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Preface

This book on the impact of climate change on natural resources, landscape and 
agricultural ecosystems describes the contributing aspects of climate change related 
to natural resources, soil erosion, irrigation planning, water, landscape, sustainable 
crop yield agriculture, biomass estimation, problems of climate change and dis-
cusses the related resulting mitigation system. Natural resources and agricultural 
ecosystems include factors from nearby regions where climate change, landscape, 
and agricultural practices directly or indirectly interface with the water, vegetation, 
irrigation planning, and ecology present. Changes in climatic situations impact all 
natural resources, ecology, and landscape of agricultural systems, which can possi-
bly poorly affect their productivity. This book covers the various aspects of soil 
erosion, soil compaction, soil nutrients, aquifer, water of climate change in respect 
to vegetation’s, crops, pest, water and sustainable yield for the development of the 
climate change factors and agricultural sector, sustainable development and man-
agement for the future. It also focuses on the use of precision techniques, remote 
sensing, GIS technologies, IoT, and climate-related technology for sustainability of 
ecology, natural resources, and agricultural area along with the capacity and flexi-
bility of natural resources, ecology, and agricultural societies under climate change. 
Climate change, natural resources, landscape, irrigation planning, water, sustain-
able yield, and agricultural ecosystems include both theoretical and applied aspects, 
and help as guideline information for future research. This is a very important book 
for researchers, scientists, NGOs, and academicians working in the fields of climate 
change, environmental sciences, agricultural engineering, remote sensing, natural 
resources management, GIS, hydrology, soil sciences, agricultural microbiology, 
plant pathology, and agronomy.

This volume comprises 29 chapters contributed by various researchers, scien-
tists, and professors from around the world. It includes research work by professors, 
planners, scientists, and research scholars from various universities, international 
organizations, and institutions of India as well as of other countries. The chapters 
provide an in-depth analysis of climate change, impact analysis, sustainability of 
agroecosystems, vulnerability assessment of stakeholders, climate-smart farming, 
land use and land cover change detection, precision farming, land surface 
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temperature, flood impact analysis, crop yield, irrigation to mitigate agriculture, and 
climate change impacts on natural resources, agriculture, and ecosystems.

We sincerely thank Robert Doe, Publishing Editor, Springer, and Fairle T Thattil 
(Ms.) for their generous assistance, constant support, and patience in finalizing 
this book.

Pune, Maharashtra, India Chaitanya B. Pande

Aliyabad, Rajasthan, India Kanak N. Moharir

Allahabad, Uttar Pradesh, India Sudhir Kumar Singh

Sosnowiec, Poland Quoc Bao Pham

Al Manşūrah, Egypt Ahmed Elbeltagi

Preface
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Chapter 1
Impact of Climate Change on Livelihood 
Security and Biodiversity – Issues 
and Mitigation Strategies

Gyanaranjan Sahoo, Prasannajit Mishra, Afaq Majid Wani, Amita Sharma, 
Debasis Mishra, Dharitri Patra, Ipsita Mishra, and Monalisa Behera

Abstract Climate change is one of the most pressing issues of our day, posing a 
threat to the lives and livelihoods of billions of people worldwide. Natural disasters, 
biodiversity loss, and rising temperatures destroy crops, diminish ecosystems, put 
livelihoods in jeopardy, and accelerate the spread of fatal diseases. Climate change 
mixes population trends, migration, and greater urbanisation, putting the most vul-
nerable people at risk. Climate change is the most important impediment to achiev-
ing sustainable development through biodiversity conservation, and it threatens to 
impoverish millions of people. Species distributions have changed to higher alti-
tudes at a median pace of 11.0 m and 16.9 km per decade to higher latitudes as a 
result of climate change. As a result, under migration scenarios, extinction rates for 
1103 species range from 21–23% with unrestricted migration to 38–52% with no 
migration. When an environmental change happens on a period shorter than the 
plant’s life, a plastic phenotypic may emerge as a reaction. Phenotypic flexibility, on 

G. Sahoo (*) 
Krishi Vigyan Kendra, Odisha University of Agriculture & Technology, Angul, Odisha, India 

Extension Education, Odisha University of Agriculture and Technology,  
Bhubaneswar, Odisha, India 

P. Mishra 
Extension Education, Odisha University of Agriculture and Technology,  
Bhubaneswar, Odisha, India 

A. M. Wani 
Department of Forest Biology and Tree Improvement, Sam Higginbottom University of 
Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India 

A. Sharma 
Krishi Vigyan Kendra, Rajmata Vijayaraje Scindhia Krishi Viswa Vidyalaya,  
Gwalior, Madhya Pradesh, India 

D. Mishra · D. Patra · I. Mishra · M. Behera 
Krishi Vigyan Kendra, Odisha University of Agriculture & Technology, Angul, Odisha, India

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023
C. B. Pande et al. (eds.), Climate Change Impacts on Natural Resources, 
Ecosystems and Agricultural Systems, Springer Climate, 
https://doi.org/10.1007/978-3-031-19059-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19059-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-19059-9_1


2

the other hand, might protect species against the enduring impacts of climate 
change. Climate change also has an impact on food security, especially in people 
and areas that rely on rainfed agriculture. Crops and plants have growth and yield 
limits that must be respected. As a result, agricultural productivity in Africa alone 
might plummet by more than 30% by 2050. Climate change is already wreaking 
havoc on people’s lives, especially the impoverished. Because rural people rely on 
natural resources, their livelihoods are jeopardised by frequent climate change. The 
impact of climate change on natural resource-based rural livelihoods is anticipated 
to be uneven and ecosystem resilience will be strengthened as a result of biodiver-
sity conservation, and ecosystems will be better able to deliver critical functions in 
the face of increasing climate stresses. Moreover, as a consequence of global influ-
ence, the warming trend has changed significantly over the years. In addition to 
ensuring the livelihood security of rural people, a number of adaptation approaches 
species and ecosystems in a changing climate may be recommended.

Keywords Biodiversity · Climate change · Livelihood security · Mitigation · 
Rural · Strategies · Sustainable development

 Introduction

Global warming has become commonplace, with heads of state, scientists, and envi-
ronmental activists frequently making dire pronouncements. Extreme weather 
events, unpredictably changing global weather patterns, epidemics, and devastating 
infernos are all examples of climate change and the spread of exotic classes of flora 
and fauna in new regions is undoubtedly changing global climate (Trew and Maclean 
2021; Chinnasamy and Srivastava 2021). Changes in weather patterns, according to 
sceptics of global warming, are a natural component of the Earth’s temperature 
fluctuation, while the majority of scientists say they are most likely as a result of 
human-caused imbalances in heat-trapping greenhouse gases (GHG) in the atmo-
sphere (Sahoo et al. 2021). Climate change is a worldwide subject that scientists 
have been concerned about since the nineteenth century, and its effects may still be 
seen today. Regional Circulation Models (RCM) project the average yearly tem-
perature is anticipated to rise by 1.4 °C by 2030, 2.8 °C by 2060, and 4.7 °C by 2090 
(IPCC 2021). Tropical countries have a high reliance on agriculture and related 
activities for their livelihoods and household economies, making them particularly 
susceptible to climate change. Climate change might affect food production, result-
ing in an increase in hunger, poverty, malnutrition, food insecurity, and food avail-
ability (IPCC 2019). Coastal subsistence farming is particularly susceptible to heat 
and water stress, and as a result, growing seasons will be shortened (Ajit et al. 2013; 
FAO 2019; Pande et al. 2021a; Orimoloye et al. 2022). Because of global warming, 
rising temperatures are becoming more common and intense, destabilising food 
prices, and hindering the region’s growth and development (Inder et  al. 2018). 
Rapid land usage, ineffective land management, overexploitation, and increased 
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fossil fuel burning for industrial and residential purposes are all key causes of cli-
mate change in tropical countries (Pande et al. 2021b).

The United Nations Framework Convention on Climate Change (UNFCCC) has 
yet to define what constitutes harmful interference with the climate system as a 
result of human activity, as well as allowed constraints for ecological implications, 
food supply, and cost-effective growth (Trew and Maclean 2021). However, arbi-
trary stabilising limits ranging from 450 ppm to 750 ppm have developed as a result 
of this. In 1990, the Advisory Group on Greenhouse Gases (AGGG) of the World 
Meteorological Organization (WMO), the International Council on Science (ICSU), 
and the United Nations Environment Programme (UNEP) developed two primary 
temperature indications or verges, each with diverse degrees of hazard (Barnosky 
et al. 2011). It was claimed that a temperature intensification of more than 1.0 °C 
higher than before the industrial revolution “may elicit rapid, unpredictable, and 
nonlinear responses that could lead to extensive ecosystem damage,” with the cur-
rent rise in temperatures of more than 0.1 °C per span. A temperature increase of 
2.0 °C was also gritty to be “an upper limit beyond which the odds of severe eco-
logical harm, as well as nonlinear reactions, are expected to rapidly develop.” One 
of the key findings of the IPCC TAR is that global warming would almost certainly 
result in significant lost revenues in many poor nations, notably in Africa, at all 
degrees of warming, with these losses increasing as temperatures rise (IPCC 2021). 
Global temperature and rainfall are anticipated to increase, conferring to the IPCC 
(2021) statement, and climate change is anticipated to be one of the most notewor-
thy causes of habitat destruction at all stages over the next 50–100  years, com-
pounding the consequences of prior actions challenges to habitat destruction. 
Climate change, global warming, economic crises, deforestation, and other factors 
are all threatening to rural livelihoods. This fact demonstrates the detrimental impact 
on rural livelihoods, forcing people to relocate to other areas, particularly cities (Ali 
and Erenstein 2017). People in rural and urban areas may contribute to the creation 
of a sustainable society by engaging in constructive activities (Brito-Morales et al. 
2018). Rural and urban residents should maintain an interdependent connection in 
which city residents provide specialists to rural areas to educate and train them, 
while rural residents provide diverse food products to meet the needs of metropoli-
tan society (Midgley and Bond 2015).

“A livelihood comprises the capacities, assets (stores, resources, claims, and 
access) and activities essential for a means of living,” including one of the next 
interpretations of livelihood by Chambers and Conway. A livelihood is justified if it 
can withstand and sustainable when it can cope, retain or increase its functions, and 
provide viable income-generating possibilities (IUCN 2016). Other concerns such 
as agriculture policy, market conditions, other economic opportunities, other factors 
and position families with different asset access in a variety of scenarios affecting 
and complicating their livelihood choices. Diversified strategies in terms of flexibil-
ity must be viewed as a wide variety of options for actors with varied resource avail-
ability starting points, as well as for the same families over the course of their 
lifetimes or demographic cycles (Verma 2019). These decision-making processes 
may also be thought of as a blend of free will and necessity, as well as a duality of 

1 Impact of Climate Change on Livelihood Security and Biodiversity – Issues…
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structure vs. agency. Selections are made, but they are frequently “given” or con-
strained by significant preconditions or constraints (Trull et al. 2018).

Environment alteration, depletion of resources, environmental issues, species 
extinction, and habitat loss events, sometimes known as the “evil five” biodiversity 
intimidations, are the primary causes of contemporary biodiversity loss (Brook 
et al. 2005; Sonwa et al. 2017). The loss of biodiversity has an ecological impact 
(Gusli et  al. 2020), with environmental change being the primary cause. 
Environmental factors, in combination with other factors, play a vital role in deter-
mining how organisms operate and spread. Environmental changes have had and 
will continue to have a major influence on species distributions, both now and in the 
future (Fardila et al. 2017). Only a few studies, on the other hand, have directly 
quantified biodiversity extinctions as a result of climate change. As a consequence, 
predictions may be able to provide light on the many components of climate change, 
as well as the dangers to global biodiversity that they pose (IPCC 2020). Despite the 
difficulty of distinguishing the effects of climate change from those of other multi-
ple impacts for a variety of species, expectations may give insight into climate 
change’s numerous constituents and their concept which refers intimidations to spe-
cies diversity (Trull et al. 2018). Tubiello and Rosenzweig (2008) provide a para-
digm for analysing vulnerability in the agricultural sector based on exposure, 
sensitivity, and adaptability. Table 1.1 shows the agriculture sector’s vulnerability 
indicators. The exposure relates to biophysical markers, as shown in the Table. Soil 
and climate (temperature/precipitation), crop calendar, water availability, and yields 
can all be used as exposure indicators. On the subject of exposure, history and cur-
rent climatic drifts and inconsistency in Asia reveal that they are often characterised 
by rising surface air temperatures, which are more prominent during the winter than 
during the summer (IPCC 2007). Increasing temperature movements have been 
recorded across Asia’s sub-regions. In various places of Asia, the pragmatic rise 
over the last few decades have ranged from less than 10 °C to 30 °C per century. The 
increase in surface temperatures is reported to be more dramatic in North Asia. 
Inter-annual, inter-seasonal, and regional variability in rainfall patterns has been 

Table 1.1 Framework for vulnerability criteria

Categories Vulnerability criteria Measurement class

Biophysical indicators Exposure Soil and climate
Crop calendar
Water availability and storage
Biomass/yield

Agricultural system characteristics Sensitivity Land resources
Inputs and technology
Irrigation share
Production

Socio-economic data Adaptive capacity Rural welfare
Poverty and nutrition
Protection and trade
Crop insurance

Source: Adapted from Tubiello and Rosenzweig (2008)
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documented in Asia in recent decades. It should be noted that annual mean rainfall 
is dropping in North-East and North China, Pakistan’s coastal belts and dry plains, 
sections of North-East India, Indonesia, the Philippines, and some areas of Japan. 
Annual mean rainfall, nevertheless, is increasing in Western China, the South-East 
coast of China, the Changjiang Valley, Bangladesh, the Arabian Peninsula, and the 
western shores of the Philippines (IPCC 2007). The frequency of more severe rain-
fall events has increased in many parts of Asia, resulting in significant floods and 
landslides, although rainfall intensity and total annual precipitation have reduced as 
a result of changes in extreme climatic events. Global warming, as well as other 
shocks and perturbations, is critical for the agricultural industry, as well as for indi-
viduals seeking to safeguard and improve their livelihoods. Effective climate change 
adaptation requires adaptive ability, knowledge, and skills, as well as the resilience 
of livelihoods and alternatives, resources, and access to suitable frameworks (Sahoo 
and Wani 2020). While farm-level climate change adaptation requires more public- 
and private-sector expenditure, technology advancements, government initiatives, 
and insurance schemes all require additional public- and private-sector spending 
(Brown et al. 2018a, b). Climate change, at its current rate and severity, will almost 
probably outstrip the ability of a wide range of plants to acclimate to new weather 
conditions, subsequent in growing loss of habitat (Keith et al. 2008; Loarie et al. 
2009; Bellard et al. 2012). In the face of climate change, climate velocity is defined 
as the rate and direction at which a species must migrate to preserve its current cli-
matic conditions (Brito-Morales et al. 2018). This is seen in Africa, where environ-
mental degradation, climate change, and rapid population growth all pose serious 
threats, expanding populations have unanticipatedly serious negative effects 
(Midgley et al. 2002; Barlow et al. 2018). As a result of this transition, a higher 
environmental issue is in growing market, leading to land use changes and the use 
of unsustainable species (Sahoo et al. 2020a). Furthermore, these variations have a 
major impact on biodiversity and ecological processes. This article focuses on how 
climate change impacts people’s livelihoods, as well as biodiversity loss and the 
strategic actions taken to protect biodiversity and offer livelihood stability for rural 
people (Ali and Erenstein 2017). Framework for Vulnerability Criteria is shown in 
Table 1.1.

 Influence of Environmental Change

Agriculture may be jeopardised by global climate change, social protection, and 
subsistence agriculture for a variety of people, including the impoverished in Asian 
countries. The negative impact on small-scale farmers will be amplified. Farmers, 
fishermen, and people who rely on the forest for their livelihood, who are already 
fragile and food insecure, are anticipated to suffer as a result of global climate 
change (Sahoo et al. 2020a). Farmers may benefit from agriculture adaptation and 
mitigation. The surviving methods might be useful in developing long-term 
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adaption strategies. Farmers have a lot of potential to store carbon in the soil pro-
vided appropriate legislative reforms are implemented.

 The Issue of Water

In agricultural production, water is the most valuable element. Improving rural liv-
ing conditions necessitates the development of groundwater resources management 
(Khadri and Pande 2016). Agriculture must contend with urbanisation, water, and 
industry for water. As previously said, small-scale farmers rely on water more than 
large-scale farms (Abdisa et  al. 2017; Kouadri et  al. 2022). The World Health 
Organization has extra canal water access. Several parts of the Asian country are 
running out of water. In the future, marginal and small farmers will confront more 
water-related challenges. As a result, water management will become increasingly 
important for these farmers (Barrios et al. 2018).

 Diversification

Indian diets have shifted away from cereals and towards high-priced items such as 
milk and meat, as well as vegetables and fruits. Diet diversity in India is mostly due 
to rising conservatism as a result of rapid urbanisation, rising greater women’s par-
ticipation in employment generation, increased household earnings, and the effect 
of globalisation (Sahoo et al. 2021). Hi-value goods have bloomed with the rise of 
the middle class, with the consequences apparent in the increased demand for high- 
value processed foods (Matata and Adan 2018). In India, there is an increasing 
demand for non-food grain products. In Asian countries, physical property expendi-
ture on non-cereal food items continues to be relatively high. In rural regions, it is 
three times higher than grains, while in urban areas, it is almost ten times higher. 
Fruit and vegetable intake increased the most per capita, followed by edible oils.

 Susceptibility and Hazard

There is ample evidence to indicate that the poorest of the poor are exposed to a 
variety of hazards that might affects people, groups, or entire populations, all of 
which can have devastating consequences for their livelihoods and well-being. They 
need greater individual or family exposure to a variety of hazards. (a) Morbid obe-
sity, sickness, accidents, and incapacity are all examples of nutrition disruptions; (b) 
many people labour in the informal economy, which has a substantial threat of wage 
stagnation; (c) crop hazards, life cycle dangers, cultural threats, and unique threats 
for disadvantaged teams are all factors to consider (Barrios et al. 2018). Droughts, 
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floods, cyclones, structural change policies, and other community risks must also be 
addressed. These dangers are particularly dangerous for small and marginal farms. 
Borrowing, asset sales, savings defrayal, family and government help, swelling 
labour supply, child labour, healthy labour, demand reduction, migration, and so on 
are some of the household heading processes. To deal with the negative impacts of 
risks and vulnerabilities, comprehensive social protection programmes are 
required (Pande and Moharir 2021).

 The Impacts on Urban Livelihoods

Climate change affects urban livelihoods in both direct and indirect ways. Urban 
populations are overly reliant on services like water and electricity being delivered 
on time. When these amenities are threatened by climate change, city inhabitants 
are more powerless than their rural counterparts, who can at least dig wells and 
gather firewood for cooking. Furthermore, reduced/disrupted water and energy sup-
plies have an influence on industrial productivity and profitability; livelihoods based 
on low-input market gardening, particularly among the urban poor; human health; 
and overall living standards (Abdisa et al. 2017).

