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On Equalities of Central Automorphism
Group with Various Automorphism
Groups

Harpal Singh and Sandeep Singh

6.1 Introduction

Throughout the chapter, p denotes a prime number. For group G, we denote by G
′
,

Z(G), cl(G), d(G), �(G), and Aut(G), respectively, the commutator subgroup, the
center, the nilpotency class, the rank, the Frattini subgroup, and the automorphism
group of G. An automorphism σ of group G is called central if σ commutes
with every automorphism in Inn(G), the group of inner automorphisms of G,
(equivalently, if g−1σ(g) lies in the center Z(G) of G, for all g in G.)

The central automorphisms of G fix the commutator subgroup of G elementwise
and form a normal subgroup of the full automorphism group Aut(G); we denote
this subgroup by Autz(G) in this paper. For groups G having Aut(G) abelian, it
is necessarily the case that Autz(G) = Aut(G). The non-abelian groups G with
Aut(G) abelian are called as Miller groups (see [19]). However, several people
constructed various groups G for which Aut(G) is non-abelian and Autz(G) =
Aut(G) (see [7, 11, 15, 18]). In 2001, Curran and McCaughan [6] considered the
case where the central automorphisms are just the inner automorphisms of G, that
is, Autz(G) = Inn(G); one can also see [4, 23]. Continuing in this direction, in
2004, Curran [8], for group G, derived the equality Autz(G) = Z(Inn(G)),; the
same is derived in [1, 12, 22]. Let Autzz(G) be the set of all central automorphisms
of a group G which fixes the center Z(G) of G elementwise. In 2007, Attar [2]
characterized finite p-groups for which Autzz(G) = Inn(G) holds. In 2009, Yadav
[25] characterized p-groups of nilpotency class 2 for which Autz(G) = Autzz(G)

(for the same equality, also see [14]).
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An automorphism φ of a groupG is called class preserving if φ(x) is conjugate to
x for all x ∈ G. The set Autc(G) of all class-preserving automorphisms ofG forms a
normal subgroup of Aut(G) and contains Inn(G). In 2013, Yadav [26] characterized
finite p-groups, and Kalra and Gumber [16] characterized all finite p-groups of order
≤ p6 (for any prime p) and ≤ p5 (for odd prime p) for which the set of all central
automorphisms is equal to the set of all class-preserving automorphisms, that is,
Autz(G) = Autc(G); the same equality is derived in [10].

An automorphism σ of a group G is called IA-automorphism if it induces the
identity automorphism on the abelian quotient G/G

′
. Let IAz(G) be the group of

those IA automorphisms which fix the center of G elementwise. In 2014, Rai [21]
characterized finite p-groups in which Autz(G) = IAz(G) if and only if γ 2(G) =
Z(G). In 2016, Kalra and Gumber [17], characterized finite non-abelian p-groups
G for which Autz(G) = IAz(G) if and only if G

′ = Z(G).
Hegarty [13] defined the notions of absolute center and autocommutator of a

group G (analogous to Z(G) and G∗ as follows:

L(G) = {g ∈ G| α(g) = g ∀α ∈ Aut(G)}

G∗ = 〈g−1 α(g)|g ∈ G, α ∈ Aut(G)〉

These are clearly characteristic subgroups of G. Also, Z(G) ⊃ L(G) and G
′ ⊂ G∗.

Hegarty [13] also defined absolute central automorphism of G as follows: an
automorphism γ of a group G is called an absolute central automorphism if it
induces identity automorphism on G/L(G). The set Autl(G) of all absolute central
automorphisms of G forms a normal subgroup of Aut(G); it is also a subgroup of
Autz(G). Let Autzl (G) denote the group of absolute central automorphisms of G

which fix Z(G) elementwise.
In 2020, Singh and Gumber [24] gave a necessary and sufficient condition on

finite p-group G for which Autz(G) = Autl(G) and also for which Autz(G) =
Autzl (G).

6.2 Equalities of Central Automorphisms

6.2.1 Equalities with Group of All Automorphisms

Definition 6.1 Following Earnley, a non-abelian group with abelian automorphism
group is called Miller group.

If Aut(G) is abelian, then it is clear that all the automorphisms are central, i.e.,
Autz(G) = Aut(G). The obvious examples of groups with abelian automorphism
group are the cyclic groups. There are non-abelian groups with abelian automor-
phism groups; these are called Miller groups (seeEarnley [9]). Several researchers
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constructed various examples of groups for which Autz(G) = Aut(G), even if
Aut(G) is non-abelian. Curran, in 1982, found first such example. He constructed a
group of order 27 for which Autz(G) = Aut(G) and Aut(G) is non-abelian.

