general class of symplectic maps: families of
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the so-called “weakly billiard-like maps” with a converging family of invariant
curves (Theorem 7.10 stated in Sect. 7.2).

In [15], for a given curve γ ⊂ R
2, Lazutkin introduced remarkable co-

ordinates (x, y) on the space of oriented lines, in which the billiard ball map
given by reflection from the curve γ takes the form

(x, y) �→ (x + y + o(y), y + o(y2));

the x-axis coincides with the set of the lines tangent to γ;

x = tL(s) on the x − axis up to multiplicative and additive constants.

For the proof of Theorem 7.10, we use analogous coordinates for weakly
billiard-like maps and prove Lemma 7.13 on asymptotic behavior of orbits
in these coordinates (Sect. 7.3). We retrieve Theorem 1.15 (for C6-smooth
curves) from Theorem 7.10 at the end of Sect. 7.

Melrose and Marvizi [16] have shown that the billiard ball map given
by a C∞-smooth curve coincides with a unit time flow map of appropriately
“time-rescaled” smooth Hamiltonian vector field, up to a flat correction.

For curves on arbitrary surface equipped with a C6-smooth Riemannian
metric, we show that a C5-smooth germ of curve with the string Poritsky
property is uniquely determined by its 4-jet (Theorem 1.19 stated in Sect.
1.4 and proved in Sect. 8). This extends similar property of planar conics.

Theorem 1.3 in Sect. 1.1 (proved in Sect. 3) states that if a metric and
a germ of curve γ are both Ck, then the string curve foliation is tangent to
a C [ k

2 ]−1-smooth line field on the closed concave side from γ.
In Sect. 2, we present a Riemannian-geometric background material on

normal coordinates, equivalent definitions of geodesic curvature, etc. used in
the proofs of main results.

1.1. The Poritsky property for string construction

Let Σ be a two-dimensional surface equipped with a Riemannian metric. Let
γ ⊂ Σ be a smooth curve (a germ of smooth curve at a point O ∈ Σ). We
consider it to be convex: its geodesic curvature should be non-zero. For every
given two points A,B ∈ γ close enough by CAB we will denote the unique
point (close to them) of intersection of the geodesics GA and GB tangent to
γ at A and B, respectively. (Its existence will be proved in Sect. 2.1.) Set

λ(A,B) := the length of the arc AB of the curve γ,

L(A,B) := |ACAB | + |BCAB | − λ(A,B). (1.2)

Here, for X,Y ∈ Σ close enough and lying in a compact subset in Σ by |XY |,
we denote the length of small geodesic segment connecting X and Y .

Definition 1.1 (equivalent definition of string construction). Let γ ⊂ Σ be
a germ of curve with non-zero geodesic curvature. For every p ∈ R+ small
enough, the subset

Γp := {CAB | L(A,B) = p} ⊂ Σ

is called the p-th string construction, see [24, p.73].
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Remark 1.2. For every p > 0 small enough Γp is a well-defined smooth curve,
we set Γ0 = γ. The curve γ is a caustic for the billiard transformation acting
by reflection from the curve Γp: a geodesic tangent to γ is reflected from the
curve Γp to a geodesic tangent to γ [24, theorem 5.1]. In Sect. 3, we will prove
the following theorem.

Theorem 1.3. Let k ≥ 2, Σ be a Ck+1-smooth surface equipped with a Ck-
smooth Riemannian metric, and let γ ⊂ Σ be a germ of Ck-smooth curve at
O ∈ Σ with positive geodesic curvature. Let U ⊂ Σ denote a small domain
adjacent to γ from the concave side. For every C ∈ U , let Λ(C) ⊂ TCΣ denote
the exterior bisector of the angle formed by the two geodesics through C that
are tangent to γ. Then, the following statements hold.

1. The one-dimensional subspaces Λ(C) form a germ at O of line field Λ
that is Ck−1-smooth on U and Cr(k)-smooth on U ,

r(k) =
[
k

2

]
− 1.

2. The string curves Γp are tangent to Λ and Cr(k)+1-smooth. Their (r(k)+
1)-jets at base points C depend continuously on C ∈ U .

Definition 1.4. We say that a germ of oriented curve γ ⊂ Σ with non-zero
geodesic curvature has the string Poritsky property, if it admits a C1-smooth
parametrization by a parameter t (called the Poritsky–Lazutkin string length)
such that for every p > 0 small enough there exists a c = cp > 0 such that
for every pair B,A ∈ γ ordered by orientation with L(A,B) = p one has
t(A) − t(B) = cp.

Example 1.5. It is classically known that
(i) For every planar conic γ ⊂ R

2 and every p > 0, the p-th string con-
struction Γp is a conic confocal to γ;

(ii) All the conics confocal to γ and lying inside a given string construction
conic Γp are caustics of the billiard inside the conic Γp;

(iii) Each conic has the string Poritsky property [21, section 7], [24, p.58];
(iv) Conversely, each planar curve with the string Poritsky property is a

conic, by a theorem of Poritsky [21, section 7].

Two results of the present paper extend statement (iv) to billiards on
surfaces of constant curvature (by adapting Poritsky’s arguments from [21,
section 7]) and to outer billiards on the latter surfaces. To state them, let us
recall the notion of a conic on a surface of constant curvature.

Without loss of generality we consider simply connected complete sur-
faces Σ of constant curvature 0, ±1 and realize each of them in its standard
model in the space R

3
(x1,x2,x3)

equipped with appropriate quadratic form

< Qx, x >, Q ∈ {diag(1, 1, 0),diag(1, 1,±1)}, < x, x >= x2
1 + x2

2 + x2
3.

- Euclidean plane: Σ = {x3 = 1}, Q = diag(1, 1, 0).
- The unit sphere: Σ = {x2

1 + x2
2 + x2

3 = 1}, Q = Id.
- The hyperbolic plane: Σ = {x2

1 + x2
2 − x2

3 = −1} ∩ {x3 > 0}, Q =
diag(1, 1,−1).
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The metric of constant curvature on Σ is induced by the quadratic form
< Qx, x >. The geodesics on Σ are its intersections with two-dimensional
vector subspaces in R

3. The conics on Σ are its intersections with quadrics
{< Cx, x >= 0} ⊂ R

3, where C is a real symmetric 3× 3-matrix, see [12,29].

Proposition 1.6. On every surface of constant curvature each conic has the
string Poritsky property.

Theorem 1.7. Conversely, on every surface of constant curvature each germ
of C2-smooth curve with the string Poritsky property is a conic.

Proposition 1.6 and Theorem 1.7 will be proved in Sect. 4.

Remark 1.8. In the case, when the surface under question is Euclidean plane,
Proposition 1.6 was proved in [21, formula (7.1)], and Theorem 1.7 was proved
in [21, section 7].

1.2. The Poritsky property for outer billiards and area construction

Let γ ⊂ R
2 be a smooth strictly convex closed curve. Let U be the exterior

connected component of the complement R2 \γ. Recall that the outer billiard
map T : U → U associated to the curve γ acts as follows. Take a point
A ∈ U . There are two tangent lines to γ through A. Let LA denote the
right tangent line (that is, the image of the line LA under a small clockwise
rotation around the point A is disjoint from the curve γ). Let B ∈ γ denote
its tangency point. By definition, the image T (A) is the point of the line LA

that is central-symmetric to A with respect to the point B.
It is well known that if γ is an ellipse, then the corresponding outer

billiard map is integrable: that is, an exterior neighborhood of the curve γ is
foliated by invariant closed curves for the outer billiard map so that γ is a leaf
of this foliation. The analogue of Birkhoff Conjecture for the outer billiards,
which was suggested by Tabachnikov [25, p. 101], states the converse: if γ
generates an integrable outer billiard, then it is an ellipse. Its polynomially
integrable version was studied in [25] and recently solved in [11]. For a survey
on outer billiards, see [23,24,28] and references therein.

For a given strictly convex smooth closed curve Γ, there exists a one-
parametric family of curves γp such that γp lies in the interior component
Ω of the complement R

2 \ Γ, and the curve Γ is invariant under the outer
billiard map Tp generated by γp. The curves γp are given by the following
area construction analogous to the string construction. Let A denote the area
of the domain Ω. For every oriented line � intersecting Γ, let Ω−(�) denote
the connected component of the complement Ω \ � for which � is a negatively
oriented part of boundary. Let now L be a class of parallel and co-directed
oriented lines. For every p > 0, p < 1

2A, let Lp denote the oriented line
representing L that intersects Γ and such that Area(Ω−(Lp)) = p. For every
given p, the lines Lp corresponding to different classes L form a one-parameter
family parametrized by the circle: the azimuth of the line is the parameter.
Let γp denote the enveloping curve of the latter family, and let Tp denote
the outer billiard map generated by γp. It is well known that the curve Γ is
Tp-invariant for every p as above [24, corollary 9.5]. See Fig. 2.

Vol. 24 (2022) On curves with the Poritsky property

Reprinted from the journal 621



A. Glutsyuk JFPTA

Figure 2. The area construction: Area(Ω−(Lp)) ≡ p

Remark 1.9. For every p > 0 small enough, the curve γp given by the area
construction is smooth. But for big p, it may have singularities (e.g., cusps).

For Γ being an ellipse, all the γps are ellipses homothetic to Γ with
respect to its center. In this case, there exists a parametrization of the curve
Γ by circle S1 = R/2πZ with parameter t in which Tp : Γ → Γ is a translation
t �→ t+cp for every p. This follows from the area-preserving property of outer
billiards, see [27, corollary 1.2], and Tq-invariance of the ellipse γp for q > p,
analogously to the arguments in [21, section 7], [24, the discussion before
corollary 4.5]. Similar statements hold for all conics, as in loc. cit.

In our paper, we prove the converse statement given by the following
theorem, which will be stated in local context, for germs of smooth curves.
To state it, let us introduce the following definition.

Definition 1.10. Let Σ be a surface with a smooth Riemannian metric, O ∈ Σ.
Let Γ ⊂ Σ be a germ of smooth strictly convex curve at a point O (i.e., with
positive geodesic curvature). Let U ⊂ Σ be a disk centered at O that is split
by Γ into two components. One of these components is convex; let us denote
it by V . Consider the curves γp given by the above area construction with
p > 0 small enough and lines replaced by geodesics. The curves γp form a
germ at O of foliation in the domain V , and its boundary curve Γ = γ0 is a
leaf of this foliation. We say that the curve Γ has the area Poritsky property,
if it admits a local C1-smooth parametrization by a parameter t called the
area Poritsky parameter such that for every p > 0 small enough the mapping
Tp : Γ → Γ is a translation t �→ t + cp in the coordinate t.

Proposition 1.11 (see [26, lemma 3] for the hyperbolic case; [27, lemma 5.1]
for planar conics). On every surface of constant curvature each conic has the
area Poritsky property.

Theorem 1.12 Conversely, on every surface of constant curvature each germ
of C2-smooth curve with the area Poritsky property is a conic1.

1Earlier, in 2018, Tabachnikov proved Theorem 1.12 for planar C5-smooth curves using

a different, analytic method (showing constance of affine curvature). After the present

paper was submitted, Arnold and Tabachnikov extended Tabachnikov’s analytic proof to
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Remark 1.13 (Tabachnikov) The area Poritsky property for conics on the
sphere follows from their string Poritsky property and the fact that the spher-
ical outer billiards are dual to the spherical Birkhoff billiards [23, subsection
4.1, lemma 5]: the duality is given by orthogonal polarity. Analogous duality
holds on hyperbolic plane realized as the half-pseudo-sphere of radius −1 in
3-dimensional Minkowski space [6, section 2, remark 2]. As it was noticed in
[3, end of section 3], in the spherical case the area Poritsky property is dual
to the string Poritsky property. Therefore, in the spherical case Theorems
1.12 and 1.7 are dual and hence, equivalent.

1.3. Coincidence of the Poritsky and Lazutkin lengths

Everywhere in the subsection Σ is a two-dimensional surface equipped with
a C4-smooth Riemannian metric.

Definition 1.14 Let γ ⊂ Σ be a C2-smooth curve, let s be its natural length
parameter. Let κ(s) denote its geodesic curvature. Fix a point in γ, let s0

denote the corresponding length parameter value. The parameter

tL :=
∫ s

s0

κ
2
3 (ζ)dζ (1.3)

is called the Lazutkin parameter. See [15, formula (1.3)].

Theorem 1.15 Let γ ⊂ Σ be a germ of C3-smooth curve with positive geodesic
curvature κ and the string Poritsky property. Then, its Poritsky string length
parameter t coincides with the Lazutkin parameter (1.3) up to additive and
multiplicative constants. That is, up to constant factor, one has

dt

ds
= κ

2
3 (s). (1.4)

A proof of Theorem 1.15 will be presented in Sect. 6. It is based on the
following theorem on asymptotics of the function L(A,B) and its corollaries
on string diffeomorphisms, also proved in the same section.

Theorem 1.16 Let γ ⊂ Σ be a C3-smooth curve with positive geodesic curva-
ture. For every A ∈ γ let sA denote the corresponding natural length param-
eter value. Let L(A,B) denote the quantity defined in (1.2). One has

L(A,B) =
κ2(A)

12
|sA − sB |3(1 + o(1)), (1.5)

uniformly, as sA − sB → 0 so that A and B remain in a compact subarc in
γ. Asymptotic (1.5) is also uniform in the metric running through a closed
bounded subset in the space of C4-smooth Riemannian metrics.

Corollary 1.17 Let γ ⊂ Σ be a germ of C3-smooth curve with positive geodesic
curvature. For every small p > 0 let Tp : γ → γ denote the corresponding
string diffeomorphism (induced by reflection of geodesics tangent to γ from

spherical and hyperbolic cases of Theorem 1.12, see [3]. Our proof of Theorem 1.12 given

in Sect. 5 is geometric, analogous to Poritsky’s arguments from [21, section 7] (which were
given for Birkhoff planar billiards and string construction).
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the string curve Γp and acting on the tangency points). For every points B
and Q lying in a compact subarc γ̂ � γ, one has

κ
2
3 (B)λ(B, Tp(B)) 	 κ

2
3 (Q)λ(Q, Tp(Q)), as p → 0, (1.6)

uniformly in B,Q ∈ γ̂.

Corollary 1.18 In the conditions of Corollary 1.17, one has

κ
2
3 (B)λ(B, Tp(B)) 	 κ

2
3 (T m

p (B))λ(T m
p (B), T m+1

p (B)), as p → 0, (1.7)

uniformly in B ∈ γ̂ and those m ∈ N for which T m
p (B) ∈ γ̂.

A symplectic generalization of Theorem 1.15 to families of the so-called
weakly billiard-like maps of string type will be presented in Sect. 7.

1.4. Unique determination by 4-jet

The next theorem is a Riemannian generalization of the classical fact stating
that each planar conic is uniquely determined by its 4-jet at some its point.

Theorem 1.19 Let Σ be a surface equipped with a C6-smooth Riemannian
metric. A C5-smooth germ of curve with the string Poritsky property is
uniquely determined by its 4-jet.

Theorem 1.19 will be proved in Sect. 8.

Remark 1.20 In the case, when Σ is the Euclidean plane, the statement of
Theorem 1.19 follows from Poritsky’s result [21, section 7] (see statement
(iv) of Example 1.5). Similarly, in the case, when Σ is a surface of constant
curvature, the statement of Theorem 1.19 follows from Theorem 1.7.

2. Background material from Riemannian geometry

We consider curves γ with positive geodesic curvature on an oriented surface
Σ equipped with a Riemannian metric. In Sect. 2.1, we recall the notion of
normal coordinates. We state and prove equivalence of different definitions
of geodesic curvature. One of these definitions deals with geodesics tangent
to γ at close points A and B and the asymptotics of angle between them
at their intersection point C. In the same subsection, we prove existence of
two geodesics tangent to γ through every point C close to γ and lying on
the concave side from γ; the corresponding tangency points will be denoted
by A = A(C) and B = B(C). We also prove an asymptotic formula for
derivative of azimuth of a vector tangent to a geodesic (Proposition 2.7). In
Sect. 2.2, we prove formulas for the derivatives dA

dC , dB
dC , which will be used

in the proofs of Theorems 1.3, 1.7, 1.15. In Sect. 2.3, we consider a pair of
geodesics issued from the same point A and their points G(s), Z(s) lying
at a given distance s to A. We give an asymptotic formula for difference of
azimuths of their tangent vectors at G(s) and Z(s), as s → 0. We will use it in
the proof of Theorem 1.19. In Sect. 2.4 we state and prove some asymptotic
formulas relating sides and angles of small geodesic and curvilinear triangles,
which will be used in the proofs of Theorems 1.15, 1.16 and 1.19.
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2.1. Normal coordinates and equivalent definitions of geodesic curvature

Let Σ be a two-dimensional surface equipped with a C3-smooth Riemannian
metric g. Let O ∈ Σ. Let γ be a C2-smooth germ of curve at O parametrized
by its natural length parameter. Recall that its geodesic curvature κ = κ(O)
equals the norm of the covariant derivative ∇γ̇ γ̇. In the Euclidean case, it
coincides with the inverse of the osculating circle radius.

Consider the exponential chart exp : v �→ exp(v) parametrizing a neigh-
borhood of the point O by a neighborhood of zero in the tangent plane TOΣ.
We introduce orthogonal linear coordinates (x, y) on TOΣ, which together
with the exponential chart, induce normal coordinates centered at O, also
denoted by (x, y), on a neighborhood of the point O. It is well known that
in normal coordinates the metric has the same 1-jet at O, as the standard
Euclidean metric (we then say that its 1-jet is trivial at O.) Its Christoffel
symbols vanish at O.

Remark 2.1 Let the surface Σ be Ck+2-smooth and the metric be Ck+1-
smooth. Then, normal coordinates are Ck-smooth. This follows from theorem
on dependence of solution of differential equation on initial condition (applied
to the equation of geodesics) and Ck-smoothness of the Christoffel symbols.
In normal coordinates the metric is Ck−1-smooth. Thus, each Ck-smooth
curve is represented by a Ck-smooth curve in normal coordinates.

Proposition 2.2 For every curve γ as above its geodesic curvature κ(O) equals
its Euclidean geodesic curvature κe(O) in normal coordinates centered at O.
If the normal coordinates (x, y) are chosen so that the x-axis is tangent to γ,
then γ is the graph of a germ of function:

γ = {y = f(x)}, f(x) = ±κ(O)
2

x2 + o(x2), as x → 0. (2.1)

Proof Proposition 2.2 follows from definition and vanishing of the Christoffel
symbols at O in normal coordinates.

Proposition 2.3 Let the germ (γ,O) ⊂ Σ be the same as at the beginning of
the subsection, and let γ have positive geodesic curvature. Let U ⊂ Σ be a
small domain adjacent to γ from the concave side: γ is its concave boundary.
Let γ̂ ⊂ γ be a compact subset: an arc with boundary. For every C ∈ U close
enough to γ̂, there exist exactly two geodesics through C tangent to γ. In what
follows, we denote their tangency points with γ by A = A(C) and B = B(C)
so that AC is the right geodesic through C tangent to γ.

Proof The statement of the proposition is obvious in the Euclidean case. The
non-Euclidean case is reduced to the Euclidean case by considering a point
C ∈ U close to γ̂ and normal coordinates (xC , yC) centered at C so that
their family depends smoothly on C. In these coordinates, the curves γ = γC

depend smoothly on C and are strictly convex in the Euclidean sense, by
Proposition 2.2. The geodesics through C are lines. This together with the
statement of Proposition 2.3 in the Euclidean case implies its statement in
the non-Euclidean case.
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Let us consider that Σ is a Riemannian disk centered at O, the curve γ
splits Σ into two open parts, and γ has positive geodesic curvature. For every
point A ∈ γ the geodesic tangent to γ at A will be denoted by GA.

Proposition 2.4 Taking the disk Σ small enough, one can achieve that for
every A ∈ γ the curve γ lies in the closure of one and the same component
of the complement Σ \ GA, γ ∩ GA = {A}.

Proposition 2.4 follows its Euclidean version and Proposition 2.2.

Proposition 2.5 For every two points A,B ∈ γ close enough to O, the geode-
sics GA and GB intersect at a unique point C = CAB ∈ U close to O.

Proof Let H denote the geodesic through B orthogonal to TBγ. It intersects
the geodesic GA at some point P (A,B) ∈ U . The geodesic GB separates
P (A,B) from the punctured curve γ \ {B}, by construction and Proposition
2.4. Therefore, GB intersects the interval (A,P (A,B)) of the geodesic GA.
Uniqueness of intersection point of two geodesics in a domain with small
diameter is classical. This proves the proposition.

Proposition 2.6 For every A,B ∈ γ close enough to O, let C = CAB denote
the point of intersection GA∩GB. Let α(A,B) denote the acute angle between
the geodesics GA and GB at C, and let λ(A,B) denote the length of the arc
AB of the curve γ. The geodesic curvature κ(O) of the curve γ at O can be
found from any of the two following limits:

κ(O) = lim
A,B→O

α(A,B)
λ(A,B)

; (2.2)

κ(O) = lim
A,B→O

2
dist(B,GA)
λ(A,B)2

. (2.3)

Proof In the Euclidean case, formulas (2.2) and (2.3) are classical. Their
non-Euclidean versions follow by applying the Euclidean versions in normal
coordinates centered, respectively, at C and A (or at the point in GA closest
to B), as in the proof of Proposition 2.3.

For every point A ∈ Σ lying in a chart (x, y), e.g., a normal chart
centered at O, and every tangent vector v ∈ TAΣ set

az(v) := the azimuth of the vector v : its Euclidean angle with the x − axis,

i.e., the angle in the Euclidean metric in the coordinates (x, y). The azimuth
of an oriented one-dimensional subspace in TAΣ is defined analogously.

Proposition 2.7 Let the metric on Σ be C4-smooth. Let A ∈ Σ be a point
close to O and α(s) be a geodesic through A parametrized by the natural
length parameter s, α(0) = A.

1) Let κe(s) denote the Euclidean curvature of the geodesic α as a pla-
nar curve in normal chart (x, y) centered at O. For every ε > 0 small
enough,

κe(s) = O(dist(α,O)), as A → O, uniformly on {|s| ≤ ε}, (2.4)
dist(α,O) := the distance of the geodesic α to the point O.
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2) Set v(s) = α̇(s). One has

d az(v(s))
ds

= O(dist(α,O)) = O(∠(v(0), AO) dist(A,O)) as A → O, (2.5)

uniformly on the set {|s| ≤ ε}. The latter angle in (2.5) is the Riemann-
ian angle between the vector v(0) and the Euclidean line AO.

Proof In the coordinates (x, y), the geodesics are solutions of the second order
ordinary differential equation saying that α̈ equals a quadratic form in α̇ with
coefficients equal to appropriate Christoffel symbols of the metric g (which
vanish at O), and |α̇| = 1 in the metric g. The derivative in (2.5) is expressed
in terms of the Christoffel symbols. This derivative taken along a geodesic
α through O vanishes identically on α, since each geodesic through O is a
straight line in normal coordinates. Therefore, if we move the geodesic through
O out of O by a small distance δ, then the derivative in (2.5) will change by an
amount of order δ: the Christoffel symbols are C1-smooth, since the metric is
C4-smooth (hence, C2-smooth in normal coordinates). This implies the first
equality in (2.5). The second equality follows from the fact that the geodesics
through A issued in the direction of the vectors

−→
AO and v(0) are, respec-

tively, the line AO and α, hence, dist(α,O) = O(∠(v(0), AO) dist(A,O)).
This proves (2.5).

Let se denote the Euclidean natural parameter of the curve α, with
respect to the standard Euclidean metric in the chart (x, y). Recall that
κe(s) = d az(v(s))

dse
. For ε > 0 small enough and A close enough to O, the ratio

dse

ds is uniformly bounded on {|s| ≤ ε}. This together with (2.5) implies (2.4).
The proposition is proved.

2.2. Angular derivative of exponential mapping and the derivatives dA
dC

, dB
dC

In the proof of main results, we will use an explicit formula for the derivatives
of the functions A(C) and B(C) from Proposition 2.3. To state it, let us
introduce the following auxiliary functions. For every x ∈ Σ set,

ψ(x, r) :=
1
2π

(the length of circle of radius r centered at x).

Consider the polar coordinates (r, φ) on the Euclidean plane TxΣ. For every
unit vector v ∈ TxΣ, |v| = 1 (identified with the corresponding angle coordi-
nate φ) and every r > 0 let Ψ(x, v, r) denote 1

r times the module of derivative
in φ of the exponential mapping at the point rv:

Ψ(x, v, r) := r−1

∣∣∣∣∂ exp
∂φ

(rv)
∣∣∣∣ . (2.6)

Proposition 2.8 (see [7] in the hyperbolic case). Let Σ be a complete simply
connected Riemannian surface of constant curvature. Then,

rΨ(x, v, r) = ψ(x, r) = ψ(r) =

⎧⎪⎨
⎪⎩

r, if Σ is Euclidean plane,
sin r, if Σ is unit sphere,
sinh r, if Σ is hyperbolic plane.

(2.7)
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Proof The left equality in (2.7) and independence of x and v follow from
homogeneity. Let us prove the right equality: formula for the function ψ(r).
In the planar case this formula is obvious.
(a) Spherical case. Without loss of generality, let us place the center x = O

of the circle under question to the north pole (0, 0, 1) in the Euclidean
coordinates (x1, x2, x3) on the ambient space. Since each geodesic is a
big circle of length 2π and due to symmetry, without loss of generality
we consider that 0 < r ≤ π

2 . Then, the disk in Σ centered at O of
radius r is 1-to-1 projected to the disk of radius sin r in the coordinate
(x1, x2)-plane. The length of its boundary equals the Euclidean length
2π sin r of its projection.

(b) Case of hyperbolic plane. We consider the hyperbolic plane in the model
of unit disk equipped with the metric 2|dz|

1−|z|2 in the complex coordinate
z. For every R > 0, R < 1, the Euclidean circle {|z| = R} of radius R
is a hyperbolic circle of radius

r =
∫ R

0

2ds

1 − s2
= log

∣∣∣∣1 + R

1 − R

∣∣∣∣ .

The hyperbolic length of the same circle equals L = 4πR
1−R2 . Substituting

the former formula to the latter, one yields

R =
er − 1
er + 1

, L = 2π sinh r,

and finishes the proof of the proposition.

Proposition 2.9 Let γ ⊂ Σ be a germ of C2-smooth curve. Let s be the length
parameter on γ orienting it positively as a boundary of a convex domain. Let
U ⊂ Σ be a small domain adjacent to γ from the concave side, see Proposition
2.3. For every C ∈ U , let A(C), B(C) ∈ γ be the corresponding points from
Proposition 2.3, and let sA = sA(C), sB = sB(C) denote the corresponding
length parameter values as functions of C. Set

LA := |CA(C)|, LB := |CB(C)|.
For every Q = A,B let wQ ∈ TQγ be the unit tangent vector of the geodesic
CQ directed to C. Let ζQ ∈ TCΣ denote the unit tangent vector of the same
geodesic at C directed to Q. For every v ∈ TCΣ and Q = A,B, one has

dsQ

dv
=

v × ζQ

κ(Q)LQΨ(Q,wQ, LQ)
; v × ζQ := |v| sin ∠(v, ζQ), (2.8)

where ∠(v, ζQ) is the oriented angle between the vectors v and ζQ: it is posi-
tive, if the latter vectors form an orienting basis of the space TCΣ.

Proof Let us prove (2.8) for Q = A; the proof for B is analogous. As A =
A(C) moves by ε along the curve γ to the point Aε with the natural parameter
sA + ε, the geodesic GA tangent to γ at A is deformed to the geodesic GAε

intersecting GA at a point converging to A, as ε → 0. Let α(ε) denote their
acute intersection angle at the latter point. One has

α(ε) 	 κ(A)ε. (2.9)
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Figure 3. The tangent geodesics to γ at the points A
and Aε. The angle between them is α(ε) 	 κ(A)ε. One
has dist(C,AεCε) 	 α(ε)LAΨ(A,wA, LA), LA = |AC|, and
λ(C,Cε) 	 dist(C,AεCε)/ sin ∠(v, ζA)

Both above statements follow from (2.2) and definition. One also has

dist(C,GAε
) 	 α(ε)LAΨ(A,wA, LA) 	 εκ(A)LAΨ(A,wA, LA), (2.10)

by the definition of the function Ψ and (2.9).
Without loss of generality, we consider that v is a unit vector. Let us

draw a curve c through C tangent to v and oriented by v. Let τ denote its
natural parameter defined by this orientation. Let Cε denote the point of
intersection of the geodesic GAε

with c, see Fig. 3. Consider τ = τ(Cε) as a
function of ε: τ = τ(ε). One has

dsA

dv
=

(
dτ

dε
(0)

)−1

, τ(Cε) − τ(C) � dist(C, GAε
)

sin ∠(v, ζA)
� ε

dτ

dε
(0) = ε

(
dsA

dv

)−1

,

as ε → 0, by definition. Substituting (2.10) to this formula yields (2.8).

2.3. Geodesics passing through the same base point: azimuths of tangent
vectors at equidistant points

Proposition 2.10 Let the metric on Σ be C3-smooth. Let Gt(s), Zt(s) ⊂ Σ be
two families of geodesics parametrized by the natural length s and depending
on a parameter t ∈ [0, 1]. Let they be issued from the same point At = Gt(0) =
Zt(0). Let At lie in a given compact subset (the same for all t) in a local chart
(x, y) (not necessarily a normal chart). Set

φt = az(Ġt(0)) − az(Żt(0)).

One has

az(Ġt(s)) − az(Żt(s)) 	 φt, as s → 0, uniformly in t ∈ [0, 1]. (2.11)

Proof A geodesic, say, G(s) is a solution of a second order vector differential
equation with a given initial condition: a point A ∈ Σ and the azimuth
az(v(0)) of a unit vector v(0) ∈ TAΣ. Here, we set v(s) = Ġ(s). It de-
pends smoothly on the initial condition. The derivative of the vector function
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(G(s), az v(s)) in the initial conditions is a linear operator (3×3-matrix) func-
tion in s that is a solution of the corresponding linear equation in variations.
The right-hand sides of the equation for geodesics and the corresponding
equation in variations are, respectively, C2- and C1-smooth. Let us now fix
the initial point A and consider the derivative of the azimuth az(v(s)) in the
initial azimuth az(v(0)) for fixed s. If s = 0, then the latter derivative equals
1, since the initial condition in the equation in variations is the identity ma-
trix. Therefore, in the general case the derivative of the azimuth az(v(s))
in az(v(0)) equals 1 + uA,v(0)(s), where uA,v(0)(s) is a C1-smooth function
with uA,v(0)(0) = 0. This together with the above discussion and Lagrange
Increment Theorem for the derivative in az(v(0)) implies (2.11).

2.4. Geodesic-curvilinear triangles in normal coordinates

Everywhere below in the present subsection Σ is a two-dimensional surface
equipped with a C4-smooth Riemannian metric g, and O ∈ Σ.

Proposition 2.11 Let AuBuCu be a family of geodesic right triangles lying in
a compact subset in Σ with right angle Bu. Set

c = cu = |AuBu|, b = bu = |AuCu|, a = au = |BuCu|, α = αu = ∠BuAuCu.

Let bu, αu → 0, as u → u0. Then,

b 	 c, b − c 	 a2

2c
	 1

2
cα2 	 1

2
aα, ∠BuCuAu =

π

2
− α + o(α). (2.12)

Proof Consider normal coordinates (xu, yu) centered at Au (depending
smoothly on the base point Au). The coordinates

(Xu, Yu) :=
(

xu

cu
,
yu

cu

)

are normal coordinates centered at Au for the Riemannian metric rescaled by
division by cu. For the rescaled metric, one has |AuBu| = 1. In the rescaled
normal coordinates (Xu, Yu), the rescaled metric has trivial 1-jet at 0 and
tends to the Euclidean metric, as u → u0: its nonlinear part tends to zero,
as u → u0, uniformly on the Euclidean disk of radius 2 in the coordinates
(Xu, Yu). One has obviously |AuBu| 	 |AuCu| in the rescaled metric, since
αu → 0. Rescaling back, we get the first asymptotic formula in (2.12).

Let Su denote the circle of radius |AuBu| centered at Au, and let Du

denote its point lying on the geodesic AuCu: |AuBu| = |AuDu|; the arc BuDu

of the circle Su is its intersection with the geodesic angle BuAuCu. In the
rescaled coordinates (Xu, Yu), the circle Su tends to the Euclidean unit circle.
Thus, its geodesic curvature in the rescaled metric tends to 1. The geodesic
segment BuCu is tangent to Su at the point Bu, and ∠BuCuAu → π

2 . The
two latter statements together with Proposition 2.2 (applied to O = B and
γ = Su) imply that in the rescaled metric, one has |BuCu| 	 α,

|DuCu| = |AuCu| − |AuBu| 	 |BuCu|2
2

	 1
2
α2 	 1

2
|BuCu|α.

Rescaling back to the initial metric, we get the second, third and fourth
formulas in (2.12). The fifth formula follows from Gauss–Bonnet Formula,
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which implies that the sum of angles in the triangle AuBuCu differs from π
by a quantity O(Area) = O(|AuBu||BuCu|) = O(α|AuBu|2) = o(α).

Proposition 2.12 Consider a family of C3-smooth arcs γu = AuBu of curves
in Σ (lying in a compact set) with uniformly bounded geodesic curvature (from
above) such that |AuBu| → 0, as u → 0. Let λ(Au, Bu) denote their lengths.
Let αu denote the angle at Au between the arc γu and the geodesic segment
AuBu. One has

λ(Au, Bu) = |AuBu| + O(|AuBu|3), αu = O(|AuBu|). (2.13)

Proof The proposition obviously holds in Euclidean metric. It remains valid
in the normal coordinates centered at Au. Indeed, the length of the arc γu in
the Euclidean metric in the normal chart differs from its Riemannian length
by a quantity O(|AuBu|3), since the difference of the metrics at a point P ∈ γu

is O(|PAu|2) = O(|AuBu|2) and the curvature of the arcs γu is bounded.

Proposition 2.13 Consider a family of curvilinear triangles Tu := AuBuCu

in Σ where the side AuBu is geodesic and the sides AuCu, BuCu are arcs
of C3-smooth curves with uniformly bounded geodesic curvature. Let the side
AuCu be tangent to the side AuBu at Au. Set

ε := |AuBu|, θ :=
π

2
− ∠AuBuCu.

Here, ∠AuBuCu is the angle at Bu between the (curvilinear) sides AuBu,
BuCu of the triangle Tu. Let the triangles Tu lie in a compact subset in Σ,
and ε, θ → 0, as u → 0. Then,

λ(Au, Cu) − |AuBu| = O(ε3) + O(ε2θ). (2.14)

Proof One has |BuCu| = O(ε2), by construction and since θ → 0. Hence,
|AuCu| 	 ε. Let Du denote the point closest to Cu in the geodesic AuBu: the
points Au, Cu, Du form a triangle Δu with right angle at Du. One has

|CuDu| = O(ε2), λ(Au, Cu) − |AuCu| = O(ε3), (2.15)

by definition and (2.13),

|AuCu| − |AuDu| = O(
|CuDu|2
|AuCu| ) = O(ε3), (2.16)

by (2.15) and (2.12) applied to Δu. Let us show that

|AuDu| − |AuBu| = ±|BuDu| = O(ε2θ) + O(ε3). (2.17)

In the right triangle Δ̂u with vertices Bu, Cu, and Du, one has ∠DuBuCu =
π
2 ± θ + O(ε2). Indeed, the latter angle is the sum (difference) of the two
following angles at Bu: the angle π

2 − θ of the triangle Tu if the sign in (2.17)
is “−” (or its complementary angle π+θ, if the sign is “+”) ; the angle between
the geodesic BuCu and the curved side BuCu in Tu, which is O(|BuCu|) =
O(ε2). This implies the above formula for the angle ∠DuBuCu, which in its
turn implies that in the triangle Δ̂u one has ∠BuCuDu = O(θ) + O(ε2) (the
last formula in (2.12)). The latter formula together with (2.15) and (2.12)
imply (2.17). Adding formulas (2.15), (2.16), and (2.17) yields (2.14).
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3. The string foliation: proof of Theorem 1.3

3.1. Finite smoothness lemmas

Everywhere below in the present section, we are dealing with a function
f(x, y) of two variables (x, y): the variable y is scalar, and the variable x may
be a vector variable. The function f is defined on the product

Z = U × V

of closure of a domain U ⊂ R
n
x and an interval V = (−ε, ε) ⊂ Ry.

The following two lemmas will be used in the proof of Theorem 1.3.

Lemma 3.1 Let a function f as above be Ck-smooth on Z, k ≥ 2, and let

f(x, y) = a(x)y2(1 + o(1)), as y → 0, uniformly in x ∈ U ; a > 0. (3.1)

Then, the function g(x, y) := sign(y)
√

f(x, y) is Ck−1-smooth on Z.

Lemma 3.2 Let a function f(x, y) as at the beginning of the section be Ck-
smooth on Z and even in y: f(x, y) = f(x,−y). Then, g(x, z) := f(x,

√
z)

is C [ k
2 ]-smooth on Z̃ := U × [0, ε2), and its restriction to Z̃\{z = 0} is

Ck-smooth.

In the proof of the lemmas for simplicity without loss of generality, we
consider that the variable x is one-dimensional; in higher-dimensional case
the proof is the same. We use the following definition and a more precise
version of the asymptotic Taylor formula for finitely smooth functions.

Definition 3.3 Let l,m ∈ Z≥0. We say that

f(x, y) = ol(ym), as y → 0,

if for every j, s ∈ Z≥0, j ≤ l, s ≤ m the derivative ∂j+sf
∂jx∂sy exists and is

continuous on Z = U × V and one has
∂j+sf

∂jx∂sy
(x, y) = o(ym−s), as y → 0, uniformly in x ∈ U. (3.2)

Proposition 3.4 Let f(x, y) be as at the beginning of the section, and let f be
Ck-smooth on Z. Then, for every l,m ∈ Z≥0 with l + m ≤ k, one has

f(x, y) = f(x, 0) +
m∑

j=1

aj(x)yj + Rm(x, y), aj(x) =
1
j!

∂jf

∂yj
(x, 0) ∈ Cl(U),

Rm(x, y) = ol(ym), as y → 0, uniformly in x ∈ U. (3.3)

Proof The first formula in (3.3) holds with

Rm(x, y) =
∫

0≤ym≤···≤y1≤y

(
∂m

∂ym
f(x, ym) − ∂m

∂ym
f(x, 0))dymdym−1 . . . dy1,

by the classical asymptotic Taylor formula with error term in integral form.
The latter Rm is ol(ym), whenever f ∈ Ck and k ≥ l + m.

Proposition 3.5 One has

y−sol(ym) = ol(ym−s) for every m, s ∈ Z≥0, m ≥ s. (3.4)

Reprinted from the journal632



The proposition follows from definition.

Proof of Lemma 3.1 The function g(x, y) = sign(y)
√

f(x, y) is well defined,
by (3.1). It is obviously Ck-smooth outside the hyperplane {y = 0}. Fix
arbitrary l,m ∈ Z≥0 such that l + m ≤ k − 1. Let us prove continuity of the
derivative ∂l+mg

∂xl∂ym on Z.
Case m = 0; then k ≥ l+1. The above derivative is a linear combination

of expressions

sign(y)f
1
2−s(x, y)

s∏
j=1

∂nj f(x, y)
∂xnj

, s ∈ N, nj ≥ 1,

s∑
j=1

nj = l. (3.5)

The partial derivatives in (3.5) are C1-smooth, since f is Ck-smooth and
nj ≤ l ≤ k − 1. One has

sign(y)f
1
2−s(x, y) 	 a

1
2−s(x)y1−2s, (3.6)

by definition. If s = 1, then y1−2s = y−1, and the expression (3.5) contains
only one derivative φ(x, y) := ∂n1f(x,y)

∂xn1 . One has φ ∈ C1(Z), φ|y=0 = 0,
∂φ
∂y |y=0 = 0, by smoothness and since f(x, y) = O(y2). Hence φ(x, y) = o(y)
uniformly, as y → 0. Therefore, the expression (3.5) is continuous on Z \{y =
0}, and it extends continuously to Z as zero along the line {y = 0}. If s ≥ 2,
then nj ≤ l − 1 ≤ k − 2. Hence, each derivative in (3.5) is C2-smooth, has
vanishing first derivative in y at y = 0 and is asymptotic to y2 times a
continuous function in x. Then, (3.5) is again continuous, by (3.6).

Case m = 1 is treated analogously with the following change: one of the
derivatives in (3.5) will contain one differentiation in y and will be asymptotic
to y times a continuous function in x.

Case m ≥ 2. Then, k ≥ m + l + 1 ≥ l + 3. One has

g(x, y) = a
1
2 (x)y

√
w(x, y), (3.7)

w(x, y) = 1 +
m+1∑
j=3

a−1(x)aj(x)yj−2 +
ol(ym+1)

y2
, a, aj ∈ Cl(U), (3.8)

by (3.3) applied to the function f(x, y) and m replaced by m + 1. The
derivative ∂l+m−1g

∂xl∂ym−1 exists and continuous for small y, by (3.8) and since
ol(y

m+1)
y2 = ol(ym−1), see (3.4). Now, it remains to prove the same statement

for the derivative h := ∂l+mg
∂xl∂ym . Those terms in its expression that include the

derivatives of the function ol(y
m+1)
y2 = ol(ym−1) with differentiation in y of

orders less than m are well defined and continuous, as above. Each term in h

that contains a derivative ∂j+m

∂xj∂ym ( ol(y
m+1)
y2 ) contains only one such derivative,

and it comes with the factor y from (3.7); here j ≤ l. On the other hand, the
latter derivative is ol−j(y)

y2 = o( 1
y ), by (3.4). Thus, its product with the above

factor y is a continuous function, as are the other factors in the term under
question. Continuity of the derivative h is proved. Lemma 3.1 is proved.
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Proof of Lemma 3.2 Fix l,m ∈ Z≥0 such that l + m ≤ [k
2 ]. Then l + 2m ≤ k,

and one has

f(x, y) =
m∑

j=0

aj(x)y2j + ol(y2m),

where the functions aj(x) are Cl-smooth, by (3.3) and evenness. Set z = y2.
The derivative ∂l+m

∂xl∂zm of the above sum is obviously continuous, since the
sum is a polynomial in z with coefficients being Cl-smooth functions in x.
Let us prove continuity of the derivative of the remainder ol(y2m). One has

∂

∂z
=

1
2y

∂

∂y
.

Therefore, the above (l + m)-th partial derivative of the remainder ol(y2 m)
is o(1), see (3.4). This proves continuity and Lemma 3.2.

3.2. Proof of Theorem 1.3

The fact that the exterior bisector line field Λ is tangent to the string con-
struction curves is well known and proved as follows. Consider the value
L(A,B) = |AC| + |CB| − λ(A,B) as a function of C: here A = A(C) and
B = B(C) are the same, as in Proposition 2.3. Its derivative along the string
construction curve Γp through C should be zero. Let v ∈ TCΣ be a unit vec-
tor. Let α and β be, respectively, the oriented angles between the vector v and
the vectors ζA and ζB in TCΣ directing the geodesics GA, GB from C to A
and B, respectively, see Proposition 2.9. The derivative of the above function
L(A(C), B(C)) along the vector v is equal to −(cos α + cos β). Therefore, it
vanishes if and only if the line generated by v is the exterior bisector Λ(C)
of the angle ∠ACB. Therefore, the level sets of the function L(A(C), B(C)),
i.e., the string construction curves are integral curves of the line field Λ.

It suffices to prove only statement (1) of Theorem 1.3: Ck−1-smoothness
on U and Cr(k)-smoothness on U of the line field Λ. Statement (2) on Cr(k)+1-
regularity of its integral curves (the string construction curves) and continuity
then follows from the next general fact: for every Cr-smooth line field the
(r + 1)-jets of its integral curves at base points A are expressed analytically
in terms of r-jets of the line field, and hence, depend continuously on A.

Fix a Ck-smooth coordinate system (s, z) on Σ centered at the base
point O of the curve γ such that γ is the s-axis, s|γ is the natural length
parameter of the curve γ and U = {z > 0}. For every σ ∈ R small enough,
let G(σ) denote the geodesic tangent to γ at the point with length parameter
value σ. For every σ, s ∈ R small enough, let A(σ, s) denote the point of
intersection of the geodesic G(σ) with the line parallel to the z-axis and
having abscissa s. The mapping (σ, s) �→ A(σ, s) is Ck−1-smooth, since so is
the family of geodesics G(σ) (by Ck-smoothness of the metric (in some initial
Ck+1-smooth chart) and Ck-smoothness of the curve γ) and by transversality.
Set

z(σ, s) := z(A(σ, s)).
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Proposition 3.6 The function

y(σ, s) := sign(σ − s)
√

z(σ, s)

is Ck−2-smooth on a neighborhood of zero in R
2 and Ck−1-smooth outside

the diagonal {σ = s}. The mapping

F : (σ, s) �→ (s, y(σ, s)) (3.9)

is a Ck−2-smooth diffeomorphism of a neighborhood of the origin onto a
neighborhood of the origin, and it is Ck−1-smooth outside the diagonal. It
sends the diagonal to the axis {y = 0}.
Proof For every point Q ∈ Σ lying in a smooth chart (s, z), let u(Q) denote
the orthogonal projection of the vector ∂

∂z ∈ TQΣ to the line (R ∂
∂s )⊥. Set

μ(Q) := ||u(Q)||−1. Recall that κ(s) > 0. One has μ > 0 near O,

z(σ, s) =
1
2
μ(s, 0)κ(s)(s − σ)2 + o((s − σ)2), as σ → s, (3.10)

uniformly in small s, by (2.3). This together with Ck−1-smoothness of the
function z and Lemma 3.1 implies the statements of the proposition.

Let us now return to the proof of statement (1) of Theorem 1.3. Consider
the mapping inverse to the mapping F from (3.9):

F−1 : (s, y) �→ (σ, s).

The function σ = σ(s, y) is Ck−2-smooth, by Proposition 3.6, and it is Ck−1-
smooth outside the axis {y = 0}. Recall that the geodesic G(σ(s, y)) passes
through the point A = (s, z) = (s, y2) ∈ U . For every s and y, let v =
v(s, y) ∈ TAΣ denote the unit tangent vector of the geodesic G(σ(s, y)) that
orients it in the same way, as the orienting tangent vector of the curve γ
at σ(s, y). The vector function v(s, y) is Ck−2-smooth in (s, y). For a given
point A = (s, z), set y :=

√
z, the unit vectors v(s, y), v(s,−y) ∈ TAΣ direct

the two geodesics through A that are tangent to γ, by construction. Their
sum w(s, y) = v(s, y) + v(s,−y) generates the line Λ(A) of the line field Λ,
by definition. The vector function w(s, y) is even in y, Ck−2-smooth in both
variables, and |w| = 2|v| = 2, whenever y = 0. Thus, w is C [ k

2 ]−1-smooth
in (s, z) and Ck−1-smooth outside the curve γ = {z = 0}, by Proposition
3.6 and Lemma 3.2. Finally, w induces a vector field generating Λ that is
C [ k

2 ]−1-smooth on U and Ck−1-smooth on U . Theorem 1.3 is proved.

4. Billiards on surfaces of constant curvature: proofs of
Proposition 1.6 and Theorem 1.7

In Sect. 4.1, we prove Proposition 1.6. The proof of Theorem 1.7, which
follows its proof given in [21, section 7] in the Euclidean case, takes the rest
of the section. In Sect. 4.2, we prove the following coboundary property of a
curve γ with the string Poritsky property: for every A,B ∈ γ, set C = CAB ,
the ratio |AC|/|BC| equals the ratio of values at A and B of some function
on γ. In Sect. 4.3, we deduce Theorem 1.7 from the coboundary property by
planimetric arguments using Ceva’s Theorem.

Vol. 24 (2022) On curves with the Poritsky property

Reprinted from the journal 635



A. Glutsyuk JFPTA

4.1. Proof of Proposition 1.6

We re-state and prove Proposition 1.6 in a more general Riemannian context.
To do this, let us recall the following definition.

Definition 4.1 [1, p. 345] (implicitly considered in [21]) Let Σ be a surface
equipped with a Riemannian metric, γ ⊂ Σ be a (germ of) curve with positive
geodesic curvature. Let Γp denote the family of curves obtained from it by
string construction. We say that γ has evolution (or Graves) property, if for
every p1 < p2 the curve Γp1 is a caustic for the curve Γp2 .

Example 4.2 It is well known that each conic on a surface Σ of constant
curvature has evolution property, and the corresponding curves Γp given by
string construction are confocal conics. In the Euclidean case, this follows
from the classical fact saying that the caustics of a billiard in a conic are
confocal conics (Proclus–Poncelet Theorem). Analogous statements hold in
non-zero constant curvature and in higher dimensions, see [29, theorem 3].

Proposition 4.3 Let Σ be a surface equipped with a C4-smooth Riemannian
metric. Let γ ⊂ Σ be a C4-smooth germ of curve with positive geodesic cur-
vature that has evolution property. Then, it has the string Poritsky property2.
For every p, q > 0, the reflections from the string curves Γp and Γq commute
as mappings acting on the space of those oriented geodesics that intersect both
of them and lie on the concave side U from the curve γ.

Remark 4.4 In the Euclidean case, the first part of Proposition 4.3 with a
proof is contained in [1,21]. Commutativity then follows by arguments from
[24, chapter 3]. The proof of the first part of Proposition 4.3 given below
is analogous to arguments from [21], [24, ch.3]. The analogue of evolution
property for outer billiards was introduced and studied by E. Amiran [2].

Proof of Proposition 4.3 Billiard reflections acting on the manifold of ori-
ented geodesics preserve a canonical symplectic form ω. See [21, section 3],
[24, chapter 3] in the planar case. In the general case the form ω is given by
Melrose construction, see [23, section 1.5], [4,5,18,19] and Sect. 7.1 below.
The string curves Γp form a foliation of U by level curves of a function φ that
is C3-smooth on U , C1-smooth on U and has no critical points. This follows
from the fact that they are tangent to the line field Λ of the same regularity
(Theorem 1.3). Consider the mapping R of the set U to the space of oriented
geodesics sending each point Q ∈ U to the geodesic tangent to Λ(Q). The
orientations of the lines Λ(Q) are chosen to converge to the orientation of the
curve γ, as Q → γ. This is a diffeomorphism onto U∗ := R(U) of the same
regularity, as Λ, by construction and since γ has positive geodesic curvature.
The image Γ∗

p := R(Γp) of each curve Γp is the family or geodesics tangent to

2Recently, after an arxiv draft of the present paper was written, it was shown in a joint
paper of the author with Sergei Tabachnikov and Ivan Izmestiev [10] that for a C∞-smooth
curve γ the evolution property is equivalent to the Poritsky property. In addition, it is also
equivalent to the statement that the foliation by the curves Γp and its orthogonal foliation

form a Liouville net on the concave side U from the curve γ. See [10] for a survey of related
results.
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Γp and oriented as Γp. The curves Γ∗
p form a foliation by level curves of the

function ψ := φ ◦ R−1, which has the above regularity and no critical points.
For every q < p, the curve Γ∗

q is invariant under the reflection Tp from the
curve Γp (evolution property). Therefore, the restriction of the function ψ to
the strip between the curves Γ∗

0 and Γ∗
p is also Tp-invariant. Hence, its Hamil-

tonian vector field Hψ is also invariant and tangent to the curves Γ∗
q . Thus,

for every q < p, the reflection Tp : Γ∗
q → Γ∗

q acts by translation in the time
coordinate tq of the field Hψ on Γ∗

q , and this also holds for q = 0. The time
coordinate t0 on Γ∗

0 induces a parameter, also denoted by t0, on the curve
Γ0 = γ. Therefore, γ has the Poritsky property with Poritsky–Lazutkin pa-
rameter t0, by the above discussion. Any two reflections Tp and Tq commute
while acting on the union of the curves Γ∗

r with r ≤ min{p, q}: the curves
Γ∗

r are Tp- and Tq-invariant, and Tp, Tq act as translations there. Proposition
4.3 is proved.

Proposition 1.6 follows from Proposition 4.3 and Example 4.2.

4.2. Preparatory coboundary property of length ratio

Let Σ be an oriented surface of constant curvature K ∈ {0,±1}: either Eu-
clidean plane, or unit sphere in R

3, or hyperbolic plane. Let O ∈ Σ, and let
γ ⊂ Σ be a regular germ of curve through O with positive geodesic curvature.
We consider that γ is oriented counterclockwise with respect to the orienta-
tion of the surface Σ. For every point X ∈ γ by GX , we denote the geodesic
tangent to γ at X. Let A,B ∈ γ be two distinct points close to O such that
the curve γ is oriented from B to A. Let C = CAB denote the unique inter-
section point of the geodesics GA and GB that is close to O. (Then, CA is
the right geodesic tangent to γ through C.) Set

LA := |CA|; LB := |CB|;
here |CX| is the length of the geodesic arc CX. Recall that we denote

ψ(x) =

⎧⎪⎨
⎪⎩

x, if Σ is Euclidean plane,
sin x, if Σ is unit sphere,
sinh x, if Σ is hyperbolic plane.

(4.1)

Proposition 4.5 Let Σ be as above, γ ⊂ Σ be a germ of C2-smooth curve
at a point O ∈ Σ with the string Poritsky property. There exists a positive
continuous function u(X), X ∈ γ, such that for every A,B ∈ γ close enough
to O one has

ψ(LA)
ψ(LB)

=
u(A)
u(B)

. (4.2)

The above statement holds for

u =
1
κ

dt

ds
; t is the Poritsky parameter.

Proof For every p > 0 small enough and every C ∈ Γp close enough to
O, there are two geodesics issued from the point C that are tangent to γ
(Proposition 2.3). The corresponding tangency points A = A(C) and B =
B(C) in γ depend smoothly on the point C ∈ Γp. Let sp denote the natural
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length parameter of the curve Γp. We set s = s0: the natural length parameter
of the curve γ. We write C = C(sp), and consider the natural parameters
sA(sp), sB(sp) of the points A(C) and B(C) as functions of sp. Let α(C)
denote the oriented angle between a vector v ∈ TCΓp orienting the curve Γp

and a vector ζA ∈ TCGA directing the geodesic GA from C to A. It is equal
(but with opposite sign) to the oriented angle between the vector −v and a
vector ζB ∈ TCGB directing the geodesic GB from C to B, since the tangent
line to Γp at C is the exterior bisector of the angle between the geodesics GA

and GB (Theorem 1.3). One has
dsA

dsp
=

sin α(C)
κ(A(C))ψ(|AC|) ,

dsB

dsp
=

sin α(C)
κ(B(C))ψ(|BC|) , (4.3)

by (2.8), (2.7) and the above angle equality.
Let now t be the Poritsky parameter of the curve γ. Let tA(sp) and

tB(sp) denote its values at the points A(C) and B(C), respectively, as func-
tions of sp. Their difference is constant, by the Poritsky property. Therefore,

dtA
dsp

=
dt

ds
(A)

dsA

dsp
=

dtB
dsp

=
dt

ds
(B)

dsB

dsp
.

Substituting (4.3) to the latter formula and canceling out sinα(C) yields
(4.2) with u = 1

κ
dt
ds .

4.3. Conics and Ceva’s Theorem on surfaces of constant curvature: proof of
Theorem 1.7

Definition 4.6 Let Σ be a surface with Riemannian metric. We say that a
germ of curve γ ⊂ Σ at a point O with positive geodesic curvature has
tangent incidence property, if the following statement holds. Let A′, B′, C ′ ∈ γ
be arbitrary three distinct points close enough to O. Let a, b, and c denote
the geodesics tangent to γ at A′, B′, and C ′, respectively. Let A, B, and C
denote the points of intersection b∩ c, c∩a, and a∩ b, respectively. Then, the
geodesics AA′, BB′, and CC ′ intersect at one point. See [21, p. 462, fig.5]
and Fig. 4 as follows.

Proposition 4.7 Every germ of C2-smooth curve with the string Poritsky prop-
erty on a surface of constant curvature has tangent incidence property.

As it is shown below, Proposition 4.7 follows from Proposition 4.5 and
the next theorem.

Theorem 4.8 [17, pp. 3201–3203] (Ceva’s Theorem on surfaces of constant
curvature.) Let Σ be a simply connected complete surface of constant curva-
ture. Let ψ(x) be the corresponding function in (4.1): the length of circle of
radius x divided by 2π. Let A,B,C ∈ Σ be three distinct points. Let A′, B′,
and C ′ be, respectively, some points on the sides BC, CA, and AB of the
geodesic triangle ABC. Then, the geodesics AA′, BB′, and CC ′ intersect at
one point, if and only if

ψ(|AB′|)
ψ(|B′C|)

ψ(|CA′|)
ψ(|A′B|)

ψ(|BC ′|)
ψ(|C ′A|) = 1. (4.4)
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Figure 4. A curve γ with tangent incidence property

Addendum to Theorem 4.8. Let now in the conditions of Theorem 4.8 A′, B′,
and C ′ be points on the geodesics BC, CA, and AB, respectively, so that some
two of them, say A′ and C ′ do not lie on the corresponding sides and the re-
maining third point B′ lies on the corresponding side AC,
see Fig. 4.
(1) In the Euclidean and spherical cases, the geodesics AA′, BB′, and CC ′

intersect at the same point, if and only if (4.4) holds.
(2) In the hyperbolic case (when Σ is of negative curvature) the geodesics

AA′, BB′, and CC ′ intersect at the same point, if and only if some two
of them intersect and (4.4) holds.

(3) Consider the standard model of the hyperbolic plane Σ in the Minkowski
space R

3, see Sect. 1.1. Consider the 2-subspaces defining the geodesics
AA′, BB′, and CC ′, and let us denote the corresponding projective lines
(i.e., their tautological projections to RP

2) by A, B, and C, respectively.
The projective lines A, B, and C intersect at one point (which may be
not the projection of a point in Σ), if and only if (4.4) holds.

Proof Statements (1) and (2) of the addendum follow from Theorem 4.8 by
analytic extension, when some two points A′ and C ′ go out of the correspond-
ing sides BC and BA while remaining on the same (complexified) geodesics
BC and BA. Statement (3) is proved analogously.

Proof of Proposition 4.7 Let O be the base point of the germ γ, and let A′,
B′, and C ′ be its three subsequent points close enough to O. Let a, b, and c
be, respectively, the geodesics tangent to γ at them. Then, each pair of the
latter geodesics intersect at one point close to O. Let A, B, and C be the
points of intersections b∩ c, c∩a, and a∩ b, respectively. The point B′ lies on
the geodesic arc AC ⊂ b. This follows from the assumption that the point B′

lies between A′ and C ′ on the curve γ and the inequality κ �= 0. In a similar
way, we get that the points A′ and C ′ lie on the corresponding geodesics a
and c but outside the sides BC and AB of the geodesic triangle ABC so that
A lies between C ′ and B, and C lies between A′ and B. The geodesics BB′
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and AA′ intersect, by the two latter arrangement statements. Let u : γ → R

be the function from Proposition 4.5. One has ψ(|BA′|)
ψ(|BC′|) = u(A′)

u(C′) , by (4.2), and
similar equalities hold with B replaced by A and C. Multiplying the three
latter equalities, we get (4.4), since the right-hand side cancels out. Hence,
the geodesics AA′, BB′ and CC ′ intersect at one point, by statements (1)
and (2) of the addendum to Theorem 4.8. Proposition 4.7 is proved.

Theorem 4.9 Each conic on a surface of constant curvature has tangent in-
cidence property. Vice versa, each C2-smooth curve on a surface of constant
curvature that has tangent incidence property is a conic.

Proof The first, easy statement of the theorem follows from Propositions 1.6
and 4.7. The proof of its second statement repeats the arguments from [21,
p.462], which are given in the Euclidean case but remain valid in the other
cases of constant curvature without change. Let us repeat them briefly in full
generality for completeness of presentation. Let γ be a germ of curve with
tangent incidence property on a surface Σ of constant curvature. Let A′, B′,
and C ′ denote three distinct subsequent points of the curve γ, and let a, b,
and c be, respectively, the geodesics tangent to γ at these points. Let A, B,
and C denote, respectively, the points of intersections b ∩ c, c ∩ a, and a ∩ b.
Fix the points A′ and C ′. Consider the pencil C of conics through A′ and C ′

that are tangent to TA′γ and TC′γ. Then, each point of the surface Σ lies
in a unique conic in C (including two degenerate conics: the double geodesic
A′C ′; the union of the geodesics GA′ and GC′). Let φ ∈ C denote the conic
passing through the point B′.

Claim. The tangent line l = TB′φ coincides with TB′γ.

Proof Let L denote the geodesic through B′ tangent to l. Let C1 and A1

denote, respectively, the points of intersections L ∩ a and L ∩ c. Both curves
γ and φ have tangent incidence property. Therefore, the three geodesics AA′,
BB′, CC ′ intersect at the same point denoted X, and the three geodesics
A′A1, BB′, C ′C1 intersect at the same point Y ; both X and Y lie on the
geodesic BB′. We claim that this is impossible, if l �= TB′γ (or equivalently,
if L �= b). Indeed, let to the contrary, L �= b. Let us turn the geodesic b
continuously towards L in the family of geodesics bt through B′, t ∈ [0, 1]:
b0 = b, b1 = L, the azimuth of the line TB′bt turns monotonously (clockwise
or counterclockwise), as t increases. Let At and Ct denote, respectively, the
points of the intersections bt∩c and bt∩a: A0 = A, C0 = C. Let Xt denote the
point of the intersection of the geodesics A′At and C ′Ct: X0 = X, X1 = Y .
At the initial position, when t = 0, the point Xt lies on the fixed geodesic
BB′. As t increases from 0 to 1, the points A and C remain fixed, while
the points Ct and At move monotonously, so that as Ct moves towards (out
from) B along the geodesic a, the point At moves out from (towards) B along
the geodesic c, see Fig. 5. In the first case, when Ct moves towards B and At

moves out from B, the point Xt moves out of the geodesic BB′, to the half-
plane bounded by BB′ that contains A, and its distance to BB′ increases.
Hence, Y = X1 does not lie on BB′. The second case is treated analogously.
The contradiction thus obtained proves the claim.
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Figure 5. The intersection point Xt moves away from the
geodesic BB′

For every point Q ∈ Σ such that the conic φQ ∈ C passing through Q
is regular, set lQ := TQφQ. The lines lQ form an analytic line field outside
the union of three geodesics: GA′ , GC′ , A′C ′. Its phase curves are the conics
from the pencil C. The curve γ is also tangent to the latter line field, by the
above claim. Hence, γ is a conic. This proves Theorem 4.9.

Proof of Theorem 1.7 Let γ be a germ of C2-smooth curve with the string
Poritsky property on a surface of constant curvature. Then, it has tangent
incidence property, by Proposition 4.7. Therefore, it is a conic, by Theorem
4.9. Theorem 1.7 is proved.

5. Case of outer billiards: proof of Theorem 1.12

Everywhere below in the present section Σ is a simply connected complete
Riemannian surface of constant curvature, and γ ⊂ Σ is a germ of C2-smooth
curve at a point O ∈ Σ with positive geodesic curvature.

Proposition 5.1 Let Σ, O, and γ be as above, and let γ have the area Poritsky
property. Then, there exists a continuous function u : γ → R+ such that for
every A,B ∈ γ close enough to O the following statement holds. Let α and β
denote the angles between the chord AB and the curve γ at the points A and
B, respectively. Then,

sin α

sin β
=

u(A)
u(B)

. (5.1)

Let t and s denote, respectively, the area Poritsky and length parameters of
the curve γ. The above statement holds for the function

u := t′s =
dt

ds
.
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Figure 6. Curve γ with the area Poritsky property. The
chords AB, A(τ)B(τ)

Proof Recall that for every C,D ∈ γ by λ(C,D), we denote the length of the
arc CD of the curve γ. Fix A and B as above. Set A(0) = A, B(0) = B.
For every small τ > 0, let A(τ) denote the point of the curve γ such that
λ(A(τ), A(0)) = τ and the curve γ is oriented by the natural parameter from
A(0) to A(τ). Let B(τ) ∈ γ denote the family of points such that the area
of the domain bounded by the chord A(τ)B(τ) and the arc A(τ)B(τ) of the
curve γ remains constant, independent on τ . For every τ small enough, the
chord A(τ)B(τ) intersects the chord A(0)B(0) at a point X(τ) tending to
the middle of the chord A(0)B(0), see Fig. 6. This follows from constance of
area and homogeneity (constance of curvature) of the surface Σ. One has

t(A(τ)) − t(A(0)) = t(B(τ)) − t(B(0)) for every τ small enough,

by the area Poritsky property. The above left- and right-hand sides are asymp-
totic to u(A)λ(A(0), A(τ)) and u(B)λ(B(0), B(τ)), respectively, as τ → 0,
with u = dt

ds . Therefore,

λ(B(0), B(τ))
λ(A(0), A(τ))

→ u(A)
u(B)

, as τ → 0. (5.2)

The length λ(A(0), A(τ)) is asymptotic to 1
sin α times dist(A(τ), B(0)A(0)):

the distance of the point A(τ) to the geodesic X(τ)A(0) = B(0)A(0).
Similarly, λ(B(0), B(τ)) 	 1

sin β dist(B(τ), B(0)A(0)), as τ → 0. The above
distances of the points A(τ) and B(τ) to the geodesic A(0)B(0) are asymp-
totic to each other, since the intersection point X(τ) of the chords A(τ)B(τ)
and A(0)B(0) tends to the middle of the chord A(0)B(0) and by homogene-
ity. This implies that the left-hand side in (5.2) tends to the ratio sin α

sin β , as
τ → 0. This together with (5.2) proves (5.1).

Proposition 5.2 Let Σ, O and γ be as at the beginning of the section. Let
there exist a function u on γ that satisfies (5.1) for every A,B ∈ γ close to
O. Then, γ has tangent incidence property, see Definition 4.6.

Proof Let A′, B′, and C ′ be three subsequent points of the curve γ. Let a,
b, and c denote, respectively, the geodesics tangent to γ at these points. Let
A, B, and C denote, respectively, the points of intersections b ∩ c, c ∩ a, and
a ∩ b (all the points A′, B′, and C ′, and hence A, B, and C are close enough
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to the base point O), as at Fig. 4. Let ψ be the same, as in (4.1). One has
sin∠CA′B′

sin∠CB′A′ =
ψ(|CB′|)
ψ(|CA′|) =

u(A′)
u(B′)

, (5.3)

by (5.1) and Sine Theorem on the Euclidean plane and its analogues for
unit sphere and hyperbolic plane applied to the geodesic triangle CA′B′,
see [14, p.215], [22, theorem 10.4.1]. Similar equalities hold for other pairs
of points (B′, C ′), (C ′, A′). Multiplying all of them yields relation (4.4): the
ratios of values of the function u at A′, B′, C ′ cancel out. This together with
Theorem 4.8 and its addendum implies that γ has tangent incidence property
and proves Proposition 5.2.

Proof of Theorem 1.12 A curve with the area Poritsky property on a surface
of constant curvature has tangent incidence property, by Propositions 5.1 and
5.2. Hence, it is a conic, by Theorem 4.9. Theorem 1.12 is proved.

6. The function L(A,B) and the Poritsky–Lazutkin
parameter: proofs of Theorems 1.16 and 1.15, and
Corollaries 1.17 and 1.18

Proof of Theorem 1.16 Let g denote the metric. Let C = CAB denote the
point of intersection of the geodesics GA and GB tangent to γ at the points
A and B, respectively. We will work in normal coordinates (x, y) centered at
C and the corresponding polar coordinates (r, φ). Recall that the metric is
C4-smooth, and hence, it is C2-smooth in normal coordinates. The next two
claims concern asymptotics of different quantities, as dist(A,B) → 0 so that
A and B lie in a compact subarc in γ.

Claim 1. The length sA − sB of the arc AB of the curve γ differs from
its Euclidean length in the coordinates (x, y) by a quantity o((sA −sB)3). The
same statement also holds for the quantity L(A,B). These asymptotics are
uniform in the metric running through a closed bounded subset in the space
of C3-smooth Riemannian metrics.

Proof It is known that the metric g is O(r2)-close to the Euclidean metric,
and the polar coordinates are g-orthogonal. In the polar coordinates g has the
same radial part dr2, as the Euclidean metric dr2 + r2dφ2, and their angular
parts differ by a quantity Δ = O(r2)r2dφ2 = O(r4dφ2). The g-length of the
arc AB is the integral of the g-norm of the Euclidean-unit tangent vector
field to γ. The integration parameter is the Euclidean natural parameter.
The contribution of the above difference Δ to the latter integral is bounded
from above by the integral I of a quantity O(r2α), where α is the acute angle
of a tangent vector γ̇(Q) with the radial line CQ. Set δ := |sA − sB |. The arc
AB lies in a O(δ)-neighborhood of the point C. The distance of the arc AB
to C is of order O(δ2). Those points in the arc AB where α is bounded away
from zero are on distance O(δ2) from the origin C. Therefore, α = o(1), as
δ → 0, uniformly on the complement of the arc AB to the disk D

δ
3
2

of radius

δ
3
2 centered at C. Hence, the above integral of O(r2α) over the complement
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to the disk D
δ

3
2

is o(δ3). The integral inside this disk is also o(δ3), since its

intersection with γ has length of order O(δ
3
2 ), while the subintegral expression

is O(δ2). Finally, the upper bound I for the contribution of the non-Euclidean
angular part Δ is o(δ3). This implies the statement of the claim for the g-
length sA − sB , and hence, for the expression L(A,B): the g-lengths of the
segments AC, BC coincide with their Euclidean lengths by the definition of
normal coordinates. The asymptotics of Claim 1 are uniform in the metric,
as are the intermediate asymptotics used in the proof.

Claim 2. Let γ ⊂ R
2 be a C3-smooth curve with positive geodesic cur-

vature. (Here, we deal with the standard Euclidean metric on R
2.) For every

point A ∈ γ consider the osculating circle SA at A of the curve γ. For every
B ∈ γ close to A let us consider the point B′ ∈ SA closest to B (BB′ ⊥ SA)
and the corresponding expressions λ(A,B′), L(A,B′) = LSA

(A,B′) written
for the circle SA. One has

λ(A,B′) − λ(A,B) = o((sA − sB)3), L(A,B′) − L(A,B) = o((sA − sB)3).

Proof Recall that we denote δ = |sA − sB |. The lengths of the arcs AB ⊂ γ
and AB′ ⊂ SA differ by a quantity o(δ3). Indeed, the projection of the arc
AB to the arc AB′ along the radii of the circle SA has norm of deriva-
tive of order 1 + o(δ2). This is implied by the two following statements: (1)
the distance between the source and the image is of order o(δ2) (the circle
is osculating); (2) the slopes of the corresponding tangent lines differ by a
quantity o(δ). The asymptotics 1 + o(δ2) for the norm of projection implies
that λ(A,B)−λ(A,B′) = o(δ3). Let us now show that the straight-line parts
of the expressions L(A,B) and L(A,B′) also differ by a quantity o(δ3). The
tangent lines TBγ and TB′SA pass through o(δ2)-close points B and B′, and
their slopes differ by a quantity o(δ), see the above statements (1) and (2).
Note that BB′ ⊥ TB′SA. This implies that the distance between their points
C and C ′ of intersection with the line TAγ is o(δ). Consider the line through
C orthogonal to the line TB′SA. Let H denote their intersection point. The
difference of the straight-line parts of the expressions L(A,B) and L(A,B′)
is equal to (|BC| − |B′H|) ± (|CC ′| − |C ′H|). The second bracket is the
difference of a leg and a hypotenuse, both of order o(δ), in a right triangle
with angle O(δ) between them. Hence, the latter difference is o(δ3), since
the cosine of the angle is 1 + O(δ2). The first bracket is equal to the similar
difference in another right triangle, with leg B′H and hypotenuse being the
segment BC shifted by the vector

−−→
BB′; both are of order O(δ), and the angle

between them is o(δ). Hence, the first bracket is o(δ3) (the cosine being now
1 + o(δ2)). Finally, the difference of the straight-line parts of the expressions
L(A,B) and L(A,B′) is o(δ3). The claim is proved.

Claims 1 and 2 reduce Theorem 1.16 to the case, when the metric is
Euclidean and γ is a circle in R

2. Let R denote its radius. Let AB be its arc
cut by a sector of small angle φ. Then,

L(A,B) = R(2 tan(
φ

2
) − φ) 	 R

12
φ3 =

κ2

12
|sA − sB|3, κ = R−1.

Reprinted from the journal644



This proves Theorem 1.16.

Proof of Corollary 1.17 Let C ∈ Γp. Let A = A(C), B = B(C) ∈ γ de-
note the points such that the geodesics AC and BC are tangent to γ at
A and B, respectively. We order them so that A(C) = Tp(B(C)). One
has L(A(C), B(C)) = p for all C ∈ Γp, by definition. On the other hand,
L(A(C), B(C)) 	 1

12κ2(A(C))|s(A(C)) − s(B(C))|3, as C tends to a com-
pact subarc γ̂ � γ, by Theorem 1.16. Therefore, all the quantities κ

2
3 (A(C))|

s(A(C)) − s(B(C))| are uniformly asymptotically equivalent. Substituting
A(C) = Tp(B(C)), we get (1.6). Corollary 1.17 is proved.

Corollary 1.18 follows immediately from Corollary 1.17.

Proof of Theorem 1.15 Let the curve γ have the string Poritsky property. Let
t denote its Poritsky parameter. Set f := dt

ds . For the proof of Theorem 1.15
it suffices to show that f ≡ κ

2
3 up to constant factor. Or equivalently,

f(Q)
f(B)

=
κ

2
3 (Q)

κ
2
3 (B)

for every B,Q ∈ γ. (6.1)

Fix a small p > 0. Set A := Tp(B), R = Tp(Q). One has

t(A) − t(B) = t(R) − t(Q), (6.2)

by the Poritsky property. On the other hand, the latter left- and right-
hand sides are asymptotically equivalent, respectively, to f(B)λ(A,B) and
f(Q)λ(R,Q). But

κ
2
3 (B)λ(A,B) 	 κ

2
3 (Q)λ(R,Q), as p → 0,

by Corollary 1.17. Substituting the two latter asymptotics to (6.2) yields
(6.1). Theorem 1.15 is proved.

7. Symplectic generalization of Theorem 1.15

In Sect. 7.1, we give a background material on symplectic properties of the
billiard ball reflection map. In Sect. 7.2, we introduce weakly billiard-like
maps. We consider the so-called string type families of weakly billiard-like
maps, which generalize the family of billiard reflections from string construc-
tion curves defined by a curve with the string Poritsky property. We state
Theorem 7.10, which is a symplectic generalization of Theorem 1.15 (C6-
smooth case) to the string type billiard-like map families. Theorem 7.10 will
be proved in Sect. 7.4. For its proof, in Sect. 7.3, we introduce an analogue
of Lazutkin coordinates, the so-called modified Lazutkin coordinates, for
weakly billiard-like maps (Theorem 7.11) and prove Lemma 7.13 on asymp-
totics of orbits in these coordinates.

In Sect. 7.5, we show how to retrieve Theorem 1.15 for C6-smooth curves
from Theorem 7.10.

The idea to extend Theorem 1.15 to a more general symplectic context
was suggested by Sergei Tabachnikov.
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7.1. Symplectic properties of billiard ball map

The background material recalled here can be found in [4,5,16,18,19,23].
Let Σ be a surface with Riemannian metric. Let Π : TΣ → Σ denote the

tautological projection. Let us recall that the tautological 1-form α on TΣ
(also called the Liouville form) is defined as follows: for every (Q,P ) ∈ TΣ
with Q ∈ Σ and P ∈ TQΣ for every v ∈ T(Q,P )(TΣ) set

α(v) :=< P,Π∗v > . (7.1)

The differential

ω = dα

of the 1-form α is the canonical symplectic form on TΣ.
Let O ∈ Σ, and γ ⊂ Σ be a germ of regular oriented curve at O. We

parametrize it by its natural length parameter s. The corresponding function
s ◦ Π on Tγ will be also denoted by s. For every Q ∈ γ and P ∈ TQγ, set

γ̇(Q) =
dγ

ds
(Q) := the directing unit tangent vector to γ at Q,

σ(Q,P ) :=< P, γ̇(Q) >, y(Q,P ) := 1 − σ(Q,P ). (7.2)

The restriction to Tγ of the form ω is a symplectic form, which will be
denoted by the same symbol ω.

Proposition 7.1 (see [16, formula (3.1)] in the Euclidean case) The coordi-
nates (s, y) on Tγ are symplectic: ω = ds ∧ dy on Tγ.

Proof The proposition follows from the definition of the symplectic structure
ω = dα, α is the same, as in (7.1): in local coordinates (s, σ) one has α = σds,
thus, ω = dσ ∧ ds = ds ∧ dy.

Let V denote the Hamiltonian vector field on TΣ with the Hamiltonian
||P ||2. It generates the geodesic flow. Consider the unit circle bundle:

S = T1Σ := {||P ||2 = 1} ⊂ TΣ.

It is known that for every point x ∈ S the kernel of the restriction ω|TxS is the
one-dimensional linear subspace spanned by the vector V (x) of the field V .
Each cross-section W ⊂ S to the field V is identified with the (local) space
of geodesics. The symplectic structure ω induces a well-defined symplectic
structure on W called the symplectic reduction.

Remark 7.2 The symplectic reduction is invariant under holonomy along or-
bits of the geodesic flow. Namely, for every arc AB of its orbit and two germs
of cross-sections W1 and W2 through A and B, respectively, the holonomy
mapping W1 → W2, A �→ B along the arc AB is a symplectomorphism.

Consider the local hypersurface

Γ = Π−1(γ) ∩ S = (T1Σ)|γ ⊂ S.

At those points (Q,P ) ∈ Γ, for which the vector P is transverse to γ, the
hypersurface Γ is locally a cross-section for the restriction to S of the geodesic
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flow. Thus, near the latter points, the hypersurface Γ carries a canonical
symplectic structure given by the symplectic reduction. Set

O± := (O,±γ̇(O)) ∈ Γ.

Let γ have positive geodesic curvature. For every (Q,P ) ∈ Γ close enough to
O±, the oriented geodesic through Q issued in the direction P intersects γ
at two points Q and Q′ (which coincide if P is tangent to γ). Let P ′ denote
the orienting unit tangent vector of the latter geodesic at Q′. This defines
the germ at O± of involution

β : (Γ,O±) → (Γ,O±), β(Q,P ) = (Q′, P ′), β2 = Id, (7.3)

which will be called the billiard ball geodesic correspondence.
Consider the following open subset in Tγ: the unit ball bundle

T≤1γ := {(Q,P ) ∈ Tγ | ||P ||2 ≤ 1}.

Let π : (TΣ)|γ → Tγ denote the mapping acting by orthogonal projections

π : TQΣ → TQγ, Q ∈ γ.

It induces the following projection also denoted by π:

π : Γ → T≤1γ. (7.4)

Let V denote a convex domain with boundary containing γ. Every point
(Q,P ) ∈ T≤1γ has two π-preimages (Q,w±) in Γ: the vector w+ (w−) is
directed inside (respectively, outside) the domain V. The vectors w± coincide,
if and only if ||P || = 1, and in this case they lie in TQγ. Thus, the mapping
π : Γ → T≤1γ has two continuous inverse branches. Let μ+ := π−1 : T≤1γ →
Γ denote the inverse branch sending P to w+, cf. [16, section 2]. The above
mappings define the germ of mapping

δ+ := π ◦ β ◦ μ+ : (T≤1γ,O±) → (T≤1γ,O±). (7.5)

Recall that Γ carries a canonical symplectic structure given by the above-
mentioned symplectic reduction (as a cross-section), and Tγ carries the stan-
dard symplectic structure: the restriction to Tγ of the form ω = ds ∧ dy.

Theorem 7.3 [23, subsection 1.5], [4,5,18,19] The mappings β, π, and hence,
δ+ given by (7.3), (7.4) and (7.5), respectively, are symplectic.

Proof Symplecticity of the mapping β follows from the definition of symplec-
tic reduction and its holonomy invariance (Remark 7.2). Symplecticity of the
projection π follows from definition and the fact that the π-pullback of the
tautological 1-form α on Tγ is the restriction to Γ of the tautological 1-form
on TΣ. This implies symplecticity of μ+ = π−1, and hence, δ+.

Let I : Γ → Γ denote the reflection involution

I : (Q,P ) �→ (Q,P ∗),
Q ∈ γ, P ∗ := the vector symmetric to P with respect to the line TQγ.

Let Γ+ ⊂ Γ denote the subset of those points (Q,P ) for which P either is
directed inside the convex domain V, or coincides with γ̇(Q).
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Proposition 7.4 The involution I preserves the tautological 1-form α, and
hence, is symplectic. The involutions I and β are Cr-smooth germs of map-
pings (Γ,O±) → (Γ,O±), if the metric and the curve γ are Cr+1-smooth.
The mapping δ+ is conjugated to their product acting on Γ+:

δ̃+ := I ◦ β = μ+ ◦ δ+ ◦ μ−1
+ . (7.6)

The proposition follows immediately from definitions.
The billiard transformation T of reflection from the curve γ acts on

the space of oriented geodesics that intersect γ and are close enough to the
geodesic tangent to γ at O. Each of them intersects γ at two points (which
coincide, if the geodesic is tangent to γ). To each oriented geodesic G we put
into correspondence a point (Q,P ) ∈ Γ+, where Q is its first intersection point
with γ (in the sense of the orientation of the geodesic G) and P is the orienting
unit vector tangent to G at Q. This is a locally bijective correspondence.

Proposition 7.5 Let the metric and the curve γ be C3-smooth. The billiard
mapping T written as a mapping Γ+ → Γ+ via the above correspondence
coincides with δ̃+. Consider the coordinates (s, φ) on Γ: s = s(Q) is the
natural length parameter of a point Q ∈ γ; φ = φ(Q,P ) is the oriented
angle of the vector γ̇(Q) with a vector P ∈ TQΣ. In the coordinates (s, φ) the
mappings I, β and T = δ̃+ are C2-smooth and take the form

I(s, φ) = (s,−φ), β(s, φ) = (s + 2κ−1(s)φ + O(φ2),−φ + O(φ2)), (7.7)

δ̃+(s, φ) = (s + 2κ−1(s)φ + O(φ2), φ + O(φ2)). (7.8)

The asymptotics are uniform in s, as φ → 0. In the coordinates

(s, y), y = 1 − cos φ, (7.9)

see (7.2), the billiard mapping T coincides with δ+ and takes the form

δ+(s, y) = (s + 2
√

2κ−1(s)
√

y + O(y), y + O(y
3
2 )). (7.10)

Proof All the statements of the proposition except for the formulas follow
from definition. Formula (7.7) follows from the definitions of the mappings
I and β: a geodesic issued from a point Q ∈ γ at a small angle φ with
the tangent vector γ̇(Q) intersects γ at a point Q′ such that λ(Q,Q′) =
2κ−1(Q)φ + O(φ2). The latter formula follows from its Euclidean analogue
(applied to the curve γ represented in normal coordinates centered at Q),
Proposition 2.2 and smoothness. Formulas (7.7) and (7.6) imply (7.8), which
in its turn implies (7.10), since y = φ2

2 + O(φ4).

7.2. Families of billiard-like maps with invariant curves: a symplectic version
of Theorem 1.15

In this and the next subsections, we study the following class of area-preser-
ving mappings generalizing the billiard mappings (7.10).

Definition 7.6 A weakly billiard-like map is a germ of mapping preserving the
standard area form dx ∧ dy,

F : (R × R≥0, (0, 0)) → (R × R≥0, (0, 0)),
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F = (f1, f2) : (x, y) �→ (x + w(x)
√

y + O(y), y + O(y
3
2 )), w(x) > 0,

(7.11)

for which the x-axis is a line of fixed points and such that the variable change

(x, y) �→ (x, φ), y = φ2

conjugates F to a C2-smooth germ F̃ (x, φ). The above asymptotics are
uniform in x, as y → 0. If, in addition to the above assumptions, the lat-
ter mapping F̃ is a product of two involutions:

F̃ = I ◦ β, I(x, φ) = (x,−φ),
β(x, φ) = (x + w(x)φ + O(φ2),−φ + O(φ2)), β2 = Id, (7.12)

then F will be called a (strongly) billiard-like map.

Example 7.7 The mapping δ+ from (7.10) is strongly billiard-like in the
coordinates (s, y) with w(s) = 2

√
2κ−1(s), see (7.6), (7.7), (7.8) and (7.10).

The next definition generalizes the notion of string curve family to
weakly billiard-like maps.

Definition 7.8 A family Fε(x, y) of weakly billiard-like maps (7.11) depending
on a parameter ε ∈ [0, ε0] is of string type, if the derivatives up to order 2 of
the corresponding mappings F̃ε(x, φ) are continuous in (x, φ, ε) on a product
{|x| ≤ δ0} × [0, φ0] × [0, ε0] and there exist a δ ∈ (0, δ0] and a family γε of
Fε-invariant graphs of continuous functions hε : [−δ, δ] → R≥0,

γε = {y = hε(x)}, (7.13)

such that γε converge to the x-axis: hε(x) → 0 uniformly on [−δ, δ].

Example 7.9 Let γ ⊂ Σ be a germ of curve with positive geodesic curvature
such that the corresponding string construction curves Γp are C3-smooth and
their 3-jets depend continuously on the base points. (For example, this holds
automatically in the case, when the curve γ and the metric are C6-smooth,
see Theorem 1.3.) Then, the family of billiard reflection maps from the curves
Γp is a string type family. The invariant curves γp from (7.13) are identified
with one and the same curve in the space of oriented geodesics: the family of
geodesics tangent to the curve γ and oriented by its tangent vectors γ̇. See
Sect. 7.5 for more details.

The next theorem deals with string type families of weakly billiard-like
maps satisfying an analogue of the Poritsky property. It extends Theorem
1.15 on coincidence of Poritsky and Lazutkin parameters.

Theorem 7.10 Let Fε(x, y) be a string type family of weakly billiard maps. Let
for every ε small enough there exist a continuous strictly increasing parameter
tε on γε in which F |γε

is a translation by ε-dependent constant,

tε ◦ F |γε
= tε + c(ε), (7.14)
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such that the parameter tε = tε(x) considered as a function of x converges to
a strictly increasing function t0(x) uniformly on [−δ, δ], as ε → 0. Then,

t0 = aX + b, X :=
∫ x

0

w− 2
3 (z)dz, a, b ≡ const. (7.15)

Here, w = w0(x) is the function from (7.11) corresponding to the mapping
Fε with ε = 0.

Theorem 7.10 is proved in Sect. 7.4.

7.3. Modified Lazutkin coordinates and asymptotics

In the proof of Theorem 7.10, we use the following well-known theorem.

Theorem 7.11 Let F be a weakly billiard-like map, and let w(x) be the corre-
sponding function in (7.11). The transformation

L : (x, y) �→ (X,Y ),

{
X(x) =

∫ x

0
w− 2

3 (z)dz

Y (x, y) := w
2
3 (x)y

(7.16)

is symplectic. Its post-composition with the variable change (X,Y ) �→ (X, Φ),
Φ :=

√
Y , conjugates F to a mapping with the asymptotics

F : (X, Φ) �→ (X + Φ + o(Φ),Φ(1 + o(Φ))), as Φ → 0, (7.17)

uniform in X. The coordinates (X,Φ) will be called the modified Lazutkin
coordinates.

A version of Theorem 7.11 is implicitly contained in [15,16]. For com-
pleteness of presentation, we present its proof using the following proposition.

Proposition 7.12 The y-component of a weakly billiard-like map (7.11) ad-
mits the following more precise formula:

f2(x, y) = y − 2
3
w′(x)y

3
2 + o(y

3
2 ). (7.18)

Proof Recall that F̃ = (f̃1, f̃2) is a C2-smooth mapping, φ =
√

y, f̃2(x, φ) =√
f2(x, φ2). Consider the Taylor expansion of the function f̃2 in φ:

f̃2(x, φ) = φ + c(x)φ2 + o(φ2),

f2(x, y) = f̃2
2 (x, φ) = y(1 + c(x)

√
y + o(

√
y))2 = y + 2c(x)y

3
2 + o(y

3
2 ),

∂f2

∂y
(x, y) =

1
√

y
f̃2

∂f̃2

∂φ
(s, φ) = 1 + 3c(x)

√
y + o(

√
y).

(7.19)

This together with analogous calculations of the other partial derivatives,
∂f1

∂x
= 1 + w′(x)

√
y + o(

√
y),

∂f1

∂y
= O(y− 1

2 ),
∂f2

∂x
= 2f̃2(x, φ)

∂f̃2

∂x
(x, φ) = o(φ2) = o(y),

shows that the Jacobian of the mapping F (x, y) equals 1+(w′(x)+3c(x))
√

y+
o(

√
y). But it should be equal to 1, by symplecticity. Therefore, c(x) =

− 1
3w′(x). This together with (7.19) proves the proposition.
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Proof of Theorem 7.11 Symplecticity of the transformation L follows from
definition. Let us show that the coordinate change (x, y) �→ (X, Φ) conjugates
F to a mapping with asymptotics (7.17). One has

X ◦ F (x, y) = X +
∫ x+w(x)

√
y+O(y)

x

w− 2
3 (z)dz

= X + w(x)w− 2
3 (x)

√
y + O(y) = X + Φ + O(Φ2), (7.20)

Φ ◦ F (x, y) =
√

w
2
3 (f1(x, y))f2(x, y)

= w
1
3 (x + w(x)

√
y + o(

√
y))

√
y(1 − 2

3
w′(x)y

1
2 + o(y

1
2 )).

Substituting the expressions
√

y = Φw− 1
3 (x) and

w
1
3 (x + w(x)

√
y + o(

√
y)) = w

1
3 (x) +

1
3
w− 2

3 (x)w′(x)w(x)
√

y + o(
√

y)

= w
1
3 (x)(1 +

1
3
w′(x)

√
y + o(

√
y))

to the above formula yields

Φ ◦ F (x, y) = Φ(1 +
1
3
w′(x)y

1
2 + o(y

1
2 ))(1 − 1

3
w′(x)y

1
2 + o(y

1
2 )) = Φ + o(Φ2).

This together with (7.20) proves (7.17).

We use the following lemma on asymptotics of orbits of a mapping
(7.17).

Lemma 7.13 Let VΔ,σ := [−Δ,Δ] × [0, σ] ⊂ R
2
(X,Φ), F : VΔ,σ → F (VΔ,σ) be

a homeomorphism with asymptotics (7.17) uniform in X ∈ [−Δ,Δ]. There
exist functions α(z), β(z) > 0, α(z), β(z) → 0, as z → 0 such that for every
η ∈ (0, σ

4 ) small enough the following statements hold. Fix an arbitrary δ ∈
(0,Δ). For every q0 ∈ Vδ,η its two-sided orbit in Vδ,σ is a finite sequence:

O := (qjmin , . . . , q−1, q0, q1, . . . , qjmax), qj = (Xj ,Φj), qj+1 = F (qj),
(7.21)

Xjmin−1 = X ◦ F−1(qjmin) < −δ, Xjmax+1 = X ◦ F (qjmax) > δ. (7.22)

The following inequalities hold for every j = jmin − 1, . . . , jmax + 1:

| ln Φj

Φ0
| ≤ α(η); (7.23)

e−β(η)Φ0 ≤ Xj+1 − Xj ≤ eβ(η)Φ0. (7.24)

Addendum to Lemma 7.13. Let Fε be a family of homeomorphisms de-
fined on VΔ,η and depending on a parameter ε ∈ [0, ε0] with asymptotics (7.17)
being uniform in (X, ε) ∈ [−Δ,Δ] × [0, ε0]. Then, all the statements of the
lemma hold with functions α and β independent on ε.
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Proof of Lemma 7.13 The second component of asymptotics (7.17) is equiv-
alent to the uniform asymptotics ln Φ◦F (X,Φ)

Φ = o(Φ): to the existence of a
non-decreasing function u(Φ) > 0, u(Φ) → 0, as Φ → 0, such that

| ln Φ ◦ F±1(X, Φ)
Φ

| ≤ Φu(Φ). (7.25)

The first component of asymptotics (7.17) is equivalent to the existence of a
non-decreasing function v(Φ) > 0, v(Φ) → 0, as Φ → 0, for which

Φ(1 − v(Φ)) ≤ X ◦ F (X,Φ) − X ≤ Φ(1 + v(Φ)). (7.26)

Consider the maximal connected piece O4 of the orbit O containing q0 whose
points have Φ-coordinates satisfying the inequality Φ0

4 ≤ Φj ≤ 4Φ0:

O4 := (qjmin,4 , . . . , q0, . . . , qjmax,4), jmin ≤ jmin,4 ≤ 0 ≤ jmax,4 ≤ jmax,

1
4
Φ0 ≤ Φj ≤ 4Φ0 for every j ∈ [jmin,4, jmax,4]. (7.27)

By definition, if jmin,4 > jmin, then (7.27) does not hold for j = jmin,4 − 1.
Analogous statement holds for jmax,4. Let us choose an η > 0 small enough
so that u(4η), v(4η) < 1

4 . Then, for every j = jmin,4, . . . , jmax,4 one has

1
8
Φ0 ≤ Xj+1 − Xj ≤ 8Φ0, (7.28)

by (7.27) amd (7.26). Set N := jmax,4 − jmin,4 + 1 = |O4|. One has

N ≤ 16δ

Φ0
+ 1 <

16Δ
Φ0

, (7.29)

whenever Φ0 < Δ − δ, by (7.28). For every i ∈ [jmin,4 − 1, jmax,4] one has

| ln Φi+1

Φi
| ≤ 4Φ0u(4η), (7.30)

by (7.25) and (7.27). Summing up the latter inequality and using (7.29), we
get the following inequality for j ∈ [jmin,4 − 1, jmax,4 + 1]:

| ln Φj

Φ0
| ≤ Nu(4η)Φ0 ≤ α(η) := 16Δu(4η). (7.31)

One has obviously α(η) → 0, as η → 0. This proves (7.23) for j ∈ [jmin,4 −
1, jmax,4 + 1]. Inequality (7.24) for the same j with

β(η) = − ln(1 − v(4η)) + α(η)

follows from (7.23) and (7.26).

Claim. For every η > 0 small enough (such that α(η), 4ηu(4η) < 1
8 ) and

every q0 ∈ Vδ,η one has O4 = O: that is, jmin,4 = jmin, jmax,4 = jmax.

Proof Suppose the contrary, for some η as above and some q0 = (X0,Φ0) ∈
Vδ,η one has, say, jmax,4 < jmax. Set j0 := jmax,4. Then,

| ln Φj0+1

Φj0

|, | ln Φj0

Φ0
| <

1
8
,
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by (7.30) and (7.23) for j = j0. Adding the latter inequalities we get | ln Φj0+1

Φ0
|

< 1
4 , thus, 1

4Φ0 < Φj0+1 < 4Φ0. The contradiction thus obtained with the
definition of the number jmax,4 (maximality) proves the claim.

Let η be small, as in the claim. One has qjmax+1 = F (qjmax) /∈ Vδ,σ,
by definition. But Φ(qjmax+1) ≤ eα(η)Φ0 < 4η < σ, by (7.23). Therefore,
Xjmax+1 > δ, by definition and (7.24). This together with a similar argument
for the point qjmin−1 implies (7.22). Lemma 7.13 is proved.

Proof of the Addendum to Lemma 7.13 The addendum follows from unifor-
mity of asymptotics (7.17) in (X, ε) and from the above proof.

7.4. Proof of Theorem 7.10

Everywhere below we write the mappings Fε in the coordinates (Xε,Φε)
given by (7.17). We consider that Fε are well defined on one and the same
set VΔ,η = [−Δ,Δ] × [0, η] ⊂ R

2
(Xε,Φε) for all ε ∈ [0, ε0]. Thus, we identify

the above coordinates for all ε and denote them by (X,Φ). To show that the
limit parameter t0 is equal to the Lazutkin coordinate X up to multiplicative
and additive constants, we have to show that for every four distinct points
in the X-axis with X-coordinates Xj ,

−Δ < X1 < X2 < X3 < X4 < Δ,

the ratios of lengths of the segments

I1 := [X1,X2], I3 := [X3,X4]

in the parameters X and t0 are equal:

t0(X2) − t0(X1)
t0(X4) − t0(X3)

=
X2 − X1

X4 − X3
. (7.32)

Take a ε > 0 small enough, and consider the corresponding Fε-invariant
curve γε. It can be represented as the graph {Φ = Hε(X)} of a continuous
function. The parameter tε on γε in which Fε is a translation induces a
parameter on the X-axis via projection; the induced parameter will be also
denoted by tε. Fix a δ ∈ (0,Δ) such that −δ < X1 < X4 < δ. Consider the
corresponding orbit O of the point q0,ε = (X1,Hε(X1)) ∈ γε, see (7.21), and
let us denote its points by qj,ε := F j(q0,ε). Set

ν(ε) := Φ(q0,ε) = Hε(X1); ν(ε) → 0, as ε → 0.

The sequence Xj := X(qj,ε) is strictly increasing with steps having uni-
form asymptotics ν(ε)(1+o(1)), as ε → 0, by Lemma 7.13 and its addendum.
For every i = 1, 2, 3, 4 let ji = ji,ε denote the maximal number j for which
Xj ≤ Xi. By definition, j1 = 0. For every i = 2, 3, 4 and every ε small enough,
one has Xi − Xji

< 2ν(ε), by the above asymptotics. The sequence tε(Xj) is
an arithmetic progression, since Fε|γε

acts as a translation in the parameter
tε. Its step tends to zero, as ε → 0, since tε limits to a strictly increasing
continuous parameter t0 and the X-lengths of steps tend to zero uniformly.
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This implies that the ratio of the tε-lengths of the segments I1 and I3 has
the same finite asymptotics, as the ratio

R1,3(ε) :=
j2,ε − j1,ε

j4,ε − j3,ε
.

But the ratio of their X-lengths has also the same asymptotics, as R1,3(ε),
since all the steps of the sequence X(qj,ε) are asymptotically equivalent to
one and the same quantity ν(ε). This proves (7.32) and Theorem 7.10.

7.5. Deduction of Theorem 1.15 (case C6) from Theorem 7.10

Let the metric on Σ be C6-smooth. Let γ ⊂ Σ be a germ of C6-smooth curve
with the Poritsky property. Let Γε be the corresponding family of string
curves. Let F̃ε := δ̃+,ε be the billiard ball maps (7.6) defined by reflections
from the curves Γε; see also (7.8). We write them in the coordinates (sε, φε)
associated to Γε on the space of oriented geodesics, see Proposition 7.5. The
curves Γε form a foliation tangent to a C2-smooth line field on the closure
of the concave domain adjacent to γ. They are C3-smooth, and their 3-jets
depend continuously on points. Both statements follow from Theorem 1.3.
This implies that the mappings F̃ε = δ̃+,ε(sε, φε) have derivatives of order
up to 2 that are continuous in (sε, φε, ε). Therefore, the corresponding maps
Fε := δ+,ε = δε(sε, yε), yε = 1 − cos φε, see (7.9), (7.5), (7.10), are strongly
billiard-like.

The maps Fε have invariant curves γε, which are identified with the
family of geodesics tangent to the curve γ and oriented as γ. In the coordinates
(sε, yε) the curves γε are graphs of continuous functions converging to zero
uniformly, as ε → 0, by construction.

Let now γ have the string Poritsky property. Then, the Poritsky pa-
rameter t induces a parameter denoted by tε on each invariant curve γε: by
definition, the value of the parameter tε at a geodesic tangent to γ is the value
of the Poritsky parameter t at the tangency point. The maps δε : γε → γε act
by translations in the parameters tε. The parameters tε obviously converge
uniformly to the Poritsky parameter t = t0 of the curve γ = Γ0, as ε → 0.
Therefore, the billiard ball maps Fε satisfy the conditions of Theorem 7.10
with w = 2

√
2κ−1, see Example 7.7. This together with Theorem 7.10 implies

that t0 = atL + b, a, b ≡ const, and proves Theorem 1.15 in the case, when
the metric and the curve γ are C6-smooth.

8. Osculating curves with the string Poritsky property: proof
of Theorem 1.19

Here, we prove Theorem 1.19, which states that a germ of curve with the
string Poritsky property is uniquely determined by its 4-jet.
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8.1. Cartan distribution, a generalized version of Theorem 1.19 and plan of
the section

Everywhere below for a curve (function) γ by jr
pγ, we denote its r-jet at the

point p. Set

Fr := the space of r-jets of functions of one variable x ∈ R.

Let Σ be a Cm-smooth two-dimensional manifold. For every r ∈ Z≥0,
r ≤ m, set

J r = J r(Σ) := the space of r-jets of regular curves in Σ.

In more detail, a germ of regular curve is the graph of a germ of function {y =
h(x)} in appropriate local chart (x, y). Locally a neighborhood in J r of the
jet of a given Cr-germ of regular curve is thus identified with a neighborhood
of a jet in Fr. One has dim Fr = dim J r = r+2. There are local coordinates
(x, b0, . . . , br) on Fr defined by the condition that for every jet jr

ph ∈ Fr one
has

x(jr
ph) = p, b0(jr

ph) = h(p), b1(jr
ph) = h′(p), . . . , br(jr

ph) = h(r)(p). (8.1)

Recall that the r-jet extension of a function (curve) is the curve in the jet
space Fr (respectively, J r) consisting of its r-jets at all points.

Definition 8.1 (see an equivalent definition in [20, pp. 122–123]). Consider the
space Fr equipped with the above coordinates (x, b0, . . . , br). The Cartan (or
contact) distribution Dr on Fr is the field of two-dimensional subspaces in
its tangent spaces defined by the system of Pfaffian equations

db0 = b1dx, db1 = b2dx, . . . , dbr−1 = brdx. (8.2)

For every Cm-smooth surface Σ and every r ≤ m, the Cartan (or contact)
distribution (plane field) on J r, which is also denoted by Dr, is defined by
(8.2) locally on its domains identified with open subsets in Fr; the distribu-
tions (8.2) defined on intersecting domains Vi, Vj with respect to different
charts (xi, yi) and (xj , yj) coincide and yield a global plane field on J r.

Remark 8.2 Recall that the r-jet extension of each function (curve) is tangent
to the Cartan distribution.

Remark 8.3 The geodesic curvature of a germ of curve is a function of
its 2-jet. We will call a 2-jet of curve κ-nondegenerate, if the correspond-
ing geodesic curvature is positive. For every r ≥ 2, an r-jet of curve with
κ-nondegenerate 2-jet will be also called κ-nondegenerate. The property of
being κ-nondegenerate depends on the Riemannian metric. We denote

J r,0 = J r,0(Σ) = {the κ − nondegenerate r − jets of curves}.

The main result of the present section is the following theorem, which
immediately implies Theorem 1.19. Proofs of both theorems will be given in
Sect. 8.7.
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Theorem 8.4 Let Σ be a two-dimensional surface with a C6-smooth Riemann-
ian metric. There exists a C1-smooth line field P on J 4,0 = J 4,0(Σ) lying in
the Cartan plane field D4 such that the 4-jet extension of every C5-smooth
curve on Σ with positive geodesic curvature and the string Poritsky property
(if any) is a phase curve of the field P.

Let γ be a germ of curve with the string Poritsky property at a point
O ∈ Σ. The Poritsky–Lazutkin parameter t on γ is given by already known
formula (1.4). We normalize it by additive and multiplicative constants so
that t(O) = 0 and dt

ds (O) = κ(O), see (8.4). We identify points of the curve
γ with the corresponding values of the parameter t. Consider the function
L(A,B) defined in (1.2). Let t(A) = a, t(B) = a + τ . The Poritsky prop-
erty implies that the function L(a, a + τ) = L(0, τ) is independent on a. In
particular, the function

Λ(t) := L(0, t) − L(−t, 0) (8.3)

vanishes. For the proof of Theorem 8.4, we show (in the Main Lemma stated in
Sect. 8.2) that for every odd n > 3 the “differential equation” Λ(n+1)(0) = 0
is equivalent to an equation saying that the coordinate bn = dbn−1

dx of the n-jet
of the curve γ is equal to a function of the other coordinates (x, b0, . . . , bn−1).
For n = 5, this yields an ordinary differential equation on J 4,0 satisfied by the
4-jet extension of the curve γ. It will be represented by a line field contained
in D4.

The proof of the Main Lemma takes the most of the section. For its
proof, we study (in Sect. 8.3) two germs of curves γ and γn,b at a point O
having contact of order n ≥ 3. More precisely, they are graphs of functions
y = h(x) and y = hn,b(x) such that hn,b(x) − h(x) = bxn + o(xn). We show
that the corresponding functions Λ(t) and Λn,b(t) differ by cnbtn+1 +o(tn+1),
with cn being a known constant depending on the second jet of the curve γ;
cn �= 0 for odd n > 3. To this end, we consider a local normal chart (x, y)
centered at O with x-axis being tangent to γ at O. We compare different
quantities related to both curves, all of them being considered as functions
of x: the natural parameters, the curvature, etc. In Sect. 8.4, we show that
the asymptotic Taylor coefficients of order (n+1) of the functions L(0, t) and
Λ(t) depend only on the n-jet of the metric at O. We show in Sect. 8.5 that
the above Taylor coefficients are analytic functions of the n-jets of metric
and the curve (using results of Sects. 8.3 and 8.4). In Sect. 8.6, we show that
the degree n + 1 coefficient of the function Λ(t) is a linear non-homogeneous
function in bn = bn(γ) with coefficients depending on bj , j < n; the coefficient
at bn being expressed via cn (using results of Sect. 8.3). This will prove the
Main Lemma.

8.2. Differential equations in jet spaces and the Main Lemma

Let s denote the natural orienting length parameter of the curve γ, s(O) = 0.
Let κ be its geodesic curvature considered as a function κ(s), and let κ > 0.
We already know that if the curve γ has the string Poritsky property, then its
Poritsky–Lazutkin parameter t is expressed as a function of a point Q ∈ γ in

Reprinted from the journal656



terms of the parameter s via formula (1.1), up to constant factor and additive
constant, which can be chosen arbitrarily. We normalize it as follows:

t(Q) := κ
1
3 (0)

∫ s(Q)

0

κ
2
3 (s)ds (8.4)

We can define the parameter t given by (8.4) on any curve γ, not necessarily
having the Poritsky property. We identify the points of the curve γ with the
corresponding values of the parameter t; thus, t(O) = 0.

Remark 8.5 The parameter t on a curve γ given by (8.4) is invariant under
rescaling of the metric by constant factor. This follows from the fact that if
the norm induced by the metric is multiplied by a constant factor C, then
the Levi-Civita connection remains unchanged, the unit tangent vectors γ̇ are
divided by C, and the geodesic curvature ||∇γ̇ γ̇|| of the curve γ considered
as a function of a point in γ is divided by C.

Let G = G(0) denote the geodesic tangent to γ at its base point O. We
will work in normal coordinates (x, y) centered at O, in which G coincides
with the x-axis. For every t let G(t) denote the geodesic tangent to γ at the
point t, and let C(t) denote the point of the intersection G ∩ G(t).

Let L(A,B) be the function of A,B ∈ γ defined in (1.2). We consider
L(A,B) as a function of the corresponding parameters t(A) and t(B), thus,

L(0, t) = L(O, γ(t)) = |OC(t)| + |C(t)γ(t)| − λ(0, t), (8.5)

where λ(0, t) = λ(O, γ(t)) is the length of the arc Oγ(t) of the curve γ.
The main part of the proof of Theorem 8.4 is the following lemma.

Lemma 8.6 (The Main Lemma). Let n ∈ N, n ≥ 5. Let Σ be a surface
equipped with a Cn+1-smooth Riemannian metric. Let V ⊂ Σ be a domain
equipped with a chart (x, y) where the metric is Cn+1-smooth. Let J n

y (V )
denote the space of those κ-nondegenerate n-jets of curves in V (see Remark
8.3) that are graphs of Cn-smooth functions {y = h(x)}; thus, it is naturally
identified with an open subset Fn

y (V ) ⊂ Fn. Let (x, b0, . . . , bn) denote the
corresponding coordinates on Fn

y (V ) 	 J n
y (V ) given by (8.1). Set

J2 := (x, b0, b1, b2).

There exist C1-smooth functions σn(J2) and Pn(J2; b3, . . . , bn−1),

σn �= 0 for odd n > 3; σn ≡ 0 for every even n > 5, (8.6)

such that every jet Jn = (x, b0, . . . , bn) ∈ J n
y (V ) extending J2 satisfies the

following statement. Let γ be a Cn-smooth germ of curve representing the jet
Jn, and let t be the parameter on γ defined by (8.4). Let t > 0, L(0, t) be
the same, as in (8.5). The corresponding function Λ(t) from (8.3) admits an
asymptotic Taylor formula of degree n + 1 at 0 of the following type:

Λ(t) =
n+1∑
k=3

Λ̂ktk + o(tn+1), (8.7)

Λ̂n+1 = σn(J2)bn − Pn(J2; b3, . . . , bn−1). (8.8)
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Definition 8.7 A pure n-jet of curve γ in R
2 is a class of n-jets of curves

modulo translations. If γ = {y = h(x)}, then it is identified with the collection
of Taylor coefficients of the function h(x) at monomials of degrees from 1 to
n. A pure n-jet of metric on a planar domain is a class of n-jets of metrics
modulo translations. It is identified with the collection of Taylor coefficients
of the metric tensor at monomials of degrees from 0 to n.

Addendum to Lemma 8.6. The function σn depends analytically on the
pure 1-jet of the metric and the pure 2-jet of the curve. The function Pn

depends analytically on the pure n-jet of the metric and the pure (n − 1)-
jet of the curve. The function σn is defined by the following formula. Set
u = u(J2) := (1, b1) ∈ T(x,b0)Σ. Let w ∈ T(x,b0)Σ denote the image of the
vector ∂

∂y ∈ T(x,b0)Σ under the Riemannian-orthogonal projection to the line
Ru⊥. Let κ = κ(J2) denote the geodesic curvature of a curve γ representing
the jet J2 (it depends on the pure 2-jet of the curve and the pure 1-jet of the
metric). Then, for every odd n ≥ 5,

σn(J2) =
(n − 2)(n − 3)

6(n + 1)!
||w||(||u||κ(J2))−n. (8.9)

Lemma 8.6 and its addendum will be proved in Sect. 8.6.

8.3. Comparison of functions L(0, t) and Λ(t) for osculating curves

Let n ≥ 3. Let Σ be a surface equipped with a Riemannian metric, O ∈ Σ.
Let us consider normal coordinates (x, y) centered at O. We consider that the
metric under question is C4-smooth in the normal coordinates. This holds
automatically for every C6-smooth metric. Let b ∈ R, and let γ, γn,b ⊂ Σ
be two germs of Cn-smooth curves at O with the same (n − 1)-jet that are
tangent to the x-axis at O,

γ = {y = h(x)}, γn,b = {y = hn,b(x)}, hn,b(x) = h(x) + bxn + o(xn),

h, hn,b ∈ Cn. Here, o(xn) is a function tending to zero together with its
derivatives up to order n, as x → 0. Their geodesic curvatures at O are
equal to the same number κ(O) = |h′′(0)| = |h′′

n,b(0)|, by (2.1). Without loss
of generality, we consider that κ(O) = h′′(0) = 1. One can achieve this by
rescaling the norm of the metric by constant factor κ(O), see Remark 8.5,
and changing sign of the coordinate y.

The main result of the present subsection is the following lemma.

Lemma 8.8 In the above conditions, let t be the parameter on γ given by (8.4).
Let L(0, t), Ln,b(0, t) and Λ(t), Λn,b(t) be the functions from (8.3) defined for
the curves γ and γn,b, respectively. For every t > 0, one has

Ln,b(0, t) − L(0, t) =
(n − 2)(n − 3)

12(n + 1)
btn+1 + o(tn+1), as t → 0, (8.10)

Λn,b(t) − Λ(t) =

{
(n−2)(n−3)

6(n+1) btn+1 + o(tn+1), if n is odd,

o(tn+1), if n is even.
(8.11)
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For the proof of Lemma 8.8, we first compare the natural parameters
s(x), sn,b(x) centered at O, the curvatures κ(x), κn,b(x) and the parame-
ters t(x), tn,b(x) given by (8.4) for the curves γ and γn,b as functions of
x. We also compare the corresponding inverse functions x = x(t) and x =
xn,b(t) as functions of t, see Proposition 8.9 below. Afterwards we prove for-
mula (8.10) using the above-mentioned comparison results and the results of
Sect. 2. Then, we deduce (8.11).

Proposition 8.9 As x → 0 (or equivalently, t → 0), one has

t(x) 	 tn,b(x) 	 x, x(t) 	 t 	 h′(x(t)), (8.12)

sn,b(x) − s(x) =
n

n + 1
bxn+1 + o(xn+1), (8.13)

κn,b(x) − κ(x) = n(n − 1)bxn−2 + o(xn−2), (8.14)

tn,b(x) − t(x) =
2n

3
bxn−1 + o(xn−1), (8.15)

xn,b(t) − x(t) = −2n

3
btn−1 + o(tn−1). (8.16)

Proof Formulas (8.12) follow from (8.4), since κ(O) = h′′(0) = 1. In the
parametrizations γ = γ(x), γn,b = γn,b(x), one has

s(x) =
∫ x

0

||γ̇(u)||du, sn,b(x) =
∫ x

0

||γ̇n,b(u)||du. (8.17)

We claim that
||γ̇n,b(x)|| − ||γ̇(x)|| = nbxn + o(xn). (8.18)

Indeed, let us identify the tangent spaces T(x,y)Σ at different points (x, y) by
translations. One has γ̇(x), γ̇n,b(x) = (1, x + o(x)),

v(x) := γ̇n,b(x) − γ̇(x) = (0, nbxn−1 + o(xn−1)) : (8.19)

h′(x) 	 x, since h′′(0) = κ(O) = 1, by assumption. The metric has triv-
ial 1-jet at the base point O. Therefore, the difference of metric tensors at
the O(xn)-close points γ(x), γn,b(x), which are O(x)-close to O, is O(xn+1).
Hence, it suffices to prove (8.18) for the vector γ̇n,b(x) being translated to
the point γ(x). The Euclidean angle between the vectors v(x) and γ̇(x) is
π
2 − x + o(x), by (8.19). Therefore, the angle between them in the metric of
the tangent plane Tγ(x)Σ has the same asymptotics. Hence,

||γ̇n,b(x)||2 = ||v(x) + γ̇(x)||2 = ||γ̇(x)||2 + 2nbxn + o(xn),

by Cosine Theorem and since ||v(x)||2 = O(x2n−2) = O(xn+1) (n ≥ 3). The
latter formula together with the obvious formula ||γ̇(x)|| = 1 + O(x) imply
(8.18), which together with (8.17) implies (8.13).

Let us prove (8.14). The Christoffel symbols at the O(xn)-close points
γ(x) and γn,b(x) are O(xn)-close, as in the above discussion. Therefore,
the difference κn,b(x) − κ(x) is equal up to O(xn) to the same difference,
where each curvature is calculated in the metric (Christoffel symbols) of the
point γ(x). The difference of the Christoffel parts of the curvatures, which
are quadratic in the vectors 1

||γ̇(x)|| γ̇(x), 1
||γ̇n,b(x)|| γ̇n,b(x), is O(||v(x)||) =

O(xn−1), by (8.18). The difference of their second derivative terms is equal
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Figure 7. Auxiliary geodesics for calculation of the asymp-
totic of the difference Ln,b(0, t) − L(0, t)

to h′′
n,b(x) − h′′(x) + O(xn) = n(n − 1)bxn−2 + o(xn−2), by definition and

(8.18). This together with the above discussion implies (8.14).
Let us prove (8.15). One has

tn,b(x) − t(x) =
∫ x

0

(κ
2
3
n,b(u)||γ̇n,b(u)|| − κ

2
3 (u)||γ̇(u)||)du

=
∫ x

0

(κ
2
3
n,b(u) − κ

2
3 (u))||γ̇(u)||du + O(xn),

by definition and (8.18). The latter right-hand side is asymptotic to 2
3

∫ x

0
n(n−

1)bun−2du = 2n
3 bxn−1, by (8.14) and since κ(0) = 1. This proves (8.15).

Formula (8.16) follows from (8.15). Proposition 8.9 is proved.

In the proof of formula (8.10), we use the following notations:

P = P (t) := γ(t), Q = Q(t) := (xn,b(t), h(xn,b(t))) ∈ γ, A = A(t) := γn,b(t),

G(t) := the geodesic tangent to γ at P, G(0) = the x − axis,

C = C(t) := G(t) ∩ G(0), V = V (t) := {x = xn,b(t)}, B = B(t) := G(t) ∩ V,

Gn,b(t) := the geodesic tangent to γn,b at A, D = D(t) := Gn,b(t) ∩ G(0),

see Fig. 7. By definition, Q = Q(t) = γ ∩ V .
In what follows for any two points E,F ∈ Σ close to O, the length of the

geodesic segment connecting F to E will be denoted by |EF |. By definition,

L(0, t) = |OC|+ |CP |−λ(O,P ), Ln,b(0, t) = |OD|+ |DA|−λ(O,A). (8.20)

Recall that λ(O,A), λ(O,P ) are lengths of arcs OA and OP of the curves
γn,b and γ, respectively. Set

L1 = L1(t) := |OC| + |CB| − λ(O, Q), L2 = L2(t) := |OC| + |CA| − λ(O, A),

Δ1 = Δ1(t) := L1(t) − L(0, t) = λ(Q, P ) − |BP |,
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Δ2 = Δ2(t) := L2(t) − L1(t),

Δ3 = Δ3(t) := Ln,b(0, t) − L2(t) :

Ln,b(0, t) − L(0, t) = Δ1(t) + Δ2(t) + Δ3(t). (8.21)

In what follows, we find asymptotics of each Δj .

Proposition 8.10 One has

Δ1(t) = O(t2n−1) = O(tn+2) whenever n ≥ 3. (8.22)

Proof In the curvilinear triangle QPB with QP ⊂ γ, PB being geodesic and
QB vertical segment, one has |PB| = O(xn,b(t)−x(t)) = O(tn−1), by (8.16).
Its angle at B is π

2 + O(t). Therefore, by (2.14),

Δ1 = λ(Q,P ) − |PB| = O(|PB|3) + O(t|PB|2) = O(t3n−3) + O(t2n−1).

The latter right-hand side is O(t2n−1) = O(tn+2), since n ≥ 3.

Proposition 8.11 One has

Δ2(t) =
b

n + 1
tn+1 + o(tn+1). (8.23)

Proof By definition,

Δ2(t) = |OC| + |CA| − λ(O,A) − (|OC| + |CB| − λ(O,Q))
= (|CA| − |CB|) − (λ(O,A) − λ(O,Q)), (8.24)

λ(O,A) − λ(O,Q) = sn,b(xn,b(t)) − s(xn,b(t)) =
nbtn+1

n + 1
+ o(tn+1),

(8.25)

by (8.13) and (8.12). To find the asymptotics of the difference |CA| − |CB|,
let us consider the height denoted by BH of the geodesic triangle ABC,
which splits it into two right triangles ABH and CBH, see Fig. 7. We use
the following asymptotic formula for lengths of their sides:

|AB| 	 btn + o(tn) 	 |BH|, (8.26)

|CB| 	 |CP | 	 |CA| 	 t

2
(8.27)

|AH| 	 btn+1 + o(tn+1) 	 |AC| − |BC|. (8.28)

Proof of (8.26) The Euclidean distance in the coordinates (x, y) between the
points A and Q is bxn

n,b(t) + o(xn
n,b(t)) = btn + o(tn), by construction. There-

fore, the distance between them in the metric g is asymptotic to the same
quantity, since g is Euclidean on TOΣ. The Euclidean distance between the
points Q and B is of order O((x(P ) − x(B))2) 	 O(t2(n−1)) = O(tn+1), by
(8.16) and since n ≥ 3: 2(n− 1) ≥ n+1 for n ≥ 3. The two latter statements
together imply that |AB| = btn +o(tn); this is the first asymptotics in (8.26).

In the proof of the second asymptotics in (8.26) and in what follows, we
use the two next claims.

Claim 1. The azimuths of the tangent vectors of the geodesic arcs CA,
CP , DA at all their points are uniformly asymptotically equivalent to t =
t(P ), as t → 0.
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Proof Let us prove the above statement for the geodesic arc CP ; the proof
for the arcs CA and DA is analogous. The slope of the tangent vector to
the curve γ at the point P is asymptotic to x(P ) = x(t) 	 t, and it is equal
to the slope of the tangent vector of the geodesic CP at P . On the other
hand, let us apply formula (2.5) to the geodesic arc α = CP : its right-hand
side is O(t). The length of the arc CP is O(t). Hence, the difference between
the azimuths of tangent vectors at any two points of the geodesic arc CP is
O(t2). This proves the claim.

Claim 2. The angle A of the geodesic triangle ABH is asymptotic to
π
2 − t + o(t). Its angle B is asymptotic to t + o(t), and |AH| 	 t|AB|.
Proof The first statement of the claim follows from Claim 1 applied to CA
and the fact that the slopes of the tangent vectors to the geodesic arc BA
are uniformly O(|BA|) = O(tn)-close to π

2 . This follows from the second
formula in (2.13) and formula (2.5) applied to the geodesic arc BA. The
second statement of the claim follows from the first one and (2.12).

One has |AB| 	 |HB|, by Claim 2 and (2.12). This yields the second
asymptotics in (8.26). Formula (8.26) is proved.

Proof of (8.27) The asymptotics |CP | 	 x(P )
2 	 t

2 follows from Claim 1
and the fact that the height of the point P over the x-axis is asymptotic
to x2(P )

2 	 t2

2 . The other asymptotics in (8.27) follow from the above one,
formula (8.26) and the fact that |BP | = O(tn−1) (follows from (8.16)).

Proof of (8.28) The first asymptotic formula in (8.28) follows from (8.26) and
the last statement of Claim 2. In the proof of the second formula in (8.28)
we use the following claim.

Claim 3. The angle φ := ∠BCH equals 2btn−1 + o(tn−1).

Proof The triangle BCH has right angle at H, |BH| = btn+o(tn), |BC| 	 t
2 ,

by (8.26) and (8.27). Hence, φ 	 |BH|/ t
2 = 2btn−1 + o(tn−1).

Now let us prove the second asymptotic formula in (8.28). One has

|BC| − |HC| 	 1
2
|BC|φ2,

by formula (2.12) applied to the family of triangles BCH. The right-hand
side in the latter formula is b2t2n−1 + o(t2n−1) = O(tn+2), by (8.27) and
Claim 3 and since 2n − 1 ≥ n + 2 for n ≥ 3. Thus,

|BC| − |HC| = O(tn+2),
|AC| − |BC| = (|HC| − |BC|) + |AH| = |AH| + O(tn+2) = btn+1 + o(tn+1),

(8.29)

by the first formula in (8.28) proved above. Formula (8.28) is proved.
Substituting formulas (8.25) and (8.28) to (8.24) yields

Δ2(t) = btn+1 − n

n + 1
btn+1 + o(tn+1) =

b

n + 1
tn+1 + o(tn+1).

Proposition 8.11 is proved.
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Proposition 8.12 One has

Δ3(t) =
n − 6
12

btn+1 + o(tn+1). (8.30)

Proof Recall that

Δ3(t) = Ln,b(0, t) − L2(t) = |OD| + |DA| − λ(O, A) − (|OC| + |CA| − λ(O, A))

= |DA| − (DC + |CA|). (8.31)

Here, DC is the “oriented length” DC := |OC| − |OD|.
Let CT denote the height of the geodesic triangle DCA. To find an

asymptotic formula for the right-hand side in (8.31), we first find asymptotics
of the length of the height CT and the angle ∠DAC.

Claim 4. Let α := ∠DAC denote the oriented angle between the geodesics
AD and AC: it is said to be positive, if D lies between O and C, as at Fig. 7.
One has α = 6−n

3 btn−1 + o(tn−1).

Proof Consider the following tangent lines of the geodesic arcs AD, AC, BC,
CP and the curve γ:

�1 := TAAD = TAγn,b, �2 := TAAC, �3 := TBBC,

�4 := TQγ, �5 := TP CP = TP γ.

We orient all these lines “to the right”. One has

α 	 az(�2) − az(�1), (8.32)

by definition and since the Riemannian metric at the point A written in
the normal coordinates (x, y) tends to the Euclidean one, as t → 0. Let us
find asymptotic formula for the above difference of azimuths by comparing
azimuths of appropriate pairs of lines �1, . . . , �5. One has

az(�4) − az(�1) = −nbtn−1 + o(tn−1),

since the above azimuth difference is asymptotically equivalent to the differ-
ence of the derivatives of the functions h(x) and hn,b(x) = h(x)+bxn +o(xn)
at the same point x = x(B) 	 t: hence, to −nbxn−1 + o(xn−1). One has

az(�5) − az(�4) 	 h′(x(t)) − h′(xn,b(t)) 	 x(t) − xn,b(t) =
2n

3
btn−1 + o(tn−1),

by (8.16) and since the function h′(x) 	 x has unit derivative at 0,

az(�3) − az(�5) = O(t(x(B) − x(P ))) = O(t(xn,b(t) − x(t))) = O(tn),

by (2.5) and (8.16),

az(�2) − az(�3) 	 ∠BCA = 2btn−1 + o(tn−1),

by (2.11), (2.5), (8.28) and Claim 3. The right-hand sides of the above as-
ymptotic formulas for azimuth differences are all of order tn−1, except for
one, which is O(tn). Summing all of them yields the statement of Claim 4:

α 	 az(�2) − az(�1) =
6 − n

3
btn−1 + o(tn−1).
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Claim 5. In the right triangle3 CDT ∠TDC 	 t, CT = 6−n
6 btn +o(tn),

CD 	 DT =
6 − n

6
btn−1 + o(tn−1), CD − DT =

6 − n

12
btn+1 + o(tn+1).

(8.33)

Proof The angle asymptotics follows from Claim 1. The length asymptotics
for the side CT is found via the adjacent right triangle ACT , from the formula
CT 	 AC∠CAT after substituting α = ∠CAT = 6−n

3 btn−1+o(tn−1) (Claim
4) and AC 	 t

2 , see (8.27). This together with formula (2.12) applied to the
right triangle CDT and the asymptotics ∠CDT 	 t implies (8.33).

Now let us prove formula (8.30). Recall that

Δ3(t) = |DA| − (DC + |CA|) = (DT − DC) + (|AT | − |AC|), (8.34)

see (8.31). One has DT −DC = n−6
12 btn+1+o(tn+1), by (8.33); |AT |−|AC| =

O(tn+2), by (2.12) and Claim 4, analogously to the proof of formula (8.29).
Substituting the two latter formulas to (8.34) yields to (8.30). Proposition
8.12 is proved.

Proof of Lemma 8.8 Let us prove formula (8.10). Summing up formulas (8.22),
(8.23), (8.30) and substituting their sum to (8.21) yields to (8.10):

Lb,n(0, t) − L(0, t) = Δ1(t) + Δ2(t) + Δ3(t) =
b

n + 1
tn+1 +

n − 6

12
btn+1 + o(tn+1)

= (
1

n + 1
+

n − 6

12
)btn+1 + o(tn+1) =

(n − 2)(n − 3)

12(n + 1)
btn+1 + o(tn+1).

Let us prove formula (8.11). Consider the points of the curves γ and
γn,b with x < 0. Taking them in the coordinates (x̂, y), x̂ := −x results in
multiplying the coefficient b by (−1)n. This implies that for every t > 0

Ln,b(−t, 0) − L(−t, 0) = (−1)n (n − 2)(n − 3)
12(n + 1)

btn+1 + o(tn+1). (8.35)

Thus, for odd (even) n, the main asymptotic terms in (8.35) and (8.10) are
opposite (respectively, coincide). Hence, in the expression

Λn,b(t) − Λ(t) = (Ln,b(0, t) − L(0, t)) − (Ln,b(−t, 0) − L(−t, 0))

they are added (cancel out), and we get (8.11). Lemma 8.8 is proved.

8.4. Dependence of functions L(0, t) and Λ(t) on the metric

Here, we prove the following lemma, which shows that the (n + 1)-jets of the
quantities L(0, t) and Λ(t) depend only on the n-jet of the metric.

Lemma 8.13 Let n ≥ 5, Σ be a two-dimensional surface. Let O ∈ Σ, γ ⊂ Σ
be a germ of Cn-smooth curve at O with positive geodesic curvature. Let
g and g̃ be two Cn+1-smooth Riemannian metrics on Σ having the same
n-jet at O: g̃(q) − g(q) = o(distn(q,O)), as q → O. Then, the differences
Lg̃(0, t) − Lg(0, t), Λg̃(t) − Λg(t) of quantities L(0, t) and Λ(t) defined by the
metrics g̃ and g are o(tn+1).

3We treat the lengths of sides of the triangle CDT as oriented lengths (without module
sign): we take them with the sign equal to sign(α), where α is the same, as in Claim 4.
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Proof Let s, s̃, t, t̃, κ, and κ̃ denote the natural and Lazutkin parameters
centered at O, see (8.4), and the geodesic curvature of the curve γ defined
by the metrics g and g̃, respectively. One has κ(O) = κ̃(O), since n ≥ 3.
Let us rescale the metrics by the same constant factor so that κ(O) = 1. Fix
Cn-smooth coordinates (x, y) centered at O so that the x-axis is tangent to
the curve γ and || ∂

∂x || = 1 at O. Consider x as a local parameter on γ. We
consider the above quantities as functions of x; s(0) = s̃(0) = t(0) = t̃(0) = 0.

Let x(t), x̃(t) denote the functions inverse to t(x) and t̃(x), respectively.
Let γ(t) and γ̃(t) denote the points of the curve γ with x-coordinates x(t) and
x̃(t), respectively. Let now s(t) and s̃(t) denote the natural length parameters
of the metrics g and g̃, now considered as functions of the parameter t defined
by the metric under question (g or g̃).

Proposition 8.14 One has t 	 x 	 t̃ 	 s 	 s̃,

s̃(x) − s(x) = o(xn+1), κ̃(x) − κ(x) = o(xn−1), t̃(x) − t(x) = o(xn),
(8.36)

x̃(t) − x(t) = o(tn), dist(γ(t), γ̃(t)) = o(tn), (8.37)
s̃(t) − s(t) = o(tn), s̃′(t) − s′(t) = o(tn−1). (8.38)

Proof The asymptotic equivalences follow from (8.4). The first formula in
(8.36) is obvious. The second one holds by definition and since the Christoffel
symbols of the two metrics differ by a quantity o(xn−1). The third formula
follows from the second one. Formula (8.37) follows from the third formula
in (8.36). Formula (8.38) follows from (8.36) and (8.37).

Fix a small value t ∈ R, say, t > 0. Set

P = γ(t), A = γ̃(t).

Let C (C̃) be the point of intersection of the g-(respectively, g̃-) geodesics
G(P ), G(O) tangent to γ at P and O. Let D (D̃) be the analogous points
of intersection of the geodesics tangent to γ at A and O. See Fig. 8a). The
distance (arc length) between points E and F in a metric h will be denoted
by |EF |h (respectively, λh(E,F )). One has

Lg(0, t) = |OC|g + |CP |g − λg(O,P ), Lg̃(0, t) = |OD̃|g̃ + |D̃A|g̃ − λg̃(O,A),

by definition. Set

Δ1(t) := |OC|g + |CP |g − |OD|g − |DA|g − (λg(O,P ) − λg(O,A));(8.39)
Δ2(t) := (|OD|g − |OD|g̃) + (|DA|g − |DA|g̃) − (λg(O,A) − λg̃(O,A));

(8.40)

Δ3(t) := (|OD|g̃ − |OD̃|g̃) + (|DA|g̃ − |D̃A|g̃). (8.41)

One has
Lg(0, t) − Lg̃(0, t) = Δ1 + Δ2 + Δ3. (8.42)

Claim 1. One has Δ1(t) = o(tn+1).
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Proof Let us introduce the point B of intersection of the g-geodesic PC with
the vertical line through A, see Fig. 8a): x(B) = x̃(t). One has

Δ1 = (|OC|g + |CB|g − |OD|g − |DA|g) + (BPg − λ̂g(A,P )). (8.43)

Here, BPg and λ̂g(A,P ) are the corresponding oriented lengths, which are
positive if and only if A lies between O and P on the curve γ. Consider the
curvilinear triangle APB formed by the arc AP of the curve γ, the g-geodesic
PB and the vertical segment BA. Its sides AP and BA have g-length o(tn),
by definition and (8.37). Its angle B is π

2 +O(x̃(t)) = π
2 +O(t), as in Claim 2

in Sect. 8.3 (Here and below, in order to use arguments from proofs of Claims
2 and 4 from Sect. 8.3, we use C4-smoothness of the metric g in g-normal
coordinates centered at O. This follows from its Cn+1-smoothness, n ≥ 5.).
This together with (2.14) implies that the second bracket in (8.43) is o(tn+1).
Let us prove the same statement for the first bracket. It is equal to

DCg + |CA|g − |DA|g + (|CB|g − |CA|g) = DCg + |CA|g − |DA|g + o(tn+1),
(8.44)

since ||CB|g − |CA|g| ≤ |BA| = O((x(P ) − x(B))2) = o(tn+1). Here, DCg is
the oriented length |OC|g − |OD|g. One has

DCg + |CA|g − |DA|g = o(tn+1). (8.45)

Indeed, consider the height CT of the triangle ADC, which splits it into two
right triangles. One has ∠CAD = O(x(A) − x(P )) = o(tn), as in the proof
of Claim 4 in the previous subsection. This together with right triangle argu-
ments using (2.12) analogous to those from the proof of Claim 5 (Sect. 8.3)
implies (8.45). Substituting (8.45) to (8.44) and then substituting everything
to (8.43) yields Δ1(t) = o(tn+1). Claim 1 is proved.

Claim 2. One has Δ2(t) = o(tn+1).

Proof All the points in (8.40) are O(t)-close to O. The g- and g̃-distances
between any two points (which will be denoted by E and F ) differ by a
quantity o(tn+1). Indeed, the g̃-length of the g-geodesic segment EF differs
from its g-length by o(tn+1), since the metrics differ by o(tn). The distance
|EF |g̃ is no greater than the latter g̃-length, and hence, no greater than
|EF |g +o(tn+1). Applying the same arguments to interchanged metrics yields
that the above distances differ by o(tn+1). Similarly, λg(O,A) − λg̃(O,A) =
o(tn+1). This proves the claim.

Let H and M denote the points in the g̃-geodesics OD and DA, respec-
tively, that are g̃-closest to D̃: D̃H ⊥g̃ OD; D̃M ⊥g̃ DA; see Fig. 8b).

Claim 3. One has |D̃H|g̃ = o(tn+1), |D̃M |g̃ = o(tn+1).

Proof Let EFh denote the geodesic EF in the metric h. The g̃-geodesic OD̃g̃

is tangent to the g-geodesic ODg at O. The metrics g and g̃ have the same
n-jet at O. Therefore, their Christoffel symbols have the same (n − 1)-jet.
Consider the geodesics ODg, OD̃g̃ as solutions of the differential equations
for geodesics of the metrics g, g̃ with the same initial condition γ̇(0) at O.
Differentiating the above equations successively (n − 1) times we get that
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(a) (b)

Figure 8. The curve γ, points P , A, C, D, B (a). The
points D̃, H, M ; case (2) (b))

these solutions have the same (n + 1)-jet, by the above statement on the
Christoffel symbols. This implies that dist(D,OD̃g̃) = o(tn+1). Therefore,
the g̃-geodesic OD̃ should be turned at O by an angle of order o(tn) in order
to hit the point D, by the above statement and since |OD|g̃ 	 t

2 , as in (8.27).
This implies that the points in OD̃g̃ lying on a distance of order O(t) from
O are o(tn+1)-close to the geodesic ODg̃. This proves the statement of the
claim for the distance |D̃H|g̃. The proof for |D̃M |g̃ is analogous. Namely,
first we rescale the metric g̃ by constant factor 1 + o(tn) in order to achieve
that a vector tangent to γ at A has equal g- and g̃-norms. Then the g- and
g̃-geodesics AD, AD̃ tangent to γ at A, being lifted to the tangent bundle,
are phase curves of the vector fields defining g- and g̃-geodesic flows, with
the same initial condition at A. The latter vector fields differ by o(tn−1)
on the 1

2 -neighborhood (in the norm of the metric g) of the g-unit tangent
bundle over the 6|t|-neighborhood of O. This implies that the solutions of the
corresponding second order equations on geodesics differ by o(tn+1) on the
time segment [−2t, 2t] and |D̃M |g̃ = o(tn+1), by a modified version of the
above argument for |D̃H|g̃.

Claim 4. One has Δ3(t) = o(tn+1).

Proof All the distances below are measured in the metric g̃. One has

|OD̃| − |OH| = O(
|D̃H|2

|OD̃|
) = o(t2n+1) = o(tn+1), (8.46)

|AD̃| − |AM | = O(
|D̃M |2

|AD̃|
) = o(t2n+1) = o(tn+1), (8.47)

by (2.12) (applied to the right g̃-triangles OD̃H and AD̃M) and Claim 3,

|OD| − |OH| = ±|DH|, |AD| − |AM | = ±|DM |, (8.48)

see the cases of signs (which do not necessarily coincide) below. Taking sum
of equalities (8.48) and its difference with the sum of (8.46), (8.47) yields

Δ3(t) = (±)|DH| ± |DM | + o(tn+1). (8.49)

Case (1). In the right triangle DD̃H, the angle D is bounded from
below (along some sequence of parameter values t converging to 0). Then, the
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same statement holds in the right triangle D̃MD, since the angle between
the geodesics DA and OD tends to 0 as O(t). This implies that |DH| =
O(|D̃H|) = o(tn+1), and |DM | = O(|D̃M |) = o(tn+1), by Claim 3. This
together with (8.49) implies Claim 4 (along the above sequence)

Case (2). In the right tringle DD̃H, the angle D tends to zero along
some sequence of parameter values t converging to 0, see Fig. 8b). Then,
the same holds in D̃MD. In this case, the signs in (8.49) are different. For
example, if H lies between O and D, then the angle ∠D̃DA is obtuse and
D lies between M and A. The opposite case is treated analogously. Let us
denote

α(t) := ∠D̃DH, β(t) := ∠D̃DM ; α(t), β(t) → 0 as t → 0.

Applying (2.12) to the above right triangles together with Claim 3 yields

|D̃D| − |DH| = O(α(t)|D̃H|) = o(tn+1),

|D̃D| − |DM | = O(β(t)|D̃M |) = o(tn+1).

Hence, |DH|−|DM | = o(tn+1). This together with (8.49) implies the asymp-
totics of Claim 4 (along the above sequence). Claim 4 is proved.

Claims 1, 2 and 4 together with (8.42) imply the statement of Lemma
8.13 on the function L. In its turn, it implies the same statement on Λ.

8.5. Taylor coefficients of Λ(t): analytic dependence on jets

Lemma 8.15 Let (x, y) be coordinates on a neighborhood of a point O ∈ Σ,
n ≥ 5. Let a metric on Σ be Cn+1-smooth in the coordinates (x, y), and
let γ be a germ of Cn-smooth curve on Σ at O. Then, the corresponding
functions L(0, t), Λ(t) are O(t3). They admit asymptotic Taylor expansions
up to tn+1. Their coefficients at tn+1 are analytic functions of the pure n-jets
of the metric and the curve γ.

Proof The asymptotics L(0, t),Λ(t) = O(t3) follows from Theorem 1.16.
Case (1): the curve γ and the metric are analytic. Consider the metric

and the curve with variable Taylor coefficients of orders up to n; the other,
higher Taylor coefficients are fixed. Consider L(0, t) and Λ(t) as functions in
t and in the latter variable Taylor coefficients. They are analytic on the prod-
uct of a small complex disk centered at 0 with coordinate t and a domain
in the space of collections of the above Taylor coefficients. In more detail,
complexifying everything, we get that L(0, t) has a well-defined holomorphic
extension to complex domain. (The complexified lengths of segments in the
definition of the function L(0, t) become integrals of appropriate holomor-
phic forms along paths.) Well-definedness follows from the fact that through
each point C in a complex neighborhood of the real curve γ there are two
complex geodesics tangent to its complexification. This follows by quadratic-
ity of tangencies (non-vanishing of geodesic curvature) and Implicit Function
Theorem. Analytic extendability to the locus {t = 0} follows from the Eras-
ing Singularity Theorem on bounded functions holomorphic on complement
to a hypersurface. Therefore, both functions admit a Taylor series in t with
coefficients being analytic functions in the above Taylor coefficients.
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Case (2) of general Cn+1-smooth metric g and Cn-smooth curve γ.
Consider other, analytic metric g̃ and curve γ̃ representing their n-jets. The
functions L̃(0, t) = Lg̃,γ̃(0, t) and Λ̃(t) = Λg̃,γ̃(t) defined by them are analytic
and coincide with the functions L(0, t) = Lg,γ(0, t) and Λ(t) = Λg,γ(t) corre-
sponding to g and γ up to o(tn+1). Indeed, Lg̃,γ(0, t) − Lg,γ(0, t) = o(tn+1),
by Lemma 8.13, Lg̃,γ̃(0, t) − Lg̃,γ(0, t) = o(tn+1), by Lemma 8.8 applied to
b = 0. Thus, L̃(0, t) − L(0, t) = o(tn+1), Λ̃(t) − Λ(t) = o(tn+1). This together
with the discussion in Case (1) implies that L(0, t) and Λ(t) have asymptotic
Taylor expansions of order up to tn+1 coinciding with those of L̃(0, t) and
Λ̃(t), and hence, having coefficients being analytic functions of the n-jets of
g and γ. They depend only on pure n-jets, since applying a translation of
both the curve and the metric leaves L(0, t) and Λ(t) invariant. Lemma 8.15
is proved.

8.6. Proof of Lemma 8.6

Let Σ be a two-dimensional surface equipped with a Cn+1-smooth Riemann-
ian metric g. Let V ⊂ Σ be a domain equipped with a chart (x, y) (not nec-
essarily normal) where the metric is Cn+1-smooth. Consider a Cn-smooth
germ of curve γ at a point O ∈ V with positive geodesic curvature that is a
graph of Cn-smooth function {y = h(x)}; the tangent line TOγ is not nec-
essarily horizontal. The corresponding function Λ(t) admits an asymptotic
Taylor expansion

Λ(t) =
n+1∑
k=3

Λ̂ktk + o(tn+1).

Its coefficients are analytic functions of the pure n-jets of the metric and γ
at O (Lemma 8.15). Therefore, without loss of generality we consider that O
is the origin in the coordinates (x, y), applying a translation. Then,

γ = {y = h(x)}, h(x) = b1x +
b2

2
x2 +

1
3!

b3x
3 + · · · +

1
n!

bnxn + o(xn).

By definition, the coordinates of the pure jet jn
Oγ are (b1, . . . , bn).

We already know that Λ̂n+1 is an affine function in bn, which follows
from Lemma 8.8, see (8.11). To obtain a precise formula for its coefficient at
bn, we use the following proposition.

Proposition 8.16 Let n ≥ 5, Σ, O, (x, y), h(x) be as above. Consider a family
of tangent germs of Cn-smooth curves γn,b = {y = hn,b(x)} at O, hn,b(x) =
h(x) + bxn + o(xn); hn,0 := h, γn,0 := γ. Let w ∈ TOΣ denote the orthogonal
projection of the vector ∂

∂y to (TOγ)⊥. Let u = (1, b1) ∈ TOγ: the tangent
vector to γ with unit x-component. Let κ(O) denote the geodesic curvature
of the curve γ at O, which coincides with that of γn,b. Let (x̃, ỹ) be normal
coordinates centered at O such that the x̃-axis is tangent to γ. Set

x̂ := κ(O)x̃, ŷ := κ(O)ỹ.
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In the coordinates (x̂, ŷ), the family of curves γn,b is the family of graphs of
Cn-functions {ŷ = ĥn,b(x̂)}, set ĥn,0 := ĥ, such that ĥ(x̂) = x̂2

2 + O(x̂3),

ĥn,b(x̂) = ĥ(x̂) + μnbx̂n + o(x̂n), μn = ||w||||u||−nκ1−n(O). (8.50)

Proof Note that the normal coordinates (x̃, ỹ) are Cn-smooth, and the metric
g is Cn−1 smooth there, since g ∈ Cn+1. Hence, the curves under question
are also Cn-smooth in these coordinates. Fix a point A = (x̃, 0) on the x̃-axis.
Let � denote the geodesic through A orthogonal to the x̃-axis. We have to
calculate the gap (i.e., distance) Δ̃(x̃) between the intersection points of the
geodesic � with the curves γn,b and γ. Let Δ(x̃) denote the gap between the
points of the intersection of the curves with the vertical line {x = x(A)}.
Their ratio Δ̃(x̃)/Δ(x̃) tends to the cosine of the angle between the vector
∂
∂y ∈ TOΣ and the line (TOγ)⊥, as x̃ → 0. One has Δ(x̃) = || ∂

∂y ||bxn + o(xn).
Hence, by definition,

Δ̃(x̃) = ||w||bxn + o(xn). (8.51)

One has dx = αdx̃ + βdỹ on TOΣ, α = dx( ∂
∂x̃ ) = ||u||−1, by definition;

x = αx̃ + βỹ + O(|x̃|2 + |ỹ|2). One has ỹ = κ(O)
2 x̃2 = O(x̃2) along each curve

γn,b, by (2.1). This together with (8.51) implies that

Δ̃(x̃) = ||w||||u||−nbx̃n + o(x̃n). (8.52)

Hence, in the coordinates (x̃, ỹ),

γn,b = {ỹ = h̃n,b(x̃)}, h̃n,b(x̃) = h̃n,0(x̃) + ||w||||u||−nbx̃n + o(x̃n).

Now, rescaling to the coordinates (x̂, ŷ) yields that γn,b is a family of graphs
of functions ĥn,b(x̂) satisfying (8.50). The proposition is proved.

Proposition 8.17 Consider the above family of curves γn,b and the corre-
sponding functions Λn,b(t) from (8.3), set Λn,0 := Λ. For every n ≥ 5, one
has

Λ̂n,b
n+1 = Λ̂n+1 + νnb, νn :=

{
(n−2)(n−3)

6(n+1) ||w||(||u||κ(O))−n, for odd n,

0, for even n.

(8.53)

Proof The coordinates (x̂, ŷ) are normal coordinates for the rescaled metric
ĝ := κ(O)g. The common geodesic curvature at O of the curves γn,b in the
metric ĝ is equal to 1, by Remark 8.5. Therefore, for the metric ĝ, one has
Λ̂n,b

n+1 − Λ̂n+1 = (n−2)(n−3)
6(n+1) μnb for odd n, and the latter difference vanishes

for even n, by Lemma 8.8 and (8.50). Rescaling the metric back to g by the
factor κ−1(O) rescales the functions Λn,b and their Taylor coefficients by the
same factor (Remark 8.5). This implies (8.53).

Proposition 8.18 Let n ≥ 5, and let the metric on Σ be Cn+1-smooth. Let γ be
a germ of Cn-smooth curve at a point O ∈ Σ lying in a chart with coordinates
(x, y). Let γ be a graph {y = h(x)}. Let b1, . . . , bn denote the coordinates of
the pure n-jet jn

Oh. Let w, u ∈ TOΣ be the vectors from Proposition 8.16.
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Then, the Taylor coefficient Λ̂n+1 of the corresponding function Λ(t) is equal
to

Λ̂n+1 = σnbn − Pn, (8.54)

σn =
(n − 2)(n − 3)

6(n + 1)!
||w|| (||u||κ(O))−n for odd n, (8.55)

σn = 0 for even n, where Pn is an analytic function in b1, . . . , bn−1 and in
the pure n-jet of the metric at O.

Proof The fact that Λ̂n+1 depends on bn as an affine function with factor σn

at bn follows from definition and Proposition 8.17; the b from Proposition 8.17
is 1

n! times the difference of the bn-coordinates of jets of functions hn,b(x) and
h(x). The function Pn is thus independent on bn and hence has the required
type, by Lemma 8.15.

Proof of Lemma 8.6 and its addendum. All the statements of Lemma 8.6 and
its addendum follow from the above proposition, except for the following
points discussed below. Note that σn depends only on the pure 2-jet of the
curve γ and the pure 1-jet of the metric, by definition. The function Pn is an
analytic function of the pure n-jet of the metric and the pure (n − 1)-jet of
the curve γ. Let us treat it as a function of a point and a pure (n − 1)-jet of
curve. We have to prove its smoothness. To this end, we use the assumption
that the metric is Cn+1-smooth. (This is the main place in the proof where
we use this assumption.) Then, its pure n-jet is a C1-smooth function of a
point. Similarly, σn is smooth, by (8.55). This together with the above an-
alyticity statement proves C1-smoothness and finishes the proof of Lemma
8.6.

8.7. Proof of Theorems 8.4 and 1.19

Proof of Theorem 8.4 Let O ∈ Σ. Let (x, y) be local coordinates on a neigh-
borhood V = V (O) ⊂ Σ. Let J 4

y (V ) denote the space of κ-nondegenerate
4-jets of curves, as in Lemma 8.6, which are graphs of functions {y = h(x)}.
Let J2 = (x, b0, b1, b2), σ5 = σ5(J2) and h5 := P5(J2; b3, b4) be the same, as in
(8.8). Consider the field of kernels K4 of the following 1-form ν4 on J 4

y (V ):

ν4 := db4 − σ−1
5 h5(x, b0, b1, b2, b3, b4)dx; K4 := Ker(ν4).

Let D4 denote the contact distribution on J 4
y (V ), see (8.2):

D4 = Ker(db0 − b1dx,db1 − b2dx,db2 − b3dx,db3 − b4dx).

Set
P := K4 ∩ D4. (8.56)

This is a line field, since the above intersections are obviously transverse and
dim(D4) = 2. It is C1-smooth, since so are σ2 and h5 (Lemma 8.6). Let γ be
an arbitrary C5-smooth germ of curve γ based at a point A ∈ V with positive
geodesic curvature such that the line TAγ is not parallel to the y-axis. Let γ

have the string Poritsky property. Then, Λ(t) ≡ 0, hence, Λ̂6 = 0, thus,

σ5(J2)b5 − h5(J2; b3, b4) = 0, (8.57)
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by (8.8). On the other hand, the 5-jet extension of the curve γ is tangent to
the contact distribution D5, and hence, to the hyperplane field {db4 = b5dx}.
This together with (8.57) implies that its 4-jet extension is tangent to the
hyperplane field {db4 = h5

σ5
dx}. Thus, it is tangent to the kernel field K4, and

hence, to P = K4 ∩ D4. This proves Theorem 8.4.

Proof of Theorem 1.19 Two germs of curves with the string Poritsky prop-
erty and the same 4-jet correspond to the same point in J 4. Therefore, their
4-jet extensions coincide with one and the same phase curve of the line field
P, by Theorem 8.4 and the Uniqueness Theorem for ordinary differential
equations. Thus, the germs coincide. This proves Theorem 1.19.
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Examples around the strong Viterbo
conjecture

Jean Gutt, Michael Hutchings and Vinicius G. B. Ramos

Abstract. A strong version of a conjecture of Viterbo asserts that all
normalized symplectic capacities agree on convex domains. We review
known results showing that certain specific normalized symplectic ca-
pacities agree on convex domains. We also review why all normalized
symplectic capacities agree on S1-invariant convex domains. We intro-
duce a new class of examples called “monotone toric domains”, which
are not necessarily convex, and which include all dynamically convex
toric domains in four dimensions. We prove that for monotone toric
domains in four dimensions, all normalized symplectic capacities agree.
For monotone toric domains in arbitrary dimension, we prove that the
Gromov width agrees with the first equivariant capacity. We also study a
family of examples of non-monotone toric domains and determine when
the conclusion of the strong Viterbo conjecture holds for these exam-
ples. Along the way, we compute the cylindrical capacity of a large class
of “weakly convex toric domains” in four dimensions.

Mathematics Subject Classification. 53D35, 53D42.

Keywords. Symplectic capacities, toric domains, Viterbo’s conjecture.

1. Introduction

If X and X ′ are domains1 in R
2n = C

n, a symplectic embedding from X to
X ′ is a smooth embedding ϕ : X ↪→ X ′ such that ϕ�ω = ω, where ω denotes
the standard symplectic form on R

2n. If there exists a symplectic embedding
from X to X ′, we write X ↪→

s
X ′.
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V. G. B. Ramos partially supported by grants from the Serrapilheira Institute, FAPERJ
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This article is part of the topical collection “Symplectic geometry - A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
1In this paper, a “domain” is the closure of an open set. One can of course also consider
domains in other symplectic manifolds, but we will not do so here.
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An important problem in symplectic geometry is to determine when
symplectic embeddings exist, and more generally to classify the symplectic
embeddings between two given domains. Modern work on this topic began
with the Gromov non-squeezing theorem [11], which asserts that the ball

B2n(r) =
{
z ∈ C

n
∣
∣ π|z|2 ≤ r

}

symplectically embeds into the cylinder

Z2n(R) =
{
z ∈ C

n
∣
∣ π|z1|2 ≤ R

}

if and only if r ≤ R. Many questions about symplectic embeddings remain
open, even for simple examples such as ellipsoids and polydisks.

If there exists a symplectic embedding X ↪→
s

X ′, then we have the

volume constraint Vol(X) ≤ Vol(X ′). To obtain more nontrivial obstructions
to the existence of symplectic embeddings, one often uses various symplectic
capacities. Definitions of the latter term vary; here we define a symplectic
capacity to be a function c which assigns to each domain in R

2n, possibly
in some restricted class, a number c(X) ∈ [0,∞], satisfying the following
axioms:

(Monotonicity) If X and X ′ are domains in R
2n, and if there exists a

symplectic embedding X ↪→
s

X ′, then c(X) ≤ c(X ′).

(Conformality) If r is a positive real number then c(rX) = r2c(X).

We say that a symplectic capacity c is normalized if it is defined at least for
convex domains and satisfies

c
(
B2n(1)

)
= c

(
Z2n(1)

)
= 1.

The first example of a normalized symplectic capacity is the Gromov
width defined by

cGr(X) = sup
{

r

∣
∣
∣
∣ B2n(r) ↪→

s
X

}
.

This trivially satisfies all of the axioms except for the normalization require-
ment cGr(Z2n(1)), which holds by Gromov non-squeezing. A similar example
is the cylindrical capacity defined by

cZ(X) = inf
{

R

∣
∣
∣
∣ X ↪→

s
Z2n(R)

}
.

Additional examples of normalized symplectic capacities are the Hofer–
Zehnder capacity cHZ defined in [16] and the Viterbo capacity cSH defined in
[31]. There are also useful families of symplectic capacities parametrized by a
positive integer k, including the Ekeland–Hofer capacities cEH

k defined in [8,9]
using calculus of variations; the “equivariant capacities” cCH

k defined in [12]
using positive equivariant symplectic homology; and in the four-dimensional
case, the ECH capacities cECH

k defined in [17] using embedded contact ho-
mology. For each of these families, the k = 1 capacities cEH

1 , cCH
1 , and cECH

1

are normalized. Some additional symplectic capacities defined using rational
symplectic field theory were recently introduced in [27,28]. For more about
symplectic capacities in general, we refer to [6,25] and the references therein.
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The goal of this paper is to discuss some results and examples related to
the following conjecture, which apparently has been folkore since the 1990s.

Conjecture 1.1. (strong Viterbo conjecture) If X is a convex domain in R
2n,

then all normalized symplectic capacities of X are equal.

Viterbo conjectured the following statement2 in [32]:

Conjecture 1.2. (Viterbo conjecture) If X is a convex domain in R
2n and

if c is a normalized symplectic capacity, then

c(X) ≤ (n! Vol(X))1/n. (1.1)

The inequality (1.1) is true when c is the Gromov width cGr, by the vol-
ume constraint, because Vol(B2n(r)) = rn/n!. Thus, Conjecture 1.1 implies
Conjecture 1.2. The Viterbo conjecture recently gained more attention as it
was shown in [4] that it implies the Mahler conjecture3 in convex geometry.

Lemma 1.3. If X is a domain in R
2n, then cGr(X) ≤ cZ(X), with equality

if and only if all normalized symplectic capacities of X agree (when they are
defined for X).

Proof. It follows from the definitions that if c is a normalized symplectic
capacity defined for X, then cGr(X) ≤ c(X) ≤ cZ(X). �

Thus, the strong Viterbo conjecture is equivalent to the statement that
every convex domain X satisfies cGr(X) = cZ(X). We now discuss some
examples where it is known that cGr = cZ . Hermann [13] showed that all
Tn-invariant convex domains have to satisfy cGr = cZ . This generalizes to
S1-invariant convex domains by the following elementary argument:

Proposition 1.4. (Y. Ostrover, private communication) Let X be a compact
convex domain in C

n which is invariant under the S1 action by eiθ · z =
(eiθz1, . . . , e

iθzn). Then cGr(X) = cZ(X).

Proof. By compactness, there exists z0 ∈ ∂X minimizing the distance to the
origin. Let r > 0 denote this minimal distance. Then the ball (|z| ≤ r) is
contained in X, so by definition cGr(X) ≥ πr2.

By applying an element of U(n), we may assume without loss of gen-
erality that z0 = (r, 0, . . . , 0). By a continuity argument, we can assume
without loss of generality that ∂X is a smooth hypersurface in R

2n. By the
distance minimizing property, the tangent plane to ∂X at z0 is given by
(z · (1, 0, . . . , 0) = r) where · denotes the real inner product. By convexity, X
is contained in the half-space (z · (1, 0, . . . , 0) ≤ r). By the S1 symmetry, X
is also contained in the half-space (z · (eiθ, 0, . . . , 0) ≤ r) for each θ ∈ R/2πZ.
Thus, X is contained in the intersection of all these half-spaces, which is the
cylinder |z1| ≤ r. Then cZ(X) ≤ πr2 by definition. �
2Viterbo also conjectured that equality holds in (1.1) only if int(X) is symplectomorphic
to an open ball.
3The Mahler conjecture [22] states that for any n-dimensional normed space V , we have

Vol(BV )Vol(BV ∗ ) ≥ 4n

n!
,

where BV denotes the unit ball of V , and BV ∗ denotes the unit ball of the dual space V ∗.
For some examples of Conjectures 1.1 and 1.2 related to the Mahler conjecture, see [26].
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Remark 1.5. A similar argument shows that if k ≥ 3 is an integer and if
X ⊂ C

n is a convex domain invariant under the Z/k action by j · z =
(e2πij/kz1, . . . , e

2πij/kzn), then

cZ(X)
cGr(X)

≤ k

π
tan(π/k).

The role of the convexity hypothesis in Conjecture 1.1 is somewhat
mysterious. We now explore to what extent non-convex domains can satisfy
cGr = cZ .

To describe some examples, if Ω is a domain in R
n
≥0, define the toric

domain

XΩ =
{
z ∈ C

n
∣
∣ π(|z1|2, . . . , |zn|2) ∈ Ω

}
.

The factors of π ensure that

Vol(XΩ) = Vol(Ω). (1.2)

Let ∂+Ω denote the set of μ ∈ ∂Ω such that μj > 0 for all j = 1, . . . , n.

Definition 1.6. A monotone toric domain is a compact toric domain XΩ with
smooth boundary such that if μ ∈ ∂+Ω and if v an outward normal vector at
μ, then vj ≥ 0 for all j = 1, . . . , n. See Figure 1c.

A strictly monotone toric domain is a compact toric domain XΩ with
smooth boundary such that if μ ∈ ∂+Ω and if v is a nonzero outward normal
vector at μ, then vj > 0 for all j = 1, . . . , n.