 Heavy Rainfall and Floods

Extreme occurrences such as cyclones and the storm surges and inland flooding that 
accompany them have a significant impact on infrastructure and livelihoods, par-
ticularly in the informal sector in metropolitan areas. Flooding caused by cyclones 
and severe rainfall causes damage to highways, bridges, stores, homes, and other 
infrastructure (Chen et al. 2011). Floods cause business losses when trade is inter-
rupted, items are lost, and flood and water damage is repaired. Furthermore, strong 
rains and floods have a negative impact on the informal sector, notably street selling, 
as they are unable to conduct their enterprises (Sahoo et al. 2019). Their livelihood 
and food security are frequently reliant on revenue obtained from daily commodity 
transactions (Brook et al. 2008). Climate change adaptation, as well as other shocks 
and perturbations, is essential for the agricultural business, as well as for people 
trying to protect and enhance their livelihoods. Environmental management requires 
responsiveness, awareness, and competencies, as well as the resilience of incomes 
and options, resources, and exposure to suitable authorities (Bezabih et al. 2014). 
Climate change adaptation requires increased public and private sector spending, 
technological breakthroughs, and legislative reforms, whereas farm-level climate 
change adaptation provides a range of solutions, including floods and private sector 
expenditures (Paavola 2004). Agricultural and animal management practices, the 
usage and control of forests, and a wide range of on-farm and off-farm integrated or 
globalised survival options, as well as variations in agricultural and animal 
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management practices, land use and land management, and a range of on-farm and 
off-farm integrated or a variety of sources of income are all options. People and 
families are already adjusting to changing climatic circumstances, despite the fact 
that climate change has yet to be assimilated into mainstream advance strategies in 
European countries (FAO 2020).

Around 85% of the world’s agrarians are smallholder farmers. The preponder-
ance of these people is common in poor countries in South Asia and sub-Saharan 
Africa, but they also control rural areas of a number of higher-income countries, 
counting CEEC, Western Balkan countries, and Bosnia and Herzegovina (OECD 
2014). These regions are characterised by poverty is pervasive in rural areas, with a 
significant rural population, widespread poverty, and enormous expanses of low 
agricultural output due to perpetually declining a limited supply of resources, and a 
constricted market, and major climate threats. Small-scale farmers are reliant on 
subsistence farming and existence, and many lack the means and capacity to adapt 
to climate change’s consequences (Sahoo et al. 2020a). Lower agricultural produc-
tivity may have an influence on food security, nutrition, income, and happiness. As 
a result of climate change, farmers will face greater risks and uncertainties. Modern 
agricultural alterations have a direct and indirect influence on food security, and also 
income creation and dissemination, and hence farm produce demand (Verma 2019).

Several alternative approaches will be necessary to minimise the intensity of 
climate change impacts. Both in relation to the perceived socio-economic choices 
and agricultural increased efficiency. The most significant drivers of adaptation, 
according to empirical research across disciplines, are resource, institutional, infor-
mational, and financial limitations (Rahman and Hickey 2019). Modifications can 
also be planned (public) or unplanned (private), with the latter dependent on how 
climate change perspectives are agriculture outcome. Furthermore, due to conflict-
ing social backgrounds and societal goals, independent adaptations will almost 
likely be insufficient to address the climate change which has the potential to cause 
damage and even maladaptation (Swaminathan and Kesavan 2012). As a result, 
policies must “mainstream” climate change response strategy and resource develop-
ment in order to allow and encourage successful climate change adaptation develop-
ment and capacity building. Agriculture can acclimatise to climate change through 
a variety of management approaches and the adoption of new technology. When it 
comes to adapting and embracing new techniques and technologies, there is no 
“one-size-fits-all” solution (OECD 2014). Effective variation should be based on 
appropriate, regional, and empirical data that is regularly changed as a result of 
fresh research. Because of the scale of climate change and its unpredictability, as 
well as the ability to respond to these changes, the degree of sustainable adaptation 
is directly linked to vulnerability, whether for assessment or implementation. 
Poverty and, as a result, a lack of agility are frequently shaped by restricted access 
to assets and capacities for earning a living (Abdisa et  al. 2017). Unfortunately, 
depending just on financial resources may exaggerate people’s adaptable capacity, 
and socio-cognitive factors should be included to generate more realistic adaption 
simulations and societal consequences.
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 Combined Effect Between Food Security and Climate 
Change Mitigation

Climate change vindication has never been a vital driver of agricultural activities, 
and it is unlikely to be in the future. Rural households are plainly uninterested in 
carbon sequestration on farms for climate change mitigation, especially if mitiga-
tion approaches do not result in immediate financial or welfare improvements 
(Workie and Debella 2017). Smallholder ranchers might be reluctant to surrender 
any of their frequently pitiful homestead benefits to sequester carbon. Carbon- 
sequestering land use procedures should either be financed to the degree that they 
are comparable to inevitable benefits from elective land uses, or they should be 
beneficial by their own doing – with no pay – if such ranchers are to add to relief 
regardless (IPCC 2013). With biocarbon projects actually attempting to defeat mon-
etary, institutional, and administration hindrances, the most obvious opportunity 
with regards to sequestering carbon for an enormous scope on Africa’s ranches is 
through advancements that further develop food security while likewise giving sup-
portability administrations (for example, expanded parkland tree cover, diverse cul-
tivating, intercropping, and land sharing practices) (Ignaciuk and Mason-D’Croz 
2014). Agroforestry is one of the few land use practices that can help with food 
security as well as climate change mitigation. It is also less likely to have a detri-
mental impact on non-carbon ecosystem services like water cycle regulation and 
biodiversity protection, both of which are important components of “climate-smart 
agriculture,” than other options (Rahman and Hickey 2019). Agriculture and for-
estry are responsible for approximately a third of all human greenhouse gas emis-
sions. As a result, mitigation initiatives should concentrate on these industries. 
However, it should be remembered that seas, lakes, forests, and agricultural areas all 
trap and store huge amounts of carbon, helping to mitigate climate change (FAO 
2020). Agricultural methods may contribute significantly to raising soil carbon 
sinks and reducing GHG emissions at a cheap cost. In other words, in agriculture, 
forestry, and fisheries, sustainable production and consumption should be the driv-
ing factors for lowering GHG emissions.

 Mitigating Methane Emissions Through New Irrigation 
Schemes (Bohol, Philippines)

Bohol Island is one of the major rice-growing areas in the Philippines’ Visayas 
region. Two older reservoirs (Malinao and Capayas Dams) were beset by issues and 
unable to produce adequate water for the second crop season (November to April) 
prior to the construction of the Bohol Integrated Irrigation System (BIIS) in 2007. 
Farmers’ penchant for permanently flooded rice-growing conditions exacerbated 
the situation, as did the practice of uneven water distribution. In response to deterio-
rating rice yield, the National Irrigation Administration (NIA) devised an action 
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plan for the BIIS (FAO 2009). Among the projects were the construction of a new 
dam (Bayongan Dam; funded by a loan from the Japan Bank for International 
Cooperation) and the adoption of Alternate-Wetting and Drying (AWD), a water- 
saving technology developed by the International Rice Research Institute (IRRI) in 
collaboration with national research institutes. The apparent efficacy of AWD on 
pilot farms, along with specific farmer training programmes, was able to debunk the 
widely held idea that non-flooded rice fields would result in output losses. Because 
of the extensive usage of AWD, irrigation water was used more efficiently, allowing 
cropping intensity to be increased from 119% to 160% (related to the maximum of 
200% in these double cropping systems). Furthermore, as compared to continuous 
flooding of rice fields, the new IPCC methodology (IPCC 2007) states that “multi-
ple aeration,” to which the AWD adheres, can reduce methane emissions by up to 
48%. As a consequence, AWD offers several benefits, including lower methane 
emissions (mitigation), decreased water usage (adaptation in water-scarce loca-
tions), enhanced output, and contribution to food security. Source: FAO 2010

 Challenges

Substantial rising temperatures provide both difficulties and solutions for rethinking 
sustainability aspirations that do not appear to be simple to comprehend. Despite the 
fact that conservation concepts and practices have evolved through time, there are 
major institutional and cognitive barriers to shifting ecological perspectives and 
reconfiguring goals (Harvey et al. 2014). The following are some of the institutional 
impediments to rethinking and reconfiguring objectives: (1) laws and principles; (2) 
rules and procedures for leadership; (3) people and economic investment; and (4) 
science and information (Montoya and Raffaelli 2010). Lawful obligations and 
rules, in specific, may extant problematic obstacles. Several current regulations, 
such as the Endangered Species Act, impose certain techniques on managers, limit-
ing their freedom to change aims and management objectives. Several recent legal 
studies (Matocha et al. 2012; Mora et al. 2011) provide some insight into the com-
plexities of Federal conservation rules as they pertain to global climate change vari-
ation. Psychological impediments, on the other hand, will be challenging to 
eliminate. Due to a strong aversion to making trade-offs, which are referred to in the 
scientific literature as “protected values,” many conservationists, according to Nye 
et  al. (2010), find it tough to progress the well-known aims of regenerating and 
safeguarding current patterns of richness, as well as sustainability goals chosen in 
advance. Doney et al. (2012) further speculated that conservationists’ general aver-
sion to “giving up on anything” might explain the restricted range of transforma-
tional adaptation techniques as comparison to keeping the current order.

Several environmentalists think that using the high conservation value (HCV) 
method is a good way to identify and mitigate the negative consequences of unman-
aged natural resource use (Monzon et al. 2011). However, as its reach has broad-
ened and diversified, HCV users and assessors have speculated, scrutinised, and 
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criticised its appropriateness for biodiversity conservation (OECD 2014). The HCV 
idea is evolving from a heuristic learning-by-experience model to a comprehensive 
management tool that allows for improved prioritising of components such as eco-
system services, biodiversity, and socio-economic-cultural values.

Some of the major research problems in this area include the following:

 1. Primary and secondary research are covered in a comprehensive spatiotemporal, 
contextual, and particular manner

 2. Development of HCV component, category, and definition interpretations at the 
federal provincial, regional, and municipal levels

 3. Difficulties in putting a management plan in place at the landscape level
 4. Participation of the public and FPIC implementation
 5. HCVs are prioritised for retention depending on their human significance and 

vulnerabilities.

Environmental and economic NGOs, as well as wealthy individuals, have backed 
the HCV method. This community of partners demonstrates how the HCV approach 
may benefit a wide number of stakeholders while simultaneously balancing ethical, 
cultural, and political concerns (Pacifici et al. 2015). However, in agricultural set-
tings, it is frequently misappropriated, resulting in low-quality HCV assessments 
(Mora et al. 2011). This makes distinguishing between technique flaws and those 
induced by bad application more challenging.

 Climate Change’s Impact on Biodiversity

As a consequence of a wide range of human-caused activities, biodiversity is disap-
pearing and becoming increasingly vulnerable around the world (Fardila et al. 2017; 
Barlow et  al. 2018). “A semi-permanent or permanent qualitative or quantitative 
decline in elements of biodiversity and their potential to produce products and ser-
vices, to be restricted at world, regional, and national levels,” according to the 
Convention on Biological Diversity (CBD COP VII/30). According to fossil records, 
a private vertebrate species went extinct after an average of one million years 
(Lambin and Meyfroidt 2011). Therefore, only one species out of a million ought to 
go inexistent. Nevertheless, the present ascertained elimination rate is 2.6 vertebrate 
species per 10,000 per year (Whiteside and Ward 2011). Environmental change is 
one of the most genuine dangers to the locale’s biodiversity and biological system 
administrations (Workie and Dabella 2017; Matata and Adan 2018). One of the 
most serious dangers to biodiversity is climate change, as per the United Nations 
Framework Convention on Climate Change and thus the CBD. As indicated by a 
review distributed in Nature (Thomas et al. 2004), worldwide environmental change 
may bring about the termination of a greater magnitude 1,000,000 earthbound spe-
cies in the following fifty years. The most powerless are uncommon species, divided 
environments, and districts previously upset by contamination and deforestation.
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 Populations of Species Fluctuations

According to scientific investigations, some taxa have shifted their species ranges in 
response to rapid changes in temperature and precipitation regimes, primarily 
towards higher elevations and temperature inversions (Nye et  al. 2010; Burrows 
et al. 2011; Chen et al. 2011; Doney et al. 2012). According to Groffman et al., 
plants and animals in terrestrial ecosystems migrated at a rate of 0.011  km per 
decade towards various altitudes and 16.9 km per decade towards warmer tempera-
tures (2014). The spatial bounds of east African species and habitats have shifted 
dramatically as a result of climate change. To adapt to rising temperatures, current 
migration rates must be significantly greater than those observed in previous post-
glacial periods (Bajramovic et al. 2014, Bland et al. 2015). Climate change is influ-
encing Africa’s natural variety. For example, the Ethiopian wolf (Canis simensis) is 
struggling to adapt to prolonged droughts and diminishing water and other resource 
availability. Ecologists are particularly vulnerable and respond as a result of their 
relatively restricted nutritional, thermal, and habitat niche breadths (Lowder et al. 
2016; Montoya and Raffaelli 2010) and associated with generally stable ecosystems 
(Walther 2010). Extreme weather events threaten the habitats that support Ethiopia’s 
endangered and distinctive species. Climate change, for example, is expected to 
enhance the likelihood of local extinction of the Ethiopian wolf (C. simensis), 
Africa’s most endangered species, according to study. According to Rosenzweig 
and Parry (1994), C. simensis was discovered about 2500 metres above sea level in 
Gojjam and northern Showa in the early twentieth century. In recent decades, the 
species’ distribution has migrated to higher heights, and it is now known to exist at 
elevations of over 3000 metres above sea level, with the tallest peaks reaching up to 
3700 metres (Rosenzweig and Parry 1994). Prospective conservation area classifi-
cations and preservation of environmental specialising groups in Ethiopia must 
include estimates of future climate change and associated changes in plant and ani-
mal species’ geographic ranges to assure adequacy. Unquestionably, the environ-
ment has the power to change the migration patterns (and timings) of species that 
depend on seasonal wetlands (like migratory birds) and keep track of seasonal 
changes in vegetation (like herbivores), leading to increased interactions with peo-
ple, particularly in regions where rainfall is significant (Kumar and Verma 2017). 
Wild animals that cannot migrate or travel are endangered in Africa. In Ethiopia, 
land use patterns can hinder animals from altering their migratory pathways, accord-
ing to Pacifici et al. (2015). Big-scale agricultural growth, for example, has been 
shown to disrupt migratory routes, resulting in a reduction in large animal popula-
tions (Williams and Jackson 2007).
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 Responses from Various Populations

Global warming causes the depletion of non-renewable ecosystems and the reloca-
tion of habitat ranges to more appropriate areas, altering the number of species 
populations (Erasmus et  al. 2002; Walther 2010). In response to fast changes in 
temperature and precipitation regimes, C. simensis has already extended its geo-
graphic distribution to higher altitudes. New combinations of taxa, unusual inter-
specific interactions, and, in the worst-case scenario, extinction might arise from 
these changes (Paudel Khatiwada et  al. 2017). Like a consequence, the shift in 
C. simensis habitat might signal a population decrease. Further, if climate change 
decreases a species’ range to a few key areas and a severe weather event occurs, the 
population decline and destruction of the species would likely increase in the future. 
When it comes to climate change, species kinds are less likely to move in large 
groupings and are more likely to split apart (Walther 2010; Barnosky et al. 2011).

 Changes in Phenology

Variations in plant morphology, or the periodic sequencing of life circumstances, 
have been seen in Africa as a function of temperature, humidity, and sunshine varia-
tions (Workie and Debella 2017). Variations in plant leaf development, blossoming, 
and blooming, as well as changes in animal spawning, reproduction, and migratory 
periods, are examples of phenological occurrences (Whiteside and Ward 2011; 
Burrows et al. 2011). Extreme weather has a more nuanced impact on biodiversity. 
Elephants (Loxodonta africana) reproduce all year in Africa, with powerful males 
mating in the rainy season and inferior males mating in the dry. Changes in the 
severity or duration of rainy and dry seasons may have an impact on relative breed-
ing rates and, as a result, genetic patterns in these populations (Butchart et al. 2010) 
Longer growing seasons would entail higher crop production expenses because 
food crop farming is Africa’s most significant agricultural business. Many formerly 
vulnerable species are projected to experience an increased risk of population loss 
and extinction due to the time it takes for many species to adjust to climate change 
(Thomas et al. 2004). While the influence of environmental issues on the possibility 
of extinction is still debated, environmentalists are particularly concerned about this 
effect (de Coninck and Puig 2015). Outside of nature conservation, there is rising 
worry about climate change’s possible negative consequences for biodiversity, 
which directly threaten biodiversity-based ecosystem services. Ecosystem “tipping 
points,” in which ecosystem thresholds may result in ecosystem loss or permanent 
changes, as well as a catastrophic disaster, are a major cause of concern.
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 Climate Change, Biodiversity, and Ecosystem Services

Climate changes, natural resource conservation, and environmental productivity, 
biodiversity is the broad range of goods and services that people can obtain from the 
nature (Sahoo and Wani 2020; Sahoo et al. 2021; Brown et al. 2018a, b). Because of 
environmental resources, at least 40% of the globalised trade and 80% of the GDP 
of emerging regions comes directly from biological capital. Reduced or declining 
biodiversity in any component that does not already contribute to habitat conjuga-
tion would have a major influence on the perceived importance of ecological ser-
vices (Bommarco et al. 2018).

 Feedbacks to Climate

Without natural ecosystems, the carbon cycle is incomplete. The consequences of 
climate change on natural ecosystems can have large positive feedback effects on 
the temperature system, and weather patterns and habitat have a nonlinear connec-
tion (Sharma and Mishra 2011). According to the IPCC, land use change accounts 
for 20% of total anthropogenic emissions, a proportion that may rise as a result of 
climate change. This linkage is not typically included in climate models, but it is a 
burgeoning subject of study, particularly in light of the IPCC 4AR’s concerns about 
ecosystems’ ability to withstand global warming. Increased soil respiration when 
temperatures rise, particularly in the arctic (IPCC 2013), will be substantial feed-
back to the climate system, perhaps adding 200 ppm CO2 to the atmosphere by 
2100. Even though the precise dynamics are unknown, according to new study, the 
two principal soil carbon storage mechanisms have positive feedback, permafrost 
and peatland, which may be significant (Gusli et  al. 2020). Permafrost warming 
emissions, for example, have been projected to vary from a worldwide increase of 
lOOPgC by 2100 to a rise of 40–100 Pg from Canada and Alaska alone by 2100 
(FAO 2020). A 10% warming of Siberian permafrost is expected to release 40 Pg by 
2050, an increase that will not be reduced by the projected advance of the treeline 
into the tundra. Changes in natural systems brought on by the demise of soil inver-
tebrates in low-diversity environments can also affect carbon flows (IUCN 2016).

Peat emissions are linked to the state of the water table, which is extremely vul-
nerable to climate change (Brown et al. 2018a, b). Moreover, according to an exper-
imental research, climate change will alter peat diversity and abundance, with 
photosynthetic organisms predominating at the expense of peat generating species, 
lowering peat’s carbon storage potential (Dhyani et al. 2020). Such feedbacks can 
be generated by a number of causes other than rising temperatures. One subject that 
has gotten little consideration in the literature is the potential effects of sea level rise.
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 Sustainable Biodiversity Management in the Face 
of Climate Impacts

 The Next Steps

An essential first step was the establishment of the Ad Hoc Technical Expert Group 
(AHTEG) on Biodiversity and Climate Change-A COP proposal. Its mandate sug-
gests ways to improve the combination of biodiversity concerns and ancient and 
local biodiversity-related data, with explicit relevance for communities and sectors 
affected by climate change, to recognise opportunities and potential detrimental 
effects on biodiversity, sustainability, and long-term usage, as well as communities 
for biodiversity conservation and sustainable use (Butchart et al. 2010; Barnosky 
et al. 2011).