Theorem 6.1 ([7], Proposition, p. 394) There exists a non-abelian group G of
order 27 which has a non-abelian automorphism group of order 212 in which every
automorphism is central, that is, Autz(G) = Aut(G).

Example of such group is given below:
Let M be the Miller group of order 26, and let

G = M × Z2 = 〈a, b, c, d | a8 = b4 = c2 = d2 = 1, ab = a5, bc = b−1,

[a, c] = [a, d] = [b, d] = [c, d] = 1〉

This result of Curran leads the motivation to p-groups for p an odd prime in
which Autz(G) = Aut(G) and Aut(G) is non-abelian. In 1984, Malone proved the
following result:

Theorem 6.2 ([18], Proposition, p. 36) For each odd prime p, there exists a
non-abelian p-group with a non-abelian automorphism group in which each
automorphism is central, that is, Autz(G) = Aut(G).

For each odd prime p, we consider the group

F = 〈a1, a2, a3, a4, | (ai, aj , ak) = 1 and a
p2

i = 1 f or

1 ≤ i, j, k ≤ 4; (a1, a2) = a
p

1 ; (a1, a3) = a
p

3 ; (a1, a4) = a
p

4

(a2, a3) = a
p

2 ; (a2, a4) = 1 ; (a3, a4) = a
p

3 〉

Aut(F ) is abelian group. We setB = 〈 b| bp = 1 〉. GroupG = F ×B is non-abelian
group which has Aut(G) non-abelian in which each automorphism is central.

Curran in [7] and Malone in [18] derived the examples of groups with direct
factors for which Autz(G) = Aut(G) and Aut(G) is non-abelian. The question was
left if there is a group G with no direct factors for which Autz(G) = Aut(G) and
Aut(G) is non-abelian. Continuing in this direction, in 1986, Glasby produced an
infinite family of 2-groups having no direct factors and which have a non-abelian
automorphism group in which all automorphisms are central.

Definition 6.2 Define Gn to be the group generated by x1, . . . , xn x2i

i = 1 (1 ≤
i ≤ n) [xi, xi+1] = x2i

i+1, (1 ≤ i < n). [xi, xj ] = 1, (1 < i + 1 < j ≤ n)
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Theorem 6.3 ([11], Theorem, p. 234) For n ≥ 3, Gn has no direct factors, and
Aut(Gn) is non-abelian of order 2p(n), where p(n) = (n − 1)(2n2 − n = 6/6)(n ≥
4), in which every automorphism is central.

In 2012, Jain and Yadav [15] constructed the following family of groups Gn with
no direct factor, for which Autz(Gn) = Aut(Gn).

Definition 6.3 Let n be a natural number greater than 2 and p an odd prime. Define
Gn to be the group generated by x1, x2, x3, x4

x
pn

1 = x
p3

2 = xP 2

3 = x
p2

4 = 1,

[x1, x2] = x
p2

2 , [x1, x3] = x
p

3

[x1, x4] = x
p

4 , [x2, x3] = x
pn−1

1

[x2, x4] = x
p2

2 , [x3, x4] = x
p

4 .

This group G is a regular p-group of nilpotency class 2 having order pn+7 and
exponent pn. Further, Z(G) = �(G) and therefore G is purely non-abelian.

Theorem 6.4 ([15], Theorem A, p. 228) Let m = n + 7 and p be an odd prime,
where n is a positive integer greater than or equal to 3. Then there exists a group
G of order pm, exponent pn, and with no nontrivial abelian direct factor such that
Autz(G) = Aut(G) is non-abelian.

6.2.2 Equalities with Group of Inn(G) and Z(Inn(G))

In 2001, Curran and McCaughan [6] characterized finite p-groups in which central
automorphisms are precisely the inner automorphisms.

Theorem 6.5 ([6], Theorem, p. 2081) If G is a finite p-group, then Autz(G) =
Inn(G) if and only if G

′ = Z(G) and Z(G) is cyclic.

Definition 6.4 A group G, whose only element of finite order is the identity, is
called torsion-free group.