One of our main results is the following:

Theorem 1.7. (proved in Sect. 4) If XΩ is a monotone toric domain in R
4,

then cGr(XΩ) = cZ(XΩ).

Note that monotone toric domains do not have to be convex; see Sect. 2
for details on when toric domains are convex. (Toric domains that are convex
are already covered by Proposition 1.4.)

To clarify the hypothesis in Theorem 1.7, let X be a compact domain in
R

2n with smooth boundary, and suppose that X is “star-shaped”, meaning
that the radial vector field on R

2n is transverse to ∂X. Then there is a well-
defined Reeb vector field R on ∂X. We say that X is dynamically convex if,
in addition to the above hypotheses, every Reeb orbit γ has Conley–Zehnder
index CZ(γ) ≥ n + 1 if nondegenerate, or in general has minimal Conley-
Zehnder index4 at least n + 1. It was shown by Hofer–Wysocki–Zehnder
[14] that if X is strictly convex, then X is dynamically convex. However,
the Viterbo conjecture implies that not every dynamically convex domain is
symplectomorphic to a convex domain; see Remark 1.9 below.

4If γ is degenerate then there is an interval of possible Conley–Zehnder indices of nonde-
generate Reeb orbits near γ after a perturbation, and for dynamical convexity we require
the minimum number in this interval to be at least n+1. In the 4-dimensional case (n = 2),

this means that the dynamical rotation number of the linearized Reeb flow around γ, which
we denote by ρ(γ) ∈ R, is greater than 1.
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Proposition 1.8. (proved in Sect. 2) Let XΩ be a compact star-shaped toric
domain in R

4 with smooth boundary. Then XΩ is dynamically convex if and
only if XΩ is a strictly monotone toric domain.

Thus, Theorem 1.7 implies that all dynamically convex toric domains
in R

4 have cGr = cZ .
If X is a star-shaped domain with smooth boundary, let Amin(X) denote

the minimal period of a Reeb orbit on ∂X.

Remark 1.9. Without the toric hypothesis, not all dynamically convex do-
mains in R

4 have cGr = cZ . In particular, it is shown in [1] that for ε > 0
small, there exists a dynamically convex domain X in R

4 such that

Amin(X)2/(2 vol(X)) ≥ 2 − ε.

One has cCH
1 (X) ≥ Amin(X) by [12, Thm. 1.1], and cGr(X)2 ≤ 2 vol(X)

by the volume constraint. Thus,

cZ(X)
cGr(X)

≥ √
2 − ε.

Remark 1.10. It is also not true that all star-shaped toric domains have cGr =
cZ . Counterexamples have been known for a long time, see, e.g., [13], and in
Sect. 5 we discuss a new family of counterexamples.

For monotone toric domains in higher dimensions, we do not know how
to prove that all normalized symplectic capacities agree, but we can at least
prove the following:

Theorem 1.11. (proved in Sect. 3) If XΩ is a monotone toric domain in R
2n,

then

cGr(XΩ) = cCH
1 (XΩ). (1.3)

Returning to convex domains, some normalized symplectic capacities
are known to agree (not the Gromov width or cylindrical capacity, however),
as we review in the following theorem:

Theorem 1.12. (Ekeland, Hofer, Zehnder, Abbondandolo–Kang, Irie) If X
is a convex domain in R

2n, then:
(a) cEH

1 (X) = cHZ(X) = cSH(X) = cCH
1 (X).

(b) If in addition ∂X is smooth5, then all of the capacities in (a) agree with
Amin(X).

Proof. Part (b) implies part (a) because every convex domain can be C0 ap-
proximated by one with smooth boundary; and the capacities in (a) are C0

continuous functions of the convex domain X, by monotonicity and confor-
mality.

5Without the smoothness assumption, it is shown in [3, Prop. 2.7] that cHZ(X) agrees with
the minimum action of a “generalized closed characteristic” on ∂X.

Vol. 24 (2022) Examples around the strong Viterbo conjecture

Reprinted from the journal 681



J. Gutt et al. JFPTA

Part (b) was shown for cHZ(X) by Hofer–Zehnder in [16], and for cSH(X)
by Irie [20] and Abbondandolo–Kang [2]. The agreement of these two capac-
ities with cCH

1 (X) for convex domains now follows from the combination of
[12, Theorem 1.24] and [10, Lemma 3.2], as explained by Irie in [20, Remark
2.15]. Finally, part (b) for cEH

1 (X) has been claimed and understood for a
long time, but since we could not find a complete proof in the literature we
give one here in Sect. 6. �

Organization of the paper

In Sect. 2, we discuss different kinds of toric domains and when they are
convex or dynamically convex. In Sect. 3, we consider the first equivariant
capacity and prove Theorem 1.11. In Sect. 4, we use ECH capacities to prove
Theorem 1.7. In Sect. 5, we consider a family of examples of non-monotone
toric domains and determine when they do or do not satisfy the conclusions of
Conjectures 1.1 and 1.2. Along the way, we compute the cylindrical capacity
of a large class of “weakly convex toric domains” in four dimensions (Theorem
5.6). In Sect. 6, we review the definition of the first Ekeland–Hofer capacity
and complete the (re)proof of Theorem 1.12.

2. Toric domains

In this section, we review some important classes of toric domains and discuss
when they are convex or dynamically convex.

If Ω is a domain in R
n, define

Ω̂ =
{
μ ∈ R

n
∣
∣ (|μ1|, . . . , |μn|) ∈ Ω

}
.

Definition 2.1. [12] A convex toric domain is a toric domain XΩ such that Ω̂
is compact and convex. See Figure 1a.

This terminology may be misleading because a “convex toric domain”
is not the same thing as a compact toric domain that is convex in R

2n; see
Proposition 2.3 below.

Definition 2.2. [12] A concave toric domain is a toric domain XΩ such that
Ω is compact and R

n
≥0 \ Ω is convex. See Figure 1b.

We remark that if XΩ is a convex toric domain or concave toric domain
and if XΩ has smooth boundary, then it is a monotone toric domain.

Proposition 2.3. A toric domain XΩ is a convex subset of R2n if and only if
the set

Ω̃ =
{

μ ∈ R
n

∣
∣
∣
∣ π

(|μ1|2, . . . , |μn|2) ∈ Ω
}

(2.1)

is convex in R
n.

Proof. (⇒) The set Ω̃ is just the intersection of the toric domain XΩ with
the subspace R

n ⊂ C
n. If XΩ is convex, then its intersection with any linear

subspace is also convex.
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Ω

(a) A convex toric domain

Ω

(b) A concave toric domain

Ω

(c) A monotone toric domain

Ω

(d) A weakly convex toric domain

Figure 1. Examples of toric domains XΩ in R
4

(⇐) Suppose that the set Ω̃ is convex. Let z, z′ ∈ XΩ and let t ∈ [0, 1].
We need to show that

(1 − t)z + tz′ ∈ XΩ.

That is, we need to show that

(|(1 − t)z1 + tz′
1| , . . . , |(1 − t)zn + z′

n|) ∈ Ω̃. (2.2)

We know that the 2n points (±|z1|, . . . ,±|zn|) are all in Ω̃, as are the 2n

points (±|z′
1|, . . . ,±|z′

n|). By the triangle inequality, we have

|(1 − t)zj + tz′
j | ≤ (1 − t)|zj | + t|z′

j |
for each j = 1, . . . , n. It follows that the point in (2.2) can be expressed as
(1−t) times a convex combination of the points (±|z1|, . . . ,±|zn|), plus t times
a convex combination of the points (±|z′

1|, . . . ,±|z′
n|). Since Ω̃ is convex, it

follows that (2.2) holds. �

Example 2.4. If XΩ is a convex toric domain, then XΩ is a convex subset of
R

2n.
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Proof. Similarly to the above argument, this boils down to showing that if
w,w′ ∈ C and 0 ≤ t ≤ 1 then

|(1 − t)w + tw′|2 ≤ (1 − t)|w|2 + t|w′|2.
The above inequality holds because the right hand side minus the left hand
side equals (t − t2)|w − w′|2. �

However, the converse is not true:

Example 2.5. Let p > 0, and let Ω be the positive quadrant of the Lp unit
ball,

Ω =

⎧
⎨

⎩
μ ∈ R

n
≥0

∣
∣
∣
∣

n∑

j=1

μp
j ≤ 1

⎫
⎬

⎭
.

Then XΩ is a concave toric domain if and only if p ≤ 1, and a convex toric
domain if and only if p ≥ 1. By Proposition 2.3, the domain XΩ is convex in
R

2n if and only if p ≥ 1/2.

We now work out when four-dimensional toric domains are dynamically
convex.

Proof of Proposition 1.8. As a preliminary remark, note that if a Reeb orbit
has rotation number ρ > 1, then so does every iterate of the Reeb orbit.
Thus, XΩ is dynamically convex if and only if every simple Reeb orbit has
rotation number ρ > 1.

Since XΩ is star-shaped, Ω itself is also star-shaped. Since XΩ is compact
with smooth boundary, ∂+Ω is a smooth arc from some point (0, b) with b > 0
to some point (a, 0) with a > 0.

We can find the simple Reeb orbits and their rotation numbers by the
calculations in [5, §3.2] and [12, §2.2]. The conclusion is the following. There
are three types of simple Reeb orbits on ∂XΩ:

(i) There is a simple Reeb orbit corresponding to (a, 0), whose image is the
circle in ∂XΩ with π|z1|2 = a and z2 = 0.

(ii) Likewise, there is a simple Reeb orbit corresponding to (0, b), whose
image is the circle in ∂XΩ with z1 = 0 and π|z2|2 = b.

(iii) For each point μ ∈ ∂+Ω where ∂+Ω has rational slope, there is an S1

family of simple Reeb orbits whose images sweep out the torus in ∂XΩ

where π(|z1|2, |z2|2) = μ.

Let s1 denote the slope of ∂+Ω at (a, 0), and let s2 denote the slope of ∂+Ω
at (0, b). Then the Reeb orbit in (i) has rotation number ρ = 1 − s−1

1 , and
the Reeb orbit in (ii) has rotation number ρ = 1 − s2. For a Reeb orbit in
(iii), let ν = (ν1, ν2) be the outward normal vector to ∂+Ω at μ, scaled so
that ν1, ν2 are relatively prime integers. Then each Reeb orbit in this family
has rotation number ρ = ν1 + ν2.

If XΩ is strictly monotone, then s1, s2 < 0, and for each Reeb orbit
of type (iii) we have ν1, ν2 ≥ 1. It follows that every simple Reeb orbit has
rotation number ρ > 1.
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Conversely, suppose that every simple Reeb orbit has rotation number
ρ > 1. Applying this to the Reeb orbits (i) and (ii), we obtain that s1, s2 < 0.
Thus, ∂+Ω has negative slope near its endpoints. The arc ∂+Ω can never go
horizontal or vertical in its interior, because otherwise there would be a Reeb
orbit of type (iii) with ν = (1, 0) or ν = (0, 1), so that ρ = 1. Thus, XΩ is
strictly monotone. �

3. The first equivariant capacity

We now prove Theorem 1.11. (Some related arguments appeared in [12, Lem.
1.19].) If a1, . . . , an > 0, define the “L-shaped domain”

L(a1, . . . , an) =
{
μ ∈ R

n
≥0

∣
∣ μj ≤ aj for some j

}
.

Lemma 3.1. If a1, . . . , an > 0, then

cCH
1

(
XL(a1,...,an)

)
=

n∑

j=1

aj .

Proof. Observe that

R
n
≥0 \ L(a1, . . . , an) = (a1,∞) × · · · × (an,∞).

is convex. Thus, XL(a1,...,an) satisfies all the conditions in the definition of
“concave toric domain”, except that it is not compact.

A formula for cCH
k of a concave toric domain is given in [12, Thm. 1.14].

The k = 1 case of this formula asserts that if XΩ is a concave toric domain
in R

2n, then

cCH
1 (XΩ) = min

{
n∑

i=1

μi

∣
∣
∣
∣ μ ∈ ∂+Ω

}

. (3.1)

By an exhaustion argument (see [12, Rmk. 1.3]), this result also applies to
XL(a1,...,an). For Ω = L(a1, . . . , an), the minimum in (3.1) is realized by
μ = (a1, . . . , an). �

Lemma 3.2. If XΩ is a monotone toric domain in R
2n and if μ ∈ ∂+Ω, then

Ω ⊂ L(μ1, . . . , μn).

Proof. By an approximation argument, we can assume without loss of gen-
erality that XΩ is strictly monotone. Then ∂+Ω is the graph of a positive
function f over an open set U ⊂ R

n−1
≥0 with ∂jf < 0 for j = 1, . . . , n − 1. It

follows that if (μ′
1, . . . , μ

′
n−1) ∈ U and μ′

j > μj for all j = 1, . . . , n − 1, then
f(μ′

1, . . . , μ
′
n−1) < f(μ1, . . . , μn−1). Consequently Ω does not contain any

point μ′ with μ′
j > μj for all j = 1, . . . , n. This means that Ω ⊂ L(μ1, . . . , μn).

Figure 2 illustrates this inclusion for n = 2. �

Proof of Theorem 1.11.. For a > 0, consider the simplex

Δn(a) =

⎧
⎨

⎩
μ ∈ R

n
≥0

∣
∣
∣
∣

n∑

j=1

μi ≤ a

⎫
⎬

⎭
.
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µ1

µ2

Δ2(a)

L(µ1, µ2)Ω

Figure 2. The inclusions Δn(a) ⊂ Ω ⊂ L(μ1, . . . , μn) for
n = 2

Observe that the toric domain XΔn(a) is the ball B2n(a). Now let a > 0 be
the largest real number such that Δn(a) ⊂ Ω; see Fig. 2.

We have B2n(a) ⊂ XΩ, so by definition a ≤ cGr(XΩ). Since cCH
1 is

a normalized symplectic capacity, cGr(XΩ) ≤ cCH
1 (XΩ). By the maximal-

ity property of a, there exists a point μ ∈ ∂+Ω with
∑n

j=1 μj = a. By
an approximation argument we can assume that μ ∈ ∂+Ω. By Lemma 3.2,
XΩ ⊂ XL(μ1,...,μn). By the monotonicity of cCH

1 and Lemma 3.1, we then
have

cCH
1 (XΩ) ≤ cCH

1

(
XL(μ1,...,μn)

)
=

n∑

j=1

μj = a.

Combining the above inequalities gives cGr(XΩ) = cCH
1 (XΩ) = a. �

4. ECH capacities

We now recall some facts about ECH capacities which we will use to prove
Theorem 1.7.

Definition 4.1. A weakly convex toric domain in R
4 is a compact toric domain

XΩ ⊂ R
4 such that Ω is convex, and ∂+Ω is an arc with one endpoint on the

positive μ1 axis and one endpoint on the positive μ2 axis. See Figure 1d.

Theorem 4.2. (Cristofaro-Gardiner [7]) In R
4, let XΩ be a concave toric

domain, and let XΩ′ be a weakly convex toric domain. Then there exists a
symplectic embedding int(XΩ) ↪→

s
XΩ′ if and only if cECH

k (XΩ) ≤ cECH
k (XΩ′)

for all k ≥ 0.

To make use of this theorem, we need some formulas to compute the
ECH capacities cECH

k . To start, consider a 4-dimensional concave toric do-
main XΩ. Associated to XΩ is a “weight sequence” W (XΩ), which is a finite
or countable multiset of positive real numbers defined in [5], see also [23],
as follows. Let r be the largest positive real number such that the triangle
Δ2(r) ⊂ Ω. We can write Ω \ Δ2(r) = Ω̃1 � Ω̃2, where Ω̃1 does not inter-
sect the μ2-axis and Ω̃2 does not intersect the μ1-axis. It is possible that Ω̃1
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and/or Ω̃2 is empty. After translating the closures of Ω̃1 or Ω̃2 by (−r, 0) and

(0,−r) and multiplying them by the matrices
[
1 1
0 1

]
and

[
1 0
1 1

]
, respectively,

we obtain two new domains Ω1 and Ω2 in R
2
≥0 such that XΩ1 and XΩ2 are

concave toric domains. We then inductively define

W (XΩ) = (r) ∪ W (XΩ1) ∪ W (XΩ2), (4.1)

where ‘∪’ denotes the union of multisets, and the term W (XΩi
) is omitted if

Ωi is empty.
Let us call two subsets of R2 “affine equivalent” if one can be obtained

from the other by the composition of a translation and an element of GL(2,Z).
If W (XΩ) = (a1, a2, . . .), then the domain Ω is canonically decomposed into
triangles, which are affine equivalent to the triangles Δ2(a1),Δ2(a2), . . . and
which meet only along their edges; the first of these triangles is Δ2(r). See
[19, §3.1] for more details. We now recall the “Traynor trick”:

Proposition 4.3. [29] If T ⊂ R
2
≥0 is a triangle affine equivalent to Δ2(a),

then there is a symplectic embedding int(B4(a)) ↪→
s

Xint(T ).

As a result, there is a symplectic embedding
∐

i

int(B4(ai)) ⊂ XΩ.

Consequently, by the monotonicity property of ECH capacities, we have

cECH
k

(
∐

i

int(B4(ai))

)

≤ cECH
k (XΩ). (4.2)

Theorem 4.4. [5] If XΩ is a four-dimensional concave toric domain with
weight expansion W (XΩ) = (a1, a2, . . .), then equality holds in (4.2).

To make this more explicit, we know from [17] that6

cECH
k

(
∐

i

int(B4(ai))

)

= sup
k1+···=k

∑

i

cECH
ki

(int(B4(ai))) (4.3)

and

cECH
k (int(B4(a))) = cECH

k (B4(a)) = da, (4.4)

where d is the unique nonnegative integer such that

d2 + d ≤ 2k ≤ d2 + 3d.

To state the next lemma, given a1, a2 > 0, define the polydisk

P (a1, a2) =
{

z ∈ C
2

∣
∣
∣
∣ π|z1|2 ≤ a1, π|z2|2 ≤ a2

}
.

This is a convex toric domain XΩ′ where Ω′ is a rectangle of side lengths a1

and a2.

6For the sequence of numbers ai coming from a weight expansion, or for any finite sequence,
the supremum in (4.3) is achieved, so we can write ‘max’ instead of ‘sup’.
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b

aµ1

µ2

r

(a) Weights ofXΩ

a− r
b

r

(b) Ball packing into a polydisk

Figure 3. Embedding a concave toric domain into a poly-
disk

Lemma 4.5. Let XΩ be a four-dimensional concave toric domain. Let (a, 0)
and (0, b) be the points where ∂+Ω intersects the axes. Let μ be a point on ∂+Ω
minimizing μ1 + μ2, and write r = μ1 + μ2. Then there exists a symplectic
embedding

int(XΩ) ↪→
s

P (r,max(b, a − r)).

Proof. One might hope for a direct construction using some version of “sym-
plectic folding” [24], but we will instead use the above ECH machinery. By
Theorem 4.2, it is enough to show that

cECH
k (XΩ) ≤ cECH

k (P (r,max(b, a − r)) (4.5)

for each nonnegative integer k.
Consider the weight expansion W (XΩ) = (a1, a2, . . .) where a1 = r.

The decomposition of Ω into triangles corresponding to the weight expansion
consists of the triangle Δ2(r), plus some additional triangles in the trian-
gle with corners (0, r), (μ1, μ2), (0, b), plus some additional triangles in the
triangle with corners (μ1, μ2), (r, 0), (a, 0); see Fig. 3a. The latter triangle is
affine equivalent to the triangle with corners (μ1, μ2), (r, 0), (r, a−r); see Fig.
3b. This allows us to pack triangles affine equivalent to Δ2(a1),Δ2(a2), . . .
into the rectangle with horizontal side length r and vertical side length
max(b, a − r). Thus, by the Traynor trick, we have a symplectic embedding

∐

i

int(B(ai)) ↪→
s

P (r,max(b, a − r)).

Then Theorem 4.4 and the monotonicity of ECH capacities imply (4.5). �

Proof of Theorem 1.7. Let r be the largest positive real number such that
Δ2(r) ⊂ Ω. We have B4(r) ⊂ XΩ, so r ≤ cGr(XΩ), and we just need to show
that cZ(XΩ) ≤ r.

Let μ be a point on ∂+Ω such that μ1 + μ2 = r. By an approximation
argument, we can assume that XΩ is strictly monotone, so that the tangent
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Ωa

11 − 2a

(a) The domain Ωa

Ω

µ1 = µ2

M1

M2

(b) A domain to which Theorem 5.6 applies

Figure 4. Some domains

line to ∂+Ω at μ is not horizontal or vertical. Then we can find a, b > r such
that Ω is contained in the quadrilateral with vertices (0, 0), (a, 0), (μ1, μ2),
and (0, b). It then follows from Lemma 4.5 that there exists a symplectic
embedding int(XΩ) ↪→

s
P (r,R) for some R > 0. Since P (r,R) ⊂ Z4(r), it

follows that cZ(XΩ) ≤ r. �

5. A family of non-monotone toric examples

We now study a family of examples of non-monotone toric domains, and we
determine when they satisfy the conclusions of Conjecture 1.1 or Conjecture
1.2.

For 0 < a < 1/2, let Ωa be the convex polygon with corners (0, 0),
(1− 2a, 0), (1− a, a), (a, 1− a) and (0, 1− 2a), and write Xa = XΩa

; see Fig.
4a. Then Xa is a weakly convex (but not monotone) toric domain.

Proposition 5.1. Let 0 < a < 1/2. Then the Gromov width and cylindrical
capacity of Xa are given by

cGr(Xa) = min(1 − a, 2 − 4a), (5.1)

cZ(Xa) = 1 − a. (5.2)

Corollary 5.2. Let 0 < a < 1/2 and let Xa be as above. Then:
(a) The conclusion of Conjecture 1.1 holds for Xa, i.e., all normalized sym-

plectic capacities defined for Xa agree, if and only if a ≤ 1/3.
(b) The conclusion of Conjecture 1.2 holds for Xa, i.e., every normalized

symplectic capacity c defined for Xa satisfies c(Xa) ≤ √
2Vol(Xa), if

and only if a ≤ 2/5.

Proof of Corollary 5.2. (a) By Lemma 1.3, we need to check that cGr(Xa) =
cZ(Xa) if and only if a ≤ 1/3. This follows directly from (5.1) and (5.2).

(b) Since cZ is the largest normalized symplectic capacity, the conclusion
of Conjecture 1.2 holds for Xa if and only if

cZ(Xa) ≤
√

2Vol(Xa). (5.3)
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By equation (1.2), we have

Vol(XΩa
) =

1 − 4a2

2
.

It follows from this and (5.2) that (5.3) holds if and only if a ≤ 2/5. �

Remark 5.3. To recap, the conclusion of Conjecture 1.1 holds if and only if
the ratio cZ/cGr = 1, and the conclusion of Conjecture 1.2 holds if and only
if the ratio cn

Z/(n! Vol) ≤ 1. The above calculations show that both of these
ratios for Xa go to infinity as a → 1/2.

To prove Proposition 5.1, we will use the following formula for the ECH
capacities of a weakly convex toric domain XΩ. Let r be the smallest positive
real number such that Ω ⊂ Δ2(r). Then Δ2(r) \ Ω = Ω̃1 � Ω̃2 where Ω̃1

does not intersect the μ2-axis, and Ω̃2 does not intersect the μ1-axis. It is
possible that Ω̃1 and/or Ω̃2 is empty. As in the discussion preceding (4.1),
the closures of Ω̃1 and Ω̃2 are affine equivalent to domains Ω1 and Ω2 such
that XΩ1 and XΩ2 are concave toric domains. Denote the union (as multisets)
of their weight sequences by

W (XΩ1) ∪ W (XΩ2) = (a1, . . .).

We then have:

Theorem 5.4. (Choi–Cristofaro-Gardiner [7]) If XΩ is a four-dimensional
weakly convex toric domain as above, then

cECH
k (XΩ) = inf

l≥0

{

cECH
k+l

(
B4(r)

) − cECH
l

(
∐

i

B4(ai)

)}

. (5.4)

We need one more lemma, which follows from [21, Cor. 4.2]:

Lemma 5.5. Let μ1, μ2 ≥ a > 0. Let Ω be the “diamond” in R
2
≥0 given by

the convex hull of the points (μ1 ± a, μ2) and (μ1, μ2 ± a). Then there is a
symplectic embedding

int(B4(2a)) ↪→
s

XΩ.

Proof of Proposition 5.1. To prove (5.1), we first describe the ECH capacities
of Xa. In the formula (5.4) for Xa, we have r = 1, while the weight expansions
of Ω1 and Ω2 are both (a, a); the corresponding triangles are shown in Figure
5(b). Thus, by Theorem 5.4 and equation (4.3), we have

cECH
k (Xa) = inf

l1,...,l4≥0

{

cECH
k+l1+l2+l3+l4

(
B4(1)

) −
4∑

i=1

cECH
li

(
B4(a)

)
}

.(5.5)

We also note from (4.4) that

cECH
1 (B4(r)) = cECH

2 (B4(r)) = r, cECH
5 (B4(r)) = 2r.

Taking k = 1 and (l1, . . . , l4) = (1, 0, 0, 0) in equation (5.5), we get

cECH
1 (XΩa

) ≤ 1 − a. (5.6)
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a

1

(a) 0< a≤1/3

1

1 − a

1 − a

1

(b) 1/3≤a <1/2

Figure 5. Ball packings

Taking k = 1 and (l1, . . . , l4) = (1, 1, 1, 1) in equation (5.5), we get

cECH
1 (XΩa

) ≤ 2 − 4a. (5.7)

By (5.6) and (5.7) and the fact that cECH
1 is a normalized symplectic capacity,

we conclude that

cGr(XΩa
) ≤ min(1 − a, 2 − 4a). (5.8)

To prove the reverse inequality to (5.8), suppose first that 0 < a ≤ 1/3.
It is enough to prove that there exists a symplectic embedding int(B4(1 −
a)) ↪→

s
XΩa

. By Theorem 4.2, it is enough to show that

cECH
k (B4(1 − a)) ≤ cECH

k (XΩa
)

for all nonnegative integers k. By equation (5.5), the above inequality is
equivalent to

cECH
k (B4(1 − a)) +

4∑

i=1

cECH
li (B4(a)) ≤ cECH

k+l1+l2+l3+l4(B
4(1)) (5.9)

for all nonnegative integers k, l1, . . . , l4 ≥ 0. To prove (5.9), by the mono-
tonicity of ECH capacities and the disjoint union formula (4.3), it suffices to
find a symplectic embedding

int

(

B4(1 − a) �
∐

4

B4(a)

)

↪→
s

B4(1).

This embedding exists by the Traynor trick (Proposition 4.3) using the tri-
angles shown in Figure 5(a).

Finally, when 1/3 ≤ a < 1/2, it is enough to show that there exists a
symplectic embedding int(B4(2 − 4a)) ↪→

s
XΩa

. This exists by Lemma 5.5

using the diamond shown in Figure 5(b).
This completes the proof of (5.1). Equation (5.2) follows from Theo-

rem 5.6 below. �
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Theorem 5.6. Let XΩ ⊂ R
4 be a weakly convex toric domain, see Definition

4.1. For j = 1, 2, let

Mj = max{μj | μ ∈ Ω}.

Assume that there exists (M1, μ2) ∈ ∂+Ω with μ2 ≤ M1, and that there exists
(μ1,M2) ∈ ∂+Ω with μ1 ≤ M2. Then

cZ(XΩ) = min(M1,M2).

That is, under the hypotheses of the theorem, see Figure 4b, an optimal
symplectic embedding of XΩ into a cylinder is given by the inclusion of XΩ

into (π|z1|2 ≤ M1) or (π|z2|2 ≤ M2).

Proof. From the above inclusions we have cZ(XΩ) ≤ min(M1,M2). To prove
the reverse inequality, suppose that there exists a symplectic embedding

XΩ ↪→
s

Z4(R). (5.10)

We need to show that R ≥ min(M1,M2). To do so, we will use ideas7 from
[18].

Let ε > 0 be small. Let (A, 0) and (0, B) denote the endpoints of ∂+Ω.
By an approximation argument, we can assume that ∂+Ω is smooth, and that
∂+Ω has positive slope less than ε near (A, 0) and slope greater than ε−1 near
(0, B). As in the proof of Proposition 1.8, there are then three types of Reeb
orbits on ∂XΩ:

(i) There is a simple Reeb orbit whose image is the circle with π|z1|2 = A
and z2 = 0. This Reeb orbit has symplectic action (period) equal to A,
and rotation number 1 − ε−1.

(ii) There is a simple Reeb orbit whose image is the circle with z1 = 0
and π|z2|2 = B. This Reeb orbit has symplectic action B and rotation
number 1 − ε−1.

(iii) For each point μ ∈ ∂+Ω where ∂+Ω has rational slope, there is an S1

family of simple Reeb orbits in the torus where π(|z1|2, |z2|2) = μ. If
ν = (ν1, ν2) is the outward normal vector to ∂+Ω at μ, scaled so that
ν1, ν2 are relatively prime integers, then these Reeb orbits have rotation
number ν1 + ν2 and symplectic action μ · ν. See [12, §2.2].

We claim now that:

(*) Every Reeb orbit on ∂XΩ with positive rotation number has sym-
plectic action at least min(M1,M2).

To prove this claim, we only need to check the type (iii) simple Reeb orbits
where ν1 +ν2 ≥ 1. For such an orbit we must have ν1 ≥ 1 or ν2 ≥ 1. Suppose
first that ν1 ≥ 1. By the hypotheses of the theorem there exists μ′

2 such that

7The main theorem in [18] gives a general obstruction to a symplectic embedding of one
four-dimensional convex toric domain into another, which sometimes goes beyond the
obstruction coming from ECH capacities. This theorem can be generalized to weakly convex
toric domains; but rather than carry out the full generalization, we will just explain the
simple case of this that we need.
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(M1, μ
′
2) ∈ ∂+Ω and M1 ≥ μ′

2. Since Ω is convex and ν is an outward normal
at μ, the symplectic action

μ · ν ≥ (M1, μ
′
2) · ν = M1 + (ν1 − 1)(M1 − μ′

2) + (ν1 + ν2 − 1)μ′
2 ≥ M1.

Likewise, if ν2 ≥ 1, then the symplectic action μ · ν ≥ M2.
As in [18, §5.3], starting from the symplectic embedding (5.10), by re-

placing XΩ with an appropriate subset and replacing Z4(R) with an appro-
priate superset, we obtain a symplectic embedding X ′ ↪→

s
int(Z ′), where:

• Z ′ is an ellipsoid whose boundary has one simple Reeb orbit γ+ with
symplectic action A(γ+) = R + ε and Conley–Zehnder index CZ(γ+) =
3, another simple Reeb orbit with very large symplectic action, and no
other simple Reeb orbits.

• X ′ is a (non-toric) star-shaped domain with smooth boundary, all of
whose Reeb orbits are nondegenerate. Every Reeb orbit on ∂X ′ with ro-
tation number greater than or equal to 1 has action at least
min(M1,M2) − ε.

The symplectic embedding gives rise to a strong symplectic cobordism
W whose positive boundary is ∂Z ′ and whose negative boundary is ∂X ′. The
argument in [18, §6] shows that for a generic “cobordism-admissible” almost
complex structure J on the “completion” of W , there exists an embedded
J-holomorphic curve u with one positive end asymptotic to the Reeb orbit
γ+ in ∂Z ′, negative ends asymptotic to some Reeb orbits γ1, . . . , γm in ∂X ′,
and Fredholm index ind(u) = 0. The Fredholm index is computed by the
formula

ind(u) = 2g + [CZ(γ+) − 1] −
m∑

i=1

[CZ(γi) − 1] (5.11)

where g denotes the genus of u. Furthermore, since J-holomorphic curves
decrease symplectic action, we have

A(γ+) ≥
m∑

i=1

A(γi). (5.12)

We claim now that at least one of the Reeb orbits γi has action at least
min(M1,M2) − ε. Then the inequality (5.12) gives

R + ε ≥ min(M1,M2) − ε,

and since ε > 0 was arbitrarily small, we are done.
To prove the above claim, suppose to the contrary that all of the Reeb

orbits γi have action less than min(M1,M2) − ε. Then all the Reeb orbits
γi have rotation number ρ(γi) < 1, which means that they all have Conley–
Zehnder index CZ(γi) ≤ 1. It now follows from (5.11) that ind(u) ≥ 2, which
is a contradiction8. �

8One way to think about the information that we are getting out of (5.11), as well as the

general symplectic embedding obstruction in [18], is that we are making essential use of
the fact that every holomorphic curve has nonnegative genus.
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6. The first Ekeland–Hofer capacity

The goal of this section is to (re)prove the following theorem. This is well-
known in the community and is attributed to Ekeland, Hofer and Zehnder
[9,15]. It was first mentioned by Viterbo in [30, Proposition 3.10].

Theorem 6.1. (Ekeland–Hofer–Zehnder) Let W ⊂ R
2n be a compact convex

domain with smooth boundary. Then

cEH
1 (W ) = Amin(W ).

We start by recalling the definition of the first Ekeland-Hofer capacity
cEH
1 . Let E = H1/2(S1,R2n). That is, if x ∈ L2(S1,R2n) is written as a

Fourier series x =
∑

k∈Z
e2πiktxk where xk ∈ R

2n, then

x ∈ E ⇐⇒
∑

k∈Z

|k||xk|2 < ∞.

Recall that there is an orthogonal splitting E = E+⊕E0⊕E− and orthogonal
projections P ◦ : E → E◦ where ◦ = +, 0,−. The symplectic action of x ∈ E
is defined to be

A(x) =
1
2

(‖P+x‖2
H1/2 − ‖P−x‖2

H1/2

)
.

It follows from a simple calculation that if x is smooth, then A(x) =
∫

x
λ0,

where λ0 denotes the standard Liouville form on R
2n.

Let H denote the set of H ∈ C∞(R2n) such that

• H|U ≡ 0 for some U ⊂ R
2n open,

• H(z) = c|z|2 for z >> 0 where c �∈ {π, 2π, 3π, . . . }.

For H ∈ H, the action functional AH : H1/2(S1,R2n) → R is defined by

AH(x) = A(x) −
∫ 1

0

H(x(t))dt. (6.1)

Note that the natural action of S1 on itself induces an S1-action on E. Let
Γ be the set of homeomorphisms h : E → E such that h can be written as

h(x) = eγ+(x)P+x + P 0x + eγ−(x)P−x + K(x),

where γ+, γ− : E → R are continuous, S1-invariant and map bounded sets
to bounded sets, and K : E → E is continuous, S1-equivariant and maps
bounded sets to precompact sets. Let S+ denote the unit sphere in E+ with
respect to the H1/2 norm. The first Ekeland-Hofer capacity is defined in [9]
by

cEH
1 (W ) = inf{cH,1 | H ∈ H,W ⊂ suppH},

where

cH,1 = inf{sup AH(ξ) | ξ ⊂ E is S1 − invariant, and ∀h ∈ Γ : h(ξ) ∩ S+ �= ∅}.
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Proof of Theorem 6.1. Since W is star-shaped, there is a unique differentiable
function r : R2n → R which is C∞ in R

2n \ {0} satisfying r(cz) = c2r(z) for
c ≥ 0 such that

W = {z ∈ R
2n | r(z) ≤ 1},

∂W = {z ∈ R
2n | r(z) = 1}.

Let α = Amin(W ) and fix ε > 0. Let f ∈ C∞
≥0(R) be a convex function such

that f(r) = 0 for r ≤ 1 and f(r) = Cr − (α + ε) for r ≥ 2 for some constant
C > α. In particular,

f(r) ≥ Cr − (α + ε), for all r. (6.2)

We now choose a convex function H ∈ C∞(R2n) such that

H(z) = f(r(z)), if r(z) ≤ 2,
H(z) ≥ f(r(z)), for all z ∈ R

2n,
H(z) = c |z|2, if z >> 0 for some c ∈ R>0 \ πZ.

(6.3)

Let x0 ∈ E be an action-minimizing Reeb orbit on ∂W , reparametrized as a
map x0 : R/Z = S1 → R

2n of speed α, so that A(x0) = α and r(x0) ≡ 1 and
ẋ0 = αJ∇r(x0). From a simple calculation we deduce that x0 is a critical
point of the functional Ψ : E → R defined by

Ψ(x) = A(x) − α

∫ 1

0

r(x(t)) dt. (6.4)

Observe that Ψ(cx) = c2Ψ(x) for c ≥ 0. So sx0 is a critical point of Ψ for all
s ≥ 0. Let ξ = [0,∞) · P+x0 ⊕ E0 ⊕ E−.

We now claim that Ψ(x) ≤ 0 for all x ∈ ξ. To prove this, let ξs =
sP+x0 ⊕ E0 ⊕ E−. Observe that Ψ|ξs is a concave function. Since sx0 is a
critical point of Ψ|ξs it follows that max Ψ(ξs) = Ψ(sx0) = s2Ψ(x0) = 0.

From (6.1), (6.2), (6.3) and (6.4), we obtain

AH(x) ≤ Ψ(x) + α + ε + (C − α)
∫ 1

0

r(x(t)) dt ≤ α + ε.

Note that ξ is S1-invariant. Moreover, it is proven in [8] that h(ξ) ∩ S+ �= ∅
for all h ∈ Γ. So cH,1 ≤ α+ε. Hence cEH

1 (W ) ≤ α+ε for all ε > 0. Therefore,

cEH
1 (W ) ≤ α.

To prove the reverse inequality, recall from [9, Prop. 2] that cEH
1 (W ) is

the symplectic action of some Reeb orbit on ∂W . Thus,

cEH
1 (W ) ≥ α.

�
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Abstract. We establish some new existence results for global surfaces
of section of dynamically convex Reeb flows on the three-sphere. These
sections often have genus, and are the result of a combination of pseu-
doholomorphic methods with some elementary ergodic methods.
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1. Introduction and main results

Let (z0, z1) be complex coordinates in C
2, S3 = {|z0|2 + |z1|2 = 1}, and

α0 be the standard Liouville form (−i/4) Σj z̄jdzj − zjdz̄j . The standard
symplectic form on C

2 is ω0 = dα0. The fibers of the Hopf fibration are the
periodic Reeb orbits of the contact form λ0 on S3 induced by α0. Let us call
the Reeb flow of λ0 the Hopf flow. The contact structure ξ0 = ker λ0 is called
standard.

The contact form λ0 is the first example of a dynamically convex con-
tact form. In S3, a contact form λ is said to be dynamically convex if all
periodic orbits have Conley–Zehnder index ≥ 3 when computed in a global
dλ-symplectic frame of ker λ. This notion was introduced by Hofer, Wysocki
and Zehnder (HWZ) in [21].

One can show quite explicitly that all finite collections of periodic orbits
of the Hopf flow span some global surface of section, see [2]. It is natural to ask
if this property remains true for all dynamically convex Reeb flows on S3, in
particular for all strictly convex energy levels in (C2, ω0) ([21, Theorem 3.4]).
This might be too ambitious to try to prove, and one may be led to naively
think that it is easy to find a counterexample. There is, however, another
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natural way to generalize this property of the Hopf flow to the Reeb flows
of all dynamically convex contact forms on S3. Since the Hopf fibers are
unknotted with self-linking number −1, one might ask if all finite collections
of periodic Reeb orbits of this kind span some global surface of section. This
is our first result.

Theorem 1.1. Let L be any link formed by periodic Reeb orbits of a dynam-
ically convex contact form on S3 whose components are unknotted with self-
linking number −1. Then, L bounds a global surface of section for the Reeb
flow.

There are no hidden genericity assumptions on the contact form. The
genus of these sections will typically explode with the number of boundary
orbits. Moreover, there is no need to specify the contact structure since only
the standard one can be defined by a dynamically convex contact form on
S3, see [19].

A proof relying exclusively on pseudoholomorphic curves would be com-
plicated by the fact, originally observed in [14], that transversality fails for
curves with genus which are everywhere transverse to the flow. The solu-
tion proposed to this problem in [14] is to consider a perturbation of the
holomorphic curve equation which corrects the transversality problem, but
seriously complicates the compactness theory (see [1,6,7]). However, dealing
with genus is unavoidable since the links covered by Theorem 1.1 typically
have positive Seifert genus. A proof without pseudoholomorphic curves seems
out of reach since dynamical convexity is an assumption only on the periodic
orbits, and holomorphic curve techniques have proven to be one of the very
few—if not the only—effective methods for finding surfaces of section under
assumptions of this kind.

Let us outline the argument. The main step is the result from [24] stating
that every component of a link L as in Theorem 1.1 bounds a disk-like global
surface of section. At this point ergodic methods come to aid via asymptotic
cycles. We use the statement from [26] refining a celebrated result due to Fried
[11]. The disks can be used to check the hypotheses of [26, Theorem 1.3]. Each
disk has uniformly bounded return time, hence all invariant measures in S3\L
positively hit the sum of the cohomology classes dual to each disk. Finally,
positivity of rotation numbers follows from dynamical convexity.

Remark 1.2. It was explained to us by Colin, Dehornoy and Rechtman that
the input from pseudoholomorphic curves from [24] can be used in a more
elementary way, avoiding asymptotic cycles. One can take the union of the
disks and “resolve intersections” to construct the desired sections. This idea
is extensively used in [4].

In [12], Ghys introduced the notion of right- (and left-) handed vector
field on a homology three-sphere, and explained that all finite collections of
periodic orbits of such a vector field span a global surface of section. The
Hopf flow is the simplest example of a right-handed vector field. Examples
of left-handed geodesic flows on negatively curved two-dimensional orbifolds
are presented by Dehornoy [5]. Right-handedness provides deep insight on
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the dynamics. For instance, it follows that every finite collection of periodic
orbits is a fibered link, hence there are strong knot theoretical restrictions.
Moreover, as soon as such a collection is “misplaced”, then Nielsen–Thurston
theory might be used to obtain entropy via the study of the isotopy class of
the return map.

Question 1. Is the Reeb flow of every dynamically convex contact form on S3

right-handed?

A positive answer is probably very hard to obtain, even in finite-
dimensional families of interesting flows such as those appearing in Celes-
tial Mechanics. One is then tempted to look for examples to give a negative
answer, but they might not exist. In the context of the 3-body problem, we
refer to [35] for a discussion of a version of this question, and to the book [10]
by Frauenfelder and van Koert for a discussion on global surfaces of section,
including a related conjecture of Birkhoff. The existence of genus zero global
surfaces of section with prescribed binding orbits has been clarified in [31].
In [9], it is shown that geodesic flows on S2 with curvatures pinched by some
explicit constant lift to right-handed Reeb flows on S3.

Remark 1.3. The dynamical convexity assumption is essential in Question 1,
as one can easily check. It is, however, more subtle to rule out specific types of
global surfaces of sections when dynamical convexity is dropped. For instance,
in [33] one finds examples of contact forms on S3 without disk-like global
surfaces of section. The situation in higher dimensions is still wide open,
but in [34], there are interesting new constructions for the spatial circular
restricted 3-body problem.

Our second result is closely connected to the following question.

Question 2. (HWZ [21]) Is the minimal period among closed Reeb orbits of
a dynamically convex contact form on S3 equal to the contact area of some
disk-like global surface of section ?

Starting from a nondegenerate dynamically convex contact form on S3,
Hutchings and Nelson [32] were able to implement the construction of the
chain complex of Cylindrical Contact Homology (CCH), originally introduced
by Eliashberg, Givental and Hofer in [8]. The arguments from [32] rely on
elementary pseudoholomorphic curve methods. Invariance of the resulting
homology is delicate and requires sophisticated technology, for instance, one
can use the Polyfold Theory introduced by Hofer, Wysocki and Zehnder; see
[15] for a survey. It will be shown in [30] that elementary methods are still
enough to get invariance of CCH in its lowest degree. This is enough to get
the first spectral invariant cCCH

1 well defined. Also in [30], it will be shown
that cCCH

1 is the action of some periodic orbit with Conley–Zehnder index 3
realized as the asymptotic limit of a pseudoholomorphic plane. Hence we get
the following consequence of a combination of Corollary 1.5 below with some
of the results from [30]: “The spectral invariant cCCH

1 of a nondegenerate
dynamically convex contact form on S3 is the contact area of some global
surface of section.”
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Theorem 1.4. Let λ be a contact form on S3 that is both nondegenerate and
dynamically convex up to action C. Suppose that a periodic Reeb orbit P =
(x, T ) satisfies T ≤ C and is the asymptotic limit of a fast finite-energy plane.
Then, the knot x(R) spans a global surface of section for the Reeb flow.

In the theorem above and the corollary below a periodic Reeb orbit is a
pair P = (x, T ), where x is a periodic trajectory of the Reeb flow and T > 0
is a period, not necessarily the primitive one.

Corollary 1.5. Let λ be a contact form on S3 that is both nondegenerate and
dynamically convex up to action C. Suppose that a periodic Reeb orbit P =
(x, T ) satisfies T ≤ C, CZ(P ) = 3, and is the asymptotic limit of a finite-
energy plane. Then the knot x(R) spans a global surface of section for the
Reeb flow.

Proof. The equality CZ(P ) = 3 implies that any finite-energy plane asymp-
totic to P is fast. Now apply Theorem 1.4. �

The proof of Theorem 1.4 is based on a certain class of pseudoholo-
morphic planes called fast, but also uses ergodic methods (asymptotic cy-
cles) [11,12,26,39,40]. Fast planes were originally introduced in [25] and later
used in [23,24,27–29] to prove several existence results on global surfaces of
section. Roughly speaking, an end of a plane is in some sense a gradient
trajectory of the action functional, and the results from [17] basically say
that the approach to the periodic orbit is governed by an eigenvector of an
operator that plays the role of the Hessian of the action, the so-called asymp-
totic operator. The term “fast” refers to the fact that the eigenvalue of this
asymptotic eigenvector has the same winding number of the most negative
eigenvalue allowed, hence the approach is roughly the fastest it can be; see
Definition 2.8.

Remark 1.6. The global sections obtained from Theorem 1.4 and Corollary 1.5
may have genus. Note that P is not assumed to be simply covered, but still
the global sections obtained are Seifert surfaces for the knot x(R).

2. Preliminaries

Let λ be a contact form on a 3-manifold M . The contact structure is denoted
by ξ = ker λ.

2.1. Periodic orbits, asymptotic operators and Conley–Zehnder indices

The Reeb vector field Xλ of λ is implicitly defined by

iXλ
dλ = 0, iXλ

λ = 1.

Its flow φt is called the Reeb flow. Let us fix a marked point on every periodic
trajectory of φt. A periodic Reeb orbit is a pair P = (x, T ), where x : R → M
is a periodic trajectory of φt such that x(0) is the marked point, and T > 0 is
a period. It is not required that T is the primitive period. The set of periodic
orbits will be denoted by P(λ). If T0 > 0 is the primitive period of x then
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k = T/T0 ∈ N is called the covering multiplicity of P . The contact form
λ is said to be nondegenerate up to action C ∈ (0,+∞] if 1 is not in the
spectrum of dφT |x(0) : ξ|x(0) → ξ|x(0), for all P = (x, T ) ∈ P(λ) such that
T ≤ C. When C = +∞, we simply say that λ is nondegenerate.

There is an unbounded operator on L2(x(T ·)∗ξ)

η �→ J(−∇tη + T∇ηXλ)

associated with a pair (P, J), where P = (x, T ) ∈ P and J : ξ → ξ is a
dλ-compatible complex structure. Here ∇ is a symmetric connection on TM
and ∇t denotes the associated covariant derivative along the loop t ∈ R/Z �→
x(Tt). This is called the asymptotic operator. It does not depend on the choice
of ∇. It is self-adjoint when L2(x(T ·)∗ξ) is equipped with the inner product

(η, ζ) �→
∫
R/Z

dλ(x(Tt))(η(t), J(x(Tt))ζ(t)) dt.

Its spectrum is discrete, consists of eigenvalues whose geometric and alge-
braic multiplicities coincide, and accumulates at ±∞. It turns out that λ
is nondegenerate if, and only if, 0 is never an eigenvalue of an asymptotic
operator. The eigenvectors are nowhere vanishing sections of x(T ·)∗ξ since
they solve linear ODEs. Hence they have well-defined winding numbers with
respect to a dλ-symplectic trivialization σ of x(T ·)∗ξ. The winding number
is independent of the choice of eigenvector of a given eigenvalue. This allows
us to talk about the winding number

windσ(ν) ∈ Z

of an eigenvalue ν with respect to σ. For every k ∈ Z, there are precisely
two eigenvalues satisfying windσ = k, multiplicities counted and, moreover,
ν1 ≤ ν2 ⇒ windσ(ν1) ≤ windσ(ν2). These properties are independent of σ.
These properties of the asymptotic operator have been established in [18].
Given any δ ∈ R we set

α<δ
σ (P ) = max {windσ(ν) | ν eigenvalue, ν < δ},

α≥δ
σ (P ) = min {windσ(ν) | ν eigenvalue, ν ≥ δ},

pδ(P ) = α≥δ
σ (P ) − α<δ

σ (P ).

Finally, we consider the constrained Conley–Zehnder index

CZδ
σ(P ) = 2α<δ

σ (P ) + pδ(P ). (1)

Note that this is defined also in degenerate situations.
A contact form λ is dynamically convex up to action C ∈ (0,+∞] if

c1(ξ,dλ) vanishes on π2 ↪→ H2, and every contractible1 P = (x, T ) ∈ P(λ)
satisfying T ≤ C also satisfies CZ0

σdisk
(P ) ≥ 3. Here, σdisk is a trivialization

that extends to a capping disk. If C = +∞, then we say that λ is dynamically
convex.

1This means that the loop t ∈ R/Z �→ x(Tt) is contractible.
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Remark 2.1. Dynamical convexity was introduced by HWZ in [21]. The as-
sumption that c1(ξ,dλ) vanishes on spheres implies that the homotopy class
of σdisk does not depend on the choice of a capping disk.

2.2. Pseudoholomorphic curves in symplectizations

From now on, we assume M is closed. Let J be a compatible complex struc-
ture on the symplectic vector bundle (ξ,dλ). Hofer [13] considers an almost
complex structure J̃ defined on R × M by

J̃ : ∂a �→ Xλ J̃ |ξ = J, (2)

where Xλ and ξ are seen as R-invariant objects in R × M . Then J̃ is R-
invariant. Consider a closed Riemann surface (S, j), a finite set Γ ⊂ S and a
pseudoholomorphic map

ũ = (a, u) : (S \ Γ, j) → (R × M, J̃),

satisfying a finite-energy condition

0 < E(ũ) = sup
φ

∫
S\Γ

ũ∗d(φλ) < ∞,

where the supremum is taken over the set of φ : R → [0, 1] satisfying φ′ ≥ 0.
The number E(ũ) is called the Hofer energy. Such a map is called a finite-
energy map. Points in Γ are called punctures. A puncture z ∈ Γ is positive
or negative if a(w) → +∞ or a(w) → −∞ when w → z, respectively. It is
called removable if lim sup |a(w)| < ∞ when w → z. It turns out that every
puncture is positive, negative or removable, and that ũ can be smoothly
extended across a removable puncture; see [13].

Let z ∈ Γ and let K be a conformal disk centered at z, i.e., there
is a biholomorphic map ϕ : (K, j, z) → (D, i, 0). Then K \ {z} admits
positive holomorphic polar coordinates (s, t) ∈ [0,+∞) × R/Z defined by
(s, t) � ϕ−1(e−2π(s+it)), and negative holomorphic polar coordinates (s, t) ∈
(−∞, 0] × R/Z defined by (s, t) � ϕ−1(e2π(s+it)).

Theorem 2.2. (Hofer [13]) Let z ∈ Γ be a nonremovable puncture, and (s, t)
be positive holomorphic polar coordinates at z. For every sequence sn → +∞
there exist a subsequence snj

and P = (x, T ) ∈ P such that u(snj
, t) →

x(εT t + d) in C∞(R/Z,M), for some d ∈ R, where ε = ±1 is the sign of the
puncture.

From now on, we denote by

πλ : TM → ξ (3)

the projection along Xλ.

Theorem 2.3. (HWZ [17]) Suppose that λ is nondegenerate up to action C,
and that z is a nonremovable puncture of a finite-energy curve ũ = (a, u) in
(R × M, J̃) with Hofer energy E(ũ) ≤ C. Let (s, t) be positive holomorphic
polar coordinates at z. There exist P = (x, T ) ∈ P, d ∈ R such that u(s, t) →
x(εT t + d) in C∞(R/Z,M) as s → +∞, where ε = ±1 is the sign of the
puncture.
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Remark 2.4. The orbit P is called the asymptotic limit of ũ at z.

Consider the space R/Z×C equipped with coordinates (ϑ, z = x1 + ix2)
and contact form β0 = dϑ + x1dx2.

Definition 2.5. A Martinet tube for P = (x, T ) ∈ P is a smooth diffeomor-
phism Ψ : N → R/Z × D defined on a smooth compact neighborhood N of
x(R) such that:

• Ψ(x(Tϑ/k)) = (ϑ, 0) for all ϑ ∈ R/Z, where k ∈ N is the covering
multiplicity of P .

• λ|N = Ψ∗(gβ0), where g : R/Z × D → (0,+∞) is smooth and satisfies
g(ϑ, 0) = T/k, dg(ϑ, 0) = 0 for all ϑ ∈ R/Z.

Theorem 2.6. (HWZ [17], Mora-Donato [36], Siefring [38]) Suppose that λ is
nondegenerate up to action C > 0, and that z is a nonremovable puncture of
sign ε = ±1 of a finite-energy curve ũ = (a, u) with Hofer energy E(ũ) ≤ C.
Let (s, t) be positive or negative holomorphic polar coordinates at z when ε =
+1 or ε = −1, respectively. Consider any Martinet tube Ψ : N → R/Z×D for
the asymptotic limit P of ũ at z, and s0 � 1 such that |s| ≥ s0 ⇒ u(s, t) ∈ N .
Write Ψ(u(s, t)) = (ϑ(s, t), z(s, t)) for |s| ≥ s0. Up to a rotation, we can
assume u(s, 0) → x(0) as εs → +∞.

If z(s, t) does not vanish identically, then the following holds. There
exist r > 0 and an eigenvalue ν of the asymptotic operator of (P, J) satisfying
εν < 0, such that:

• There exist c, d ∈ R and a lift ϑ̃ : R × R → R of ϑ(s, t) such that

lim
εs→+∞ sup

t∈R/Z

erεs
(
|Dβ [a(s, t) − Ts − c]| + |Dβ [ϑ̃(s, t) − kt − d]|

)
= 0

holds for every partial derivative Dβ = ∂β1
s ∂β2

t , where k is the covering
multiplicity of P .

• There exists an eigenvector of ν, represented as a nowhere-vanishing
vector field v(t) in the frame {∂x1 , ∂x2} along P , such that

z(s, t) = eνs(v(t) + R(s, t))

for some R(s, t) satisfying |DβR(s, t)| → 0 in C0(R/Z) as εs → +∞,
for every partial derivative Dβ = ∂β1

s ∂β2
t .

The alternative z(s, t) ≡ 0 can be expressed independent of coordinates
as saying that the end of the domain of ũ corresponding to the puncture is
mapped into the trivial cylinder over the asymptotic limit. In this case, we
say that ũ has trivial asymptotic behavior at the puncture. Otherwise, the
asymptotic behavior is said to be nontrivial at the puncture.

Remark 2.7. The eigenvalue ν provided by Theorem 2.6 is called the asymp-
totic eigenvalue of ũ at the puncture z.

Let us recall some of the invariants introduced in [18] in the R-invariant
case. Let ũ = (a, u) be a finite-energy curve on (R × M, J̃), defined on a
connected domain. Assume that λ is nondegenerate up to action E(ũ). It can
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be shown that if πλ ◦du does not vanish identically then its zeros are isolated
and count positively. Theorem 2.6 further implies that there are finitely many
zeros in this case. HWZ [18] define

windπ(ũ) ≥ 0 (4)

to be the algebraic count of zeros in case πλ ◦ du does not vanish identi-
cally. Fix a dλ-symplectic trivialization σ of u∗ξ. Let z be a puncture of
ũ with asymptotic limit P = (x, T ). The asymptotic behavior described in
Theorem 2.6 allows one to deform σ so that it extends to a trivialization
of x(T ·)∗ξ. Let wind∞(ũ, z, σ) ∈ Z be defined to be the winding of the as-
ymptotic eigenvalue of ũ at z with respect to the extension of σ to x(T ·)∗ξ.
Finally, we consider

wind∞(ũ) =
∑

+
wind∞(ũ, z, σ) −

∑
− wind∞(ũ, z, σ),

where Σ+ denotes a sum over the positive punctures, and Σ− is a sum over
the negative punctures. Standard degree theory shows that

windπ(ũ) = wind∞(ũ) − χ + #{punctures} (5)

holds provided
∫

u∗dλ > 0. Note that wind∞(ũ) does not depend on the
choice of trivialization σ of u∗ξ.

Denote by (C = C ∪ {∞}, i) the Riemann sphere. For the next two
definitions consider a finite-energy plane ũ = (a, u) : (C, i) → (R × M, J̃)
and assume that λ is nondegenerate up to action E(ũ). By Stokes’ theorem,
∞ must be a positive puncture, and the similarity principle implies that∫
C

u∗dλ > 0.

Definition 2.8. The plane ũ is said to be fast if wind∞(ũ) = 1.

Definition 2.9. The covering multiplicity cov(ũ) of the plane ũ is the covering
multiplicity of its asymptotic limit.

Fast planes in symplectizations were originally introduced in [23].

Lemma 2.10. If ũ = (a, u) is a fast plane, then ũ is somewhere injective and
the map u : C → M is an immersion transverse to Xλ.

Proof. That u is an immersion transverse to Xλ follows from (4) and (5). If
ũ is not somewhere injective, then it covers another plane via a polynomial
map of degree ≥ 2, but this forces ũ to have critical points, in contradiction
to u being an immersion; here, we used that the Cauchy–Riemann equations
force a critical point to be a zero of the derivative of ũ. �

2.3. Asymptotic cycles

Here, we explain the basics on asymptotic cycles, and state the main result
from [26]. Let φt be a smooth flow on a smooth, closed, oriented and connected
3-manifold M , and let L be a link consisting of (nonconstant) periodic orbits.
The set of φt-invariant Borel probability measures on M \ L is denoted by
Pφ(M \ L). Fix an auxiliary Riemannian metric g on M . If p ∈ M \ L is
recurrent and the sequence Tn → +∞ satisfies φTn(p) → p, then we denote
by k(Tn, p) loops obtained by concatenating to φ[0,Tn](p) a g-shortest path
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from φTn(p) to p. With μ ∈ Pφ(M \ L) and y ∈ H1(M \ L;R) fixed, one can
use the Ergodic Theorem to show that μ-almost all points p ∈ M \ L have
the following properties: p is recurrent, and the limits

lim
n→+∞

〈y, k(Tn, p)〉
Tn

exist independent of Tn and g, and define a μ-integrable function fμ,y. The
integral

μ · y :=
∫

M\L

fμ,y dμ

is, by definition, the intersection number of μ and y.
If γ is the periodic orbit given by a connected component of L, then

ξγ = TM |γ/Tγ is a rank-2 vector bundle over γ. It carries an orientation
induced by the ambient orientation and the flow orientation on γ. A positive
frame of ξγ allows one to identify ξγ � γ × C � R/TγZ × C, where Tγ >
0 is the primitive period. If t is the coordinate on R/TγZ (given by the
flow) and θ ∈ R/2πZ is the polar angle on C

∗ then {dt,dθ} is a basis of
H1((ξγ \0)/R+;R). With the aid of any exponential map the class y induces a
class in this homology group that can be written as pdt+qdθ. The coefficients
p, q ∈ R depend only on y and on the chosen frame. If u is a nonzero vector
in ξγ , then using the frame we can write dφt · u � r(t)eiθ(t) with smooth
functions r(t) > 0, θ(t). The rotation number

ρy(γ) :=
Tγ

2π

(
p + q lim

t→+∞
θ(t)
t

)
(6)

is independent of the choice of frame, and of the vector u.
The following statement is a refinement of a result due to Fried [11], see

also Sullivan [40].

Theorem 2.11. ([26]) Let b ∈ H2(M,L;Z) be induced by an oriented Seifert
surface with boundary L, and denote by b∗ ∈ H1(M \ L;R) the class dual to
b. Consider the following assertions:

(i) L bounds a global surface of section representing b.
(ii) L binds an open book decomposition whose pages are global surfaces of

section representing b.
(iii) The following hold:

(a) ρb∗
(γ) > 0 for every connected component γ ⊂ L.

(b) μ · b∗ > 0 for every μ ∈ Pφ(M \ L).
Then (iii) ⇒ (ii) ⇒ (i) holds. Moreover, (i) ⇒ (iii) holds C∞-generically.

3. Proof of Theorem 1.1

The main input in the proof is the following statement proved with pseudo-
holomorphic curves.

Theorem 3.1. ([24]) Let λ be any dynamically convex contact form on (S3, ξ0).
Then a periodic Reeb orbit bounds a disk-like global surface of section if, and
only if, it is unknotted and has self-linking number −1.
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Here, there are no hidden genericity assumptions, the only assumption
is that of dynamical convexity. A disk-like global surface of section D spanned
by some unknotted, self-linking number −1 periodic orbit γ = ∂D obtained
from the above result has the following property: the first return time

τ : D \ γ → (0,+∞) τ(p) = inf {t > 0 | φt(p) ∈ D}
is bounded, i.e.,

sup
p∈D\γ

τ(p) < +∞. (7)

Since D is a global surface of section, it follows from (7) that there exists
L > 0 such that φ[0,L](q) ∩ D �= ∅ for every q ∈ S3 \ γ.

Let γ1, . . . , γN be a collection of unknotted, self-linking number −1 pe-
riodic Reeb orbits. These orbits are taken as knots, i.e., primitive orbits, ori-
ented by the flow. Consider a disk-like global surface of section Di spanned
by γi, provided by Theorem 3.1, oriented in such a way that the identity
∂Di = γi takes orientations into account. Algebraically counting intersections
with Di induces a cohomology class yi ∈ H1(S3 \ γi;R). Denoting inclusion
maps by ιj : S3 \ ∪iγi → S3 \ γj we get a cohomology class

y =
∑

i

ι∗i yi ∈ H1(S3 \ ∪iγi;R). (8)

Denote also

�ij = link(γi, γj) ≥ 1, (9)

which are positive integers since all Di are global surfaces of section.
Let Ti denote the primitive period of γi. With i fixed consider a small

smooth compact neighborhood Ni and a smooth, orientation preserving, dif-
feomorphism Ψi : Ni → R/TiZ × D such that Ψi(γi) = R/TiZ × {0} and
Ψi ◦ φt ◦ Ψ−1

i (0, 0) = (t, 0). Here D ⊂ C denotes the unit disk oriented by the
complex orientation. Up to twisting, we may assume that Ψi is aligned with
Di, i.e., if ε > 0 is small then the linking number of the loop t �→ Ψ−1

i (t, ε)
with γi is equal to zero. Denote by reiθ the polar coordinates on Di. It follows
that with respect to the basis {dt/Ti,dθ/2π} of R/TiZ × (D \ {0}) we can
write

(Ψi)∗y =

⎛
⎝∑

j �=i

�ij

⎞
⎠ dt

Ti
+

dθ

2π
.

It follows from this and from the definition of the rotation number (6) that

2πρy(γi) = Ti

⎛
⎝∑

j �=i

�ij

Ti
+

1
2π

lim
t→+∞

θ(t)
t

⎞
⎠

=
∑
j �=i

�ij + lim
t→+∞

θ(t)/2π

t/Ti

≥ lim
t→+∞

θ(t)/2π

t/Ti
,

(10)

Reprinted from the journal708



where (9) was used in the third line. We claim that this limit is strictly
positive. This will follow from CZ(γi) ≥ 3 together with sl(γi) = −1. Here
we write CZ for the Conley–Zehnder index in a global dλ-symplectic frame
of (ξ0,dλ). In fact, the global dλ-symplectic frame of ξ0 rotates sl(γi) = −1
turns with respect to a dλ-symplectic of ξ|γi

aligned with Di. It turns out
that there exists αi ∈ R such that CZ(γk

i ) = 2�kαi� + p(γk
i ) for every k ≥ 1,

where |p(γk
i )| ≤ 1, and that if CZ(γi) ≥ 3 then αi > 1. Hence,

lim
t→+∞

θ(t)/2π

t/Ti
= lim

k→+∞
CZDi(γk

i )
2k

= lim
k→+∞

CZ(γk
i ) − 2k

2k
= αi − 1 > 0.

Hence, we are done checking

ρy(γi) > 0 ∀i (11)

which is (iii-a) in Theorem 2.11.
Now, we check (iii-b). Let μ ∈ Pφ(S3 \∪iγi) be arbitrary. As explained

in subsection 2.3, there exists a Borel set E ⊂ M \ ∪iγi contained in the
set of recurrent points such that μ(E) = 1, and for all p ∈ E the limits
limn→∞ 〈y, k(Tn, p)〉 /Tn exist independent of the sequence Tn → +∞ satis-
fying φTn(p) → p and define a function fμ,y ∈ L1(μ) whose integral is μ · y.
Since each Di \γi is transverse to the flow, we conclude that μ(E \∪iDi) = 1.
Fix p ∈ E \ ∪iDi and a sequence Tn → +∞ satisfying φTn(p) → p. Then
using the (positive) transversality of the flow with all the surfaces Di \ γi

n � 1 ⇒ 〈y, k(Tn, p)〉 =
∑

i

#{t ∈ [0, Tn] | φt(p) ∈ Di}. (12)

But

#{t ∈ [0, Tn] | φt(p) ∈ Di} ≥ Tn

sup τi
− 1, (13)

where τi is the return time function of Di. Recall that sup τi < +∞ (7).
Plugging (13) into (12) we obtain

〈y, k(Tn, p)〉
Tn

≥
∑

i

(
1

sup τi
− 1

Tn

)
. (14)

Taking the limit as n → ∞

fμ,y ≥
∑

i

1
sup τi

(μ-almost everywhere) ⇒ μ · y ≥
∑

i

1
sup τi

>0, (15)

and we are done checking (iii-b). A direct application of Theorem 2.11 con-
cludes the proof of Theorem 1.1.

4. Proof of Theorem 1.4

Let P = (x, T = m0T0) be a periodic Reeb orbit, with multiplicity m0, of a
defining contact form λ on (S3, ξ0). Here T0 denotes the primitive period of x.
Throughout this section we denote by τ a global dλ-symplectic trivialization
of ξ0. Assume that λ is dynamically convex up to action T , and also that λ
is nondegenerate up to action T .
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Proposition 4.1. If ũ is a fast plane asymptotic to P then there exists a > 0
such that

#{t ∈ [0, T ] | φt(p) ∈ u(C)} ≥
⌊

T

a

⌋
(16)

holds for every p ∈ S3 \ x(R) and every T ≥ 0.

We first show that Proposition 4.1 can be used to check the hypothesis of
Theorem 2.11 for the periodic orbit x(R) and the cohomology class counting
linking numbers with it. Theorem 1.4 follows as a consequence.

Proof that Theorem 1.4 follows from Proposition 4.1. Let y ∈ H1(S3 \ x(R);
R) be the cohomology class that counts linking number of loops in S3 \ x(R)
with the loop t ∈ R/Z �→ x(T0t) = x(Tt/m0). Here, we ignore Z-coefficients
and work with R-coefficients. If we compactify C to a disk DC by adding a
circle at ∞ then u induces a capping disk ū : DC → S3 for P such that the
class in H1(S3 \x(R)) dual to ū∗[DC] ∈ H2(S3, x(R)) is precisely m0y. Here,
[DC] is the fundamental class in H2(DC, ∂DC;Z) induced by the complex
orientation. Observe that u(C) \ x(R) has measure zero with respect to any
μ ∈ Pφ(S3 \ x(R)) since it is transverse to the flow. Hence, in view of the
discussion in Sect. 2.3, we get a Borel set E ⊂ S3 \ x(R) such that μ(E) = 1
and every point p ∈ E has the following properties:
(a) p is recurrent.
(b) The limits

lim
n→+∞

link(k(Tn, p), x(R))
Tn

= lim
n→+∞

〈y, k(Tn, p)〉
Tn

exist independent of Tn → +∞ satisfying φTn(p) → p (and of auxiliary
Riemannian metrics), and define a function in L1(μ) whose integral is
equal to the intersection number μ · y.

(c) p �∈ u(C).
Hence, using the transversality between u and the Reeb vector field, for every
p ∈ E we can estimate

m0 link(k(Tn, p), x(R)) = 〈m0y, k(Tn, p)〉

=
∑

t∈[0,Tn], φt(p)∈u(C)

#{z ∈ C | u(z) = φt(p)}

≥ #{t ∈ [0, Tn] | φt(p) ∈ u(C)}

(17)

for all n large enough, where Tn → +∞ satisfies φTn(p) → p. With the aid
of Proposition 4.1 we can estimate from (17)

lim
n→+∞

link(k(Tn, p), x(R))
Tn

≥ lim
n→+∞

1
m0Tn

⌊
Tn

a

⌋
=

1
m0a

∀p ∈ E, (18)

which implies, by definition of intersection numbers, that

μ · y ≥ 1
m0a

> 0 ∀μ ∈ Pφ(S3 \ x(R)) (19)

Condition ρy(x(R)) > 0 follows immediately from CZ(P0) ≥ 3 where P0 =
(x, T0) is the simply covered periodic orbit underlying P . Theorem 1.4 now
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follows from a direct application of Theorem 2.11 since y is dual to any Seifert
surface for x(R); here, it was used that the ambient space is S3. �

To complete the proof of Theorem 1.4 we need to establish Proposi-
tion 4.1. The rest of this section is concerned with the proof of Proposi-
tion 4.1.

Let us denote by P0 = (x, T0) the simply covered periodic orbit under-
lying P , and recall that m0 denotes the covering multiplicity of P = (x, T =
m0T0). For every k ≥ 1, we denote P k

0 = (x, kT0). In particular P = Pm0
0 .

Consider the set Mfast(P, J) of equivalence classes of fast finite-energy
planes asymptotic to P , where two planes ũ, ṽ are equivalent if there exist
A ∈ C

∗, B ∈ C and c ∈ R such that ṽc(z) = ũ(Az +B) holds for every z ∈ C.
Here ṽc denotes the translation of ṽ by c in the R-component. Equivalence
classes are denoted by [ũ].

It is possible to build a Fredholm theory for Mfast(P, J̄) modeled on
sections of the normal bundle, using Sobolev or Hölder spaces [3]. Fix a
number δ < 0 in the spectral gap of the asymptotic operator associated to
(P, J) between eigenvalues with winding number 1 and 2 with respect to τ .
This is possible since CZ0

τ (P ) ≥ 3. Note that α<δ
τ (P ) = 1 and α≥δ

τ (P ) = 2.
Let

ũ = (a, u) : (C, i) → (R × S3, J̃) (20)

be a fast plane representing an element of Mfast(P, J). Consider the space of
sections of the normal bundle of ũ(C) with exponential decay faster than δ.
The Fredholm index of the linearization Dũ of the Cauchy–Riemann equa-
tions at ũ restricted to this space of sections is

indδ(ũ) = CZδ
τ (P ) − 1 = 3 − 1 = 2. (21)

An important fact is that automatic transversality holds, i.e., Dũ at a
fast plane ũ is always a surjective Fredholm operator. Let us prove this fact.
There is no loss of generality to deform the normal bundle so that it coincides
with u∗ξ0 over C \ BR(0), R � 1. A dλ-symplectic trivializing frame of the
normal bundle induces, up to homotopy, a dλ-symplectic trivialization σN

of x(T ·)∗ξ0 which winds +1 with respect to the global frame τ . Moreover, a
nontrivial section ζ ∈ ker Dũ admits an asymptotic behavior governed by an
eigensection of the asymptotic operator associated with an eigenvalue ν < δ,
see [23, Theorem 6.1], or [38, Theorem A.1]. Hence, ζ does not vanish near
∞ and the total algebraic count of zeros of ζ is equal to the winding number
of ν with respect to σN , which is equal to

windτ (ν) − 1 ≤ α<δ
τ (P ) − 1 = 1 − 1 = 0.

But the equation Dũζ = 0 allows us to use Carleman’s similarity principle to
say that zeros are isolated and count positively. The important conclusion is
that ζ never vanishes. Since the Fredholm index is 2, we would find 3 linearly
independent sections of the kernel if Dũ were not surjective. But the normal
bundle is two-dimensional, and hence a nontrivial linear combination of them
would have to vanish at some point, which gives the desired contradiction.
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Remark 4.2. Arguments like the one used above to prove automatic transver-
sality statements were explored in [16,41], see also [25].

It follows from the above discussed automatic transversality that
Mfast(P, J) can be given the structure of a smooth, Hausdorff and second-
countable one-dimensional manifold.

Remark 4.3. Under our standing assumption that λ is nondegenerate up to
action T one can show that the topology on Mfast(P, J) inherited from the
functional analytic set-up used for the Fredholm theory coincides with the
topology of C∞

loc-convergence. There are situations where this can also be
proved dropping nondegeneracy [24,29].

Consider a sequence ũn : (C, i) → (R × S3, J̃) of fast finite-energy
planes asymptotic to P . Since λ is assumed to be nondegenerate up to action
T we can apply the SFT compactness theorem [3] to get, up to selection of
a subsequence, that ũn SFT-converges to a stable holomorphic building u.
Since u is a limit of planes it can be conveniently described as a directed,
rooted tree T . Each vertex v corresponds to a finite-energy map

ũv = (av, uv) : (C \ Γv, i) → (R × S3, J̃)

with a unique positive puncture ∞. The finite set Γv consists of the negative
punctures of ũv. The top level of this building corresponds to the root r,
and consists of a single finite-energy map ũr which is asymptotic to P at
its positive puncture ∞. Edges are always assumed oriented as going away
from the root. An edge e from the vertex v to the vertex v′ corresponds to
a negative puncture of ũv. The asymptotic limit ũv at the negative puncture
corresponding to e is equal to the asymptotic limit of ũv′ at its positive
puncture. The leaves correspond precisely to the vertices v such that ũv is a
plane (Γv = ∅).

Lemma 4.4. If v is a vertex of T such that
∫

u∗
vdλ > 0 then wind∞

(ũv,∞, τ) ≤ 1.

Proof. SFT compactness allows us to find An ∈ C
∗, Bn ∈ C and cn ∈ R such

that the planes w̃n(z) = cn · ũn(Anz + Bn) converge to ũv in C∞
loc(C \ Γv).

Here, cn · ũn denotes the translation by cn in the R-component.
Consider components w̃n = (dn, wn) and ũv = (av, uv) in R×S3. Write

w̃n(s, t) = (dn(s, t), wn(s, t)) instead of w̃n(e2π(s+it)), and similarly ũv(s, t) =
(av(s, t), uv(s, t)). Fix s0 such that z ∈ Γv ⇒ |z| < e2πs0 . By Theorem 2.6, we
can find s1 > s0 such that πλ(∂suv) does not vanish on [s1,+∞) × R/Z and
the winding number wind(πλ(∂suv)(s1, ·)) of t �→ πλ(∂suv)(s1, t) in the global
frame τ is equal to wind∞(ũv,∞, τ). Since πλ(∂swn) → πλ(∂suv) in C∞

loc we
find n0 such that if n ≥ n0 then πλ(∂swn) does not vanish on {s1} × R/Z
and

wind(πλ(∂swn)(s1, ·)) = wind(πλ(∂suv)(s1, ·)) = wind∞(ũv,∞, τ).

The frame τ can be used to represent the maps (s, t) �→ πλ(∂swn) by smooth
maps ζn : [s0,+∞) ×R/Z → C satisfying a Cauchy–Riemann type equation.
Carleman’s similarity principle implies that either ζn vanishes identically on
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[s0,+∞) × R/Z, or its zeros are isolated and count positively. It can not
vanish identically since the w̃n are planes. By Theorem 2.6 ζn(s, t) does not
vanish when s is large enough and for every n we have

lim
s→+∞ wind(ζn(s, ·)) = lim

s→+∞ wind(πλ(∂swn)(s, ·)) = wind∞(w̃n) = wind∞(ũn).

If s > s1 is large enough then wind(ζn(s, ·)) − wind(ζn(s1, ·)) is the algebraic
count of zeros of ζn on [s1, s] × R/Z. Since this count is nonnegative we get

wind(πλ(∂swn)(s1, ·)) ≤ wind∞(ũn)

for all n ≥ n0. Hence,

n ≥ n0 ⇒ wind∞(ũv,∞, τ) ≤ wind∞(ũn) = 1

as desired. �

Lemma 4.5. If the vertex v is not a leaf, then
∫

u∗
vdλ = 0, i.e., ũv is a possibly

branched cover of a trivial cylinder over a periodic orbit.

Proof. Suppose that
∫

u∗
vdλ > 0. At the negative punctures z ∈ Γv of ũv,

we have wind∞(ũv, z, τ) ≥ 2 since the asymptotic limits at these punctures
are periodic Reeb orbits with action less than T and hence, by assumption,
satisfy CZ0

τ ≥ 3. By the previous lemma together with (4) and (5) we arrive
at

0 ≤ windπ(ũv) = wind∞(ũv) − 1 + #Γv ≤ 1 − 2#Γv − 1 + #Γv = −#Γv.

(22)

Thus, Γv = ∅ and v is a leaf. �

Corollary 4.6. The following dichotomy holds for every vertex v of T :
(i) v is not a leaf,

∫
u∗

vdλ = 0 and ũv is a (possibly branched) cover of a
trivial cylinder.

(ii) v is a leaf,
∫

u∗
vdλ > 0 and ũv is a fast plane asymptotic to a covering

of P0.

Proof. Case (i) is handled by the previous lemma. Let us now argue for (ii).
By Lemma 4.4 if v is a leaf then it is a plane satisfying wind∞(ũv) ≤ 1.
Hence, 0 ≤ windπ(ũv) = wind∞(ũv)−1 ≤ 1−1 = 0, i.e., wind∞(ũv) = 1 and
ũv is a fast plane, and by (i) it is clearly asymptotic to a cover of P0. �

For every 1 ≤ k ≤ m0, we consider Mfast(P k
0 , J) the moduli space

of fast finite-energy planes asymptotic to P k
0 , defined as before. For each k

there is a suitable choice of negative weight placed precisely at the spectral
gap between eigenvalues of the asymptotic operator associated to (P k

0 , J)
with winding 1 and 2 in a global frame. With these weights one builds a
Fredholm theory as before, and there is automatic transversality. The space
Mfast(P k

0 , J) becomes a 1-dimensional smooth, second countable Hausdorff
manifold. Moreover, the induced topology coincides with the topology in-
duced by C∞

loc-convergence.

Corollary 4.7. There exists m ∈ {1, . . . , m0} such that Mfast(Pm
0 , J) is

nonempty and compact.
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Proof. We work under the assumption of Theorem 1.4 that Mfast(P =Pm0
0 , J)

is nonempty. If Mfast(P, J) is compact then there is nothing to be proved. If
Mfast(P, J) is not compact then some sequence in Mfast(P, J), represented
by fast planes ũn, will SFT-converge to a building u with more than one level.
This means that the corresponding tree T does not consist of a single vertex
(the root), and by Corollary 4.6 every leaf v must be a fast finite-energy plane
asymptotic to P kv

0 , for some kv ∈ {1, . . . , m0−1}. The reason for the strict in-
equality kv < m0 is that the root must have at least two negative punctures:
otherwise the root corresponds to a trivial cylinder, which is ruled out by
stability of the limiting building. Pick any leaf v, denote m1 = kv. Hence the
moduli space Mfast(Pm1

0 , J) of fast planes asymptotic to Pm1
0 is not empty.

If Mfast(Pm1
0 , J) is compact, then we are done with the proof. If not we pro-

ceed just as above to find 1 ≤ m2 ≤ m1 − 1 such that Mfast(Pm2
0 , J) is non

empty. After a finite number of steps k ≥ 0 this process stops and we find
1 ≤ mk ≤ m0 such that Mfast(Pmk

0 , J) is nonempty and compact. �

From now on m is given by the previous lemma, that is, Mfast(Pm
0 , J)

is a nonempty, compact, smooth and Hausdorff 1-dimensional manifold, i.e.,
a finite collection of circles.

Consider the space Mfast
1 (Pm

0 , J) of equivalence classes of pairs (ũ, z)
where ũ is a fast plane asymptotic to Pm

0 and z ∈ C. Two pairs (ũ0, z0),
(ũ1, z1) are equivalent if there exist A ∈ C

∗, B ∈ C such that ũ1(Az +
B) = ũ0(z) for all z ∈ C and z1 = Az0 + B. Note that (R,+) acts freely
on Mfast

1 (Pm
0 , J) by translations in the symplectization direction. Hence,

Mfast
1 (Pm

0 , J)/R is a smooth three-dimensional manifold. The map

ev : Mfast
1 (Pm

0 , J)/R → S3 ev([ũ = (a, u), z]/R) �→ u(z) (23)

is smooth.

Lemma 4.8. The map ev is a submersion.

Proof. For every ũ ∈ Mfast(Pm
0 , J) nontrivial sections in the kernel of the

linearized Cauchy–Riemann operator at ũ, with the appropriate weighted ex-
ponential decay, which represent elements in the tangent space, never vanish
and u is an immersion. �

Lemma 4.9. If K ⊂ S3 \ x(R) is compact then ev−1(K) is compact.

Proof. Suppose that [ũn, zn] represents a sequence in ev−1(K). Up to
reparametrization, translation in the R-component, and selection of a sub-
sequence, we may assume that ũn converges in C∞

loc to some plane ũ repre-
senting an element of Mfast(Pm

0 , J). Let N be a neighborhood of x(R) such
that K ∩ N = ∅. One can then invoke results on cylinders of small contact
area from [22] to conclude that there exists R and n0 such that if n ≥ n0 and
|z| ≥ R then ũn(z) ∈ R× N . This implies that supn |zn| ≤ R. Hence one can
assume, up to selection of a subsequence, that zn → z for some z. It follows
that [ũn, zn]/R → [ũ, z]/R. �

Lemma 4.10. The image of the map ev contains S3 \ x(R).
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Proof. By Lemma 4.8 the image is open in S3, hence its intersection with
S3 \ x(R) is an open subset of S3 \ x(R). By Lemma 4.9, the intersection of
the image of ev with S3 \x(R) is a closed subset of S3 \x(R). The conclusion
follows from connectedness of S3 \ x(R). �

Consider [ũ = (a, u)] ∈ Mfast(Pm
0 , J) and the function

τ : S3 \ x(R) → [0,+∞] (24)

defined by

τ(p) = inf{t > 0 | φt(p) ∈ u(C)} (25)

with the convention that the infimum of the empty set is +∞.

Lemma 4.11. τ takes values on (0,+∞), and sup τ < +∞.

Proof. From the transversality of u to the Reeb flow, and the asymptotic
formula from Theorem 2.6, we conclude that given any [ṽ = (b, v)] ∈ Mfast

(Pm
0 , J) and p ∈ S3, the set v−1(p) ⊂ C is finite, and also that τ takes values

on (0,+∞].
Suppose that p �∈ x(R) and ω(p) ∩ x(R) �= ∅. By invariance of x(R)

under the Reeb flow, the trajectory φt(p) will spend arbitrarily long times in
the future arbitrarily and uniformly close to x(R). Hence, the way in which
it rotates around x(R) is governed by the linearized Reeb flow along x. Every
plane ṽ = (b, v) representing an element in Mfast(Pm

0 , J) is asymptotic to
Pm

0 according to an eigenvector of a negative eigenvalue of the asymptotic
operator with winding +1 in a global frame; this information is encoded in
wind∞(ṽ) = 1. Hence, in transverse polar coordinates aligned with the global
frame the plane rotates 2π. After one period T = mT0 the linearized flow
rotates every transverse vector by an angle larger than 2π + Δ for some
uniform Δ > 0. This information is encoded in CZ0

τ (Pm
0 ) ≥ 3. Hence after

flow time of about � 2π
Δ +1�T any point nearby P0 already returned once back

to the plane. It follows that the return time is bounded from above for points
near P0.

If ω(p)∩x(R) = ∅, then it follows from compactness of Mfast(Pm
0 , J) and

transversality of the planes to the Reeb flow that for every [ṽ] ∈ Mfast(Pm
0 , J)

the trajectory φt(p) will hit v(C) in finite time.
So far we have proved that τ takes values on (0,+∞), and that τ is

bounded near x(R). To conclude, we note that if

{w1, . . . , wN} = u−1(φτ(p)(p)),

then there are N local smooth germs of hitting times τ1, . . . , τN near p. Then,
τ can be locally bounded in terms of these germs. �

Proposition 4.1 is a consequence of Lemma 4.11.

Remark 4.12. We observe that the finite energy planes produced by Corollary
4.7 can themselves be thought of as sorts of generalized surfaces of section
where we allow for the possibility that the surface is an immersion rather
than embedding. Indeed our proof shows that the projection to S3 of every
such plane is an immersion, transverse to the Reeb flow, and that the flow
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line through any given point in S3 \ P0 will hit the surface in forward and
backward time. In the case that the plane is not an embedding, it follows
from results in [18,37] that it must intersect its asymptotic limit, and thus
in this case the plane will intersect the flow line through any given point in
S3 including points in P0.

We observe further that, since our proof shows that the evaluation map

ev : Mfast
1 (Pm

0 , J)/R → S3

is an immersion between manifolds of the same dimension, it is also a lo-
cal diffeomorphism, so we can use ev−1 to lift the flow to the moduli space
Mfast

1 (Pm
0 , J)/R, each component of which is diffeomorphic to C×S1. More-

over, since each plane in Mfast
1 (Pm

0 , J)/R is transverse to the flow, the re-
sulting flow on Mfast

1 (Pm
0 , J)/R will be transverse to the disk-like fibers of

the forgetful map Mfast
1 (Pm

0 , J)/R �→ Mfast(Pm
0 , J)/R. So although the sur-

face of section provided by our theorem will in general have genus, the fast
finite energy planes that we construct in the proof can themselves be used to
visualize the dynamics as a return map on a disk.
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[12] Ghys, É.: Right-handed vector fields & the Lorenz attractor. Jpn. J. Math.
4(1), 47–61 (2009). https://doi.org/10.1007/s11537-009-0854-8

[13] Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to
the Weinstein conjecture in dimension three. Invent. Math. 114(3), 515–563
(1993). https://doi.org/10.1007/BF01232679

[14] Hofer, H.: Holomorphic curves and real three-dimensional dynamics. Geom.
Funct. Anal. Special Volume, Part II (2000), 674–704. GAFA 2000 (Tel Aviv,
1999)

[15] Hofer, H.: A general Fredholm theory and applications. Curr. Dev. Math. 2006,
1–71 (2004)

Vol. 24 (2022) Global surfaces of section with positive

Reprinted from the journal 717

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1215/00127094-1276301
http://arxiv.org/abs/1905.03054
https://doi.org/10.2140/gt.2003.7.799
https://doi.org/10.2140/gt.2003.7.799
http://arxiv.org/abs/2001.01448v3
https://doi.org/10.4171/GGD/431
https://doi.org/10.1007/s11784-019-0735-6
https://doi.org/10.1007/s11784-019-0735-6
http://arxiv.org/abs/1802.05573v2
http://arxiv.org/abs/2106.12512
https://doi.org/10.1016/0040-9383(82)90017-9
https://doi.org/10.1007/s11537-009-0854-8
https://doi.org/10.1007/BF01232679


U. L. Hryniewicz et al. JFPTA

[16] Hofer, H., Lizan, V., Sikorav, J.-C.: On genericity for holomorphic curves
in four-dimensional almost-complex manifolds. J. Geom. Anal. 7(1), 149–159
(1997). https://doi.org/10.1007/BF02921708

[17] Hofer, H., Wysocki, K., Zehnder, E.: Properties of pseudoholomorphic curves
in symplectisations. I. asymptotics. Ann. Inst. H. Poincaré Anal. Non Linéaire
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de publics variés, Th‘ese de doctorat (2019)

[36] Mora-Donato, E.: Pseudoholomorphic cylinders in symplectisations, 101. The-
sis (Ph.D.), New York University (2003)

[37] Siefring, R.: Intersection theory of punctured pseudoholomorphic curves.
Geom. Topol. 15(4), 2351–2457 (2011)

[38] Siefring, R.: Relative asymptotic behavior of pseudoholomorphic half-cylinders.
Commun. Pure Appl. Math. 61(12), 1631–1684 (2008)

[39] Schwartzman, S.: Asymptotic cycles. Ann. Math. (2) 66, 270–284 (1957)

[40] Sullivan, D.: Cycles for the dynamical study of foliated manifolds and com-
plex manifolds. Invent. Math. 36, 225–255 (1976). https://doi.org/10.1007/
BF01390011

[41] Wendl, C.: Automatic transversality and orbifolds of punctured holomorphic
curves in dimension four. Comment. Math. Helv. 85(2), 347–407 (2010)

Umberto L. Hryniewicz
RWTH Aachen
Pontdriesch 10-12
Aachen 52062
Germany
e-mail: hryniewicz@mathga.rwth-aachen.de

Pedro A. S. Salomão
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ECH capacities and the Ruelle invariant

Michael Hutchings

Abstract. The ECH capacities are a sequence of real numbers associ-
ated to any symplectic four-manifold, which are monotone with respect
to symplectic embeddings. It is known that for a compact star-shaped
domain in R

4, the ECH capacities asymptotically recover the volume of
the domain. We conjecture, with a heuristic argument, that generically
the error term in this asymptotic formula converges to a constant de-
termined by a “Ruelle invariant” which measures the average rotation
of the Reeb flow on the boundary. Our main result is a proof of this
conjecture for a large class of toric domains. As a corollary, we obtain
a general obstruction to symplectic embeddings of open toric domains
with the same volume. For more general domains in R

4, we bound the
error term with an improvement on the previously known exponent from
2/5 to 1/4.

Mathematics Subject Classification. 37E99, 53D42.

1. Introduction

1.1. Asymptotics of ECH capacities

Given a symplectic 4-manifold (X,ω), possibly noncompact or with boundary,
there is associated a sequence of real numbers

0 = c0(X,ω) < c1(X,ω) ≤ c2(X,ω) ≤ · · · ≤ ∞, (1.1)

called the ECH capacities of (X,ω). These were defined in [19] using embed-
ded contact homology; see [20] for a survey. Some basic properties of ECH
capacities proved in [19] are:

• (Monotonicity) If there exists a symplectic embedding of (X,ω) into
(X ′, ω′) then

ck(X,ω) ≤ ck(X ′, ω′) (1.2)

for all k.

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder and Felix Schlenk..
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• (Conformality) If r > 0 then

ck(X, rω) = rck(X,ω). (1.3)

• (Disjoint unions) Given a (possibly finite) sequence1 of symplectic 4-
manifolds {(Xi, ωi)}, we have

ck

(∐
i

(Xi, ωi)

)
= sup∑

i ki=k

∑
i

cki
(Xi, ωi). (1.4)

• (Balls) If a > 0, define the ball

B(a) =
{
z ∈ C

2
∣∣ π|z|2 ≤ a

}
.

Then

ck(B(a)) = da (1.5)

where d is the unique nonnegative integer such that

d2 + d ≤ 2k ≤ d2 + 3d.

• (Volume property) If X is a compact domain in R
4 with piecewise

smooth boundary, then

lim
k→∞

ck(X)2

k
= 4vol(X). (1.6)

Here for domains in R
4 = C

2 we always take the restriction of the standard
symplectic form

ω =
2∑

i=1

dxi dyi.

The symplectic embedding obstructions resulting from the monotonicity
property (1.2) are sharp in some cases, for example when X and X ′ are
ellipsoids in R

4, as shown by McDuff [25], or more generally when X is a
“concave toric domain” and X ′ is a “convex toric domain”, as shown by
Cristofaro-Gardiner [8].

Define a “nice star-shaped domain” to be a compact domain in R
4

whose boundary is smooth and transverse to the radial vector field. If X is
a nice star-shaped domain, then the asymptotic formula (1.6) is a special
case of a more general result about the asymptotics of the “ECH spectrum”
of a contact three-manifold, which was proved in [11] using Seiberg–Witten
theory. The formula (1.6) for nice star-shaped domains corresponds to the
case when the contact three-manifold is the boundary of X, which of course
is diffeomorphic to S3, together with an induced contact form (see (1.12)
below) whose kernel is the tight contact structure.

The ECH spectrum of a contact three-manifold is defined in terms of
the periods of certain Reeb orbits, and as a result the asymptotic formula
for the ECH spectrum has various applications to dynamics. In particular,

1In [19] it was assumed that the sequence of symplectic manifolds {(Xi, ωi)} is finite, and

in that case one has ‘max’ instead of ‘sup’ in (1.4). The countable case follows directly
from the finite case using the definition of ECH capacities in [19].
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[9] deduces the existence of at least two simple Reeb orbits; [10] proves the
existence of either two or infinitely many simple Reeb orbits under certain
hypotheses; [4,23] obtain C∞ generic density of Reeb orbits and periodic
orbits of Hamiltonian surface diffeomorphisms, see also the survey [18]; and
[22,31] obtain relations between periodic orbits of area preserving disk or
annulus diffeomorphisms and the Calabi invariant.

Returning to symplectic embedding problems, the asymptotic formula
(1.6) implies that for k large, the symplectic embedding obstruction (1.2)
recovers the obvious volume constraint vol(X) ≤ vol(X ′). Additional embed-
ding obstructions arise from the deviation of ck(X) from the asymptotics in
(1.6). More precisely, define the “error term”

ek(X) = ck(X) − 2
√

k vol(X) (1.7)

It is then interesting to try to understand the size of this error term and its
geometric significance.

A result of Sun [29] implies that if X is a nice star-shaped domain, then

ek(X) = O
(
k125/252

)
.

The exponent was improved by Cristofaro-Gardiner and Savale [13] to 2/5.
Both of these results for nice star-shaped domains are special cases of general
results on the asymptotics of the ECH spectrum of a contact three-manifold,
proved using Seiberg–Witten theory.

We use more elementary arguments to further improve the exponent for
domains in R

4:

Theorem 1.1. (proved in Sect. 4) If X is a compact domain in R
4 with smooth

boundary (not necessarily star-shaped), then

ek(X) = O
(
k1/4
)

.

In fact, ek(X) is O(1) in all examples for which it has been computed.

Example 1.2. Let X be the ball B(a). We have vol(B(a)) = a2/2, see (1.14)
below. By (1.5), we then have

ek(B(a)) =
(
d −

√
2k
)

a,

where d is the unique nonnegative integer such that

d2 + d ≤ 2k ≤ d2 + 3d.

It follows from the above two lines that

lim inf
k→∞

ek(B(a)) = −3
2
a,

lim sup
k→∞

ek(B(a)) = −1
2
a. (1.8)

More generally, [32, Thm. 1.1] implies that for certain “lattice convex
toric domains”, ek is also O(1) with a more complicated oscillating behavior.
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1.2. The Ruelle invariant

We now formulate a general conjecture about the limiting behavior of the
error term ek. This requires a digression to define the “Ruelle invariant” of a
contact form on a homology three-sphere, which can be regarded as a measure
of the average rotation rate of the Reeb flow. (One can also define the Ruelle
invariant more generally for volume-preserving vector fields.)

Let S̃p(2) denote the universal cover of the group Sp(2) of 2 × 2 sym-
plectic matrices. There is a standard “rotation number” function

rot : S̃p(2) −→ R

defined as follows. Let A ∈ Sp(2), and let Ã ∈ S̃p(2) be a lift of A, represented
by a path {At}t∈[0,1] in Sp(2) with A0 = I and A1 = A. If v is a nonzero
vector in R

2, then the path of vectors {Atv}t∈[0,1] rotates by some angle
which we denote by 2πρ(v) ∈ R. We then define

rot
(
Ã
)

= lim
n→∞

1
n

n∑
k=1

ρ
(
Ak−1v

)
.

This does not depend on the choice of nonzero vector v. For example, if A is
conjugate to rotation by angle 2πθ, then rot

(
Ã
)

is a lift of θ from R/2πZ

to R. The rotation number is a quasimorphism: if B̃ is another element of
S̃p(2), then ∣∣∣rot

(
ÃB̃
)

− rot
(
Ã
)

− rot
(
B̃
)∣∣∣ < 1. (1.9)

Now let Y be a homology three-sphere, and let λ be a contact form on
Y with associated contact structure ξ and Reeb vector field R. For t ∈ R, let
φt : Y → Y denote the diffeomorphism given by the time t Reeb flow. For
each y ∈ Y , the derivative of φt restricts to a linear map

dφt : ξy −→ ξφt(y) (1.10)

which is symplectic with respect to dλ. Now fix a symplectic trivialization of
ξ, consisting of a symplectic linear map τ : ξy → R

2 for each y ∈ Y . Then for
y ∈ Y and t ∈ R, the composition

R
2 τ−1

−→ ξy
dφt−→ ξφt(y)

τ−→ R
2

is a symplectic matrix which we denote by Aτ
y,t. In particular, if y ∈ Y and

T ≥ 0, then the path of symplectic matrices {Aτ
y,t}t∈[0,T ] defines an element

of S̃p(2). We denote its rotation number by

rotτ (y, T ) = rot
(
{Aτ

y,t}t∈[0,T ]

)
∈ R.

As explained by Ruelle [28], see also [14, §3.2], one can use the quasi-
morphism property (1.9) to show that for almost all y ∈ Y , the limit

ρ(y) = lim
T→∞

1
T

rotτ (y, T )

is well defined and independent of τ , and the function ρ is integrable.
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Definition 1.3. If Y is a homology three-sphere and λ is a contact form on
Y , define the Ruelle invariant

Ru(Y, λ) =
∫

Y

ρ λ ∧ dλ. (1.11)

If X is a nice star-shaped domain in R
4, then the standard Liouville

form

λ0 =
1
2

2∑
i=1

(xi dyi − yi dxi) (1.12)

restricts to a contact form on ∂X.

Definition 1.4. If X is a nice star-shaped domain in R
4, then we define

Ru(X) = Ru (∂X, λ0|∂X) .

We can now state our main conjecture:

Conjecture 1.5. If X is a generic nice star-shaped domain in R
4, then

lim
k→∞

ek(X) = −1
2

Ru(X). (1.13)

Example 1.6. The ball B(a) from Example 1.2 does not satisfy the above
conjecture (hence the word “generic” in the conjecture), since ek(B(a)) does
not converge. However we will see below that Ru(B(a)) = 2a, so it is still
true that (−1/2)Ru(B(a)) is between the lim inf and lim sup of ek(B(a)).
One might conjecture that for any nice star-shaped domain, not necessarily
generic, ek is O(1) and the Ruelle invariant is between the lim inf and the
lim sup.

1.3. Results for toric domains

Given a domain Ω in the nonnegative quadrant of R2, we define an associated
toric domain

XΩ =
{
z ∈ C

2
∣∣ π(|z1|2, |z2|2) ∈ Ω

}
.

The factor of π ensures among other things that

vol(XΩ) = area(Ω). (1.14)

Definition 1.7. A nice toric domain is a toric domain XΩ which is also a nice
star-shaped domain, meaning that ∂XΩ is a smooth hypersurface transverse
to the radial vector field. This implies that ∂Ω consists of the line segment
from (0, 0) to (a, 0) for some a > 0, the line segment from (0, 0) to (0, b) for
some b > 0, and a smooth curve from (0, b) to (a, 0) which is transverse to
the radial vector field on R

2. We denote the numbers a and b by a(Ω) and
b(Ω), and the smooth curve from (0, b) to (a, 0) by ∂+Ω.

Example 1.8. Suppose Ω is the triangle with vertices (0, 0), (a, 0), and (0, b).
Then XΩ is the ellipsoid

E(a, b) =
{

z ∈ C
2

∣∣∣∣ π|z1|2
a

+
π|z2|2

b
≤ 1
}

.

This is a nice toric domain.

Vol. 24 (2022) ECH capacities and the Ruelle invariant
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Definition 1.9. A strictly convex toric domain is a nice toric domain XΩ in
which ∂+Ω is the graph of a function f : [0, a] → [0, b] with f(0) = b,
f ′(0) < 0, f ′′ < 0 everywhere, and f(a) = 0.

A strictly concave toric domain is a nice toric domain XΩ in which ∂+Ω
is the graph of a function f : [0, a] → [0, b] with f(0) = b, f ′′ > 0 everywhere,
and f(a) = 0.

We can now state one of the main results of this paper:

Theorem 1.10. (proved in Sect. 3) Equation (1.13) holds whenever X is a
strictly convex or strictly concave toric domain.2

To clarify what this theorem says, we have:

Proposition 1.11. (proved in Sect. 2) Let XΩ be a nice toric domain such that
∂+Ω has negative slope3 everywhere. Then

Ru(XΩ) = a(Ω) + b(Ω).

Remark 1.12. Equation (1.13) also holds for ellipsoids E(a, b) with a/b irra-
tional, by [12, Lem. 2.2].

It is quite possible that Eq. (1.13) is special to toric domains and that
Conjecture 1.5 is false more generally. Nonetheless, the toric case already
gives an application to symplectic embedding problems:

Corollary 1.13. Let XΩ and XΩ′ be nice toric domains satisfying (1.13), e.g.
strictly convex or strictly concave toric domains, or irrational ellipsoids. Sup-
pose that vol(XΩ) = vol(XΩ′) and that there exists a symplectic embedding
int(XΩ) → XΩ′ . Then

a(Ω) + b(Ω) ≥ a(Ω′) + b(Ω′).

Proof. The interior of XΩ has the same ECH capacities as XΩ; see [19, §4.2].
Thus, by the monotonicity of the ECH capacities (1.2), the definition of the
error term (1.7), and the hypothesis that vol(XΩ) = vol(XΩ′), we have

ek(XΩ) ≤ ek(XΩ′)

for all k. Since XΩ and XΩ′ satisfy (1.13), it follows from Proposition 1.11
that

−(a(Ω) + b(Ω))
2

≤ −(a(Ω′) + b(Ω′))
2

.

�

2It is shown in [33] that Theorem 1.10 generalizes to (not necessarily strictly) convex and
concave toric domains such that ∂+Ω has no edges of rational slope.
3For nice toric domains in R

4, the condition that ∂+Ω has negative slope is equivalent

to dynamical convexity by [16, Prop. 1.8]. In fact, the negative slope hypothesis can be
removed from Proposition 1.11 by a more careful argument [17].
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Remark 1.14. Corollary 1.13 is not vacuous; there are examples of symplectic
embeddings of an open toric domain into another (nonsymplectomorphic)
toric domain of the same volume, including many cases when the domains
are ellipsoids. For example, it is shown in [27] that if a ≥ (17/6)2, then the
interior of the ellipsoid E(1, a) symplectically embeds into a ball4 of the same
volume, namely E(

√
a,

√
a).

Remark 1.15. The examples of nice star-shaped domains X discussed here
seem to have ek(X) negative for all k > 0. However there also exist examples
of nice star-shaped domains X ⊂ R

4 with e1(X) positive. The reason is that
if X is a nice star-shaped domain, then by the definition of ECH capacities,
c1(X) ≥ Amin(X), where Amin(X) denotes the minimum symplectic action
(period) of a Reeb orbit on ∂X. Now define the systolic ratio

sys(X) =
Amin(X)2

2 vol(X)
.

It then follows from (1.7) that

e1(X) ≤ 0 =⇒ sys(X) ≤ 2.

However it is shown in [1] that there exist nice star-shaped domains with
systolic ratio greater than 2 (in fact arbitrarily large), so these must have e1

positive.
On the other hand, in the dynamically convex case, the best known

examples [2] have systolic ratio 2 − ε. A reasonable conjecture would be that
if X is dynamically convex then ek(X) < 0 for all k > 0.

1.4. Outline of the rest of the paper

In Sect. 2 we prove Proposition 1.11, computing the Ruelle invariant of some
toric domains, by direct calculation.

In Sect. 3 we prove the main result, Theorem 1.10. To do so, we use two
formulas for the ECH capacities of concave toric domains proved in [7]: one
in terms of the “weight expansion”, and one in terms of lattice paths. We also
use two similar formulas for the ECH capacities of convex toric domains from
[8]. By carefully estimating using all four of these formulas and combining
the results with Proposition 1.11, we obtain the theorem.

In Sect. 4 we prove Theorem 1.1. The idea is to estimate the ECH
capacities of a region by packing it with cubes in a naive way. The estimates
we get in this case are not as good as in the case of toric domains, because
concave toric domains can be packed “more efficiently” with balls coming
from the weight expansion.

In Sect. 5 we give a heuristic discussion of why we expect Conjecture 1.5
to be true, by comparing the definition of the ECH index to Arnold’s asymp-
totic linking number and relating this to a conjecture by Irie on equidistribu-
tion properties of ECH capacities. While this is far from a proof, we do see
the volume and Ruelle invariant emerge naturally.

4Although Corollary 1.13 is not applicable here because the ball does not satisfy (1.13),
the conclusion of Corollary 1.13 is still true in this example since 1 + a ≥ 2

√
a.
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2. The Ruelle invariant of toric domains

We now prove Proposition 1.11, computing the Ruelle invariant of a nice toric
domain XΩ such that ∂+Ω has everywhere negative slope.

To start, we denote the Euclidean coordinates on the plane in which Ω
lives by μ1 and μ2. Define two functions

α, β : ∂+Ω −→ R

as follows: Given (μ1, μ2) ∈ ∂+Ω, the tangent line to ∂+Ω through (μ1, μ2)
intersects the axes at the points (α(μ1, μ2), 0) and (0, β(μ1, μ2)).

Proposition 1.11 now follows from the two lemmas below:

Lemma 2.1. If XΩ is a nice toric domain such that ∂+Ω has everywhere
negative slope, then

Ru(XΩ) =
∫

∂+Ω

α + β

αβ
(μ1 dμ2 − μ2 dμ1) (2.1)

where ∂+Ω is oriented as a curve from (a(Ω), 0) to (0, b(Ω)).

Lemma 2.2. If γ is a differentiable plane curve from (a, 0) to (0, b) with ev-
erywhere negative slope, where a, b > 0, and if α and β are defined as above,
then ∫

γ

α + β

αβ
(μ1 dμ2 − μ2 dμ1) = a + b.

Proof. Write Y = ∂XΩ ⊂ C
2, and let Y0 denote the set of z ∈ Y such that

z1, z2 �= 0. For z = (z1, z2) ∈ Y0, write μi = π|zi|2, and let θi denote the
argument of zi. In these coordinates, the standard Liouville form (1.12) is
given by

λ0 =
1
2π

(μ1 dθ1 + μ2 dθ2) . (2.2)

We have

TzY = span (∂θ1 , ∂θ2 , α∂μ1 − β∂μ2) .

Thus the contact plane ξz is spanned by the vectors
V = μ2∂θ1 − μ1∂θ2 ,

W = α∂μ1 − β∂μ2 .

The Reeb vector field is then given by

R =
2π (β∂θ1 + α∂θ2)

αβ
. (2.3)

Note here that λ0(R) = 1 because

βμ1 + αμ2 = αβ (2.4)

by the definition of α and β. Equation (2.4) also implies that we have a
symplectic trivialization τ ′ of ξ|Y0 given by

(τ ′)−1 =
(

V,
−2πW

αβ

)
.
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Since R preserves μ1 and μ2, we have [R, V ] = 1, so in the notation
(1.10) we have dφtV = V . This implies that

rotτ ′(y, T ) = 0

for all y ∈ Y0 and T ≥ 0. However we cannot use the trivialization τ ′ to
compute the Ruelle invariant because this trivialization does not extend over
Y \Y0. In particular, if τ is a trivialization of ξ over all of Y , then as one
moves around a circle in Y0 in which either θ1 or θ2 rotates once around S1,
the vector V rotates once around S1 with respect to τ . It follows that on Y0

we have

ρ =
1
2π

R(θ1 + θ2).

By Eq. (2.3), we conclude that

ρ =
α + β

αβ
. (2.5)

Now by Eq. (2.2), we have

λ0 ∧ dλ0 =
1

4π2
(μ1 dμ2 − μ2 dμ1) dθ1 dθ2

on Y0. So by Eqs. (1.11) and (2.5) we have

Ru(XΩ) =
1

4π2

∫
Y0

α + β

αβ
(μ1 dμ2 − μ2 dμ1) dθ1 dθ2.

Integrating out θ1 and θ2 then gives (2.1). �

Proof of Lemma 2.2. Choose an oriented parametrization of the curve γ as
(μ1(t), μ2(t)) for t ∈ [t0, t1]. Then∫

γ

α + β

αβ
(μ1 dμ2 − μ2 dμ1) =

∫ t1

t0

α + β

αβ
Δdt (2.6)

where we use the notation

Δ = μ1μ
′
2 − μ′

1μ2.

By the definition of α and β, we have

α = Δ/μ′
2,

β = −Δ/μ′
1.

The integrand in (2.6) is then

α + β

αβ
Δ = −μ′

1 + μ′
2.

The lemma now follows from the fundamental theorem of calculus. �
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3. Bounds on ECH capacities of toric domains

3.1. The Ruelle invariant and the weight expansion

To relate the Ruelle invariant to ECH capacities, we need to recall the defi-
nition of the “weight expansion” of a concave toric domain following [7].

Definition 3.1. A concave toric domain is a toric domain XΩ such that

Ω = {(μ1, μ2) | 0 ≤ μ1 ≤ a, 0 ≤ μ2 ≤ f(μ1)}
where f : [0, a] → [0, b] is a convex function5 for some a, b > 0 with f(0) = b
and f(a) = 0. Write a(Ω) = a and b(Ω) = b, and denote the graph of f by
∂+Ω.

For c > 0, let Δ(c) denote the triangle in the plane with vertices (0, 0),
(c, 0), and (0, c). Also, define an integral affine transformation to be a map
R

2 → R
2 given by the composition of an element of SL2 Z with a translation.

We say that two sets in R
2 are integral affine equivalent if one is the image

of the other under an integral affine transformation.

Definition 3.2. If XΩ is a concave toric domain, we inductively define a canon-
ical countable set T (Ω) of triangles in R

2 such that:
(i) Each triangle in T (Ω) is integral affine equivalent to Δ(c) for some c.
(ii) Two different triangles in T (Ω) intersect only along their boundaries.
(iii)
⋃

T∈T (Ω) T = Ω.

To start defining T (Ω), let c be the largest real number such that the
triangle Δ(c) ⊂ Ω.

Now ∂+Δ(c) coincides with ∂+Ω on the line segment from (t′, c − t′)
to (t′′, c − t′′) for some t′ ≤ t′′. If t′ > 0, let Ω′ denote the closure of the
component of Ω\Δ(c) with μ1 ≤ t′; otherwise let Ω′ = ∅. If t′′ < c, let Ω′′

denote the closure of the component of Ω\Δ(c) with μ1 ≥ t′′; otherwise let
Ω′′ = ∅.

Let φ′ : R2 → R
2 denote the integral affine transformation defined by

φ′(μ1, μ2) = (μ1, μ1 + μ2 − c).

If Ω′ is nonempty, then Xφ′(Ω′) is a concave toric domain. Likewise, let φ′′

denote the integral affine transformation defined by

φ′′(μ1, μ2) = (μ1 + μ2 − c, μ2).

If Ω′′ is nonempty then Xφ′′(Ω′′) is a concave toric domain.
We now inductively define

T (Ω) = {Δ(c)} ∪
⊔

T∈T (φ′(Ω′))

(φ′)−1(T ) ∪
⊔

T∈T (φ′′(Ω′′))

(φ′′)−1(T ).

Here we interpret the terms involving Ω′ or Ω′′ to be the empty set when Ω′

or Ω′′ are empty.

5This is more general than a strictly concave toric domain as in Definition 1.9. For a strictly

concave toric domain, the function f must furthermore be smooth and strictly convex, and
must satisfy additional conditions near 0 and a to ensure that ∂XΩ is smooth.
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Properties (i) and (ii) above are immediate from the construction. It
also follows from the construction that each triangle in T (Ω) is a subset of
Ω. One can prove the rest of property (iii) by elementary arguments with a
bit more work; or as overkill one can use Eq. (3.1) below and the volume
property of ECH capacities (1.6).

Definition 3.3. If XΩ is a concave toric domain, choose an ordering T (Ω) =
{T1, T2, . . .} where Ti is integral affine equivalent to Δ(ai) and ai ≥ ai+1 for
each i. The (possibly finite) sequence (a1, a2, . . .) is the weight expansion of
XΩ, which we denote by W (Ω).

The significance of the weight expansion is:

Theorem 3.4. [7, Thm. 1.4 and Rmk. 1.6] If XΩ is a concave toric domain
with weight expansion W (Ω) = (a1, . . .), then its ECH capacities are given
by

ck(XΩ) = ck

(⊔
i

B(ai)

)
. (3.1)

Note that by properties (i)–(iii) above, we have

vol(XΩ) = area(Ω) =
1
2

∑
i

a2
i .

It turns out that
∑

i ai is also finite, and can be described explicitly as
follows.

Definition 3.5. Given a line segment L in the plane, define its affine length
�Aff(L) ∈ R as follows. Let v = (a, b) be the vector given by the difference
between the endpoints of L.

• If a/b /∈ Q ∪ {∞}, define �Aff(L) = 0.
• If a/b ∈ Q∪{∞}, let d be the largest real number such that (a/d, b/d) ∈
Z

2, and define �Aff(L) = d.

If γ is an injective continuous path in the plane including line segments L1, . . .,
define its affine length

�Aff(γ) =
∑

i

�Aff(Li).

Lemma 3.6. [26] If XΩ is a concave toric domain with weight expansion
W (Ω) = (a1, . . .), then∑

i

ai = a(Ω) + b(Ω) − �Aff(∂+Ω). (3.2)

Proof. Following the construction in Definition 3.2, we inductively define a
sequence of domains Ωk for k ≥ 1 such that XΩk

is a concave toric domain,
Ωk ⊂ Ωk+1, and

⋃
k Ωk = Ω, as follows. Using the notation of Definition 3.2:

• Ω1 = Δ(c).
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• If k > 1, then

Ωk = Δ(c) ∪ (φ′)−1(φ′(Ω′)k−1) ∪ (φ′′)−1(φ′′(Ω′′)k−1).

Here we omit the terms corresponding to Ω′ or Ω′′ when those domains
are empty.

Observe that XΩk
has a finite weight expansion with at most 2k − 1 terms.

Moreover these are all terms in the weight expansion of XΩ; and if S(Ω) de-
notes the sum of the terms in the weight expansion W (Ω), then limk→∞ S(Ωk)
= S(Ω).

We will prove by induction on k that for every concave toric domain
XΩ, we have

S(Ωk) = a(Ωk) + b(Ωk) − �Aff(∂+Ωk). (3.3)

The lemma then follows by fixing Ω and taking the limit of (3.3) as k → ∞.
If k = 1, then both sides of Eq. (3.3) are equal to c above.
Now suppose that k > 1. For simplicity we assume that both Ω′ and Ω′′

are nonempty; the other cases work similarly. By induction we can assume
that

S(Ω′
k−1) = a(Ω′

k−1) + b(Ω′
k−1) − �Aff(∂+Ω′

k−1),

S(Ω′′
k−1) = a(Ω′′

k−1) + b(Ω′′
k−1) − �Aff(∂+Ω′′

k−1).

By construction we have
S(Ωk) = c + S(Ω′

k−1) + S(Ω′′
k−1),

a(Ωk) = c + a(Ω′′
k−1),

b(Ωk) = c + b(Ω′
k−1).

Combining the above equations, we obtain

S(Ωk) − a(Ωk) − b(Ωk) = −c + a(Ω′
k−1) + b(Ω′′

k−1) − �Aff(∂+Ω′
k−1)

−�Aff(∂+Ω′′
k−1). (3.4)

Now observe that ∂+Ωk consists of the following:
• The curve (φ′)−1(∂+Ω′

k−1) from (0, c+b(Ω′
k−1)) to (a(Ω′

k−1), c−a(Ω′
k−1)).

• The line segment from the latter point to (c − b(Ω′′
k−1), b(Ω

′′
k−1)).

• The curve (φ′′)−1(∂+Ω′′
k−1) from the latter point to (c + a(Ω′′

k−1), 0).

Since affine length is invariant under integral affine transformations, it follows
that

�Aff(∂+Ωk) = �Aff

(
∂+Ω′

k−1

)
+
(
c − a

(
Ω′

k−1

)
− b
(
Ω′′

k−1

))
+ �Aff

(
∂+Ω′′

k−1

)
.

Combining this last equation with (3.4) proves (3.3). �
As a corollary, we obtain a relation between the weight expansion and

the Ruelle invariant in the strictly concave case:

Corollary 3.7. If XΩ is a strictly concave toric domain (or more generally
any concave toric domain such that ∂+Ω does not contain any line segments
of rational slope) with weight expansion W (Ω) = (a1, . . .), then∑

i

ai = a(Ω) + b(Ω). (3.5)
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Proof. This follows from Lemma 3.6 because ∂+Ω contains no line segments
of rational slope, so its affine length is zero. �

3.2. An estimate from the weight expansion

Lemma 3.8. Let (ai)i=1,... be a (possibly finite) sequence of positive real num-
bers with

∑
i ai < ∞. Write X =

∐
i B(ai) and V = vol(X) = 1

2

∑
i a2

i .
Then

lim sup
k→∞

(
ck (X) − 2

√
kV
)

≤ −1
2

∑
i

ai.

Corollary 3.9. If XΩ is a concave toric domain such that ∂+Ω does not con-
tain any line segments of rational slope, then

lim sup
k→∞

ek(XΩ) ≤ −a(Ω) + b(Ω)
2

.

Proof. This follows from Lemma 3.8 by plugging in Eqs. (1.7), (3.1), (1.14),
and (3.5). �

Proof of Lemma 3.8. By Eqs. (1.4) and (1.5), we have

ck(X) = sup

{∑
i

aidi

∣∣∣∣ ∑
i

(d2
i + di) ≤ 2k

}
(3.6)

where the di are nonnegative integers. Now if we put the sequence (ai) in
nonincreasing order, then in the above supremum, we can restrict to the case
where di = 0 for i > k. There are then only finitely many possibilities, so we
can write ‘max’ instead of ‘sup’ in (3.6).

For each k, choose a sequence d(k) = {d(k)i}i=1,... realizing the maxi-
mum in (3.6). In particular, we have∑

i

aid(k)i = ck(X), (3.7)

∑
i

(d(k)2i + d(k)i) ≤ 2k. (3.8)

By (3.8) and the Cauchy-Schwarz inequality, for each k we have∑
i

ai

√
d(k)2i + d(k)i ≤

√
2V

√
2k.

Combining this with (3.7), we have

ck(X) − 2
√

kV ≤ −
∑

i

ai

(√
d(k)2i + d(k)i − d(k)i

)
. (3.9)

To complete the proof, it is enough to show that for fixed i we have

lim
k→∞

d(k)i = ∞, (3.10)

so that

lim
k→∞

(√
d(k)2i + d(k)i − d(k)i

)
=

1
2
.
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To prove (3.10), suppose to the contrary that lim infk→∞ d(k)i < ∞.
Then it follows similarly to (3.9) that

lim inf
k→∞

(
ck(X) − 2

√
k

(
V − 1

2
a2

i

))
≤ 0.

Thus

lim inf
k→∞

ck(X)2

k
≤ 4 vol (X\B(ai)) .

However the argument in [19, Prop. 8.4] shows that X satisfies the volume
property (1.6), which is a contradiction. �

3.3. Lattice point estimates

If Ω is a domain in the nonnegative quadrant of R2, define

Ω̂ = {(μ1, μ2) ∈ R
2 | (|μ1|, |μ2|) ∈ Ω}.

Definition 3.10. A convex toric domain is a toric domain XΩ such that Ω̂ is
compact and convex with nonempty interior. Let a(Ω) and b(Ω) denote the
intersections of ∂Ω̂ with the positive μ1-axis and positive μ2-axis, and let
∂+Ω denote the closure of the part of ∂Ω not on the axes; this is a path from
(0, b(Ω)) to (a(Ω), 0).

We now prove the following estimate, which is similar to Corollary 3.9
but proved by different methods:

Lemma 3.11. Let XΩ be a convex toric domain such that ∂+Ω is the graph
of a strictly concave C2 function.6 Then

lim sup
k→∞

ek(XΩ) ≤ −a(Ω) + b(Ω)
2

.

To prove this lemma, we need to recall some material from [21]. Let Ω
be a domain as in Definition 3.10. If v is a vector in R

2, define

‖v‖∗
Ω = max

{
〈v, w〉 | w ∈ Ω̂

}
.

Note that ‖ · ‖∗
Ω is a norm; it is the dual of the norm with unit ball Ω̂. If

γ : [α, β] → R
2 is a continuous, piecewise differentiable parametrized curve,

define its Ω-length by

�Ω(γ) =
∫ β

α

‖Jγ′(t)‖∗
Ωdt (3.11)

where J =
(

0 −1
1 0

)
. The Wulff isoperimetric inequality [5,34] implies that if

γ is the boundary of a compact region R, then

�Ω(γ)2 ≥ 4Area(Ω̂)Area(R), (3.12)

6This is slightly more general than a “strictly convex toric domain”, because ∂XΩ might
not be smooth.
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with equality if and only if R is a scaling and translation of Ω̂. Below we just
need to know that equality holds in (3.12) when R is a scaling of Ω̂, which
follows by direct calculation.

Definition 3.12. A convex integral path is a polygonal path Λ in the nonneg-
ative quadrant from the point (0, b) to the point (a, 0), for some nonnegative
integers a and b, with vertices at lattice points, such that if R denotes the
region bounded by Λ and the line segments from (0, 0) to (a, 0) and from
(0, 0) to (0, b), then R̂ is convex. Define L(Λ) to be the number of lattice
points in R, including lattice points on the boundary.

We now have the following theorem,7 proved in [21, Prop. 5.6], as a
special case of [8, Cor. A.5]:

Theorem 3.13. Let XΩ be a convex toric domain. Then

ck(X) = min{�Ω(Λ) | L(Λ) ≥ k + 1}. (3.13)

Here the minimum is over convex integral paths Λ.

Proof of Lemma 3.11. Given a positive integer k, let r be the smallest real
number such that the scaling rΩ contains at least k + 1 lattice points. The
boundary of the convex hull of rΩ ∩Z

2 consists of a segment on the μ1-axis,
a segment on the μ2-axis, and a convex integral path Λ with L(Λ) ≥ k + 1.
Thus by Theorem 3.13, we have

ck(XΩ) ≤ �Ω(Λ). (3.14)

Next observe that

�Ω(Λ) ≤ �Ω(∂+(rΩ)). (3.15)

The reason is that Λ can be obtained from ∂+(rΩ) by a finite sequence of
operations, each of which replaces a portion of a curve by a line segment with
the same endpoints. These operations do not increase Ω-length since ‖ · ‖∗

Ω is
a norm.

By the equality case of Wulff’s isoperimetric inequality (3.12), we have

�Ω(∂+(rΩ)) = 2
√

Area(Ω)Area(rΩ).

By (1.14), we can rewrite the above as

�Ω(∂+(rΩ)) = 2
√

vol(XΩ)Area(rΩ). (3.16)

Next, a classical result of van der Korput, see the refinement by Chaix
[6], asserts that if R is a region in the plane with C2 strictly convex boundary,
then ∣∣|R ∩ Z

2| − Area(R)
∣∣ ≤ 10000(1 + M)2/3,

where M denotes the maximum radius of curvature of ∂R. Taking ε > 0 small
and applying this result to R = (r− ε)Ω̂, with the intersections with the axes

7The statement in [21] looks slightly different, writing L(Λ) = k+1 instead of L(Λ) ≥ k+1
in (3.13). However this makes no difference, as any convex integral path Λ with L(Λ) > k+1

can be “shrunk” to a convex integral path with L(Λ) = k +1 without increasing Ω-length;
see the proof of Lemma 3.11 below.
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appropriately smoothed, we find that there is a constant C, depending only
on Ω and not on the positive integer k, such that

Area(rΩ) ≤ k − r

2
(a(Ω) + b(Ω)) + Cr2/3.

In particular, since Area(rΩ) = r2 vol(XΩ), we get

r =

√
k

vol(XΩ)
+ o(

√
k).

Putting this into the previous inequality, we get

Area(rΩ) ≤ k −
(

a(Ω) + b(Ω)
2
√

vol(XΩ)

)
√

k + o(
√

k). (3.17)

Combining (3.14), (3.15), (3.16), and (3.17), we obtain

ck(XΩ) ≤ 2

√√√√vol(XΩ)

(
k −
(

a(Ω) + b(Ω)
2
√

vol(XΩ)

)
√

k + o(
√

k)

)

= 2
√

vol(XΩ)k − a(Ω) + b(Ω)
2

+ o(1).

By Eq. (1.7), the lemma follows. �

We also have a “dual” version of Lemma 3.11 for concave toric domains.

Lemma 3.14. Let XΩ be a concave toric domain (see Definition 3.1) such that
∂+Ω is the graph of a strictly convex C2 function.8 Then

lim inf
k→∞

ek(XΩ) ≥ −a(Ω) + b(Ω)
2

.

Proof. This is proved similarly to Lemma 3.11, but with inequalities going
in the reverse direction.

To start, there is a counterpart of Theorem 3.13, proved in [7, Thm.
1.21], which reads

ck(XΩ) = max{�Ω(Λ) | L(Λ) ≤ k}.

Here Λ is a concave integral path, which is a polygonal path with vertices at
lattice points from (0, b) to (a, 0) with a, b ≥ 0 which is the graph of a convex
function. In this context the Ω-length �Ω(Λ) is defined as in (3.11), but with
the norm ‖ · ‖∗

Ω replaced by the “anti-norm” given by

[v] = min{〈v, w〉|w ∈ ∂+Ω}.

Finally, L(Λ) now denotes the number of lattice points in the region enclosed
by Λ and the axes, this time not including lattice points on Λ.

Given a positive integer k, let r be the supremum of the set of real
numbers such that the scaling rΩ contains at most k lattice points. The
boundary of the convex hull of the set of lattice points in the nonnegative

8Again, this is a bit more general than a “strictly concave toric domain”.
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quadrant but not in (r − ε)Ω then consists of rays along the axes, together
with a concave integral path Λ satisfying L(Λ) ≤ k. Thus

ck(XΩ) ≥ �Ω(Λ).

The rest of the proof now parallels the proof of Lemma 3.11. �

3.4. Completing the proof of the main theorem

Proof of Theorem 1.10. Let XΩ be a strictly convex or strictly concave toric
domain. By Proposition 1.11, what we need to show is that

lim
k→∞

ek(XΩ) = −a(Ω) + b(Ω)
2

. (3.18)

In the strictly concave case, this follows from Corollary 3.9 and Lemma 3.14.
In the strictly convex case, by Lemma 3.11, we just need to show that

lim inf
k→∞

ek(XΩ) ≥ −a(Ω) + b(Ω)
2

. (3.19)

To do so, recall the notation Δ(c) from Sect. 3.1, and let c be the smallest
positive real number such that Ω ⊂ Δ(c). Then ∂+Ω intersects ∂+Δ(c) in a
unique point (t, c − t). Suppose that 0 < t < c. (The cases where t = 0 or
t = c are simpler and will be omitted.)

Let Ω′ denote the closure of the component of Δ(c)\Ω with μ1 < t, and
let Ω′′ denote the closure of the component of Δ(c)\Ω with μ1 > t. Define
integral affine transformations φ′, φ′′ : R2 → R

2 by

φ′(μ1, μ2) = (c − μ1 − μ2, μ1),

φ′′(μ1, μ2) = (μ2, c − μ1 − μ2).

Then X ′ = Xφ′(Ω′) and X ′′ = Xφ′′(Ω′′) are concave toric domains satisfying
the hypotheses of Corollary 3.9 and Lemma 3.14, so that they satisfy (3.18).
Observe also that

a(φ′(Ω′)) = c − b(Ω),

b(φ′(Ω′)) = t,

a(φ′′(Ω′′)) = c − t,

b(φ′′(Ω′′)) = c − a(Ω).

By [8, Thm. A.1], we have

ck(XΩ) = inf
k′,k′′≥0

(ck+k′+k′′(B(c)) − ck′(X ′) − ck′′(X ′′)) . (3.20)

By (3.18) for X ′ and X ′′ we get, as functions of k′ and k′′,

ck′(X ′) = 2
√

k′ · vol(X ′) +
b(Ω) − c − t

2
+ o(1),

ck′′(X ′′) = 2
√

k′′ · vol(X ′′) +
a(Ω) − 2c + t

2
+ o(1).

(3.21)

By (1.8), we have

ck+k′+k′′(B(c)) ≥ 2
√

(k + k′ + k′′) vol(B(c)) − 3c

2
+ o(1). (3.22)
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Now since vol(B(c)) = vol(XΩ) + vol(X ′) + vol(X ′′), by the Cauchy-
Schwarz inequality (for three-component vectors) we have√

(k + k′ + k′′) vol(B(c)) ≥
√

k vol(XΩ) +
√

k′ vol(X ′) +
√

k′′ vol(X ′′).
(3.23)

Combining (3.20), (3.21), (3.22), and (3.23), we obtain

ek(XΩ) ≥ −3c

2
+

−b(Ω) + c + t

2
+

−a(Ω) + 2c − t

2
+ o(1)

= −a(Ω) + b(Ω)
2

+ o(1).

(Note that while the o(1) terms in (3.21) are as functions of k′ and k′′, we do
get o(1) terms as functions of k above, since when k is large, we must also
have k′ and k′′ large when close to the infimum in (3.20), as in the proof of
Lemma 3.8.) This proves (3.19) for our strictly convex toric domain XΩ and
thus completes the proof of the theorem. �

4. Improving the exponent in the general case

In this section we prove Theorem 1.1, estimating ek(X) for a general compact
domain X ⊂ R

4 with smooth boundary.
To prepare for this, if a, b > 0, define the polydisk

P (a, b) =
{
z ∈ C

2
∣∣ π|z1|2 ≤ a2, π|z2|2 ≤ b2

}
.

It was shown in [19] (and also follows directly from the more general Theo-
rem 3.13) that the ECH capacities of a polydisk are given by

ck(P (a, b)) = min
{
am + bm

∣∣ (m + 1)(n + 1) ≥ k + 1
}

(4.1)

where m,n are nonnegative integers. We now need two simple estimates.

Lemma 4.1. ek(P (a, a)) ≥ −2a for all k.

Proof. For each nonnegative integer k, there is a unique nonnegative integer
d such that

d2 ≤ k ≤ d2 + 2d.

It follows from (4.1) that

ck(P (a, a)) =
{

(2d − 1)a, d2 ≤ k ≤ d2 + d,
2da, d2 + d < k ≤ d2 + 2d.

(4.2)

On the other hand, vol(P (a, a)) = a2, so

ek(P (a, a)) = ck(P (a, a)) − 2a
√

k. (4.3)

In the first line of (4.2) we have
√

k < d+1/2, and in the second line of (4.2)
we have

√
k < d + 1. The lemma then follows from (4.2) and (4.3). �
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Lemma 4.2. Let X be a bounded domain in R
4, and suppose there are disjoint

open subsets P1, P2, . . . ⊂ X such that Pi is symplectomorphic to int(P (ai, ai)).
Let k be a positive integer. Let

Ik =
{
i | a2

i ≥ vol(X)/k
}

and write

Vk =
∑
i∈Ik

a2
i = vol

(⋃
i∈Ik

Pi

)
.

Then

ek(X) ≥ −2
√

2
∑
i∈Ik

ai + 2
(Vk − vol(X))√

vol(X)

√
k. (4.4)

Proof. For each i define a positive real number

k̂i =
a2

i

vol(X)
k,

and define a nonnegative integer

ki =
⌊
k̂i

⌋
.

Note that ki > 0 if and only if i ∈ Ik.
By the disjoint union property of ECH capacities (1.4) and the definition

of the error term (1.7), we have

ck(X) ≥
∑

i

cki
(P (ai, ai))

=
∑
i∈Ik

(
2ai

√
ki + ek(P (ai, ai))

)

= 2
∑
i∈Ik

ai

√
k̂i +

∑
i∈Ik

(
2ai

(√
ki −
√

k̂i

)
+ ek(P (ai, ai))

)
.

By the definition of k̂i, we have∑
i∈Ik

ai

√
k̂i =

Vk√
vol(X)

√
k.

And for each i ∈ Ik, by Lemma 4.1 and the fact that ki ≥ 1, we have

2ai

(√
ki −
√

k̂i

)
+ ek(P (ai, ai) ≥ −2

√
2ai.

Combining the above three lines gives

ck(X) ≥ −2
√

2
∑
i∈Ik

ai +
2Vk√
vol(X)

√
k.

The lemma now follows from the definition of the error term (1.7). �
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Proof of Theorem 1.1. We first prove the inequality

ek(X) ≥ −Ck1/4. (4.5)

Here and below, C denotes a positive constant which depends only on X, but
which may change from one line to the next.

To do so, we inductively define a sequence P1, P2, . . . as in (4.4) as
follows. Step 1 is to add all open cubes whose vertices are consecutive points
on the half-integer lattice 1

2Z
4 that are contained in X. For n > 1, Step n

is to add all open cubes whose vertices are consecutive points in the scaled
lattice 2−n

Z
4 that are contained in X but not contained in any of the cubes

added in the first n−1 steps. Each cube added in Step n is symplectomorphic
to the open polydisk int(P (4−n, 4−n)).

Let Xn denote the closure of the union of all cubes added in Steps 1 to
n. Then we have

vol(X\Xn) ≤ C · 2−n. (4.6)

The reason is that by construction, any point in X\Xn is within distance
21−n of ∂X. And since ∂X is assumed smooth, it follows that the volume of
the set of points within distance d of ∂X is at most C · d when d is small.

Let mn denote the number of cubes obtained in Step n. Since these
cubes are disjoint and each have volume 16−n, it follows from (4.6) that

mn ≤ C · 8n. (4.7)

Now suppose that

16n ≤ k

vol(X)
< 16n+1. (4.8)

Then in the notation of Lemma 4.2, the set Ik consists of the indices of the
cubes added in the first n steps. By (4.7), we have∑

i∈Ik

ai ≤ C · 2n.

And by (4.6), we have

Vk − vol(X)√
vol(X)

≥ −C · 2−n.

Putting the above three lines into (4.4) gives

ek(X) ≥ −C · 2n.

By (4.8), we obtain (4.5).
To complete the proof of the theorem, we need to prove the reverse

inequality

ek(X) ≤ C · k1/4.

To do so, we choose a large cube W containing X, divide the complement
W\X into cubes as above, and use a similar argument. (Compare [19, Prop.
8.6].) �
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5. Heuristics for the conjecture

We now review some facts from embedded contact homology, and then use
these to give a heuristic discussion of why we expect Conjecture 1.5 to be
true.

5.1. Facts

We first briefly review some notions from embedded contact homology. Let
Y be a homology 3-sphere, and let λ be a nondegenerate contact form on Y .

Definition 5.1. An ECH generator is a finite set of pairs α = {(αi,mi)}
where:

• The αi are distinct simple Reeb orbits.
• The mi are positive integers.
• If αi is hyperbolic (meaning that the linearized return map of the Reeb

flow along αi has real eigenvalues) then mi = 1.

Define the symplectic action of α to be the real number

A(α) =
∑

i

miA(αi).

Here A(αi) denotes the symplectic action, or period, of the Reeb orbit αi.
Let τ be a trivialization of the contact structure ξ; this trivialization

exists and is unique up to homotopy by our assumption that Y is a homology
sphere. If γ is a Reeb orbit, define its rotation number

θ(γ) = rotτ (y,A(γ)) = A(γ)ρ(y).

where y is a point on the image of γ.

Definition 5.2. If α = {(αi,mi)} is an ECH generator, define9 its ECH index
to be the integer

I(α) =
∑

i

m2
i sl(αi) +

∑
i�=j

mimj�(αi, αj) +
∑

i

mi∑
k=1

(�kθ(αi)� + �kθ(αi)�) .

(5.1)

Here �(αi, αj) denotes the linking number of αi and αj ; and sl(αi) denotes
the self-linking number of the transverse knot αi, which is the linking number
of αi with a pushoff in the direction τ , see [15, §3.5.2].

If (Y, ξ) is diffeomorphic to S3 with the tight contact structure, then one
can define the ECH spectrum of (Y, λ), which is a sequence of real numbers
ck(Y, λ) indexed by nonnegative integers k. The relevance for our discussion
is that if X is a nice star-shaped domain in R

4, then its ECH capacities are
defined by

ck(X) = ck(∂X, λ0|∂X).

9This is a special case of the general definition of the ECH index in [20, Def. 3.5]. The

relative first Chern class term there is not present here because we are using a global

trivialization τ .
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And the key fact we need to know is that

ck(Y, λ) = A(α), (5.2)

where α is a certain ECH generator with ECH index

I(α) = 2k,

selected by a “min-max” procedure using the ECH chain complex.
We now want to look at the index formula (5.1) more closely. To prepare

for this we need a bit more background. Choose an auxiliary metric on Y .
If y ∈ Y and T > 0, we can form a loop ηy,T by starting with the path
given by the time t Reeb flow from y to φT (y), and then appending a length-
minimizing geodesic from φT (y) back to y. (If this geodesic is not unique, pick
one arbitrarily.) If y1, y2 are distinct, define the asymptotic linking number
by

f(y1, y2) = lim
T1,T2→∞

1
T1T2

�(ηy1,T1 , ηy2,T2),

when this limit exists. Here of course �(ηy1,T1 , ηy2,T2) is defined only when the
loops ηy1,T1 and ηy2,T2 are disjoint. By a result of Arnold [3] and Vogel [30]
(which applies to more general volume-preserving vector fields), the function
f is defined almost everywhere on Y × Y and integrable, and∫

Y ×Y

f = vol(Y, λ). (5.3)

Here we are integrating with respect to the measure on Y × Y given by
the product of the contact volume forms λ ∧ dλ, and we define vol(Y, λ) =∫

Y
λ ∧ dλ.

For example, if y1 and y2 are on distinct simple Reeb orbits γ1 and γ2,
then it follows from the definition that

f(y1, y2) =
1

A(γ1)A(γ2)
�(γ1, γ2).

If y1 and y2 are on the same simple Reeb orbit γ, then f(y1, y2) is not defined;
however it is natural to extend the definition in this case to set

f(y1, y2) =
1

A(γ)2
(sl(γ) + θ(γ)) .

Using the above formulas, we can rewrite the index formula (5.1) as

I(α) =
∑
i,j

mimjAiAjfi,j −
∑

i

m2
i Aiρi +

∑
i

mi∑
k=1

(�kAiρi� + �kAiρi�) .

(5.4)

Here we write Ai = A(αi); we let fi,j denote f(yi, yj) for yi in the image of
αi and yj in the image of αj ; and ρi denotes ρ(y) for y in the image of αi.
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5.2. A new definition

Definition 5.3. If α = {(αi,mi)} is an ECH generator, then using the nota-
tion of (5.4), define its approximate ECH index to be the real number

Iapprox(α) =
∑
i,j

mimjAiAjfi,j +
∑

i

miAiρi. (5.5)

We can bound the error in this approximation as follows:

Lemma 5.4. |Iaprox(α) − I(α)| ≤
∑

i mi.

Proof. It follows from (5.4) and (5.5) that

Iapprox(α) − I(α) =
∑

i

mi∑
k=1

(2kAiρi − �kAiρi� − �kAiρi�) .

The lemma then follows since∣∣2x − �x� − �x�
∣∣ < 1

for every real number x. �

We can now suggestively rewrite (5.5) as

Iapprox(α) =
∫

α×α

f +
∫

α

ρ (5.6)

where the integral is with respect to the measure given by the Reeb vector
field, multiplied by mi on each orbit αi.

5.3. Heuristics

A conjecture of Irie [24], of which a version has been verified for convex and
concave toric domains, asserts that if λ is generic, then ECH generators α
realizing ck(Y, λ) as in (5.2) are equidistributed in Y as k → ∞. This means
that if U ⊂ Y is an open set, then the symplectic action of α ∩ U divided by
the symplectic action of α converges to vol(U)/ vol(Y ). If we assume a very
favorable version of this equidistribution, then by Lemma 5.4 and Eq. (5.6)
we can approximate

2k = I(α) ≈ Iapprox(α) ≈ A(α)2

vol(Y, λ)2

∫
Y ×Y

f +
A(α)

vol(Y, λ)

∫
Y

ρ.

Here we are not discussing the size of the error in the approximation since
this is just a heuristic. Comparing with (1.11) and (5.3), we obtain

2k · vol(Y, λ) ≈ A(α)2 + A(α)Ru(Y, λ).

Since A(α) = ck(Y, λ), we then get

ck(Y, λ) ≈
√

2k · vol(Y, λ) − 1
2

Ru(Y, λ).

When X is a nice star-shaped domain, we have vol(∂X, λ0|∂X) = 2 vol(X)
by Stokes’s theorem, so we obtain

ck(X) ≈ 2
√

k · vol(X) − 1
2

Ru(X).
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Bourbaki, nov 2019. Astérisque 430 (2021)
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Capacities of billiard tables and
S1-equivariant loop space homology

Kei Irie

Abstract. We introduce a sequence of “capacities” of Riemannian man-
ifolds (with corners). These capacities are defined as min–max values
associated with a variational problem concerning periodic billiard trajec-
tories. After establishing basic properties of these capacities, we discuss
a conjectural relation between our notion of capacities and symplectic
capacities defined from S1-equivariant symplectic homology. Then we
compute capacities of rectangles, and check that the result is consistent
with known results (by Gutt–Hutchings and Ramos–Sepe) in symplectic
geometry.

Mathematics Subject Classification. 70H12, 37C83, 53D35.

1. Introduction

In [11], the author introduced the notion of “capacity” of compact Riemann-
ian manifolds with boundaries. This capacity is defined as a min–max value
associated with a variational problem concerning periodic billiard trajecto-
ries. The author conjectures that the capacity of any compact Riemannian
manifold (with boundary) is equal to symplectic capacity (which is defined
from symplectic homology) of its unit disk cotangent bundle, and confirmed
this conjecture for domains in Euclidean spaces ( [10]).

The aim of this paper is to introduce a sequence of capacities of Rie-
mannian manifolds (with corners), using a natural S1-symmetry of free loop
spaces. Our definition of these capacities is inspired by the definition of (equi-
variant) Ekeland–Hofer capacities ( [4]) and their analogue in Floer theory (
[16], [9]).

This paper is organized as follows. In Sect. 2, we define capacities of
Riemannian manifolds with corners. In Sect. 3, we establish basic properties
of these capacities. In particular, we show that for any compact Riemann-
ian manifold M with ∂M �= ∅, each capacity of M is equal to the length

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder, and Felix Schlenk.
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of a periodic billiard trajectory on M . In Sect. 4, we discuss a conjectural
relation between our notion of capacities and symplectic capacities defined
from equivariant symplectic homology. In Sect. 5, we compute capacities of
rectangles, and check that the result is consistent with known results ( [9],
[14]) in symplectic geometry. In Sect. 6, we briefly discuss a few questions.

Convention. In this paper, we consider only (co)homology with coeffi-
cients in Q, unless otherwise specified.

2. Definition of capacities

The aim of this section is to define capacities c and (cS1

k )k≥0.
We first recall the definition of S1-equivariant homology. Let

S1 → ES1 → BS1 ∼= CP∞

be the universal S1-bundle. For any topological pair (X,Y ) which admits a
continuous S1-action, we define

HS1

∗ (X,Y ) := H∗((X,Y ) ×S1 ES1).

If the S1-action is trivial, there exists a canonical isomorphism

HS1

∗ (X,Y ) ∼= H∗(X,Y ) ⊗ H∗(CP∞).

Let us define e ∈ H2(CP∞) by 〈e, [CP 1]〉 = −1. For any (X,Y ) as
above, there exists a canonical long exact sequence

· · · �� H∗(X, Y ) �� HS1

∗ (X, Y )
−∩e

�� HS1

∗−2(X, Y ) �� H∗−1(X, Y ) �� · · · .

(1)

Remark 2.1. By (1), one can easily check the following: for any integer k ≥ 0,
if HS1

k (X,Y ) �= 0 then H≤k(X,Y ) :=
⊕

0≤i≤k Hi(X,Y ) �= 0.

Let M be an oriented n-dimensional Riemannian manifold such that
∂M = ∅. For any p ∈ M , Hn(M,M \ {p}) ∼= Q has a canonical generator,
which we denote by μp. We define Ĥ∗(M) := lim←−K⊂M

H∗(M,M \ K) where
K runs over all compact subsets of M . There exists a unique element μM ∈
Ĥn(M) such that the natural map Ĥn(M) → Hn(M,M \ {p}) sends μM to
μp for any p ∈ M . For any compact set K ⊂ M , we define μM,K ∈ Hn(M,K)
to be the image of μM by the natural map Ĥn(M) → Hn(M,M \ K).

Let ΩM denote the space of L1,2-free loops on M . Namely, ΩM consists
of absolutely continuous maps γ : S1 → M such that γ′ is square-integrable.
ΩM is equipped with the natural L1,2-topology. Moreover, it has a struc-
ture of a smooth Hilbert manifold. ΩM admits a natural S1-action, which is
defined as follows:

S1 × ΩM → ΩM ; (t, γ) → γt, γt(θ) := γ(θ − t).

Let us introduce some notations.
• The energy functional E : ΩM → R is defined by E(γ) :=

∫
S1

|γ′|2
2 (∀γ ∈

ΩM).
• For any a > 0, let ΩaM := {γ ∈ ΩM | E(γ) < a}.
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• The length functional len : ΩM → R is defined by len(γ) :=
∫

S1 |γ′|(∀γ ∈
ΩM).

• For any compact set K ⊂ M , let ΩKM := {γ ∈ ΩM | γ(S1) �⊂ K}.
• For any p ∈ M , let cp denote the constant loop at p, i.e. cp(θ) :=

p (∀θ ∈ S1).

For any a > 0 and K ⊂ M , let us consider the map

iaK : (M,M \ K) → (ΩaM ∪ ΩKM,ΩKM); p → cp.

Note that if H∗(iaK)(μM,K) = 0 then H∗(ia
′

K)(μM,K) = 0 for any a′ ≥ a, since
ia

′
K factors iaK . Now let us define

c(M,K) := inf{
√

2a | H∗(iaK)(μM,K) = 0}.

Let us consider the trivial S1-action on M . Then the map iaK is S1-
equivariant, and there exists an isomorphism HS1

∗ (M,M \ K) ∼= H∗(M,M \
K) ⊗ H∗(CP∞). For any k ∈ Z≥0, let us define

cS1

k (M,K) :=

{
inf{√2a | HS1

∗ (iaK)(μM,K ⊗ [CP k−1]) = 0} (k ≥ 1),
0 (k = 0).

Remark 2.2. For any a and K as above, let

Ωa
KM := ΩaM ∩ ΩKM, ja

K : (M,M \ K) → (Ωa
M ,Ωa

KM); p → cp.

The inclusion map (ΩaM,Ωa
KM) → (ΩaM∪ΩKM,ΩKM) induces an isomor-

phism on (S1-equivariant) homology since {ΩaM,ΩKM} is an open covering
of ΩaM ∪ ΩKM . Thus, in the above definitions of c(M,K) and cS1

k (M,K),
one may replace iaK with ja

K .

Let K and K ′ be compact subsets of M such that K ⊂ K ′. Consider
the following commutative diagram (the right vertical map is an inclusion):

(M,M \ K ′)
ia
K′ ��

idM

��

(ΩaM ∪ ΩK′M,ΩK′M)

��
(M,M \ K)

ia
K

�� (ΩaM ∪ ΩKM,ΩKM).

The left vertical map induces a map on homology H∗(M,M \ K ′) → H∗(M,
M \ K), which sends μM,K′ to μM,K . Hence, we obtain

K ⊂ K ′ =⇒ c(M,K) ≤ c(M,K ′), cS1

k (M,K) ≤ cS1

k (M,K ′) (∀k ≥ 0).

Let us define capacities c and (cS1

k )k≥0 by

c(M) := sup
K

c(M,K), cS1

k (M) := sup
K

ck(M,K) (∀k ≥ 0),

where K runs over all compact subsets of M .
So far we have assumed that ∂M = ∅. When M is an oriented Riemann-

ian manifold with corners, we define

c(M) := c(int M), cS1

k (M) := cS1

k (int M) (∀k ≥ 0),

where int M denotes the interior of M .

Reprinted from the journal 749



K. Irie JFPTA

Remark 2.3. By ‘n-dimensional manifold with corners’, we mean a Hausdorff
and second-countable topological space which is locally modeled on open sets
of (R≥0)n, such that all coordinate changes are C∞.

Now we have finished the definition of capacities c and (cS1

k )k≥0. Let us
conclude this section with the following remarks.

Remark 2.4. Let M be an orientable manifold with corners. It is easy to
check that c(M) and cS1

k (M) (k ≥ 0) do not depend on choice of orientations
on M . Thus, one can define these capacities for orientable manifolds.

Remark 2.5. Let M be an orientable manifold, and let (Mi)i∈I be the set of
connected components of M . Then, it is easy to check that

c(M) = sup
i∈I

c(Mi), cS1

k (M) = sup
i∈I

cS1

k (Mi) (∀k ≥ 0).

Remark 2.6. The capacity c was already introduced in [11]. For any compact
and connected Riemannian manifold Q with ∂Q �= ∅, the capacity c(Q) de-
fined in this section is equal to cΩ(Q : [Q, ∂Q]) defined in [11] pp. 243. On
the other hand, it seems that the capacities (cS1

k )k have not appeared in the
literature.

Remark 2.7. Although we work with Q-coefficients (see our convention), it
is straightforward to define the capacities c and (cS1

k )k≥0 with an arbitrary
coefficient ring. The author is not aware if the capacities depend on the choice
of coefficient rings.

3. Properties of capacities

In this section, we state and prove some basic properties of the capacities c

and (cS1

k )k≥0. These properties are analogous to the corresponding properties
of symplectic capacities defined by symplectic homology.

3.1. Conformality and monotonicity

In this subsection, we state and prove the conformality (Lemma 3.1) and
monotonicity (Proposition 3.3) properties. These properties imply that our
capacities reflect “sizes” of Riemannian manifolds.

Lemma 3.1. Let M be an orientable manifold with corners, equipped with a
Riemannian metric g. Then, for any α ∈ R>0, there holds

c(M,αg) = α · c(M, g), cS1

k (M,αg) = αcS1

k (M, g) (∀k ≥ 0).

Proof. Let Eg (resp. Eαg) denote the energy functional with respect to the
metric g (resp. αg). Then Eαg(γ) = α2 · Eg(γ) for any γ ∈ ΩM . Then,
this lemma follows from the definition of the capacities. This lemma also
immediately follows from Proposition 3.3 (i) and (ii). �

To state the monotonicity property, we first need the following defini-
tion.
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Definition 3.2. Let M0 and M1 be oriented and connected manifolds with
∂M0 = ∂M1 = ∅ and dimM0 = dim M1, and let f : M0 → M1 be a proper
continuous map. Then, for any compact set K ⊂ M1, f−1(K) ⊂ M0 is also
compact. Thus one can define a natural map Ĥ∗(f) : Ĥ∗(M0) → Ĥ∗(M1),
and d ∈ Z by Ĥ∗(f)(μM0) = d ·μM1 . This integer d is called the degree of the
map f , and denoted by deg (f).

Now let us state the monotonicity property. For simplicity, we consider
only connected manifolds without boundaries.

Proposition 3.3. Let (M0, g0) and (M1, g1) be oriented and connected Rie-
mannian manifolds such that ∂M0 = ∂M1 = ∅ and dim M0 = dim M1. Let C
be a positive real number.

(i): If there exists a proper C∞-map f : M0 → M1 such that ‖df(v)‖g1 ≤
C‖v‖g0 (∀v ∈ TM0) and deg (f) �= 0, then

c(M1, g1) ≤ C · c(M0, g0), cS1

k (M1, g1) ≤ C · cS1

k (M0, g0) (∀k ≥ 0).

(ii): If there exists a C∞-embedding f : M0 → M1 such that ‖df(v)‖g1 ≥
C‖v‖g0 (∀v ∈ TM0), then

c(M1, g1) ≥ C · c(M0, g0), cS1

k (M1, g1) ≥ C · cS1

k (M0, g0) (∀k ≥ 0).

Proof of Proposition 3.3. (i): We only prove that c(M1) ≤ C · c(M0), since
the proof of cS1

k (M1) ≤ C ·cS1

k (M0) is similar. Let us define Ωf : ΩM0 → ΩM1

by Ωf(γ) := f ◦ γ. By the assumption, Ωf(ΩaM0) ⊂ ΩCaM1 for any a > 0.
For any compact set K1 ⊂ M1 let K0 := f−1(K1) ⊂ M0, and consider the
following commutative diagram:

H∗(M0,M0 \ K0) ��

H∗(f)

��

H∗(ΩaM0 ∪ ΩK0M0,ΩK0M0)

H∗(Ωf)

��
H∗(M1,M1 \ K1) �� H∗(ΩCaM1 ∪ ΩK1M1,ΩK1M1).

Since μM1,K1 = H∗(f)(μM0,K0 )

deg (f) , we obtain c(M1,K1) ≤ C · c(M0,K0) ≤ C ·
c(M0). Since this holds for any compact subset K1 ⊂ M1, we obtain c(M1) ≤
C · c(M0).
(ii): We only prove that C ·c(M0) ≤ c(M1). Let U := f(M0). Then C ·c(M0) ≤
c(U, g1|U ) by (i). Thus it is sufficient to prove c(U) ≤ c(M1). We can prove
this inequality by c(U) = supK⊂U c(U,K) = supK⊂U c(M,K) ≤ c(M), where
the first equality holds by definition, and the second equality follows from
Lemma 3.4 below. �

Lemma 3.4. Let M be an oriented Riemannian manifold with ∂M = ∅. Let
K be a compact subset of M , and let U be an open neighborhood of K. Then,
there holds c(U,K) = c(M,K) and cS1

k (U,K) = cS1

k (M,K) (∀k ≥ 0).
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Proof. We only prove that c(U,K) = c(M,K). For any a > 0, consider the
following commutative diagram, where vertical maps are induced by inclu-
sions:

H∗(U,U \ K) ��

��

H∗(ΩaU ∪ ΩKU,ΩKU)

��
H∗(M,M \ K) �� H∗(ΩaM ∪ ΩKM,ΩKM).

Then vertical maps are isomorphisms, since {U,M \ K} is an open cover of
M , and {ΩaU ∪ΩKU,ΩKM} is an open cover of ΩaM ∪ΩKM . Since the left
vertical map sends μU,K to μM,K , we obtain c(U,K) = c(M,K). �

We also prove the following lemma as an application of Lemma 3.4,
since it will be useful later.

Lemma 3.5. Let M be a compact Riemannian manifold with corners. Suppose
that M is isometrically embedded into M+, which is an oriented Riemannian
manifold such that dim M+ = dimM and ∂M+ = ∅. Then c(M) = c(M+,M)
and cS1

k (M) = cS1

k (M+,M) (∀k ≥ 0).

Proof. We only prove that c(M) = c(M+,M). By definition, c(M) = c(int M)
= supK c(int M,K) where K runs over all compact subsets of int M . For any
compact subset K ⊂ int M ,

c(int M,K) = c(M+,K) ≤ c(M+,M),

where the equality follows from Lemma 3.4 and the inequality follows from
K ⊂ M . Hence we obtain c(M) ≤ c(M+,M).

Let us prove the opposite inequality c(M+,M) ≤ c(M). For any ε > 0,
there exist a compact subset K ⊂ int M and a diffeomorphism f : M+ → M+

such that M ⊂ f(K) and ‖df(v)‖ ≤ (1 + ε)‖v‖ for any v ∈ TM . Then we
obtain

c(M+,M) ≤ c(M+, f(K)) ≤ (1 + ε)c(M+,K) = (1 + ε)c(int M,K)
≤ (1 + ε)c(M),

where the second inequality follows from (the proof of ) Proposition 3.3 (i).
Since ε is an arbitrary positive number, we obtain c(M+,M) ≤ c(M). �

3.2. Nontriviality

Let us state and prove the following “nontriviality” property.

Proposition 3.6. Let M be an oriented Riemannian manifold with corners.

(i): There holds c(M) > 0 and cS1

k (M) > 0 for any k ≥ 1.
(ii): If M is compact and connected, then c(M) < ∞ if and only if ∂M �= ∅.
(iii): If M is compact, connected and ∂M �= ∅, then cS1

k (M) < ∞ for any
k ≥ 1.

Proof. (i):Let n := dim M , and let

Bn(1) := {x ∈ R
n | |x| < 1}, B̄n(1) := {x ∈ R

n | |x| ≤ 1}.
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In the following arguments, we use abbreviations B := Bn(1) and B̄ :=
B̄n(1).

We first prove that

c(B) = c(Rn, B̄) ≥ 1/2, cS1

k (B) = cS1

k (Rn, B̄) ≥ 1/2 (∀k ≥ 1). (2)

The two equalities follow from Lemma 3.5. By Remark 2.2, to prove the two
inequalities it is sufficient to show that the map

I : (Rn,Rn \ B̄) → (Ωa
R

n,Ωa
B̄R

n); p → cp

is a homotopy equivalence if a < 1/8.
If a < 1/8, then any γ ∈ Ωa

R
n satisfies len(γ) < 1/2. In particular, any

γ ∈ Ωa
B̄

(Rn) satisfies |γ(0)| > 1/2. Then one can define a map

J : (Ωa
R

n,Ωa
B̄R

n) → (Rn,Rn \ B̄); γ → 2γ(0).

Let us show that J is a homotopy inverse of I. A homotopy between J ◦ I
and the identity map on (Rn,Rn \ B̄) is given by

H0 : (Rn,Rn \ B̄) × [0, 1] → (Rn,Rn \ B̄); (x, t) → (1 + t)x.

To define a homotopy between I ◦J and the identity map on (Ωa
R

n,Ωa
B̄
R

n),
notice that if γ ∈ Ωa

B̄
(Rn) then there exists θ ∈ S1 such that |γ(θ)| > 1, and

there holds

|(t + t2)γ(0) + (1 − t2)γ(θ)| = |(t + t2)(γ(0) − γ(θ)) + (1 + t)γ(θ)|
≥(1 + t)|γ(θ)| − (t + t2)|γ(0) − γ(θ)| > (1 + t) − (t + t2)/2 ≥ 1.

Then we can define a desired homotopy

H1 : (Ωa
R

n,Ωa
B̄R

n) × [0, 1] → (Ωa
R

n,Ωa
B̄R

n)

by H1(γ, t)(θ) := (t + t2)γ(0) + (1 − t2)γ(θ). Thus, we have proved that J is
a homotopy inverse of I.

Let us finish the proof of (i). For any n-dimensional Riemannian mani-
fold M , there exist an open embedding ϕ : B → M and a positive real number
C > 0 such that ‖dϕ(v)‖ ≥ C · ‖v‖ for any v ∈ TB. By Proposition 3.3 (ii),
we obtain

c(M) ≥ C · c(B) > 0, cS1

k (M) ≥ C · cS1

k (B) > 0 (∀k ≥ 1).

(ii): ∂M �= ∅ =⇒ c(M) < ∞ follows from [11] Proposition 5.5. When
∂M = ∅, then the map on homology H∗(M) → H∗(ΩM) which is induced
from the map M → ΩM ; p → cp is injective. This means that c(M) = ∞.

(iii) follows from (ii) and the inequality cS1

k (M) ≤ cS1

k−1(M)+c(M) (∀k ≥
1), which we prove in Sect. 3.4. �

3.3. Periodic billiard trajectory

Let us first clarify our definition of periodic billiard trajectories.