 Climate Change’s Effects on Livelihoods 
and Resilience Measures

 Adaptation Approaches

In the non-agricultural sector, events as well as the implementation of farming 
methods and technology, the questioned families indicated a variety of adaptation 
strategies  (Abebe et  al. 2013). The variations in agricultural methods used show 
that, in terms of both the quantity and types of practices employed, geography has a 
major influence in climate (and climate change) variation in nations. However, 
despite considerable variations in overall earnings availability, there was no differ-
ence in agricultural practices adoption depending on wealth group (FAO 2020). The 
most prevalent non-agricultural method was off-farm employment, with one or 
more family members working off-farm in 57.7% of the families questioned. Off- 
farm activities was the strongest in the centre area due to stronger monetary implica-
tions. Other non-agricultural occupations were tolerated to varying degrees 
depending on region and income level (Inder et al. 2018). Certain families chose to 
lease out sections of their property, either due to a lack of labour and interest in 
farming, or because some plots were too far away from their farm. Household mem-
bers from the central region are more likely to relocate to urban areas, particularly 
those who are younger and more educated. Low-income households were also 
much more likely to migrate to cities. While migration is an essential adaptive tech-
nique. The most vulnerable individuals of society may lack the power to flee dete-
riorating conditions and instead opt to remain put (Gusli et  al. 2020). These 
populations are referred to be “stuck” and “vulnerable” in two ways. The usage of 
both organic and mineral fertilisers, which was embraced by 94.9% of the families 
in this research, is particularly noteworthy. Increased fertilisation is clearly one of 
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the important causes of an overall improvement in yields of the major crops in the 
nations during the preceding couple of generations (Verma 2017), even though we 
did not measure the actual amounts employed. In contrast, most agricultural outputs 
in Europe are still much lower when compared to more industrialised countries 
(Midgley and Bond 2015). While subsistence needs remain a key role in crop and 
animal selection, there is an increasing quantity of commercial crops cultivated on 
fields and a trend towards a larger emphasis on the economics. A large proportion of 
families (68.7%) reported modifying their crops in response to market needs or 
using more productive crop types to boost yields (78%). Certain households, par-
ticularly in the centre area, have chosen drought-tolerant crops (IPCC 2021).

 Global Warming, Habitat, and Economics

Poverty is a difficult matter that encompasses more than a lack of economic assets. 
A limited or risky asset base, low quality or insecure housing, and weak safety nets 
to guarantee basic consumption are maintained when income declines or crops fail, 
and a lack of authority and voice are all significant variables to consider (Verma 
2019). As a result, shock vulnerability is an important aspect of poverty. Poor indi-
viduals rely on ecosystem services and goods for a greater portion of their income 
than rich people. Multiple livelihood activities are frequently used by disadvantaged 
families to generate money and fulfil their basic requirements (Verma 2016). Fish, 
grazing land, and forests are examples of common property resources that may sup-
ply money, nutrition, medication, skills, energy, livestock, and building materials 
which are all examples of need, among other things. Poor people suffer dispropor-
tionately when the environment is destroyed or their access to it is restricted (Workie 
and Debella 2017). Poverty and environmental degradation have long been linked. 
Because of this dependency, any impact of climate change on natural systems poses 
a threat to the livelihoods (Sahoo and Wani 2019), food intake, and health of impov-
erished people. As a consequence of global warming, many semi-arid regions of the 
developing world may become hotter and drier, with less constant rainfall. Changes 
in agricultural yields, ecological constraints, and animal distributions will all have a 
substantial influence on the lives of many impoverished people as a result of climate 
change (Sahoo and Wani 2020). Climate change affects the poorest people in the 
world’s poorest countries the most. This is due to the fact that they live in areas 
prone to flooding, cyclones, droughts, and other natural catastrophes, and their 
capacity to respond to these occurrences is restricted. They rely heavily on climate- 
sensitive industries like fishing and agriculture (Wittig et al. 2007), and their coun-
tries lack the financial, institutional, and human resources needed to foresee and 
respond to the direct and indirect consequences of climate change (Sahoo et  al. 
2019). The preservation of biodiversity and ecological veracity may be a significant 
goal for strengthening such communities’ adaptability to deal with climate change. 
Climate change and variability may be better adapted by functionally diversified 
systems than by functionally impoverished systems (Paavola 2004). The 
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development of genotypes that are more suited to changing climatic circumstances 
will be aided by a bigger gene pool. As biodiversity declines, changing choices 
grow fewer, and human society becomes more fragile. Risky weather disasters put 
the poor in an especially vulnerable position. In recent years, developing nations 
have accounted for almost 96% of disaster-related mortality. Extreme climatic mea-
sures are becoming more regular, and in 2001, 170 million people worldwide were 
affected by disasters, with climate change being responsible for 97% of them (FAO 
2019). Women and children are especially at risk. When a storm devastated 
Bangladesh in 1991, for example, 90% of the casualties were women and children. 
This was due to a number of variables, such as their ability to survive (such as swim-
ming) and socio-cultural norms prohibiting women and children from gathering in 
tropical storm shields available to the general public.

 Concerning Climate Change, Biodiversity Protection, 
and Poverty Reduction Is the Way Forward

Indigenous activities are routinely overlooked – or devalued – in the fight against 
global warming, conservation of natural resources, and economic reform. 
International issues, such as the protection of endangered and charismatic creatures, 
have driven biodiversity conservation to the forefront of the conservation agenda 
(IPCC 2020). Local biodiversity values, such as livelihood assistance or risk reduc-
tion in the face of climatic shocks, have frequently been overshadowed by this tech-
nique. National Communications, National Adaptation Plans of Action, National 
Biodiversity Strategies and Action Plans, National Conservation Strategies, National 
Environmental Action Plans, and Poverty Rationing (often spawned by environ-
mental conventions spawned at the United Nations Earth Summit in Rio in 1992) 
are receiving a lot of attention and funding right now (FAO 2020). In general, such 
programmes pose a significant challenge to impoverished nations by putting undue 
demand on already overburdened institutions with limited resources. Supporting 
local solutions takes multiple initiatives. Climate change vulnerability will be 
reduced through actions to alleviate poverty and inequality on a global scale (Sahoo 
et al. 2020b), as well as by reducing unsustainable natural resource use. Increased 
availability of the product for refined raw materials; based on strategic and untied 
aid (to foster responsible local processes); financial assistance; and a high-income 
nations’ interest to change feeding patterns and thereby reduce greenhouse gas 
emissions are examples of such programmes (Workie and Debella 2017). The effec-
tiveness of the Climate Change Convention and the Convention on Biological 
Diversity, as well as linkages to national development goals like Poverty Reduction 
Strategy Papers, must be investigated. Because each approach has its own constitu-
ency, administrative structure, negotiators, and scientific advisory organisations, 
this is an issue (Abdisa et al. 2017).
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Some argue that it would be beneficial to encourage nations to form a single 
organisation to handle their duties under all international environmental treaties. 
Climate-related catastrophe management techniques, for example, may include the 
impact on local ecosystems as well as vulnerable human populations (Ali and 
Erenstein 2017). The importance of ecosystems in local livelihoods as well as biodi-
versity hotspots will be recognised. Two possible techniques for combining species 
diversity, subsistence, and climate change concerns are the ecosystem approach, 
which may include climatic issues, and environmental assessments, which may be 
changed to allow for wider adoption of environmental, social, and economic con-
cerns (Barrios et al. 2018). The value of environmental services must be quantified in 
order to establish the real worth of environmental products and services. Collaborative 
methods and a comprehensive approach to sustainable development that considers 
all elements of the issue should be encouraged (Bustamante et al. 2014).

National policies that promote biodiversity, adaptation and mitigation to climate 
change, and poverty reduction must be supported. Development projects should 
include solutions to climatic hazards in order to reduce the effects of climate change. 
Development organisations, national governments, and other stakeholders should 
address climate change (Burrows et al. 2011). Many adaptation programmes, on the 
other hand, are implemented by environment ministries, which are often weak and 
have little influence over line ministries (such as those responsible for agriculture or 
water management). The importance of good governance must be recognised in 
light of the intricacies of local and national political systems. Decentralised admin-
istration with more authority can be beneficial, but a well-functioning national gov-
ernment with vision and responsibility is also necessary (Harvey et  al. 2014). 
Actions that promote fair and responsible local governance, successful land tenure 
reform, and common property resource management that respects the rights of dis-
advantaged people are critical at the local level. In the hunt for solutions, building 
on the huge quantity of knowledge currently owned by disadvantaged people is a 
top focus. Adaptation initiatives should take this information into consideration 
because disadvantaged people have been dealing with climate change for a long 
time (Guo et al. 2017). Local solutions and bottom-up methods that are accountable 
to low-income people should be promoted through capacity-building programmes. 
Rather than labelling the poor as recipients of charity, assistance should be offered 
so that they may focus on their own efforts to decrease climate-related vulnerability 
through conservation planning and restoration operations that sustain and diversify 
local livelihoods.

 Future Scope of the Study

Climate changes are the dynamic in nature that has direct impact on rural liveli-
hoods. The changes cannot be stopped but can be controlled through smart and 
realistic system. There should a combination effort of government, scientists, and 
general public to build a protective wall against the threats of climate changes. The 
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study was the initiative towards the building a productive system that may support 
the great initiatives of Government of India. The future scope of the study can be 
commenced like:

Government Project
The research study and its suggestions can be implemented by Government of India 
towards Integrated Nutrient Management in rural areas, National Watershed 
Development Project for Rainfed Areas and Promoting use of Informatics in 
Agriculture in rural areas. National Rural Livelihood Mission: The NGOs and the 
local government can improve the rural livelihoods associate with national rural 
livelihoods mission. The organisations take initiative of building self confidence 
among the rural livelihoods by recognising their contribution to the society and 
nation. The main concept behind this initiative is to organise the destitute into SHGs 
(Self Help Groups) and prepare them for employment. The method aids in the 
reduction of poverty by providing impoverished households with possibilities for 
lucrative work for a living and self-employment, resulting in a significant enhance-
ment in their livelihoods on a long-term basis. Government initiative for rural devel-
opment: The Indian Government has taken initiative for retaining the villagers with 
their current profession and activities. The financial institutions are assigned the 
supporting role and assistance as per requirements of the rural livelihoods.

 Policy Recommendations

The guidelines, based on the research findings and the literature cited above, pro-
vide a path forward for enhancing climate change adaptation measures to protect 
rural livelihoods. Because the whole continent faces similar environmental issues, 
the suggestions emerging from this study are pertinent to certain areas.

 The Emphasis Is on Smallholders, Sensitive Spots, 
and the Community at Large

In order to have policies that are climate-change-aware and pro-poor, small farmers 
must be prioritised. The policies include the following: (a) increasing price incen-
tives and public investment quantity and quality; (b) improving product markets; (c) 
increasing access to financial services and lowering the danger of becoming sick; 
(d) enhancing the effectiveness of producer organisations; f) encouraging entrepre-
neurship via science and technology; and g) establishing agriculture healthier and a 
source of ecological remediation. Agricultural mitigation may benefit small farm-
ers. If relevant legislative reforms are enacted, small farmers have a tremendous 
potential to store soil carbon. The new market for pricing carbon emissions opens 
up new opportunities for farmers to profit from carbon-sequestering land usage. 
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Collaboration is widely recognised as vital for climate change adaptation and miti-
gation. According to research and practice, collective action institutions are crucial 
for technology transfer in agriculture and natural resource management among 
smallholders and resource-dependent communities.

 Climate-Smart Agriculture, Green Agriculture, and Rural 
Nonfarm Activities Must All Be Prioritised

The implications on agricultural and food systems would have a direct impact on 
billions of people’s major source of revenue, livelihoods, and food security. Food 
costs would also rise as a result of climate change. It would be detrimental to food 
security, as well as human growth as measured by nutrient levels. Because of all of 
the negative consequences, all stakeholders, notably governments, must concentrate 
on mitigating the negative consequences of climate change by concentrating on 
agriculture production. Environment and sustainable agriculture technologies must 
be adopted while jeopardising the food security and lives of the population, espe-
cially the poor. Organic farming and green agriculture, for example, are two of the 
most important paths for the evergreen revolution. Improved national research and 
extension programmes are required to achieve climate-smart, green, and sustainable 
agriculture.

 Opportunities for Adaptation

It should be mentioned that public policy plays a substantial role in aiding climate 
change adaptation. Most governments in underdeveloped countries would be unable 
to plan for adaptation and implement well-targeted adaptation strategies due to a 
lack of resources. Investments and incentives are required to develop and supply 
better technology and management practices. Important ongoing development proj-
ects must be enhanced in order to mitigate climate change vulnerability. However, 
neither private sector or individual adaptation plans, nor public sector development 
policies, would be adequate to assist poor nations in Asia and the Pacific to adjust to 
climate change. Adaptation will necessitate novel policies.

 Opportunities for Mitigation

Improved crop and grazing land management (e.g., increased agronomic methods, 
fertiliser usage, tillage, and residue management), regeneration of organic soils 
drained for crop production, and rehabilitation of marginal forests are the most 
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major mitigating alternatives. To reduce CH4 emissions, rice production techniques, 
as well as livestock and manure management, have been improved; nitrogen fertil-
iser application techniques have been improved to reduce N2O emissions; special-
ised energy crops have been developed to replace fossil fuel consumption; and 
thermal efficiency has been upgraded. Improved water and rice management, as 
well as set-asides and land use changes, can all assist to reduce the problem to a 
lesser but still significant extent (e.g., conversion of crop land to grassland). Various 
mitigation opportunities are now available and can be adopted right away, but tech-
nology advancement will be a vital factor in assuring the success of future mitiga-
tion efforts. Improved yield technologies would be beneficial. Other benefits include 
synergising with adaptability, livelihood strategies, and long-term growth. 
Furthermore, with the introduction of carbon markets, agricultural and forestry mit-
igation techniques have the potential to produce revenue in rural regions, hence 
increasing adaptive capacity.

 Collaboration on a Broad Basis

Strengthening regional cooperation among Asian and Pacific governments is another 
important tactic. This partnership must address climate change concerns by sup-
porting the successful implementation of national adaptation and mitigation pro-
grammes, as well as current and future climate change financing tools. Regional 
organisations such as ASEAN (Association of Southeast Asian Nations) and 
SAARC (South Asian Association for Regional Cooperation) should play a key role 
in technology and knowledge transfer, in addition to regional cooperation initiatives 
such as CACILM (Central Asian Countries Initiatives for Land Management) and 
GMS (Greater Mekong Sub-region) (ADB and IFPRI 2009). Agriculture and food 
security, livelihoods, and environmental services, for example, might be the focus of 
regional projects, all of which contribute to climate change mitigation and 
adaptation.

 Conclusion

Several global and national development programmes have focused on the increas-
ing poverty gap between industrialised and developing nations. Climate change has 
the potential to undermine decades of progress and poverty alleviation initiatives, 
notably the failure to meet the Millennium Development Goals set in 2000. Climate 
change is the most passionate problem facing the world community in the twenty- 
first century, particularly for rural lives. This, like the difficulties of poverty reduc-
tion, economic growth, and development, is the task. Climate change is threatening 
the livelihoods, health, and well-being of millions of people throughout the world, 
particularly the poorest and economically weakest sections of the Indian 
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population. Adaptation to climate change has a significant influence in emerging 
economies like India. The urban population may take more initiative in organising 
training programmes, health-related awareness camps, and effective resource man-
agement, while the rural population can take more effort in implementing sustain-
able agriculture operations. The categories of activities towards sustainable 
development are being reworked on the influence of managing water resources in 
the face of climate change. The significant equilibrium that exists between rural 
livelihoods and climatic circumstances is poised to be disrupted by a rapid change 
in climate. Climate change is also linked to sea level rise, and it poses a significant 
danger to coastal regions. It is critical to figure out how to mitigate the effects of 
climate change through strategic management planning. Decision-makers’ views 
and understanding at the provincial level will have a substantial impact on India‘s 
climate change adaptation. Global warming is seen as the most serious issue of cli-
mate change, posing the greatest comprehensive fitness hazards of the twenty-first 
century and posing a danger to achieving sustainable development. However, play-
ers in a sustainable society, such as disaster management and agriculture graduates, 
doctors, teachers, vocational trainers, non-governmental organisations, and local 
governments, can take the lead in strengthening rural livelihoods. It is critical to 
recognise that biodiversity is a huge, complex, and interconnected phenomenon 
with no one overarching influence on production or sustainability. It is critical to 
recognise that biodiversity is a huge, complex, and interconnected phenomenon 
with no one overarching influence on production or stability. The actual impacts 
will be greatly influenced by the context in which they are researched as well as the 
time frame over which they are analysed. However, it is apparent that biodiversity is 
crucial for both managed and wild ecosystems, even though the proportional contri-
butions of diversity and composition are still unknown. In order to keep diversity at 
its current levels, politicians must grasp fundamental science. If present human 
growth and resource management practices do not alter, many key species will cer-
tainly perish, and the world’s ecosystems would likely never recover. Humans are 
just another type of natural organism that should not be considered alien to other 
living forms. We have no moral right to destroy the planet’s ecosystem or other liv-
ing creatures. Kindness should be shown to all animals and plants. Every individual 
may play a little but critical role in the fight to save our planet and preserve biodi-
versity. As a result, if catastrophic climate change is to be avoided, developed coun-
tries must increase their efforts to reduce greenhouse gas emissions. Variations in 
species diversity can alter the physical and trophic structure of ecosystems, influ-
encing system function and constitution even more. One example is the spread of 
woody plants into temperate grasslands. Drought may cause trees to die in many 
environments. Warmer temperatures and growing pressures on ocean acidification 
are particularly harmful to coral reefs, causing bleaching and illnesses. Many coral 
species that create reefs are on the verge of extinction. This has far-reaching ramifi-
cations for coral reefs’ vast biological communities. Ecosystems that give human 
values and services are a significant characteristic of ecosystems that may be 
affected by climate change. Ecosystems that are valued by humans and provide 
services are a key part of ecosystems that may be damaged by climate change. 
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Fisheries, which may grow in the short term in boreal regions while dropping else-
where, and wood production, which is impacted by population characteristics as 
well as local circumstances and may result in significant output losses, are two 
examples of provisioning services. The important biological services that coral 
reefs provide, such as fisheries, coastal protection, building materials, new bio-
chemical compounds, and tourism, are all under threat. Climate change affects ter-
restrial ecosystems’ ability to manage water flows, as well as many ecosystems’ 
ability to absorb and/or retain carbon, all of which can contribute to climate change.
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Chapter 2
Desertification Intensity Assessment 
Within the Ukraine Ecosystems Under 
the Conditions of Climate Change 
on the Basis of Remote Sensing Data