Definition 6.5 A non-abelian group G is purely non-abelian if G has no nontrivial
abelian direct factor.
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In 2016, Azhdari characterized all finitely generated groupsG for which the equality
Autz(G) = Inn(G) holds. He proved the following:

Theorem 6.6 ([4], Theorem 2, p. 4134) Let G be a finitely generated group. Then
Autz(G) = Inn(G) if and only if one of the following assertion holds:

• G is purely non-abelian and Z(G) = G
′
is cyclic.

• G ∼= C2 × N where N is purely non-abelian with |Z(N)| odd and Z(N) = N
′

is cyclic (or Z(G) = C2 × G
′
is cyclic).

• G is torsion-free with Z(G) = G
′
is cyclic and det (MG) = 1 where MG is

skew-symmetric matrix corresponding to G.

In 2018, Sharma et al. [23] verified the equality Autz(G) = Inn(G) for the finite
p-groups of order up to p7 as follows:

Theorem 6.7 ([23], Theorem 2.1, p. 3) There is no p-group G of order up to p6

satisfying Autz(G) = Inn(G).

Theorem 6.8 ([23], Theorem 2.2, p. 3) A p-group G of order p7 satisfies
Autz(G) = Inn(G) if and only if Z(G) ∼= C2

p, |G′ | = p4 and cl(G) = 4.

In 2004, Curran [8] considered the case where the central automorphism group is
as small as possible. Clearly, Z(Inn(G)) ≤ Autz(G), for any group G. When G is
arbitrary, Autz(G) and Z(Inn(G)) may coincide because both these subgroups of
Aut(G) can be trivial. However, the situation becomes interesting if G is a p-group,
since both subgroups are nontrivial.

Theorem 6.9 ([8], Theorem 1.1, p. 223) Let G be a finite non-abelian p-group. If
Autz(G) = Z(Inn(G)), then Z(G) ≤ G

′
, and furthermore, Autz(G) = Z(Inn(G)) if

and only if Hom(G/G,Z(G)) ≈ Z(G/Z(G)).

In 2013, Sharma and Gumber [22] characterized p-groups of order ≤ p5(for any
prime p) and of order p6(for p odd), for which Autz(G) = Z(Inn(G)).

Theorem 6.10 ([22], Theorem 3.2, p. 3) Let G be p-group of order p5 and
cl(G) = 3. Then Autz(G) = Z(Inn(G)) if and only if d(G) = 2 and Z(G) ∼= Cp.

Theorem 6.11 ([22], Theorem 3.3, p. 3) Let G be a p-group of order p6, for an
odd prime p, and cl(G) = 3 0r4. Then Autz(G) = Z(Inn(G)) if and only if d(G) =
2 and Z(G) ∼= Cp.

Continuing the study of Curran [8] of minimum order of Autz(G), Gumber and
Kalra [12] obtained the following:

Let G/G
′ ∼= Cpr1 × . . . Cprn (r1 ≥ · · · ≥ rn ≥ 1) and Z2(G)/Z(G) ∼=

Cps1 × . . . Cpsm (s1 ≥ · · · ≥ sm ≥ 1).

Theorem 6.12 ([12], Theorem 2.1, p. 1803) Let G be a finite p-group with
Z(G) ∼= Cpb1 . Then Autz(G) = Z(Inn(G)) if and only if either G/G

′ ∼=
Z2(G)/Z(G) or d(G) = d(Z2(G)/Z(G)), si = b1 for 1 ≤ i ≤ c, and si = ri
for c + 1 ≤ i ≤ n, where c, 1 ≤ c ≤ n is the largest such that rc ≥ b1.
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Definition 6.6 The coclass of a finite p-group G of order pn is n− c, where c is the
class of the group.

Corollary 6.1 ([12], Corollary 2.2, p. 1804) Let G be a finite p-group of coclass
2. Then Autz(G) = Z(Inn(G)) if and only if Z(G) ∼= Cp and d(G) =
d(Z2(G)/Z(G)) = 2.

Corollary 6.2 ([12], Corollary 2.3, p. 1804) Let G be a finite p-group of coclass
3. Then Autz(G) = Z(Inn(G)) if and only if Z(G) ∼= Cp and d(G) =
d(Z2(G)/Z(G)) = 2, 3 or Z(G) ∼= Cp2 and Z2(G)/Z(G) ∼= G/G

′
.