Definition 3.7. Let M be a Riemannian manifold with boundary. A periodic
billiard trajectory on M is a nonconstant continuous map γ : S1 → M such
that there exists a finite set Bγ ⊂ S1 satisfying the following conditions.

• ∇γ′γ′ ≡ 0 on S1 \ Bγ .
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• γ(t) ∈ ∂M for any t ∈ Bγ .
• For any t ∈ Bγ , the limits γ′

+(t) := limh→+0 γ′(t + h) and γ′
−(t) :=

limh→+0 γ′(t − h) exist, and satisfy the “law of reflection”:

γ′
+(t) + γ′

−(t) ∈ Tγ(t)∂M, γ′
+(t) − γ′

−(t) ∈ (Tγ(t)∂M)⊥ \ {0}.

Remark 3.8. We allow the case Bγ = ∅. In that case, γ is a closed geodesic.

Now we prove the following result. This is analogous to the fact that
the (equivariant) symplectic homology capacity of a Liouville domain (see
Sect. 4) is equal to the period of a Reeb orbit on its boundary.

Proposition 3.9. Let M be a compact, connected, and orientable Riemannian
manifold with ∂M �= ∅ and dim M = n. There exists a periodic billiard
trajectory γ on M such that len(γ) = c(M) and �Bγ ≤ n + 1. Moreover, for
any integer k ≥ 1, there exists a periodic billiard trajectory γk on M such
that len(γk) = cS1

k (M) and �Bγ ≤ n + 2k − 1.

Proof. The first assertion follows from Lemma 5.4 (ii) of [11], where α in
the statement of that lemma is the relative fundamental class of M . The
proof of the second assertion is very similar to the proof of the first assertion,
nevertheless we explain details in four steps, for the sake of completeness.

Step 1. Let us take an orientable Riemannian manifold M+ such that dimM =
dim M+, ∂M+ = ∅ and M is isometrically embedded into M+. By Lemma 3.5,
cS1

k (M) = cS1

k (M+,M). In the following, we denote C := (cS1

k (M))2/2.

Step 2. By the the definition of cS1

k , for any real numbers A− and A+ satis-
fying A− < C < A+, there holds

HS1

n+2k−1(Ω
A+M+ ∪ ΩMM+,ΩA−M+ ∪ ΩMM+) �= 0.

By Remark 2.1,

H≤n+2k−1(ΩA+M+ ∪ ΩMM+,ΩA−M+ ∪ ΩMM+) �= 0.

Step 3. Let dM denote the natural distance function on the Riemannian
manifold M . For any δ > 0, let M(δ) := {x ∈ M | dM (x, ∂M) ≥ δ}. We
prove that, for any ε > 0, there exist A− and A+ satisfying A− ∈ (C − ε, C),
A+ ∈ (C,C + ε) and

lim←−
δ→0

H≤n+2k−1(ΩA+M ∪ ΩM(δ)M,ΩA−M ∪ ΩM(δ)M) �= 0. (3)

We first take A′
− ∈ (C − ε, C) and A′

+ ∈ (C,C + ε) arbitrarily. By Step
2, there holds

H≤n+2k−1(ΩA′
+M+ ∪ ΩMM+,ΩA′

−M+ ∪ ΩMM+) �= 0.

There exist A− ∈ (C − ε,A′
−) and A+ ∈ (C,A′

+) such that the map

H≤n+2k−1(ΩA+M+ ∪ ΩMM+,ΩA−M+ ∪ ΩMM+)

→ H≤n+2k−1(ΩA′
+M+ ∪ ΩMM+,ΩA′

−M+ ∪ ΩMM+) (4)
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is nonzero. When δ is sufficiently close to 0, there exists an isotopy (ft)t∈[0,1]

on M+ which satisfies the following properties:

• f0 = idM+ ,
• M ⊂ f1(M(δ)),
• M ⊂ ft(M) for any t ∈ [0, 1],
• ‖dft(v)‖ ≤ ‖v‖ · min

{√
A′−/A−,

√
A′

+/A+

}
for any t ∈ [0, 1] and v ∈

TM+.

By the last property,

γ ∈ ΩA−(M+) =⇒ f ◦ γ ∈ ΩA′
−(M+),

γ ∈ ΩA+(M+) =⇒ f ◦ γ ∈ ΩA′
+(M+).

Then (4) factors the map

H≤n+2k−1(ΩA+M+ ∪ ΩMM+,ΩA−M+ ∪ ΩMM+)

→ H≤n+2k−1(ΩA+M+ ∪ ΩM(δ)M+,ΩA−M+ ∪ ΩM(δ)M+), (5)

in particular (5) is nonzero. Hence, we obtain

lim←−
δ→0

H≤n+2k−1(ΩA+M+ ∪ ΩM(δ)M+,ΩA−M+ ∪ ΩM(δ)M+) �= 0. (6)

Now (3) follows from (6) and the following isomorphisms which hold for
any δ > 0:

H∗(ΩA+M+ ∪ ΩM(δ)M+,ΩA−M+ ∪ ΩM(δ)M+)
∼= H∗(ΩA+ int M ∪ ΩM(δ)intM,ΩA− int M ∪ ΩM(δ)intM)
∼= H∗(ΩA+M ∪ ΩM(δ)M,ΩA−M ∪ ΩM(δ)M).

The first isomorphism holds since {ΩA−M+ ∪ ΩM(δ)M+,ΩA+ int M ∪ ΩM(δ)

intM} is an open covering of ΩA+M+ ∪ ΩM(δ)M+. The second isomorphism
holds since

H∗(ΩcM ∪ ΩM(δ)M,Ωc intM ∪ ΩM(δ)int M) = 0 (7)

for any c, δ > 0. The proof of (7) is parallel to the proof of Lemma 4.1 in [11],
which is an analogue of (7) for the free path space.

Step 4. Theorem 1.2 (ii) of [11] claims the following:

Let 0 < a < b. If lim←−δ→0
Hj(ΩbM ∪ΩM(δ)M,ΩaM ∪ΩM(δ)M) �= 0,

then there exists a periodic billiard trajectory γ on M such that
�Bγ ≤ j and len(γ) ∈ [

√
2a,

√
2b].

By this claim and Step 3, for any ε > 0 there exists a periodic billiard trajec-
tory γε on M such that �Bγε

≤ n+2k−1 and len(γε)∈[
√

2(C−ε),
√

2(C+ε)].
Then there exists a sequence (εj)j such that limj→∞ εj = 0 and (γεj

)j con-
verges to a periodic billiard trajectory γ. Then γ satisfies �Bγ ≤ n + 2k − 1
and len(γ) =

√
2C = cS1

k (M). This completes the proof. �
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3.4. Growth of cS
1

k

The next property is similar to the corresponding property for (equivariant)
symplectic homology capacities ( [8] Proposition 3.7). The following proof is
also very similar to the proof of [8] Proposition 3.7.

Proposition 3.10. Let M be any oriented Riemannian manifold. For any in-
teger k ≥ 1, there holds cS1

k−1(M) ≤ cS1

k (M) ≤ cS1

k−1(M) + c(M).

Corollary 3.11. If c(M) < ∞, then supk≥1
cS1

k (M)
k < ∞.

The next lemma is an analogue of Proposition 3.5 in [8].

Lemma 3.12. Let M be any oriented Riemannian manifold without boundary,
K be any compact set in M , and a and b be positive real numbers satisfy-
ing

√
2b >

√
2a + c(M,K). Then, the inclusion map iab

K : (ΩaM,Ωa
KM) →

(ΩbM,Ωb
KM) satisfies H∗(iab

K ) = 0.

Proof. Let n := dimM . The first step in our proof is to define the loop
product

• : H∗(ΩAM,ΩA
KM) ⊗ H∗(ΩBM,ΩB

KM) → H∗−n(ΩCM,ΩC
KM)

for any positive real numbers A, B, C satisfying
√

2A +
√

2B <
√

2C.
Let

X : = ΩAM × ΩBM,

Y : = ΩAM ×M ΩBM := {(γ, γ′) ∈ ΩAM × ΩBM | γ(0) = γ′(0)},

U : = (ΩA
KM × ΩBM) ∪ (ΩAM × ΩB

KM).

Then (X,U) = (ΩAM,ΩA
KM) × (ΩBM,ΩB

KM). We also define the concate-
nation map con : Y → ΩCM by

con(γ, γ′)(θ) :=

⎧
⎪⎪⎨

⎪⎪⎩

γ

((

1 +
√

B
A

)

θ

) (

0 ≤ θ ≤
√

A√
A+

√
B

)

,

γ′
((

1 +
√

A
B

)

θ −
√

A
B

) ( √
A√

A+
√

B
≤ θ ≤ 1

)

.

Then con(Y ∩U) ⊂ ΩC
KM . Let us define the loop product • as the composition

of the following three maps:

H∗(ΩAM,ΩA
KM) ⊗ H∗(ΩBM,ΩB

KM) → H∗(X,U) → H∗−n(Y, Y ∩ U)

→ H∗−n(ΩCM,ΩC
KM).

The first map is the cross product on homology, the second map is the Gysin
map (which we denote by G) and the third map is induced by the concate-
nation map. Let

iBK : (M,M \ K) → (ΩBM,ΩB
KM); p → cp.

For any x ∈ H∗(ΩAM,ΩA
KM), there holds

G(x × H∗(iBK)(μM,K)) = H∗(j)(x),
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where j : (ΩAM,ΩA
KM) → (Y,U) is defined by j(γ) := (γ, cγ(0)). Thus,

x • H∗(iBK)(μM,K) = H∗(con ◦ j)(x).

On the other hand, H : [0, 1] × (ΩAM,ΩA
KM) → (ΩCM,ΩC

KM) defined by

H(t, γ)(θ) :=

⎧
⎪⎪⎨

⎪⎪⎩

γ

(
(
√

A+
√

B)θ√
A+t

√
B

) (

0 ≤ θ ≤
√

A+t
√

B√
A+

√
B

)

,

γ(0)
(√

A+t
√

B√
A+

√
B

≤ θ ≤ 1
)

is a homotopy from con◦j to iAC
K , thus H∗(con◦j) = H∗(iAC

K ). In conclusion,
we obtain

x • H∗(iBK)(μM,K) = H∗(iAC
K )(x) (∀x ∈ H∗(ΩAM,ΩA

KM)). (8)

Now let us prove Lemma 3.12. By the assumption
√

2b >
√

2a+c(M,K),
there exists c such that c(M,K) <

√
2c <

√
2b − √

2a. Then, we obtain

H∗(iab
K )(x) = x • H∗(icK)(μM,K) = x • 0 = 0 (∀x ∈ H∗(ΩaM,Ωa

KM)),

where the first equality follows from (8) (by setting A := a, B := c, C := b),
and the second equality follows from

√
2c > c(M,K). �

Proof of Proposition 3.10. It is sufficient to show that, for any oriented Rie-
mannian manifold M with ∂M = ∅, a compact subset K ⊂ M and k ≥ 1,
there holds

cS1

k−1(M,K) ≤ cS1

k (M,K) ≤ cS1

k−1(M,K) + c(M,K).

For any a > 0, there holds

HS1

∗ (iaK)(μM,K ⊗ [CP k−1]) = HS1

∗ (iaK)(μM,K ⊗ [CP k]) ∩ e,

where e denotes the Euler class (see Sect. 2). Thus HS1

∗ (iaK)(μM,K ⊗[CP k]) =
0 =⇒ HS1

∗ (iaK)(μM,K ⊗ [CP k−1]) = 0, which implies the first inequality
cS1

k−1(M,K) ≤ cS1

k (M,K).
To prove the second inequality, it is enough to prove
√

2a > cS1

k−1(M,K) + c(M,K) =⇒ HS1

∗ (iaK)(μM,K ⊗ [CP k]) = 0.

Let us take a′ so that cS1

k−1(M,K) <
√

2a′ <
√

2a − c(M,K).
Since [CP k] ∩ e = [CP k−1] and

√
2a′ > cS1

k−1(M,K), there holds

HS1

∗ (ia
′

K)(μM,K ⊗ [CP k]) ∩ e = 0.

By the long exact sequence (1), HS1

∗ (ia
′

K)(μM,K ⊗ [CP k]) is in the image of
the left vertical map in the following diagram:

H∗(Ωa′
M,Ωa′

KM) ��

�� �����
����

����
���

H∗(ΩaM,Ωa
KM)

��
HS1

∗ (Ωa′
M,Ωa′

KM) �� HS1

∗ (ΩaM,Ωa
KM).
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Thus, HS1

∗ (iaK)(μM,K ⊗ [CP k]) is in the image of the diagonal map. By
Lemma 3.12 and

√
2a >

√
2a′ + c(M,K), the upper horizontal map is zero,

thus the diagonal map is zero. Therefore, HS1

∗ (iaK)(μM,K ⊗ [CP k]) = 0. �

4. Relation to symplectic capacities

In this section, we briefly discuss a conjectural relation between our notion
of capacities and symplectic capacities defined using symplectic homology.

We call a pair (W,ω) a Liouville domain, if (W,ω) is a compact sym-
plectic manifold with boundary, and there exists a vector field X on W such
that LXω = ω and X points strictly outwards at every point on ∂W .

Remark 4.1. Usually, Liouville domain is a triple (W,ω,X) satisfying the
above conditions. However, since all invariants discussed in this section de-
pend only on (W,ω) and do not depend on choice of X, here we call the pair
(W,ω) a Liouville domain.

For any Liouville domain (W,ω) of dimension 2n and a positive real
number a, one can define a graded Q-vector space SH a

∗(W,ω) which is called
symplectic homology, together with a linear map

ia : H∗+n(W,∂W : Q) → SH a
∗(W,ω).

We define symplectic homology capacity c(W,ω) by

c(W,ω) := inf{a | ia([W,∂W ]) = 0}.

The idea that one can define symplectic capacities using periodic or-
bits of Hamiltonian systems goes back at least to Ekeland–Hofer [3]. The
above definition is very close to the one in Viterbo [16] Sect. 5.3, which uses
symplectic cohomology. Essentially the same construction was introduced
by Floer–Hofer–Wysocki [7] for open sets in symplectic vector spaces, using
symplectic homology developed by Floer–Hofer [6].

One can also define a sequence of capacities using the S1-symmetry of
free loop spaces. This idea goes back at least to Ekeland–Hofer [4], and its ana-
logue in Floer theory was already introduced in Viterbo [16] Sect. 5.3. More
recently, Gutt–Hutchings [9] defined a sequence of capacities (cGH

k )k≥1 for
Liouville domains using S1-equivariant positive symplectic homology, which
we call Gutt–Hutchings capacities.

To continue our discussion, let us introduce the notion of Liouville do-
mains with corners.

Definition 4.2. (i): Let W be a manifold with corners of dimension 2n, and
X be a C∞-vector field on W . We say that X points strictly outwards at
p ∈ ∂W if the following property holds: Let (x1, . . . , x2n) be a local chart
defined near p which is modeled on (R≥0)k × R

2n−k and p corresponds
to (0, . . . , 0). Let X =

∑2n
j=1 Xj

∂
∂xj

. Then X1(p), . . . , Xk(p) < 0.
(ii): A Liouville domain with corners is a pair (W,ω) such that W is a

compact manifold with corners and ω is a symplectic form on W , such
that there exists a vector field X on W satisfying LXω = ω and X
points strictly outwards at every point on ∂W .
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Any Liouville domain with corners can be approximated by a sequence
of Liouville domains. By (restricted) monotonicity and conformality (see [9]
Theorem 1.24), one can define capacities of Liouville domains with corners
by taking limits.

Let M be a compact and connected Riemannian manifold with cor-
ners. Let ωM be the canonical symplectic form on T ∗M . Namely, ωM =∑n

i=1 dpidqi where q1, . . . , qn are local charts on M , and p1, . . . , pn are charts
on fibers with respect to the local frame dq1, . . . , dqn. Also, we define the
canonical fiberwise radial vector field RM ∈ X (T ∗M) by RM :=

∑n
i=1 pi

∂
∂pi

.
Finally, let D∗M be the unit disk cotangent bundle of M , i.e.

D∗M := {(q, p) ∈ T ∗M | q ∈ M, p ∈ T ∗
q M, ‖p‖ ≤ 1}.

Lemma 4.3. (D∗M,ωM ) is a Liouville domain with corners.

Proof. When ∂M = ∅, then LRM
ωM = ωM and RM points strictly outwards

at every point on ∂(D∗M).
When ∂M �= ∅, take a vector field V on M which points strictly out-

wards at every point on ∂M . Define HV : T ∗M → R by HV (q, p) := p(V (q)),
and for any ε > 0, let us define a vector field XV,ε on T ∗M by XV,ε :=
RM +εXHV

. Then LXV,ε
ωM = ωM for any ε. Moreover, when ε is sufficiently

close to 0, then XV,ε points strictly outwards at every point on ∂(D∗M). �

Now we can formulate the following conjecture.

Conjecture 4.4. Let M be a compact, connected, oriented and spin Riemann-
ian manifold with corners. Then

c(M) = c(D∗M,ωM ), cS1

k (M) = cGH
k (D∗M,ωM ) (∀k ≥ 1).

When ∂M = ∅, we have seen that c(M) = ∞. On the other hand,
c(D∗M,ωM ) = ∞ was already observed by Viterbo ([16] Example 2 on
pp.1007), based on the well-known isomorphism between symplectic homol-
ogy of D∗M and homology of ΩM , which was first discovered by Viterbo ([15],
[17]). If one assumes an appropriate (quantitative and S1-equivariant) version
of this isomorphism, then one obtains cS1

k (M) = cGH
k (D∗M,ΩM ) (∀k ≥ 1)

when ∂M = ∅. A qualitative version of this idea was already discussed in [16]
Section 5.2, with applications to the Weinstein conjecture and the Lagrangian
embedding problem.

5. Capacities of rectangles

For any positive real numbers 0 < a1 ≤ · · · ≤ an, let

Ra1,...,an
:= (0, a1) × · · · × (0, an), R̄a1,...,an

:= [0, a1] × · · · × [0, an].

R̄a1,...,an
equipped with the Euclidean metric is a compact Riemannian man-

ifold with corners. The goal of this section is to prove the following theorem.
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Theorem 5.1. For any positive real numbers 0 < a1 ≤ · · · ≤ an and any
k ∈ Z≥1,

cS1

k (R̄a1,...,an
)

2
= min{

√
(k1a1)2 + · · · + (knan)2 | k1, . . . , kn ∈ Z≥0, k1 + · · · + kn = k}.

(9)

In the rest of this paper, the RHS of (9) is denoted by μk(a1, . . . , an).
Let us show that Theorem 5.1 supports the latter assertion of Conjecture 4.4.
First we introduce a few notations. For any Ω ⊂ (R≥0)n, let

XΩ := {(q1, . . . , qn, p1, . . . , pn) ∈ T ∗
R

n | (π(q2
1 + p2

1), . . . , π(q2
n + p2

n)) ∈ Ω}.

For any positive real numbers 0 < a1 ≤ · · · ≤ an, let

E+
2a1,...,2an

:= {(x1, . . . , xn) ∈ (R≥0)n | (x1/2a1)2 + · · · + (xn/2an)2 ≤ 1}.

Finally, let ωn :=
∑n

i=1 dpidqi ∈ Ω2(T ∗
R

n).
By Theorem 7 of [14], the open symplectic manifolds (int D∗R̄a1,...,an

, ωn)
and (intXE+

2a1,...,2an
, ωn) are symplectomorphic. In particular, for any ε ∈

(0, 1) there are symplectic embeddings

(D∗R̄a1,...,an
, (1 − ε)ωn) → (XE+

2a1,...,2an
, ωn) → (D∗R̄a1,...,an

, (1 + ε)ωn).

By the (restricted) monotonicity and conformality of Gutt–Hutchings capac-
ities, we obtain

(1 − ε)2cGH
k (D∗R̄a1,...,an

, ωn) ≤ cGH
k (XE+

2a1,...,2an
, ωn)

≤ (1 + ε)2cGH
k (D∗R̄a1,...,an

, ωn)

for any ε ∈ (0, 1). Hence, we obtain

cGH
k (D∗R̄a1,...,an

, ωn) = cGH
k (XE+

2a1,...,2an
, ωn) (∀k ≥ 1). (10)

Remark 5.2. The above argument which deduces (10) from Theorem 7 of [14]
is suggested by the referee.

On the other hand, by Theorem 1.6 of [9],

cGH
k (XE+

2a1,...,2an
, ωn) = 2μk(a1, . . . , an) (∀k ≥ 1). (11)

Hence, we have checked that Theorem 5.1 implies the latter assertion of
Conjecture 4.4 for rectangles.

Let us explain the plan of this section. In Sect. 5.1, we reduce Theo-
rem 5.1 to key lemmas: Lemmas 5.3 and 5.4. In Sect. 5.2, we prove some
preparatory results on Bott-Morse theory on free loop spaces, which we use
to prove these lemmas. In Sect. 5.3, we prove these lemmas. In Sect. 5.4, we
show an application of Theorem 5.1 to billiard dynamics.
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5.1. Reduction to key lemmas

In this subsection, we reduce Theorem 5.1 to Lemmas 5.3 and 5.4, which we
state below.

Lemma 5.3. For any a > 0, k ∈ Z≥0 and b > 2(ka)2, there holds

H≤2k(Ωb
R ∪ ΩR̄a

R,ΩR̄a
R) = 0.

Lemma 5.4. Let 0 < a1 ≤ · · · ≤ an be real numbers, and k ∈ Z≥1. For any
real numbers b1 and b2 such that 0 < b1 < b2 < 2μk(a1, . . . , an)2, there holds

HS1

n+2k−1(Ω
b2R

n ∪ ΩR̄a1,...,an
R

n,Ωb1R
n ∪ ΩR̄a1,...,an

R
n) = 0.

Proof of Theorem 5.1 modulo Lemmas 5.3 and 5.4. In this proof, we abbre-
viate (a1, . . . , an) by a. By Lemma 3.5, there holds cS1

k (R̄a) = cS1

k (Rn, R̄a).
Thus, it is sufficient to show that cS1

k (Rn, R̄a) = 2μk(a).
First, we prove

cS1

k (Rn, R̄a) ≤ 2μk(a). (12)
If b > 2μk(a), there exist k1, . . . , kn ∈ Z≥0 and b1, . . . , bn ∈ R>0, such that
k1 + · · · + kn = k, b1 + · · · + bn < b2/2 and bi > 2(kiai)2 (1 ≤ ∀i ≤ n). Then,
there holds

n∏

i=1

(ΩbiR ∪ ΩR̄ai
R,ΩR̄ai

R) ⊂ (Ωb2/2
R

n ∪ ΩR̄a
R

n,ΩR̄a
R

n).

Let us denote the product on the LHS by X. Since H≤2ki
(ΩbiR∪ΩR̄ai

R,ΩR̄ai

R) = 0 (1 ≤ ∀i ≤ n) by Lemma 5.3, the Künneth formula implies that
H<n+2k(X) = 0. By Remark 2.1, HS1

<n+2k(X) = 0. In particular,

ι := ib1
R̄a1

× · · · × ibn

R̄an
: (Rn,Rn \ R̄a)

=
n∏

i=1

(R,R \ R̄ai
) →

n∏

i=1

(ΩbiR ∪ ΩR̄ai
R,ΩR̄ai

R)

satisfies HS1

∗ (ι)(μRn,R̄a
⊗ [CP k−1]) = 0. On the other hand,

i
b2/2
Ra

: (Rn,Rn \ R̄a) → (Ωb2/2
R

n ∪ ΩR̄a
R

n,ΩR̄a
R

n)

factors ι, thus HS1

∗ (ib
2/2

R̄a
)(μRn,R̄a

⊗[CP k−1]) = 0. Therefore, cS1

k (Rn, R̄a) ≤ b,
thus (12) is proved.

Next we prove
cS1

k (Rn, R̄a) ≥ 2μk(a). (13)
If this does not hold, there exist b1 and b2 such that

0 <
√

2b1 < cS1

k (Rn, R̄a) <
√

2b2 < 2μk(a).

Then, the map

HS1

n+2k−2(Ω
b1R

n ∪ ΩR̄a
R

n,ΩR̄a
R

n) → HS1

n+2k−2(Ω
b2R

n ∪ ΩR̄a
R

n,ΩR̄1
R

n)

is not injective. This contradicts Lemma 5.4, thus (13) is proved. �
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5.2. Bott–Morse theory on free loop spaces

5.2.1. Setting. Let X be an open subset of ΩR
n = L1,2(S1,Rn). For any

γ ∈ X, the tangent space TγX is naturally identified with ΩR
n, in particular

it is equipped with the inner product and the norm

〈η, ζ〉 :=
∫

S1
〈η(t), ζ(t)〉 + 〈η′(t), ζ ′(t)〉 dt, ‖η‖ :=

√
〈η, η〉.

Let f : X → R be a C∞-function. The vector field ∇f on X is defined
so that 〈∇f, η〉 = df(η) for any η ∈ TX. Let CrP(f) ⊂ X denote the set of
critical points of f , and CrV(f) ⊂ R denote the set of critical values of f ,
namely

CrP(f) := {x ∈ X | ∇f(x) = 0}, CrV(f) := {f(x) | x ∈ CrP(f)}.

For any x ∈ CrP(f), let Hess(f : x) denote the Hessian of f at x, and let
ν(f : x) and ind(f : x) denote the nullity and index of Hess(f : x).

f is called Bott–Morse if the following conditions hold:
• Every connected component of CrP(f) is a finite-dimensional compact

submanifold of X. Let {Ri}i∈I denote the set of these connected com-
ponents.

• For every x ∈ Ri, ker(Hess(f : x)) = TxRi. Also, ind(f : x) is con-
stant on x ∈ Ri, which we denote by λRi

. We define the vector bundle
N(Ri) → Ri so that N(Ri)x is the negative eigenspace of Hess(f : x)
for every x ∈ Ri.

We also consider the following conditions:
• A sequence (xj)j≥1 on X is called a PS (Palais–Smale)-sequence if

(f(xj))j≥1 is bounded and limj→∞ ‖∇f(xj)‖ = 0. f satisfies the PS-
condition if any PS-sequence contains a convergent subsequence.

• f is forward-complete if the following condition is satisfied: if J ⊂ R is
a closed interval with minJ > −∞, then f−1(J) is closed in ΩR

n. In
particular, f−1(J) equipped with the L1,2-metric is complete.

Lemma 5.5. Let X be an open subset of ΩR
n, and f : X → R be a Bott–

Morse function which is forward-complete and satisfies the PS-condition. Let
a < c < b be real numbers such that CrV(f) ∩ [a, b] = {c}. Let R1, . . . , Rm be
connected components of CrP(f) ∩ f−1(c). Then the following holds.
(i): H∗({f ≤ b}, {f ≤ a}) ∼= ⊕m

i=1H∗(N(Ri), N(Ri) \ Ri).
(ii): Suppose that X admits a smooth S1-action such that f is S1-invariant.

Then N(Ri) → Ri admits a natural S1-action, and

HS1

∗ ({f ≤ b}, {f ≤ a}) ∼=
m⊕

i=1

HS1

∗ (N(Ri), N(Ri) \ Ri).

Remark 5.6. Lemma 5.5 follows from standard results in Bott–Morse theory
in infinite-dimensional setting. See Lemma 3.2, Theorem 7.4 and Corollary 7.2
in [2] Chapter 1. Note that [2] works on complete Banach–Finsler manifolds
(the completeness is essentially used in the proof of the deformation Lemma,
that is Lemma 3.2 in [2]). On the other hand X is an open subset of ΩR

n,
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thus (in general) not complete. However, since we have assumed that f is
forward-complete, the arguments in [2] work in our setting.

5.2.2. Variational method for Lagrangian action functional. Let R = Ra1,...,an

be an open rectangle. For any U ∈ C∞(R), we define LU : ΩR → R by

LU (γ) :=
∫

S1

|γ′|2
2

− U(γ).

Then, γ ∈ CrP(LU ) if and only if γ′′ + ∇U(γ) ≡ 0.

Lemma 5.7. There exists u ∈ C∞(0, 1) satisfying the following conditions:

• u(t) = u(1 − t) for any 0 < t < 1.
• min u = u(1/2) = 0.
• u′′(t) > 0 for any 0 < t < 1.
• u(3)(t) < 0 and u(3)(1 − t) > 0 for any 0 < t < 1/2.
• There exist δ > 0 and C > 0 such that u(t) = C+t−2, u(1−t) = C+t−2

for any 0 < t < δ.

If u satisfies these conditions, then

2u(t)u′′(t) − u′(t)2 > 0 (∀t ∈ (0, 1) \ {1/2}). (14)

Proof. Take positive real numbers a, b, c, such that a < 1/2 and

−2a−3 = b

(

a − 1
2

)

+ c

(

a − 1
2

)3

, 6a−4 > b + 3c

(

a − 1
2

)2

.

Then, let us define a continuous function w : (0, 1) → R by

w(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2t−3 (0 < t ≤ a)

b

(

t − 1
2

)

+ c

(

t − 1
2

)3

(a ≤ t ≤ 1/2)

−w(1 − t) (1/2 ≤ t ≤ 1).

By “mollifying” w, one can define a C∞-function v : (0, 1) → R such that

• v(t) = −v(1 − t) and v′(t) > 0 for any 0 < t < 1,
• v′′(t) < 0 and v′′(1 − t) > 0 for any 0 < t < 1/2,
• v(t) = −2t−3 and v(1 − t) = 2t−3 for any t sufficiently close to 0.

Then, u : (0, 1) → R defined by u(t) :=
∫ t

1/2
v(s) ds satisfies required condi-

tions.
To prove (14), let m(t) := 2u(t)u′′(t) − u′(t)2. It is easy to check that

m(1/2) = 0 and m′(t) < 0 < m′(1 − t) for any t ∈ (0, 1/2). Then (14) follows
immediately. �

For any a1, . . . , an, let us define Ua1,...,an
∈ C∞(Ra1,...,an

) by

Ua1,...,an
(x1, . . . , xn) := u(x1/a1) + · · · + u(xn/an).

We are going to show that LεUa1,...,an
is a Bott–Morse function on ΩRa1,...,an

.
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First we consider the case n = 1. Let us fix a > 0 and ε > 0. For
any E > 0, there exists a unique pair (γE , T (E)) such that T (E) > 0 and
γE : [0, T (E)] → (0, a) is a C∞-map satisfying

γE
′′ + ε∇Ua(γE) ≡ 0, γE(0) = a/2, γE

′(0) =
√

2E,

γE
′(t) ≥ 0 (0 ≤ ∀t ≤ T (E)), γE

′(T (E)) = 0.

Lemma 5.8. T ′(E) < 0 for any E > 0.

Proof. Let us define a diffeomorphism v : [0,∞) → [0, a/2) so that

εUa

(
a

2
+ v(y)

)

= y (∀y ∈ [0,∞)). (15)

Then

T (E) =
∫ v(E)

0

dx

γE
′(γE

−1(x))
=

∫ E

0

v′(y)
√

2(E − y)
dy,

T ′(E) =
1

2
√

2E

∫ 1

0

v′(Ez) + 2Ez · v′′(Ez)√
1 − z

dz.

On the other hand, by direct computations (15) implies that

v′(y) + 2yv′′(y) =
a

ε
· u′(A(y))2 − 2u(A(y))u′′(A(y))

u′(A(y))3

(

A(y) :=
1
2

+
v(y)
a

)

for any y > 0. Then by (14), v′(y) + 2yv′′(y) < 0 for any y > 0. Thus,
T ′(E) < 0 for any E > 0. �

For each integer k ≥ 1, we define Ek by T (Ek) = 1/4k. Also, there
exists unique γ : S1 → (0, a) satisfying γ′′ + ε∇Ua(γ) ≡ 0 and γ|[0,1/4k]

= γEk
. Let us denote it as γε,a

k .

Lemma 5.9. For any ε, a > 0 and k ∈ Z≥1, there holds ν(γε,a
k ) = 1, ind(γε,a

k )
= 2k.

Proof. Let T ∗Ra := {(q, p) | q ∈ Ra, p ∈ T ∗
q R}, and define h ∈ C∞(Ra) by

h(q, p) := εua(q)+ p2/2. Let Xh denote its Hamiltonian vector field, namely

Xh(q, p) =
∂h

∂p

∂

∂q
− ∂h

∂q

∂

∂p
= p

∂

∂q
− εu′

a(q)
∂

∂p
.

Let (ϕt
h)t∈R denote the isotopy on T ∗Ra generated by Xh. Then, elements in

CrP(Lεua
) correspond to fixed points of ϕ1

h. For any k ∈ Z≥1 and t ∈ R, let
Φt

k := dϕt
h(a/2,

√
2Ek). Then, (Φt

k)t∈R is a path of symplectic matrices. By
[12] Theorem 1 on pp.168, we obtain

ν(γε,a
k ) = dim ker(Φ1

k − I2), ind(γε,a
k ) = indCZ(Φt

k)0≤t≤1,

where I2 denotes the unit matrix, and indCZ denotes the Conley–Zehnder
index.

For any t ∈ R, let us define ρq(t), ρp(t), θq(t), θp(t) by

Φt
k(∂/∂q) = ρq(t)(cos θq(t), − sin θq(t)), Φt

k(∂/∂p) = ρp(t)(sin θp(t), cos θp(t)),
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ρq(t), ρp(t) > 0 (∀t ∈ R) and θq(0) = θp(0) = 0. Then θq(1) = 2kπ and
θp(1) < 4k+1

2 π. Moreover, Lemma 5.8 (T ′(E) < 0 for any E > 0) im-
plies that θp(1) > 2kπ. Then, it follows that dim ker(Φ1

k − I2) = 1, and
indCZ(Φt

k)0≤t≤1 = 2k. �

Lemma 5.10. Let a be a positive real number, let (εj)j≥1 be a sequence of
positive real numbers satisfying limj→∞ εj = 0, and let (kj)j≥1 be a non-

decreasing sequence of positive integers. Then limj→∞
LεjUa (γ

εj,a

kj
)

k2
j

= 2a2.

Proof. For simplicity, we only consider the case a = 1. For every integer

j ≥ 1, let us define Γj : [0, 1] → R1 by Γj(t) := γ
εj ,1
kj

(
4kj−1+t

4kj

)

. Also, let

cj := εj

16k2
j
. Then, direct computations show

Γj
′(0) = 0, Γj

′(t) ≥ 0 (∀t ≥ 0), Γj(1) = 1/2, Γj
′′ + cj∇u(Γj) ≡ 0,

LεjU1(γ
εj ,1
kj

)

k2
j

= 16
( ∫ 1

0

(Γj
′)2

2
− cju(Γj) dt

)

= 16
(

‖Γ′
j‖2

L2 − (Γj
′(1))2

2

)

.

Hence, it is sufficient to prove that

lim
j→∞

‖Γ′
j‖2

L2 − (Γj
′(1))2

2
=

1
8
. (16)

For every j ≥ 1, let hj := Γj(0). By limj→∞ cj = 0 we obtain limj→∞
hj = 0. Take positive real numbers C and δ so that u(t) = C + t−2 for any
t ∈ (0, δ]. For any h ∈ [hj , δ], let us define Tj(h) so that Γj(Tj(h)) = h. Then,
direct computations show

Tj(h) =
∫ h

hj

xhj√
2cj(x2 − h2

j )
dx = hj

√
h2 − h2

j

2cj
.

If j is sufficiently large so that 2hj ≤ δ, then

1 ≥ Tj(δ) = hj

√
δ2 − h2

j

2cj
≥ hjδ

2
√

2cj

.

Hence, S := supj
hj√
2cj

< ∞. For any h ∈ (0, δ] and sufficiently large j,

we obtain Tj(h) ≤ Sh. On the other hand limj→∞
1/2−h

(1−Tj(h))·Γ′
j(1)

= 1 for
any h ∈ (0, δ], thus limj→∞ Γ′

j(1) = 1/2. Moreover, for any h ∈ (0, δ] and
sufficiently large j,

√
1 − Sh · Γ′

j(Tj(h)) ≤
√

1 − Tj(h) · Γ′
j(Tj(h)) ≤ ‖Γ′

j‖L2 ≤ Γ′
j(1).

Thus, limj→∞ ‖Γ′
j‖L2 = 1/2. Hence, we obtain (16). �

For any k ≥ 1, let Γε,a
k denote the set of reparametrizations of γε,a

k . Then
Γε,a

k is a submanifold of ΩRa which is diffeomorphic to S1. Also, let γε,a
0 be
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the constant loop at a/2, and Γε,a
0 := {γε,a

0 }. Then CrP(LεUa
) =

⊔
k≥0 Γε,a

k .
Lemma 5.9 shows that LεUa

is a Bott–Morse function, and

rank of N(Γε,a
k ) =

{
2k (k ≥ 1),
1 (k = 0).

LεUa
is invariant by the natural S1-action on ΩRa. Therefore, for each k,

Γε,a
k and N(Γε,a

k ) admit the natural S1-action. When k ≥ 1, the S1-action on
Γε,a

k
∼= S1 is k-fold.
Now let n be a positive integer, and 0 < a1 ≤ · · · ≤ an be positive real

numbers. LεUa1,...,an
is a Bott–Morse function on ΩRa1,...,an

, and

CrP(LεUa1,...,an
) =

⊔

k1,...,kn≥0

Γε,a1
k1

× · · · × Γε,an

kn
.

Let us set Γε,a1,...,an

k1,...,kn
:= Γε,a1

k1
× · · · × Γε,an

kn
. The functional LεUa1,...,an

is
invariant by the natural S1-action on ΩRa1,...,an

, thus S1 naturally acts on
Γε,a1,...,an

k1,...,kn
and N(Γε,a1,...,an

k1,...,kn
).

Lemma 5.11. For any integers k1, . . . , kn ≥ 0, let

ν(k1, . . . , kn) := �{i | ki = 0}, cε,a1,...,an

k1,...,kn
:= LεUa1,...,an

(Γε,a1,...,an

k1,...,kn
).

The following claims hold.
(i): Γε,a1,...,an

k1,...,kn
is diffeomorphic to Tn−ν(k1,...,kn).

(ii): Any γ ∈ Γε,a1,...,an

k1,...,kn
satisfies

ν(γ) = n − ν(k1, . . . , kn), ind(γ) = 2(k1 + · · · + kn) + ν(k1, . . . , kn).

(iii): H<2(k1+···+kn)+ν(k1,...,kn)(N(Γε,a1,...,an

k1,...,kn
), N(Γε,a1,...,an

k1,...,kn
)\Γε,a1,...,an

k1,...,kn
) = 0.

(iv): If (k1, . . . , kn) �= (0, . . . , 0), then

HS1

≥n+2(k1+···+kn)(N(Γε,a1,...,an

k1,...,kn
), N(Γε,a1,...,an

k1,...,kn
) \ Γε,a1,...,an

k1,...,kn
) = 0.

(v): limε→0 cε,a1,...,an

k1,...,kn
= 2{(k1a1)2 + · · · + (knan)2}.

(vi): Let b ∈ (0,∞) \ {2{(k1a1)2 + · · · + (knan)2} | k1, . . . , kn ∈ Z≥0}. Then,
for sufficiently small ε > 0, there holds

cε,a1,...,an

k1,...,kn
< b ⇐⇒ (k1a1)2 + · · · + (knan)2 < b/2

for any k1, . . . , kn ∈ Z≥0.

Proof. (i) and (ii) are straightforward. (iii) follows from (ii). (iv) holds since

HS1

∗+ν(k1,...,kn)(N(Γε,a1,...,an

k1,...,kn
), N(Γε,a1,...,an

k1,...,kn
) \ Γε,a1,...,an

k1,...,kn
)

∼= HS1

∗

( ∏

ki �=0

(N(Γε,ai

ki
), N(Γε,ai

ki
) \ Γε,ai

ki
)
)

,

and Lemma 5.12 (see below) shows that the RHS is zero if ∗ ≥ n − ν
(k1, . . . , kn) +

∑n
i=1 2ki. (v) and (vi) follow from Lemma 5.10. �

In the next lemma, we essentially use that we are working on Q -
coefficients.
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Lemma 5.12. Let l be a positive integer, V 1, . . . , V l be real vector bundles on
S1, and m1, . . . ml be positive integers. For each i ∈ {1, . . . , l}, let ri := rkVi.
Suppose that, for each i, V i admits an S1-action of the form

θ · (t, v) = (t + miθ, v
′) (θ ∈ S1, t ∈ S1, v ∈ V i

t , v′ ∈ V i
t+miθ).

Let T l denote the lth product of S1, and consider the vector bundle V :=
V 1 × · · · × V l on T l. Then, with respect to the diagonal S1-action on V and
T l,

HS1

∗ (V, V \ T l) ∼=
{

H∗−(r1+···+rl)(T
l−1) (V iis orientable for every1 ≤ i ≤ l),

0 (otherwise).

In particular, HS1

≥l+r1+···+rl
(V, V \ T l) = 0.

Proof. First, we consider the case l = 1. By the homeomorphism

((V 1, V 1 \ S1) × ES1)/S1 ∼= ((V 1
0 , V 1

0 \ {0}) × ES1)/Zm1 ,

we obtain

HS1

∗ (V 1, V 1 \ S1) ∼= H
Zm1∗ (V 1

0 , V 1
0 \ {0}) ∼=

{
Q (V 1is orientable and∗ = r1),
0 (otherwise).

Next we consider the case l ≥ 2. Consider the following homeomor-
phism:

((V, V \ T l) × ES1)/S1 ∼= ((V 1
0 , V 1

0 \ {0})

×(V 2 × · · · × V l, V 2 × · · · × V l \ T l−1) × ES1)/Zm1 .

The RHS is a fiber bundle over ES1/Zm1 , where the fiber is homeomorphic
to

(V 1
0 , V 1

0 \ {0}) × (V 2 × · · · × V l, V 2 × · · · × V l \ T l−1).

If V i is orientable for every i ∈ {1, . . . , l}, then the homology of the
fiber is isomorphic to H∗−(r1+···+rl)(T

l−1). The E2-term of the Leray–Serre
spectral sequence of this fiber bundle is isomorphic to the homology of the
fiber, and d2 = 0. Hence, we obtain HS1

∗ (V, V \ T l) ∼= H∗−(r1+···+rl)(T
l−1).

If there exists i ∈ {1, . . . , l} such that V i is not orientable, without loss
of generality we may assume that i ≥ 2. Then H∗(V 2 × · · · × V l, V 2 × · · · ×
V l \ T l−1) = 0, which implies HS1

∗ (V, V \ T l) = 0. �

To apply Lemma 5.5, we need the following lemma:

Lemma 5.13. Let ε > 0 and 0 < a1 ≤ · · · ≤ an be real numbers.
(i): If a sequence (γj)j≥1 on ΩRa is L1,2-bounded and satisfies limj→∞

dist(γj , ∂Ra1,...,an
) = 0, then limj→∞ LεUa1,...,an

(γj) = −∞.
(ii): LεUa1,...,an

: ΩRa1,...,an
→ R is forward-complete, and satisfies the PS-

condition.

Proof. These are direct consequences of results in [11] Sect. 2. Although
[11] Sect. 2 works on path spaces and manifolds without corners, the results
there extend to the situation in the present lemma. Specifically, (i) follows
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from Lemma 2.3 of [11] (which is equal to Lemma 3.6 of [1]), the forward-
completeness follows from (i), and the PS-condition follows from Lemma 2.8
of [11]. �

Lemma 5.14. For any a > 0, k ∈ Z≥0 and b > 2(ka)2, there holds

H≤2k+1(ΩRa, {LεUa
< b}) = 0

for sufficiently small ε > 0.

Proof. By Lemma 5.11 (vi), if ε > 0 is sufficiently small,

cε,a
l ≥ b =⇒ (la)2 ≥ b/2 =⇒ l ≥ k + 1.

Then, the present lemma follows from Lemma 5.5 (i) and Lemma 5.11 (iii).
�

Lemma 5.15. Let 0 < a1 ≤ · · · ≤ an be real numbers and k ∈ Z≥1. Let b1, b2

be real numbers such that 0 < b1 < b2 < 2μk(a1, . . . , an)2. Then

HS1

n+2k−1({LεUa1,...,an
< b2}, {LεUa1,...,an

< b1}) = 0

for sufficiently small ε > 0.

Proof. By Lemma 5.11 (vi), if ε is sufficiently small, then

cε,a1,...,an

l1,...,ln
< b2 =⇒ (l1a1)2 + · · · + (lnan)2 < b2/2 =⇒ l1 + · · · + ln ≤ k − 1.

Then, the present lemma follows from Lemma 5.11 (iv) and Lemma 5.5 (ii).
�

5.3. Proofs of Lemmas 5.3 and 5.4

Now we prove Lemmas 5.3 and 5.4, thus complete our proof of Theorem 5.1.

Proof of Lemma 5.3. We may assume that a = 1. Our goal is to prove that
if b > 2k2 then H≤2k(Ωb

R ∪ ΩR̄1
R,ΩR̄1

R) = 0.

Step 1. We prove that, for any b′ > b > 2k2, T > 0 and δ ∈ (0, 1/2), the
following map (induced by inclusions) is zero if δ′ ∈ (0, δ) is sufficiently small:

H≤2k+1(ΩT R1,ΩbR1 ∪ ΩT
[δ′,1−δ′]R1) → H≤2k+1(ΩR1,Ωb′

R1 ∪ Ω[δ,1−δ]R1).
(17)

To prove this, first notice that for sufficiently small ε > 0

H≤2k+1(ΩR1, {LεU1 < b}) = 0, {LεU1 < b} ⊂ Ωb′
R1 ∪ Ω[δ,1−δ]R1.

Indeed, the first condition follows from Lemma 5.14, and the second condition
is easy to check. By Lemma 5.13 (i), ΩT

[δ′,1−δ′]R1 ⊂ {LεU1 < b} for sufficiently
small δ′ ∈ (0, δ). Then (17) is zero since it factors H≤2k+1(ΩR1, {LεU1 < b}).

Step 2. We prove that, for any b′ > b > 2k2, T ≥ b and δ ∈ (0, 1/2), the map

H≤2k+1(ΩT
R,Ωb

R ∪ ΩT
R̄1

R) → H≤2k+1(ΩR,Ωb′
R ∪ Ω[δ,1−δ]R) (18)
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is zero. To prove this, take δ′ ∈ (0, δ) so that (17) is zero, and consider the
following commutative diagram:

H≤2k+1(ΩT R1,ΩbR1 ∪ ΩT
[δ′,1−δ′]R1) ��

��

H≤2k+1(ΩR1,Ωb′
R1 ∪ Ω[δ,1−δ]R1)

��
H≤2k+1(ΩT

R,Ωb
R ∪ ΩT

[δ′,1−δ′]R) �� H≤2k+1(ΩR,Ωb′
R ∪ Ω[δ,1−δ]R).

Then the top horizontal map is zero, and the left and right vertical maps are
excision isomorphisms. Thus the bottom horizontal map is zero. Then (18)
is also zero since it factors the bottom horizontal map.

Step 3. We prove that, for any b′ > b > 2k2 and T ≥ b, the map

H≤2k+1(ΩT
R,Ωb

R ∪ ΩT
R̄1

R) → H≤2k+1(ΩR,Ωb′
R ∪ ΩR̄1

R) (19)

is zero. To prove this, take b′′ and δ so that δ > 0 and b < b′′ ≤ (1 − 2δ)2b′.
Define an affine map A : R → R by A(t) := (t − δ)/(1 − 2δ). Then, any
γ ∈ Ωb′′

R ∪ Ω[δ,1−δ]R satisfies A ◦ γ ∈ Ωb′
R ∪ ΩR̄1

R. Then we obtain the
following commutative diagram:

H≤2k+1(ΩT
R,Ωb

R ∪ ΩT
R̄1

R)
(18) ��

(19) ������
�����

�����
����

H≤2k+1(ΩR,Ωb′′
R ∪ Ω[δ,1−δ]R)

��
H≤2k+1(ΩR,Ωb′

R ∪ ΩR̄1
R).

Since the horizontal map (18) is zero by Step 2, the diagonal map (19) is also
zero.

Step 4. Since homology commutes with direct limits, for any b > 0

H∗(ΩR,Ωb
R ∪ ΩR̄1

R) ∼= lim−→
T→∞
ε→+0

H∗(ΩT
R,Ωb−ε

R ∪ ΩT
R̄1

R).

By Step 3, H≤2k+1(ΩR,Ωb
R∪ ΩR̄1

R) = 0 if b > 2k2. Since H∗(ΩR,ΩR̄1
R) =

0, we obtain H≤2k(Ωb
R ∪ ΩR̄1

R,ΩR̄1
R) = 0 if b > 2k2. This completes the

proof. �

The proof of Lemma 5.4 is quite similar to the proof of Lemma 5.3.

Proof of Lemma 5.4. We fix a1, . . . , an, and abbreviate Ra1,...,an
by R,

Ua1,...,an
by U , and μk(a1, . . . , an) by μ. Our goal is to prove

HS1

n+2k−1(Ω
b2R

n ∪ ΩR̄R
n,Ωb1R

n ∪ ΩR̄R
n) = 0

for any 0 < b1 < b2 < 2μ2. For any δ ∈ (0, a1/2), let K(δ) := [δ, a1 − δ] ×
· · · × [δ, an − δ].

Step 1. For any 0 < b1 < b′
1 < b2 < b′

2 < 2μ2, T > 0 and δ ∈ (0, a1/2),
the following map (induced by inclusions) is zero if δ′ ∈ (0, δ) is sufficiently
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small:

HS1

n+2k−1(Ω
b2R ∪ ΩT

K(δ′)R,Ωb1R ∪ ΩT
K(δ′)R)

→ HS1

n+2k−1(Ω
b′
2R ∪ ΩK(δ)R,Ωb′

1R ∪ ΩK(δ)R). (20)

To prove this, first notice that for sufficiently small ε > 0

HS1

n+2k−1({LεU < b2}, {LεU < b1}) = 0,

{LεU < bi} ⊂ Ωb′
iR ∪ ΩK(δ)R (i ∈ {1, 2}).

The first condition follows from Lemma 5.15, and the second condition is easy
to check. If δ′ is sufficiently small, then ΩbiR∪ΩT

K(δ′)R ⊂ {LεU < bi} for i ∈
{1, 2}. Then (20) is zero since it factors HS1

n+2k−1({LεU < b2}, {LεU < b1}).

Step 2. For any 0 < b1 < b′
1 < b2 < b′

2 < 2μ2, T ≥ b2 and δ ∈ (0, a1/2), the
map (induced by inclusions)

HS1

n+2k−1(Ω
b2R

n ∪ ΩT
R̄R

n,Ωb1R
n ∪ ΩT

R̄R
n)

→ HS1

n+2k−1(Ω
b′
2R

n ∪ ΩK(δ)R
n,Ωb′

1R
n ∪ ΩK(δ)R

n)

is zero. The proof is similar to Step 2 in the proof of Lemma 5.3.

Step 3. For any 0 < b1 < b′
1 < b2 < b′

2 < 2μ2 and T ≥ b2, the map

HS1

n+2k−1(Ω
b2R

n ∪ ΩT
R̄R

n,Ωb1R
n ∪ ΩT

R̄R
n)

→ HS1

n+2k−1(Ω
b′
2R

n ∪ ΩR̄R
n,Ωb′

1R
n ∪ ΩR̄R

n)

is zero. The proof is similar to Step 3 in the proof of Lemma 5.3.

Step 4. Since homology commutes with direct limits,

HS1

n+2k−1(Ω
b2R

n ∪ ΩR̄R
n,Ωb1R

n ∪ ΩR̄R
n)

∼= lim
T→∞
ε→+0

HS1

n+2k−1(Ω
b2−ε

R
n ∪ ΩT

R̄R
n,Ωb1−ε

R
n ∪ ΩT

R̄R
n).

By Step 3, this limit is zero if 0 < b1 < b2 < 2μ2. This completes the
proof. �

5.4. Application to periodic billiard trajectories

Let us say that a periodic billiard trajectory is prime if it is not a multiple
cover of a shorter trajectory. As an application of Theorem 5.1, we prove the
existence of “many” prime periodic billiard trajectories on a billiard table
which is C0-close to a “generic” rectangle.

Proposition 5.16. Suppose that 0 < a1 < · · · < an are real numbers such
that a2

1, . . . , a
2
n are linearly independent over Q. For any integer m ≥ 1, there

exists ε > 0 such that, for any open set U ⊂ R
n with C∞-boundary satisfying

R̄a1,...,an
⊂ U ⊂ [−ε, a1 + ε] × · · · × [−ε, an + ε],

there exist at least m distinct prime periodic billiard trajectories on U .
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Remark 5.17. For convex domains, much better lower bounds of the number
of periodic billiard trajectories are known, e.g. [5]. On the other hand, in
Proposition 5.16 we do not assume convexity of U . Moreover, we assume
nothing about topological type of U .

Proof. The proof consists of four steps.

Step 1. Let α := (a−2
1 + · · ·+a−2

n )−1/2, and abbreviate Ra1,...,an
by R. Then

cS1

k

2k
= min

{√
(k1a1)2 + · · · + (knan)2

k

∣
∣
∣
∣
∣
k1 + · · · + kn = k

}

≥ α,

and the equality holds if and only if there exists (k1, . . . , kn) such that k1 +
· · · + kn = k and (k1 : · · · : kn) = (a−2

1 : · · · : a−2
n ). However, this cannot

happen since a2
1, . . . , a

2
n are linearly independent over Q. On the other hand,

limk→∞ cS1

k (R)/k = 2α, thus there exists an increasing sequence of integers
(ki)i≥1 such that (cS1

ki
(R)/ki)i is strictly decreasing.

Step 2. For any i ≥ 1, let us take pi,1, . . . , pi,n ∈ Z≥0 such that

pi,1 + · · · + pi,n = ki, cS1

ki
(R) = 2

√
(pi,1a1)2 + · · · + (pi,nan)2.

For any i < j there holds cS1

ki
(R)/ki �= cS1

kj
(R)/kj , thus (pi,1 : · · · : pi,n) �=

(pj,1 : · · · : pj,n). Since a2
1, . . . , a

2
n are linearly independent over Q,

cS1

kj
(R)2

cS1

ki
(R)2

=
(pj,1a1)2 + · · · + (pj,nan)2

(pi,1a1)2 + · · · + (pi,nan)2
/∈ Q.

In particular, cS1

kj
(R)/cS1

ki
(R) /∈ Q.

Step 3. For any ε > 0, let us abbreviate [−ε, a1+ε]×· · ·×[−ε, an+ε] by R(ε).
Let us prove that, for any positive integers K and m, there exists ε(K,m) > 0
with the following property: for any open set U with C∞-boundary,

R ⊂ U ⊂ R(ε(K,m)) =⇒
{

cS1

kj
(U)

cS1

ki
(U)

∣
∣
∣
∣
∣
1 ≤ i < j ≤ m

}

∩
K⋃

k=1

1
k
Z = ∅.

If this is not the case, there exist 1 ≤ i < j ≤ m, (Up)p≥1 and (εp)p≥1 such
that

lim
p→∞ εp = 0, R ⊂ Up ⊂ R(εp) (∀p ≥ 1),

cS1

kj
(Up)

cS1

ki
(Up)

∈
K⋃

k=1

1
k
Z.

Then we obtain

cS1

kj
(R)

cS1

ki
(R)

= lim
p→∞

cS1

kj
(Up)

cS1

ki
(Up)

∈
K⋃

k=1

1
k
Z,

which contradicts Step 2.

Step 4. Let m be a positive integer, and let Km := km + [(n + 1)/2]. We
prove that, for any open set U with C∞-boundary satisfying R ⊂ U ⊂
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R(ε(Km,m)), there exist at least m distinct prime periodic billiard trajecto-
ries on U . By Step 3,

{
cS1

kj
(U)

cS1

ki
(U)

∣
∣
∣
∣
∣
1 ≤ i < j ≤ m

}

∩
Km⋃

k=1

1
k
Z = ∅.

By Proposition 3.9, for each 1 ≤ i ≤ m, there exists a periodic billiard
trajectory γi on U with length cS1

ki
(U) and �Bγi

≤ n + 2ki − 1. Let γ′
i be

a prime periodic billiard trajectory and mi be an integer, such that γi is
an mi-fold multiple of γ′

i. Then mi ≤ ki + (n − 1)/2 ≤ Km, since 2mi ≤
�Bγ′

i
· mi = �Bγi

≤ n + 2ki − 1. If γ′
i = γ′

j for some 1 ≤ i < j ≤ m, then

cS1

kj
(U)

cS1

ki
(U)

=
len(γj)
len(γi)

=
mj

mi
∈

Km⋃

k=1

1
k
Z.

This is a contradiction, thus γ′
1, . . . , γ

′
m are distinct prime periodic billiard

trajectories on U . This completes the proof of Proposition 5.16. �

6. Questions

Finally, let us discuss a few questions. In this section, all Riemannian mani-
folds are assumed to be compact, connected, orientable and with corners.

Question 6.1. Does limk→∞
cS1

k (M)
k exist for any (or, a generic) Riemann-

ian manifold M? If it exists, does the limit have any geometric/dynamical
meaning?

Comment. Theorem 5.1 implies that the limit exists for any rectangle. On the
other hand, Gutt–Hutchings [9] proved that, if X is a star-shaped domain in
C

n satisfying a certain condition (see [9] Remark 1.22), then limk→∞
cGH

k (X)
k

exists and is equal to the maximal size of a symplectic cube which admits a
symplectic embedding into X.

Question 6.2. Does the following property hold for any (or, a generic) Rie-
mannian manifold M? There exists a sequence (γk)k≥1 of periodic billiard
trajectories on M such that len(γk) = cS1

k (M) (∀k ≥ 1) and
⋃∞

k=1 Im(γk) is
dense in M .

Comment. Theorem 5.1 implies that this property holds for a generic rectan-
gle.

Let us state our next question as a conjecture.

Conjecture 6.3. For any integer k ≥ 1,

cS1

k (B2(1)) = 2(k + 1) max
1≤j≤k

sin
(

πj

k + 1

)

. (21)
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Comment. Ramos [13] considers a domain Ω ⊂ (R≥0)2 which is prescribed
by the coordinate axes and the curve

C : (2 sin(t/2) − t cos(t/2), 2 sin(t/2) + (2π − t) cos(t/2)) (0 ≤ t ≤ 2π),

and proves ( [13] Theorem 3) that (int D∗B2(1), ω2) is symplectomorphic
to (int XΩ, ω2). Since XΩ is a concave toric domain, one can compute its
Gutt–Hutchings capacities by [9] Theorem 1.14. Namely,

cGH
k (XΩ) = max{min

w∈C
v · w | v = (v1, v2) ∈ (Z>0)2, v1 + v2 = k + 1},

and little computations show that it is equal to the RHS of (21). Thus Con-
jecture 6.3 follows from Conjecture 4.4 and the argument similar to the proof
of (10).

Conjecture 6.3 and its generalizations to (higher dimensional) ellipsoids
will be interesting problems. It will be also interesting to compute capacities
of Tn \ int (K), where Tn is an n-dimensional flat torus and K is a compact
and convex subset of Tn such that ∂K is of C∞ and strictly convex. Billiards
on such manifolds are dispersive billiards, whose dynamical properties are
very different from those of integrable billiards.
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Remarks on the systoles of symmetric
convex hypersurfaces and symplectic
capacities

Joontae Kim, Seongchan Kim and Myeonggi Kwon

Abstract. In this note we study the systoles of convex hypersurfaces
in R

2n invariant under an anti-symplectic involution. We investigate a
uniform upper bound of the ratio between the systole and the symmet-
ric systole of the hypersurfaces using symplectic capacities from Floer
theory. We discuss various concrete examples in which the ratio can be
understood explicitly.
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1. Introduction

Let Σ be a smooth manifold of dimension 2n − 1 equipped with a global 1-
form α such that α∧(dα)n−1 is nowhere vanishing. Such a pair (Σ, α) is called
a (co-oriented) contact manifold. We assume throughout that Σ is closed and
connected. There exists a unique vector field R = Rα on Σ characterized
by the conditions dα(R, ·) = 0 and α(R) = 1. The vector field R is called
the Reeb vector field associated with α. A periodic (Reeb) orbit is a smooth
curve γ : R/τZ → Σ solving the differential equation γ̇ = R ◦ γ. The systole
of (Σ, α) is defined as

�min(Σ, α) = inf{τ > 0 | τ is the period of a periodic orbit on (Σ, α)} > 0.

By convention, the infimum of the empty set is infinity.
Suppose that the contact manifold (Σ, α) is equipped with an anti-

contact involution ρ, meaning that ρ2 = Id and ρ∗α = −α. The triple
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(Σ, α, ρ) is called a real contact manifold. A periodic orbit γ on (Σ, α, ρ)
is said to be symmetric if ρ(Im(γ)) = Im(γ). By definition, the symmetric
systole �sym

min (Σ, α, ρ) is the infimum over the periods of symmetric periodic
orbits on Σ. We then define the symmetric ratio R(Σ, α, ρ) as

R(Σ, α, ρ):=
�sym
min (Σ, α, ρ)
�min(Σ, α)

∈ [1,∞], (1.1)

provided that there exists a periodic orbit on (Σ, α).

Example 1.1. Let Σ ⊂ R
2n be a smooth, compact, and starshaped hypersur-

face with respect to the origin. Assume that Σ is invariant under the complex
conjugation

ρ0(x1, y1, . . . , xn, yn) = (x1,−y1, . . . , xn,−yn).

The triple (Σ, α, ρ0) is a real contact manifold, where α = λ0|Σ is the re-
striction of the Liouville form λ0 = 1

2

∑n
j=1(xjdyj − yjdxj) to Σ. The Reeb

orbits on Σ are reparametrizations of the Hamiltonian orbits on Σ of any
Hamiltonian H : R2n → R having Σ as a regular level set. The existence of a
symmetric periodic orbit was established by Rabinowitz [27], implying that
R(Σ, α, ρ0) is finite.

As of a prominent class of real contact manifolds, we are mainly in-
terested in symmetric convex hypersurfaces in R

2n. In this paper convex
domains in R

2n are assumed to contain the origin in the interior, and star-
shaped domains are starshaped with respect to the origin. Let K ⊂ R

2n be a
compact convex domain with smooth boundary which is invariant under an
anti-symplectic involution ρ of R2n, i.e. ρ2 = Id and ρ∗dλ0 = −dλ0. We call
the boundary of K a symmetric convex hypersurface. Assume that the fixed
point set Fix(ρ) intersects the boundary ∂K. This condition necessarily holds
if (∂K, ρ) admits a symmetric periodic orbit. We can find a Liouville form
λ on the symplectic manifold (K,dλ0) such that its Liouville vector field
is transverse along the boundary ∂K and ρ is exact with respect to λ i.e.
ρ∗λ = −λ. For example one takes the average λ:= 1

2 (λ0 − ρ∗λ0), see Lemma
4.7. We define the (symmetric) systoles of the symmetric convex hypersurface
(∂K, ρ) by the ones of the real contact manifold (∂K,α:=λ|∂K , ρ):

�min(∂K):=�min(∂K,α) and �sym
min (∂K, ρ):=�sym

min (∂K,α, ρ). (1.2)

They are independent of the choice of the Liouville form λ because the (sym-
metric) systoles coincide with the minimal actions of (symmetric) closed char-
acteristics on (∂K, ρ).

Remark 1.2. More precisely, recall that the symplectic form dλ0 =
∑n

j=1 dxj

∧dyj induces the characteristic line bundle L∂K := ker(dλ0|∂K) over ∂K. This
defines a 1-dimensional foliation of ∂K whose closed leaf γ (i.e. an embedded
circle whose tangent spaces lie in L∂K) is called a closed characteristic of
∂K. Its action is defined by A(γ):=

∫
S1 γ∗λ where λ is a Liouville form on K

such that dλ = dλ0. By Stokes theorem A(γ) is independent of the choice of
λ. A closed characteristic γ on ∂K is called symmetric if γ is invariant under
ρ. Now if λ is chosen as above so that (∂K, λ|∂K , ρ) is a real contact manifold,
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then there is the correspondence between (symmetric) closed characteristics
of ∂K and (symmetric) periodic orbits on (∂K, λ|∂K). Indeed, any closed
characteristic of ∂K is parametrized by a periodic Reeb orbit, and vice versa.
The action of a closed characteristic and the period of the corresponding
periodic orbit coincide. Therefore, (1.2) is independent of the choice of λ, but
does depend on the hypersurface ∂K and the symplectic form dλ0.

The main result of this note is the following estimate on the symmetric
ratio for symmetric convex hypersurfaces.

Theorem 1.3. Let K ⊂ R
2n be a compact and convex domain with smooth

boundary which is invariant under an anti-symplectic involution ρ of R
2n.

Assume that Fix(ρ) ∩ ∂K 	= ∅. Then the symmetric ratio of the symmetric
convex hypersurface (∂K, ρ) satisfies

1 ≤ R(∂K, ρ) ≤ 2. (1.3)

In particular, on the boundary ∂K, there exists a symmetric periodic orbit of
period less than or equal to 2�min(∂K).

It is particularly interesting to ask when the symmetric ratio is exactly
equal to one. This means that the smallest period among all periodic orbits
can be realized by symmetric one. In Sect. 2 we examine this question with
explicit examples of symmetric hypersurfaces. Smooth starshaped toric do-
mains, for instance, admit a family of anti-symplectic involutions including
complex conjugation, and we can explicitly understand their Reeb flows. We
observe in Sect. 2.3 that the symmetric ratio in this case is always equal to
one even without convexity. On the other hand, there are symmetric star-
shaped domains whose boundary has the symmetric ratio bigger than 1. In
Sect. 2.4, we construct such examples by perturbing the standard contact
form on the unit sphere following the Bourgeois’ perturbation scheme for
Morse–Bott contact forms [8, Section 2.2].

Remark 1.4. Even if the symmetric ratio is equal to one, there can exist a
non-symmetric periodic orbit of the smallest period. Moreover, a symmet-
ric periodic orbit of the smallest period might not be unique. For example,
consider the unit round sphere S2n−1 ⊂ R

2n ≡ C
n for n ≥ 2 with complex

conjugation ρ0. The contact form is given by the restriction of the Liouville
form as in Example 1.1. The associated Reeb flow is periodic, and the peri-
odic orbit γ through z ∈ S2n−1 can be parametrized as γ(t) = e2itz, t ∈ R.
Then γ is symmetric with respect to ρ0 if and only if γ(t0) ∈ R

n for some
t0 ∈ R.

Another interesting aspect of the estimate (1.3) is that it gives a uniform
upper bound of the symmetric ratio for convex hypersurfaces in R

2n. Such
an upper bound does not necessarily exist for a larger class of hypersurfaces.
For example, in Sect. 2.5, we exhibit symmetric starshaped hypersurfaces,
which are Bordeaux-bottle-shaped, whose symmetric ratio is arbitrary large.
In Sect. 2.6, we provide examples of restricted contact type, not starshaped,
hypersurfaces in Hamiltonian systems whose symmetric ratio is also arbitrary
large.
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Our discussions up to now suggest the following questions:
• Is the symmetric ratio for symmetric convex hypersurfaces in R

2n equal
to exactly one?

• Under what conditions on real contact manifolds can we find a uniform
upper bound of its symmetric ratio? For example, one can consider
dynamical convexity for contact manifolds as a substitute of geometric
convexity.

Remark 1.5. A convex body K ⊂ R
2n, i.e. a compact convex subset in R

2n

with non-empty interior, is called centrally symmetric if it is invariant under
the antipodal map on R

2n. Note that the antipodal map is not anti-symplectic
but symplectic. It is shown in Akopyan–Karasev [4, Corollary 2.2] that any
closed characteristic of minimal action on the boundary of K is itself centrally
symmetric, cf. Remark 1.4.

In Sect. 4, we present an approach to obtain the upper bound in The-
orem 1.3 employing symplectic capacities from Floer theory. We first bound
the symmetric ratio from above in terms of the symplectic homology capacity
(the SH capacity) cSH and the wrapped Floer homology capacity (the HW
capacity) cHW. An essential ingredient is the recent result of Abbondandolo–
Kang [1] and Irie [19] showing for convex domains that the systole �min(∂K)
coincides with the SH capacity cSH(K). Together with the spectral property
of the HW capacity in Proposition 4.4, we deduce that

�sym
min (∂K, ρ)
�min(∂K)

≤ 2cHW(K, ρ)
cSH(K)

.

We can then bound the ratio of the capacities from above using Floer the-
ory. In Sect. 3.3 we recall a construction of well-known comparison homo-
morphisms in Floer homology, called closed-open maps. They are defined
by counting certain Floer disks with one interior puncture (asymptotic to a
Hamiltonian 1-orbit) and one boundary puncture (asymptotic to a Hamilton-
ian 1-chord) with Lagrangian boundary condition. See Fig. 4. We call them
Floer chimneys as in [5, Figure 11]. Closed-open maps are compatible with
the action filtrations on the Floer homologies in the sense of Theorem 3.9. As
also observed in [7], it is rather straightforward to obtain the desired upper
bound from the existence of filtered closed-open maps.

At the heuristic level the underlying geometric idea is the following.
By the spectral properties, the SH capacity cSH(K) is the action A(γ) of a
periodic orbit γ on ∂K and the HW capacity cHW(K, ρ) is the action A(x) of
a chord x on (∂K, ∂ Fix(ρ)). Closed-open maps in principle tell us that there
exists a J-holomorphic chimney asymptotic to γ at the interior puncture and
asymptotic to x at the boundary puncture. Since the energy of J-holomorphic
chimneys is necessarily non-negative, one has cHW(K, ρ) = A(x) ≤ A(γ) =
cSH(K) by Stokes’ theorem.

The wrapped Floer homology capacity for symmetric domains can be
seen as a symplectic capacity for symplectic manifolds with symmetries,
which we call a real symplectic capacity. The upper bound in Theorem 1.3
hinges on relationships between real and non-real symplectic capacities. In

J. Kim et al. JFPTA
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Sect. 5 we discuss further examples of real symplectic capacities which might
be of independent interest. See also [11] for more information on symplectic
capacities.

Remark 1.6. One finds a motivation to study the symmetric systole in the
context of the planar circular restricted three-body problem (PCR3BP). This
problem studies the motion of a massless body influenced by two bodies
of positive mass according to Newton’s law of gravitation, where the two
massive bodies move in circles about their common center of mass, and the
massless body is confined to the plane determined by the two bodies. Denote
by c∗ the energy value of the Hamiltonian H of the PCR3BP such that
for every c < c∗, the level set H−1(c) contains two bounded components
near either massive body. In what follows, we concentrate on one of the two
bounded components, denoted by Σc. It is invariant under the anti-symplectic
involution ρ whose fixed point set projects into the configuration space R

2

as a subset of the horizontal axis. In [6] Birkhoff found a Reeb chord on
Σc via shooting argument and closed it up using ρ to obtain a symmetric
periodic orbit, called a retrograde periodic orbit. In a real-world situation, a
direct periodic orbit is more important since most orbits of moons in the
solar system are direct. However, Birkhoff did not give an analytic proof of
the existence of a direct periodic orbit. Instead, he conjectured that for each
c < c∗, the retrograde periodic orbit on Σc bounds a disk-like global surface of
section. Birkhoff believed that a fixed point of the associated first return map,
whose existence is assured by Brouwer’s translation theorem, corresponds to a
direct periodic orbit. One way to prove this conjecture is to look at the period
of the retrograde periodic orbit. Indeed, the SFT-compactness theorem says
that if the retrograde periodic orbit has the smallest period, then this would
imply Birkhoff’s conjecture. For details, we refer to a beautiful exposition
[15].

2. Examples

In this section we discuss examples for the symmetric ratio (1.1) on various
symmetric hypersurfaces.

2.1. In dimension two

Let W be a subset of R2 that is diffeomorphic to a closed disc and invariant
under an anti-symplectic involution ρ. There exists a unique simply covered
periodic orbit γ, which is a parametrization of the ρ-invariant circle ∂W .
Moreover, γ is ρ-symmetric. It follows that �min(∂W ) = �sym

min (∂W ) and hence
R(∂W, ρ) = 1.

2.2. Ellipsoids

Given aj ∈ R>0, j = 1, . . . , n, the associated ellipsoid is given by

E(a1, . . . , an):=

{

z ∈ C
n

∣
∣
∣
∣

n∑

j=1

π|zj |2
aj

≤ 1

}

.

Vol. 24 (2022) The systoles of symmetric convex hypersurfaces

Reprinted from the journal 779



With respect to the standard contact form, i.e. the restriction of the Liouville
form from Example 1.1, complex conjugation ρ0 provides an anti-contact
involution on the boundary ∂E(a1, . . . , an). The Reeb flow can explicitly be
written by coordinate-wise rotations on C

n. Periodic orbits are of the form

γ(t) =
(
e

2πit
a1 z1, e

2πit
a2 z2, . . . , e

2πit
an zn

)
(2.1)

for some (z1, z2, . . . , zn) ∈ ∂E(a1, . . . , an). Assuming a1 ≤ a2 ≤ · · · ≤ an

without loss of generality, the periodic orbit γ1(t) = (e
2πit
a1 z1, 0, . . . , 0) with

z1 	= 0 attains the minimal period and is symmetric with respect to ρ0. Hence
the symmetric ratio is equal to one. In general, a periodic orbit of the form
(2.1) is ρ0-symmetric if and only if γ(t0) ∈ R

n for some t0 ∈ R.

2.3. Smooth starshaped toric domains

Define the moment map μ : Cn → R
n
≥0 as

μ(z1, . . . , zn) = π(|z1|2, . . . , |zn|2).

It is invariant under the exact anti-symplectic involution

ρθ(z) =
(
eiθ1z1, . . . , e

iθnzn

)
(2.2)

for each θ = (θ1, . . . , θn) ∈ R
n. For a domain Ω ⊂ R

n
≥0, the preimage

XΩ:=μ−1(Ω) ⊂ C
n is called a toric domain. Note that any toric domain

is ρθ-invariant. For example, the ellipsoid E(a1, . . . , an) is a smooth toric
domain associated to the simplex

Ω =

{

x ∈ R
n
≥0

∣
∣
∣
∣

n∑

j=1

xj

aj
≤ 1

}

.

A toric domain is not necessarily smooth, but, in this note, we only consider
smooth ones.

In what follows we assume that a domain Ω ⊂ R
n
≥0 is smooth, compact,

and starshaped (with respect to the origin). Then the associated toric domain
XΩ ⊂ C

n is a smooth toric domain that is compact and starshaped.
We shall show that R(∂XΩ, ρθ) = 1 for every θ ∈ R

n.
Note that XΩ is invariant under the T

n-family of the exact symplecto-
morphisms

σφ(z) = (eiφ1z1, . . . , e
iφnzn), φ = (φ1, . . . , φn) ∈ R

n.

If γ is a periodic orbit on ∂XΩ, then so is σφ(γ). Each fiber torus μ−1(w),
w ∈ Ω, is foliated by periodic orbits, see e.g. [17, Section 2.2], and hence any
periodic orbit on ∂XΩ is contained in a fiber torus.

For a fixed θ ∈ R
n, each fiber torus contains a ρθ-symmetric periodic

orbit. Indeed, in view of the fact that ρ∗
θR = −R, where R is the Reeb vector

field on ∂XΩ, a periodic orbit γ is ρθ-symmetric if and only if γ(R)∩Fix(ρθ) 	=
∅. For a periodic orbit γ in a fiber torus T , it is always possible to find φ ∈ R

n

such that σφ(γ) intersects Fix(ρθ). Then σφ(γ) is a ρθ-symmetric periodic
orbit in T .

J. Kim et al. JFPTA
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As all periodic orbits belonging to the same fiber torus have the same
period, this implies that R(∂XΩ, ρθ) = 1. Actually, for every periodic orbit
γ on ∂XΩ, there exists θ = θ(γ) ∈ R

n such that γ is a ρθ-periodic orbit.
Recall that a toric domain XΩ is said to be convex if

Ω̂ = {(x1, . . . , xn) ∈ R
n | (|x1|, . . . , |xn|) ∈ Ω} ⊂ R

n

is convex. In this case, we know which (symmetric) periodic orbit attains
the smallest period. From the convexity of Ω̂, we can show by computing the
Reeb vector field that the fiber orbit at a point of ∂Ω along a coordinate axis,
i.e. an intersection point of ∂Ω with a coordinate axis, attains the smallest
period. Moreover, it is also obvious from the Reeb flow that such a periodic
orbit is ρθ-symmetric for every θ ∈ R

n.

2.4. Starshaped domains with the symmetric ratio slightly bigger than one

For every θ ∈ R
n we can construct a ρθ-symmetric starshaped domain K

in R
2n with R(∂K, ρθ) > 1, where ρθ is defined as in (2.2), by perturbing

the round sphere. Without loss of generality, we only consider the case of
complex conjugation ρ = ρ0.

Let B ⊂ (R2n, λ0) denote the closed unit ball. For h ∈ C∞(∂B,R) with
h ≥ 1, we define the starshaped domain in R

2n

Kh:=B ∪∂B {(r, x) ∈ [1,∞) × ∂B | x ∈ ∂B, r ≤ h(x)}

by attaching the graph of h along the boundary ∂B via the Liouville flow of
λ0. Note that ∂Kh is contactomorphic to the unit sphere ∂B equipped with
the contact form hα0. Since the Reeb flow φt on (∂B, α0) satisfies ρ◦φ−t◦ρ =
φt, the involution ρ of ∂B descends to the involution ρ̄ of ∂B/S1 ∼= CPn−1,
where the S1-action on ∂B is given by the Reeb flow.

Take a ρ̄-invariant Morse function f̄ ≥ 0 on ∂B/S1 which attains the
minimum precisely at a pair of two critical points away from the fixed point
set of ρ̄. We write f ∈ C∞(∂B,R) for the lifting of f̄ . Set hε:=1+εf for ε > 0.
Since hε is ρ-invariant, the starshaped domain Khε

is symmetric. We claim
that for ε > sufficiently small we have R(∂Khε

, ρ) > 1, but this will be close
to 1. We denote by Tmin the minimal period of the Reeb flow of the standard
contact sphere (∂B, α0). Recall from Bourgeois [8, Section 2.2] that for any
T > Tmin there exists ε > 0 such that the periodic orbits of (∂B, αε:=hεα) of
period less than T are non-degenerate and correspond to the critical points of
f̄ . For a critical point x̄ of f̄ the corresponding periodic orbit is the S1-fiber
γx̄ of the fibration ∂B → ∂B/S1 at x̄, and its period is given by Tminhε(x)
for any lift x ∈ ∂B of x̄. The periodic orbit γx̄ is symmetric if and only if
x̄ is a fixed point of ρ̄. Now we take T > 0 slightly bigger than Tmin. For
ε > 0 small enough, the minimum period of non-symmetric periodic orbits
is strictly smaller than the minimum period of symmetric periodic orbits.
This shows that R(∂Khε

, ρ) > 1. It is worth noting that R(∂Khε
, ρ) can be

arbitrarily close to one.

Vol. 24 (2022) The systoles of symmetric convex hypersurfaces
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Figure 1. A symmetric Bordeaux-bottle-shaped domain
having two necks

2.5. Bordeaux-bottle-shaped hypersurfaces of arbitrarily large symmetric
ratio

Recall that the classical Bordeaux-bottle K ⊂ R
2n is a smooth starshaped

domain obtained by gluing a thin neck, modeled on the symplectic 2-subspace
R

2 × {0}, along the boundary of the unit ball B, see [18, Section 3.5]. Let
ρ denote complex conjugation on R

2n. For a given symplectic 2-subspace
V ⊂ R

2n with ρ(V ) ∩ V = {0}, we glue the two thin necks, associated
to V and ρ(V ) respectively, along the boundary ∂B to form a ρ-symmetric
Bordeaux-bottle-shaped domain KV with two necks. See Fig. 1. Since ρ sends
one neck to the other, any periodic orbits on the thin necks are not symmetric.
Moreover, symmetric periodic orbits on ∂KV exist on ∂B, and the period of
any symmetric periodic orbits of ∂KV is uniformly bounded from below.
Making the necks narrow, we obtain a symmetric starshaped domain KV

with arbitrarily large symmetric ratio. Below, we provide a detailed account
of this construction.

Consider the symplectic 2-subspace V in (R2n, ω0 =
∑n

j=1 dxj ∧ dyj)
spanned by

v1 = (1, 0, 0, 1, 0, . . . , 0),

Jv1 = (0, 1,−1, 0, 0, . . . , 0),

where J denotes the standard complex structure on C
n ∼= R

2n. A simple
computation shows that

ρ(V ) ∩ V = {0}. (2.3)

Since ρ is anti-symplectic, ρ(V ) is a symplectic 2-subspace. We then obtain
a symplectic orthogonal decomposition

R
2n = V ⊕ ρ(V ) ⊕ W,

where W = (V ⊕ ρ(V ))⊥ denotes the symplectic complement of V ⊕ ρ(V ).
Since V ⊕ρ(V ) is ρ-invariant, so is W . Using the Gram–Schmidt process [24,
Lemma 2.6.6], we can construct a unitary basis on R

2n,

{v1, Jv1, . . . , vn, Jvn}, (2.4)

J. Kim et al. JFPTA
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such that
• v2:=ρ(v1) and Jv2 = Jρ(v1) = −ρ(Jv1),
• {v3, Jv3, . . . , vn, Jvn} is a unitary basis for W .

We denote by
(x′,y′) = (x′

1, y
′
1, . . . , x

′
n, y′

n) (2.5)
the symplectic coordinates on R

2n with respect to the basis (2.4). Then KV

is defined to be a ρ-symmetric smooth starshaped domain in R
2n consisting

of
• a bounded piece of the neck NV = {(x′,y′) | (x′

1)
2 + (y′

1)
2 ≤ ε} of V ;

• a bounded piece of the neck Nρ(V ) = {(x′,y′) | (x′
2)

2 + (y′
2)

2 ≤ ε} of
ρ(V );

• the unit ball B = {(x′,y′) |
∑n

j=1(x
′
j)

2 + (y′
j)

2 ≤ 1}.

Here, a smoothing procedure is required as in the well-known case of a
Bordeaux-bottle having one neck. We emphasize that the smoothing pro-
cedure in the standard Bordeaux-bottle is still enough for our case, since the
gluing regions of ∂NV and ∂Nρ(V ) along ∂B are disjoint due to (2.3). More-
over, the unit ball in the coordinates (2.5) coincides with the unit ball in the
standard coordinates.

We claim that the symmetric ratio R(∂KV , ρ) can be arbitrarily large
by choosing ε > 0 small enough. Since V is chosen to be symplectic, every
periodic orbit on the boundary of the neck NV is of the form

γ(t) =
(
w1e

2it
ε , w2, . . . , wn

)
,

where the identifications (2.5) and wj = x′
j + iy′

j are used. They have small
periods depending on ε > 0. The similar holds for periodic orbits on ∂Nρ(V ).
Thanks to (2.3), any periodic orbits on the necks ∂NV and ∂Nρ(V ) are not
symmetric under ρ. As mentioned before, symmetric periodic orbits of ∂KV

exist on the boundary ∂B, and the period of any symmetric periodic orbits
of ∂KV is uniformly bounded from below. Therefore, the claim follows.

2.6. Hypersurfaces of arbitrarily large symmetric ratio in Hamiltonian sys-
tems

Recall that a hypersurface Σ in R
2n is called of restricted contact type if there

exists a Liouville vector field X which is defined in a neighborhood of the
hypersurface and which is transverse to Σ. If Σ is of restricted contact type
with the radial vector field X = r

2∂r, then it is starshaped. Here we provide a
restricted contact type, but not starshaped hypersurface of arbitrarily large
symmetric ratio.

Consider a mechanical Hamiltonian H(q, p) = 1
2 |p|2 + V (q), (q, p) ∈

R
2 × R

2, where the potential V is invariant under the involution (q1, q2) �→
(−q1, q2). It follows that H is invariant under the anti-symplectic involution
ρ(q1, q2, p1, p2) = (−q1, q2, p1,−p2), and hence for every E ∈ R, the energy
level set H−1(E) is ρ-invariant. We assume the following.

• There exist exactly two saddle points (±a, 0) of V such that V (±a, 0) =
0.

Vol. 24 (2022) The systoles of symmetric convex hypersurfaces
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Figure 2. The projections of the energy levels H−1(E) into
the position space R

2

• For E > 0 small enough, H−1(−E) consists of three 3-spheres.

The first condition implies that the equilibriums (±a, 0, 0, 0) of H are of
saddle-center type, and the second condition implies that the energy level
H−1(E) for E = 0 and for E > 0 small enough project into the position space
R

2 as in Fig. 2. For every E > 0 sufficiently small, H−1(E) is not starshaped,
but of restricted contact type as H is of mechanical type. Since (±a, 0, 0, 0)
are of saddle-center type, in view of a well-known theorem by Lyapunov, if
E > 0 is small enough, H−1(E) carries periodic orbits γ1, γ2 = ρ(γ1), called
the Lyapunov orbits (red curves in Fig. 2). As E → 0+, they converge to
equilibriums. Moreover, in a sufficiently small neighborhood of equilibriums,
there exists no periodic orbit other than the associated Lyapunov orbit, and
periodic orbits that pass this neighborhood have sufficiently large periods.
This in particular implies that if E > 0 is small enough, then the periods of
the Lyapunov orbits are extremely small, but the periods of other periodic
orbits are bounded from blow by some positive constant. As the Lyapunov
orbits are not ρ-symmetric, we conclude that the symmetric ratio can be
chosen arbitrarily large.

3. Closed-open maps

3.1. Symplectic homology

We briefly recall the construction of symplectic homology without technical
details. We refer the reader to [9, Section 2] for a detailed description. We
work with Liouville domains, and prominent examples are starshaped do-
mains in R

2n including smooth convex bodies. In this paper, we always use
Z2-coefficients.

Let (W,λ) be a Liouville domain with a Liouville form λ. This means W
is a compact smooth manifold with boundary and λ is a 1-form on W such
that dλ is symplectic and its Liouville vector field is positively transverse
along the boundary. The restriction α := λ|∂W of the Liouville form defines
a contact form on the boundary, and we denote the contact boundary by
(Σ, α) := (∂W, λ|∂W ). The completion (Ŵ , λ̂) of the Liouville domain (W,λ)
is an open symplectic manifold defined by attaching (a positive part of) the
symplectization ([1,∞) × Σ, rα) to the domain (W,λ) along the boundary
via the Liouville flow. Here r ∈ [1,∞) denotes the Liouville coordinate.
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Example 3.1. The closed unit ball B2n ⊂ R
2n with the standard symplectic

form ω0 =
∑n

j=1 dxj ∧ dyj is a Liouville domain with a Liouville form λ0 =
1
2

∑n
j=1(xjdyj − yjdxj). The contact type boundary is the standard contact

sphere (S2n−1, α0) with α0 = λ0|∂B2n . The completion of B2n recovers R
2n.

More generally, any starshaped domains in R
2n, including smooth convex

ones, fit into our setup for Floer theory.

3.1.1. Admissible Hamiltonians. We take an admissible time-dependent
Hamiltonian HS1 : S1 × Ŵ → R, meaning that all 1-periodic orbits of the
Hamiltonian vector field XHS1 are non-degenerate, HS1 is negative and C2-
small (and Morse) in the interior of W ⊂ Ŵ , and HS1 is linear at the end
with respect to the Liouville coordinate r, independent of the time parameter
t ∈ S1. The derivative H ′

S1(r) at the end is called the slope of the Hamilton-
ian HS1 . We assume that the slope is positive and not equal to the period of
a periodic Reeb orbit in the contact boundary (Σ, α). See Remark 3.4.

Remark 3.2. Our convention for Hamiltonian vector fields is that ω(XH , ·) =
dH.

Denote the set of contractible 1-periodic orbits of HS1 by P(HS1). To
each 1-periodic orbit γ ∈ P(HS1) we can associate an integer called the
Conley–Zehnder index CZ(γ) by taking a capping disk of γ. We assume that
c1(TW ) vanishes on π2(W ) for well-definedness of the index CZ(γ). See [9]
for details on the index.

3.1.2. Chain complex. Let JS1 = {Jt}t∈S1 be a time-dependent family of
compatible almost complex structures on (Ŵ , λ̂) which is admissible in the
sense of [9]. The Floer chain group CF∗(HS1 , JS1) for the pair (HS1 , JS1) is a
Z-graded vector space over Z2, generated by the 1-periodic orbits of P(HS1)
and graded by the negative Conley–Zehnder index |γ| = −CZ(γ):

CFk(HS1 , JS1) =
⊕

γ∈P(HS1 )
|γ|=k

Z2〈γ〉.

For two distinct 1-periodic orbits γ± ∈ P(HS1), define the moduli space
of Floer cylinders M(γ−, γ+,HS1 , JS1) from γ− to γ+, modulo the natural
R-action, by

M(γ−, γ+,HS1 , JS1) = {u : R × S1 → Ŵ | lim
s→±∞

u(s, t) = γ±(t),

(du − XHS1 ⊗ dt)0,1 = 0}/R.

(3.1)

See the left in Fig. 3.

Proposition 3.3. Let γ− 	= γ+. For generic JS1 , the moduli space M(γ−, γ+,
HS1 , JS1) is a smooth manifold of dimension |γ−| − |γ+| − 1.

Remark 3.4. Since HS1 and JS1 are admissible, Floer trajectories must lie in
a compact region in Ŵ by a maximum principle.
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Figure 3. A Floer cylinder (left) and strip (right)

The differential ∂ : CFk(HS1 , JS1) → CFk−1(HS1 , JS1) is defined by
counting rigid Floer trajectories between 1-periodic orbits as follows:

∂(γ−) =
∑

γ+∈P(HS1 )
|γ+|=k−1

#2M(γ−, γ+,HS1 , JS1)γ+. (3.2)

The Floer–Gromov compactness and the gluing construction in Floer theory
show that ∂2 = 0, and hence we obtain the Floer chain complex (CF∗(HS1 ,
JS1), ∂). The Floer homology HF∗(HS1 , JS1) of the pair (HS1 , JS1) is defined
by

HF∗(HS1 , JS1) = H∗(CF∗(HS1 , JS1), ∂).

3.1.3. Symplectic homology. Standard continuation maps in Hamiltonian
Floer homology define a direct system of Floer homology groups HF∗(HS1 , JS1)
directed by increasing the slope τ of Hamiltonains. See e.g. [12, Section 4.4].
The symplectic homology of the Liouville domain (W,λ) is defined to be the
direct limit

SH∗(W,λ) = lim−→
τ→∞

HF∗(HS1 , JS1).

3.1.4. Action filtration. For an admissible Hamiltonian HS1 we have the as-
sociated action functional AHS1 : LŴ → R on the free loop space LŴ of the
completion Ŵ given by

AHS1 (γ) = −
∫

S1
γ∗λ −

∫ 1

0

HS1(t, γ(t))dt.

We call the value AHS1 (γ) the action of γ. Since Floer trajectories decrease
action values, we obtain an action filtration on Floer chain complexes by
collecting generators of action less than a ∈ R

CFa
k(HS1 , JS1) =

⊕

γ∈P(HS1 )
|γ|=k

AH
S1 (γ)<a

Z2〈γ〉.

The corresponding filtered Floer homology is denoted by HFa
∗(HS1 , JS1), and

taking the direct limit we define the filtered symplectic homology

SHa
∗(W,λ) = lim−→

τ→∞
HFa

∗(HS1 , JS1).
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3.1.5. Tautological exact sequences. Let a < b. The action filtration on the
chain complex CF∗(HS1 , JS1) induces the following natural short exact se-
quence of chain complexes:

0 → CFa
∗(HS1 , JS1) → CFb

∗(HS1 , JS1) → CF[a,b)
∗ (HS1 , JS1) → 0

where CF[a,b)
∗ (HS1 , JS1) is the chain complex defined to be the quotient

CF[a,b)
∗ (HS1 , JS1) = CFb

∗(HS1 , JS1)/CFa
∗(HS1 , JS1)

with the induced differential. We obtain, passing to the direct limit, an asso-
ciated long exact sequence in symplectic homology

→ SHa
k(W ) → SHb

k(W ) → SH[a,b)
k (W ) → SHa

k−1(W ) → . (3.3)

In particular, due to the assumption that HS1 is C2-small and Morse on W ,
if ε > 0 sufficiently small, we have a canonical identification

SHε
k(W ) ∼= Hk+n(W,∂W ). (3.4)

We then have the (filtered) tautological exact sequence in symplectic homol-
ogy

→ Hk+n(W,∂W ) → SHa
k(W ) → SH[ε,a)

k (W ) → Hk+n−1(W,∂W ) → .

For each a > 0, we shall denote the map from Hk+n(W,∂W ) to SHa
k(W ) in

the sequence by

ja : Hk+n(W,∂W ) → SHa
k(W ).

3.2. Wrapped Floer homology

We shortly review a construction of wrapped Floer homology which is an
open string analogue of symplectic homology. We refer to [3,21] for details.

3.2.1. Chain complex. Let L be an admissible Lagrangian in a Liouville do-
main (W,λ), meaning that L is a connected and exact Lagrangian which
intersects the contact boundary (Σ, α) in a Legendrian L:=∂L = L ∩ Σ and
the Liouville vector field is tangent to TL near the boundary. By attaching
[1,∞) × L to L along the Legendrian boundary L we have a completed ex-
act Lagrangian L̂ in the completion (Ŵ , λ̂). Roughly speaking, the wrapped
Floer homology HW∗(L) is a version of Lagrangian Floer homology of L̂ in
Ŵ .

A time-independent Hamiltonian H : Ŵ → R is called admissible if
every Hamiltonian 1-chord relative to L̂ is non-degenerate, H is negative and
C2-small in the interior of W ⊂ Ŵ , and H is linear at the end with respect
to r ∈ [1,∞). We assume that the slope τ of H is positive and is not equal to
the length of a Reeb chord in (Σ, α,L). Recall that a Reeb chord in (Σ, α,L)
is an orbit x : [0, T ] → Σ of the Reeb flow on (Σ, α) with x(0), x(T ) ∈ L. We
call T the length of the Reeb chord x.

Denote the set of contractible, as an element of π1(Ŵ , L̂), Hamiltonian
1-chords by PL(H). We associate the index |x| = −μ(x)− n

2 ∈ Z for each non-
degenerate contractible 1-chord in PL(H), where μ(x) is the Maslov index
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defined in [21, Definition 2.3]. Assume that c1(TW ) = 0 and π1(L) = 0 for
well-definedness of μ(x).

Example 3.5. Consider complex conjugation ρ0 on the closed ball B2n. Its
fixed point set L = Fix(ρ0) = B2n ∩ R

n, called a real Lagrangian, defines an
admissible Lagrangian in (B2n, λ0). More generally, let W be a starshaped do-
main in R

2n invariant under an exact anti-symplectic involution ρ of (R2n, λ0)
i.e. ρ∗λ0 = −λ0. Then the fixed point set L := Fix(ρ|W ) defines an admissible
Lagrangian:

• From the classical Smith theory, we have dim H∗(W ;Z2) ≥ dim H∗(L;Z2)
and χ(W ) = χ(L) mod 2. It follows that L is nonempty and connected.

• Since the Liouville flow on (R2n, λ0) commutes with ρ and flows radially
from the origin, the real Lagrangian L intersects the boundary ∂W .

• As in [22, Lemma 3.1], L is an exact Lagrangian, the intersection L∩∂W
is a Legendrian, and the Liouville vector field is tangent to TL near the
boundary.

Note also that c1(TW ) = 0 for any starshaped domain W whereas π1(L) is
not necessarily a trivial group. If the anti-symplectic involution ρ is linear
e.g. complex conjugation, then L is diffeomorphic to the closed ball Bn and
hence π1(L) = 0 in this case.

Let J = {Jt}t∈[0,1] be an admissible time-dependent family of compat-
ible almost complex structures. For two distinct 1-chords x± ∈ PL(H), the
moduli space M(x−, x+,H, J) of Floer strips from x− to x+, modulo the
natural R-action, is defined by

M(x−, x+,H, J) = {u : R × [0, 1] → Ŵ | lim
s→±∞

u(s, t) = x±(t),

(du − XH ⊗ dt)0,1 = 0,

u(s, 0), u(s, 1) ∈ L̂}/R.

(3.5)

See the right in Fig. 3. For generic J , the moduli space M(x−, x+,H, J) is a
smooth manifold of dimension |x−| − |x+| − 1.

The Floer chain complex for the pair (H,J) is defined by

CFk(H,J) =
⊕

x∈PL(H)
|x|=k

Z2〈x〉

equipped with the differential ∂ : CFk(H,J) → CFk−1(H,J) given by

∂(x−) =
∑

x+∈PL(H)
|x+|=k−1

#2M(x−, x+,H, J)x+. (3.6)

We obtain the Floer homology group HF∗(H,J) as the homology of the chain
complex (CF∗(H,J), ∂), and by taking the direct limit as in the symplectic
homology, we define the wrapped Floer homology of the Lagrangian L in
(W,λ) by

HW∗(L) = lim−→
τ→∞

HF∗(H,J).
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3.2.2. Filtered wrapped Floer homology. Wrapped Floer homology shares
many analogous properties with symplectic homology. In particular, we have
a natural action filtration and tautological exact sequences. The action fil-
tration on HW∗(L) is given by the action functional AH : LLŴ → R on the
free path space LLŴ of the completion Ŵ relative to L̂, defined by

AH(x) = −
∫

[0,1]

x∗λ −
∫ 1

0

H(x(t))dt + fL(x(1)) − fL(x(0)).

Here fL ∈ C∞(L̂,R) is a primitive of the form λ̂|L̂. For a ∈ R, we denote the
filtered chain complex by CFa

∗(H,J) and the filtered wrapped Floer homology
by HWa

∗(L). For a < b a long exact sequence analogous to (3.3) is written as

→ HWa
k(L) → HWb

k(L) → HW[a,b)
k (L) → HWa

k−1(L) → . (3.7)

In particular, for ε > 0 sufficiently small so that

HWε
k(L) ∼= Hk+n(L, ∂L) (3.8)

we have the tautological long exact sequence in wrapped Floer homology

→ Hk+n(L, ∂L) → HWa
k(L) → HW[ε,a)

k (L) → Hk+n−1(L, ∂L) → .

For each a > 0, as in symplectic homology, we denote the map from Hk+n

(L, ∂L) to HWa
k(L) in the sequence by

ja : Hk+n(L, ∂L) → HWa
k(L).

3.3. Closed-open maps

Closed-open maps are natural homomorphisms from symplectic homology to
wrapped Floer homology. In Sect. 4 we use them to relate symplectic capac-
ities from the two Floer homologies. In this section we shall briefly outline a
construction of closed-open maps based on [2,16,29]. See also [5].

3.3.1. Floer data. Closed-open maps are defined by counting curves in Ŵ
which we call Floer chimneys. The domain T of Floer chimneys is given by
the closed unit disk D with an interior puncture and a boundary puncture,

T = (D \ {0, 1}, i)

where i is the standard complex structure. See the left in Fig. 4. We equip
T a negative cylindrical end ε0 : (−∞, 0] × S1 → T near 0 and a positive
strip-like end ε1 : [0,∞) × [0, 1] → T near 1.

A Floer data (HT , JT ) for chimneys is given as follows. Let HS1 :
S1 × Ŵ → R and H : Ŵ → R be admissible Hamiltonians for symplec-
tic homology and wrapped Floer homology, respectively, of the same slope τ .
A Hamiltonian HT : T × Ŵ → R is called admissible if

• HT (ε0(s, t), w) = HS1(t, w);
• HT (ε1(s, t), w) = H(w);
• for each z ∈ T , the Hamiltonian HT (z, ·) : Ŵ → R is admissible with

slope τ and is independent of z at the end. We call τ the slope of HT .
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Figure 4. A Floer chimney

For admissible almost complex structures JS1 and J as in Sect. 3.1.2 and 3.2.1,
we take an admissible T -family of compatible almost complex structures JT
given in an analogous way to the Hamiltonian case so that JT = JS1 and
JT = J near the punctures.

3.3.2. Floer chimneys. To write the Floer equation for chimneys, we fix a
1-form β on T with the following properties.

• dβ ≤ 0 with respect to the fixed volume form on T .
• β|∂T = 0, and β|ν(∂T ) = 0 where ν(∂T ) is a neighborhood of ∂T .
• With respect to the coordinate charts ε0 and ε1, we set β = dt.

Remark 3.6. The conditions on β guarantee that Floer chimneys stay in a
compact region in Ŵ . One can show this using a convexity argument in [3,
Lemma 7.2], which replaces the maximum principle.

Take γ ∈ P(HS1) and x ∈ PL(H). A Floer chimney from γ to x is a
map u : T → Ŵ satisfying the following conditions, see Fig. 4.

• (Floer equation) u is a solution of the equation

(du − XHT ⊗ β)0,1 = 0.

• (Asymptotic condition)

lim
s→−∞

u(ε0(s, t)) = γ(t), lim
s→∞

u(ε1(s, t)) = x(t).

• (Lagrangian boundary) u(∂T ) ⊂ L̂.

We denote the moduli space of Floer chimneys from γ to x by

M(γ, x,HT , JT ) = {u : T → Ŵ |u is a Floer chimney from γ to x}. (3.9)

Proposition 3.7. (See [2, Lemma 5.3]) For generic JT , the moduli space
M(γ, x,HT , JT ) is a smooth manifold of dimension

dim M(γ, x,HT , JT ) = |γ| − |x| − n.

If |γ| = |x|+n, the moduli space is compact and zero dimensional. This
allows us to define the map

CO : CFk(HS1 , JS1) → CFk−n(H,J)

by counting rigid Floer chimneys

CO(γ) =
∑

x∈PL(H)
|x|=k−n

#2M(γ, x,HT , JT )x. (3.10)
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Figure 5. Broken Floer chimneys showing ∂ ◦ CO = CO ◦ ∂

The codimension 1 boundary strata of the moduli space of Floer chimneys,
described in [2, Lemma 5.3], shows that the map CO : CFk(HS1 , JS1) →
CFk−n(H,J) is a chain map; see Fig. 5. We have the induced homomorphism
on homology groups

CO : HFk(HS1 , JS1) → HFk−n(H,J).

Taking homotopies of admissible Hamiltonians HT , a standard argument in
Floer theory in [12, Section 4.4] allows us to pass it to the direct limit via
continuation maps

CO : SHk(W ) → HWk−n(L).

We call this map the closed-open map from symplectic homology to wrapped
Floer homology.

Remark 3.8. In [29, Theorem 8.2], it is shown that CO : SH∗(W ) → HW∗(L)
is a unital ring homomorphism with respect to the standard ring structures
described e.g. in [28].

3.3.3. Filtered closed-open maps. Closed-open maps respect the action fil-
trations. To see this, one introduces the topological energy of Floer chimneys
as follows:

E(u):=
∫

T
u∗dλ − u∗dHT ∧ β − u∗HT dβ

where u ∈ M(γ, x,HT , JT ) as in Sect. 3.3.2. It is observed in [2, Appendix
B] that E(u) ≥ 0, and a direct computation shows that

E(u) = AHS1 (γ) − AH(x).

In particular, Floer chimneys decrease action values. For each a ∈ R, we have
filtered closed-open maps

COa : SHa
k(W ) → HWa

k−n(L).

The filtered closed-open maps are compatible with the tautological exact
sequences (3.3) and (3.7) in the following sense. This is also observed in [7,
Section 5.2.1] and essentially follows from [5, Theorem 1.5].

Theorem 3.9. The closed-open map

COa : SHa
k(W ) → HWa

k−n(L)
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for a > 0 fits into the following commutative diagram:

Hk+n(W,∂W ) SHa
k(W )

Hk(L, ∂L) HWa
k−n(L)

ja

i! COa

ja

(3.11)

where the left vertical i! : Hk+n(W,∂W ) → Hk(L, ∂L) is the natural map
induced by the inclusion i : L → W .

Proof. Let ε > 0 be a sufficiently small number such that (3.4) and (3.8)
hold. The commutative diagram (on the right) in [5, Theorem 1.5] together
with the compatibility of closed-open maps with the action filtrations yields
the following commutative diagram.

Hk+n(W,∂W ) SHε
k(W ) SHa

k(W )

Hk(L, ∂L) HWε
k−n(L) HWa

k−n(L)

ψ

i!

ιa

COε COa

ψ ιa

(3.12)

Here, the maps ψ, constructed in [28, Section 15], are the analogues of the
(relative) Piunikhin–Salamon–Schwarz isomorphism [26], and the maps ιa are
the natural inclusions from the respective tautological exact sequences (3.3)
and (3.7). Indeed, the exactness of L replaces the monotonicity assumption in
[5, Theorem 1.5] from which we obtain the commutativity of the left square
in (3.12) modulo conventional differences between Floer homology and co-
homology. The commutativity of the right square in (3.12) is an immediate
consequence of the fact that the closed-open map CO respects the action
filtration on SH∗(W ) and HW∗(L). As in [28, Lemma 15.1], we know that
ja = ιa ◦ ψ, and the commutative diagram (3.11) in the assertion therefore
follows from (3.12). �

3.3.4. Without absolute grading. Even though we have worked with the ab-
solute Z-grading on SH∗(W ) and HW∗(L) for the sake of completeness, the
Floer homologies and the filtered closed-open maps with Theorem 3.9 readily
work regardless of the grading. The discussions in Sect. 4 do not require the
Floer homologies and the closed-open maps to be graded, and the topological
assumptions c1(TW ) = 0 and π1(L) = 0 are therefore not necessary for our
applications; see Example 3.5.

In this case, as a fairly standard way in Floer theory, we take the zero-
dimensional component of the moduli spaces (3.1), (3.5), (3.9) of Floer solu-
tions instead of fixing the difference of the absolute gradings of asymptotes;
the Fredholm index of underlying Fredholm problems determines the local
dimension of the corresponding moduli spaces. Then we define the differen-
tials (3.2), (3.6) and the chain map (3.10) on ungraded Floer chain groups
by counting elements of the zero-dimensional component of the respective
moduli spaces. The analysis on Floer solutions and the action filtrations on
Floer chain complexes are independent of the absolute grading. We therefore

J. Kim et al. JFPTA

Reprinted from the journal792



obtain the ungraded filtered closed-open map COa : SHa
∗(W ) → HWa

∗(L)
with the commutative diagram:

H∗(W,∂W ) SHa
∗(W )

H∗(L, ∂L) HWa
∗(L)

ja

i! COa

ja

4. Floer homology capacities

4.1. SH capacity

Let (W,λ) be a Liouville domain as in Sect. 3.1. We define the symplectic
homology capacity or shortly the SH capacity cSH(W,λ) of the domain (W,λ)
by

cSH(W ) = cSH(W,λ) = inf{a > 0 | ja[W,∂W ] = 0} ∈ [0,∞]

where the map ja : H∗(W,∂W ) → SHa
∗(W ) is constructed in Sect. 3.1.5. If

ja[W,∂W ] 	= 0 for all a > 0, then we conventionally put cSH(W ) = ∞.

Proposition 4.1. The SH capacity satisfies the following properties.
(1) (Conformality) For a positive real number r, we have

cSH(W, rλ) = rcSH(W,λ).

(2) (Monotonicity) For a generalized Liouville embedding (W1, λ1) ↪→
(W2, λ2), we have

cSH(W1, λ1) ≤ cSH(W2, λ2).

(3) (Spectrality) If cSH(W ) < ∞, there exists a periodic Reeb orbit γ on the
contact boundary (Σ, α) such that

cSH(W ) = �(γ)

where �(γ) denotes the period of γ.

Remark 4.2. A symplectic embedding ϕ : (W1, λ1) ↪→ (W2, λ2) is called a
generalized Liouville embedding if (ϕ∗λ2 − λ1)|∂W1 = 0 in H1(∂W1). In par-
ticular, if W1 and W2 are both starshaped domains in R

2n, every symplectic
embedding is a generalized Liouville embedding since H1(S2n−1) = 0 for
n ≥ 2.

Remark 4.3. The SH capacity cSH(W ) is finite if and only if SH∗(W ) = 0.

Proof of Proposition 4.1. For smooth convex domains in R
2n, the above prop-

erties are presented e.g. in [19, Section 2.4]. For general Liouville domains, the
monotonicity comes from the existence of a natural homomorphism SHa

∗(W2)
→ SHa

∗(W1), called a transfer map, in symplectic homology for generalized
Liouville embeddings as in [17, Theorem 1.24]. The spectrality follows from
essentially the same argument as in [17, Lemma 4.2], using the relationship
between action values of Hamiltonian 1-orbits of admissible Hamiltonians
and Reeb orbits on the contact boundary; see [17, Remark 5.6].
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4.2. HW capacity

We can define an open string analogue of the SH capacity using wrapped
Floer homology. Let L be an admissible Lagrangian in a Liouville domain
(W,λ). Recall that L is assumed to be connected; Sect. 3.2.1. The wrapped
Floer homology capacity or shortly HW capacity is defined as

cHW(W ) = cHW(W,λ,L) = inf{a > 0 | ja[L, ∂L] = 0} ∈ [0,∞]

where the map ja : H∗(L, ∂L) → HWa
∗(L) is defined in Sect. 3.2.2. We set

cHW(W ) = ∞ if ja[L, ∂L] 	= 0 for all a > 0. The following is completely
analogous to that for the SH capacity in Proposition 4.1; we omit its proof.

Proposition 4.4. The HW capacity satisfies the following properties.

(1) (Conformality) For a positive real number r, we have

cHW(W, rλ, L) = rcHW(W,λ,L).

(2) (Monotonicity) For a generalized Liouville embedding ϕ : (W1, λ1) →
(W2, λ2) with ϕ(L1) ⊂ L2, we have

cHW(W1) ≤ cHW(W2).

(3) (Spectrality) If cHW(W ) < ∞, there exists a Reeb chord x on the contact
boundary (Σ, α,L) such that

cHW(W ) = �(x)

where �(x) denotes the length of x.

Remark 4.5. The SH capacity is also known as the Floer–Hofer–Wysocki ca-
pacity defined in [14], and the HW capacity is referred to as Lagrangian
Floer–Hofer–Wysocki capacity in [7].

Remark 4.6. The HW capacity cHW(W,λ,L) is finite if and only if HW∗(L) =
0, which is in particular the case when SH∗(W ) = 0, see [28, Theorem 10.6].

4.3. Proof of Theorem 1.3

In this section, we give a proof of the estimate (1.3).
Let K be a smooth compact convex domain in R

2n which is invariant
under an anti-symplectic involution ρ of (R2n,dλ0), and the real Lagrangian
Fix(ρ) intersects the boundary ∂K. To apply our Floer setup, we choose a
Liouville form λ on K with dλ = dλ0 such that ρ is an exact anti-symplectic
involution with respect to λ and the associated Liouville vector field is pos-
itively transverse along the boundary. For example one takes the average
λ:= 1

2 (λ0 − ρ∗λ0):

Lemma 4.7. Let (W,λ0) be a Liouville domain with an anti-symplectic invo-
lution ρ : W → W . Then λ:=1

2 (λ0−ρ∗λ0) satisfies that dλ = dλ0, ρ∗λ = −λ,
and the corresponding Liouville vector field Xλ of λ is positively transverse
along the boundary ∂W .
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Proof. It is immediate to see that dλ = dλ0 and ρ∗λ = −λ. We claim that
the Liouville vector field Xλ of λ, defined by dλ0(Xλ, ·) = λ, is positively
transverse along the boundary ∂W . Observe that Xρ∗λ0 = −ρ∗Xλ0 . Indeed,
for any vector Y ∈ TW ,

dλ0(ρ∗Xλ0 , Y ) = ρ∗dλ0(Xλ0 ◦ ρ, ρ∗(Y ◦ ρ))

= −dλ0(Xλ0 ◦ ρ, ρ∗(Y ◦ ρ))

= −λ0(ρ∗(Y ◦ ρ))

= −ρ∗λ0(Y ).

Since the diffeomorphism ρ : W → W preserves the boundary ∂W and the
interior of W , respectively, the push-forward of any outward normal vector
along the boundary under ρ is again an outward normal vector. From this
fact, we deduce that the pull-back ρ∗Xλ0 is positively transverse along the
boundary. Therefore the convex sum

Xλ =
1
2
(Xλ0 − Xρ∗λ0) =

1
2
(Xλ0 + ρ∗Xλ0)

is positively transverse along ∂W as well. �

Note that the systoles �min(∂K) and �sym
min (∂K, ρ) defined in (1.2) do not

depend on the choice of the Liouville form λ as explained in Remark 1.2, and
we can work with λ instead of λ0. The triple (K,λ, ρ) now fits our Floer setup
as in Example 3.5. Note that we do not assume π1(L) = 0; see Sect. 3.3.4.

Abbreviate α = λ|∂K and denote the restriction of ρ to ∂K again by
the same letter. First we relate the above Floer homology capacities with
(symmetric) systoles. The following is a non-trivial fact relating the systole
�min(∂K) with the SH capacity, which is recently proved in [1] and [19].

Theorem 4.8. (Abbondandolo–Kang, Irie) Let K be a smooth convex body in
R

2n. Then the SH capacity of K coincides with the systole of the contact
boundary (∂K,α)

cSH(K) = �min(∂K).

Remark 4.9. The inequality cSH(K) ≥ �min(∂K) is obvious from the spec-
trality of cSH(K) in Proposition 4.1. There is a starshaped and non-convex
K for which the strict inequality cSH(K) > �min(∂K) holds. See for example
[18, Section 3.5].

Since SH∗(K) = 0, it follows from Remark 4.6 that HW∗(L) = 0 as
well. By the spectrality of cHW in Proposition 4.4, there exists a symmetric
periodic orbit on (∂K, ρ). In view of the one-to-one correspondence between
symmetric periodic orbits and pairs of Reeb chords on the symmetric convex
hypersurface ∂K, the spectrality of cHW yields the following comparison.

Proposition 4.10. The HW capacity of (K, ρ) and the symmetric systole of
(∂K, ρ) satisfy

�sym
min (∂K, ρ) ≤ 2cHW(K, ρ).
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Remark 4.11. It should be possible to establish a real analogue of Theo-
rem 4.8 for symmetric convex hypersurfaces, asserting that 2cHW(K, ρ) =
�sym
min (∂K, ρ).

Closed-open maps give the following relationship between the SH ca-
pacity and the HW capacity, which was also observed in [7, (i) in Theorem
1.5]. We state it for general Liouville domains:

Proposition 4.12. For an admissible Lagrangian L in a Liouville domain
(W,λ),

cHW(W ) ≤ cSH(W ).

Proof. This is a direct consequence of Theorem 3.9. If ja[W,∂W ] = 0 in
SHa

∗(W ), it follows from the commutative diagram (3.11) that

0 = (COa ◦ ja)[W,∂W ] = (ja ◦ i!)[W,∂W ] = ja[L, ∂L]

where the last equality holds because the natural map i! : H∗(W,∂W ) →
H∗(L, ∂L) sends the fundamental class [W,∂W ] to the fundamental class
[L, ∂L]. Therefore we have a ≥ cHW(W ), and consequently we conclude
cHW(W ) ≤ cSH(W ). �

We now obtain the desired estimate.

Proof of Theorem 1.3. Theorem 4.8 and Proposition 4.10 tell us that

1 ≤ R(∂K, ρ) =
�sym
min (∂K, ρ)
�min(∂K)

≤ 2cHW(K, ρ)
cSH(K)

.

An application of Proposition 4.12 to (K,α, ρ) provides
2cHW(K, ρ)

cSH(K)
≤ 2,

finishing the proof. �

5. Real symplectic capacities

Let (M,ω, ρ) be a real symplectic manifold, meaning that a symplectic man-
ifold (M,ω) is equipped with an anti-symplectic involution ρ, i.e. ρ∗ω = −ω.
We always assume that Fix(ρ) 	= ∅ so that it is a Lagrangian submanifold
of M . A real symplectic embedding Ψ: (M1, ω1, ρ1) → (M2, ω2, ρ2) between
two real symplectic manifolds is an embedding of M1 into M2 such that
Ψ∗ω2 = ω1 and Ψ∗ρ2 = ρ1.

Definition 5.1. A real symplectic capacity is a function c which assigns to a
real symplectic manifold (M,ω, ρ) a number c(M,ω, ρ) ∈ [0,+∞] having the
following properties:

• (Monotonicity) If real symplectic manifolds (M1, ω1, ρ1) and (M2, ω2, ρ2)
have the same dimension, and if there exists a real symplectic em-
bedding Ψ: (M1, ω1, ρ1) → (M2, ω2, ρ2), then we have c(M1, ω1, ρ1) ≤
c(M2, ω2, ρ2);

• (Conformality) c(M, rω, ρ) = rc(M,ω, ρ) for all r > 0;
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• (Nontriviality) 0 < c(B2n(1), ω0, ρ0) and c(Z2n(1), ω0, ρ0) < ∞, where
B2n(1) = {z ∈ C

n | ||z||2 < 1} and Z2n(1) = {z ∈ C
n | |z1|2 < 1}. Here

ω0 = dλ0 denotes the standard symplectic form on R
2n, and ρ0 denotes

complex conjugation.

A real symplectic capacity c is said to be normalized if

c(B2n(1), ω0, ρ0) = c(Z2n(1), ω0, ρ0) = 1.

Remark 5.2. The notion of real symplectic capacities was first introduced
by Liu and Wang [23], where the authors referred to it as “symmetrical”
symplectic capacities.

Example 5.3. We provide several examples of real symplectic capacities.
(i) The real Gromov width creal

B (M,ω, ρ) is defined as the supremum over
all r > 0 such that (B2n(r), ω0, ρ0) real symplectically embeds into
(M,ω, ρ). It is normalized and the smallest in the sense that if c is
a real symplectic capacity, then creal

B (M,ω, ρ) ≤ c(M,ω, ρ) for all real
symplectic manifolds (M,ω, ρ).

(ii) In [23], Liu and Wang constructed the real Hofer–Zehnder capacity creal
HZ ,

which is normalized, by imitating the construction of Hofer–Zehnder ca-
pacity [18]. Let K ⊂ R

2n be a compact convex domain invariant under
a linear anti-symplectic involution ρ. It was shown in [20, Theorem 1.3]
that the real Hofer–Zehnder capacity of (K, ρ) agrees with the symmet-
ric systole, i.e. creal

HZ (K, ρ) = �sym
min (∂K, ρ).

(iii) Following the construction of the (first) Ekeland–Hofer capacity [13],
Jin and Lu defined the real Ekeland–Hofer capacity creal

EH (·, ρ) for com-
pact domains K ⊂ R

2n invariant under a fixed linear anti-symplectic
involution ρ, see [20]. It is normalized. Strictly speaking, it is not a real
symplectic capacity as it is defined only for domain in R

2n and satis-
fies only restricted monotonicity: if K1 ⊂ K2 are compact domains in
R

2n that are invariant under a fixed linear anti-symplectic involution ρ,
then we have creal

EH (K1, ρ) ≤ creal
EH (K2, ρ). Nonetheless, we call it a real

symplectic capacity. For a compact convex domain K ⊂ R
2n invariant

under a linear anti-symplectic involution ρ, it agrees with the symmet-
ric systole of (∂K, ρ). Consequently, for every symmetric convex domain
(K, ρ) with ρ being linear, the real Hofer–Zehnder capacity and the real
Ekeland–Hofer capacity agree, see [20, Theorem 1.10].

(iv) Let (W,λ, ρ) be a real Liouville domain, i.e. (W,λ) is a Liouville domain
equipped with an exact anti-symplectic involution ρ. The wrapped Floer
homology capacity cHW(W,λ, ρ), constructed using wrapped Floer ho-
mology, satisfies restricted monotonicity, meaning that if there exists a
generalized real Liouville embedding from (W1, λ1, ρ1) into (W2, λ2, ρ2),
then cHW(W1, λ1, ρ1) ≤ cHW(W2, λ2, ρ2). See Sect. 4.2 for the construc-
tion. Recall that a generalized real symplectic embedding is a real sym-
plectic embedding ϕ : (W1, λ1, ρ1) → (W2, λ2, ρ2) such that (ϕ∗λ2 −
λ1)|∂W1 = 0 in H1(∂W1). In particular, if W1 and W2 are both star-
shaped domains in R

2n, every real symplectic embedding is a gener-
alized real Liouville embedding since H1(S2n−1) = 0 for n ≥ 2. We
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expect that the argument of [19] applies to all compact convex domains
K ⊂ R

2n invariant under a linear anti-symplectic involution ρ, implying
that cHW(K, ρ) = �sym

min (∂K, ρ).
(v) Analogously to Gutt–Hutchings [17], we can construct, using positive

equivariant wrapped Floer homology defined in [21], a sequence of real
symplectic capacities c1 ≤ c2 ≤ · · · ≤ ∞ for real Liouville domains.
They satisfy all the conditions for real symplectic capacities, but the
monotonicity. Instead, they satisfy the restricted monotonicity as the
wrapped Floer homology capacity. Using a Gysin-type exact sequence
in wrapped Floer theory (see [21, Proposition 3.27] and [10, Proposition
2.9]), it is not hard to see that c1(W,λ, ρ) ≤ cHW(W,λ, ρ) for every real
Liouville domain (W,λ, ρ).

There is an old question about symplectic capacities asking if all nor-
malized symplectic capacities agree on compact convex domains in R

2n, see
[24, Section 14.9, Problem 53] and [25, Section 5]. We finish this article with
the following related conjecture.

Conjecture 5.4. For convex domains in R
2n invariant under a fixed linear

anti-symplectic involution, all normalized symplectic capacities and normal-
ized real symplectic capacities are the same.
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Abstract. We characterise boundary-shaped disc-like neighbourhoods of
certain isotropic submanifolds in terms of aperiodicity of Reeb flows. We
prove uniqueness of homotopy and diffeomorphism type of such contact
manifolds assuming non-existence of short periodic Reeb orbits.
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1. Introduction

In their seminal work, Gromov [1] and Eliashberg [2] observed that foliations
by holomorphic curves can be used to prove uniqueness of the diffeomorphism
(in fact symplectomorphism) type of minimal symplectic fillings of the stan-
dard contact 3-sphere, i.e., all such fillings are diffeomorphic to the 4-ball D4.
The method they used, the so-called filling by holomorphic curves method,
is obstructed by bubbling off of holomorphic spheres. Related classification
results in dimension 4 can be found in [3–8].

On the other hand, Hofer [9] discovered a fundamental property of holo-
morphic curves in symplectisations; non-compactness properties of holomor-
phic curves of finite energy are strongly related to the existence of periodic
Reeb orbits. Combining the method of filling by holomorphic curves with
the theory of finite energy planes Eliashberg–Hofer [10] determined the dif-
feomorphism (in fact contactomorphism) type of certain contact manifolds
with boundary S2: any compact contact manifold with boundary S2 = ∂D3

is diffeomorphic to D3 provided there exists a contact form that is equal to
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the standard contact form on D3 near the boundary S2 such that the corre-
sponding Reeb vector field does not admit a periodic orbit with period less
than π. A similar characterisation of D2 ×S1 in terms of Reeb dynamics was
obtained by Kegel–Schneider–Zehmisch [11].

In higher dimensions, the diffeomorphism type of symplectically aspher-
ical fillings of the standard contact sphere was determined by Eliashberg–
Floer–McDuff [12, Theorem 1.5]: any such filling is diffeomorphic to the ball
D2n. The proof they used was refined to the so-called degree method (see
Sect. 3.2 for an explanation) by Barth–Geiges–Zehmisch [13] allowing a much
wider class of contact type boundaries, see also [14–16].

The contact theoretic counterpart in higher dimensions was not clear
for a while. It was conjectured by Bramham–Hofer [17] that the existence of
trapped Reeb orbits on a compact contact manifold, whose boundary neigh-
bourhoods look like neighbourhoods of S2n = ∂D2n+1 in D2n+1, implies the
existence of periodic Reeb orbits. A counterexample to that conjecture was
given by Geiges–Röttgen–Zehmisch [18]. It suggests that the diffeomorphism
type in higher dimensional contact geometry should be determined via a
method not based on non-existence of trapped orbits as done in Eliashberg–
Hofer [10].

In fact, using the degree method, Geiges–Zehmisch [19] proved that any
compact strict contact manifold that has an aperiodic Reeb flow is diffeomor-
phic to D2n+1 provided that the following condition is satisfied: A neighbour-
hood of the boundary admits a strict contact embedding into the standard
D2n+1 mapping the boundary to S2n = ∂D2n+1. This was generalised by
Barth–Schneider–Zehmisch [20] to situations in which D2n+1 is replaced by
the disc bundle of R × T ∗T d × C × C

n−1−d whenever n − 1 ≥ d.

The aim of this work is to replace the torus T d by more general d-
dimensional manifolds, see Theorem 2.1 below. Again the argument will be
based on the construction of a proper degree 1 evaluation map on the mod-
uli space of 1-marked holomorphic discs with varying Lagrangian boundary
conditions. The restriction to T d in [20] was caused by the choice of the
boundary conditions set up for the holomorphic discs. This led to trivialising
the cotangent bundle of T d in a Stein holomorphic fashion. To replace D2n+1

by the disc bundle of R×T ∗Q×C×C
n−1−d for a wider class of manifolds Q

we choose different boundary conditions for the holomorphic discs. Instead of
taking a foliation of T ∗Q by sections we consider the foliation T ∗Q given by
the cotangent fibres. This will result in a more advanced analysis for the holo-
morphic discs. The essential point here will be a target rescaling argument in
Sect. 7, which was invented by Bae–Wiegand–Zehmisch [21] in the context
of virtually contact structures, to ensure C0-bounds on holomorphic discs in
the situation of general manifolds Q. Furthermore, to obtain C0-bounds of
holomorphic discs along their boundaries in T ∗Q-direction, we develop an
integrated maximum principle in Sects. 5 and 6.5 .
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2. Aperiodicity and boundary shape

Strict contact manifolds (M,α) are naturally equipped with a nowhere van-
ishing vector field, namely the Reeb vector field of α. Assuming α to be ape-
riodic, i.e., assuming that the Reeb vector field does not admit any periodic
solution, the diffeomorphism type of M can be determined in many situa-
tions. Here we are interested in comparing compact manifolds with bound-
ary M with neighbourhoods of isotropic submanifolds of the sort D

(
T ∗Q ⊕

R
2n+1−2d

)
. This requires boundary conditions for the Reeb vector field as we

will explain in the following:

2.1. A model

Let Q be a closed, connected Riemannian manifold of dimension d and let
n ∈ N such that n−1 ≥ d. Define a strict contact manifold (C,α0) by setting

C := R × T ∗Q × C × C
n−1−d

and

α0 := db + λ +
1
2
(
x0dy0 − y0dx0

) −
n−1−d∑

j=1

yjdxj ,

where b ∈ R, λ is the Liouville 1-form of T ∗Q, x0+iy0 and xj +iyj are coordi-
nates on C and C

n−1−d, resp. Throughout the text, we will use vector nota-
tion x and y for the coordinate tuples (x1, . . . , xn−1−d) and (y1, . . . , yn−1−d),
resp., so that we can abbreviate

−ydx = −
n−1−d∑

j=1

yjdxj .

The Reeb vector field of α is given by ∂b, which is tangent to the real lines
R × {∗}.

By [22, Theorem 6.2.2] (C,α0) is the model neighbourhood of an isotropic
submanifold Q of a strict contact manifold provided that Q has trivial sym-
plectic normal bundle and the dimension d of Q is smaller than n. Observe,
that (C,α0) is the contactisation of the Liouville manifold

(

T ∗Q × C × C
n−1−d, λ +

1
2
(
x0dy0 − y0dx0

) − ydx

)

.

The statements about the model neighbourhood situation and contactisation
of course hold in the critical case d = n also. Simply ignore the Euclidean
factors in the formulations.

2.2. Fibrewise shaped

The space C itself is the total space of the stabilised cotangent bundle T ∗Q⊕
R

2n+1−2d. Let S ⊂ C be a hypersurface diffeomorphic to the unit sphere
bundle S

(
T ∗Q ⊕ R

2n+1−2d
)

such that
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(1) S intersects each fibre transversely in a sphere

Sq := S ∩ (
T ∗

q Q ⊕ R
2n+1−2d

)
, q ∈ Q,

of dimension 2n − d, and
(2) each Sq intersects the flow lines of ∂b in at most two points. We require

transverse intersections if such a flow line intersects Sq in two points.
Points of tangency, i.e. points that correspond to single intersections,
form a submanifold diffeomorphic to a (2n − d − 1)-sphere.

In view of condition (1), we remark that the hypersurface S bounds a bounded
domain D inside C, whose closure is diffeomorphic to the closed unit disc
bundle D

(
T ∗Q ⊕ R

2n+1−2d
)
. Condition (2) will play an important role in

Sect. 3.1. We call S a shape.

2.3. Standard near the boundary

Let (M,α) be a strict contact manifold of dimension 2n + 1 that is standard
near the boundary, i.e.
(1) connected, compact with boundary ∂M diffeomorphic to

∂M ∼= S
(
T ∗Q ⊕ R

2n+1−2d
)
,

(2) such that there exist an open collar neighbourhood U ⊂ M of ∂M and
an embedding ϕ : (U, ∂U = ∂M) → (D,S) such that ϕ∗α0 = α on U .

If ϕ is given we will call S the shape of M .
To quantify aperiodicity of (M,α) we denote by inf0(α) > 0 the minimal

action of all contractible closed Reeb orbits w.r.t. α. By Darboux’s theorem,
inf0(α) is indeed positive. For aperiodic α, we set inf0(α) to be ∞.

A second ingredient for quantisation comes with the subset

Z := R × T ∗Q × D × C
n−1−d

of C denoting the closed unit disc in C by D. We may assume that S ⊂ Int Z
by scaling radially via

(
t2b, t2w, tz0, tz

)
, t ∈ (0, 1), if necessary. The contact

form α on M will be replaced by t2α accordingly.

2.4. Main theorem

We compare the homology, homotopy and diffeomorphism type of M with
the one of D

(
T ∗Q ⊕ R

2n+1−2d
)
. This will be done in terms of embeddings

D
(
T ∗Q ⊕ R

2n+1−2d
) −→ M

determined by a small neighbourhood of a section Q → S as constructed,
e.g. at the beginning of Sect. 9. We denote the image of such an embedding
by

M0 := D
(
T ∗Q ⊕ R

2n+1−2d
)
.

Theorem 2.1. Let Q be an oriented, closed, connected Riemannian manifold
of dimension d. Let n ∈ N such that n − 1 ≥ d. Let (M,α) be a strict
contact manifold that is standard near the boundary as described in Sect. 2.3.
Assume that the shape S ∼= ∂M of M is contained in the interior of (Z,α0).
If inf0(α) ≥ π, then the following is true:
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(i) Any embedding Q → M given by a section Q → S induces isomorphisms
of homology and surjections of fundamental groups. If in addition π1Q
is abelian, then the surjections are injective.

(ii) Assume that π1Q is abelian and that at least one of the following con-
ditions is satisfied:
(a) π1Q is finite.
(b) Q is aspherical.
(c) Q is simple and S → Q a trivial sphere bundle, or, more generally,

S is a simple space.
Then, M is homotopy equivalent to M0.

(iii) If in addition to the assumptions in (ii) (including choices of one of the
conditions (a)–(c)) we have that 2n + 1 ≥ 7 and that the Whitehead
group of π1Q is trivial, then M is diffeomorphic to M0.

2.5. Comments on Theorem 2.1

In view of the contact connected sum, the bound π in the theorem is optimal,
cf. [19, Remark 1.3.(1)]. The shape boundary condition can be isotoped to
a round shape through shaped hypersurfaces. Hence, we recover the results
from [19,20] and obtain independence of the choice of metric.

The orientation of Q will not be used in the compactness argument
below. But will be needed for an orientation of the moduli space. Without
orientation we only can talk about the mod-2 degree of the evaluation map.
Hence, if Q is not orientable, only part (i) of the theorem remains true re-
placing homology by homology with Z2-coefficients.

Similarly, the boundary of M is necessarily connected, cf. [19, Remark
1.3.(4)]. Indeed, suppose ∂M has several components that have individually
a shape embedding into potentially different stabilised cotangent bundles.
Here, different Qs with varying dimensions are allowed. M itself satisfies the
remaining stated properties from Theorem 2.1. In this situation one can set
up the moduli space of holomorphic discs with respect to one distinguished
boundary component; the other components will come with the maximum
principle for holomorphic curves. In other words, the holomorphic disc anal-
ysis will be uneffected and the evaluation map on the moduli space will be
of degree one. This contradicts the fact that no holomorphic disc can exceed
one of the additional boundary components due to the maximum principle.

Example 2.2. In view of the Hadamard–Cartan and the Farrell–Jones theo-
rems, the assumptions of Theorem 2.1 part (b) in (ii) and (iii) are satisfied
for all Riemannian manifolds Q with abelian fundamental group and non-
positive sectional curvature. Hence, we recover Q = T d from [20].

Example 2.3. A particular class of manifolds Q that satisfy the assumptions
of Theorem 2.1 part (c) in (ii) and (iii) are products of unitary groups and
spheres of any dimensions. Indeed, such Q always have stably trivial tangent
bundle, are simple with fundamental group free abelian so that in particular
the Whitehead group of those is trivial.
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Remark 2.4. If we know more about the handle body structure of M condi-
tions on the topology of Q can be relaxed. For example if M has the homo-
topy type of a CW complex of codimension 2 so that the inclusion ∂M ⊂ M
is π1-injective the assumption π1Q abelian in Theorem 2.1 can be dropped
everywhere.

If M admits a handle body structure with all handles of index at most �
and if d+max(d, �) ≤ 2n−1, then M and M0 are homotopy equivalent without
any further conditions. This follows with the argument from [13, Theorem
7.2] using the diagram in Sect. 9.2. In particular, the CW-dimension of M
must be equal to d. In fact, one can conclude with the diffeomorphism type
as in [13, Theorem 9.4], cf. [13, Example 9.5].

3. The degree method

We will explain the main idea of the proof of Theorem 2.1, which will be
given in Sects. 4–9.

3.1. Completion via gluing

Assuming S ⊂ Int Z, we define smooth manifolds

Ĉ := (C \ Int D) ∪ϕ M, Ẑ := (Z \ Int D) ∪ϕ M

by gluing via ϕ and equip both with the contact form

α̂ := α0 ∪ϕ α

that coincides with α on M and with α0 on C \ Int D. Because of the contact
embedding ϕ of U ⊃ ∂M into (Z,α0) this is well defined. According to the
second shape condition in Sect. 2.2, the gluing does not create additional
periodic Reeb orbits inside (Ĉ, α̂) so that inf0(α) and inf0(α̂) coincide.

3.2. Filling by holomorphic discs

To prove Theorem 2.1, we will argue as in [19,20]: The Liouville manifold
(
T ∗Q × D × C

n−1−d, λ +
1
2
(
x0dy0 − y0dx0

) − ydx
)

is foliated by holomorphic discs {w} × D × {s + it}. Using the Niederkrüger
transformation from Sect. 4.3 these discs can be lifted to holomorphic discs
in the symplectisation of the contactisation (Z,α0) and are called standard
discs. After gluing some of the standard discs will survive, namely those which
correspond to the end of (Ẑ, α̂) in the symplectisation (W,ω) of (Ẑ, α̂). We
will study the corresponding moduli space W of holomorphic discs

u = (a, f) : D −→ W

subject to varying Lagrangian boundary conditions, which will differ substan-
tially from those used in [19,20]. This requires a different argument to obtain
C0-bounds for holomorphic discs, which at the end allows a wider class of
base manifolds Q.
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It will turn out that the evaluation map

ev : W × D −→ Ẑ(
(a, f), z

) �−→ f(z)

either is proper of degree one or there will be breaking off of finite energy
planes. The first alternative allows conclusions on the diffeomorphism type
of M with the s-cobordism theorem as in [13]. The second results in the
existence of a short contractible periodic Reeb orbit of α on M by a result
of Hofer [9]. Short here means that the action of the Reeb orbit is bounded
by the area of D.

The condition inf0(α) ≥ π will exclude breaking of holomorphic discs
along periodic Reeb orbits of action less than π. But in fact, under the
assumptions of Theorem 2.1 the shape S of M actually is contained in
R×T ∗Q×Br(0)×C

n−1−d for r ∈ (0, 1). Working out the proof of Theorem 2.1
with that slightly smaller radius r we will see that requiring non-existence of
short periodic Reeb orbits with period bounded by πr2 will be sufficient. In
other words, we can assume that inf0(α) > πr2 to prove properness of the
evaluation map ev. To simplify notation, we will assume r = 1, i.e. from now
on we assume inf0(α) > π.

4. Standard holomorphic discs

In this section, we construct standard holomorphic discs. We will follow [19,
Section 2] and [20, Section 2] adding adjustments to the current situation.

4.1. The contactisation

We consider the Liouville manifold

(V, λV ) :=
(
T ∗Q × D × C

n−1−d, λ +
1
2
(
x0dy0 − y0dx0

) − ydx
)
,

whose contactisation (R×V,db+λV ) is (Z,α0). The induced contact structure
ξ0 = ker α0 on Z is spanned by tangent vectors of the form v − λV (v)∂b,
v ∈ TV .

4.2. Liouville manifold and potential

Denote by JT ∗Q the almost complex structure on T ∗Q that is compatible
with dλ and satisfies λ = −dF ◦ JT ∗Q. Here F is a strictly plurisubharmonic
potential in the sense of [23, Section 3.1] that coincides with the kinetic energy
function near the zero section of T ∗Q and interpolates to the length function
on the complement of a certain disc bundle in T ∗Q, see [24, Section 3.1]. In
Sect. 5, we will present a construction of (F, JT ∗Q).

Define an almost complex structure on the Liouville manifold (V, λV )
by setting

JV := JT ∗Q ⊕ i ⊕ i.

JV is compatible with the symplectic form dλV and satisfies λV = −dψ ◦JV ,
where ψ is the strictly plurisubharmonic potential

ψ(w, z0, z) := F (w) +
1
4
|z0|2 +

1
2
|y|2
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denoting by w ∈ T ∗Q a co-vector of Q, z0 ∈ D and using complex coordinates
zj = xj +iyj , j = 1, . . . , n−1−d on C

n−1−d. Again the tuple (z1, . . . , zn−1−d)
is abbreviated by z so that 1

2 |y|2 reads as

1
2

n−1−d∑

j=1

y2
j .

In particular, (V, JV ) is foliated by holomorphic discs {w} × D × {s + it}.

4.3. The symplectisation

Let τ ≡ τ(a) be a strictly increasing smooth function R → (0,∞). We con-
sider the symplectisation

(
R × Z,d(τα0)

)

of (Z,α0). Define a compatible, translation invariant almost complex struc-
ture J that preserves the contact hyperplanes ξ0 on all slices {a} × Z by
requiring that J(∂a) = ∂b and that

J
(
v − λV (v)∂b

)
= JV v − λV (JV v)∂b

for all v ∈ TV . The Niederkrüger map is the biholomorphism

Φ: (R × R × V, J) −→ (C × V, i ⊕ JV )
(a, b , z) �−→ (

a − ψ(z) + ib, z
)

recalling that Z = R × V , see [25, Proposition 5] and [19, Proposition 2.1].

4.4. The Niederkrüger transform

Using the inverse of Φ, we lift the holomorphic discs

{a + ib} × {w} × D × {s + it}
from (C×V, i⊕JV ) to the symplectisation (R×R×V, J) of (Z,α0). For fixed
b ∈ R, w ∈ T ∗Q, and s, t ∈ R

n−1−d, the resulting standard holomorphic
discs

D −→ R × R × T ∗Q × D × C
n−1−d

are parametrised by

ut,w
s,b (z) =

(
1
4

(|z|2 − 1
)
, b ,w, z, s + it

)
,

cf. [19, Section 2.2].
To set boundary conditions for the standard discs we define a (n − 1)-

dimensional family of cylinders

Lt
q := {0} × R × T ∗

q Q × ∂D × R
n−1−d × {t},

where t ∈ R
n−1−d and q ∈ Q are the parameters. Observe, that the Lt

q

foliate {0}×∂Z. Furthermore the restriction of d(τα0) to the tangent bundle
of {0} × Z equals τ(0)dα0, which is a positive multiple of

dλ + dx0 ∧ dy0 + dx ∧ dy.

Therefore, Lt
q is a Lagrangian cylinder because the dimension of Lt

q is n + 1.
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4.5. Class independence

Preparing the definition of the moduli space W we consider the space R ×
T ∗

q Q × R
n−1−d of tuples (b,w, s). Assuming n ≥ 2 this space is at least 2-

dimensional, so that the complement of any ball in R × T ∗
q Q × R

n−1−d is
path-connected. Therefore, we find R > 0 such that

(1) the shape S is contained in the closed disc bundle DR

(
T ∗Q⊕R

2n+1−2d
)

of radius R, and
(2) all standard discs ut,w

s,b of level (q, t), w ∈ T ∗
q Q, that are contained in

R ×
(
Z \ DR

(
T ∗Q ⊕ R

2n+1−2d
))

are homotopic therein relative Lt
q via a homotopy inside

{0} × R × T ∗
q Q × D × R

n−1−d × {t}.

5. Symplectic potentials on cotangent bundles

We prepare the proof of geometric bounds on holomorphic discs that belong
to the moduli space W. The aim of this section is to construct an almost
complex structure on T ∗Q.

The almost complex structure on T ∗Q that belongs to the Levi-Civita
connection of Q is the one that is induced by the kinetic energy function. The
one coming from symplectising the unit cotangent bundle in contrast belongs
to the length functional and does not extend over the zero section. Here we
want to interpolate the two in order to obtain C0-bounds on holomorphic
curves in the complement of the unit codisc bundle that we after all can
identify with the positive symplectisation also holomorphically.

5.1. Dual connection

We denote the covariant derivative of the Levi-Civita connection of Q by ∇.
The corresponding covariant derivative ∇∗ of the dual connection is defined
via chain rule by

(∇∗β
)
(X,Y ) :=

(∇∗
Xβ

)
(Y ) := X

(
β(Y )

) − β(∇XY )

for 1-forms β and vector fields X,Y on Q, cf. [21, Section 4]. Denoting the
Christoffel symbols of ∇ by Γk

ij the Christoffel symbols (Γ∗)k
ij of ∇∗ can be

expressed by (Γ∗)k
ij = −Γj

ik. The connection map of the dual connection
K : TT ∗Q → T ∗Q and the tangent functor T are related via K ◦ T = ∇∗

and defines a splitting of

TT ∗Q = H ⊕ V
into horizontal

H := ker
(
K : TT ∗Q −→ T ∗Q

)

and vertical distribution

V = ker
(
Tτ : TT ∗Q −→ TQ),
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where Tτ is the linearisation of the cotangent map τ : T ∗Q → Q. Observe
that Tτ defines a bundle isomorphism from H onto τ∗TQ and that V can be
identified with τ∗T ∗Q canonically.

5.2. Orthogonal splitting

Denoting the metric of Q by g, contraction defines a bundle isomorphism

G : TQ −→ T ∗Q
v �−→ ivg.

The dual metric g� is defined by

g�(α, β) = g
(
G−1(α), G−1(β)

)

for co-vectors α, β ∈ T ∗Q on Q, so that the dual norm α �→ |α|� defines the
length function on T ∗Q. The kinetic energy function reads as

k(β) =
1
2
|β|2� .

For a smooth, strictly increasing function χ : R → R with χ(0) = 0 we define

F = χ ◦ k : T ∗Q → [0,∞).

This leads to a Riemannian metric h on T ∗Q defined by

h
(
v ⊕ α,w ⊕ β

)
:=

1
χ′ ◦ k

· g
(
Tτ(v), T τ(w)

)
+ (χ′ ◦ k) · g�(α, β),

where v, w ∈ H and α, β ∈ V. The metric h turns TT ∗Q = H ⊕ V into an
orthogonal splitting.

5.3. Taming structure

The Liouville form λ on T ∗Q is given by λw = w ◦ Tτ for w ∈ T ∗Q and
defines a symplectic form via dλ. Observe that for v, w ∈ H and α, β ∈ V

λu

(
v ⊕ α

)
= w

(
Tτ(v)

)

and

dλ
(
v ⊕ α,w ⊕ β

)
= α

(
Tτ(w)

) − β
(
Tτ(v)

)
.

In view of the splitting TT ∗Q = H ⊕ V, we define the almost complex struc-
ture JT ∗Q by setting

JT ∗Q

(
v ⊕ α

)
:= (χ′ ◦ k) · G−1(α) ⊕ −1

χ′ ◦ k
· G(v)

for v ∈ H and α ∈ V. This yields

h = dλ
(
., JT ∗Q.

)
,

i.e. JT ∗Q is compatible with the symplectic form dλ. Non-degeneracy of the
metric h and the symplectic form dλ shows that the almost complex structure
JT ∗Q is uniquely determined.
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5.4. Potentials

We claim that the function F is a symplectic potential on the tame symplectic
manifold (T ∗Q,dλ, JT ∗Q) in the sense that

λ = −dF ◦ JT ∗Q.

Indeed, in local (q,p)-coordinates on T ∗Q induced by Riemann coordinates
on Q about q ≡ 0 we have

H(0,p) =
{(

0,p, q̇,0
) | q̇ ∈ R

d
}

, V(0,p) =
{(

0,p,0, ṗ
) | ṗ ∈ R

d
}

,

as well as

λ(0,p) = pdq, dλ(0,p) = dp ∧ dq,

and

(
JT ∗Q

)
(0,p)

=

(
0 χ′( 1

2pipi
)

−
(
χ′( 1

2pipi
))−1

0

)

using block matrix notation and writing e.g. χ′( 1
2pipi

)
instead of χ′( 1

2pipi
)
1.

Because of

dF |(0,p) = χ′( 1
2pipi

) · pjdpj

we get, therefore,

−dF ◦ JT ∗Q|(0,p) = pjdqj |(0,p) = λ(0,p)

as claimed.

5.5. Interpolating geodesic and normalised geodesic flow

We choose the strictly increasing function χ : R → R from Sect. 5.2 to satisfy
χ(t) = t for t ≤ 1

4 and χ(t) =
√

2t for t ≥ 1
2 to interpolate the kinetic energy

with the length function.
We would like to understand the interpolation given by χ in terms of

symplectisation. For that, we consider the diffeomorphism

Φ :
(
R × ST ∗Q, eaα

) −→ (
T ∗Q \ Q,λ

)

(a,w) �−→ eaw

of Liouville manifolds, where α := λ|TST ∗Q. Observe, that

Φ∗F (a,w) = χ ◦ k
(
eaw

)
= χ

(
1
2e2a

)

equals ea for a ≥ 0. Since Φ is a symplectomorphism I := Φ∗JT ∗Q is a com-
patible almost complex structure on the symplectisation

(
R×ST ∗Q,d(eaα)

)
.

Moreover, on the positive part {a > 0} of the symplectisation, where Φ∗F =
ea, we obtain Φ∗dF = eada. Therefore,

eaα = Φ∗λ = Φ∗( − dF ◦ JT ∗Q

)
= −eada ◦ I,

which implies

α = −da ◦ I.

Consequently, I preserves the contact structure ξ = ker α ∩ ker(da) induced
by α on all slices. Moreover, denoting the Reeb vector field of α by R we get

1 = α(R) = −da(IR).
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Hence,

I∂a = R.

We remark that ∂a is the Liouville vector field of
(
R×ST ∗Q, eaα

)
. Therefore,

Φ∗∂a = Y , where Y is the Liouville vector field on T ∗Q determined by
λ = iY dλ.

We claim that the almost complex structure I is invariant under transla-
tion in R-direction along R

+×ST ∗Q. Indeed, using local Riemann coordinates
as in Sect. 5.4 the restriction of JT ∗Q to {|p|� > 1} is given by

(
JT ∗Q

)
(0,p)

=
(

0 1
|p|

−|p| 0

)

abbreviating, e.g. |p| = |p|�1. As the flow of Y scales by et in p-direction the
pullback of JT ∗Q with respect to the flow of Y = p∂p at (0,p) equals

(
1 0
0 e−t

) (
0 e−t

|p|
−et|p| 0

)(
1 0
0 et

)
=

(
0 1

|p|
−|p| 0

)
.

This shows that the Lie derivative LY JT ∗Q vanishes. Hence, Φ∗∂a = Y im-
plies L∂a

I = 0, i.e. I(a,p) = I(a+t,p) for all a, a + t > 0.
In other words, I is a compatible almost complex structure on the posi-

tive part of the symplectisation
(
R

+ ×ST ∗Q,d(eaα)
)
. I is translation invari-

ant, preserves the contact structure ξ = ker α, and sends the Liouville vector
field ∂a to the Reeb vector field R of α.

6. A boundary value problem

Following [19, Section 3] and [20, Section 3] we introduce the moduli space
W of holomorphic discs to understand the topology of the manifold M . We
consider the glued strict contact manifold (Ẑ, α̂) introduced in Sect. 3.1 and
form its symplectisation (W,ω), i.e. we set

(W,ω) :=
(
R × Ẑ,d(τα̂)

)

for a positive, strictly increasing smooth function τ defined on R such that
τ(a) = ea for all a ≥ 0. Compared to the constructions in [19,20], there
will be a substantial difference in setting up the boundary conditions for the
holomorphic discs.

6.1. An almost complex structure

We denote by ξ̂ the contact structure defined by α̂. On the symplectisation
(W,ω) we choose a compatible almost complex structure J that is R-invariant,
sends ∂a to the Reeb vector field of α̂, and restricts to a complex bundle
structure on

(
ξ̂,dα̂

)
.

To incorporate standard holomorphic discs we define the box B by

B := [−b0, b0] × DRT ∗Q × D2
r × D2n−2−2d

R ,
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where 0 < b0, r ∈ (0, 1), 1 ≤ R are real numbers chosen such that S ⊂ Int B.
Here, D2�

ρ ⊂ C
� denotes the closed 2�-disc of radius ρ and DρT

∗Q is the
closed ρ-disc subbundle of T ∗Q. Set

B̂ := (B \ Int D) ∪ϕ M.

We require the almost complex structure J to be the one defined in Sect. 4
on the complement of R × Int(B̂) in R × Ẑ. On R × Int(B̂) we will choose J
generically, see Sect. 8.

6.2. The moduli space

The moduli space W is the set of all holomorphic discs

u = (a, f) : D −→ (W,J)

that satisfy the following conditions:

(w1) There exists a level (q, t) ∈ Q × R
n−1−d such that

u(∂D) ⊂ Lt
q .

(w2) There exist b ∈ R, w ∈ T ∗
q Q, s ∈ R

n−1−d such that

[u] = [ut,w
s,b ] ∈ H2(W,Lt

q) ,

where (q, t) is the level of u.
(w3) u maps the marked points 1, i,−1 to the characteristic leaves Lt

q ∩{z0 =
1}, Lt

q ∩ {z0 = i}, and Lt
q ∩ {z0 = −1}, resp., i.e. for k = 0, 1, 2 we have

f(ik) ∈ R × T ∗
q Q × {ik} × R

n−1−d × {t} .

The parameters b,w, s in condition (w2) are assumed to be sufficiently
large so that the standard disc ut,w

s,b defines a holomorphic disc in (W,J). With
Sect. 4.5 the relative homology class of ut,w

s,b is independent of the choice of
b,w, s.

6.3. Uniform energy bounds

The symplectic energy
∫
D

u∗ω is bounded by π for all u = (a, f) ∈ W. Indeed,
by Stokes theorem, the symplectic energy of u is equal to the action

∫
∂D

f∗α̂
of the boundary circle. This also holds for any standard disc homologous to
u. The claim follows as the symplectic energy is the same for all holomorphic
discs of the same level and as the action of the boundary circle of standard
discs equals π.

By a similar argument, we obtain that the symplectic energy of any non-
constant holomorphic disc that takes boundary values in some Lagrangian
cylinder Lt

q is a positive multiple of π.
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6.4. Maximum principle

Let u = (a, f) ∈ W be a holomorphic disc of level (q, t). By [19, Lemma
3.6.(i)], the function a is subharmonic and, hence, a < 0 on IntD.

The set G := f−1
(
Ẑ \ B̂

)
is an open subset of D that contains a neigh-

bourhood of ∂D in D. Restricting f to G, we can write

f =
(
b,w, h0,h

)

w.r.t. coordinate functions on R × T ∗Q × D × C
n−1−d. As the Niederkrüger

map is biholomorphic, the function b is harmonic and the maps w, h0,h are
holomorphic, see Sect. 4.3.

In particular, if G = D, then u is one of the discs ut,w
s,b . This follows as in

[19, Lemma 3.7]. Simply use the fact that a holomorphic map w : D → T ∗Q
with boundary on T ∗

q Q is constant by Stokes theorem and w∗λ = 0 on ∂D.
Motivated by this, we introduce the notion of standard holomorphic

discs to the glued manifold W :

Definition 6.1. A holomorphic disc u = (a, f) ∈ W is a called a standard disc

if f(D) ⊂ Ẑ \ Int B̂. Holomorphic discs u = (a, f) ∈ W with f(D)∩ Int B̂ �= ∅
are called non-standard.

Applying the strong maximum principle and the boundary lemma by
E. Hopf to h0 we obtain as in [19, Lemma 3.6.(ii)] and on [19, p. 669 and
p. 671]:
(1) f(IntD) ⊂ Int Ẑ.
(2) u|∂D is an embedding.

Remark 6.2. In the situation, u is a non-constant holomorphic disc (W,J)
that satisfies just the boundary condition u(∂D) ⊂ Lt

q the conclusions from
this section that rely on the maximum principle continue to hold. The cor-
responding replacement of the statement in (2) which does not use the ho-
mological assumption is the following: h0 restricts to an immersion on ∂D
so that u(∂D) is positively transverse to each of the characteristic leaves
Lt

q ∩ {z0 = eiθ}, θ ∈ [0, 2π).

Remark 6.3. The monotonicity argument used in [19, Lemma 3.9] implies
that there exists a compact ball K ⊂ C

n−1−d such that h(G) ⊂ K for all
non-standard disc u ∈ W, i.e. with u = (a, f) we have

f−1
(
R × T ∗Q × D × (

C
n−1−d \ K

))
= ∅.

6.5. Integrated maximum principle

Let u = (a, f) ∈ W be a holomorphic disc of level (q, t). As in Sect. 6.4 we
consider G := f−1

(
Ẑ \ B̂

)
so that we can write f =

(
b,w, h0,h

)
on G. In

Sect. 6.4 we obtained uniform C0-bounds on h0 and h relying on the max-
imum principle from [19,20]. As the boundary conditions in T ∗Q-direction
are considerably different form the one used in [20] uniform C0-bounds on w
require a new argument.

First of all we remark that by Stokes theorem, the symplectic energy of u
(which we computed in Sect. 6.3 to be equal to π) is equal to the area

∫
D

f∗dα̂
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of f . Because f∗dα̂ is an area density by our compatibility assumptions we
obtain

∫

G

w∗dλ ≤
∫

G

f∗dα0 ≤ π.

Recall the diffeomorphism Φ:
(
R × ST ∗Q, eaα) → (

T ∗Q \ Q,λ
)

of Liouville
manifolds from Sect. 5.5, which pulls JT ∗Q back to I. Define v := Φ−1◦w and
replace G by the subset (|w|)−1

(
(R,∞)

)
, R ≥ 1 appearing in the definition

of the box in Sect. 6.1, so that

v = (c, k) : G −→ (ln R,∞) × ST ∗Q

is an I-holomorphic map subject to the following boundary conditions:

c
(
∂G \ ∂D

)
= {ln R}, k

(
∂D ∩ G

) ⊂ ST ∗
q Q.

Further we have
∫

G

v∗d(eaα) ≤ π

for the symplectic energy of v.
We consider the subdomain

Gt := c−1
(
(t,∞)

)

of G for t ≥ ln R. Note that Gln R = G. In order to allow partial integration
we denote by R the set of all regular values t ∈ (ln R,∞) of the functions c
and c|∂D∩G. By Sard’s theorem R has full measure. Therefore, the open set
R is dense in (ln R,∞).

For t ∈ R the domain Gt has piecewise smooth boundary

∂Gt = ∂D ∩ Gt + ∂Gt \ ∂D,

which we equip with the boundary orientation. Up to a null set the interior
boundary ∂Gt \ ∂D is given by c−1(t). Observe that ST ∗

q Q is a Legendrian
sphere in the unit cotangent bundle so that the restrictions of k∗α to the
tangent spaces of ∂D ∩ Gt vanish. Stokes theorem applied twice implies

∫

Gt

v∗d(eaα) = et

∫

c−1(t)

k∗α = et

∫

Gt

k∗dα,

where we used v∗d(eaα) = d(eck∗α).
On the other hand, using Leibniz rule, we have a decomposition

v∗d(eaα) = ecdc ∧ k∗α + eck∗dα

into energy densities. Define the α-energy functional by

e(t) :=
∫

Gt

ecdc ∧ k∗α ≥ 0.

Therefore,
∫

Gt

v∗d(eaα) = e(t) +
∫

Gt

eck∗dα ≥ e(t) + et

∫

Gt

k∗dα

using ec ≥ et on Gt.
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Combining these expressions for the symplectic energy, we get e(t) ≤ 0.
Hence, e(t) = 0 for all t ∈ R, i.e. the α-energy functional e = e(t) vanishes
identically. Because of

dc ∧ f∗α =
(
c2
x + c2

y

)
dx ∧ dy,

we deduce that c|Gt
= const and, since k∗α = −dc◦ i, that k∗α|Gt

= 0 as well
as k∗dα|Gt

= 0. We conclude that v|Gt
= const for all t ∈ (ln R,∞). An open

and closed argument for G = (|w|)−1
(
(R,∞)

)
implies that either G = ∅ or

v = const on all of G = D, which in turn implies that u ∈ W was a standard
disc. This shows uniform C0-bounds in T ∗Q-direction for all non-standard
discs u ∈ W:

Proposition 6.4. If u = (a, f) ∈ W is a non-standard holomorphic discs,
then

f−1
(
R × (

T ∗Q \ DRT ∗Q
) × D × C

n−1−d
)

= ∅.

7. Compactness

Consider a non-standard disc u = (a, f) ∈ W of level (q, t). On the preimage
G := f−1

(
Ẑ \ B̂

)
, we write

f =
(
b,w, h0,h

)

w.r.t. to the decomposition R×T ∗Q×D×C
n−1−d. In Sects. 6.4 and 6.5, we

obtained uniform bounds on
(i) a from above by 0,
(ii) h0 in the sense |h0| ≤ 1,
(iii) w and h in the sense that |w|� and |h|, resp., are bounded by a geometric

constant.
The coordinate function b completes to a holomorphic function

a − F (w) − 1
4
|h0|2 − 1

2
| Imh |2 + ib

on G, where the restriction of the real part to ∂D equals F (w)|∂D up to a
constant. In [19, Lemma 3.8], where no T ∗Q-component appears, we used
Schwarz reflection and the maximum principle to establish uniform bounds
on |b|. In our situation this would require real analyticity of F (w)|∂D, which
in general does not hold.

We will work around this utilising a bubbling off analysis that uses target
rescaling along the Reeb vector field ∂b on Ẑ \ B̂. This will require ideas from
[21]. In fact, by the elliptic nature of the holomorphic curves equation the
bubbling off analysis directly yields compactness properties of holomorphic
curves. Therefore, we will combine the target rescaling in b-direction with the
usual target rescaling along the Liouville vector field ∂a:

By the maximum principle |b| attains its maximum on ∂G. Observe that
because of f(∂D) ⊂ Ẑ \ B̂ the boundary of G decomposes

∂G = ∂D � f−1(∂B̂).
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Assuming |b| �≤ b0 we get therefore that |b| attains its maximum on ∂D.
Suppose there exist sequences ζν ∈ D and uν = (aν , fν) ∈ W of non-

standard such that

|bν(ζν)| −→ ∞
writing fν =

(
bν ,wν , hν

0 ,hν

)
. We may assume that ζν ∈ ∂D for all ν and

that ζν → ζ0 in ∂D. By the mean value theorem, we find a sequence zν in
D such that |∇uν(zν)| → ∞. This implies that uniform gradient bounds for
non-standard holomorphic discs in W result in uniform bounds on b.