Vadym І. Lyalko, Alexandr А. Apostolov, Lesya A. Elistratova, 
Inna F. Romanciuc, and Iuliia V. Zakharchuk

Abstract The study of the climate conditions modern transformations in the differ-
ent countries acquires theoretical and practical significance that is determined by 
the high activity of climate changes in natural and social processes of the region. 
Many climate scenarios and forecasts make accent on increasing the frequency of 
adverse events, including the drought processes under the conditions of climate 
change. One of the most pronounced manifestations of modern climate change in 
Ukraine is the growing aridity. It is manifested in the increasing duration and inten-
sity of droughts. This process is associated with the significant reduction of mois-
ture content, leading to consequences that affect functioning of both natural 
environment and society. Among the landscape components, biota, water (surface 
and groundwater), and soil cover undergo to the greatest changes due to intensifica-
tion of arid phenomena. Steady tendencies to gradual changes within the boundaries 
of natural zones of the studied area are already visible. Ukraine’s economy faces 
serious challenges due to this fact. The illustrative impact of climate changes is 
demonstrated by the negative consequences for agriculture. An effective tool for 
monitoring of the natural environment processes under the influence of climate 
change, in particular the arid phenomena, is the applying the remote sensing data. 
This study uses the data from the TERRA/MODIS satellites along with the drought 
indices. The detailed maps of arid-zonation were developed. Such studies represent 
the basis of justifying measures for adapting of society to the existing climate change.
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 Introduction

Desertification is one of the most hazard processes that lead to the environment 
degradation. The United Nation Convention to Combat Desertification adopted in 
1994 is aimed on the desert lands development organization. According to the 
Convention, desertification of land degradation occurs in arid, semi-arid, and arid 
sub-humid regions (UNEP 1994). To implement the convention, the great studies 
have appeared, dedicated to the methodological problems of the desertification. The 
main accent in such researches is focused on the climate fluctuations and changes as 
one of the most important factor that provoke the land degradation. The importance 
of climsate change as the main factor affecting the land degradation is reflected in 
numerous international research works (Webb et al. 2017; Sivakumar and Stefanski 
2007; Srivastava and Chinnasamy 2021). These works include the global coverage 
of desertification issues, applied and thematic studies from all arid continents, and 
provide promising policy recommendations for arid land monitoring and sustain-
able resource management (Pande et al. 2021a, Zdruli et al. 2010). Researches are 
focused on highlighting the aspects of land degradation and desertification around 
the world; the most modern methods of erosion measurement; past and present 
knowledge of soil conservation and analysis of climate change impacts on ecosys-
tems (Pande et al. 2020, 2022). Among the works devoted to regional problems of 
desertification should be mentioned the following, describe situation in 
Mediterranean region, Africa. Middle East, etc. (Rubio et  al. 2009; Ci and Yang 
2010; Heshmati and Squires 2013). The main problems of arid land desertification 
in Russia are considered in the collective monographs (Alekseev et al. 2014; Kust 
et  al. 2011). One of the first large-scale desertification monitoring projects is 
CAMELEO (Changes in Arid Mediterranean Ecosystems on the Long term through 
Earth Observation), launched in 1998. The project participant’s consortium brought 
together scientists from Italy, France, Algeria, Egypt, Morocco, and Tunisia. 
According to CAMELEO, the test sites in Morocco, Algeria, Tunisia, and Egypt 
were studied. Images obtained from NOAA AVHRR and SPOT for the period 
1987–2000 were used as remote sensing data (Escadafal and Megier 1998).

The DeMon project (Desertification Mapping and Monitoring in the 
Mediterranean Basin) was aimed at studying of desertification processes in the 
European Mediterranean. Areas of study were located on the European coast of the 
Mediterranean—in Spain, France, Greece, and Crete. The studies were conducted 
on the basis of Landsat MSS and TM satellite data with the involvement of ground 
and laboratory measurements (Archer and Stokes 2000). The MEDALUS project 
(Mediterranean Desertification and Land Use Monitoring), which was carried out 
with the participation of United Kingdom, Italy, and Netherlands, was also devoted 
to the desertification studying within the Mediterranean (Lamqadem et al. 2018). 
The main goal of the DEMOS project (Desertification in the Mediterranean 
Drylands: Developing a Monitoring System Based on Plant Ecophysiology), car-
ried out in 1997–2000, covered the control desertification processes in the Turkey 
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and Lebanon ecosystems. Representatives of scientific institutes from Italy, Greece, 
Turkey, and Lebanon took part in the project (Salleo and Nardini 2003).

As a result, the number of methods for remote monitoring of land degradation 
processes has been developed: automated classification of eroded lands based on the 
development of various algorithms for unsupervised (Zizala et al. 2018; Pande et al. 
2018) or supervised classification, combining data from different sensors (Meng 
et al. 2021; Pande et al. 2021b) regression models for determining erosion and its 
intensity by the spectral reflection values (Chang et  al. 2020; Chen et  al. 2020), 
multifractal image analysis (Krupiński et al. 2020), analysis of surface changes by 
methods of comparing differences in spectral images, principal component analysis, 
spectral mixture analysis, and analysis of spectral changes in multi-time images 
(Zhang et al. 2017; Salih et al. 2017). The world’s first human-induced soil degrada-
tion map was published in 1991 by the Global Assessment of Human-induced Soil 
Degradation (GLASOD). The project was funded and implemented by the United 
Nations Environment Program (UNEP) in collaboration with the International Soil 
Reference and Information Center (ISRIC). This has demonstrated the first approxi-
mate estimate of the land degradation on the global scale. However, the map had to 
be constructed in a very short time, and the recommendations proposed by ISRIC 
(GLASOD 1988) for this work could not be applied in all countries. Recent years, 
Ukraine is not developed and implemented the measures to combat the land degra-
dation and desertification due to the lack of continuous satellite monitoring of the 
land use systems. Given this negative trend, as well as the implementation of the 
United Nations Convention to Combat Desertification, signed by Ukraine, the coun-
try has committed itself to the rehabilitation of degraded lands and soils by 2030 
and to achieve a neutral level of land degradation in the world. For Ukraine, the fight 
against desertification is one of the priorities of the state environmental policy.

 Background

In the twenty-first century, global climate change has become one of the most nega-
tive environmental problems facing human attention. Its consequences are danger-
ous weather disasters, including droughts, as one of the factors commonly associated 
with desertification that leads to significant environmental and economic losses 
worldwide. The problem of monitoring and forecasting droughts remains relevant 
both in research and in application assignments. According to UN estimations, the 
economic losses caused by droughts exceed 20% of the total losses belonging to all 
natural disasters in general. The problem of aridity increasing in many agricultural 
regions of the globe under the influence of climate change is particularly acute, 
because currently the crops and stockbreeding production account for 70% of the 
total water consumed by major sectors of the economy (Orimoloye et  al. 2022). 
Global food demand is projected to increase with 70% by 2050, with agricultural 
water consumption rising by about 19% and the main costs falling on regions 
already suffering from the water scarcity (Van Dijk et al. 2021). Ukraine is one of 
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the main agricultural regions of Eastern Europe due to the favorable combination of 
temperate climate and fertile soils. However, this area is often under the influence of 
large-scale circulatory systems, which leads to the long periods of the precipitation 
deficit that provokes the arid phenomena formation, such as dry. According to sci-
entists, due to climate change, Ukraine is moving to zone of extremely high tem-
peratures and weather cataclysms (Lyalko et al. 2015a, 2020; Apostolov et al. 2020). 
In the next 30–40 years, the country is already threatened by desertification of large 
areas. According to the World Resources Institute, Ukraine is one of the countries of 
drought risk both with the Middle East, North Africa, and Asia (Buchholz 2021).

The most studies of drought are based on precipitation, evaporation, humidity, 
air temperature, and radiation balance data. The individual meteorological variables 
cannot describe the complexity of drought phenomenon. For this purpose, the vari-
ous drought coefficients or indices are needed, which usually consider the humidity 
and temperature conditions. All existing quantitative indicators have both advan-
tages and disadvantages, so it is desirable to use several parameters and compare 
them assessing the intensity and prevalence of drought in a particular area. Along 
with simple estimates related to the precipitation or their anomalies determination, 
the complex of numerical indicators or drought indices is widely used, which can 
detect the phenomenon of drought itself and its intensity, as well as the level of 
adverse effects. As a single indicator has not been found yet, the problem of finding 
the new one and optimizing and adapting existing indices for the territory of Ukraine 
is relevant. The aim of this study is to estimate the aridity change of Ukrainian cli-
mate by the satellite drought index—ID and their impact on vulnerable ecosystems, 
their possible transformation, and identification of areas predisposed to desertifica-
tion according to satellite data. The proposed study is based on the concept devel-
oped by assessing and minimizing the negative impact of the desertification process 
in the context of climate change in Ukraine. Its scientific substantiation is based on 
the analysis of the results of national and international studies of the climate change 
impact to the environment, including drought and other extreme processes intensi-
fication that negatively affect the functioning of various sectors of economy and 
society (agriculture, construction, transport, industry, energy, and others). An effec-
tive tool for studying the processes occurring in the natural environment under the 
climate change influence, in particular droughts, is the use of remote sensing data. 
Computer thematic interpretation of remote sensing data and their ground valida-
tion give possibilities for quickly and economic assessing and forecasting of aridity 
changes. It will serve as a basis for recommendations development for the govern-
mental, managerial, and economic structures to implement the measures minimiz-
ing the negative impacts and implementing conditions for sustainable society 
development. Ukraine has the experience in conducting the researches of aridity and 
desertification with the usage of remote sensing data (Groisman and Lyalko 2012; 
Lyalko et al. 2009, 2017). The obtained results can be included in the international 
databases, providing complementarity to the forecasts of environmental manage-
ment probability in the climate change conditions.
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 Materials and Methods

Since desertification is a dynamic process in time and space, a permanent system of 
observations—monitoring—is needed for control, forecasting, and timely preven-
tion. For ecological control of this process, the remote sensing technologies are 
important. They possess the wide spatial coverage based on periodicity and syste-
maticity of data receiving. Recent years, the great advantage of remote sensing is 
also referred to the high spatial, temporal, and spectral resolution. The remote sens-
ing data allow analyzing and detecting the time changes and trends. The main meth-
ods of desertification analysis according to the remote sensing data are as follows: 
visual interpretation of space images, mathematical processing, and creation of 
drought maps that based on indices estimation.

 Visual Interpretation of Remote Sensing Data

Visual interpretation of remote sensing data is based on perception and analysis of 
textures, shapes, and other characteristics of studied objects (Pande et  al. 2018, 
2021a). It also requires an understanding of the geological, ecological, and climatic 
components of the study area. In this study, the methods of visual interpretation 
were used to assess the possible transformation of ecosystems in typical landscape 
and climatic zones of Ukraine in modern climate conditions. This was done in GIS 
programs MapInfo Professional, ArcGIS by vectorization of the obtained images 
and comparison them with the boundaries of physiographical zoning of Ukraine 
(Marynych et al. 2003; National Atlas of Ukraine, 2007).

 The Drought Map Creation by Using Indexes

The extreme climate conditions are increasingly manifested in the recurrence of 
droughts than in excessive moisture. The search for criteria and the development of 
drought indicators in scientific research in different countries has been conducted 
since the twentieth and thirtieth of the last century, which has led to the emergence 
of a large number of successful, convenient, and accurate numerical criteria. (Lyalko 
et al. 2015b). From the second half of the eightieth, the indices based on remote 
sensing data began to be introduced into the world practice of drought monitoring. 
Currently, there are about 100 satellite drought indices nowadays (Zolotokrylin 
et al. 2013). Attention to the droughts analysis according to satellite data in Ukraine 
has intensified after a fairly significant drought in 2007, as well as quite warm and 
arid periods in 2009 and 2010. To determine more accurately the time of drought 
and the area of its spread, it was proposed to use the Index of Drought (ID), which 
is directly proportional to the sum of night and day temperatures and inversely 
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proportional to the value of normalized vegetation index (NDVI). During drought 
events, the value of the NDVI index drops down, and the temperature of the under-
lying surface increases.

Index of Drought (ID) is calculated by the following equation:

 
ID

T T
NDVI

day night�
�� �

 
(2.1)

where, Tday—day temperature, Tnight—night temperature, and NDVI—normalized 
vegetation index. The increase of ID index values reflected the expectance of 
drought in the studied area.

The years 2000–2020 were chosen to study the aridity changes on the Ukraine 
territory. For each year during the vegetation season from April till October, the 
MOD11C3 and MOD13C2 products were received from the TERRA/MODIS satel-
lite. The product data have 294 files for the entire studied period (USGS, 2021). 
Product MOD11C3 has the day and night monthly temperature data in Kelvin 
degrees, with a spatial resolution of 0.05 degrees. Product MOD13C2 has monthly 
data of two vegetation indices NDVI and EVI, as well as monthly spectral data 
bands: blue, red, NIR, and MIR, with spatial resolution of 0.05 degrees in hdf for-
mat. Thus, the estimation of the monthly drought index for the TERRA / MODIS 
satellite has the following form:
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(2.2)

The MOD11C3 and MOD13C2 products were estimated by using Erdas Imagine 
software for remote sensing data processing. The Erdas Imagine software performed 
the following algorithm: 1) conversion data from hdr to img format; 2) conversion 
of MOD11C3 day and MOD11C3 night input data into monthly values of day and 
night temperature from K to °C; 3) calculation of ID index valued according to  
Eq. (2.2) for each month of the vegetation season; and 4) calculation of ID index 
valued according to Eq. (2.2) on average per period. The performed algorithm was 
implemented by Spatial Modeler/Model Maker module of Erdas Imagine software 
(Fig. 2.1).

 The Meteorological Observations

The ground observation data of the near-surface layers’ air temperature and the 
precipitation amount on the network of Ukraine ground meteorological stations are 
used in this study. Dataset from the stations was used in this study with a single 
continuous series of observations: 26 stations (1901–2020) and 48 stations 
(1946–2020), which are evenly distributed throughout the country. The averaging 
was carried out in order to identify the general patterns of air temperature and 
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Fig. 2.1 Model built in the Erdas Imagine for ID index average values of 5 years’ estimation, for 
decades and for the entire period 2000–2020

precipitation distribution over the Ukraine territory. Estimation of meteorological 
dataset in space and time was carried out using statistical methods. The location of 
ground meteorological stations is illustrated in Fig. 2.2.

 Results and Discussions

Forecasting the environment modifications in the context of climate change requires 
the use of empirical and statistical meteorological information. There are no sys-
tematic data on the climate information analysis issues related to this problem. 
Analysis of the obtained results regarding the ecosystems changing in typical phys-
iographic zones of Ukraine at fast process of warming was carried by applying the 
remote sensing estimated by the modern mathematical methods. Since 2000 till 
now, the characteristic feature of climate change in Ukraine is the increase of aridity.

 Physiographic Conditions

Ukraine is characterized by a complex spatial differentiation of physical and geo-
graphical conditions. Geological structure and relief, climate, water, soils, vegeta-
tion, and fauna being in a complicated relationship and interaction, form 
natural–territorial complexes of different rank. The landscape-genetic principle 
serves as a basis of physical and geographical zoning, which determine the natural- 
territorial complexes and their boundaries. For this purpose, a comprehensive analy-
sis is needed of the relationship and interaction of major landscape-forming 
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Fig. 2.2 Map of the Ukrainian physiographical zoning (National Atlas of Ukraine, 2007) com-
pleted with ground meteorological stations. I—zone of mixed (coniferous-deciduous) forests, II—
zone of temperate broad-leaf forests, III—forest-steppe zone, IV—steppe zone, V—Ukrainian 
Carpathians, VI—Crimean Mountains

factors—solar radiation and Earth internal energy, processes occurring in litho-
sphere, hydrosphere, atmosphere, and biosphere, as well as considering natural 
components—lithogenic basis, earth’s surface, air, surface and groundwater, soils, 
and biota (flora and fauna). In Fig. 2.2 is illustrated the map of physiographical zon-
ing of Ukraine (National Atlas of Ukraine, 2007) combined with the location of 
ground meteorological stations used in this study.

Within Ukraine, there are two classes of landscapes in terms of common mor-
phostructural features: plain and mountain. The main features of the Ukraine land-
scape structure are determined mainly by its location in the temperate zone. Only 
the southern coast of Crimea has the features of the subtropical zone characteristic. 
The Ukraine occupies the southwestern part of the Eastern European physiographi-
cal area, belonging to the Carpathian and Crimean mountain physiographical terri-
tory. Within the framework of the Eastern European physiographical area, Ukraine 
has four physical-geographical zones’ categories in accordance with the predomi-
nance of certain landscape types and subtypes. According to the continental climate, 
the general relief nature, and the history of the geological and geomorphological 
basis of the natural complexes’ formation, zones are divided into provinces. The 
provinces are divided into the physiographical areas (by position of the tectonic 
structures, topography, geomorphology et al.); regions—due to local differences in 
the manifestation, intensity and distribution of modern natural processes (National 
Atlas of Ukraine, 2007).
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 Climate Conditions

Climate changes in some parts of the globe, including Ukraine, are characterized by 
the annual air temperature. Temperature is an integral characteristic of all processes. 
Constant monitoring of air temperature from year to year gives statistical character-
istic of the age course of the annual regional air temperature. It is well demonstrated 
in Fig. 2.3. The shown curve indicates that the warming process in Ukraine is quite 
active, despite the fluctuations. All this confirms that the warming is taking place 
throughout Ukraine and its intensity does not differ much. During twenty-first cen-
tury (2000–2020) on the territory of Ukraine, the air temperature increased by 1.5 °С. 
Last 5 years, since 2015, the specific abnormal warm period was detected in Ukraine 
(Lyalko et al. 2015b, 2020).

Considering the various models is expected continuation of the temperature ris-
ing in Ukraine. By the end of the twenty-first century, it may increase by 0.7–3.0 °C 
compared to the period of 2001–2010 (soft “scenario B1”) or 2.6–4.6 °C (“hard” 
scenario A2) (Nakicenovic and Swat 2000). The processes taking place in the global 
climate system and in the European territory determine the peculiarities of Ukraine’s 
climate due to the general circulation processes. Ambiguous causes of climate 
change in Ukraine are characterized by distribution of precipitation. The formation 
of precipitation in Ukraine is a consequence of complex of macrocirculatory pro-
cesses that provoke the heat and moisture exchange in the atmosphere. The essence 
of these processes is transferring the heat and moisture from the Atlantic Ocean and 
the Mediterranean Sea, as well as the large-scale vertical movements development 
under the cyclonic activity influence that leads to the precipitation process 
(Martazinova 2019; Martazinova et al. 2009).
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Fig. 2.3 Multiannual course of annual air temperature (°C) in Ukraine in accordance with the 
meteorological stations data: 1—actual course; 2—age course (trend)
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Fig. 2.4 Deviation of the precipitation average amount from the norm in Ukraine according to 
decades (1901–2020)

Figure 2.4 represents the estimated deviation of precipitation average amount in 
Ukraine for the 1901–2020 periods.