Corollary 6.3 ([12], Corollary 2.4, p. 1804) Let G be a finite p-group of coclass
4. Then Autz(G) = Z(Inn(G)) if and only if one of the following conditions holds:

(a) Z(G) ∼= Cp and d(G) = d(Z2(G)/Z(G)) = 2, 3, 4.
(b) Z(G) ∼= Cp2 and either Z2(G)/Z(G) ∼= G/G

′
or Z2(G)/Z(G) ∼= Cp2 × Cp

and G/G
′ ∼= Cp3 × Cp or Z2(G)/Z(G) ∼= Cp2 × Cp and G/G

′ ∼= Cp4 × Cp.

(c) Z(G) ∼= Cp3 and Z2(G)/Z(G) ∼= G/G
′
.

Gumber and Kalra also generalized the results of Sharma and Gumber [22] as
follows:

Theorem 6.13 ([12], Theorem 3.1, p. 1804) Let G be p-group of order = p5 and
cl(G) = 3. Then Autz(G) = Z(Inn(G)) if and only if Z(G) ∼= Cp and d(G) =
d(Z2(G)/Z(G)) = 2.

Theorem 6.14 ([12], Theorem 3.2, p. 1805) Let G be a finite p-group such that
cl(G) = 3 or 4. Then, Autz(G) = Z(Inn(G)) if and only if Z(G) ∼= Cp and
d(G) = d(Z2(G)/Z(G)) = 2.

Also, Gumber and Kalra obtained the result for |G| = p7 as in [22]; it was up
to p6.

Theorem 6.15 ([12], Theorem 3.3, p. 1805) Let G be a p-group of order p7. Then
Autz(G) = Z(Inn(G)) if and only if one of the following holds:

cl(G) = 3, Z(G) � Cp and rank(G) = rank(Z2(G)/Z(G)) = 2, 3, 4.
cl(G) = 4 and either Z(G) � Cp and rank(G) = rank(Z2(G)/Z(G)) = 2, 3 or

Z(G) is cyclic group of order p2 and Z2(G)/Z(G) � G/G
′
.

cl(G) = 5, Z(G) � Cp and rank(G) = rank(Z2(G)/Z(G)) = 2.

Let G be a non-abelian p-group G. Let G/G
′ ∼= Cpc1 × Cpc2 × · · · × Cpcr (c1 ≥

· · · ≥ cr ≥ 1) and Z2G/Z(G) ∼= Cpd1 ×Cpd2 ×· · ·×Cpds (d1 ≥ d2 ≥ . . . ds ≥ 1),
where Cpai is a cyclic group of order pai .

In 2020, Attar [1] characterized the finite p-groups in some special cases,
including p-groups G with CG(Z(�(G)) �= �(G), p-groups with an abelian
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maximal subgroup, metacyclic p-groups with p ≥ 2, p-groups of order pn and
exponent pn−2, and Camina p-groups, for which Autz(G) is of minimal order, as
follows:

Theorem 6.16 ([1], Theorem 3.1, p. 4) Let G be a finite p-group such that
CG(Z(�(G)) �= �(G). Then Autz(G) = Z(Inn(G)) if and only if Z(G) is cyclic
and one of the following is true:

• G/G
′ ∼= Z2(G)/Z(G).

• r = s, di = h for 1 ≤ i ≤ t , di = ci for t + 1 ≤ i ≤ r , where ph = exp(Z(G))

and t is the largest integer between 1 and s such that ct > h.

Corollary 6.4 ([1], Corollary 3.2, p. 5) Let G be a non-abelian finite p-group with
an abelian maximal subgroup. ThenAutz(G) = Z(Inn(G)) if and only ifG

′ = Z(G)

and Z(G) is cyclic.

Theorem 6.17 ([1], Theorem 3.3, p. 6) Let G be a non-abelian metacyclic finite
p-group with p > 2. Then Autz(G) = Z(Inn(G)) if and only if Z(G) ≤ G

′
.

Corollary 6.5 ([1], Corollary 3.4, p. 6) The finite non-abelian p-groupsG of order
pn and exponent pn−1 for which Autz(G) = Z(Inn(G)) are of the following
isomorphism types:

(1) M(p3) = 〈α, β | αp2 = βp = 1, β−1 α β = α1+p〉(p > 2).
(2) D8 = 〈α, β | α4 = β2 = 1, β−1 α β = α−1〉.
(3) Q8 = 〈α, β | α4 = 1, β2 = α2, β−1 α β = α−1〉.