Proposition 7.1. Under the assumptions of Theorem 2.1 each sequence of
non-standard discs uν ∈ W has a C∞-converging subsequence.

Proof. Consider a sequence of non-standard discs uν = (aν , fν) ∈ W of
level (qν , tν) such that |∇uν(zν)| → ∞ for a sequence zν → z0 in D. By
compactness of Q and Remark 6.3 we can assume that (qν , tν) → (q0, t0).
Observe that modifications as made in [19, Section 4.1] that fix the varying
boundary conditions we will mention in Sect. 8.3 are not necessary for the
following compactness argument.

Up to a choice of a subsequence, we distinguish two cases:
(1) fν(zν) ∈ Ẑ \ B̂ for all ν, and
(2) fν(zν) ∈ B̂ for all ν.

In the first case, additionally, we can assume that the sequences wν(zν),
hν

0(zν), and hν(zν) converge and that either
(1.1) bν(zν) → ±∞, or
(1.2) bν(zν) → b∞ ∈ R.
In case (1.1), we use bubbling off analysis as in [26, Section 6], but this time
applied to the holomorphic maps

(
aν − aν(zν), bν − bν(zν),wν , hν

0 ,hν

)

defined on Gν := f−1
ν

(
Ẑ \ B̂

)
for interior bubbling; for bubbling along the

boundary perform the shift w.r.t. the real parts xν of the zν . For both observe
that shift in b-direction is a strict contactomorphism of (Z,α0) and does not
effect the Hofer energy. To have enough space inside Gν during the domain
rescaling use the trick in [26, Case 1.2.b] explained on [26, p. 547]; this time
make use of the stretching of the holomorphic discs uν in b-direction instead
of the a-direction. In the cases (2) and (1.2) apply the usual bubbling off
analysis as in [9,27–29], cf. [26, Cases 1.1, 1.2.a, 2 in Section 6].

Finally, in all cases, we can argue as in [19, Section 4]. By the aperi-
odicity assumption inf0(α) ≥ π, which with Sect. 3.1 implies inf0(α̂) ≥ π,
there is no bubbling off of finite energy planes. This is because finite energy
planes asymptotically converge to contractible periodic Reeb orbits. The as-
ymptotic analysis of the finite energy planes possibly requires a bubbling off
analysis that involves target rescaling in b-direction as explained above, cf.
[21, Section 5.2].

Because there are no bubble spheres by exactness of (W,ω) we are left
with bubbling off of holomorphic discs, cf. [21, Section 5.3]. This will lead us
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to a contradiction as in [19, Section 4.2]. Indeed, the Hofer energy of a bubble
discs is a positive multiple of π, see Sect. 6.3. As the Hofer energy of all uν

equals π by Sect. 6.3 there is at most one bubble discs. Hence, we can assume
that uν converge in C∞

loc on D\{z0} for some z0 ∈ ∂D. By our assumption on
the 3 fixed marked points in the definition of W after removing the singularity
z0 the limiting holomorphic disc will be non-constant; and, therefore, will also
have energy equal to a positive multiple of π. But the sum of energies of the
bubble disc and the limiting disc can not exceed π. This contradiction shows
uniform gradient bounds for any sequence uν of holomorphic discs in W. �

8. Transversality

In Sect. 7, we established properness of the evaluation map

ev : W × D −→ Ẑ(
u = (a, f), z

) �−→ f(z).

The aim of this section is to show that ev has degree 1. We will follow the
considerations from [19, Section 5] and [20, Section 3.5] and just indicate the
adaptations to the present situation.

8.1. Maslov index

For all u ∈ W the Maslov index of the bundle pair
(
u∗TW, (u|∂D)∗TLt

q

)

equals 2, where (t, q) is the level of u. Indeed, following [19, Lemma 3.1], by
homotopy invariance it suffices to show the claim for standard discs

u(z) = ut,w
s,b (z) =

(
1
4

(|z|2 − 1
)
, b ,w, z, s + it

)
,

w ∈ TqQ, assuming W = R×R×T ∗Q×D×C
n−1−d. In particular, u∗TW ∼=

C
n+1. Moreover, (u|∂D)∗TLt

q is isomorphic to iR⊕ iRd ⊕ eiθ
R⊕R

n−1−d over
eiθ ∈ ∂D. Hence, the Maslov index equals 2 by normalisation.

8.2. Simplicity

First of all, we remark that the classes [u] ∈ H2(W,Lt
q), u ∈ W, are J-

indecomposable. Otherwise, we would find a decomposition

[u] =
N∑

j=1

mj [vj ]

in H2(W,Lt
q), for simple holomorphic discs vj with boundary on Lt

q and
multiplicities mj ≥ 1. Writing vj = (aj , fj) we get for the energy

π =
N∑

j=1

mj

∫

∂D

f∗
j α0.
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Writing
(
bj ,wj , h

j
0,xj + itj

)
for the restriction of fj |∂D the left hand side

reads as
N∑

j=1

mj

∫

∂D

[
b∗
jdb + w∗

j λ + (hj
0)

∗ 1
2

(
x0dy0 − y0dx0

) − (xj + itj)∗(ydx)
]
.

The first and last summand vanish by exactness of the form we pull back to
the circle ∂D; the second vanishes because wj(∂D) ⊂ T ∗

q Q. Hence, writing
rj for the winding number of hj

0|∂D, which is positive for non-constant hj
0 by

the argument principle, we get

π = π ·
N∑

j=1

mjrj ≥ N · π.

We conclude that N = 1, m1 = 1, i.e. [u] is J-indecomposable.
Consulting [19, Lemma 3.4] we see that u must be simple. Because u|∂D

is an embedding, see Sect. 6.4, we obtain as in [19, Lemma 3.5] that the set
of f -injective points is open and dense in D.

8.3. Variable boundary conditions

There is a natural way to identify the boundary conditions

Lt
q = {0} × R × T ∗

q Q × ∂D × R
n−1−d × {t}

for the holomorphic discs in W. Observe, that the union of Lt
q over all pa-

rameters t ∈ R
n−1−d and q ∈ Q equals

{0} × ∂Ẑ = {0} × R × T ∗Q × ∂D × C
n−1−d

so that flows induced by tangent vectors v ∈ TtR
n−1−d and v ∈ TqQ can be

taken for the identifications: Consider a chart (Rd, 0) → (Q, q) of Q about q
and extend v to a vector field on R

d that has compact support and is constant
near 0. The induced flow on Q naturally lifts to a fibre and Liouville form
preserving flow on T ∗Q, see [30, p. 92]. Similarly, extend v ∈ TtR

n−1−d

to a compactly supported vector field on R
n−1−d that is constant near t ∈

R
n−1−d.

We regard (v,v) as a vector field on R×R×T ∗Q×∂D×C
n−1−d cutting

off (v,v) with a bump function that has support on a small neighbourhood
of {0} × [−b0, b0] × T ∗Q × ∂D×C and equals 1 on a smaller neighbourhood.
We denote the corresponding flow on W by ψ

(v,v)
t . Given a level (q0, t0) we

find a neighbourhood U of (q0, t0) ∈ Q × R
n−1−d and a vector field (v,v) as

above such that the time-1 map ψ
(v,v)
1 sends Lt0

q0 to ψ
(v,v)
1 (Lt0

q0) = Lt
q for all

(q, t) ∈ U . Simply define (v,v) to be (q − q0, t − t0) on U .

8.4. Admissible functions

Denote by B the separable Banach manifold consisting of all continuous maps
u : (D, ∂D) → (

W, {0} × Ĉ
)

of Sobolev class W 1,p, p > 2, that satisfy the
conditions (w1)–(w3) in the definition of the moduli space W, see Sect. 6.2.
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The Banach manifold structure is given as follows: The subset Bt
q ⊂ B of all

u of level (q, t) is a separable Banach manifold whose tangent spaces are

TuBt
q = W 1,p

(
u∗TW, (u|∂D)∗TLt

q

)
.

Consider the level projection map B → Q×R
n−1−d that assigns to all u ∈ B

the corresponding level (q, t). Using the identifying maps the ψ
(v,v)
1 from

Sect. 8.3 these defines a locally trivial fibration on the Banach manifold B
with fibres Bt

q.

8.5. Linearised Cauchy–Riemann operator

In particular,

TuB = TuBt
q ⊕ (

TqQ ⊕ R
n−1−d

)

so that the linearised Cauchy–Riemann operator at u ∈ B of level (q, t) splits
as

Du = D(q,t)
u ⊕ Ku,

where D
(q,t)
u := Du|TuBt

q
is the linearised Cauchy–Riemann operator in fibre

direction and Ku : TqQ ⊕ R
n−1−d → Lp(u∗TW ) is a compact perturbation,

see [19, Section 5.1]. The index of D
(q,t)
u equals n, as the Maslov index of

the problem with fixed boundary level was 2 (see Sect. 8.1), so that the total
index equals indDu = 2n − 1.

If Q is oriented, we can orient Du via the determinant bundle

det Du = det D(q,t)
u ⊗ det

(
TqQ ⊕ R

n−1−d
)

as follows: The line bundle detD
(q,t)
u is oriented by the construction in [31,

Section 8.1] via the trivial bundle TLt
q

∼= T ∗
q Q ⊕R

n+1−d and the orientation
of T ∗

q Q ∼= R
d so that the bundle pair

(
u∗TW, (u|∂D)∗TLt

q

)

admits a natural trivialisation. The line bundle det
(
TqQ⊕R

n−1−d
)

is oriented
via the orientation of Q × R

n−1−d.

8.6. Lifting topology

As in [19, Section 5.2], we choose J to be regular by perturbing the induced
complex structure on ξ̂ over B̂. Regularity of J along standard discs is obvi-
ous. Hence, the moduli space W is a smooth oriented manifold of dimension
2n − 1 whose end is made out of standard holomorphic discs. Therefore, the
evaluation map ev, which is proper, has degree 1. With [19, Section 6] and
[13, Section 2] we see that ev induces surjections of homology groups and of
π1.

Identify Q with the subset

Q ≡ {0} × Q × {1} × {0}
of

R × T ∗Q × {1} × C
n−1−d ⊂ ∂Ẑ.
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Observe that M is a strong deformation retract of Ẑ. We choose a deformation
retraction such that the inclusion Q ⊂ Ẑ is isotoped to an embedding Q → M .
Combining this with the following commutative diagram

W × D
ev

> Ẑ

W × {1}
⊂

∧

ev
> R × T ∗Q × {1} × C

n−1−d

⊂
∧

yields:

Proposition 8.1. Under the assumptions of Theorem 2.1 the isotoped inclu-
sion Q → M induces a surjection of homology and fundamental groups.

Proof. This follows with the homology epimorphism argument from [13, Sec-
tion 2.3] and the covering argument from [13, Section 2.5]. �

9. The homotopy type

We compute the homotopy type of M in terms of D
(
T ∗Q ⊕ R

2n+1−2d
)
. For

that we assume that, up to fibre preserving isotopy, the shape S is equal to
the shape given by the unit sphere bundle in T ∗Q ⊕ R

2n+1−2d. This results
into the same construction for Ẑ as in Sect. 3.1 up to ambient diffeotopy.

We identify Q with the section of the sphere bundle

∂M = S
(
T ∗Q ⊕ R

2n+1−2d
)

given by

Q ≡ {0} × Q × {1} × {0}
in

R × T ∗Q × D × C
n−1−d.

Observe that this defines a natural embedding of D
(
T ∗Q ⊕ R

2n+1−2d
)

into
M via a small disc bundle about

{0} × Q × {(1 − ε)} × {0},

ε > 0 small. Indeed, simply shift a small disc bundle in R×T ∗Q×D×C
n−1−d

in direction of {0} × Q × {(1 − ε)} × {0}. The image is denoted by M0.

9.1. Homology type and fundamental group

Proposition 8.1 implies that the inclusion Q ⊂ M is surjective in homology
and π1. Based on that we show:

Proposition 9.1. Under the assumptions of Theorem 2.1, the inclusion M0 ⊂
M induces isomorphisms of homology groups.

Proof. The arguments are similar to [20, p. 42] and [13, Section 2.4]. Recall
the general assumption n − 1 ≥ d.

From Proposition 8.1, we immediately obtain HkM = 0 for k ≥ d + 1
so that the homology isomorphism property of the inclusion M0 ⊂ M is
automatic in all degrees k ≥ d + 1.
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By general position, any section Q → ∂M of the sphere bundle induces
an isomorphism in homology in degree k ≤ 2n−1−d. Therefore, the inclusion
of the sphere bundle into the disc bundle of T ∗Q ⊕ R

2n+1−2d is isomorphic
in homology of degree k ≤ 2n − 1 − d. We claim that the inclusion ∂M → M
shares the same property. With d + 1 ≤ 2n − 1 − d, the proposition will be
immediate.

By Poincaré duality and the universal coefficient theorem, we have

Hk(M,∂M) ∼= H2n+1−kM ∼= FH2n+1−kM ⊕ TH2n−kM,

where FH∗ and TH∗ denote the free and the torsion part of H∗, respectively.
By the above Hk(M,∂M) = 0 for k ≤ 2n−d− 1. The long exact sequence of
the pair (M,∂M) implies that ∂M → M is isomorphic in degree k ≤ 2n−2−d
and epimorphic in degree k = 2n−1−d. Because the homology of the sphere
bundle ∂M vanishes in degree k = 2n − 1 − d the epimorphism is in fact
injective. �
Corollary 9.2. Under the assumptions of Theorem 2.1 the inclusion M0 ⊂ M
induces an epimorphism on fundamental groups. If in addition π1Q is abelian,
then the inclusion M0 ⊂ M will be π1-isomorphic.

Proof. Using the π1-isomorphism M0 � Q ⊂ ∂M , the claim follows from
Proposition 8.1 and 9.1 as in [13, Section 2.5]. �
Proof of Theorem 2.1 (i). The claim directly follows from Proposition 9.1
and Corollary 9.2. Simply observe that the specific choice of section into the
sphere bundle is irrelevant here. �
9.2. A cobordism

Implementing the construction from [20, Section 4.2] in the situation at hand
we define a cobordism

X := M \ Int M0.

The construction comes with the following diagram
> X

M0
time-1 map

of isotopy
> M

gen.
pos.<

∂M0

gen.
pos.

>

∂M

∧

⇐======

Q0

�

∧

time-1 map

of isotopy
>

<

Q

∧

>

time-1 map

of former isotopy

∧

that commutes up to homotopy. We explain the diagram: Set

Q0 ≡ {0} × Q × {(1 − ε′)} × {0},
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where ε′ ∈ (0, ε) is chosen such that Q0 ⊂ ∂M0. All arrows are given by
inclusion except those whose label refers to an isotopy. The mentioned isotopy
is an isotopy of Q0 inside M that is the restriction of a diffeotopy on R ×
T ∗Q × D × C

n−1−d obtained by shifting and rescaling that brings Q0 to Q
and ∂M0 to ∂M . The arrow M0 → M is obtained from an extension of the
isotopy of Q0 ⊂ M to M0.

Proposition 9.3. Under the assumptions of Theorem 2.1 the inclusion maps
∂M0, ∂M ⊂ X induce isomorphisms of homology groups. If in addition π1Q
is abelian (or more generally the inclusion Q ⊂ M is π1-injective) then the
inclusions ∂M0, ∂M ⊂ X will be π1-isomorphic.

Proof. The argumentation is the one given at the end of [20, Section 4.2]:
For low degrees k ≤ 2n − d − 1 use general position arguments as indicated
in the diagram and the results from Sect. 9.1. In higher degrees k ≥ d + 1
essentially this is Poincaré duality and excision. �

Proof of Theorem 2.1 part (a) in (ii) and (iii). We have to establish homo-
topy equivalence, resp., a diffeomorphism between M and M0. With Proposi-
tion 9.3 this essentially follows from the relative Hurewicz and the s-cobordism
theorem. The arguments are precisely as in the proof of [13, Theorem 1.5]
for Q simply connected and [13, Theorem 5.3] via finite coverings in the
non-simply connected case. �

9.3. Infinite coverings

We assume the inclusion map ∂M ⊂ M to be π1-injective. This will be
satisfied if π1Q is abelian for example. If Q is simply connected vanishing
in relative homology of the cobordism {∂M0,X, ∂M}, which will be simply
connected too, implies triviality of relative homotopy groups. If Q is not
simply connected, one way to work around this is to lift along the universal
covering of X. For π1Q finite the universal covering space X̃ will be compact
so that we are in the situation of the previous sections. This was used in the
proof of Theorem 2.1 part (a) in (ii) and (iii) in Sect. 9.2.

If π1Q is infinite, we reset the moduli space: The π1-isomorphism ∂M ⊂
M ensures that the universal cover of Ẑ is obtained by gluing similarly to
Sect. 3.1; this time we glue the universal covers of the involved objects along
a lift of ϕ. This makes it possible to consider the moduli space W ′ of holo-
morphic discs in W̃ defined as in Sect. 6.2; just replace Q with Q̃ in the
definition of the Lagrangian boundary cylinders. This places us into the situ-
ation of [20, Section 4.4]. The change of the boundary condition is inessential
and the special choice Q = T d is not really used. Hence, we obtain a covering
W ′ → W together with a proper degree 1 evaluation map

ev : W ′ × D −→ ˜̂
Z(

u = (a, f), z
) �−→ f(z),

see [13, Lemma 6.1]. Similar to Proposition 8.1 and [13, Proposition 6.2 and
Lemma 6.3] we obtain:
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Proposition 9.4. Under the assumptions of Theorem 2.1 the inclusion Q̃ →
M̃ of universal covers induces a surjection of homology and fundamental
groups. Further, the inclusion ∂M̃0 → X̃ is homology surjective.

Because the universal cover X̃ is not compact for π1Q infinite Poincaré
duality delivers no information about relative homology groups in contrary
to our argument in Proposition 9.1. But we can say the following:

Theorem 2.1 part (b) in (ii) and (iii). Because the universal cover of Q is
contractible so is M̃ by Proposition 9.4. Hence, the inclusion M̃0 ⊂ M̃ is a
homotopy equivalence. This follows with the arguments from the proof of [13,
Theorem 7.2]. With the proof of [13, Theorem 9.1], which in our situation
is particularly easy because of the extra codimension, it follows that the
boundary inclusions of X̃ are homotopy equivalences. Hence, X is in fact
an h-cobordism. For the diffeomorphism type, then apply the s-cobordism
theorem. �

If ∂M is a simple space, which for example is satisfied whenever Q is a
simple space and ∂M → Q a trivial sphere bundle, then vanishing of relative
homology of (X, ∂M0) and (X, ∂M), resp., implies homotopy equivalence of
each of the boundary inclusions of the cobordism {∂M0,X, ∂M}. The basic
idea here is that the kernel of the Hurewicz homomorphism is made out of
the action of the fundamental group, which we now assume to be trivial, see
[13, Section 8]:

Theorem 2.1 part (c) in (ii) and (iii). Follows with the same arguments as
in [13, Theorem 1.7 and Example 9.3 (b)]. �
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Abstract. The goal of the article is to characterize the conservative home-
omorphisms of a closed orientable surface S of genus ≥ 2, that have
finitely many periodic points. By conservative, we mean a map with no
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1. Introduction

Let S be a closed surface furnished with an area form ω and its associated
Borel measure λω. What are the simplest examples of diffeomorphisms that
preserve ω (or homeomorphisms that preserve λω) and that have finitely
many periodic points? If S is the 2-sphere, the irrational rotations provide
a natural family of examples. For every α ∈ T = R/Z, denote Rα : ̂

C → ̂

C,
the extension of the rotation z �→ e2iπα̃z to the Riemann sphere, where
α̃ + Z = α. An irrational rotation is a map conjugate to Rα, where α �∈ Q/Z.
In the case where S is the 2-torus T

2 = R

2/Z

2 and ω = dx∧dy, there are two
natural families of ω-preserving diffeomorphisms with no periodic points: the
irrational rotations

Rβ,γ : (x, y) �→ (x + β, y + γ), (β, γ) �∈ Q

2/Z

2,

and the skew products over an irrational rotation of the circle

Sδ,k : (x, y) �→ (x + ky, y + δ), δ �∈ Q/Z, k ∈ Z\{0}.

In the case where the genus of S is larger than 1, examples can be con-
structed, conjugate to the time one map of the flow of a minimal direction
for a translation surface, giving birth to a much wider family of “classical
examples”. Recall that such flows admit a one dimensional section, with a
return map that is an interval exchange transformation.

One can modify some of the previous examples to enlarge our class of
conservative maps with finitely many periodic points. The rotation Rβ,γ is
the time one map of the flow induced by the constant vector field Xβ̃,γ̃ :
(x, y) �→ (β̃, γ̃), where β = β̃ + Z and γ = γ̃ + Z. Suppose that β̃ and
γ̃ are rationally independent and let ψ : T

2 → [0,+∞) be a continuous
function with finitely many zeros. The time one map of the flow induced by
the vector field ψXβ̃,γ̃ has no periodic point except the zeros of ψ. Moreover,
it preserves the measure ψ−1λω. This measure being finite if the function
ψ−1 is integrable, one can construct in that way a homeomorphism of the
2-torus, preserving a finite measure equivalent to the Lebesgue measure λω,
having an arbitrarily large number of fixed points and no other periodic point.
There is a well known alternative way to construct a smooth example: in a
neighborhood W of a given point, choose a symplectic system of coordinates
(u, v), vanishing at this point, such that the vector field can be written ∂/∂u
and is associated to the Hamiltonian function v. One can replace this function
with a new Hamiltonian function having a unique singular point, being equal
to v(u2 + v2) in a neighborhood of (0, 0), giving birth to a foliation (with
a singular leaf) such that every new leaf intersects the boundary of W in a
pair of points belonging to an old leaf. A similar construction can be done
on a surface of genus ≥ 2 for a ω-preserving vector field to obtain a smooth
symplectic map with an arbitrarily large number of fixed points and no other
periodic point. Note that the map f obtained in that way is isotopic to the
identity relative to its fixed point set. Consider now a finite cyclic covering
Ŝ of S. There is a unique lift f̂ of f to Ŝ that is isotopic to the identity. For
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every covering automorphism T , the map T ◦ f̂ preserves the lifted form ω̂
and has finitely many periodic points, all of them with the same period.

Beyond the previous examples, one can find symplectic maps having
finitely many periodic points, with much richer dynamics. The approximation
method by conjugation, introduced by Anosov-Katok, permits to construct
smooth symplectic diffeomorphisms on the 2-sphere with exactly two fixed
points z0, z1 and no other periodic point, such that λω is ergodic (see [4]).
In these examples, there exists an irrational number α̃ (in fact a Liouville
number) such that every point of S\{z0, z1} “turns” in the annulus S\{z0, z1}
with an angular speed equal to 2πα̃. In fact, for every Liouville number, one
can make the construction in such a way that λω is weakly mixing (see [10]).
Examples of symplectic maps having finitely many periodic points, with a
rich dynamics can also be constructed in the 2-torus (see [28] for instance).

The main issue of this article is to understand to what extent the exam-
ples given above describe all symplectic diffeomorphisms of surfaces that have
finitely many periodic points. We will see that they permit to get a classi-
fication: every symplectic diffeomorphism with finitely many periodic points
is naturally associated to one of the examples above. Moreover, this classifi-
cation is valid for a wider set: the set of homeomorphisms with no wandering
point (that we will call non wandering homeomorphisms). Furthermore we
will see that non wandering homeomorphisms with infinite many periodic
points can be divided into maps of finite order and maps with periodic points
of arbitrarily large period. Before stating the precise results, recall that a non
empty open set U ⊂ S is wandering if U ∩ f−n(U) = ∅ for every n ≥ 1 and
that points of U are wandering points. So, f is non wandering if, for every
non empty open set U ⊂ S, there exists n ≥ 1 such that U ∩ f−n(U) �= ∅. By
Poincaré’s Recurrence Theorem, every symplectic diffeomorphism, or more
generally every λω-preserving homeomorphism, is non wandering.

1.1. The case of the sphere

Denote π : (r, θ) �→ re2iπθ the covering projection defined on the universal
covering space (0,+∞) × R of C\{0}. An irrational pseudo-rotation of C of
rotation number α ∈ T\Q/Z is a non wandering homeomorphism f of C that
fixes 0 and that satisfies the following property:

if ˜f is a lift of f |C\{0} to (0,+∞) × R, there exists α̃ ∈ R satisfying
α̃+Z = α such that for every compact set Ξ ⊂ C\{0}, and every ε > 0, there
exists N ≥ 1 such that

(Pα̃) : n ≥ N and z̃ ∈ π−1(Ξ) ∩ ˜f−n(π−1(Ξ)) ⇒
∣

∣

∣

∣

∣

p1( ˜fn(z̃)) − p1(z̃)

n
− α̃

∣

∣

∣

∣

∣

≤ ε,

where p1 : (θ, r) �→ θ is the projection on the first factor.1 By extension, every
homeomorphism of a 2-sphere that is conjugate to the extension of f to Ĉ

would be called an irrational pseudo-rotation of rotation number α.

1Requiring the whole set Ξ = C\{0} to satisfy (Pα̃) would be too strong, and in opposition

to this weaker definition, would define a property that is not invariant by conjugacy in the

group of orientation preserving homeomorphisms of C that fix 0.
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The following result gives a very precise description of non wandering
homeomorphisms of the 2-sphere with finitely many periodic points.

Theorem 1.1. Let f be an orientation preserving and non wandering homeo-
morphism of the 2-sphere. Then exactly one of the following assertions holds:
(1) The map f has periodic points of period arbitrarily large.
(2) There exists α ∈ Q/Z such that f is conjugate to Rα.
(3) There exists α ∈ T\Q/Z such that f is an irrational pseudo-rotation of

rotation number α.

Theorem 1.1 is well known. Let us briefly explain why it is true. It is
known (see Franks [14]) that an area preserving homeomorphism of the 2-
sphere that has at least three fixed points has infinitely many periodic points
(with periods arbitrarily large if the map has infinite order). Moreover, this
result is also true for non wandering homeomorphisms (see [19]). So, if f is
an orientation preserving and non wandering homeomorphism of the 2-sphere
and if neither (1) nor (2) holds, then f has no periodic point but two fixed
points. To get (3) it remains to study the non wandering homeomorphisms
of the annulus T × R that are isotopic to the identity (this means that the
orientation is preserved and the ends are fixed) and that have no periodic
point. Assertion (3) is related to the Poincaré–Birkhoff Theorem and its many
generalizations, its meaning is that there is a unique rotation number (for
whatever reasonable definition) and moreover that it cannot be rational (see
[11,18]).

1.2. The case of the torus

A classification of the area preserving homeomorphisms of T

2 with finitely
many periodic points has been done by Addas-Zanata and Tal [2]. This clas-
sification is still valid for non wandering homeomorphisms. We will state the
result here but will give the definitions appearing in the statement in the last
section of this article (rotation set, vertical rotation set, automorphism of
T

2). We will give the proof in the same section. The proof is nothing but the
original proof of [2] except at one point where a later result of Addas-Zanata,
Garcia and Tal [3] is needed to replace the area preserving condition with
the non wandering condition.

Theorem 1.2. Let f be an orientation preserving and non wandering homeo-
morphism of T

2. Then exactly one of the following assertions holds:
(1) The map f has periodic points of period arbitrarily large.
(2) There exist g ∈ Aut(T2), k ∈ Z\{0} and δ �∈ Q/Z such that g ◦ f ◦ g−1

is isotopic to S0,k, with a vertical rotation set reduced to δ. In this case
f has no periodic point.

(3) The map f is isotopic to the identity and its rotation set (for every lift)
is a point or a segment that does not meet Q

2/Z

2. In this case f has no
periodic point.

(4) There exists an integer q ≥ 1 such that:
• the periodic points of fq are fixed;
• the fixed point set of fq is non empty and fq is isotopic to the

identity relative to it;
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• the rotation set of the lift of fq that has fixed points is reduced to 0
or is a segment with irrational slope that has zero as an end point.2

1.3. The case of high genus

Let us state the main result of the article that gives a characterization of
non wandering homeomorphisms of a surface of genus ≥ 2 that have finitely
many periodic points:

Theorem 1.3. Let S be an orientable closed surface of genus g ≥ 2 and f an
orientation preserving and non wandering homeomorphism of S. Then the
following alternative holds:
(1) The map f has periodic points of period arbitrarily large.
(2) There exists an integer q ≥ 1 such that:

• the periodic points of fq are fixed;
• the fixed point set of fq is non empty and fq is isotopic to the

identity relative to it.3

Remark. Suppose that S is furnished with a symplectic form ω and that f
preserves λω. If f satisfies (2) and if fq is not the identity, then the rotation
vector of λω (for fq) is a non zero element of H1(S, R) (in other words fq

is not Hamiltonian). This is a particular case of the Conley Conjecture (see
[15] or [19]). The examples we must have in mind are the ones given at the
beginning of the introduction where a section exists.

Let us explain the structure of the proof of Theorem 1.3.

Definition. Let S be an orientable closed surface of genus ≥ 2. A Dehn twist
map of S is an orientation preserving homeomorphism h of S that satisfies
the following properties:

• there exists a non empty finite family (Ai)i∈I of pairwise disjoint invari-
ant essential closed annuli (meaning sets homeomorphic to T × [0, 1]
with boundary loops non homotopic to zero in S);

• no connected component of S\ ∪i∈I Ai is an annulus (meaning a set
homeomorphic to T × (0, 1));

• h fixes every point of S\ ∪i∈I Ai;
• for every i ∈ I, there exists ri ∈ Z\{0} such that h|Ai

is conjugate to
τ ri , where τ is the homeomorphism of T × [0, 1] that is lifted to the
universal covering space R × [0, 1] by τ̃ : (x, y) �→ (x + y, y).

The annuli Ai will be called the twisted annuli and ri the twist coeffi-
cients.

The Nielsen–Thurston Decomposition Theorem (see [6], [9] or [27]) tells
us the following: if f is an orientation preserving homeomorphism of S, then
there exists a finite family (Ai)i∈I of pairwise disjoint essential closed annuli
and a homeomorphism f∗ isotopic to f such that:

2This last case contains the case where f has finite order.
3Here again the second case contains the case where f has finite order.

Vol. 24 (2022) Conservative surface homeomorphisms
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• no connected component of S\ ∪i∈I Ai is an annulus;
• the family (Ai)i∈I is invariant by f∗;
• for every connected component W of S\ ∪i∈I Ai, there exists q such

that f∗q(W ) = W and f∗q |W is isotopic to a map of finite order or to a
pseudo-Anosov map;

• for every i ∈ I, there exists qi such that f∗qi(Ai) = Ai and ki ∈ Z such
that f∗qi |Ai

is conjugate to τki .

In particular, the following classification holds for an orientation pre-
serving homeomorphism f of S:

• there exists at least one component of pseudo-Anosov type in the
Nielsen–Thurston classification;

• there exists q ≥ 1 such that fq is isotopic to a Dehn twist map;
• there exists q ≥ 1 such that fq is isotopic to the identity.

It is well known and folklore that if there exists a component of pseudo-
Anosov type, then f has infinitely periodic points of arbitrarily large period
(see [9] or [16]). As we will see in the next section, it is easy to prove that a
power of a non wandering map is still non wandering. So, Theorem 1.3 can
be deduced from the two following results:

Proposition 1.4. Let S be an orientable closed surface of genus g ≥ 2 and f
a non wandering homeomorphism of S. If f is isotopic to a Dehn twist map,
then it has periodic points of period arbitrarily large.

Proposition 1.5. Let S be an orientable closed surface of genus g ≥ 2 and f
a non wandering homeomorphism of S. If f is isotopic to the identity, then
f has fixed points and

• either f has periodic points of period arbitrarily large;
• or every periodic point of f is fixed and f is isotopic to the identity

relative to its fixed point set.

1.4. Plan of the article

Proposition 1.4 is a kind of Poincaré–Birkhoff Theorem in surfaces of high
genus. Its proof will be given in Sect. 3. Proposition 1.5 tells us that,
roughly speaking, a non wandering homeomorphism with finitely many peri-
odic points is “modelized” by the time one map of the flow of a minimal
direction for a translation surface, after adding stopping points and lifting
to a cyclic finite covering. Its proof will be given in Sect. 4. The proof of
Theorem 1.2 will be given in Sect. 5. A certain number of definitions and
preliminary results will be given in Sect. 2, most of the results being well
known. However we will state two “new technical results” in this section,
a fixed point theorem and a forcing result, which are inspired by common
works with Fabio Tal ( [21] and [22]).

Sections 3 and 4 are the more technical parts of the article. Surpris-
ingly, the proofs of Proposition 1.4 and 1.5 are very similar. Let us give more
details about the proof of Proposition 1.4. In a recent work with Mart́ın
Sambarino [20], we have proved that a generic symplectic diffeomorphism of
a surface of genus ≥ 2, for the Ck-topology, k ≥ 1, has transverse homoclinic
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intersections. A crucial argument is to prove that a generic symplectic dif-
feomorphism of a surface of genus ≥ 2 has more than 2g − 2 periodic points.
The case of diffeomorphisms isotopic to a Dehn twist is studied in a long
section of the article. We note that such a diffeomorphism f has a lift f̂ to a
certain annular covering space Ŝ that satisfies a “twist condition” and so, if
f has finitely many periodic points, then f̂ cannot satisfy the “intersection
property”: there exists an essential simple loop λ̂ ⊂ Ŝ that is disjoint from its
image by f̂ . Lifting f̂ to a diffeomorphism f̃ of the universal covering space
S̃, looking at the action of the dynamics of f̃ on the set of lifts of λ̂ and using
the properties of the stable and unstable manifolds of the fixed saddle points
(there exists at least 2g − 2 such points) we succeed to prove that homoclinic
intersections exist. What is done in the present article is to show that the
existence of infinitely many periodic points can be obtained without using
the saddle points. Looking at the dynamics of f̃ on the set of lifts of λ̂ is
sufficient if we use the fixed point theorem and the forcing result stated in
Sect. 2. In particular the proof is valid for area preserving homeomorphisms,
or more generally for non wandering homeomorphisms.

To conclude this introduction, let us state some other known results
about the dynamics of a non wandering homeomorphism f with finitely many
periodic points on a surface S of genus ≥ 2. Theorem 1.3 tells us that it
is sufficient to look at the case where f is isotopic to the identity relative
to its fixed point set and has no other periodic point. A result of Lellouch
[23] says that if μ1 and μ2 are two invariant Borel probability measures,
then the rotation vectors of μ1 and μ2 do not intersect (for the canonical
intersection form ∧ on H1(S, R)). Another result, that can be found in [20],
is the existence, in the case where f has finitely many fixed points, of a
section in the following sense: there exists a simple oriented loop λ ⊂ S non
homologous to zero, such that if Š is the infinite cyclic covering space of S
associated to λ and f̌ the natural lift of f to Š, then for every loop λ̌ ⊂ Ŝ
that lifts λ, the points that are on λ̌ and not fixed by f̌ are sent by f̌ on the
left of λ̌ and by f̌−1 on its right. It would be a natural challenge to look for
further dynamical properties of these maps (what looks like the rotation set?
does there always exist a section if f is not the identity?)

I would like to thank the referee for the useful comments.

2. Definitions, notations and preliminaries

2.1. Loops and paths

Let S be an orientable connected surface (not necessarily closed, not neces-
sarily boundaryless). A loop of S is a continuous map γ : T → S. It will be
called essential if it is not homotopic to a constant loop. A path of S is a
continuous map γ : I → S where I ⊂ R is an interval. A loop or a path will
be called simple if it is injective. A segment is a simple path σ : [a, b] → X,
where a < b. The points σ(a) and σ(b) are the ends of σ and the set σ((a, b))
its interior. We will say that σ joins σ(a) to σ(b). More generally if A and
B are disjoint, we will say that σ joins A to B, if σ(a) ∈ A and σ(b) ∈ B.
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A line is a proper simple path λ : R → S, a half line a proper simple path
λ : I → S, where I = [a,+∞) or I = (−∞, a]. In that case, γ(a) is its end.
As it is usually done we will use the same name and the same notation to
refer to the image of a loop or a path γ.

Note that a simple loop or a simple path is naturally oriented. If γ is a
simple loop that separates S (meaning that its complement has two connected
components) the one that is located on the right of γ will be denoted R(γ)
and the other one L(γ). We will use the same notation for a line that separates
S, in particular for a line of R

2.
Let f be an orientation preserving homeomorphism of R

2. A Brouwer
line of f is a line λ ⊂ R

2 such that f(λ) ⊂ L(λ) and f−1(λ) ⊂ R(λ).
Equivalently it means that f(L(λ)) ⊂ L(λ) or that f−1(R(λ)) ⊂ R(λ).

2.2. Homeomorphisms of hyperbolic surfaces

Let S be a connected closed orientable surface of genus g ≥ 2. Furnishing S
with a Riemannian metric of constant negative curvature, one can suppose
that the universal covering space of S is the disk D = {z ∈ C | |z| < 1}
and that the group of covering transformations, denoted G, is composed of
Mőbius automorphisms of D. Every element T ∈ G is hyperbolic: it can be
extended to a homeomorphism of D = {z ∈ C | |z| ≤ 1} having two fixed
points, both on the boundary: a repelling fixed point α(T ) and an attracting
fixed point ω(T ). For every z ∈ D\{α(T ), ω(T )}, it holds that

lim
k→−∞

T k(z) = α(T ), lim
k→+∞

T k(z) = ω(T ).

It is well known that for every α, ω in the boundary of D, the set G′ of
covering transformations T such that α(T ) = α and ω(T ) = ω, is an infinite
cyclic subgroup of G, if not empty, because G′ acts freely and properly on
the geodesic joining α to ω. One also knows that if T ′ �∈ G′, then α(T ′)
and ω(T ′) do not belong to {α, β}. Indeed, suppose for example that one
of the points α(T ′) or ω(T ′) is equal to α. Choose T ∈ G. Using the fact
that ω is an attracting fixed point of T , one deduces that one of the points
α(Tn ◦T ′ ◦T−n) or ω(Tn ◦T ′ ◦T−n) is equal to α and the other one tends to
ω, when n tends to +∞. It contradicts the fact that G is discrete. We define
a T -line to be a line of D invariant by T and oriented in such a way that it
can be extended to a segment of D that joins α(T ) to ω(T ).

It is well known that a homeomorphism f̃ of D that lifts a homeomor-
phism f of S can be extended to a homeomorphism of D = {z ∈ C | |z| ≤ 1}.
If [f̃ ] is the automorphism of G defined by the relation:

f̃(T (z)) = [f̃ ](T )(f̃(z)), for all z ∈ D,

then the extension of f̃ satisfies

f̃(α(T )) = α([f̃ ](T )) and f̃(ω(T )) = ω([f̃ ](T )) for all T ∈ G.

If h is a homeomorphism of S that is isotopic to f , then every isotopy from
f to h can be lifted to an isotopy from f̃ to a certain lift h̃ of h. The lift
h̃ does not depend on the initial isotopy and has the same extension as f̃
on the boundary circle, because the automorphisms [f̃ ] and [h̃] coincide. For
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conveniency, we will write S̃ for the universal covering space of S and ∂S̃
for its boundary defined via the identification of S̃ with D. We will write
S̃=S̃ ∪ ∂(S̃).

2.3. Non wandering homeomorphisms

Let us recall some very classical easy results that we will use in the article.
Recall that if f is a homeomorphism of a surface S, a point z ∈ S is recurrent
if there exists a subsequence of (fn(z))n≥0 that converges to z.

Lemma 2.1. Let f be a non wandering homeomorphism of a surface S. For
every non empty open set U and every q ≥ 1, there exists an increasing
sequence (ni)0≤i≤q in N, satisfying n0 = 0, such that

⋂

0≤i≤q f−ni(U) �= ∅.
Proof. Let us prove the lemma by induction. By definition of a non wandering
homeomorphism, the lemma is true for q = 1. Suppose that the lemma is
true for every q′ < q, where q ≥ 2. Let U ⊂ S be a non empty open set.
There exists an increasing sequence (ni)0≤i<q in N, satisfying n0 = 0, such
that

⋂

0≤i<q f−ni(U) �= ∅. As V =
⋂

0≤i<q f−ni(U) is open and non empty,
there exists n > 0 such that V ∩ f−n(V ) �= ∅. In particular, it holds that
⋂

0≤i<q f−ni(U) �= ∅, where nq = nq−1 + n. So, the lemma is true for q. �

Proposition 2.2. Let f be a non wandering homeomorphism of a surface S.
Then:
(1) every power fk, k ∈ Z, is non wandering;
(2) if Ŝ is a finite covering of S, every lift of f to Ŝ is non wandering;
(3) the set of recurrent points is a dense Gδ set.

Proof. By definition, f is non wandering if and only if f−1 is non wandering.
Moreover the identity is non wandering. So, to prove (1) it is sufficient to
prove it for k ≥ 2. Let U ⊂ S be a non empty open set. By Lemma 2.1, there
exists an increasing sequence (ni)0≤i≤k in N, satisfying n0 = 0, such that
⋂

0≤i≤k f−ni(U) �= ∅. There exists i0 < i1 such that ni1 − ni0 ∈ kZ. Write
ni1 − ni0 = nk, where n > 0. It holds that U ∩ f−nk(U) = fni0 (f−ni0 (U) ∩
f−ni1 (U)) �= ∅. So U is a non wandering open set of fk.

Let us prove (2). Suppose that Ŝ is a r-cover of S and denote π̂ : Ŝ → S

the covering projection. To prove that f̂ is non wandering, it is sufficient to
prove that if U ⊂ S is an open disk such that π̂−1(U) =

⊔

1≤j≤r Ûj , where
each Ûj is mapped homeomorphically onto U by π̂, then every Ûj is non
wandering. By Lemma 2.1, there exists an increasing sequence (ni)0≤i≤r! in
N, satisfying n0 = 0, such that

⋂

0≤i≤r! f
−ni(U) �= ∅. Let us choose z ∈

⋂

0≤i≤r! f
−ni(U) and denote ẑj the preimage of z belonging to Ûj . For every

i ∈ {0, . . . , r!} denote σi ∈ Sr the permutation such that f̂ni(ẑj) ∈ Ûσi(j).
There exists i0 < i1 such that σi0 = σi1 . Setting ni1 − ni0 = n > 0, one
deduces that Ûj ∩ f̂−n(Ûj) �= ∅, for every j ∈ {1, . . . , r}.

To prove (3) furnish S with a distance d. If m ≥ 1 and q ≥ 1, define

Om,q = {x ∈ S, ∃n ≥ q, d(fn(x), x) <
1
m

}.
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Applying Lemma 2.1 to a ball B(z, ε), ε < 1/2m, and to q, we obtain that
Om,q ∩ B(z, ε) �= ∅. So Om,q is a dense open set. Noting that

⋂

m≥1,q≥1 Om,q

is the set of recurrent points and that S is a Baire space, we can
conclude. �

We will often use the following result:

Proposition 2.3. Let f be a non wandering homeomorphism of a surface S

and f̂ a lift of f to a covering space Ŝ. If Û is a non empty wandering open
set of f̂ , then

⋃

n≥0 f̂n(Û) and
⋃

n≥0 f̂−n(Û) are not relatively compact.

Proof. Of course it is sufficient to prove that
⋃

n≥0 f̂n(Û) is not relatively
compact. We will argue by contradiction and suppose that

⋃

n≥0 f̂n(Û) is

relatively compact. The frontier fr
(

⋃

n≥0 f̂n(Û)
)

of
⋃

n≥0 f̂n(Û) is a com-

pact set with empty interior. The covering map π̂ : Ŝ → S being contin-
uous, π̂

(

fr
(

⋃

n≥0 f̂n(Û)
))

is compact. The map π̂ being a local homeo-

morphism, π̂
(

fr
(

⋃

n≥0 f̂n(Û)
))

has empty interior. Indeed, one can cover

fr
(

⋃

n≥0 f̂n(Û)
)

with finitely many open sets that are sent homeomor-
phically by π̂ on their image. The map π̂, being continuous and open,
π̂−1

(

π̂
(

fr
(

⋃

n≥0 f̂n(Û)
)))

is a closed set of Ŝ with empty interior. Denote
rec(f) the set of recurrent points of f , which is a dense Gδ set. The map
π̂ being continuous and open, π̂−1(S\rec(f)) is a Fσ set with empty inte-
rior. The contradiction comes from the fact that Û is contained in the union
of π̂−1

(

π̂
(

fr
(

⋃

n≥0 f̂n(Û)
)))

and π̂−1(S\rec(f)). Indeed, suppose that the

image by π̂ of ẑ ∈ U is recurrent. The closure of
⋃

n≥0 f̂n(Û) contains finitely
many preimages of π̂(ẑ). At least one of them belongs to ω(ẑ), meaning that
it is a limit of a subsequence of (f̂n(ẑ))n≥0. It cannot belong to

⋃

n≥0 f̂n(Û)
because Û is wandering and so is on the frontier.4 �
Remark. In case f preserves a totally supported finite measure μ, the results
above are obvious. Indeed, in Proposition 2.2, the maps fk preserve μ and f̂
preserves the lift of μ that is a totally supported finite measure. Moreover, as a
consequence of Poincaré’s Recurrence Theorem, it is known that almost every
point is recurrent, and so the set of recurrent points is dense. In Proposition
2.3, f̂ preserves a totally supported locally finite measure.

2.4. Poincaré–Birkhoff Theorem

We suppose in this subsection that I is a non trivial interval of R. We define
the annuli A = T × I and int(A), where int(A) is obtained from A by taking
out the possible boundary circles. Writing Ã = R×I for the universal covering
space of A, we define the covering projection π : Ã → A, (x, y) �→ (x + Z, y)
and the generating covering automorphism T : Ã → Ã, (x, y) �→ (x + 1, y).

4In the case where Ŝ is a normal covering space and f̂ commutes with the covering auto-

morphisms, a much simpler proof can be given. Unfortunately, this will not be always the

case when we will apply Proposition 2.3.
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Let f be a homeomorphism of A isotopic to the identity (meaning ori-
entation preserving and fixing the possible ends or boundary circles) and
f̃ a lift of f to Ã. Let us recall the definition of the rotation number of
a compactly supported Borel probability measure μ invariant by f . Denote
p1 : Ã → R the projection on the first factor. The maps f̃ and T commute,
so p1 ◦ f̃ − p1 lifts a continuous function ψf̃ : A → R. The rotation number
rotf̃ (μ) =

∫

A
ψf̃ dμ ∈ R measures the mean horizontal displacement of f̃ .

If z is a periodic point of f of period q and if z̃ is a lift of z in Ã, then there
exists an integer p, independent of the choice of z̃, such that f̃q(z̃) = T p(z̃).
We will say that p/q is the rotation number of z for the lift f̃ , it coincides with
the rotation vector of the equidistributed measure supported on the orbit of
z.

We will use many times the following extension of the classical Poincaré–
Birkhoff Theorem (see [18]):

Theorem 2.4. Let f be a homeomorphism of A isotopic to the identity and f̃ a
lift of f to Ã. We suppose that there exist two invariant ergodic compactly sup-
ported Borel probability measures μ1 and μ2, such that rotf̃ (μ1) < rotf̃ (μ2).
Then:

• either, for every rational number p/q ∈ (rotf̃ (μ1), rotf̃ (μ2)), written in
an irreducible way, there exists a periodic point z of f of period q and
rotation number p/q for f̃ ;

• or there exists an essential simple loop λ ∈ int(A) such that f(λ)∩λ = ∅.

2.5. A fixed point theorem for a planar homeomorphism

In this sub-section, we will give a criterion of existence of a fixed point for a
planar homeomorphism, which is a slight generalization of a result proved in
Proposition 12 of [22]. It will be an essential tool in the proofs of Propositions
1.4 and 1.5.

Let (λi)1≤i≤r be a finite family of pairwise disjoint lines of R

2. Say that
the family is cyclically ordered if:

• one can choose, for every i ∈ {1, . . . , r}, a connected component Ei of
R

2\λi in such a way that the sets Ei are pairwise disjoint;
• for every i ∈ {1, . . . , r−1}, one can find two disjoint connected sets, the

first one containing λi and λi+1, the other one containing every line λj ,
j �∈ {i, i + 1}.

Note that the complement of
⋃

1≤i≤r Ei is a connected sub-surface Σ
whose boundary is equal to

⋃

1≤i≤r λi. Note also that one can find two disjoint
connected sets, the first one containing λ1 and λr, the other one containing
every line λj , 1 < j < r. By the extension of Schoenflies Theorem due to
Homma (see [17]), one knows that (λi)1≤i≤r is cyclically ordered if and only
if there exists a homeomorphism of R

2 that sends λi on the graph of the
function

ψi : (2i − 1, 2i + 1) → R, x �→ 1
1 − (x − 2i)2

.
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Proposition 2.5. Let f be a homeomorphism of R

2. Suppose that there exists
a cyclically ordered family (λi)1≤i≤4 of pairwise disjoint lines and for every
i ∈ {1, 3} a segment σi ⊂ λi such that:

• f(σi) ∩ λi = ∅ if i ∈ {1, 3};
• f(λj) ∩ λj = ∅ if j ∈ {2, 4};
• f(σi) ∩ λj �= ∅ if i ∈ {1, 3} and j ∈ {2, 4}.

Then f has a fixed point.

Proof. Recall that Ei is the connected component of R

2\λi that does not
contain the λj , j �= i. Taking a sub-segment of σ1 if necessary, one can
suppose that one end of f(σ1) belongs to λ2, the other end to λ4 and the
other points of f(σ1) neither to λ2 nor to λ4. The segment f(σ1), being
disjoint from λ1, belongs to the connected component of R

2\λ1 that contains
λ2 and λ4, it does not meet E1. Moreover, the interior of f(σ1) is contained in
the connected component of R

2\(λ2∪λ4) that contains λ1 and λ3, it does not
meet neither E2, nor E4. One can suppose that σ3 satisfies similar properties
and of course f(σ1) and f(σ3) are disjoint. Let σ2 ⊂ λ2 be the segment
that joins the two ends of f(σ1) and f(σ3) that are on λ2. By hypothesis,
f−1(σ2) is disjoint from λ2 and so is included in the connected component of
R

2\λ2 that contains λ1 and λ3, it is disjoint from E2. The segment σ4 ⊂ λ4

that joins the two ends of f(σ1) and f(σ3) that are on λ4, satisfies similar
properties. One gets a loop C by taking the union of f(σ1), f(σ3), σ2 and σ4.
The vector field z �→ f−1(z) − z does not vanish on C, let us explain why its
index on C is equal to 1 or −1, which implies that there exists at least one
fixed point of f in the bounded component of R

2\C. The set of orientation
preserving homeomorphisms h of R

2 being path connected for the compact
open topology, the value of the index of the vector field z �→ h◦f−1◦h−1(z)−z
on h(C) does not depend on the choice of h. Applying Homma’s theorem,
one can find an orientation preserving homeomorphism h such that :

h(λ2) = {0} × R,

h(λ4) = {1} × R,

h(f(σ1)) = [0, 1] × {0},

h(f(σ3)) = [0, 1] × {1},

or
h(λ2) = {0} × R,

h(λ4) = {1} × R,

h(f(σ3)) = [0, 1] × {0},

h(f(σ1)) = [0, 1] × {1}.

There is no loss of generality by supposing that the first situation occurs.
The family (λi)1≤i≤4 being cyclically ordered, there are two possibilities: in
the first case, E1 is contained in (0, 1)×(−∞, 0) and E3 in (0, 1)×(1,+∞); in
the second case, E1 is contained in (0, 1)×(0+∞) and E3 in (0, 1)×(−∞, 1).
It is very easy to compute the index of the vector field z �→ h◦f−1◦h−1(z)−z
on the square h(C): in the first case, the vector field is pointing on the right
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on {0} × [0, 1], pointing downwards on [0, 1] × {0}, pointing on the left on
{1}×[0, 1], pointing upwards on [0, 1]×{1} and the index is −1; in the second
case, the vector field is pointing on the right on {0}× [0, 1], pointing upwards
on [0, 1] × {0}, pointing on the left on {1} × [0, 1], pointing downwards on
[0, 1] × {1} and the index is +1.

�

Remark. A special case where this criterion can be applied is when every
line λi is free (meaning that f(λi) ∩ λi = ∅) and f(λi) ∩ λj �= ∅ if i ∈ {1, 3}
and j ∈ {2, 4}. The proposition above was proved in [22] when every λi is a
Brouwer line and f(λi) ∩ λj �= ∅ if i ∈ {1, 3} and j ∈ {2, 4}. The proof above
tells us that the arguments given in [22] are still valid with some weaker
hypothesis.

2.6. Some forcing results

In this sub-section, we will state another result which will be essential in the
proofs of Propositions 1.4 and 1.5. It is naturally related to the forcing lemma
for Brouwer lines that is stated in Proposition 20 of [21], but will concern
free lines instead of Brouwer lines and will “include” a dynamics among these
lines.

Denote

p1 : Ã → R and p2 : Ã → [0, 1]

the horizontal and vertical projections defined on Ã = R × [0, 1].
Write Homeo∗(Ã) for the set of orientation preserving homeomorphisms

of Ã that lets invariant each boundary line. The boundary lines can be nat-
urally ordered, transposing by p1 the usual order of the real line.
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Denote Ẽ0 the set of lines λ̃0 : R → R × (0, 1) such that there exist
(ã−

0 , 0) �= (ã+
0 , 0) in R × {0} satisfying

lim
t→−∞ λ̃0(t) = (ã−

0 , 0), lim
t→+∞ λ̃0(t) = (ã+

0 , 0).

We will say that (ã−
0 , 0) and (ã+

0 , 0) are the ends of λ̃.5 We can define a
relation ≺ on Ẽ0, writing λ̃0 ≺ λ̃′

0 if:
• λ̃0 ∩ λ̃′

0 = ∅;
• the smallest end of λ̃0 is smaller than the smallest end of λ̃′

0 and the
highest end of λ̃0 is smaller than the highest end of λ̃′

0.

Note that if λ̃0 ≺ λ̃′
0, then the highest end of λ̃0 is not higher than the

smallest end of λ̃′
0 because λ̃0 ∩ λ̃′

0 = ∅ but it can be equal. The relation ≺ is
not transitive owing to the first condition. Nevertheless, if F̃0 is a subset of
Ẽ0 such that the lines ˜λ0 ∈ F̃0 are pairwise disjoint, then the restriction of ≺
to F̃0 induces an order � (not necessarily total) defined as follows:

λ̃0 � λ̃′
0 ⇔ λ̃0 = λ̃′

0 or λ̃0 ≺ λ̃′
0.

Every f̃ ∈ Homeo∗(Ã) naturally acts on Ẽ0 and it holds that

λ̃0 ≺ λ̃′
0 =⇒ f̃(λ̃0) ≺ f̃(λ̃′

0).

Similarly, one can define the set Ẽ1 of lines λ̃1 : R → R× (0, 1) such that
there exist (ã−

1 , 1) �= (ã+
1 , 1) in R × {1}, the ends of λ̃1, satisfying

lim
t→−∞ λ̃1(t) = (ã−

1 , 1), lim
t→+∞ λ̃1(t) = (ã+

1 , 1).

Moreover, one can define a relation ≺ on Ẽ1 like we did on Ẽ0.
We now fix f̃ ∈ Homeo∗(Ã) until the end of the section. Consider λ̃0 ∈

Ẽ0, λ̃1 ∈ Ẽ1 and n ≥ 1. We will write λ̃0
n−→ λ̃1 in the case where f̃n(λ̃0)∩λ̃1 �=

∅. The following result is immediate:

Lemma 2.6. Suppose that λ̃0 ∈ Ẽ0, λ̃1 ∈ Ẽ1 and n ≥ 1 satisfy λ̃0
n−→ λ̃1.

Then it holds that

λ̃0
n+1−→ f̃(λ̃1), f̃−1(λ̃0)

n+1−→ λ̃1.

Moreover, if h̃ ∈ Homeo∗(Ã) commutes with f̃ , then

h̃(λ̃0)
n−→ h̃(λ̃1).

The next result is less obvious:

Lemma 2.7. Suppose that λ̃0 ∈ Ẽ0, λ̃′
0 ∈ Ẽ0 , λ̃1 ∈ Ẽ1, λ̃′

1 ∈ Ẽ1, n ≥ 1, n′ ≥ 1
satisfy

λ̃0
n−→ λ̃1, λ̃′

0
n′

−→ λ̃′
1

and

f̃n(λ̃0) ≺ λ̃′
0, λ̃′

1 ≺ fn′
(λ̃1), λ̃′

0 ∩ λ̃1 = ∅.

5We could have defined Ẽ0 to be the set of segments of Ã whose ends are on R × {0}
and whose interior is in the interior of Ã but the object that will appear naturally for the
applications are lines and not segments.
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Then, one has

λ̃0
n+n′
−→ λ̃′

1.

Proof. The lines f̃n(λ̃0) and λ̃1 intersect, so f̃n(λ̃0) ∪ λ̃1 is connected. Simi-
larly, λ̃′

0 and f̃−n′
(λ̃′

1) intersect, so λ̃′
0∪ f̃−n′

(λ̃′
1) is connected. By hypothesis,

one has f̃−n′
(λ̃′

1) ≺ λ̃1. The fact that f̃n(λ̃0) ≺ λ̃′
0 and f̃−n′

(λ̃′
1) ≺ λ̃1 implies

that f̃n(λ̃0) ∪ λ̃1 and λ̃′
0 ∪ f̃−n′

(λ̃′
1) intersect. Noting that all sets

λ̃′
0 ∩ λ̃1, f̃n(λ̃0) ∩ λ̃′

0, f̃−n′
(λ̃′

1) ∩ λ̃1

are empty, we deduce that f̃n(λ̃0) and f̃−n′
(λ̃′

1) intersect, which means that

λ̃0
n+n′
−→ λ̃′

1.

�

Remark. Lemma 2.7 is a slight modification of the forcing lemma given in
[21]. Of course, its conclusion still holds under the assumptions

λ̃′
0 ≺ f̃n(λ̃0), f̃n′

(λ̃1) ≺ λ̃′
1, λ̃′

0 ∩ λ̃1 = ∅.

Let us state now the main result, supposing that f̃ commutes with
T : (x, y) �→ (x+1, y) or equivalently supposing that it lifts a homeomorphism
of A = T × [0, 1].

Proposition 2.8. Let ρ0 and ρ1 be the rotation numbers induced by f̃ on R ×
{0} and R × {1} respectively. Suppose that λ̃0 ∈ Ẽ0, λ̃1 ∈ Ẽ1 satisfy the
following:
(1) for every n > 0 and every p ∈ Z, one has f̃n(λ̃0) ∩ T p(λ̃0) = ∅,

(2) for every n > 0 and every p ∈ Z, one has f̃n(λ̃1) ∩ T p(λ̃1) = ∅,

(3) for every n > 0 and every p ∈ Z, one has f̃n(λ̃1) ∩ T p(λ̃0) = ∅,

(4) there exists n0 ≥ 1 such that λ̃0
n0−→ λ̃1.
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Then, if p ∈ Z and q ≥ 1 satisfy

ρ0(n0 + q) < p < ρ1(n0 + q),

or

ρ1(n0 + q) < p < ρ0(n0 + q),

it holds that

λ̃0
2n0+q−→ T pλ̃1.

Proof. We can suppose that ρ0(n0 + q) < p < ρ1(n0 + q), the other case
being similar. Let (z̃−

0 , 0) and (z̃+
0 , 0) be the ends of λ̃0. One can suppose for

instance that z̃−
0 < z̃+

0 . From the relation ρ0(n0 + q) < p, we obtain that

f̃n0+q(z̃−
0 , 0) < T p(z̃−

0 , 0), f̃n0+q(z̃+
0 , 0) < T p(z̃+

0 , 0).

As a consequence of (1) we deduce that

f̃n0+q(λ̃0) ≺ T p(λ̃0).

Similarly, as a consequence of (2) and of the relation p < ρ1(n0 + q), we
deduce that

T p(λ̃1) ≺ f̃n0+q(λ̃1).

Writing f̃n0+q(λ̃1) = f̃n0(f̃q(λ̃1)), using (3) and the relations

λ̃0
n0+q−→ f̃q(λ̃1), T pλ̃0

n0−→ T pλ̃1,

we conclude by Lemma 2.7, that

λ̃0
2n0+q−→ T pλ̃1.

�

Remark. Of course, what has been done in this section can be extended to
any abstract annulus (meaning every topological space homeomorphic to A)
and its universal covering space, the sets Ẽ0 and Ẽ1 being defined relative to
the two boundary lines of the universal covering space.

3. Dehn twist maps

The goal of this section is to prove Proposition 1.4, which means to prove
that if S is an orientable closed surface of genus g ≥ 2 and f a non wandering
homeomorphism of S isotopic to a Dehn twist map, then f has periodic points
of period arbitrarily large.

We will fix from now on a Dehn twist map h on S and a homeomorphism
f isotopic to h (note that f is orientation preserving). We will begin by stating
some results that can be found in [20]. We denote (Ai)i∈I the family of twisted
annuli and (ri)i∈I the family of twist coefficients. Fix an annulus A = Ai0

and then choose a connected component Ã of π̃−1(A), where π̃ : S̃ → S is the
universal covering projection. The boundary of Ã is the union of two lines λ̃1

and λ̃2, each of them lifting a boundary circle of A, denoted respectively λ1

and λ2. We orient λ̃1 and λ̃2 in such a way that λ̃2 ⊂ L(λ̃1) and λ1 ⊂ R(λ̃2).
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There exists T0 ∈ G, uniquely defined, such that λ̃1 and λ̃2 are T0-lines.
Note that the stabilizer of Ã in G is the infinite cyclic group generated by
T0. There exists a lift h̃ of h, uniquely defined, that fixes every point of
λ̃1. This lift coincides with T

ri0
0 or T

−ri0
0 on λ̃2. Replacing ri0 with −ri0

if necessary, we can suppose that we are in the first case. The map h̃ fixes
every point of the unique connected component of π̃−1(S\ ∪i∈I Ai) whose
closure contains λ̃1. This component is included in R(λ̃1) and its closure in S̃

meets a (unique) component J̃1 of ∂S̃\{α(T0), ω(T0)} because no connected
component of S\ ∪i∈I Ai is an annulus. Consequently, the extension of h̃ to
S̃, still denoted h̃, admits fixed points in J̃1. For the same reason h̃ ◦ T

−ri0
0

admits fixed points in the other component, denoted J̃2.
Note that h̃ commutes with T0 and so lifts a homeomorphism ĥ of

the open annulus Ŝ = S̃/T0 that preserves the orientation and fixes the
two ends of Ŝ. The map ĥ can be extended to the compact annulus Ŝ =
(

S̃\{α(T0), ω(T0)}
)

/T0. It contains fixed points on the added circles Ĵ1 =

J̃1/T0 and Ĵ2 = J̃2/T0, the fixed points in Ĵ1 being lifted to fixed points of
h̃, the fixed points in Ĵ2 being lifted to fixed points of h̃ ◦ T

−ri0
0 .

The map f being isotopic to h admits a unique lift f̃ such that [f̃ ] = [h̃]
and this lift can be extended to a homeomorphism of S̃ that coincides with
h̃ on ∂S̃. The map f̃ commutes with T0 and lifts a homeomorphism f̂ of Ŝ.
The map f̂ can be extended to a homeomorphism of Ŝ that coincides with ĥ

on Ĵ1 and Ĵ2. Consequently, f̂ admits fixed points on the boundary circles of
Ŝ, the ones on ̂J1 having a rotation number equal to zero for the lift f̃ , the
ones on ̂J2 having a rotation number equal to ri0 for the lift f̃ : the map f̂
satisfies a boundary twist condition.

Proposition 3.1. At least one of the following situations holds:
(1) the map f has periodic points of period arbitrarily large;
(2) there exists an essential simple loop λ̂ ⊂ Ŝ such that f̂(λ̂) ∩ λ̂ = ∅.

This result was stated (in a weaker form) in Proposition 7.2 of [20],
asking for infinitely many periodic points instead of periodic points of period
arbitrarily large. The proof below is a slight modification of the proof in [20].

Proof. By Theorem 2.4, one knows that if (2) is not true, then for every p/q ∈
[0, r0], written in an irreducible way, there exists a periodic point ẑ of period q

and rotation number p/q for the lift f̃ . One can easily prove (see [20]) that for
every non trivial compact interval J ⊂ (0, r0), there exists a compact set K ⊂
Ŝ such that every periodic orbit of rotation number p/q ∈ J meets K. Let
(pm/qm)m≥0 be a sequence in J , such that the sequence (qm)m≥0 is increasing
and consists of prime numbers. For every m ≥ 0, choose a periodic point
ẑm ∈ K of period qm and rotation number pm/qm. Taking a subsequence if
necessary, one can suppose that the sequence (ẑm)m≥0 converges to a point
ẑ. Moreover, ẑm projects onto a point zm ∈ S satisfying fqm(zm) = zm. The
integer qm being prime, zm has period qm if it is not fixed. To prove the
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proposition it remains to show that zm is not fixed if m is large enough. If
it is not the case, taking a sub-sequence if necessary, one can suppose that
all zm are fixed. The sequence (zm)m≥0 converges to z, the projection of
ẑ, and this point is a fixed point. Take a lift z̃ ∈ S̃ of ẑ. There exists a
sequence (Tn)n≥1 in G such that f̃n(z̃) = Tn(z̃). But if m is large enough
and z̃m is the lift of ẑm that is close to z̃, then one has f̃n(z̃m) = Tn(z̃m), for
every n ≥ 1. This is impossible because the integers qm are all distinct. The
fact that f̂qm(ẑm) = ẑm implies that Tqm is a multiple of T0; the fact that
f̂qm(ẑm′) �= ẑm′ if m′ �= m, implies the opposite. �

By Proposition 3.1, it is sufficient to prove the following result to get
Proposition 1.4:

Proposition 3.2. If f is non wandering and if there exists an essential simple
loop λ̂ such that f̂(λ̂) ∩ λ̂ = ∅, then f has periodic points of period arbitrarily
large.

Let us begin by proving:

Lemma 3.3. Suppose that f is non wandering and that there exists an essen-
tial simple loop λ̂ such that f̂(λ̂) ∩ λ̂ = ∅. Then:
(1) the annulus Ai0 does not separate S (its complement is connected);
(2) the loop λ̂ projects onto a simple loop λ̌ ⊂ Š such that f̌(λ̌) ∩ λ̌ = ∅,

where Š is the cyclic cover of S naturally associated to Ai0 and f̌ the
homeomorphism of Š lifted by f̂ .

The surface Š is the normal covering space of S, whose group of auto-
morphisms is infinite cyclic, and such that the preimage of Ai0 by the covering
projection is the union of disjoint separating annuli homeomorphic to Ai0 .
The result is proved in Proposition 7.6 of [20] assuming f lets invariant a
totally supported finite measure. We just need to verify that the arguments
given in [20] are still valid in this wider situation.

Proof. The proof given in [20] is based on the fact that if the conclusions
of Lemma 3.3 are not satisfied, there exists a non empty wandering open
set Û of f̂ such that

⋃

n≥0 f̂n(Û) or
⋃

n≥0 f̂−n(Û) is relatively compact.
So, by Proposition 2.3, the proof extends to the case of a non wandering
homeomorphism. Let us explain briefly the arguments.

The loop λ̂ can be lifted to a T0-line λ̃0 of S̃. The orientation of λ̃0

induces an orientation on λ̂. The loops f̂(λ̂) and f̂−1(λ̂) belong to different
components of Ŝ\λ̂. Replacing f with f−1 if necessary, one can suppose that
f̂(λ̂) is on the left of λ̂ and f̂−1(λ̂) on its right. This implies that λ̃0 is a
Brouwer line of f̃ . The lift f̃ acts on the set of lifts of λ̂ in a natural way.
Indeed if λ̃ = T λ̃0, T ∈ G, is another lift, then λ̃ is a TT0T

−1-line and one
can define

[f̃ ](λ̃) = [f̃ ](T )(λ̃0) = f̃ ◦ T ◦ f̃−1(λ̃0).

The line λ̃0 being a Brouwer line of f̃ , it holds that:

f̃
(

L(λ̃)
)

⊂ L([f̃ ](λ̃)), f̃−1
(

R(λ̃)
)

⊂ R([f̃ ]−1(λ̃)).
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Define Λ− as being the set of lifts λ̃ = T (λ̃0) such that:

• α(TT0T
−1) and ω(TT0T

−1) are on the right of λ̃0;
• α(T0) and ω(T0) are on the right of λ̃.

Similarly, define Λ+ as being the set of lifts λ̃ = T (λ̃0) such that:

• α(TT0T
−1) and ω(TT0T

−1) are on the left of λ̃0;
• α(T0) and ω(T0) are on the left of λ̃.

It is not very difficult to see that the conclusions of Lemma 3.3 will
occur if we prove that λ̃ ∩ λ̃0 = ∅ for every λ̃ ∈ Λ− ∪ Λ+. Indeed, for every
couple (T, T ′) ∈ G2, let us define the integer T ∧ T ′ as follows. Choose z̃ ∈ D

and z̃′ ∈ D, then a path γ̃ joining z̃ to T (z̃) and a path γ̃′ joining z̃′ to T ′(z̃′).
Denote Γ and Γ′ the loops obtained by projecting γ̃ and γ̃′ in S, and define
T ∧ T ′ ∈ Z to be the algebraic intersection number between Γ and Γ′. In
particular, it holds that Š = S̃/Ǧ, where Ǧ = {T ∈ G |T ∧ T0 = 0}. If we
knows that λ̃∩ λ̃0 = ∅ for every λ̃ ∈ Λ− ∪Λ+, we can deduce that T ∧T0 �= 0,
if T (λ̃0) ∩ λ̃0 �= ∅. This implies that λ̃0 projects onto a simple loop of Š.

Now fix λ̃ ∈ Λ−. It projects onto a line of Ŝ, denoted ˆ̃
λ, that joins the

end on the right of λ̂ to itself. It separates Ŝ into two components, R(ˆ̃λ) on

its right and L(ˆ̃λ) on its left. Of course, one has ̂T0(λ̃) = ˆ̃
λ. There are finitely

many lines ˆ̃
λ, λ̃ ∈ Λ−, that meet λ̂, we want to prove that none of them does

it. The set

K̂ = L(λ̂) ∩
⎛

⎝

⋃

λ̃∈Λ−

L(ˆ̃λ)

⎞

⎠

is compact and satisfies f̂(K̂) ⊂ int(K̂). Indeed, if ẑ ∈ L(λ̂) ∩ L(ˆ̃λ), then

f̂(ẑ) ∈ L(λ̂) ∩ L(̂[f ](λ̃)). In case, there exists λ̃ ∈ Λ− such that λ̃ ∩ λ̃0 �= ∅,
we deduce that Û = int(K̂)\f̂(K̂) is a non empty wandering open set of f̂

such that
⋃

n≥0 f̂n(Û) is contained in K̂. We can apply Proposition 2.3 to
get a contradiction. Similarly, we can construct a non empty wandering open
set Û of f̂ such that

⋃

n≥0 f̂−n(Û) is relatively compact in case there exists
λ̃ ∈ Λ+ such that λ̃ ∩ λ̃0 �= ∅. �

We will suppose until the end of the section that f satisfies the hypoth-
esis of Proposition 3.2 and Lemma 3.3: f is non wandering and there exists
an essential simple loop λ̂ such that f̂(λ̂) ∩ λ̂ = ∅. More precisely we will
suppose that f̂(λ̂) is on the left of λ̂ and f̂−1(λ̂) on its right, meaning that
the lift λ̃0 of λ̂ that is a T0-line, is a Brouwer line of f̃ .

We begin using Lemma 3.3. Let Ť be the generator of the group of
covering automorphisms of the covering map π̌ : Š → S such that Ť (λ̌1)
is on the left of λ̌1, where λ̌1 is a lift of λ1 (one of the boundary curves of
Ai0). It is possible that Ť (λ̌) ∩ λ̌ �= ∅ but if s ≥ 1 is large enough, then
Ť s(λ̌) does not meet λ̌ and is on the left of λ̌. Replacing S with Š/Ť s and f
with the homeomorphism of Š/Ť s that is lifted by f̌ , we can always suppose
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that s = 1, meaning that λ̂ projects onto a simple loop λ of S (indeed, by
Proposition 2.2 the new map will be non wandering and if it has periodic
points of period arbitrarily high, so will have f).

Let us explain now how we will apply the results of Sect. 2.6 (forc-
ing theory). Considering the annulus Ŝ and its universal covering space
S̃\{α(T0), ω(T0)}, we can define the sets Ẽ1 and Ẽ2. Recall that there is a
well defined relation ≺ on these sets. Every lift λ̃ �= λ̃0 of λ is disjoint from
λ̃0. If it is on the right of λ̃0 its two “ends” are on J̃1, and so λ̃ belongs to Ẽ1,
if it is on the left of λ̃0 the ends are on J̃2, and so λ̃ belongs to Ẽ2. For every
integers m < n, denote Š[m,n] the compact surface bordered by Ťm(λ̌) and
Ťn(λ̌). Then note respectively S̃[−1,0] and S̃[0,1] the connected component of
the preimage of Š[−1,0] and Š[0,1] by the universal covering projection that
contains λ̃0 in its boundary. The boundary of S̃[−1,0] is a disjoint union of
lifts of λ, the ones that bound S̃[−1,0] on their right side being lifts of λ̌, the
ones that bound S̃[−1,0] on their left side being lifts of Ť−1(λ̌). Denote L̃1 the
set of lifts of λ different from λ̃0, that are on the boundary of S̃[−1,0]. Denote
L̃1,l ⊂ L̃1 the subset of lines in L̃1 that lift Ť−1(λ̌) and L̃1,r ⊂ L̃1 the subset
of lines in L̃1 that lift λ̌. Note also that the relation ≺ defines a total order
on L̃1, setting

λ̃1 � λ̃′
1 ⇔ λ̃1 ≺ λ̃′

1 or λ̃1 = λ̃′
1.

Similarly, denote L̃2 the set of lifts of λ different from λ̃0 that are on the
boundary of S̃[0,1], denote L̃2,l ⊂ L̃2 the subset of lines in L̃2 that lift λ̌ and
L̃2,r ⊂ L̃2 the subset of lines in L̃2 that lift Ť (λ̌). Here again, ≺ induces a
total order on L̃2. There is a natural action of Z

2 on these sets. Note first
that L̃1, L̃1,r, L̃1,l, L̃2, L̃2,r, L̃2,l, are invariant by T0 because λ̃0 is invariant
by T0. These sets are also invariant by the map [f̃ ] defined on the set of lifts
of λ. Moreover, T0 and [f̃ ] commute on our sets.

One deduces that:

λ̃1 ∈ L̃1,r, λ̃ ∈ L̃1 ∪ L̃2, k > 0 ⇒ f̃k(λ̃1) ∩ λ̃ = ∅,

λ̃1 ∈ L̃1,l, λ̃ ∈ L̃1 ∪ L̃2, k > 0 ⇒ f̃−k(λ̃1) ∩ λ̃ = ∅,

λ̃2 ∈ L̃2,r, λ̃ ∈ L̃1 ∪ L̃2, k > 0 ⇒ f̃k(λ̃2) ∩ λ̃ = ∅,

λ̃2 ∈ L̃2,l, λ̃ ∈ L̃1 ∪ L̃2, k > 0 ⇒ f̃−k(λ̃2) ∩ λ̃ = ∅.

Consequently, it holds that

λ̃1 ∈ L̃1,r, λ̃′
1 ∈ L̃1,r, k ∈ Z\{0} ⇒ f̃k(λ̃1) ∩ λ̃′

1 = ∅,

λ̃1 ∈ L̃1,l, λ̃′
1 ∈ L̃1,l, k ∈ Z\{0} ⇒ f̃k(λ̃1) ∩ λ̃′

1 = ∅,

λ̃2 ∈ L̃2,r, λ̃′
2 ∈ L̃2,r, k ∈ Z\{0} ⇒ f̃k(λ̃2) ∩ λ̃′

2 = ∅,

λ̃1 ∈ L̃2,l, λ̃′
2 ∈ L̃2,l, k ∈ Z\{0} ⇒ f̃k(λ̃2) ∩ λ̃′

2 = ∅.

Let us state now the key result implying Proposition 3.2. We will post-
pone its proof and begin by explaining how to get Proposition 3.2 from it.
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Proposition 3.4. There exist λ̃1 ∈ L̃1,l, λ̃2 ∈ L̃2,r, n0 ∈ N, ρ− ∈ R, ρ+ ∈ R,
such that ρ− < ρ+ and such that for every p ∈ Z and every q ≥ 1, it holds
that

ρ−(n0 + q) < p < ρ+(n0 + q) ⇒ f̃2n0+q(λ̃1) ∩ T̃ p
0 (λ̃2) �= ∅.

Moreover, at least one of the two following properties holds:
(1) If

ρ−(n0 + q) < p < p′ < ρ+(n0 + q),

then there exists a segment σ̃1 ⊂ λ̃1 such that:
• f̃2n0+q(σ̃1) joins T p

0 (λ̃2) and T p′
0 (λ̃2);

• the interior of f̃2n0+q(σ̃1) is included in R(T p
0 (λ̃2)) ∩ R(T p′

0 (λ̃2));
• f̃2n0+q(σ̃1) is included in

⋃

k≥0 f̃−k(L(λ̃0)).
(2) If

ρ−(n0 + q) < p < p′ < ρ+(n0 + q),

then there exists a segment σ̃2 ⊂ λ̃2 such that:
• f̃−2n0−q(σ̃2) joins T−p

0 (λ̃1) and T−p′
0 (λ̃1);

• the interior of f̃−2n0−q(σ̃2) is included in L(T−p
0 (λ̃1))∩L(T−p′

0 (λ̃1));
• f̃−2n0−q(σ̃2) is included in

⋃

k≥0 f̃k(R(λ̃0)).

We will suppose from now on, and until the end of the proof of Propo-
sition 3.2, that Proposition 3.4 is true. We can deduce the following:

Proposition 3.5. At least one of the two following statements is true:
(1) There exists λ̃1 ∈ L̃1,l such that for every s ≥ 2, there exists ms ≥ 0

such that for every m ≥ ms, there exists λ̃2 ∈ L̃2,r such that for every
0 < p < p′ ≤ s, there exists a segment σ̃1 ⊂ λ̃1 satisfying:

• f̃m(σ̃1) joins T p
0 (λ̃2) and T p′

0 (λ̃2);
• the interior of f̃m(σ̃1) is included in R(T p

0 (λ̃2)) ∩ R(T p′
0 (λ̃2));

• f̃m(σ̃1) is included in L(λ̃0).
(2) There exists λ̃2 ∈ L̃2,r such that for every s ≥ 2 there exists ms ≥ 0

such that for every m ≥ ms, there exists λ̃1 ∈ L̃1,l such that for every
0 < p < p′ ≤ s, there exists a segment σ̃2 ⊂ λ̃2 satisfying:

• f̃−m(σ̃2) joins T−p
0 (λ̃1) and T−p′

0 (λ̃1);
• the interior of f̃−m(σ̃2) is included in L(T−p

0 (λ̃1)) ∩ L(T−p′
0 (λ̃1));

• f̃−m(σ̃2) is included in R(λ̃0).

Proof. Suppose that the first situation of Proposition 3.4 holds. Fix s ≥ 2
and denote K the (finite) set of couples (p, p′) such that 0 < p < p′ ≤ s.
There exist b ∈ Z and q ≥ 1 such that, for every (p, p′) ∈ K it holds that

ρ−(n0 + q) < p + b < p′ + b < ρ+(n0 + q).

For each couple κ = (p, p′) ∈ K, one can choose a segment σ̃1,κ satisfy-
ing the three items of Proposition 3.4 (1). The third item tells us that
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there exists aκ ≥ 0 such that f̃a+2n0+q(σ̃1,κ) ⊂ L(λ̃0) if a ≥ aκ. More-
over f̃a+2n0+q(σ̃1,κ) joins L([f̃ ]a(T p+b

0 (λ̃2))) and L([f̃ ]a(T p′+b
0 (λ̃2))) and so

contains a segment that joins [f̃ ]a(T p+b
0 (λ̃2)) and [f̃ ]a(T p′+b

0 (λ̃2)) and whose
interior is included in R([f̃ ]a(T p+b

0 (λ̃2))) and R([f̃ ]a(T p′+b
0 (λ̃2))). This seg-

ment can be written f̃a+2n0+q(σ̃′
1,κ) where σ̃′

1,κ is a segment included in σ̃1,κ.
Set amax = maxκ∈K aκ and ms = aκ + 2n0 + q. For every m ≥ ms and for
every κ = (p, p′) ∈ K, there exists a segment σ̃′

1,κ ⊂ λ̃1 satisfying:

• f̃m(σ̃′
1,κ) joins T p

0 ([f̃ ]m−2n0−q(T b
0 (λ̃2))) and T p′

0 ([f̃ ]m−2n0−q(T b
0 (λ̃2)));

• the interior of f̃m(σ̃′
1,κ) is included in R(T p

0 ([f̃ ]m−2n0−q(T b
0 (λ̃2)))) and

in R(T p′
0 ([f̃ ]m−2n0−q(T b

0 (λ̃2))));
• f̃m(σ̃′

1,κ) is included in L(λ̃0).

So (1) is satisfied. If the second situation of Proposition 3.4 holds, one prove
similarly that (2) is satisfied. �

Recalling that m5 has been defined in Proposition 3.5, finally we get:

Proposition 3.6. There exists a sequence (Tm)m≥m5 in G such that each Tm

sends S̃[−1,0] onto S̃[0,1] and such that f̃m ◦ T−1
m has a fixed point.

Proof. Suppose that the first item of Proposition 3.5 holds and denote λ̃1 the
line of L̃1,l defined in Proposition 3.5. Fix m ≥ m5 and denote λ̃2 the line of
L̃2,r defined in Proposition 3.5. If T ∈ G sends λ̃1 onto λ̃0, it sends S̃[−1,0]

onto S̃[0,1] and T0(λ̃1) onto an element of L̃2,l. Moreover T ′ ∈ G sends λ̃1

onto λ̃0 if and only if there exists k ∈ Z such that T ′ = T k
0 T . So, there exists

an automorphism Tm ∈ G, uniquely defined, such that

Tm(λ̃1) = λ̃0 and T 3
0 (λ̃2) ≺ Tm(T0(λ̃1)) ≺ T 4

0 (λ̃2),

and Tm sends S̃[−1,0] onto S̃[0,1]. Note that Tm sends λ̃0 onto an element of
L̃2,r. Consider the map g̃ = f̃m ◦T−1

m . Every line λ̃′
2 ∈ L̃2,r\Tm(λ̃0) is sent by

T−1
m onto an element of L̃1,r and its image by g̃ belongs to L([f̃ ]m(T−1

m (λ̃′
2))).

In particular, g̃(λ̃′
2) ∩ λ̃′

2 = ∅. Every line λ̃′
2 ∈ L̃2,l is sent by T−1

m onto an
element of L̃1,l and its image by f̃−m belongs to R([f̃ ]−m(λ′

2)). The images
of λ̃′

2 by T−1
m and by f̃−m being disjoint, it holds that g̃(λ̃′

2) ∩ λ̃′
2 = ∅. In

fact the only lines on the boundary of S̃[0,1] that can meet their image by
g̃ are λ̃0 and Tm(λ̃0). One can choose i ∈ {2, 3} and j ∈ {4, 5} such that
T i

0(λ̃2) �= Tm(λ̃0) and T j
0 (λ̃2) �= Tm(λ̃0). Applying Proposition 3.5 to the

pairs (i, j) and (i − 1, j − 1) and using the fact that f̃ and T0 commute,
we deduce that there exist a segment σ̃1 ⊂ λ̃1 and a segment σ̃′

1 ⊂ T0(λ̃1)
satisfying:

• f̃m(σ̃1) and f̃m(σ̃′
1) join T i

0(λ̃2) and T j
0 (λ̃2);

• the interior of f̃m(σ̃1) and f̃m(σ̃′
1) are included in R(T i

0(λ̃2)) and in
R(T j

0 (λ̃2));
• f̃m(σ̃1) and f̃m(σ̃′

1) are included in L(λ̃0).

Let us summarize the situation:
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• Tm(σ̃1) is a segment of λ̃0 whose image by g̃ is disjoint from ˜λ0 and
joins T i

0(λ̃2) and T j
0 (λ̃2);

• Tm(σ̃′
1) is a segment of TmT0(λ̃1) whose image by g̃ is disjoint from

TmT0(λ̃1) and joins T i
0(λ̃2) and T j

0 (λ̃2);
• T i

0(λ̃2) and T j
0 (λ̃2) are disjoint from there image by g̃;

• the lines λ̃0, T j
0 (λ̃2), TmT0(λ̃1) and T i

0(λ̃2) are cyclically ordered.

We can use Proposition 2.5 and deduce that g has a fixed point.
In the case where the second item of Proposition 3.5 holds, we can prove

similarly that for every m ≥ m5, there exists Tm ∈ G that sends S̃[−1,0] onto
S̃[0,1], such that f̃−m ◦ Tm has a fixed point. Note that the image by Tm of
the fixed point of f̃−m ◦ Tm is a fixed point of f̃m ◦ T−1

m .

�
It remains to explain why Proposition 3.6 implies Proposition 3.2:

Proof of Proposition 3.2. For every m ≥ m5, one can find z̃m ∈ S̃ such that
f̃m(z̃m) = Tm(z̃m) (just take the image by T−1

m of a fixed point of f̃m ◦
T−1

m ). It projects onto a point žm ∈ Š such that f̌m(žm) = Ť (žm) which
itself projects onto a point zm ∈ S such that fm(zm) = zm. It remains
to show that the period of zm is m. Suppose that fq(zm) = zm, where
q|m. Then there exists p ∈ Z such that f̌q(žm) = Ť p(žm) and so f̌m(žm) =
Ť pm/q(žm), which implies that pm = q. Of course this implies that m = q and
p = 1. �

To conclude the section, it remains to prove Proposition 3.4. Let us
begin with the following result:
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Lemma 3.7. There exists λ̃1 ∈ L̃1,l, λ̃2 ∈ L̃2,r and n ≥ 1 such that f̃n(λ̃1) ∩
λ̃2 �= ∅.
Proof. One can find an open disk Ǔ ⊂ Š[−1,0] whose image by f̌ is on the left
of λ̌. It is a wandering disk of f̌ that projects onto an open disk U of S. There
is a lift Ũ ⊂ S̃[−1,0], uniquely defined up to the action of the iterates of T0,
whose image by f̃ is on the left of λ̃0. By Lemma 2.1, there exists z ∈ U and
positive integers n0, n1, n2 such that f−n0(z), fn1(z) and fn1+n2(z) belong
to U . If ž is the lift of z that belongs to Ǔ , then f̌−n0(ž) is on the right of
Ť−1(λ̌), f̌n1(ž) on the left of λ̌ and f̌n1+n2(ž) on the left of Ť (λ̌). So, if z̃ is
the lift of ž that belongs to Ũ , there exists λ̃1 ∈ L̃1,l and λ̃2 ∈ L̃2,r such that
f̃−n0(z̃) ∈ R(λ̃1) and f̃n1+n2(z̃) ∈ L(λ̃2). Setting n = n0 + n1 + n2, one gets
that f̃n(R(λ̃1)) ∩ L(λ̃2) �= ∅, which implies that f̃n(λ̃1) ∩ λ̃2 �= ∅. �

Proof of Proposition 3.4. We consider the annuli:

Û1 =
⋃

n≥0

f̂−n(L(λ̂)), Û2 =
⋃

n≥0

f̂n(R(λ̂)), Û0 = Û1 ∩ Û2,

and the respective covering spaces:

Ũ1 =
⋃

n≥0

f̃−n(L(λ̃0)), Ũ2 =
⋃

n≥0

f̃n(R(λ̃0)), Ũ0 = Ũ1 ∩ Ũ2.

The three annuli are invariant by f̂ . By Caratheodory’s Prime End Theory
(see [24] for instance), each annulus Û0, Û1, Û2, can be compactified as an
annulus in such a way that the restriction of f̂ to the former annulus extends
to a homeomorphism of the compact annulus. More precisely, to compactify
Û0, one must add the circle of prime ends Ŝ1 corresponding to the end on the
right of λ̂ and the circle of prime ends Ŝ2 corresponding to the end on the left
of λ̂; to compactify Û1, one must add Ŝ1 and Ĵ2; to compactify Û2, one must
add Ĵ1 and Ŝ2. Furthermore, one can add the covering spaces S̃1 and S̃2 of
Ŝ1 and Ŝ2 to Ũ0 in such a way that the restriction of f̃ extends continuously
to the added space. Similarly, one can add S̃1, J̃2 to Ũ1 and J̃1, S̃2 to Ũ2.
For every i ∈ {0, 1, 2}, one can consider the sets Ẽ1(Ũi) and Ẽ2(Ũi) like in
Sect. 2.6, noting that Ẽ1(Ũ0) is a subset of Ẽ1(Ũ1) and Ẽ2(Ũ0) a subset of
Ẽ2(Ũ2). One can define the rotation numbers ρ1, ρ2, defined respectively by
f̃ on each spaces S̃1 and S̃2. Note that at least one of the following conditions
is satisfied:

ρ1 �= ri0 , ρ2 �= 0, ρ1 �= ρ2,

meaning that a boundary twist condition is satisfied on at least one annulus
Û0, Û1 or Û2. The sets Ũ0 ∩

(

⋃

λ̃∈L̃1
λ̃
)

and Ũ1 ∩
(

⋃

λ̃∈L̃1
λ̃
)

coincide, we note

D̃1 the set of its connected components. Each element δ̃1 of D̃1 is contained
in a line λ̃1 ∈ L̃1, moreover it holds that λ̃1 ∈ L̃1,l. Note that δ̃1 is a line
of Ũ1 that has two different limit points in the frontier of Ũ1 in S̃ (called
accessible points). An important property of prime end theory is that λ̃1

has two different limit points in S̃1. In particular D̃1 is a subset of Ẽ1(Ũ0)
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(and consequently of Ẽ1(Ũ1)). Moreover T0 naturally acts on it. Note that
for every k �= 0, every δ1 ∈ D̃1, and every δ̃′

1 ∈ D̃1, one has f̃k(δ1) ∩ δ′
1 = ∅.

Indeed, we have a similar properties in L̃1,l. This means that one gets a
subset

⋃

k∈Z
f̃k(D̃1) of Ẽ1(Ũ0) invariant by T0 and f̃ that consists of pairwise

disjoint lines. Consequently, ≺ is transitive on
⋃

k∈Z
f̃k(D̃1) and induces an

order � which is not necessarily total. Of course T0 and f̃ preserve the order
and one has δ̃ ≺ T0(δ̃) for every δ̃ ∈ ⋃

k∈Z
f̃k(D̃1). We can define similarly

D̃2 ⊂ Ẽ2(Ũ0) with the same properties.
By Lemma 3.7, there exist λ̃1 ∈ L̃1,l, λ̃2 ∈ L̃2,r and n0 ≥ 1 such that

f̃n0(λ̃1) ∩ λ̃2 �= ∅. Choose z̃ ∈ λ̃1 ∩ f̃−n0(λ̃2). Its orbit is included in Ũ0. So,
there exists δ̃1 ∈ D̃1 and δ̃2 ∈ D̃2 such that z̃ ∈ δ̃1 and f̃n0(z̃) ∈ δ̃2.

We will begin by studying the case where ρ1 �= ri0 and will prove that
the first item of Proposition 3.4 is satisfied. Then we will study the case where
ρ2 �= 0 and will prove that the second item is satisfied. Eventually we will
look at the case where ρ1 = ri0 and ρ2 = 0 and will see that both items are
satisfied.

Suppose first that ρ1 �= ri0 . Note that all properties of Proposition 2.8
are satisfied with δ̃1 ∈ Ẽ1(Ũ1) and λ̃2 ∈ Ẽ2(Ũ1). Setting ρ− = min(ρ1, ri0)
and ρ+ = max(ρ1, ri0) one gets that

ρ−(n0 + q) < p < ρ+(n0 + q) ⇒ f̃2n0+q(δ̃1) ∩ T p
0 (λ̃2) �= ∅.

So, if ρ−(n0 + q) < p < p′ < ρ+(n0 + q), there exists a segment σ̃1 ⊂ δ̃1 ⊂ λ̃1

such that:
• f̃2n0+q(σ̃1) joins T p

0 (λ̃2) and T p′
0 (λ̃2);

• the interior of f̃2n0+q(σ̃1) is included in R(T p
0 (λ̃2)) ∩ R(T p′

0 (λ̃2));
• f̃2n0+q(σ̃1) is included in

⋃

k≤0 f̃−k(L(λ̃0)).

Suppose now that ρ2 �= 0. The properties of Proposition 2.8 are sat-
isfied with λ̃1 ∈ Ẽ1(Ũ2) and δ̃2 ∈ Ẽ2(Ũ2). Setting ρ− = min(ρ2, 0) and
ρ+ = max(ρ2, 0) one gets that

ρ−(n0 + q) < p < ρ+(n0 + q) ⇒ f̃2n0+q(λ̃1) ∩ T p
0 (δ̃2) �= ∅.

So, if ρ−(n0 + q) < p < p′ < ρ+(n0 + q), there exists a segment σ̃2 ⊂ δ̃2 ⊂ λ̃2

such that:
• f̃−2n0−q(σ̃2) joins T−p

0 (λ̃1) and T−p′
0 (λ̃1);

• the interior of f̃−2n0−q(σ̃2) is included in L(T−p
0 (λ̃1)) ∩ L(T−p′

0 (λ̃1));
• f̃−2n0−q(σ̃2) is included in

⋃

k≤0 f̃−k(R(λ̃0)).

Suppose now that ρ1 = ri0 and ρ2 = 0. The properties of Proposition
2.8 are satisfied with δ̃1 ∈ Ẽ1(Ũ0) and δ̃2 ∈ Ẽ2(Ũ0). Setting ρ− = min(0, ri0)
and ρ+ = max(0, ri0) one gets that

ρ−(n0 + q) < p < ρ+(n0 + q) ⇒ f̃2n0+q(δ̃1) ∩ T p
0 (δ̃2) �= ∅.

So, if ρ−(n0 + q) < p < p′ < ρ+(n0 + q), there exists a segment σ̃1 ⊂
δ̃1 ⊂ λ̃1 such that:

• f̃2n0+q(σ̃1) joins T p
0 (λ̃2) and T p′

0 (λ̃2);
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• the interior of f̃2n0+q(σ̃1) is included in R(T p
0 (δ̃2)) ∩ R(T p′

0 (δ̃2)).
• f̃2n0+q(σ̃1) is included in

⋃

k≤0 f̃−k(L(λ̃0)).

Similarly, there exists a segment σ̃2 ⊂ δ̃2 ⊂ λ̃2 such that:

• f̃−2n0−q(σ̃2) joins T−p
0 (λ̃1) and T−p′

0 (λ̃1);
• the interior of f̃−2n0−q(σ̃2) is included in L(T−p

0 (λ̃1)) ∩ L(T−p′
0 (λ̃1)).

• f̃−2n0−q(σ̃2) is included in
⋃

k≤0 f̃−k(R(λ̃0)). �

Remark. The boundary twist condition is satisfied on the whole space S̃.
Setting ρ− = min(0, ri0) and ρ+ = max(0, ri0) one knows that

ρ−(n0 + q) < p < ρ+(n0 + q) ⇒ f̃2n0+q(λ̃1) ∩ T p
0 (λ̃2) �= ∅.

So, if ρ−(n0 + q) < p < p′ < ρ+(n0 + q), there exists a segment σ̃1 ⊂ λ̃1 such
that:

• f̃2n0+q(σ̃1) joins T p
0 (λ̃2) and T p′

0 (λ̃2);
• the interior of f̃2n0+q(σ̃1) is included in R(T p

0 (λ̃2)) ∩ R(T p′
0 (λ̃2)).

The problem is that we need the supplementary condition
• f̃2n0+q(σ̃1) is included in

⋃

k≤0 f̃−k(L(λ̃0));

to make right the argument of the proof of Proposition 3.6. There is no reason
why such a condition will be satisfied even if q is large enough. This is why
we must work in Ũ0, Ũ1 or in Ũ2.

4. Homeomorphisms isotopic to the identity

The goal of this section is to prove Proposition 1.5, which means to prove that
if S is an orientable closed surface of genus g ≥ 2 and f a non wandering
homeomorphism of S isotopic to the identity, then either f has periodic
points of period arbitrarily large, or every periodic point of f is fixed and f
is isotopic to the identity relative to its fixed point set (the existence of at
least one fixed point being a consequence of Lefschetz formula).

Proof of Proposition 1.5. We keep the same notations as before. The map f
being isotopic to the identity and the genus of S being larger than 1, there
exists a unique lift f̃ of f to S̃ that commutes with the covering automor-
phisms. A periodic point of f that is lifted to a periodic point of f̃ is called a
contractible periodic point. It was proved in [19] that if f has a contractible
periodic point that is not fixed, or if f is not isotopic to the identity relative
to the contractible fixed point set, then f has contractible periodic points
of arbitrarily large period. So, Proposition 1.5 is an extension of this result
and to obtain Proposition 1.5 it remains to show that f has periodic points
of arbitrarily large period if there exists a non contractible periodic point.
We fix such a point z0, denoting by q0 its period. If z̃0 is a lift of z0, there
exists T0 ∈ G\{Id) such that f̃q(z̃0) = T0(z̃0). The map f̃ commutes with
T0 and lifts a homeomorphism f̂ of Ŝ = S̃/T0. Recall that f̃ extends to a
homeomorphism of S̃ that fixes every point of ∂S. Consequently f̂ extends
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to a homeomorphism of the compact annulus Ŝ obtained by adding the two
circles Ĵ1 = J̃1/T0 and Ĵ2 = J̃2/T0, where J̃1 and J̃2 are the two connected
components of ∂S\{α(T0), ω(T0)}, the first one on the right of every T0-line,
the second on the left. Note that every point of Ĵ1 ∪ Ĵ2 is fixed, with a rota-
tion number equal to zero for the lift f̃ . Note also that z̃0 projected onto
a periodic point ẑ0 of period q0 and rotation number 1/q0. One can apply
Theorem 2.4:

• either, for every rational number p/q between 0 and 1/q0, written in
an irreducible way, there exists a periodic point z of f̂ of period q and
rotation number p/q for f̃ ;

• or there exists an essential simple loop λ̂ ⊂ Ŝ such that f̂(λ̂) ∩ λ̂ = ∅.

In case the first item holds, we can prove, as we did in Sect. 3 for a map
isotopic to a Dehn twist map, that f has periodic points of period arbitrarily
large. So, we can assume that the second item holds. Consider the lift λ̃0 ⊂
S̃ of λ̂, oriented as a T0-line. Replacing f with f−1 if necessary, we can
suppose that it is a Brouwer line. The fact that f̃ commutes with the covering
automorphisms implies that every line T (λ̃0), T ∈ G, is a Brouwer line of f̃ .

The loop λ̂ projects onto a loop λ of S and there is a natural partition
L̃ = L̃0 ∪ L̃1 ∪ L̃2 of the set of lifts of λ in S̃, defined as follows:

• every λ̃ ∈ L̃0 meets λ̃0;
• every λ̃ ∈ L̃1 is included in R(λ̃0);
• every λ̃ ∈ L̃2 is included L(λ̃0).

Note that the ends of a line in L̃1 belong to J̃1 and the ends of a line in
L̃2 belong to J̃2. Moreover, we have two partitions L̃1 = L̃1,r ∪ L̃1,l and
L̃2 = L̃2,r ∪ L̃2,l, where:

• λ̃ ∈ L̃1,r ∪ L̃2,r if λ̃0 ⊂ R(λ̃);
• λ̃ ∈ L̃1,l ∪ L̃2,l if λ̃0 ⊂ L(λ̃).

Note that the subsets defined above are all invariant by T0. A last impor-
tant remark is the following: there exists N > 0 such that if λ̃ is a lift of λ,
there exists at most N other lifts that meet λ̃ up to the action of T , where T
is the generator of the stabilizer of λ̃ (in particular the number of T0-orbits
in L̃0 is bounded by N). Indeed fix a segment δ̃ ⊂ λ̃0 joining a point z̃ to
T0(z̃) the set of T ∈ G such that T (δ̃) ∩ δ̃ �= ∅ is finite, choose N to be its
cardinal.

Lemma 4.1. There exist λ̃1 ∈ L̃1,l, λ̃2 ∈ L̃1,r and n0 ≥ 1 such that f̃n0(λ̃1) ∩
λ̃2 �= ∅.

Proof. Consider an open disk Ũ ⊂ R(λ̃0) ∩ f̃−1(L(λ̃0)) that projects onto
an open disk U of S. Using Lemma 2.1, there exists z ∈ U and two increas-
ing sequences (mi)0≤k≤N , (m′

i)i≤k≤N , with m0 = m′
0 = 0, such that for

every k ∈ {0, . . . , N}, the points fmk(z) and f−m′
k(z) belong to U . Let z̃ be

the lift of z that belongs to Ũ . So there exist two sequences (T (k))0≤k≤N ,
(T ′(k))0≤k≤N of covering automorphisms such that f̃mk(z̃) ∈ T (k)(Ũ) and
f̃−m′

k(z̃) ∈ T ′(k)(Ũ). Suppose that there exist 0 ≤ k < k′ ≤ N and m ∈ Z
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such that T (k′) = Tm
0 T (k). Then it holds that f̃mk(T (k)−1(z)) ∈ Ũ and

f̃mk′ (T (k)−1(z)) ∈ Tm
0 (Ũ). We have a contradiction because Tm

0 (Ũ) ⊂ R(λ̃0)
and f̃mk′−mk(Ũ) ⊂ L(λ̃0). But we have T (0) = Id, and so, there exists
1 ≤ k ≤ N such that T (k)(λ̃0) �∈ L̃0. The lines λ̃0 and T (k)(λ̃0) being Brouwer
lines, one deduces that T (k)(λ̃0) ∈ L̃2,r. For the same reasons, one can find
1 ≤ k′ ≤ N such that T ′(k′)(λ̃0) ∈ L̃1,l. Setting n0 = mk + m′

k′ + 1, one
deduce that f̃n0(R(T ′(k′)(λ̃0)) ∩ L(T (k)(λ̃0)) �= ∅ which easily implies that
f̃n0(T ′(k′)(λ̃0)) ∩ T (k)(λ̃0) �= ∅. �

We would like to give a proof similar to the proof in Sect. 3. The fact
that z̃0 lifts a periodic point of f̂ implies that the points f̃q ◦ T p

0 (z̃0), p ∈ Z,
q ∈ Z, are all on the same side of λ̃0. We will suppose that they are on the left
side, meaning that they all belong to Ũ1 =

⋃

n≥0 f̃−n(L(λ̃0)), the covering
space of Û1 =

⋃

n≥0 f̂−n(L(λ̂0)). The case where they are on the right side
can be treated similarly, replacing Ũ1 and Û1 with Ũ2 =

⋃

n≥0 f̃n(R(λ̃0)) and
Û2 =

⋃

n≥0 f̂n(R(λ̂)). Here again, we compactify Û1 by adding Ĵ2 and Ŝ1,
the circle of prime ends corresponding to the end on the right of λ̂. To obtain
the universal covering space, we add J̃2 and S̃1, the covering space of Ŝ1, to
Ũ1. The map f̃|Ũ1

extends continuously to the added lines and fixes every

point of J̃2. We denote ρ1 the rotation numbers of ˜f|S̃1
. Here again we can

define the set D̃1 of connected components of Ũ1 ∩
(

⋃

λ̃∈L̃1
λ̃
)

, noting that

every element δ̃ is a line of Ũ1 that is contained in a line λ̃ ∈ L̃1,l.
If we want to repeat the arguments given in Sect. 3, we will meet a

problem. In Sect. 3, the lines of λ̃ ∈ L̃1 or λ̃ ∈ L̃2 were pairwise disjoint,
meaning that ≺ induces an order on these sets. This fact was very important
in the proof because it was necessary for applying Proposition 2.8. It is no
more the case here. Nevertheless, there is at most N lines T k

0 (λ̃1), k ∈ Z,
that intersect λ̃1 and at most N lines T k(λ̃2) that intersect λ̃2. In particular
if s is large enough, ≺ induces an order on the sets

L̃′
1,l = {T sk

0 (λ̃1), k ∈ Z} and L̃′
2,l = {T sk

0 (λ̃2), k ∈ Z}.

So we will have to work in the annulus S̃/T s
0 instead of the annulus S̃/T0. We

define the set D̃′
1 ⊂ D̃1 of connected components of Ũ1 ∩

(

⋃

k∈Z
T sk

0 (λ̃1)
)

.
Like in Sect. 3, it holds that

λ̃1 ∈ L̃′
1,l, λ̃′

1 ∈ L̃′
1,l, k ∈ Z\{0} ⇒ f̃k(λ̃1) ∩ λ̃′

1 = ∅,

δ̃1 ∈ D̃′
1, δ̃′

1 ∈ D̃′
1, k ∈ Z\{0} ⇒ f̃k(δ̃1) ∩ δ̃′

1 = ∅,

λ̃2 ∈ L̃′
2,r, λ̃′

2 ∈ L̃′
2,r, k ∈ Z\{0} ⇒ f̃k(λ̃2) ∩ λ̃′

2 = ∅.

Moreover, as a consequence of Lemma 4.1, there exists δ̃1 ∈ D̃′
1 such that

f̃n0(δ̃1) ∩ λ̃2 �= ∅.
There is two cases to study: the case where ρ1 �= 0 and the case where

ρ1 = 0.
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Case where ρ1 �= 0. It is the case where there is a boundary twist con-
dition. The rotation numbers in the new annulus are ρ1/s and 0. All the
arguments appearing in Sect. 3 are still valid. Setting ρ− = min(0, ρ1) and
ρ+ = max(0, ρ1) one gets that

ρ−(n0 + q) < sp < ρ+(n0 + q) ⇒ f̃2n0+q(δ̃1) ∩ T sp
0 (λ̃2) �= ∅.

Moreover, if

ρ−(n0 + q) < sp < sp′ < ρ+(n0 + q),

then there exists a segment σ̃1 ⊂ δ̃1 ⊂ λ̃1 such that:

• f̃2n0+q(σ̃1) joins T sp
0 (λ̃2) and T sp′

0 (λ̃2);
• the interior of f̃2n0+q(σ̃1) is included in R(T sp

0 (λ̃2)) ∩ R(T sp′
0 (λ̃2));

• f̃2n0+q(σ̃1) is included in
⋃

k≤0 f̃−k(L(λ̃0)).

Like in Sect. 3, we deduce that for every s ≥ 2, there exists ms ≥ 0
such that for every m ≥ ms, there exists λ̃′

2 ∈ L̃2,r such that for every
0 < p < p′ ≤ s, there exists a segment σ̃1 ⊂ λ̃1 satisfying:

• f̃m(σ̃1) joins T sp
0 (λ̃′

2) and T sp′
0 (λ̃′

2);
• the interior of f̃m(σ̃1) is included in R(T sp

0 (λ̃′
2)) ∩ R(T sp′

0 (λ̃′
2));

• f̃m(σ̃1) is included in L(λ̃0);

Fix T1 ∈ G that sends λ̃1 onto λ̃0. Like in Sect. 3, we can prove that
for every m ≥ m5, there exists Tm ∈ G such that f̃m ◦ T−1

m has a fixed
point, where Tm can be written Tm = T snm

0 ◦ T1. Choose a fixed point z̃m

of f̃m ◦ T−1
m . It projects onto a fixed point zm ∈ S of fm. Let us prove that

the period of zm tends to +∞ with m. Otherwise, there exists r ≥ 0 and
an increasing sequence (ml)l≥0 such that zml

has period r. So, there exists
Sl ∈ G such that f̃r(z̃ml

) = Sl(z̃ml
). The map f̃ commutes with the covering

automorphisms. We deduce on one side that f̃ml(z̃ml
) = Tml

(z̃ml
) and on the

other side that f̃ml(z̃ml
) = S

ml/r
l (z̃ml

) and so Tml
= S

ml/r
l . Let us explain

why it is impossible if l is large enough. Note that

S
ml/r
l (λ̃1) = Tml

(λ̃1) = T snm
0 ◦ T1(λ̃1) = T snm

0 (λ̃0) = λ̃0.

This implies that

S
ml/r
l (α(λ̃1)) = α(λ̃0) and S

ml/r
l (ω(λ̃1)) = ω(λ̃0).

One can find two disjoint segments σ̃α and σ̃ω of ∂S̃, the first one joining
α(λ̃1) to α(λ̃0), the second one joining ω(λ̃1) to ω(λ̃0). This implies that for
every 0 ≤ k ≤ ml/r it holds that Sk

l (α(λ̃1)) ∈ σα and Sk
l (ω(λ̃1)) ∈ σω. Let

σ̃ be a segment of S̃ that joins λ̃1 to λ̃2. The set of lifts of λ̂ that meet σ̃ is
finite. Let N ′ be its cardinal. Suppose that ml/r ≥ 2N + N ′. There exists
0 < k < ml/r such that Sk

l (λ̃1) does not meet λ̃1 ∪ λ̃0 ∪ σ̃. Nevertheless one
of the end of Sk

l (λ̃1) is in the interior of σ̃α and the other one in the interior
of σ̃ω. We have a contradiction.
Case where ρ1 = 0. Here there is no boundary twist condition. The twist
condition is given by the existence of a periodic point which has a non zero
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rotation number. The proof is inspired by arguments of Lellouch appearing
in his thesis [23].

Lemma 4.2. There exists an increasing sequence (np)p≥0 such that f̃n(δ̃1) ∩
T sp

0 (λ̃2) �= ∅ if n ≥ np.

Proof. Every lift of λ̂ being a Brouwer line, it is sufficient to prove that
there exists np such that f̃np(δ̃1) ∩ T sp

0 (λ̃2) �= ∅. Indeed, if n > np, then
f̃n(δ̃1) ∩ L(T sp

0 (λ̃2)) �= ∅ because

f̃n−np(f̃np(δ̃1) ∩ T sp
0 (λ̃2)) = f̃n(δ̃1) ∩ f̃n−np(T sp

0 (λ̃2)) ⊂ f̃n(δ̃1) ∩ L(T sp
0 (λ̃2)),

and it implies that f̃np(δ̃1) ∩ T sp
0 (λ̃2) �= ∅. By induction, it is sufficient to

prove that there exists n1 ≥ n0 such that f̃n1(δ̃1) ∩ T s
0 (λ̃2) �= ∅.

The fact that f̃n0(δ̃1)∩λ̃2 �= ∅ implies that there exists a half-line l̃1 ⊂ δ̃1

and a half-line l̃2 ⊂ λ̃2 such that f̃n0(l̃1) and l̃2 intersect in a unique point
and such that f̃n0(l̃1) ∪ l̃2 is a line l̃ of Ũ1. For the same reason, there exists
a half-line l̃′1 ⊂ δ̃1 and a half-line l̃′2 ⊂ λ̃2 such that l̃′1 and f̃−n0(l̃′2) intersect
in a unique point and such that l̃′1 ∪ f̃−n0(l̃′2) is a line l̃′ of Ũ1. We can also
make a choice such that l̃1 ∩ l̃′1 is a half-line of δ̃1 and l̃2 ∩ l̃′2 a half-line of λ̃2

If m ≥ 0, then f̃m(l̃2) and f̃m+n0(l̃2) are contained in L(λ̃2) and so
are disjoint from T s

0 (l̃′1) and T s
0 (l̃′2). We deduce that f̃m(l̃2) ∩ T s

0 (l̃′) = ∅.
Moreover f̃m(l̃1) ∩ T s

0 (l̃′1) = ∅. So, to get Lemma 4.2, it is sufficient to prove
that there exists m > 0 such that f̃m(l̃) ∩ T s

0 (l̃′) �= ∅.
We will argue by contradiction and suppose that f̃m(l̃) ∩ T s

0 (l̃′) = ∅ for
every m ≥ 0. We can orient l̃ and T s

0 (l̃′) such that L(l̃) ⊂ L(T s
0 (l̃′)). The ends

of l̃ and l̃′ (on S̃1 and J̃2) are the same. The fact that ρ1 = 0 implies that for
every m > 0, the ends of f̃m(l̃), which are the images by f̃m of the ends of l̃,
stay smaller than the ends of T s

0 (l̃′), which are the images by T̃ s
0 of the ends

of l̃. So we have L(f̃m(l̃)) ⊂ L(T s
0 (l̃′)). To get the contradiction, just notice

that if m is large enough, then f̃−m(z̃0) ∈ L(l̃) and f̃m(z̃0) ∈ R(T s
0 (l̃′)). But

we should have

f̃m(z̃0) = f̃2m(f̃−m(z̃0)) ∈ L(f̃2m(l̃)) ⊂ L(T s
0 (l̃′)).

�

Denote λ̃1 the element of L1,l that contains δ̃1. We deduce from Lemma
4.2 that, for every q ≥ 2, for every m ≥ nq and every 0 < p < p′ ≤ q, there
exists a segment σ̃1 ⊂ λ̃1 satisfying:

• f̃m(σ̃1) joins T sp
0 (λ̃2) and T sp′

0 (λ̃2);
• the interior of f̃m(σ̃1) is included in R(T sp

0 (λ̃2)) ∩ R(T sp′
0 (λ̃2));

• f̃m(σ̃1) is included in
⋃

k≤0 f̃−k(L(λ̃0)).

Like in the proof of Proposition 3.5, and using the the fact that the
T sp

0 (λ̃2) are Brouwer lines (or equivalently that [f ] is the identity map) we
deduce that, for every q ≥ 2, there exists mq ≥ nq such that for every m ≥ mq

and every 0 < p < p′ ≤ q, there exists a segment σ̃1 ⊂ λ̃1 satisfying:
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• f̃m(σ̃1) joins T sp
0 (λ̃2) and T sp′

0 (λ̃2);
• the interior of f̃m(σ̃1) is included in R(T sp

0 (λ̃2)) and in R(T sp′
0 (λ̃2));

• f̃m(σ̃1) is included in L(λ̃0).

Finally, like in the proof of Proposition 3.6, we show that if T1 is the
unique covering automorphism such that

T1(λ̃1) = λ̃0 and T 3s
0 (λ̃2) ≺ T1(T s

0 (λ̃1)) ≺ T 4s
0 (λ̃2),

then, for every m ≥ m5, the map f̃m ◦ T−1
1 has a fixed point.

To conclude, choose a fixed point z̃m of f̃m ◦ T−1
1 . It projects onto a

fixed point zm ∈ S of fm. Let us prove that the period of zm tends to +∞
with m. Otherwise, there exist r ≥ 0 and an increasing sequence (ml)l≥0 such
that zml

has period r. So, there exists Sl ∈ G such that f̃r(z̃ml
) = Sl(z̃ml

).
One deduces that f̃ml(z̃ml

) = S
ml/r
l (z̃ml

) and so T1 = S
ml/r
l . In particular

Sl belongs to the centralizer of T . But it is well known that the centralizer
of T1 is a cyclic group. We have got a contradiction. �

5. The case of the torus

The goal of this section is to prove Theorem 1.2. The arguments that follow
are the ones appearing in [2] but we need to verify that, up to slight modi-
fications, they are still valid when the area-preserving condition is replaced
with the non wandering condition.

Let us consider M =
(

a b
c d

)

∈ SL(2, Z). There are three possibilities:

• M is hyperbolic, meaning that its eigenvalues have a modulus different
from 1;

• M is conjugate in SL(2, Z) to
(

1 k
0 1

)

or to
(−1 k

0 −1

)

, where k ∈
Z\{0};

• M has finite order (and in that case its order is 1, 2, 3, 4 or 6).

The matrix M induces an orientation preserving automorphism [M ] of T

2

by the formula [M ](x, y) = (ax + by, cx + dy). We will denote Aut(T2) the
group of such automorphisms. Every orientation preserving homeomorphism
f of T

2 is isotopic to a unique automorphism, that will be denoted [f ], as its
associated matrix.

Setting D =
(

1 1
0 1

)

, we have the following classification for an orien-

tation homeomorphism f of T

2 :
• [f ] is hyperbolic;
• there exists q ∈ {1, 2} and k ∈ Z\{0} such that fq is conjugate to a

homeomorphism isotopic to [D]k;
• there exists q ∈ {1, 2, 3, 4, 6} such that fq is isotopic to the identity.

Let us recall now the definition of the rotation set of a homeomorphism
of T

2 isotopic to the identity (see [25] or [26]). For every homeomorphism
f of T

2, denote Mf the set of Borel probability measures invariant by f .

Vol. 24 (2022) Conservative surface homeomorphisms

Reprinted from the journal 857



P. Le Calvez JFPTA

Suppose that f is isotopic to the identity. Every lift f̃ of f to R

2 commutes
with the integer translations z̃ �→ z + k, k ∈ Z

2. So, the map f̃ − Id lifts
a continuous function ψf̃ : T

2 → R

2. One can define the rotation vector
rotf̃ (μ) =

∫

T2 ψf̃ dμ ∈ R

2 of μ ∈ Mf , that measures the mean displacement
of f̃ . The rotation set rot(f̃) = {rotf̃ (μ) |μ ∈ Mf} is a non empty compact
convex subset of R

2. Of course, it depends on the lift f̃ but if f̃ ′ = f̃ + k,
k ∈ Z

2, is another lift, it holds that rot(f̃ ′) = rot(f̃)+k because ψf̃ ′ = ψf̃ +k.
The following properties are very classical (the two first ones are due to

Franks [12], [13], the last one is an easy consequence of the characterization
of the ergodic measures as extremal points of Mf ).

(1) If p/q belongs to the interior of rot(f̃), where p ∈ Z

2 and q ∈ N\{0},
then there exists z̃ ∈ R

2 such that f̃q(z̃) = z̃ + p.
(2) If p ∈ Z

2 and q ∈ N\{0} are such that p/q = rotf̃ (μ), where μ ∈ Mf is
ergodic, then there exists z̃ ∈ R

2 such that f̃q(z̃) = z̃ + p.
(3) Every extremal point of rot(f̃) is the rotation vector of an ergodic mea-

sure.
Let us recall now the definition of the vertical rotation set of a home-

omorphism of T

2 isotopic to a Dehn twist (see [1] or [8]). Suppose that f is
isotopic to [D]k, where k �= 0 and that f̂ is a lift of f to T × R. It commutes
with the vertical translation V : ẑ �→ ẑ +(0, 1). So, the map p2 ◦ f̂ − p2 lifts a
continuous function ψf̂ : T

2 → R. One can define the vertical rotation number
vrotf̂ (μ) =

∫

T2 ψf̂ dμ ∈ R of a measure μ ∈ Mf and the vertical rotation set
vrot(f̂) = {ρ(μ) |μ ∈ Mf}, which is a non empty segment of R. Here again,
it depends on the lift f̂ but if f̂ ′ = V k ◦ f̂ , k ∈ Z, is another lift, we have
vrot(f̂ ′) = vrot(f̂) + k.

We will need the following properties, the first one being proved in [1]
and [8], the second one in [3]:

(1) if p/q belongs to the interior of vrot(f̂), where p ∈ Z and q ∈ N\{0},
there exists ẑ ∈ T × R such that f̂q(ẑ) = V p(ẑ);

(2) if vrot(f̂) = {p/q}, where p ∈ Z and q ∈ N\{0}, there exists a compact
connected essential set K̂ ⊂ T × R invariant by f̂q ◦ V −p.
Let f be an orientation preserving homeomorphism of T

2. It is well
known that if [f ] is hyperbolic, then f has periodic points of period arbitrarily
large. So, Theorem 1.2 can be deduced from the two following results:

Proposition 5.1. Let f a non wandering homeomorphism of T

2 isotopic to
[D]k, k �= 0. Then:

• either f has periodic points of period arbitrarily large;
• or f has no periodic orbit and there exists δ ∈ T\Q/Z such that for

every lift f̂ of f to T × R, there exists δ̂ ∈ R such that δ̂ + Z = δ and
vrot(f̂) = {δ̂}.

Proposition 5.2. Let f a non wandering homeomorphism of T

2 isotopic to
the identity. Exactly one of the following assertions holds:
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(1) f has periodic points of period arbitrarily large;
(2) If f̃ is a lift of f to R

2, then rot(f̃) is a point or a segment that does
not meet Q

2/Z

2. In this case f has no periodic point.
(3) There exists an integer q ≥ 1 such that:

• the periodic points of fq are fixed;
• the fixed point set of fq is non empty and fq is isotopic to the

identity relative to it;
• the rotation set of the lift of fq that has fixed points is reduced to 0

or is a segment with irrational slope that has zero as an end point.

Proof of Proposition 5.1. Fix a lift f̂ of f to T × R. If vrot(f̂) is not reduced
to a point, then for every rational number p/q ∈ int(vrot(f̂)) there exists
ẑ ∈ T × R such that f̂q(ẑ) = V p(ẑ). If p and q are chosen relatively prime,
then ẑ projects onto a periodic point of f of period q. Consequently, f has
periodic points of period arbitrarily large.

Suppose now that vrot(f̂) is reduced to a rational number p/q. Replacing
f with fq and f̂ with V −p ◦ f̂q, one can suppose that vrot(f̂) = {0}. There
exists a compact connected essential set K̂ ⊂ T × R that is invariant by f̂ .
Let μ be a Borel probability measure supported on K̂ and invariant by f̂ . For
every m ∈ Z, the measure V m

∗ (μ) is supported on V m(K̂) and invariant by f̂ .
Fix a lift f̃ of f̂ to R

2. For every m ∈ Z, one has rotf̃ (V m
∗ (μ)) = rotf̃ (μ)+mk.

So, by Theorem 2.4 it holds that
• either, for every rational number p/q ∈ R, there exists a periodic point

ẑ of f̂ of period q and rotation number p/q for f̃ ;
• or there exists an essential simple loop λ̂ ∈ T×R such that f̂(λ̂)∩ λ̂ = ∅.

Here again, in the first situation, if p and q are chosen relatively prime, ẑ
projects onto a periodic point of f of period q and so f has periodic points
of period arbitrarily large. Let us prove now that the second situation never
holds. Suppose that there exists an essential simple loop λ̂ ∈ T×R such that
f̂(λ̂) ∩ λ̂ = ∅. Then one can find a relatively compact wandering disk Û . The
fact that every V m(K̂), m ∈ Z, is compact, essential and f̂ -invariant implies
that

⋃

k∈Z
f̂k(Û) is relatively compact. This contradicts Proposition 2.3. �

Proof of Proposition 5.2. Fix a lift f̃ of f to R

2. If rot(f̃) has non empty
interior, then f has periodic points of period arbitrarily large. Indeed, if
(p1/q, p2/q) belongs to the interior of rot(f̃), then there exists z̃ ∈ R

2 such
that f̃q(z̃) = z̃+(p1, p2). Moreover, if p1, p2 and q are chosen with no common
divisor, then z̃ projects onto a periodic point of f of period q.

Suppose now that rot(f̃) is a point or a segment that does not meet
Q

2/Z

2. Then f has no periodic point and (2) holds.
Suppose now that rot(f̃) meets Q

2/Z

2 in a unique point p/q. Either
rot(f̃) is reduced to p/q or is a segment with irrational slope. It has been
proven in [21] that p/q is an end point of rot(f̃) in this last case. In particular
in both cases, f̃q − p has at least one fixed point, because p/q is the rotation
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vector of an ergodic measure. Note that every periodic point of fq is lifted to
a periodic point of f̃q − p, meaning it is contractible. Using [19], one deduces
that:

• either f has periodic points of arbitrarily large period;
• or the periodic points of fq are all fixed and lifted to fixed points of

f̃q − p, moreover fq is isotopic to the identity relative to its fixed point
set.

It remains to study the case where rot(f̃) is a non trivial segment with
rational slope that intersects Q

2/Z

2. Replacing f with fq and f̃ with f̃q −
p, where p/q ∈ rot(f̃), one can suppose that 0 ∈ rot(f̃). The linear line
containing rot(f̃) is generated by p′ ∈ Z

2\{0} and invariant by the translation
T : z �→ z + p′. Let f̂ be the homeomorphism of the annulus Ap′ = R

2/T

lifted by f̃ . A result of Dávalos [7] tells us that the orbits of f̂ are uniformly
bounded, or equivalently that there exists a compact connected essential set
K̂ ⊂ Ap′ invariant by f̂ . The rotation set of f̃ being non trivial, one can
find two compactly supported ergodic measures of f̂ with different rotation
numbers (for f̃). Like in the proof of Proposition 5.1, we can prove that for
every essential simple loop λ̂ ∈ Ap′ it holds that f̂(λ̂) ∩ λ̂ �= ∅ and then that
f has periodic point of arbitrarily large periods. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Addas Zanata, S.: On properties of the vertical rotation interval for twist map-
pings. II. Qual. Theory Dyn. Syst. 4(2), 125–137 (2003)

[2] Addas-Zanata, S., Tal, F.A.: On periodic points of area preserving torus home-
omorphisms. Far East J. Dyn. Syst. 9(3), 371–378 (2007)

[3] Addas-Zanata, S., Garcia, B., Tal, F.A.: Dynamics of homeomorphisms of the
torus homotopic to Dehn twists. Ergod. Theory Dyn. Syst. 34(2), 409–422
(2014)

[4] Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Ergodic
diffeomorphisms. Trans. Moscow Math. Soc. 23, 1–35 (1970)

[5] Birkhoff, G.-D.: An extension of Poincaré’s last geometric theorem. Acta Math.
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1. Introduction

The main goal of this paper is to exhibit examples of Hamiltonian diffeo-
morphisms on symplectic manifolds of dimension greater than two, which,
on the one hand, have a finite number of periodic points, and on the other
hand, have interesting and complicated dynamics. We will refer to Hamil-
tonian diffeomorphisms with a finite number of periodic points as Hamil-
tonian pseudo-rotations.1 Such diffeomorphisms have been of great inter-
est in dynamical systems and symplectic topology; see, for example, [1,4–
10,14,15,19,20,27,32,33].

The only closed surface admitting Hamiltonian pseudo-rotations is the
sphere with the simplest examples being irrational rotations.2 More interest-
ing examples, with only three ergodic3 measures, were constructed by Fayad
and Katok [15], using the so-called conjugation method of Anosov–Katok [1].
Note that three is the minimal possible number of ergodic measures for a
Hamiltonian diffeomorphism of the sphere because any such diffeomorphism
has at least two fixed points and so preserves, in addition to the area, the
Dirac delta measures supported at the fixed points.

Consider a closed symplectic manifold (M,ω) carrying a Hamiltonian
circle action S such that the fixed point set of the action Fix(S) is finite and
the action is locally free on M\Fix(S). Any such manifold, like the sphere
and the projective spaces CPn, admits pseudo-rotations obtained from the
irrational elements of the circle. However, these example have very simple
dynamics. As we explain in Sect. 2.3, in this context, a straight-forward
adaptation of the Anosov–Katok method yields pseudo-rotations which are

1There exist several working definitions of Hamiltonian pseudo-rotations in the literature;
see [9, Def. 1.1] and the discussion therein. The examples we construct in this article do
satisfy the requirements in all definitions known to us.
2Closed surfaces of positive genus fall under the class of symplectic manifolds which sat-
isfy the Conley conjecture [18,24,26] asserting that any Hamiltonian diffeomorphism has
infinitely many simple periodic points. Clearly, such symplectic manifolds do not admit
pseudo-rotations.
3Recall that a Borel probability measure μ is said to be ergodic for f : M → M if it is

preserved by f and, furthermore, satisfies the following condition: for any Borel subset
A ⊂ M such that f−1(A) ⊂ A either μ(A) = 0 or μ(A) = 1.
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transitive, i.e. have dense orbits. The presence of a circle action as above
is an indispensable ingredient of the Anosov–Katok method and, as far as
we know, there are no known examples of pseudo-rotations on manifolds not
carrying circle actions.

Producing pseudo-rotations with dynamics more complicated than tran-
sitivity is more involved and is the main goal of this article. Our main result,
whose proof relies on the Anosov–Katok method, guarantees the existence
of pseudo-rotations with a finite, and in a sense optimal, number of ergodic
measures on toric symplectic manifolds. Recall that a 2n-dimensional sym-
plectic manifold is called toric if it admits an effective Hamiltonian action of
the torus T

n; we review this definition and relevant facts in Sect. 3.1.

Theorem 1. Let (M,ω) be a closed toric symplectic manifold, and denote by
� the number of fixed points of the corresponding torus action. Then (M,ω)
admits a Hamiltonian pseudo-rotation f with exactly � + 1 ergodic measures.
The set of ergodic measures of f consists of the measure induced by the sym-
plectic volume form ωn and the � Dirac measures supported at the fixed points
of the torus action.

Applying the above theorem to (CPn, ωFS), which admits a toric action
with n fixed points, yields pseudo-rotations with n + 1 ergodic measures.

The number � + 1 appears to be optimal because the rank of the sin-
gular homology of M is �; see, for example, [11, Theorem 3.3.1]. Hence, by
the Arnold conjecture any non-degenerate Hamiltonian diffeomorphism of
(M,ω) has at least � fixed points and thus must have at least � + 1 ergodic
measures. Non-degeneracy of the pseudo-rotations we produce can be guar-
anteed by appropriately applying the Anosov–Katok method, see Remark 2;
moreover, some authors incorporate non-degeneracy into the definition of
pseudo-rotations, see [9, Def. 1.1].

Denote by Br the standard closed Euclidean ball of radius r, and let
{Bi}, {B′

i}, i = 1, . . . , k′, be two collections of pair-wise disjoint subsets of
(M,ω) all of which are images of Br under symplectic embeddings. In the
case of the 2-sphere, a key component of the argument is the fact that one
can find a symplectomorphism ψ such that ψ(Bi) = B′

i for i = 1, . . . , k.
However, the existence of such ψ cannot be guaranteed on higher dimensional
symplectic manifolds even if k = 1. Indeed, under certain assumptions, there
exist obstructions to the existence of such ψ which are generally referred to
as symplectic camel obstructions; see [28] for further details. The camel-type
obstructions do disappear for sufficiently small values of r. Hence, by Katok’s
Basic Lemma [25], one can try to surmount these obstacles by breaking Bi, B

′
i

into balls of sufficiently small radius to obtain a symplectomorphism ψ such
that ψ(Bi)ΔB′

i is of nearly, but not exactly, zero measure; here Δ stands
for the symmetric difference of sets. It appears to us that this approach
could potentially yield ergodic pseudo-rotations, but we could not utilize
it to construct pseudo-rotations with a finite number of ergodic measures.4

Instead, we overcome the camel-type difficulties by taking advantage of the

4As explained in [15], to get ergodicity one needs to control almost all orbits; but to prove
Theorem 1 one needs to control all orbits.
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existence of a “nearly global” system of action-angle coordinates on toric
symplectic manifolds; see Section 3.1. It is not clear to us if the assumption
of (M,ω) being toric is necessary for the existence of pseudo-rotations with
few ergodic measures.

Finally, we should mention that several authors have used the Anosov–
Katok method to produce interesting examples, other than Hamiltonian
pseudo-rotations, in higher dimensional symplectic manifolds. In [25], Katok
constructs an autonomous Hamiltonian with numerous properties including
ergodicity of the restriction of the Hamiltonian flow to its energy levels. In
[30], Polterovich uses Katok’s lemma to prove, among other results, that ev-
ery closed symplectic manifold admits contractible Hamiltonian loops which
are strictly ergodic; see Theorem 1.2.A therein. In [23], Hernàndez–Corbato
and Presas, construct examples of (non-Hamiltonian) minimal symplecto-
morphisms and strictly ergodic contactomorphisms.

Organization of the paper

In Sects. 2.1 and 2.2, we present the general scheme of the Anosov–Katok
method. In Sect. 2.3, which may be viewed as a warm-up for the proof of
the main result, we explain how to construct transitive pseudo-rotations. In
Sect. 2.4, we state Proposition 4, which is the key technical proposition of
the paper, and we use it to prove Theorem 1.

The rest of the paper is dedicated to the proof of Proposition 4. In
Sect. 3, we review the relevant aspects of toric symplectic geometry and
prove preliminary symplectic lemmas which will be used in the following
section. Section 4 is the technical heart of the paper and contains the proof
of Proposition 4.

2. The conjugation method of Anosov and Katok

Let (M,ω) be a closed symplectic manifold which admits a smooth Hamil-
tonian action of the circle, denoted by (Sα)α∈S1 . We identify the circle S

1

with R/Z. We denote the fixed point set of the action by Fix(S) and we sup-
pose that the action is locally free outside of Fix(S). This means that there
exists a neighborhood V of 0 ∈ S

1 such that for every non-zero α ∈ V the
homeomorphism Sα has no fixed points in M\Fix(S).

2.1. General scheme

We outline here the general scheme of constructing a pseudo-rotation, say f ,
via the conjugation method of Anosov–Katok (see also Fig. 1). The pseudo-
rotation f will be obtained as the C∞ limit of a sequence of Hamiltonian
diffeomorphisms (fn) which are of the form

fn = HnSαn+1H
−1
n ,

where Hn is a symplectic diffeomorphism of M and αn = pn

qn
∈ Q/Z (all

fractions are implicitly supposed to be irreducible). We can start with any
choice for H0 and α1, e.g. H0 = Id and α1 = 1

4 . The Hamiltonian diffeo-
morphism fn is obtained from fn−1 in the following manner: We construct a
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Figure 1. The first two steps in Anosov–Katok method to
construct a transitive diffeomorphism (here α1 = 1

4 ), see also
Sect. 2.3

symplectic diffeomorphism hn which coincides with the identity near Fix(S)
and commutes with Sαn

; let Hn := Hn−1 ◦ hn. Observe that

HnSαn
H−1

n = Hn−1Sαn
H−1

n−1 = fn−1.

Hence, by choosing αn+1 to be sufficiently close to αn, we can ensure
that fn+1, defined by the above formula, is as close as desired to fn (in the
C∞ topology). On the one hand, this ensures the C∞ convergence of the
sequence (fn) and on the other hand it will allow us to prove that the limit
map f inherits the approximate dynamical and ergodic properties of the fn’s.
Note that if the convergence is fast enough, the sequence (αn) will converge to
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some irrational number α, and the fixed point set of f will coincide with the
fixed point set of the initial circle action (see Sect. 2.2). We should point out
that the map f , being a C∞ limit of Hamiltonian diffeomorphisms, is indeed
a Hamiltonian diffeomorphism of M ; this non-trivial fact is a consequence of
the C∞ Flux conjecture which was settled by Ono [29].5

To ensure that the Hamiltonian diffeomorphism hn commutes with Sαn
,

we will carry out the construction of hn on the quotient of M\Fix(S) by the
action of the rotation S 1

qn
. To make sure that this quotient is a smooth

manifold we must pick qn such that the action of S 1
qn

on M\Fix(S) is free
which is not automatically guaranteed because the circle action is assumed
to be only locally free on M\Fix(S). To overcome this technical difficulty, the
numbers αn will be picked as follows. Consider the subgroup of S1 generated
by the union of the stabilizers of all points in M\Fix(S). Since the action is
locally free on M\Fix(S), this subgroup is generated by some 1

q0
. We denote

Q = {q ∈ N : q is relatively prime to q0}. (1)

This set is closed under multiplication. The set Q is significant to our con-
struction because of the following property: for every rational number 1

q with
q in Q, the action of Z/qZ generated by S 1

q
on M\Fix(S) is free. Hence, the

quotient
M\Fix(S)

S 1
q

is a smooth manifold. Moreover, it naturally inherits the symplectic structure
of M . Lastly, note that the set of rationals p

q with q ∈ Q is dense in S
1.

Remark 2. We do not know if pseudo-rotations are in general necessarily
non-degenerate. However, as we now explain, it is possible to ensure that
the pseudo-rotation f from Theorem 1 is non-degenerate. Recall that being
non-degenerate means that the derivative of f at any of its fixed points does
not have 1 as an eigenvalue.

The sequence of rational numbers αn has a limit which we denote by α;
as noted before, fast convergence of the sequence guarantees that α is irra-
tional. The derivative of f at any of its fixed points has the same eigenvalues
as the derivative of Sα at the same fixed point. This is because the diffeomor-
phisms Hn coincide with the identity in a neighborhood of Fix(S). Hence,
the diffeomorphism f is non-degenerate if and only if Sα is non-degenerate.

In the case of the circle action used in the construction of the pseudo-
rotations of Theorem 1, α being irrational guarantees that Sα is indeed non-
degenerate. This fact, which can be verified via the equivariant version of the
Darboux theorem (see [11, Theorem 3.1.2]), is a consequence of the conditions
imposed by Eq. (3).

Let us add that pseudo-rotations of the 2-sphere are necessarily non-
degenerate (this is a well-known consequence of the rotation vectors theory,

5It can easily be seen that f is isotopic to the identity in Symp(M, ω). Hence, f is au-

tomatically Hamiltonian if H1(M) is trivial, which is the case for all toric symplectic
manifolds.
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see [16,17]). It would be interesting to know if pseudo-rotations are always
non-degenerate in higher dimensions.

2.2. Why is f a pseudo-rotation?

Let f be a Hamiltonian diffeomorphism obtained via the conjugation method
as described in the previous section. As mentioned earlier, our goal is to
construct f so that it is a pseudo-rotation (i.e. no periodic points outside
of Fix(S)) and it displays complicated dynamical behaviour (transitivity,
ergodicity, unique ergodicity). Being a pseudo-rotation is automatic for the f
satisfying the conclusion of Theorem 1 because every periodic orbit supports
an ergodic measure. In this section, we will explain how the conjugation
method can easily provide a transitive pseudo-rotation; this can be considered
as a warm-up for the more technical proof of Theorem 1. As we will now
explain, if the convergence of the sequence (fn) is fast enough, which can be
arranged by choosing the αn’s appropriately, then the limit map f will also
be a pseudo-rotation. The general idea, which will be useful in many places,
e.g. to get transitivity, is that an open property which holds at some step n
is automatically transmitted to the limit map “by fast convergence”.

Here are the details. Prior to the construction, we fix an increasing se-
quence (Kn) of compact subsets of M\Fix(S) whose union is M\Fix(S). At
the beginning of step n of the construction, we define the set U(Kn, qn) ⊂
Ham(M,ω) consisting of all Hamiltonian diffeomorphisms which have no pe-
riodic points of period less than qn inside Kn. (Recall that qn is determined
in step n − 1.) This set contains fn−1 and is open in the C0-topology. We
choose a C∞-neighborhood Vn of fn−1 whose C∞-closure is contained in
U(Kn, qn). At each subsequent step i � n we simply choose the number αi

close enough to αi−1 so that the Hamiltonian diffeomorphism fi belongs to
Vn. This implies that the limit map f belongs to U(Kn, qn), that is, f will
have no periodic points of period less than qn inside Kn. The map f will
have this property for every n, and the numbers qn will be picked such that
qn → ∞, which ensures that it will have no periodic points in M\Fix(S).

2.3. Transitivity

In this section, we explain how to construct a transitive pseudo-rotation with
the previous general scheme. This construction is illustrated by Fig. 1. Every
Anosov–Katok construction in Hamiltonian dynamics requires certain infor-
mation on abundance of symplectic diffeomorphisms. For transitivity the re-
quired information is very light: we need the fact that the symplectic group
acts transitively on p-tuples of distinct points, as expressed by Lemma 3
below.

We say that a subset Z of M is ε-dense in M if the open balls of radius
ε around each point of Z cover M . Note that when ε-density holds for Z it
also holds for some finite subset Z ′ of Z, by compactness, and for any subset
Z ′′ close enough to Z ′.

Let (εn) be any fixed sequence of positive numbers that converges to
0. Assume inductively that αn,Hn−1 have been constructed as above, with
fn−1 = Hn−1Sαn

H−1
n−1 which is εn−1-transitive: there exists some point
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whose orbit is εn−1-dense, and more precisely there exists some xn−1 ∈ M
and Nn−1 > 0 such that the balls

Bεn−1(xn−1), . . . , Bεn−1(f
Nn−1
n−1 (xn−1)),

cover M . We now explain how to construct hn, αn+1 so that fn is εn-transitive
and arbitrarily close to fn−1 (see also Fig. 1).

Let U = M\Fix(S), and consider the quotient map

π : U → M ′ = U/Sαn
.

The space M ′ is a smooth manifold, on which ω induces a symplectic struc-
ture. Symplectic diffeomorphisms of M ′ corresponds to symplectic diffeo-
morphisms of U that commutes with Sαn

. The Hamiltonian circle action S
induces a Hamiltonian circle action on M ′. First choose some finite subset
F2 of M ′ such that π−1(F2) is ηn-dense in M , where ηn is provided by the
continuity of Hn−1: any two points that are ηn-close in M have their images
εn-close. Then choose some finite set F1 of M ′ included in a single orbit of the
circle action, and which has the same cardinality as F2. By the next lemma,
there is a compactly supported symplectic diffeomorphism of M ′ that sends
F1 to F2. We lift this diffeomorphism to a symplectic diffeomorphism hn of
M which is the identity near Fix(S) and sends π−1(F1) to π−1(F2).

Lemma 3. Given a symplectic manifold M , and an integer p > 0, the group
of (compactly supported) symplectic diffeomorphisms of M acts transitively
on p-tuples of distinct points: for every (x1, . . . , xp), (y1, . . . , yp) ∈ Mp with
xi �= xj , yi �= yj for every i �= j, there is some Φ ∈ Symp0(M) such that
Φ(xi) = yi for every i = 1, . . . , p.

Now denote by C the orbit of the circle action S which contains π−1(F1).
Note that hn(C) is ηn-dense in M , and thus Hn−1(hn(C)) is εn-dense in
M . Choose αn+1 to be a rational number very close to αn, so that there
is some point in C whose (discrete) orbit C ′ under Sαn+1 is ηn-dense in
C. Then, Hn−1(hn(C ′)) is still εn-dense in M . Let Hn = Hn−1 ◦ hn and
fn = HnSαn+1H

−1
n as in the general scheme, then Hn(C ′) is an orbit of fn

which is εn-dense, as wanted. (Of course, we also make sure that fn satisfies
the constraints ensuring that the limit map f is a pseudo-rotation, by taking
αn+1 even closer to αn if needed, as described in the previous section.)

It remains to check that, provided the convergence is fast enough, the
limit map f will have a dense orbit. At step n the map fn has an εn dense
orbit. The set of maps having an εn-dense orbit is open in the C0-topology.
Thus this property will be transmitted to the limit map f by fast convergence.
It is a classical Baire category argument that a map that has ε-dense orbits
for arbitrarily small ε’s has a dense orbit. Thus, f is transitive.

2.4. Pseudo-rotations with minimal number of ergodic measures

In this section, we prove Theorem 1 relying on Proposition 4 below whose
proof takes up the remainder of the paper. Our standing assumption, while
proving Theorem 1 and Proposition 4, is that (M,ω) is a toric symplectic
manifold and that the locally free circle action S is compatible with the
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torus action in the sense that it is obtained by composing the torus action
with a group morphism from the circle to the n-torus. We explain why S as
described here exists in Sect. 3.1; see the discussion around Equation (3).

Denote by P(M) the space of Borel probability measures on M . This
space is endowed with the weak topology: a sequence (μn) in P(M) converges
to μ if and only if the sequence (

∫
fdμn) converges to

∫
fdμ for all continuous

functions f . Recall that if μ is a Borel probability measure on a topological
space N and h : N → M is a continuous mapping, then the pushforward of
μ by h is defined by the formula

h∗μ(E) := μ(h−1(E)).

Let E ⊂ P(M) be the set consisting of the volume measure and the � Dirac
measures supported at the fixed points of the circle action. We denote by
Conv(E) the convex hull of E in P(M). Lastly, recall (1), the definition of the
set Q ⊂ N of permitted denominators for the αns.

Proposition 4. Let q ∈ Q be a positive integer and U ⊂ P(M) an open neigh-
borhood of Conv(E). There exists h ∈ Symp0(M,ω) with the following prop-
erties:

1. h coincides with the identity near Fix(S),
2. hS 1

q
= S 1

q
h,

3. For every x ∈ M , the push-forward of the Lebesgue measure on the circle
by the map t �→ hSth

−1(x) belongs to U .

We will now show that the above proposition implies the existence of a
pseudo-rotation whose set of invariant ergodic measures is exactly E .

Proof of Theorem 1. Let Un be a sequence of open neighborhoods of Conv(E),
such that

⋂
Un = Conv(E).

As explained above, we start step n with the rational number αn = pn

qn
and the maps

Hn−1, fn−1 = Hn−1Sαn
H−1

n−1.

Since Hn−1 is symplectic and fixes Fix(S), its action (Hn−1)∗ on P(M) fixes
every element of Conv(E). Thus, (Hn−1)−1

∗ (Un) is an open neighborhood of
Conv(E).

We denote the Lebesgue measure on the circle by LebS1 . Applying
Proposition 4 to the integer qn and the set (Hn−1)−1

∗ (Un), we obtain hn ∈
Symp(M,ω) such that Sαn

hn = hnSαn
and

(
t �→ hnSth

−1
n x

)
∗ LebS1 ∈ (Hn−1)−1

∗ (Un), ∀x ∈ M. (2)

Eq. (2) may equivalently be restated as

(Hn−1hn)∗(t �→ Sty)∗LebS1 ∈ Un, ∀y ∈ M.

We let Hn = Hn−1hn. Consider the map

Θ : P(S1) × M −→ P(M)
(μ, x) �−→ (Hn)∗(t �→ Stx)∗μ.
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This mapping is continuous, and since P(S1) and M are both compact,
it is uniformly continuous. Now by Eq. (2), Θ(LebS1 , x) ∈ Un for every x ∈ M .
Thus, there exists a neighborhood V of LebS1 such that Θ(V × M) ⊂ Un.

Let αn+1 = pn+1
qn+1

be a rational written in irreducible form, and denote
by μn ∈ P(S1) the measure given by the average of the Dirac measures on the
orbit of 0 ∈ S

1 under the circle rotation by αn+1. If qn+1 is large enough then
the measure μn will be in V (by convergence of the Riemann sums). Hence
we get Θ(μn, x) ∈ Un for all x ∈ M . Note that Θ(μn, x) is the average of the
Dirac measures along the orbit of Hn(x) under the map fn = HnSαn+1H

−1
n .

Lastly, we additionally impose that qn+1 ∈ Q.
As explained in Sect. 2.1, this construction provides a sequence of Hamil-

tonian diffeomorphisms fn = HnSαn+1H
−1
n that converges, in C∞ topology,

to a Hamiltonian diffeomorphism f . We will now prove that, by appropriately
choosing the sequence (αn) = (pn

qn
), we can ensure that the limit map f has

the desired property: its set of invariant ergodic measures is exactly E .
At the beginning of step n of the construction, we define the set U(qn) ⊂

Ham(M,ω) consisting of all Hamiltonian diffeomorphisms g which have the
following property: for every x ∈ M , the probability measure 1

qn

∑qn−1
k=0 δgkx

belongs to the set Un−1. This set contains fn−1 and is open in the C0-
topology. The numbers αi+1, for i � n, will be chosen such that the Hamilton-
ian diffeomorphisms fi, for i � n, are all contained in a (C∞) neighborhood
of fn whose (C∞) closure is contained in U(qn). This implies that the limit
map f will also be contained in U(qn). Of course, the αn’s may be picked
such that the map f will have this property for every n. In other words, for
every n and every x ∈ M , the probability measure

νn :=
1
qn

qn−1∑

k=0

δfkx

is contained in Un.
We claim this implies that the set of invariant ergodic probability mea-

sures of f is exactly E . Indeed, to obtain a contradiction, assume that this is
not the case: f has an invariant ergodic probability measure μ which is not
in E . Since the ergodic measures are extremal points in the set of invariant
probability measures, the measure μ does not belong to Conv(E). This entails
the existence of a continuous function ϕ : M → R which vanishes on Fix(S)
and has the property that

∫
ϕ dVol = 0 but

∫
ϕdμ �= 0. To see that such

ϕ indeed exists, observe that a probability measure γ belongs to Conv(E)
if and only if it satisfies the following criterion: for every pair of open sets
O,O′ which are disjoint from Fix(S) and have the same volume, we must
have γ(O) = γ(O′).

By Birkhoff’s Ergodic Theorem and the ergodicity of μ, there exists x ∈
M such that the Birkhoff means of ϕ converge to

∫
ϕdμ. This, in particular,

means that the sequence
∫

ϕ dνn =
1
qn

qn−1∑

k=0

ϕ(fkx)
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converges to the non-zero number
∫

ϕdμ. The contradiction is that, up to
passing to a subsequence, the sequence

∫
ϕdνn converges to zero because

νn ∈ Un and thus must have a weak limit ν ∈ Conv(E) and ϕ was picked
such that

∫
ϕ dν = 0 for all ν ∈ Conv(E). �

3. Preliminaries

The goal of this section is to recall some basic notions of symplectic & differ-
ential geometry as well as proving certain preliminary results which will be
used in the proof of Proposition 4.

3.1. Preliminaries on symplectic geometry

Throughout the section (M,ω) denotes a symplectic manifold. Recall that a
symplectomorphism is a diffeomorphism ϕ : M → M such that ϕ∗ω = ω.
The set of all symplectic diffeomorphisms of M is denoted by Symp(M,ω).
We will let Symp0(M,ω) denote those elements of Symp(M,ω) which are
isotopic to the identity via a compactly supported isotopy. Note that the
assumption on compactness of the support of the isotopy is not common.

Hamiltonian diffeomorphisms constitute an important class of exam-
ples of symplectic diffeomorphisms. These are defined as follows. A smooth,
compactly supported, Hamiltonian H ∈ C∞

c ([0, 1] × M) gives rise to a time-
dependent vector field XH which is defined via the equation: ω(XH(t), ·) =
−dHt. The Hamiltonian flow of H, denoted by φt

H , is by definition the flow
of XH . A compactly supported Hamiltonian diffeomorphism is a diffeomor-
phism which arises as the time-one map of a Hamiltonian flow generated
by a compactly supported Hamiltonian. The set of all compactly supported
Hamiltonian diffeomorphisms is denoted by Ham(M,ω).
Toric symplectic manifolds. Recall that a toric symplectic manifold is a
closed and connected symplectic manifold (M2n, ω) equipped with an ef-
fective Hamiltonian action of a torus T

n = S
1 × · · · × S

1 whose dimension is
half that of M , i.e. a one-to-one smooth morphism from T

n to Ham(M,ω).
Throughout the paper, we identify S

1 with R/Z and T
n with R

n/Zn.
Each of the circle factors in the torus T

n yields a Hamiltonian circle
action, or equivalently a periodic Hamiltonian flow with period 1; we will de-
note by μ1, . . . , μn ∈ C∞(M) the Hamiltonians corresponding to these circle
actions. The moment map μ : M → R

n is defined by x �→ (μ1(x), . . . , μn(x)).
Its image Δ := μ(M) is referred to as the moment polytope of the action. Ac-
cording to the convexity theorem of Atiyah and Guillemin–Sternberg [2,22]
Δ is a convex polytope whose vertices are the images of the fixed points of
the action. Furthermore, Δ is simple (there are n edges meeting at each ver-
tex), rational (the edges meeting at a vertex v are of the form v + tui where
t � 0 and ui ∈ Z

n), and smooth (at each vertex v of Δ the corresponding
u1, . . . , un may be chosen to be a Z-basis of Zn).

The points of M with non trivial stabiliser are exactly the points which
are mapped under μ to the boundary of Δ. Furthermore, all the points in
the inverse image of a given face of Δ have the same stabiliser. Thus, we see
that there are finitely many stabilisers, each of which is a subgroup of T

n
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isomorphic to T
p, where p is the codimension of the corresponding face of Δ.

In particular, we may pick a one-to-one morphism

Φ : S1 → T
n

t �→ tZ,
(3)

for some primitive element Z ∈ Z
n, such that the image of Φ is not included

in the union of the stabilisers. Then, the composition of Φ with the torus
action yields a circle action S which is locally free on M\Fix(S). Such a
circle action will be at the basis of our Anosov–Katok construction.

It turns out that one can construct a section of the moment map, that
is, a continuous map σ : Δ → M such that μ ◦ σ = Id. The fact that
the section σ exists can be deduced from the proof of Delzant’s theorem on
classification of toric symplectic manifolds; see for example the construction
of the Delzant space XΔ, pages 9 – 13 in [21]: in the case of the model XΔ,
one can see directly from the construction that the moment map admits a
section; existence of the section σ for arbitrary toric symplectic manifolds
then follows from Delzant’s theorem that such manifolds are classified by
their moment polytopes. Furthermore, the section σ is smooth on Int(Δ).

Given such a section σ : Δ → M of the moment map, define the mapping
Ξ : Δ × T

n → M by

(s, t) �→ T
n
t (σ(s)), (4)

where T
n
t (σ(s)) denotes the image of the point σ(s) under the action of

t ∈ T
n. Endow Int(Δ) × T

n with the symplectic form
1
2π

Σn
i=1dμi ∧ dθi.

Then, the mapping Ξ is a symplectomorphism between Int(Δ) × T
n and

μ−1(Int(Δ)). This yields a global system of symplectic action-angle coordi-
nates on μ−1(Δ) (this is the content of Remark IV.4.19 on global action-angle
coordinates in [3]). Note however that Ξ is not one-to-one on Δ × T

n, since
points on μ−1(∂Δ) have non-trivial stabilisers. One can also describe the ac-
tion in the neighborhood of any degenerate orbit. In particular, there is a
local normal form near the orbit of any point x that depends only on the
dimension of the face of the moment polytope the interior of which x be-
longs. In the sequel, we will just use the fact that for every face F , μ−1(F ) is
a submanifold of M (see, for example, [3], Proposition IV.4.16). For further
details on toric symplectic manifolds, we refer the reader to the books [3,21].

3.2. Preliminary lemmas

We will be using the following lemmas in the course of proving Proposition 4.
In many cases, the lemmas of this section will be applied to a quotient sym-
plectic manifold of the form M ′ = (M\Fix(S))/S 1

q
where q ∈ Q; recall that

M ′ is indeed a manifold because picking q ∈ Q guarantees that the action of
S 1

q
on M\Fix(S) is free.

We will be using the following notations throughout the remainder of
the paper. As before, we consider a circle action S : (x, t) �→ St(x) on a
symplectic manifold M , where t ∈ S

1 and x ∈ M and we denote the Lebesgue
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probability measure on the circle by Let LebS1 . Given a measurable subset E
of M and a point x in M , the time spent by the orbit of x in E is the number

LebS1({t ∈ S
1 : St(x) ∈ E}).

The vector field tangent to the circle action S is defined as

�V (x) =
d

dt
St(x)|t=0.

The orbits of the action are the integral curves of �V . Given a diffeomorphism
Φ, the action given by S′

t(x) = ΦSt(Φ−1x) is called the conjugated action.
The vector field tangent to the conjugated action is the push-forward vector
field Φ∗�V .

(a) The transversality lemma. Given a vector field �V on some manifold M ′,
and a submanifold X, we wish to remove the tangency points between �V and
X by performing a small perturbation of X, thus obtaining a submanifold
which is transverse to every integral curve of the vector field �V . Achieving
this form of transversality is not in general possible: consider the case where
�V is a horizontal vector field in R

3, with X being the graph of a function
on R

2; we cannot remove the points on X corresponding to local maxima
or minima. However, the following lemma provides a partial “fix” for this
situation: it is possible to perform a small perturbation of X, or equivalently
�V , so that X becomes “as transverse as possible” to the integral curves of �V .

We suppose that X ⊂ M ′ is a submanifold without boundary (but not
necessarily compact6). Let K be a compact subset of X. We will say that X

is almost transverse to a vector field �V on K if for every integral curve γ of
�V , every point of γ ∩ K is isolated in γ ∩ X.

We will say that X is stably almost transverse to �V on K if this property
holds not only for �V but also for Φ∗�V for every C∞ diffeomorphism Φ of M ′

in some neighborhood of the identity.

Lemma 5. Consider a symplectic manifold M ′ with a non-vanishing vector
field �V . Let X be a submanifold of M ′ of codimension at least 1, without
boundary, and K a compact subset of X. For any C∞ neighborhood of the
identity W ⊂ Symp(M,ω) and any open neighborhood O of X, there ex-
ists Φ ∈ W, whose support is contained in O, such that X is stably almost
transverse to Φ∗�V on K.

(b) The thickening lemma.

Lemma 6. Consider a metric space M ′ with a continuous circle action S. Let
X be a compact subset of M ′, and assume that no orbit of the action spends
a positive amount of time in X.

Then, for every ε > 0, there exists δ > 0 such that no orbit of the action
spends more time than ε in the δ-neighborhood of X.

6In the applications of the lemma, the manifold M ′ will be a quotient of the complement
of the fixed points set of our circle action.
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(c) The stability lemma.

Lemma 7. Consider a symplectic manifold M ′ with a locally free circle action
S. Let K1,K2 be compact subsets of M ′ with K1 ⊂ Int(K2).

Let c ∈ (0, 1) and assume that every orbit of the action S spends more
time than c in K1. Then, there exists a C0 neighborhood W of Id ∈ Diff(M)
such that every orbit of the conjugated action ΦSΦ−1 spends more time than
c in K2.

(d) The transportation lemmas. Consider R2n equipped with the coordinates
x1, y1, . . . , xn, yn. A standard polydisc in R

2n is a subset of the form

n∏

i=1

[ai, bi] × [ci, di] := {(xi, yi) : xi ∈ [ai, bi], yi ∈ [ci, di]}.

By a polydisc in M we mean the image of a symplectic embedding of a
standard polydisc. Note that our polydiscs are all closed.

In the next two lemmas, P denotes the polydisc [−a, a]2n ⊂ R
2n for

some a > 0. We assume that P is equipped with the standard symplectic
structure it inherits from R

2n.

Lemma 8. Let φ1, φ2 : P → M ′′ be two symplectic embeddings of P into a
symplectic manifold (M ′′, ω). There exists δ0 > 0 and a compactly supported
Ψ ∈ Symp0(M ′′) such that

Ψ ◦ φ1 = φ2 on [−δ0, δ0]2n.

Furthermore, if φ1(0) �= φ2(0), then we may require, in addition to the above,
that

Ψ ◦ φ2 = φ1 on [−δ0, δ0]2n.

In the next lemma, P1, P2 ⊂ R
2n denote the polydiscs p1 + [−b, b]2n,

p2 + [−b, b]2n, respectively, where p1, p2 are points in R
2n. The polydisc P

is as in the above lemma. The following statement is well known in the two
dimensional setting when n = 1; we leave it to the reader to check that the
proof can be reduced to the case where n = 1.

Lemma 9. Suppose that P1, P2 are disjoint and are contained in the inte-
rior of P . There exists a symplectomorphism Ψ, whose support is compactly
contained in the interior of P , such that

Ψ(P1) = P2 & Ψ(P2) = P1.

3.3. Proofs of the lemmas

In this section, we will provide proofs for Lemmas 5, 6, 7, 8 of the previous
section, leaving the proof of Lemma 9 to the reader.
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(a) Proof of lemma 5: Transversality lemma. We will need the following no-
tion in the course of the proof. Let M ′ be as in the statement of the lemma
and X be a hypersurface without boundary in M ′. Given a vector field �V

and a positive integer k, we say that X has a contact of order k with �V at
some point x ∈ X if there exist an integral curve α : (−ε, ε) → M ′ of �V and a
smooth curve β : (−ε, ε) → X such that α(0) = β(0) = x and the derivatives
of α and β coincide at 0 up to order k.