In Fig. 2.4 is shown the fluctuation of precipitations relatively to the “norm”. The 
slight tendency of rainfalls reducing is visible. During the decades 1981–1990, 
1991–2000, 2001–2010, 2010–2020, there is a decrease in precipitation fluctua-
tions. According to the precipitations’ measurement, the beginning of the 
precipitation- forming processes weakening is observed. Thus, the increase of air 
temperature average and uneven distribution of precipitation caused by the global 
climate change can lead to significant transformation of Ukrainian climatic and 
agricultural zones. It is known that the long-term fluctuations of climatic conditions 
on the planet significantly affect the state of ecosystems and lead to considerable 
displacement of natural areas. This process has the long-term period and cannot be 
observed by one or two generations of people. But even now, with the current trend 
of climate change in Ukraine, the slow changes were observed, not so much within 
the zones boundaries themselves, but relocations of the plants and animals’ sets 
have begun that may lead to the zoning changes. To determine the boundaries of the 
plant group transition, it must be considered the temperature regime characteristics, 
the mode of humidification, as well as to make the analysis of parameter that char-
acterizes the state of plants. In this study, this is characterized by the Index of 
Drought (ID).

 Drought Estimation

Drought information based on the remote sensing technologies can be considered 
extremely valuable in two main reasons. First, the modern means of environmental 
monitoring based on satellite technologies allow the quick assess of vegetation and 
soil moisture content within the large areas and therefore warn in advance about the 
irrigation needs, or to apply other measures against the drought. Secondly, based on 
remote sensing data, it is possible the quickly mapping of crop losses area affected 
by drought and most accurately assess the damage caused by drought. This makes 
it possible to take the necessary measures in the agricultural sector. The parameters 

V. І. Lyalko et al.



39

that indicate the onset of drought, which can be detected by remote sensing data, are 
as follows: increase of the underlying surface temperature; deterioration of vegeta-
tion during the vegetation season. Drought monitoring tasks can be divided into the 
following levels. The first level is related to the drought occurred areas identifica-
tion, the second level—monitoring the condition of crops during the drought. The 
method of vegetation indices is the main one that allows quantifying the dynamics 
of plants during the vegetation season. Traditionally, this method is used to deter-
mine the state of vegetation, its growing, and death. During the growing season, the 
application of NDVI, which is based on the visible and NIR band combination of 
the spectrum, does not provide complete information about the onset of drought. 
This happened because of two problems. First, the plant may be deteriorated for 
reasons unrelated to drought (soaking, disease, etc.). Second, each current year, the 
territory can be used in a way that is not typical for it, for example, it could not be 
planted with crops, and as a result, the vegetation is represented by wild grass. Since 
the drought is characterized by increased temperatures of the underlying surface, 
one of the important parameters of this phenomenon is the course of temperature 
curves during the vegetation season. But it is impossible to make judgments about 
the onset of agricultural drought based on the temperature elevation only, because 
not every meteorological drought grows into an agricultural one. Therefore, for 
more reliable detection of the drought-affected areas, it is better to use the underly-
ing surface temperatures along with the vegetation index. Temperature indicators, 
along with vegetation indices, are widely used in the dry monitoring practice (Siqi 
et al. 2020; Mehravar et al. 2021). The temperature changes were characterized by 
product MOD11C3 obtained from the TERRA/MODIS satellite as the values. 
Analysis of the night and day images during the drought season and in the wet year 
showed that the agricultural drought is characterized by rising the daytime and 
nighttime temperatures. Probably lower temperatures at night lead to the formation 
of dew and fog, i.e., condensation of water vapor on the plants, which avoids mois-
ture loss. In this case, the onset of atmospheric and soil droughts will not lead to 
agricultural drought. As higher are the values of the drought index, as greater is the 
probability of the drought appearance in the studied area. For the first signs of 
drought evaluation within the studied are, the monitoring of the vegetation condi-
tions is necessary. Continuation of arid conditions can lead to deterioration of plants, 
and may not affect the harvest. For example, the May–June drought will mostly lead 
to the oppression of plants, and in extreme cases—to their death. The June drought 
is less severe, as the plants still have time to pass the growth stage, and at the stage 
of ripening, they are not so sensitive to the presence of moisture. Timely rain or 
watering can remove the threat of crop death and drought can stop by itself. But to 
react on time to the possible crop loss, it is necessary once a decade before the 
drought disappearance or even before the end of the growing season to analyze the 
condition of crops. In regions with the stable hot climate, the crops that are stable to 
drought are grown, or a set of irrigation measures is carried out that does not lead to 
crop loss. In regions with the normal weather conditions, the various crops are 
growing, including more demanding to moisture without additional reclamation 
measures, but during the dry years, considerable part of crop loss is possible. Such 
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areas with unstable weather conditions from year to year are called areas of critical 
agriculture. Such areas are the interest of our study. Ukraine is a region with favor-
able conditions for growing many crop types. This is ensured by a favorable balance 
of heat and moisture in most parts of the country. At the same time, a significant part 
of the Ukraine territory (steppe zone) is characterized by insufficient rainfalls. This 
presupposes the existence of territories of risky agriculture. Therefore, even the 
minor climate changes can lead to worsening the agro-climatic conditions.

 Index of Drought

The proposed Index of Drought allows the estimation of the degree of drought 
development for Ukraine. In Fig. 2.5 is shown the spatio-temporal distribution of 
droughts within Ukraine for the 2000–2020 period. The gradations of the drought 
index ID values are shown in different colors. For period of 21 years, we have seen 
the satellite ID index changes at the subzones level of physiographical regions and 
districts. Starting the analysis from the Steppe zone (IV), where the largest ID val-
ues were observed in the territories of the middle steppe and south-steppe (dry- 
steppe) subzones. It was demonstrated that the agro-landscapes can undergo the 
significant changes. Figure 2.5 illustrates an acute shortage of moisture within the 
steppe zone. In fact, these areas are dominated by brown, orange, yellow, and pink 
colors: the range of ID values vary from 32 to 70 and more. According to our data, 

Fig. 2.5 Long-term values average (2000–2020) of the drought index ID in Ukraine
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when the values of ID are more than 60, it indicates an acute shortage of moisture, 
where is recorded both the severe drought, and danger of possible plants death, in 
particular agricultural ones. In addition, the steppe zone may be affected by pro-
cesses of climatic desertification (Lyalko et al. 2020; Apostolov et al. 2020) and by 
growth of physiological soil dryness due to its progressive salinization and increas-
ing prevalence in the steppe zone of landscape species, which have saline and 
saline soils.

The main cause of droughts in Ukraine is the Arctic invasions with the subse-
quent transformation of air masses, as result of which the air mass moves away from 
the state of saturation. This leads to the cloudless hot weather establishing. Mainly 
drought appears due to the movement of a powerful anticyclone on the cold Arctic 
front. It becomes longer when one anticyclone is followed by another. There may be 
several days of cool weather between them, sometimes even light rains, but the 
moisture evaporates quickly. The main source of anticyclone, which causes drought 
in Ukraine, is the two main centers of action—the Arctic and the Azores (Martazinova 
and Sologub 2000). Also found that changes in the nature of circulation beginning 
in Eastern and Central Europe have led to number of southern cyclones increase. 
They are characterized by extremely high temperatures (more than 30-35 °C) and an 
increase of the precipitation amount that evaporates. During the climate change of 
the late twentieth and twenty-first century, the circulatory processes causing 
droughts have their own characteristics. It is described in detail by V.F. Martazinova 
(Martazinova and Sologub 2000). For a more detailed analysis of drought changing 
in space and time, the studied 21 years were divided into 4 periods (Fig. 2.6). It was 
established that each period was characterized by a gradual increase of the areas 
affected by droughts. During that time the entire southern, central and southeastern 
territory of Ukraine was covered by drought processes. In addition to drought inten-
sity from period to period, there was detected an increase of the drought index val-
ues. Comparing the first period of 2000–2004 (Fig.  2.6a) and the last period of 
2015–2021 (Fig. 2.6e) within the studied twenty-one-year period, it was found that 
for zone I (zone of mixed (coniferous-deciduous) forests, the ID index increased by 
1.78 or 8.44%, for zone II (zone of temperate broad-leaf forests)–by 1.51 or 6.38%, 
for zone III (forest-steppe zone)–by 4.19 or 16.41%, and for zone IV (steppe zone)–
by 6.5 or 17.58%.

In the twenty-first century, the crop yield reductions were observed in 2003 and 
2007 due to the adverse weather conditions. The drought of 2007 was severe and 
prolonged, which has not been observed for the last 60 years. For about the same 
number of years, there was no such low grain yield per hectare (Semenova and 
Ovcharuk 2017). For comparison and analysis, the year 2007 was proposed, which 
was covered by a prolonged drought, in particular during the active vegetation 
period of plants (Fig. 2.6d). As already mentioned, the prolonged drought of 2007 
has become a particularly threatening phenomenon for crop yields. According to the 
time of onset, there were spring, summer, and autumn drought observed. Spring 
drought is characterized, as a rule, by low air temperatures at low relative humidity, 
insignificant reserves of productive moisture in the soil and dry winds. Prolonged 
drought in the spring significantly reduces crop yields, even in favorable summer 

2 Desertification Intensity Assessment Within the Ukraine Ecosystems…



42

Fig. 2.6 Monitoring of the land cover state based on the drought index ID use on the Ukraine ter-
ritory for the periods: (a) 2000–2004, (b) 2005–2009, (c) 2010–2014, (d) 2007, (e) 2015–2020
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conditions for the degree of moisture. Summer drought is characterized by high air 
temperatures, hot dry winds, which cause increased evaporation. The effects of 
summer drought are manifested in a sharp decline in crop yields, etc. Autumn 
drought is characterized by low temperatures; it is the most dangerous for winter 
crops that do not have time to take root, go through the tillering phase and very often 
die in the winter (Walz et al. 2018; Lyalko et al. 2015c). In Fig. 2.6d is shown that 
in 2007 a prolonged drought began in May, including the active growing season of 
crops and lasted until September. The driest periods were July and August. 
Territorially, the most widespread drought was observed in July. In addition to these 
gradations of the ID index in 2007 is observed very active red color (ID value >70) 
in zone IV, indicating a catastrophic moisture deficit. Such a long period of drought 
in 2007 led to the death of crops. That year showed the scenario of the drought pro-
cess development in Ukraine (catastrophic situation), if climate change occurs in 
the direction of warming. In Fig. 2.6e, the last 5 years 2015–2020 in terms of spatial 
distribution of the arid area already coincided with the model year-2007, so far there 
is no such intensity (no red color). In Fig. 2.6e is shown the possible transformation 
of the physiographical zones of Ukraine based on the drought index ID analysis. 
There is a gradual shift to semi-deserts, which previously was not detected in 
Ukraine in the steppe zone (IV), steppe zone (IV) to forest-steppe zone (III); forest- 
steppe zone (III) in the zone of deciduous forests (II); and in the zone of mixed 
(coniferous-deciduous) forests (I). This can lead to undesirable consequences, as 
ecosystems do not have time for adapting to rapid climate change. In addition, it 
will significantly complicate the agricultural activities in the southern and south-
eastern regions of Ukraine (steppe zone).

Besides, this process may be accompanied by depletion of freshwater resources 
in these regions. This effect is quite unfavorable from ecology, as it will lead to a 
catastrophic state of natural ecosystems. The nature of species biodiversity can 
change significantly. It should be noted that the biota reaction to the new climatic 
conditions may happen due to both natural and anthropogenic factors, leading to 
appearance of the new varieties of plants. Already now such regional climate 
changes observed in the twenty-first century, in particular the changes in aridity, are 
manifested not only in the sudden replacement of one species of plant group to 
another, but in the gradual growth of one type of landscape features to the another 
type of landscape.

Due to global warming, the intensity of which is not decreasing, but rather 
increasing, the main issue of the world community is to maintain the food balance 
on Earth as a whole and at the individual regions as well. Therefore, any climate 
change in the direction of warming or cooling requires addressing the issue of agri-
culture adaptation to current and future climate change conditions. In the twenty- 
first century, the areas where the frequency of droughts may increase could expand. 
Further climate change is possible, and as a result of droughts in Ukraine, the agri-
cultural sector may be significantly affected. At the same time, there are concerns 
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about the low level of readiness for these changes. Strategies for agriculture adapt-
ing to the negative climate change need to be developed now. In this situation, early 
notification of droughts and the true information of the drought extent is extremely 
important.

 Conclusions

The use of remote sensing data, especially drought indices, opens up the new pos-
sibilities in understanding of the drought causes, identifying the peculiarities of its 
spread, especially detailing its intensity within the different territories. The advan-
tage of the drought index ID use makes possible the consideration of the underlying 
surface, which cannot be sufficiently investigated and taken into account when 
studying drought according to the meteorological data only. The obtained results 
show the possibility of effective use the remote sensing data to determine drought, 
assessing the ecosystems moisture supply and phytocenoses within large regions. 
This approach can be used to conduct environmental monitoring studies within the 
different landscapes and climatic zones throughout Ukraine and is applicable for 
other countries, considering their physical and geographical features.

 Recommendations

The research data obtained and methodology proposed to consider the drought 
index ID for the drought of agricultural areas monitoring should be considered by 
the State Agencies and Public Authorities responsible for the agricultural sector 
sustainable maintenance and development. Ensuring the food and environmental 
safety in arid and semi-arid areas of Ukraine and other countries affected by arid 
processes, it is necessary to provide a number of measures for further development 
of irrigated agriculture, modernization of irrigation systems based on modern tech-
nologies. In addition, organizational and economic measures should include the 
monetary compensation to agricultural producers who have suffered significant 
losses from drought, exemption from agricultural tax due to crop failure, increase in 
purchase prices for agricultural products, risk insurance, payment of insurance 
losses, creation of state agencies for agricultural risk insurance services, leasing 
companies and investment projects, forecasting yields and gross grain harvest, 
drought monitoring, development and approval of a state program to protect agri-
cultural plants from drought, scientific support, and implementation, etc. Therefore, 
the control of soil moisture is extremely important for assessing the condition of 
crops. It is desirable that the government, as well as decision-makers in the field of 
logistics, pay attention to the negative effects of climate changes and the conditions 
of food security in Ukraine and other countries.
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Chapter 3
Climate Change Effect 
on the Urbanization: Intensified Rainfall 
and Flood Susceptibility in Sri Lanka

M. D. K. Lakmali Gunathilaka and W. T. S. Harshana

Abstract Climate change is inevitable with the interference made by various 
anthropogenic activities. Urbanization and development are two main processes 
that affect climate change. Thus, urbanization and climate change are like two sides 
of the same coin. The conjunction between climate change and urbanization already 
has created several issues in urban areas. Such issues are more common in develop-
ing countries due to unsustainable development, rapid urbanization, and population 
growth. The Sri Lankan scenario is also the same. The increased intensity and fre-
quency of rainfall and increased land surface temperature are observable in urban 
areas in Sri Lanka. Colombo is the main administrative city and the largest urban 
area lies within the lower Kelani River basin. Due to the frequent flooding, the low 
lands usually inundate for days. Along with the wetland shrinkage and unsustain-
able development, the inundation period has increased creating a higher magnitude 
of flooding disaster. The damage due to frequent flooding usually creates an eco-
nomic burden which in turn affects the development of the country. Sustainable 
development and greening cities are highly recommended to reduce the impacts of 
climate change in urban areas.

Keywords Flood · Greening cities · Urban Heat Island · Rainfall · Urbanization

 Introduction

Climate is defined as the long-term weather conditions that prevail over an area. 
Climate change is the change in long-term normal climate or climate variability 
(Rieddy 2020). Long-term changes in meteorological factors based on climate or 
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human activity are called climate change, and these changes are measured over 
several decades and observed by statistical data to determine these changes (UN 
2011). The atmosphere, oceans, and landmasses have warmed due to human influ-
ence and as a result, wide and rapid changes have taken place in those systems. 
Accordingly, research has shown that the concentration of greenhouse gases on 
human activity has increased since about 1750 and that the atmospheric concentra-
tion of carbon dioxide has increased from 410 ppm from 2011 to 2019, the rise of 
methane has risen to 1866 ppm, and the atmospheric concentration of nitrous oxide 
has been observed to be 332 ppb. The study also estimates that carbon dioxide emis-
sions (Appendix 1) from human activity have increased by 56% annually over the 
past six decades, with regional variations (Appendix 2) (IPCC Climate change 
2021). In the discussion of global warming, the last four decades from 1850 onwards 
have consistently recorded higher than the magnitude of global warming repre-
sented in the previous decade. That is, in the first two decades of the twenty-first 
century, the quantitative value of global warming represented by the year 2001–2020 
has increased by 0.99 °C, over the period from 1850 to 1900 (IPCC Climate change 
2021, 2017). Thus, the intensity of global warming is clear. Further research shows 
that global surface temperatures increased by 1.09 Celsius between 2011 and 2020, 
compared to 1850–1900. According to the researchers’ observations and data analy-
sis, the total global surface temperature increase caused by the human intervention 
was 0.8 °C between 1850 and 1900 and increased to 1.3 °C between 2010 and 2019. 
Variations in global precipitation can be identified as another global climate change 
that coincides with global warming. That is, there has been a gradual increase in 
global rainfall since the 1950s, and its growth rate intensified by the 1980s. Many 
variations on this condition have been observed by the twentieth century (IPCC 
Climate change 2021, 2017).

When discussing extreme conditions of temperature, the likelihood of heatwaves 
intensifying more frequently or in the long run is highly underestimated, and it is 
predicted that winter chances will be very low in the future during those triangular 
hot seasons. Also, the current daily temperature range is decreasing everywhere. 
Considering the moderate rainfall, the forecasts are that the rainfall will be maxi-
mum in the tropical and subtropical regions representing the tropical regions. It is 
estimated that with the intensification of the global hydrological cycle, rainfall will 
gradually increase in the upper latitudes as well. In the case of extreme rainfall and 
droughts, the intensity of rainfall increases, while the mean of the tropical and sub- 
latitudes increases. Also, even in regions that receive less rainfall, the intensity of 
rainfall will increase, but the time interval between rainfall events will increase 
slightly. Drought conditions are predicted to be severe in the central continental 
regions during the summer. When discussing carbon cycles, future climate change 
reduces the efficiency of these carbon cycles. Also, by 2100, the atmospheric extra 
carbon concentration will change by 20 ppm. It is also predicted that this era will 
represent a value in the range of 730 ppm to 1020 ppm by 2100 (The standard value 
here is 836 ppm). Among the predictions made in considering the El Nino situation 
is that the southern oscillation of El Nino is predicted to be violently active. Forecasts 
for monsoon rainfall include an increase in rainfall over the Asian monsoon season 
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and the southern part of the West African monsoon with some decrease in the Sahel 
in the Northern summer, as well as an increase in the Australian monsoon in the 
southern summer in a warmer climate. Forecasts for its pressure at sea level show 
that regions above the subtropics and centers increase sea level pressure and lower 
it above high latitudes. Predictions of an increase in tornado patterns in the Arctic 
and Antarctic regions at higher latitudes have also been made. Forecasts for tropical 
cyclones include forecasts of future tropical cyclones that are expected to intensify 
and show a decrease in the number of hurricanes as a whole. The forecast for mid- 
latitude storms shows a decrease in the number of mid-latitude storms. In this way, 
its variations can be clearly defined based on global weather conditions as well as 
meteorological factors.