Corollary 6.6 ([1], Corollary 3.5, p. 7) Let p be an odd prime. Then finite non-
abelian p-groups of order pn and exponent pn−2 for which Autz(G) = Z(Inn(G))

are one of the following isomorphism types:

(1) G = 〈α, β, γ | αp = βp = γ p = 1, α β = β α, γ −1 α γ = α β, β γ = γ β〉.
(2) G = 〈α, β | αp3 = βp2 = 1, β−1 α β = α1+p〉.
(3) G = 〈α, β | αp4 = βp2 = 1, β−1 α β = α1+p2〉.

Corollary 6.7 ([1], Corollary 3.6, p. 8) The finite non-abelian 2-groupsG of order
2n and exponent 2n−2 for which Autz(G) = Z(Inn(G)) are one of the following:

(1) G = 〈α, β, γ | α8 = β2 = γ 2 = 1, β−1 α β = α5, γ −1 α γ = α β, β γ =
γ β〉.

(2) G = 〈α, β, γ | α2n−2 = 1, β2 = 1, γ 2 = β, β−1 α β = α1+2n−3
, γ −1 α γ =

α−1 β, 〉.
(3) G = 〈α, β | α16 = β4 = 1, β−1 α β = α5〉.
(4) G = 〈α, β | α2n−2 = 1, β4 = 1, β−1 α β = α−1+2n−4〉, where n ≥ 6.
(5) G = 〈α, β, γ | α2n−2 = 1, β2 = 1, γ 2 = 1, β−1 α β = α1+2n−3

, γ −1 α γ =
α−1+2n−4

β, β γ = γ β〉, where n ≥ 6.
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(6) G = 〈α, β, γ | α2n−2 = 1, β2 = 1, γ 2 = α2n−3
, β−1 α β =

α1+2n−3
, γ −1 α γ = α−1+2n−4

β, β γ = γ β〉, where n ≥ 6.
(7) G = 〈α, β, γ | α8 = 1, β2 = 1, γ 2 = α4, β−1 α β = α5, γ −1 α γ =

α β, β γ = γ β〉.
A pair (G,N) is called Camina pair if 1 < N < G is normal subgroup of G and for
every element g ∈ G/N , the element g is conjugate to all gN.

Theorem 6.18 ([1], Theorem 3.7, p. 12) Let G be a non-abelian finite p-group
such that (G,Z(G)) is a Camina pair. Then Autz(G) = Z(Inn(G)) if and only if
Z(G) ∼= Cp and G/G

′ ∼= Z2(G)/Z(G).

Theorem 6.19 ([1], Corollary 3.8, p. 12) Let G be a finite non-abelian Camina
p-group. Then Autz(G) = Z(Inn(G)) if and only if G

′ = Z(G) and Z(G) is cyclic.

6.2.3 Equalities with Class-Preserving Automorphisms

For a finite p-group G, the subgroup �m(G) is defined as 〈x ∈ G| xpm = 1〉, and
�m(G) is defined as 〈xpm | x ∈ G〉. For a finite p-group G with cl(G) = 2 , G/Z(G)

is abelian. Consider the following cyclic decomposition of G/Z(G) :

G/Z(G) ∼= Cpe1 × . . . × Cpek (e1 ≥ e2 ≥ · · · ≥ ek ≥ 1).

In 2013, Yadav (see [26]) and Kalra and Gumber (see [16]) characterized p-groups
of class 2 with Autz(G) = Autc(G) as follows:

Theorem 6.20 ([26], Theorem A, p. 2) Let G be a finite p-group of class 2. Then
Autz(G) = Autc(G) if and only if G

′ = Z(G) and |Autc(G) | = 	d
i=1|�mi

(G
′
)|

Theorem 6.21 ([26], Theorem B, p. 2) Let G be a finite p-group and cl(G) = 2
with Autz(G) = Autc(G) and then rank of G is even.

Theorem 6.22 ([16], Theorem 3.1, p. 3) Let G be a finite p-group. Then
Autz(G) = Autc(G) if and only if Autc(G) ∼= Hom(G/Z(G),G

′
) and G

′ = Z(G).

Theorem 6.23 ([16], Theorem 3.3, p. 4) Let G be a finite non-abelian p-group
such that the center of the group is elementary abelian. Then Autz(G) = Autc(G) if
and only if G is a Camina p-group and cl(G) = 2.