Remark 10. Here are some useful observations about the above notion.
1. If Φ is a diffeomorphism, then Φ(X) has a contact of order k with �V if

and only if X has a contact of order k with Φ−1
∗ �V .

2. If α : I → M ′ is any integral curve of �V and if the intersection set

α(I) ∩ X

has an accumulation point at z = α(t), then X has a contact of every
positive order with �V at z.

3. If K is a compact subset of X, then the set of diffeomorphisms Φ such
that X has no contact of order k with Φ∗�V at points of K is open in
the space of diffeomorphisms equipped with the C∞ topology.

4. If X has no contact of order k with �V on K, for some positive integer k
and some compact subset K of X, then X is stably almost transverse
to �V on K. This is a direct consequence of the previous two points.

Our proof of Lemma 5 requires the claim below. We assume the hy-
potheses of Lemma 5.

Claim 11. Consider a symplectic manifold M ′, a submanifold X ⊂ M ′ with-
out boundary and of codimension at least 1, and some neighborhood O of X.
Let k � dim(M ′).

Then, every point z0 ∈ X admits a pair of open neighborhoods (W,U)
with W ⊂ W ⊂ U in M ′, which are contained in O and have the following
property. For every non-vanishing vector field �V , and every neighbourhood N
of the identity in Symp(M ′), there exists Φ ∈ N , compactly supported in U ,
such that X has no contact of order k with Φ∗�V in W .

Before proving Claim 11, we will show that it implies Lemma 5.

Proof of the transversality lemma. Observe that it is sufficient to find Φ ∈
W, with support in O, such that Φ(X) has no contact of order k = dim(M ′)
with �V at any point of K; see Remark 10.

For each point z ∈ K, let Wz, Uz be open neighborhoods of z in M ′ as
provided by Claim 11. The collections Wz, Uz are two coverings of K by open
subsets of M ′. By passing to subcovers we may assume these coverings are
finite and we may denote them by Wi, Ui, where i ∈ {1, . . . , N}

A first application of the claim provides Φ1 ∈ W, with support in U1 ⊂
O, such that X has no contact of order k with Φ1∗�V on W 1. A second
application provides Φ2 ∈ Symp(M ′) such that X has no contact of order
k with (Φ2 ◦ Φ1)∗�V on W 2. Furthermore, since Φ2 may be chosen to be
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arbitrarily C∞ close to the identity, by point 3 of Remark 10 we can ensure
that Φ2 ◦ Φ1 ∈ W and that X has no contact of order k with (Φ2 ◦ Φ1)∗�V on
W 1 either. Note also that Φ2 ◦ Φ1 is supported in U1 ∪ U2 ⊂ O.

We proceed to build a sequence (Φi)i=1,...,N in Symp(M ′) with analo-
gous properties. In particular, the map Φ = ΦN ◦ · · · ◦ Φ1 belongs to W, is
supported in U1 ∪ · · · ∪ UN ⊂ O, and X has no contact of order k with Φ∗�V
on W 1 ∪ · · · ∪ WN , which contains K. By point 4 of Remark 10, X is stably
almost transverse to Φ∗�V on K, as wanted. �
Proof of Claim 11. Since every submanifold is contained in an open hyper-
surface without boundary, we will restrict ourselves to the case where X is a
hyper surface. Take (U, x1, y1, x2, y2, . . . , xn, yn) to be a Darboux chart cen-
tered at z0, and contained in O, in which X is given by the equation xn = 0.
By working in these local coordinates we may assume that M ′ = R

2n, X is
the hyperplane given by xn = 0, and the point z0 = 0, where 0 is the origin
in R

2n. We pick W to be any open neighborhood of the origin such that W
is contained in U .

Denote dim(M ′) = 2n. To prove the claim, we will translate the prop-
erty of having contact of order k to an equivalent property in the space
Jk(R2n,R) of k-jets of maps from R

2n to R. Recall that Jk(R2n,R) identifies
with R

2n × Polk, where Polk is the linear space of polynomials of degree at
most k on R

2n; see for example Section 1.1 of [13].
We now consider a non vanishing vector field �V on R

2n. Let Σ�V be the
set of couples (z, P ) ∈ Jk(R2n,R) such that there exists some integral curve
γ : (−ε, ε) → R

2n of the vector field �V with γ(0) = z and limt→0
P (γ(t))

tk
= 0.

Note that Σ�V is a submanifold of Jk(R2n,R) of codimension k+1. Indeed, to
verify this particular point we can work in a small neighborhood of the point
z ∈ R

2n where we may assume that �V coincides with the vector field ∂
∂x1

.
Then Σ�V may be described locally as

{

(z, P ) : P (0) = 0,
∂P

∂x1
(0) = 0, . . . ,

∂kP

∂x1
(0) = 0

}

,

which is a linear subspace of Jk(R2n,R) of codimension k + 1.
Finally, here is the promised translation. Let f : R2n → R be a smooth

function and suppose that f−1(0) is a hypersurface. Then, jk(f)z, the k-jet
of f at z, belongs to Σ�V if and only if f−1(0) has a contact of order k with
�V at z.

For the rest of the proof we set f = xn so that X = f−1(0). We claim
that we can find a smooth function H : R2n → R, arbitrarily C∞ close to 0,
such that under the map R

2n → Jk(R2n,R),

z �→ jk(f ◦ φ1
H)z,

the image of U is disjoint from Σ�V .
Let us first suppose that such H exists and explain how this leads to the

conclusion. Note that (f ◦ φ1
H)−1(0) = φ−1

H (X) and so we have that φ−1
H (X)

has no contact of order k with �V inside the set U . Since H can be picked to
be arbitrarily C∞ close to 0, we may perform a cut-off to obtain a function
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G, which is compactly supported in U and is still C∞ close to zero, such that
φ−1

G (X) has no contact of order k with �V inside W .
It remains to explain how to find H. Consider the map

Ψ : U × Polk+1 → Jk(U,R)

(z,H) �→ jk(f ◦ φ1
H)z.

We will check below that there exists some neighborhood U of 0 in Polk+1

such that Ψ is a submersion at every point (z,H) ∈ U × U .
This entails that the restriction of Ψ to U × U is transverse to any sub-

manifold; in particular it is transverse to Σ�V . Next, applying the parametric
transversality theorem, we obtain a dense subset of polynomials H ⊂ U such
that for any fixed H ∈ H the mapping

Ψ(·,H) : U → Jk(U,R)

z �→ jk(f ◦ φ1
H)z,

is transverse to Σ�V . Since k � 2n, we get dim(R2n) < k + 1 = codim(Σ�V ).
Then, transversality implies that the image of U under z �→ jk(f ◦ φ1

H)z is
actually disjoint from Σ�V , which is the desired property.

It remains to check that Ψ is a submersion for all H in some neighbor-
hood of 0 in Polk+1. Since being a submersion is an open property, and U
is compact, it is enough to check that the mapping Ψ is a submersion when
H = 0. In the computations below we will identify Jk(U,R) = U × Polk.
Furthermore, we will also identify the tangent spaces to points of U × Polk
and U × Polk+1, with R

2n × Polk and R
2n × Polk+1, respectively.

We would like to compute DΨ(z,0)(u,G) where u is a vector in U and
G ∈ Polk+1. It is easy to see that DΨ(z,0)(u, 0) = (u, 0). Hence, we will only
consider the case where u = 0. Now, we compute:

DΨ(z,0)(0, G) =
∂

∂t
|t=0 Ψ(z, tG) =

∂

∂t
|t=0 jk(f ◦ φt

G)z

= jk(
∂

∂t
|t=0 f ◦ φt

G)z = jk({f,G})z,

where we have used the fact that ∂
∂t |t=0 f ◦φt

G = {f,G}. Here, {f,G} denotes
the Poisson bracket of f and G and it is given by {f,G} =

∑2n
i=1

∂f
∂xi

∂G
∂yi

−
∂f
∂yi

∂G
∂xi

. Recall that we picked f = xn and so {f,G} = ∂G
∂yn

. Hence, we have
established

DΨ(z,0)(0, G) = jk

(
∂G

∂yn

)

z

.

Now, for any given polynomial P ∈ Polk let G = ynP and note that
jk

(
∂G
∂yn

)

z
= P. We conclude that DΨ(z,0) is surjective, for any z ∈ U , and

so Ψ is a submersion at (z, 0) for all z ∈ U . �
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(b) Proof of lemma 6: Thickening lemma. As before, we will denote by t �→ St

the action of the circle by homeomorphisms on M . Fix ε > 0 and let x ∈ X.
Since LebS1({t ∈ S

1 : St(x) ∈ X}) = 0, we can find a compact subset Ix ⊂ S
1,

whose Lebesgue measure is more than 1 − ε, and such that for every t ∈ Ix,
we have St(x) �∈ X. Compactness of Ix and X implies that there is some
δx > 0 such that d(St(x),X) > δx for every t ∈ Ix. Observe that for every
x ∈ X, we can find a neighborhood Vx of x in M ′ such that we still have
d(St(y),X) > δx for t ∈ Ix and y ∈ Vx. Since X is compact, we can find
Vx1 , . . . , Vxm

such that the finite union V := ∪iVxi
covers X. Pick 0 < δ, less

than each δxi
, such that Vδ(X), the δ-neighborhood of X, is contained in V .

Observe that we have proven the following statement: for every y ∈ V

Leb({t ∈ S
1 : St(y) ∈ Vδ(X)}) < ε.

The above inequality also holds for any point y whose orbit under the
action meets V , since its orbit coincides with the orbit of a point in V . On
the other hand, if y is a point in M ′ whose orbit does not meet V , then

Leb({t ∈ S
1 : St(y) ∈ Vδ(X)) = 0.

This completes the proof.

(c) Proof of lemma 7: Stability lemma. If Φ is uniformly close to the identity
then the orbits of the conjugated action are uniformly close to the orbits of
the action S. On the other hand the hypotheses entail that the distance from
K1 to the complement of K2 is positive. The lemma follows.

(d) Proof of lemma 8: Transportation lemma. We begin by proving the first
statement of the lemma, that is there exist Ψ ∈ Symp0(M ′′, ω) and δ0 > 0
such that Ψφ1 = φ2 on [−δ0, δ0]2n.

Note that since Symp0(M ′′) acts transitively on M ′′ we can suppose
that φ1(0) = φ2(0). Let U be a Darboux chart centered at φ1(0) = φ2(0). By
replacing P with a smaller polytope, we may suppose that the image of P
under φ1, φ2 is contained in the Darboux chart U . This allows us to reduce
the problem to the following setting: M ′′ = R

2n and φ1, φ2 are symplectic
embeddings of a polydisc P = [−a, a]2n such that φ1(0) = φ2(0) = 0. We
must find δ0 > 0 and a symplectic isotopy Ψt, which is compactly supported
in U , with the property that Ψ0 = Id and Ψ1 = φ2φ

−1
1 on [−δ0, δ0]2n.

Pick any 0 < b < a and let P ′ = [−b, b]2n. By the well-known “ex-
tension after restriction principle” [12], we can find a compactly supported
symplectomorphism ψ of R2n such that ψ(0) = 0 and ψ|P ′ = φ2φ

−1
1 |P ′ . There

exists a symplectic isotopy (Ψt)t∈[0,1], compactly supported in R
2n, such that

Ψ0 = Id, Ψt(0) = 0 for every t ∈ [0, 1], and Ψ1 = ψ; for an explanation see
[31], proof of Proposition 1.7. There exists δ0 < b such that

K :=
⋃

t∈[0,1]

Ψt([−δ0, δ0]2n) ⊂ U.

Let H be the Hamiltonian whose flow is Ψt. By cutting off the Hamil-
tonian H in a neighborhood of the set K, we obtain a new Hamiltonian G
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which is supported in U and has the property that φ1
G = ψ on [−δ0, δ0]2n.

We set Ψ = φ1
G. This completes the proof of the first part of the lemma.

For the second part of Lemma 8, note that we can find a compactly
supported symplectomorphism θ ∈ Symp0(M ′′) which exchanges φ1(0) and
φ2(0). Now, if we apply the above construction, which is local, independently
once near φ1(0) and another time near φ2(0) we will obtain Ψ1,Ψ2 supported
near φ1(0), φ2(0), respectively, such that Ψ1θφ2 = φ1 and Ψ2θφ1 = φ2 on
[−δ0, δ0]2n for some δ0 > 0. We let Ψ = Ψ1Ψ2θ.

4. Proof of proposition 4

For the rest of the paper (M,ω) will denote a closed toric symplectic manifold
with moment map μ : M → Δ. We fix a locally free Hamiltonian circle action
S obtained as described via Equation (3). We consider an integer q ∈ Q and
a small positive ε ∈ R. We fix a Riemannian metric on M and denote

Bε(Fix(S)) =
⋃

x∈Fix(S)

Bε(x),

where Bε(x) is the ball of radius ε around x.
Before giving the proof of Proposition 4 in detail, we outline here the

main ideas of the proof. Our goal is to construct a Hamiltonian diffeomor-
phism h satisfying the three requirements of Proposition 4. To ensure that
the first two properties are satisfied, we will carry out the construction on
a compact subset of the quotient (M\Fix(S))/S 1

q
. Recall that q being in

Q guarantees that this quotient is a smooth symplectic manifold; see Equa-
tion (1).

The difficult part of our task is to ensure that the third property in
Proposition 4 is satisfied. To achieve this, we will first construct, in Lemma 12,
a collection of closed sets denoted by A1, . . . , AN satisfying the following
equidistribution property:

The sets Ai have diameters less than ε, their interiors are disjoint, their
volumes are equal, their boundaries are of zero volume and

Fix(S) ⊂ W :=

(

M\
⋃

i

Ai

)

⊂ Bε(Fix(S)).

We will refer to the Ai’s as the equidistribution boxes. Then, we will construct
h such that for each x ∈ M , the orbit hSth

−1(x) under the conjugated action
spends roughly the same amount of time in each of the Ai’s: for all i, j we
will have

Leb({t ∈ S
1 : hSth

−1(x) ∈ Ai}) ≈ Leb({t ∈ S
1 : hSth

−1(x) ∈ Aj}).

A more precise version of the above statement, along with the proof of the
fact that it implies the 3rd item in Proposition 4, is given in Proposition 20.

To construct h we fix ε′ > 0 and we will build a collection of disjoint,
symplectomorphic polydiscs ck with the following two critical properties:
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i. There exists a C∞-small symplectomorphism Ψ, commuting with S 1
q
,

such that for each x ∈ M its orbit ΨStΨ−1(x), under the conjugated
action will spend more time than 1 − ε′ in W ∪k ck:

Leb({t ∈ S
1 : ΨStΨ−1(x) ∈ W ∪k ck}) > 1 − ε′.

ii. There exists a symplectomorphism Θ, commuting with S 1
q
, which equidis-

tributes the small boxes ck among the equidistribution boxes Ai.

The symplectomorphism h will then be the composition Θ ◦ Ψ. The con-
struction of the small boxes and the symplectomorphism Ψ is carried out
in Lemma 16. The symplectomorphism Θ is constructed in Claim 21 in the
course of the proof of Proposition 20.

We should mention that, in general, there exist symplectic obstructions
to finding a symplectomorphism equidistributing a given collection of poly-
discs; see for example the symplectic camel problem in Sect. 1.2 of [28]. To
avoid such obstruction, the small boxes ck must be picked to be sufficiently
small. The details of the construction requires the introduction of a third
collection of polydiscs Bj of intermediate size which will be referred to as the
transportation boxes; see Lemma 13.

4.1. Equidistribution boxes

The goal of this section is to construct the equidistribution boxes mentioned
above and prove that they satisfy the properties stated in the lemma below.
The mapping Ξ : Δ × T

n → M in the statement below is as in Eq. (4). By
saying that a map s acts as a permutation by k-cycles on a set E we mean
that s permutes the elements of E, and every orbit of this permutation has
cardinality k.

Lemma 12 (Equidistribution Boxes). Let q ∈ Q and ε > 0. There exist
N ∈ Q and closed subsets A1, . . . , AN of M\Fix(S) such that:

1. (Equidistribution Property) The sets Ai have diameters less than ε, their
interiors are disjoint, their volumes are equal, their boundaries are of
zero volume, and

W :=

(

M\
⋃

i

Ai

)

⊂ Bε(Fix(S)).

2.
⋃

i Ai is invariant under the circle action St.
3. S 1

q
acts on the set {A1, . . . , AN} as a permutation by q-cycles.

4. (Action-Angle Coordinates) For each Ai, we have

Ai = Ξ(P × T ),

where Ξ is the map defined in Eq. (4), P is some polytope included in
the moment polytope Δ, and T is a cube in the torus T

n obtained from
a subdivision of T

n into equal cubes. The map Ξ defines a symplecto-
morphism from Int(P × T ) to Int(Ai).
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Figure 2. Depiction of the equidistribution boxes Ai in the
case of CP 2: On the left, a subdivision of T2 into small equal
cubes T with one such cube colored in green. On the right,
a sample subdivision of the moment polytope of CP 2 into
small polytopes of equal volume. The collection P = {P}
consists of the polytopes colored in pink. The sets Ai have
equal volumes

Proof. To construct the Ai’s, we begin by subdividing the moment polytope
Δ into a collection of polytopes of small diameter and equal volume. By
subdividing we mean that two distinct polytopes can only intersect at lower
dimensional faces and their union covers Δ. Now, let P = {P} be the set
consisting of those polytopes from the subdivision which do not contain any
of the vertices of Δ. Let N ′′ denote the total number of the polytopes in P.
The subdivision may be carried in such a way that N ′′ is relatively prime to
q0 and so N ′′ ∈ Q (see Eq. 1).

We consider a decomposition of the torus, which is invariant under trans-
lation by S 1

q
, into equal cubes T . More precisely, we obtain these cubes by

subdividing each S
1 factor of Tn into N ′q subintervals of equal length, where

N ′ is picked to be relatively prime to q0. Hence, the cubes T are all cubes in
T

n of the form

v +
[

0,
1

N ′q

]n

,

where v ∈ 1
N ′qZ

n. Note that the total number of cubes T is (N ′q)n. The fact
that this decomposition of Tn into the cubes T is invariant under translation
by S 1

q
follows from Eq. (3) (Fig. 2).

Finally, we obtain the Ai’s by considering the images under Ξ of all
the products P × T of the polytopes P ∈ P and the cubes T . Observe that
the total number of the Ai’s is N = N ′′(N ′q)n which belongs to Q. Also
note that, since Ξ is a symplectomorphism, the volume of each Ai equals the
product of the Haar volume of T with the standard volume of P , and thus
they are all equal.
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By picking the subdivisions of Δ and T
n into polytopes and cubes, re-

spectively, to be sufficiently fine we can ensure that the Ai’s are of diameter
less than ε and that W is contained Bε(Fix(S)) (for this it is crucial that
our global section σ is defined on Δ and not only on Int(Δ)). It is not dif-
ficult to check, from the construction, that the Ais satisfy all the remaining
properties. �

The following observation will be used below. As we recalled in Sect. 3,
the inverse images of the faces of the moment polytope are submanifolds of
M . Thus, by point 4 of the lemma, each face of each Ai is compactly included
in an open submanifold of M .

4.2. Transportation boxes

Let B′ ⊂ B be two polydiscs in M . We say B′ is a sub-polydisc of B, of the
form

n∏

i=1

[a′
i, b

′
i] × [c′

i, d
′
i] ⊂

n∏

i=1

[ai, bi] × [ci, di],

if there exists a symplectic embedding which maps Πn
i=1[ai, bi] × [ci, di] to B

and Πn
i=1[a

′
i, b

′
i] × [c′

i, d
′
i] to B′. In the statement below, A1, . . . , AN are the

equidistribution boxes given by Lemma 12 and W = M\ ∪ Ai; in particular
N denotes the number of equidistribution boxes (these data depend on q ∈ Q
and ε > 0).

Roughly speaking, the aim of the following lemma is to cover most of
the interior of the Ai’s by disjoint polydiscs B′

j so that

1. The B′
j ’s are symplectomorphic, and each Aj contains the same number

of B′
j ’s,

2. The collection {B′
j} is invariant under S 1

Nq
,

3. There exists a slightly perturbed circle action each of whose orbits
spends most of its time inside the union of these polydiscs.

The number ε was used to ensure that the boxes Ai are well distributed
in M . We will use a different number, denoted by ε′, to ensure that every orbit
is well distributed among the Ai’s (this will become clear in Proposition 20).

Lemma 13 (Transportation Boxes). Let q ∈ Q and ε > 0 be as in Lemma 12,
and let ε′ > 0. There exist two families of polydiscs B′

1 ⊂ B1, . . . , B
′
N1

⊂ BN1 ,
and a map Ψ1 ∈ Symp0(M,ω) such that the following properties are satisfied:

1. The polydiscs Bi are all symplectomorphic to the standard polydisc
[−r, r]2n for some r > 0, have disjoint interiors, each Bi is included
in the interior of some Aj, and each Aj contains the same number of
Bi’s,

2. B′
i is a sub-polydisc of Bi of the form [−r′, r′]2n ⊂ [−r, r]2n, where

r′ < r,
3. S 1

Nq
acts on the Bi’s and on the B′

i’s as a permutation by Nq-cycles,
4. Ψ1 is C∞-close to the identity, its support is disjoint from Fix(S), and

it commutes with S 1
Nq

,
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5. There exists a compact subset K of Int (∪iB
′
i) such that every orbit of

the conjugated circle action Ψ1SΨ−1
1 spends more time than 1 − ε′ in

K ∪ W .

The families of polydiscs Bi, B
′
i will be referred to as the transportation

boxes.

Proof. The construction of Ψ1 and Bi’s will be mostly carried out in the
quotient

M ′ = (M\Fix(S))/S 1
Nq

.

Recall, from the explanation after Eq. (1), that M ′ is a manifold and, more-
over, it naturally inherits the symplectic structure and the Hamiltonian circle
action of M . We will denote the symplectic form and the circle action on M ′

by, respectively, ω′ and S′
t where now t belongs to the circle R mod 1

Nq .
When dealing with this new circle action, the “time spent” in some set will
be with respect to the (non normalised) Lebesgue measure on R mod 1

Nq ,
with total mass 1

Nq .
The quotient map π : M\Fix(S) → M ′ is a covering map; hence,

an element ψ ∈ Symp0(M ′, ω′) lifts to a symplectic diffeomorphism Ψ ∈
Symp0(M,ω) which commutes with S 1

Nq
. Furthermore, if ψ is close to the

identity then so is Ψ.
Recall that one of the steps in the construction of the equidistribution

boxes Ai requires a decomposition of the torus T
n, into cubes T , which is

invariant under translation by S 1
q
. By taking a refinement of that decompo-

sition, which is invariant under translation by S 1
Nq

, we obtain smaller boxes
a1, . . . , aN ′7 which have the following list of properties:

1. (Action-Angle Coordinates) Each aj is contained in some Ai. Moreover,
aj is the subset of Ai obtained by restricting the map from the third
item in Lemma 12,

Ξ : P × T → M
(s, t) �→ T

n
t (σ(s)),

to P × T ′, where T ′ is one of the cubes arising from the subdivision of
the cube T into smaller equal cubes. The map Ξ defines a symplecto-
morphism from Int(P × T ′) to Int(ai).

Note that each Ai contains the same number of aj ’s. Therefore, it
is sufficient to prove the statement of Lemma 13 with the Ai’s replaced
by aj ’s.

2. Each box aj contains at most one point of each orbit under S 1
Nq

, so the
projection π : M → M ′ restricts to a symplectomorphism between aj

and π(aj), for all j. This implies, in particular, that Int(π(aj)) is also
symplectomorphic to Int(P × T ′).

3. Note that since W and ∪iAi are disjoint and invariant under the circle
action, the sets π(W ) and ∪jπ(aj) are disjoint.

7The N ′ here is not the same as the N ′ used in the proof of Lemma 12.
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We leave it to the reader to check that Lemma 13 follows from the
discussion above by setting B′

i’s, Bi’s, Ψ1, and K to be, respectively, the lifts
of the b′

i’s, bi’s, ψ1, and K from the claim below.

Claim 14. There exist two finite collections of polydiscs b′
i ⊂ bi ⊂ M ′ and

ψ1 ∈ Symp0(M ′, ω′) such that the following properties are satisfied:
1. The polydiscs bi are all symplectomorphic to the standard polydisc

[−r, r]2n for some r > 0, have disjoint interiors, each bi is included
in the interior of some π(aj), and each π(aj) contains the same number
of bi’s,

2. b′
i is a sub-polydisc of bi of the form [−r′, r′]2n ⊂ [−r, r]2n, where r′ < r,

3. ψ1 is C∞–close to the identity and is compactly supported,
4. Every orbit of the conjugated circle action ψ1S

′ψ−1
1 spends more time

than 1
Nq − ε′

Nq in K ∪ π(W ), where K is a compact subset of Int (∪ib
′
i).

We will prove the above claim in two steps. We construct the bi’s in the
first step, and the b′

i’s in the second step. At each step we have to perturb
the action, so that after Step 1 no orbit spends too much time near the
boundary of the π(aj)’s, and after Step 2 no orbit spend too much time near
the boundary of the π(bi)’s. Figures 3 and 4 represent the two steps of our
construction.
Step 1: In the first step of the proof of Claim 14, depicted in Fig. 3, we will

construct the polydiscs bi and a symplectomorphism θ1 ∈ Symp0

(M ′, ω′) such that the following properties are satisfied:
1. The polydiscs bi are all symplectomorphic to the standard polydisc

[−r, r]2n for some r > 0, have disjoint interiors, each bi is included
in the interior of some π(aj), and each π(aj) contains the same
number of bis,

Figure 3. Depiction of Step 1 in the construction of trans-
portation boxes: The triangle represents π(aj) for a fixed j.
The boxes bi are in pink and the region K′

j is shaded purple.
The orbits of θ1S

′θ−1
1 spend most of their time in π(W )∪j K′

j
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Figure 4. Depiction of Step 2 in the construction of trans-
portation boxes: The triangle represents π(aj) for a fixed j.
The boxes b′

i ⊂ bi are in green and pink, receptively, and
the regions comprising K are shaded purple. The orbits of
ψ1Sψ−1

1 spend most of their time in π(W ) ∪ K

2. θ1 is C∞-close to the identity and is compactly supported,
3. Every orbit of the conjugated circle action θ1S

′θ−1
1 spends more

time than 1
Nq − ε′

2Nq in π(W ) ∪i bi.

Let �V be the vector field on M ′ tangent to the circle action. Let Y denote
the union of the boundaries of the π(aj)’s. We will now make a perturbation
of the vector field so that each of its orbits spends little time near Y .

The boundary of each π(aj) is a union of submanifolds with boundary.
Let (Yk)k=0,...,m be a numbering of all these submanifolds, and let (Xk)k=0,...,m

denote open hypersurfaces in M such that for each k, Xk contains Yk. Ap-
plying our transversality lemma, Lemma 5, we obtain a C∞ small and com-
pactly supported symplectomorphism ϕ0 of M ′ such that X0 is stably al-
most transverse to ϕ0∗�V on Y0. We repeatedly apply Lemma 5 to obtain C∞

small symplectomorphisms (ϕk)k=0,...,m of M ′ such that for each k and each
j � k, Xj is stably almost transverse to (ϕk ◦ · · · ◦ ϕ0)∗�V on Yj . Now, let
θ1 = ϕm ◦ · · · ◦ ϕ0. We have that Xk is stably almost transverse to θ1∗�V
on Yk for each 0 � k � m. Observe that this implies that every orbit of
the conjugated action θ1S

′θ−1
1 meets Y = ∪Yk at most finitely many times.

According to the Thickening Lemma 6, there exists δ > 0 so that every orbit
of θ1S

′θ−1
1 spends less time than ε′

2Nq in the δ-neighborhood O of the set Y .
For each j, let K′

j = π(aj)\O; this is a compact subset of the interior
of π(aj). Let K′ = ∪K′

j and observe that every orbit of θ1S
′θ−1

1 spends more
time than 1

Nq − ε′
2Nq in K′ ∪ π(W ).

To complete the first step of the proof, it remains to show that we can
find symplectomorphic polydiscs bi with disjoint interiors such that each bi

is contained in some π(aj), each π(aj) contains the same number of bi’s, and
K′ ⊂ Int (∪ibi).
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As mentioned above, there exists a symplectic identification of Int(π(aj))
with the interior of a product of the form Pj × T , where Pj is some poly-
tope in R

n and T is a cube in the torus T
n. Hence, we may suppose that

K′
j ⊂ Int(Pj × T ). We will take care of Pj and T separately. Recall that the

polytopes Pj were picked to have equal volumes.

Claim 15. Let k′
j denote the image of K′

j under the canonical projection Pj ×
T → Pj ⊂ Δ ⊂ R

n. Then, k′
j may be covered by cubes e1, . . . , el such that

1. Each of the cubes e1, . . . , el is a translation of the cube [0, η]n, for some
η,

2. The cubes e1, . . . , el are all contained in the interior of Pj,
3. The cubes e1, . . . , el have disjoint interiors,
4. The number of cubes e1, . . . , el used to cover k′

j does not depend on j.

To prove the first three items in the above claim one can simply place
a grid on R

n whose edge-size is η, for a sufficiently small η, and select the
closed cubes from the grid that are included in the interior of Pj . To get the
last item one must use the fact that the Pj ’s are polytopes of equal volume
in R

n. Note that if we make the size of the grid converge to zero, then the
volume vj of the union of the selected cubes converges to the volume of Pj .
Thus we may choose a common size η such that all the vj ’s are very close
to the common volume of the Pj ’s. If η is small enough then many cubes
near the boundary ∂Pj will actually not intersect k′

j . Then we may discard
some of those unnecessary cubes, in each Pj , to adjust for the number and
get item 4.

Now, we will complete Step 1 of the proof of Claim 14. All the cubes T
in T

n have the same size, so we may identify them with some T0 = [0, η]n.
We divide T0 into very small equal cubes such that the cubes which are
contained in the interior of T cover the projection of K′

j onto T , for every j.
The bi’s are obtained by simply taking the products of these cubes with those
from Claim 15. As a consequence of Claim 15, each π(aj) contains the same
number of the bi’s. Furthermore, it is not difficult to see that there exists
some r such that the bi’s are all symplectomorphic to [−r, r]2n.

Step 2: In the second step of the proof of Claim 14, depicted in Fig. 4, we
construct polydiscs b′

i and θ2 ∈ Symp0(M ′, ω′) such that
1. Each b′

i is a sub-polydisc of bi of the form [−r′, r′]2n ⊂ [−r, r]2n,
where r′ < r,

2. θ2 is C∞–close to the identity and is compactly supported,
3. Every orbit of the conjugated circle action ψ1Sψ−1

1 , where ψ1 =
θ2 ◦ θ1, spends more time than 1

Nq − ε′
Nq in K ∪ π(W ), where K is

a compact subset of Int (∪ib
′
i).

It is clear that the proof of Claim 14 will be completed once b′
i’s and θ2,

satisfying the above properties, are constructed.
Recall that every orbit of θ1S

′θ−1
1 spends more time than 1

Nq − ε′
2Nq in

π(W ) ∪i bi. We can find a C∞-small symplectomorphism θ2 such that every
orbit of the conjugated action θ2θ1S

′θ−1
1 θ−1

2 spends
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• more time than 1 − ε′
Nq in π(W ) ∪i bi and,

• less time than ε′
Nq in some small open neighborhood, say O′, of the union

of the boundaries of the polydisc bi.

The construction of θ2 is very similar to that of θ1 from Step 1 and so it will
be omitted. We let ψ1 = θ2θ1. For each i, let Ki = bi\O′; this is a compact
subset of the interior of bi. One can check that every orbit of ψ1Sψ−1

1 spends
more time than 1

Nq − ε′
Nq in π(W ) ∪i Ki. Let K = ∪iKi.

Recall that each bi is symplectomorphic to [−r, r]2n. Since the Ki’s are
compact subsets of the bi’s we can find r′ < r such that Ki ⊂ Int(b′

i), where
b′
i is the sub-polydisc of bi of the form [−r′, r′]2n ⊂ [−r, r]2n. Hence, we have

established that K is a compact subset of Int(∪ib
′
i) and every orbit of ψ1Sψ−1

1

spends more time than 1
Nq − ε′

Nq in π(W ) ∪ K. This completes Step 2, and
hence the entirety of the proof of Claim 14. �

4.3. Small boxes

We continue to work in the settings of Sects. 4.1 and 4.2: We have the equidis-
tribution boxes Ai, provided by Lemma 12, the transportation boxes Bi, B′

i,
from Lemma 13, and lastly Ψ1 ∈ Symp0(M) as described in Lemma 13.

Lemma 16 [Small Boxes]. Let q ∈ Q and ε, ε′ > 0 be as in the previous
lemmas. There exist a finite collection of polydiscs {ck} in M and Ψ ∈
Symp0(M,ω) such that the following properties are satisfied:

1. The ck’s are disjoint, each ck is included in some transportation box
B′

i = B′(ck), and each transportation box contains the same number of
ck’s.

2. S 1
Nq

acts on the cks as a permutation by Nq-cycles.
3. Ψ is C∞-close to the identity, its support is disjoint from Fix(S), and

it commutes with S 1
Nq

.
4. Every orbit of the circle action ΨSΨ−1 spends more time than 1 − ε′ in

W ∪ (∪kck).
5. (Transport) For any small box ck, let

O(ck) = {S j
q
(ck) | j ∈ {0, . . . , q − 1}}

be the orbit of ck under the action of S 1
q
. For any two small boxes

ck1 , ck2 , there exists Φk1k2 a compactly supported symplectomorphism of
M\W which commutes with S 1

q
and has the following properties:

(a) Φk1k2 acts as a permutation on the set of all ck’s,
(b) Φk1k2(O(ck1)) = O(ck2) and Φk1k2(O(ck2)) = O(ck1),
(c) Φk1k2(ck) ⊂ B′(ck) for each small box ck /∈ O(ck1) ∪ O(ck2).

Proof. Preparation for the construction of ck’s:
Recall that B′

i is a sub-polydisc of Bi of the form [−r′, r′]2n ⊂ [−r, r]2n. Let
Vi be the polydisc in Bi\Int(B′

i) of the form [r′, r′ + 2η] × [−η, η]2n−1, where
2η < r − r′. Note that the collection of Vi’s is invariant under the action of
S 1

Nq
.
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Figure 5. As before, B′
i ⊂ Bi are in pink and green, re-

spectively. The set Vi is in light blue and Ui(δ) in dark blue

For each 0 < δ < η, let Ui(δ) be the sub-polydisc in Vi corresponding
to [r′ + η − δ, r′ + η + δ] × [−δ, δ]2n−1; see Fig. 5. Note that the collection of
Ui(δ)’s is also invariant under the action of S 1

Nq
.

Claim 17. There exists δ0 > 0 with the following property: Take any δ � δ0

and consider any two Vi1 , Vi2 which have disjoint orbits under the action
of S 1

q
, i.e. S j

q
(Vi1) �= Vi2 for any j ∈ {0, . . . , q − 1}. Then, there exists a

compactly supported symplectomorphism Υi1i2 ∈ Symp0(M\(W ∪ (∪iB
′
i)))

such that
1. Υi1i2(Ui1(δ)) = Ui2(δ) and Υi1i2(Ui2(δ)) = Ui1(δ),
2. Υi1i2S 1

q
= S 1

q
Υi1i2 .

Proof of Claim 17. Observe that S 1
q

acts on M\(W ∪(∪iB
′
i)); this is because

W is invariant under the circle action and ∪iB
′
is is invariant under the action

of S 1
Nq

. Furthermore, this action is free. Therefore, we may consider the
quotient symplectic manifold M ′′ = M\(W ∪ (∪iB

′
i))/S 1

q
. Let π : M\(W ∪

(∪iB
′
i)) → M ′′ denote the quotient map.
We leave it to the reader to check that proving Claim 17 may be reduced

to proving the following statement on M ′′. There exists δ0 > 0 with the
property that for every δ < δ0 and any two i1, i2, such that π(Int(Vi1)) �=
π(Int(Vi2)), we can find a compactly supported symplectomorphism Υi1i2 of
M ′′ such that Υi1i2(π(Ui1(δ))) = π(Ui2(δ)) and Υi1i2(π(Ui2(δ))) = π(Ui1(δ)).

The fact Υi1i2 of the previous paragraph exists for small enough values
of δ is a consequence of Lemma 8 applied in the symplectic manifold M ′′.

The map Υi1i2 is depicted by the dotted line in Fig. 7. �
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Construction of ck’s: Recall that B′
i is symplectomorphic to[−r′, r′]2n. We

subdivide each B′
i into polydiscs all of which are symplectomorphic to

[−δ′, δ′]2n, for some δ′ smaller than the δ0 given by the previous claim; we
will denote the collection of these polydiscs by {c′

k}. Each B′
i contains the

same number of c′
ks and the c′

ks have disjoint interiors. Since the collection
of B′

is is invariant under the action of S 1
Nq

, we can ensure that the collection
of c′

k’s is also invariant under the action of S 1
Nq

.

Recall from Lemma 13 that every orbit of the conjugated action Ψ1SΨ−1
1

spends more time than 1 − ε′ inside K ∪ W , where K is a compact subset
of Int (∪iB

′
i). As was done in the proof of of Lemma 13, using transversality

Lemma 5 and Thickening Lemma 6, we can find Ψ2 such that every orbit of
the conjugated action Ψ2Ψ1SΨ−1

1 Ψ−1
2 spends more time than 1−ε′ in W ∪kck

where ck is the sub-polydisc of c′
k of the form [−δ, δ]2n ⊂ [−δ′, δ′]2n, with δ

Figure 6. The small boxes ck, in bright green, are added
to the previous picture; they are symplectomorphic to U(ck)
depicted in dark blue. Every orbit of ΨSΨ−1 spends more
time than 1 − ε′ in W ∪k ck.
Any two small boxes ck1 , ck2 , in bright green, can be ex-
changed via swapping several adjacent boxes. Similarly,
U(ck) can be swapped with the small box adjacent to it
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being slightly smaller than δ′. Furthermore, the map Ψ2 can be picked such
that it commutes with S 1

Nq
. We will not describe the construction of Ψ2 as it

is very similar to that of the maps Ψ1 and ψ1 from Lemma 13; see in particular
the first paragraph of the proof of Claim 14. The symplectomorphism Ψ is
the composition Ψ2 ◦ Ψ1. Note that Ψ and the ck’s satisfy items 1–4 of the
lemma. It remains to construct the maps Φk1k2 required by the last item. See
Fig. 6 for a depiction of the small boxes ck.
Proof of the last item (Transport):

We will need to introduce a bit of notation for the remainder of the proof.
For any small box ck, there exists (unique) ik such that ck ⊂ B′

ik
⊂ Bik . We

will denote B′
ik

, Bik by B′(ck), B(ck), respectively. Similarly, we will denote
Uik(δ) and Vik by U(ck) and V (ck), respectively. Observe that U(ck) and ck

are both polydiscs symplectomorphic to [−δ, δ]2n.
Roughly speaking, our goal here is to find a symplectomorphism Φk1k2

which exchanges two given small boxes ck1 and ck2 while leaving the remain-
ing small boxes more or less untouched. Of course, the remaining boxes cannot
be left entirely untouched because Φk1k2 must commute with S 1

q
and so we

are automatically forced to swap O(ck1) and O(ck2). However, the exchange
may be achieved such that the remaining ck’s do not leave their transporta-
tion boxes. The rough idea of the construction is as follows: first, any two
small boxes ck1 , ck2 which are in the same transportation box B′(ck) can be
swapped; the remaining small boxes in B′(ck) might be affected, however,
they will remain in B′(ck); this is the content of Claim 18 and its proof is
rather evident in dimension two, see Fig. 7, and the argument generalizes to
higher dimensions. Second, a similar reasoning can be used to obtain a sym-
plectomorphism which swaps U(ck) with the small box adjacent to it; see
Fig. 7 and Claim 19. Third, we can exchange U(ck1) and U(ck2); see Fig. 7
and Claim 17. Finally, we obtain Φk1k2 by combining the above facts.

We will be needing the following two claims.

Claim 18. Fix a small box ck and let ck1 , ck2 be any two small boxes which
are contained in B(ck). Then, there exists Φk1k2 ∈ Symp0(M,ω) with the
following property:

1. Φk1k2 is supported in ∪jS j
q
(B′(ck)) ⊂ ∪jS j

q
(B(ck)) ⊂ M\W ,

2. Φk1k2 commutes with S 1
q
,

3. Φk1k2(ck1) = ck2 and Φk1k2(ck2) = ck1 ,
4. Φk1k2 acts as a permutation on the set {ck′ : ck′ ⊂ B(ck)} .

Proof of Claim 18. Since the set of B′
i’s is invariant under the action of S 1

q
,

it is enough to prove the following: There exists a symplectomorphism φk1k2

which is compactly supported in B′(ck), is isotopic to the identity, and has
the following properties:

1. φk1k2(ck1) = ck2 and φk1k2(ck2) = ck1 ,
2. φk1k2 acts as a permutation on the set {ck′ : ck′ ⊂ B(ck)}.

We leave it to the reader to check that the existence of φk1k2 can be de-
duced from Lemma 9. The map φk1k2 corresponds to a symplectomorphism
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Figure 7. Depiction of Φk1k2 exchanging ck1 and ck2 which
are colored in red. First, via swapping adjacent small boxes
we map ck1 and ck2 to U(ck1) and U(ck2), respectively. The
swaps are depicted by the two-headed arrows. We then ex-
change U(ck1) and U(ck2) using the space in between the
transportation boxes; the dotted line depicts a path taken
by a symplectic isotopy swapping U(ck1) and U(ck2). The
existence of such isotopy is guaranteed by Claim 17

which, within the same transportation box B(ck), exchanges two bright green
squares in either of Figs. 6 or 7. This can be achieved via a composition of
symplectomorphisms which swap adjacent squares as depicted in Fig. 7. �
Claim 19. For each small box ck, there exists Θk ∈ Symp0(M,ω) with the
following properties:

1. Θk is supported in ∪jS j
q
(B(ck)) ⊂ M\W ,

2. Θk commutes with S 1
q
,

3. Θk(ck) = U(ck),
4. Θk acts as a permutation on the collection of polydiscs {U(ck)} ∪ {ck′ :

ck′ ⊂ B(ck)}.
Proof of Claim 19. Since the set of Bis is invariant under the action of S 1

q
,

it is enough to prove the following: For each small box ck, there exists a
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symplectomorphism θk which is compactly supported in B(ck), is isotopic to
the identity, with the following properties:

1. θk(ck) = U(ck),
2. θk acts as a permutation on the collection of polydiscs {U(ck)} ∪ {ck′ :

ck′ ⊂ B(ck)}.
We leave it to the reader to check that the existence of θk can be deduced from
Lemma 9. In Fig. 7, θk corresponds to a symplectomorphism which exchanges
the dark blue square with the red square in the adjacent transportation box;
it is obtained as a composition of maps that permute adjacent squares, as
indicated by the two-headed arrows. �

We now prove the last item (Transport) in the statement of Lemma 16
using Claims 17, 18, 19.

Note that it is sufficient to prove the statement up to replacing ck1 or
ck2 with any element of O(ck1) or O(ck2), respectively. First, we consider the
simpler case where there exists j such that S j

q
(ck2) ⊂ B(ck1). Then, up to

replacing ck2 with S j
q
(ck2), we may assume that B(ck1) = B(ck2). In this

case, Φk1k2 is given by Claim 18.
Next, we treat the case where B(ck1) �= B(ck2) even up to replacing

ck1 , ck2 with elements of O(ck1),O(ck2); Fig. 7 depicts Φk1k2 in this scenario.
Let Θk1 ,Θk2 be as given by Claim 19; note that these two maps have disjoint
supports. Then, define

Φk1k2 = Θ−1
k1

Θ−1
k2

ΥΘk2Θk1 ,

where Υ ∈ Symp0(M\W ) commutes with S 1
q

and satisfies Υ(U(ck1)) =
U(ck2) and Υ(U(ck2)) = U(ck1); the existence of Υ is guaranteed by Claim 17
and is depicted by the dotted line in Fig. 7. We leave it to the reader to check
that Φk1k2 satisfies all the requirements of the last item of
Lemma 16. �

4.4. From boxes to proposition 4

Having proven the lemmas of Sections 4.1, 4.2, and 4.3, we are now well
positioned to prove the following proposition which in turn will entail Propo-
sition 4.

Proposition 20. For any q ∈ Q and any ε, ε′ > 0, there exist h ∈ Symp0(M,ω)
and A1, . . . , AN closed subsets of M such that:

1. The sets Ai satisfy the equidistribution Property from Lemma 12,
2. The support of h is disjoint from Fix(S) and hS 1

q
= S 1

q
h,

3. Every orbit of the conjugated action hSh−1 is almost equidistributed
among the sets Ai in the following sense: There exists E ⊂ M such that
for each x ∈ M we have LebS1({t ∈ S

1 : hSth
−1(x) ∈ E}) < ε′ and the

following properties are satisfied:
(a) E ⊂ ∪iAi and ∂Ai ⊂ E for every i,
(b) For each x ∈ M , let Ii(x) := {t ∈ S

1 : hSth
−1(x) ∈ Ai\E}, Then,

Leb(Ii(x)) = Leb(Ij(x)) for all i, j.
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Proof of proposition 20. We will be applying the lemmas of the previous sec-
tions with the given q, ε and ε′. Lemma 12 gives us the equidistribution boxes
A1, . . . , AN .

Applying Lemma 16 we obtain small boxes {ck} and Ψ ∈ Symp0(M,ω)
satisfying, among others, the following properties:

1. Each Ai contains the same number of small boxes ck,
2. S 1

Nq
acts by a cyclic permutation of order Nq on the ck’s.

3. Ψ is C∞-close to the identity, its support is disjoint from Fix(S), and
it commutes with S 1

Nq
,

4. Every orbit of the circle action ΨSΨ−1 spends more time than 1 − ε′ in
W ∪k ck.
Given a small box c, we will denote by

Oq(c) = {S j
q
(c) | j = 0, . . . , q − 1}, ONq(c) = {S j

Nq
(c) | j = 0, . . . , Nq − 1}

the orbits of c respectively under the actions of S 1
q

and S 1
Nq

. Using Lemma
16, we can prove the following claim.

Claim 21. There exists Θ ∈ Symp0(M) which is compactly supported in
M\W such that

1. ΘS 1
q

= S 1
q
Θ,

2. For any small box c, the interior of each equidistribution box A contains
exactly q of the elements of the set

Θ(ONq(c)) = {Θ(c),Θ(S 1
Nq

(c)), . . . ,Θ(SNq−1
Nq

(c))}.

Proof of Claim 21. We begin by explaining the main idea of the proof of this
before proceeding to the give the details of the proof.

Given a small box c, and any symplectomorphism Θ, we will say Θ(ONq

(c)) is equidistributed if each equidistribution box A contains exactly q of its
elements. Note that if ONq(c)) is equidistributed for every c, then we are done
with Θ = Id. If not we can find transportation boxes say A1, A2, and a small
box ck1 contained in A1 such that A1 contains more than q of the elements of
ONq(ck1) and A2 contains less than q of them. Since each Ai contains exactly
the same number of small boxes, we can find a small box, which we denote
by ck2 , such that A2 contains more than q of the elements of ONq(ck2). By
the transport item of Lemma 16, there exists Φk1k2 , a compactly supported
symplectomorphism of M\W , which commutes with S 1

q
and has the following

property: it exchanges the orbits Oq(ck1) and Oq(ck2). As for the other small
boxes, Φk1k2 leaves them nearly unchanged in the sense that c and Φk1k2(c)
remain in the same equidistribution box. We see that after applying Φk1k2 ,
A1 will contain one less of the elements of ONq(ck1) and A2 will contain one
more. Repeating this process will allow us to construct the map Θ as the
compositions of all such Φk1k2 ’s.

We will now proceed to give more details of the proof. As will be
explained below, we will successively construct, for k = 1, . . . , symplec-
tomorphisms Θk which are compactly supported in M\W , commute with
S 1

q
, act as a permutation on the collection of small boxes and such that
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Θk ◦ · · · ◦ Θ1(ONq(ck)) is equidistributed. Furthermore, each Θk will have
the following additional property: For each small box c denote by A(c) the
equidistribution box which contains it. Then, for all 1 � i � k − 1 and every
c ∈ ONq(ci) we have

A(Θk ◦ Θi · · · ◦ Θ1(c)) = A(Θi · · · ◦ Θ1(c)).

This implies, in particular, that Θk ◦ · · · ◦ Θ1(ONq(ci)) is equidistributed for
all 1 � i � k. Once Θk with such properties is constructed we can simply set
Θ to be the composition of all the Θk’s.

Leaving the case where k = 1 to the reader, we will now describe the
construction of Θk, assuming Θ1, . . . ,Θk−1 have been constructed. If Θk−1 ◦
· · · ◦ Θ1(ONq(ck)) is equidistributed we set Θk = Id. If not, we can find
two equidistribution boxes say A1, A2, such that A1 contains more than q
of the elements of Θk−1 ◦ · · · ◦ Θ1(ONq(ck)) and A2 contains less than q of
them. By induction we know that A2 contains exactly q of the elements of
Θk−1 ◦ · · · ◦ Θ1(ONq(ck′)) for k′ < k, and moreover each Ai contains exactly
the same number of small boxes. Thus, there exists k′ > k such that A2

contains more than q of the elements of Θk−1 ◦ · · · ◦ Θ1(ONq(ck′)) (in the
sequel we will just need one of these elements).

Let ck1 , ck2 denote Θk−1 ◦ · · · ◦ Θ1(ck) and Θk−1 ◦ · · · ◦ Θ1(ck′), respec-
tively. By the transport item of Lemma 16, there exists Φk1k2 a compactly
supported symplectomorphism of M\W which commutes with S 1

q
and satis-

fies properties (a), (b), (c) of Lemma 16.
We leave it to the reader to check that property (c) has the following

consequence: for all 1 � i � k − 1 and every c ∈ ONq(ci) we have

A(Φk1k2 ◦ Θi · · · ◦ Θ1(c)) = A(Θi ◦ · · · ◦ Θ1(c)).

This implies, in particular, that Φk1k2 ◦ · · · ◦ Θ1(ONq(ci)) is equidistributed
for all 1 � i � k − 1.

By property (b), the number of elements of Φk1k2◦Θk−1◦· · ·◦Θ1(ONq(c))
which are contained in A1 is one less than the number of elements of Θk−1 ◦
· · · ◦ Θ1(ONq(c)) which are contained in A1. It follows that by repeatedly
applying the transport item of Lemma 16, we can continue the above process
to obtain other Φkikj

’s the composition of all of which gives the map Φk. �

We will now show that Claim 21 implies Proposition 20. Indeed, let
h = ΘΨ and consider the conjugated circle action hSh−1. It is clear that the
first two items in the statement of the proposition hold. We must prove the
third item. We define the set E := ∪Ai\Θ(∪kck). It is clear that E ⊂ ∪Ai

and ∂Ai ⊂ E for each i.
Observe that, by point 4 of Lemma 16, every orbit of the circle action

hSh−1 spends more time than 1 − ε′ in Θ(W ∪k ck) = W ∪ Θ(∪kck). Hence,
we immediately obtain LebS1({t ∈ S

1 : hSth
−1(x) ∈ E}) < ε′ for every x.

It remains to show that Leb(Ii(x)) = Leb(Ij(x)) for all i, j. This is
equivalent to showing that the quantity

Leb({t ∈ S
1 : hSth

−1(x) ∈ Ai ∩ Θ(∪kck)})

Reprinted from the journal896



does not depend on i. Now, using the action of S 1
Nq

on the cks, we see that
this quantity equals

∑

ONq(c)

Leb({t ∈ S
1 : hSth

−1(x) ∈ Ai ∩ Θ (ONq(c))}),

where the sum is taken over distinct ONq(c)s. Hence, it is sufficient to show
that for any small box c the quantity

Leb( {t ∈ S
1 : hSth

−1(x) ∈ Ai ∩ Θ (ONq(c))} )

does not depend on i. By Claim 21, there exists q elements, say c1, . . . , cq ∈
ONq(c) such that Ai ∩ Θ (ONq(c)) = Θ(c1) ∪ . . . ∪ Θ(cq). Thus,

Leb({t ∈ S
1 : hSth

−1(x) ∈ Ai ∩ Θ (ONq(c))})

=
q∑

j=1

Leb({t ∈ S
1 : hSth

−1(x) ∈ Θ (cj)}).

Now, recall that h = ΘΨ and so Leb({t ∈ S
1 : hSth

−1(x) ∈ Θ (cj)}) co-
incides with Leb({t ∈ S

1 : ΨStΨ−1(z) ∈ cj}), where z = Θ−1(x). Lastly,
because Ψ commutes with S 1

Nq
and cj ∈ ONq(c), we have that Leb({t ∈ S

1 :
ΨStΨ−1(z) ∈ cj}) = Leb({t ∈ S

1 : ΨStΨ−1(z) ∈ c}). Hence,

Leb({t ∈ S
1 : hSth

−1(x) ∈ Ai ∩ Θ (ONq(c))})

= q Leb({t ∈ S
1 : ΨStΨ−1(z) ∈ c}),

which clearly does not depend on i; the above equality follows from the second
item of Claim 21. This finishes the proof of Proposition 20. �

It remains to explain why Proposition 4 follows from Proposition 20.

Proof of proposition 4. Let U denote an open neighborhood of Conv(E). Clearly,
the symplectomorphism h, given to us by Proposition 20, satisfies the first
two items of Proposition 4. It remains to prove the third item, that is, if ε
and ε′ are small enough, for every x ∈ M , the push-forward of LebS1 , the
Lebesgue measure on the circle, under the map t �→ hSth

−1(x), belongs to
U .

Fix x ∈ M and let μ be the push-forward of LebS1 under the map
t �→ hSth

−1(x). Fix ε > 0 and let ε′ = ε
2N . We leave it to the reader to check

that, as a consequence of the third item of Proposition 20, μ has the property
that

N∑

i=1

|μ(Ai) − α

N
| < (N + 1)ε′ < ε, (5)

where α = μ(∪iAi). We will show that any probability measure which satisfies
the above property for sufficiently small ε > 0 belongs to U .

Let ν ∈ P(M) and recall that a basis of open neighborhoods of ν for
the week topology is given by the collection of sets of the the form

Uδ,f1,...,fk
(ν) :=

{

β ∈ P(M) :
∣
∣
∣
∣

∫
f dν −

∫
f dβ

∣
∣
∣
∣ < δ, ∀f ∈ {f1, . . . , fk}

}

,

where δ > 0 is a real number and f1, . . . , fk are continuous functions on M .
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Claim 22. There exists δ > 0 and continuous functions f1, . . . , fk : M → R,
satisfying ‖fi‖∞ � 1 for each i, such that for every ν ∈ Conv(E) we have

Uδ,f1,...,fk
(ν) ⊂ U .

Proof. The space of probability measures on M is metrizable; more precisely,
there exists a metric d such that for every radius r > 0, there exists δ > 0
and continuous functions f1, . . . , fk : M → R such that for every probability
measure ν, the set Uδ,f1,...,fk

(ν) is contained in the ball of radius r around ν
(see [34], Theorem 6.4). Now take r equals to the distance between Conv(E)
and the complement of U . By compactness of Conv(E), r is positive, and the
claim follows. �

Recall that W = (M\ ⋃
i Ai) ⊂ Bε(Fix(S)). For each x ∈ Fix(S), write

Wx = W ∩Bε(x). For small enough ε, the set Wx is the connected component
of W which contains x. Consider the probability measure νε ∈ Conv(E)
defined by

νε :=
∑

x∈Fix(S)

μ(Wx)δx + αVol,

where δx denotes the Dirac measure at x. Note that νε ∈ Conv(E) because∑
x∈Fix(S) μ(Wx) + α = μ(W ) + μ(∪Ai) = μ(M) = 1.

Proposition 4 follows immediately from Claim 22 and the next claim.

Claim 23. Let δ, f1, . . . , fk be as in Claim 22. If μ ∈ P(M) satisfies Eq. (5)
for a sufficiently small value of ε, then μ ∈ Uδ,f1,...,fk

(νε).

We will now provide a proof of the above claim. Since the Ai’s are of
diameter less than ε > 0, the following two inequalities hold for sufficiently
small values of ε:

∣
∣
∣
∣
∣
∣

∫
f dμ −

∑

i

f(yi)μ(Ai) −
∑

x∈Fix(S)

f(x)μ(Wx)

∣
∣
∣
∣
∣
∣
<

δ

4
,

∣
∣
∣
∣
∣
∣

∫
f dνε −

∑

i

f(yi)αVol(Ai) −
∑

x∈Fix(S)

f(x)μ(Wx)

∣
∣
∣
∣
∣
∣
<

δ

4
,

where f ∈ {f1, . . . , fk} and yi ∈ Ai. It follows from the above two inequalities
that ∀f ∈ {f1, . . . , fk}, we have

∣
∣
∣
∣

∫
f dνε −

∫
f dμ

∣
∣
∣
∣ <

∑

i

|αVol(Ai) − μ(Ai)| +
δ

2
.

Now, since (M\ ⋃
i Ai) ⊂ Bε(Fix(S)), we have

∑
i

∣
∣Vol(Ai) − 1

N

∣
∣ < ε, if ε is

taken to be sufficiently small. Thus,
∑

i

|αVol(Ai) − μ(Ai)| � α
∑

i

|Vol(Ai) − 1
N

| +
∑

i

| α

N
− μ(Ai)|

� ε + ε.
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Note that to obtain the last inequality we have used Inequality (5) and the
fact that α < 1. Finally, we conclude from the above that, if ε is taken to be
sufficiently small, then

∣
∣
∣
∣

∫
f dνε −

∫
f dμ

∣
∣
∣
∣ < δ,

for every f ∈ {f1, . . . , fk}. This completes the proof of Claim 23 and hence
that of Proposition 4. �
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[5] Béguin, F., Crovisier, S., Le Roux, F., Patou, A.: Pseudo-rotations of the closed
annulus: variation on a theorem of J. Kwapisz. Nonlinearity 17(4), 1427–1453
(2004)
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1. Introduction

The current survey is an attempt to put into context a series of very recent
results of the author in co-authorship with Otto van Koert [98,99], and the
spin-off [100] by the author. It also serves the purpose of introducing and
threading together a collection of basic and important notions, disseminated
across the literature, with the main driving motivation coming from a very
old and famous problem; namely, the three-body problem. We shall be, there-
fore, mainly interested in Hamiltonian dynamics, and the intended audience
is that with a dynamical background/interest; a good deal of openness to-
wards topological/geometric/holomorphic techniques is also recommended.
We make no assumptions on previous knowledge on contact or symplectic
techniques, but we move at a fast pace.

We shall start from the basics of contact and symplectic geometry, the
geometries of classical mechanics, and move on to the more topological notion
of open book decompositions in the context of contact topology and Giroux’s
correspondence. We will then make a dynamical jump to discuss the notion
of global hypersurfaces of section and adapted dynamics, discussing examples
along the way. After paving the road, we focus on the three-body problem
(more precisely, a simplified version, the circular restricted case=CR3BP)
with the main interest being the spatial problem where the small mass is
allowed to move anywhere (SCR3BP), as opposed to the planar problem,
which historically has been of central interest. We give a historical account
of Poincaré’s original approach in the planar problem, and discuss classical
fixed-point theorems and perturbative results. We also provide a brief survey
of the beautiful history behind the search of closed geodesics, which one may
view as a spin-off of the search of closed orbits for the three-body problem;
as well as how this relates to recent developments of a dynamical flavor
in symplectic geometry. We further review non-perturbative modern results
coming from holomorphic curve theory à-la Hofer–Wysocki–Zehnder [73]. We
then introduce the main results of [98–100], which include:

• Existence of adapted open book decompositions for the SCR3BP in the
low-energy range (Theorem M);

• Existence of Hamiltonian return maps reducing the dynamics to dimen-
sion 4 (Theorem N);

• A generalization of the classical Poincaré–Birkhoff theorem for Liouville
domains in arbitrary even dimensions (Theorem O);
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• The construction by the author of the holomorphic shadow, which asso-
ciates with the SCR3BP (whenever the planar dynamics is convex, and
energy is low) a Reeb dynamics on S3 which is adapted to a trivial open
book (Theorem R); and (perturbative) dynamical applications.

We remark that the first two results are valid for arbitrary mass ratio
and are therefore non-perturbative. We also point out that the second result,
while a general fixed-point theorem, has not so far seen an application to the
SCR3BP, for which the generalized notion of a twist condition introduced in
[99] seems, as of yet, perhaps unsuitable. The third result, while of theoretical
interest, might perhaps lead to insights on the original problem coming from
3-dimensional dynamics; this is work in progress. In fact, everything in the
last sections should be considered work in progress. Therefore, the reader is
advised to proceed accordingly, and perhaps get excited enough to contribute
to this growing body of work.

Needless to say, this account will be very biased towards the author’s
interests; the subject is too vast to make it proper justice. The experienced
reader is encouraged to complain to the author for misinterpretations, misrep-
resentations, omissions, or mistakes. Disseminated across the text, we leave
a series of digressions, intended for non-experts and newcomers, which the
reader might choose to skip without affecting the understanding of the main
body. They take up a significant part of the document, in the hope to illus-
trate the richness of the material.

2. Basic concepts

We start with the basic concepts underlying the general principles of classical
mechanics.

2.1. Symplectic geometry

Roughly speaking, symplectic geometry is the geometry of phase space (where
one keeps track of position and velocities of classical particles, and so, it is a
theory in even dimensions). Formally, a symplectic manifold is a pair (M,ω),
where M is a smooth manifold with dim(M) = 2n even, and ω ∈ Ω2(M) is
a two-form (the symplectic form) satisfying

• (closedness) dω = 0;
• (non-degeneracy) ωn = ω ∧ · · · ∧ω ∈ Ω2n(M) is nowhere-vanishing, and

hence a volume form. Equivalently, the map

X(M) → Ω1(M)
X �→ iXω = ω(X, ·)

is a linear isomorphism.

Note that symplectic manifolds are always orientable. We assume that
M is always oriented by the orientation induced by the symplectic form.

Example 2.1. (From classical mechanics)
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• (Phase space) (R2n, ωstd), where, writing (q, p) ∈ R
2n = R

n ⊕ R
n

(q =position, p =momenta), we have

ωstd = −dλstd = dq ∧ dp,

where λstd = pdq is the standard Liouville form. Here, we use the short-
hand notation dq∧dp =

∑n
i=1 dqi∧dpi, and similarly, pdq =

∑n
i=1 pidqi.

• (cotangent bundles) (T ∗Q,ωstd), where Q is a closed n-manifold, and
ωstd is defined invariantly as

ωstd = −dλstd,

with

(λstd)(q,p)(η) = p(d(q,p)π(η)),

also called the standard Liouville form. Here, q is a point in the base,
and p a covector in TqQ

∗, and

π : T ∗Q → Q

is the natural projection to the base. Note that phase space corresponds
to the case Q = R

n.

A general important feature of symplectic manifolds (or, more like, the
reason for their existence) is that they are locally modelled on phase space:

Theorem A. (Darboux’s theorem for symplectic manifolds) If p ∈ (M,ω) is
an arbitrary point in a symplectic manifold, we can find local charts centered
at p, so that (M,ω) is isomorphic to standard phase space (R2n, ωstd) in this
local chart.

The notion of isomorphism we use above is the obvious one: two sym-
plectic manifolds (M1, ω1) and (M2, ω2) are symplectomorphic if there exists a
diffeomorphism f : M1 → M2 satisfying f∗ω2 = ω1. In particular, a symplec-
tomorphism preserves volume, i.e., f∗ωn

2 = ωn
1 . Darboux’s theorem is usually

interpreted as saying that, unlike in Riemannian geometry where the curva-
ture is a local isometry invariant, there are no local invariants for symplectic
manifolds (they locally all look the same).

Hamiltonian dynamics From a dynamical perspective, symplectic man-
ifolds are the natural geometric space where one can study Hamiltonian dy-
namics, via the Hamiltonian formalism. On a cotangent bundle T ∗Q, the
idea is to model the motion of a particle moving along the manifold Q,
subject to the principle of minimization of energy/action associated with
a given physical problem.

In general, we start with a symplectic manifold (M,ω), and a Hamil-
tonian H : M → R, which is simply a function (which we assume C1, say),
thought of as the energy function of the mechanical system. The symplectic
form implicitly defines a vector field XH ∈ X(M) (the Hamiltonian vector
field or Hamiltonian gradient of H) via the equation

iXH
ω = dH.

Note that this uniquely defines XH due to non-degeneracy of ω. The above
equation is the global, invariant version for the following:

A. Moreno JFPTA
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Fundamental example: Hamilton’s equation Whenever (M,ω) =
(R2n, ωstd), we have

XH =
(

∂H

∂p
,−∂H

∂q

)

=
∂H

∂p
∂q − ∂H

∂q
∂p.

In other words, a solution x(t) = (q(t), p(t)) to the ODE ẋ(t) = XH(x(t)) is
precisely a solution to the Hamilton equations

{
q̇ = ∂H

∂p

ṗ = −∂H
∂q .

By Darboux’s theorem, we see that, locally, solutions to the Hamiltonian
flow are solutions to the above.

More invariantly, we consider the Hamiltonian flow φH
t : M → M gen-

erated by H, i.e., the unique solution to the equations

φH
0 = id,

d
dt

φH
t = XH ◦ φH

t .

This flow can be thought of as a symmetry of the symplectic manifold, since
it preserves the symplectic form

d
dt

(φH
t )∗ω = LXH

ω = iXH
dω + diXH

ω = 0 + d2H = 0,

and so, (φH
t )∗ω = (φH

0 )∗ω = ω for every t. A symplectomorphism f :
(M,ω) → (M,ω) is called Hamiltonian whenever f = φ1

H is the time-1 map
of a Hamiltonian flow. Hamiltonian maps then preserve volume (which is a
way of stating Liouville’s theorem from classical mechanics).

Remark 2.2. The Hamiltonian usually also depends on time. We have as-
sumed for simplicity that it does not, i.e., it is autonomous. We will see that
this will hold for the simplified versions of the three-body problem we will
consider.

In the above symplectic formalism, it is a fairly straightforward mat-
ter to write down the fundamental conservation of energy principle (in the
autonomous case):

Theorem B. (Conservation of energy) Assume H is autonomous. Then

dH(XH) = 0.

In other words, the level sets H−1(c) are invariant under the Hamiltonian
flow.

This is also usually written down using the Poisson bracket as

{H,H} = 0,

which is another way of saying that H is preserved under the Hamiltonian
flow of itself, or that H is a conserved quantity (or integral) of motion. The
proof fits in one line

dH(XH) = iXH
ω(XH) = ω(XH ,XH) = 0,

since ω is skew-symmetric.
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2.2. Contact geometry

Contact geometry is, roughly speaking, the odd-dimensional analogue of sym-
plectic geometry, and arises on level sets of Hamiltonians satisfying a suitable
convexity assumption (see Proposition 2.5). Formally, a (strict) contact man-
ifold is a pair (X,α), where X is a smooth manifold with dim(X) = 2n − 1
odd, and α ∈ Ω1(X) is a 1-form (the contact form) satisfying the contact
condition

α ∧ dαn−1 �= 0 is nowhere-vanishing, and hence a volume form.

Contact manifolds are therefore orientable (see Remark 2.4 below). The
codimension-1 distribution ξ = ker α ⊂ TM (a choice of hyperplane at each
tangent space, varying smoothly with the point), is called the contact struc-
ture or contact distribution, and (M, ξ) is a contact manifold.

Example 2.3. • (standard) The standard contact form on R
2n−1 = R ⊕

R
n−1 ⊕ R

n−1 
 (z, q, p) is

αstd = dz − pdq,

where we again use the short-hand notation pdq =
∑n

i=1 pidqi.
• (First-jet bundles) Given a manifold Q, its first-jet bundle J1(Q) → Q,

by definition, has total space the collection of all possible first deriva-
tives of maps f : Q → R. The fiber over q is as all possible tuples
(q, f(q), dqf), and so, J1(Q) ∼= R × T ∗Q. It carries the natural contact
form

α = dz + λstd,

where z is the coordinate on the first factor, and λstd is the standard
Liouville form on T ∗Q; note that the standard contact form corresponds
to the case Q = R

n−1.
• (contactization) More generally: if (M,ω = dλ) is an exact symplectic

manifold, then its contactization is

(R × M,dz + λ),

where z is the coordinate in the first factor.

The contact condition should be thought of as a maximally non-
integrability condition, as follows. Recall the following theorem from differ-
ential geometry:

Theorem C. (Frobenius’ theorem) If α ∧ dα ≡ 0, then ξ = ker α ⊂ TM is
integrable. That is, there are codimension-1 submanifolds whose tangent space
is ξ.

The condition in Frobenius’ theorem is equivalent to dα|ξ ≡ 0. The
contact condition is the extreme opposite of the above: dα|ξ > 0 is symplectic,
i.e., non-degenerate. In fact, if Y ⊂ (X, ξ) is a submanifold of a (2n − 1)-
dimensional contact manifold, so that TY ⊂ ξ (i.e., Y is isotropic), then
dim(Y ) ≤ n − 1. The isotropic submanifolds of maximal dimension n − 1 are
called Legendrians.

A. Moreno JFPTA
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The analogous theorem of Darboux in the contact category is the fol-
lowing:

Theorem D. (Darboux’s theorem for contact manifolds) If p ∈ (X,λ) is an
arbitrary point in a strict contact manifold, we can find a local chart U ∼=
R

2n−1 centered at p, so that λ|U = αstd.

Reeb dynamics Whereas a contact manifold is a geometric object, a
strict contact manifold is a dynamical one, as we shall see below. Note first
that the choice of contact form for a contact structure ξ is not unique: if α is
such a choice, then να is also, for any smooth positive function ν > 0. This
is in fact the only ambiguity, i.e., every other contact form is of this form.

Given a contact form α, it defines an autonomous dynamical system on
X, generated by the Reeb vector field Rα ∈ X(X). This is defined implicitly
via

• iRα
dα = 0;

• α(Rα) = 1.

To understand the above, note that, since dα|ξ is symplectic, the kernel of
dα is the 1-dimensional distribution TX/ξ ⊂ TX. This is trivialized (as a
real line bundle) via a choice of contact form, which also gives it an ori-
entation induced from the one on M . The Reeb vector field then lies in
this 1-dimensional distribution; the second condition normalizes it, so that it
points precisely in the positive direction with respect to the co-orientation.
We emphasize that the Reeb vector field depends significantly on the contact
form, and not on the contact structure; different choices give, in general, very
different dynamical systems.

Remark 2.4. There are also examples of contact manifolds which are not
globally co-orientable (e.g., the space of contact elements); we will not be
concerned with those.

The Reeb flow ϕt has the property that it preserves the geometry in a
strict way, i.e., it is a strict contactomorphism. This means that ϕ∗

t α = α, or
in other words, the Reeb vector field generates a (strict) local symmetry of the
(strict) contact manifold. This fact easily follows from the Cartan formula

d
dt

ϕ∗
t α = diRα

α + iRα
dα = d(1) + 0 = 0,

and so ϕ∗
t α = ϕ∗

0α = α.

More generally, a (not necessarily strict) contactomorphism is a diffeo-
morphism f , such that f∗(ξ) = ξ, or f∗α = να for some strictly positive
smooth function ν.

The bridge The fundamental relationship between symplectic and con-
tact geometry lies in the following. If the symplectic form ω = dλ is exact
(which can only happen if the symplectic manifold is open, by Stokes’ theo-
rem), then we have a Liouville vector field V , defined implicitly via

iV ω = λ,
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where we again use non-degeneracy of ω. To understand this vector field,
consider ϕt the flow of V . The Cartan formula implies

d
dt

ϕ∗
t ω = diV ω + iV dω = dλ = ω,

and so, integrating, we get

ϕ∗
t ω = etω.

Taking the top wedge power of this equation: ϕ∗
t ω

n = entωn, and we see that
the symplectic volume grows exponentially along the flow of V , i.e., ϕt is a
symplectic dilation.

Assume that X ⊂ (M,ω = dλ) is a co-oriented codimension-1 subman-
ifold, and the Liouville vector field is positively transverse to X. Then, we
obtain a volume form on X by contraction

0 < iV ωn|X = niV ω ∧ ωn−1|X = nλ ∧ dλn−1|X = nα ∧ dαn−1,

where α = λ|X . We have proved:

Proposition 2.5. If ω = dλ, and the associated Liouville vector field V is
positively transverse to X, then (X,α = λ|X = iV ω|X) is a strict contact
manifold.

A hypersurface X as in the above proposition is then called contact-
type. The most relevant example to keep in mind is when X = H−1(c) is the
level set of a Hamiltonian (in fact, locally, this is always the case). In this
situation:

Proposition 2.6. If X = H−1(c) is contact-type, then the Reeb dynamics on
X is a positive reparametrization of the Hamiltonian dynamics of H.

This follows from the observation that both XH and Rα span the kernel
of dα along X. In other words, Reeb dynamics on contact-type Hamiltonian
level sets is dynamically equivalent to Hamiltonian dynamics. See Fig. 1 for
an abstract sketch.

Example 2.7. • (star-shaped domains) Assume that X ⊂ R
2n is star-

shaped, i.e., it bounds a compact domain D containing the origin, and
the radial vector field V = q∂q +p∂p = r∂r is positively transverse to X
(with the boundary orientation). Since V is precisely the Liouville vector
field associated with λstd, every star-shaped domain is contact-type.

• (standard contact form on S3) As a particular case, let S3 = {z ∈ R
4 :

|z| = 1} ⊂ R
4 be the round 3-sphere. Then, S3 = H−1(1/2), where

H : R4 → R, H(z) = 1
2 |z|2, and it is star-shaped. Writing z = (z1, z2) =

(x1, y1, x2, y2), the radial vector field

V =
1
2
r∂r =

1
2
(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)

is Liouville and induces the contact form

α = iV ωstd|S3 = λstd|S3 =
1
2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3

A. Moreno JFPTA
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on S3 whose Reeb vector field is

Rα = 2(x1∂y1 − y1∂x1 + x2∂y2 − y2∂x2).

Its Reeb flow is, in complex coordinates, ϕt(z1, z2) = e2πit(z1, z2), whose
orbits are precisely the fibers of the Hopf fibration S3 
 (z1, z2) �→ [z1 :
z2] ∈ CP 1. In particular, this flow is periodic, and all orbits have the
same period.
As a side remark: the Hopf fibration π : S3 → S2 = CP 1 is an example
of what is usually called a prequantization bundle, i.e., the contact form
α is a connection form whose curvature form on the base is symplectic.
In other words, dα = iπ∗ωFS for a symplectic form ωFS on S2, and its
Reeb orbits are the S1-fibers (here, ωFS is the Fubini–Study metric on
CP 1, and the line bundle associated with the principal S1-bundle π is
O(1) → CP 1; see the digression on line bundles below).

• (ellipsoids) Given a, b > 0, define the ellipsoid

E(a, b) =
{

(z1, z2) ∈ C
2 :

π|z1|2
a

+
π|z2|2

b
≤ 1

}

,

a star-shaped domain. The restriction of the symplectic form ωstd is a
symplectic form on E(a, b), and its boundary ∂E(a, b) inherits a contact
form λstd|∂E(a,b) whose Reeb flow is

ϕt(z1, z2) = (e2πiatz1, e
2πibtz2).

In particular, if a, b are rationally independent, then this Reeb flow has
only two periodic orbits, passing through the points z1 = 0, or z2 = 0.
If a = b, E(a, a) is the unit ball, and we recover the Hopf flow along the
standard S3 = ∂E(a, a).

• (Unit cotangent bundle and geodesic flows) Given a manifold Q, choose
a Riemannian metric on TQ (which induces a metric on T ∗Q), and

Figure 1. The fundamental relationship between contact
and symplectic geometry is summarized here
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consider its unit cotangent bundle

S∗Q = {(q, p) ∈ T ∗Q : |p| = 1}.

We have S∗Q = H−1(1/2), where H : T ∗Q → R, H(q, p) = |p|2
2 is the

kinetic energy Hamiltonian. The radial vector field V = p∂p on each
fiber is the Liouville vector field associated with λstd, and is positively
transverse to S∗Q. It follows that αstd := λstd|S∗Q is a contact form,
and (S∗Q, ξstd = ker αstd) is called the standard contact structure on
S∗Q. Its Reeb dynamics is the (co)geodesic flow. We see that a geodesic
flow is a particular case of a Reeb flow.

Symplectization Given a contact form α on X, its symplectization is the
symplectic manifold

(R × X,ω = d(etα)).

The Liouville vector field is V = ∂t, which is positively transverse to all
slices {t} × X, where it induces the contact form iV ω = etα. Note that
the Reeb dynamics is the same in each slice (i.e., it is only rescaled by a
constant positive multiple). In fact, the symplectization is the ”universal
neighbourhood” for every contact-type hypersurface:

Proposition 2.8. Let X ⊂ (M,ω) be a contact-type hypersurface, with ω = dλ
exact near X. Then, we can find sufficiently small ε > 0, and an embedding

Φ : (−ε, ε) × X ↪→ M,

so that Φ∗ω = d(etα) where α = λ|X .

In other words, contact manifolds are always contact-type in some sym-
plectic manifolds, and vice versa. We can summarize this discussion in the
following motto: contact geometry is R-invariant symplectic geometry.

Remark 2.9. One also calls the symplectic manifold (R × X,ω = d(rα)) the
symplectization of α; this is related to the above by the obvious change of
coordinates r = et. We shall use the two interchangeably. Note that X =
{t = 0} = {r = 1}.

Digression: examples of symplectic manifolds from complex algebraic/
Kähler geometry

Example 2.10. • (Projective varieties) The complex projective space CPn

admits a natural symplectic form, called the Fubini–Study form ωFS ,
defined as follows. Let

K : Cn → R

K(z) = log

(

1 +
n∑

i=1

|zi|2
)

.

In homogenous coordinates (ζ0 : · · · : ζn) for CPn, let Uα = {(ζ0 : · · · :
ζn) : ζα �= 0} and

ϕα : Uα → C
n,

A. Moreno JFPTA
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ϕα(ζ0 : · · · : ζn) =
(

ζ0
ζi

, . . . ,
ζi−1

ζi
,
ζi+1

ζi
, . . . ,

ζn

ζi

)

= (zα
1 , . . . , zα

n )

be the standard affine chart around (0 : · · · : 1 : · · · : 0). Let Kα =
K ◦ ϕα, and define

ωα =
√−1∂∂Kα =

n∑

i,j=1

hij(zα)dzα
i ∧ dzα

j .

Here, one computes

hij(zα) =
δij

(
1 +

∑n
i=1 |zα

i |2)− zα
i zα

j

(1 +
∑n

i=1 |zα
i |2)2

.

One checks that on overlaps Uα ∩ Uβ , we have ωα = ωβ , and so, we get
a well-defined global ωFS so that ωFS |Uα

= ωα. The Kα are what is
called a local Kähler potential (or plurisubharmonic function) for the
Fubini–Study form. Every algebraic/analytic projective variety inherits
a symplectic form via restriction of the ambient Fubini–study form.

• (Affine varieties: Stein manifolds) The standard complex affine space Cn

carries the standard symplectic form via the identification C
n = R

2n,
which in complex notation is

ωstd =
√−1

2

n∑

i=1

dzi ∧ dzj =:
√−1

2
dz ∧ dz = −dλstd

with λstd =
√−1
4 (zdz−zdz). This admits the standard plurisubharmonic

function

fstd(z) = |z|2,
i.e., ωstd =

√−1∂∂fstd. This function is exhausting (i.e., {z : f(z) ≤ c}
is compact for every c ∈ R), and is a Morse function (with a unique
critical point at the origin).
By analogy as with the projective case, a Stein manifold X is a properly
embedded complex submanifold of Cn, endowed with the restriction of
the standard symplectic form, the standard complex structure i, and the
standard plurisubharmonic function. One may further assume (after a
small perturbation) that fstd defines a Morse function on X.

The above examples (projective and affine) are all instances of Kähler
manifolds, i.e., the symplectic form is suitably compatible with an integrable
complex structure, and with a Riemannian metric. One way to obtain Stein
manifolds from projective varieties is to remove a collection of generic hy-
perplane sections, i.e., the intersection of the variety with the zero sets of
generic homogeneous polynomials of degree 1. A confusing point is that the
Liouville form (i.e., the primitive of the resulting symplectic form), depends
on the number of sections, as we illustrate as follows in the case of CPn as
the projective variety.

Continued digression: relationship with line bundles, connections, and
Chern–Weil theory First, as a general fact, we recall that the Picard group of
CPn (i.e., the group of isomorphism classes of holomorphic line bundles, with
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tensor product as group operation) is isomorphic to Z, each k ∈ Z correspond-
ing to a line bundle O(k). For k ≥ 0, the holomorphic sections of O(k) are pre-
cisely homogeneous polynomials of degree k on the homogeneous coordinates;
O(k) has no holomorphic sections for k < 0, but admits meromorphic sections
given by Laurent polynomials with poles of total order k. Moreover, the first
Chern class of a line bundle is by definition the Poincaré dual of Z(s), the zero
set of a section s, generic in the sense that it is transverse to the zero section.
The zero set of a generic polynomial of degree k is, by definition, a hypersur-
face of degree k. For very degenerate cases (i.e., when the polynomial factor-
izes into linear polynomials), this consists of a collection of hyperplanes, i.e.,
zero sets of linear polynomials as e.g., H = {ζi = 0}, with total multiplicity k.
One should think of CP 1, where this zero set is simply a collection of points
with total multiplicity k. This translates to the fact that first Chern class of
O(k) is c1(O(k)) = kh ∈ H2(CPn,R), where h is the hyperplane class, the
Poincaré dual to the homology class [H] ∈ H2n−2(CPn,R) of any hyperplane
H, and a generator of the cohomology of CPn. On the other hand, Chern–
Weil theory says that c1 is represented by the curvature 2-form of a connection
on O(k) (e.g., the Chern connection associated with the standard Hermitian
metric). In practice, this means the following: for k ≥ 0, take a holomorphic
section sk ∈ Γ(O(k)), and consider Fk =

√−1∂∂log(|sk|2), which a (1, 1)-
form, defined on Xk := CPn\Z(sk). We further have Fk = −ddClog|sk|2,
where dC is defined via dCα(X) = dα(iX), and so, Fk is exact on Xk. More-
over, it is symplectic on Xk, which becomes a subset of C

n after choosing
affine charts, and is in fact a Stein manifold, where the appropriate Liouville
form for the symplectic form Fk is λk = −dClog|sk|2. In other words, pro-
jective space is obtained from Xk by compactifying with a divisor Z(sk) ”at
infinity”. Thinking of sk as providing a local trivialization of O(k) over Xk,
one checks that different choices of local trivializations give different Fk which
glue together to a global (1, 1)-form which is no longer exact, and actually
its cohomology class is precisely c1(O(k)). Note that by construction, any
standard chart Uα is of the form CPn\Z(s1) ∼= C

n, and ωFS |Uα
= F1, i.e.,

ωFS is the curvature of the Chern connection on O(1) and hence Poincaré
dual to h.

References Good references for Kähler and complex algebraic geometry
are Griffiths–Harris [57], Huybrechts [79], and many others.

2.3. Open book decompositions

Definition 2.11. Let M be a closed manifold. A (concrete) open book decom-
position on M is a fibration π : M\B → S1, where B ⊂ M is a closed,
codimension-2 submanifold with trivial normal bundle. We further assume
that π(b, r, θ) = θ along some collar neighbourhood B×D

2 ⊂ M , where (r, θ)
are polar coordinates on the disk factor.

Note that collar neighbourhoods of B exist, since they are trivializations
of its normal bundle. B is called the binding, and the closure of the fibers
Pθ = π−1(θ) are called the pages, which satisfy ∂Pθ = B for every θ. We
usually denote a concrete open book by the pair (π,B). See Fig. 2.
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Figure 2. A neighbourhood of the binding look precisely
like the pages of an open book, whose front cover has been
glued to its back cover

The above concrete notion also admits an abstract version, as follows.
Given the data of a typical page P (a manifold with boundary B), and a
diffeomorphism ϕ : P → P with ϕ = id in a neighbourhood of B, we can
abstractly construct a manifold

M := OB(P,ϕ) := B × D
2
⋃

∂

Pϕ,

where Pϕ = P × [0, 1]\(x, 0) ∼ (ϕ(x), 1) is the associated mapping torus.
By gluing the obvious fibration Pϕ → S1 with the angular map (b, r, θ) �→ θ
defined on B ×D

2, we see that this abstract notion recovers the concrete one.
Reciprocally, every concrete open book can also be recast in abstract terms,
where the choices are unique up to isotopy. However, while the two notions are
equivalent from a topological perspective, it is important to make distinctions
between the abstract and the concrete versions for instance when studying
dynamical systems adapted to the open books (as we shall do below), since
dynamics is in general very sensitive to isotopies.

Example 2.12. • (trivial open book) Since the relative mapping class group
of D

2 is trivial, the only possible monodromy for an open book with
disk-like pages is S3 = OB(D2,1). Viewing S3 = {(z1, z2) ∈ C

2 :
|z1|2 + |z2|2 = 1}, let B = {z1 = 0} ⊂ S3 be the binding (the un-
knot). The concrete version is e.g. π : S3\B → S1, π(z1, z2) = z1

|z1| . See
Fig. 3.

• (stabilized version) We also have S3 = OB(D∗S1, τ), where τ is the
positive Dehn twist along the zero section S1 of the annulus D

∗S1. A
concrete version is π : S3\L → S1, π(z1, z2) = z1z2

|z1z2| , where L = {z1z2 =
0} is the Hopf link. This is the positive stabilization of the trivial open
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Figure 3. The disk-like pages of the trivial open book in
S3 (above) are obtained by gluing two foliations on two solid
tori; similarly for its stabilized version (below), whose pages
are annuli. Here, we use the genus 1 Heegaard splitting for
S3

book, an operation which does not change the manifold (see below). See
Fig. 3.

• (Milnor fibrations) More generally, let f : C
2 → C be a polynomial

which vanishes at the origin, and has no singularity in S3 except per-
haps the origin. Then, πf : S3\Bf → S1, πf (z1, z2) = f(z1,z2)

|f(z1,z2)| , Bf =
{f(z1, z2) = 0} ∩ S3, is an open book for S3, called the Milnor fibra-
tion of the hypersurface singularity (0, 0). The link Bf is the link of
the singularity, and the binding of the open book, whereas the page is
called the Milnor fiber. If f has no critical point at (0, 0), then Bf is
necessarily the unknot.

• We have S1 × S2 = OB(D∗S1,1). This can be easily seen by removing
the north and south poles of S2 (whose S1-fibers become the binding),
and projecting the resulting manifold D

∗S1 × S1 to the second factor.
• (Some lens spaces) We have RP 3 = OB(D∗S1, τ2), as follows from

taking the quotient of the stabilized open book in S3 via the double
cover S3 → RP 3. More generally, for p ≥ 1, we have L(p, p − 1) =
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OB(D∗S1, τp), and for p ≤ 0, L(p, 1) = OB(D∗S1, τp). Here, L(p, q) =
S3/Zp, is the lens space, where the generator ζ = e

2πi
p ∈ Zp acts via

ζ ·(z1, z2) = (ζ.z1, ζ
q.z2). For p = 0, 1, 2, we recover the above examples.

In general, we have the following important result from smooth topol-
ogy, which says that the open book construction achieves all closed, odd-
dimensional manifolds:

Theorem E. (Alexander (dim = 3), Winkelnkemper (simply connected, dim ≥
7), Lawson (dim ≥ 7), Quinn (dim ≥ 5)). If M is closed and odd-dimensional,
then M admits an open book decomposition.

So far, we have discussed open books in terms of smooth topology. We
now tie it with contact geometry, via the fundamental work of Emmanuel
Giroux, which basically shows that contact manifolds can be studied from
a purely topological perspective. One therefore usually speaks of the field
contact topology, when the object of study is the contact manifold itself (as
opposed, e.g., to a Reeb dynamical system on the contact manifold).

If M is oriented and endowed with an open book decomposition, then
the natural orientation on the circle induces an orientation on the pages,
which in turn induce the boundary orientation on the binding. The funda-
mental notion is the following:

Definition 2.13. (Giroux ) Let (M, ξ) be an oriented contact manifold, and
(π,B) an open book decomposition on M . Then, ξ is supported by the open
book if one can find a positive contact form α for ξ (called a Giroux form),
such that:
(1) αB := α|B is a positive contact form for B;
(2) dα|P is a positive symplectic form on the interior of every page P .

Here, the a priori orientations on binding and pages are the ones described
above. Also, by a positive contact form, we mean a contact form α on M2n−1,
such that the orientation induced by the volume form α ∧ dαn−1 coincides
with the given orientation on M .

The above conditions are equivalent to:
(1)’ Rα|B is tangent to B;
(2)’ Rα is positively transverse to the interior of every page.

In the above situation, (B, ξB = ker αB) is a codimension-2 contact
submanifold, i.e., ξB = ξ|B .

Theorem F. (Giroux [56]) Every open book decomposition supports a unique
isotopy class of contact structures. Any contact structure admits a supporting
open book decomposition.

Here, two contact structures are isotopic if they can be joined by a
smooth path ξt of contact structures. An important result in contact ge-
ometry is Gray’s stability, which says that isotopic contact structures are
contactomorphic, i.e., there exists a diffeomorphism which carries one to the
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other. One may further assume that the pages in the above theorem are
Stein manifolds, as discussed above. One may unequivocally use OB(P,ϕ)
to denote the unique isotopy class of contact structures that this open book
supports.

Giroux’s result is actually much stronger in dimension 3, since it more-
over states that the supporting open book is unique up to a suitable notion
of positive stabilization, which can be thought of as two cancelling surgeries
which therefore smoothly do not change the ambient manifold. This pro-
cedure consists of choosing a properly embedded path l ⊂ P (a stabilizing
arc) inside the surface P , attaching a 1-handle H along the attaching sphere
S0 ∼= ∂l ⊂ ∂P , considering the loop γ obtained by gluing l with the core of
H, and replacing the monodromy ϕ with ϕ◦ τγ , where τγ is the right-handed
Dehn twist along γ. In abstract notation

OB(P,ϕ) � OB(P ∪ H,ϕ ◦ τγ).

The handle attachment on the page can be seen as an index 1 surgery on M ,
whereas composing with the monodromy adds a cancelling index 2 surgery,
so that OB(P,ϕ) ∼= OB(P ∪ H,ϕ ◦ τγ).

Theorem G. (Giroux’s correspondence [56]) If dim(M) = 3, there is a 1:1
correspondence

{contact structures}/isotopy ←→ {open books}/pos. stabilization.

This bijection is why in dimension 3, one talks about Giroux’s corre-
spondence, which reduces the study of contact 3-manifolds to the topological
study of open books. The analogous general uniqueness statement in higher
dimensions is an open question to this day. Let us emphasize that in the
above result, only the contact structure is fixed, and the contact form (and
hence the dynamics) is auxiliary; Giroux’s result is not dynamical, but rather
topological/geometrical.

2.4. Global hypersurfaces of section

From a dynamical point of view, one wishes to adapt the underlying topol-
ogy to the given dynamics, rather than vice versa. We therefore make the
following:

Definition 2.14. Given a flow ϕt : M → M of an autonomous vector field
on an odd-dimensional closed oriented manifold M carrying a concrete open
book decomposition (π,B), we say that the open book is adapted to the
dynamics if:

• B is ϕt-invariant;
• ϕt is positively transverse to the interior of each page;
• for each x ∈ M\B and P a page, then the orbit of x intersects the

interior of P in the future, and in the past, i.e., there exists τ+(x) > 0
and τ−(x) < 0, such that ϕτ±(x)(x) ∈ int(P ).

Note that the third condition actually follows from the second one, since
we require it for every page and these foliate the complement of B. If ϕt is a
Reeb flow, then the above is equivalent to asking that the (given) contact form
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is a Giroux form for the (auxiliary) open book. It follows from the definition
that each page is a global hypersurface of section, defined as follows:

Definition 2.15. (Global hypersurface of section) A global hypersurface of sec-
tion for an autonomous flow ϕt on a manifold M is a codimension-1 subman-
ifold P ⊂ M , whose boundary (if non-empty) is flow-invariant, whose interior
is transverse to the flow, such that the orbit of every point in M\∂P intersects
the interior of P in the future and past.

Poincaré return map Given a global hypersurface of section P for a flow
ϕt, this induces a Poincaré return map, defined as

f : int(P ) → int(P ), f(x) = ϕτ(x)(x),

where τ(x) = min{t > 0 : ϕt(x) ∈ int(P )}. This is clearly a diffeomorphism.
And, by construction, periodic points of f (i.e., points p for which fk(p) = p
for some k ≥ 1) are in 1:1 correspondence with closed spatial orbits (those
which are not fully contained in the binding).

Moreover, in the case of a Reeb dynamics, we have:

Proposition 2.16. If ϕt is the Reeb flow of a contact form α, and P is a global
hypersurface of section with induced return map f , then ω = dα|P = dλ, with
λ = α|P , is a symplectic form on int(P ), and

f : (int(P ), ω) → (int(P ), ω)

is a symplectomorphism, i.e., f∗ω = ω.

In fact, f is an exact symplectomorphism, which means that f∗λ =
λ+dτ for some smooth function τ (i.e., the return time). Differentiating this
equation, we obtain f∗ω = ω. In dimension 2, a symplectic form is just an
area form, and so the above proposition simply says that the return map is
area-preserving.

The proof is quite simple: ω is symplectic precisely because the Reeb
vector field, which spans the kernel of dα, is transverse to the interior of P
(note, however, that it is degenerate at ∂P ). For x ∈ int(P ), v ∈ TxP , we
have

dxf(v) = dxτ(v)Rα(f(x)) + dxϕτ(x)(v).

Using that ϕt satisfies ϕ∗
t α = α, we obtain

(f∗λ)x(v) = αf(x)(dxf(v))

= dxτ(v) + (ϕ∗
τ(x)α)x(v)

= dxτ(v) + λx(v).
(2.1)

Therefore

f∗λ = dτ + λ, (2.2)

which proves the proposition.

Remark 2.17. In general, the return map might not necessarily extend to the
boundary, and indeed, there are many examples on which this does not hold;
this is a delicate issue which usually relies on analyzing the linearized flow
equation along the normal direction to the boundary.
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Figure 4. The geodesic open book for S∗Sn

2.5. Examples of adapted dynamics

Let us discuss two important but simple examples of open books supporting
a Reeb dynamics.

Hopf flow The trivial open book on S3, as well as its stabilized version,
are both adapted to the Hopf flow.

Ellipsoids More generally, the trivial and stabilized open books on S3

are adapted to the Reeb dynamics of every ellipsoid E(a, b). In the trivial
case, the return map on each page is the rotation by angle 2π a

b ; and in the
stabilized case, we get a map of the annulus which rotates the two boundary
components in the same direction (i.e., it is not a twist map).

2.6. Geodesic flow on Sn and the geodesic open book

We write

T ∗Sn =
{
(ξ, η) ∈ T ∗

R
n+1 = R

n+1 ⊕ R
n+1 : ‖ξ‖ = 1, 〈ξ, η〉 = 0

}
.

The Hamiltonian for the geodesic flow is Q = 1
2‖η‖2|T ∗Sn with Hamiltonian

vector field

XQ = η · ∂ξ − ξ · ∂η.

This is the Reeb vector field of the standard Liouville form λstd on the energy
hypersurface Σ = Q−1( 12 ) = S∗Sn. We have the invariant set

B := {(ξ0, . . . , ξn; η0, . . . , ηn) ∈ Σ | ξn = ηn = 0} = S∗Sn−1.

Define the circle-valued map

πg : Σ\B −→ S1, (ξ0, . . . , ξn; η0, . . . , ηn) �−→ ηn + iξn

‖ηn + iξn‖ .

This is a concrete open book on S∗Sn, which we shall refer to as the geo-
desic open book. The page ξn = 0 and ηn > 0, i.e., the fiber over 1 ∈ S1,
corresponds to a higher dimensional version of the famous Birkhoff annulus
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(when n = 2), and is a copy of D
∗Sn−1. Indeed, it consists of those (co)-

vectors whose basepoint lies in the equator, and which point upwards to the
upper hemisphere. See Fig. 4.

We then consider the angular form

ωg = dπg =
ηndξn − ξndηn

ξ2n + η2
n

.

We see that ωg(XQ) = 1 > 0, away from B. This means that (B, πg) is a
supporting open book for Σ and the pages of πg are global hypersurfaces of
section for XQ. In fact, all of its pages are obtained from the Birkhoff annulus
by flowing with the geodesic flow. In terms of the contact structure ξstd =
ker λstd, this open book corresponds to the abstract open book (S∗Sn, ξstd) =
OB(D∗Sn−1, τ2) supporting ξstd. Here, τ : D∗Sn−1 → D

∗Sn−1 is an exact
symplectomorphism defined by Arnold in dimension 4 in [11] and extended
by Seidel to higher dimensions (see, e.g., [115]), and is a generalization of the
classical Dehn twist on the annulus. For n = 2, we reobtain the open book
RP 3 = S∗S2 = OB(D∗S1, τ2).

2.7. Double cover of S∗S2

We focus on n = 2, and consider

S∗S2 = {(ξ, η) ∈ T ∗
R

3 : ‖ξ‖ = ‖η‖ = 1, 〈ξ, η〉 = 0},

the unit cotangent bundle of S2, with canonical projection π0 : S∗S2 → S2,
π0(ξ, η) = ξ. It is easy to see that the map

Φ : S∗S2 → SO(3),
Φ(ξ, η) = (ξ, η, ξ × η)

is a diffeomorphism, where we view ξ, η as column vectors, and so S∗S2 ∼=
SO(3) ∼= RP 3. The projection π0 on SO(3) becomes π0(A) = A(e1), i.e., the
first column of the matrix A ∈ SO(3). We have π1(S∗S2) = Z2, generated
by the S1-fiber. By definition, the double cover of SO(3) is the Spin group
Spin(3), which can be constructed as follows. Consider the quaternions

H = {a + bi + cj + dk : a, b, c, d ∈ R},

with i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. We identify S3 = Sp(1) :=
{q ∈ H : ‖q‖ = 1}, and R

3 = Im(H) = 〈i, j, k〉 the set of purely imaginary
quaternions. The conjugate of q = a + bi + cj + dk is q = a − bi − cj − dk.
We then define

p : S3 → SO(3),
p(q)(v) = qvq,

where v ∈ Im(H) = R
3. We have ‖qvq‖ = ‖q‖2‖v‖ = ‖v‖, and p(q) is seen to

preserve orientation, so indeed p(q) ∈ SO(3). Clearly, p(−q) = p(q), and the
map p is in fact a double cover, so that S3 = Spin(3).

Identifying i with e1, we have π0(p(q)) = p(q)(i) = qiq. A short compu-
tation gives

qiq = (a + bi + cj + dk)∗i(a + bi + cj + dk) = (a2 + b2 − c2 − d2)i
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+2(bc − ad)j + 2(ac + bd)k.

On the other hand, the Hopf map may be defined as the map

π : S3 → S2, π(z1, z2) = (|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2),

where we view S3 = {(z1, z2) ∈ C
2; |z1|2 + |z2|2 = 1} and S2 ⊂ R

3. Writing
q = a + bi + cj + dk = z1 + z2j, i.e. z1 = a + ib, z2 = c + id, one can easily
check that

(|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2) = (a2 + b2 − c2 − d2, 2(bc − ad), 2(ac + bd)).

We have proved the following:

Proposition 2.18. The Hopf fibration is the fiber-wise double cover of the
canonical projection π0, i.e., we have a commutative diagram

S1 S1

S3 = Spin(3) SO(3) = S∗S2

S2 S2

z �→z2

p

π π0

2.8. Magnetic flows and quaternionic symmetry

On this section, we expose the beautiful construction of [8] (to which we
refer the reader for further details here omitted), relating the quaternions
with Reeb flows on S3, as double covers of magnetic flows on S∗S2.

On S2, consider an area form σ (the magnetic field), and the twisted
symplectic form ωσ, defined on T ∗S2 via

ωσ = ωstd − π∗
0σ,

where π0 : T ∗S2 → S2 is the natural projection. Fixing a metric g on S2,
the Hamiltonian flow of the kinetic Hamiltonian H(q, p) = ‖p‖2

2 , computed
with respect to ωσ, is called the magnetic flow of (g, σ). Note that σ = 0
corresponds to the geodesic flow of g. Physically, the magnetic flow models
the motion of a particle on S2 subject to a magnetic field (the terminology
comes from Maxwell’s equations, which can be recast in this language). From
now on, we fix σ to be the standard area form on S2, with total area 4π, and
g the standard metric with constant Gaussian curvature 1.

On S∗S2, we can choose a connection 1-form α satisfying dα = π∗σ,
which is a contact form (usually called a prequantization form). We identify
T ∗S2\S2 with R

+ × S∗S2, and denoting by r ∈ R
+ the radial coordinate,

we have the associated symplectization form d(rα). Consider the S1-family
of symplectic forms

ωθ = cos θ d(rα) + sin θ d(rαstd), θ ∈ R/2πZ,
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defined on R
+ × S∗S2 = T ∗S2\S2, where d(rαstd) = ωstd. The Hamiltonian

flow of the kinetic Hamiltonian H, with respect to ωθ, and along r = 1, is eas-
ily seen to be the magnetic flow of (g,− cot θ·σ) up to constant reparametriza-
tion. In particular, for θ = π/2 mod π, we obtain the geodesic flow, whose
orbits are great circles; for other values of θ, the strength of the magnetic field
increases, and the orbits become circles of smaller radius with an increasing
left drift. For θ = 0 mod π, the circles become points and the flow rotates the
fibers of S∗S2, i.e., this is the magnetic flow with ”infinite” magnetic field.

We now construct the double covers of these magnetic flows on S3, using
the hyperkähler structure on H = R

4 = C
2. We view S3 as the unit sphere

in H. Every unit vector

c = c1i + c2j + c2k ∈ S2 ⊂ R
3

may be viewed as a complex structure on H, i.e., c2 = −1. Denoting the
radial coordinate on R

4 by r, we obtain an S2-family of contact forms on S3

given by

αc = −2dr ◦ c|TS2 , c ∈ S2.

The Reeb vector field of αc is Rc = 1
2c∂r. Note that αi is the standard contact

form on S3, whose Reeb orbits are the Hopf fibers.
We then consider the quaternionic action of S3 on itself, given by

la : S3 → S3

u �→ au,

for a ∈ S3. Recall that we also have the action of S3 on S2 via the SO(3)-
action of the previous section, i.e., a · c = p(a)(c) = aca ∈ S2, for a ∈ S3,
c ∈ S2, and p : S3 → SO(3) the spin group double cover. One checks directly
that (la)∗αc = αaca = αa·c. In particular, (la)∗αi = απ(a), where π is the
Hopf fibration.

On the other hand, the stabilizer of i ∈ S2 under the S3-action is the
circle

Stab(i) = {cos(ϕ) + i sin(ϕ) : ϕ ∈ S1} ∼= S1 ⊂ S3.

The action of an element in this subgroup on S3 then fixes αi, but reparametrizes
its Reeb orbits, i.e., rotates the Hopf fibers. We then consider an S1-subgroup
{aθ} ⊂ S3 of unit quaternions which are transverse to this stabilizer, inter-
secting it only at the identity, given by

aθ = cos(θ/2) + k sin(θ/2), θ ∈ [0, π]

for which

π(aθ) = aθiaθ = i cos θ + j sin θ.

Define

αθ := απ(aθ) = cos θ αi + sin θ αj ,

with Reeb vector field Rθ := Rπ(aθ). One further checks that

αθ = p∗(cos θ α + sin θ αstd),
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Figure 5. The binding of the magnetic open book pθ (in
red), consisting of two circles of latitude θ and π − θ, doubly
covered by two Reeb orbits of αθ. At θ = π, the action of aπ

maps the Hopf fiber over a point to the Hopf fiber over its
antipodal (cf. [8, Fig. 1])

and so

ω̃θ := dαθ = p∗ωθ|S∗S2

is the double cover of the twisted symplectic form ωθ along the unit cotangent
bundle (alternatively, we can also think of ω̃θ as being defined on R

4\{0} =
R

+ × S3 as the symplectization of αθ). We have obtained:

Theorem H. [8] There are contact forms αi, αj and an S1-action on S3, send-
ing αi to contact forms αθ = cos θ αi + sin θ αj, θ ∈ S1, such that the Reeb
flow of αθ doubly covers the magnetic flow of ωθ.

Remark 2.19. Note that for θ = 0, corresponding to the infinite magnetic
flow, this reduces to the statement of Proposition 2.18. For θ = π/2, this says
that we can lift the geodesic flow on S2 to (a rotated version of) the Hopf
flow. Of course, this statement depends on choices; we could have arranged
that the lift is precisely the Hopf flow by changing our choice of coordinates.

2.9. The magnetic open book decompositions

We now tie the previous discussion with open book decompositions. We have
seen that the geodesic open book on S∗S2 is constructed in such a way
that it is adapted to the geodesic flow of the round metric. On the other
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hand, by considering the action on S3 of the subgroup {aθ} ⊂ S3 of the
previous section, we obtain an S1-family {pθ : S3\aθ(L) → S1} of open book
decompositions on S3 (here, L is the Hopf link). These are, respectively,
adapted to the Reeb dynamics of αθ, and start from the stabilized open book
p0 on S3 (adapted to αi by the example discussed above); they are all just
rotations of each other.

Note that Proposition 2.18, the push-forward of p0 under the Hopf map,
i.e. p0 := π∗(p0) = p0 ◦ π−1 : S∗S2\B0 → S1 where B0 is the disjoint union
of the unit cotangent fibers over the north and south poles N,S in S2 (i.e.,
the image of the Hopf link under π), is adapted to the infinite magnetic flow.
The pages are cylinders obtained as follows: S∗S2\B0

∼= ((−1, 1) × S1) × S1

is a trivial bundle over S2\{N,S} ∼= (−1, 1) × S1 (the Euler class of S∗S2 is
−2), and p0 is the trivial fibration.

The push-forward pθ = π∗(pθ) : S∗S2\Bθ → S1 is then an open book
decomposition on S∗S2, which coincides with the geodesic open book at
θ = π. The binding Bθ consists of two magnetic geodesics for ωθ; see Fig. 5.
We call any element of the family {pθ}, a magnetic open book decomposition.

Digression: open books and Heegaard splittings A 3-dimensional genus
g (orientable) handlebody Hg is the 3-manifold with boundary resulting by
taking the boundary connected sum of g copies of the solid 2-torus S1 × D

2

(here, we set H0 = B3 the 3-ball). Hg can also be obtained by attaching
a sequence of g 1-handles to B3. Its boundary is Σg, the orientable surface
of genus g. A Heegaard splitting of genus g of a closed 3-manifold X is a
decomposition

X = Hg

⋃

f

H ′
g,

where f : Σg = ∂Hg → Σg = ∂H ′
g is a homeomorphism of the boundary

of two copies of Hg. The surface Σg is called the splitting surface. Different
choices of f in the mapping class group of Σg give, in general, different 3-
manifolds. In fact, it is a fundamental theorem of 3-dimensional topology that
every closed 3-manifold admits a Heegaard splitting. We have also touched
upon another structural result for 3-manifolds: namely, that every closed 3-
manifold admits an open book decomposition. Let us then discuss how to
induce a Heegaard splitting from an open book.

Starting from a concrete open book decomposition M\B → S1 = R/Z
of abstract type M = OB(P,ϕ), we obtain a Heegaard splitting via

Hg = π−1([0, 1/2]) ∪ B, H ′
g = π−1([1/2, 1]) ∪ B,

where the splitting surface Σg = P0 ∪B P1/2 is the double of the page P0 =
π−1(0), obtained by gluing P0 to its ”opposite” P1/2 = π−1(1/2). The gluing
map f is simply given by ϕ on P0, and the identity on P1/2. Stabilizing the
open book translates into a stabilization of the Heegaard splitting.

This shows that the Heegaard diagram thus induced is rather special,
since the gluing map is trivial on ”half” of the splitting surface. In fact, not
every Heegaard splitting arises this way, as is easy to see (e.g., the lens spaces
are precisely the 3-manifolds with Heegaard splittings of genus 1, but only the
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Figure 6. The Lefschetz fibration LF(P, τpτq) over D
2

lens spaces discussed in Example 2.12 arise from an open book with annulus
page, since its relative mapping class group is generated by the Dehn twist).

Digression: open books and Lefschetz fibrations/pencils We now explore
some further interplay between symplectic and algebraic geometry.

Definition 2.20. (Lefschetz fibration) Let M be a compact, connected, ori-
ented, smooth 4-manifold with boundary. A Lefschetz fibration on M is a
smooth map π : M → S, where S is a compact, connected, oriented sur-
face with boundary, such that each critical point p of π lies in the interior
of M and has a local complex coordinate chart (z1, z2) ∈ C

2 centered at p
(and compatible with the orientation of M), together with a local complex
coordinate z near π(p), such that π(z1, z2) = z21 + z22 in this chart.

In other words, each critical point has a local (complex) Morse chart,
and is therefore non-degenerate. We then have finitely many critical points
due to compactness of M . One may also (up to perturbation of π) assume
that there is a single critical point on each fiber of π. The regular fibers are
connected oriented surfaces with boundary, whereas the singular fibers are
immersed oriented surfaces with a transverse self-intersection (or node). This
singularity is obtained from nearby fibers by pinching a closed curve (the
vanishing cycle) to a point. See Fig. 6.

The boundary of a Lefschetz fibration splits into two pieces

∂M = ∂hM ∪ ∂vM,
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where

∂hM =
⋃

b∈S

∂π−1(b), ∂vM = π−1(∂S).

By construction, ∂hM is a circle fibration over S, and ∂vM is a surface
fibration over ∂S. If we focus on the case S = D

2, the two-disk, denoting the
regular fiber P and B = ∂P , we necessarily have that ∂hM is trivial as a
fibration, and ∂vM is the mapping torus Pφ of some monodromy φ : P → P .
Therefore

∂M = ∂hM ∪ ∂vM = B × D
2
⋃

Pφ = OB(P, φ).

Now, the monodromy φ is not arbitrary, since orientations here play a crucial
role (Fig. 7). While every element in the symplectic mapping class group of a
surface is a product of powers of Dehn twists along some simple closed loops,
it turns out that φ is necessarily a product of positive powers of Dehn twists
(once orientations are all fixed). In fact, φ =

∏
p∈crit(π) τp, where τp = τVp

is
the positive (or right-handed) Dehn twist along the corresponding vanishing
cycle Vp

∼= S1 ⊂ P . This can be algebraically encoded via the monodromy
representation

ρ : π1(D2\critv(π)) → MCG(P, ∂P ),

where critv(π) = {x1, . . . , xn}, xi = π(pi), is the finite set of critical values
of π. We have

π1(D2\{x1, . . . , xn}) =

〈

g∂ , g1, . . . , gn : g∂ =
n∏

i=1

gi

〉

,

where gi is a small loop around xi and g∂ = ∂D2, and ρ is defined via
ρ(gi) = τVpi

.
Reciprocally, a 4-dimensional Lefschetz fibration on M over D

2 is ab-
stractly determined by the data of the regular fiber P (a surface with non-
empty boundary) and a collection of simple closed loops V1, . . . , Vn ⊂ P . This
determines a monodromy φ =

∏n
i=1 τVi

, a product of positive Dehn twists
along the vanishing cycles Vi. The recipe to construct M works as follows: de-
compose P = D

2
⋃

H1∪· · ·∪Hk into a handle decomposition with a single 0-
handle D

2 and a collection of 2-dimensional 1-handles H1, . . . , Hk
∼= D

1 ×D
1.

One starts with the trivial Lefschetz fibration M0 = D
2 ×D

2 → D
2 with disk

fiber, and then, one attaches (thickened) 4-dimensional 1-handles Hi × D
2

to M0 to obtain the trivial Lefschetz fibration M1 = P × D
2 → D

2 with
fiber P . To add the singularities, one attaches one 4-dimensional 2-handle
H = D

2 × D
2 along Vi ⊂ P × {1} ⊂ ∂M1, viewed as the attaching sphere

Vi = S1 × {0} ⊂ S1 × D
2 ⊂ ∂H. At each step of the 2-handle attach-

ments, we obtain a fibration with monodromy representation ρi extending
ρi−1 and satisfying ρi(gi) = τVi

, starting from the trivial representation
ρ0 = 1 : π1(D2) = {1} → MCG(P, ∂P ). We denote the resulting mani-
fold as M = LF(P, φ), for which we have a handle description with handles
of index 0, 1, 2.
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Figure 7. The local model for a Lefschetz singularity

Remark 2.21. The notation LF(P, φ), although simple, is a bit misleading:
we need to remember the factorization of φ, since different factorizations
lead in general to different smooth 4-manifolds. One should perhaps use
LF(P ;V1, . . . , Vn) instead, although we hope that this will not lead to con-
fusion.

Having said that, we summarize this discussion in the following:

Lemma 2.22. (Relationship between Lefschetz fibrations and open books)
We have

∂LF(P, φ) = OB(P, φ),

for φ =
∏n

i=1 τVi
a product of positive Dehn twists along a collection of van-

ishing cycles V1, . . . , Vn in P .

While so far this has been a discussion in the smooth category, one
may upgrade this to the symplectic/contact category. While we have seen
that open books support contact structures in the sense of Giroux, Lefschetz
fibrations also support symplectic structures. This is encoded in the following:

Definition 2.23. (Symplectic Lefschetz fibrations) An (exact) symplectic Lef-
schetz fibration on an exact symplectic 4-manifold (M,ω = dλ) is a Lefschetz
fibration π for which the vertical and horizontal boundary are convex, and
the fibers π−1(b) are symplectic with respect to ω, also with convex boundary.

Here, convexity means that the Liouville vector field is outwards point-
ing. Note that, by Stokes’s theorem and exactness of ω, a symplectic Lef-
schetz fibration cannot have contractible vanishing cycles, since otherwise
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there would be a non-constant symplectic sphere in a fiber. The description
of Lefschetz fibrations in terms of handle attachments can also be upgraded to
the sympectic category via the notion of a Weinstein handle. After smooth-
ing out the corner ∂hM ∩ ∂vM , the boundary ∂M becomes contact-type via
α = λ|∂M , and the contact structure ξ = ker α is supported by the open book
at the boundary. The contact manifold (∂M, ξ) is said to be symplectically
filled by (M,ω) (see the discussion below on symplectic fillings of contact
manifolds).

Since the space of symplectic forms on a two-manifold is convex and
hence contractible, one can show that, given the Lefschetz fibration LF(P, φ),
an adapted symplectic form (i.e., as in the definition above) exists and is
unique up to symplectic deformation. Therefore, similarly as in Giroux’s cor-
respondence, one can talk about LF(P, φ) as a symplectomorphism class of
symplectic manifolds.

Example 2.24. An example which is relevant for the spatial CR3BP is that
of T ∗S2. We consider the Brieskorn variety

Vε =

⎧
⎨

⎩
(z0, . . . , zn) ∈ C

n+1 :
n∑

j=0

z2j = ε

⎫
⎬

⎭
,

and the associated Brieskorn manifold Σε = Vε ∩ S2n+1. If ε = 0, V0 has an
isolated singularity at the origin, and Σ0 is called the link of the singularity.
For ε �= 0, the domain V cpt

ε = Vε∩B2n+2 is a smooth manifold, with boundary
Σε

∼= Σ0; the manifold Vε also inherits a symplectic form by restriction of ωstd

on C
n+1. Similarly, Σε inherits a contact form by restriction of the standard

contact form αstd = i
∑

j zjdzj − zjdzj . In fact, Vε is a Stein manifold, and
V cpt

ε is a Stein filling of Σε; see the discussion on Stein manifolds above and
fillings below.

A standard fact is the following: the map

(V1, ωstd) → (T ∗Sn ⊂ T ∗
R

n+1, ωcan), z = q + ip �→ (‖q‖−1q, ‖q‖p)

is a symplectomorphism, which restricts to a contactomorphism

(Σ0, αstd) → (S∗Sn ⊂ T ∗
R

n+1, λcan).

The standard Lefschetz fibration on T ∗Sn can be obtained from the
Brieskorn variety model as

V1 → C, (z0, . . . , zn) �→ z0.

This induces the geodesic open book on S∗Sn at the boundary, given by the
same formula.

The above map induces the Lefschetz fibration T ∗S2 = LF(T ∗S1, τ2),
where τ is the Dehn twist along the vanishing cycle S1 ⊂ T ∗S1, the zero
section. We conclude again that S∗S2 = RP 3 = OB(D∗S1, τ2). See Fig. 8.

To tie the above discussion with classical algebraic geometry, we intro-
duce the following notion (in the closed case):
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Figure 8. The standard Lefschetz fibration on D
∗S2 =

LF(D∗S1, τ2), where τ is the Dehn twist along the zero sec-
tion S1 ⊂ D

∗S1. In the picture above, we draw T ∗S2, and
the fibers on D

∗S2 are obtained by projecting along the Li-
ouville direction. These are drawn in the picture below. The
two critical points induce the monodromy τ2. We call the
equators transversed in both directions the direct/retrograde
(circular) orbits, for reasons that will become apparent
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Figure 9. A cartoon of a pencil of cubics, where L consists
of 9 points, and each fiber has genus 1

Definition 2.25. (Lefschetz pencil) Let M be a closed, connected, oriented,
smooth 4-manifold. A Lefschetz pencil on M is a Lefschetz fibration π :
M\L → CP 1, where L ⊂ M is a finite collection of points, such that near
each base point p ∈ L there exists a complex coordinate chart (z1, z2) in
which π looks like the Hopf map π(z1, z2) = [z1 : z2].

Lefschetz pencils arise naturally in the study of projective varieties, and
linear systems of line bundles over them (Fig. 9). The basic construction is the
following: Consider two distinct homogeneous polynomials F (x, y, z), G(x, y, z)
of degree d in projective coordinates [x : y : z] ∈ CP 2 (i.e., sections of the
holomorphic line bundle O(d)), generic in the sense that V (F ) = {F = 0}
and V (G) = {G = 0} are smooth degree d curves, of genus g = (d−1)(d−2)

2
by the genus-degree formula, and so that the base locus V (F ) ∩ V (G) = L
consists of a collection of d2 distinct points (by Bézout’s theorem). Consider
the degree d pencil {C[λ:μ]}[λ:μ]∈CP 1 , where

C[λ:μ] = V (λF + μG) ⊂ CP 2.

Through any point in CP 2\L, there is a unique C[λ:μ] which contains it. We
then have a Lefschetz pencil

π : CP 2\L → CP 1,

where π([x : y : z]) = [λ : μ] if C[λ:μ] is the unique degree d curve in the
family passing through [x : y : z].
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By construction, every curve in the pencil meets at the d2 points in
L. One can further perform a complex blow-up along each of these points,
by adding an exceptional divisor (a copy of CP 1) of all possible incoming
directions at a given point, and the result is a Lefschetz fibration

BlLπ : BlLCP 2 → CP 1.

By construction, this Lefschetz fibration has plenty of spheres, i.e., the ex-
ceptional divisors, which are sections of the fibration.

The above construction also extends to the case of closed 4-dimensional
projective varieties in some ambient projective space. Moreover, as we have
already mentioned, projective varieties are Kähler, and in particular sym-
plectic. It is a very deep fact that the above construction extends beyond the
algebraic case to the general case of all closed symplectic 4-manifolds:

Theorem I. (Donaldson [34]) Any closed symplectic 4-manifold (M,ω) ad-
mits Lefschetz pencils with symplectic fibers. In fact, if [ω] ∈ H2(M ;Z) is
integral, the fibers are Poincaré dual to k[ω] for some sufficiently large k � 0.

The above implies that techniques from algebraic geometry can also be
applied in the symplectic category, and the interplay is very rich. From the
above discussion, after blowing up a finite number of points on the given
closed symplectic 4-manifold (M,ω), we obtain a Lefschetz fibration.

Digression: symplectic cobordisms and fillings We have already seen the
fundamental relationship between contact and symplectic geometry. We now
touch upon this a bit further.

Definition 2.26. (Symplectic cobordism) A (strong) symplectic cobordism
from a closed contact manifold (X−, ξ−) to a closed contact manifold (X+, ξ−)
is a compact symplectic manifold (M,ω) satisfying:

• ∂M = X+

⊔
X−;

• ω = dλ± is exact near X±, and the (local) Liouville vector field V±
(defined via iV±ω = λ±) is inwards pointing along X− and outwards
pointing along X+;

• ker λ±|X± = ξ±.

If ω = dλ is globally exact and the Liouville vector field is outwards/
inwards pointing along X±, we say that (M,ω) is a Liouville cobordism.
The boundary component X+ is called convex or positive, and X−, concave
or negative. Note that a symplectic cobordism is directed ; in general, there
might be such a cobordism from X− to X+ but not vice versa. In fact, the
relation (X−, ξ−) � (X+, ξ+) whenever there exists a symplectic cobordism
as above, is reflexive, transitive, but not symmetric. We remark that the
opposite convention on the choice of to and from is also used in the literature.

Definition 2.27. (Symplectic filling/Liouville domain) A (strong, Liouville)
symplectic filling of a contact manifold (X, ξ) is a (strong, Liouville) compact
symplectic cobordism from the empty set to (X, ξ). A Liouville filling is also
called a Liouville domain.
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The Liouville manifold associated with a Liouville domain (M,ω) is its
Liouville completion, obtained by attaching a cylindrical end

(M̂, ω̂ = dλ̂) = (M,ω = dλ) ∪∂M ([1,+∞) × ∂M, d(rα)),

where α = λ|∂M is the contact form at the boundary. Liouville manifolds are
therefore “convex at infinity”.

It is a fundamental question of contact topology whether a contact man-
ifold is fillable or not, and, if so, how many fillings it admits (say, up to sym-
plectomorphism, diffeomorphism, homeomorphism, homotopy equivalence, s-
cobordism, h-cobordism,. . . ). Note that, given a filling, one may choose to
perform a symplectic blow-up in the interior, which does not change the
boundary but changes the symplectic manifold; to remove this trivial ambi-
guity, one usually considers symplectically aspherical fillings, i.e., symplectic
manifolds (M,ω) for which [ω]|π2(M) = 0 (this holds if, e.g., ω is exact, as
the case of a Liouville filling).

For example, the standard sphere (S2n−1, ξstd) admits the unit ball
(B2n, ωstd) as a Liouville filling. A fundamental theorem of Gromov [59, p.
311] says that this is unique (strong, symplectically aspherical=:ssa) filling up
to symplectomorphism in dimension 4; this is known up to diffeomorphism in
higher dimensions by a result of Eliashberg–Floer–McDuff [94], but unknown
up to symplectomorphism. This was generalized to the case of subcritically
Stein fillable contact manifolds in [14]. Another example is a unit cotangent
bundle (S∗Q, ξstd), which admits the standard Liouville filling (D∗Q,ωstd).
There are known examples of manifolds Q with (S∗Q, ξstd) admitting only
one ssa filling up to symplectomorphism (e.g., Q = T

2, [126]; if n ≥ 3 and
Q = T

n, this also holds up to diffeomorphism [21,51]), but there are other
examples with non-unique ssa fillings which are not blowups of each other
(e.g., Q = Sn, n ≥ 3 [107]). See also [87,88,117]. The literature on fillings is
vast (especially in dimension 3) and this list is by all means non-exhaustive.

Remark 2.28. There are also other notions of symplectic fillability: weak,
Stein, Weinstein . . . which we will not touch upon. The set of contact mani-
folds admitting a filling of every such type is related via the following inclu-
sions:

{Stein} ⊂ {Weinstein} ⊂ {Liouville} ⊂ {strong} ⊂ {weak}.

The first inclusion is an equality by a deep result of Eliashberg [27]. All others
are strict inclusions, something that has been in known in dimension 3 for
some time [19,35,52], but has been fully settled in higher dimensions only
very recently [20,21,93,128].

A very broad class for which very strong uniqueness results hold is the
following. We say that a contact 3-manifold (X, ξ) is planar if ξ is supported
(in the sense of Giroux) by an open book whose page has genus zero.

Theorem J. (Wendl [126]) Assume that (M,ω) is a strong symplectic fill-
ing of a planar contact 3-manifold (X, ξ), and fix a supporting open book of
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genus zero pages, i.e., M = OB(P, φ) with g(P ) = 0. Then, (M,ω) is sym-
plectomorphic to a (symplectic) blow-up of the symplectic Lefschetz fibration
LF(P, φ).

If we assume that the strong filling is minimal, in the sense that it does
not have symplectic spheres of self-intersection −1 (i.e. exceptional divisors),
such a filling is then uniquely determined. It follows as a corollary that a
planar contact manifold is strongly fillable if and only if every supporting
planar open book has monodromy isotopic to a product of positive Dehn
twists. This reduces the study of strong fillings of a planar contact 3-manifolds
to the study of factorizations of a given monodromy into product of positive
Dehn twists, a problem of geometric group theory in the mapping class group
of a genus zero surface.

References A good introductory textbook to contact topology is Geiges’
book [49]; see also [50] by the same author for a very nice survey on the his-
tory of contact geometry and topology, including connections to the work of
Sophus Lie on differential equations (which gave rise to the contact condi-
tion), Huygens’ principle on optics, and the formulation of classical thermo-
dynamics in terms of contact geometry. For an introduction to symplectic
topology, McDuff–Salamon [95] is a must-read. Anna Cannas da Silva [23] is
also a very good source, touching on Kähler geometry as well as toric geom-
etry, relevant for the classical theory of integrable systems. For open books
and Giroux’s correspondence in dimension 3, Etnyre’s notes [36] is a good
place to learn. For open books in complex singularity theory (i.e., Milnor
fibrations), the classical book by Milnor [97] is a gem. For related reading
on Brieskorn manifolds in contact topology, Lefschetz fibrations, and further
material, Kwon–van Koert [86] is a great survey. Another good source for
symplectic geometry in dimension 4, Lefschetz pencils, and its relationship
to holomorphic curves and rational/ruled surfaces is Wendl’s recent book
[127].

3. The three-body problem

After paving the way, we now discuss a very old conundrum. The setup of the
classical 3-body problem consists of three bodies in R

3, subject to the gravi-
tational interactions between them, which are governed by Newton’s laws of
motion. Given initial positions and velocities, the problem consists in pre-
dicting the future positions and velocities of the bodies. The understanding
of the resulting dynamical system is quite a challenge, and an outstanding
open problem.

We consider three bodies: earth (E), moon (M), and satellite (S), with
masses mE ,mM ,mS . We have the following special cases:

• (restricted) mS = 0 (the satellite is negligible wrt the primaries E and
M);

• (circular) Each primary moves in a circle, centered around the common
center of mass of the two (as opposed to general ellipses);

• (planar) S moves in the plane containing the primaries;
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• (spatial) The planar assumption is dropped, and S is allowed to move
in three-space.

The restricted problem then consists in understanding the dynamics of
the trajectories of the Satellite, whose motion is affected by the primaries,
but not vice versa. For simplicity, we will use the acronym CR3BP=circular
restricted three-body problem. We denote the mass ratio by μ = mM

mE+mM
∈

[0, 1], and we normalize, so that mE + mM = 1, and so, μ = mM .
In a suitable inertial plane spanned by the E and M , the position of

the Earth becomes E(t) = (μ cos(t), μ sin(t)), and the position of the Moon
is M(t) = (−(1−μ) cos(t),−(1+μ) sin(t)). The time-dependent Hamiltonian
whose Hamiltonian dynamics we wish to study is then

Ht : R3\{E(t),M(t)} → R

Ht(q, p) =
1
2
‖p‖2 − μ

‖q − M(t)‖ − 1 − μ

‖q − E(t)‖ ,

i.e., the sum of the kinetic energy plus the two Coulomb potentials associated
to each primary. Note that this Hamiltonian is time-dependent. To remedy
this, we choose rotating coordinates, in which both primaries are at rest; the
price to pay is the appearance of angular momentum term in the Hamiltonian
which represents the centrifugal and Coriolis forces in the rotating frame.
Namely, we undo the rotation of the frame, and assume that the positions
of Earth and Moon are E = (μ, 0, 0), M = (−1 + μ, 0, 0). After this (time-
dependent) change of coordinates, which is just the Hamiltonian flow of L =
p1q2 − p2q1, the Hamiltonian becomes

H : R3\{E,M} × R
3 → R

H(q, p) =
1
2
‖p‖2 − μ

‖q − M‖ − 1 − μ

‖q − E‖ + p1q2 − p2q1,

and in particular is autonomous. By preservation of energy, this means that
it is a preserved quantity of the Hamiltonian motion. The planar problem is
the subset {p3 = q3 = 0}, which is clearly invariant under the Hamiltonian
dynamics.

There are precisely five critical points of H, called the Lagrangian points
Li, i = 1, . . . , 5, ordered, so that H(L1) < H(L2) < H(L3) < H(L4) = H(L5)
(in the case μ < 1/2; if μ = 1/2, we further have H(L2) = H(L3)). L1, L2, L3,
all saddle points, lie in the axis between Earth and Moon (they are the
collinear Lagrangian points). L1 lies between the latter, while L2 on the
opposite side of the Moon, and L3 on the opposite side of the Earth. The
others, L4, L5, are maxima, and are called the triangular Lagrangian points.
For c ∈ R, consider the energy hypersurface Σc = H−1(c). If

π : R3\{E,M} × R
3 → R

3\{E,M}, π(q, p) = q,

is the projection onto the position coordinate, we define the Hill’s region of
energy c as

Kc = π(Σc) ∈ R
3\{E,M}.
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Figure 10. The low-energy Hill regions

This is the region in space where the satellite of energy c is allowed to move.
If c < H(L1) lies below the first critical energy value, then Kc has three
connected components: a bounded one around the Earth, another bounded
one around the Moon, and an unbounded one. Namely, if the Satellite starts
near one of the primaries, and has low energy, then it stays near the primary
also in the future. The unbounded region corresponds to asteroids which stay
away from the primaries. Denote the first two components by KE

c and KM
c ,

as well as ΣE
c = π−1(KE

c ) ∩ Σc, ΣM
c = π−1(KM

c ) ∩ Σc, the components of the
corresponding energy hypersurface over the bounded components of the Hill
region. As c crosses the first critical energy value, the two connected compo-
nents KE

c and KM
c get glued to each other into a new connected component

KE,M
c , which topologically is their connected sum. Then, the Satellite in prin-

ciple has enough energy to transfer between Earth and Moon. In terms of
Morse theory, crossing critical values corresponds precisely to attaching han-
dles, so similar handle attachments occur as we sweep through the energy
values until the Hill region becomes all of position space. See Fig. 10.

4. Moser regularization

The 5-dimensional energy hypersurfaces are non-compact, due to collisions
of the massless body S with one of the primaries, i.e., when if q = M or
q = E. Note that the Hamiltonian becomes singular at collisions because of
the Coulomb potentials, and conservation of energy implies that the momenta
necessarily explodes whenever S collides (i.e., p = ∞). Fortunately, there are
ways to regularize the dynamics even after collision. Intuitively, the effect is:
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whenever S collides with a primary, it bounces back to where it came from,
and hence, we continue the dynamics beyond the catastrophe. More formally,
one is looking for a compactification of the energy hypersurface, which may be
viewed as the level set of a new Hamiltonian on another symplectic manifold,
in such a way that the Hamiltonian dynamics of the compact, regularized
level set is a reparametrization of the original one (time is forgotten under
regularization).

Two body collisions can be regularized via Moser’s recipe. This con-
sists in interchanging position and momenta, and compactifying by adding
a point at infinity corresponding to collisions (where the velocity explodes).
The bounded components ΣE

c and ΣM
c [for c < H(L1)), as well as ΣE,M

c (for
c ∈ (H(L1),H(L1) + ε)], are thus compactified to compact manifolds Σ

E

c ,
Σ

M

c , and Σ
E,M

c . The first two are diffeomorphic to S∗S3 = S3 × S2, and
should be thought of as level sets in (two different copies of) (T ∗S3, ωstd) of
a suitable regularized Hamiltonian Q : T ∗S3 → R. The fiber of the level sets
Σ

E

c , Σ
M

c over (a momenta) p ∈ S3 is a 2-sphere allowed positions q to have
fixed energy. If p = ∞ is the North pole, the fiber, called the collision locus,
is the result of a real blow-up at a primary, i.e., we add all possible ”infinites-
imal” positions nearby (which one may think of as all unit directions in the
tangent space of the primary) (Fig. 11). On the other hand, Σ

E

c is a copy of
S∗S3#S∗S3, which can be understood in terms of handle attachments along
a critical point of index 1. In the planar problem, the situation is similar: we
obtain copies of S∗S2 = RP 3 and RP 3#RP 3.

In terms of formulas, this can be done as follows.

4.1. Stark–Zeeman systems

We will only do the subcritical case c < H(L1). By restricting the Hamilton-
ian to the Earth or Moon component, we can view the three-body problem as
a Stark–Zeeman system, which is a more general class of mechanical systems.

To define such systems in general, consider a twisted symplectic form

ω = d�p ∧ d�q + π∗σB,

with σB = 1
2

∑
Bijdqi ∧ dqj a 2-form on the position variables (a magnetic

term, which physically represents the presence of an electromagnetic field,
as in Maxwell’s equations), and π(q, p) = q the projection to the base. A
Stark–Zeeman system for such a symplectic form is a Hamiltonian of the
form

H(�q, �p) =
1
2
‖�p‖2 + V0(�q) + V1(�q),

where V0(�q) = − g
‖ �q‖ for some positive coupling constant g, and V1 is an extra

potential.1

We will make two further assumptions.

1In this section, we will use the symbol� for vectors in R
3 to make our formulas for Moser

regularization simpler. We will use the convention that ξ ∈ R
4 has the form (ξ0, �ξ).

Vol. 24 (2022) Contact geometry in the restricted three-body problem

Reprinted from the journal 937



Figure 11. In Moser regularization near the Earth, we add
a Legendrian sphere of collisions at the North pole (for fixed
energy). The planar problem, which also contains collisions,
is an invariant subset

Assumption. (A1) We assume that the magnetic field is exact with primitive
1-form �A. Then, with respect to d�p ∧ d�q, we can write

H(�q, �p) =
1
2
‖�p + �A(�q)‖2 + V0(�q) + V1(�q).

(A2) We assume that �A(�q) = (A1(q1, q2), A2(q1, q2), 0), and that the potential
satisfies that symmetry V1(q1, q2,−q3) = V1(q1, q2, q3).

Observe that these assumptions imply that the planar problem, defined
as the subset {(�q, �p) : q3 = p3 = 0}, is an invariant set of the Hamiltonian
flow. Indeed, we have

q̇3 =
∂H

∂p3
= p3, and ṗ3 = −∂H

∂q3
= − gq3

‖�q‖3 − ∂V1

∂q3
. (4.1)

Both these terms vanish on the subset q3 = p3 = 0 by noting that the
symmetry implies that ∂V1

∂q3
|q3=0 = 0.

For non-vanishing g, Stark–Zeeman systems have a singularity corre-
sponding to two-body collisions, which we will regularize by Moser regu-
larization. To do so, we will define a new Hamiltonian Q on T ∗S3 whose
dynamics correspond to a reparametrization of the dynamics of H. We will
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describe the scheme for energy levels H = c, which we need to fix a priori
(i.e., the regularization is not in principle for all level sets at once). Define
the intermediate Hamiltonian

K(�q, �p) := (H(�q, �p) − c)‖�q‖.

For �q �= 0, this function is smooth, and its Hamiltonian vector field equals

XK = ‖�q‖ · XH + (H − c)X‖ �q‖.

We observe that XK is a multiple of XH on the level set K = 0. Writing out
K gives

K =
(

1
2
(‖�p‖2 + 1) − (c + 1/2) + 〈�p, �A〉 +

1
2
‖ �A‖2 + V1(�q)

)

‖�q‖ − g.

Stereographic projection We now substitute with the stereographic co-
ordinates. The basic idea is to switch the role of momentum and position
in the �q, �p-coordinates, and use the �p-coordinates as position coordinates in
T ∗

R
n (for any n), where we think of Rn as a chart for Sn. We set

�x = −�p, �y = �q.
We view T ∗Sn as a symplectic submanifold of T ∗

R
n+1, via

T ∗Sn = {(ξ, η) ∈ T ∗
R

n+1| ‖ξ‖2 = 1, 〈ξ, η〉 = 0}.

Let N = (1, 0, . . . , 0) ∈ Sn be the north pole. To go from T ∗Sn\T ∗
NSn to

T ∗
R

n, we use the stereographic projection, given by

�x =
�ξ

1 − ξ0

�y = η0 �ξ + (1 − ξ0)�η.

(4.2)

To go from T ∗
R

n to T ∗Sn\T ∗
NSn, we use the inverse given by

ξ0 =
‖�x‖2 − 1
‖�x‖2 + 1

�ξ =
2�x

‖�x‖2 + 1
η0 = 〈�x, �y〉

�η =
‖�x‖2 + 1

2
�y − 〈�x, �y〉�x.

(4.3)

These formulas imply the following identities:

2
‖�x‖2 + 1

= 1 − ξ0, ‖�y‖ =
2‖η‖

‖�x‖2 + 1
= (1 − ξ0)‖η‖,
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which allows us to simplify the expression for K. Setting n = 3, we obtain a
Hamiltonian K̃ defined on T ∗S3, given by

K̃ =
(

1
1 − ξ0

− (c + 1/2) − 1
1 − ξ0

〈�ξ, �A(ξ, η)〉 +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

)

(1 − ξ0)‖η‖ − g

= ‖η‖
(
1 − (1 − ξ0)(c + 1/2) − 〈�ξ, �A(ξ, η)〉 + (1 − ξ0)

(
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

))

− g.

Put

f(ξ, η) = 1 + (1 − ξ0)
(

−(c + 1/2) +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

)

− 〈�ξ, �A(ξ, η)〉
= 1 + (1 − ξ0)b(ξ, η) + M(ξ, η), (4.4)

where

b(ξ, η) = −(c + 1/2) +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

M(ξ, η) = −〈�ξ, �A(ξ, η)〉.
Note that the collision locus corresponds to ξ0 = 1, i.e., the cotangent fiber
over N . The notation is supposed to suggest that (1 − ξ0)b(ξ, η) vanishes on
the collision locus and M is associated with the magnetic term; it is not the
full magnetic term, though. We then have that

K̃ = ‖η‖f(ξ, η) − g.

To obtain a smooth Hamiltonian, we define the Hamiltonian

Q(ξ, η) :=
1
2
f(ξ, η)2‖η‖2.

The dynamics on the level set Q = 1
2g2 are a reparametrization of the dy-

namics of K̃ = 0, which in turn correspond to the dynamics of H = c.

Remark 4.1. We have chosen this form to stress that Q is a deformation of
the Hamiltonian describing the geodesic flow on the round sphere, which is
given by level sets of the Hamiltonian

Qround =
1
2
‖η‖2.

This is the dynamics that one obtains in the regularized Kepler problem (the
two-body problem; see below), corresponding to the Reeb dynamics of the
contact form given by the standard Liouville form. As we have seen, this
is a Giroux form for the open book S∗S3 = OB(D∗S2, τ2), supporting the
standard contact structure on S∗S3.

Formula for the restricted three-body problem Since the restricted three-
body problem is our main interest, we conclude this section by giving the
explicit formula for this problem. By completing the squares, we obtain

H(�q, �p) =
1
2
(
(p1 + q2)2 + (p2 − q1)2 + p23

)− μ

‖�q − �m‖ − 1 − μ

‖�q − �e‖ − 1
2
(q21 + q22).
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This is then a Stark–Zeeman system with primitive
�A = (q2,−q1, 0),

coupling constant g = μ, and potential

V1(�q) = − 1 − μ

‖�q − �e‖ − 1
2
(q21 + q22), (4.5)

both of which satisfy Assumptions (A1) and (A2).
After a computation, we obtain

f(ξ, η) = 1 + (1 − ξ0) (−(c + 1/2) + ξ2η1 − ξ1η2) − ξ2 (1 − μ)

− (1 − μ)(1 − ξ0)

‖�η(1 − ξ0) + �ξη0 + �m − �e‖ , (4.6)

and we have

b(ξ, η) = −(c + 1/2) − (1 − μ)

‖�η(1 − ξ0) + �ξη0 + �m − �e‖ (4.7)

M(ξ, η) = (1 − ξ0)(ξ2η1 − ξ1η2) − ξ2(1 − μ). (4.8)

4.2. Levi–Civita regularization

We follow the exposition in [47]. Consider the map

L : C2\(C × {0}) → T ∗
C\C,

(u, v) �→
(u

v
, 2v2

)
,

where we view C ⊂ T ∗
C as the zero section. Using C as a chart for S2 via the

stereographic projection along the north pole, this map extends to a map

L : C2\{0} → T ∗S2\S2,

which is a degree 2 cover. Writing (p, q) for coordinates on T ∗
C = C×C (this

is the opposite to the standard convention, and comes from the Moser regu-
larization), the Liouville form on T ∗

C is λ = q1dp1 + q2dp2, with associated
Liouville vector field X = q1∂q1 + q2∂q2 . One checks that

L∗λ = 2(v1du1 − u1dv1 + v2du2 − u2dv2),

whose derivative is the symplectic form

ω = dλ = 4(dv1 ∧ du1 + dv2 ∧ du2).

Note that λ and ω are different from the standard Liouville and symplectic
forms (resp.) on C

2. However, the associated Liouville vector field defined via
iV ω = λ coincides with the standard Liouville vector field

V =
1
2
(u1∂u1 + u2∂u2 + v1∂v1 + v2∂v2),

and we have L∗X = V . We conclude the following:

Lemma 4.2. A closed hypersurface Σ ⊂ T ∗S2 is fiber-wise star-shaped if and
only if L−1(Σ) ⊂ C

2\{0} is star-shaped.

Note that Σ ∼= S∗S2 ∼= RP 3, and L−1(Σ) ∼= S3, and so, L induces a
two-fold cover between these two hypersurfaces.
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4.3. Kepler problem

We now work out the Moser and Levi–Civita regularizations of the Kepler
problem at energy − 1

2 . This is the well-known two-body problem, whose
Hamiltonian is given by

E : T ∗(R2\{0}) → R,

E(q, p) =
1
2
‖p‖2 − 1

‖q‖ .

The result of Moser regularization is the Hamiltonian

K(p, q) =
1
2

(

‖q‖
(

E(−q, p) +
1
2

)

+ 1
)2

=
1
2

(
1
2
(‖p‖2 + 1

) ‖q‖
)2

.

This is the kinetic energy of the “momentum” q, with respect to the round
metric, viewed in the stereographic projection chart. It follows that its Hamil-
tonian flow is the round geodesic flow. Moreover, we have

XK |E−1(−1/2)(p, q) = ‖q‖XE |E−1(−1/2)(−q, p),

so that the Kepler flow is a reparametrization of the round geodesic flow.
To understand the Levi–Civita regularization, we consider the shifted

Hamiltonian H = E + 1
2 (which has the same Hamiltonian dynamics). After

substituting variables via the Levi–Civita map L, we obtain

H(u, v) =
‖u‖2
2‖v‖2 − 1

2‖v‖2 +
1
2
.

We then consider the Hamiltonian

Q(u, v) = ‖v‖2H(u, v) =
1
2
(‖u‖2 + ‖v‖2 − 1).

The level set Q−1(0) = H−1(0) is the 3-sphere, and the Hamiltonian flow of
Q, a reparametrization of that of H, is the flow of two uncoupled harmonic
oscillators. This is precisely the Hopf flow. We summarize this discussion in
the following:

Proposition 4.3. The Moser regularization of the Kepler problem is the geo-
desic flow on S2. Its Levi–Civita regularization is the Hopf flow on S3, i.e.,
the double cover of the geodesic flow on S2 (cf. Remark 2.19).

5. Historical remarks

This section contains a historical account, from the Poincaré approach to find-
ing closed orbits in the three-body problem, to some current developments in
symplectic geometry. This is by all means non-exhaustive, and tilted towards
the author’s interests and biased understanding of the developments.

The perturbative philosophy One of the most basic approaches that un-
derlies mathematics and physics is the perturbative approach. Basically, it
means understanding a simplified situation first, where everything can be
explicitly understood, and attempt to understand ”nearby” situations by
perturbing the parameters relevant to the problem in question.
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In the context of celestial/classical mechanics, this was precisely the ap-
proach of Poincaré. The idea is to start with a limit case, which is completely
integrable (i.e., an integrable system), perturb it, and study what remained.
Integrable systems, roughly speaking, are those which allow enough symme-
tries, so that the solutions to the equations of motion can be “explicitly”
solved for (however, quantitative questions need to allow sufficiently many
functions, e.g., special functions such as elliptic integrals). The solutions tend
to admit descriptions in terms of algebraic geometry. In the classical setting
of celestial mechanics, if phase space is 2n-dimensional and the Hamiltonian
H Poisson-commutes with other n−1 Hamiltonians (which are therefore pre-
served under the Hamiltonian flow of H), the well-known Arnold–Liouville
theorem provides action-angle coordinates in which the symplectic manifold
is foliated by flow-invariant tori, along which the Hamiltonian flow is linear,
with varying slopes (the frequencies). In good situations, the generic tori are
half-dimensional (and Lagrangian, i.e., the symplectic form vanishes along
them), whereas there might also be degenerate lower dimensional tori. This
is the natural realm of toric symplectic geometry, dealing with symplectic
manifolds which admit a Hamiltonian action of the torus, and the study
of the corresponding moment maps and their associated Delzant polytopes.
There is also a related theory in algebraic geometry, where the polytope is
replaced with a fan. However, in general (e.g., the Euler problem), we get
only an R

n-action, which is unfortunately beyond the scope of toric geome-
try. See [67] for more connections between the theory of integrable systems,
and differential and algebraic geometry.

The study of what remains after a small perturbation of an integrable
system is the realm of KAM theory, as well as complementary weaker versions
such as Aubry–Mather theory. Roughly speaking, the original version of the
KAM theorem (due to Kolmogorov–Arnold–Moser) says that if one perturbs
a “sufficiently irrational” Liouville torus, i.e., the vector of frequencies of the
action is very badly approximated by rational numbers (it is diophantine),
and moreover, the Hessian with respect to action variables is non-degenerate,
then the Liouville tori survives to an invariant tori whose frequencies are close
to the original one, and hence is foliated by orbits which are quasi-periodic, in
the sense that they are dense in the tori and never close up. Aubry–Mather
theory is meant to deal with the rest of the tori, including resonant ones which
are foliated by closed orbits and non-diophantine non-resonant ones, as well
as large deformations (as opposed to sufficiently small perturbations). This
theory provides invariant subsets which are usually Cantor-like, and obtained
via measure-theoretical means (they are the supports of invariant measures
minimizing certain action functionals).

The Poincaré–Birkhoff theorem, and the planar three-body problem The
problem of finding closed orbits in the planar case of the restricted three-body
problem goes back to ground-breaking work in celestial mechanics of Poincaré
[109,110], building on work of G.W. Hill on the lunar problem [62,63]. The
basic scheme for his approach may be reduced to:

(1) Finding a global surface of section for the dynamics;
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(2) Proving a fixed-point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré–Birkhoff theorem, proposed
and confirmed in special cases by Poincaré and later proved in full generality
by Birkhoff in [16]. The statement can be summarized as: if f : A → A is
an area-preserving homeomorphism of the annulus A = [−1, 1] × S1 that
satisfies a twist condition at the boundary (i.e., it rotates the two boundary
components in opposite directions), then it admits infinitely many periodic
points of arbitrary large period. The fact that the area is preserved is a
consequence of Liouville’s theorem for Hamiltonian systems; we have basically
used this in our proof of Proposition 2.16.

The whole point of a global surface of section is to reduce a continuous
flow on a 3-manifold to the discrete dynamics of a map on a 2-manifold, thus
reducing by one the degrees of freedom. It is perhaps fair to say, that this
key (and beautiful) idea is responsible for motivating the well-studied area
of dynamics on surfaces, a huge industry in its own right.

The direct and retrograde orbits The actual physical Moon is in direct
motion around the Earth (i.e., it rotates in the same direction around the
Earth as the Earth around the Sun). The opposite situation is a retrograde
motion. In [62,63], while attempting to model the motion of the Moon, Hill
indeed finds both direct and retrograde orbits. While still an idealized situ-
ation, such direct orbit is a reasonable approximation to the actual orbit of
the Moon, and Hill even goes further to find better approximations via per-
turbation theory, something which deeply impressed Poincaré himself. Let us
remark that direct orbits are usually the more interesting to astronomers,
since most moons are in direct motion around their planet. Topologically,
one may think of the retrograde/direct Hill orbits as obtained from a Hopf
link in S3, via the double cover to RP 3. This is the binding of the open book
RP 3 = OB(D∗S1, τ2), where τ is the positive Dehn twist along S1 ⊂ D

∗S1.
Brouwer’s and Frank’s theorem To find the direct orbit away from the lu-

nar problem, Birkhoff had in mind finding a disk-like surface of section whose
boundary is precisely the retrograde orbit. The direct orbit would then be
found via Brouwer’s translation theorem: every area-preserving homeomor-
phism of the open disk admits a fixed point. Removing the fixed point, we
obtain an area-preserving homeomorphism of the open annulus, which, via
a theorem of Franks, admits either none or infinitely many periodic points.
All this combined, one has: an area-preserving homeomorphism of an open
disk admits either one or infinitely many periodic points. Note that if the
boundary is also an orbit, we obtain 2 or infinitely many. If furthermore we
have twist, the Poincaré–Birkohff theorem provides infinitely many orbits.
This is a classical heuristic for finding orbits that has survived to this day in
several guises, as we will see below. See Fig. 12.

Perturbative results As we have seen, we have RP 3 = OB(D∗S1, τ2) as
smooth manifolds, and one would hope that a concrete version of this open
book is adapted to the (Moser-regularized) planar dynamics, and that the
return map is a Birkhoff twist map. For c < H(L1) and μ ∼ 0 small, one can
interpret from this perspective that Poincaré [110] proved this by perturbing
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Figure 12. Obtaining closed orbits in the planar problem

the rotating Kepler problem (when μ = 0), which is an integrable system
for which the return map is a twist map. Of course, he never stated it in
these words. In the case where c � H(L1) is very negative and μ ∈ (0, 1)
is arbitrary, this was done by Conley [29] (also perturbatively), who checked
the twist condition and used Poincaré–Birkhoff. In [96], McGehee provides
a disk-like global surface of section for the rotating Kepler problem problem
for c < H(L1), and computes the return map.

Non-perturbative results More generally and non-perturbatively, the ex-
istence of this adapted open book was obtained in [77, Theorem 1.18] for the
case where (μ, c) lies in the convexity range via holomorphic curve methods
due to Hofer–Wysocki–Zehnder [73] (see also [5,6]). This non-perturbative
approach, which implies the use of modern techniques of symplectic and con-
tact geometry, will be discussed below.

The search of closed geodesics: a very brief survey After suitable regu-
larization, the round geodesic flow on S2 appears as an integrable limit case
in the planar restricted three-body problem, when the Jacobi constant c con-
verges to −∞. Poincaré was aware of this fact, which brought him, near the
end of his life, to study the geodesic flow of ”near-integrable” metrics on S2,
i.e., perturbations of the round one. One may well argue that this was one
of the starting points of the very long and fruitful search of closed geodesics
that ensued later throughout the 20th century.

A basic argument for finding closed geodesics, sometimes attributed
to Birkhoff, was already present in work of Hadamard in 1898, who stud-
ied the case of surfaces with negative curvature. This is a variational ar-
gument on the loop space, in the sense that closed geodesics are viewed
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as loops which happen to be geodesics (as opposed to the dynamical point
of view, where a closed geodesic is a geodesic path which happens to close
up). It works as follows: on a compact manifold, one chooses a sequence of
loops in a fixed homotopy class whose length converges to the infinimum
in such class, and appeals to the Arzelà–Ascoli theorem. If the infimum is
non-zero, this gives a non-trivial closed geodesic. This argument works if the
fundamental group is non-trivial; it gives a geodesic in each non-trivial free
homotopy class, and hence infinitely many if the genus is at least 1. This
leaves out the case of S2, for which it gives nothing. The program of finding
geodesics for general manifolds was picked up by Birkhoff in a more system-
atic way, who proved existence of at least one geodesic for the case of all
surfaces and certain higher dimensional manifolds including spheres. For the
case where the infimum in the above variational argument is zero, Birkhoff
introduced the famous minmax argument. For S2, this works as follows: take
the foliation of S2 minus the north and south poles, whose leaves are the
circles given by the parallels (think of the standard embedding, but where
the metric is not the standard one). Choose a curve-shortening procedure
for each non-trivial leaf (there are several, the simplest one being replac-
ing two nearby points on a loop by a geodesic arc; this is a tricky business,
however, since the resulting loop might have self-intersections). This gives a
sequence of foliations, and we may choose the loop with maximal length for
each. These lengths are bounded from below for topological reasons. Again by
Arzelà–Ascoli, the limit of such curves, being invariant under the shortening
procedure, is a geodesic.

Before Birkhoff, Poincaré himself [111] had the idea of obtaining a ge-
odesic for the case of S2 embedded in R

3 as a convex surface S (with the
induced metric), by considering the shortest simple closed curve γ dividing S
into two pieces of equal total Gaussian curvature. A simple argument using
Gauss–Bonnet shows that γ should be a geodesic. The full details of this
beautiful argument were carried out by Croke in 1982 [32], who considered
the more general case of a convex hypersurface in R

n.

Poincaré further proposed that, also in the case of a convex S2 in R
3,

there should be at least 3 closed geodesics with no self-intersections (i.e.,
simple). A short proof of this was published by Lusternik–Schnirelmann in
1929 [91,92]. Their proof relied on two steps: first, to consider the space of all
simple circles (great and small) and a continuous curve-shrinking procedure
which keeps all such circles simple; and second, the fact that the space of
non-oriented round geodesics is a copy of RP 2 (it can be identified with the
space of planes in R

3 through the origin), together with the fact that every
Morse function on RP 2 has at least 3 critical points. Unfortunately, there
were gaps in both steps. These were filled in by Ballmann in 1978 [12], who
also considered the case of arbitrary genus; Gage–Hamilton and Grayson also
developed the curvature flow (or curve-shortening flow), which may be viewed
as the gradient flow of the length functional. It has the property that, if a
smooth simple closed curve undergoes the curvature flow, it remains smoothly
embedded without self-intersections.
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Existence of at least one geodesic for arbitrary closed Riemannian man-
ifolds was finally proved by Lusternik–Fet in 1951–1952 [37,90]. Their ap-
proach was based on Morse theory; and indeed, the problem of finding geodesics
was the initial motivation for Morse himself. Geodesics are the critical points
of the energy functional on the loop space. Moreover, the space LM of
parametrized closed curves on M cannot be retracted into the subspace L0M
of homotopically trivial closed curves, and Lusternik–Schnirelmann theory
applies to give a critical point outside of L0M .

Even though the loop space of a manifold is infinite dimensional, if the
manifold is compact, then the energy functional satisfies the compactness
condition of Palais–Smale, which in practice means that it behaves as a Morse
function on a finite-dimensional manifold. However, the main difficulty in
this approach is that each geodesic can be iterated, and this corresponds to
distinct points in the loop space. Distinguishing two geometrically distinct
geodesics is a subtle, hard problem.

So far, all the above methods provide only finitely many geodesics, so
how about infinitely many? In this direction, another beautiful idea due to
Birkhoff, for a Riemannian S2, is that of an annulus global surface of section;
we have of course seen this in the previous sections. One considers a closed
geodesic γ (which Birkhoff proved to exist via the minmax argument ex-
plained above), dividing the sphere in a upper and a lower hemishpere. One
then considers vectors along γ which point towards the upper hemisphere
(this is an annulus) as initial values of geodesics, starts shooting orbits along
these vectors, and considers the first return map. However, for this annulus
to be a global surface of section, one needs that no geodesic gets “trapped” in
the upper hemisphere (this will be satisfied for example when the Gaussian
curvature is strictly positive). Moreover, one needs to further check the twist
condition at the boundary to apply the Poincaré–Birkhoff theorem. Here,
note that Birkhoff only stated the existence of at least two fixed points, but
a simple argument which Birkhoff seems to have overlooked was provided by
Neumann [103], thus obtaining infinitely many periodic points (not related
by iterations); this is the version of the Poincaré–Birkhoff theorem we stated
above. In the case where we do have a well-defined Birkhoff map, what if the
return map does not twist? This is where the theorem due to Franks from
1992 [46] that we mentioned above (which is a statement about the open an-
nulus) comes into play; he obtained infinitely many geodesics on S2 for this
case. In the case where the Birkhoff annulus is not a global section and so
there is no return map, an argument of Bangert from 1993 [13] shows that, if
geodesics get trapped, they need to do so around a small “waist” (a “short”
geodesic), or more formally, geodesics with no conjugate points. Moreover,
he shows that the existence of a waist forces the existence of infinitely many
geodesics. One key observation is that the Birkhoff return map sends a point
on the boundary (lying on a geodesic) to its second conjugate point along this
geodesic, and so, some of the ideas were already present in Birkhoff’s work.
This filled in the general case, finally (after almost 90 years) obtaining the
existence of infinitely many geodesics for an arbitrary metric on S2. We fur-
ther mention that in 1993, Nancy Hingston, building on work of other people
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(see [65] and references therein), also provided a full proof of a quantitative
estimate on the growth of the number of geodesics with respect to length; if
N(l) is the number of geodesics with length at most l then N(l) >∼ l/log(l),
i.e., the same growth rate as prime numbers.

One should further mention that Katok [82] (see also Ziller’s account
[130]) has famously constructed examples of non-reversible Finsler metrics
on Sn,CPn with only finitely many closed geodesics. For instance, the case
of S2 can be described as the round geodesic flow, but on a frame rotating
along the z-axis with irrational angle of rotation (and the metric is arbitrarily
close to the round one); so that the only closed geodesics are the equator in
both directions. This example shows that the general Finsler case is very
different from the Riemannian case, and hence, the Z2-action which allows
to reverse geodesics should be used in a significant way to obtain infinitely
many geodesics.

Another celebrated result in this story is that of Gromoll–Meyer 1969
[58]: if the sequence of Betti numbers of the free loop space LM of M is un-
bounded, then M admits infinitely many geodesics (for any metric). Morse
had previously, in his 1932 book “Calculus of variations in the large” (al-
though unfortunately with mistakes), computed the homology of LM in the
non-degenerate case. For this, one may use a spectral sequence whose terms in
the E1-page consist of the homology of the base (constant loops) and the ho-
mology of each geodesic, endowed with a local coefficient system, and degree
shifted by the Morse index. Note that non-degeneracy is in the Morse–Bott
sense, since we can always reparametrize loops (which we consider unoriented)
via the action of O(2) on S1, and so we see one circle for each orientation in
this homology group. Another ingredient is Bott’s famous iteration formula
for the index [17], which implies that μ(γm) grows linearly with m. When
combined with the homology computation via the above Morse–Bott spec-
tral sequence, one sees that if the set of primitive geodesics is finite, then the
Betti numbers of LM are bounded, and hence the result by Gromoll–Meyer
follows in the non-degenerate case. The degenerate case, roughly speaking, is
obtained by the fact that every degenerate orbit is the limit of a finite num-
ber of non-degenerate ones, and contributes to the homology in a bounded
index window.

This leaves the question of when the sequence of Betti numbers of LM
is unbounded. In [121], Vigué–Poirrier–Sullivan show, via the above result
and algebraic calculations, that if M has finite fundamental group, then the
Betti numbers of LM are unbounded if and only if H∗(M ;Q) requires at
least 2 generators as a ring. Ziller proves this holds for symmetric spaces of
rank > 1 [129]. This covers many cases, but it leaves out many important
ones e.g. Sn,RPn,CPn,HPn, CaP 2.