Climatic influences on climate variability are active in a variety of ways, both 
globally and regionally. That is, the effects of climate change, good or bad, are now 
clearly visible around the world. Climate change is currently causing several meteo-
rological effects around the world, many of which appear to have adverse effects, a 
handful of which are expected to have a positive effect. Among these effects, it must 
be said that the impact of global warming is very high. That is to say, it can be seen 
that adverse effects have been created in many fields through this. These include 
increased glacial melting rates, premature eruptions of ice sheets on rivers and 
lakes, changes in flora and fauna, rapid flowering of plants, loss of sea ice, and ris-
ing sea levels, and intensification of heatwaves as a result of global warming (NASA 
2021a, b). Sea level rise is a direct effect of climate change. This sea level rise is 
continuously measured by NASA and is 3.4 mm per year. That is, the gradual rise 
in sea level from 1995 to 2020 is as follows (NASA 2021b). Changes in rainfall 
patterns can also be pointed out as a result of this climate change. In 1977, NASA 
and JAXA used active and passive microwave equipment for the Tropical Rainfall 
Measurement Operation (TRMM) to observe variations in these rainfall patterns. 
The Arctic’s ice sheet has intensified, and NASA says the Arctic Ocean is expected 
to be ice-free by the middle of this century. The melting of the ice is a direct result 
of global warming, with NASA estimates that the Arctic ice melting rate will be 
13.1 km2 per decade. Recent data shows the decrease in the mass of the ice sheet 
caused by the melting of ice according to satellite data from 1984 to 2016 (NASA 
2021b). Accordingly, the mass of ice in 1984 was 6.81 million square kilometers, 
and in 1992 it was 7.47 million square kilometers, during which time the ice sheet 
has grown. However, by the year 2000, the mass of the ice sheet had dropped back 
to 6.25 million square kilometers, and in 2008 it dropped further to 4.69 million 
square kilometers. The size of the ice sheet is further declining, and in 2016 it 
reached 4.53 million square kilometers (NASA 2021b). The most demanding chal-
lenge of climate change and its intensified impacts directly targeted small island 
nations as well as developing countries. Coastal developing countries; Bangladesh, 
Thailand, India, Maldives, Micronesia and Melanesia, Pacific Island nations, Sri 
Lanka, countries at the zone of Sahel are among them. Climate change threatens 
sustainable development and all eight Millennium Development Goals. Providing a 
better and safe life with the shrinking environment is the greatest challenge 
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emerging through the disturbing economic development occurring concerning cli-
mate change.

 Relationship Between Urbanization and Climate Change

Urbanization is the process by which cities grow, and a higher percentage of the 
population comes to live in the city. That is to say, the increase in the migration of 
people living outside the so-called urban areas can be further interpreted as the 
urbanization of an area. Most of the people living in rural areas leave the rural areas 
where they used to live and move to the so-called urban areas based on certain 
objectives. As it gradually grows, the population concentration in these areas will 
increase and based on these factors, there will be an increase in urban areas and at 
the same time, there will be an increase in infrastructure and services in those areas. 
Globally, the growth of the global urbanization process can be examined as follows. 
That is, around 1800, 3% of the world’s population lived in urban areas, and by the 
end of the twentieth century, that number had grown to 47%. Further analysis shows 
that in 1950, there were 83 cities with a population of over 1 million, and by 2010 it 
had grown to 460 cities. That is to say, it is better to say that the growth in the so- 
called urban areas is very fast. Globally, the most urbanized areas in terms of urban 
growth are North America at 82%, Latin America and the Caribbean at 80%, Europe 
at 74%, and Oceania at 71% (Bolay 2019) (Fig. 3.1). In Africa and Asia, 49% and 
41% of the population, respectively, live in urban areas. Further analysis reveals that 
most of the population live in rural areas in Africa, such as Nigeria, Ethiopia, 
Tanzania, and Kenya, as well as China, India, Indonesia, and Myanmar in Asia 
(Pande and Moharir 2017; Rajesh et al. 2021). That is, UN reports predict that by 
the year 2050, two-thirds of the world’s population will live in urban areas, and UN 
forecasts show that these urban areas will gradually shift away from Europe, that is, 
to Asia and West Africa. Urban Population Growth, the United Nations estimates 
that by 2050, 65% of the population of developing countries and nearly 90% of the 
population of developed countries will live in urban areas (Dagmav et al. 2018). As 
the urban population grows, so does the urban land area. Also, the land use of the 
land is adapted to urban patterns. Considering the last 30 years, the coastal areas can 
be pointed out as the main urbanized land areas. At present, urbanization is based on 
South Asia, Southeast Asia, Southeast China, the United States, Eastern and Western 
Europe, Japan, West Africa, and the Latin American Atlantic region. That is, at the 
beginning of the twenty-first century, the study revealed that 11% of the urban land 
area, or more than 70,000  km2, is located along this coastal zone (Dagmav 
et al. 2018).

Figure 3.1 shows that by 2050, most of the world’s landmass will be urbanized. 
With the growth of urbanization, it is becoming more and more common 
globally that most areas are being industrialized to meet the needs of the urban 
population. That is, as the needs of the people in the urban areas increase, a variety 
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Fig. 3.1 Percentage of the population residing in urban areas in 1950, 2014, and 2050. (Reproduced 
from UN-HABITAT 2018. Source: Bolay 2019)

of products are created. To maintain this production process, industrial estates 
will be centralized in parallel with these areas.

Among the countries that were industrialized during the 1850s, the Americas 
were the most important region around the United States, and the most important 
countries in Europe were the United Kingdom, Germany, France, and Poland. That 
is, during the 1850s, industrialization was limited to a few parts of the world. It 
appears to have strongly penetrated the United States, the European region, and 
Asia, as well as Australia by late 1900. Later, this has led to classifying the countries 
into developed, developing, emerging developed, and less-developed likewise 
(Fig. 3.2). The bottom line is that as urbanization expands, so does industrialization 
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Fig. 3.2 Country groups by stage of industrialization on the world map. (Source: Upadhyaya 2013)

around the world. Today, the growth of these urban areas is rapidly occurring in 
almost every country in the world, and it is clear in this competitive world that the 
process continues to grow. The growth of these urban areas, directly and indirectly, 
influences many of the active processes taking place in the world, one of the major 
factors of which is climate change. The current changes in climatic conditions based 
on this urbanization can be discussed as follows. It is now clear how this effect is 
active globally, or even within a recognized region. With the gradual growth of the 
population, many of the physical features of those urban areas also grow in propor-
tion. For example, urbanization is growing and converging building density in urban 
as well as suburban areas, intensification of activities such as the rise of industrial-
ization can be seen in urban areas. It is also possible to observe the processes that 
take place in reverse with the growth of this urbanization. By the time, reducing 
forest cover and decreasing in the area of lands such as wetlands which are consid-
ered as protected areas can be pointed out. When discussing urbanization, defores-
tation can be pointed out as a process that works in reverse. Land-use patterns that 
have emerged with the expansion of urbanization include the allocation of land for 
residential factories, highways, terminals, parks, and playgrounds. However, with 
the abundance of these requirements, there is a relative shortage of land available 
for this purpose in the so-called urban areas. As a result, the existing territory in the 
semi-urban areas will be annexed to these urban areas. Accordingly, deforestation 
increased globally in line with urbanization.

In 1950, there was a global increase in forest cover, while forest cover in 2010 
showed a significant decrease in forest cover over the years. Deforestation was more 
rapid in 2010 than in 1950. Urbanization was slow compared to 1950 and its 
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distribution was minimal, but it is clear that urbanization had grown rapidly by 
2014. Thus, when these two major processes, urbanization and deforestation, are 
discussed together, it appears that as urbanization increases, this forest population is 
gradually declining. As discussed above, the processes of deforestation and increas-
ing industrialization have become dependent on urbanization. That is, the impact on 
the climate process based on the industrialization that takes place with the growth 
of urbanization. The formation of climatic variations by greenhouse gases can be 
summarized as follows. That is, these gases cause changes in the clouds and also 
cause variations in the nuclear concentration during the condensation process. It has 
a direct effect on rainfall, affecting the size of the clouds (Chan n.d.). The United 
States, for example, currently reducing their greenhouse gas emissions to 0, but that 
they are currently experiencing the effects of climate change. It has been pointed out 
that cities like San Francisco have been affected by this climate impact and that the 
impact has also directly affected their income level. That is to say, they have had to 
experience a higher level of heat in the summer, for example. The city of Los 
Angeles is similarly affected by climate change. In Los Angeles, the average tem-
perature in August was about 23.8 °C, and by the end of the twenty-first century, the 
average temperature in this region is expected to reach 32.2 °C due to the global 
warming created by this greenhouse gas release. It is no secret that this climate is a 
direct result of urbanization. Based on these conditions, these regions also suffer 
economic losses. For example, in the year 2000, the average house price in Los 
Angeles was $ 286632.8 and now it has dropped to 128,773. It is a detrimental 
effect of the climate change created on urbanization. That is the impact of green-
house gases created on this urbanization on the climate. This shows that there is a 
direct link between urbanization and climate change (Kahn 2009). Further examin-
ing the relationship between urbanization and climate change globally, the impact 
of climate change on the effects of deforestation with the expansion of urbanization 
can be explained as follows. That is to say, forested areas provide great help in 
maintaining the ecological and atmospheric balance. That is, it absorbs greenhouse 
gases such as carbon dioxide and prevents them from being released into the atmo-
sphere. This prevents global warming, which in turn helps to prevent climate change 
caused by global warming. Generally, plants absorb carbon dioxide released through 
urbanization and thus reduce the risk of climate change. Research shows that defor-
estation triples global warming (De Zoysa 2021). It is well-known that forest cover 
on urbanization has been gradually removed and the most accurate solution to the 
climate change caused by this global warming is to protect the forest. That is to 
protect the untouched forests and replant. The pattern of land use in the country 
changed rapidly through urbanization, and when viewed globally, irregular con-
structions could be seen in many areas, and the formation of tropical heat islands in 
those suburbs intensified. A tropical heat island is defined as a time when the aver-
age air temperature in an urbanized area is higher than in a suburban area. Heat 
absorption by surfaces is a major factor in the formation of these islands (NASA 
2021a). These areas become thermal islands due to the irregular constructions that 
take place in urban areas and the raw material that maintains the high heat absorp-
tion used for such constructions. In such areas, the hot air particles do not leave the 
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area due to wind disturbances, and the blowing winds are confined to that area due 
to large construction obstructions. This creates heatwaves and the heated air parti-
cles and heat waves that are created contribute to the creation of atmospheric heat. 
Atmospheric warming on this contribution leads to the creation of climatic varia-
tions. That is, rainfall and temperature changes are common in such areas. Many 
people who have made urban tropical islands their habitat suffer from these climate 
changes. A good example of this is that between 1979 and 2010, about 8000 
Americans died from heatstroke. The peak of this situation was in 2006 when it was 
named the second warmest year on record in 48 states in the United States. This 
means that the tropical islands that are created based on urbanization are directly 
affected by the variation in climatic factors (EPA 2021). Globally, it is clear that 
there is a strong correlation between the urbanization process and climate change. 
These processes are some of the most common processes in almost every country 
where the rate of urbanization is high (De Zoysa 2021), and these processes directly 
or indirectly affect climate change.

 Climate Change and Sri Lanka

Sri Lanka is a small island nation lying between North 7° 52′ & East 80° 6′ in the 
Indian ocean. There are also three main climatic zones of the island mainly consist-
ing of three topographic zones, namely as wet zone, dry zone, and interzone (Asian 
Development Bank 2020a). When discussing the prevailing temperature and pre-
cipitation in these zones, the mean temperature of the three zones is 24 °C, the dry 
zone is 28 °C, and the interzone is 24–26 °C. Also, when looking at the mean pre-
cipitation values of these major climatic zones, the precipitation values are more 
than 1750 mm in the wet zone, less than 2500 mm in the dry zone, and between 
1750 mm and 2500 mm in the intermediate zone. Climatic conditions are created by 
meteorological elements that operate with variations based on these three regions. It 
is noteworthy that the climate base in Sri Lanka is based primarily on monsoon 
rainfall. These two monsoon showers of rain can be seen to be active during two 
periods of the year. That is, the southwest monsoon is active from May to September 
and the northeast monsoon is active from November to February. These two mon-
soon drops of rain have had a direct impact on Sri Lanka becoming an agricultural 
country. That is, the “Maha” season is based on the northeast monsoon and the 
“Yala” season is based on the southwest monsoon. Despite being fed by two major 
monsoon spots of rain; Sri Lanka is one of the hottest countries in the world. Its 
basis is the equatorial location of the island (Asian Development Bank 2020a). 
Considering the long-term climatic conditions that will be created based on these 
climatic conditions, several clear changes in meteorological features can be seen 
globally as well as within this island. Climate change in Sri Lanka is manifest 
through a slow but steadily rising temperature and erratic and unpredictable rainfall 
seasons. Although total annual rainfall (past 10 years compared to the 30-year aver-
age) remains steady (Punyawardena 2012), climate-induced changes are already 
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observed in the increased variability of monsoonal behavior, about on-set time, 
duration, nature of rainfall, and seasonal rainfall. The impacts of climate change on 
weather patterns in Sri Lanka can be identified with temperature and rainfall vari-
ability. Summarizing significant phenomena observed (1) Average air temperature 
has increased by 0.64 °C over the past 40 years and 0.97 °C over the last 72 years, 
revealing a trend of 0.14 °C per decade, (2) An assessment of a more recent time 
band has shown a 0.45 °C increase over 22 years, suggesting a rate of 0.2 °C per 
decade, (3) Ambient mean minimum and mean maximum temperatures have 
increased, (4) The number of warm days and warm nights have increased, while the 
number of cold days and cold nights have decreased, (5) Though precipitation pat-
terns have changed, conclusive trends are difficult to establish, (6) A trend indicat-
ing decreased overall rainfall has been observed over the past 30–40 years, but the 
change is not statistically significant, and (7) Increasing trend of one-day heavy 
rainfall events across the country where the frequency of extreme rainfall events is 
anticipated, leading to more droughts, floods, and landslides. According to the 
National Adaptation Strategy (2011–2016), while the increased frequency of dry 
periods caused by consecutive dry and droughts is expected, the general warming 
trend is expected to increase the frequency of extremely hot days. One of the most 
recognizable features is the variation in the timing and intensity of the two major 
monsoon showers of rain, which occurred about 30–35  years ago. Variations in 
temperature, which are a major component of meteorological factors in discussing 
the prevailing climate in Sri Lanka, can be explained as follows. Research based on 
the Berkeley earth data set from 1900 to 1917 and from 2000 to 2017 observed clear 
temperature variations during this period. That is to say, during the twentieth cen-
tury, the temperature in Sri Lanka has risen by about 0.8 °C (Asian Development 
Bank 2020a). It has also been found that Nitrous oxide recorded a record rise of 
0.16 °C in temperature between 1961 and 1990. This indicates that by the end of the 
twentieth century that the rate of gradual increase has increased (Eriyagama and 
Smakhtin 2010). When discussing rainfall in Sri Lanka, monsoonal rainfall is one 
of the most Important rainfall patterns on the island and convection rainfall is also 
important. Based on its location in the tropics, it receives high levels of sunlight, 
indicating a certain complexity of rainfall patterns in the island. Recent variations in 
patterns revealed by research on variations in rainfall patterns can be analyzed as 
follows. Research conducted by Iriyagama and Smakthin in 2010 has observed a 
decrease in rainfall in the twentieth century. This is a decrease of about 7% from 
1931 to 1960 (Eriyagama and Smakhtin 2010). Furthermore, Esham and Garforth 
(2013) identified climate change and precipitation as an increase in the extreme case 
(Esham and Garforth 2013). Researchers have also observed that the El Nino South 
Oscillation has a positive effect on the northeast monsoon rains that are active 
around Sri Lanka, thereby increasing rainfall on the island (Zubair and Ropelewski 
2006). When examining the weather forecasts based on Sri Lanka, the following is 
a commentary on temperature. That is, these observations and forecasts are based 
on data from the World Bank Group’s Climate Change Knowledge Portal (CCKP). 
Thus, the future average temperature variation in Sri Lanka is projected to be slower 
than the global warming average, with the average temperature rising in Sri Lanka 
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(Asian Development Bank 2020a). Researchers have also predicted an increase in 
mid-year rainfall in Sri Lanka based on data from the World Bank Group’s Climate 
Change Knowledge Portal (CCKP) on climate change. It is also predicted that the 
intensity of rainfall will increase with the increase in temperature. It is also pro-
jected that heavy rains will continue for more than 5 days. In summary, the behavior 
of rainfall in future projections is that the magnitude and intensity of rainfall also 
increase (Silva et al. 2016). This research reveals that the impact of global climate 
change is also active in Sri Lanka. Also, the climate of Sri Lanka in the past has 
changed a lot from the past to the present. From the above, it is clear that this situa-
tion is likely to change further in the future. Rainfall, meanwhile, takes precedence 
over potential variations.

Being an island nation, subjected to the tropical climate system, Sri Lanka has 
experienced several challenges in several key thrust areas of Sri Lanka’s develop-
ment framework, such as agricultural, transport, health, power, environment, and 
settlement and vulnerable populations. The challenges are straightforward toward 
the economy and development where the failure in the economic sector is the ulti-
mate challenge due to climate change and its impacts. The full extent of climate 
change impacts on Sri Lanka is still being studied, but there is growing recognition 
that climate change may threaten the significant achievements the country has made 
in the last 20 years in increasing incomes and reducing poverty (MoE/ADB 2010; 
NCSD and Presidential Secretariat 2009; MoENR 2008). Climate change exacer-
bates existing inequalities faced by vulnerable groups particularly women, children, 
and the elderly. The consequences of climate change and poverty are not distributed 
uniformly within the country. Coping with climate change has become a challenge 
due to the unawareness of climate change. There is a lack of awareness about cli-
mate change impacts on livelihood among farmers and local government officials 
especially those engaged in water management and agriculture extension. As such, 
farmers are not supported to adapt to changing rainfall patterns and seasons with 
proper advice on crop choice, water-saving methods or diversification of livelihoods 
so that dependence on rainfall is minimized. Year after year, farmers cultivate the 
same crop combinations, depending on seeds imported by the private sector and on 
agrochemical suppliers to provide them with information and advice for managing 
threats to their crops. This trend has resulted in deep indebtedness among rural 
households and a lack of disposable income for capital investments needed for a 
durable change in resilience. In this respect, it is clear that climate change has to 
become the most challenging issue that must pay much more broader attention to 
cope with unless the adaptation and mitigation would be beyond our hands. It is 
important to take note what are the consequences of climate change. Many of the 
natural disasters that are taking place today have confirmed that the effects of cli-
mate change are well-known and have spread throughout the world. This situation 
is active globally as well as regionally, and in Sri Lanka, which is located in the 
tropics, which represents the Asian region, the meteorological effects that have been 
created based on this climate change can be identified with examples at present. 
European Commission (2019) Inform Index for risk management observes that Sri 
Lanka represents a moderate level of disaster levels affected by climate change. It 
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also points out that Sri Lanka ranks 97th out of 191 countries. On further analysis, 
it is positioned as follows. That is, it represents a moderate to 56th position in river-
ine flood conditions, 45th with some exposure to tropical cyclones and associated 
hazards, and 76th in drought exposure, i.e., slightly lower. It can be said that all 
these processes are based on the adverse effects of climate change (The World Bank 
Group and the Asian Development Bank 2020). Research on the effects of heat-
waves has shown that Sri Lanka currently averages about 32 °C per month. IWMI 
has also observed that Sri Lankans are directly affected by these heatwaves. 
According to their research, about 23% of the population of Sri Lanka is exposed to 
these dangerous heat waves. The underlying effect of this is an increase in climate 
variability. It appears that these heatwaves occasionally contribute to the develop-
ment of high temperatures in Sri Lanka (Asian Development Bank 2020a). Floods, 
another consequence of climate change, are now a common sight in Sri Lanka. That 
is, it is possible to better observe how the intensity and duration of flooding have 
changed almost completely today, based on variations in rainfall patterns in the past. 
That is to say, research conducted to identify climate change has revealed that from 
time to time these floods are more likely to be reported due to the increase in rainfall 
intensity around the island. Landslides and epidemics are exacerbated as side effects 
of these floods. According to the United Nations Office for the Doctrine of the Faith, 
about 59,000 people in Sri Lanka are affected by floods each year, and the impact of 
the floods on GDP is estimated at $ 267 million. UNISDR has decided to increase 
its flood relief funding in Sri Lanka by 2030, indicating that the risk of floods will 
increase further in Sri Lanka by 2030. That is, it proves that the effects of climate 
change are exacerbated and that their form is severe (Asian Development Bank 
2020a). Climate change in Sri Lanka can be attributed to the behavior of hurricanes. 
These hurricanes create conditions of heavy rainfall as well as high winds. Foreign 
research has shown that the intensity and frequency of hurricanes in Sri Lanka are 
slightly lower, but the potential for extremes has increased. Therefore, it is clear that 
the effects of the hurricane may be active on this island (Asian Development Bank 
2020a). Real droughts can be pointed out as another possible effect of the gradual 
variation in climatic conditions. Thus, two possible drought conditions in Sri Lanka 
are identified as Meteorological Drought and Hydrological Drought. Research by 
IWMI has identified that about 10% of Sri Lanka‘s population was affected by 
drought between 2001 and 2013 (Asian Development Bank 2020a).