Theorem 6.24 ([16], Theorem 3.4, p. 4) Let G be a finite non-abelian p-group
such that Z(G) is cyclic. Then Autz(G) = Autc(G) if and only if Z(G) = G

′
.
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Definition 6.7 A finite p-group G of class 2 is said to have property (∗) if for some
π �mπ

i
(�ni

(Z(G)) ≤ [x,G] for all x ∈ G/Z(G) and i ∈ {1, . . . , k}.
In 2015, Ghoraishi found a necessary and sufficient condition for a finite p-group G

to satisfy Autz(G) = Autc(G), as follows:

Theorem 6.25 Let G be a finite p-group. Then Autz(G) = Autc(G) if and only if
Z(G) = G

′
and G has property (∗).

6.2.4 Equalities with Absolute Central and IA Automorphisms

Definition 6.8 A finite non-Abelian group G is said to be purely non-Abelian if it
has no nontrivial Abelian direct factor.

Let CAut(G)(Autl(G)) = {α ∈ Aut(G) | α β = β α, ∀ β ∈ Autl(G)} denote the
centralizer of Autl(G) in Aut(G). In [20], Moghaddam and Safa defined E(G) =
[G,CAut(G)(Autl(G))] = 〈g−1 α(g) |g ∈ G, α ∈ CAut(G)(Autl(G))〉. One can
easily see that E(G) is a characteristic subgroup of G containing the derived group
G

′ = [G, Inn(G)], and each absolute central automorphism of G fixes E(G)

elementwise [20, Theorem C].
Let

G/E(G) ∼= Cpe1 × Cpe2 × · · · × Cpek , (e1 ≥ . . . ek ≥ 1)

G/G
′ ∼= Cpf1 × Cpf2 × · · · × Cpfl , (f1 ≥ . . . fl ≥ 1)

L(G) ∼= Cpg1 × Cpg2 × · · · × Cpgm , (g1 ≥ . . . gm ≥ 1)

Z(G) ∼= Cph1 × Cph2 × · · · × Cphn (h1 ≥ . . . hn ≥ 1).

Since G/E(G) is a quotient group of G/G
′
, it follows that k ≤ l and ei ≤ fi for all

1 ≤ i ≤ k.

In the same year, M. Singh and D. Gumber [24] obtained the equalities of
Autz(G) with Autl(G), the group of absolute central automorphisms, and Autzl (G),
the group of absolute central automorphisms that fix the center elementwise, as
follows:

Theorem 6.26 ([24], Theorem 1, p. 864) Let G be a finite non-Abelian p-group.
Then Autz(G) = Autzl (G) if and only if either L(G) = Z(G) or Z(G) ≤ �(G),

G
′ = E(G), m = n, and e1 ≤ gt , where t is the largest integer between 1 and m

such that gt < ht .
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Theorem 6.27 ([24], Theorem 2, p. 865) Let G be a finite non-abelian p-group
such that L(G) < Z(G). Then Autz(G) = Autzl (G) if and only if Z(G) ≤ �(G),

G
′ = E(G)Z(G), m = n, e1 ≤ gt , where t is the largest integer between 1 and m

such that gt < ht .

In 2014, Rai [21] characterized finite p-groups for which Autz(G) = IAz(G),
where IAz(G) denote the group of those IA automorphisms which fix the center
elementwise, as follows:

Theorem 6.28 ([21], Theorem B(1), p. 170 ) Let G be a finite p-group. Then
Autz(G) = IAz(G) if and only if G

′ = Z(G).

Let X and Y be the two finite abelian p-groups, and let X ∼= Cpa1 × Cpa2 ×
· · · × Cpai and Y ∼= Cpb1 × Cpb2 × · · · × C

p
bj be the cyclic decomposition of X

and Y , where at ≥ at+1 and bs ≥ bs+1 are positive integers. If either X is proper
subgroup or proper quotient group of Y and d(X) = d(Y ), then there certainly
exists r , 1 ≤ r ≤ i such that ar < br, ak = bk for r + 1 < k < i. For this unique
fixed r , let var(X, Y ) = pr . In other words, var(X, Y ) denotes the order of the last
cyclic factor of X whose order is less than that of corresponding cyclic factor of Y.

In 2016, Kalra and Gumber obtained Autz(G) = IAz(G) for finite non-abelian
p-groups as follows:

Theorem 6.29 ([17], Theorem 2.12, p. 5) Let G be a finite non-abelian p-group.
Then Autz(G) = IAz(G) if and only if either G

′ = Z(G) or G
′
< Z(G), d(G

′
) =

d(Z(G)) and exp(G/G
′
) ≤ var(G

′
, Z(G)).