On the other hand, one can consider the case of a generic metric (or
“bumpy”, i.e., for which all geodesics are non-degenerate). For such a case,
on any manifold with finite fundamental group, Gromov has also shown the
following quantitative estimate: there exist constants a, b, such that N(l) ≥
a
l

∑bl
i=1 bi(LM). Rademacher [112] has shown the existence of infinitely many
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geodesics for bumpy metrics on manifolds with finite fundamental group.
This result builds on work of Klingenberg–Takens [85], Klingenberg [84], who
reduced to the case where all orbits are hyperbolic; and Hingston [64], who
covered the bumpy case for Sn,RPn,CPn,HPn, CaP 2, under the hyperbolic-
orbits-only assumption.

One therefore clearly sees that, while a ”simpler” problem than find-
ing closed orbits in the three-body problem, finding infinitely many closed
geodesics is significantly complicated. This is a problem that has inspired
enormous amounts of work, has spanned most of the 20th century, and still
is not known in the general case. Indeed, it is still an open question whether
any Riemannian metric on a given closed simply connected manifold admits
infinitely many closed geodesics. In particular, it is unknown for Sn, n ≥ 3,
for a general metric.

Remarks on Floer theory, and modern symplectic geometry As we have
seen, symplectic geometry is the geometry of classical mechanics, dealing
with Hamiltonians and their associated evolution equations, and in particu-
lar closed Hamiltonian orbits of period 1. In this context, Arnold [10] pro-
posed his famous conjecture on the minimal number of such orbits for a non-
degenerate Hamiltonian on a closed symplectic manifold M : there should be
at least as many as the sum of the Betti numbers of M . This is naturally
related to the classical Morse inequalities. It is notable that Arnold proposed
this conjecture as a version of the Poincaré–Birkhoff theorem (here, note that
the sum of Betti numbers of the annulus is 2).

It was from this conjecture that one of the cornerstones of the modern
methods of symplectic geometry was introduced; namely, Floer theory. To-
gether with the introduction of holomorphic curves due to Gromov in 1985
[59], these two developments form the building bricks of the symplectician’s
toolkit and daily musings.

The approach of Floer to the Arnold conjecture [38–43] is again based
on the ideas of Morse theory. Indeed, one can view Hamiltonian orbits as
the critical points of a suitable action functional on the loop space, in such
a way that flow-lines correspond to cylinders satisfying an elliptic PDE (the
Floer equation). One defines a differential which counts these solutions, and
the resulting homology theory is actually isomorphic to the Morse homol-
ogy of the underlying manifold, so that the Arnold conjecture follows. Floer
proved it under some technical assumptions, i.e., symplectic asphericity, and
the symplectic Calabi–Yau condition; these have been lifted after work of
several authors (Ono [108], Hofer–Salamon [70], Liu–Tian [89], Fukaya–Ono
[48],. . . ), at least for the case of rational coefficients. The technical details are
very difficult (needing the introduction of virtual techniques) and have been
subject of heated debate. Lifting the result to integer coefficients is subject of
ongoing efforts, most notably due to Abouzaid–Blumberg [2], who, amongst
other results, prove it for every finite field.

As we have seen, a special case of closed Hamiltonian orbits is that
of Reeb orbits in a contact-type level set. Since every contact manifold is
contact-type in some symplectic manifold (i.e., its symplectization), one can
view the problem of finding closed Reeb orbits as an odd-dimensional version
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of the Hamiltonian problem. In this setting, an important statement related
to the Arnold conjecture is the Weinstein conjecture, which claims the ex-
istence of at least one closed Reeb orbit for any contact form on a given
contact manifold. Recalling that geodesic flows are particular cases of Reeb
flows, this includes the statement that every Riemannian metric admits a
closed geodesic (proved by Lusternik–Fet, as mentioned above). In dimension
three, it was established by Taubes [119] (based on Seiberg–Witten theory),
thus culminating a large body of work by several people extending over more
than 2 decades. There are also further striking results in dimension 3, e.g.,
Irie’s results on equidistribution of closed orbits in the generic case [80,81],
or the “2 or infinitely many” dichotomy for torsion contact structures [30].
This dichotomy uses the combination of Brouwer and Frank’s theorem as dis-
cussed above as the fixed-point theorem, and Hutching’s embedded contact
homology (ECH) to find the disk-like global surface of section; and so fits
in well with the basic two-step approach by Poincaré. Irie’s results rely on
the relationship between volume and ECH capacities as proved by Cristofaro-
Gardiner–Hutchings–Ramos [31]. In higher dimensions, though there are sev-
eral partial results (e.g., [9,45,71,72,124]), the Weinstein conjecture is still
open.

While the Arnold conjecture is stated for closed symplectic manifolds,
a natural class of symplectic manifolds with non-empty boundary is that of
Liouville domains. There is an associated Floer theory for such manifolds,
which goes under the name of symplectic homology. The first version of such
theory was due to Floer–Hofer [44], and can be traced to the Ekeland–Hofer
capacities and their relation to early versions of S1-equivariant symplectic
homology2; see also section 5 in [68] for an even previous and non-equivariant
version, called symplectology. There is also a version due to Viterbo [122,
123] (see also [18,28] for more recent versions), who showed that symplectic
homology of a cotangent bundle is the homology of the free loop space of
the base, a bridge between the classical story of finding geodesics, and the
modern Floer-theoretic approach (see also [1,114]).

In the Liouville setting, as opposed to the closed setting, the differ-
ence is that the associated Floer theory recovers not only the homology of
the manifold, but also dynamical data at the contact-type boundary (i.e.,
closed Reeb orbits). Of course, one of the motivations for such a theory is
the Weinstein conjecture, at least for those contact manifolds which bound
a Liouville domain (i.e., Liouville fillable ones). Heuristically, if the symplec-
tic homology is infinite dimensional or zero, then there is at least one orbit
at the boundary (since the homology of the manifold is finite dimensional
and non-zero, although, strictly speaking, here we need consider the case of
“finite-type” Liouville domains; see, e.g., [105] for a nice survey, containing
these and related ideas).

2This was discussed at the opening lectures by Hofer and Floer in Fall 1988 at the sym-
plectic program at the MSRI Berkeley, although unfortunately is written nowhere. Hofer
gave a lecture on capacities and the S1-equivariant symplectic homology at a conference in

Durham in 1989, whose proceedings are published in [33], and contains the non-equivariant
part of the story. I thank Hofer for these clarifications.
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The Arnold conjecture is a statement about fixed points (or 1-periodic
orbits) of Hamiltonian maps, and predicts a finite number of such. On the
other hand, one could want to estimate the number of periodic points (recall
the same situation for the Poincaré–Birkhoff theorem, whose original version
predicted 2 fixed points, although one can also obtain infinitely many pe-
riodic points, as was observed after Birkhoff). The analogous statement for
Hamiltonian or Reeb flows is the Conley conjecture. Roughly speaking, for a
“vast” collection of closed symplectic manifolds, every Hamiltonian map has
infinitely many simple periodic orbits and, moreover, simple periodic orbits
of unbounded minimal period whenever the fixed points are isolated. This
was proved by Ginzburg for closed symplectically aspherical symplectic man-
ifolds in [53] (see [54] and references therein, for a survey and history of the
problem; and [55] for what the author understands is the current state of the
art). One of the key inputs is a special class of critical points introduced by
Hingston, and later called symplectic degenerate maxima/minima (SDM) by
Ginzburg. The presence of an SDM forces the existence of infinitely many
closed orbits (cf. [65,66] for the case of geodesics on S2).

We conclude this section with the following (clearly debatable but rather
convincing from the above story) meta-mathematical claim: the three-body
problem inspired large portions of modern symplectic geometry. In all proba-
bility, it would also be fair to make the same claim for most of the modern
theory of dynamical systems.

Final remark on different approaches Amongst the approaches that we
have discussed (by all means non-exhaustive), we point out that the ad-
vantage of KAM theory (in the pertubative case), when compared to more
abstract approaches via general fixed point theorems, is that in favourable
situations, one can localize periodic (or quasi-periodic) orbits in bounded re-
gions of phase space, and obtain better qualitative information on these. This
is, of course, much more complicated in non-perturbative situations, where
rigorous numerics is usually the preferred approach. See [47] for examples of
return maps on a disk-like global surface of section, obtained numerically, for
the planar problem.

More references A nice basic introduction to the classical KAM theorem
is, e.g., [125]. Another very nice exposition on the basics behind Mather
theory is, e.g., [118]. A beautiful and very detailed account on the three-
body problem and Poincaré’s work are the notes by Chenciner [25]. A very
recent and detailed survey on open questions on geodesics, illustrating the
vastness and richness of their search, is that of Burns and Matveev [22]. I also
based parts of the above brief survey on very nice lectures by Nancy Hingston
given at the summer school ”Current Trends in Symplectic Topology”, July
2019, at the Centre de recherches mathématiques, Université de Montréal,
Canada; where I happened to be in the audience. Of course, this is a classical
story and there are plenty of other sources; see, e.g., Oancea’s much more
detailed account [106] and references therein (as well as the appendix due to
Hrynewicz on the story for S2), with a view towards symplectic geometry.
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6. Contact geometry in the restricted three-body problem

The next result opens up the possibility of using modern techniques from
contact and symplectic geometry on the CR3BP (holomorphic curves, Floer
theory,. . . ). Denote by Σ

E

c and Σ
M

c the bounded components of the Moser-
regularized energy hypersurfaces for the spatial problem and c < H(L1), and
let Σ

E,M

c be the connected sum bounded component, for c ∈ (H(L1),H(L2)).
Similarly, use Σ

E

P,c, Σ
M

P,c and Σ
E,M

P,c for the case of the planar problem.

Theorem K. ([7] (planar problem), [26] (spatial problem)) If c < H(L1), the
Moser-regularized energy hypersurfaces Σ

E

c ,Σ
M

c ,Σ
E

P,c,Σ
M

P,c are all contact-

type. The same holds for Σ
E,M

c ,Σ
E,M

P,c , if c ∈ (H(L1),H(L1) + ε) for suffi-
ciently small ε > 0. As contact manifolds, we have

Σ
E

c
∼= Σ

M

c
∼= (S∗S3, ξstd), if c < H(L1),

Σ
E

P,c
∼= Σ

M

P,c
∼= (S∗S2, ξstd), if c < H(L1),

and

Σ
E,M

c
∼= (S∗S3, ξstd)#(S∗S3, ξstd), if c ∈ (H(L1),H(L1) + ε).

Σ
E,M

P,c
∼= (S∗S2, ξstd)#(S∗S2, ξstd), if c ∈ (H(L1),H(L1) + ε).

In all above cases, the planar problem is a codimension-2 contact submanifold
of the spatial problem. �

Recall that the above just means that there exists a Liouville vector field
which is transverse to the regularized level sets; in fact, this is just the fiber-
wise Liouville vector field q∂q. The regularized level sets, as contact manifolds,
are standard and well known, so not very interesting from a geometrical
perspective. However, their interest lies in the given non-standard dynamics
for the underlying standard geometry. The Hamiltonian dynamics for the
problem now becomes the Reeb dynamics, and the planar problem (from
a dynamical perspective rather than a geometric one) is actually invariant
under the Reeb flow. We will refer as the low-energy range to the interval
(−∞,H(L1) + ε) of energies c for which the above result holds.

Remark 6.1. The contact condition is in fact lost for sufficiently high Jacobi
constant c; see [104].

Remark 6.2. (Weinstein handles) In the above statement, the connected sum
is to be interpreted in the contact category; this amounts to attaching a We-
instein 1-handle to the disjoint union of two copies of (S∗S3, ξstd). Roughly
speaking, this means removing two Darboux balls and identifying their bound-
aries via attaching a 1-handle, which is endowed with the extra structure
of a symplectic form which glues well to the symplectization form of the
standard contact form at the boundary of each ball. The result is a Li-
ouville/Weinstein cobordism having (S∗S3, ξstd)

⊔
(S∗S3, ξstd) at the nega-

tive end, and (S∗S3, ξstd)#(S∗S3, ξstd) at the positive one. Note that here

A. Moreno JFPTA

Reprinted from the journal952



the terms positive/negative are relevant: the Liouville vector field is out-
wards/inwards pointing at the corresponding boundary components, respec-
tively, and so these cobordisms are oriented. This is always the local Morse-
theoretical picture for a non-degenerate index 1 critical point of a Hamilton-
ian (as is the case of L1). To learn about Weinstein manifolds, see, e.g., [27];
this source also provides deep connections between this notion and that of
Stein manifolds.

References For a very detailed and well-exposed overview of contact
geometry and holomorphic curves in the planar case of the CR3BP, we refer
to Frauenfelder–van Koert [47]. Indeed, the subject of this book is precisely
the direction outlined in this document, but focused on the planar problem,
and so the reader is specially encouraged to delve in it.

6.1. Non-perturbative methods: holomorphic curves

We now discuss the non-perturbative approach coming from the theory of
holomorphic curves.

Hofer–Wysocki–Zehnder We begin with a definition. A connected com-
pact hypersurface Σ ⊂ R

4 is said to be strictly convex if there exists a domain
W ⊂ R

4 and a smooth function φ : R4 → R satisfying:
(i) (Regularity) Σ = {φ = 0} is a regular level set;
(ii) (Bounded domain) W = {z ∈ R

4 : φ(z) ≤ 0} is bounded and contains
the origin; and

(iii) (Positive-definite Hessian) ∇2φz(h, h) > 0 for z ∈ W and for each non-
zero tangent vector h ∈ TΣ.

In this case, the radial vector field is transverse to Σ, and so Σ is a contact-
type 3-sphere, inheriting a contact form α induced by the standard Liouville
form in R

4.

Remark 6.3. In the planar restricted three-body problem, the values of en-
ergy/mass ratio (c, μ) for which the Levi–Civita regularization is dynamically
convex is called the convexity range. This is implied by strict convexity. See
the following page for a precise definition of dynamical convexity.

In [73], Hofer–Wysocki–Zehnder prove the following:

Theorem L. [73] A strictly convex hypersurface (Σ, α) ⊂ R
4 has either 2 or

infinitely many periodic orbits.

The strategy of the proof is finding a disk-like global surface of section,
and use the combination Brouwer–Franks mentioned as a heuristic above.
The difficulty is precisely finding the section. These are to be thought of as
the (holomorphic) pages of a trivial open book on Σ ∼= S3 = OB(D2,1),
which is adapted to the given Reeb dynamics. The rough idea is as follows.

Consider the symplectization (M,ω) = (R × Σ, d(etα)) of (Σ, α). Its
tangent space splits as TM = ξ ⊕ 〈∂t, Rα〉. A (cylindrical, α-compatible)
almost complex structure is an endomorphism J ∈ End(TM) satisfying:

• J2 = −1 (i.e. J is a “90-degree rotation” at each tangent space);
• J(ξ) = ξ, J(∂t) = Rα;
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• J is R-invariant;
• g = dα(·, J ·) defines a J-invariant Riemannian metric on ξ.

A J-holomorphic plane is then a map

u : (C, i) → (M,J),

intertwining the complex structures, i.e., satisfying the non-linear Cauchy–
Riemann equation

J ◦ du = du ◦ i.

The Hofer-energy of such a plane is the quantity

E(u) = sup
ϕ∈P

∫

C

u∗ωϕ,

where P = {ϕ : R → (0, 1) : ϕ′ ≥ 0} is the set of orientation preserving
diffeomorphisms between R and (0, 1), and ωϕ = d(eϕ(t)α) is a symplectic
form. The choice of J implies that the integrand is point-wise non-negative
and so E(u) ≥ 0. A fundamental property is that non-constant finite energy
J-holomorphic planes are asymptotic to closed Reeb orbits (originally noted
by Hofer in his proof of the Weinstein conjecture for overtwisted contact
3-manifolds):

Proposition 6.4. [69] If E(u) < +∞ and u = (a, v) ∈ R× Σ is non-constant,
then 0 <

∫
v∗dα := T < +∞, and there exists a sequence Rk → +∞, such

that limk→+∞ u(Rke2πit) = γ(tT ), for a closed Reeb orbit γ.

Moreover, under a non-degeneracy condition for γ, the above conver-
gence is exponential and limR→+∞ u(Re2πit) = γ(tT ), limR→+∞ a(Re2πit) =
+∞. A further fundamental property is positivity of intersections; since M is
4-dimensional, generically two planes intersect at a finite number of points,
and if they are holomorphic, the intersection numbers are positive. However,
there is an an obvious drawback: planes are non-compact, and so, the clas-
sical intersection pairing is not homotopy invariant, since intersections can
disappear to infinity. The solution to this issue was provided by Siefring [116],
who, using the very explicit asymptotic behaviour of finite energy planes, de-
fined an intersection pairing with all the desired properties. In particular, it
is homotopy invariant, takes into consideration interior intersections as well
as those “coming from infinity”, and two holomorphic planes have vanishing
Siefring intersection if and only if their images do not intersect at all. More-
over, in such a case, their projections to Σ do not intersect unless their images
coincide. (As the attentive reader might have already noticed, Siefring’s work
is posterior to the above result; but we will ignore this for the purposes of
this rough discussion.)

With these preambles, the main idea for the proof of Theorem L is as
follows. One assumes the existence of a special Reeb orbit γ, in the sense
that is unknotted and linked to every other Reeb orbit (necessary condi-
tions to be the binding of a trivial open book for S3), non-degenerate, has
minimal period, and satisfies μCZ(γ) = 3. Here, we use the Conley–Zehnder
index μCZ , which is roughly speaking a winding number associated with
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the paths of symplectic matrices which are suitably non-degenerate, and is
used to assign to every Reeb orbit γ an integer μCZ(γ) (which depends on
a trivialization of the tangent bundle along a choice of disk bounded by γ;
in the case of S3, where π2(S3) = 0, this is independent on choices). One
then considers the moduli space M of finite energy J-holomorphic planes as-
ymptotic to this Reeb orbit γ, and having vanishing Siefring self-intersection,
modulo the action of R-translation in the image (recall J is R-invariant) and
conformal reparametrizations of the domain C. Its expected dimension is
dim M = μCZ(γ) − 2 = 1, by the Riemann–Roch formula for the Fredholm
index. Moreover, the miraculous 4-dimensional phenomenon of automatic
transversality shows that M is a manifold for any cylindrical J . The prop-
erties of the Siefring pairing imply that the projections of planes in M are
immersed, do not intersect, and provide a local foliation of Σ. A further step
needed in order to get a global foliation is a way to compactify M. This is
provided by Gromov’s compactification (or the SFT compactification), ob-
tained by adding strata of nodal curves and “holomorphic buildings” with
potentially several “floors”; strictly speaking, these a priori are no longer
planes. However, the fact that γ is linked to every other orbit can be used
to show that no extra strata needs to be added to M, and is in fact a priori
compact. The result is that M ∼= S1, and projecting the planes in M to Σ
provides a global foliation of Σ. The leaves of this foliation are the S1-family
of pages of an open book with binding γ, and are in fact global surfaces of
section for the Reeb dynamics.

While the assumption on the existence of γ above might seem far-
fetched, it is implied by dynamical convexity [73, Theorem 1.3]. One says
that (Σ, α) is dynamically convex if μCZ(γ) ≥ 3 for Reeb every orbit γ. This
condition is implied by strict convexity [73, Theorem 3.4]; intuitively, this
implies that there is “enough winding” of the linearized Reeb flow along each
orbit (and so, at the end of the day when the open book is obtained, this con-
dition applied to the binding γ implies that the arising return map extends
to the boundary). The special Reeb orbit is found by first considering the
case of an ellipsoid, in which it is explicitly found, then interpolating to the
dynamically convex case by considering a symplectic cobordism, and finally
using properties of finite energy planes in cobordisms; see Section 4 in [73].

Conclusion The main message to take away from this discussion is that
the global surfaces of section are the (holomorphic) pages of a trivial open
book on Σ ∼= S3 = OB(D2,1), which is a posteriori adapted to the given
Reeb dynamics. The way that this result ties up with the planar CR3BP
is via the Levi–Civita regularization; one says that (μ, c) lies in the convex-
ity range whenever the Levi–Civita regularization is dynamically convex (cf.
Proposition 4.3). The holomorphic open book provided by Hofer–Wysocki–
Zehnder, given suitable symmetries, descends to a rational open book on
the Moser-regularized hypersurface RP 3 (i.e. the pages are disks, but their
boundary is doubly covered). Alternatively, [77, Theorem 1.18] provides an
honest open book with annuli fibers for RP 3 = OB(D∗S1, τ2), adapted to
the planar dynamics. This circle of ideas has also been fruitfully exploited in
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e.g. [74–76]; see [78] for a very nice survey and references therein, especially
for the applications on the planar CR3BP.

7. Holomorphic curve techniques on the spatial CR3BP

In this section, we present some (yet unpublished) results of the author, in
co-authorship with Otto van Koert. The main direction is to generalize the
approach of Poincaré in the planar problem [i.e., Steps (1) and (2) outlined
above] to the spatial problem.

7.1. Step (1): Global hypersurfaces of section

We first state a structural result, which provides the basic architecture and
scaffolding for the problem:

Theorem M. (Moreno–van Koert [98]) Fix a mass ratio μ ∈ (0, 1]. Denote a
connected, bounded component of the regularized, spatial, circular restricted
three-body problem for energy level c by Σc. Then, Σc is of contact-type and
admits a supporting open book decomposition for energies c < H(L1) that is
adapted to the Hamiltonian dynamics. Furthermore, if μ < 1, then there is
ε > 0, such that the same holds for c ∈ (H(L1),H(L1) + ε). The open books
have the following abstract form:

Σc
∼=
{
OB(D∗S2, τ2), if c < H(L1)
OB(D∗S2�D∗S2, τ2

1 ◦ τ2
2 ), if c ∈ (H(L1),H(L1) + ε) and μ < 1.

Here, D
∗S2 is the unit cotangent bundle of the 2-sphere, τ is the positive

Dehn–Seidel twist along the Lagrangian zero section S2 ⊂ D
∗S2, and

D
∗S2�D∗S2 denotes the boundary connected sum of two copies of D∗S2. The

monodromy of the second open book is the composition of the square of the
positive Dehn–Seidel twists along both zero sections (they commute). The
binding is the planar problem ΣP

c
∼= RP 3.

See Fig. 13 for an abstract representation (see also Fig. 14). We wish
to emphasize that Theorem M holds for c in the whole low-energy range. A
heuristical reason is the following: while in the planar case finding the in-
variant subset is non-trivial (the search for the direct and retrograde orbits
indeed has a long history), the invariant subset in the spatial case is imme-
diately obvious; it is the planar problem. The technique of proof does not
rely on holomorphic curves, since one can directly write down the open book
explicitly; it is rather elementary, but the calculations are very involved.

The above result is motivated by the following observation. We consider
a Stark–Zeemaan system satisfying Assumptions (A1) and (A2). In unregu-
larized (or physical) coordinates, we put

Bu := {(�q, �p) ∈ H−1(c) | q3 = p3 = 0},

the planar problem. Its normal bundle is trivial, and we have the following
map to S1:

πu : H−1(c)\Bu −→ S1, (�q, �p) �−→ q3 + ip3
‖q3 + ip3‖ . (7.1)
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Figure 13. The open book for Σc, with c < H(L1), and
the first return map f

We will refer to this map as the physical open book. We consider the angular
1-form

dπu :=
Ωu

p

p23 + q23
,

where

Ωu
p = p3dq3 − q3dp3, (7.2)

is the unregularized numerator. We need to see whether dπu(XH) is non-
negative, and vanishes only along the planar problem.

From Eq. (4.1), we have

dπu(XH) =
p23 + q23

(
g

‖ �q‖3 + 1
q3

∂V1
∂q3

(�q)
)

p23 + q23
. (7.3)

Note that Assumption (A2) implies that ∂V1
∂q3

(�q) = aq3 + O(q23) near
q3 = 0, and so, 1

q3
∂V1
∂q3

(�q) is well defined at q3 = 0. In order for the above
expression to satisfy the required non-negativity condition, we impose the
following:

Assumption. (A3) We assume that the function

F (�q) =
g

‖�q‖3 +
1
q3

∂V1

∂q3
(�q)

is everywhere positive.
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Figure 14. Theorem M admits a physical interpretation:
away from collisions, the orbits of the negligible mass point
intersect the plane containing the primaries transversely.
This is intuitively clear from a physical perspective, and
translates (after regularization) to the fact that the “pages”
{q3 = 0, p3 > 0}, {q3 = 0, p3 < 0} of the “physical” open
book are global hypersurfaces of section outside of the colli-
sion locus. Unfortunately, this does not extend continuously
to the latter, as explained in Fig. 15. The binding is the pla-
nar problem

Note that it suffices that the second summand be non-negative.

Remark 7.1. In the restricted three-body problem, from Eq. (4.5), we obtain

∂V1

∂q3
(�q) = q3

1 − μ

‖�q − �e‖3 ,

and therefore, the corresponding expression in Eq. (7.3) is non-negative, van-
ishing if and only if p3 = q3 = 0.

The obvious problem of the above computation is that it a priori does
not extend to the collision locus, and indeed, it cannot (see Fig. 15). In fact,
one needs to interpolate with the geodesic open book described in Sect. 2.6,
which is well behaved near the collision locus. This creates an interpolation
region where fine estimates are needed, and this is the main difficulty in the
proof; we refer to [98] for the details.

Symmetries Consider the symplectic involution of (R6, dp ∧ dq) given
by

r : (q1, q2, q3, p1, p2, p3) �→ (q1, q2,−q3, p1, p2,−p3).

A. Moreno JFPTA

Reprinted from the journal958



Figure 15. For the rotating Kepler problem, there ex-
ist (regularized) collision orbits which are periodic and
“bounce” vertically over a primary, always staying on the re-
gion q3 > 0 (or q3 < 0). We call them the polar orbits. This
means that the “pages” {q3 = 0, p3 > 0}, {q3 = 0, p3 < 0}
are not transverse to the regularized dynamics

We also have the anti-symplectic involutions

ρ1 : (q1, q2, q3, p1, p2, p3) �→ (q1,−q2,−q3,−p1, p2, p3)
ρ2 : (q1, q2, q3, p1, p2, p3) �→ (q1,−q2, q3,−p1, p2,−p3),

satisfying the relations ρ1 ◦ ρ2 = ρ2 ◦ ρ1 = r, and so generating the abelian
group {1, r, ρ1, ρ2} ∼= Z2 ⊕ Z2, which is the natural symmetry group of the
spatial circular restricted three-body problem.

After regularization, the symplectic involution admits the following in-
trinsic description. Consider the smooth reflection R : S3 → S3 along the
equatorial sphere S2 ⊂ S3. Then, r is the physical transformation it induces
on T ∗S3, given by

r : T ∗S3 → T ∗S3

r(q, p) = (R(q), [(dqR)∗]−1(p)).

This map preserves the unit cotangent bundle S∗S3. The maps ρ1, ρ2 also
have regularized versions. The following emphasizes the symmetries present
in our setup:

Proposition 7.2. [98] Let c < H(L1), and consider the symplectic involution
r : S∗S3 → S∗S3. The open book decomposition Σc = OB(D∗S2, τ2) is
symmetric with respect to r, in the sense that

r(Pθ) = Pθ+π, Fix(r) = B = ΣP
c .

Moreover, the anti-symplectic involutions preserve B and satisfy

ρ1(Pθ) = P−θ, ρ2(Pθ) = P−θ+π.
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In particular, ρ1 preserves P0 and Pπ, whereas ρ2 preserves Pπ/2 and P−π/2.

In other words, the open book is compatible with all the symmetry
group Z2 ⊕ Z2.

The return map First, we recall a standard definition. We say that a
symplectomorphism f : (M,ω) → (M,ω) is Hamiltonian if f = φ1

K , where
K : R × M → R is a smooth (time-dependent) Hamiltonian, and φt

K is the
Hamiltonian isotopy it generates. This is defined by φ0

K = id, d
dtφ

t
K = XKt

◦
φt

K , and XHt
is the Hamiltonian vector field of Ht defined via iXHt

ω = −dHt.
Here, we write Kt = K(t, ·).

In the SCR3BP, for c < H(L1), and after fixing a page P = π−1(1) of
the corresponding open book, Theorem M implies the existence of a Poincaré
return map f : int(P ) → int(P ). Moreover, as in Proposition 2.16, we can con-
sider the 2-form ω obtained by restriction to P of dα, where α is the contact
form on Σc for the spatial problem, whose restriction to the binding αP is the
contact form for the planar problem (cf. Fig. 16). Recall that ω is symplectic
only along the interior of P (which may be thought of as an ideal Liouville do-
main). Moreover, we have a smooth identification int(P ) ∼= int(D∗S2), giving
a symplectomorphism G : int(P ) → int(D∗S2) on the interior which extends
smoothly to the boundary B, but its inverse G−1, although continuous at B,
is not differentiable along B since ω becomes degenerate there. After conju-
gating f with G and considering ω̃ = G∗ω, we obtain a symplectomorphism
f̃ := G ◦ f ◦ G−1 : (int(D∗S2), ω̃) → (int(D∗S2), ω̃), where ω̃ is a Liouville
filling of (B,αP ). In particular, ω̃ is non-degenerate at B.

Theorem N. (Moreno–van Koert [98]) For every μ ∈ (0, 1], c < H(L1), the
associated Poincaré return map f extends smoothly to the boundary ∂P , and
in the interior, it is an exact symplectomorphism

f = fc,μ : (int(P ), ω) → (int(P ), ω),

where ω = dα (depending on c, μ). Moreover, f is Hamiltonian in the interior.
After conjugating with G, f̃ extends continuously to the boundary, is

Hamiltonian in the interior, and the Liouville completion of ω̃ is symplecto-
morphic to the standard symplectic form ωstd on T ∗S2.

The fact that f is an exact symplectomorphism follows from Proposition
2.16. The fact that f extends to the boundary is non-trivial, and relies on
second-order estimates near the binding: it suffices to show that the Hamil-
tonian giving the spatial problem is positive definite on the symplectic normal
bundle to the binding. This non-degeneracy condition can be interpreted as a
convexity condition that plays the role, in this setup, of the notion of dynam-
ical convexity due to Hofer–Wysocki–Zehnder [73]. Note that if a continuous
extension exists, then by continuity, it is unique.

The fact that f is Hamiltonian in the interior follows from:
(1) The monodromy of the open book is Hamiltonian (here, the Hamiltonian

is allowed to move the boundary).
(2) The general fact that the return map f is always symplectically iso-

topic to a representative of the monodromy, via a boundary-preserving
isotopy.
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Figure 16. A page of the open book as a symplectic filling
of the planar problem, viewed as a fiber-wise star-shaped
domain in T ∗S2. The geodesic flow corresponds to the unit
cotangent bundle

(3) H1(P ;R) = 0, so that every symplectic isotopy is Hamiltonian.

7.2. Step (2): Fixed-point theory of Hamiltonian twist maps

The periodic points of τ are either boundary periodic points, which give
planar orbits, or interior periodic points which are in 1:1 correspondence
with spatial orbits. We are interested in finding interior periodic points, and
we follow Poincaré’s philosophy to try to find them.

The Hamiltonian twist condition We propose a generalization of the
twist condition introduced by Poincaré, for the Hamiltonian case and for
arbitrary Liouville domains. Let (W,ω = dλ) be a 2n-dimensional Liouville
domain, and consider a Hamiltonian symplectomorphism τ . Let (B, ξ) =
(∂W, ker α) be the contact manifold at the boundary where α = λ|B , and
Rα the Reeb vector field of α. The Liouville vector field Vλ is defined via
iVλ

ω = λ.

Definition 7.3. (Hamiltonian twist map) We say that τ is a Hamiltonian twist
map (with respect to α), if τ is generated by a smooth Hamiltonian H :
R × W → R which satisfies XHt

|B = htRα for some positive and smooth
function h : R × B → R

+.

In particular, Ht|B ≡ const on B, and τ(B) ⊂ B. We have ht =
dHt(Vλ)|B is the derivative of Ht in the Liouville direction Vλ along B,
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which we assume strictly positive. Also, τ |B is the time-1 map of a posi-
tive reparametrization of the Reeb flow on B. But, note that, while the latter
condition is only localized at B, the twist condition is of a global nature, as
it requires global smoothness of the generating Hamiltonian.

Here is a simple example illustrating why the smoothness of the Hamil-
tonian is relevant for the purposes of fixed points:

Example 7.4. (Integrable twist maps) Let M = Sn for n ≥ 1 with the round
metric, and H : T ∗M → R, H(q, p) = 2π|p| (not smooth at the zero section);
φ1

H extends to all of D∗M as the identity. It is a positive reparametrization of
the Reeb flow at S∗M , a full turn of the geodesic flow, and all orbits are fixed
points with fixed period. If we smoothen H near |p| = 0 to K(q, p) = 2πg(|p|),
with g(0) = g′(0) = 0, then τ = φ1

K : D∗M → D
∗M , τ(q, p) = φ

2πg′(|p|)
H (q, p),

is now a Hamiltonian twist map. If g′(|p|) = l/k ∈ Q with l, k coprime,
then τ has a simple k-periodic orbit; therefore, τ has simple interior orbits
of arbitrary large period (cf. [83, p. 350], [102], for the case M = S1).

Remark 7.5. In what follows, we shall appeal to the symplectic homology (or
the Floer homology) of a Liouville domain (W,λ), denoted SH•(W,λ). This
is a homology theory, which keeps track of both dynamical and topological
data; it is, roughly speaking, the homology of a chain complex generated by
critical points of a Morse function on the interior of W , as well as by Reeb
orbits at the boundary ∂W . These are the 1-periodic orbits of an admissible
Hamiltonian, i.e., linear at infinity and C2-small and Morse in the interior.
Formally, one needs to take a direct limit over admissible Hamiltonians whose
slope increases to infinity, so that we capture orbits at the boundary with all
possible periods. The grading in symplectic homology comes from the Conley–
Zehnder index (whenever orbits are non-degenerate); for the degenerate case,
one can also use the Robbin–Salamon index. The details behind its definition
are beyond the scope of this survey; we refer, e.g., to [18,28].

The Hamiltonian twist condition will be used to extend the Hamiltonian
to a Hamiltonian that is admissible for computing symplectic homology. The
extended Hamiltonian can have additional 1-periodic orbits and these, as well
as 1-periodic orbits on the boundary, need be distinguished from the interior
periodic points of τ . We impose the following conditions to do so.

Index growth We consider a suitable index growth condition on the dy-
namics on the boundary, which is satisfied in the three-body problem when-
ever the planar dynamics is strictly convex. This assumption will allow us to
separate boundary and extension orbits from interior ones via the index.

We call a strict contact manifold (Y, ξ = ker α) strongly index-definite
if the contact structure (ξ, dα) admits a symplectic trivialization ε with the
property that

• There are constants c > 0 and d ∈ R, such that for every Reeb chord
γ : [0, T ] → Y of Reeb action T =

∫ T

0
γ∗α, we have

|μRS(γ; ε)| ≥ cT + d,

where μRS is the Robbin–Salamon index [113].
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Index-positivity is defined similarly, where we drop the absolute value.
A variation of this notion was explored in Ustilovsky’s thesis [120]. He im-
posed the additional condition π1(Y ) = 0, so that index-positivity becomes
independent of the choice of trivialization, although the exact constants c and
d still depend on the trivialization ε. The global trivialization is important
when considering extensions of our Hamiltonians, as it allows us to measure
the index growth of potential new orbits. The point in the above definition
is that the index of boundary orbits grows to infinity under iterations of our
return map, and so, these do not contribute to symplectic homology.

A general condition for index-positivity to hold, which is also relevant
for the restricted three-body problem, is the following:

Lemma 7.6. Suppose that (Σ, α) is a strictly convex hypersurface in R
4. Then,

(Σ, α) is strongly index-positive.

Fixed-point theorems We propose the following generalization of the
Poincaré–Birkhoff theorem:

Theorem O. (Moreno–van Koert [99]. Generalized Poincaré–Birkhoff theo-
rem) Suppose that τ is an exact symplectomorphism of a connected Liouville
domain (W,λ), and let α = λ|B. Assume the following:

• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the gen-
erating Hamiltonian is at least C2. In addition, assume all fixed points
of τ are isolated;

• (Index-definiteness) If dim W ≥ 4, then assume c1(W )|π2(W ) = 0, and
(∂W,α) is strongly index-definite;

• (Symplectic homology) SH•(W ) is infinite dimensional.

Then, τ has simple interior periodic points of arbitrarily large (integer) pe-
riod.

Remark 7.7. Let us discuss some aspects of the theorem:
(1) (Grading) We need impose the assumptions c1(W )|π2(W ) = 0 (i.e., W

is symplectic Calabi–Yau) to have a well-defined integer grading on
symplectic homology.

(2) (Surfaces) If W is a surface, then the condition that SH•(W ) is infinite
dimensional just means that W �= D2; for D2, we have SH•(D2) = 0,
and a rotation on D2 gives an obvious counterexample to the conclusion.
In the surface case, the argument simplifies, and one can simply work
with homotopy classes of loops rather than the grading on symplectic
homology. The Hamiltonian twist condition recovers the classical twist
condition for W = D

∗S1, due to orientations, and hence, the above is
clearly a version of the classical Poincaré–Birkhoff theorem.

(3) (Cotangent bundles) The symplectic homology of the cotangent bundle
of a closed manifold is infinite dimensional, due to a result of Viterbo
[122,123] (see also [1,114]), combined, e.g., with a theorem of Gromov
[60, Sec. 1.4]. We have c1(T ∗M) = 0 whenever M is orientable. As for
the existence of a global trivialization of the contact structure (ξ, dλcan),
we note:
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• if Σ is an oriented surface, then S∗Σ admits such a global sym-
plectic trivialization;

• if M3 is an orientable 3-manifold, then S∗M3 also admits such a
global symplectic trivialization;

• symplectic trivializations of the contact structure on (S∗S2, λcan)
are unique up to homotopy.

(4) (Fixed points) If fixed points are non-isolated, then we vacuously obtain
infinitely many of them, although we cannot conclude that their peri-
ods are arbitrarily large; “generically”, one expects finitely many fixed
points.

(5) (Long orbits) If W is a global hypersurface of section for some Reeb
dynamics, with return map τ , interior periodic points with long (integer)
period for τ translates into spatial Reeb orbits with long (real) period.
See Appendix C in [99].

(6) (Katok examples) There are well-known examples due to Katok [82]
of Finsler metrics on spheres with only finitely many simple geodesics,
which are arbitrarily close to the round metric. Moreover, they admit
global hypersurfaces of section with Hamiltonian return maps, for which
the index-definiteness and the condition on symplectic homology both
hold. It follows that the return map does not satisfy the twist condition
for any choice of Hamiltonians.

(7) (Spatial restricted three-body problem) From the above discussion and
[98], we gather: the only standing obstruction for applying the above
result to the spatial restricted three-body problem, in case where the
planar problem is strictly convex, is the Hamiltonian twist condition.
Here, note that symplectic homology is invariant under deformations
of Liouville domains; see, e.g., [15] for a paper with detailed proofs.
This would give a proof of existence of spatial long orbits in the spirit
of Conley [29], which could in principle be collision orbits (these may
be excluded, at least perturbatively, by different methods). Since the
geodesic flow on S2 arises as a limit case (i.e., the Kepler problem), it
should be clear from the discussion on Katok examples that this is a
subtle condition. In [98], we have computed a generating Hamiltonian
for the integrable case of the rotating Kepler problem; it does not satisfy
the twist condition in the spatial case (in the planar case, a Hamiltonian
twist map was essentially found by Poincaré). This does not mean a
priori that there is not another generating Hamiltonian which does, but
this seems rather unlikely and difficult to check.

As a particular case of Theorem O, we state the above result for star-
shaped domains in cotangent bundles, as a case of independent interest (cf.
[61]):

Theorem P. (Moreno–van Koert [99]) Suppose that W is a fiber-wise star-
shaped domain in the Liouville manifold (T ∗M,λcan), where M is simply
connected, orientable and closed, and assume that τ : W → W is a Hamil-
tonian twist map. If the Reeb flow on ∂W is strongly index-positive, and if
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Figure 17. Philosophy: To shed some light on a compli-
cated higher dimensional problem, try first to look at the
shadow that your lantern is producing!

all fixed points of τ are isolated, then τ has simple interior periodic points of
arbitrarily large period.

The above also holds for M = S2, as explained in Remark 7.7 (2). A
difference with [61] is that in this setup, we conclude that periodic points are
interior, to the expense of imposing index-positivity.

7.3. Alternative approach: dynamics on moduli spaces

An alternative approach to that of a fixed-point theorem is the following
construction (see Fig. 17 for the philosophy). We start by recalling that the
page D

∗S2 = LF(D∗S1, τ2
P ) of the open book of Theorem M has a Lefschetz

fibration with genus zero fibers over the 2-disk, with monodromy the Dehn
twist τP (P here is for “planar”, to differentiate from the monodromy τ used
for the spatial case; recall Fig. 8). The main geometric observation for what
follows is: the leaf space M of such fibers (i.e., the moduli space parametrizing
them) is a copy of S3. Indeed, each page D

∗S2 of the open book S2 × S3 =
OB(D∗S2, τ2) is a 2-disk worth of fibers; we moreover have an S1-family of
such pages, all of them sharing the boundary RP 3 (the binding), and such
that their Lefschetz fibration all induce the S1-family of pages of the open
book RP 3 = OB(D∗S1, τ2

P ). It follows that the leaf space carries the trivial
open book M = OB(D2,1) ∼= S3, whose disk-like page corresponds to the
base of the page in S2 ×S3, and whose binding MB is the S1-family of pages
for RP 3. See Figs. 18 and 19.
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Figure 18. The moduli space of curves is a copy of S3 =
OB(D2,1)

Rotating Kepler problem In [98, App. A], we discuss the completely in-
tegrable limit case of the rotating Kepler problem, where μ = 0, and so, there
is only one primary. The return map can be studied explicitly. Geometrically,
this map may be understood via the following proposition (recall Fig. 8):

Proposition 7.8. ([98], Integrable case) In the rotating Kepler problem, the
return map f preserves the annuli fibers of the standard Lefschetz fibration
D

∗S2 = LF(D∗S1, τ2
P ), where it acts as a classical integrable twist map on

regular fibers, and fixes the two (unique) nodal singularities on the singular
fibers.

The two fixed points are the north and south poles of the zero section S2,
and correspond to the two periodic collision orbits bouncing on the primary
(one for each of the half-planes q3 > 0, q3 < 0).

The abstract case We now consider an abstract situation where the pre-
vious argument also holds. Consider a concrete open book decomposition
π : M\B → S1 on a contact 5-manifold (M, ξM ) = OB(P, φ). We assume
that P (abstractly) admits the structure of a 4-dimensional Lefschetz fibra-
tion over D

2 whose fibers are surfaces of genus zero and perhaps several
boundary components. We abstractly write P = LF(F, φF ), where φF is the
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Figure 19. The moduli space M ∼= S3 has two strata: the
open strata M0 consisting of regular fibers, and the nodal
strata M1 consisting of singular fibers

monodromy of the Lefschetz fibration on P (as we have discussed, necessarily
a product of positive Dehn twists on the genus zero surface F ).

Following [3], we will refer to the open book on M as an iterated planar
(IP) open book decomposition, and the contact manifold M as iterated pla-
nar. As observed in [4, Lemma 4.1], a contact 5–manifold is iterated planar
if and only if it admits an open book decomposition supporting the contact
structure, whose binding is planar (i.e., admits a 3-dimensional supporting
open book whose pages have genus zero). In fact, we have B = OB(F, φF ).

We wish to adapt the underlying planar structure to a given Reeb dy-
namics on M (and hence the need to work with concrete open books, rather
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than the abstract version). We then assume that the concrete open book on
M is adapted to the Reeb dynamics of a fixed contact form αM , i.e., αM

is a Giroux form for the open book (whose dynamics we wish to study). In
particular, ωθ := dαM |Pθ

is a symplectic form on Pθ for each θ ∈ S1. There-
fore, (Pθ, ωθ) is a Liouville filling of the binding (B, ξB = ker αB), where
αB = αM |B , for each θ. We will further assume that we have a concrete pla-
nar open book on the 3-manifold B = OB(F, φF ), which is adapted to the
Reeb dynamics of αB and where φF is a product of positive Dehn twists in
the genus zero surface F . We will denote L = ∂F , which is a link in B (the
binding of the open book for B, and Reeb orbits for αB). Given the above
situation, we will say that the Giroux form αM is an IP Giroux form.

This is precisely the situation in the SCR3BP whenever the planar dy-
namics is strictly convex/dynamically convex, as follows from [77, Theorem
1.18], combined with Theorem M above. We now state the general construc-
tion:

Theorem Q. ([100], IP foliation) There is a foliation M of M\L, consisting
of immersed dαM -holomorphic curves whose boundary is L. Away from B,
its elements are arranged as fibers of Lefschetz fibrations πθ : Pθ → D

2
θ,

θ ∈ S1, all of which induce the same fixed concrete open book at B. The πθ

are all generic, i.e., each fiber contains at most a single critical point. We
have M ∼= S3, and it is endowed with the trivial open book whose θ-page is
identified with D

2
θ, and its binding is MB

∼= S1, the family of pages of the
open book at B.

The point here is that the above result is in principle non-perturbative; it
applies whenever there is an adapted open book at B. It should be thought
of as an S1-parametric version of Wendl’s result (Theorem J above), and
as the “correct” higher dimensional analogue of the finite energy foliations
introduced by Hofer–Wysocki–Zehnder for the study of 3-dimensional Reeb
flows. We can further endow the moduli space with extra structure:

Theorem R. ([100], contact and symplectic structures on moduli) The moduli
space M carries a natural contact structure ξM which is supported by the
trivial open book on S3 (and hence it is isotopic to the standard contact
structure ξstd by Giroux correspondence). Moreover, the symplectization form
on R × M associated with any Giroux form αM on M induces a tautological
symplectic form on R × M by leaf-wise integration, which is naturally the
symplectization of a contact form αM for ξM, whose Reeb flow is adapted to
the trivial open book on M.

The contact form can be written down via the following tautological
formula:

(αM)u(v) =
∫

z∈u

αz(v(z))dz,

where u ∈ M, v ∈ TuM = kerDu for Du the linearized CR-operator of u,
and dz = dα|u is an area form along u. The contact structure ξM = ker αM
and the 1-dimensional distribution ker dαM can then be thought of as the
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average of the contact planes ξz, and respectively of ker dαz, for z ∈ u, that
is

ξM =
∫

z∈u

π∗(ξz)dz,

ker dαM =
∫

z∈u

π∗(ker dαz)dz,

where π : M\L → S3 is the quotient map to the leaf space. This means
that the Reeb vector field RM of αM spans the average direction in the
“shadowing cone” Cα = π∗(ker dα) ⊂ TS3.

The holomorphic shadow We define the holomorphic shadow of the Reeb
dynamics of αM on M to be the Reeb dynamics of the associated contact
form αM on S3, provided by Theorem R. The flow of αM can be viewed as a
flow φM ;M

t on M\L which leaves the holomorphic foliation M invariant (i.e.,
it maps holomorphic curves to holomorphic curves). It is the “best approxi-
mation” of the Reeb flow of αM with this property, as its generating vector
field is obtained by reparametrizing the projection of the original Reeb vec-
tor field to the tangent space of M, via a suitable L2-orthogonal projection.
Concretely, we have

RM(u) =
Pu(Rα|u)

(αM)u(Pu(Rα|u))
∈ TuM,

where Pu : W 1,2(Nu) → kerDu denotes the L2-orthogonal projection with
respect to the metric

gu(v, w) =
∫

z∈u

gz(v(z), w(z))dz,

with gz = dαz(·, J ·)+αz ⊗αz + dt ⊗dt, and v, w ∈ W 1,2(Nu) sections of the
normal bundle Nu to u. It may also be viewed as a Reeb flow φS3;M

t on S3,
related to the one on M via a semi-conjugation

M\L M\L

S3 S3

φM;M
t

π π

φS3;M
t

where π is the projection to the leaf space M ∼= S3. We will now focus on
the global properties of the correspondence αM �→ αM.

For F a genus zero surface, let Reeb(F, φF ) denote the collection of
contact forms whose flow is adapted to some concrete planar open book
πB : B\L → S1 on a given 3-manifold B, of abstract form B = OB(F, φF ). It-
eratively, we define Reeb(LF(F, φF ), φ) to be the collection of contact forms
with flow adapted to some concrete IP open book πM : M\B → S1 on a
5-manifold M , of abstract form M = OB(LF(F, φF ), φ), whose restriction
to the binding B = OB(F, φF ) belongs to Reeb(F, φF ). We call elements in
Reeb(LF(F, φF ), φ) IP contact forms, or IP Giroux forms.
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We then have a map

HS : Reeb(LF(F, φF ), φ) → Reeb(D2,1),

given by taking the holomorphic shadow with respect to an auxiliary almost
complex structure J associated with αM . We refer to HS−1(αstd) as the
integrable fiber, where αstd denotes the standard contact form in S3.

Theorem S. ([100] Reeb flow lifting theorem) HS is surjective.

In other words, for some J , we may lift any Reeb flow on S3 adapted to
the trivial open book, as the holomorphic shadow of the Reeb flow of an IP
Giroux form adapted to any choice of concrete IP contact 5-fold. The map
HS is clearly not in general injective, as it forgets dynamical information in
the fibers. While the above lifting procedure is not precisely an extension of
the flow, the above theorem says that Reeb dynamics on an IP contact 5-fold
is at least as complex as Reeb dynamics on the standard contact 3-sphere.
Recalling that the Levi–Civita regularization of the planar restricted three-
body problem (for subcritical energy) gives a Reeb flow on S3; this gives
a concrete “measure” of the complexity of the spatial three-body problem.
Namely, the spatial three-body problem is dynamically at least as complex as
the planar three-body problem.

Somewhat related, we point out that higher dimensional Reeb flows
encode the complexity of all flows on arbitrary compact manifolds (i.e., they
are universal) [24].

Dynamical applications We wish to apply the above results to the
SCR3BP (cf. Fig. 20). We first introduce the following general notion. Con-
sider an IP 5-fold M with an IP Reeb dynamics, endowed with an IP holo-
morphic foliation M as in Theorem Q. Fix a page P in the IP open book of
M , and consider the associated Poincaré return map f : int(P ) → int(P ). A
(spatial) point x ∈ int(P ) is said to be leaf-wise (or fiber-wise) k-recurrent
with respect to M if fk(x) ∈ Mx, where Mx is the leaf of M containing x,
and k ≥ 1. This means that fk(int(Mx)) ∩ int(Mx) �= ∅. This is, roughly
speaking, a symplectic version of the notion of leaf-wise intersection intro-
duced by Moser [101] for the case of the isotropic foliation of a coisotropic
submanifold.

In the integrable case of the rotating Kepler problem, where the mass ra-
tio μ = 0, the holomorphic foliation provided by Theorem Q can be obtained
directly; cf. Proposition 7.8. Denote this “integrable” holomorphic foliation
on S∗S3 by Mint. Since the return map for μ = 0 preserves fibers, every point
is leaf-wise 1-recurrent with respect to Mint. If the mass ratio is sufficiently
small, then the leaves of Mint will still be symplectic with respect to dα,
where α is the corresponding perturbed contact form on the unit cotangent
bundle S∗S3.

We have the following perturbative result:

Theorem T. ([100]) In the SCR3BP, for any choice of page P in the open
book of Theorem M, for any fixed choice of k ≥ 1, for sufficiently small μ
(depending on k), for energy c below the first critical value H(L1(μ)), along
the bounded components of the Hill region, and for every l ≤ k, there exist
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Figure 20. An abstract sketch of the convexity range in
the SCR3BP (shaded), for which the holomorphic shadow is
well defined. We should disclaim that the above is not a plot;
the convexity range is not yet fully understood, although it
contains (perhaps strictly) a region which qualitatively looks
like the above, cf. [5,6]

infinitely many points in int(P ) which are leaf-wise l-recurrent with respect
to Mint.

In simpler words, the spatial three-body problem admits an abundance
of leaf-wise recurrent points, at least in the perturbative regime.

Remark 7.9. The same conclusion holds for arbitrary μ ∈ [0, 1], but suffi-
ciently negative c � 0 (depending on μ and k).

In fact, the conclusion of the Theorem T holds whenever the relevant
return map is sufficiently close to a return map which preserves the leaves of
the holomorphic foliation of Theorem Q (i.e., which coincides with its holo-
morphic shadow on M). It may then be interpreted as a symplectic version
of the main theorem in [101], for two-dimensional symplectic leaves.

8. Conclusion and further discussion

In the above account, we have tried to paint a picture of the relevance of
the three-body problem in the modern mathematical discourse, in the hope
to convince the reader of the richness of material that has ensued from this
concrete problem alone. It has been more than a 100 years since Poincaré’s
work, and this problem is still a benchmark for modern developments.

Concerning the spatial problem, several of its aspects remain vastly un-
explored and poorly understood. We have chosen to focus on the search of
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closed orbits as a starting point, for historical and heuristic reasons, as well
as the fact that we have available techniques in the form of Floer theory.
However, even this part of the story of is far from over, although we seem to
be closing in. On the one hand, Theorem M provides the underlying geomet-
ric structure, and Theorem Q goes further and provides an adapted foliation
which is compatible with the dynamics, and which is intimately related to
the dynamics of the integrable limit case, as stated in Proposition 7.8. The
general guiding question is how we use these underlying structures to extract
dynamical applications. Moreover, one can also write down global hypersur-
faces of section explicitly (see Theorem A in [98]), and this allows to use
numerical methods in a hands-on way, which will certainly shed light on the
problem. We will pursue this in further work.

Inspired by the Poincaré two-step approach, we have obtained a very
general fixed-point theorem in the form of Theorem O. One may attempt
to generalize it in several directions, although at this point, it is perhaps
worth it to do so once one knows it applies to the problem by which it was
inspired. So far, the Hamiltonian twist condition, while simple to state and
rather appealing (specially from the perspective of Floer theory), seems hard
to check in practice and rather restrictive.

The alternative holomorphic approach that we discussed above is also
very appealing from a theoretical perspective, since in principle it allows to
relate a dynamical system on a 5-fold which we wish to understand, to a dy-
namical system on the 3-fold S3 of a type which has been studied much more
extensively. The hope is to “lift” knowledge from the holomorphic shadow
to the original dynamics (entropy, invariant subsets, invariant measures. . . ).
The main difficulty is that the shadow alters the dynamics, perhaps signifi-
cantly, as it involves projecting the vector field to the tangent space of the
moduli space. It is the “best approximation” of the original flow with the
property that it maps a holomorphic annulus to another holomorphic annu-
lus. It also has the disadvantage that it forgets dynamical information in the
vertical directions, i.e., those tangent to the annuli, as well as most of the
interesting dynamical information at the binding B (it is adapted to study
spatial problems rather than planar ones). Observe that, in dimension 3, the
shadow, when seen as a flow on B, is just a reparametrization of the original
one. How much control we may obtain on the difference between the flow
and its shadow, is unclear at the moment. More importantly, the relationship
between closed orbits of the two flows is also not apparent.

On the other hand, one can follow an orbit and keep track of all the
holomorphic annuli it intersects; this gives a path in S3 which is tranverse
to the contact structure and all the pages, and is in fact an orbit of what we
called the shadowing cone. We call the collection of all such paths the trans-
verse shadow. While no longer a flow, it remembers the original dynamics
in a much more reliable way. In [100], we have used this idea (in combina-
tion with Brouwer’s translation theorem) to extract Theorem T above, and
perhaps may be exploited further.
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Paolo!), Alex Takeda, Jagna Wísniewska, Fabio Gironella . . . to name a few
whom I remember seeing on the screen; sorry if I missed you, and thank you.
I am also very grateful to my uruguayan colleagues Alejandro Passeggi and
Rafael Potrie for helping me organize this, to Gabriele Benedetti for pointing
out a mathematical flaw in the work of the author with Otto van Koert, and
to all the students in Uruguay, Sweden, and abroad (e.g., Turkey, France,
US, South Korea, . . . ) who showed interest in the project. This material is
based on work supported by the Swedish Research Council under Grant No.
2016-06596, while the author was in residence at Institut Mittag–Leffler in
Djursholm, Sweden during the Winter Semester, 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles.
Commun. Pure Appl. Math. 59(2), 254–316 (2006)

[2] Abouzaid, M., Blumberg, A.J.: Arnold conjecture and Morava K-theory.
arXiv:2103.01507

[3] Acu, B.: The Weinstein conjecture for iterated planar contact structures.
arXiv:1710.07724

[4] Acu, B., Etnyre, J.B., Ozbagci, B.: Generalizations of planar contact mani-
folds to higher dimensions. arXiv:2006.02940

[5] Albers, P., Fish, J.W., Frauenfelder, U., Hofer, H., van Koert, O.: Global
surfaces of section in the planar restricted 3-body problem. Arch. Ration.
Mech. Anal. 204(1), 273–284 (2012)

[6] Albers, P., Fish, J.W., Frauenfelder, U., van Koert, O.: The Conley–Zehnder
indices of the rotating Kepler problem. Math. Proc. Camb. Philos. Soc. 154(2),
243–260 (2013)

[7] Albers, P., Frauenfelder, U., van Koert, O., Paternain, G.P.: Contact geometry
of the restricted three-body problem. Commun. Pure Appl. Math. 65(2), 229–
263 (2012)

[8] Albers, P., Geiges, H., Zehmisch, K.: Reeb dynamics inspired by Katok’s
example in Finsler geometry. Math. Ann. 370(3–4), 1883–1907 (2018)

[9] Albers, P., Hofer, H.: On the Weinstein conjecture in higher dimensions. Com-
ment. Math. Helv. 84(2), 429–436 (2009)

Vol. 24 (2022) Contact geometry in the restricted three-body problem

Reprinted from the journal 973

http://arxiv.org/abs/2103.01507
http://arxiv.org/abs/1710.07724
http://arxiv.org/abs/2006.02940


[10] Arnold, V.: Sur une propriete topologique des applications globalement canon-
iques de la mecanique classique (French). C. R. Acad. Sci. Paris 261, 3719–
3722 (1965)

[11] Arnol’d, V.I.: Some remarks on symplectic monodromy of Milnor fibrations.
The Floer memorial volume, Progr. Math., vol. 133, pp. 99–103. Birkhäuser,
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toute surface de genre 0. C. R. Acad Sci. Paris 188, 269–271 (1929)

[92] Lusternik, L., Schnirelmann, L.: Sur le probléme de trois géodésiques fermées
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1. Introduction

1.1. Poincaré–Birkhoff theorem, and the planar restricted three-body prob-
lem

The problem of finding closed orbits in the planar case of the restricted three-
body problem goes back to ground-breaking work in celestial mechanics of
Poincaré [31,32], building on work of Hill on the lunar problem [22]. The
basic scheme for his approach may be reduced to:
(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed-point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré–Birkhoff theorem, proposed
and confirmed in special cases by Poincaré and later proved in full generality
by Birkhoff in [8]. The statement can be summarized as: if τ : A → A is
an area-preserving homeomorphism of the annulus A = [−1, 1] × S1 that
satisfies a twist condition at the boundary, then it admits infinitely many
periodic points of arbitrary large period.

In [30], the authors proved the existence of S1-families of global hy-
persurfaces of section for the spatial restricted three-body problem (in the
low-energy range, i.e., below and slightly above the first critical value, and
independent of mass ratio), fully and non-perturbatively generalizing step (1)
in the above approach to the spatial situation. The relevant return map τ
is a Hamiltonian diffeomorphism defined on the interior of the global hyper-
surface of section, which is symplectomorphic to the interior of a Liouville
domain (D∗S2, ω), where ω is deformation equivalent to the standard sym-
plectic form. Furthermore, τ extends smoothly to the boundary of the global
hypersurface of section, and gives rise to a homeomorphism of (D∗S2, ω) that
is a Hamiltonian diffeomorphism on the interior. Drawing inspiration from

Reprinted from the journal982



Vol. 24 (2022) A generalized Poincaré–Birkhoff theorem

this situation, in this paper, we propose a general fixed-point theorem for
Liouville domains, as an attempt to address step (2) for the spatial case.

Fixed-point theory of Hamiltonian twist maps

The periodic points of τ are either boundary periodic points, which give
planar orbits, or interior periodic points which are in 1:1 correspondence
with spatial orbits. We are interested in finding interior periodic points.

1.2. The Hamiltonian twist condition

We propose a generalization of the twist condition introduced by Poincaré,
for the Hamiltonian case and for arbitrary Liouville domains. Let (W,ω = dλ)
be a 2n-dimensional Liouville domain, and consider a Hamiltonian symplec-
tomorphism τ of W . Let (B, ξ) = (∂W, ker α) be the contact manifold at
the boundary where α = λ|B , and Rα the Reeb vector field of α (uniquely
determined via the equations dα(Rα, ·) = 0, α(Rα) = 1). Recall that τ is
Hamiltonian if τ = φ1

H , where φt
H is the isotopy of W defined by φ0

H = id,
d
dtφ

t
H = XHt

◦ φt
H , where we write Ht = H(t, ·), and XHt

is the Hamiltonian
vector field of Ht defined via iXHt

ω = −dHt. The Liouville vector field Vλ is
defined via iVλ

ω = λ.

Definition 1.1. (Hamiltonian twist map) We say that τ is a Hamiltonian twist
map (with respect to α), if τ is generated by a smooth Hamiltonian H :
W × R → R which satisfies XHt

|B = htRα for some positive and smooth
function h : B × R → R

+.

Remark 1.2. For the purposes of this article, one may relax the smoothness
assumption on H to C2 regularity.

In particular, Ht|B ≡ const on B, and τ(B) ⊂ B. We have ht =
dHt(Vλ)|B is the derivative of Ht in the Liouville direction Vλ along B,
which we assume strictly positive. Also, τ |B is the time-1 map of a posi-
tive reparametrization of the Reeb flow on B. But note that, while the latter
condition is only localized at B, the twist condition is of a global nature, as
it requires global smoothness of the generating Hamiltonian (cf. [30, Remark
1.4]).

Here is a simple example illustrating why the smoothness of the Hamil-
tonian is relevant for the purposes of fixed points:

Example 1.3. (Integrable twist maps) Consider M = Sn, n ≥ 1 with its
round metric and its cotangent bundle T ∗M = {(q, p) ∈ R

2n+2 : 〈q, p〉 =
0, |q| = 1}. Let H : T ∗M → R, H(q, p) = 2π|p| (not smooth at the zero sec-
tion); φ1

H extends to all of D∗M as the identity. It is a positive reparametriza-
tion of the Reeb flow at S∗M , generating a full turn of the geodesic flow, and
all orbits are fixed points with fixed period. If we smoothen H near |p| = 0
to K(q, p) = 2πg(|p|), with g(0) = g′(0) = 0, then τ = φ1

K : D∗M → D
∗M ,

τ(q, p) = φ
2πg′(|p|)
H (q, p), is now a Hamiltonian twist map. If g′(|p|) = l/k ∈ Q

with l, k coprime, then τ has a simple k-periodic orbit; therefore, τ has sim-
ple interior orbits of arbitrary large period (cf. [26, p. 350], [29], for the case
M = S1).
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The Hamiltonian twist condition will be used to extend the Hamiltonian
to a Hamiltonian that is admissible for computing symplectic homology. The
extended Hamiltonian can have additional 1-periodic orbits and these, as well
as 1-periodic orbits on the boundary, need be distinguished from the interior
periodic points of τ . We impose the following conditions to do so.

1.3. Index growth

We consider a suitable index growth condition on the dynamics on the bound-
ary, which is satisfied in the restricted three-body problem whenever the pla-
nar dynamics is strictly convex (see Theorem D.1). This assumption will
allow us to separate boundary and extension orbits from interior ones via the
index.

We call a strict contact manifold (Y, ξ = ker α) strongly index-definite
if the contact structure (ξ,dα) admits a symplectic trivialization ε with the
property that

• There are constants c > 0 and d ∈ R, such that for every Reeb arc1

γ : [0, T ] → Y of Reeb action T =
∫ T

0
γ∗α, we have

|μRS(γ; ε)| ≥ cT + d,

where μRS is the Robbin–Salamon index [33].

Index-positivity is defined similarly, where we drop the absolute value.
A variation of this notion was explored in Ustilovsky’s thesis [37]. He im-
posed the additional condition π1(Y ) = 0. With this extra assumption, the
concept of index-positivity becomes independent of the choice of trivializa-
tion, although the exact constants c and d still depend on the trivialization
ε. The global trivialization will be important when considering extensions of
our Hamiltonians, as it will allow us to measure the index growth of potential
new orbits.

1.4. Fixed-point theorems

We propose the following generalization of the Poincaré–Birkhoff theorem:

Theorem A. (Generalized Poincaré–Birkhoff theorem) Suppose that τ is an
exact symplectomorphism of a connected Liouville domain (W,λ), and let
α = λ|B. Assume the following:

• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the
generating Hamiltonian is at least C2. In addition, assume that all fixed
points of τ are isolated;

• (Index-definiteness) If dim W ≥ 4, then assume c1(W )|π2(W ) = 0,
and (∂W,α) is strongly index-definite;

• (Symplectic homology) SH•(W ) is infinite dimensional.

Then τ has simple interior periodic points of arbitrarily large (integer) period.

Remark 1.4. Let us discuss some aspects of the theorem:

1We will refer to the restriction of a Reeb orbit or Hamiltonian orbit to a finite interval as
a Reeb arc or Hamiltonian arc.
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(1) (Grading) We impose the assumptions c1(W )|π2(W ) = 0 (i.e. W is sym-
plectic Calabi–Yau) to have a well-defined integer grading on symplectic
homology.

(2) (Surfaces) If dim W = 2, then the condition that SH•(W ) is infinite
dimensional just means that W is not D2 (see Appendix B); for D2, we
have SH•(D2) = 0, and a rotation on D2 gives an obvious counterex-
ample to the conclusion. In the surface case, the argument simplifies,
and one can simply work with homotopy classes of loops rather than
the grading on symplectic homology. The Hamiltonian twist condition
implies the classical twist condition for W = D

∗S1, due to orientations.
(3) (Cotangent bundles) The symplectic homology of the cotangent bundle

of a closed manifold with finite fundamental group is well known to
be infinite dimensional, due to a result of Viterbo [38,39] (see also [3,
34]), combined, e.g., with a theorem of Gromov [19, Sect. 1.4]. We have
c1(T ∗M) = 0 whenever M is orientable. As for the existence of a global
trivialization of the contact structure (ξ, dλcan), we note the following:

• if Σ is an oriented surface, then S∗Σ admits such a global sym-
plectic trivialization;

• if M3 is an orientable 3-manifold, then S∗M3 also admits such a
global symplectic trivialization;

• In addition, we know that symplectic trivializations of the con-
tact structure on (S∗S2, λcan) are unique up to homotopy, since
[S∗S2, Sp(2)] ∼= H1(S∗S2;Z) = 0.

(4) (Fixed points) If fixed points are non-isolated, then we vacuously obtain
infinitely many of them, although we cannot conclude that their periods
are unbounded; “generically”, one expects finitely many fixed points.

(5) (Long orbits) If W is a global hypersurface of section for some Reeb
dynamics, with return map τ , interior periodic points with long (integer)
period for τ translate into spatial Reeb orbits with long (real) period;
see Lemma C.1.

(6) (Katok examples) There are well-known examples due to Katok [25]
of Finsler metrics on spheres with only finitely many simple geodesics,
which are arbitrarily close to the round metric (we review them in Ap-
pendix A.2); they admit global hypersurfaces of section with Hamil-
tonian return maps, for which the index-definiteness and the condition
on symplectic homology hold. It follows that the return map does not
satisfy the twist condition for any choice of Hamiltonians.

(7) (Spatial restricted three-body problem) From the above discussion and
[30], we gather: the only standing obstruction for applying the above
result to the spatial restricted three-body problem, in case where the
planar problem is strictly convex, is the Hamiltonian twist condition.
Here, note that symplectic homology is invariant under deformations of
Liouville domains; see, e.g., [9] for a paper with detailed proofs. This
would give a proof of existence of spatial long orbits in the spirit of Con-
ley [13], which could in principle be collision orbits. Since the geodesic
flow on S2 arises as a limit case (i.e., the Kepler problem), it should
be clear from the discussion on Katok examples that this is a subtle
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condition. In [30], we have computed a generating Hamiltonian for the
integrable case of the rotating Kepler problem; it does not satisfy the
twist condition in the spatial case (in the planar case, a Hamiltonian
twist map was essentially found by Poincaré). This does not mean a
priori that there is not another generating Hamiltonian which does, but
this seems rather unlikely.

As a particular case of Theorem A, we state the above result for star-
shaped domains in cotangent bundles, as of independent interest (cf. [21]):

Theorem B. Suppose that W is a fiber-wise star-shaped domain in the Li-
ouville manifold (T ∗M,λcan), where M is simply connected, orientable and
closed, and assume that τ : W → W is a Hamiltonian twist map. If the Reeb
flow on ∂W is strongly index-positive, and if all fixed points of τ are isolated,
then τ has simple interior periodic points of arbitrarily large period.

The above holds in particular for M = S2, as explained in Remark 1.4
(3). One difference with [21] is that we work with compact domains in cotan-
gent bundles and conclude that periodic points are interior, at the expense
of imposing index-positivity.

1.5. Sketch of the proof

The proof is fairly simple: due to the twist condition, we can extend the map τ
to a Hamiltonian diffeomorphism τ̂ that is generated by a weakly admissible
Hamiltonian (defined in Sect. 4). This allows us to appeal to symplectic
homology. In particular, we will show lim−→k

HF•(τ̂k) = SH•(W ) (Lemma 4.1).
Using an index filtration (via index-definiteness and the twist condition), we
can show that all generators contributing to homology are actually fixed
points of some τk, rather than fixed points of the extension. The crucial
technical input is Lemma 4.5. If the minimal periods of periodic points of
τ are bounded, then we can show using a spectral sequence, involving local
Floer homology groups, that the rank of the resulting symplectic homology
should also be bounded, leading to a contradiction. Alternatively, one could
use the methods used for the proof of the Conley conjecture [17,21] to finish
the proof.

1.6. Remarks on the twist condition and generalizations

If the Liouville domain is a surface, this definition of the Hamiltonian twist
condition is not restrictive, and implements the idea sketched above in a
simple way. In higher dimensions, the Hamiltonian twist condition is much
more restrictive. Some examples illustrating the nature of the twist condition
and applications of the above theorem will be presented in Appendix A. Given
the above sketch of the proof, there is obviously some freedom in Definition
1.1 that allows the same methods to work. For example, if the vector field
XHt

is sufficiently C1-close to a positive reparametrization of the Reeb vector
field, then the methods will still go through. However, we will not pursue
this generalization, because its depends on details that make the formulation
awkward and difficult to check. We list some other generalizations, whose
proofs will not be worked out in detail:
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• (Action positivity) One can impose constraints on the functions ht in
the Hamiltonian twist condition that force the periodic orbits in the
extension to have large action under iterates. In the setting of cotangent
bundles, one can then use a theorem of Gromov [19, Sect. 1.4] cited
below, to construct infinitely many interior periodic points.

• (Isolated sets) The assumption that the fixed points are isolated can be
replaced by the weaker assumption that the fixed point set consists of
a finite union of submanifolds. This is based on a slight generalization
of local Floer homology, and is useful when studying integrable systems
and their perturbations.

• (Non-vanishing symplectic homology) The condition dimSH•(W ) = ∞
can be replaced by the condition SH•(W ) �= 0. The key point here is
that non-vanishing symplectic homology implies its unit is non-trivial.
Then, the methods of the proof of the Conley conjecture [17,21] can
be applied to conclude the existence of infinitely many simple periodic
points. Strong index-definiteness is needed to show that these periodic
points do not correspond to boundary and extension orbits, and so are
interior.

Remark 1.5. Concerning the last generalization, we remark that we do not
know a single example of a Liouville domain (W,λ) with c1(W ) = 0, SH•(W )
�= 0, and dimSH•(W ) < ∞.

2. Motivation and background

Hypersurfaces of section, return maps, and open books

Definition 2.1. Suppose that Y is a compact, oriented, smooth manifold with
a non-singular autonomous flow φt. We call an oriented, compact hypersur-
face Σ in Y a global hypersurface of section for φt if

• the set ∂Σ is an invariant set for the flow φt (if non-empty);
• the flow φt is positively transverse to the interior of Σ;
• for all x ∈ Y \∂Σ there are t+ > 0 and t− < 0, such that φt+(x) ∈ Σ

and φt−(x) ∈ Σ.

Given a global hypersurface of section, we can define a return map τ as
follows: for each x ∈ int(Σ), we choose a minimal t+(x) > 0 as in the definition
above. Then, we put τ(x) = φt+(x)(x). Periodic points of τ then correspond to
closed orbits of φt. In general, there is no continuous extension to the bound-
ary, although it is unique whenever exists. Although global hypersurfaces of
section do not have good stability properties in higher dimensions, we found
that they can be constructed in certain classes of Hamiltonian dynamical sys-
tems that admit an involution. This class includes the restricted three-body
problem and several variations (e.g., suitable Stark–Zeeman systems [30]).

This notion is also closely related to the notion of an open book decom-
position. This consists of a fiber bundle π : Y \B → S1, where B ⊂ Y is a
codimension 2 submanifold with trivial normal bundle (called the binding),
such that π coincides with the angular coordinate along some choice of collar
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neighborhood B × D
2 of B. The pages of the open book are the closure of

the fibers of π, all having B as boundary. Whenever φt is a Reeb dynamics
of a contact form α on Y which is adapted to the open book (i.e., α|B is also
contact, and dα is symplectic on the pages), each page is a global hypersur-
face of section, and the return map preserves the symplectic form dα. This
is precisely the situation in [30].

In Appendix C, we will collect some standard facts which apply for re-
turn maps arising from Reeb dynamics, as described here, for which Theorem
A may be applied.

3. Preliminaries on symplectic homology

3.1. Liouville domains and Hamiltonian dynamics

There are various forms of Hamiltonian Floer homology for Liouville domains:
these are all referred to as symplectic homology. The first version was due to
Floer-Hofer, [15]. See also Sect. 5 of [23] for an even earlier version, called
symplectology. However, we will review the version due to Viterbo, [38,39].
Roughly speaking, this is a ring with unit that encodes both topological and
dynamical data; it is the homology of a chain complex that is freely generated
by 1-periodic Hamiltonian orbits.

We now fix conventions. Consider a Liouville domain (W,λ), i.e., (W,dλ)
is a compact symplectic manifold with boundary, and the vector field X de-
fined by the equation ιXdλ = λ is outward pointing along each boundary
component of W . This vector field is the Liouville vector field. The 1-form λ
is the Liouville form, and its restriction to ∂W , which we denote by α, is a
contact form.

Given a Liouville domain (W,λ), we build its completion to a Liouville
manifold by attaching a cylindrical end

(Ŵ , λ̂) := (W,λ) ∪∂ ([1,∞) × ∂W, rα).

Throughout the paper, we will consider smooth functions of the form H : W ×
S1 → R, a (time-dependent) Hamiltonian on W . Given such a Hamiltonian,
we define its Hamiltonian vector field XH via

ιXH
dλ = −dH.

We denote the set of 1-periodic orbits of XH by P(H). For the purpose
of Floer theory on non-compact manifolds, we will need a suitable class of
Hamiltonians to work with. First, we recall the spectrum of a contact form
α. If P(α) denotes the set of all periodic Reeb orbits (including covers and
without period bound), then

spec(α) = {a ∈ R | there is γ ∈ P(α), such that a = A(γ)},

where the action is defined as A(γ) =
∫

γ
α.

Definition 3.1. We recall some standard terminology.
• A 1-periodic orbit γ ∈ P(H) is non-degenerate if dF lXH

1 (γ(0)) − id
invertible.
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• The Hamiltonian H is non-degenerate if all γ∈P(H) are non-degenerate.
• A Hamiltonian H on Ŵ is linear at infinity if at the cylindrical end H

has the form H(r, b, t) = cr + d for some constants c > 0 and d. In this
case, we write slope(H) := c.

• A Hamiltonian H that is non-degenerate and linear at infinity with
slope(H) /∈ spec(α) will be called admissible.

We call an S1-family of almost complex structures J = Jt on a Liouville
manifold (Ŵ , λ̂) SFT-like if

• it is compatible with (TŴ , dλ̂); and
• on the cylindrical end it satisfies Lr∂rJ = 0, Jξ = ξ, and Jr∂r = Rα.

We denote by J the space of such families of almost complex structures.

3.2. Conley–Zehnder index, Robbin–Salamon index, and mean index

We will also need invariants of Hamiltonian orbits, i.e., the Conley–Zehnder
index, or more generally, the Robbin–Salamon index, and the mean index.
Assume that x : R → Ŵ is an orbit of XH . Take a symplectic trivialization
ε : R × R

2n → x∗TŴ , (t, v) �→ εt(v) ∈ Tx(t)Ŵ . Then, we get a path of
symplectic matrices associated with x, namely, ψt = ε−1

t ◦dF lXH
t ◦ε0. We can

then define the Robbin–Salamon index of x as μRS(x|[0,T ], ε) := μRS(ψ|[0,T ]).
If ψT −id is invertible, then the Robbin–Salamon index reduces to the Conley-
Zehnder index. The case of Reeb flows is done similarly; we simply restrict
the linearized Reeb flow to the symplectic vector bundle (ξ, dα). Similarly,
we define the mean index of a 1-periodic orbit x as Δ(x, ε) := Δ(ψ), where
Δ(ψ) is the mean index of the symplectic path ψ.2 We have the following
properties (see, e.g., Sect. 3.1.1 of [18]):

(1) |μRS(x|[0,T ], ε) − Δ(x, ε)| ≤ dim W
2 , for all T ;

(2) limT→+∞
μRS(ψ|[0,T ],ε)

T = Δ(x, ε);
(3) Δ(x(k), ε) = kΔ(x, ε),

where we interpret the k-fold catenation x(k), a k-periodic orbit of H, as a
1-periodic orbit of the iterated Hamiltonian H#k.

Definition 3.2. We will call a Hamiltonian flow on W strongly index-definite
if there is a symplectic trivialization εW : W × R

2n → TW , and constants
c > 0, d, such that for every orbit of XH , we have

|μRS(x|[0,T ], ε)| ≥ cT + d.

The notion of strong index-positivity is obtained by dropping the abso-
lute value in the above definition, and similarly for strong index-negativity. As
in Introduction, we can also define it for Reeb flows. Here are some examples:

Lemma 3.3. Suppose that (M, g) is a closed Riemannian manifold with posi-
tive sectional curvature. Assume in addition that the contact structure (S∗M,
(ξ, dα)) admits a global symplectic trivialization. Then, (S∗M,dα) is strongly
index-positive.

2A description of the mean index can be found on page 1318 of of [35].
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Other examples are complements of Donaldson hypersurfaces in mono-
tone symplectic manifolds provided that the degree is sufficiently high and
symplectically trivial: these manifolds are index negative.

3.3. Hamiltonian Floer homology and symplectic homology

Given Floer data (J,H) of an SFT-like J and an admissible H, we note the
following:

• There are no 1-periodic orbits of XH on the cylindrical end, because of
the spectrum assumption.

• Non-degenerate 1-periodic orbits of XH are isolated.

Then P(H) consists of finitely many 1-periodic orbits. Informally speaking,
we think of Floer homology as “Morse homology” of the following action
functional:

AH : W 1,2(S1 = R/Z, Ŵ ) −→ R, γ �−→
∫

S1
γ∗λ̂ −

∫ 1

0

H(γ(t), t)dt.

This functional has the property AH#k(x(k)) = kAH(x) for iterates. A com-
putation shows that critAH = P(H), and we define the Floer chain complex
as

CF•(Ŵ , λ̂,H, J) :=
⊕

γ∈P(H)

Z2〈γ〉.

We grade this chain complex by the Conley–Zehnder index, so deg γ :=
μCZ(γ, ε). We make a couple of comments:

• in the standard procedure, we choose a capping disk γ̃ of a contractible
1-periodic orbit γ, and a symplectic trivialization εγ̃ of γ̃∗TŴ . This gives
a trivialization et : (R2n, ω0) → Tγ(t)Ŵ by restriction. We then define
the Conley–Zehnder index of an orbit as in Sect. 3.2. Once the capping
disk γ̃ is fixed, this index is independent of the choice of trivialization
on a fixed capping disk. The index does depend on the choice of capping
disk but not if c1(W )|π2(W ) = 0.

• for non-contractible orbits, one needs to choose a reference loop c and
a reference symplectic trivialization εc for each free homotopy [c] ∈
π̃1(W ). Given a 1-periodic orbit x in the same free homotopy class as
c we choose a connecting cylinder S; the trivialization extends over S,
and we can then define the Conley–Zehnder index as before.

• we choose the simpler, but more restrictive approach to use a global
symplectic trivialization on some subdomain W̃ . The existence of such a
trivialization implies that c1(TW̃ ) = 0. This approach obviously reduces
to the previous approach provided that capping disks or connecting
cylinders can be chosen to lie in the domain of definition of the global
symplectic trivialization.

If we define an L2-metric on W 1,2(S1, x∗TŴ ) by

〈X,Y 〉 =
∫ 1

0

ω(X(t), Jt(x(t))Y (t) )dt,
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then the Floer equation is the L2-gradient “flow”3 of the above functional:
for a cylinder u : Z = R × S1 → Ŵ , this is

(du − XH ⊗ dt)0,1 = 0, lim
s→±∞ u(s, t) = x±(t). (3.1)

Solutions to this equation are called Floer trajectories. Given 1-periodic orbits
x+, x− ∈ P(H), the moduli space of Floer trajectories is

M(x+, x−) := {u : Z → Ŵ | u satisfies (3.1)}.

In general, this space does not need to have a manifold structure. To obtain
this extra structure, we first interpret Eq. (3.1) as a section of a vector bundle,
via

∂̄F : P(x+, x−) −→ E(x+, x−), u �−→ (du − XH ⊗ dt)0,1

∈ Lp(Z,Ω0,1(u∗TŴ ) ).

Here, P(x+, x−) is a Banach manifold of cylinders of class W 1,p that are
W 1,p-pushoffs of smooth cylinders that exponentially converge to the given
asymptotes x+ and x−, and E(x+, x−) is a Banach bundle over P(x+, x−)
whose fiber over u ∈ P(x+, x−) is Lp(Z,Ω0,1(u∗TŴ ) ). For details, see Chap-
ter 8 in [7]. We will denote the linearization of ∂̄F at u ∈ P(x+, x−) by Du∂̄F .

Proposition 3.4. For Floer data (J,H) and u ∈ M(x+, x−), Du∂̄F is a Fred-
holm operator of index

indDu∂̄F = μCZ(x+, ε) − μCZ(x−, ε),

where ε is a symplectic trivialization of u∗TŴ .

In addition, we can always choose suitable Floer data close to initial
Floer data such that all moduli spaces are transversely cut out:

Proposition 3.5. There is a dense set Jreg ⊂ J with the property for all J ∈
Jreg, the linearized operator Du∂̄F is surjective for all u ∈ M(x+, x−), and
so M(x+, x−) is a smooth manifold of dimension μCZ(x+, ε) − μCZ(x−, ε).

Floer data (J,H) as in Proposition 3.5 will be called regular Floer data.
We now have all the basic ingredients in place: choose regular Floer data
(J,H), and define the boundary operator for the chain complex CF•(Ŵ , λ̂,
H, J) via

∂x+ =
∑

x−∈P(H), deg(x−)=deg(x+)−1

#Z2 (M(x+, x−)/R) · x−.

Here, we have modded out M(x+, x−) by the reparametrization action in
the domain, and the resulting quotient spaces can be compactified, so the
coefficients in the above sum are actually finite.

Lemma 3.6. This linear map is a differential: ∂ ◦ ∂ = 0.

The Floer homology of (Ŵ , λ̂, J,H) is then defined as the homology

HF•(Ŵ , λ̂, J,H) := H•(CF•(Ŵ , λ̂, J,H), ∂).

3The flow is strictly speaking not defined, since it leads to an ill-posed initial value problem.
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Remark 3.7. In the case of closed symplectic manifolds, Floer homology is
independent of the choice of Floer data. This is not the case for Liouville
domains, and this is the next topic we will deal with.

3.4. Continuation maps and symplectic homology

Assume that H1 and H2 are admissible Hamiltonians on a Liouville manifold
Ŵ with slope(H1) ≤ slope(H2). We interpolate between them via

K : Ŵ × S1 × R −→ R, (w, t, s) �−→ Ks(w, t),

where we impose the monotonicity condition ∂sK ≤ 0, 4 and

Ks(w, t) =

{
H1(w, t), if s � 0
H2(w, t), if s � 0.

We then consider the parametrized Floer equation for u : Z → Ŵ :

(du − XK ⊗ dt)0,1 = 0, lim
s→∞ u(s, t) = x+(t) ∈ P(H1),

lim
s→−∞ u(s, t) = x−(t) ∈ P(H2).

The results of the Fredholm theory mentioned in the previous section also
apply in this setup, and we can define a continuation map as

c12 : CF•(Ŵ , λ̂, J, H1) −→ CF•(Ŵ , λ̂, J, H2),

x+ �−→
∑

x−∈P(H2), deg(x−)=deg(x+)

#Z2M(x+, x−, J, K) · x−,

where M(x+, x−, J,K) is the moduli space of Floer trajectories of the
parametrized Hamiltonian K.

Lemma 3.8. The map c12 is a chain map, and the induced map on homology
is independent of J,K.

We also write c12 for the induced map on Floer homology

c12 : HF•(Ŵ , λ̂, J,H1) −→ HF•(Ŵ , λ̂, J,H2).

Symplectic homology is then defined as the direct limit over a direct system
{Hi}i of admissible Hamiltonians for whose slopes slope(Hi) increase to ∞

SH•(W,λ, J, {Hi}i) := lim−→
cij , j>i

HF•(Ŵ , λ̂, J,Hi). (3.2)

Remark 3.9. Symplectic homology is independent of J , and the sequence of
Hamiltonians {Hi}i. We will henceforth write SH•(W,λ), or SH•(W ) (omit-
ting the dependence on λ for notational simplicity), for symplectic homology.
We similarly use the notation CF•(H) when (W,λ) is fixed.

4This is the monotonicity condition for the continuation map with our conventions for the
Floer equation. Our conventions agree with those in [14].
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3.5. Degenerate Hamiltonians and local Floer homology

In case there is a 1-periodic orbit of H that is degenerate, we perturb H to
a non-degenerate Hamiltonian H̃ with the same slope as H, choose regular
Floer data (J̃ , H̃), and define

HF•(Ŵ , λ̂,H) := HF•(Ŵ , λ̂, J̃ , H̃).

Lemma 3.10. This is well defined, i.e., it is independent of the choice of per-
turbation, and of J̃ .

Instead of choosing explicit perturbed Hamiltonians, we package them
in local Floer homology, which we now review. Suppose H is a Hamiltonian
and assume that x ∈ P(H) is isolated.5 We need the following lemma, which
we adapt from [12]:

Lemma 3.11. Suppose that γ is an isolated 1-periodic orbit of XH with an
isolating neighborhood U . Then, for every neighborhood V of γ with V ⊂ U ,
there is a C2-small perturbation H̃ of H with the following properties:

• All 1-periodic orbits of X
H̃

contained in U are already contained in V ;
• For a compatible almost complex structure J̃ , all Floer trajectories con-

tained in U are already contained in V .

Take a C2-small perturbation H̃ as in the lemma, so that 1-periodic
orbits in U are non-degenerate (via [35, Theorem 9.1]). As in [12], we define
the local Floer homology HF loc

• (γ,H) of γ as the homology of the complex
CF loc

• (U, H̃, J̃) generated by 1-periodic orbits of H̃, with differential count-
ing Floer solutions lying in U . This is well defined and independent of the
isolating neighborhood U , and the perturbed Floer data (J̃ , H̃).

We have the following (see, e.g., formula (3.1) in [18]):

suppHF loc
• (γ,H) ⊂ [Δ(γ) − n,Δ(γ) + n], (3.3)

where suppHF loc
• (γ,H) = {i : HF loc

i (γ,H) �= 0}, and n = dim(W )
2 .

Remark 3.12. We observe that the perturbation in Lemma 3.11 can chosen,
such that the 1-periodic orbits of the perturbed Hamiltonian H̃ have the
same free homotopy class as γ.

3.6. Spectral sequence

Suppose now that H is a Hamiltonian that is linear at infinity with slope(H) /∈
spec(α). We assume furthermore that the 1-periodic orbits of H are all iso-
lated. Hence, there are finitely many 1-periodic orbits with finite action
spectrum AH(P(H)). We order the action values in a strictly increasing se-
quence {ai}k

i=1. Choose a strictly increasing function f : N0 → R, such that
f(i) < ai+1 < f(i + 1).

5In general, we can define local Floer homology for an isolated invariant set.

Vol. 24 (2022) A generalized Poincaré–Birkhoff theorem
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Proposition 3.13. There is a spectral sequence converging to the Floer homol-
ogy HF•(W,λ,H), whose E1-page is given by

E1
pq(H) =

⊕

γ∈P(H)
f(p−1)<AH(γ)<f(p)

HF loc
p+q(γ,H).

We will not give a detailed proof here, but refer to Appendix B of [27]
for an almost identical setup. The spectral sequence is the spectral sequence
associated with the action filtration given by f .

Remark 3.14. This description allows us to define Floer homology for Hamil-
tonians with isolated possibly degenerate orbits. In addition, we can directly
use the free homotopy class of a degenerate periodic orbit, since sufficiently
small perturbations cannot change this class as we already observed in Re-
mark 3.12. This means that we can decompose Floer homology also in this
degenerate setting into free homotopy classes.

A difficulty of this degenerate setup is that a single degenerate orbit can
be responsible for several generators in Floer homology. Formula (3.3) can
be used to retain some control.

This point of view is not new, and has been used extensively in for in-
stance [17] and [21]. The spectral sequence, although not used in [17] and
[21], just gives a convenient packaging, and only serves to make some argu-
ments shorter. The idea of perturbation in Floer theory to get statements of
degenerate orbits is even older, and was for example already used in [35].

3.7. Index-definiteness and grading

We shall need the following:

Lemma 3.15. Suppose that SH•(W,λ) is infinite dimensional, and assume
that λ|∂W is an index-definite contact form. Then, #{i | SHi(W,λ) �= 0} =
∞.

Proof. To prove this, choose a family {HN}N of admissible Hamiltonians
with increasing slopes, such that HN is independent of N on W , and so
that CF•(HN ) injects into CF•(HM ) for M > N . By non-degeneracy, each
CF•(HN ) is finitely generated, so the chain complexes get more generators
with increasing N (since dim SH•(W,λ) = ∞). By the index-definiteness as-
sumption, these new generators have a degree whose absolute value is strictly
increasing if N increases sufficiently. This settles the claim. �

4. Proof of the Generalized Poincaré–Birkhoff Theorem

Let (W,λ) be a Liouville domain with completion (Ŵ , λ̂), r the coordinate
in the cylindrical end, B = ∂W , α = λ|B , and τ a Hamiltonian twist map
generated by H = Ht. The symplectic form on the cylindrical end is d(rα),
so by the Hamiltonian twist condition, we get ht : B → R

+, such that
XHt

|B = htRα. This means that Ht|r=1 ≡ Ct > 0, with ∂rHt|r=1 = ht.
The family of Hamiltonians Ht is not necessarily linear at infinity, and might
hence be unsuitable to compute symplectic homology. To deal with this we
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will construct an extension Ĥ to the cylindrical end of Ŵ that is linear at
infinity. By assumption, we have a time-dependent Hamiltonian H defined
on W . In a collar neighborhood ν(B) of the boundary, we will write H :
(1 − ε, 1] × B × S1 → R, where r is the collar neighborhood parameter.
We extend H to Ĥ on Ŵ using the following procedure. First of all, define
H0(b, t) := H(r = 1, b, t) and H1(b, t) := ∂H

∂r |r=1,b,t. We put the remainder in

the function (r−1)2

2! H2, so in short, we define

H2 = (H − (H0 + (r − 1)H1))
2

(r − 1)2

on the collar neighborhood ν(B). By construction H2 is a smooth function on
a halfspace. The functions H0 and H1 are r-independent, so admit obvious
extensions to r > 1, but the function H2 is r-dependent, so we will appeal to
[36], which is based on reflection, to extend H2 to r > 1. We call this extension
H2. Now, choose δ1 > δ0 > 0 and choose a decreasing cut-off function ρ with
ρ|[1,1+δ0] = 1 and ρ(r) = 0 for r > 1 + δ1;

• put Ĥ2(r, b, t) = H2(r, b, t) · ρ(r);
• put Ĥ0(r, b, t) = C ≥ maxt(Ct), Ĥ1(r, b, t) = A ≥ maxt,b(ht(b)) for

r ≥ 1 + δ1;
• and put Ĥj(r, b, t) = Hj(b, t)·ρ(r)+(1−ρ(r) )Ĥj(1+δ1, b, t), for j = 0, 1.

The extension is then defined as

Ĥ := Ĥ0(r, b, t) + (r − 1)Ĥ1(r, b, t) +
(r − 1)2

2!
Ĥ2(r, b, t). (4.4)

By the above, we see that H0 = Ct and H1 = ht, so with our choices,
we conclude that Ĥ = A(r − 1) + C for large r. The extension Ĥ is therefore
linear at infinity, and by perturbing A, we can assume that A /∈ spec(α). The
same can be arranged for all iterates Ĥ#k by possibly changing the slope A.
The resulting Hamiltonians are then all linear at infinity, but they may have
1-periodic orbits that are degenerate. If all the degenerate 1-periodic orbits
are isolated, then we can still define the Floer homology HF•(Ŵ , λ̂, Ĥ#k)
using Remark 3.14. Let us call a Hamiltonian for which all 1-periodic orbits
are isolated, and that is linear at infinity with slope not in the spectrum
weakly admissible.

Since we will focus on return maps, it will be convenient to have some
shorthand notation. Define τ̂k := Fl

X
Ĥ#k

1 , and with the above remark in
mind, we put HF•(τ̂k) := HF•(Ŵ , λ̂, Ĥ#k). We summarize this discussion
in the following lemma:

Lemma 4.1. The extended Hamiltonians Ĥ#k are linear at infinity. Further-
more, if there is an increasing sequence {ki}i ⊂ N, such that each Hamilton-
ian Ĥ#ki is weakly admissible, then we have the following isomorphism:

SH•(W,λ) ∼= lim−→
ki

HF•(τ̂ki),

where τ̂k = Fl
X

Ĥ#k

1 . �
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For later purposes, we need the explicit form of X
Ĥt

. This is given by

X
Ĥt

=
(

∂rĤ0 + Ĥ1 + (r − 1)∂rĤ1 + (r − 1)Ĥ2 +
(r − 1)2

2
∂rĤ2

)

Rα

+
r − 1

r

(

Xξ

Ĥ1
+

r − 1
2

Xξ

Ĥ2
−
(

dĤ1(Rα) +
r − 1

2
dĤ2(Rα)

)

Y

)

.

(4.5)
Here, Y = r∂r is the Liouville vector field, and Xξ

h ∈ ξ is the ξ-component
of the contact Hamiltonian vector field Xh = hRα + Xξ

h of a Hamiltonian
h : B → R, defined implicitly by the equation dα(Xξ

h, ·) = −dh|ξ. Due to
our choice of interpolation, the second term will be smaller in C0-norm if we
choose δ1 smaller. We denote the coefficient of Rα by

F = ∂rĤ0 + Ĥ1 + (r − 1)∂rĤ1 + (r − 1)Ĥ2 +
(r − 1)2

2
∂rĤ2.

Lemma 4.2. If δ1 is chosen to be sufficiently small, then F is positive.

Proof. To see this, we note that the first three terms are non-negative, and
the second term is at least mint,b ht(b) > 0. To see that the last two terms
can be made sufficiently small, note that Ĥ2 has a bound independent of δ1,
and ∂rĤ2 is bounded by C2/δ1, where C2 is independent of δ1. Because this
term is multiplied by a factor (r − 1)2, which is bounded by δ2

1 , the claim
follows. �

As a result, we see that X
Ĥ

is mostly following the positive Reeb di-
rection if we choose δ1 sufficiently small. In the proof of Lemma 4.5, we will
investigate the linearization of X

Ĥ
, which ideally would require closeness to

a reparametrized Reeb flow in C1-norm rather than C0-norm. However, C1-
closeness does not hold, but we will perform a finer analysis with additional
assumptions, which will allow us to fix δ1.

Lemma 4.1 allows us to compute symplectic homology with the extended
Hamiltonian, but it does, by itself, not give any control over periodic orbits in
the extension. To prove our main theorem, we want to show that all generators
of SH•(W,λ) represent periodic points of τ (i.e., lie in W ). To do so, we need
to show that the additional periodic points of τ̂ do not contribute to the
symplectic homology. Depending on the situation, we will use a filtration by
homotopy classes or a filtration by index. More specifically, for p ∈ Fix(τ̂k),

consider the loop γp(t) = Fl
X

Ĥt
t (p). Then

• If dim W = 2, the free homotopy class of γp in π̃1(W ) can be used to
see that the additional periodic orbits do not contribute homologically;

• If dimW > 2, the CZ-index and the index-definiteness assumption will
be used to arrive at the same conclusion.

4.1. Filtration by homotopy class

Assume dim W = 2. Let Fix∂(τ̂k) := Fix(τ̂k) ∩ ([1,+∞) × B). Given p ∈
Fix∂(τ̂k), let [γp] be the free homotopy class in π̃1(∂pW ) ∼= Z, where ∂pW is
the connected component of ∂W containing p. We denote the absolute value
of this integer by |[γp]|.
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Lemma 4.3. Assume the hypothesis of Theorem A, and that dim W = 2.
Then, there is A > 0, independent of k, such that for all p ∈ Fix∂(τ̂k), we
have |[γp]| ≥ Ak.

Proof. On each circle component of B, choose an angular coordinate φ, such
that Rα = ∂φ. From Eq. (4.5) and Lemma 4.2, we see that the component of
X

Ĥ
in the ∂φ-direction is bounded from below by some constant A > 0, e.g.,

A = infB F . Iterating, we get a bound of the claimed form Ak. �
Corollary 4.4. Suppose W and τ are as in the assumptions of Theorem A,
with dim W = 2. Then, Theorem A holds.

Proof. To prove the statement, we will argue by contradiction, so we assume
that the periods of τ are bounded: denote the minimal periods by m0 = 1 <
m1 < . . . < mM ; we include m0 even if τ has no fixed points.

Fix a positive integer N and let A be as in Lemma 4.3. Let δ denote a
free homotopy class in π̃1(W ) that is represented by a simple Reeb orbit (a
boundary parallel simple loop). For i ∈ {1, . . . , N} and the iterate iδ, from
Corollary B.3, we have rkSHiδ

• (W ) = 2 (here, we use the notation from
Appendix B).

We now use the assumption that all fixed points of τ are isolated, and
choose k > mM , such that k is not divisible by m1, . . . ,mM (for example
choose a large prime). This choice of k forces the 1-periodic orbits of Ĥ#k

to be isolated on the interior of W . By construction, the Hamiltonian Ĥ#k

is linear at infinity, so we find r∞, such that Ĥ#k is linear on [r∞,∞) × B.
If there are non-isolated 1-periodic points of Ĥ#k on the cylindrical part
[1, r∞] × B, then we use Lemma 4.6 below to perturb the Hamiltonian Ĥ#k;
this perturbation makes all orbits on [1, r∞] × B non-degenerate, and does
not affect 1-periodic orbits on the interior of W . Hence, we obtain a weakly
admissible, possibly degenerate Hamiltonian, which we continue to denote by
Ĥ#k. For this Hamiltonian, we can define Floer homology using Remark 3.14.

By choosing an increasing sequence {k} of primes, we can then define
SHiδ

• (W ) = lim−→k
HF iδ

• (Ĥ#k). Hence, we find a sufficiently large k that

2 ≤ rk HF iδ
• (Ĥ#k) =

∑

p,q

E∞
pq(Ĥ#k) ≤

∑

p,q

E1
pq(Ĥ

#k) =
∑

p,q

rk HF loc,iδ
p+q (γ, Ĥ#k).

All of these sums are finite by the assumption that the fixed points are
isolated. We conclude that there is a 1-periodic orbit γk,iδ of Ĥ#k whose
free homotopy class equals iδ. From Lemma 4.3, every p ∈ Fix∂(τ̂k) has
[γp] = jδ with j ≥ Ak. If we choose k > N/A, we see that j > N , so the
1-periodic orbit γk,iδ is represented by a fixed point of τk.

This works for all N , so by sending k to infinity, we get infinitely many
periodic points of τ . To see that these are geometrically distinct, note that if
p ∈ Fix(τk) and a := [γp] = iδ is boundary parallel, then γ�

p has homotopy
class �a, so another orbit must represent the free homotopy class a. Taking
the limit in k, we see that new generators in the homotopy class a need to
appear to generate SHa(W ). This gives infinitely many geometrically distinct
interior periodic points (in different boundary parallel homotopy classes). �
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4.2. Filtration by index

We now deal with the second case, so we assume now that dim W > 2,
c1(W )|π2(W ) = 0, and that the Reeb flow is strongly index-definite. To set
up the argument, we first need to establish that index-definiteness of the lin-
earized Reeb flow equation at the boundary (in the sense of Definition E.1 in
Appendix E) implies index-definiteness of the linearized Hamiltonian equa-
tion along the cylindrical end:

Lemma 4.5. Assume that (ξ|B , dα|B) is symplectically trivial, and that the
linearized Reeb flow equation ψ̇ = ∇ψRα along B = ∂W is strongly index-
definite. Then, the linearized Hamiltonian flow equation ψ̇ = ∇ψX

Ĥ
of the

extension Ĥ given by Eq. (4.4) is also strongly index-definite along the cylin-
drical end [1,+∞) × B.

Proof. We prove this using a matrix representation. To do this, we need
to symplectically trivialize the full tangent bundle on the cylindrical ends.
Given a symplectic trivialization of (ξ|B , dα|B), we only need to trivialize the
symplectic complement of ξ. We do this using the trivialization L = 〈Y =
r∂r, R〉, where R = Rα/r is the Reeb vector field at the r-slice.

We will work with the usual formalism of time-dependent Hamiltonians,
and we do not include this time-dependence in the notation. Exterior and
covariant derivatives are computed using the base manifold only, and do not
involve time derivatives. We will also use the following notation:

Xξ := Xξ

Ĥ1
+

r − 1
2

Xξ

Ĥ2
,

G := dĤ1(Rα) +
r − 1

2
dĤ2(Rα).

To compute the linearization, we choose a convenient connection ∇, namely
the Levi–Civita connection for the metric 1/r2 · dr ⊗ dr + α ⊗ α + dα(·, J ·).
This connection has the following properties:

• ∇Y = 0. Keep in mind that Y is the Liouville vector field r∂r;
• ∇Rα

Rα = 0 and ∇Y Rα = 0;
• ∇XRα ∈ ξ for all X ∈ ξ.

With respect to this connection, we compute the linearization as

∇X
Ĥ

= F∇Rα + dF ⊗ Rα +
1
r2

dr

⊗(Xξ − GY ) +
r − 1

r
(∇Xξ − dG ⊗ Y ). (4.6)

Before we continue our analysis of the linearization, we first need to discuss
the behaviour of the Hamiltonians Ĥj and their derivatives under rescaling
the interpolation parameter δ1. We will write the terms in the expression (4.4)
as Ĥ ′

j if we use δ′
1 as interpolation parameter. For δ′

1 < δ1, we have the
following:
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• derivatives in the B-direction (denoted ∂b) admit a uniform bound, in-
dependent of δ1, that is

max
[1,+∞)×B

|∂k
b Ĥ ′

j | ≤ max
[1,+∞)×B

|∂k
b Ĥj | for all k ≥ 0;

• derivatives in the r-direction scale as follows:

max
[1,+∞)×B

|∂k
r Ĥ ′

j | ≤
(

δ1

δ′
1

)k

max
[1,+∞)×B

|∂k
r Ĥj | for all k ≥ 0.

Keeping this scaling behaviour in mind, we regroup terms in Eq. (4.6) to
obtain the following representation:

∇X
Ĥ

= L0 + L1,

where

L0 = F∇Rα + dF ⊗ Rα +
1
r2

dr ⊗ (Xξ − GY ) − r − 1
r2

dG(Y )dr ⊗ Y

+
r − 1
r2

dr ⊗ ∇Y Xξ

and

L1 =
r − 1

r

(∇ξXξ + α ⊗ ∇Rα
Xξ − Rα(G)α ⊗ Y − dξG ⊗ Y

)
.

Here, ∇ξ = Pξ∇|ξ, where Pξ is the orthogonal projection to ξ, and dξ = d|ξ.
We will explain below that the matrices L0 and L1 have the following matrix
representations, with respect to the decomposition TŴ = ξ ⊕ 〈Y,R〉:

L0 =

⎛

⎜
⎜
⎝

F · ∇ξRα
U 0
V 0

0 0
W Z

a 0
b c

⎞

⎟
⎟
⎠ , L1 =

r − 1
r

⎛

⎜
⎜
⎝

∇ξXξ
0 U ′

0 V ′

W ′ Z ′

0 0
0 a′

0 0

⎞

⎟
⎟
⎠ .

This is clear for L0. We further want to show that L0 ∈ sp(2n), which will
constrain the entries more. Since we know that L0 + L1 ∈ sp(2n), we will
show that L1 ∈ sp(2n), since the latter contains fewer terms. For this we note
the following:

• the matrix representation for ∇ξXξ is in sp(2n − 2). This is because
these entries come from the ξ-part of a contact Hamiltonian;

• the matrix representation for Rα(G)α ⊗ Y is in sp(2): the non-trivial
entry corresponds to the element a′;

• non-trivial entries in the matrix representation of −dξG⊗Y appear only
on the first row of the lower left block. These correspond to the elements
W ′, Z ′;

• non-trivial entries in the matrix representation of α ⊗ ∇Rα
Xξ appear

as the last column. We will show that these correspond to the elements
U ′ and V ′. We claim that 〈∇Rα

Xξ, Rα〉 = 0. Indeed, since the contact
structure is orthogonal to the Reeb vector field with our choice of metric,
we have

0 = Rα〈Xξ, Rα〉 = 〈∇Rα
Xξ, Rα〉 + 〈Xξ,∇Rα

Rα〉 = 〈∇Rα
Xξ, Rα〉.
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Similarly, we obtain 〈∇Rα
Xξ, Y 〉 = 0. This means that the L-entries in

the matrix representation of α ⊗ ∇Rα
Xξ are zero.

• we have (W ′, Z ′)T = J · (U ′, V ′)T = (−V ′, U ′)T . This follows, since
−dξG is dual to ∇Rα

Xξ, i.e., dα(∇Rα
Xξ, ·) = −dξG.

We conclude that L1 ∈ sp(2n), and hence, L0 is, too. Observe also that for
all ε > 0, we can choose δ1 > 0, such that ‖L1‖ < ε due to the scaling
behaviour we discussed earlier: this can be done in a way that is compatible
with Lemma 4.2, i.e., δ1 getting smaller as ε gets smaller.

Since J0L0 is symmetric, we can fix the terms of L0. They must neces-
sarily have the following form:

L0 =

⎛

⎜
⎜
⎝

F · ∇ξRα
U 0
V 0

0 0
V −U

a 0
b −a

⎞

⎟
⎟
⎠ ∈ sp(2n).

This matrix has precisely the form that we consider in Appendix E. More-
over, note that strong index-definiteness is invariant under scaling by a posi-
tive (possibly time-dependent) function of the generating matrix. Indeed, this
scaling has the effect of positively reparametrizing the flow, and so the new
flow intersects the Maslov cycle as often as the original one (although the
constants in the definition of strong index-definiteness might change). There-
fore, since the ODE ψ̇ = ∇ξ

ψRα is strongly index-definite by assumption and
F > 0, then so is the ODE ψ̇ = F · (∇ξ

ψRα). Lemma E.2 in Appendix E
now tells us that the system ψ̇ = L0ψ is strongly index-definite. By choos-
ing δ1 sufficiently small, we can make the matrix L0 get arbitrarily C0-close
to L0 + L1 = ∇X

Ĥ
. Since the system ψ̇ = L0ψ is strongly index-definite,

we can adapt Lemma 2.2.9 from [37] to see that ψ̇ = ∇ψX
Ĥ

is strongly
index-definite, too. This concludes the proof of Lemma 4.5. �

We need the following lemma to ensure that our Hamiltonians are
weakly admissible.

Lemma 4.6. Given an extension τ̂ : Ŵ → Ŵ as in the beginning of Sect. 4,
there is a Hamiltonian perturbation τ̃ = φ1

f ◦ τ̂ : Ŵ → Ŵ with the following
properties:
(1) φ1

f (x) = x for all x not in a neighborhood of [1, r∞] × B, for some fixed
r∞ > 1. In particular, all interior fixed points of τ are unaffected by the
perturbation;

(2) all fixed points of τ̃ |[1,r∞]×B are non-degenerate and hence isolated;
(3) by the standard composition rule for Hamiltonians τ̃ is the time 1-flow

of a Hamiltonian H̃. This Hamiltonian H̃ is C2-close to Ĥ, and its fixed
points have Robbin–Salamon index close to that of the unperturbed fixed
points.

Proof. We adapt the argument from [10, Lemma 2] to our setting. Set V :=
[1, r∞]×B, where r∞ > 1 is such that Ĥ is linear on [r∞,∞)×B. We need to
find a C2-small function f vanishing on the complement of a neighborhood
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of V , such that all fixed points of φ1
f ◦ τ̂ are non-degenerate on V . Consider

the map

j : V −→ V × V, x �−→ (x, τ̂(x)),

and denote its image by Γ. Define the diagonal Δ = {(v, v) ∈ V ×V | v ∈ V }.
Observe that v ∈ Fix(τ̂) is a non-degenerate fixed point of τ̂ if and only if Γ
and Δ intersect transversely at (v, v).

For all points (v, v) ∈ Γ ∩ Δ, choose a Darboux ball Bε(v) ⊂ Ŵ , such
that v corresponds to 0 in the Darboux ball. To choose ε, let λmax denote
the maximal (in absolute value) eigenvalue of dxτ̂ over all fixed points of τ̂
in the cylinder. In a formula

λmax := max{|λ| | λ eigenvalue of dxτ̂ , x ∈ Fix(τ̂) ∩ [1, r∞] × B}.

Note that λmax ≥ 1, since dxτ̂ is symplectic. Choose ε so small, such that the
following two properties hold:

• if x ∈ Bε/2λmax(v), then τ̂(x) ∈ B3ε/4(v).
• for all interior fixed points of τ , i.e., for x ∈ Fix(τ |int(W )) we have

d(x, [1,∞]×B) > ε, where d is some fixed reference metric (for example,
induced by the Riemannian metric ω̂(·, Ĵ ·)).

We give some intuition for these choices, before going into the computation.
By the first property, we retain some control after applying τ̂ to a point that
is sufficiently close to a fixed point. Intuitively, if x is close to the fixed point
v, then by the definition of λmax, the map τ̂ sends x approximately away
by a factor of at most λmax, and so we ensure that if x ∈ Bε/2λmax(v), then
τ̂(x) ∈ B3ε/4(v). Below, we will define Hamiltonian functions to perturb the
map τ̂ , and this property will ensure that we have maximal control over the
value of the Hamiltonian vector fields. This point is actually not essential,
but it makes the computation below a little more uniform.

We now come to our Hamiltonian perturbation functions. Choose func-
tions fv,i for i=1, . . . , 2n, such that, in Darboux coordinates z=(z1, . . . , z2n),
we have fv,i(z) = zi · ρv(z), and ρv is a cut-off function that equals 1 on
B3ε/4(v) and vanishes outside Bε(v). For the sake of explicitness, note that
the Hamiltonian vector field of fv,i is given by

Xfv,i
= ρv(z)J0 · ei + zi · Xρv

,

where ei is the ith standard basis vector, and J0 is the standard complex
structure on the Darboux ball Bε(v). By construction, this vector field van-
ishes on the complement of Bε(v). Moreover, for sufficiently small r, the time-
1 flow of the Hamiltonian vector field of rfv,i on the smaller ball Bε/2λmax(v)
is the map z �→ z + rJ0 · ei. If x ∈ Fix(τ̂) ∩ Bε/2λmax(v), we have

∂

∂r

∣
∣
∣
r=0

φ1
rfv,i

◦ τ̂(x) =
∂

∂r

∣
∣
∣
r=0

φr
fv,i

◦ τ̂(x) = Xfv,i
(τ̂(x)).

For completeness, we observe that each of these functions fv,i is a C∞ func-
tion defined on all of Ŵ , vanishing outside Bε(v).

Since Γ ∩ Δ is compact, we find a finite cover of its projection to V
of the form

⋃
v∈I Bε/2λmax(v). We make the following observation. Consider
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x ∈ Fix(τ̂) ∩ [1, r∞] × B. Then, there is v ∈ I, such that x ∈ Bε/2λmax(v). On
this small ball, the Hamiltonian vector fields associated with fv,1, . . . , fv,2n

are linearly independent, and form a basis of sections.
Define the finite-dimensional vector space

R :=
(
R

2n
)#I

= R
D,

where we have set D := 2n#I. We relabel the functions fv,i using a single
index j, and put f = (f1, . . . , fD). Define the projection p : V × V × R →
R, (x, y, r) �→ r, and consider the “universal” space

ΓR =

{

(x, y, r) ∈ V × V × R

∣
∣
∣
∣
∣

x ∈ V, r = (r1 . . . , rD) ∈ R,

y = φ1
r·f ◦ τ̂(x), r · f =

∑

j

rjfj

⎫
⎬

⎭
.

Note that the function r ·f is a C∞ function defined on all of Ŵ : this function
vanishes outside a neighborhood of [1, r∞] × B.
Claim: The space ΓR intersects the enlarged diagonal ΔR = {(v, v, r) ∈
V × V × R} transversely for r that are sufficiently close to 0. In particular,
VR := ΓR ∩ ΔR is a submanifold. �

Proof of claim. To verify the claim, we compute the derivatives of the map

jR : (x, r) �→ (x, φ1
r·f ◦ τ̂(x), r)

and the corresponding map for ΔR, jΔ : (x, r) �→ (x, x, r). For jR, we find
the derivative

dx,r=0jR =

⎛

⎝
idV 0
dxτ̂ Xf1(τ̂(x)), . . . , XfD

(τ̂(x))
0 idR

⎞

⎠ .

For jΔ, we find the derivative

dx,r=0jΔ =

⎛

⎝
idV 0
idV 0
0 idR

⎞

⎠ .

Given a point (x, x, 0) ∈ VR = ΓR∩ΔR (so τ̂(x) = x), there is v ∈ I, such that
x ∈ Bε/2λmax(v). By construction, the vector fields Xfv,1 ◦ τ̂ , . . . , Xfv,2n

◦ τ̂
are linearly independent on Bε/2λmax(v). This means that, taken together,
the matrix representations of dx,r=0jR and dx,r=0jΔ have full rank, namely
2n + 2n + D. We conclude that jR is transverse to the enlarged diagonal ΔR

for r = 0, and hence, by compactness, also for small r. �

Applying Sard’s theorem to the projection p|VR
, we find a regular value

r0 of p|VR
close to 0. We see that

Γr0 = {(x, y) ∈ V × V | y = φ1
r0·f ◦ τ̂(x)}

intersects Δ transversely. This means that all fixed points of φ1
f0

◦ τ̂ in V are
non-degenerate, where f0 = r0 ·f , so claim (2) holds. Since we can choose the
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regular value r0 arbitrarily small, and since the support of the perturbation
f0 is a small neighborhood of [1, r∞] × B, the claim (1) holds. To see that
claim (3) also holds, we note that the free homotopy class of a 1-periodic orbit
is not affected by this perturbation if it is sufficiently small. For the index, we
use the same argument as before. The unperturbed system is strongly index-
definite, and the same will be true for small perturbations. This concludes
the proof of the lemma. �
Proof of Theorem A (dim W > 2). Write τ = φ1

H for H as in Definition
1.1. Assuming its interior fixed points are isolated, we have finitely many
isolated interior 1-periodic orbits of H, say γ1, . . . , γk. The starting points
γ1(0), . . . , γk(0) are the fixed points of τ .

Assume by contradiction that the minimal periods of all interior periodic
points of τ are, in increasing order, given by m0 = 1,m1, . . . ,m�. Take an
increasing sequence {pi}∞

i=1 going to infinity, such that each pi is indivisible
by the m1, . . . ,m�. For instance, one can take the sequence {pi} to be an
increasing sequence of primes all of which are larger than maxj mj .

As in the proof of Corollary 4.4, we can appeal to Remark 3.14 to
define Floer homology for a possibly degenerate Hamiltonian. Indeed, due
to the choice of pi’s, all fixed points of τ̂pi are isolated, and we can apply
Lemma 4.6 if necessary to perturb the Hamiltonian Ĥ#pi on the cylindrical
part [1, r∞] × B, for some r∞. This ensures that the Hamiltonian Ĥ#pi is
weakly admissible, so we can use local Floer homology and the spectral se-
quence from Proposition 3.13, to define HF (Ĥ#pi). Hence, we can compute
symplectic homology as SH•(W ) = lim−→i

HF•(Ĥ#pi). By Lemma 3.15, for all
N > 2nk, where dim(W ) = 2n, we find distinct degrees i1, . . . , iN , such that
SHij

(W ) �= 0, ordered by increasing absolute value. By Lemma 4.5, we can
choose pi sufficiently large, such that the following holds:

(1) Each 1-periodic orbit of Ĥ#pi that is contained in Ŵ\int(W ) has RS-
index whose absolute value is larger than |iN | + 2n;

(2) the Floer homology groups HFij
(Ĥ#pi) are non-trivial for j = 1, . . . , N .

Now, consider the spectral sequence from Proposition 3.13 for Ĥ#pi . We
deduce from (2) that there must be non-trivial summands on E1

pq(Ĥ
#pi)

with p + q = ij for j = 1, . . . , N . Since the terms of the spectral sequence
are made up from local Floer homology groups, and we know from (1) that
no 1-periodic orbit in Ŵ\int(W ) can contribute to local Floer homology of
degree ij , we conclude that every term E1

pq(Ĥ
#pi) in the spectral sequence

with p + q = ij must come from the local Floer homology of an orbit γ in
int(W ).

Because we have assumed that the pi’s are indivisible by m1, . . . ,m�,
we conclude that each such orbit γ must be an iterate of one of the orbits
γ1, . . . , γk. Moreover, by (3.3) and Sect. 3.2:

suppHF loc
• (γpi

j , Ĥ#pi) ⊂ [piΔ(γj) − n, piΔ(γj) + n].

This covers at most 2nk different degrees, leaving some of the degree ij
uncovered as we had chosen N > 2nk. This is a contradiction. �
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Proof of Theorem B. We only need to show that dimSH•(W ) = ∞. Since
W ⊂ T ∗M is star-shaped, from Viterbo’s theorem [38], we have SH•(W ) ∼=
H•(LM ;Z2) where LM is the free loop space of M . The statement is more
subtle when using Z or Q-coefficients, see [4]. Now, we can apply the following
theorem due to Gromov: �
Theorem. [19, Sect. 1.4] Let (M, g) be a closed Riemannian manifold with
finite fundamental group. For a > 0, let LM be the free loop space of M , and
let L<aM ⊂ LM denote the space of free loops with length less than a. Let ιa :
L<aM ↪→ LM denote the inclusion, and ιak : Hk(L<aM ;R) → Hk(LM ;R)
be the map induced in real homology of degree k. Then, there exists a positive
constant C = C(M, g), such that

∑

k≥0

rank(ιak) ≥ Ca.

Together with the above, this tells us that SH•(W ) is infinite dimen-
sional. �
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Appendix A: Hamiltonian twist maps: examples and
non-examples

We will now discuss some examples that help clarify the nature of the Hamil-
tonian twist condition.

A.1. Examples

The following construction, an adaptation of a standard one, further illus-
trates that the Hamiltonian twist condition is not localized at B.

Proposition A.1. For each k, � ∈ N, there are strict contact manifolds
(Yk, αk,�) carrying adapted open books (Bk = B, πk), πk : Yk\B → S1, with
fixed page Σ, such that the following holds:
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• The return maps τk all agree in a collar neighborhood of B = ∂Σ, and
are generated by Hamiltonians Hk;

• Furthermore, there is a symplectomorphism φk from Σ̊, the interior of
the page Σ, to the open subset W2 of the Liouville completion Ŵ of a
fixed Liouville domain (W,λ) with ∂W = B, where

W2 = W ∪∂ ([1, 2) × B, d(rαB) ),

and αB = λ|B is the contact form at B, and r ∈ [1, 2).
• The return map φk ◦ τk ◦ φ−1

k extends to a Hamiltonian diffeomorphism
τ̄k on the closure W̄2, generated by Hamiltonians H̄k.

• The Hamiltonian twist condition holds for H̄k for k ≤ �, but not for
k > �.

Proof. Consider a Liouville domain (W,λ) with a 2π-periodic Reeb flow on its
boundary (e.g., D∗S2). We identify a collar neighborhood νW (B) of B = ∂W
with (1/2, 1]×B, where B = {r = 1}, via a diffeomorphism ε : (1/2, 1]×B −→
νW (B) ⊂ W . We assume λ = rαB along νW (B), αB = λ|B . Define the
smooth Hamiltonian

H(x) =

{
0, if x /∈ νW (B),
f(r), if x = ε(r, b) ∈ νW (B).

Here, f is a smooth, decreasing function with the property
• f(1/2) = 0;
• f ′(r) ≥ −2π and f ′(r) = −2π near r = 1.

The Hamiltonian vector field of H is given by

XH(x) =

{
0 if x /∈ νW (B),
f ′(r)Rα if x = ε(r, b) ∈ νW (B).

Define the fibered Dehn twist by τ(x) = FlXH
1 (x), where FlXH

t is the Hamil-
tonian flow of H with respect to dλ. We have τ∗λ = λ−dU , where we choose
the primitive U to be a negative function: with a computation, we can show
that it is possible to choose U(1) = −2π, and will do so. The iterate τk is
generated by Hk = kH, and (τk)∗λ = λ − dUk, with Uk =

∑k−1
j=0 (U ◦ τ j).

We consider the associated open book

Yk = OB(W, τk) := B × D2 ∪∂ Wτk ,

where Wτk = W × R/(x, t) ∼ (τk(x), t + Uk(x)) is the mapping torus. The
manifold Yk carries an adapted contact form αk,� which looks like αk,� = λ+
dθ along Wτk , and αk,� = h1(ρ)αB +h2(ρ)dθ along B×D2. Here, (ρ, θ) ∈ D2,
and h1 and h2 = h2,k,� are suitable profile functions, which we will fix now.
Choose h1 and h2, such that

• they do not depend on k for ρ ≤ 1/2;
• h′

1 ≤ 0 with equality only at ρ = 0. We may take h1(ρ) = 2 − ρ2 near
ρ = 0 (this is not essential but very convenient);

• near ρ = 0, we have −h′
2

h′
1
(ρ) = � + ε > 0 (non-singular) for some small

ε ∈ (0, 1).
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• h2 ≡ k, h1 = −ρ + 2 near ρ = 1 (so h2 depends on k on the interval
(1/2, 1]).

Note that, in the definition of Yk, the binding model is glued to the mapping
torus using the gluing map

Φglue : B × D2
ρ>1/2 −→ Wτk

(b; ρ, θ) �−→
(

2 − ρ, b;
−Uk(1)θ

2π

)

= (2 − ρ, b; kθ).

This pulls back dθ + λ to kdθ + (2 − ρ)αB . This explains the above choices.
The global hypersurface of section, i.e., a fixed page, is Σ = W ∪∂ B ×

[0, 1], with coordinate ρ ∈ [0, 1], and we can compute the return map τk

explicitly. We find

τk(x) =

{
τk(x), if x ∈ W,

(FlR−2πh′
2(ρ)/h′

1(ρ)(b), ρ), if x = (b, ρ) ∈ B × [0, 1],

where FlRt is the Reeb flow of αB at B. The Hamiltonian generating τk can
be obtained by patching Hk on W to a Hamiltonian that generates τk along
B×[0, 1]; we need to match the slopes on the boundary, which can be done by
rewriting τk(b, ρ) = (FlR−2π(h′

2(ρ)/h′
1(ρ)+k)(b), ρ). Then, Hk extends to Σ via

H̄k(r) = −2π
∫ ρ

1
(h′

2(s)/h′
1(s)+k)h′

1(s)ds+f(1) along B×[0, 1]. Note that the
form dλ also extends along B × [0, 1] via dαk,�|Σ = h′

1(ρ)dρ ∧ αB . Therefore,
Hk generates τk, and τk is independent of k on the collar neighborhood B ×
[0, 1/2].

To complete the proof, we first note that the 2-form d(h1(ρ)αB) is de-
generate on ∂Σ. However, the map

φk : Σ̊ −→ W2 = W ∪∂ ([1, 2) × B, d(rαB) ),

w �−→
{

w w ∈ W

(h1(ρ), b) w = (b, ρ) ∈ B × (0, 1]

is a symplectomorphism, and the closure of W2 is an actual Liouville domain.
Furthermore, due to our explicit choice h1(ρ) = 2 − ρ2 near ρ = 0, we find
ρ =

√
2 − r, so we can compute the conjugated return map φk ◦ τk ◦φ−1

k near
r = 0 as

φk ◦ τk ◦ φ−1
k (r, b) = (r, F lR2π(�+ε)(b)).

This map extends to a symplectomorphism τ̄k : W̄2 → W̄2. Here, note that
φ−1

k is not smooth at r = 2, but this is resolved by the explicit form of τk,
which does not contain any ρ dependence in the B-direction near ρ = 0. This
extended map is still Hamiltonian, and satisfies the twist condition for k ≤ �,
but not for k > �.

Therefore, it satisfies the claim of the proposition. �

Remark A.2. Given a return map τ that is Hamiltonian, we point out that
the Hamiltonian family generating τ is not unique, and more importantly,
that various dynamical properties depend on the choice of Hamiltonian. For
example, on the disk (D2, rdr ∧ dθ), the return map τ = id is generated by
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the autonomous Hamiltonians Hk = kπr2. For given k, the Robbin–Salamon
index of the 1-periodic orbit at ∂D2 is 2k, i.e., k-dependent. The associated
paths of symplectic matrices have the same endpoints, but are not homo-
topic rel endpoints. This also illustrates the interpretation of the RS-index
as a winding number. Note that D2 has a Hamiltonian circle action that
extends over the whole space. We do not know whether the same type of
phenomenon occurs for more general symplectic manifolds (i.e., without a
global Hamiltonian circle action).

A.2. Non-examples: Katok examples

In [25], Katok constructed examples of non-reversible Finsler metrics on Sn

with only finitely many simple closed geodesics. Here is a description of such
examples using Brieskorn manifolds. We consider

Σ2n−1 :=

⎧
⎨

⎩
(z0, . . . , zn) ∈ C

n+1

∣
∣
∣
∣
∣

∑

j

z2
j = 0

⎫
⎬

⎭
∩ S2n+1

1 ,

equipped with the contact form α = i
2

∑
j zjdz̄j − z̄jdzj . These spaces are

contactomorphic to S∗Sn with its canonical contact structure. The given
contact form is actually the prequantization form.

We describe the setup in detail when n = 2m + 1 is odd. We group the
coordinates in pairs, and make the following unitary coordinate transforma-
tion:

w0 = z0, w1 = z1, w2j =
√

2
2

(z2j + iz2j+1), w2j+1

=
i
√

2
2

(z2j − iz2j+1) for j = 1, . . . ,m.

Because this is a unitary transformation, the form α, expressed in w-
coordinates, still has the form

α =
i

2

∑

j

wjdw̄j − w̄jdwj .

For a tuple ε = (ε1, . . . , εm) ∈ (−1, 1)m, define the function Hε on a neigh-
borhood of Σ2n−1 via

Hε(w) = ‖w‖2 +
∑

j

εj(|w2j |2 − |w2j+1|2).

For ε sufficiently small, this function is positive, so we define a perturbed
contact form by

αε = H−1
ε · α.

The Reeb vector field of αε is

Rε = Xε + Xε,
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where

Xε = iw0
∂

∂w0
+ iw1

∂

∂w1
+
∑

j

(

i(1 + εj)
∂

∂w2j
+ i(1 − εj)

∂

∂w2j+1

)

,

Xε = −iw0
∂

∂w0
− iw1

∂

∂w1
−
∑

j

(

i(1 + εj)
∂

∂w2j
+ i(1 − εj)

∂

∂w2j+1

)

.

The Reeb flow is therefore given by

(w0, . . . , wn) �−→ (e2πitw0, e
2πitw1, e

2πit(1+ε1)w2, e
2πit(1−ε1)w3,

. . . , e2πit(1+εm)wn−1, e
2πit(1−εm)wn).

This flow has only n + 1 periodic orbits if all εj are rationally independent.
These are given by

γ0(t) =
(

1√
2
e2πit,

i√
2
e2πit, 0, . . . , 0

)

, t ∈ [0, 1]

β0(t) =
(

1√
2
e2πit,− i√

2
e2πit, 0, . . . , 0

)

, t ∈ [0, 1]

γj(t) =
(
0, 0, . . . , e2πit(1+εj), 0, . . . , 0, 0

)
, t ∈ [0, 1/(1 + εj)]

βj(t) =
(
0, 0, . . . , 0, e2πit(1−εj), . . . , 0, 0

)
, t ∈ [0, 1/(1 − εj)]

for j = 1, . . . ,m.

Remark A.3. As stated, we see that there are only finitely many periodic
orbits. Furthermore, since the unperturbed system, i.e., ε = 0, describes the
geodesic flow on the round sphere, and the perturbation αε is C2-small for
small ε, it follows that the Reeb flow of the contact form αε corresponds to
the geodesic flow of a Finsler metric. In Sect. A.3, we describe how to obtain
an explicit relation with the famous Katok examples for S∗S2.

We construct a supporting open book for the contact form αε using the
map

Θ : Σ2n−1 −→ C, (w0, w1, . . . , wn) �−→ w0.

The zero set of Θ defines the binding, the pages are the sets of the form Pθ =
{arg Θ = θ}, θ ∈ S1, which are all copies of D∗Sn−1, and the monodromy is
τ2 where τ is the Dehn–Seidel twist. The (boundary extended) return map
for the page P0 = Θ−1(R>0) ∼= D

∗Sn−1 is

Φ : P0 −→ P0,

p = (r0, w1, w2, w3, . . . , wn−1, wn) �−→ (r0, w1, e
2πiε1w2, e

−2πiε1w3, . . . ,

e2πiεmwn−1, e
−2πiεmwn).

Here, w0 = r0 ∈ R≥0 is a real non-negative number, and note that the
first return time is constant equal to 1 (which follows by looking at the first
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coordinate). If all εj are irrational and rationally independent, this map has
only two periodic points, both actually fixed, given by

p0 =
(

1√
2
,

i√
2
, 0, . . . , 0

)

q0 =
(

1√
2
,− i√

2
, 0, . . . , 0

)

.

Note that p0, q0 are both interior fixed points, and irrationality of the εj

implies that there are no boundary fixed points. We will explain now why
this map is Hamiltonian with boundary preserving Hamiltonian flow. The
symplectic form on the interior of the page P0 is the restriction of dαε. To
manipulate this, let us define

H = ‖w‖2, Δε =
∑

j

εj(|w2j |2 − |w2j+1|2),

so Hε = H + Δε. Observe that the return map Φ is generated by the 2π-flow
of the vector field

X = i

m∑

j=1

εj

(

w2j
∂

∂w2j
− w̄2j

∂

∂w̄2j
− w2j+1

∂

∂w2j+1
+ w̄2j+1

∂

∂w̄2j+1

)

.

This vector field is tangent to the page and preserves H and Δ, and hence
also Hε. Plug X in into dαε. We find

ιX(dH−1
ε ∧ α + H−1

ε dα) = −α(X)dH−1
ε + H−1

ε ιXdα

= −ΔεdH−1
ε − H−1

ε dΔε = −d(H−1
ε Δε).

This means that the Hamiltonian generating the return map is H−1
ε Δε. More-

over, index-positivity follows, by observing that it holds for the round metric
on S2 and the fact that it is an open condition. It follows from Theorem
B that Φ does not satisfy the twist condition for any Liouville structure on
D

∗S2.

Remark A.4. The setup for n even is very similar: we drop the w0-coordinate.

A.3. Relation with the Katok examples

We explain how to see that the above dynamical systems indeed correspond
to the Katok examples in case of S∗S2 (i.e., n = 2). More precisely, we will
show that the geodesic flow of the Katok examples is conjugated to the Reeb
flow of αε. We need some preparation, which applies to all dimensions, before
we specialize to dimension 3. First of all, we fix positive weights (a1, . . . , an) ∈
R

n
>0. Then, we define the 1-forms on the sphere S2n−1 given by

β0 = ι∗
(∑

j xjdyj − yjdxj
∑

k ak(x2
k + y2

k)

)

= ι∗

⎛

⎝ 1
∑

k ak|zj |2
i

2

∑

j

zjdz̄j − z̄jdzj

⎞

⎠

and

β1 = ι∗

⎛

⎝
∑

j

1
aj

(xjdyj − yjdxj)

⎞

⎠ = ι∗

⎛

⎝ i

2

∑

j

1
aj

(zjdz̄j − z̄jdzj)

⎞

⎠ ,
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where ι is the inclusion map S2n−1 → R
2n. We will show that the first form

is a contact form and that it is strictly contactomorphic to the latter. For
this, consider the map

ψ : S2n−1 −→ S2n−1

(z1, . . . , zn) �−→
(√

a1∑
k ak(x2

k + y2
k)

z1, . . . ,

√
an∑

k ak(x2
k + y2

k)
zn

)

.

We find

ψ∗β1 =
∑

j

1
aj

√
aj∑

k ak(x2
k + y2

k)

×
(√

aj∑
k ak(x2

k + y2
k)

(xjdyj − yjdxj)

+(xjyj − yjxj)d
(√

aj∑
k ak(x2

k + y2
k)

))

= β0.

This also shows that β0 is a contact form, as ψ is a diffeomorphism. We have
shown:

Lemma A.5. The form β0 is a contact form, and it is strictly contactomorphic
to β1. The Reeb field for βk for k = 0, 1 is given by

R =
∑

j

aj

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

We now specialize to the 3-dimensional situation, for which in w-
coordinates (cf. Remark A.4), we have

Σ3 =
{
(w1, w2, w3) ∈ C

3 : w2
1 − 2iw2w3 = 0

} ∩ S3.

Consider the explicit covering map

π : S3 −→ Σ3, (z0, z1) �−→
(
w1 =

√
2z0z1, w2 = z2

0 , w3 = −iz2
1

)
.

We quickly verify that this is a covering map
• we have w2

1 − 2iw2w3 = 2z2
0z2

1 − 2z2
0z2

1 = 0;
• we have |w1|2+|w2|2+|w3|2 = 2|z0|2|z1|2+|z0|4+|z1|4 = (|z0|2+|z1|2)2 =

1;
• the map is two to one, since all entries are quadratic.

We compute the pullback π∗αε

π∗αε =
1

2|z0|2|z1|2 + |z0|4 + |z1|4 + ε|z0|4 − ε|z1|4 2(|z0|2 + |z1|2) i

2

∑

j

(zjdz̄j − z̄jdzj)

=
2(|z0|2 + |z1|2)

(|z0|2 + |z1|2)((1 + ε)|z0|2 + (1 − ε)|z1|2)
i

2

∑

j

(zjdz̄j − z̄jdzj)

=
2

((1 + ε)|z0|2 + (1 − ε)|z1|2)
i

2

∑

j

(zjdz̄j − z̄jdzj).

By Lemma A.5, the form π∗αε to strictly contactomorphic to the contact
form β1 with weights a1 = 1 + ε and a2 = 1 − ε, which is just the ellipsoid
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model for the contact 3-sphere. To complete the argument, we use a result
due to Harris and Paternain [20, Sect. 5], which relates the ellipsoids to the
Katok examples.

Appendix B: Symplectic homology of surfaces

Let us consider connected Liouville domains in dimension 2. The simplest
such Liouville domain is D2, which has vanishing symplectic homology. For
all other surfaces, note:

Lemma B.1. Let (W,λ) be a connected Liouville domain of dimension 2. As-
sume that W is not diffeomorphic to D2. Take a periodic Reeb orbit δ on one
of the boundary components of W . Then, [δ] ∈ π̃1(W ) is non-trivial. Further-
more, if δ1 and δ2 are periodic Reeb orbits on different boundary components,
then [δ1] �= [δ2] as free homotopy classes. �

Assume W �= D2, and denote the completion by Ŵ . Then, the chain
complex for an admissible Hamiltonian Ĥ that is both negative and C2-small
on W has the form

CF•(Ĥ) =
⊕

δ∈π̃1(W )

CF δ
• (Ĥ),

where CF δ
• (Ĥ) is generated by 1-periodic orbits in the free homotopy class

δ. The direct summand corresponding to contractible orbits needs as least as
many generators as rkH•(W ) by the Morse inequalities.

Lemma B.2. For each class δ, the direct summand CF δ
• (Ĥ) forms a subcom-

plex, and so, we have a splitting

HF•(Ĥ) =
⊕

δ∈π̃1(W )

HF δ
• (Ĥ).

In addition, as ungraded modules, we have

HF
δ
• (Ĥ)

∼=

⎧
⎪⎨

⎪⎩

Z
2 if δ is a positive boundary class, and slope(Ĥ)is sufficiently large,

H•(W ) if δ is the trivial class,

0 otherwise.

Here, a positive boundary class just means a homotopy class of a positive
multiple of a boundary component (oriented according the positive boundary
orientation).

Proof. The first assertion follows from the fact that Floer cylinders do not
change the free homotopy class. For the second claim, we use:

• The Floer differential of a C2-small Hamiltonian between critical points
is the Morse differential, which implies the second case.
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• After a suitable Morse perturbation (a Morse function on S1 with pre-
cisely two critical points) breaking the S1-symmetry given by time-
shifts, each positive boundary class gives two generators, corresponding
to the critical points of the Morse function on S1; as shown in [12],
the differential is the Morse differential, which vanishes. Moreover, this
symmetry-breaking process preserves the homotopy classes of periodic
orbits, as observed in Remark 3.12. �

Corollary B.3. Suppose that W is a connected Liouville domain of dimension
2. Assume that W is not diffeomorphic to D2. Then, as an ungraded module,
we have

SH•(W ) ∼= H•(W ) ⊕
⊕

δ positive boundary class

Z
2.

Appendix C: On symplectic return maps

In this appendix, for convenience of the reader, we collect some standard facts
concerning return maps arising from a given Reeb dynamics on some contact
manifold (cf. the construction of the Calabi homomorphism, e.g., in [28, Sect.
10.3], or [2, Sect. 3.3] for the case of the 2-disk). In particular, we show that
long Hamiltonian orbits on a global hypersurface of section correspond to
long Reeb orbits on the ambient contact manifold.

Consider a map τ : int(Σ) → int(Σ) defined on the interior of a 2n-
dimensional Liouville domain Σ. We assume that Σ arises as a (connected)
global hypersurface of section for some Reeb dynamics on a 2n+1-dimensional
contact manifold (M,α), and τ is the associated return map. Let Rα be the
Reeb vector field of α. Denote by B = ∂Σ, which we assume to be a contact
submanifold of M with induced contact form αB = α|B , so that Rα|B is
tangent to B. Let λ = α|Σ, which is a Liouville form on int(Σ), since Rα is
assumed to be positively transverse to the interior of Σ. That is, the two-
form ω = dλ is symplectic on int(Σ). The 1-form λB = λ|B coincides with
the contact form αB . Note that it is degenerate along B. By Stokes’ theorem,
the symplectic volume of Σ then coincides with the contact volume of B

vol(Σ, ω) =
∫

Σ

ωn =
∫

Σ

d(λ ∧ dλn−1) =
∫

B

αB ∧ dαn−1
B = vol(B,αB).

Note that τ is automatically a symplectomorphism with respect to ω.
Indeed, denote the time-t Reeb flow by ϕt, and let T : int(Σ) → R

+

T (x) = min{t > 0 : ϕt(x) ∈ int(Σ)}
denote the first return time function. Then, τ(x) = ϕT (x)(x), and so, for
x ∈ int(Σ), v ∈ TxΣ, we have

dxτ(v) = dxT (v)Rα(τ(x)) + dxϕT (x)(v).
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Using that ϕt satisfies ϕ∗
t α = α, we obtain

(τ∗λ)x(v) = ατ(x)(dxτ(v))

= dxT (v) + (ϕ∗
T (x)α)x(v)

= dxT (v) + λx(v).
(C.7)

Therefore
τ∗λ = dT + λ, (C.8)

which in particular implies that τ∗ω = ω.
Moreover, the average of the return time function gives the contact

volume of M , i.e., we have the identity
∫

Σ

Tωn = vol(M,α). (C.9)

This may be proved as follows. We have a smooth embedding

ψ : R/Z × int(Σ) → M,

given by ψ(s, x) = ϕsT (x)(x), which is a diffeomorphism onto M\B. It satis-
fies

(ψ∗α)(∂s) = α(TRα) = T,

and, for v ∈ T int(Σ),

(ψ∗α)(v) = α(sdT (v)Rα + dϕsT (v)) = sdT (v) + α(v).

Then

ψ∗α = Tds + sdT + λ = d(sT ) + λ,

and so

ψ∗(α ∧ dαn) = (d(sT ) + λ) ∧ dλn = Tds ∧ ωn.

Integrating, and using the fact that B is codimension 2 in M , we obtain

vol(M,α) =
∫

M\B

α ∧ dαn =
∫

R/Z×int(Σ)

ψ∗(α ∧ dαn)

=
∫

R/Z×int(Σ)

Tds ∧ ωn =
∫

int(Σ)

Tωn =
∫

Σ

Tωn,

where we have used that ωn|B ≡ 0, and the claim follows. In case where τ is
Hamiltonian, we want to relate the Hamiltonian action of a periodic orbit of
τ to the Reeb action of the corresponding Reeb orbit in the ambient contact
manifold.

Let H : S1 × Σ → R
+ be a Hamiltonian generating τ , i.e., the isotopy

φt defined by φ0 = id, d
dtφt = XHt

◦ φt satisfies φ1 = τ . The sign convention
for the Hamiltonian vector field is iXHt

ω = −dHt. We usually view this
Hamiltonian isotopy as defining an element φ = φH = [{φt}] in the universal
cover D̃iff(Σ, ω) of the space of symplectomorphisms Diff(Σ, ω). By Cartan’s
formula, we have

∂tφ
∗
t λ = φ∗

t LXHt
λ = φ∗

t (iXHt
ω + d(iXHt

λ)) = φ∗
t d(iXHt

λ − Ht),
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and so integrating, we obtain

τ∗λ − λ = dFH , (C.10)

where

FH =
∫ 1

0

(iXHt
λ − Ht) ◦ φt dt. (C.11)

Combining (C.8) and (C.10), we deduce that

τ = FH + C (C.12)

for some constant C (assuming Σ is connected).
We determine the constant C under a suitable assumption, which we

assume holds in all what follows. Namely, assume that τ extends to Σ with
the same formula, i.e., via an extension of the return time function T to Σ.
Assume also that Ht|B ≡ const := Ct > 0 for some H generating τ . Equiv-
alently, XHt

|B = htRB for some (not necessarily positive) smooth function
ht on B, satisfying ht = dHt(Vλ)|B where Vλ is the Liouville vector field as-
sociated with λ. In this case, denoting γx(t) = φt(x) for x ∈ B and t ∈ [0, 1],
we get

FH(x) =
∫

γx

λB −
∫ 1

0

Ctdt =
∫ 1

0

(ht(φt(x)) − Ct)dt, (C.13)

On the other hand, let βx(t) = ϕt(x) be the Reeb orbit through x ending
at βx(1) = τ(x), for t ∈ [0, 1], which we assume parametrized, so that β̇x =
T (x)RB(βx). Note that βx is a reparametrization of γx, and so we obtain

τ(x) =
∫

βx

λB =
∫

γx

λB .

This means that T is the unique primitive of τ∗λ−λ satisfying T (x) =
∫

γx
λB

for x ∈ B. Combining (C.12) and (C.13), we conclude that

C =
∫ 1

0

Ctdt > 0,

a positive constant.
By the above computation, T is what is usually called the action of

φ = φH with respect to λ, and is independent of the isotopy class (with fixed
endpoints) of the path φH . The Calabi invariant is then by definition the
average action CAL(φH , ω) =

∫
Tωn, which is independent of λ; cf. [2,28].

Combining with (C.9), we obtain

CAL(φH , ω) = vol(M,α).

Let γ : S1 = R/kZ → Σ, defined by γ(t) = φt(x), be a k-periodic
Hamiltonian orbit associated to the k-periodic point x of τ . That is, we have
x = γ(0), γ(1) = τ(x), . . . , γ(k) = τk(x) = x, and assume that k is the
minimal period of x. We then get

k∑

i=1

FH(τ i(x)) = AH#k(γ)
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is precisely the Hamiltonian action of γ with respect to the Hamiltonian

H#k
t =

k∑

i=1

Ht ◦ φ−i
t

generating τk. If β : S1 = R/Z → M is the Reeb orbit corresponding to γ,
(C.12) implies that its period is

∫

S1
β∗α =

k∑

i=1

T (τ i(x)) =
k∑

i=1

FH(τ i(x)) + kC = AH#k(γ) + kC.

Since C > 0, this implies the following: if the Hamiltonian action of every
k-periodic orbit γ grows to infinity with k, then the period of the associated
Reeb orbits β also. In other words, long Hamiltonian periodic orbits in the
global hypersurface of section give long Reeb orbits in the ambient contact
manifold.

We summarize the above discussion in the following:

Lemma C.1. Let (M2n+1, α) be a contact manifold, (Σ2n, ω = dα|Σ) a Li-
ouville domain which is a global hypersurface of section for the Reeb flow,
(B2n−1, αB) = (∂Σ, α|B), τ : int(Σ) → int(Σ) the Poincaré return map, and
T : int(Σ) → R

+ the first return time. Then:

(1) vol(Σ, ω) = vol(B,αB).
(2) vol(M,α) =

∫
Σ

Tωn.
(3) τ is an exact symplectomorphism.
(4) If τ is Hamiltonian with generating isotopy φH = [{φt}] ∈ D̃iff(Σ, ω),

and extends to Σ as a (not necessarily positive) reparametrization of the
Reeb flow at B, then:

(i) CAL(φH , ω) = vol(M,α).
(ii) The period of a Reeb orbit β on M corresponding to a k-periodic

Hamiltonian orbit γ on Σ is
∫

S1
β∗α = AH#k(γ) + kC

for some positive constant C > 0, where

AH#k(γ) =
∫

S1
γ∗λ −

∫ 1

0

H#k
t (γ(t))dt

is the Hamiltonian action of γ with respect to the Hamiltonian

H#k
t =

k∑

i=1

Ht ◦ φ−i
t

generating τk. In particular, if γ has large action, then β has large
period.
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Appendix D: Strong convexity implies strong index-positivity

In this appendix, we give a general condition for index-positivity to hold,
which is also relevant for the restricted three-body problem. A connected
compact hypersurface Σ ⊂ R

4 is said to bound a strongly convex domain
W ⊂ R

4 whenever there exists a smooth function φ : R4 → R satisfying:

(i) (Regularity) Σ = {φ = 0} is a regular level set;
(ii) (Bounded domain) W = {z ∈ R

4 : φ(z) ≤ 0} is bounded and contains
the origin; and

(iii) (Positive-definite Hessian) ∇2φz(h, h) > 0 for z ∈ W and for each non-
zero tangent vector h ∈ TΣ.

In this case, the radial vector field is transverse to Σ, and so Σ is a contact-
type 3-sphere, inheriting a contact form α induced by the standard Liouville
form in R

4.

Lemma D.1. Suppose that Σ bounds a strongly convex domain. Then, Σ is
strongly index-positive.

Remark D.2. In the planar restricted three-body problem, the values of en-
ergy/mass ratio (c, μ) for which the Levi–Civita regularization bounds a
strictly convex domain is called the convexity range, which in particular im-
plies that the dynamics is dynamically convex (cf. [5,6,24]). It follows that
index-positivity holds in the convexity range for the quotient RP 3, which is
part of the assumptions of Theorem A.

Proof. Write Σ = φ−1(0) as in the definition above. Denote the contact form
on Σ by α := λ|Σ. We will use the standard quaternions I, J,K, where I is
chosen to coincide with the standard complex structure.

The tangent space of Σ is spanned by the vectors

R=Xφ/α(Xφ)=I∇φ/α(Xφ)=Iw, U = Jw − α(Jv)R, V = Kw − α(Kv)R.

We note that U and V give a symplectic trivialization ε of (ξ = ker α, dα).
To see this, we compute

dα(U, V ) = dα(Jw,Kw) = wtJ tItKw = wtKtKw = wtw = 1.

To prove the claim, we investigate the rate of change of a version of the
rotation number. See Chapter 10.6 in [16] for a detailed standard description
of the Robbin–Salamon index in terms of the rotation number. We will detail
the version that we will use below.

We look at the linearization of the Hamiltonian flow:

Ẋ = ∇XXφ = I∇2φ · X. (D.14)

Starting with X(0) ∈ ξ, we compute how quickly the vector X rotates with
respect to the frame. Define the angular form

Θ =
udv − vdu

u2 + v2
=

udα(U, ·) + vdα(V, ·)
u2 + v2

=
dα(uU + vV, ·)

u2 + v2
,
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where (u, v) are cartesian coordinates on the plane spanned by the frame
(U, V ), so we may write X = uU + vV . We plug in Ẋ and find

Θ(Ẋ) =
dα(X, Ẋ)
u2 + v2

=
(uU + vV )tItI∇2φ · (uU + vV )

u2 + v2

=
∇2φ(uU + vV, uU + vV )

u2 + v2
≥ λmin > 0, (D.15)

where λmin is the minimal eigenvalue of ∇2φ over the compact hypersurface
Σ. After we have set up some notation, we will see that this is enough to get
a lower bound on the growth rate of the Robbin–Salamon index. With our
global trivialization ε, we can define the matrix

ψ(t) = ε ◦ dF lRt ◦ ε−1.

By applying Eq. (D.14) to the initial vectors ε−1(1, 0) and ε−1(0, 1), we get
a linear evolution equation for the matrix ψ(t)

ψ̇ = A(t)ψ, (D.16)

where A is a time-dependent matrix. We will view this ODE as a vector field
on Sp(2): the linearized Reeb flow along each Reeb orbit will give rise to such
a vector field.

To relate the above angle to the Conley–Zehnder index, we also need
to recall the Iwasawa decomposition, also known as KAN decomposition, of
Sp(2). Write

KAN :=

{((
cos(φ) − sin(φ)
sin(φ) cos(φ)

)

,

(
a 0
0 a−1

)

,

(
1 t
0 1

)) ∣∣
∣
∣
∣

φ ∈ [0, 2π), a ∈ R>0, t ∈ R

}

.

And put

kan : KAN −→ Sp(2), (φ, a, t) �−→
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
a 0
0 a−1

)(
1 t
0 1

)

.

This map has the inverse

kan−1 : Sp(2) −→ KAN
(

a b
c d

)

�−→
(

1√
a2 + c2

(
a −c
c a

)

,

(√
a2 + c2 0

0 1√
a2+c2

)

,

(
1 ab+cd√

a2+c2

0 1

))

.

The KAN angle can locally be determined as

arg(kan−1(ψ)) = atan(c/a),

so we see that the change in angle equals

d
dt

arg(kan−1(ψ)) =
d
dt

atan(c/a) =
aċ − cȧ

a2 + c2
.

On the other hand, the rate of change of the KAN angle equals Θ(Ẋ). Indeed,

the first column of ψ(t) is the vector Z(t) := ε(X(t)) =
(

u
v

)

if we put

X(0) = ε−1(1, 0).
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By Eq. (D.15), this rate of change is at least λmin, where λmin is the
minimal eigenvalue of −IA (which we assume to be positive-definite). This
means that each slice

Sφ = kan

({((
cos(φ) − sin(φ)
sin(φ) cos(φ)

)

,

(
a 0
0 a−1

)

,

(
1 t
0 1

)) ∣∣
∣
∣
∣

a ∈ R>0, t ∈ R

})

is a global surface of section for the vector field associated with Eq. (D.16):
the maximal return time is 2π

λmin
. Now, take a matrix ψ(0) in the slice S0, and

let ψ(t) denote the solution to Eq. (D.16).
Claim: Each crossing is regular and contributes positively.

To see this, recall that the crossing form of a path ψ in Sp(2) at a
crossing t is defined as the bilinear form

ω0(·, ψ̇(t)·)|ker(ψ(t)−id).

Since U , V is a symplectic frame, we have with Z = (u, v) (i.e., X = uU+vV ),
the following inequality:

ω0(Z, ψ̇Z) = dα(X, Ẋ) ≥ λmin(u2 + v2),

by Eq. (D.15). This establishes the claim.
Let t� denote the �-th return time to S0 of the path ψ. The symplectic

path ψ|[0,t�] is not necessarily a loop, but we can make it into a loop by
connecting ψ(t�) to ψ(0) while staying in the slice S0. We can and will do this
by adding at most one crossing, which we make regular. Call the extension to
a loop ψ̃. The additional crossing that we may have inserted can contribute
negatively.

Now, use the loop axiom for the Robbin–Salamon index. This tells us
that

μRS(ψ̃) = 2μ�(ψ̃) = 2�.

By the catenation property of the Robbin–Salamon index and positivity of
all but the last (potential) crossing, we have

μRS(ψ) ≥ 2� − 2.

Now, consider a symplectic path ψ of length T . We can bound the winding
number as

� ≥
⌊

λmin

2π
T

⌋

.

With this in mind, we obtain for a Hamiltonian arc γ of length T

μRS(γ; ε) ≥ 2λmin

2π
T − 4.

When this Hamiltonian arc γ is viewed as a Reeb arc γR with Reeb action
TR, we can rewrite this bound as follows, using:

TR =
∫ T

0

α(Xφ)dt ≤ T · max α(Xφ).
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We find

μRS(γR; ε) ≥ λmin

π max α(Xφ)
TR − 4.

�

Remark D.3. Observe that the proof actually shows the stronger claim that
index-positivity holds when the Hessian of φ restricted to the contact struc-
ture is positive-definite. Note also that the latter condition is not enough for
dynamical convexity.

Finally, we note that the bound obtained can be sharpened, since the
index is necessarily positive by observing that ψ(0) = id, so it is a crossing
and using that each crossing of the path ψ contributes positively.

Appendix E: Strongly index-definite symplectic paths

In this appendix, we prove a crucial index growth estimate needed to rule out
non-relevant boundary orbits via index considerations (needed in Lemma 4.5
in the main body of the paper).

Definition E.1. Consider the linear ODE ψ̇(t) = A(t)ψ(t), where A : R≥0 →
sp(2n) and A(0) = 0. Its solution is a path of symplectic matrices with
ψ(0) = 1. We say that the ODE is strongly index-definite if there exist
constants c > 0, d ∈ R, such that

|μRS(ψ|[0,t])| ≥ ct + d,

where μRS is the Robbin–Salamon index [33].

Note that we make no non-degeneracy assumptions on the symplectic
paths in the above definition.

We now consider the specific family of linear ODEs ψ̇(t) = A(t)ψ(t),
where the matrix A has the special form

A(t) =

⎛

⎜
⎜
⎝

R(t)
X(t) 0
Y (t) 0

0 0
Y (t) −X(t)

a(t) 0
b(t) −a(t)

⎞

⎟
⎟
⎠ ∈ sp(2n).

Here, we use the notation (X,Y ) = (X1, Y1, . . . , Xn−1, Yn−1), and we
assume R(t) ∈ sp(2n − 2), A(0) = 0.

Lemma E.2. Assume that the linear ODE Ṁ(t) = R(t)M(t) is strongly index-
definite as an ODE in dimension 2n− 2. Then, the same holds for the linear
ODE ψ̇(t) = A(t)ψ(t).

Proof. One may check that

g =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

R
X 0
Y 0

0 0
Y −X

a 0
b −a

⎞

⎟
⎟
⎠ : R ∈ sp(2n − 2)

⎫
⎪⎪⎬

⎪⎪⎭
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is a Lie subalgebra of sp(2n). The corresponding Lie subgroup of Sp(2n) is

G =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

M
x 0
y 0

0 0
u v

α 0
β α−1

⎞

⎟
⎟
⎠ : M ∈ Sp(2n − 2), α>0, (−y, x) · M+α · (u, v)=0

⎫
⎪⎪⎬

⎪⎪⎭
.

We deduce that ψ ∈ G. We then write

ψ =

⎛

⎜
⎜
⎝

M
x 0
y 0

0 0
u v

α 0
β α−1

⎞

⎟
⎟
⎠ ∈ G,

where M is a solution to Ṁ = RM , and consider the following homotopy of
paths:

ψs =

⎛

⎜
⎜
⎝

M
sx 0
sy 0

0 0
su sv

α 0
β α−1

⎞

⎟
⎟
⎠ .

Note that ψs is a path in G ⊂ Sp(2n) for every s, and ψ0 has no off-diagonal
terms. For any given t, this gives a homotopy in G relative endpoints of
ψ|[0,t] to a concatenated path of the form ψ0|[0,t]#φt, where φt(s) = ψs(t).
We therefore have

μRS(ψ|[0,t]) = μRS(ψ0|[0,t]) + μRS(φt). (E.17)

On the other hand, from the block decomposition of ψ0 and the fact that the
lower block can be homotoped to a symplectic shear by joining α(t) to 1, we
have

μRS(ψ0|[0,t]) = μRS(M |[0,t]) ± 1
2
sign(β(t)), (E.18)

where the sign depends on conventions. Moreover, one may easily check that
the characteristic polynomial of an element in G is completely independent
of the off-diagonal terms. In particular, we obtain that

det(ψs − 1) = det(ψ0 − 1) = det(M − 1)(α − 1)(α−1 − 1)

is independent of s. In other words, ψ(t) is an intersection point with the
Maslov cycle if and only if ψ0(t) is, and the eigenvalue 1 has the same al-
gebraic multiplicity for both such intersections. Moreover, if ψ(t) is not an
intersection, then φt does not intersect the Maslov cycle at all.

One may check that if α(t) �= 1, then the geometric multiplicity of 1
as an eigenvalue of φt(s) is independent of s (and, therefore, μRS(φt) = 0
for such t). If α(t) = 1, this may not necessarily still hold. However, we may
appeal to the following general fact, whose proof was provided to the authors
by Alberto Abbondandolo:

Lemma E.3. There exists a universal bound C = C(n) (depending only on
dimension), such that, if φ : [0, 1] → Sp(2n) is a continuous path of symplectic
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matrices for which the algebraic multiplicity of the eigenvalue 1 of the matrix
φ(t) is independent of t, then

|μRS(φ)| ≤ C.

Proof of Lemma E.3. Step 1. We first reduce to the case where φ has 1 as the
only eigenvalue. We have a continuous symplectic splitting R

2n = V (t)⊕W (t)
where V (t) is the generalized eigenspace of φ(t) corresponding to 1, and W (t)
is the direct sum of the generalized eigenspaces of φ(t) corresponding to the
other eigenvalues (here, the dimensions of V (t) and W (t) are t-independent
by assumption), for which φ(t) = φV (t) ⊕ φW (t) splits symplectically. Since
φW does not intersect the Maslov cycle by construction, we have μRS(φ) =
μRS(φV ) + μRS(φW ) = μRS(φV ).