 Climate Change and Urbanization in Sri Lanka

Compared to the United Nations estimated 60% urban population in Asia, the urban 
population in Sri Lanka will remain 40% by 2050. The UN-Habitat III Country 
Report on Sri Lanka shows the urban population growth from 2,848,116 in 1971 to 
3,704,470 in 2012 while reducing the percentage of urban population from 24.4 in 
1971 to 18.2 in 2012 (Ministry of Housing & Construction 2016). Urbanization has 
also altered traditional livelihoods’ strategies in Sri Lanka. Although Sri Lanka is 

3 Climate Change Effect on the Urbanization: Intensified Rainfall and Flood…



60

18
81

10
20

15
%

 o
f P

op
ul

at
io

n

18
91

19
01

19
11

19
21

Urban population Lowess trend 10 0 10 20Km

N

19
31

19
41

19
51

19
61

19
71

19
81

19
91

20
01

20
11

Fig. 3.3 Urban population (1881–2011) and urban areas (2012) in Sri Lanka. (Source: 
Weeraratne 2016)

comparatively experiencing a low level of urbanization, the urban population is 
heavily concentrated in the Greater Colombo area, the commercial capital where 
43% of them live in slum and shanty settlements (Ministry of Environment 2012).

The present situation of urbanization in Sri Lanka can be graphically presented 
in Fig. 3.3.

According to the census, the urbanized areas of Sri Lanka can be identified by 
the map. According to the 2012 census, five districts can be identified as the main 
urbanized areas. Colombo, Gampaha, Kalutara, Kandy, and Galle can be listed in 
this order and the urban population in all these four districts is more than 50%. The 
urbanization of the Colombo district can be pointed out as an extreme opportunity. 
That is, 90.51% of the total population of the Colombo District live in urban areas, 
which gives a good idea of the level of urbanization in the city of Colombo. Further, 
focusing on the growing urban-based construction in Sri Lanka, the urban construc-
tion in the city of Colombo was 142.87 km2 in the year 1990 and it is 67% by per-
centage. However, by 2015, it was 172.23 km2, representing 81% of the total area 
(De Zoysa 2021). Accordingly, it appears that the building density in the city of 
Colombo has increased rapidly. Also, the water resources in the city of Colombo 
represented 5.41 km2 in 1990 as a percentage of 3% and by 2015 it had dropped to 
3.67 km2. It is a percentage of 2%. That is, it shows how land use is changing unfa-
vorably with this urbanization. The direct and indirect effects of this urbanization 
make it clear that the climatic cycle is currently operating in a different form around 
Sri Lanka as well (De Zoysa 2021). Accordingly, in line with the expansion of this 
urbanization, it appears that processes such as industrialization and deforestation 
have had an impact on the urban areas around Sri Lanka, as discussed earlier.
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Fig. 3.4 Change of forest cover in Sri Lanka (Source: Forest Department 2010)

Figure 3.4 shows the gradual decline of Sri Lanka‘s forest cover from 1956 to 
2000. That is a gradual decrease from 44.1% in 1956, 35% in 1992, 32% in 1999, 
and 29% in 2010. That is, it appears that deforestation has taken place rapidly. 
Simultaneously, the implication is that urbanization has grown and, accordingly, the 
extent of deforestation has increased. That is, it is much clearer that forest cover is 
rapidly disappearing in urbanized areas. With the growth of this urbanization, indus-
trialization grew globally as well as in Sri Lanka and with the growth of this indus-
trialization, the greenhouse gas emissions also increased significantly in Sri Lanka.

Overall, research has shown that Sri Lanka contributes 0.10% to global green-
house gas emissions by 2011. Global greenhouse gas emissions are 46,906 metric 
tons, while Sri Lanka emits an average of 45 metric tons. There is no doubt that this 
is an indirect result of urbanization. Overall, urban areas in Sri Lanka expand by 
9.5% to 7% annually, and at the same time, according to the 2100 Climate Forecast, 
the average temperature in Sri Lanka is expected to rise to 2.40 °C annually. In the 
face of all these urban conditions, it seems that the climate patterns of the past in Sri 
Lanka today are operating in a completely different form. By analyzing those cases 
as follows, it is possible to identify how climate change works under the influence 
of this urbanization. One example that illustrates this interrelationship is the phe-
nomenon of tropical islands currently facing urbanized cities in Sri Lanka. Variations 
in the climatic process are also responsible for the formation of these tropical 
islands. A good example of this is the surface temperature in the Nuwara Eliya 
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District which was 18.90 °C in 1996 and 17.9 °C in 2006 but it has increased to 
21 °C in 2017 (De Zoysa 2021). The main reason for this effect is that buildings are 
made of heat storage structures. Furthermore, the temperature difference between 
urban and rural areas in Sri Lanka is steadily increasing, from 1 °C in 1996, 1.3 °C 
in 2006, and 3.5 °C in 2017. The city of Colombo in Sri Lanka is also facing this 
experience due to multistoried buildings, widen roads and lanes, concrete roofs. 
Research shows that the city of Kandy in Sri Lanka is also gradually facing this situ-
ation (De Zoysa 2021). Further discussion of climate change shows clear changes in 
the annual rainfall in the Colombo district. That is, research (Lo and Koralegedara 
2015) has shown that annual rainfall has increased and marginal opportunities have 
increased with it. This shows that the annual rainfall in the city of Colombo was 
2000 mm in 1981 and 2000 mm in 2002 but by 2010 it was around 3000 mm. This 
means that the annual rainfall in the city of Colombo has increased rapidly. The 
conclusion that can be drawn from this is that there has been an increase in rainfall 
as urbanization has increased. It can also be assumed that marginal events in rainfall 
have increased (Margok 2020).

 Case Study: Climate Change and Urbanization in Colombo

The changing pattern of land use has given birth to several suburban areas surround-
ing the Colombo city while expanding the urban zone further. The pressure of the 
Colombo primacy has filtered to these suburbs. Suburban growth has accelerated in 
recent years due to the interplay of demographic factors; the natural increase of 
population and diversion of city-ward migration to suburbs, economic factors; the 
spiraling cost of limited land resources in the city and the availability of cheap land 
in suburbs along with facilitated technological changes in the field of transportation, 
electricity and power, water supply have been paramount in causing suburbaniza-
tion around Colombo. Location rent in these suburbs was relatively lower than in 
the city. The introduction of various land policy measures and statutory provisions 
to control land use increased its supply for urban usage. The horizontal expansion 
was majored to avoid physical constraints thus suburban frontier extended along the 
transportation lines while avoiding paddy and marshy lands liable to regulate flood-
ing. Resulting ribbon development along the roads generally followed infilling of 
interstices which created more compact build-up areas in some older suburbs 
(Ranaweera 2016). Though “lung space” or “green belts” avoided in the past, the 
population expansion has had to invade those green patches as well. About 18.6% 
of urbanization level has been reported by 2011 which will multiply by threefold 
size by 2030 as projected by the urban development authority (Fig. 3.5). In 1971, 
two crescents of suburbs were identified. Battaramulla and Maharagama towns 
were among the second crescent. The relocation of administrative functions intensi-
fied the rate of suburbanization to the East of Colombo. The new capital of Sri 
Jayawardenepura extends over 12,200  ha including suburbs; Maharagama, 
Battaramulla, Kaduwela, Kesbewa, etc. Today, nearly 25% of the Sri Lankan 
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Fig. 3.5 Urban expansion in Sri Lanka from 1871 to 2030 (Source: Ranaweera 2016)

population live in urban areas and it is expected that 65% of the population will live 
in urban areas by 2030 (Amarawickrama et al. 2015). This will make cities grow 
both in number and in physical size than experienced in the past, aggravating urban 
sprawl-related problems in the future. A study carried out to identify urban sprawl 
has stated paddy lands and eco-sensitive areas have been threatened by the conver-
sion of land into various urban uses. Eco-sensitive areas in the immediate surround-
ings of the urban core have decreased by 80% from 1986 to 2015. Similarly, paddy 
lands in the peripheral areas have decreased and they show a higher correlation with 
density factors, built-up density, and population density (Amarawickrama et  al. 
2015). As a whole, it is apparent that the vegetation cover in Colombo’s EUA is 
diminishing throughout the year. Also, Amarawickrama et al. (2015) analyzed the 
commuting pattern by privately owned vehicles confirms the dominance of the 
Colombo core area as an employment center. Kaduwela and Nugegoda areas have 
recorded the highest number of work-based trips in the urban areas (Fig. 3.5).

Climate change may create hundreds of millions of urban residents increasingly 
vulnerable to extreme weather and other natural disasters in the next 10  years. 
According to the World Health Organization (WHO), the urban population in the 
world is expected to grow approximately 1.84% per year between 2015 and 2020, 
1.63% per year between 2020 and 2025, and 1.44% per year between 2025 and 
2030. South Asia with an area of about 4.5 million km2 represents 3.31% of the 
world’s landmass and has 22% of the world’s population which has increased from 
1.13  billion to 1.76  billion from 1990 to 2016 as one of the fastest and leading 
urbanizing zones in the world (Saparamadu et al. 2018). According to the UN, esti-
mates revealed at the World Economic Forum on ASEAN, over half of the popula-
tion in Asia (4.5 billion) will live in cities by 2026 (World Economic Forum 2018). 
Unplanned urbanization has many traffic congestions, increased waste resources, 
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vehicle emissions, limited social services, disorder, and confusion in land-use pat-
terns and contributes to environmental challenges including natural disasters and 
environmental pollution. With the agglomeration of population and infrastructure in 
urban areas, the vulnerability of urban populations to events of higher temperatures, 
sea-level rise, and reductions in freshwater availability in major cities have become 
a common feature in many locations in the world. The local warming caused by the 
overall tendency of urbanization has induced a proportion of global warming during 
the last century, as a key issue from the climate change perspective (Paranunzio 
et al. 2019). The impacts of climate and land-use changes driven by urbanization 
effectively reduce the trade-offs and increase losses of ecosystem services (Pande 
et  al. 2018, 2021). Hence, urban planning to enhance ecosystem services under 
future climate change impacts has great importance in ecosystem management and 
policymaking for environment resilience urbanization (Lyu et al. 2018).

With the rapid urbanization, the land-use changes are visible (Table  3.1). 
Connecting land-use change and urbanization is already being identified as a com-
ing threat under climate change. Spatial analysis studies showed, the urban built-up 
area in Colombo, the capital city of Sri Lanka, increased from 41 km2 in 1995 to 
281  km2 in 2017 diminishing the nonbuilt-up areas from 125  km2 to 10  km2 
(UN-HABITAT 2018). Another study has proved that the land-use change where the 
built-up area has increased by 29.36  km2 while decreased in other cultivation 
(−11.75 km2), paddy (−8.46 km2), boggy (−5.11 km2), water (−1.74 km2), and sand 
land use (−1.51 km2) in Colombo city from 1990 to 2015 (Saparamadu et al. 2018). 
The green space in Colombo city in Sri Lanka has remarkably changed with “annual 
reduction rate of 0.46  km2 (1980–1988), 0.39  km2 (1988–1997), 0.37  km2 
(1997–2001), 1.37 km2 (2001–2011), and 0.71 km2 (2011–2015)” due to a higher 
rate of increasing population density and economic development of the country (Li 
and Pussella 2017) (Table 3.1). The vegetation extent decreased from 600 km2 to 
400  km2 with a decrease rate of 33% in the Colombo metropolitan area alone 
(Fonseka et al. 2019).

The increasing intensity of impacts of climate change is further fueled by trigger-
ing and uses conversions for urban expansion. The increasing temperature and rain-
fall are significantly identified in Colombo. The increasing surface temperature and 
creation of heat islands within the urban zones are also evidenced. Transportation 

Table 3.1 Land-use changes in Colombo

Land use
Area km2 % Land-use changes km2

1990 2015 1990 2015

Built-up 142.87 172.23 67 81 29.36
Boggy 8.99 3.88 4 2 −5.11
Water 5.41 3.67 3 2 −1.74
Paddy 29.89 21.43 14 10 −8.46
Other cultivation 23.87 12.12 11 5 −11.75
Sand land use 1.51 0 1 0 −1.51

Source: Saparamadu et al. (2018)
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Fig. 3.6 Carbon dioxide emission Mt. from 1960 to 2019 in Sri Lanka (Source: Global carbon 
atlas, 2021)

development is also a consequence of urbanization. Where the transportation facili-
ties are developed highly concentrated with population. Thus, the urban traffic con-
gestion causes extra emissions of carbon dioxide and carbon monoxide, etc. So, 
fossil fuel consumption which is recognized as one of the main causes of global 
warming is evidenced in Colombo. It is known methane and nitrous oxide are com-
monly found in Colombo urban zone; however, carbon dioxide is the most promi-
nent (Fig. 3.6).

It has been measured that Methane gas emission was 1507.681 m3 and CO2 gas 
emission was 9474.516 m3 in Colombo Metropolitan Region in 2003. The carbon 
emission is changed with the changes in urbanization level particularly in response 
to the changes in energy consumption, and economic levels. A study in Sri Lanka 
confirms that urbanization has a significant effect on carbon emissions in the long- 
term as well as in the short-term with the increase in energy consumption (Gasimli 
et al. 2019). Urban areas are mainly responsible for more than 70% of CO2 emis-
sions related to global energy consumption and increase with the continuous trends 
of urbanization (Hegazy et al. 2017). According to a study conducted in Pettah divi-
sion predominantly a commercial area of Colombo city in 2012, the vehicle is the 
highest CO2 emitting source contributing 47737.69 ton CO2 about 95% of the total 
annual emission of 50352.05 ton CO2. The contribution of CO2 emission from fire-
wood (41.85 tons) is not significantly high compared to vehicle emission and com-
muting population (Sugathapala and Jayathilake 2012). The increasing surface 
temperature and heat island effect are recently well documented (Fonseka et  al. 
2019) where most suburban centers were identified as heat islands while the sever-
ity of surface temperature increase is prominent in Colombo city and peripheral 
areas. The urban vegetation has converted to a concrete forest in most areas identi-
fied for high temperature and loss of soil moisture along with plant water stress. The 
relationship between surface temperature and urban land-use changes was well 
documented recently (Ahmad et al. 2013; Sultana and Satyanarayana 2018; Hoan 
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et  al. 2018). Significant surface temperature changes were identified concerning 
high-rise development. The heat islands are intensified by the mixture of “mid-rise” 
and “high-rise” blocks (Herath et al. 2018). The greatest difference in Urban Heat 
Island intensity (UHI) of the Colombo city of 4.09 °C is seen when Local Climate 
Zones (LCZ) with lightweight low-rise (0.310 °C) are transformed into LCZ with 
compact high-rise areas (4.40 °C). High-rise housing complexes are rapidly spread-
ing especially where the marshlands existed before. The conversion of marshy lands 
into urban apartments and other commercial centers is common in Colombo which 
is identified as a triggering factor to intensity urban floods. Architectural buildings 
and construction materials in urban areas absorb more heat than vegetation and 
soils, and minimize the cooling effect of evapotranspiration making urban areas 
warmer than their surroundings, causing the UHI effect (Oleson et al. 2013). Land 
cover changes from natural or agricultural lands to build environments due to rapid 
urbanization increase air and surface temperatures in the urban area as compared to 
its rural surroundings, transform cities into urban heat islands UHI (Middel et al. 
2015). The empirical finding of a study indicates the reductions in green space in 
high-density residential areas and town centers in 10% will increase surface tem-
peratures by 7–8.2 °C by 2080 (Dulal, 2017). Not only surface temperature but also 
the rainfall pattern has changed and the number of weather extremes have also 
increased due to climate change. Currently, it is evidenced Sri Lanka also become 
vulnerable to climate change. The analysis of long-term trends of rainfall as cli-
matic variables in Colombo city of Sri Lanka indicates that the average annual dry 
days (193.41) and average annual wet days (171.84) are changing with a large stan-
dard deviation annually (Chen and De Costa 2017). High intensity and frequent 
rainfall have been recorded in wet-zone cities particularly Ratnapura, Ratmalana, 
and Colombo by El Niño-Southern Oscillation (ENSO) as the primary climate 
driver in Sri Lanka (Naveendrakumar et al. 2018). The long-term trend of the annual 
rainfall records in Colombo, the capital city of Sri Lanka for the 30 years from 1981 
to 2010 shows that there was an increase (R2 = 0.146) slightly from the average 
annual rainfall of 2302 mm with some recorded high rainfall values. Further analy-
sis with simulated rainfall data from 2011to 2099 of Colombo city in Sri Lanka has 
revealed that very heavy rainfall as an extreme weather event may occur in the 
future particularly during 2080~2099 (Lo and Koralegedara 2015). Contrary, a 
study has shown that the periphery of urban areas experienced a higher probability 
of heavy rainfall while the urban areas have a decrease in rainfall with climate 
change impacts (Niyogi et al. 2017). A recent study has demonstrated the decreas-
ing trend in annual rainfall in 13 stations (Allai, Puttalam, Higurakgoda, Angamedilla, 
Chilaw, Kurunegala, Gampaha, Katunayake, Colombo, Rathnapura, Nuwaraeliya, 
Kalutara, and Awissawella), but none of their trends was significant at 5% signifi-
cance level (Nisansala et al. 2020). There is increase in rainfall during North Eastern 
Monsoon at Ratmalana and Colombo at a rate of 4.4 and 5.5 mm year−1, respec-
tively. Besides, this study has demonstrated an increase in rainfall during the first- 
inter monsoon, second-inter monsoon, and north-eastern monsoon while reporting 
a decrease in rainfall during the south-west monsoon. In contrast, another study 
demonstrated that there is a significant tendency to increase the rainfall in all 
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climatic zones in the country. Further, this study concluded for likely consequence 
of increased rainfall thus the risk of floods in the southern and western provinces in 
the future (Alahakoon and Edirisinghe 2021). It is also evidenced that increased 
rainfall intensity has resulted in severe floods in Colombo (Jayawardena et al. 2018; 
CHA, 2016). Due to the rapid urbanization and unplanned city development, floods 
in urban areas constitute a high risk and have become more frequent and increased 
the severity (Dammalage and Jayasinghe 2019). Colombo district is a low-lying 
terrain majorly covered from the lower river Kelani River basin and its extended 
wetlands. The overflow of the river has impacted as flooding in Colombo city. The 
increase in received precipitation over the upper catchment and at the same time to 
the lower parts of the river increased the river water level results in overflow. The 
1989 and 2016 flood events were identified as such severe incidents in Colombo 
(Dammalage and Jayasinghe 2019). In 2016, flood hazards were identified for the 
creation of an additional flooded area than previous years. The changes in urban 
land use due to urbanization and flood area enhancement is well identified with the 
hazard. Sharp increase of built-up areas combined with the reduction in agricultural 
and green spaces are the main causes of increased flood inundation incidents in 
Colombo. The interesting finding done by Dammalage and Jayasinghe (2019) is 
23% of urban areas in the Colombo district are distributed within the Kelani River 
watershed while the land use changed flood inundation covered an area of 37.7% 
within the watershed area of the Colombo district. The vulnerability and the severity 
of urban floods in the area further intensified with the urban poor. Though Sri Lanka 
was recognized as an upper-middle income country in 2019, where the largest por-
tion of national gross domestic product (more than 50%) comes from Colombo city, 
there are 5874 families identified under extreme poverty (Hewawasam and Matsui 
2020). These communities are inhabited mostly in marshy flood-prone areas espe-
cially in Kolonnawa, Dematagoda, Mattakkuliya, Wellampitiya, and Modara. 
Another study also showed (Patankar 2017) more than four times per year urban 
dwellings have been directly affected by floodwater. Even for a small amount of 
rainfall, 61% of families who live in urban flood-prone areas have to cope with 
floodwater where the average depth of flooding is ranged between two and three feet 
while the inundation period is almost 24 h or more. The recurrent floods have caused 
significant health and economic issues. Among the health effects of Dengue, viral 
fever and chronic cold and cough become prominent during the rainy flooding 
period. Apart from them, typhoid, diarrhea, fungi, asthma, and malaria in less than 
three cases were also reported. A significant economic loss has been caused by the 
infrastructure damages, which include homes, obstructed waterways, roads, and 
energy outage. Flood relief a government has to pay attention is also an extra burden 
due to unplanned urban development.
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 Conclusion