6.2.5 Equalities with Central Automorphisms Fixing the
Center Elementwise

In 2007, Attar [2] characterized groups in which the central automorphisms fixing
the center elementwise are precisely inner automorphisms, as follows:

Theorem 6.30 ([2], Theorem, p. 297) If G is a p-group of finite order, then
Autzz(G) = Inn(G) if and only if G is abelian or nilpotency class of G is 2 and
Z(G) is cyclic.

Let G be a finite p-group of class 2. Then G/Z(G) and G
′
have equal exponent

pC(say). Let

G/Z(G) ∼= Cpc1 × Cpc2 × · · · × Cpcm (c1 ≥ · · · ≥ cm ≥ 1)

where Cpci is a cyclic group of order pci , 1 ≤ i ≤ r . Let k be the largest integer
between 1 and r such that c1 = c2 = ck = e. Note that k ≥ 2. “Let M be the
subgroup of G containing Z(G) such that
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M̄ = M/Z(G) = Cpc1 × Cpc2 × · · · × Cpck .”

Let

G/G
′ ∼= Cpd1 × Cpd2 × · · · × Cpdn d1 ≥ d2 ≥ . . . ds ≥ 1

be a cyclic decomposition of G/G
′
such that M̄ is isomorphic to a subgroup of

N̄ = N/G
′ := Cpd1 × Cpd2 × · · · × Cpdk .

In 2009, using the above terminology, Yadav proved the following:

Theorem 6.31 ([25], Theorem, p. 4326) Let G be a finite p-group of class 2.
Then Autz(G) = Autzz(G) if and only if m = n, G/Z(G)/M̄ ∼= (G/G

′
)/N̄ , and

exp(Z(G)) = exp(G
′
).

In 2011, Azhdari and Akhavan-Malayeri [5] generalized the result of Attar in [2]
for the finitely generated groups of nilpotency class 2. They got the following:

Theorem 6.32 ([5], Theorm 0.1, p. 1284) Let G be a finitely generated of cl(G) =
2. Then Autzz(G) = Inn(G) if and only if Z(G) ∼= Cp or Z(G) ∼= Cn × Z

s where
exp(G/Z(G))/n and s is torsion-free rank of Z(G).

Theorem 6.33 ([5], Corollary 0.2) Let G be a finitely generated group of class 2,
which is not torsion-free. Then Autzz(G) = Inn(G) if and only if cl(G) = 2 and
Z(G) is cyclic or Z(G) ∼= Cn × Z

s with exp(G/Z(G)) divides n and s is torsion-
free rank of Z(G).

Theorem 6.34 ([5], Corollary 0.3) Let G be a finitely generated of cl(G) = 2. G
′

is torsion-free, and Autzz(G) = Inn(G) if and only if Z(G) is infinite cyclic.

In the same year, Jafari also found a necessary and sufficient condition on a finite
p-group G such that Autz(G) = Autzz(G), as follows:

Theorem 6.35 Let G be a finite p-group. Then Autz(G) = Autzz(G) if and only if
Z(G)G′ ⊆ Gpn

G′, where exp(Z(G)) = pn.

Let G be a non-abelian finite p-group. Let

G/G
′ = Cpc1 × Cpc2 × · · · × Cpcr (c1 ≥ . . . cr ≥ 1).

G/G
′
Z(G) ∼= Cpd1 × Cpd2 × · · · × Cpds (d1 ≥ . . . ds ≥ 1).

and Z(G) ∼= Cpe1 × Cpe2 × · · · × Cpet (e1 ≥ . . . et ≥ 1).
since G/G

′
Z(G) is a quotient of G/G

′
.
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In 2012, Attar [3] gave a necessary and sufficient condition on finite p-group G

such that Autz(G) to be Autzz(G), as follows:

Theorem 6.36 ([3], Theorem A, p. 1097) Let G be a non-abelian finite p-group.
Then Autz(G) = Autzz(G) if and only if Z(G) ≤ G

′
or Z(G) ≤ �(G), r = s, and

c1 ≤ bm where m is the largest integer between 1 and r such that am > bm.

Theorem 6.37 ([3], Corollary 2.1, p. 1098) Let G be a non-abelian finite p-group
such that exponent of Z(G) is p. Then Autz(G) = Autzz(G) if and only if Z(G) ≤
�(G).
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