Step 2. A loop φ of symplectic matrices having 1 as the only eigenvalue
is nullhomotopic in Sp(2n), and hence, μRS(φ) = 0. This follows for instance
by the interpretation of the Robbin–Salamon index as the total winding num-
ber of the Krein-positive eigenvalues on the unit circle (see, e.g., [1, Lemma
1.3.7]).

Step 3. The identity matrix may be joined to any symplectic matrix M
satisfying spec(M) = {1} via a path M(t) satisfying spec(M(t)) = {1}, and
for which |μRS(M(t))| ≤ C for some universal bound C. Indeed, we may write
M = eJS where S is a symmetric matrix having 0 as the only eigenvalue,
and consider the path M(t) = etJS . This satisfies the required properties,
since M(t) changes strata of the Maslov cycle only at t = 0, the geometric
multiplicity of 1 jumping from 2n at t = 0 to perhaps a lower one at t > 0, and
so the contribution of this wall-crossing to μRS(M) is universally bounded.

The proof finishes by combining the previous steps, where we join the
endpoints of a path φ as in Step 1 to the identity as in Step 3, use the
concatenation property of μRS, and appeal to Step 2. �

Combining Eqs. (E.17) and (E.18) with Lemma E.3, we conclude that

|μRS(ψ|[0,t]) − μRS(M |[0,t])| ≤ C

for some universal constant C = C(n), from which the conclusion of Lemma
E.2 is immediate. �
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xi+374 pp. ISBN: 978-3-319-72277-1

[17] Ginzburg, V.L.: The Conley Conjecture. Ann. Math. 172, 1127–1180 (2010)
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Covariant constancy of quantum Steenrod
operations

Paul Seidel and Nicholas Wilkins

Abstract. We prove a relationship between quantum Steenrod opera-
tions and the quantum connection. In particular, there are operations
extending the quantum Steenrod power operations that, when viewed
as endomorphisms of equivariant quantum cohomology, are covariantly
constant. We demonstrate how this property is used in computations of
examples.
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1. Introduction

Quantum Steenrod operations, originally introduced by Fukaya [8], have re-
cently appeared in a variety of contexts: their properties have been explored
in [22] (which also contains the first nontrivial computations); they can be
used to study arithmetic aspects of mirror symmetry [18]; and in Hamiltonian
dynamics, they are relevant for the existence of pseudo-rotations [3,20,21].
Nevertheless, computing quantum Steenrod operations remains a challeng-
ing problem in all but the simplest cases. Using methods similar to [22], this
paper establishes a relation between quantum Steenrod operations and the
quantum connection. As a consequence, the contribution of rational curves of
low degree (very roughly speaking, of degree < p if one is interested in quan-
tum Steenrod operations with Fp-coefficients) can be computed using only
ordinary Steenrod operations and Gromov–Witten invariants. This is conso-
nant with other indications that the geometrically most interesting part of
quantum Steenrod operations may come from p-fold covered curves. Even
though our method does not reach that part, it yields interesting results in
many examples (some are carried out here, and there are more in [18]).

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.

A previous version of this chapter was published Open Access under a Creative Commons Attribution 

4.0 International License at https://link.springer.com/10.1007/s11784-022-00967-4. 
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1a. Throughout this paper, M is a closed symplectic manifold which is weakly
monotone [9] (in [14, Definition 6.4.1], this is called semi-positive). Fix an
arbitrary coefficient field F. The associated Novikov ring Λ is the ring of
series

γ =
∑

A cAqA, (1.1)

where the exponents are A ∈ Hsphere
2 (M ; Z) = im(π2(M) → H2(M ; Z)), such

that either A = 0 or
∫

A
ωM > 0; and among those A, such that

∫
A

ωM is
bounded by a given constant, only finitely many cA may be nonzero. We
think of this as a graded ring, where |qA| = 2c1(A) (the notation being that
c1(A) is the pairing between c1(M) and A). Write Imax ⊂ Λ for the ideal
generated by qA for nonzero A, so that Λ/Imax = F.

For each a ∈ H2(M ; Z), there is an F-linear differentiation operation
∂a : Λ → Λ

∂aqA = (a · A) qA. (1.2)
Write Idiff ⊂ Imax for the ideal generated by qA, where A �= 0 lies in the
kernel of the map Hsphere

2 (M ; Z) ↪→ H2(M ; Z) � Hom(H2(M ; Z), F). In
other words, the generators are precisely those nontrivial monomials whose
derivatives (1.2) are zero. (If F is of characteristic zero and Hsphere

∗ (M ; Z) is
torsion-free, then Idiff = 0; but that is not the case we will be interested in.)

Remark 1.1. Clearly, ∂a only depends on a ⊗ 1 ∈ H2(M ; Z) ⊗ F. One could
define such operations for all elements in H2(M ; F), and prove a version of
our results in that context. We have refrained from doing so, since it adds
a technical wrinkle (having to represent classes in H2(M ; F) geometrically)
without giving any striking additional applications.

1b. We will exclusively consider genus zero Gromov–Witten invariants. The
three-pointed Gromov–Witten invariant in a class A ∈ Hsphere

2 (M ; Z) can be
written as a bilinear operation

∗A : H∗(M ; F)⊗2 −→ H∗−2c1(A)(M ; F),
∫

M

(c1 ∗A c2) c3 = 〈c1, c2, c3〉A.
(1.3)

One extends this to H∗(M ; Λ), and then packages all the ∗A into the small
quantum product

γ1 ∗ γ2 =
∑

A

(γ1 ∗A γ2) qA. (1.4)

Let t be another formal variable, of degree 2. The quantum connection on
H∗(M ; Λ)[[t]] consists of the operations

∇aγ = t∂aγ + a ∗ γ, (1.5)

where ∗ has been extended t-linearly. By the divisor axiom in Gromov–Witten
theory, we have that for any a1, a2 ∈ H2(M ; Z) and c1, c2 ∈ H∗(M ; F)

(a1 · A)
∫

M

(a2 ∗A c1) c2 = 〈a1, a2, c1, c2〉A = (a2 · A)
∫

M

(a1 ∗A c1) c2. (1.6)

This implies that the operations (1.5) for different a commute: the connection
is flat.
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We will consider endomorphisms Σ of H∗(M ; Λ)[[t]] which are Λ[[t]]-
linear and covariantly constant, which means that they satisfy

∇aΣ − Σ∇a = 0. (1.7)

This is a system of linear first-order differential equations. By looking at the
equations for each qA coefficient of Σ, one sees that:

Lemma 1.2. For covariantly constant endomorphisms, the constant term de-
termines the behaviour modulo Idiff . More formally, if Σ satisfies (1.7), then
we have

Σ ∈ End(H∗(M ; F)) ⊗ Imax[[t]] =⇒ Σ ∈ End(H∗(M ; F)) ⊗ Idiff [[t]]. (1.8)

1c. From now on, we restrict to coefficient fields F = Fp, for a prime p. Our
arguments involve (Z/p)-equivariant cohomology with Fp-coefficients. For a
point, that is

H∗
Z/p(point ; Fp) = H∗(BZ/p; Fp) = Fp[[t, θ]], |t| = 2, |θ| = 1. (1.9)

The notation requires some explanation. For p = 2, we have θ2 = t, so
F2[[t, θ]] is actually a ring of power series in a single variable θ. For p > 2,
we have tθ = θt and θ2 = 0, so that Fp[[t, θ]] is a ring of power series in two
supercommuting variables.

For any A ∈ Hsphere
2 (M ; Z) and any class b ∈ H∗(M ; Fp), one can use

(Z/p)-equivariant Gromov–Witten theory to define an operation

QΣb,A : H∗(M ; Fp) −→ (H∗(M ; Fp)[[t, θ]])∗+p|b|−2c1(A). (1.10)

For the trivial class A = 0, this is a form of the classical Steenrod operation
St, more precisely

QΣb,0(c) = St(b)c. (1.11)

Remark 1.3. Our notational and sign conventions follow [18] (except that we
suppress the prime p), which differ from the classical conventions for Steenrod
operations. In particular, for p > 2

St(b) = (−1)
|b|(|b|−1)

2
p−1
2

(
p−1
2 !

)|b|
t

p−1
2 |b| b + · · · , (1.12)

where · · · is the part involving cohomology classes of degree > |b|. For |b|
even, this simplifies to

St(b) = (−1)
|b|
2 t

p−1
2 |b|b + · · · (1.13)

At the other extreme, setting t = θ = 0 in St(b) still yields the p-fold (cup)
power bp. The Cartan relation says that

St(b̃) St(b) = (−1)|b| |b̃| p(p−1)
2 St(b̃b). (1.14)

Note that many coefficients of St(b) vanish, because this operation comes
from the cohomology of the symmetric group. Concretely, if |b| is even, all
the potentially nonzero terms in St(b) are of the form tk(p−1) or tk(p−1)−1θ;
and if |b| is odd, of the form t(k+1/2)(p−1) or t(k+1/2)(p−1)−1θ. That is no
longer true for quantum operations.
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As usual, one adds up (1.10) over all A with weights qA. The outcome
is denoted by

QΣb : H∗(M ; Fp) −→ (H∗(M ; Λ)[[t, θ]])∗+p|b|. (1.15)

The non-equivariant (t = θ = 0) part is the p-fold quantum product with b

QΣb(c) =

p
︷ ︸︸ ︷
b ∗ · · · ∗ b ∗c + (terms involving t, θ). (1.16)

The case b = 1 is trivial
QΣ1 = id. (1.17)

The relation with the more standard formulation of the quantum Steenrod
operation is that

QSt(b) = QΣb(1). (1.18)

It is convenient to formally extend (1.15). First, turn it into an endo-
morphism of H∗(M ; Λ)[[t, θ]], linearly in the variables qA and (t, θ) (with
appropriate Koszul signs). Next, extend the b-variable to β ∈ H∗(M ; Λ), by
setting

QΣβ =
∑

A qpA QΣbA
for β =

∑
A bAqA. (1.19)

Then, the composition of these operations is described by

QΣb̃ ◦ QΣb = (−1)|b| |b̃| p(p−1)
2 QΣb̃ ∗ b. (1.20)

Note that for b = 1, (1.16) implies that QΣ1 is an automorphism of H∗(M ; Λ)
[[t, θ]], and (1.20) that it is idempotent. Hence, it must be the identity, so those
two properties imply (1.17).
1d. The quantum connection can be extended to H∗(M ; Λ)[[t, θ]] by making
it θ-linear. Our main result is:

Theorem 1.4. For any b ∈ H∗(M ; Fp), the operation QΣb is a covariantly
constant endomorphism (of degree p|b|), meaning that it satisfies (1.7).

Lemma 1.2 still applies (the presence of the additional θ-variable makes
no difference). Hence, the classical part (1.11), together with the quantum
connection, determines QΣb modulo Idiff .

Remark 1.5. Covariant constancy also means that QΣb is related to the fun-
damental solution of the quantum differential equation (see, e.g., [15]). To
explain this, let us temporarily switch coefficients to Q, and write Λ̃ for the
associated Novikov ring. The fundamental solution is a trivialization of the
quantum connection

∇Ψ̃ = 0, (1.21)

whose constant (in the q variables) term is the identity endomorphism. Ψ̃ is
multivalued (has log(qA) terms), and is also a series in t−1. It is uniquely
determined by those conditions, and one can write down an explicit formula
in terms of Gromov–Witten invariants with gravitational descendants. Given
β ∈ H∗(M ; Z), write

Ξ̃β(γ) = Ψ̃(β Ψ̃−1(γ)). (1.22)
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By construction, this is a covariantly constant endomorphism, whose constant
term is cup product with β. It is single valued; more precisely

Ξ̃β ∈ End(H∗(M ; Λ̃))[[t−1]]. (1.23)

For simplicity, suppose that H∗(M ; Z) is torsion-free. One can look at the
denominators in Ξ̃β , order by order in the covariant constancy equation. The
upshot is that factors of 1/p appear for the first time in terms qA, A ∈
pHsphere

2 (M ; Z). As a consequence, Ξ̃β has a well-defined partial reduction
mod p, which we denote by

Ξβ ∈ End(H∗(M ; Λ/Idiff))[[t−1]], (1.24)

and which only depends on β ∈ H∗(M ; Fp). Let us extend (1.24) linearly to
β ∈ H∗(M ; Fp)[t, θ], in which case Ξβ can have both positive and negative
powers of t. The case we are interested in is β = St(b). Because of the
uniqueness property from Lemma 1.2, we then have

ΞSt(b) = QΣb modulo Idiff . (1.25)

Example 1.6. Consider M = S2, with the standard basis {1, h} of cohomol-
ogy. Take p > 2 (the case p = 2 is straightforward, but requires slightly dif-
ferent notation). Using Theorem 1.4, one can compute that QΣh = −tp−1Σ,
where

Σ =
(

σ11 σ12

σ21 σ22

)

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ11 = −∑(p−1)/2
k=1

(2k−1)!
(k!)2(k−1)!2 qkt1−2k,

σ12 = −∑(p+1)/2
k=2

(2k−2)!
(k−2)! (k−1)!2 k!q

kt2−2k,

σ21 =
∑(p−1)/2

k=0
(2k)!
(k!)4 qkt−2k,

σ22 = −σ11.

(1.26)

In particular
QSt(h) = −tp−1σ11 1 − tp−1σ21 h. (1.27)

Note that after multiplying with tp−1, all the powers of t in (1.26) become
nonnegative. More precisely

− tp−1Σ =
(

0 q(p+1)/2

q(p−1)/2 0

)

+ (terms involving t), (1.28)

in agreement with (1.16) and the fact that the pth quantum power of h is
q(p−1)/2h. This is proved in Sect. 6.

Example 1.7. Let M be a cubic surface in CP 3 (this is CP 2 blown up at
6 points, with its monotone symplectic form). Take p = 2, and let h ∈
H4(M ; F2) be the Poincaré dual of a point. Then

QSt(h) = St(h) = t2h. (1.29)

This is interesting because of its implications for Hamiltonian dynamics: by
the criterion from [3,21], it means that M cannot admit a pseudo-rotation.
We refer to Sect. 6 for further discussion.
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The proof of Theorem 1.4 goes roughly as follows. We introduce another
operation, depending on a ∈ H2(M ; Z) as well as b ∈ H∗(M ; Fp)

QΠa,b : H∗(M ; Fp) −→ (H∗(M ; Λ)[[t, θ]])∗+|a|−2+p|b|. (1.30)

Geometrically, this is obtained from (1.15) by equipping the underlying Rie-
mann surface with an additional marked point, which can move around (we
insert an incidence constraint dual to a at that point). A localisation-type
argument yields

t QΠa,b(c) = QΣb(a ∗ c) − a ∗ QΣb(c). (1.31)

We also have an analogue of the divisor equation

QΠa,b(c) = ∂aQΣb(c). (1.32)

Theorem 1.4 follows immediately by combining (1.31) and (1.32).

Remark 1.8. Even though we have no immediate need for it here, it is worth
while noting that QΠa,b can be defined more generally for a ∈ H∗(M ; Fp),
and still satisfies (1.31), with suitable added Koszul signs (see Remark 4.11).

Remark 1.9. The argument above is closely related to the Cartan relation
for quantum Steenrod squares. Namely, let us set a = QSt(b1), b = b2, c = 1
in (1.31). Then, using (1.20), one sees that

tQΠQSt(b1),b2(1) = (−1)|b1| |b2|QΣb2(QSt(b1)) − QSt(b1) ∗ QSt(b2)

= (−1)|b1| |b2| (p(p−1)/2+1)QΣb2∗b1(1) − QSt(b1) ∗ QSt(b2)

= (−1)|b1| |b2| p(p−1)/2QSt(b1 ∗ b2) − QSt(b1) ∗ QSt(b2).

(1.33)

In view of that, it is not surprising that in applications, computations based
on covariant constancy closely resemble those from [22], where the Cartan
relation was the main tool.

2. A bit of equivariant (co)homology

This section introduces some of the algebra and topology underlying our
construction. Even though this is elementary, it is helpful as a guiding model
for the later discussion.
2a. Write

S∞ = {w = (w0, w1, w2, . . . ) ∈ C
∞ : wk = 0 for k  0,

‖w‖2 = |w0|2 + |w1|2 + · · · = 1}. (2.1)

Fix a prime p, and consider the Z/p-action on S∞ generated by

τ(w0, w1, . . . ) = (ζw0, ζw1, . . . ), ζ = e2πi/p. (2.2)

Take the following subsets:

Δ2k = {w ∈ S∞ : wk ≥ 0, wk+1 = wk+2 = · · · = 0}, (2.3)

Δ2k+1 = {w ∈ S∞ : e−iθwk ≥ 0 for some θ ∈ [0, 2π/p],

wk+1 = wk+2 = · · · = 0}. (2.4)
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Δ0

τΔ0

Δ1

Δ2

Figure 1. The first cells from (2.3), (2.4)

Each of them is homeomorphic to a disc, of the dimension indicated by
the subscript (Fig. 1). More precisely, Δ2k is a submanifold with boundary

∂Δ2k = {wk = wk+1 = · · · = 0} ∼= S2k−1, (2.5)

and Δ2k+1 a submanifold with two boundary faces, whose intersection forms
a corner stratum

∂Δ2k+1 = {wk ≥ 0, wk+1 = wk+2 = · · · = 0} ∪ {e−2πi/pwk ≥ 0,

wk+1 = wk+2 = · · · = 0}. (2.6)

The subsets (2.3), (2.4) and their images under the Z/p-action form an equi-
variant (and regular) cell decomposition of S∞. The tangent space of Δ2k at
the point where wk = 1 (and where all the other coordinates are therefore
zero) can be identified with C

k by projecting to the first k coordinates; we
use the resulting orientation. The tangent space of Δ2k+1 at the same point
can be similarly identified with C

k × iR; we use the orientation coming from
the complex orientation of C

k, followed by the positive vertical orientation
of iR. For those orientations, the differential in the cellular chain complex is

∂Δ2k = Δ2k−1 + τΔ2k−1 + · · · + τp−1Δ2k−1, (2.7)

∂Δ2k+1 = τΔ2k − Δ2k. (2.8)

Here and below, the convention is to ignore terms with negative subscripts.
We adopt the quotient S∞/(Z/p) as our model for the classifying space

B(Z/p). If we use Fp-coefficients, the Δi become cycles on the quotient, and
their homology classes form a basis for Heq

∗ (point ; Fp) = H∗(S∞/(Z/p); Fp).
(Moreover, from (2.7), one sees that the Bockstein sends Δ2k to Δ2k−1.)
2b. Consider the diagonal embedding δ on S∞/(Z/p), and the induced map

δ∗ : H∗(S∞/(Z/p); Fp) −→ (H∗(S∞/(Z/p); Fp))⊗2. (2.9)

Lemma 2.1. In homology with Fp-coefficients

δ∗Δi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i1+i2=i

Δi1 ⊗ Δi2 if i is odd or p = 2,

∑

i1+i2=i
ik even

Δi1 ⊗ Δi2 if i is even and p > 2. (2.10)

Proof. For p = 2, this is clear: from the relation between diagonal map and
cup product, and the ring structure on the cohomology of RP∞ = S∞/(Z/2),
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we can see that δ∗Δi must have nonzero components in all groups Hi1 ⊗Hi2 ,
and each of those is a copy of F2.

For p > 2, the same argument shows that exactly the terms in (2.10)
must occur, but possibly with some nonzero Fp-coefficients, which have to
be determined by looking a little more carefully. Choose generators θ ∈
H1(S∞/(Z/p); Fp) and t ∈ H2(S∞/(Z/p); Fp), so that

〈θ,Δ1〉 = 1, 〈t,Δ2〉 = −1. (2.11)

Because Δ2 was defined using the complex orientation, this means that t
is the pullback of the (mod p) Chern class of the tautological line bundle
S∞ → CP∞ under the quotient map S∞/(Z/p) → S∞/S1 = CP∞. Looking
at the orientations of the higher dimensional cells yields

〈tkθ,Δ2k+1〉 = 〈tk,Δ2k〉 = (−1)k. (2.12)

For k = k1 + k2, we have

〈tk1 ⊗ tk2 , δ∗Δ2k〉 = 〈δ∗(tk1 ⊗ tk2),Δ2k〉 = 〈tk,Δ2k〉, (2.13)

〈tk1θ ⊗ tk2 , δ∗Δ2k+1〉 = 〈δ∗(tk1θ ⊗ tk2),Δ2k+1〉 = 〈tkθ,Δ2k+1〉, (2.14)

and that implies that the coefficients in (2.10) are all 1, as desired. �

What does this mean on the cochain level? For each k, take a smooth tri-
angulation of S2k−1/(Z/p). Pull that back (taking preimages of the simplices)
to a triangulation of ∂Δ2k, and then extend that to a triangulation of Δ2k.
The outcome is an explicit smooth singular chain in S∞/(Z/p), denoted by
Δ̃2k, which becomes a singular cycle when the coefficients are reduced mod-
ulo p, and which represents the homology class of Δ2k in H∗(S∞/(Z/p); Fp).
A version of the same process produces corresponding singular chains Δ̃2k−1.
With that in mind, let us look at the relations underlying (2.10)

δΔ̃i ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i1+i2=i

Δ̃i1 × Δ̃i2 if i is odd or p = 2,

∑

i1+i2=i
ik even

Δ̃i1 × Δ̃i2 if i is even and p > 2. (2.15)

On the right-hand side, one decomposes the products into simplices. After
that, the relation means that there is a singular chain whose boundary (mod
p) equals the difference between the two sides. That chain can again be chosen
to be smooth. One could in principle try to spell all of this out using explicit
chains, but that is not necessary for our purpose.
2c. Consider the two-sphere S = C̄ = C ∪ {∞}, again with a Z/p-action
σ(v) = ζv, and the subsets (shown in Fig. 2)

P0 = {v = 0}, Q0 = {v = ∞}, (2.16)

L1 = {v ≥ 0} ∪ {v = ∞}, (2.17)

B2 = {e−iθv ≥ 0 for some θ ∈ [0, 2π/p]} ∪ {v = ∞}. (2.18)

We use the real orientation of L1, and the complex orientation of B2. Let us
denote the associated cellular chain complex simply by C∗(S). Its differential
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is

∂P0 = ∂Q0 = 0, (2.19)

∂L1 = Q0 − P0, (2.20)

∂B2 = L1 − σL1. (2.21)

Now look at S∞ ×Z/p S, which means identifying

(w, σv) ∼ (τw, v). (2.22)

This inherits a cell decomposition. The associated differential, which we de-
note by ∂eq, is

∂eq(Δ2k × P0) = 0, ∂eq(Δ2k+1 × P0) = 0, (2.23)

∂eq(Δ2k × Q0) = 0, ∂eq(Δ2k+1 × Q0) = 0, (2.24)

∂eq(Δ2k × σjL1) = Δ2k × (Q0 − P0) + Δ2k−1 × (L1 + σL1 + · · · + σp−1L1),
(2.25)

∂eq(Δ2k+1 × σjL1) = −Δ2k+1 × (Q0 − P0) + Δ2k × (σj+1L1 − σjL1),
(2.26)

∂eq(Δ2k × σjB2)=−Δ2k × (σj+1L1 − σjL1)+Δ2k−1 × (B2+· · ·+σp−1B2),
(2.27)

∂eq(Δ2k+1 × σjB2) = Δ2k+1 × (σj+1L1 − σjL1) + Δ2k × (σj+1B2 − σjB2).
(2.28)

Lemma 2.2. Take coefficients in Fp. In the cellular complex of S∞ ×Z/p S,
the following homology relationships hold:

Δ2k × (Q0 − P0) ∼ Δ2k−2 × (B2 + σB2 + · · · + σp−1B2), (2.29)

Δ2k+1 × (Q0 − P0) ∼ Δ2k−1 × (B2 + σB2 + · · · + σp−1B2). (2.30)

Proof. (2.29) is obtained by subtracting (2.25) from the following, which
comes from (2.28):

∂eq
(
Δ2k+1 × (σB2 + 2σ2B2 + · · · + (p − 1)σp−1B2)

)

= −Δ2k+1 × (L1 + · · · + σp−1L1) − Δ2k × (B2 + · · · + σp−1B2).
(2.31)

The second relation (2.30) is a combination of (2.26), (2.27). �

To fit this into the general framework of equivariant homology, note that
as an application of the localisation theorem, the map induced by inclusion
of the fixed point set

Heq
∗ (point; Fp)⊗P0⊕Heq

∗ (point; Fp)⊗Q0 −→ Heq
∗ (S; Fp) = H∗(S∞×Z/pS; Fp)

(2.32)
must be an isomorphism in sufficiently high degrees. Using the computations
above, one can see how that works out concretely: (2.32) is surjective, and it
fails to be injective only in degrees 0 and 1, where the kernel is generated by
Δ0 ⊗ (Q0 − P0) and Δ1 ⊗ (Q0 − P0), respectively.
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More generally, take any (homologically graded) chain complex, carrying
a (Z/p)-action. Its equivariant homology is defined by taking the tensor prod-
uct with the previously considered cellular complex of S∞, and then passing
to coinvariants for the combined action in the same sense as in (2.22). The
resulting equivariant differential is

∂eq(Δ2k ⊗ ξ) = Δ2k−1 ⊗ (ξ + σξ + · · · + σp−1ξ) + Δ2k ⊗ ∂ξ, (2.33)

∂eq(Δ2k+1 ⊗ ξ) = −Δ2k+1 ⊗ ∂ξ + Δ2k ⊗ (σξ − ξ). (2.34)

Here, ξ is an element of the original chain complex, and σ is the automorphism
which generates its (Z/p)-action. These formulae generalize the ones we have
previously written down for C∗(S).
2d. Dually to our previous construction, one can start with a cohomologically
graded complex C with a (Z/p)-action, and define an equivariant complex

Ceq = C[[t, θ]], (2.35)

where the formal variables are as in (1.9), with differential

deq(xtk) = dx tk + (−1)|x|(σx − x)tkθ, (2.36)

deq(xtkθ) = dx tkθ + (−1)|x|(x + σx + · · · + σp−1x)tk+1. (2.37)

Write H∗
eq(C) = H∗(Ceq) for the resulting cohomology.

Lemma 2.3. On Ceq, the operations t and σt are homotopic.

Proof. The desired homotopy is h(xtk) = 0, h(xtkθ) = (−1)|x|xtk+1. �
From now on, we work with Fp-coefficients. In that case, the equivariant

complex (2.35) carries a degree 1 endomorphism θ̃, which one can informally
think of as a corrected version of multiplication with θ (acting on the left)

θ̃(xtk) = (−1)|x|xtkθ, (2.38)

θ̃(xtkθ) = (−1)|x|(σx + 2σ2x + · · · + (p − 1)σp−1x)tk+1. (2.39)

The second part (2.39) contains the kind of expression we have seen previously
in (2.31). It is helpful to keep in mind that modulo p

id + σ + σ2 + · · · + σp−1 = (σ − id)p−1 = σ(σ − id)p−1 = · · · , (2.40)

σ + 2σ2 + · · · + (p − 1)σp−1 = −σ(σ − id)p−2. (2.41)

Using that, one sees that the map θ̃ is a chain map (of degree 1) with respect
to deq

deqθ̃(xtk) = deq((−1)|x|xtkθ) = (−1)|x|dx tkθ + (id + σ + · · · )x tk+1

= (−1)|x|dx tkθ − (σ + 2σ2 + · · · )(σ − id)xtk+1

= θ̃(−dx tk − (−1)|x|(σ − id)x tkθ) = −θ̃deq(xtk), (2.42)

and similarly
deqθ̃(xtkθ) = deq((−1)|x|(σ + 2σ2 + · · · )xtk+1)

= (−1)|x|(σ + 2σ2 + · · · )dx tk+1 − (id + σ + · · · )xtk+1θ

= −θ̃(dx tkθ + (−1)|x|(id + σ + · · · )xtk+1) = −θ̃deq(xtkθ).
(2.43)
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Lemma 2.4. Up to homotopy, θ̃2 is multiplication by t if p = 2, and 0 for
p > 2.

Proof. In terms of (2.41), θ̃2 is the action of −σ(σ−id)p−2t on the equivariant
complex. However, the action of (σ − id)t is nullhomotopic by Lemma 2.3,
and that implies the desired statement. �

A classical application of equivariant cohomology (basic to the definition
of Steenrod operations) is to start with a general cochain complex C (without
any (Z/p)-action), and consider its p-fold tensor product C⊗p with the action
that cyclically permutes the tensor factors. The equivariant complex (C⊗p)eq
is a homotopy invariant of C. We recall the following:

Lemma 2.5. Taking a cocycle x ∈ C to x⊗p ∈ (C⊗p)eq yields a map

H∗(C) −→ Hp∗
eq (C⊗p), (2.44)

which becomes additive after multiplying by t.

Proof. Since x⊗p is a (Z/p)-invariant cocycle in C⊗p (note that the Koszul
signs here are always trivial), it is also a deq-cocycle.

The next step is to show that if we have two cohomologous cocycles,
x1 −x2 = dz, then x⊗p

1 and x⊗p
2 are cohomologous in (C⊗p)eq. It is enough to

consider the case where C is three-dimensional, with basis (x1, x2, z); the gen-
eral case then follows by mapping this C into any desired complex. Take a one-
dimensional complex D with a single generator y, and the map C → D which
takes both xk to y (and maps z to zero). This is clearly a quasi-isomorphism,
and therefore induces a quasi-isomorphism (C⊗p)eq → (D⊗p)eq. Under that
quasi-isomorphism, both x⊗p

1 and x⊗p
2 go to y⊗p. Therefore, they must be

cohomologous in (C⊗p)eq.
The additivity statement can be proved by an explicit formula: if we

take
(x1 + x2)⊗p − x⊗p

1 − x⊗p
2 (2.45)

and expand it out, we get 2p − 2 monomials, which occur in free (Z/p)-
orbits. Take one representative for each orbit, add them up, and multiply the
outcome by θ. This yields a cochain in (C⊗p)eq whose boundary is t times
(2.45), up to sign. �

Finally, we return to the example of S. Take the cellular chain complex
and reverse its grading, to make it cohomological. Then, on C−∗(S)eq we have

deq(P0 tk) = 0, deq(P0 tkθ) = 0, (2.46)

deq(P0 tk) = 0, deq(P0 tkθ) = 0, (2.47)

deq(σjL1 tk) = (Q0 − P0)tk − (σj+1L1 − σjL1)tkθ, (2.48)

deq(σjL1 tkθ) = (Q0 − P0)tkθ − (L1 + · · · + σp−1L1)tk+1, (2.49)

deq(σjB2 tk) = −(σj+1L1 − σjL1)tk + (σj+1B2 − σjB2)tkθ, (2.50)

deq(σjB2 tkθ) = −(σj+1L1 − σjL1)tkθ + (B2 + · · · + σp−1B2)tk+1. (2.51)

With Fp-coefficients, we have the following analogue of Lemma 2.2, proved
in the same way:
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Lemma 2.6. The following cohomology relations hold in C−∗(S)eq:

(P0 − Q0)tk ∼ (B2 + σB2 + · · · + σp−1B2)tk+1, (2.52)

(P0 − Q0)tkθ ∼ (B2 + σB2 + · · · + σp−1B2)tk+1θ. (2.53)

3. Basic moduli spaces

This section introduces the relevant moduli spaces of pseudo-holomorphic
curves, in their most basic form. This means that we look at a version of
the small quantum product, and one of its properties, the divisor equation.
Like the previous section, this should be considered as a toy model which
introduces some ideas that will recur in more complicated form later on.
3a. Let M2n be a weakly monotone closed symplectic manifold. Choose
a Morse function f and metric g, so that the associated gradient flow is
Morse-Smale. Our terminology for stable and unstable manifolds is that
dim(W s(x)) = |x| is the Morse index, whereas dim(Wu(x)) = 2n − |x|.

Definition 3.1. Fix some compatible almost complex structure J . A J-holom-
orphic chain of length l is a set of maps

u1, . . . , ul : CP 1 → M

, such that ∂Ju = 0, and such that

uk(∞) = uk+1(0) for k = 1, . . . , l − 1. (3.1)

We call such a chain simple if each of the maps is simple (non-multiply-
covered and non-constant) and no two of the maps are reparametrisations
of each other. Two simple chains are called equivalent if they are related
by reparametrisations (φ1, . . . , φl) of each component, such that φk(0) = 0
and φk(∞) = ∞. The moduli space of simple chains representing some class
A ∈ H2(M ; Z) is denoted by MA(chain, l). It comes with evaluation maps at
the “endpoints of the chains”, which send (u1, . . . , ul) to u1(0) and ul(∞),
respectively.

Assumption 3.2. We fix some compatible almost complex structure J with
the following properties.

(i) All spaces MA(chain, l) are regular.
(ii) On those spaces, the evaluation maps (u1, . . . , ul) �→ u1(0) are trans-

verse to the stable and unstable manifolds of our Morse function.

Assumption 3.2 is satisfied for generic choice of J . The simplest aspect is
the l = 1 case of (i), which is just generic regularity of simple J-holomorphic
spheres (because of the weak monotonicity condition, this also implies the
absence of spheres with negative Chern number). The general form of (i) is a
version of [14, Definition 6.2.1] (using chains rather than general trees), and
is generically satisfied by [14, Theorem 6.2.6]. The transversality theory for
evaluation maps developed there also yields the genericity of (ii).
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Our main moduli space uses a specific (p + 2)-marked sphere as the
domain. We introduce specific notation for it: taking ζ1/2 = eπi/p, set

C = CP 1, zC,0 =0, zC,1 =ζ1/2,

zC,2 =ζ3/2, . . . , zC,p =ζ(2p−1)/2 =ζ−1/2, zC,∞ =∞.
(3.2)

An inhomogeneous term is a J-complex anti-linear vector bundle map νC :
TC → TM , where both bundles involved have been pulled back to C × M ,
such that νC is zero near the marked points (3.2). The associated inhomoge-
neous Cauchy–Riemann equation is

u : C −→ M,

(∂̄Ju)z = νC,z,u(z)).
(3.3)

Given critical points x0, . . . , xp, x∞ of f , we consider solutions of (3.3) with
incidence conditions at the (un)stable manifolds

u(zC,0) ∈ Wu(x0), . . . , u(zC,p) ∈ Wu(xp), u(zC,∞) ∈ W s(x∞). (3.4)

It is maybe better to think of this as having gradient half-flowlines

y0, . . . , yp : (−∞, 0] −→ M,

y′
k = ∇f(yk),

yk(0) = u(zC,k),

lims→−∞ yk(s) = xk

and

y∞ : [0,∞) −→ M,

y′
∞ = ∇f(y∞),

y∞(0) = u(zC,∞),

lims→∞ y∞(s) = x∞.

(3.5)

Assumption 3.3. We impose the following requirements:
(i) The moduli space of solutions of (3.3), (3.4) is regular.
(ii) Take an element in the same space, with a simple J-holomorphic bubble

attached at an arbitrary point. This means that we have a pair (u, u0)
with u as in (3.3), (3.4), a point z ∈ C, and a simple J-holomorphic
u0 : CP 1 → M with u(z) = u0(0). We want this moduli space to be
regular, as well.

(iii) Consider solutions with a simple holomorphic chain attached at each
of a subset of the (p + 2) marked points, and incidence constraints
transferred accordingly. For simplicity, let us spell out what this means
only in the case of a single chain, attached at zC,∞. In that case, we
have a solution of (3.3), and a simple holomorphic chain (u1, . . . , ul),
with the conditions

u(zC,0) ∈ Wu(x0), . . . , u(zC,p) ∈ Wu(xp),

u(zC,∞) = u1(0), ul(∞) ∈ W s(x∞).
(3.6)

We require that the resulting moduli space should be regular. In the gen-
eral case where there are several marked points with a chain attached to
each, we transfer the adjacency condition involving (un)stable manifolds
to the end of the respective chain.

This assumption are satisfied for a generic choice of inhomogeneous term
(where J is assumed chosen as in Assumption 3.2), following the argument
from [14, Chapter 8]. A few comments may be appropriate. In (ii), the bubble
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may be attached at one of the marked points. Let us say that this point is
zC,∞, in which case we have

u(zC,∞) = u0(0) ∈ W s(x∞). (3.7)

Assumption 3.2(ii), for l = 1, says that the subspace of maps u0 satisfying
u0(0) ∈ W s(x∞) is regular. What we want to achieve is that the evaluation
map on that subspace is transverse to u �→ u(zC,∞). This is clearly satisfied
for generic νC . In the same way, genericity of (iii) depends on Assumption
3.2(ii), but this time for arbitrary l.

Given A ∈ H2(M ; Z), let MA(C, x0, . . . , xp, x∞) be the space of solu-
tions of (3.3), (3.4), such that u represents A. Given our regularity require-
ment, this is a manifold of dimension

dimMA(C, x0, . . . , xp, x∞) = 2c1(A) + |x∞| − |x0| − · · · − |xp|. (3.8)

We denote by M̄A(C, x0, . . . , xp, x∞) the standard compactification. On the
pseudo-holomorphic map side, this involves the stable map compactification,
and on the Morse-theoretic side, one allows the flow lines to break. Details
are in [16, Section 5] (for illustration, see Fig. 3 there). To make the exposi-
tion more self-contained, we recall here that a point of the compactification
consists of:

• A genus zero nodal Riemann surface Ĉ with (p + 2) smooth marked
points zĈ,0, . . . , zĈ,∞. One of the irreducible components of that surface
is distinguished, and identified with C in a preferred way. Moreover, if
one collapses all the other components (usually called bubble compo-
nents), and transfers the marked points along with the collapse, then
those marked points will end up in the same positions as in (3.2). In
other words, if zĈ,k does not lie on the distinguished component, then
it must lie on a bubble tree attached to that component at zC,k.

• A map û : Ĉ → M which, on the distinguished component, is a solu-
tion of (3.3), and on the other components, is a J-holomorphic map.
Moreover, those J-holomorphic maps must be stable (if they are con-
stant on some non-distinguished component, then that component must
have at least three special points). Finally, the map û still represents
the homology class A.

• For each k ∈ {0, . . . , p}, a finite sequence of gradient flow lines ŷk,0 :
R → M, . . . , ŷk,mk−1 : R → M , ŷk,mk

: (−∞, 0] → M (all but the last
should be non-constant). These should satisfy

lims→−∞ ŷk,0(s) = xk,
lims→+∞ ŷk,j(s) = lims→−∞ ŷk,j+1(s),
ŷk,mk

(0) = û(zĈ,k).

• Similarly, gradient flow lines ŷ∞,0 : [0,∞) → M , ŷ∞,1 : R → M , . . . ,
ŷ∞,m∞ : R → M . Here, the conditions are that

ŷ∞,0(0) = û(zĈ,∞),
lims→+∞ ŷ∞,j(s) = lim→−∞ ŷ∞,j+1(s),
lims→+∞ ŷ∞,m∞(s) = x∞.
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Lemma 3.4. (i) If the dimension (3.8) is 0, we have

MA(C, x0, . . . , xp, x∞) = M̄A(C, x0, . . . , xp, x∞), (3.9)

which means that the moduli space is a finite set.
(ii) If the dimension is 1, the compactification is a manifold with bound-

ary, with the interior being the space MA(· · · ); the boundary points involve
no bubbling, and only once-broken gradient flow lines.

Sketch of proof. The proof is in [16, Theorem 3.4] for the 0-dimensional case,
and [16, Section 3.3] for the 1-dimensional case. We will summarize it here.
Recall that when compactifying the moduli space, what can occur is a mixture
of Gromov compactification and breaking of Morse flowlines. Take a limit
point in the form discussed above, assuming for simplicity that there is no
breaking of Morse flow lines (m0 = · · · = mk = m∞ = 0). Collapse all the
bubble components which carry constant J-holomorphic maps (called ghost
components). Then, carry out the following further simplifications:

• Suppose that after that initial collapse of constant components, all
marked points come to lie on the distinguished component. In that
case, we forget all bubbles except for one, which carries a non-constant
J-holomorphic map that intersects the image of the distinguished com-
ponent at some point (these must be such a bubble). Finally, we also
replace the map on that bubble component by its underlying simple
map. That puts us in the situation of Assumption 3.3(ii), where (u, u0)
represents some class whose Chern number is less than equal that of A.

• Take the other case (after the initial collapse, at least one marked point
does not lie on the distinguished component). In that case, we forget
any bubble tree that carries no marked points. This leaves only the
distinguished component and at most one holomorphic chain attached
at each of its (p+2) marked points; the component of that chain which is
furthest from the distinguished component will carry the marked point.
As before, we replace all multiply covered bubbles with the underlying
simple maps. Moreover, if two holomorphic maps ui, uj with i < j in
one chain are reparametrisations of each other, we remove the bubbles
carrying ui, . . . , uj−1. After this, all attached holomorphic chains are
simple, and we are in the situation of Assumption 3.3(iii), with at least
one nontrivial bubble chain, and where again the Chern number has not
increased from that of the original A.

This process is shown in Fig. 3. All these simplified limits have codimension
≥ 2, and hence cannot occur in the moduli spaces under consideration. The
case that includes Morse-theoretic breaking is similar, and we will not discuss
it further. �

Given some coefficient field F, we denote by Fx the one-dimensional
vector space generated by orientations of W s(x), where the sum of the two
orientations is zero. The Morse complex is

CMk(f) =
⊕

|x|=k

Fx. (3.10)
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L1

B2

Q0

P0

σL1

Figure 2. The cells from (2.16)–(2.18)

A choice of orientations of W s(x0), . . . ,W s(xp),W s(x∞) determines an ori-
entation of the moduli space MA(C, x0, . . . , xp, x∞). In particular, every point
in a zero-dimensional moduli space gives rise to a preferred isomorphism (an
abstract version of a ±1 contribution) Fx0 ⊗ · · · ⊗ Fxp

∼= Fx∞ . One adds up
those contributions to get a map

mA(C, x0, . . . , xp, x∞) : Fx0 ⊗ · · · ⊗ Fxp
−→ Fx∞ , (3.11)

and those maps are the coefficients of a chain map

SA : CM∗(f)⊗p+1 −→ CM∗−2c1(A)(f). (3.12)

Up to chain homotopy, this map is independent of the choice of almost com-
plex structure and inhomogeneous term, by a parametrized version of our
previous argument. Of course, the outcome is not in any sense surprising:

Lemma 3.5. Up to chain homotopy, SA(x0, x1, . . . , xp) is the A-contribution
to the (p + 1)-fold quantum product x0 ∗ x1 ∗ · · · ∗ xp.

Proof. This is a familiar argument, which involves degenerating C to a nodal
curve each of whose components has three marked points, one option being
that drawn in Fig. 4(i); each component will again carry a Cauchy–Riemann
equation with an inhomogeneous term. In our Morse-theoretic context, there
is an additional step, familiar from the proof that the PSS map is an isomor-
phism, such as in [12, Theorem 6] (see Fig. 2), [1, Section 4] (see Fig. 6), [13,
Section 4], or for more details [11]. Namely, one adds a length parameter, and
inserts a finite length flow line of our Morse function at each node. As the
length goes to infinity, each of the flow lines we have inserted breaks, see Fig.
4(ii); and that limit gives rise to the Morse homology version of the iterated
quantum product. The parametrized moduli space (consisting of, first, the
parameter used to degenerate C; and then in the second step, using the finite
edge-length as a parameter) then yields a chain homotopy between those two
operations. �

Remark 3.6. Our use of inhomogeneous terms means that the moduli space
could be nonzero for classes A ∈ H2(M ; Z) which do not give rise to monomi-
als in Λ (because

∫
A

ωM is either negative, or it is zero but A �= 0). However,
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replace by underlying simple map

Figure 3. Simplification process from the proof of Lemma
3.4, for p = 3. The stable map at the top (with 7 compo-
nents, and where the principal component is shaded) yields
a solution of (3.3) with a length 1 simple chain attached

1
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3

∞
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Figure 4. A schematic picture of the proof of Lemma 3.5,
with p = 3

by choosing the inhomogeneous term small and using a compactness argu-
ment, one can rule out that undesired behaviour for any specific A. Since the
outcome is independent of the choice up to chain homotopy, the resulting
cohomology level structure is indeed defined over Λ.

3b. Fix an oriented codimension 2 submanifold Ω ⊂ M . When choosing an
almost complex structure, there are additional restrictions:
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Assumption 3.7. In the situation of Assumption 3.2, we additionally require
that the evaluation map on the space of simple J-holomorphic chains should
be transverse to Ω.

We equip the Riemann surface (3.2) with “an additional marked point
which can move freely” (and which will carry an Ω-incidence constraint).
Formally, this means that we consider a family of genus zero nodal curve
with sections

C −→ S,

zC,0, . . . , zC,p, zC,∞, zC,∗ : S −→ C,
(3.13)

where the parameter space S is again a copy of CP 1, such that the following
holds:

• The critical values of (3.13) are precisely the marked points from (3.2).
If v is a regular value, the fibre Cv is canonically identified with C; that
identification takes the points zCr,0, . . . , zCr,p, zCr,∞ arising from (3.13)
to their counterparts in (3.2), and the remaining point zCv,∗ to v.

• If v is a singular value, Cv = Cv,+ ∪ Cv,− is a nodal surface with two
components. The first component Cv,+ is again identified with C, and
the second component Cv,− is a rational curve attached to the first one
at v. The first component carries all the marked points that C does, with
the exception of the one which is equal to v; and the second component
carries the two remaining marked points, considered to be distinct and
also different from the node (so, the second component has three special
points, which identifies it up to unique isomorphism).

Explicitly, (3.13) is constructed by starting with the trivial family C×S → S,
and then blowing up the points (v, v), where v is one of the marked points
in (3.2). One takes the proper transforms of the constant sections and of the
diagonal section, which yield the zC’s from (3.13).

Denote by Csing ⊂ C the set of (p+2) nodes, and by Creg its complement.
We write T (Creg/S) for the fibrewise tangent bundle, which is a complex line
bundle on Creg. A fibrewise inhomogeneous term on C is a complex anti-linear
map νC : T (Creg/S) → TM , where both bundles involved have been pulled
back to Creg × M , and with the property that νC is zero outside a compact
subset (meaning, in a neighbourhood of Csing × M ⊂ C × M). Suppose that
we have chosen such a term. One can then consider the moduli space of pairs
(v, u), where

v ∈ S, u : Cv −→ M,

(∂̄Ju)z = νCv,z,u(z).
(3.14)

In the case where Cv has a node, the second equation is imposed separately
on each of its components (with the assumption that both preimages of the
node must be mapped to the same point, so as to constitute an actual map
on Cv). This makes sense since, near each of the preimages of the node,
the equation reduces to the ordinary J-holomorphic curve equation. The
incidence conditions are

u(zCv,0) ∈ Wu(x0), . . . , u(zCv,p) ∈ Wu(xp),
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u(zCv,∞) ∈ W s(x∞), u(zCv,∗) ∈ Ω. (3.15)

Assumption 3.8. We impose the following requirements:

(i) The space of all solutions of (3.14), (3.15) should be regular. This should
be understood as two distinct conditions: on the open set of regular val-
ues v, regularity holds in the parametrized sense; and for each singular
value v, it holds in the ordinary unparametrized sense.

(ii) Take an element (v, u) in the same space, with a simple J-holomorphic
bubble attached at an arbitrary point, in the same sense as in Assump-
tion 3.3(ii) (the attaching point can be a marked point, or even the node
if v is singular). Then, that moduli space should be regular, as well. As
in (i), this should be interpreted as two different conditions, depending
whether v is regular or not.

(iii) Consider solutions for regular v, which have a simple holomorphic chain
attached at a subset of the (p + 3) marked points, and where the in-
cidence constraint has been transferred to the end of that chain, as in
Assumption 3.3(iii). Then, the resulting moduli space should again be
regular.

(iv) Take a singular v, We look at a situation similar to (iii), but where
additionally, there may be a simple holomorphic chain separating the
two components of Cv. Let us spell out what that means (ignoring the
possible existence of chains at the marked points). Write z± ∈ Cv,± for
the preimages of the node. In the definition of the moduli space (3.14),
the Cv,± carry maps u± which necessarily satisfy u−(z−) = u+(z+).
However, in our limiting situation, we instead have a simple chain
(u1, . . . , ul), such that

u−(z−) = u1(0), u+(z+) = ul(∞). (3.16)

Again, we require that the resulting space should be regular.

As before, given A ∈ H2(M ; Z), we write MA(C, x0, . . . , x∞,Ω) for the
space of solutions of (3.14), (3.15) representing A. The added parameter
v ∈ S compensates exactly for the evaluation constraint at zC,∗, so that we
get the same expected dimension as before

dimMA(C, x0, . . . , xp, x∞,Ω) = 2c1(A) + |x∞| − |x0| − · · · − |xp|. (3.17)

Concerning the analogue of the stable map compactification, we have a ver-
sion of Lemma 3.4 (with essentially the same proof):

Lemma 3.9. (i) If the dimension (3.17) is 0, we have a finite set

MA(C, x0, . . . , xp, x∞,Ω) = M̄A(C, x0, . . . , xp, x∞,Ω). (3.18)

(ii) If the dimension is 1, the compactification is a manifold with bound-
ary, with the boundary points only involving once-broken gradient flow lines.

In both cases (i) and (ii), the moduli space and its compactification
contain only points where v is a regular value.
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We define mA(C, x0, . . . , xp, x∞,Ω) to be the signed count of points in
the zero-dimensional moduli spaces. As before, one can assemble these into
a chain map

PA,Ω : CM∗(f)⊗p+1 −→ CM∗−2c1(A)(f). (3.19)
Up to chain homotopy, this is independent of the choices of J and νC, and
also depends only on [Ω] ∈ H2(M ; Z).
3c. The remaining topic in this section is the analogue of the divisor axiom.
As one would expect, this is not particularly difficult, but requires a bit of
technical discussion around forgetting a marked point. For the submanifold Ω,
we want to assume that it is transverse to the stable and unstable manifolds
of the Morse function.

Lemma 3.10. In the situation of Lemma 3.4, the following holds generically:
any map u in a zero-dimensional space MA(C, x0, . . . , xp, x∞) intersects Ω
transversally, and moreover, all those intersections happen away from the
marked points. The same is true within the smaller space of those νC which
vanish close to the marked points.

This is standard (transversality of evaluation maps). The only wrinkle
specific to our case is that the intersections avoid the marked points: but
if they did not, we would have an incidence constraint with Ω ∩ W s(x) or
Ω ∩ Wu(x), and those can be ruled out for dimension reasons.

Proposition 3.11. Fix some A. For suitable choices made in the definitions,
the maps (3.12) and (3.19) are related by PA,Ω = (A · Ω)SA. (For arbitrary
choices, the same relation will therefore hold up to chain homotopy.)

Proof. Even more explicitly, our statement says that one can arrange that

mA(C, x0, . . . , xp, x∞,Ω) = (A · Ω)mA(C, x0, . . . , xp, x∞). (3.20)

We start with J as in Assumption 3.7, and a νC as in Lemma 3.10. Because
the inhomogeneous term is zero near the marked points, it can be pulled back
to give a fibrewise inhomogeneous term νC. To clarify, if Cv is a singular fibre,
then νCv

is supported on Cv,+
∼= C, and zero on the other component Cv,−.

Let’s consider the structure of the resulting moduli spaces. Given a point
in the compactification M̄A(C, x0, . . . , xp, x∞,Ω), one can forget the position
of the ∗ marked point, and then collapse unstable components (components
which are not C, and which carry a constant J-holomorphic map and less
than three special points). The outcome is a (continuous) map

M̄A(C, x0, . . . , xp, x∞,Ω) −→ M̄A(C, x0, . . . , xp, x∞). (3.21)

Now, suppose that the dimension is zero. Then, the target in (3.21) is MA(C,
x0, . . . , xp, x∞), and consists only of maps u : C → M whose intersection
points with Ω are not marked points. The preimage of u under (3.21) is nec-
essarily an element of MA(C, x0, . . . , xp, x∞,Ω), with v a regular value; such
preimages correspond bijectively to points in u−1(Ω), hence form a finite
set, and (because of the transversality condition in Lemma 3.10) are regular
points in the parametrized moduli space. Finally, the sign of their contribu-
tion to mA(C, x0, . . . , xp, x∞,Ω) is given by multiplying the contribution of u
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to mA(C, x0, . . . , xp, x∞) with the local intersection number (sign) of u and
Ω at the relevant point.

We have now shown that MA(C, x0, . . . , xp, x∞,Ω) = M̄A(C, x0, . . . , xp,
x∞,Ω) is regular, and that counting points in it exactly yields the right-hand
side of (3.20). The νC used for this purpose may not satisfy Assumption
3.8, so this setting is not strictly speaking part of our general definition
of mA(C, x0, . . . , xp, x∞,Ω). However, we can find a small perturbation of
νC which does satisfy Assumption 3.8, and points in the associated zero-
dimensional moduli spaces will correspond bijectively to those for the original
νC, because of the compactness and regularity of the original space. �

4. Quantum steenrod operations

This section concerns the operations (1.15) and (1.30). We first set up the
various equivariant moduli spaces, then define QΣb, and discuss its properties.
Then we proceed to do the same for QΠa,b, and go as far as establishing (1.32).
4a. We equip C = CP 1 with the (Z/p)-action generated by the same rotation
as in Sect. 2, but here denoted by σC . Fix a compatible almost complex
structure J . An equivariant inhomogeneous term νeq

C is a smooth complex-
anti-linear map TC → TM , where both bundles have been pulled back to
S∞ ×Z/p C × M , and with the same condition of vanishing near the marked
points as before. More concretely, one can think of it as a family νeq

C,w of
inhomogeneous terms (in the standard sense) parametrized by w ∈ S∞, with
the property that

νeq
C,τ(w),z,x = νeq

C,w,σC(z),x ◦ Dσz : TCz → TMx for (w, z, x) ∈ S∞ × C × M.

(4.1)
Such equivariant data always exist, because the Z/p-action on the space S∞×
C × M is free. Consider the following parametrized moduli problem:

w ∈ S∞, u : C −→ M,

(∂̄Ju)z = νeq
C,w,z,u(z)).

(4.2)

Note that this inherits a (Z/p)-action, generated by

(w, u) �−→ (τ(w), u ◦ σC). (4.3)

Fix critical points x0, . . . , xp, x∞, and impose the same incidence constraints
as in (3.4) or equivalently (3.5). Moreover, we fix an integer i ≥ 0 and use
that to restrict the parameter w to one of the cells from (2.3), (2.4). More
precisely, the condition is that

w ∈ Δi \ ∂Δi ⊂ S∞. (4.4)

Take solutions of (4.2), (3.4), (4.4) that represent some class A ∈ H2(M ; Z),
and denote the resulting moduli space by MA(Δi × C, x0, . . . , xp, x∞). The
expected dimension increases by the number of parameters

dimMA(Δi ×C, x0, . . . , xp, x∞) = i+2c1(A)+ |x∞|− |x0|− · · ·− |xp|. (4.5)

Note that while one could define such moduli spaces for more general cells
τ j(Δi), that is redundant because of (4.3). To express that more precisely,
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write (x(j)
1 , . . . , x

(j)
p ) for the p-tuple obtained by cyclically permuting

(x1, . . . , xp) j times (to the right, so x
(1)
1 = xp). Then

MA(τ j(Δi) × C, x0, . . . , xp, x∞)
∼=−→ MA(Δi × C, x0, x

(j)
1 , . . . , x(j)

p , x∞),

(w, u) �−→ (τ−j(w), u ◦ σ−j
C ).

(4.6)
There is also a natural compactification, denoted by M̄A(· · · ) as usual. This
combines the (parametrized) stable map compactification, breaking of Morse
flow lines, and instances where the parameter w reaches the boundary of Δi.

Lemma 4.1. For generic J and νeq
C , the following properties are satisfied.

(i) If the dimension (4.5) is zero, we get a finite set

MA(Δi × C, x0, . . . , xp, x∞) = M̄A(Δi × C, x0, . . . , xp, x∞). (4.7)

(ii) If the dimension is 1, the moduli space is regular, and its compactifi-
cation is a manifold with boundary. Besides the usual boundary points arising
from broken Morse flow lines, one has solutions (w, u) where w ∈ ∂Δi. Using
(4.6), the set of such boundary points can be identified with a disjoint union

⋃

j

MA(Δi−1 × C, x0, x
(j)
1 , . . . , x(j)

p , x∞) over

{
j = 0, . . . , p − 1 i even,

j = 0, 1 i odd.
(4.8)

In (ii), note that the only points w ∈ ∂Δi that occur lie in the interior of
the cells of dimension (i−1). In particular, the fact that the even-dimensional
Δi have corners can be disregarded. The proof of Lemma 4.1 is simply a
parametrized version of that of Lemma 3.4: one imposes Assumption 3.2
on J , and the parametrized analogue of Assumption 3.3 on νeq

C , where the
parameter space is taken to be each Δi\∂Δi. We will not discuss the argument
further, and move ahead to its implications.

As usual, we count points in zero-dimensional moduli spaces, and collect
those coefficients into

ΣA(Δi, . . . ) : CM∗(f) ⊗ CM∗(f)⊗p −→ CM∗−i−2c1(A)(f). (4.9)

Lemma 4.1(ii), with the orientations of the Δi taken into account as in (2.7),
(2.8), shows that, d being the Morse differential

dΣA(Δi, x0, . . . , xp) − (−1)i

p∑

j=0

(−1)|x0|+···+|xj−1|ΣA(Δi, x0, . . . , dxj , . . . , xp)

=

⎧
⎨

⎩

∑

j

(−1)∗ΣA(Δi−1, x0, x
(j)
1 , . . . , x(j)

p ) i even,

(−1)∗ΣA(Δi−1, x0, x
(1)
1 , . . . , x

(1)
p ) − ΣA(Δi−1, x0, x1, . . . , xp) i odd.

(4.10)
Here, (−1)∗ is the Koszul sign associated with permuting (x1, . . . , xp).
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Remark 4.2. Our sign conventions for parametrized pseudo-holomorphic map
equations are as follows. Consider, just for the simplicity of notation, oper-
ations induced by a Cauchy–Riemann equation on the sphere, with one in-
put and one output. If we have a family of such equations depending on a
parameter space Δ which is a manifold with boundary, then the resulting
endomorphism of CM∗(f) satisfies

dφΔ − (−1)|Δ|φΔd = φ∂Δ. (4.11)

Note that this differs from the convention in [17, Section 4c]; one can translate
between the two by multiplying φΔ with (−1)|Δ|(|Δ|−1).

From now on, we will exclusively work with coefficients in F = Fp.

Lemma 4.3. Suppose that b is a Morse cocycle. Then, for each i and A

x �−→ (−1)|b| |x|ΣA(Δi, x, b, . . . , b) (4.12)

is a chain map (an endomorphism of the Morse complex) of degree p|b| − i −
2c1(A).

This is immediate, by specializing (4.10) to x1 = · · · = xp = b. In
particular, in this case, the Koszul signs in (4.10) are 1: so for odd i, the
expression on the right-hand side vanishes, whereas for even i that expression
is pΣA(Δi−1, x0, b, . . . , b), which vanishes modulo p.

We combine these operations into a series, which is a chain map

ΣA,b : CM∗(f) −→ (CM(f)[[t, θ]])∗+p|b|−2c1(A),

x �−→ (−1)|b| |x| ∑

k

(
ΣA(Δ2k, x, b, . . . , b) + (−1)|b|+|x|ΣA(Δ2k+1, x, b, . . . , b)θ

)
tk.

(4.13)
One can also sum formally over all A and extend the outcome Λ-linearly

Σb =
∑

A

qAΣA,b : CM∗(f ; Λ) −→ CM∗+p|b|(f ; Λ). (4.14)

Lemma 4.4. Up to homotopy, (4.13) depends only on cohomology class [b],
and moreover, that dependence is linear.

Proof. Take CM∗(f)⊗p, with the Z/p-action given by cyclic permutation, and
form the associated equivariant complex as in (2.35). Consider the t-linear
map

Σeq
A : CM∗(f) ⊗ (CM∗(f)⊗p)eq −→ (CM(f)[[t, θ]])∗−2c1(A),

x0 ⊗ (x1 ⊗ · · · ⊗ xp) �−→
∑

k

(
ΣA(Δ2k, x0, . . . , xp) + (−1)|x0|+···+|xp|ΣA(Δ2k+1, x0, . . . , xp)θ

)
tk,

x0 ⊗ (x1 ⊗ · · · ⊗ xp) θ �−→
∑

k

(
ΣA(Δ2k, x0, . . . , xp)θ

− (−1)|x0|+···+|xp| ∑

j

j(−1)∗ΣA(Δ2k+1, x0, x
(j)
1 , . . . , x(j)

p )t
)
tk,

(4.15)
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where (−1)∗ is again the Koszul sign. Equation (4.10), along with (2.7) and
(2.8), amounts to saying that (4.15) is a chain map with respect to deq. As an
elementary algebraic consequence, one has the following: if c is any cocycle
in (CM∗(f)⊗p)eq, then

x �−→ (−1)|c| |x|Σeq
A (x ⊗ c) (4.16)

is an endomorphism of the chain complex CF∗(f) of degree |c| − 2c1(A).
The homotopy class of that endomorphism depends only on the cohomology
class of c. Moreover, they are additive in c. Applying that construction to
c = b ⊗ · · · ⊗ b yields precisely (4.13).

From Lemma 2.5, we know that the cohomology class [b ⊗ · · · ⊗ b] ∈
H∗

eq(CM∗(f)⊗p) only depends on that of [b], which proves our first claim. By
the same Lemma, if we use t(b ⊗ · · · ⊗ b) instead, the associated operation
becomes linear in [b]. But that operation is just t times (4.13), so it follows
that (4.13) itself must be linear in [b]. �
Definition 4.5. For b ∈ H∗(M ; Fp) and A ∈ H2(M ; Z), we define the opera-
tion QΣA,b from (1.10) to be the cohomology level map induced by (4.13).
Correspondingly, (4.14) is the chain map underlying QΣb.

Here, we are implicitly using the fact that the chain-level operations
are independent of all choices up to chain homotopy. The proof is standard,
using moduli spaces with one extra parameter, and will be omitted. Among
the previously stated properties of QΣ, (1.16) concerns the contribution of
the cell Δ0, which is the operation from Sect. 3, hence is exactly Lemma 3.5.
The next two Lemmas correspond to (1.11) and (1.18).

Lemma 4.6. For A = 0, QΣA,b is the cup product with St(b).

Sketch of proof. It will be convenient for this purpose to allow a slightly larger
set of choices in the construction. Namely, we choose s-dependent vector fields
for s in the relevant half-line given below, parametrising either an “incoming”
or “outgoing” flowline, respectively
Z0,w,s, . . . , Zp,w,s ∈ C∞(TM) for w ∈ S∞, s ≤ 0, with Zk,w,s =∇f if s � 0,

Z∞,w,s ∈ C∞(TM) for w ∈ S∞, s ≥ 0, with Z∞,w,s = ∇f if s  0.

(4.17)
These are used to replace the gradient flow equations in (3.5) by dyk/ds =
Zw,k,s. The effect is that in the incidence conditions (3.4), the (un)stable
manifolds are replaced by perturbed versions. In particular, the transversal-
ity of those incidence conditions imposed on pseudo-holomorphic curves can
then be achieved by choosing (4.17) generically. This strategy (with minor
technical differences) goes back to the Morse-theoretic definition of ordinary
Steenrod operations in [2, Section 2]. In [22, Appendix B.1], the iterative
procedure to choose such Zk,w,s in a way that one obtains a moduli space
cut-out transversely is given in detail, in addition to the fact that such a
choice is generic.

We impose an additional symmetry condition, which ensures that (4.6)
still holds

Zk+1,w,s = Zk,τ(w),s for k = 1, . . . , p − 1. (4.18)
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Figure 5. A schematic picture of the proof of Lemma 4.6

Considering just A = 0, this means that we can take the inhomogeneous term
to be zero throughout, so that all maps u are constant (and of course regular).
The resulting moduli spaces are purely Morse-theoretical; see Fig. 5(i) for a
schematic representation. Without violating the symmetry property (4.6),
we can deform our moduli spaces as indicated in Fig. 5(ii). This separates
the coincidence condition at the endpoints of the half-flow lines into two
parts, joined by a finite length flow line of some other auxiliary s-dependent
vector field. More precisely, we use the length as an additional parameter,
and all vector fields involved may depend on that. One can arrange that as
the length goes to ∞, the limit consists of split solutions as in Fig. 5(iii),
where the vector fields on the bottom part are independent on w ∈ S∞.
It is now straightforward to see that this limit is the combination of the
Morse-theoretic cup product and the Morse-theoretic version of the Steenrod
operation [2,4]. �

Lemma 4.7. QΣA,b(1) agrees with the A-contribution to the quantum Steen-
rod operation QSt(b), as defined in [8,22] (for p = 2) or [18] (all p).

Sketch of proof. Morse-theoretically, 1 is represented by the sum of local min-
ima of the Morse function. Hence, the associated incidence condition (3.4)
requires u(0) to lie in an open dense set, and is generically satisfied on every
zero-dimensional moduli space. In other words, ΣA,b(1) can be computed by
forgetting the zero-th marked point and its incidence condition. The outcome
is exactly the definition of the quantum Steenrod operation, generalizing the
p = 2 case from [22] in a straightforward way; compared to the slightly more
abstract formulation in [18, Section 9], the only difference is that we stick to
a specific cell decomposition of BZ/p = S∞/(Z/p). �
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Figure 6. The family underlying the proof of Proposition
4.8, for p = 2

4b. The final piece of our discussion of QΣ operations concerns (1.20). We
assume that the underlying cochain level map Σb has been extended to b ∈
CM ∗(f) ⊗ Λ, as in (1.19).

Proposition 4.8. Fix Morse cocycles b and b̃, and write b̃ ∗ b ∈ CM ∗(f) ⊗ Λ
for a cochain representative of their quantum product. Then, there is a chain
homotopy

Σb̃ ◦ Σb � (−1)|b| |b̃| p(p−1)
2 Σb̃∗b. (4.19)

Sketch of proof. We introduce a family of Riemann surfaces with (2p + 2)
marked points, which depends on an additional parameter η ∈ (1,∞). Each
of those surfaces Cη is a copy of C, and the marked points are zCη,k = zC,k,
k ∈ {0, . . . , p,∞}, from (3.2) together with

z̃Cη,1 = ηzC,1, . . . , z̃Cη,p = ηzC,p. (4.20)

There are natural degenerations at the end of our parameter space: as η → 1,
each point z̃Cη,k collides with its counterpart zCη,k, and one can see this
as each pair bubbling off into an extra component of a nodal curve C1. As
η → ∞, all the z̃Cη,k collide with zCη,∞, and one can see as degeneration of
Cη into a nodal curve C∞ with two components, each of which is modelled
on the original (3.2) (see Fig. 6).

We choose an equivariant inhomogeneous term νeq
Cη

on each of our
curves, which is well behaved under the two degenerations (and is zero in
a neighbourhood of the nodes and marked points; the details are similar
to our previous definition of fibrewise inhomogeneous terms). Given critical
points x0, x1, x̃1, . . . , xp, x̃p, x∞ of the Morse function f , and a cell Δi, we
define a moduli space of triples (η, w, u), where: η ∈ (1,∞), w is as in (4.4),
and u : Cη → M is a map, representing the given homology class A, which
satisfies the η-parametrized version of (4.2), and the incidence conditions
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(3.4) as well as

u(z̃Cη,1) ∈ Wu(x̃1), . . . , u(z̃Cη,p) ∈ Wu(x̃p). (4.21)

To understand the algebraic relations which this parametrized moduli space
provides, we have to look at the contributions from limits with η = 1 or
η = ∞. The η = 1 contribution is given by a suitable moduli space of maps
on C1, and is fairly easy to interpret. Namely, one follows the proof of Lemma
3.5 and separates the components of C1 by finite length gradient trajectories
(to preserve the Z/p-symmetry, all the lengths must be the same, so there
is only one length parameter). As the length goes to infinity, the Morse flow
lines split, and we end up with a composition of quantum product (of xk

and x′
k) and a remaining component where we have the previously defined

operation (4.9). We can apply the same strategy to the η = ∞ limit, inserting
a finite length gradient flow line between the two pieces. As the length goes to
infinity, we end up with two separate components carrying equations of the
kind which underlies (4.9). However, the two equations are coupled, because
they carry the same parameter w ∈ S∞. In other words, the resulting moduli
spaces end up being

⋃
MA1(Δi × C, x0, . . . , xp, x) ×S∞ MA2(Δi × C, x, x̃1, . . . , x̃p, x∞), (4.22)

where the (disjoint) union is over A1 + A2 = A and all critical points x.
In the same spirit as in (4.9), we denote the operations obtained from

(4.22) by

ΞA(δ(Δi), . . . ) : CM ∗(f) ⊗ CM∗(f)⊗2p −→ CM∗−i−2c1(A)(f). (4.23)

We also find it convenient to add up over all A, with the usual qA coefficients.
Fix cocycles b and b̃ and insert them into (4.23) at the marked points labeled
(1, . . . , p) and (1̃, . . . , p̃), respectively, with signs as in (4.13). This yields a
chain map

Ξb̃,b(δ(Δi), ·) : CM∗(f) −→ (CM(f) ⊗ Λ)
∗+p|b|+p|b̃|

. (4.24)

The outcome of the parametrized moduli space argument outlined above is
a chain homotopy

Ξb̃,b(δ(Δi), ·) � Σb̃∗b(Δi, ·). (4.25)

We will be somewhat brief about the final step, since that is a general issue
involving equivariant cohomology, and not really specific to our situation.
One can construct chain maps like (4.24) not just for δ(Δi), but for other
Fp-coefficient cycles in S∞/(Z/p) × S∞/(Z/p), such as Δi1 × Δi2 . In that
case, there is a simple decomposition formula

Ξb̃,b(Δi1 × Δi2 , ·) = (−1)|b| |b̃| p(p−1)
2 Ξb̃(Δi1 ,Ξb(Δi2 , ·)), (4.26)

where the Koszul sign arises from reordering (b̃, b, b̃, b, . . . ) into (b̃, . . . , b̃, b, . . . ,
b). Finally, homologous cycles give homotopic maps. One can use that, and
the decomposition of δ(Δi) into product cycles from Sect. 2, to obtain a
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further homotopy

Ξb̃,b(δ(Δi), ·) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i1+i2=i

Ξb̃,b(Δi1 × Δi2 , ·) if i is odd or p = 2,

∑

i1+i2=i
ik even

Σb̃,b(Δi1 × Δi2 , ·) if i is even and p > 2. (4.27)

The combination of (4.25), (4.26), and (4.27) then completes the argument. �

4c. We now merge ideas from Sects. 3 and 4, by which we mean that we take
moduli spaces parametrized by cells in S∞/(Z/p), and add an additional
freely moving marked point to the domain. The starting point is, once more,
the family (3.13). From its construction as a blowup of C × S → S, this
inherits a (diagonal) (Z/p)-action, which we denote by σC.

Fix an almost complex structure J . An equivariant fibrewise inhomoge-
neous term is a complex anti-linear map

νeq
C/S : T (Creg/S) −→ TM, (4.28)

where both bundles have been pulled back to S∞ ×Z/p Creg × M . When
restricted to any S2k−1 ×Z/p Creg × M , it should vanish outside a compact
subset (meaning, it is zero in a neighbourhood of S2k−1 ×Z/p Csing × M ;
the restriction to S2k−1 follows our usual process of treating S∞ as a direct
limit of finite-dimensional manifolds). As before, one can think of it more
explicitly as a family νeq

C/S,w of fibrewise inhomogeneous terms parametrized
by w ∈ S∞, and satisfying a (Z/p)-equivariance property as in (4.1)

νeq
C/S,τ(w),z,x = νeq

C/S,w,σC(z),x ◦ DσC : T (Creg/S)z → TMx. (4.29)

The associated moduli space consists of triples (w, v, u), where the parameters
are (w, v) ∈ S∞ × S, v being a regular value of (3.13), and u : Cv → M is
a solution of the inhomogeneous Cauchy–Riemann equation given by νeq

Cv,w.
These inherit a (Z/p)-action as in (4.3)

(w, v, u) �−→ (τ(w), σ−1(v), u ◦ σC). (4.30)

We impose the usual incidence conditions, given by the (un)stable manifolds
of critical points x0, . . . , xp, x∞, and by a codimension 2 submanifold Ω at
the ∗ marked point. Finally, we restrict to the interior of cells (4.4). Denote
the resulting moduli spaces by MA(Δi ×C, x0, . . . , xp, x∞,Ω). Their expected
dimension remains as in (4.5).

We omit the discussion of transversality and of the compactifications,
which is simply a combination of those in Sects. 3 and 4. The outcome of
isolated-point-counting in our moduli space is maps

ΠA(Δi, . . . ) : CM∗(f) ⊗ CM∗(f)⊗p −→ CM∗−i−2c1(A)(f) (4.31)

which, due to the structure of the compactified one-dimensional moduli
spaces, satisfy the same equation as the ΣA(Δi, . . . ), see (4.10). Specializ-
ing to coefficients in Fp, and fixing a Morse cocycle b, one can therefore use
(4.31) to define a chain

ΠA,b : CM∗(f) −→ (CM(f)[[t, θ]])∗+p|b|−2c1(A) (4.32)

Reprinted from the journal1052



exactly as in (4.12). Moreover, up to homotopy that map depends linearly
on [b], as in Lemma 4.4. Again up to homotopy, it is also independent of all
choices, including that of Ω within its cohomology class a = [Ω] ∈ H2(M ; Z).

Definition 4.9. For a ∈ H2(M ; Z), b ∈ H∗(M ; Fp) and A ∈ H2(M ; Z), we
define QΠA,a,b to be the cohomology level map induced by (4.32). Adding up
those maps with weights qA yields (1.30).

Proposition 4.10. Fix some A and integer i. For suitable choices made in the
definition, we have ΠA(Δi, . . . ) = (A · Ω)ΣA(Δi, . . . ). As a consequence, we
have QΠA,a,b = (A · Ω)QΣA,b for all i and A, which is equivalent to (1.32).

Proof. The geometric part of this is exactly as in Proposition 3.11: for suit-
ably correlated choices of inhomogeneous terms, the underlying moduli spaces
bear the same relationship. Since that argument involves making a small per-
turbation, we can only apply it to finitely many moduli spaces at once, and
that explains the bound on i in the statement. As a consequence, we get
equality of the i-th coefficient in QΠA,a,b and (A · Ω)QΣA,b. �
Remark 4.11. Both in Sect. 3 and here, we have used an evaluation con-
straint at a codimension two submanifold Ω ⊂ M , which limits QΠa,b to
a ∈ H2(M ; Z). One can replace that by a pseudo-cycle of arbitrary dimen-
sion d (see, e.g., [23]) and, then, the definition goes through without any
significant changes for a ∈ Hd(M ; Z). In fact, one could even take a mod p
pseudo-cycle. This consists of an oriented manifold with boundary Nd, such
that ∂N carries a free (Z/p)-action, and a map f : N → M , such that f |∂N
is (Z/p)-invariant, with the following properties: the limit points of f are
contained in the image of a map from a manifold of dimension (d − 2), and
the limit points of f |∂N are contained in the image of a map from a man-
ifold of dimension (d − 3). While we do not intend to develop the theory
of mod p pseudo-cycles here, this should allow one to define QΠa,b for all
a ∈ Hd(M ; Fp). The proof of (1.31) given in the next section extends to such
generalizations in a straightforward way, but of course, there is no analogue
of (1.32) in codimensions d > 2.

5. Proof of Theorem 1.4

This section derives (1.31). Together with the previously established (1.32),
that completes our proof of Theorem 1.4.
5a. We decompose the moduli spaces underlying QΠa,b into pieces, where
the position of the additional marked point is constrained to lie in one of the
cells from Sect. 2. This means that instead of using Δi × S ⊂ S∞ × S as
parameter spaces, we look at the subspaces Δi × W , where

W ∈ {P0, Q0, σj(L1), σj(B2)}. (5.1)

Within the framework of Sect. 4, it is unproblematic to ensure that all the
resulting moduli spaces, denoted by MA(Δi ×C|W,x0, . . . , xp, x∞,Ω), satisfy
the usual regularity and compactness properties. Point-counting in them gives
rise to maps

ΠA(Δi × W, . . . ) : CM∗(f) ⊗ CM∗(f)⊗p −→ CM∗−i−2cA(A)−|W |+2(f). (5.2)
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As in (4.10), adjacencies between cells determine relations between the asso-
ciated invariants. In our case, these are governed by (2.7)–(2.8) and (2.19)–
(2.21). Explicitly, the relations are

dΠA(Δi × W,x0, . . . , xp) − (−1)i+|W |

p∑

k=0

(−1)|x0|+···+|xk−1|ΠA(Δi × W,x0, . . . , dxk, . . . , xp)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

j

(−1)∗ΠA(Δi−1 × σjW,x0, x
(j)
1 , . . . , x(j)

p ) i even,

(−1)∗ΠA(Δi−1 × σW, x0, x
(1)
1 , . . . , x(1)

p )
−ΠA(Δi−1 × W,x0, x1, . . . , xp) i odd

+ (extra term depending onW ).

(5.3)

The last-mentioned term is zero if W ∈ {P0, Q0}, with the remaining cases
being

(extra term forW = σjL1)

= (−1)i
(
ΠA(Δi × Q0, x0, x

(j)
1 , . . . , x(j)

p ) − ΠA(Δi × P0, x0, x
(j)
1 , . . . , x(j)

p )
)
,

(5.4)

(extra term forW = σjB2)

= (−1)i+1
(
ΠA(Δi × σj+1L1, x0, x

(1)
1 , . . . , x(1)

p )

− ΠA(Δi × σjL1, x0, x1, . . . , xp)
)
.

(5.5)

As usual, we now specialize to coefficients in F = Fp. The relations above
immediately imply the following:

Lemma 5.1. Fix a cocycle b ∈ CM ∗(f). Then, the t-linear map

Πeq
A,b : C−∗(S)eq ⊗ CM∗(f) −→ (CM(f)[[t, θ]])∗+p|b|−2c1(A)+2,

W ⊗ x �−→ (−1)|b| (|W |+|x|) ∑

k

(
ΠA(Δ2k × W,x, b, . . . , b)

+(−1)|x|+|b|+|W |ΠA(Δ2k+1 × W,x, b, . . . , b)θ
)
tk,

W θ ⊗ x �−→ (−1)|b| (|W |+|x|) ∑

k

(
(−1)|x|ΠA(Δ2k × W,x, b, . . . , b)θ

−(−1)|b|+|W | ∑

j

jΠA(Δ2k+1 × σjW,x, b, . . . , b)t
)
tk (5.6)

is a chain map.

Following (4.15), one can think of (5.6) as a special case of a more
general structure, which would be a t-linear chain map

(C−∗(S) ⊗ CM∗(f) ⊗ CM∗(f)⊗p)eq −→ (CM(f)[[t, θ]])∗−2c1(A)+2. (5.7)

Here, the group Z/p acts on C−∗(S), as well as on CM∗(f)⊗p by cyclic per-
mutations. As in the previous situation, (5.7) would be useful to prove that
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(5.6) only depends on the cohomology class of b, and is additive. For our pur-
poses, however, we can work around that, since all necessary computations
can be done using a fixed cocycle b.
5b. At this point, everything we need can be extracted from an analysis of
the chain map (5.6).

Lemma 5.2. Suppose that we specialize (5.6) to using W = B2 + σB2 +
· · · + σp−1B2 ∈ C2(S)eq . Then, the resulting chain map CM∗(f) → (CM(f)
[[t, θ]])∗+p|b|−2c1(A) is equal to ΠA,b.

Proof. This is essentially by definition. We are considering the map

x �−→ (−1)|b| |x| ∑

j,k

(
ΠA(Δ2k × σj(B2), x, b, . . . , b)

+(−1)|b|+|x|ΠA(Δ2k+1 × σj(B2), x, b, . . . , b)θ
)
tk. (5.8)

The regularity of the spaces MA(Δ × C|W,x0, . . . , xp, x∞,Ω) for cells W of
dimension < 2 implies that in a zero-dimensional space MA(Δ×C, x0, . . . , xp,
x∞,Ω), none of the points arises from a parameter value v ∈ S which belongs
to one of those cells. In other words, that space MA(Δ×C, x0, . . . , xp, x∞,Ω)
is the disjoint union of MA(Δ × C|σjB, x0, . . . , xp, x∞,Ω). �

Lemma 5.3. Suppose that we specialize (5.6) to using W = P0 ∈ C0(S)eq ,
and pass to cohomology. Then, the resulting map is equal to the following:
take all possible decompositions A = A1 + A2, and add up

H∗(M ;Fp)
∗A1a−−−→H∗+2−2c1(A1)(M ;Fp)

QΣb,A2−−−−−→(H(M ;Fp)[[t, θ]])
∗+p|b|+2−2c1(A),

(5.9)

where a = [Ω] ∈ H2(M ; Z).

Proof. This time, the reason is geometric. Using P0 means that we are re-
stricting to a particular fibre of (3.13), which is the nodal surface from Fig.

1

2
3

∞

∗

0
(i)

1

2
3

∞

∗

0
(ii)

∇f

Figure 7. A schematic picture of the proof of Lemma 5.3,
with p = 3
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7(i). Recall that each component of that surface carries an inhomogeneous
term, which additionally depends on parameters in S∞. However, without
violating regularity or other restrictions, one can arrange that the inhomo-
geneous term on the component which is a three-pointed sphere (C0,− in the
notation from Sect. 3) is independent of those parameters.

After that, one inserts a finite length Morse flow line between the two
components, as in Fig. 7(ii). In the same way as in Lemma 3.5, the resulting
(varying length) moduli space gives a chain homotopy between our operation
and the chain map underlying the composition (5.9), in its Morse-theoretic
incarnation. �

Lemma 5.4. Suppose that we specialize (5.6) to using W = Q0 ∈ C0(S)eq ,
and pass to cohomology Then, the resulting map is equal to the following: take
all possible decompositions A = A1 + A2, and add up

H
∗
(M ; Fp)

QΣb,A1−−−−−→H(M ; Fp)[[t, θ]])
∗+p|b|−2c1(A1) ∗A2 a−−−→(H(M ; Fp)[[t, θ]])

∗+p|b|+2−2c1(A)
,

(5.10)

where a = [Ω] as before.

The proof is the same as for Lemma 5.3. Note that the operations in
(5.10) appear in the opposite order from (5.9). The reason is that over v = 0,
the component Cy,− is attached to Cv,+ at the point 0 ∈ C, which serves as
input of the Σ operation; whereas for v = ∞, it is attached at the output
point ∞ ∈ C. Finally, we have the following, which establishes (1.31):

Proposition 5.5. tQΠa,b equals the difference between (5.9) and (5.10).

Proof. By Lemma 5.2, ΠA,bt is obtained by specializing (5.6) to (B2 + · · · +
σp−1B2)t. From (2.52) and (2.53), we see that this is chain homotopic to
specializing the same map to (P0 − Q0). Using Lemma 5.3 and 5.4 then
yields the desired result. �

6. Computations

In this section, we explore the power of Theorem 1.4 as a computational tool.
6a. Our first task is to work out the details of Example 1.6, where M is the
two-sphere. We use the standard generator of H2(M ; Z), and correspondingly
write Λ as a power series ring in one variable q. The quantum connection is

∇ = tq∂q +
(

0 q
1 0

)

. (6.1)

Let us temporarily use Q-coefficients, and allow inverses of t. If ξ satisfies

(tq∂q)2ξ = qξ, (6.2)

then the following endomorphism is covariantly constant with respect to (6.1):

Ξ =

(
−ξ(tq∂qξ) −(tq∂qξ)2

ξ2 ξ(tq∂qξ)

)

. (6.3)
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It is straightforward to write down an explicit solution of (6.2):

ξ =
∞∑

k=0

1
(k!)2

qkt−2k. (6.4)

Pick a prime p > 2. Take (6.3) with (6.4), and truncate it by dropping all
powers qp or higher. The remaining denominators are coprime to p, so we can
reduce coefficients to Fp. The outcome, using some elementary combinatorics
to simplify the formulae, is the matrix Σ from (1.26). For example, the qkt−2k

term of the σ21 coordinate of (6.3) is
∑

k=k1+k2

1
(k1!)2

1
(k2!)2

=
1

(k!)2
∑

k=k1+k2

(
k

k1

)(
k

k2

)

=
1

(k!)2

(
2k

k

)

,

the second equality being the Chu–Vandermonde identity. We notice that
this is the σ21 component (2k)!

(k!)4 of (1.26). Similarly, the coefficient of qkt2−2k

in the σ12 component of (6.3) is
∑

k=k1+k2

k1
(k1!)2

k2
(k2!)2

,

and using the Chu–Vandermonde identity on

1
(k−1)!2

∑

k=k1+k2

(
k − 1
k1

)(
k − 1
k2

)

,

one obtains the coefficient of qkt2−2k in the σ12 component of (1.26). A similar
application of this identity can be used for the σ11 component.

By construction, this endomorphism is covariantly constant modulo qp;
and the constant term (in q) of −tp−1Σ matches the cup product with St(h) =
−tp−1h (see (1.13) for the sign convention). Therefore, −tp−1Σ and QΣh

must agree modulo qp. However, for degree reasons, QΣh cannot have terms
of order qp or higher. The consequence is that QΣh = −tp−1Σ, as previously
stated.

Remark 6.1. It is worthwhile spelling out the comparison with the fundamen-
tal solution of the quantum differential equation, mentioned in Remark 1.5.
For S2, the fundamental solution is [10, Section 28.2] (note the differences in
notation and conventions: our t is their −�; our q is their et; our t is their H)

Ψ =

(
−tq∂qη −tq∂qξ

η ξ

)

, (6.5)

where ξ is as in (6.4), and

η =
∞∑

k=0

1
(k!)2

qkt−2k−1
( − log(q) + 2

k∑

j=1

1
j

)
(6.6)

is a multivalued solution of the same Eq. (6.2) as ξ. By forming (1.23) with
β = h, one gets exactly the matrix from (6.3)

Ξ = Ψ
(

0 0
1 0

)

Ψ−1. (6.7)
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6b. Following ideas from [22], let us look at the following situation:

Assumption 6.2. The second cohomology group H2(M ; Fp) generates
H∗(M ; Λ) as a ring, with the quantum product.

This implies that H∗(M ; Fp) is zero in odd degrees. It also implies that
each class in H2(M ; Fp) can be lifted to H2(M ; Z), as one sees by looking at

· · · → H2(M ; Z) → H2(M ; Fp) → H3(M ; Z)
p−→ H3(M ; Z)

→ H3(M ; Fp) → · · · (6.8)

Lemma 6.3. Suppose that Assumption 6.2 holds. Then, the quantum product
and QSt(b), for b ∈ H2(M ; Fp), determine all the quantum Steenrod opera-
tions.

Proof. Write the covariant constancy property as

QΣ b(a ∗ c) = t∂aQΣ b(c) + a ∗ QΣ b(c), a ∈ H2(M ; Z), b, c ∈ H∗(M ; Fp).
(6.9)

This shows that QΣb(c) and the quantum product determine QΣb(a ∗ c).
Therefore, if one knows QSt(b) = QΣb(1) and Assumption 6.3 holds, the
entire operation QΣb can be computed from that. By (1.20)

QSt(b ∗ c) = QΣb(QSt(c)). (6.10)

If we know QSt(b) and QSt(c), for some b ∈ H2(M ; Fp) and c ∈ H∗(M ; Fp),
then our previous argument determines QΣb, and we can get QSt(b ∗ c) from
that by (6.10). In view of Assumption 6.3, this implies the desired result. �

Here is a concrete class of examples to which this strategy applies.

Proposition 6.4. Suppose that M is a monotone symplectic manifold, satisfy-
ing Assumption 6.2. Then, the quantum Steenrod operations can be computed
in terms of the quantum product and classical Steenrod operations.

Proof. Take b ∈ H2(M ; Fp). Then, QSt(b) has degree 2p. The monomials
in it that can have nonzero coefficients are tjqA, where j + c1(A) ≤ p. The
terms with j = 0 and c1(A) = p are part of (1.16). The remaining terms
are determined by covariant constancy, since any monomial qA that lies in
Idiff must necessarily have c1(A) ≥ p. Having determined QSt(b), Lemma 6.3
does the rest. �

As a concrete illustration, let us consider a cubic surface M ⊂ CP 3,
which is a del Pezzo surface, and hence a monotone symplectic manifold.
For simplicity, instead of the whole Novikov ring, we will work with a single
Novikov variable q, which counts the Chern number of holomorphic curves.
Let us first take coefficients in Z. Take h2 to be the first Chern class of M ,
and h4 to be the Poincaré dual of a point. Computations in [5,6] show that

h2 ∗ h2 = 3h4 + 9q h2 + 108q2,

h2 ∗ h4 = 36q2 h2 + 252q3.
(6.11)

At one point, we will use another class in H2(M), the Poincaré dual of a
Lagrangian sphere, denoted by l2. This satisfies

l2 ∗ l2 = −2h4 + 4q h2 + 12q2. (6.12)
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Example 6.5. Take the cubic surface with p = 2 (this computation is of the
same kind as those in [22], only expressed in slightly different language). First
of all

QSt(c) = c ∗ c + tc for all c ∈ H2(M ; F2). (6.13)

A priori, QSt(c) could also have a tq term, which would lie in H0(M ; F2).
This would come from classes with c1(A) = 1. To get a nonzero output in
H0(M ; F2), one would need to have a stable A-curve going through every
point of M . However, each A is represented by a unique embedded (−1)-
sphere; hence, the term must vanish, leaving (6.13).

By combining (6.11), (6.13), and (6.9), one gets

QSt(h2) = h4 + (q + t)h2,

QΣh2(h2) = tq∂qQSt(h2) + h2 ∗ QSt(h2) = (q + t)h4 + q2h2,

QΣh2(h2 ∗ h2) = tq∂qQΣh2(h2) + h2 ∗ QΣh2(h2) = (tq + q2)h4 + q3h2.

(6.14)

Using (6.10), we get the result announced in Example 1.7

QSt(h4) = QSt(h2 ∗ h2 + qh2) = QΣh2(QSt(h2)) + q2QSt(h2)
= QΣh2(h2 ∗ h2 + th2) + q2QSt(h2) = t2h4. (6.15)

Example 6.6. Let us again look at the cubic surface, but now with p = 3.
Here, the fact that we work with a single Novikov variable q will limit the ef-
fectiveness of our computation, leading to an incomplete result. As explained
in Proposition 6.4, we can use covariant constancy to determine the quan-
tum Steenrod operations on H2(M ; F3). In the same way, one can compute
QΣb(c) for b, c ∈ H2(M ; F3) except for the q3t term, which lies in H0(M ; F3).
We will only describe the outcome (code that carries out this computation is
available at [19])

QSt(h2) = −t2h2,

QSt(l2) = −t2l2,

QΣ l2(l2) = −t2h4 + (term lying inH0(M ; F3)q3t). (6.16)

From that one gets, using (6.12)

QSt(h4) = QSt(l2 ∗ l2 − qh2) = QΣl2(QSt(l2)) − q3QSt(h2)
= t4h4 + q3t2h2 + (term lying inH0(M ; F3)q3t3). (6.17)

Note that, unlike the p = 2 case, QSt(h4) contains a non-classical (quantum)
term.

6c. We conclude our discussion with a higher dimensional case: the intersec-
tion of two quadrics in CP 5, which is a monotone symplectic 6-manifold. Let
us first work with Z-coefficients. The even degree cohomology has a basis
{1, h2, h4, h6}, where the subscript denotes the dimension. There is also odd
degree cohomology, H3(M ; Z) = Z

4, but that will play no role in our argu-
ment. We can identify the Novikov ring with Z[[q]], but since c1(M) is twice
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the positive area generator of H2(M ; Z), the formal variable q has degree 4.
The quantum product, as computed in [7], satisfies

h2 ∗ h2 = 4(h4 + q),
h2 ∗ h4 = h6 + 2qh2,

h2 ∗ h6 = 4qh4 + 4q2,

h4 ∗ h4 = 2qh4 + 3q2.

(6.18)

Example 6.7. Taking our intersection of quadrics, let us set p = 2. The clas-
sical Steenrod operations are

Sq(hk) = tk/2hk. (6.19)

For h2, this is because h2
2 = 0 ∈ H4(M ; F2), which one can read off from the

classical term in (6.18). For h4, its Poincaré dual of is represented by a line
CP 1 ⊂ M . The normal bundle of that line has first Chern class 0; by the
geometric description of Steenrod squares through Stiefel–Whitney classes,
this implies vanishing of Sq2(h4).

Since the quantum product with h2 agrees with its classical counterpart,
the cup product with any element of H∗(M ; F2) is a covariantly constant
endomorphism for the quantum connection. From that, Theorem 1.4, and
(6.19), one gets

QΣh2(c) = th2c + (terms lying inHk(M ; F2) with k < |c| − 4),

QΣh4(c) = t2h4c + q2c + (terms lying inHk(M ; F2) with k < |c|). (6.20)

Therefore
QSt(h2) = th2,

QSt(h4) = t2h4 + q2,

QSt(h6) = QΣh2∗h4(1) = QΣh2(QSt(h4)) = QΣh2(t
2h4 + q2)= t3h6+q2th2.

(6.21)

Example 6.8. Still for our intersection of quadrics, take p = 3. Then, the
quantum product and covariant constancy completely determine QΣh2 , for
degree reasons (in fact, the same is true for any p > 2). Explicitly (see again
[19] for code), the action on Heven(M ; F3) is

QΣh2 =

⎛

⎜
⎜
⎝

qt q2 −q2t q3

−t2 qt 0 q2t
0 −t2 + q −qt q2

1 0 −t2 −qt

⎞

⎟
⎟
⎠ . (6.22)

From that, we get

QSt(h2) = QΣh2(1) = qt 1 − t2 h2 + h6,

QSt(h4) = QΣh4(1) = QΣh2∗h2−q1(1) = QΣ2
h2

(1) − q3 1

= qt(q + t2)h2 + (q + t2)2 h4,

QSt(h6) = QΣh6(1) = QΣh2∗h2∗h2(1) = QΣ3
h2

(1)

= q2t(q2 − qt2 − t4) 1 + q2t4 h2 + qt3(q + t2)h4
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+(q3 − q2t2 + qt4 − t6)h6.
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An algebraic approach to the algebraic
Weinstein conjecture

Vivek Shende

Abstract. How does one measure the failure of Hochschild homology to
commute with colimits? Here, I relate this question to a major open
problem about dynamics in contact manifolds—the assertion that Reeb
orbits exist and are detected by symplectic homology. More precisely,
I show that for polarizably Weinstein fillable contact manifolds, said
property is equivalent to the failure of Hochschild homology to commute
with certain colimits of representation categories of tree quivers. So as
to be intelligible to algebraists, I try to include or black-box as much of
the geometric background as possible.

Mathematics Subject Classification:. 53D37, 53D40.

Existence of closed geodesics on a compact Riemannian manifold M is guar-
anteed for topological reasons [14,25]. Let us recall the argument. Morse the-
ory tells us that the homology of the free loop space LM = Maps(S1 → M)
can be computed by a complex generated by geodesics. The trivial loops con-
tribute a subcomplex computing the homology of the original manifold, so
there must be nontrivial loops unless H•(M) → H•(LM) is an isomorphism.
It is obviously not an isomorphism unless M is simply connected, and in this
case, we study the based loop space ΩM := Maps((S1, 0) → (M,m)) and
the fibration ΩM → LM → M . As this is split by constant loops M → LM ,
we find πk(LM) = πk(M) ⊕ πk+1(M), so by Hurewicz, the first nontrivial
homotopy group πk+1(M) contributes nontrivially to Hk(LM), while Hk(M)
vanishes. In fact, in the simply connected case, one can obtain rather more
refined information [41].

We would like to think of the map H•(M) → H•(LM) as arising from
the following local-to-global construction. We write Ω for the constant cosheaf
of spaces over M , with costalk a point. By definition, this assigns a point
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to any contractible open set, and sends covers to colimits.1 By the (∞)
van Kampen theorem, Ω(U) is the path groupoid of U , explaining the no-
tation. Composition of loops gives H•(Ω(M)) the structure of a ring, and
its Hochschild homology gives the homology of the free loop space [7,20]:
HH•(H•(ΩM)) = H•(LM). The inclusion of constant loops is

H•(M) = colimU HH•(H•(Ω(U))) → HH•(colimU H•(Ω(U))) = H•(LM).
(1)

The following is the first example of the problem we are interested in:

Question 1. Can the failure of (1) to be an isomorphism be seen in terms
of some general machinery measuring the failure of Hochschild homology to
commute with homotopy colimit?

We turn to contact geometry. The contact-geometric formulation of the
geodesic flow is the following. On a cotangent bundle T ∗M , there is the
tautological 1-form λ, which at a given covector ξ is the function on tangent
vectors given by ξ. Fixing a metric on M , we may restrict λ to the unit
cosphere bundle S∗M ; here, it is contact, meaning that λ∧(dλn−1) is nowhere
vanishing. The Reeb vector field R on S∗M is characterized by lying in the
kernel of dλ and normalized by λ(R) = 1. The metric identifies S∗M with
the unit sphere bundle in TM , and the Reeb flow with geodesic flow.

More generally, the same formulas define the Reeb flow for any contact
form on any manifold V . The Weinstein conjecture asserts the existence of a
closed trajectory [46]. It has long been a central problem in contact geometry
[21–23,43], and known in general only in dimension 3, by an argument whose
ingredients have no known analogue in higher dimension [40]. The result is
also known for flexible contact structures in general [4]; we will be interested
here in what is in some sense the opposite setting [31], of Weinstein fillable
contact manifolds.

It is natural to try and generalize the Morse theoretic approach to
geodesics to the study of Reeb orbits. That is, one wants a complex gen-
erated by orbits, so that nonvanishing of the homology groups implies the
existence of orbits. The reason to impose a differential is to provide invari-
ance under deformations: these homologies depend only on kerλ rather than
λ itself, i.e., on the contact structure rather than the contact form.

Just as the cosphere bundle bounds the codisk bundle, we may ask
that some general contact (V, λ) is the boundary of some W to which λ
extends, and over which (dλ)n is everywhere nonvanishing. We also ask that
the ‘Liouville’ vector field Z characterized by dλ(Z, ·) = λ points out at the
boundary; in the case of the cotangent bundle, this vector field is radial in
the fiber directions. Such W are called Liouville domains, and determine a
symplectic cohomology SH•(W ), which may be taken to be generated by the
Reeb orbits of (V, λ) and the critical points of a Morse function on W [45].

1We abuse terminology to respect intuition and write ‘homology’ when we mean that we
think of the complex as an object in the derived category. Similarly, we write ‘=’ to mean,
e.g., identified by a canonical quasi-isomorphism, etc. We always work with ∞-categories,
etc., and (pre)sheaves or cosheaves should be understood accordingly.
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(See [33] for a leisurely introduction to Liouville manifolds and symplectic
cohomology.) The differential is such that these Morse critical points form
a subcomplex on which the differential is the Morse differential, giving an
exact triangle2

H•(W ) → SH•(W ) → SH•
+(W )

[1]−→ . (2)
In particular, if H•(W ) → SH•(W ) fails to be an isomorphism, then the
Weinstein conjecture holds for V , as SH•

+(W ), which is generated by the
Reeb orbits of V , must be nonzero.

Viterbo’s algebraic Weinstein conjecture is the assertion that SH•
+(W )

always detects an orbit. It is not typically easy to compute SH•(W ). But
when W = T ∗M , one knows:
Theorem 2. [42,44] There is an isomorphism SH•+n(T ∗M) ∼= H−•(LM).3

This isomorphism has seen many further developments; see, e.g., [3,10].
The composition H•+n(T ∗M) → SH•+n(T ∗M) ∼= H−•(LM) is iden-

tified with the inclusion of constant loops H−•(M) → H−•(LM) under
Poincaré duality [2, Lem. 3.6]. Therefore, the symplectic homology detects
geodesics in essentially the same way as the Morse homology of the loop space
did. However, already in this case it does more: it shows that a contact level
of T ∗M , not necessarily the unit cosphere bundle for any Riemannian metric,
will also have Reeb orbits.

A class of Liouville domains including but rather more general than
codisk bundles are the Weinstein domains.4 By definition, these are those for
which the Liouville vector field is gradient-like for a Morse–Bott function. In
this case, the critical points of Z have index ≤ dim W/2, and union of de-
scending level sets is a singular isotropic subset termed the core or skeleton.
Stein domains from complex analysis are Weinstein when viewed as symplec-
tic manifolds, and conversely, any Weinstein domain is deformation equivalent
to a Stein domain [9].

Weinstein domains for which the indices of critical points are < dim W/2
are said to be subcritical, and for these, it is known that SH•(W ) = 0; in
particular, the Weinstein conjecture holds for their contact boundaries [42].
Simple examples: the ball; the cotangent bundle of a noncompact manifold.
Beyond these, the Weinstein conjecture is not known for contact boundaries
of Weinstein domains in any reasonable generality, and it would be a major
advance to establish it.

One available tool for computing symplectic homology is the open-closed
morphism from the Hochschild homology of the wrapped Fukaya category5

[1,6,15,19,32,35]:

2There are many differing conventions for the grading of symplectic cohomology, and also
for which item to call symplectic cohomology and which symplectic homology. We follow
[1,19].
3When M is not spin, it is necessary to twist one side or the other by a local system [3,27].
4Weinstein manifolds and the Weinstein conjecture have the same eponym, but a priori no
other relation.
5[19,34] contain the relevant definitions. We will soon cite some results which compute the
Fukaya category in all relevant cases, so the gist of the article will not be lost to the reader
with no idea what the Fukaya category is.
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HH•(Fuk(W )) → SH•+n(W ). (3)

By either [1,16] or [6,12,13] plus a ‘generation’ result [8,18], this morphism
is by now known to be an isomorphism for Weinstein domains.

For cotangent bundles, there is an object (the cotangent fiber) of F ∈
Fuk(T ∗M), which generates the category and for which Hom(F, F ) = H−•
(ΩM). Thus, the open-closed map induces

HH•(H−•(ΩM)) = HH•(Hom(F, F )) → SH•+n(T ∗M) = H−•(LM).

This is the same as the corresponding such morphism mentioned above.6

How can the open-closed map help us? At first, it does not look promis-
ing. We have not said what the Fukaya category is, but its definition involves
the same sort of geometrical structures as are involved in symplectic ho-
mology. On top of this, we have now added the nontrivial step of taking
Hochschild homology. However, just as ΩM has better local-to-global behav-
ior than LM , we also have (as anticipated by [26]):

Theorem 3. [17–19,30,37] The Fukaya category of a Weinstein manifold is
the global sections of a constructible cosheaf of categories over the skeleton.
Moreover, this cosheaf is isomorphic to the cosheaf of microlocal sheaves.7

We have not said what microlocal sheaves are and it will not be relevant;
but for a definition, see [30], which is built on the technology of [24]. What is
relevant is that microlocal sheaves are in principle combinatorial-topological
in nature, but in practice, the stalks of the above cosheaf may be complicated
categories at complicated singularities of the skeleton. When the skeleton
is smooth, the cosheaf is locally constant with stalk the category of chain
complexes.

For W = T ∗M , the cosheaf is simply the path groupoid Ω (twisted by
a local system if M is not spin). More generally, Nadler found an explicit
collection of the so-called ‘arboreal’ singularities [28,29], with the property
that:

Theorem 4. [29] When the skeleton is arboreal, the cosheaf of microlocal
sheaves has stalks given by representation categories of tree quivers. The co-
generization morphisms are explicit.

When dimW = 2, the skeleton of W will be a (ribbon) graph, and ‘ar-
boreal’ essentially amounts to asking that the graph is trivalent. The cosheaf
A will assign the category of chain complexes at smooth points, and the
category of exact triangles (aka Perf(• → •)) at the trivalent vertices, with
the obvious cogenerization morphisms. This case was studied in [11]. For
dim W = 4, the skeleton is two dimensional; the topology of the typical new
kind of singularity is depicted in Fig. 1. More geometric pictures can be found
in [5,39].

6I am not certain whether this follows from [2], but in any case, it certainly does from
[17–19].
7Strictly speaking, what is presently in the literature requires that the Weinstein manifold

is ‘stably polarizable’. It is known to experts how to remove this hypothesis; on the other

hand, we will impose it later for different reasons.
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Figure 1. The arboreal A3 singularity, and how to glue it
from smooth spaces. All arboreal singularities admit analo-
gous gluing descriptions

By an arboreal space, we will mean a pair (X,A) of a space and a
constructible cosheaf, which are locally given by Nadler’s explicit models.
In particular, the stalks are representation categories of tree quivers. An
explicitly combinatorial exposition of this notion can be found in [38].

Some further restrictions on the local models lead to the notion of posi-
tive arboreal space [5]. (Positivity is encoded by a small amount of additional
combinatorial data in addition to A, which models Lagrangian polarizations.)
These provide skeleta for a large class of Weinstein manifolds:

Theorem 5. [5] There is an equivalence of categories between:

• Stably polarized Weinstein manifolds and their homotopies
• Positive arboreal spaces and their concordances.

Here, a stable polarization is a choice of Lagrangian sub-bundle of TW ⊕
C

n for some n.

Remark. It is not clearly understood what weaker hypothesis corresponds to
taking all arboreal spaces; in dimension 4, none is needed [39], but this is
apparently not the case in general [5]. It is expected that this can be repaired
by adding some further explicit list of presently unknown singularities. There
are also other tricks for reducing problems to the stably polarized case, like
[30, Sec. 10]. In any case, I expect that any technique which works for sta-
bly polarized Weinstein manifolds should work for Weinstein manifolds in
general.

In some sense, we have already arrived at a reduction to algebra: one
could try and develop tools for computing the colimit of categories giving
A(X) or its Hochschild homology HH•(A(X)). Indeed, as far as anyone
knows, SH•(W ) is always either infinite dimensional, or zero. If one could
show this zero or infinite property for HH•(A(X)), the algebraic Weinstein
conjecture would follow. Or if one could show that the natural circle action
on any nonvanishing HH•(A(X)) is nontrivial, the result would again follow.

Here, we want to point out that in fact it is possible to directly generalize
Eq. (1) and make direct contact with Eq. (2). Consider a cosheaf of categories
A over a space X. The Hochschild homologies form a precosheaf HH•(A)
which is not generally a cosheaf, since Hochschild homology does not commute

Vol. 24 (2022) An algebraic approach to the algebraic Weinstein conjecture
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with colimits. We may cosheafify it and obtain a cosheaf HH•(A). There is
a natural map

Γ(X,HH•(A)) → HH•(A(X)). (4)

Because A is constructible, the LHS is the colimit of the Hochschild homolo-
gies of the stalks of A, and the RHS is the Hochschild homology of the colimit
of the stalks.

Moreover, HH•(A) can be computed explicitly. Indeed, for a tree quiver
T , it is the case that HH•(Perf(T )) is concentrated in degree zero, and is a
free module whose rank is the number of vertices of T . This gives the stalks
of HH•(A), and in fact one can show:

Theorem 6. [38] When (X,A) arises from the skeleton of a stably polariz-
able Weinstein manifold, HH•−n(A) is the cosheaf of compactly supported
cohomologies. As X is compact, we have Γ(X,HH•−n(A)) ∼= H•(X).

In fact, it is possible to show that the resulting map

H•(X) ∼= Γ(X,HH•−n(A)) → HH•−n(A(X)) → SH•(W ) (5)

agrees with the original H•(X) = H•(W ) → SH•(W ). This follows from [19,
Eq. 1.7] given that the local arboreal models are Weinstein sectors, as was
shown in [36]. In some more detail: in [36], it is shown that the nondegenerate
arboreal sectors are stopped; hence, the top row of [19, Eq. 1.7] consists of iso-
morphisms. Degenerate arboreal singularities are obtained by stop removal;
the desired commutativity descends using the stop removal localization se-
quence and the fact that Hochschild homology sends localizations to exact
triangles.

Putting all this together, we have:

Theorem 7. The algebraic Weinstein conjecture for contact manifolds with
stably polarizable Weinstein filling is equivalent to the assertion that
Γ(X,HH•(A)) → HH•(A(X)) is never an isomorphism for positive arboreal
spaces (X,A).

We are left with the following:

Question 8. What measures the failure of Hochschild homology to commute
with colimits?
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Quantum cohomology as a deformation
of symplectic cohomology

Matthew Strom Borman, Nick Sheridan and Umut Varolgunes

Abstract. We prove that under certain conditions, the quantum coho-
mology of a positively monotone compact symplectic manifold is a de-
formation of the symplectic cohomology of the complement of a simple
crossings symplectic divisor. We also prove rigidity results for the skele-
ton of the divisor complement.

Mathematics Subject Classification. 53D37, 53D40.

1. Introduction

1.1. Geometric setup

Let (M,ω) be a compact symplectic manifold satisfying the monotonicity
condition:

2κc1(TM) = [ω], for some κ > 0

in H2(M ; R).
Let D = ∪N

i=1Di ⊂ M be an SC symplectic divisor (in the sense of [36,
Section 2]) and set X = M\D.1

We assume that there exist positive rational numbers λ1, . . . , λN called
weights such that

2c1(TM) =
∑

i

λi · PD(Di) in H2(M ; R).

Note that the number of weights in the setup depends on the divisor. If
PD(Di) are linearly independent classes in H2(M ; R) (e.g., if D is smooth),
the weights are canonically determined. Otherwise, the choice of weights is
extra data.

1From now on, we systematically shorten SC symplectic divisor to SC divisor as we believe
this will not cause confusion.
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The classes PD(Di) have canonical lifts to the relative cohomology group
H2(M,X; R) along the canonical map

H2(M,X; R) → H2(M ; R),

see Sect. 2.1 for more details. Let us denote these classes by PDrel(Di) and
note that they form a basis of H2(M,X; R). We define the class

λ :=
∑

i

λi · PDrel(Di) ∈ H2(M,X; R),

which is a lift of 2c1(TM) by construction. Consequently, κλ is a lift of [ω].
Let us denote by Ω∗(M,X) the relative de Rham complex, which is by

definition the cone of the restriction map Ω∗(M) → Ω∗(X). Note that there
is a relative de Rham isomorphism

H∗(Ω∗(M,X)) → H∗(M,X; R),

which in particular tells us that there exists a one-form θ ∈ Ω1(X) satisfying

ω|X = dθ, and
∫

u

ω −
∫

∂u

θ = κλ · u for all u ∈ H2(M,X).

Using that κλi > 0 for all i, we may arrange that (X, θ) is a finite type
convex symplectic manifold. Moreover c1(TX) = 0, and a preferred homotopy
class of trivializations of a power of the canonical bundle of X is determined
by the choice of weights λi (see Sect. 3.3 for details).

Example 1.1. Suppose that M is a smooth complex projective variety, D a
simple normal crossings divisor, and Dλ =

∑
i λiDi is an effective ample

Q-divisor whose class in CH∗(M)Q is twice the anticanonical class:

[Dλ ] = −2KM .

Let us also choose an arbitrary κ > 0.
Choose a positive integer k such that kDλ has integral coefficients, and

let L be the corresponding complex line bundle with section s. Ampleness
implies that we can choose a positive Hermitian metric ‖·‖ on L with curva-
ture 2-form F . We define the symplectic form ω := −iκ

k F on M . We can also
define the primitive θ := κ

k dc log ‖s‖ of ω on X. Using D as our SC divisor
and λi as the weights, this puts us in the geometric set-up described above.
Note that in this case X is an affine variety.

The setup that we described thus far is among the most studied in
symplectic geometry. Now, we introduce an hypothesis which is less common,
but which is very crucial for our results.

Hypothesis A. We have λi ≤ 2 for all i = 1, . . . , N .

Remark 1.2. Recalling that [Dλ ] = −2KM , we note that the extreme case
of Hypothesis A, namely λi = 2 for all i, corresponds to (M,D) being log
Calabi–Yau. If we in addition assume that each irreducible component of D
is ample, then Hypothesis A implies that (M,D) is either log Calabi–Yau or
log general type.
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Example 1.3. Consider the setup of Example 1.1. Let us take M = CP
n, D

a simple normal crossings divisor of degree d. Then we may choose weights
λi such that Hypothesis A holds if and only if d ≥ n + 1. Note that (M,D)
is log Calabi–Yau if d = n + 1, and log general type if d > n + 1. To see
one direction of the implication, assume that D = ∪N

i=1Di with Di smooth
of degree di and Hypothesis A holds. Then we have

2(n + 1) =
∑

i

λidi ≤
∑

i

2di = 2d.

Note that in the log Calabi–Yau case d = n + 1, all weights λi must be equal
to 2.

1.2. Quantum cohomology is a deformation of symplectic cohomology

We fix, once and for all, a commutative ring k. Let A ⊂ Q be the subgroup
generated by the weights λi, and set Λ = k[A] to be the group algebra of A.2

We define a Q-grading on Λ by putting ea in degree i(ea) = a. Let a0 > 0
be a generator of A, and define q := ea0 . Hence, we have an isomorphism of
algebras Λ ∼= k[q, q−1].

Throughout the paper, we will consider various filtrations associated
with filtration maps (see Sect. A.1 for a review of this notion). We will abuse
notation using the same symbol for the filtration map and the associated
filtration. In the first instance of this abuse of notation, we introduce the
filtration Q≥• on Λ associated with the filtration map Q : Λ → Z induced by
Q(qa) = a. Thus, Q≥pΛ consists of all linear combinations of monomials qa

with a ≥ p.
We define the graded Λ-module QH∗(M ; Λ) := H∗(M ; k)⊗kΛ, equipped

with the tensor product grading.3 We are concerned with the following ide-
alized and vague conjecture:

Conjecture 1.4. Under certain hypotheses:
(a) QH∗(M ; Λ) is the cohomology of a natural deformation of the symplectic

cochain complex SC∗(X; k) over Λ;
(b) Furthermore, the associated spectral sequence converges: E1 = SH∗

(X; k) ⊗k Λ ⇒ QH∗(M ; Λ).

We will prove a modified version of Conjecture 1.4 in the setup described
in Sect. 1.1. Notably, for the analogue of part (b) we will need Hypothesis A.

Remark 1.5. Conjecture 1.4 part (b) is not true in general. For example, if we
take M = CP

n and D a hyperplane, then X = M\D = C
n has vanishing sym-

plectic cohomology. But we cannot have a spectral sequence with vanishing
E1 page, converging to the non-vanishing cohomology of CP

n! Note that Hy-
pothesis A is not satisfied in this case by Example 1.3. More generally, it is not
satisfied for D a union of N ≤ n hyperplanes; and X = C

n+1−N × (C∗)N−1

still has vanishing symplectic cohomology in these cases.

2Explicitly, Λ is the k-algebra of k-linear combinations of the symbols ea where a ∈ A, and
ea · eb = ea+b.
3Our main results do not concern the quantum cup product on QH∗(M ; Λ), but it plays
a role in some of the conjectures in Sect. 1.6.
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Note that Conjecture 1.4 (a) is a statement about the chain complex
SC∗(X; k), which depends on various auxiliary data which we have not in-
cluded in the notation. Given such a choice, we consider the chain complex

SC∗
Λ := (SC∗(X; k) ⊗k Λ, d ⊗ idΛ) (1.1)

with the tensor product grading.4 It admits a Q-filtration induced by the
filtration map Q(γ ⊗ r) = Q(r). In the modified version of Conjecture 1.4
(a) that we prove, we will need to replace SCΛ with an ‘equivalent’ filtered
complex S̃CΛ:

Theorem B (a modified version of Conjecture 1.4 (a)). Assume that we are
in the setup described in Sect. 1.1. Then there exists a choice of the auxiliary
data needed to define SC∗(X; k), and a filtered cochain complex of Q≥0Λ-

modules, S̃CΛ :=
(
S̃C

∗
Λ, d̃, Q̃≥•

)
, with the following properties:

(1)
(
S̃C

∗
Λ, d̃, Q̃≥•

)
is filtered quasi-isomorphic to (SC∗

Λ, d ⊗ idΛ,Q≥•) (see
Sect. 5.2 for the precise meaning of this statement).

(2) There exists a second Q≥0Λ-linear differential ∂ on S̃C
∗
Λ, such that ∂−d̃

strictly increases the Q̃-filtration. We call ∂ the deformed differential.
(3) We have H∗

(
S̃C

∗
Λ, ∂

) ∼= QH∗(M ; Λ).

By considering the spectral sequence associated with the deformed fil-
tered complex

(
S̃C

∗
Λ, ∂, Q̃≥•

)
, we then obtain:

Theorem C (Conjecture 1.4 (b)). Assume now that Hypothesis A holds. Then
the spectral sequence associated with the filtered complex (S̃CΛ, ∂, Q̃≥•) con-
verges, and has

Ej,k
1 = SHk+j(1+a0)(X; k) ⊗k k · q−j ⇒ QHj+k(M ; Λ),

where j ∈ Z and k ∈ Q.

Remark 1.6. Because our Floer complexes are Q-graded, our spectral se-
quence (Ej,k

i , dj,k
i ) has i, j ∈ Z and k ∈ Q, rather than the usual k ∈ Z.

All the standard theory of spectral sequences goes through in this slightly
more general context. Indeed, one can think of such a spectral sequence as a
collection of ordinary spectral sequences indexed by {c ∈ Q : 0 ≤ c < 1}, by
setting E(c)j,k

i = Ej,k−c
i .

Let us note an immediate corollary:

Corollary 1.7. Under Hypothesis A, the affine variety X from Example 1.1
has non-vanishing symplectic cohomology. In particular, it is not flexible.

Remark 1.8. We expect that analogues of Theorems B and C hold also under
the assumption that M is Calabi–Yau, i.e., c1(TM) = 0. Indeed, Yuhan
Sun has recently proved very closely related results [35]. In this case, the
key notion is ‘index boundedness’, as used by McLean in [25], together with
certain lower bounds on the indices of the one-periodic orbits ‘on the divisor’.
We refer the reader to [35] for more details.

4In general this will be a Q-grading.
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1.3. Rigidity results

By applying the same techniques as those used to prove Theorems B and C,
we will prove a rigidity result for certain subsets of M .

The main tool used to prove the result is a version of the relative sym-
plectic cohomology developed by the third author in [40] (with which we
assume some familiarity). Slightly modifying the construction there, for any
compact K ⊂ M , we can define a Q-graded Λ-module SH∗

M (K; Λ). The def-
inition of this invariant involves choosing acceleration data to define a Floer
1-ray, and then the chain-level invariant is defined to be not the telescope
but a degreewise-completed telescope. More details are given in Sect. 3.2.5

Following [38], we say that K is SH-invisible if SH∗
M (K; Λ) = 0, and

SH-visible otherwise. One can prove that SH-visible subsets are not stably
displaceable (see Theorem 3.6).6 For example, PSS isomorphisms imply that
QH∗(M ; Λ) ∼= SHM (M ; Λ), so M is SH-visible; and as a result M is not
stably displaceable (as a subset of itself). Moreover, there are restriction
maps SH∗

M (K ′; Λ) → SH∗
M (K; Λ), whenever K ′ contains K. By a unitality

argument, it follows that any compact subset of an SH-invisible subset is
SH-invisible (see Theorem 3.7).

We say that K is nearly SH-visible if any compact domain that contains
K in its interior is SH-visible. As straightforward consequences of the previ-
ous paragraph, one can show that SH-visible subsets are nearly SH-visible,7

and nearly SH-visible subsets are not stably displaceable.
We say that K is SH-full if for any compact K ′ contained in M\K,

SH∗
M (K ′; Λ) = 0. SH-full subsets are nearly SH-visible, as a consequence of

the Mayer–Vietoris property of relative symplectic cohomology [40]. One can
prove that an SH-full subset cannot be displaced from a nearly SH-visible
subset by a symplectomorphism. It is also the case that SH-full subsets are
not stably displaceable from themselves (see [38, Corollary 1.9]). By a closed–
open map plus unitality argument (see [38, proof of Theorem 1.2 (6)]), it can

5 The construction that we give here can be generalized to all symplectic manifolds with
the property

2c1(TM) = η[ω] for some η ∈ R,

and subgroup B ⊂ R which contains ω(π2(M)). Namely, we define the filtered graded
algebra k[B] where i(eb) = ηb and the filtration level of eb is b. We then define the Novikov-
type algebra

ΛB,η := k̂[B],

where the completion is degreewise. Our Λ in this paper is nothing but ΛκA,κ−1 , whereas

the Novikov field used in e.g. [38] is ΛR,0. The construction produces a Z + ηB-graded
ΛB,η-module SH∗

M (K; ΛB,η). When c1(M) = 0, and taking into account only the con-
tractible orbits, the invariant that is denoted by SH∗

M (K; Λ) in [38] is a special case of this
construction as well. It would have been called SH∗

M (K; ΛR,0) in our notation here, and

a capped orbit (γ, u) here would be interpreted as T A(γ,u)γ in that paper’s notation. Let
us also note that η < 0 requires using virtual techniques, which forces us to make certain
assumptions on k.
6Stably displaceable means K×Z ⊂ M ×T ∗S1 is displaceable from itself by a Hamiltonian

diffeomorphism, where Z is the zero section of T ∗S1.
7We do not have examples of nearly SH-visible subsets which are not SH-visible.
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be shown that Floer-theoretically essential (over k) monotone Lagrangians
cannot be displaced from SH-full subsets by a symplectomorphism.

Now we state our result, which will need some extra hypotheses beyond
those already mentioned in Sect. 1.1. First of all, we assume that D is an
orthogonal SC divisor. Then there exist Hamiltonian circle actions rotating
about the Di, and commuting on the overlaps, by [23]; we assume that θ is
‘adapted’ to such a system of commuting Hamiltonians, in an appropriate
sense. We make these notions precise in Sect. 2 below. We remark that the
data we need is weaker than what McLean calls a ‘standard tubular neigh-
bourhood’ in [25].

Let Z be the Liouville vector field of (X, θ). We define the continuous
function ρ0 : X → R, so that the Liouville flow starting at x is defined
precisely for time t < − log(ρ0(x)). Note that L = {ρ0 = 0} is the Lagrangian
skeleton of (X, θ). We extend the function to ρ0 : M → R by setting ρ0|D = 1.

Definition 1.9. We define

σ̃crit := 1 − 2
maxi λi

, σcrit := max(0, σ̃crit),

and set

Kcrit := {ρ0 ≤ σcrit} ⊂ M.

Note that σcrit = 0, and hence Kcrit = L, if and only if Hypothesis A is
satisfied.

Equivalently, Kcrit is the image of the Liouville flow for time log(σcrit).

Theorem D. The subset Kcrit ⊂ M is SH-full. In particular, if Hypothesis A
is satisfied, then L is SH-full.

For example, this means that when Hypothesis A is satisfied, L can-
not be displaced from any Floer-theoretically essential (over k) monotone
Lagrangian.

Remark 1.10. It is possible for a compact subset to be SH-full for one choice
of k but not for another. We did not make a big deal about this as our result
is uniform for all ground fields. We expect this to play a real role in the
context of Conjecture 1.20. We also refer the reader to Remark 1.8 of [38] for
another weakening of the notion of SH-fullness.

Remark 1.11. An analogue of Theorem D, in the case that M is Calabi–Yau,
was proved in [38].

1.4. Floer theory conventions

We give a quick outline of our conventions for Hamiltonian Floer theory on
M , for the purposes of giving an overview of the proofs of our main results in
the following section (see Sect. 3 for more details). Let A′ ⊂ Z be the image
of 2c1(TM) : π2(M) → Z, and set Λ′ := k[A′]. Note A′ ⊂ A, so Λ′ ⊂ Λ.

A ‘cap’ for an orbit γ : S1 → M of a Hamiltonian H : S1 × M → R

is an equivalence class of discs u bounding γ, where two discs are considered
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equivalent if they have the same symplectic area. One can associate an in-
dex i(γ, u) and action A(γ, u) to a capped orbit (γ, u) of a non-degenerate
Hamiltonian. The ‘mixed index’

imix(γ) = i(γ, u) − κ−1A(γ, u)

is independent of the cap u.
We define CF i(M,H) to be the free Z-graded k-module generated by

capped orbits (γ, u) of H satisfying i(γ, u) = i. This becomes a graded Λ′-
module, where ea · (γ, u) = (γ, u#B) where 2c1(TM)(B) = a. It also admits
an action filtration, associated with the filtration map induced by A(γ, u).
We define CF ∗(M,H; Λ) := CF ∗(M,H)⊗Λ′ Λ. It has a k-basis of ‘fractional
caps’: a fractional cap for γ is a formal expression u + a, where u is a cap
for γ and a ∈ A, and we declare u + a ∼ u′ + a′ iff a − a′ ∈ A′ and (γ, u′) =
ea−a′ · (γ, u).

The Floer differential increases degree by 1, and respects the action
filtration (i.e., it does not decrease action). The PSS isomorphism identifies
HF ∗(M,H; Λ) ∼= QH∗(M ; Λ). If H1 ≤ H2 pointwise, then there exists a
continuation map CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) which respects action
filtrations.

We now explain our conventions for relative symplectic cohomology.
Given K ⊂ M compact, a choice of acceleration data (Hτ , Jτ ) is the data
required to define a Floer 1-ray

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · ·
consisting of Floer cohomology groups and continuation maps, where the
monotone sequence of Hamiltonians H1 ≤ H2 ≤ · · · converges to 0 on K
and +∞ outside of K. We consider the telescope complex tel(C), which is
constructed so that

H∗(tel(C)) = lim−→
i

HF ∗(M,Hi; Λ) = QH∗(M ; Λ).

We define t̂el(C) to be the degreewise completion of tel(C) with respect to
the action filtration, and SH∗

M (K; Λ) := H∗(t̂el(C)).

1.5. Outline of proofs

In this section, we give an extended overview of the proofs of our main results,
trying to convey the main ideas while avoiding technicalities. We assume
that we are in the geometric setup described in Sect. 1.1, with the additional
properties and data explained in Sects. 1.2 and 1.3.

We will construct a function ρ : M → R which is a smoothing of ρ0

(really, a family of smoothings ρR for R > 0 sufficiently small) with the
following properties:

• it will be continuous on M , and smooth on the complement of L;
• ρ|L = 0 and ρ|D ≈ 1;8

8If D is smooth then we can arrange that ρ|D = 1; if D is normal crossings then ρ|D
will be equal to 1 away from a neighbourhood of the singularities of D, where an error is
introduced by ‘rounding corners’.
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• it will satisfy Z(ρ) = ρ on X\L.

It also has the property that Kσ := {ρ ≤ σ} is a Liouville subdomain of X
for any σ ∈ (0, 1). Because Z(ρ) = ρ, Kσ → L as σ → 0.

1.5.1. Theorem B. We choose σ ∈ (σcrit, 1), and construct acceleration data
(Hτ , Jτ ) for Kσ ⊂ M as follows. Fix 0 < �1 < �2 < · · · such that the Reeb flow
on Y = ∂Kσ has no �n-periodic orbits for all n, and �n → ∞ as n → ∞. We
choose an increasing family of smooth functions hn : R → R, approximating
the piecewise-linear functions max(0, �n(ρ − σ)) with increasing accuracy as
n → ∞, and being linear with slope �n for ρ ≥ σ (see Fig. 2). We consider
acceleration data (Hτ , Jτ ) for Kσ ⊂ M such that Jτ is of contact type near
∂Kσ and Hn is equal to a carefully chosen perturbation of hn ◦ ρ. The 1-
periodic orbits of Hamiltonians Hn then fall into two groups (1) SH-type:
contained in Kσ and (2) D-type: outside of Kσ. We also make sure that the
SH-type orbits that are not “Reeb type” are constant.

We now consider the Floer 1-ray

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · ·
associated with our choice of acceleration data. We decompose the associated
telescope complex as a direct sum of the SH-type generators and the D-type
generators:

tel(C) = tel(C)SH ⊕ tel(C)D.

This is a direct sum as Λ-modules, not as cochain complexes: the differential,
which we denote by ∂, mixes up the factors.

By restricting the acceleration data with Kσ, we also obtain a Floer
1-ray of k-cochain complexes

CSH(Hτ , Jτ ) := CF ∗(Kσ,H1|Kσ
; k) → CF ∗(Kσ,H2|Kσ

; k) → · · ·
and we set

SC∗(X; k) := tel(CSH).

We denote the differential by d. Strictly speaking, this is the cochain complex
defining the symplectic cohomology of the Liouville domain Kσ à la Viterbo
[45]. Our notation is justified by the fact that in [23, Section 4], McLean
shows that H∗(SC∗(X; k)) only depends on X.

We associate a canonical fractional cap uin to each SH-type orbit γ,
by setting uin := u − u · λ for an arbitrary cap u (one easily checks that
uin is independent of u). There is then an isomorphism of Λ-modules (recall
Equation (1.1))

SC∗
Λ

∼−→ tel(C)SH

γ ⊗ qa �→ qa · (γ, uin). (1.2)

However, this is not a chain map: indeed, the matrix component ∂SH,SH need
not even be a differential.

Proposition 1.12 (= Proposition 5.10). For any Floer solution u that con-
tributes to C(Hτ , Jτ ) with both ends asymptotic to SH-type orbits, we have
u · λ ≥ 0. In case of equality, u is contained in Kσ.
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One could think of Proposition 1.12 as a manifestation of positivity of
intersection of Floer trajectories with the components of the divisor D (c.f.
[37, Lemma 4.2]), although we actually prove it using an argument related
to Abouzaid–Seidel’s ‘integrated maximum principle’ [2, Lemma 7.2].

The consequence of Proposition 1.12 is that d ⊗ idΛ − ∂SH,SH strictly
increases the Q-filtration. Using PSS isomorphisms, we also see that the ho-
mology of tel(C) is isomorphic to QH∗(M ; Λ). Thus, we are some way towards
proving Theorem B, but we are troubled by the existence of D-type orbits.
The following proposition is the most important ingredient in the proof of
Theorem B, as it allows us to ‘throw out’ the D-type orbits.

Proposition 1.13. There exists δ > 0 such that

imix(γ) ≥ κ−1δ�n

for any D-type orbit γ of Hn.

Sketch of proof when D is smooth. The Hamiltonian Hn is approximately
equal to �n (ρ − σ) near D. When D is smooth we have ρ = r/κλ, where
r is the moment map for a Hamiltonian circle action rotating a neighbour-
hood of D about D with unit speed. In particular, the Hamiltonian flow of
Hn approximately rotates around D at speed �n/κλ, and the D-type orbits
are approximately constant. (This is in contrast to the Hamiltonians used,
for example, in [37], which are approximately constant near D, and which
have non-constant D-type orbits linking D.)

We compute the mixed index with respect to the approximately constant
cap, which is called uout in the body of the paper. As the Hamiltonian flow
of Hn rotates around D at speed �n/κλ, we have i(γ, uout) ≈ 2�n/κλ. On the
other hand, we have Hn ≈ hn(1) ≈ �n(1 − σ) along D, and ω(uout) ≈ 0, so
A(γ, uout) ≈ �n(1 − σ). Combining we have

imix(γ) = i(γ, uout) − κ−1A(γ, uout)

≈ 2�n

κλ
− κ−1�n(1 − σ)

≥ κ−1�n(σ − σcrit),

which gives the desired result, as we chose σ > σcrit. �

Our first thought, in trying to ‘throw out’ the D-type orbits, might be
to consider the submodule of tel(C) spanned by orbits satisfying imix(γ) <
κ−1δ�n, as that is contained in tel(C)SH by Proposition 1.13. However this
does not behave well with respect to the differential: it is neither subcom-
plex, quotient complex, nor subquotient. Instead, we consider a family of
subquotient complexes (SC

(p)
Λ , ∂p) of tel(C), indexed by p ∈ R, spanned by

generators (γ, u) satisfying

i(γ, u) < p ≤ A(γ, u) + δ�n

κ
.

(Note that these are contained in tel(C)SH by Proposition 1.13, which is
identified with SCΛ by (1.2).)
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To see that this is a subquotient of tel(C), we first observe that the
differential clearly increases the quantity F(γ, u) = A(γ,u)+δ�n

κ : it increases
action, and increases n and hence �n by the definition of the telescope com-
plex. Therefore, it defines a filtration map, so F≥ptel(C) is a subcomplex. On
the other hand, the degree truncation σ<pC

• :=
⊕

i<p Ci is always a quo-

tient complex of any cochain complex. Thus (SC
(p)
Λ , d ⊗ idΛ) = σ<pF≥pSCΛ

is a subquotient of SCΛ, whose generators are all of SH-type by Proposition
1.13.

Proposition 1.14. For any p ∈ R, both F≥ptel(C) ⊂ tel(C) and F≥ptel(CSH) ⊂
tel(CSH) are quasi-isomorphic subcomplexes.

Sketch of proof. We may identify F≥ptel(C) as the telescope complex of the
1-ray of Floer groups A≥κp−δ�n

CF ∗(M,Hn,Λ). The key point is that κp −
δ�n → −∞ as n → ∞, and the action filtration is exhaustive, so the direct
limit ‘eventually catches everything’ (see Appendix A.2). The argument for
F≥ptel(CSH) ⊂ tel(CSH) is identical. �

Because Hj(σ<pC
•) = Hj(C•) for j < p − 1, we have

Hj(σ<pF≥ptel(C), ∂) = Hj(M ; Λ) for j < p − 1.

If we were willing to weaken the statement in Theorem B, and only achieve
the isomorphism of item (3) up to degree p − 1, we would now be done: we
could simply take S̃CΛ = SC

(p)
Λ , with Q̃ equal to the filtration induced by Q.

However, to get the corresponding statement in all degrees, we observe that
there are natural maps SC

(p)
Λ → SC

(q)
Λ for all p ≥ q, induced by the inclusion

F≥p ⊂ F≥q and the projection σ<p � σ<q. We define (S̃CΛ, ∂) to be the
homotopy inverse limit of the inverse system of chain complexes (SC

(p)
Λ , ∂p),

and Q̃ the filtration induced by the Q-filtration on SCΛ. The result is that

H∗(S̃CΛ, ∂) = lim←−
p

H∗(SC
(p)
Λ , ∂p) = QH∗(M ; Λ)

as desired. (We remark that this step requires us to check that lim←−
1 H∗

(SC
(p)
Λ , ∂p) = 0; indeed the inverse system is easily seen to satisfy the Mittag–

Leffler property.) This completes the sketch proof of Theorem B.

1.5.2. Theorem C. To prove Theorem C, it suffices to prove that the Q̃-
filtration is bounded below and exhaustive, by the ‘Classical Convergence
Theorem’ [46, Theorem 5.5.1]. The Q-filtration on each SC

(p)
Λ is exhaustive

by definition, but the Q̃-filtration on S̃CΛ is not exhaustive, due to the di-
rect product taken in the construction. Nevertheless one can show that the
inclusion ∪qQ̃≥qS̃CΛ ⊂ S̃CΛ is a quasi-isomorphism, and the Q̃-filtration on
this quasi-isomorphic subcomplex is exhaustive by construction.

Thus the main thing to prove, to apply the Classical Convergence The-
orem, is that the Q̃-filtration is bounded below. The key ingredient is the
following:
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Proposition 1.15. Suppose that Hypothesis A is satisfied. Then for any SH-
type orbit γ, we have i(γ, uin) ≥ 0.

Sketch of proof when D is smooth. Note that the result is trivial for constant
SH-type orbits, as i(γ, uin) is equal to a Morse index which is non-negative.
For a Reeb-type orbit γ, we define uout be the small cap passing through D.
Then the orbit γ winds ν = uout ·D times around D, so i(γ, uout) ≈ 2ν. Thus
we have

i(γ, uin) = i(γ, uout) − λuout · D = (2 − λ)ν ≥ 0,

as required. �

We now show that the Q̃-filtration is bounded below. To be precise,
we need to show that for any i there exists q(i) such that Q̃≥q(i)S̃C

i

Λ = 0.9

Indeed, we observe that for i(γ ⊗ ea) = i fixed, we have

a0Q̃(γ ⊗ ea) = a = i(γ ⊗ ea) − i(γ, uin) ≤ i

by Proposition 1.15; thus we may take q(i) = i/a0.
The following result is an immediate consequence of Theorem D and the

Mayer–Vietoris property of relative symplectic cohomology [40]. However it
also admits a simple direct proof using Proposition 1.15, which we feel is
illuminating, so we give it here.

Proposition 1.16. Suppose Hypothesis A is satisfied. Then the restriction map

SHM (M ; Λ) → SHM (Kσ; Λ)

is an isomorphism for all σ ∈ (0, 1). In particular, Kσ ⊂ M is SH-visible for
all σ ∈ (0, 1) and L is weakly SH-visible, hence not stably displaceable from
itself.

Proof. Note that we have i(γ, uin) ≥ 0 for any SH-type orbit, by Proposition
1.15. We also have A(γ, uin) = h(ρ) − ρ · h′(ρ) ≤ 0, where ρ = ρ(γ), by
the well-known formula [45, Section 1.2].10 It follows that imix(γ) ≥ 0. This
inequality is satisfied for D-type orbits as well (recall Proposition 1.13), and
therefore it is satisfied for all relevant one periodic orbits.

Now if we fix the index i(γ, u) = i, then the inequality imix(γ) ≥ 0
yields an upper bound on the action: A(γ, u) ≤ κ ·i. Therefore the degreewise
completion of the telescope complex has no effect:

t̂el(C(Hτ , Jτ )) = tel(C(Hτ , Jτ )).

It follows that SH∗
M (M ; Λ) → SH∗

M (Kσ; Λ) is an isomorphism as required. �

9The terminology is counterintuitive as our filtrations are decreasing, whereas the standard

conventions for spectral sequences are for the filtrations to be increasing.
10Note that our conventions are different from Viterbo’s.
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1.5.3. Theorem D. To prove Theorem D, we need to consider the dependence
of our constructions on the ‘smoothing parameter’ R > 0, so we include it
in the notation. The proof starts with the same strategy that was used in
the proof of [38, Theorem 1.24]. For R sufficiently small and σ sufficiently
close to 1, M\KR

σ is stably displaceable (this follows from an h-principle as
popularized by McLean in [25]). Therefore, SHM

(
M\KR

σ ; Λ
)

= 0 for such

R, σ. We then prove that there exists a continuous function σD
crit(R), with

σD
crit(0) = σcrit, such that the following holds:

Proposition 1.17 (Proposition 5.14). Let σcrit(R) < σ1 < σ2 < 1. Then, there
exists an isomorphism

SH∗
M

(
M\KR

σ1
; Λ
) ∼= SH∗

M

(
M\KR

σ2
; Λ
)

.

In particular, SHM

(
M\KR

σ

)
= 0 for all σ ∈ (σD

crit(R), 1); as the com-

pact sets
{

M\KR
σ

}

R>0,σ>σD
crit(R)

exhaust M\Kcrit, this implies that Kcrit is

SH-full.
The proof of Proposition 1.17 uses the ‘contact Fukaya trick’ of [38].

This allows us to set up acceleration data (Hτ , Jτ ) for M\Kσ2 and (H̃τ , J̃τ )
for M\Kσ1 , so that there is an isomorphism of Floer 1-rays C(Hτ , Jτ ) ∼=
C(H̃τ , J̃τ ), which however need not respect action filtrations. The key to
proving the Proposition, then, is to show that the action filtrations on the
corresponding telescope complexes are topologically equivalent. The reason
why this last step worked in [38] was the index-boundedness property (also
popularized in [25]). In our setting we need estimates on the mixed index,
which have a different nature.

1.6. Conjectures

1.6.1. Filtration on QH∗(M ; Λ). Note that, as an immediate corollary of
Theorem B (3), there exists a filtration Q̃≥• on QH∗(M ; Λ) induced by the

Q̃-filtration on
(
S̃CΛ, ∂

)
. (In general this is different from the ‘obvious’ fil-

tration on QH∗(M ; Λ), i.e., the one with filtration map α ⊗ r �→ Q(r) for
α ∈ H∗(M ; k), r ∈ Λ.) We give a conjectural description of this Q̃-filtration.
Consider the function f : M → R defined by

f(x) =
∑

k:x∈Dk

λk − 2,

and set M j := {f < j}.

Conjecture 1.18. We have

Q̃≥jH
i(M ; Λ) ⊃ ker(Hi(M ; Λ) → Hi(M ja0−i; Λ)).

When Hypothesis A holds, this inclusion is an equality.

We first observe that the Conjecture is consistent with the fact that

q · Q̃≥jH
i(M ; Λ) = Q̃≥j+1H

i+a0(M ; Λ).
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It is motivated by this together with the natural expectation that the iso-
morphism of Theorem B (3) sends

PD(C) �→
[
e
∑

i∈I λi · PSSlog(C) + (higher-order terms)
]
,

where C is a cycle contained in DI , and PSSlog is the log PSS map of [14].
Thus we expect Q̃(PD(C)) ≥∑i∈I λi/a0.

Remark 1.19. The filtration in Conjecture 1.18 exhibits intriguing parallels
with the weight filtration in Hodge theory, c.f. [9,19].

1.6.2. Analogue of Theorem C in the absence of Hypothesis A. Let us con-
sider the spectral sequence associated with the filtered complex (S̃CΛ, ∂, Q̃≥•)
of Theorem B. If Hypothesis A holds, then it converges to QH∗(M ; Λ) by
Theorem C; but it is also interesting to study the spectral sequence when
this Hypothesis does not hold.

As we saw in Sect. 1.5.2, the reason Hypothesis A is necessary for The-
orem C to hold is that it guarantees the Q̃-filtration on S̃CΛ is bounded
below, and in particular complete. Let us denote by (SCΛ, ∂) the completion
of (S̃CΛ, ∂) with respect to the Q̃-filtration. Note that taking the completion
does not change the spectral sequence.

We give a conjectural description of H∗(SCΛ, ∂), based on suggestions
made to us independently by Pomerleano and Seidel. For each i ∈ I, define
QH∗(M ; Λ)i to be the 0-generalized eigenspace of the operator PD(Di)� (−)
on QH∗(M ; Λ), where � denotes the quantum cup product. I.e., it is the
subspace of α ∈ QH∗(M ; Λ) such that PD(Di)
k �α = 0 for some k. We then
define

QH∗(M ; Λ)crit :=
⋂

i:λi>2

QH∗(M ; Λ)i.

Conjecture 1.20. We have H∗(SCΛ, ∂) ∼= QH∗(M ; Λ)crit. Furthermore, the
resulting spectral sequence converges to QH∗(M ; Λ)crit.

As evidence for the conjecture, we use Conjecture 1.18 to argue that
whenever λi > 2, the degree-0 class c − e−2PD(Di) is invertible in the Q̃-
completed quantum cohomology, for any c �= 0. Indeed its inverse is

(
c − e−2PD(Di)

)−1
= c−1 ·

∞∑

j=0

(
c−1e−2PD(Di)

)
j
,

which converges because Q̃(e−2PD(Di)) ≥ (λi − 2)/a0 > 0. Therefore, any
c-generalized eigenvector of e−2PD(Di) � (−) dies in the Q̃-completion:

(
c − e−2PD(Di)

)
k
� α = 0 ⇒ α = 0,

by multiplying on the left by the inverse.
Assuming that the k-linear endomorphisms e−2PD(Di)�(−) admit Jor-

dan normal forms, the above argument suggests that only the 0-generalized
eigenspaces can ‘survive’. This gives some evidence for Conjecture 1.20 in the
case that k is an algebraically closed field. It is reasonable to believe that one
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can bootstrap from there to the case of a general commutative ring k. For
the rest of this section we will assume that k is an algebraically closed field.

Remark 1.21. We strongly expect that H∗(SCΛ, ∂) is nothing but the rel-
ative symplectic cohomology of the skeleton of X. There is an intriguing
contrast between Conjecture 1.20 and Ritter’s work [29]: precisely, let us
consider the case that D is smooth and λ > 2, and let N be the total space
of the inverse of the normal bundle to D. Then Conjecture 1.20 (together
with the above expectation) says that QH∗(M)crit, which is the 0-generalized
eigenspace of QH∗(M), ‘lives on the skeleton of X’; whereas Ritter shows that
SH∗(N ) is the quotient of QH∗(N ) by its 0-generalized eigenspace. Note that
we can obtain N from the Liouville completion X̂ of X by replacing a neigh-
bourhood of the skeleton with a copy of D (more precisely, the symplectic
cut of X̂ along the hypersurface {ρ = 1} is M

∐N ).

Remark 1.22. In light of Venkatesh’s quantitative generalization of Ritter’s
results [41], we expect that considering Liouville domain neighborhoods V
of the skeleton of varying sizes (vaguely speaking, ‘in the directions of the
components of the divisors’), one might observe that additional simultaneous
generalized eigenspaces start contributing to SH∗

M (V ; Λ). It might be possible
to interpret Theorem D as the other end of this size dependence: if the size
of V is large enough in all directions (e.g., if it contains Kcrit), then all
simultaneous generalized eigenspaces contribute to SH∗

M (V ; Λ).

Further evidence for Conjecture 1.20 is provided in [8], in the case
M = CP

1 × CP
1, where D is a (1, 1) hypersurface: indeed the conjecture

is confirmed in this case. We discuss further examples in Sects. 1.7.4 and
1.7.5 below.

We now recall a variation on the definition of relative symplectic coho-
mology from [38, Remark 1.8]. The relative symplectic cohomology SH∗

M (K; Λ)
is a module over SH∗

M (M ; Λ) = QH∗(M ; Λ), via the restriction map. For any
idempotent a ∈ QH0(M ; Λ), we define the ‘a-relative symplectic cohomology
of K’ to be a · SH∗

M (K; Λ). We define corresponding properties of subsets of
M : a-SH-visible, a-SH-full, etc.

Lemma 1.23. The subspace QH∗(M ; Λ)crit ⊂ QH∗(M ; Λ) is an ideal which
is generated by an idempotent a.

Proof. We first observe that for any even element α in a supercommutative
Frobenius algebra, the decomposition into generalized eigenspaces of α � (−)
is orthogonal (with respect to the pairing and the algebra structure), and
hence the generalized eigenspaces are ideals generated by idempotents. It
follows for each i, the subspace QH∗(M ; Λ)i is an ideal generated by an
idempotent; so the intersection is an ideal generated by the product of these
idempotents. �

Conjecture 1.24. Under the same hypotheses as for Theorem D (without as-
suming Hypothesis A), the skeleton L is a-SH-full, where a is the idempotent
from Lemma 1.23.
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Conjecture 1.24 implies, for example, that L must intersect every a-
Floer-theoretically essential (over k) monotone Lagrangian, where the latter
condition means that CO(a ⊗Λ k) ∈ HF 0(L; k) is non-zero. (Here we have
used the algebra homomorphism Λ → k, which sends q �→ 1, to define an
idempotent a ⊗Λ k ∈ QH0(M ; k)).

1.6.3. Maurer–Cartan element. For the purpose of this section, we assume
that k is a field of characteristic zero, and we assume that Hypothesis A
holds.

Recall that the symplectic cochain complex SC∗(X; k) carries an L∞
structure [13]. This consists of a sequence of operations �k : SC∗(X; k)⊗k →
SC∗(X; k) of degree 3 − 2k, satisfying the L∞ relations; and �1 = d is the
standard differential. We extend these linearly to make SC∗

Λ into an L∞ alge-
bra. We recall that a Maurer–Cartan element for the L∞ algebra (SC∗

Λ, �k)
is an element β ∈ Q≥1SC2

Λ, satisfying the Maurer–Cartan equation:
∑

k

�k(β, . . . , β)
k!

= 0.

We remark that this is in fact a finite sum, because the terms live in succes-
sively higher levels of the Q-filtration, which Hypothesis A ensures is bounded
below (see Sect. 1.5.3).

A Maurer–Cartan element β can be used to deform the L∞ structure to
get a new one �k

β on SCΛ (see, e.g. [16, Section 4]). In particular, the resulting
operation �1β defines a new differential on SCΛ.

Conjecture 1.25. There exists a Maurer–Cartan element β ∈ SC2
Λ such that

in the statement of Theorem B, we may take S̃CΛ = SCΛ and ∂ = �1β.

Remark 1.26. Cieliebak and Latschev have outlined ideas closely related to
Conjecture 1.25 (but in a more general context) in talks as far back as 2014.

Remark 1.27. Moreover, one expects that Floer-theoretic operations on quan-
tum cohomology of M (such as the quantum cup product) are deformations
of the corresponding operations on symplectic cohomology of X by β, c.f.
[12].

Remark 1.28. In the proof of Theorem B presented in this paper, we need
to replace SCΛ with S̃CΛ. Conjecture 1.25 suggests an alternative proof, in
which no such replacement is necessary. The cost is that the construction is
significantly more elaborate, relying on the L∞ structure and a version of the
homotopy transfer theorem, which makes it harder to see the key geometric
ideas, which are the same in both proofs.

Remark 1.29. It is natural to envision generalizations of our results, as well as
of Conjecture 1.25, where M is allowed to be only a partial compactification
of X; and furthermore, where some of the weights λi are allowed to be equal
to 0. We present several examples in Sect. 1.7 below which illustrate such a
generalization. For example, Remark 1.41 gives evidence for this generalized
conjecture in the case M = T ∗

RP
2, with D ⊂ M a smooth divisor equipped
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with weight λ = 0; the generalized conjecture in this case says that SC∗(M ; k)
is a ‘deformation’ of SC∗(X; k) (note that there is no need for a Novikov ring
in the definition of symplectic cohomology of M , as it is exact). We put scare
quotes around ‘deformation’ because when the weights are 0, the extra terms
in the deformed differential may simply preserve the Q-filtration, rather than
strictly increasing it; so there is no sense in which they are ‘small’. To make
a useful version of the conjecture one would need an alternative to the Q-
filtration, which is strictly increased by the extra terms; it would probably
be defined in terms of the grading.

Note that the projection of β to Gr1SC2
Λ is d-closed, and hence defines

a class [β1] ∈ Gr1SH2(X; Λ). It is immediate from Conjecture 1.25 that the
differential on the E1 page of the spectral sequence is given by [[β1],−], where
[−,−] denotes the Lie bracket on SH∗(X; k).

We now explain how our conjectures connect with work of Tonkonog
[37]. Tonkonog considers the following setup: M̄ is a compact Fano variety
equipped with its monotone Kähler form, D̄ ⊂ M̄ a simple normal crossings
anticanonical divisor, X = M̄\D̄, and M = M̄\ ∪J

i=1 D̄i is a partial com-
pactification of X, with compactifying divisor D = M ∩ D̄. Tonkonog defines
a class BS ∈ SH0(X; k) by counting pseudoholomorphic ‘caps’ in M , such
that the following holds:

Theorem 1.30 (Theorem 6.5 in [37]). For any exact closed Lagrangian L ⊂ X
equipped with a k

∗-local system ξ, we have CO(BS) = m0
(L,ξ), where CO :

SH∗(X; Λ) → H∗(L; Λ) is the closed–open map, and m0
(L,ξ) ∈ H2(L; Λ) is

the disc potential.

This fits into the generalized geometric setup alluded to in Remark 1.29
(we are in the log Calabi–Yau setting, and we equip each component of D
with its canonical weight 2). It connects with our conjectures as follows:

Conjecture 1.31. We have BS = [β1].

In many settings, we can tightly constrain the class β using grading
considerations. For each i we can define a cocycle Bi ∈ SC2−λj (X; k) by
‘counting caps passing through Di’, following [37] or [15]. We define

B :=
∑

i

eλi · Bi ∈ SC2(X; Λ).

Conjecture 1.32. Suppose we are in the log Calabi–Yau case: i.e., λi = 2 for
all i, and furthermore that the minimal Chern number of M is ≥ 2. Then we
have β = B.

Remark 1.33. If the minimal Chern number of M is 1, then we conjecture
that β = B + e2 · B0, where B0 ∈ SC0(X; k) is a multiple of the unit,
and counts certain holomorphic spheres in M of Chern number 1. Note that
the additional term B0 is irrelevant for the purposes of Conjecture 1.25, as
�1B = �1B+B0

using the fact that B0 is a multiple of the unit.
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As evidence for the Conjecture, we first observe that GrQ
1 SC2

Λ is gen-
erated by the classes qBi, together with the unit q · 1; and argue that the
coefficient of the unit in β must count certain Chern-number-1 spheres. We
further observe that Q≥2SC2

Λ = 0. This follows as we have a0 = 2, so any
generator γ ⊗ qj of SC2

Λ with j ≥ 2 must have i(γ) ≤ −2; however, i(γ) ≥ 0
by Proposition 1.15.

Remark 1.34. Based on [34, Lemma 6.4], we also expect Conjecture 1.32 to
hold under either of the following hypotheses:

• D is smooth and Hypothesis A is satisfied.
• M is a projective variety, D a complex divisor, and c1(TM) lies in the

interior of the cone Amp′(M,D) ⊂ H2(M ; R) defined in [34, Definition
3.26].

In settings where Conjecture 1.32 holds, the Maurer–Cartan element β is
determined up to gauge equivalence by the cohomology classes [Bi]. Further-
more, the components of β get ‘turned on’ one by one as the corresponding
divisors get added compactifying X.

1.6.4. Mirror symmetry in the log Calabi–Yau case. Let us consider the log
Calabi–Yau case, where X = M\D and X is equipped with its preferred
Liouville structure and trivialization of canonical bundle. In this case we
have a0 = 2, so Λ = k[q, q−1], where i(q) = 2.

Assume that Y is a mirror scheme to X over k, which is smooth. Even
though we choose to leave what this means vague, we will assume that it
implies

SHi(X; k) �
⊕

p+q=i

Hq(Y,ΛpTY ), (1.3)

and in particular

SH0(X; k) � H0(Y,OY ).

Therefore, the classes Bi ∈ SH0(X; k) are mirror to functions wi ∈ H0(Y,OY ).
We set W :=

∑
i wi. This sum includes the constant term w0, which may be

non-zero in the case that the minimal Chern number of M is 1.
Now let YΛ denote the base change of Y to Λ, and WΛ = qW be a

function on YΛ.

Conjecture 1.35. The Landau–Ginzburg model (YΛ,WΛ) is mirror to M .

Remark 1.36. In fact, Conjecture 1.35 should extend beyond the log Calabi–
Yau case we consider here. However, it becomes difficult (and confusing) to
interpret the mirror in terms of the language of classical algebraic geometry:
the polyvector fields on YΛ are given a non-standard grading, and in general
WΛ may be a polyvector field rather than a function. In contrast, in the log
Calabi–Yau case one can give a transparent interpretation of Conjecture 1.35
in terms of the classical algebraic geometry of the Landau–Ginzburg model
(Y,W ) defined over k, which we now do. (We discuss the non-log-Calabi–Yau
case in Remark 1.39 at the end of this section.)
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We consider the Koszul complex associated with the section dW of T ∗Y :

K(dW ) :=
{

· · · → Λp+1(TY ) dW−−→ Λp(TY ) → · · · → TY
dW−−→ OY

}
.

This is a complex of vector bundles over Y . When the critical locus Z :=
Crit(W ) is isolated, K(dW ) is a resolution of OZ , and therefore, its hyperco-
homology gives the algebra of functions on the critical locus: H

∗(K(dW )) ∼=
O(Z) (the hypercohomology is concentrated in degree ∗ = 0). In general, we
define O(Zh) := H

∗(K(dW )), because this hypercohomology is, essentially
by definition, the graded algebra of functions on the ‘derived critical locus of
W ’ (see e.g. [42]).

Conjecture 1.35 implies, among other things, that we have an isomor-
phism of graded Λ-algebras

O(Zh) ⊗k Λ ∼= QH∗(M ; Λ). (1.4)

We expect that the mirror to the spectral sequence of Theorem C on the
RHS, is the hypercohomology spectral sequence on the LHS, in a sense we
now make clear.

We recall the construction of the hypercohomology spectral sequence
IEp,q

1 = Hq(Λ−pTY ) ⇒ O(Zh),

following [46, Section 5.7]. We take a Cartan–Eilenberg resolution Cp,q of
K(dW ), and consider the resulting bicomplex Cp,q = Γ(Cp,q). We define
a filtration map on this complex by Q(c) = p for c ∈ Cp,q (i.e., we have
Q(c) = −p for c a section of ΛpTY ). The resulting Q-filtration induces the
spectral sequence with E1 page as above. The differential on the E1 page is
given by contracting with dW .

We now consider the bicomplex Cp,q ⊗k Λ, and equip it with the filtra-
tion map Q(c ⊗ r) = Q(c) + Q(r). We conjecture that the resulting filtered
complex is filtered quasi-isomorphic to (S̃CΛ, ∂, Q̃≥•), and in particular the
corresponding spectral sequence is isomorphic to the one from Theorem C.
As evidence, we compute that the spectral sequence has

Ej,k
1 =

⊕

p+q=3j+k

Hq(ΛpTY ) ⊗k k · q−j+p

∼= SH3j+k(X; k) ⊗k k · q−j+p,

which is clearly isomorphic to the E1 page of the spectral sequence from
Theorem C.

Remark 1.37. The attentive reader may notice the presence of an extra ‘p’
in the exponent of q, compared with the E1 page from Theorem C. This is
because the isomorphism of E1 pages

SH ⊗k Λ =
⊕

q,p

Hq(ΛpTY ) ⊗k Λ sends

SH ⊗k k �→
⊕

q,p

Hq(ΛpTY ) ⊗k k · q−p.

This reflects the fact that Q(c) = −p for c ∈ ΛpTY .
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We now explain how this fits with the picture from the previous section.
The isomorphism (1.3) is expected to respect the natural graded Lie algebra
structures on both sides (among other things), where the Lie bracket on
the polyvector field cohomology is given by the Schouten–Nijenhuis bracket.
The differential on the E1 page of the symplectic spectral sequence is given
by [B,−]. The differential on the E1 page of the hypercohomology spectral
sequence is given by contraction with qdW , which coincides with [qW,−] (as
one can see from the definition of the Schouten–Nijenhuis bracket); thus the
two differentials match.

More precisely, we expect that the isomorphism of Lie algebras (1.3) can
be refined to a quasi-isomorphism of L∞ algebras, and the Maurer–Cartan
element β matches with the Maurer–Cartan element qW up to gauge equiv-
alence. This would yield a chain-level quasi-isomorphism underlying (1.4),
which would imply the isomorphism of spectral sequences discussed above.

Note that when Y is affine, there is no need to take a Cartan–Eilenberg
resolution: we may take Cp,0 = Γ(Λ−pTY ) and Cp,q = 0 for q �= 0, with
differential given by contracting with dW , and the bicomplex is simply a
complex. In particular, the hypercohomology spectral sequence degenerates
at E2. This leads us to make the following:

Conjecture 1.38. If X in addition (to the conditions from the first paragraph
of this section) admits a homological Lagrangian section and SH0(X; k) is a
smooth algebra, then the spectral sequence of Theorem C degenerates at E2

page.

Under these assumptions on X one can take Y to be the smooth affine
scheme Spec(SH0(X; k)) (see [27]), which would satisfy (1.3), which is our
reason to make this conjecture.

For example, the conjecture holds in the toric Fano examples (see
Sect. 1.7.1), essentially by the argument given above. This degeneration also
follows from the fact that one can construct SC∗(X; k) with zero differential
in this case!

Remark 1.39. We now discuss the non-log-Calabi–Yau case of Conjecture
1.35, which will appear in several examples in Sect. 1.7 below. There are
three complicating factors:
(1) The mirror to X will in general be a Landau–Ginzburg model (Y,w),

rather than simply a variety Y ;
(2) The algebra of polyvector fields on Y must be equipped with a non-

standard grading;
(3) a priori, β will be mirror to a gauge equivalence class of Maurer–Cartan

elements for the differential graded Lie algebra of polyvector fields on
(Y,w), rather than simply a function W on Y .
Issue (2) is already present if one wants to talk about the mirror of T ∗S1

with a non-standard trivialization of its canonical bundle and then consider
the correspondence between compactifications and deformations. In this case
one cannot use a traditional SYZ approach as the zero section of T ∗S1 does
not even have vanishing Maslov class with respect to such a trivialization.
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It seems that to develop some general geometric intuition in the non-log
Calabi–Yau cases, it would be helpful to use the language of derived algebraic
geometry but we do not feel comfortable enough to do this at this point.

Concerning issue (3), we actually expect that β should be mirror to a
function in broad generality, although it is not clear how to prove this. In
some cases, it follows from grading considerations, as in Conjecture 1.32 and
the ensuing remarks.

Remark 1.40. Even though we avoid a general discussion, we do use our
expectations in the log Fano case in some examples in Sect. 1.7 below. Here
is our starting ansatz in these examples: start with a log Calabi–Yau pair
(M,D′), where

D′ =
N+J⋃

i=1

D′
i, and set D =

N⋃

i=1

D′
i.

Suppose that X ′ = M\D′ is mirror to Y as at the start of this section.
This means that we could choose all weights λ′

i = 2; we assume, however,
that there exists a valid choice of weights with λ′

i > 0 for all 1 ≤ i ≤ N ,
and λ′

i = 0 for N + 1 ≤ i ≤ N + J . We equip X ′ with the trivialization of
its canonical bundle corresponding to these weights, and equip the algebra
SH0(X ′; k) with its induced grading. We posit that this is the graded algebra
of functions on the mirror of X ′ (with the alternative trivialization), which we
regard as a ‘graded scheme’. We set X = M\D, and posit that the mirror to
X is (Y,w) where w =

∑N+J
i=N+1 wi. We furthermore posit that the Maurer–

Cartan element β corresponding to X ⊂ M is mirror to WΛ =
∑N

i=1 eλiwi,
and therefore that the mirror to M is (YΛ, w + WΛ).

1.7. Examples

1.7.1. Fano toric varieties. Let Δ ⊂ R
n be a Fano Delzant polytope. This

means that it is a Delzant polytope equal to the intersection of half-spaces
(with no redundancy)

νi(x) + 2κ ≥ 0, i = 1, . . . ,m

for κ > 0 and νi ∈ (Zn)∨ primitive. Using the symplectic boundary reduction
construction (one of the many options), we construct a symplectic manifold
(MΔ, ω) with a Hamiltonian Tn action and moment map

π : MΔ → R
n.

The image of the moment map is by construction Δ. Finally, note that MΔ

satisfies the monotonicity condition 2κc1(TMΔ) = [ω].
We define the toric SC divisor DΔ as the preimage of the boundary

of Δ under the moment map. Note that DΔ =
⋃m

i=1 Di is automatically
an orthogonal SC divisor. We define XΔ = MΔ\DΔ. Again by construction
XΔ is a product int(Δ) × (Rn)∨/(Zn)∨. Denoting the coordinates on R

n by
x1, . . . , xn and the circle valued coordinates on (Rn)∨/(Zn)∨ by φ1, . . . , φn,
we have

ω|X =
∑

dxidφi.
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We note the short exact sequence

0 �� H1(XΔ; R)
f �� H2(MΔ,XΔ; R)

g �� H2(MΔ; R) �� 0.

A choice of weights is (as always) equivalent to the choice of a rational
class

λ ∈ H2(MΔ,XΔ; R) ∼= R
m,

which is sent to 2c1(TMΔ) by g and which has positive coordinates. We have
a preferred lift given by

λcan = (2, . . . , 2).

Let us also use the natural isomorphism H1(XΔ; R) ∼= R
n. The map f

is easily computed to be

x �→ νi(x).

Hence, the set of all possible positive weights is the image of the rational
points in the interior of 1

κΔ under the map R
n → R

m given by

(x1, . . . , xn) �→ (ν1(x) + 2, . . . , νf (x) + 2).

We see that the only weight that satisfies Hypothesis A is the canonical
weight, which corresponds to 0 ∈ 1

κΔ.
Now let us outline how Theorems B and C work in this context, assum-

ing the conjectural results of Sect. 1.6.3. We can arrange that

SC∗(XΔ; k) ∼= k[z±1
1 , . . . , z±1

n , ∂/∂z1, . . . , ∂/∂zn]

where the variables zi are commuting and have degree 0, and the variables
∂/∂zi are anticommuting and have degree 1 (where the degrees are induced by
λcan). We can also arrange that the L∞ structure is trivial, with the exception
of the Lie bracket �2, which coincides with the Schouten–Nijenhuis bracket.
We can compute, for instance via Theorem 1.30 and Cho–Oh’s computation
of the disc potential of toric Fano varieties [5], that β = qW , where

W =
∑

i

zνi .

Now Conjecture 1.25 says that in the statement of Theorem B, we can take

S̃CΛ = SCΛ = Λ[z±1
1 , . . . , z±1

n , ∂/∂z1, . . . , ∂/∂zn], with

∂ = [qW,−].

As explained in Sect. 1.6.4, this is the Koszul complex for dW , tensored with
Λ. One can show that W has isolated singularities, so the cohomology of the
Koszul complex is

O(Z) =
k[z±1

1 , . . . , z±1
n ]〈

∂W
∂z1

, . . . , ∂W
∂zn

〉 = Jac(W ).

Thus, assuming Conjecture 1.25, Theorem B gives

QH∗(MΔ; Λ) ∼= H∗(SCΛ, [qW,−]) ∼= Jac(W ) ⊗k Λ,
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which is the familiar statement of closed-string mirror symmetry for toric
Fano varieties, c.f. [4]. Note that the spectral sequence of Theorem C has E0 =
E1 = SCΛ, E2 = Jac(W )⊗kΛ, and degenerates at E2 because the differential
on SCΛ vanishes (or alternatively, because Jac(W ) is concentrated in even
degree).

Now let us outline how Theorem D works in this context. For each
i = 1, . . . ,m, we have a Hamiltonian circle action with moment map νi ◦ π,
which rotates around Di, and these actions commute on the overlaps. It
follows that they define a system of commuting Hamiltonians for DΔ, in the
sense of Sect. 2. For any p ∈ int(Δ) we define the corresponding weights
λp := f( p

κ ) + λcan and primitive (of ω|XΔ)

θp =
∑

(xi − pi)dφi.

The relative de Rham class of (ω, θp) is easily seen to be f(p)+κλcan = κλp.
The Liouville vector field corresponding to θp is Zp =

∑
(xi − pi)∂/∂xi.

It follows that θp is adapted to the system of commuting Hamiltonians in
the sense of Sect. 2. The skeleton Lp for θp is nothing but the Lagrangian
torus above p. The corresponding subset Kcrit,p is easily computed to be
π−1(K̃crit,p), where K̃crit,p ⊂ Δ is the smallest rescaling of Δ, centred at p,
which contains the origin. In particular, Kcrit,p coincides with Lp if and only
if λp = λcan, if and only if Hypothesis A is satisfied.

Our Theorem D says that the monotone torus fiber L0 is SH-full. It
follows that it is not stably displaceable. This result can also be obtained
using Lagrangian Floer theory, using the fact that the disc potential always
has a critical point in this case. Our result says nothing about the skeleta Lp

for p �= 0. Indeed it is known that for n ≤ 3 all of these non-monotone fibers
are displaceable by probes [22, Corollary 3.9 and Proposition 4.7].

The fact that L0 is SH-full also implies that it intersects every Floer
theoretically essential (over some commutative ring) monotone Lagrangian.
This result also follows from the fact that L0, equipped with appropriate local
systems, split-generates each component of the monotone Fukaya category
over an arbitrary field [11, Corollary 1.3.1].

1.7.2. Skeleta in S2. Let us move on to a non-toric example. Consider S2

with a symplectic structure ω such that [ω] = 4κPD(pt). Let D be the union
of N distinct points p1, . . . , pN ∈ S2. Consider weights λ1, . . . , λN > 0, which
needs to satisfy

λ1 + · · · + λN = 4.

Let θ be a primitive of ω on S2\D compatible with the weights and
with some choice of local moment maps for the circle actions rotating about
the pi. Let L be the induced skeleton. The complement S2 − L is a disjoint
union of open disks Ui, i = 1, . . . N , one for each point p1, . . . pN . L itself is the
union of all critical points, homoclinical and heteroclinical orbits, and periodic
orbits of the Liouville vector field by the Poincaré–Bendixson theorem. It
is elementary to compute (using the compatibility with weights) that the
symplectic area of Ui is equal to κλi. If we restrict the function ρ : M → R
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to the disc Ui, then it extends continuously to 0 along the boundary of the
closed disk, it is equal to 1 at pi, and it generates a Hamiltonian circle action
rotating Ui about pi.

Hypothesis A is satisfied if and only if no weight is bigger than 2, which
means no disc Ui has area more than half the area of S2. In this case the
subset Kcrit coincides with the skeleton L. Otherwise, we have λi > 2 for
some i, and Kcrit is the union of L with a collar around the boundary of
Ui, so that the rest of Ui has area equal to half the area of S2. Theorem D
says that Kcrit is SH-full. This implies that it is not stably displaceable, and
furthermore that no two such subsets can be disjoint from each other. It is
easy to see explicitly that it is necessary to add the collar to Kcrit in order
for these results to hold.

1.7.3. The case M = S2, D = a point. Let M = S2, and D be a single
point. We start by sketching how Theorem B works in this case. It is possible
to take simpler models for SC∗(X; k) and S̃CΛ than those which appear in
the actual proof of the Theorem.

We take a model for SC∗(X; k) which is isomorphic to k[z, zθ] where z
is a commutative variable of degree −2, and θ is anticommutative of degree
1. The generator 1 corresponds to the unique constant orbit, zj to the funda-
mental cycle of the Reeb orbit going j times around D, and zjθ to the point
class of the same Reeb orbit. The differential d sends zj �→ 0 and zjθ �→ zj−1.
In particular the cohomology vanishes: symplectic cohomology of the disc is
zero.

We have Λ = C[q] with i(q) = 4. We take S̃CΛ = SCΛ, and consider
the deformed differential ∂, where ∂ − d sends zj �→ 0 and zjθ �→ qzj+1. The
cohomology of this differential is free of rank 2 over Λ, with a basis given by
1 and qz. In particular, it is isomorphic to QH∗(M ; Λ), in accordance with
Theorem B: the class 1 corresponds to 1 ∈ QH0(M ; Λ), and the class qz
corresponds to PD(pt) ∈ QH2(M ; Λ).

Theorem C does not apply in this case, because Hypothesis A is not
satisfied: we have λ = 4 > 2. And indeed the conclusion of the Theorem
fails, because we cannot have a spectral sequence with E1 page vanishing,
converging to QH∗(M ; Λ) �= 0. The reason the proof of Theorem C does not
run is that the Q-filtration on SCΛ is not degreewise complete. For example,
the classes qkz2k all have degree 0, but their Q-values go to +∞. The conver-
gence theorems for spectral sequences all require completeness, and indeed it
could not be otherwise: taking the completion does not change the spectral
sequence associated with a filtered complex, by inspection of the construc-
tion. It is easy to verify that the degreewise completion of (SCΛ, ∂) is acyclic:
for example,

1 = ∂

⎛

⎝
∞∑

j=0

(−qz2)j · zθ

⎞

⎠ .

This confirms Conjecture 1.20 in this case, as QH∗(S2; Λ)crit = 0.
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Theorem D simply says in this case that a disc occupying half the area
of the sphere is SH-full, c.f. [39, Section 1.2.2].

We now offer another perspective on this computation following Remark
1.40, which will be useful in the next two sections. First, we take M = S2

and D′ = D′
1 ∪ D′

2 to be an anticanonical divisor on S2, where D′
1 and D′

2

are distinct points. If we equip each point with weight λ′
i = 2, then this is a

special case of Sect. 1.7.1: we see QH∗(M ; Λ′) as a deformation of SC∗(X ′; k)
where X ′ = M\D′. In this case (SCΛ′ , ∂′) is quasi-isomorphic to the complex

Λ′[x, x−1, ∂x],

where ∂2
x = 0, the generator q′ of the Novikov ring is in degree 2, x is in degree

0, and ∂x is in degree 1; the differential ∂ is Λ′[x, x−1]-linear and sends

1 �→ 0, ∂x �→ q′(1 − x−2).

As expected, this chain complex is degree-wise complete with respect to the
Q-filtration and we obtain

QH∗(S2; Λ′) ∼= Λ[x, x−1]/
〈
x2 − 1

〉
.

Now we consider the case that λ1 = 0, λ2 = 4. Following the recipe
of Remark 1.40, if X = M\D′

2 then SC∗(X; k) should be quasi-isomorphic
to k[x, x−1, ∂x], where ∂2

x = 0, x is in degree 2, and ∂x is in degree −1; the
differential d is k[x, x−1]-linear and sends

1 �→ 0, ∂x �→ 1.

As expected, this chain complex is acyclic. The chain complex (SCΛ, ∂) is
quasi-isomorphic to Λ[x, x−1, ∂x], with x and ∂x graded as before, and the
generator q of Λ in degree 4; the differential ∂ sends

1 �→ 0, ∂x �→ 1 − qx−2.

Note that as expected, we have an isomorphism of chain complexes

(SCΛ, ∂) ⊗Λ Λ′ ∼= (SCΛ′ , ∂′) via the algebra map sending

x �→ q′x,

x∂x �→ x∂x.

We learned nothing new so far but we believe that this exercise might help
unraveling the more complicated examples in the next two sections below.

1.7.4. The quadric in CP
2. Consider CP

2 with its Fubini-Study symplectic
form, and D a smooth quadric with its canonical weight 3, which does not
satisfy Hypothesis A. L in this case is the monotone Lagrangian RP

2, which is
known to be stably non-displaceable. On the other hand RP

2 can be displaced
from the Chekanov torus (see [47]), hence it is not SH-full for a general k.
As was pointed out to us by Leonid Polterovich, it is also known that RP

2 is
[CP

2]-superheavy over Z/2, see [10, Example 4.12].
Let us now test Theorem B and Conjecture 1.20 in this case, using the

mirror picture outlined in Remark 1.40. The expectation, following [3, Section
5.2], is as follows.
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Consider the graded ring

R := k[x, y, z]/(z(xy − 1) − 1), where |x| = −1, |y| = 1, |z| = 0,

and consider elements w1 = y2z and w2 = x of R. We set Y = Spec(R).
Then X should be mirror to the Landau–Ginzburg model (Y,w1) while M
should be mirror to (YΛ, w1 + qw2), where |q| = 3.

We expect (SC∗(X; k), d) to be quasi-isomorphic to
(
⊕

p

ΛpTY, [w1,−]

)
, (1.5)

while (SCΛ, ∂) should be filtered quasi-isomorphic to
(
⊕

p

ΛpTY ⊗k Λ, [w1 + qw2,−]

)
,

with the filtration map given by Q(c ⊗ qa) = −p + a for c ∈ ΛpTY . We can
compute the cohomology of this complex: it comes out as the Jacobian ring
of w1 + qw2, which is

Λ[x, y, z]/(q − y3z2, 2yz − xy2z2, z(xy − 1) − 1)
∼= Λ[x, y, z]/(z − 1, x − 2q−1y2, y3 − q)
∼= Λ[y](y3 − q)
∼= QH∗(CP

2; Λ).

This agrees with Theorem B in this case.
Now we turn to Conjecture 1.20. We consider two cases:

Case 1: 2 is invertible in k. We easily deduce that 1 − q(x/2)3 is nullhomol-
ogous; it is also clearly invertible in the Q-completion. This implies that the
cohomology vanishes after Q-completion.
Case 2: 2 = 0 in k. In this case the Jacobian ring is Λ[x, y, z]/(z − 1, x, y3 −
q) = Λ[y]/(y3 − q). It is easy to see that Q-completion does not change the
cohomology.

Both cases are in agreement with Conjecture 1.20: if 2 is invertible, then
PD(D) � (−) is invertible, so QH∗(M ; Λ)crit = 0. On the other hand [D] is
2-divisible, so if 2 = 0, then QH∗(M ; Λ)crit = QH∗(M ; Λ).

This leads us to conjecture that RP
2 ⊂ CP

2 is SH-full if the character-
istic of k is 2, but not otherwise (Entov’s result that RP

2 is [CP
2]-superheavy

over Z/2 can be considered as further evidence for this conjecture). This
would imply that RP

2 is non-stably displaceable (which is known), and inter-
sects any monotone Lagrangian which is Floer-theoretically essential over a
field of characteristic 2 (note that this does not include the Chekanov torus,
as can easily be seen from the superpotential computed in [3]).

Remark 1.41. We sketch some evidence for the mirror symmetry statement
(1.5), in the case that char(k) = 2. Note that the completion of X is sym-
plectomorphic to T ∗

RP
2, so SH∗(X; k) ∼= H∗(LRP

2; k) by Viterbo’s theorem
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[1,43,44]. We can compute

H∗(LRP
2; k) ∼= H∗(RP

2; k) ⊕
⊕

k>1

H∗(S(TRP
2); k)[k]

by [48], where the first factor comes from the manifold RP
2 of constant loops,

and the subsequent factors come from the manifolds S(TRP
2) of ‘length-k’

geodesics. Of course H∗(RP
2; k) ∼= k[y]/y3 with |y| = 1, while H∗(S(TRP

2); k)
has rank 1 in degrees 0, 1, 2, 3. On the other hand, one may compute that

H∗
(
⊕

p

ΛpTY, [w1,−]

)
∼= k[x, y, v]/(y3, y2x, y2v)

= k[y]/y3 ⊕
⊕

k>1

〈xk, xky, xk−1 · v, xk−1y · v〉,

where v = x∂x − y∂y is an anticommuting variable. We identify k[y]/y3 as
corresponding to the constant loops, and the subsequent factors as corre-
sponding to the length-k geodesics. The degrees match up (we observe that
|v| = 1). We remark that x = w2 is the basic loop around D, which corre-
sponds to the family of length-1 geodesics, so it makes sense that multiplying
by x takes us to the next k-value.

1.7.5. Fano hypersurfaces. We consider some examples motivated by [33].
They follow a similar philosophy to Remark 1.40, but are a bit different as
they are obtained by partially compactifying an affine variety which is of log
general type, rather than being log Calabi–Yau.

Let M = Mn,a be a smooth hypersurface of degree a ≤ n + 1 in CP
n+1,

and D = Dn,a,i a union of i ≤ n + 2 generic hyperplanes. This fits into
the setup of Sect. 1.1, and we may take the weights all to be equal to λ =
2(n+2−a)

i . In particular, Hypothesis A is satisfied if and only if n + 2 − a ≤ i.
This corresponds to the variety Xn,a,i = Mn,a\Dn,a,i being log Calabi–Yau
(in the case of equality) or log general type (otherwise). Hypothesis A is not
satisfied precisely when Xn,a,i is log Fano.

We conjecture that the mirror to Xn,a,i is the Landau–Ginzburg model
(Yn,a,i,Wn,a,i), where

Yn,a,i = [kn+2/Gn,a,i] is a stack, where

Gn,a,i = ker
(

Z
n+1
a

∑
−→ Za

)
, and

Wn,a,i = −z1 . . . zn+2 +
n+2∑

j=i+1

za
j , and furthermore that

βn,a,i = q ·
i∑

j=1

za
j .

Here we assume that k contains all ath roots of unity. The group Gn,a,i acts
torically, preserving Wn,a,i. The variables zj have degree (2 − λ)/a for j ≤ i
and degree 2/a for j > i, and q has degree λ.
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Now let us drop the n, a, i from the notation. By taking M to be a
Fermat hypersurface, we obtain a natural action of the dual group G∗ on
M , respecting D. Restricting to the invariant pieces of the relevant group
actions, mirror symmetry predicts that

SH∗(X; k)G∗ ∼= H∗ (k[z1, . . . , zn+2, ∂/∂z1, . . . , ∂/∂zn+2], [W,−])G
,

and in fact that there is an underlying quasi-isomorphism of L∞ algebras. In
accordance with Conjecture 1.25, this gives us

H∗
(
S̃CΛ, ∂

)G∗
∼= H∗ (Λ[z1, . . . , zn+2, ∂/∂z1, . . . , ∂/∂zn+2], [W + β,−])G

,

and hence

QH∗(M ; Λ)G∗ ∼= Jac(W + β)G.

The Jacobian ring has relations

z1 . . . zn+2

zj
= qza−1

j for j ≤ i

z1 . . . zn+2

zj
= za−1

j for j > i.

Multiplying them together we get that

(z1 . . . zn+2)n+1 = qi(z1 . . . zn+2)a−1.

This allows us to compute that

Jac(W + β)G = Λ[H]/
(
Hn+1 − qiHa−1

)
,

where H = z1 . . . zn+2.
The class H corresponds to the hyperplane class (except for the case

n + 2 − a = 1, when it corresponds to the hyperplane class plus a!qi). One
can check that this is the correct answer for QH∗(M ; Λ)G∗

, see [17,20]. This
is in agreement with Theorem B.

We can also check Conjecture 1.20 in this case. We can factor the defin-
ing relation in the Jacobian ring as:

Hn+1 − qiHa−1 = Ha−1
∏

ζn+2−a=1

(
H − ζq

i
n+2−a

)
.

Note that we have H = z1 . . . zn+2 = qza
1 , from the first relation in the

Jacobian ring. Thus Q(H) = 1. On the other hand, Q(qi/(n+2−a)) = i/(n+2−
a). Therefore, precisely when Hypothesis A is not satisfied, the factors (H −
ζqi/(n+2−a)) become invertible in the Q-completion, as argued in Sect. 1.6.2.

The result is that the Q-completion gives Λ[H]/Ha−1, which corre-
sponds to the zero generalized eigenspace (note that Hypothesis A is satisfied
for all i ≥ 1 in the anomalous case n + 2 − a = 1, when this corresponds to
the −a!qi generalized eigenspace.)
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1.8. Outline

In Sect. 2, we examine the structure of our symplectic manifold in a neigh-
bourhood of the divisor D. In particular, we introduce the notion of a ‘system
of commuting Hamiltonians near D’, and say what it means for a Liouville
one-form to be ‘adapted’ to such a system. This completes the statement of
the results in Sect. 1.3, where these notions were used without being defined.

In Sect. 3, we establish our conventions for Hamiltonian Floer theory
and relative symplectic cohomology in M , and explain how they are related
to symplectic cohomology of the exact symplectic manifold X. In particular,
we establish that the map (1.2) respects index and action; and we prove the
‘positivity of intersection’-type result which is used to prove Proposition 1.12.

In Sect. 4, we construct the functions ρR which are smoothings of ρ0. We
consider degenerate Hamiltonians of the form h ◦ ρR, explain how to perturb
them to obtain non-degenerate time-dependent Hamiltonians H, and give
estimates for the index and action of their orbits.

In Sect. 5, we prove our main results.

History of work This paper started with M.S.B. and N.S. trying to prove
Conjecture 1.25. A solution was announced in 2015, but never appeared. The
project languished, until U.V. joined the collaboration in 2019 and pushed
it to completion in its current form. M.S.B. and N.S. apologize for the long
delay between announcement and appearance of the work.

2. Symplectic divisors

2.1. Basics

We recall some notions from [36, Section 2.1]. Let (M,ω) be a 2n-dimensional
closed symplectic manifold and let D = ∪N

i=1Di be a symplectic divisor in
(M,ω). This means that for each i, Di ⊂ M is a connected smooth closed
submanifold with real codimension two and for each subset I ⊂ [N ] the
intersection

⋂
i∈I Di is transverse and

DI :=
⋂

i∈I

Di ⊂ M

is a symplectic submanifold. Since the Di intersect transversally, for each
I ⊂ [N ] there is an isomorphism of vector bundles

NMDI
∼−→
⊕

i∈I

NMDi|DI
(2.1)

over DI , induced by the inclusions TDI ⊂ TDi|DI
. Recall the normal bundle

NMD for any symplectic submanifold D ⊂ (M,ω) has a symplectic orienta-
tion induced by the symplectic orientations of TD and TM .

Definition 2.1. A symplectic divisor D ⊂ (M,ω) is
(i) a simple crossings (SC) divisor if (2.1) is an isomorphism of oriented

vector bundles, where each normal bundle is given its symplectic orien-
tation, for all I.
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(ii) orthogonal if for all i �= j and x ∈ Di ∩ Dj the ω-normal bundle
(TxDi)ω ⊂ TxM is contained in TxDj .

Remark 2.2. In [23, Section 5] McLean proved that any SC divisor D ⊂
(M,ω) can be smoothly isotoped in the space of SC divisors to an orthog-
onal SC divisor D′ ⊂ (M,ω); and that X ′ = M\D′ is convex deformation
equivalent to X = M\D. This implies that SH∗(X; k) ∼= SH∗(X ′; k), by [23,
Lemma 4.11]. These results mean that it suffices to prove Theorems B and
C under the assumption that D is orthogonal.

Setting X = M\D, by Lefschetz duality (e.g. Proposition 7.2 of [7]) we
have

H2(M,X) ∼= Z
N where A �→ (A · Di)N

i=1. (2.2)
The inverse is given by mapping the ith basis vector to a disk ui : (D, ∂D) →
(M,X) that is disjoint from the other Dj and with intersection number ui ·
Di = 1. The dual basis vectors of H2(M,X) ∼= Z

N are what we called
PDrel(Di) in Sect. 1.1.

Assume that

κ =
∑

i

κiPDrel[Di] ∈ H2(M,X; R)

is a lift of [ω] under the map H2(M,X; R) → H2(M ; R) with κi ∈ R.

Remark 2.3. In the setup from Sect. 1.1, κ will be κλ.

Now consider a de Rham representative (ω, θ) for κ consisting of the
symplectic form ω together with a one-form θ ∈ Ω1(X) satisfying dθ = ω|X ,
and

κi =
∫

ui

ω −
∫

∂ui

θ.

Following McLean [23,24] we call κi the wrapping numbers for D with
respect to θ, though we use the opposite sign convention than in [23].

2.2. Systems of commuting Hamiltonians

Definition 2.4. Let D = ∪iDi be an SC divisor in a closed symplectic man-
ifold (M,ω), and R > 0. A system of commuting Hamiltonians (scH) near
D, of radius R, is a collection of open neighborhoods UDi ⊃ Di and proper
smooth functions ri : UDi → [0, R), for each i, with the following properties.
For each i,

• ri generates an R/Z action on UDi, and r−1
i (0) = Di.

• The fixed point set of the R/Z action on UDi is Di.
• The R/Z action on UDi\Di is free.

For all pairs i, j,
• UDi ∩ UDj is invariant under the R/Z action generated by ri.
• The Hamiltonians ri and rj Poisson commute on UDi ∩ UDj .

We will denote a scH near D of radius R with the notation {ri : UDi →
[0, R)}.
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Note that for any scH of radius R, we can ‘shrink’ it to an scH of radius
R′ < R by replacing UDi with {ri < R′} for each i.

Proposition 2.5. Let D be an SC divisor in a closed symplectic manifold
(M,ω). If D admits a scH, then it is orthogonal.

Proof. Assume that {ri : UDi → [0, R)} is a scH near D. We need to show
that for all i �= j and x ∈ Di ∩Dj the symplectic orthogonal (TxDi)ω ⊂ TxM
is contained in TxDj .

We consider the action of S := R/Z on TxM induced by ri. The action
on TxDi ⊂ TxM is trivial, since Di is fixed pointwise under the action of S.
The action on UDi ∩ UDj leaves {rj = 0} ∩ UDi ∩ UDj invariant by the
Poisson commutativity property. Therefore, TxDj is an invariant subspace of
TxM under the S action. Finally, since the action of S on TxM preserves the
symplectic pairing, (TxDi)ω ⊂ TxM is also an invariant subspace.

Note that the action of S on (TxDi)ω cannot be trivial by the Bochner
linearization theorem, as x does not have a neighborhood on which S acts
trivially. Now we finish the proof with the following claim:

• Assume that V is a finite dimensional symplectic representation of S,
which is the direct sum of two representations W ⊕ E, where W is the
trivial representation on a symplectic codimension 2 subspace, E is not
the trivial representation, and E and W are symplectically orthogonal.
Let W ′ be another codimension 2 symplectic subspace of V which is
invariant under the action of S. Then if W ′ is transverse to W , it has
to contain E.

The proof of this statement is as follows. There exists w+e ∈ W ′ with e �= 0,
as W ′ is transverse to W . For any θ ∈ S we have θ · (w + e) ∈ W ′; hence,
θ · (w + e) − (w + e) = θ · e − e ∈ W ′. We may choose θ so that θ · e �= e, so
W ′ ∩ E �= {0}. This implies that E ⊂ W ′ as required. �
Definition 2.6. Let D = ∪N

i=1Di be an SC divisor in a closed symplectic
manifold (M,ω) and let {ri : UDi → [0, R)} be a scH near D. For all I ⊂ [N ],
define UDI := ∩i∈IUDi. We obtain a (R/Z)I action on UDI with a moment
map

rI : UDI → [0, R)I

whose components are given by ri, for i ∈ I.

Proposition 2.7. Let D be an orthogonal SC divisor in a closed symplectic
manifold (M,ω). Then D admits a scH.

Proof. This is an immediate consequence of [23, Lemma 5.14], where for each
i, we use the well-defined radial coordinate of the symplectic disk bundle over
Di in the statement as our ri (the domain is the symplectic disk bundle of
course). It is trivial to see that this gives a scH near D. �
Remark 2.8. It is natural to ask whether all systems of commuting Hamil-
tonians come from standard tubular neighborhoods in the sense of McLean.
Even if this is the case, the extra choice of a standard tubular neighbor-
hood on top of a system of commuting Hamiltonians is not needed for our
constructions and arguments.

Reprinted from the journal1102



Vol. 24 (2022) Quantum cohomology as a deformation of symplectic cohomology

2.3. Adapted Liouville one-forms

Definition 2.9. Let D be an SC divisor in a closed symplectic manifold (M,ω)
and let {ri : UDi → [0, R)} be an admissible scH near D. We call a one-form
θ ∈ Ω1(M\D) satisfying dθ = ω|M\D and with wrapping numbers κi > 0
adapted to {ri : UDi → [0, R)} if the Liouville vector field Z of θ satisfies

Z(ri) = ri − κi

over UDi\D, for all i.

Proposition 2.10. Let D be an orthogonal SC divisor in a closed symplectic
manifold (M,ω). Assume that

[ω] =
∑

i

κi · PD(Di) in H2(M, R),

with κi > 0. Then there exists {ri : UDi → [0, R)} a scH near D for which
there exists an adapted θ ∈ Ω1(M\D) with wrapping numbers κi.

Proof. We use a scH as in the proof of Proposition 2.7. Then, a one-form θ
on M\D produced by [23, Lemma 5.17] is adapted in the sense of Definition
2.9, as we show below. Note that by the relative de Rham isomorphism, there
is a primitive θ′ defined on M\D such that the relative cohomology class in
H2(M,M\D) defined by (ω, θ′) is equal to

∑
κi · PD(Di), which is why we

can use McLean’s lemma.
Using McLean’s notation for the moment, on the fibers of the projections

πI : UDI → DI we have

θ|F ∗
I

=
∑

i∈I

(ri − κi) dφi, (2.3)

where F ∗
I

∼= ∏
i∈I(DR\0) is the product of punctured disks. Using (2.3), we

have

Z(ri) = θ(Xri
) = θ(∂φi

) = ri − κi,

as required. �
Remark 2.11. Again one could ask whether every Liouville one-form adapted
to a system of commuting Hamiltonians is adapted to some compatible stan-
dard tubular neighborhood in the sense of McLean. Whatever the answer
might be, the flexibility that we achieved in these two sections already shows
itself in the toric examples of Sect. 1.7.1.

2.4. Admissibility

Definition 2.12. Let D = ∪N
i=1Di be an SC divisor in a closed symplectic

manifold (M,ω), and let {ri : UDi → [0, R)} be a scH near D. Given I ⊂ [N ],
a standard chart (U, φ) in UDI is an (R/Z)I -invariant open subset U ⊂ UDI

and a (R/Z)I -equivariant symplectic embedding

φ : U → C
I × C

n−|I|,

where we use the action of (R/Z)I on C
I × C

n−|I| given by

θ · ((zi)i∈I , w) = ((e2πiθizi)i∈I , w) for all θ ∈ (R/Z)I

and ((zi)i∈I , w) ∈ C
I × C

n−|I|.
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Lemma 2.13. Let D = ∪N
i=1Di be an SC divisor in a closed symplectic man-

ifold (M,ω) and let {ri : UDi → [0, R)} be a scH near D. For every I ⊂ [N ]
and x ∈ DI , there exists a standard chart (U, φ) in UDI containing x.

Proof. This immediately follows from the equivariant Darboux theorem [18,
Theorem 22.1]. �

We now choose an arbitrary Riemannian metric on M , and let inj(M)
be the injectivity radius with respect to this metric. We call a standard chart
(U, φ) in UDI admissible if U is contractible and has diameter < inj(M)/2.
The significance of admissibility for us is that it guarantees uniqueness of
caps:

Lemma 2.14. If γ : S1 → M is a loop contained in some admissible standard
chart, then there exists a disc bounding γ, whose image is contained inside
an admissible chart. Moreover, such a disc is independent of the choice of
admissible chart containing γ, up to homotopy rel. boundary in M .

Proof. The existence is clear, as admissible standard charts are contractible.
The uniqueness follows as the union of two admissible standard charts con-
taining γ has diameter < inj(M), hence is contained in a ball of radius
< inj(M). As the ball is contractible, the caps in the two charts are ho-
motopic rel. boundary in M . �
Definition 2.15. Let D = ∪N

i=1Di be an SC divisor in a closed symplectic
manifold (M,ω). We call a scH near D admissible if for every I ⊂ [N ] and
y ∈ UDI , there exists an admissible standard chart (U, φ) in UDI with y ∈ U .

Lemma 2.16. Let D be an SC divisor in a closed symplectic manifold (M,ω),
and {ri : UDi → [0, R)} a scH near D. Then any sufficiently small shrinking
of the scH is admissible.

Proof. First note that any standard chart around x ∈ DI can be shrunk so
that it is admissible. Therefore, we have a neighbourhood of DI given by the
union of all admissible standard charts. By shrinking the scH sufficiently, we
may ensure that UDI is contained in the neighbourhood, for all I. �
Remark 2.17. In Sect. 3.1, we will define a cap for a loop γ : S1 → M to
be an equivalence class of discs u bounding γ under the equivalence relation
u1 ∼ u2 if

∫
u∗

1ω =
∫

u∗
2ω. Therefore, we could get away with the following

weaker notion of admissibility for the purposes of the present paper. We call
a standard chart weakly admissible if it is simply connected. Assume that we
have a loop γ inside UDI that is the orbit of a point under the action of a
one dimensional subgroup S of (R/Z)I . We claim that the symplectic area
of a cap of γ that is contained inside a weakly admissible standard chart U
(assuming such charts exist) only depends on γ, i.e. it is independent of U and
the cap chosen inside of U . The reason is because we can then compute the
symplectic area by transporting everything into C

I × C
n−|I| and see that it

is equal to l(0) − l(p), where l : R
I → R is a function whose pre-composition

with rI generates the action of S and p is the point of R
I
≥0 above which

γ lives. Hence, for such γ existence of a weakly admissible standard chart
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determines uniquely an equivalence class of caps. This would be enough for
our purposes.

3. Quantum, Hamiltonian Floer, and symplectic cohomology

3.1. Quantum and Hamiltonian Floer cohomology

In this section, (M,ω) will be a closed symplectic manifold such that 2κc1

(TM) = [ω] on π2(M) for some κ > 0.
Let A′ be the subgroup {2c1(TM)(B) : B ∈ π2(M)} ⊂ Z and set

Λ′ = k[A′], graded by i(ea) = a.
Let γ : S1 → M be a nullhomotopic loop in M . A cap for γ is an

equivalence class of disks u : D → M bounding γ, where u ∼ u′ if and only if
the Chern number of the spherical class [u−u′] vanishes: c1(TM)(u−u′) = 0.
The set of caps for γ is a torsor for A′, which acts via

a · (γ, u) = (γ, u#C) where 2c1(TM)(C) = a.

Given a non-degenerate Hamiltonian F : S1 × M → R, let PF denote
the set of contractible one-periodic orbits of F , and let P̃F be the set of
orbits equipped with a cap. Elements γ̃ = (γ, u) ∈ P̃F have a Z-grading and
an action

i(γ, u) = CZ(γ, u) +
dim(M)

2
and AF (γ, u) :=

∫

S1
F (t, γ(t)) dt +

∫

D

u∗ω,

and these are compatible with the action of A′ in that

i(a · (γ, u)) = i(γ, u) + a and A(a · (γ, u)) = A(γ, u) + κa .

Note that the ‘mixed index’

imix(γ) := i(γ, u) − κ−1A(γ, u)

is independent of the cap u.
Define CF ∗(M,F ) to be the free Z-graded k-module generated by P̃F .

It is naturally a graded Λ′-module, via ea · (γ, u) := a · (γ, u). It also admits
a Floer differential after the choice of a generic S1-family of ω-compatible
almost complex structures (which we suppress from the notation). The dif-
ferential is Λ′-linear, increases the grading by 1, does not decrease action,
and squares to zero.

One can also define continuation maps CF (M,F0) → CF (M,F1) in
the standard way by choosing a smooth function F : Rs × S1 × M → R,
which is equal to F0 for s � 0 and to F1 for s � 0, as well as an R × S1

dependent family of ω-compatible almost complex structures, which together
satisfy a regularity condition. Continuation maps are Λ′-linear chain maps. If
the continuation maps are defined using monotone Floer data, which means
∂F
∂s ≥ 0, then the continuation map CF (M,F0) → CF (M,F1) does not
decrease action.

Remark 3.1. We would like to stress that the discussion of Hamiltonian Floer
theory that we gave here is slightly simpler than the general theory due to our
positive monotonicity assumption. In particular, we did not need to complete
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Λ or our Hamiltonian Floer groups, which is necessary in general for the
potential infinite sums to make sense. For details, we refer the reader to [31].
Apart from the ones that we have explicitly stated above, our conventions
for Hamiltonian Floer theory agree with (1), (2), (3) and (5) of Section 3.1
in [40].

Let A ⊂ Q be a subgroup such that A′ ⊂ A. Let Λ = k[A], with the
same grading convention i(ea) = a ∈ Q; then we have an inclusion Λ′ ⊂ Λ.
(Eventually we will take A and Λ to be as defined in the beginning of Sect. 1.2
but we choose to be more general for a while.)

Let us define the Λ-cochain complex

CF ∗(M,F ; Λ) := CF ∗(M,F ) ⊗Λ′ Λ.

We denote the cohomology of this cochain complex by HF ∗(M,F ; Λ) :=
H∗(CF ∗(M,F ; Λ), ∂). There exists a natural PSS chain map:

C∗(M ; k) ⊗k Λ → CF ∗(M,F ; Λ),

which is known to be a quasi-isomorphism [28]. The PSS map is well defined
up to chain homotopy and compatible with chain level continuation maps up
to chain homotopy.

We now introduce the notion of ‘fractional caps’ of orbits. A fractional
cap for γ is a formal expression u + a, where u is a cap for γ and a ∈ R, and
we declare u + a ∼ u′ + a′ if and only if a − a′ ∈ A′ and u′ = (a − a′) · u.
There is a well-defined index and action associated with a fractional cap:

i(γ, u + a) := i(γ, u) + a, A(γ, u + a) := A(γ, u) + κa.

There is a natural bijection between the k-basis (γ, u)⊗ ea of CF ∗(M,F ; Λ),
and the set of fractionally capped orbits (γ, u + a) with a ∈ A.

3.2. Relative symplectic cohomology

Let M,ω, κ,Λ be as in Sect. 3.1. We now define relative symplectic coho-
mology for compact subsets of M over Λ, referring to [40] for the details.
As briefly mentioned in the introduction (see Sect. 1.3, especially the foot-
note on pages 4-5), the construction below is slightly different than the one
in [40]. Namely, here we use capped orbits (in particular we only consider
contractible orbits) and keep track of the caps rather than weighting Floer
solutions using a formal variable.

Let K ⊂ M be compact. We call the following data a choice of acceler-
ation data for K:

• H1 ≤ H2 ≤ · · · a monotone sequence of non-degenerate one-periodic
Hamiltonians Hi : S1 × M → R cofinal among functions satisfying
H |S1×K< 0. In other words, for every (t, x) ∈ S1 × M ,

Hi(t, x) −−−−→
i→+∞

{
0, x ∈ K,

+∞, x /∈ K.

• A monotone homotopy of Hamiltonians Hi,i+1 : [i, i+1]×S1 ×M → R,
for all i, which is equal to Hi and Hi+1 at the corresponding end points.

• A R≥1 × S1-family of ω-compatible almost complex structures.

Reprinted from the journal1106



Vol. 24 (2022) Quantum cohomology as a deformation of symplectic cohomology

We denote the acceleration data as a single family of time-dependent
Hamiltonians and almost complex structures (Hτ , Jτ ), τ ∈ R≥1. We also fix
an non-decreasing surjective smooth map (−∞,∞) → [0, 1]. Given a [i, i+1]-
dependent family of Hamiltonians and almost complex structures, we use this
map to write down a Floer equation for maps from R × S1 to M . Let us call
the resulting R × S1-family of Hamiltonians and almost complex structures
the associated Floer data.

We require the acceleration data (Hτ , Jτ ) to satisfy the following two
assumptions:

(1) For each i ∈ N, (Hi, Ji) is regular.
(2) For each i ∈ N, the Floer data associated with (Hτ , Jτ )τ∈[i,i+1] is regu-

lar.

Given acceleration data (Hτ , Jτ ), Hamiltonian Floer theory provides a
1-ray of Floer Λ-cochain complexes, called a Floer 1-ray:

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · · .

The horizontal arrows are Floer continuation maps defined using the
monotone homotopies appearing in the acceleration data. Recall that a cylin-
der u contributing to a Floer differential or a continuation map has non-
negative topological energy

Etop(u) =
∫

S1
γ∗
outHout dt −

∫

S1
γ∗
inHin dt +

∫

R×S1
u∗ω ≥ 0, (3.1)

where γout, γin are the asymptotic orbits of u, and Hout, Hin are the Hamil-
tonians at the corresponding ends. (For Floer differentials, Hout = Hin = Hi

and for continuation maps, Hout = Hi+1, Hin = Hi for some i.)

Remark 3.2. We also note that the inequality in (3.1) comes from the more
general inequality

Etop(u) ≥
∫

R×S1

(
∂H

∂s

)
(u(s, t), s, t)dsdt, (3.2)

where u is a solution of the Floer equation for an arbitrary H : R×S1×M →
R which is s-independent at the ends.

From now on, we will use the terminology introduced in Sect. A.3 freely.
We apologetically ask the reader to take a look at it before moving further.
Using the grading and action considerations from Sect. 3.1, C(Hτ , Jτ ) be-
comes a 1-ray in FiltChΛ. We define the Λ-cochain complexes tel(C(Hτ , Jτ ))
and t̂el(C(Hτ , Jτ )) as in Sect. A.3. We can now repeat Section 3.3.2 of [40]
in this set-up.

Proposition 3.3. For two different choices of acceleration data for K, (Hτ , Jτ )
and (H ′

τ , J ′
τ ), there is a canonical isomorphism

H∗
(
t̂el(C(Hτ , Jτ ))

) ∼= H∗
(
t̂el(C(H ′

τ , J ′
τ ))
)

of Q-graded Λ-modules.
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Hence, we define

SH∗
M (K; Λ) := H∗

(
t̂el(C(Hs, J))

)
.

Proposition 3.4. There are canonical restriction maps of Q-graded Λ-modules
for K ⊂ K ′:

SH∗
M (K ′; Λ) → SH∗

M (K; Λ).

�

We finally list the three properties we will need of relative symplectic
cohomology. Here is the first one.

Theorem 3.5. Assume that tel(C(Hτ , Jτ )) is degreewise complete. Then
SH∗

M (K; Λ) = QH∗(M ; Λ).

Proof. Follows from the basic properties of the PSS maps discussed at the
end of Sect. 3.1 along with the diagram (A.2) and the fact that a direct limit
of quasi-isomorphisms is a quasi-isomorphism. �

Before we state the second property, we note the following important
statement from Hamiltonian Floer theory.

Let H : S1 × M → R a non-degenerate Hamiltonian and J an S1-
dependent almost complex structure compatible with ω. Assume that (H,J)
is regular and fix Δ ≥ 0.

• The Floer data (Hs := H + Ψ(s)Δ, Js := J), where Ψ : R → R is
a smooth function that is equal to 0 for s < −1 and to 1 for s > 1,
is regular. This is a standard fact in Floer theory noting that adding
Ψ(s)Δ does not change the Floer equation.

• The resulting continuation map

cΨ : CF ∗(M,H) → CF ∗(M,H + Δ)

is the naive map which sends each capped orbit to itself. Yet, note that
the action of the capped orbit for H + Δ is Δ more than its action for
H.

Let us fix a non-decreasing Ψ for the proof below. Let us denote the contin-
uation map above for any H and Δ by cΨ by abuse of notation.

Theorem 3.6. If K is stably displaceable, then SH∗
M (K; Λ) = 0.

Sketch of proof. The proof is identical to that in the Section 4.2 of [39] up to
minor modifications. We provide an overview of the proof for completeness.

Let us first prove the result when K is displaceable. Let (Hτ , Jτ ) be
a choice of acceleration data for K and H : [0, 1] × M → R be a function
whose time-1 Hamiltonian flow φ : M → M displaces K. In fact, φ displaces
a domain neighborhood D of K. Assume that Hτ ’s are so that ∂D is a level
set of H1 for all t ∈ S1, and Hτ = H1 + τ − 1 on M − int(D) for all τ .

We recall an elementary construction for reparametrizing Hamiltonian
flows . Let I = [0, T ] and I ′ = [0, T ′] be closed intervals, and ψ : I ′ → I be
a smooth map which sends 0 to 0 and T ′ to T . Then, the time T -flow of the
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time dependent Hamiltonian vector field Xt, t ∈ I of h : I × M → R and the
time-T ′ flow of X ′

t, t ∈ I ′ of (h ◦ (ψ × id)) · dψ
dt : I ′ × M → R are the same

map M → M .11

Let us fix a non-decreasing function ψ : [0, 1/2] → [0, 1], which is locally
constant in a neighborhood of the endpoints of [0, 1/2].

Using the reparametrization construction with ψ, starting with HL,HR :
M × [0, 1] → R we can cook up a new Hamiltonian HLφHR : M × R/Z →
R, such that the HL and HR parts are supported in (1/2, 1) and (0, 1/2)
respectively. The Hamiltonian flow of HLφHR is tangent to XHR

first. After
not moving for a short period, it arrives at φ1

HR
in less than 1/2-time, and

stops for a while. At some point after time 1/2, it starts moving again, this
time being tangent to XHL

, and reaches to φ1
HL

◦ φ1
HR

before time-1. It then
stops for a little until time 1, after which it repeats this flow.

We define SH∗
M (K,H; Λ) via the family HφHs in the same way we de-

fined SH∗
M (K; Λ). Note that this construction does not use that H displaces

K. In particular, we can define SH∗
M (K, 0; Λ), and it follows from Lemma

4.2.1 of [39] that SH∗
M (K, 0; Λ) is isomorphic (as a graded Λ−module) to

SH∗
M (K; Λ). Here and in the future, by abuse of notation, we denote the

constant function M × [0, 1] → R, sending everything to Δ ∈ R by Δ.
The next step is to show that SH∗

M (K,H; Λ) is isomorphic to SH∗
M

(K, 0; Λ), which is true for arbitrary H. We can find a Δ ≥ 0 such that

−Δ ≤ H(x, t) ≤ Δ,

for all (x, t) ∈ M × [0, 1]. This implies that for any G : M × [0, 1] → R, we
have

−cΔ + 0φG ≤ HφG ≤ cΔ + 0φG ≤ 2cΔ + HφG,

where c > 0 is a constant that depends on our choice of ψ.
Hence we obtain filtered chain maps

tel(C(−cΔ + 0φHs)) → tel(C(HφHs)) → tel(C(cΔ + 0φHs))
→ tel(C(2cΔ + HφHs)).

The composition of the first two maps is filtered chain homotopic to the
map obtained from c′

Ψs as explained right before the theorem using a filling
in 3-slits argument. The same result is true for the composition of last two
maps.

Using Lemma A.2’s last statement and the second bullet point of Lemma
A.3, we obtain that there is a chain of maps

SH∗
M (K, 0; Λ) → SH∗

M (K,H; Λ) → SH∗
M (K, 0; Λ) → SH∗

M (K,H; Λ),

where the composition of the first two and the last two maps are isomor-
phisms. This implies the result.

The main point of the proof is to show that SH∗
M (K,H; Λ) = 0 for

the displacing Hamiltonian H from the beginning of the argument. This uses
Lemma A.5. The more detailed claim is that a slightly modified version of
the family HφHs gives rise to a 1-ray that satisfies the conditions of Lemma

11We warn the reader that there is a typo in the relevant formula in [39].
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A.5. The actual proof of this is too long to include here (see Section 4.2.3 of
[39]). Let us instead explain the intuition behind the proof. Let γ : S1 → M
be a 1-periodic orbit of HφHs for some s. Because φ displaces D, either
γ(0) or γ(1/2) = φ−1(γ(0)) needs to lie outside of D. Then conservation of
energy and that ∂D is a level set of Hs for all times shows that in fact we
have γ([0, 1/2]) ⊂ M\D. Now if we could use parametrized moduli spaces
and cascades instead of continuation maps, we would have our proof. This
relies in the fact that γ([0, 1/2]) ⊂ M\D holds for all 1-periodic orbits of all
HφHs and that ∂Hs

∂s = 1 in M\D: the actions increase with a constant rate
as we follow the orbits and accidental solutions can only further increase the
action. There are technical difficulties in making this work, so we refer the
reader to [39] for the actual proof.

We move on to the case when K is only stably displaceable. Let T 2 be
a symplectic torus such that

K̃ := K × γ ⊂ M × T 2

is displaceable inside M × T 2, where γ is a meridian in T 2. Note that M ×
T 2 also satisfies the conditions of our construction of relative symplectic
cohomology over Λ as T 2 is aspherical.

We will prove that SH∗
M (K; Λ) naturally injects into SH∗

M×T 2(K̃; Λ),
which finishes the proof. It is easy to see that acceleration data can be chosen
for γ ⊂ T 2 where each Hamiltonian in the cofinal family has exactly 4 con-
tractible orbits, and the differentials on each of the corresponding Hamilton-
ian Floer groups vanish. Using the the chain level Künneth isomorphism for
Hamiltonian Floer theory and that completion commutes with tensor product
with a finite dimensional Λ-module, we easily prove the desired claim. �

We come to the third and final property of relative symplectic cohomol-
ogy that we will discuss in this section. Recall from the introduction that a
compact set K ⊂ M is called SH-invisible if SH∗

M (K; Λ) = 0.

Theorem 3.7. If a compact subset K ⊂ M is SH-invisible, then any compact
subset K ′ ⊂ K is also SH-invisible.

Proof. The proof is identical to that of Theorem 1.2 (4) in [38]. The key
point (Proposition 2.5 of [38]) is that there is a distinguished element 1K ∈
SHM (K,Λ), called the unit, with the following properties.

• SHM (K,Λ) = 0 if and only if 1K = 0.
• Restriction maps send units to units.

The element 1K is constructed so that it is the unit of a pair-of-pants type
product structure on SHM (K,Λ). The details are in Section 5 of [38]. �
3.3. Towards the symplectic cohomology of the divisor complement

We return to the geometric setup of Sect. 1.1: (M,ω) will be a closed sym-
plectic manifold that is monotone

2κcM
1 = [ω] ∈ H2(M ; R) with κ > 0,

D = ∪N
i=1Di ⊂ (M,ω) will be a simple crossings divisor and λ1, . . . , λn ∈ Q>0

will be the weights. We will denote X = M\D, λ ∈ H2(M,X; R) will be the
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associated lift of 2cM
1 , and θ ∈ Ω1(X) will be a primitive of ω|X such that

the relative de Rham cohomology class of (ω, θ) is κλ.
First we recall the action and index of orbits in the exact symplectic

manifold (X, θ). Let F : S1 × X → R be a Hamiltonian, and γ : S1 → X a
non-degenerate orbit of F . Its action is defined to be

AF (γ) :=
∫

S1
F (t, γ(t)) dt +

∫

S1
γ∗θ.

To associate an index to orbits, we require an additional piece of data: a
homotopy class of trivializations η of Λtop

C (TX)⊗2N , for some integer N > 0.
To define the index iη(γ) of an orbit γ, we first choose a trivialization Φ of
γ∗TX; we denote the Conley–Zehnder index with respect to this trivialization
by CZ(γ,Φ). The trivialization Φ induces a trivialization of Λtop

C (γ∗TX)⊗2N ,
and we define w(Φ, η) ∈ Z to be the winding number of

η−1 ◦ Λtop
C (Φ)⊗2N : S1 → C

∗.

We then define

iη(γ) = CZ(γ,Φ) +
dim(X)

2
− w(Φ, η)

N
.

One easily checks that the index is independent of the trivialization Φ. Note
that it is fractional: iη(γ) ∈ 1

N Z.
In our setting, the relevant choice of trivialization η is determined by

λ. Let N be an integer such that Nλi ∈ Z for all i. Then
∑

i Nλi[Di] is
Poincaré dual to c1(Λ

top
C (TM)⊗2N ) by definition, so we may choose a section

of Λtop
C (TM)⊗2N which is non-vanishing over X, and vanishes with multi-

plicity Nλi along Di. Restricting this section to X defines a homotopy class
of trivializations of Λtop

C (TX)⊗2N , which we denote by ηλ . We will write i(γ)
for iηλ

(γ).
Now let F : S1 × M → R be a Hamiltonian, and γ : S1 → X a non-

degenerate orbit of F which is contractible in M , and contained inside X.
We define a canonical fractional cap uin for γ, by setting uin := u − u · λ for
an arbitrary cap u; the result is clearly independent of u. One should think of
uin as a ‘cap inside X’: indeed, if u were a cap contained inside X, we would
have uin = u.

Lemma 3.8. We have

i(γ) = i(γ, uin) and AF (γ) = AF (γ, uin).

Proof. Let us choose an arbitrary u : D → M capping γ. We start with the
action. Directly from the definitions:

AF (γ) =
∫

S1
F (t, γ(t)) dt +

∫

S1
γ∗θ

and AF (γ, uin) =
∫

S1
F (t, γ(t)) dt +

∫

D

u∗ω − κu · λ.

Therefore, the result follows from the assumption that the relative de Rham
cohomology class of (ω, θ) is κλ.
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Recalling definitions for indices:

i(γ) = CZ(γ,Φ) +
dim(X)

2
− w(Φ, ηλ)

N
,

where we choose Φ to be the trivialization of γ∗TX induced by the cap u,
and

i(γ, u) = CZ(γ, u) +
dim(M)

2
− u · λ.

Therefore, we need to show that

w(Φ, ηλ) = Nu · λ.

This follows because ηλ actually induces a section of Λtop
C (u∗TM)⊗2N . Using

any trivialization of Λtop
C (u∗TM)⊗2N , we can think of this section as a map

D → C, which does not vanish along the boundary. The degree of this map at
0 ∈ C is easily computed to be Nu ·λ using that ηλ vanishes with multiplicity
Nλi along Di. It is an elementary fact that the same degree is also equal to
the winding number that we are interested in, so the result follows. �

3.4. Positivity of intersection

In this section, we prove a result based on Abouzaid–Seidel’s ‘integrated
maximum principle’. We will later use it to prove Proposition 1.12, although
the result is more broadly applicable.

Let (W,ω) be a symplectic manifold with a concave boundary modelled
on the contact manifold (Y, θ). This means that ∂W = Y , and there is a
symplectic embedding of the symplectization (Y × [c, c + ε), d(ρ · θ)) onto a
neighbourhood of the boundary, where ρ ∈ [c, c + ε) is the Liouville coor-
dinate. Note that as ω|Y = cdθ, we have a relative de Rham cohomology
class [ω; cθ] ∈ H2(W,Y ). We will consider u : (Σ, ∂Σ) → (W,Y ) satisfying
the pseudoholomorphic curve equation for a certain class of almost-complex
structures and Hamiltonian perturbations, and give a criterion guaranteeing
that [ω; cθ](u) ≥ 0, with equality if and only if u ⊂ Y .

To define our pseudoholomorphic curve equation, we choose a com-
plex structure j on Σ, a family J of ω-compatible almost-complex struc-
tures Jz parametrized by z ∈ Σ, and a Hamiltonian-valued one-form K ∈
Ω1(Σ;C∞(W )). Note that differential forms on Σ×W decompose into types:

Ω•(Σ × W ) =
⊕

j+k=•
Ωj(Σ,Ωk(W )),

so we may interpret K as a one-form on Σ × W . The de Rham differential
decomposes as d = dΣ + dW , where

dΣ : Ωj(Σ,Ωk(W )) → Ωj+1(Σ,Ωk(W )) and

dW : Ωj(Σ,Ωk(W )) → Ωj(Σ,Ωk+1(W )).

The isomorphism C∞(TW ) → Ω1(W ) sending v �→ ω(v,−) allows us to
turn dW K into a Hamiltonian-vector-field-valued one-form XK ∈ Ω1(Σ;C∞

(TW )). We will consider the pseudoholomorphic curve equation

(du − XK)0,1 = 0.

Reprinted from the journal1112



Vol. 24 (2022) Quantum cohomology as a deformation of symplectic cohomology

Note that the (0, 1)-projection of v ∈ Ω1(Σ;C∞(TW )) is given by 1
2

(v + J ◦ v ◦ j).
We introduce the geometric energy of a pseudoholomorphic curve u:

Egeom(u) =
1
2

∫

Σ

‖du − XK‖2
.

It is manifestly non-negative. Let ũ : Σ → Σ × W denote the graph of u. We
have the standard computation (e.g. Equation (8.12) of [32]):

Egeom(u) =
∫

Σ

u∗ω + ũ∗ (dW K + {K,K}) ,

where the final term lives in Ω2(Σ, C∞(W )) and is defined by {K,K}(v, w) :=
{K(v),K(w)}, where {−,−} is the Poisson bracket.

We also introduce the topological energy

Etop(u) :=
∫

Σ

u∗ω + ũ∗dK.

Note that

Etop(u) = Egeom(u) +
∫

Σ

ũ∗ (dΣK − {K,K}) .

Proposition 3.9. Suppose that
(1) Jz is of contact type along Y , for all z ∈ ∂Σ:

dρ ◦ Jz = −ρθ.

(2) There exist one-forms α, β ∈ Ω1(Σ) such that K = α · ρ + β in a neigh-
bourhood of Y

(3) We have dΣK − {K,K} − dβ ≥ 0.12

Then any smooth map u : (Σ, ∂Σ) → (W,Y ) satisfying (du − XK)0,1 = 0,
with ∂Σ �= ∅, will satisfy [ω; cθ](u) ≥ 0, with equality if and only if u ⊂ Y .

Proof. We have

[ω; cθ](u) =
∫

Σ

u∗ω −
∫

∂Σ

u∗cθ

= Egeom(u) −
∫

Σ

ũ∗ (dW K + {K,K}) − c

∫

∂Σ

u∗θ

≥
∫

Σ

ũ∗ (−dK + dΣK − {K,K}) − c

∫

∂Σ

u∗θ as Egeom(u) ≥ 0

≥
∫

Σ

ũ∗ (−dK + dβ) − c

∫

∂Σ

u∗θ by hypothesis (3)

=
∫

∂Σ

−ũ∗K + β − c · u∗θ.

By hypothesis (2), the first and second terms combine to give
∫

∂Σ

−ũ∗(α · ρ + β) + β = −
∫

∂Σ

c · α,

12Given ξ ∈ Ω2(Σ, C∞(W )), we say that ξ ≥ 0 if for all z ∈ Σ, v ∈ TzΣ, and w ∈ W , we
have ξ(v, jv)(w) ≥ 0.
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as ρ = c along Y .
We can analyse the remaining term using the argument in [2, Lemma

7.2]. Let v ∈ Tz∂Σ be a positively-oriented boundary vector. Using the Floer
equation

(du − XK)0,1 = 0,

we obtain

u∗(v) = −Ju∗j(v) + XK (v) + JXKj(v),

so

u∗θ(v) = −θ (Ju∗j(v)) + θ (XK (v)) + θ (JXKj(v)) .

We analyse each term on the RHS. For the first, we note that j(v) points
into Σ. Therefore u∗(j(v)) points into W . Such vectors can be written as the
sum of a non-negative multiple of the Liouville vector and a vector that is
tangent to Y . Because J is of contact type, this implies that

θ (Ju∗j(v)) ≥ 0.

For the second, we note that hypothesis (2) ensures that XK(v) = −α(v) ·R,
where R is the Reeb vector field on Y . Thus, θ(XK(v)) = −α(v). For the
third, hypothesis (2) again ensures that XK(j(v)) is a multiple of the Reeb
vector field; because J is of contact type, θ(JXKj(v)) = 0. Putting it all
together, we have

u∗θ(v) ≤ −α(v).

Combining, we finally obtain

[ω; cθ](u) ≥
∫

∂Σ

−c · α + c · α = 0

as required.
If equality holds then we have Egeom(u) = 0, which implies that du =

XK. Hypothesis (2) then implies that u∗(v) = XK(v) is a multiple of the
Reeb vector field R in a neighbourhood of Y , for all v; as R is tangent to Y ,
this implies that u is contained in Y . �

Remark 3.10. Note that if K′ = K + ξ, where ξ ∈ Ω1(Σ), then XK = XK′ ,
so the associated pseudoholomorphic curve equations are identical. Thus, we
would expect that if the hypotheses of Proposition 3.9 hold for K, then they
should also hold for K′. Indeed, Hypothesis (2) holds, as K′ = α ·ρ+β′, where
β′ = β + ξ; and Hypothesis (3) also holds, because K′ − β′ = K − β.

Proposition 3.9 is designed to prove Proposition 1.12 (= Proposition
5.10), but there are other natural situations where Hypotheses (2) and (3) can
be made to hold. The simplest, of course, is if K vanishes in a neighbourhood
of Y . Alternatively, similarly to [2], we may have K = H · γ where H is
independent of z ∈ Σ, H = aρ + b in a neighbourhood of Y , H ≥ b over W ,
and dγ ≥ 0.
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4. Special Hamiltonian

Our goal in this section is to construct the special functions ρR : M → R,
defined for R > 0 sufficiently small, as mentioned Sect. 1.5. Recall their key
properties:

• ρR is continuous on M , and smooth on the complement of the skeleton
L;

• ρR|L = 0 and ρR|D ≈ 1;
• we have Z(ρR) = ρR on X\L, where Z is the Liouville vector field on

(X, θ);
• ρR → ρ0 as R → 0.

Having constructed the functions ρR, we use them to construct the Hamilto-
nians on M which we use in our main arguments; and we compute the action
and index of the orbits of these Hamiltonians. The results are expressed in
Lemmas 4.21 and 4.24.

We use the geometric setup of Sect. 1.1 with slight modifications in light
of Sect. 2. Let us spell this out fully. We have a closed symplectic manifold
(M,ω) which is monotone

2κcM
1 = [ω] ∈ H2(M ; R) with κ > 0,

D = ∪N
i=1Di ⊂ (M,ω) is an orthogonal simple crossings divisor and λ1, . . . ,

λN ∈ Q>0 is a choice of weights. We denote X = M\D and λ ∈ R
N ∼=

H2(M,X; R) is the associated lift of 2cM
1 . We also choose an admissible

system of commuting Hamiltonians {ri : UDi → [0, R0)} near D and a
primitive θ ∈ Ω1(X) of ω|X such that the relative de Rham cohomology class
of (ω, θ) is κλ. We assume that θ is adapted to {ri : UDi → [0, R0)} and that

R0 < κλi, for all i. (4.1)

The last condition can be achieved by shrinking the ascH (as explained in
Sect. 2.2).

In fact, we will consider the (0, R0)-family of such data obtained by
shrinking the ascH to radius R ∈ (0, R0), while keeping all else fixed. The
parameter R will also13 be used as the ‘smoothing parameter’ for ρR. In
Sect. 5, we will want R to be sufficiently small for certain arguments to work.
The approximations in this section (such as ρR|D ≈ 1) will be more and more
accurate as R tends to 0. The dependence on R of our constructions below
should be understood in this light.

4.1. Overview of the construction of ρR

The first step in the construction is to enlarge the sets UDi via the Liouville
flow. This gives us open sets UDmax

i , together with toric moment maps rmax
i :

UDmax
i → [0, κλi), such that ∪iUDmax

i = M\L. For I ⊂ [N ], we define
UDmax

I = ∩i∈IUDmax
i , and we have toric moment maps rmax

I : UDmax
I →∏

i∈I [0, κλi).

13We note that this is for notational convenience only.
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Now for each non-empty I ⊂ [N ], we define open subsets ŮDmax
I ⊂

UDmax
I so that ∪I ŮDmax

I = M\L. We will define ρR|ŮDmax
I

= ρ̃R
I ◦ rmax

I , for
smooth functions

ρ̃R
I :
∏

i∈I

[0, κλi) → R

carefully chosen so that the definition agrees on the overlaps and ρR satisfies
the desired key properties. In fact, ρ̃R

I will be well defined on the larger region

VI := R
I\
∏

i∈I

[κλi,∞).

Let us briefly discuss how we will ensure that ρR thus defined satisfies
Z(ρR) = ρR. We translate this into a property of the functions ρ̃R

I . We denote
the standard projection by prI : R

N → R
I , and set λI := prI(λ). We consider

the (Euler-type) vector field Z̃I on R
I defined by

(
Z̃I

)
r :=

∑

i∈I

(ri − κλi)
∂

∂ri
.

Lemma 4.1. For all x ∈ UDI\D,

(rI)∗Zx =
(
Z̃I

)

rI(x)
.

Proof. Follows from the fact that Z(ri) = ri − κλi, as θ is adapted to the
scH. �

In fact, UDmax
I and rmax

I are constructed so that Lemma 4.1 also holds
if we put max superscripts on the rI and UDI (Lemma 4.4). This gives us

Corollary 4.2. The function ρR := ρ̃R
I ◦rmax

I satisfies Z(ρR) = ρR if and only
if Z̃I(ρ̃R

I ) = ρ̃R
I .

Note that a function f : VI → R satisfies Z̃I(f) = f if and only if it is
linear along the rays emanating from κλI , converging to 0 at that point.

The functions ρ̃R
I will be constructed roughly as follows. We will choose

a hypersurface Ỹ R
I ⊂ VI ∩R

I
≥0 which is a smoothing of Ỹ 0

I := ∂R
I
≥0, satisfying

certain properties (see Lemma 4.8). Then, we will define ρ̃R
I as the function

that is linear along the rays emanating from κλI , converging to zero at that
point, and takes the value 1 on Ỹ R

I .
For the other key properties of ρR let us mention the following slightly

sketchy point to orient the reader. Recall that ρR is supposed to be a smooth-
ing of the continuous function ρ0 : M → R introduced in Sect. 1.3, which
has all of the properties we need (e.g., it satisfies ρ0|L = 0, ρ0|D = 1 and
Z(ρ0) = ρ0), except it is not smooth. We now give an alternative description
of the function ρ0, which is parallel with the construction of ρR. We extend
the function κλi−rmax

i

κλi
: UDmax

i → R to M by defining it to be 0 everywhere
outside of its original domain of definition. Let us momentarily denote this
extension with the same notation. Then we have

ρ0 = max
i

κλi − rmax
i

κλi
.
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In particular, on UDmax
I , we have ρ0 = ρ̃0

I◦rmax
I , where ρ̃0

I(r) = maxi∈I
κλi−ri

κλi
.

Note that ρ̃0
I is equal to 0 at κλI , linear along the rays emanating from this

point, and equal to 1 along Ỹ 0
I . The functions ρ̃R

I mentioned above will be
consistently chosen smoothings of the functions ρ̃0

I .

Remark 4.3. We would like to warn the reader of an abuse of notation we
already committed a couple of times above and will continue with below.
We will use ri both as the function ri : UDi → [0, R) and also the ith

coordinate function on R
I with i ∈ I. We believe that this will not cause

too much confusion, partly because often we will actually need to be using
rmax
i : UDmax

i → [0, κλi) in place of the former anyway.

4.2. Construction of UDmax
I , rmax

I , ŮDmax
I

Note that UDi\Di is closed under the positive Liouville flow as long as the
flow is defined, by Lemma 4.1 and Eq. (4.1). Let us define UDmax

i ⊂ M as
the union of UDi with the set of points in X that enter into UDi under the
positive Liouville flow in finite time. Of course we have UDi ⊂ UDmax

i . Note
that UDmax

i depends on R just as UDi does (unless D = Di is smooth);
nevertheless we suppress R from the notation.

We extend ri to

rmax
i : UDmax

i → R≥0

by first flowing into UDi with the Liouville flow in some time T ≥ 0, applying
ri, and then flowing with Z̃{i} for time −T . This is well defined and smooth
by Lemma 4.1.

Let us also define UDmax
I := ∩i∈IUDmax

i and

rmax
I : UDmax

I → R
I
≥0.

Then the following is true by construction:

Lemma 4.4. Lemma 4.1 holds if we put max superscripts on the rI and UDI .

Now, recall that Ỹ 0
I := ∂R

I
≥0. Define the projection-from-κλI map

PI : VI → Ỹ 0
I ,

which flows a point along Z̃I until it intersects Ỹ 0
I .

Now, let us define UD
1/2
i := {ri ≤ R/2} ⊂ UDi = {ri < R}. Define

UD
1/2,max
i to be the union of UD

1/2
i with the set of points in X that enter

into UD
1/2
i under the positive Liouville flow in finite time.

Definition 4.5. For I ⊂ [N ], define

ŮDmax
I := UDmax

I \
⋃

j /∈I

UD
1/2,max
j .

(Fig. 1 may help the reader visualize these sets.)

Lemma 4.6. The sets
{

ŮDmax
I

}

∅�=I⊂[N ]
form an open cover of M\L.
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Proof. Because UD
1/2,max
i is closed in M\L, and contained in UDmax

i , the

sets UDmax
i and

(
UD

1/2,max
i

)c

form an open cover of M\L for all i. Taking
the intersection of these open covers over all i gives us an open cover by the
sets

⋂

i∈I

UDmax
i ∩

⋂

i/∈I

(
UD

1/2,max
i

)c

= ŮDmax
I

for I ⊂ [N ]. It remains to check that ŮDmax
∅ = ∅. This follows from the fact

that ∪iUD
1/2,max
i = M\L (because every flowline of the Liouville vector field

in X\L ultimately enters ∪iUD
1/2
i ). �

The following is an easy consequence of Lemma 4.1 and the construction
of UDmax

I and UD
1/2,max
i :

Lemma 4.7. If i ∈ I, then

UDmax
I \UD

1/2,max
i = (PI ◦ rmax

I )−1 ({ri > R/2}) .

4.3. Construction of Ỹ R
I

For any R0 > R > 0 (as always in this section), let qR : R → R be a function
satisfying:

• qR(r) = 0 for r ≥ R/2;
• (qR)′(r) < 0 for r < R/2;
• qR(0) = 1.

Consider

QR
I : R

I → R

QR
I (r) :=

∑

i∈I

qR(ri).

Now define

Ỹ R
I := {QR

I = 1}
(see Fig. 1).

Lemma 4.8. The hypersurfaces Ỹ R
I ⊂ R

I have the following properties:

(1) Ỹ R
I is contained in the region VI,≥0 := VI ∩ R

I
≥0.

(2) Every flowline of Z̃I in VI crosses Ỹ R
I transversely at a unique point.

(3) If ν̃R
I : Ỹ R

I → R
I is a normal vector field (pointing towards the com-

ponent containing κλ), then ν̃R
I,i ≥ 0 for all i. (Here ν̃R

I,i is the ith
component of ν̃R

I .)
(4) For any J ⊂ I, Ỹ R

I coincides with Ỹ R
J × R

I\J over the region ∩i∈I\J

{ν̃R
I,i = 0}.

(5) The region {ν̃R
I,i = 0} contains P−1

I ({ri > R/2}).
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Figure 1. The hypersurface Ỹ R
{1,2}. The image of rmax

{1,2} is

shaded. The images of the regions ŮDmax
{1} ∩ ŮDmax

{1,2} and

ŮDmax
{2} ∩ ŮDmax

{1,2} are shaded darker

Proof. Property (1) follows from the fact that QR
I ≥ 1 if any ri ≤ 0 and

QR
I = 0 if all ri ≥ R/2.

To prove property (2), we first observe any flowline of Z̃I in VI starts
at κλI , where QR

I = 0, and ends up outside VI,≥0, where QR
I ≥ 1, so it must

cross Ỹ R
I somewhere. Furthermore, we have that Z̃I(QR

I ) ≥ 0 for any i: we
have

Z̃I(qR(ri)) = (ri − κλi) · (qR)′(ri),

where (qR)′(ri) ≤ 0, and ri − κλi < R/2 − κλi < 0 wherever (qR)′(ri) �= 0.
Finally, we have Z̃I(QR

I ) > 0 along Ỹ R
I , because at any point on Ỹ R

I we have
qR(ri) > 0 and hence (qR)′(ri) < 0 for some i.

Property (3) follows from the fact that ∂QR
I /∂ri ≤ 0 for all i. Property

(4) follows from the fact that (qR)′(ri) = 0 if and only if qR(ri) = 0. Property
(5) follows from the fact that

P−1
I ({ri > R/2}) ∩ Ỹ R

I ⊂ P−1
I ({ri > R/2}) ∩ VI,≥0 ⊂ {ri > R/2},

and (qR)′(ri) = 0 for ri > R/2. �

Remark 4.9. The hypersurface Ỹ R
I has the additional property (which we

will not use, but which may help the reader to visualize the construction)
that it coincides with Ỹ 0

I away from a neighbourhood of the singular locus of
the latter. We can also choose qa to be a convex function, which would imply
that the component of R

I − Ỹ R
I that does not contain 0 is convex (which

would in turn imply that ρ̃R
I is convex). Again, we do not need this property.
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4.4. Construction of ρ̃R
I

By property (2) of Ỹ R
I , there is a unique smooth function ρ̃R

I : VI → R

satisfying

ρ̃R
I |Ỹ R

I
= 1 and Z̃I(ρ̃R

I ) = ρ̃R
I .

Recall that the second condition means that ρ̃R
I is linear along the rays em-

anating from κλI , converging to zero at κλI . In particular, the level sets of
ρ̃R

I are scalings of Ỹ R
I centred at κλI .

Lemma 4.10. If J ⊂ I, then

ρ̃R
I = ρ̃R

J ◦ prIJ over the region
⋂

i∈I\J

P−1
I ({ri > R/2}) ,

where prIJ : R
I → R

J is the natural projection.

Proof. Follows from the fact that Ỹ R
I coincides with Ỹ R

J × R
I\J in the given

region, by properties (4) and (5) of Ỹ R
I . �

4.5. Construction of ρR

Lemma 4.11. For any ∅ �= I, J ⊂ [N ], we have

ρ̃R
I ◦ rmax

I = ρ̃R
J ◦ rmax

J over ŮDmax
I ∩ ŮDmax

J .

Proof. First note that ŮDmax
I ∩ ŮDmax

J ⊂ UDmax
I∪J . We have

ŮDmax
I ∩ ŮDmax

J =
⋂

k/∈I∩J

(PI∪J ◦ rmax
I∪J )−1 ({rk > R/2}) ,

as an immediate consequence of Lemma 4.7. Over this set, we have

ρ̃R
I ◦ rmax

I = ρ̃R
I ◦ prI∪J,I ◦ rmax

I∪J = ρ̃R
I∪J ◦ rmax

I∪J

by Lemma 4.10. The result now follows by applying the same argument to
ρ̃R

J ◦ rmax
J . �

Lemmas 4.6 and 4.11 allow us to define:

Definition 4.12. We define ρR : M → R to be equal to ρ̃R
I ◦ rmax

I over each
ŮDmax

I , and equal to 0 over L.

To check that ρR is continuous along L, we use the fact that Z(ρR) = ρR

on M\L by Corollary 4.2, and the level sets of ρR are compact submanifolds
disjoint from L. It follows that ρR → 0 as we go towards L, so ρR is continuous
along L.

Definition 4.13. Because Z(ρR) = ρR, and ρR|D ≥ 1, the subset KR
σ :=

{ρR ≤ σ} is a Liouville subdomain of X for any σ ∈ (0, 1). The contact
manifold Y R

σ = ∂KR
σ with contact form σ−1ι∗Y R

σ
θ is independent of σ.

For the remainder of this section, we will drop R from the notation: so
we write ρ instead of ρR, etc.
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4.6. The Hamiltonian and its orbits

Let h : R → R be a smooth function which is constant on a neighbourhood of
0. It is clear that the function h◦ρ is smooth on M . We denote its Hamiltonian
flow by Φh◦ρ

t . To describe the orbits of h ◦ ρ, we first compute dρ.

Lemma 4.14. There exist smooth functions νi : M\L → R≥0, supported in
UDmax

i , such that

(dρ)m = −
∑

i

νi(m) · (drmax
i )m .

(Here the LHS denotes the value of the one-form dρ at the point m. The
RHS is well defined, even though drmax

i is only defined over UDmax
i , because

νi vanishes outside UDmax
i .)

Proof. For any i, I, we define the following function on VI :

ν̃I,i :=
{−∂ρ̃I/ri if i ∈ I

0 else

Note that it is non-negative by property (3) of ỸI . We claim that for any i,
and any J ⊂ I, we have

ν̃I,i = ν̃J,i ◦ prIJ over the region
⋂

i∈I\J

P−1
I ({ri > R/2}) .

If i ∈ I, this follows by Lemma 4.10 (there are two cases: i ∈ J and i ∈ I\J).
If i /∈ I, it is obvious as both functions are 0. This allows us to mimic the
construction of ρ: we set νi = ν̃I,i ◦rmax

I over ŮDmax
I . We finally observe that

dρ̃I = −∑i ν̃I,idri, which completes the proof. �
For any m ∈ M − L, we define I(m) := {i : νi(m) �= 0}. We have

m ∈ UDmax
I(m).

We define ν : M\L → R
N to be the smooth function with coordi-

nates (ν1, . . . , νN ). We note that the function h′(ρ) · ν : M\L → R
N extends

smoothly to M , and we denote this extension by νh : M → R
N . Note that

νh is constant along orbits of h ◦ ρ, so we have a well-defined νh(γ) ∈ R
N

associated with such an orbit γ. We can interpret νh
i (γ) as ‘the number of

times γ wraps around Di’ (it is an integer unless γ is contained in Di, see
Lemma 4.16 below). We define

I(γ) := {i : νh
i (γ) �= 0} ⊂ [N ].

Note that if h′(ρ) ≥ 0, then νh(γ) ∈ R
N
≥0.

Corollary 4.15. For any m ∈ M\L, we have Φh◦ρ
1 (m) = νh(m)·m. To explain

the notation, νh(m) ∈ R
I(m) gets projected to (R/Z)I(m), which then acts on

m ∈ UDmax
I(m) by the Hamiltonian torus action.

Lemma 4.16. We have Φh◦ρ
1 (m) = m if and only if for all i, either m ∈ Di

or νh
i (m) ∈ Z.

Proof. For m ∈ L, the claim is obvious, as h ◦ ρ is constant and νh vanishes.
For m /∈ L, the claim follows from Corollary 4.15. �
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4.7. Perturbing to achieve nondegeneracy

Now let us suppose that for some ε > 0, we have that
• h(ρ) is constant for ρ ≤ ε;
• h(ρ) is linear for ρ ≥ 1 − ε;
• On any interval on which h(ρ) is linear, except (−∞, ε], the slope is not

a Reeb period of Y .

Then the orbits of h ◦ ρ come in families parametrized by manifolds with
corners.

The families are indexed by a set

P =
∐

I⊂[N ]

PI ,

where PI consists of families of orbits γ with I(γ) = I. The two cases I =
∅, I �= ∅ must be treated differently. To describe P∅, let us suppose that ε′

is maximal so that h is constant on (−∞, ε′]. Then

P∅ = {0} ∪ {ρ > ε′ : h′(ρ) = 0}.

Associated with p ∈ P∅ is a set of constant orbits Cp, which can be identified
with a subset of M :

C0 = {ρ ≤ ε′}, Cp = {ρ = p} for p ∈ P∅\{0}.

On the other hand, for I �= ∅ we have

PI = {p ∈ im(rmax
I ) : for each i ∈ I we either have

pi = 0 or h′(ρ̃I(p)) · ν̃I,i(p) ∈ Z\{0}} .

Associated with each p ∈ PI , we define a subset of M :

Cp := {m ∈ UDmax
I : rmax

I (m) = p, νk(m) = 0 for k /∈ I}.

For each p ∈ P , Cp is a manifold-with-corners on which the flow of h ◦ ρ is
1-periodic, yielding a manifold-with-corners of orbits which is diffeomorphic
to Cp.

We now perturb h◦ρ, in such a way as to make the orbits nondegenerate.

Lemma 4.17. Given ε > 0, there exists a perturbation H of h ◦ ρ with non-
degenerate orbits, such that for any capped orbit (γ, u) of H, there exists a
capped orbit (γ̄, ū) of h ◦ ρ, such that
(1) |A(γ, u) − A(γ̄, ū)| < ε;
(2) |CZ(γ, u) − CZ(γ̄, ū)| ≤ k(γ̄)/2, where CZ denotes the Conley–Zehnder

index,14 and k(γ̄) := dim ker
(
DΦ1

h◦ρ − id
)

γ̄(0)
.

Proof. Note that the subsets Cp ⊂ M , p ∈ P are closed, disjoint, preserved
by the flow of h ◦ ρ, and the flow is one-periodic on them. We will choose
disjoint neighbourhoods Np of Cp, and perturb in each Np separately, i.e.,
H = h ◦ ρ + δ where δ =

∑
p δp with δp supported in Np.

14The definition is due to Robbin–Salamon in the case of the possibly-degenerate orbit γ.
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We fix a Riemannian metric on M for the duration of this proof. In
particular, whenever we say that a function is ‘Ck-small’, we mean with
respect to this metric.

Note that d(Φh◦ρ
1 (m),m) > η for some η > 0 over the compact set

M\ ∪p Np. By making δ C1-small, we can make Φh◦ρ+δ
t C0-close to Φh◦ρ

t

for all t ∈ [0, 1]; in particular we can ensure that all fixed points of Φh◦ρ+δ
1

lie in some Np. By taking a generic such δ, we can ensure that all orbits
of h ◦ ρ + δ are nondegenerate. By taking Np small, we may ensure that
any orbit γ of h ◦ ρ + δ is C0-close to an orbit γ̄ of h ◦ ρ. When the orbits
are sufficiently C0-close, we can construct a cylinder v : S1 × [0, 1] → M
stretching between γ and γ̄, so that v(·, t) is the unique geodesic from γ(t)
to γ̄(t); concatenating with this cylinder defines a natural bijection between
caps for γ and γ̄. To arrange (1) we must bound the symplectic area of the
cylinder. This is achieved by observing that

∫

S1×[0,1]

v∗ω =
∫

S1×[0,1]

ω

(
∂v

∂s
,
∂v

∂t

)
,

and ∂v/∂s can be made arbitrarily small while ∂v/∂t is bounded.
Now we arrange (2). Recall that CZ(γ̄, ū) is by definition that Conley–

Zehnder index of the path of symplectic matrices Ψt(DΦh◦ρ
t )Ψ−1

t , where Ψt

is a trivialization of γ̄∗TM induced by the cap ū and CZ(γ, u) is the Conley–
Zehnder index of the corresponding path of symplectic matrices. By making
δ C2-small, we can make Φh◦ρ+δ

t C1-close to Φh◦ρ
t for all t ∈ [0, 1];15 this

implies that the aforementioned paths of symplectic matrices can be made
C0-close; the result now follows by [24, Corollary 4.9]. �

Remark 4.18. Our approach to perturbing degenerate orbits follows [24].
With more effort one can prove a more precise result: one can find a Morse–
Bott perturbation H, whose orbits are precisely the orbits of h◦ρ correspond-
ing to critical points of a Morse function defined on the manifold with corners
(and increasing at the boundary), and are nondegenerate. The technique for
doing this goes back to [6, Proposition 2.2], see also [26, Section 3.3] and [21].
These references all deal with closed manifolds of orbits; the case of manifolds
with corners is addressed in [14], in a setting closely related to ours.

4.8. Action computation

We start with a preliminary lemma which will be used in our action computa-
tion below. We state this lemma in a much more general setup than we need
and after the proof make some comments to explain how we will specialize
it.

Lemma 4.19. Let (M,ω) be a symplectic manifold and π : M → R
k be a

smooth map. Let f : R
k → R be a smooth function. Let φt be the Hamiltonian

15This means that given η > 0, we may choose δ so that for all (m, v) ∈ TM with |v| ≤ 1,
we have

d
(
DΦh◦ρ+δ

t (m, v), DΦh◦ρ
t (m, v)

)
< η

for an a priori fixed Riemannian metric on TM .

Reprinted from the journal 1123



M. S. Borman et al. JFPTA

flow of f̃ := π∗f . Consider a map

u : [0, 1] × [0, 1] → M

such that for all (t, s) ∈ [0, 1] × [0, 1],

u(t, s) = φt(u(0, s)).

Moreover, we assume that u([0, 1] × {0}) = {A} and u([0, 1] × {1}) = {B},
where A and B are points in R

k. We orient [0, 1] × [0, 1] is so that ∂t, ∂s is
a positive basis.

Then, the symplectic area of u is equal to f(B) − f(A).

Proof. This is an elementary computation.
∫

[0,1]×[0,1]

u∗ω =
∫ 1

0

∫ 1

0

ω(u∗∂t, u∗∂s)dsdt

=
∫ 1

0

∫ 1

0

ω(Xf̃ , u∗∂s)dsdt

=
∫ 1

0

(∫ 1

0

df(π∗u∗∂s)ds

)
dt

=
∫ 1

0

(∫

{t}×[0,1]

(π ◦ u ◦ ιt)∗df

)
dt

=
∫ 1

0

(f(B) − f(A)) dt

= f(B) − f(A)

as required. �

Note that the assumption on the boundary of u is automatic if π is
involutive; even more specifically, when π is a moment map for a Hamiltonian
torus action. Also note that if f is an affine function, then f(B) − f(A) is
equal to the linear part of f evaluated at the vector

−−→
AB considered as an

element of R
k. If π is a moment map for a Hamiltonian (R/Z)k-action, and

f is integral affine, then u as in the statement of the lemma satisfies

u(0, s) = u(1, s), for all s ∈ [0, 1].

We will only use this special case of the lemma below, where u can also be
thought of as a map R/Z×[0, 1] → M . As a final remark that will be relevant,
note that the blow down map

R/Z × [0, 1] → D ⊂ C, where (t, s) �→ se2πit

is orientation reversing, where we use the standard orientation of C.
Let us now get back to the action computation that we wanted to un-

dertake, continuing the notation used in the previous section.
There is a canonical cap uout associated with any orbit γ of h◦ρ, which

we now describe. If I(γ) = ∅, then γ is a constant orbit. We define uout to
be the constant cap in this case. Otherwise, γ is contained in UDmax

I(γ). If γ

is contained in UDI(γ) then it is contained in an admissible standard chart,
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and we define uout to be the cap contained in that chart. Note that uout is
well-defined by Lemma 2.14.

Note that if γ is an orbit on D, it is contained in UDI(γ). For an orbit
γ not contained in D, we define uout to be the union of the cylinder swept
by γ along the Liouville flow taking it into UDI(γ), with the canonical cap
in an admissible chart.

At this point the reader might also benefit from looking at Remark 2.17,
which gives a simpler version of admissibility and suffices for the purposes of
this paper. It works because of the following Lemma.

Lemma 4.20. The action of the 1-periodic orbit γ of h ◦ ρ with respect to the
outer cap is given by

A(γ, uout) = h(ρ(γ)) +
∑

i

νh
i (γ) · rmax

i (γ).

Proof. The action is

A(γ, uout) =
∫

S1
h(ρ(γ(t)) +

∫

uout

ω.

The first term is h(ρ(γ)), because h(ρ(γ(t)) = h(ρ(γ)) is constant along γ.
We claim that the second term is

ω(uout) =
∑

i

νh
i (γ) · rmax

i (γ).

Consider the map

f : R
I → R

f(r) =
∑

i∈I

−νh
i (γ) · ri.

Notice that γ is a one periodic orbit of the Hamiltonian vector field of f̃ :=
f ◦ rmax

I (see Lemma 4.14).
We break uout into two pieces: the piece uout,1 lying in an admissible

chart, and the piece uout,2 = ∪t∈[0,T ]ϕt(γ) swept out by the Liouville flow.
Assume that the boundary of uout,1 is contained in r−1

I ((ai)i∈I).
Using the symplectic embedding of the admissible chart into C

I×C
n−|I|,

we see that
∫

uout,1
ω is equal to the symplectic area of an arbitrary cap of a

1-periodic orbit of Xf̃ contained inside the fiber above (ai)i∈I of the moment
map C

I×C
n−|I| → R

I . Choosing the cap obtained by radially scaling the loop
to the origin inside the slice C

I × {c} that it is contained in, we immediately
obtain (e.g. using Lemma 4.19):

∫

uout,1

ω = −
(
∑

i∈I

−νh
i (γ) · ai

)
.

For the area of the second piece, we use Lemma 4.19 for the map rmax
I ,

function f and map uout,2 to obtain:
∫

uout,2

ω =
∑

i∈I

νh
i (γ) · (rmax

i (γ) − ai).
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Note that here we used the rmax
I -relatedness of the Liouville vector field and

the Euler vector field (i.e., Lemma 4.4).
Putting the computations together, we get the desired result. �

We define the fractional inner cap uin := uout − νh(γ) ·λ as in Sect. 3.3.
Strictly speaking we do not need the following result for our argument, but
we thought it was informative. Note that it is a slight generalization of the
well-known formula in [45, Section 1.2], which gives the result for SH-type
orbits.

Lemma 4.21. The action of the orbit γ of h ◦ ρ with respect to the inner cap
is given by

A(γ, uin) = h(ρ(γ)) − h′(ρ(γ)) · ρ(γ).

Proof. By Lemma 4.20, setting ρ = ρ(γ), we have

A(γ, uin) = h(ρ) +
∑

i

νh
i (γ) · rmax

i (γ) − νh(γ) · λ

= h(ρ) − h′(ρ)
∑

i

νi(γ) · (ri(γ) − λi)

= h(ρ) − h′(ρ) · Z̃I (ρ̃I)rmax
I (γ)

= h(ρ) − h′(ρ) · ρ,

where the last step follows as Z̃I(ρ̃I) = ρ̃I and ρ̃I ◦ rmax
I = ρ. �

4.9. Index computation

Lemma 4.22. Let γ be an orbit of h ◦ ρ, with J := {j ∈ I(γ) : rmax
j (γ) �= 0}.

Define the |J | × |J | matrix

Hessγ :=
(

∂2(h ◦ ρ̃I)
∂ri∂rj

(rI(γ))
)

i,j∈J

.

Then the Conley–Zehnder index of the orbit γ of h ◦ ρ with respect to the
outer cap is given by

CZ(γ, uout) = 2
∑

i

⌈
νh

i (γ)
⌉

+
1
2
sign (Hessγ) .

Proof. For constant orbits the result is easy, so we assume that γ is noncon-
stant. We may assume that γ and uout lie in an admissible chart C

I(γ) ×
C

n−|I(γ)|, as the index does not change as we flow along the Liouville flow.
The flow of h◦ρ in the admissible chart decomposes as a product of the flow

ϕt(r, θ) = (r, θ + 2πtν̃h(r))

on C
I(γ) (written in action-angle coordinates) with the trivial flow on C

n−|I(γ)|.
Thus CZ(γ, uout) = CZ(Dϕt). We have

CZ(Dϕt) = CZ

(
diag

(
e2πit·νh(z)

)
·
(

1 + 2πit ·
[

∂νh
j (z)
∂zi

]))

= CZ
(
diag

(
e2πit·νh(z)

))
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+ CZ

(
diag

(
e2πi·νh(z)

)
·
(

1 + 2πit ·
[

∂νh
j (z)
∂zi

]))

by a standard argument (c.f. [26, Section 3.3]). The first term is equal to
2
∑

i

⌈
νh

i (γ)
⌉

(see [26, Section 3.2]). For the second, we decompose C
I(γ) =

C
J ⊕C

I(γ)\J . Note that ∂νh
j /∂zi = 0 for i /∈ J , because ri has vanishing deriv-

ative along {zi = 0}, where our orbit is contained. Also note that e2πi·νh
i (z) =

1 for i ∈ J . Putting these together, one finds that the second term is equal
to the Conley–Zehnder index of the path 1J + 2πit · [∂νh

j /∂zi]i,j∈J . Writing
this in the basis given by action-angle coordinates (i.e., (ri∂/∂ri, ∂/∂θi)i∈J),
we see that it takes the form of a symplectic shear, whose Conley–Zehnder
index is equal to

CZ
(

1 −2πt · Hessγ

0 1

)
=

1
2
sign (Hessγ)

by the ‘normalization’ property of the Conley–Zehnder index, see [30, Theo-
rem 4.1].16 �
Lemma 4.23. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17. Then we have

i(γ, uout) = 2
∑

i

⌈
νh

i (γ̄)
⌉

+ δ(γ),

where 0 ≤ δ(γ) ≤ 2n.

Proof. We apply Lemmas 4.17 and 4.22. Continuing the notation from the
proof of the latter, we have

ker (Dϕ1 − id) = C
n−|I(γ)| ⊕ C

I(γ)\J ⊕ 〈∂/∂θj〉j∈J ⊕ ker (Hessγ̄) .

Recall that k(γ̄) is, by definition, the dimension of this space. Thus we have

k(γ̄) + |sign (Hessγ̄)| ≤ 2n.

Combining the stated Lemmas, we have
∣∣∣∣∣CZ(γ, uout) − 2

∑

i

⌈
νh

i (γ̄)
⌉− 1

2
sign (Hessγ̄)

∣∣∣∣∣ ≤
k(γ̄)

2

⇒
∣∣∣∣∣CZ(γ, uout) − 2

∑

i

⌈
νh

i (γ̄)
⌉
∣∣∣∣∣ ≤

2n

2
= n.

Recalling that i(γ, uout) := n + CZ(γ, uout), the result is immediate. �
Lemma 4.24. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17, and suppose that h′(ρ) ≥ 0 everywhere, so that νh

i (γ̄) ≥ 0
for all i. Then we have

i(γ, uin) ≥
∑

i

(2 − λi) · νh
i (γ̄).

In particular, when Hypothesis A is satisfied, we have i(γ, uin) ≥ 0.

16The signature of a symmetric matrix is the number of positive eigenvalues minus the
number of negative eigenvalues.
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Proof. By Lemma 4.23, we have

i(γ, uin) ≥
∑

i

2
⌈
νh

i (γ̄)
⌉− λi · νh

i (γ̄)

≥
∑

i

(2 − λi) · νh
i (γ̄)

as required. �
Lemma 4.25. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17. Then we have

imix(γ) =
∑

i

(2 − κ−1rmax
i (γ̄)) · νh

i (γ̄) − κ−1h(ρ(γ̄)) + D(γ),

where D(γ) is bounded: in particular, the lower bound is D(γ) ≥ −κ−1ε(γ),
where ε(γ) is as in Lemma 4.17.

Proof. The equality follows using the outer cap to compute the mixed index,
via Lemmas 4.17, 4.20, and 4.23. �

5. Proofs

In this section, we prove Theorems B, C, and D. We will assume through-
out that the divisor D is orthogonal, although that is not a hypothesis of
Theorems B and C; the general results follow using Remark 2.2.

Because D is orthogonal (and in particular admits an admissible system
of commuting Hamiltonians), we can make all of the constructions from the
previous section, whose notation and assumptions (e.g. Equation 4.1) we
continue. Right before Sect. 4.6 we had started omitting the dependence on
R ∈ (0, R0) from the notation for brevity, now we bring it back.

5.1. Properties of ρ̃R
I

When we talk about a property (n) of Ỹ R
I below, we mean the properties

from Lemma 4.8.

Lemma 5.1. There is a continuous function ε1 : [0, , R0) → R≥0, with ε1(0) =
0, such that for all R ∈ (0, R0), all I, and all r ∈ Ỹ 0

I , we have

1 ≤ ρ̃R
I (r) ≤ 1 + ε1(R).

Proof. Note that Ỹ R
I is sandwiched between Ỹ 0

I and (R/2, . . . , R/2) + Ỹ 0
I ;

hence, it is also sandwiched between Ỹ 0
I and α · κλ + Ỹ 0

I , where α = R/
(2κ min λi). It follows that

1 ≤ ρ̃R
I (r) ≤ 1

1 − α

for r ∈ Ỹ 0
I , which gives the desired result. �

Lemma 5.2. There is a continuous function ε2 : [0, R0) → R≥0, with ε2(0) =
0, such that for all R ∈ (0, R0), all I, and all r ∈ Ỹ 0

I , we have

1 ≤
∑

i

κλi · ν̃R
I,i(r) ≤ 1 + ε2(R). (5.1)
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Proof. Because Z̃I

(
ρ̃R

I

)
= ρ̃R

I by construction, we have
∑

i

(κλi − ri) · ν̃R
I,i(r) = ρ̃R

I (r). (5.2)

Thus Lemma 5.1 gives

1 ≤ ρ̃R
I (r) =

∑

i

(κλi − ri) · ν̃R
I,i(r) ≤

∑

i

κλi · ν̃R
I,i(r),

where the last step uses the fact that ν̃R
I,i(r) ≥ 0 by property (3) of Ỹ R

I , and
ri ≥ 0 for all i.

For the right-hand bound, observe that ν̃R
I,i(r) = 0 whenever ri > R/2,

by property (5) of Ỹ R
I ; as ν̃R

I,i ≥ 0 this implies that
∑

i

(κλi − R/2) · ν̃R
I,i(r) ≤

∑

i

(κλi − ri) · ν̃R
I,i(r) = ρ̃R

I (r) ≤ 1 + ε1(R).

Thus we have
∑

i

κλi · ν̃R
I,i(r) ≤

(
max

i

κλi

κλi − R/2

)
· (1 + ε1(R))

where the RHS converges to 1 as R → 0, as required. �

The following Lemma will be used in the proof of Theorem B:

Lemma 5.3. There exists a continuous function σB
crit : [0, R0) → R≥0, with

σB
crit(0) = σcrit (recall Definition 1.9), such that for all R ∈ (0, R0), all I, and

all r ∈ Ỹ 0
I , we have
∑

i

(
2 − κ−1ri

) · ν̃R
I,i(r) − κ−1

(
ρ̃R

I (r) − σB
crit(R)

)
> 0.

Proof. Note that by property (4) of Ỹ R
I , if ν̃R

I,i(r) �= 0 and r ∈ Ỹ 0
I then

ri ≤ R/2. Combining this observation with Lemma 5.1, we have
∑

i

(
2 − κ−1ri

) · ν̃R
I,i(r) − κ−1ρ̃R

I (r) ≥
∑

i

(
2 − R

2κ

)
· ν̃R

I,i(r) − κ−1 · (1 + ε1(R)).

Dividing the left-hand bound in (5.1) by maxi κλi immediately gives

∑

i

(
2 − R

2κ

)
· ν̃R

I,i(r) ≥ 2 − R
2κ

maxi κλi
.

Thus, we may take

σ̃B
crit(R) = 1 + ε1(R) − 2 − R

2κ

maxi λi
, σB

crit(R) = max
(
0, σ̃B

crit(R)
)
,

which clearly has the desired properties. �

The following Lemma will be used in the proof of Theorem D:
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Lemma 5.4. There exists a continuous function σD
crit : [0, R0) → R≥0, with

σD
crit(0) = σcrit, and a positive function η : (0, R0) → R>0, such that for all

R ∈ (0, R0), all I, all i ∈ I, and all r ∈ VI satisfying ρ̃R
I (r) > σD

crit(R) and
ν̃R

I,i(r) �= 0, we have

2 − κ−1ri ≥ η(R) · (ρ̃R
I (r) − σD

crit(R)
)
.

Proof. Suppose that the flowline of Z̃I passing through r exits Ỹ 0
I at r′.

Because both ρ̃R
I and ri − κλi vary linearly along flowlines of Z̃I , we have

ρ̃R
I (r)

ρ̃R
I (r′)

=
ri − κλi

r′
i − κλi

,

and, therefore,

2 − κ−1ri = 2 − λi +
ρ̃R

I (r)
ρ̃R

I (r′)
·
(

λi − r′
i

κ

)
.

Now by property (5) of Ỹ I
R, if ν̃R

I,i(r) �= 0 then r lies in the region P−1
I ({ri ≤

R/2}), and therefore r′
i ≤ R/2. We also have ρ̃R

I (r′) ≤ 1 + ε1(R) by Lemma
5.1. It follows that

2 − κ−1ri ≥ 2 − λi +
ρ̃R

I (r) · (λi − R
2κ

)

1 + ε1(R)
.

Now let us set

σ̃D
crit(R) = max

i

(λi − 2) · (1 + ε1(R))
λi − R

2κ

;

then we find that the functions

σD
crit(R) = max

(
0, σ̃D

crit(R)
)
,

η(R) = min
i

λi − R
2κ

1 + ε1(R)

have the desired properties. �

5.2. Proof of Theorem B

Let R ∈ (0, R0) be sufficiently small that σB
crit(R) < 1. Let σ = σB

crit(R)+2δ <
1, for some δ > 0. The proof will rely on a special choice of acceleration data
for KR

σ (see Definition 4.13) which we now describe. Fix 0 < �1 < �2 < · · ·
such that the Reeb flow on Y R

σ = ∂KR
σ has no �n-periodic orbits for all n, and

�n → ∞ as n → ∞. (Here we take the contact form from Definition 4.13.)
We now choose smooth functions hn : R → R approximating max

(0, �n(ρ−σ)). We require that they each satisfy the conditions from Sect. 4.7,
and furthermore,

• h1 < h2 < · · · (pointwise);
• h′

n(ρ) ≥ 0;
• hn(ρ) = 2δn for ρ ≤ σ/2;
• hn(ρ) = �n(ρ − σ) + δn for ρ ≥ σ,
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Figure 2. The function hn

where δn < 0 converges monotonically to 0 as n → ∞, and furthermore
�nσ−δn < �n+1σ−δn+1 for all n (the latter condition will be used in the proof
of Proposition 5.10). See Fig. 2. Note that hn converges monotonically to 0 on
(−∞, σ] and +∞ outside it. We extend (hn)n∈Z≥1 to (hτ )τ∈[1,∞) by convex
interpolation: hτ = (n+1−τ)hn+(τ−n)hn+1 for τ ∈ [n, n+1]. We choose our
acceleration data (Hτ , Jτ ) for KR

σ ⊂ M , where Hn is a perturbation of hn◦ρR

as in Lemma 4.17, where the parameter ε in the Lemma is chosen smaller
than �nδ, and Hτ is a corresponding perturbation of hτ ◦ ρR. We further
require that, over a ‘neck region’ {σ ≤ ρR ≤ σ + ε} (where σ < σ + ε < 1),
we have Hτ = hτ ◦ ρR and Jτ is of contact type.

We denote by C = C(Hτ , Jτ ) the corresponding Floer 1-ray

CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · · ,

so that SC∗
M (KR

σ ; Λ) = t̂el(C). By restricting (Hτ , Jτ ) to KR
σ , we obtain

acceleration data appropriate for defining the symplectic cochain complex of
KR

σ . We denote by CSH := C(Hτ |KR
σ
, Jτ |KR

σ
) the corresponding Floer 1-ray

CF ∗(KR
σ ,H1|KR

σ
; k) → CF ∗(KR

σ ,H2|KR
σ

; k) → · · · ,

so that SC∗(KR
σ ; k) = tel(CSH).

By construction, the orbits of Hn are either contained in KR
σ (in which

case we say they are of SH-type), or contained in M\KR
σ (in which case we

say they are of D-type). We have a corresponding direct sum decomposition
of Λ-modules:

tel(C) = tel(C)SH ⊕ tel(C)D.

Let us denote SCΛ := (SC∗(KR
σ ; k)⊗k Λ, d⊗ idΛ). We have the isomor-

phism

ι : SCΛ → tel(C)SH ,

ι(γ ⊗ ea) = (γ, a · uin).

By Lemma 3.8, this map respects action and index.

Lemma 5.5. If γ is a D-type orbit of Hn, then imix(γ) ≥ κ−1δ�n.
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Proof. By Lemma 4.25, we have

imix(γ) ≥
∑

i

(
2 − κ−1rmax

i (γ̄)
) · νh

i (γ̄) − κ−1
(
h
(
ρR(γ̄)

)
+ ε(γ)

)
.

Note that as γ is a D-type orbit, we have ρR(γ̄) ≥ 1 by Lemma 5.1, and
therefore,

h
(
ρR(γ̄)

) ≤ �n

(
ρR(γ̄) − σ

)
and

h′ (ρR(γ̄)
)

= �n.

Thus, we have νh
i (γ̄) = �n · ν̃R

I,i(r
max
I (γ̄)). Setting r = rmax

I (γ̄) (which lies in
Ỹ 0

I because γ̄ is a D-type orbit), and recalling that we chose ε(γ) < �nδ, we
obtain

imix(γ) ≥ �n ·
∑

i

(2 − κ−1ri) · ν̃R
I,i(r) − κ−1�n(ρ̃R

I (r) − σ) − κ−1�nδ

≥ κ−1�n · (σ − σB
crit(R) − δ

)
= κ−1δ�n,

where the second inequality follows from Lemma 5.3. �
We now consider the filtration on tel(C) associated with the filtration

map

F ′(γ, u) :=
A(γ, u) + δ�n

κ
,

if γ is a 1-periodic orbit of Hn. It is clear that this is a filtration map, because
the differential increases action, and it also increases n and hence �n by the
definition of the telescope complex. We define the corresponding filtration on
SCΛ, associated with the filtration map

F(γ ⊗ ea) :=
A(γ) + κa + δ�n

κ
.

(Note that because ι respects index and action, we have F ′ ◦ ι = F .) For any
cochain complex C∗, we define the quotient complex σ<pC

∗ := ⊕∗<pC
∗ with

the induced differential.

Lemma 5.6. For any p, ι induces an isomorphism of graded Q≥0Λ-modules

ι : σ<pF≥pSCΛ
∼−→ σ<pF ′

≥ptel(C).

Proof. It suffices to show that σ<pF ′
≥ptel(C) does not include any D-type

orbits. Indeed, for any generator (γ, u) of this complex, we have

i(γ, u) < p ≤ A(γ, u) + δ�n

κ
,

which means γ cannot be of D-type, by Lemma 5.5. �
We now recall that SCΛ comes equipped with the Q-filtration, induced

by the Q-filtration on Λ (c.f. Eq. (1.1)).

Lemma 5.7. For any p, the inclusions of the following subcomplexes are quasi-
isomorphisms:

F ′
≥ptel(C) ⊂ tel(C), and F≥pQ≥qSCΛ ⊂ Q≥qSCΛ

(the latter for any q ∈ Z ∪ {−∞}).
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Proof. Observe that F ′
≥ptel(C) is the telescope complex of the sub-1-ray of

Floer groups

A≥κp−δ�n
CF ∗(M,Hn; Λ) ⊂ CF ∗(M,Hn; Λ).

As the action filtration on each CF ∗(M,Hn; Λ) is exhaustive, continuation
maps increase action, and κp − δ�n → −∞ as n → ∞, the result follows by
Lemma A.1. The argument for F≥p (tel(CSH) ⊗ Q≥qΛ) ⊂ tel(CSH) ⊗ Q≥qΛ
is identical. �

Lemma 5.8. For any p, we have

Hj
(
σ<pF ′

≥ptel(C)
) ∼= QHj(M ; Λ) for j < p − 1.

Proof. Applying Lemma 5.7 and the PSS isomorphism, we have

Hj(F≥ptel(C)) = Hj(tel(C)) = lim−→
n

HF j(M,Hn; Λ)

= lim−→
n

QHj(M ; Λ) = QHj(M ; Λ).

The result now follows as the degree truncation σ<p does not affect cohomol-
ogy in degrees < p − 1. �

We now denote
(
SC

(p)
Λ , d(p)

)
:= σ<pF≥p(SCΛ, d ⊗ idΛ).

For any p > q, we have a natural chain map SC
(p)
Λ → SC

(q)
Λ , induced by

the inclusion F≥p ⊂ F≥q and the projection σ<p � σ<q. In particular, we
obtain an inverse system SC∗ of graded filtered Q≥0Λ-modules. We consider
the ‘homotopy inverse limit’

S̃CΛ := tel← (SC∗),

(see Sect. A.4 for the notation). We denote the differential by d̃, and equip it
with the filtration Q̃ induced by Q≥• (see Remark A.8).

We now make precise the notion of ‘filtered quasi-isomorphism’ appear-
ing in Theorem B (1). We consider the category of Q-graded filtered Q≥0Λ-
cochain complexes (M,d,Q≥•), where multiplication by ea increases the de-
gree and the filtration level by a. Morphisms are Q≥0Λ-linear filtered chain
maps. A morphism in this category is called a filtered quasi-isomorphism if
it induces a quasi-isomorphism on each associated graded. Objects M and
N are said to be filtered quasi-isomorphic if there exists a zigzag of filtered
quasi-isomorphisms between them. This implies, in particular, that we have
isomorphisms Hj(GrQ

k M) ∼= Hj(GrQ
k N) for all j, k.

Lemma 5.9. The filtered complex (S̃CΛ, d̃, Q̃≥•) is filtered quasi-isomorphic
to (SCΛ, d ⊗ idΛ,Q≥•) in the above sense.
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Proof. We have maps of inverse systems

SCΛ SCΛ
id

�� SCΛ
id

�� . . .��

F≥0SCΛ

��

��

F≥1SCΛ

��

��

�� F≥2SCΛ

��

��

�� . . .��

σ<0F≥0SCΛ σ<1F≥1SCΛ
�� σ<2F≥2SCΛ

�� . . . ,��

both of which induce a filtered quasi-isomorphism on the corresponding in-
verse telescope complex. For the upper map, this follows from Lemma 5.7.
The lower map requires a little more argument. We first observe that Hj

(Grkσ<pF≥pSCΛ) ∼= Hj(GrkSCΛ) for j < p−1. It follows easily that for each
j, the inverse system Hj(Grkσ<pF≥pSCΛ) satisfies the Mittag-Leffler condi-
tion, so its lim←−

1 vanishes. Therefore, the cohomology of the kth-associated
graded of the inverse telescope of the bottom inverse system is

lim←−Hj(Grkσ<pF≥pSCΛ) = Hj(GrkSCΛ),

by Lemma A.7. This completes the argument.
Finally, we observe that there is a filtered quasi-isomorphism from the

inverse telescope of the top inverse system to SCΛ. Indeed, we take the com-
position

tel←

(
SCΛ

id←− SCΛ
id←− . . .

)
→
∏

p∈N

SCΛ → SCΛ

where the first map is the natural one (i.e., the one appearing in the proof
of Lemma A.7), and the second map is given by projecting to any of the
identical factors. Because this inverse system clearly satisfies the Mittag-
Leffler condition, the proof of Lemma A.7 shows that the induced map on
cohomology is the obvious isomorphism

lim←−
p

H∗(SCΛ) ∼= H∗(SCΛ).

Therefore, the chain map is a quasi-isomorphism, and applying the same
argument to the associated graded pieces shows that it is a filtered quasi-
isomorphism. This completes the necessary zig-zag of filtered quasi-isom-
orphisms. �

Proposition 5.10. (= Proposition 1.12) For any Floer solution u that con-
tributes to C(Hτ , Jτ ) with both ends asymptotic to SH-type orbits, we have
u · λ ≥ 0. In case of equality, u is contained in KR

σ .

Proof. Let u : R × S1 → M be a pseudoholomorphic curve contributing to
C(Hτ , Jτ ), with both ends asymptotic to SH-type orbits. We choose ε > 0
so that u is transverse to ∂KR

σ+ε, and in a neighbourhood of ∂KR
σ+ε we have

that Hτ = hτ ◦ ρR and Jτ is of contact type. We will apply Proposition 3.9
to the part of u that lies in {ρR ≥ σ + ε}, to show that u is contained in
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KR
σ+ε; applying the same argument to a sequence of such ε converging to 0

will show that u ⊂ KR
σ as required.

We check the hypotheses of Proposition 3.9 one by one. First recall that
we chose Jτ to be of contact type along ∂KR

σ+ε, so hypothesis (1) is satisfied.
Now we check hypothesis (2). We have Hτ = hτ ◦ρR in a neighbourhood

of ∂KR
σ+ε. Thus, K =

(
hψ(s) ◦ ρR

)
dt in this region, where ψ(s) is either

constant in the case of a Floer differential, or ψ(s) = n for s � 0 and
ψ(s) = n + 1 for s � 0, in the case of a continuation map. Now observe
that hn(ρ) is a linear function of ρ for ρ ≥ σ, and hτ is obtained by linear
interpolation from the hn, hence is also linear in ρ; this establishes hypothesis
(2).

Finally, we check hypothesis (3). We have K = Hψ(s)(t)dt, so dΣK =
∂sHψ(s)(t)dt ≥ 0 as Hτ is increasing. Furthermore, we have {K,K}(∂s, ∂t) =
{0,H(s, t)} = 0. It remains to address the term dβ appearing in the hypothe-
sis. Observe that hn(ρ) = �n(ρ−σ)+δn = αnρ+βn, where we have arranged
that the ‘constant terms’ βn = −�nσ + δn are decreasing. We can extend
βn to βτ by linear interpolation, just as we did for hτ ; this will clearly be
a decreasing function of τ . We then have β = βψ(s)dt, and it is clear that
dβ ≤ 0. Putting the three terms together,

dΣK − {K,K} − dβ ≥ 0,

verifying hypothesis (3). The result now follows by Proposition 3.9. �
Proof of Theorem B. Item (1) holds by Lemma 5.9. For item (2), we observe
that SC

(p)
Λ comes equipped with another differential, namely the pullback

of the differential on σ<pF ′
≥ptel(C) under the isomorphism of Lemma 5.6,

which we denote by ∂(p). The difference d(p) − ∂(p) does not decrease the Q-
filtration, by Proposition 5.10. Any Floer solution u contributing to the part
of ∂(p) which preserves the Q-filtration must satisfy u · λ = 0, and hence be
contained in KR

σ by Proposition 5.10. These are precisely the Floer solutions
contributing to d(p), so in fact d(p) − ∂(p) strictly increases the Q-filtration.
The maps in the inverse system are clearly chain maps for the differentials
∂(p), so S̃CΛ admits a corresponding differential, which we denote by ∂; and
d̃ − ∂ strictly increases the Q̃-filtration, by the corresponding property of
d(p) − ∂(p).

For item (3), we observe that Lemma 5.8 implies that the inverse sys-
tem Hj(σ<pF ′

≥ptel(C)) has the Mittag–Leffler property, and in particular has
lim←−

1 = 0. Therefore we have

Hj(S̃CΛ, ∂) ∼= lim←−Hj(σ<pF ′
≥ptel(C)) by Lemma A.7

∼= QHj(M ; Λ) by Lemma 5.8 again.

�
5.3. Proof of Theorem C

To fit with the standard terminology for spectral sequences, in which fil-
trations are assumed to be increasing (see [46, Chapter 5]), we turn the
decreasing filtrations Q̃≥• into increasing ones by setting Q̄j = Q̃≥−j .
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Lemma 5.11. Suppose that Hypothesis A holds. Then the Q̄-filtration on S̃CΛ

is bounded below. (Recall that this means that for each i, there exists q(i) such

that Q̄q(i)S̃C
i

Λ = 0.)

Proof. If i(γ ⊗ ea) = i, then

a0Q̃(γ ⊗ ea) = a = i(γ ⊗ ea) − i(γ) ≤ i

by Lemma 4.24. Thus we may take q(i) = �−i/a0� − 1. �

Proof of Theorem C. We start by establishing that the inclusion
(
⋃

q

Q̄qS̃CΛ, ∂

)
⊂
(
S̃CΛ, ∂

)

is a quasi-isomorphism. This follows as

H∗
(
⋃

q

Q̄qS̃CΛ, ∂

)

= lim−→
q

H∗
(
Q̄qS̃CΛ, ∂

)
as direct limit commutes with cohomology

= H∗
(
S̃CΛ, ∂

)
by Lemma 5.13 below.

The spectral sequences induced by these filtered complexes are iden-
tical (this follows immediately from the construction). The Q̄-filtration on⋃

q Q̄qS̃CΛ is exhaustive by construction, and bounded below by Lemma 5.11.

Therefore, the corresponding spectral sequence converges to H∗
(
S̃CΛ, ∂

)
by

[46, Theorem 5.5.1]; and this is isomorphic to QH∗(M ; Λ) by Theorem B (3).

Now we identify the E1 page. By definition we have Ej,k
0 = GrQ̄

j S̃C
j+k

Λ ,
and dj,k

0 is the differential induced by ∂. The latter is equal to the differen-
tial induced on the associated graded by d̃, by Theorem B (2) (combined
with the fact that any cylinder u satisfying u · λ > 0 satisfies u · λ ≥
a0). Therefore,

(
Ej,k

0 , dj,k
0

)
=
(
GrQ̄

j S̃C
j+k

Λ , d̃
)
, which is quasi-isomorphic

to
(
GrQ̄

j SCj+k
Λ , d ⊗ idΛ

)
by Lemma 5.9. Observe that GrQ̄

j Λ is spanned

by q−j , and hence is concentrated in degree −ja0. It follows that Ej,k
1 =

SHj(1+a0)+k(KR
σ ; k) ⊗k k · q−j as claimed. �

Lemma 5.12. The map

Hj
(
Q≥qSC

(p)
Λ , ∂(p)

)
→ Hj

(
Q≥qSC

(r)
Λ , ∂(r)

)

is an isomorphism, for all p ≥ r > j + 2.

Proof. Let (C, ∂) be the cone of the chain map
(
Q≥qSC

(p)
Λ , ∂(p)

)
→

(
Q≥qSC

(r)
Λ , ∂(r)

)
. The Q-filtration on C is bounded below by Lemma 5.11,

and it is clearly bounded above by q. Therefore, the corresponding spectral
sequence converges to the cohomology of (C, ∂) by [46, Theorem 5.5.1].
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The E1 page is the cohomology of the cone of the chain map(
Q≥qSC

(p)
Λ , d(p)

)
→
(
Q≥qSC

(r)
Λ , d(r)

)
. This cone coincides with the cone

of the chain map Q≥qF≥pSCΛ → Q≥qF≥rSCΛ in degrees < r−1. The latter
cone is acyclic, by Lemma 5.7. Therefore, Ej,k

1 = 0 for j +k < r − 2. Because
the spectral sequence converges, this means Hj(C, ∂) = 0 for j < r − 2. This
implies the result. �

Lemma 5.13. The natural map

lim−→
q

H∗
(
Q̄qS̃CΛ, ∂

)
→ H∗

(
S̃CΛ, ∂

)

is an isomorphism.

Proof. Note that
(
Q≥qS̃CΛ, ∂

)
= tel←

(
Q≥qSC(p), ∂(p)

)
.

The inverse system Hj(Q≥qSC(p), ∂(p)) has the Mittag-Leffler property for
all j, q, by Lemma 5.12, so

Hj
(
Q≥qS̃CΛ, ∂

) ∼= lim←−
p

Hj
(
Q≥qSC(p), ∂(p)

)
by Lemma A.7

∼= Hj
(
Q≥qSC(p), ∂(p)

)
for any p > j

+ 2, by Lemma 5.12.

A similar argument, using Lemma 5.8, shows that

Hj
(
S̃CΛ, ∂

)
= Hj

(
SC

(p)
Λ , ∂(p)

)
for any p > j + 1.

Therefore, we have an identification

lim−→Hj
(
Q̄qS̃CΛ, ∂

)
�� Hj

(
S̃CΛ, ∂

)

lim−→Hj
(
Q≥qSC

(p)
Λ , ∂(p)

)
�� Hj

(
SC

(p)
Λ , ∂(p)

)
,

for any p > j+2. The bottom map is an isomorphism, because the Q-filtration
on SC(p) is exhaustive. �

5.4. Proof of Theorem D

The key to the proof is the following:

Proposition 5.14. Let σD
crit(R) < σ1 < σ2 < 1. Then there exists an isomor-

phism

SH∗
M

(
M\KR

σ1
; Λ
) ∼= SH∗

M

(
M\KR

σ2
; Λ
)

.
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Figure 3. The functions hn and h̃n

The proof relies on the Contact Fukaya Trick of [38, Section 4], with
which we assume some familiarity.

We first describe a special choice of acceleration data for M\KR
σ2

⊂ M .
Let ε > 0 be such that 0 < σ2 − 2ε, σ2 + 3ε < 1, and (σ1/σ2) · (σ2 − 2ε) >
σD

crit(R). Let 0 < �1 < �2 < · · · and δ1 < δ2 < · · · < 0 be reals such that the
Reeb flow on Y R

σ2
= ∂KR

σ2
has no �n-periodic orbits or δn-periodic orbits for

all n, and �n → ∞, δn → 0 as n → ∞.
We choose smooth functions hn : R → R satisfying:

• h1 < h2 < · · · (pointwise);
• h′

n(ρ) ≤ 0;
• hn(ρ) = �nε for ρ ≤ σ2 − 2ε;
• hn(ρ) = −�n(ρ − σ2) + δn for σ2 − ε ≤ ρ ≤ σ2;
• hn(ρ) = δnρ for ρ ≥ σ2 + ε.

Note that hn converges monotonically to 0 on [σ2,∞) and to +∞ outside it.
We define h̃n(ρ) = σ1

σ2
hn

(
σ2
σ1

ρ
)
, and observe that h̃n converges monotonically

to 0 on [σ1,∞) and to +∞ outside it. See Fig. 3.
We extend hn to hτ by linear interpolation as before, and make a choice

of acceleration data (Hτ , Jτ ) for M\KR
σ2

such that Hn is a perturbation of
hn ◦ ρR in accordance with Lemma 4.17. We assume that Hn > 0 over the
region {ρR ≤ σ2 − ε} (we can arrange this so long as hn ◦ ρR > 0 over this
region, which is true so long as the δn are chosen sufficiently small). We need
to make some special assumptions over the ‘neck’ region {σ2 + 2ε ≤ ρR ≤
σ2 + 3ε}, which make the contact Fukaya trick work: first, we assume that
Jτ is of contact type over the neck (this includes the assumption that Jτ is
invariant under translation by the Liouville vector field); second, we assume
that the perturbation term Hτ − hτ ◦ ρR vanishes over the neck, which is
possible as hn ◦ ρR = δnρR has no periodic orbits over this region.

We now choose a smooth function f : R → R satisfying:17

17Our function f corresponds to the function g−1 from [38].
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Figure 4. The function f

• f ′(ρ) > 0;
• f(ρ) ≤ ρ;
• f(ρ) = σ1

σ2
· ρ for ρ ≤ σ2 + 2ε;

• f(ρ) = ρ for ρ ≥ σ2 + 3ε.

See Fig. 4. We then define a diffeomorphism φ : M → M by

φ(m) =

⎧
⎨

⎩
ϕ

log

(
f(ρR(m))

ρR(m)

)(m) for m ∈ X;

m for ρR(m) > σ2 + 3ε,

where ϕt : X → X denotes the time-t Liouville flow. The definition is chosen
so that ρR(φ(m)) = f(ρR(m)). Note that φ sends KR

σ2
to KR

σ1
via the time-

log(σ1/σ2) Liouville flow.
We now define acceleration data (H̃τ , J̃τ ) for M\KR

σ1
by taking

J̃τ = φ∗Jτ ;

H̃τ =

{
σ1
σ2

φ∗Hτ on φ
({ρR ≤ σ2 + 3ε}) ;

φ∗Hτ on φ
({ρR ≥ σ2 + 2ε}) .

Note that the definition of Hτ agrees on the overlaps, using the fact that
Hτ = δτρR and φ = ϕσ1/σ2 over this region. Furthermore, we observe that
φ∗XHτ

= XH̃τ
. (This is relatively easy to check on the complement of the

image of the neck region φ({σ2 + 2ε ≤ ρR ≤ σ2 + 3ε}); over the neck region
it uses the fact that both Hτ and H̃τ are equal to δτρR.) The fact that Jτ is
of contact type over the neck ensures that φ∗Jτ is ω-compatible.

Thus we have constructed acceleration data for M\KR
σ2

and M\KR
σ1

leading to Floer 1-rays

Cσ2 := C(Hτ , Jτ ) and Cσ1 := C(H̃τ , J̃τ ),

such that the map (γ, u) �→ φ(γ, u) := (φ ◦ γ, φ ◦ u) defines an isomorphism
Cσ2

∼−→ Cσ1 , which, however, need not respect the action filtrations. We want
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to prove that this map of 1-rays induces an isomorphism of the completed
telescopes

t̂el(Cσ2) → t̂el(Cσ1).

Lemma 5.15. There exist constants B, η > 0, C such that

−imix(γ) − B ≥ −imix(φ(γ)) ≥ η · (−imix(γ)) + C

for any orbit γ of Hn, and the corresponding orbit φ(γ) of H̃n.

Proof. First, we show that −imix(γ)−B ≥ −imix(φ(γ)), for some B > 0 that
we specify below. Note that i(γ, uout) = i(φ(γ), φ(u)out), so it suffices to show
A(γ, uout) − B ≥ A(φ(γ), φ(u)out). Let (γ̄, ūout) be a capped orbit of hn ◦ ρR

corresponding to (γ, uout) under Lemma 4.17. Then we have

A(γ, uout) = hn(ρR(γ̄)) +
∑

i

νh
i (γ̄) · rmax

i (γ̄) + ε(γ) (5.3)

by Lemma 4.20, where ε(γ) is bounded, and similarly for φ(γ, uout). We con-
sider the first term on the RHS. Note that orbits occur either in the region
{ρR ≤ σ2 − ε}, in which case h̃n(ρR(φ(γ̄))) = σ1

σ2
hn(ρR(γ̄)) < hn(ρR(γ̄),

because hn(ρR(γ̄)) > 0 (we ensured this positivity when choosing our pertur-
bation); or in the region {ρR ≥ σ2}, where both hn(ρR(γ̄)) = δnρR(γ̄) and
h̃n(ρR(φ(γ̄))) = δnρR(φ(γ̄)) lie in the bounded interval (δ1 · (1 + ε1(R)), 0).
In either case, we have hn(ρR(γ̄)) ≥ h̃n(ρR(φ(γ̄))) + B′ for some fixed B′.
For the second term on the RHS of (5.3), note that h′(ρ) ≤ 0, so νh

i (γ̄) ≤ 0.
We have νh

i (γ̄) = νh
i (φ(γ̄)), and rmax

i (γ̄) ≤ rmax
i (φ(γ̄)) (here we use our as-

sumption that f(ρ) ≤ ρ, as well as the fact that Z(rmax
i ) < 0). Together this

yields
∑

i

νh
i (γ̄) · rmax

i (γ̄) ≥
∑

i

νh
i (φ(γ̄)) · rmax

i (φ(γ̄)).

Adding the bounds together, and taking B > B′ + 2|ε(γ)| for all γ, gives the
result.

Now we consider the −imix(φ(γ)) ≥ η · (−imix(γ))+C part of the state-
ment. By Lemma 4.25, we have

− imix(γ) =
∑

i

−νh
i (γ̄) · (2 − κ−1rmax

i (γ̄)) − κ−1hn(ρR(γ̄)) + D(γ), (5.4)

where |D(γ)| is bounded. We focus on the first term on the RHS. We start
by recalling that −νh

i (φ(γ̄)) = −νh
i (γ̄) ≥ 0. Note that if γ̄ is non-constant,

then ρR(γ̄) > σ2 − 2ε, so ρR(φ(γ̄)) > σ1
σ2

(σ2 − 2ε) > σD
crit(R). Therefore, by

Lemma 5.4, whenever νh
i (γ̄) �= 0 we have

2 − κ−1rmax
i (φ(γ̄)) > 2η,

where 2η = η(R) · (σ1
σ2

(σ2 − 2ε) − σD
crit(R)) > 0. As a result we have

∑

i

−νh
i (φ(γ̄)) · (2 − κ−1rmax

i (φ(γ̄))) ≥ η ·
∑

i

−νh
i (γ̄) · (2 − κ−1rmax

i (γ̄)).

Note that this inequality also holds for the constant orbits, as then we have
νh

i (γ̄) = νh
i (φ(γ̄)) = 0.
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Now we focus on the second term on the RHS of (5.4). We saw in the
first part of the proof that h̃n(ρR(φ(γ̄))) = σ1

σ2
· hn(ρR(γ̄)) > 0 for orbits

with ρR(γ̄) < σ2 − ε. Decreasing η if necessary so that it is less than σ1/σ2,
and recalling that D(γ) is bounded, we obtain the desired bound for such
orbits. For the remaining orbits we recall from the first part of the proof that
both h̃n(ρR(φ(γ̄))) and hn(ρR(γ̄)) are bounded. Therefore, decreasing C if
necessary, we obtain the desired bound for the remaining orbits. �

Lemma 5.16. If (γj , uj) is a sequence of capped orbits of Hnj
such that

i(γj , uj) = i is constant, then

A(γj , uj) → +∞ ⇔ A(φ(γj , uj)) → +∞.

Proof. Lemma 5.15 gives

κ−1A(γj , uj) − i − B ≥ κ−1A(φ(γj , uj)) − i ≥ η · (κ−1A(γj , uj) − i) + C

⇒ A(γj , uj) − κB ≥ A(φ(γj , uj)) ≥ η · A(γj , uj) + κC + (1 − η)κi,

where η > 0, from which the result follows. �

Remark 5.17. Notice that the contact Fukaya trick that we presented here is
simpler than the one in [38] (compare Fig. 3 above with Figure 2 in [38]). We
would like to stress that it is possible to use this simpler version because we
are in a different situation.

Proof of Proposition 5.14. By Lemma 5.16, the isomorphism Cσ1
∼= Cσ2 in-

duces an isomorphism of the corresponding degreewise-action-completed tele-
scope complexes; so

SC∗
M

(
M\KR

σ1
; Λ
) ∼= SC∗

M

(
M\KR

σ2
; Λ
)

,

and the result follows by taking cohomology. �

We continue with the following observation of McLean:

Proposition 5.18. (see Proposition 6.20 of [25]) Let D be an SC divisor in a
symplectic manifold M . Then D is stably displaceable. �

Proof of Theorem D. It follows from Proposition 5.18 that a neighbourhood
of our divisor D is stably displaceable. Suppose that R is sufficiently small
that the domains UDi of our system of commuting Hamiltonians {ri : UDi →
[0, R)} are contained in this stably displaceable neighbourhood, for all i. This
ensures that M\KR

σ is contained in this neighbourhood for σ sufficiently close
to 1. In particular,

SH∗
M

(
M\KR

σ ; Λ
)

= 0

for such σ, by Theorem 3.6. By Proposition 5.14, we see that in fact we
have the same result for any σD

crit(R) < σ < 1. This completes the proof
using Theorem 3.7, as the sets

{
M\KR

σ

}

R>0,σ>σD
crit(R)

exhaust M\Kcrit (this

follows from the fact that ρR → ρ0 and σD
crit(R) → σcrit as R → 0). �
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A. Algebraic background

A.1. Filtration maps

In this section, we present an elementary framework to better deal with the
type of filtrations that we encounter in this paper, which are in particular
indexed by real numbers.

A filtration map on an abelian group A is a map ρ : A → R ∪ {∞}
satisfying the inequality

ρ(x + y) ≥ min (ρ(x), ρ(y)),

equality ρ(x) = ρ(−x), and sending 0 to ∞. A filtration map defines a filtra-
tion by the subgroups

F≥ρ0A := {α ∈ A | ρ(a) ≥ ρ0}.

Note that if (Vα, ρα) are abelian groups equipped with filtration maps
indexed by a set α ∈ I, then

⊕
α∈I Vα is equipped with a filtration map given

by

ρ
(∑

vi

)
:= min (ρi(vi)).

Let us call this the min construction.
We can define a pseudometric on an abelian group A with a filtration

map ρ by d(a, a′) := e−ρ(a−a′). The completion Â of A is defined by taking the
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abelian group of Cauchy sequences in A and modding out by the subgroup
of sequences which converge to 0. Â is equipped with a canonical filtration
map:

ρ((ai)i∈N) = lim−→ ρ(ai).

We call A complete, if the natural map A → Â is bijective.
We define filtration maps Q : Λ → R by setting Q(qa) = a and using

the min construction.
A filtration map on a Z-graded Λ-module A is a filtration map for

each Ai which in addition is additive for the module action by homogenous
elements of Λ. A filtration map on a Λ-cochain complex C is a filtration map
on the underlying Z-graded Λ-module, which satisfies the condition that the
differential does not decrease the filtration map. Let F≥ρ0C :=

⊕
i∈Z F≥ρ0C

i,
which is of course nothing but the filtration associated with the filtration map
on C constructed by the min construction.

Filtered chain maps between Λ-cochain complexes equipped with filtra-
tion maps are defined to be chain maps that do not decrease the values of
the filtration maps. Filtered chain homotopies between filtered chain maps
are defined in the same fashion.

A.2. Quasi-isomorphic subcomplexes of the telescope

Let

C := C1
f1 �� C2

f2 �� C3
f3 �� . . . (A.1)

be a 1-ray of Q-graded chain complexes.
The telescope tel(C) of C is defined to be the cone of the chain map

id − f :
∞⊕

i=1

Ci →
∞⊕

i=1

Ci.

Assume that we have a commutative diagram

C′
1

��

��

C′
2

��

�� C′
3

��

��

. . .

C1
�� C2

�� C3
�� . . .

,

where the vertical maps are inclusions of subcomplexes. We call the top 1-ray
C′.

We obtain the commutative diagram of Q-graded abelian groups

H(tel(C′))

��

�� H(tel(C))

��

H
(
lim−→(C′

i)
)

�� H
(
lim−→(Ci)

)

, (A.2)

where the vertical maps are isomorphisms (see [40, Lemma 2.2.2] for the
proof).
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Lemma A.1. Assume that every element γ of Ci lands inside C′
i+N(γ) for some

N(γ) > 0. Then,

tel(C′) → tel(C)

is a quasi-isomorphism.

Proof. Because direct limits commute with quotients, we have

lim−→ Ci/ lim−→C′
i � lim−→Ci/C′

i,

as Q-graded chain complexes. A basic property of filtered direct limits is
that any element in lim−→Ci/C′

i is in the image of the canonical map Ci/C′
i →

lim−→Ci/C′
i for some i > 0. This and the given condition implies that the direct

limit on the RHS is zero. In particular, the lower horizontal map in Diagram
(A.2) is also an isomorphism. This finishes the proof. �

A.3. Completed telescopes

Let FiltChΛ be the category of free Q-graded Λ-cochain complexes equipped
with a filtration map and morphisms given by filtered chain maps.

Let

C := C1
f1 �� C2

f2 �� C3
f3 �� . . . (A.3)

be a 1-ray in FiltChΛ. Let us equip tel(C) with the filtration map obtained
from the min construction. If we define

CA0 = F≥A0C1 → F≥A0C2 → ...,

then by construction

F≥A0tel(C) = tel(CA0). (A.4)

We define maps between two 1-rays in FiltChΛ as diagrams

C1
��

��

C2

��

�� C3
��

��

. . .

C′
1

�� C′
2

�� C′
3

�� . . .

, (A.5)

where the horizontal arrows are filtered chain maps and each square is equipped
with a map Ci → C′

i+1, which is a filtered chain homotopy between the two
filtered chain maps Ci → C′

i+1 obtained by composing the arrows at the edges
of the square. The resulting category we call 1-ray-ChΛ.

In 1-ray-ChΛ, we also have a notion of two morphisms being equivalent,
defined by the existence of a homotopy of maps of 1-rays. The definition is
identical to [40] except that here we require all the homotopy maps to not
decrease the filtration values, instead of requiring them to be Λ≥0-module
maps.

The following is a direct analogue of the second bullet point of Lemma
2.1.9 in [40] for n = 1. The proof is omitted.
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Lemma A.2. Let us start with a morphism in 1-ray-ChΛ

C1
��

��

C2

��

�� C3
��

��

. . .

C′
1

�� C′
2

�� C′
3

�� . . .

(A.6)

Then there is an induced filtered chain map tel(C) → tel(C′). Hence, the
telescope construction is a functor

tel : 1-ray-ChΛ → FiltChΛ.

Moreover, equivalent morphisms in 1-ray-ChΛ gives rise to filtered ho-
motopy equivalent chain maps.

Degreewise completion defines a functor

·̂ : FiltChΛ → FiltChΛ.

Let us call a chain map C → C ′ between Λ-cochain complexes equipped
with filtration maps a strong filtered quasi-isomorphism if it induces a quasi-
isomorphism

F≥ρ0C → F≥ρ0C
′,

for every ρ0 ∈ R. Because the filtrations are exhaustive, a strong filtered
quasi-isomorphism is a quasi-isomorphism.

Lemma A.3. Under the degreewise completion functor
• a strong filtered quasi-isomorphism is sent to a strong filtered quasi-

isomorphism.
• a filtered chain homotopy is sent to a filtered chain homotopy.

Proof. The first bullet point follows from a spectral sequence comparison
theorem. Precisely, we must show that the chain map F≥ρ0Ĉ → F≥ρ0Ĉ

′ is a
quasi-isomorphism, for all ρ0 ∈ R. We consider the spectral sequences associ-
ated with these filtered complexes, and the map of spectral sequences between
them associated with the strong filtered quasi-isomorphism. We observe that
this map is an isomorphism on the E1 page. To see this, we first observe that
the map GrF

i C → GrF
i C ′ is a quasi-isomorphism for all i, using the long

exact sequence associated with a short exact sequence of chain complexes.
We have GrF

i Ĉ = GrF
i C, and similarly for C ′, so the map GrF

i Ĉ → GrF
i Ĉ ′

is also a quasi-isomorphism; it then follows by construction that the map is
an isomorphism on the E1 page. The filtrations are both complete and ex-
haustive by construction, so the Eilenberg–Moore Comparison Theorem [46,
Theorem 5.5.11] gives the result.

The second bullet point follows from the fact that the completion is an
additive functor. �

Remark A.4. The first bullet point of Lemma A.3 is not explicitly used in
the present paper. It would be an input in the proof of the well definedness
of relative symplectic cohomology (Proposition 3.3), which we omitted.
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Lemma A.5. Let C = C1 → C2 → C3 → · · · be a 1-ray in FiltChΛ with the
following property: for any integer i ≥ 1 and real number r there exists a
positive integer N such that the composition of the Λ-chain maps from the
1-ray Ci → Ci+N increases the filtration map by at least r for any element
of Ci. Then, t̂el(C) is acyclic.

Proof. As in the proof of Lemma A.3, it suffices by the Eilenberg–Moore
Comparison Theorem to show that Gritel(C) is acyclic for all i. Using Equa-
tion A.4 and elementary homological algebra, we obtain that Gritel(C) is
quasi-isomorphic to the telescope of

GriC1 → GriC2 → · · · .

Because the homology of the telescope is isomorphic to the homology of the
direct limit, it suffices to show the acyclicity of the direct limit of this diagram.
It is easy to see that the direct limit is in fact trivial on the nose (i.e. at the
chain level). �

A.4. Homotopy inverse limit

Definition A.6. Let C be an inverse system of cochain complexes and cochain
maps:

C∗
0

i01←−− C∗
1

i12←−− . . . .

We define the cochain complex
∏

p C∗
p to be the degreewise direct product

of the C∗
p . There is a natural chain map id − i :

∏
p C∗

p → ∏
p C∗

p , sending
(cp) �→ (cp − ip,p+1(cp+1)). We define the inverse telescope complex

tel← (C) := Cone

(
∏

p

C∗
p

id−i−−−→
∏

p

C∗
p

)
[−1].

The following recovers the Milnor exact sequence if C satisfies the Mittag-
Leffler condition. We believe that it is standard, but we could not locate it
in the literature.

Lemma A.7. There is a short exact sequence

0 → lim←−
1Hj−1

(
C∗

p

)→ Hj
(
tel← (C)

)
→ lim←−Hj

(
C∗

p

)→ 0.

Proof. The long exact sequence associated with the short exact sequence of
cochain complexes

0 →
∏

p

C∗
p [−1] → tel← (C) →

∏

p

C∗
p → 0

gives an exact sequence

Hj−1

(
∏

p

C∗
p

)
[id−i]−−−−→ Hj−1

(
∏

p

C∗
p

)
→ Hj

(
tel← (C)

)

→ Hj

(
∏

p

C∗
p

)
[id−i]−−−−→ Hj

(
∏

p

C∗
p

)
.
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This gives the desired short exact sequence, as the lim←− is defined to be the
kernel of [id − i], and lim←−

1 is defined to be the cokernel. �

Remark A.8. If C is an inverse system of filtered cochain complexes with
filtered cochain maps, then the inverse telescope complex acquires a filtration
by

F≥p

(
tel← (C)

)
:= tel← (F≥pC)

(it is clear how to regard the RHS as a subcomplex of tel← (C)).
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A symplectic embedding of the cube with
minimal sections and a question by Schlenk

Fabian Ziltener

Abstract. I prove that the open unit cube can be symplectically embed-
ded into a longer polydisc in such a way that the area of each section
satisfies a sharp bound and the complement of each section is path-
connected. This answers a variant of a question by F. Schlenk.
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1. The main result

Let n ≥ 2. By q1, p1, . . . , q
n, pn we denote the standard coordinates in R

2n,
and we equip R

2n with the standard symplectic form ω0 :=
∑n

i=1 dqi ∧ dpi.1

We denote by Bm
r resp. B

m

r the open resp. closed ball in R
m of radius r around

0. M. Gromov’s famous non-squeezing theorem [2, Corollary, p. 310] implies
that B

2n

r does not symplectically embed into the closed unit symplectic cylin-
der B

2

1×R
2n−2 if r > 1. In [5] F. Schlenk investigated how flexible symplectic

embeddings are in the case r ≤ 1. More precisely, for every z ∈ R
2n−2, we

define

ιz : R2 → R
2n, ιz(y) := (y, z).

Answering a question of D. McDuff [4], in [5, Theorem 1.1] Schlenk proved
that for every a > 0, there exists a symplectic embedding ϕ of B

2n

1 into

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour
of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs
Frauenfelder, and Felix Schlenk.
1Following the physicists’ convention, I use an upper index for the i-th coordinate of a
point q in the base manifold R

n and lower index for the i-th coordinate of a covector
p ∈ R

n = T ∗
q R

n.
2 This means two-dimensional Lebesgue measure.
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B
2

1 × R
2n−2, such that for every z ∈ R

2n−2, the section ι−1
z

(
ϕ
(
B

2n

1

))
has

area2 at most a.
Schlenk’s lifting method [6, Sect. 8.4] also shows that for every positive

integer k and every a > 1
k , there exists a symplectic embedding of the open

cube (0, 1)2n into the open polydisc (0, 1)2n−1 × (0, k), whose sections have
area at most a. The main result of the present article answers the following
two questions:

Question 1. Is this statement true with the integer k replaced by a general
real number c ≥ 1?

Question 2. Can the bound a on the areas of the sections be made sharp, i.e.
equal to 1

c?
3

I also answer a variant of the following question of Schlenk. For every
bounded subset S of Rm we define the bounded hull of S to be the union of
S and all bounded connected components of Rm \ S.

Question 3. [Schlenk, [5], Question 2.2] Let n ≥ 2, ϕ be a symplectic embed-
ding of B2n

1 into B2
1 × R

2n−2, and a < π. Does there exist z ∈ R
2n−2 such

that the bounded hull of the closure of the section ι−1
z

(
ϕ
(
B2n

1

))
has area at

least a?

The main result of this article is the following.

Theorem 4. For every n ≥ 2 and c ∈ [1,∞), there exists a symplectic em-
bedding ϕ : (0, 1)2n → (0, 1)2n−1 × (0, c), such that for every z ∈ R

2n−2 the
following holds:
(i) The section ι−1

z

(
ϕ
(
(0, 1)2n

))
has area equal to 1

c or is empty.
(ii) Its complement in R

2 is path-connected.

This theorem answers Questions 1 and 2 affirmatively. It also provides a
negative answer to Schlenk’s Question 3 with the word “closure” dropped. It
even implies that there exists a symplectic embedding for which the bounded
hull of each section has arbitrarily small area:

Corollary 5. For every n ≥ 2 and a > 0, there exists a symplectic embedding
ψ : B2n

1 → B2
1 ×R

2n−2, such that the bounded hull of each section of ψ
(
B2n

1

)

has area at most a.

(For a proof see p. 9.) This corollary is optimal in the sense that its
statement becomes false if we replace B2n

1 and B2
1 by the closed balls B

2n

1

and B
2

1. Even the following is true:

Proposition 6. [F. Lalonde, D. McDuff] Let n ∈ N and ϕ : B
2n

1 → B
2

1×R
2n−2

be a symplectic embedding.4 Then, there exists z ∈ R
2n−2, such that the

section ι−1
z

(
ϕ
(
B

2n

1

))
contains the circle of radius 1 around 0.

3There is always a section of area at least 1
c
, by Fubini’s theorem. Hence, a = 1

c
is the

minimal possible bound.
4We do not impose any restrictions on how ϕ maps the boundary of the ball.

F. Ziltener JFPTA
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In particular, the bounded hull of this section equals B
2

1, which has area
π.

Proof of Proposition 6. This follows from [3, Lemma 1.2] and from Gromov’s
non-squeezing theorem. �

Remark. Let ϕ be as in the statement of Theorem 4. Then each section of the
image of ϕ equals its own bounded hull. Hence, ϕ is a sharp counterexample
to a variant of Question 3 concerning embeddings of cubes.

In the case n = 2, the idea of proof of Theorem 4 is to consider the linear
symplectic map Ψ : (q, p) �→ (Q,P ) induced by the Lagrangian shear p �→
P :=

(
p1, cp1 + p2

)
. The P2-sections of the image of the square (0, 1)2 under

this shear have length at most 1
c . Hence, the area of each section of Ψ

(
(0, 1)4

)

is at most 1
c . To make the image of Ψ fit in the polydisc (0, 1)3 × (0, c), we

wrap its upper part (in P2-direction) back to the lower part, by passing to
the quotient R/cZ. We also wrap the Q1-coordinate. See Fig. 1.

Finally, we compose the resulting map with the product of two area
preserving embeddings of finite cylinders into rectangles. This yields a sym-
plectic embedding with the desired properties.

Remark. (method of proof, related result, terminology).

• This construction is similar to L. Traynor’s symplectic wrapping con-
struction, which she used e.g. to show that certain polydiscs embed into
certain cubes, see [7] and [6, Chap. 7]. One difference is that I wrap co-
ordinates of mixed type (Q and P ), whereas Traynor wraps coordinates
of pure type.

• Schlenk proved a nonsharp result regarding the areas of the bounded
hulls of the sections. More precisely, his folding method [6, Sect. 8.3] can
be used to prove that for every n ≥ 2, positive integer k, and � ∈ (0, 1)
there exists a symplectic embedding ϕ : (0, �)2n → (0, 1)2n−1 × (0, k),
such that the bounded hull of every section of ϕ

(
(0, �)2n

)
has area at

most 1
k . Theorem 4 improves this in the following ways:

– It treats the critical case � = 1.
– It makes the area estimate sharp.
– It holds for any real number c ≥ 1, not only for an integer c = k.
– The proof of Theorem 4 is easier than the folding method.

• In [5] and [6, p. 226], Schlenk calls the bounded hull of the closure
of a set its “simply connected hull”. The simply connected hull of a
simply connected compact subset S of Rm need not be equal to S. In
the case m ≥ 3, an example is given by the sphere S := Sm−1, and in
the case m = 2 by the Warsaw circle. This set is produced by closing
up the topologist’s sine curve with an arc. For this reason, I prefer
the terminology “bounded hull”. Since this notion is only defined for
bounded subsets of Rm, no confusion should arise from the fact that the
bounded hull of a bounded set S can differ from S.

• For more information about related work, see [6].
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}

Figure 1. The green arrow depicts the Lagrangian shear
p �→ P :=

(
p1, cp1 + p2

)
, and the orange arrow the induced

shear in the q-plane. The black arrows depict the wrapping
maps. The magenta line segment is a P 2-section of the image
of the square under the composed map in the p-plane, where
P 2 ∈ R/(cZ). The violet set in the lower part of the picture
depicts a Q

2
-section of the image of the open square under

the composed map in the q-plane, where Q
2 ∈ R/Z. The

bracket } indicates that the product of these two sets is given
by the red ribbon on the blue cylinder. The image of this
ribbon under some area-preserving map is a section of the
image of the desired symplectic embedding ϕ. It has area
equal to 1

c . In the picture c equals 2. If c is not an integer
then the horizontal edge of the upper wrapped triangle in
the lower part of the picture has length less than 1

2. Proofs of Theorem 4 and of Corollary 5

In the proofs of Theorem 4 and Corollary 5, we will use the following lemma.

Lemma 7. [squaring the disc and the cylinder] We denote r := π− 1
2 .

(i) There exists a homeomorphism

κ : B
2

r → [0, 1]2,

that restricts to a (smooth) symplectomorphism between the interiors.

Reprinted from the journal1154



Figure 2. The two arrows depict area-preserving smooth
embeddings whose composition is an area-preserving embed-
ding of the open cylinder into the open square. The idea of
proof of Lemma 7 is to choose such maps in such a way
that they continuously extend to the closed cylinder and the
closed disc, respectively

(ii) For every y0 ∈ (0, 1)2, there exists continuous map

λ : (R/Z) × [0, 1] → [0, 1]2

that maps (R/Z) × {1} to y0, and restricts to a homeomorphism from
(R/Z)× [0, 1) to [0, 1]2\{y0} and to a symplectomorphism from (R/Z)×
(0, 1) to (0, 1)2 \ {y0}.
The idea of proof of this lemma is explained by Fig. 2.
In the proof of Lemma 7, we will use the following.

Remark 8. [straightening corners] We denote by Σ the square [0, 1]2 without
the corners. Let r > 0 and S be a subset of the circle of radius r consisting
of four points. There exists a homeomorphism θ : [0, 1]2 → B

2

r that restricts
to a diffeomorphism from Σ onto B

2

r \ S, such that (θ|Σ)∗ω0 extends to a
nonvanishing smooth 2-form on B

2

r.

To see this, observe that the map

θ̃ : [0,∞)2 → R × [0,∞), θ̃(z) :=
z2

|z| ,

is a homeomorphism that restricts to a diffeomorphism from [0,∞)2 \ {0}
onto

(
R × [0,∞)

) \ {0}, that satisfies
(
θ̃
∣
∣[0,∞)2 \ {0})∗ω0 =

ω0

2
.

The desired map θ can be constructed from four copies of θ̃ (one for each
corner), using charts for B

2

r and a cut off argument.

Vol. 24 (2022) A symplectic embedding of the cube...
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Proposition 9. [Banyaga’s Moser stability with boundary] Let M be a com-
pact connected oriented smooth manifold, and Ω0,Ω1 volume forms on M
satisfying

∫

M

Ω0 =
∫

M

Ω1.

Then there exists a diffeomorphism ϕ of M satisfying

ϕ∗Ω0 = Ω1, ϕ|∂M = id.

Proof. See [1, Théorème, p. 127]. �

Proof of Lemma 7. To prove (i), we define r := π− 1
2 and choose a map θ as

in Remark 8. We define

M := B
2

r, Ω0 := θ∗ω0, Ω1 := ω0.

We have
∫

M

Ω0 =
∫

Σ

ω0 = 1 =
∫

M

Ω1.

Hence, the hypotheses of Proposition 9 are satisfied. We choose a diffeomor-
phism ϕ as in the statement of this proposition. The map

κ := (ϕ ◦ θ)−1 : B
2

r → [0, 1]2

has the required properties.
We prove (ii). There exists a symplectomorphism

χ : (R/Z) × [0, 1) → B
2

r \ {0}.

For example, consider y : R/Z → C = R
2, y(q̄) := e2πiq, where q ∈ q̄ is an

arbitrary representative, and define

χ(q, p) := r
√

1 − p y(q).

We choose a symplectomorphism ξ of [0, 1]2 that equals the identity in
a neighbourhood of the boundary and maps κ(0) to y0. We obtain such a
map as the Hamiltonian flow of a suitable function on (0, 1)2 with compact
support. The map

λ :=
{

ξ ◦ κ ◦ χ on (R/Z) × [0, 1),
y0 on (R/Z) × {1}

has the required properties. This proves (ii) and completes the proof of
Lemma 7. �

Remark. The proof of part (i) of Lemma 7 is based on Proposition 9. The
proof of that result in turn uses Moser isotopy and a lemma that roughly
states that a primitive of an exact top degree form can be chosen in such a way
that it vanishes on the boundary of the manifold. An alternative approach for
proving Lemma 7(i) is based on the proof of [6, Lemma 3.1.5]. That lemma
states the following.

F. Ziltener JFPTA
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Lemma 10. Let U and V be bounded and simply connected domains in R
2 of

equal area and let LU and LV be admissible5 families of loops in U and V ,
respectively. Then there is a symplectomorphism between U and V mapping
loops to loops.

We define U := B2
r and V := (0, 1)2. The idea of the alternative ap-

proach to Lemma 7(i) is to choose admissible families of loops in such a
way that the symplectomorphism constructed in the proof of Lemma 10 ex-
tends continuously and injectively to the closure of U . (Neither condition is
automatically satisfied.) The extension will then have the desired properties.

Proof of Theorem 4. Consider first the case n = 2. We denote by

π : R4 → (R/Z) × R × R × (R/cZ)

the canonical projection, and equip (R/Z) × R × R × (R/cZ) with the sym-
plectic form induced by ω0 and π. We denote y0 := z0 :=

(
1
2 , 1

2

)
. We choose

a map λ as in Lemma 7(ii). It follows from the same lemma that there exists
a symplectomorphism

λ′ : (0, 1) × (R/cZ) → (
(0, 1) × (0, c)

) \ {z0}.

We define

Ψ : R4 → R
4, Ψ

(
q1, p1, q

2, p2

)
:=

(
q1 − cq2, p1, q

2, cp1 + p2

)
,

ϕ := (λ × λ′) ◦ π ◦ Ψ
∣
∣(0, 1)4.

The map ϕ is well defined, since π ◦ Ψ maps (0, 1)4 to the product of the
domains of λ and λ′. The map ϕ is a symplectic immersion, as it is the
composition of three symplectic immersions. A straight-forward argument
shows that π◦Ψ

∣
∣(0, 1)4 is injective. Since λ|(R/Z)×(0, 1) and λ′ are injective,

it follows that the same holds for ϕ. Hence, ϕ is a symplectic embedding of
(0, 1)4 into (0, 1)3 × (0, c).

We verify that the map ϕ has properties (i) and (ii) stated in Theorem
4. We fix a point (Q2, P 2) ∈ (0, 1) × (R/cZ). We have

UQ2,P 2
:=

{
(Q

1
, P1) ∈ (R/Z) × (0, 1)

∣
∣
(
Q

1
, P1, Q

2, P 2

) ∈ π ◦ Ψ
(
(0, 1)4

)}

= VQ2 × WP 2
, (1)

VQ2 :=
{
q1 − cQ2 + Z

∣
∣ q1 ∈ (0, 1)

}
= (R/Z) \ {−cQ2 + Z}, (2)

WP 2
:=

{
P1 ∈ (0, 1)

∣
∣ ∃p2 ∈ (0, 1) : cP1 + p2 + cZ = P 2

}

= (0, 1) ∩
⋃

p2∈(0,1)

P 2 − p2

c
, (3)

where P 2−p2
c ∈ R/Z. The set WP 2

is an open subinterval of (0, 1) or the union
of two such subintervals. It has length 1

c . Using (1) and (2), it follows that
UQ2,P 2

has area equal to 1
c . Figure 3 depicts the set UQ2,P 2

in the case that
WP 2

is connected.

5See [6, Definition 3.1.4].
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Figure 3. The arrow depicts the area-preserving map λ :
(R/Z) × (0, 1) → (0, 1)2. (Compare to Fig. 2.) It sends the
upper part of the cylinder close to the centre of the disc.
The red ribbon on the cylinder is UQ2,P 2

, the section of the
image of ϕ. The point P 2 determines the height of the upper
boundary of the red ribbon, and therefore the radius of the
circle inside the square. The point Q2 determines the posi-
tion of the blue slit. Because of this slit, the blue set on the
right is path-connected. This is the complement of the image
of the section under the map λ

Let now z ∈ (
(0, 1) × (0, c)

) \ {z0}. We denote (Q2, P 2) := λ′−1(z). We
have

λ−1
(
ι−1
z

(
ϕ
(
(0, 1)4

)))
= UQ2,P 2

. (4)

Since λ is area-preserving, it follows that the section ι−1
z

(
ϕ
(
(0, 1)4

))
has area

equal to 1
c . For z = z0 or z outside of (0, 1)× (0, c), the section is empty. This

proves (i).
To prove property (ii), consider the continuous path

y : [0, 1] → [0, 1]2, y(t) := λ
( − cQ2 + Z, t

)
.

The point y(0) lies on the boundary of the square [0, 1]2. It follows from (2)
that the path y lies in the complement of ι−1

z

(
ϕ
(
(0, 1)4

))
in R

2. Every point
outside (0, 1)2 can be connected to y(0) through a continuous path outside
of (0, 1)2. Every point in the complement of ι−1

z

(
ϕ
(
(0, 1)4

))
in (0, 1)2 can be

connected to a point on the path y through a path in this complement. This
follows from (4) and the facts UQ2,P 2

= VQ2×WP 2
, VQ2 = (R/Z)\{−cQ2+Z}.

See again Fig. 3. This proves (ii).
Hence, ϕ has the desired properties. This proves Theorem 4 in the case

n = 2. For n ≥ 3 we take the product of ϕ with the identity map. �

In the proof of Corollary 5, we will use the following.

F. Ziltener JFPTA
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Remark 11. (monotonicity) The bounded hull is monotone in the sense that
if A ⊆ B ⊆ R

m are bounded sets then the bounded hull of A is contained in
the bounded hull of B.

Proof of Corollary 5. We define r := π− 1
2 . By a rescaling argument it suffices

to show that for every a ∈ (0, 1] there exists a symplectic embedding ψ :
B2n

r → B2
r ×R

2n−2, such that the bounded hull of each section of ψ(B2n
r ) has

area at most a. To prove this statement, we choose ϕ is as in the conclusion
of Theorem 4 with c := 1

a . We choose a map κ as in Lemma 7(i). The map

ψ := (κ−1 × id) ◦ ϕ ◦ (
κ × · · · × κ

)
: B2n

r → B2
r × R

2n−2

is a symplectic embedding. Let z ∈ R
2n−2. Property (ii) in Theorem 4 implies

that the complement of V := κ−1
(
ι−1
z

(
ϕ
(
(0, 1)2n

)))
in R

2 is path-connected.

Hence, V equals its bounded hull. The section ι−1
z

(
ψ(B2n

r )
)

is contained in
V . Using Remark 11, it follows that the bounded hull of this section is also
contained in V . Using Theorem 4(i) and that κ is area-preserving, it follows
that the bounded hull of ι−1

z

(
ψ(B2n

r )
)

has area at most 1
c = a. Hence, ψ has

the desired properties. This proves Corollary 5. �
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