Climate change and its effects are visible all over the world. Sri Lanka is also the 
same. Rainfall and temperature changes have been significantly identified espe-
cially in urban Colombo areas. The intensified intensity and frequency of rainfall 
and frequent flooding have become a typical incidence in Colombo due to climate 
change. The magnitude and the severity of flooding have increased as a result of 
unplanned rapid urbanization related developments in Colombo while the popula-
tion density in those of flood-prone areas further intensified the flood disaster sever-
ity. The study has demonstrated how climate is changing and the effects of climate 
change global scenario and then climate change in Sri Lanka. The relationship 
between climate change and urbanization has also been discussed with relevant lit-
erature. Finally, the study emphasized how climate change affects urbanization and 
what are the impacts of urbanization that trigger urban floods in Colombo urban 
zones. It is noteworthy to mention changes in urban land use is one of the key fac-
tors that affect climate change (Appendix 3) and urban flooding which can be con-
trolled with a sustainable development approach. Greening the cities decrease the 
surface temperature while promoting safe and comfortable public transportation 
facilities to reduce the number of vehicles that enter Colombo possible help to 
reduce CO2 emissions. Sustainable planned urban dwellings or appropriate urban 
housing should be initiated.

 Appendixes

 Appendix 1: World CO2 Data

 Sri Lanka

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.2567 1970 3.5931 1980 3.3886 1990 3.8295 2000 10.1338 2010 13.0503

1961 2.3336 1971 3.1935 1981 4.0056 1991 4.137 2001 10.3273 2011 14.8866

1962 2.5608 1972 3.5379 1982 4.4669 1992 5.106 2002 10.9467 2012 15.798

1963 2.5315 1973 3.6843 1983 4.8549 1993 4.9756 2003 10.9521 2013 14.6781

1964 2.2714 1974 2.9293 1984 3.8521 1994 5.4358 2004 12.1462 2014 17.6899

1965 2.656 1975 2.893 1985 3.9166 1995 5.8155 2005 11.9352 2015 19.8301

1966 2.6597 1976 2.7988 1986 3.6603 1996 6.9701 2006 11.7937 2016 23.0284

1967 2.9451 1977 2.911 1987 4.0269 1997 7.5196 2007 12.1513 2017 22.9844

1968 3.2381 1978 3.4355 1988 3.4566 1998 7.7363 2008 11.9878 2018 22.9732

1969 4.3151 1979 3.809 1989 3.447 1999 8.5175 2009 12.9435 2019 24.8412
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 Afganisthan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.41388 1970 1.6704 1980 1.7565 1990 2.6032 2000 0.75767 2010 8.3978

1961 0.4908 1971 1.8936 1981 1.9787 1991 2.4274 2001 0.79796 2011 12.1058

1962 0.68859 1972 1.5304 1982 2.0949 1992 1.3795 2002 1.0516 2012 10.2185

1963 0.70674 1973 1.6356 1983 2.52 1993 1.3331 2003 1.186 2013 8.4408

1964 0.83855 1974 1.9133 1984 2.822 1994 1.2816 2004 0.88917 2014 7.7743

1965 1.0069 1975 2.1216 1985 3.5018 1995 1.2305 2005 1.3033 2015 7.9041

1966 1.0912 1976 1.9812 1986 3.1341 1996 1.1649 2006 1.6354 2016 6.7446

1967 1.2819 1977 2.3845 1987 3.1144 1997 1.0841 2007 2.2686 2017 6.8598

1968 1.2234 1978 2.1536 1988 2.8575 1998 1.0292 2008 4.1995 2018 10.4527

1969 0.94123 1979 2.2332 1989 2.7655 1999 0.80951 2009 6.74 2019 10.7203

 Albania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.0225 1970 3.7409 1980 5.1662 1990 5.4447 2000 3.0045 2010 4.4481

1961 2.279 1971 4.3492 1981 7.3353 1991 4.2283 2001 3.2207 2011 5.0307

1962 2.4622 1972 5.6389 1982 7.3024 1992 2.4952 2002 3.7483 2012 4.6679

1963 2.0812 1973 5.2872 1983 7.6248 1993 2.3156 2003 4.2319 2013 4.9281

1964 2.0152 1974 4.3418 1984 7.819 1994 1.9126 2004 4.1037 2014 5.6206

1965 2.1728 1975 4.591 1985 7.8739 1995 2.0665 2005 4.1989 2015 4.5324

1966 2.5501 1976 4.9464 1986 8.0498 1996 1.9932 2006 3.8435 2016 4.4957

1967 2.6784 1977 5.7158 1987 7.4379 1997 1.5316 2007 3.8289 2017 5.4044

1968 3.0704 1978 6.4889 1988 7.3207 1998 1.7441 2008 4.2722 2018 5.403

1969 3.2426 1979 7.5808 1989 8.9768 1999 2.9752 2009 4.2539 2019 5.579

 Algeria

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 6.1512 1970 15.059 1980 66.4165 1990 76.7366 2000 87.4427 2010 117.8141

1961 6.0559 1971 18.6495 1981 46.342 1991 78.8054 2001 83.7807 2011 119.8069

1962 5.661 1972 28.3226 1982 39.173 1992 79.8818 2002 89.4067 2012 128.11

1963 5.4192 1973 38.2774 1983 52.5039 1993 81.9424 2003 91.0482 2013 132.4346

1964 5.643 1974 31.8767 1984 70.9465 1994 86.1467 2004 87.8531 2014 143.2208

1965 6.5885 1975 32.0012 1985 72.6091 1995 94.982 2005 106.4732 2015 150.8176

1966 8.4209 1976 39.1311 1986 76.0804 1996 96.7861 2006 100.2012 2016 148.839

1967 8.4316 1977 41.8449 1987 83.8835 1997 87.0043 2007 108.4 2017 153.4484

1968 9.0502 1978 62.4553 1988 83.708 1998 106.6208 2008 109.0318 2018 164.3093

1969 11.263 1979 45.5456 1989 79.8083 1999 91.6679 2009 120.1859 2019 171.707
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 Andorra

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.4067 2000 0.52395 2010 0.51662

1961 1971 1981 1991 0.4067 2001 0.52395 2011 0.49098

1962 1972 1982 1992 0.4067 2002 0.53128 2012 0.48731

1963 1973 1983 1993 0.41037 2003 0.53494 2013 0.47632

1964 1974 1984 1994 0.4067 2004 0.56059 2014 0.46166

1965 1975 1985 1995 0.42502 2005 0.57525 2015 0.46533

1966 1976 1986 1996 0.45434 2006 0.54594 2016 0.46899

1967 1977 1987 1997 0.46533 2007 0.53861 2017 0.46533

1968 1978 1988 1998 0.49098 2008 0.53861 2018 0.46421

1969 1979 1989 1999 0.51296 2009 0.51662 2019 0.47049

 Angola

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.54895 1970 3.5779 1980 5.3344 1990 5.0887 2000 9.5151 2010 28.8645

1961 0.45371 1971 3.4054 1981 5.2668 1991 5.0629 2001 9.6715 2011 30.3297

1962 1.1791 1972 4.5005 1982 4.6352 1992 5.165 2002 12.5975 2012 33.8006

1963 1.1497 1973 4.8737 1983 5.1005 1993 5.7484 2003 8.9884 2013 33.2285

1964 1.2229 1974 4.8664 1984 4.9858 1994 3.8656 2004 18.7019 2014 44.2488

1965 1.1862 1975 4.4088 1985 4.6761 1995 10.9483 2005 19.0064 2015 33.979

1966 1.5525 1976 3.28 1986 4.6338 1996 10.4248 2006 22.1024 2016 34.1109

1967 0.99181 1977 3.5275 1987 5.786 1997 7.3478 2007 24.9761 2017 37.4708

1968 1.6695 1978 5.3998 1988 5.0493 1998 7.2696 2008 25.486 2018 37.6786

1969 2.7831 1979 5.4892 1989 4.9227 1999 9.1298 2009 27.5655 2019 38.0203

 Anguilla

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.051296 2000 0.087936 2010 0.15022

1961 1971 1981 1991 0.051296 2001 0.095264 2011 0.1429

1962 1972 1982 1992 0.05496 2002 0.095264 2012 0.1429

1963 1973 1983 1993 0.065952 2003 0.10259 2013 0.11725

1964 1974 1984 1994 0.065952 2004 0.12091 2014 0.13923

1965 1975 1985 1995 0.065952 2005 0.12824 2015 0.15389

1966 1976 1986 1996 0.069616 2006 0.1429 2016 0.15389

1967 1977 1987 1997 0.069616 2007 0.15022 2017 0.1429

1968 1978 1988 1998 0.076944 2008 0.15022 2018 0.14714

1969 1979 1989 1999 0.080608 2009 0.14656 2019 0.14329
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 Antigua and Barbuda

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.03664 1970 0.46166 1980 0.1429 1990 0.21984 2000 0.29312 2010 0.45434

1961 0.047632 1971 0.42502 1981 0.10626 1991 0.21251 2001 0.29678 2011 0.44334

1962 0.10259 1972 0.37373 1982 0.29312 1992 0.20885 2002 0.32976 2012 0.458

1963 0.084272 1973 0.32976 1983 0.084272 1993 0.21618 2003 0.35174 2013 0.46166

1964 0.0916 1974 0.42869 1984 0.14656 1994 0.21618 2004 0.3664 2014 0.46166

1965 0.15022 1975 0.70715 1985 0.24915 1995 0.2235 2005 0.37373 2015 0.47998

1966 0.34808 1976 0.40304 1986 0.24915 1996 0.23816 2006 0.38472 2016 0.49098

1967 0.56426 1977 0.46533 1987 0.2748 1997 0.25648 2007 0.4067 2017 0.49098

1968 0.98928 1978 0.49098 1988 0.28579 1998 0.27114 2008 0.4177 2018 0.50557

1969 1.2568 1979 0.4067 1989 0.28579 1999 0.28213 2009 0.44334 2019 0.49234

 Argentina

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 48.7645 1970 82.648 1980 108.6569 1990 112.0791 2000 142.3583 2010 186.7331

1961 51.1267 1971 88.8472 1981 101.9693 1991 117.5057 2001 134.0039 2011 190.2738

1962 53.6401 1972 90.0668 1982 103.3518 1992 121.2306 2002 124.3923 2012 191.7148

1963 50.0327 1973 93.9761 1983 105.1428 1993 117.7775 2003 134.631 2013 190.1517

1964 55.67 1974 95.4806 1984 106.4525 1994 122.229 2004 157.0434 2014 188.6974

1965 58.8048 1975 94.8458 1985 100.5319 1995 127.7649 2005 161.4342 2015 192.3657

1966 63.0727 1976 99.6995 1986 104.151 1996 134.7621 2006 174.609 2016 190.9296

1967 65.476 1977 100.7063 1987 114.8783 1997 137.6415 2007 174.2458 2017 187.4159

1968 69.0092 1978 102.5561 1988 121.4059 1998 139.4519 2008 188.106 2018 185.0299

1969 77.2489 1979 110.6168 1989 117.0213 1999 147.2851 2009 178.9492 2019 178.9395

 Armenia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 7.2941 1970 11.8788 1980 17.5998 1990 18.2119 2000 3.4914 2010 4.2527

1961 7.5223 1971 12.6098 1981 17.2694 1991 18.92 2001 3.5327 2011 4.9689

1962 7.895 1972 13.2715 1982 17.5968 1992 5.8599 2002 3.0768 2012 5.7483

1963 8.4668 1973 13.8367 1983 17.8517 1993 2.5736 2003 3.4556 2013 5.535

1964 9.0044 1974 14.3684 1984 18.0147 1994 2.7147 2004 3.6912 2014 5.5599

1965 9.552 1975 15.1083 1985 19.4292 1995 3.4323 2005 4.3762 2015 5.0724

1966 10.0875 1976 15.6931 1986 19.4863 1996 2.5927 2006 4.4016 2016 5.1588

1967 10.548 1977 16.2301 1987 19.4133 1997 3.2662 2007 5.1002 2017 5.4848

1968 10.8443 1978 16.7895 1988 19.9355 1998 3.3966 2008 5.5748 2018 6.2966

1969 11.2936 1979 16.9305 1989 19.4961 1999 3.0481 2009 4.3633 2019 6.0059
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 Aruba

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.61856 1970 0.92876 1980 0.58543 1990 0.48731 2000 2.3779 2010 2.5062

1961 0.64555 1971 0.80832 1981 0.55762 1991 0.53128 2001 2.4072 2011 2.4988

1962 0.70894 1972 0.78378 1982 0.62347 1992 0.53861 2002 2.4366 2012 1.3484

1963 0.67909 1973 0.86946 1983 0.32042 1993 0.64853 2003 2.5611 2013 0.86104

1964 0.66028 1974 0.78808 1984 0.80014 1994 0.65952 2004 2.6161 2014 0.87203

1965 0.59239 1975 0.57071 1985 0.93653 1995 0.70715 2005 2.7187 2015 0.89768

1966 0.55394 1976 1.2191 1986 0.17954 1996 0.72547 2006 2.715 2016 0.88302

1967 0.68236 1977 0.63676 1987 0.44701 1997 0.75845 2007 2.8213 2017 0.916

1968 0.63451 1978 0.54229 1988 0.61189 1998 0.80608 2008 2.6564 2018 0.94323

1969 0.83041 1979 0.56887 1989 0.64853 1999 0.80974 2009 2.6271 2019 0.91855

 Australia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 88.1189 1970 147.4798 1980 220.531 1990 278.4247 2000 350.195 2010 405.5028

1961 90.5039 1971 152.6295 1981 230.1326 1991 279.8727 2001 357.6692 2011 404.1728

1962 94.8235 1972 157.3355 1982 233.8886 1992 284.9124 2002 362.2095 2012 406.5062

1963 100.9343 1973 170.8274 1983 224.785 1993 289.2352 2003 369.726 2013 397.9432

1964 108.8758 1974 172.1894 1984 236.3612 1994 294.015 2004 383.2051 2014 394.1169

1965 120.8527 1975 175.7139 1985 240.988 1995 305.4102 2005 386.5135 2015 401.5548

1966 120.2193 1976 174.0747 1986 239.7222 1996 312.3616 2006 392.6806 2016 411.0315

1967 129.1442 1977 187.6049 1987 255.8502 1997 320.7951 2007 399.8425 2017 415.0974

1968 134.4969 1978 201.8202 1988 260.8788 1998 334.6845 2008 404.4174 2018 415.9539

1969 142.1238 1979 204.8696 1989 277.4856 1999 344.0638 2009 407.4633 2019 411.0157

 Austria

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 30.7845 1970 50.6317 1980 52.0257 1990 62.1247 2000 66.1629 2010 72.0118

1961 31.824 1971 52.0692 1981 55.8338 1991 65.7255 2001 70.1026 2011 69.8982

1962 33.865 1972 56.0714 1982 53.5662 1992 60.2041 2002 71.9188 2012 67.2091

1963 36.9491 1973 60.0158 1983 51.6692 1993 60.6354 2003 77.5543 2013 67.7457

1964 38.8964 1974 57.2945 1984 54.2151 1994 61.0024 2004 77.6744 2014 64.0844

1965 38.1406 1975 54.2141 1985 54.3673 1995 64.0653 2005 79.1924 2015 66.2832

1966 39.2086 1976 58.2043 1986 53.7296 1996 67.4216 2006 76.8983 2016 67.1123

1967 39.9156 1977 55.9943 1987 57.3751 1997 67.2328 2007 74.2626 2017 69.6289

1968 42.2971 1978 57.2272 1988 52.9385 1998 66.8751 2008 73.5884 2018 66.7197

1969 44.6384 1979 61.3221 1989 53.6976 1999 65.5627 2009 67.4939 2019 68.4951

M. D. K. L. Gunathilaka and W. T. S. Harshana



73

 Azerbaijan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 20.8952 1970 34.0246 1980 50.3189 1990 51.9472 2000 29.5063 2010 30.6329

1961 21.5482 1971 36.11 1981 49.366 1991 51.1657 2001 28.7927 2011 32.9757

1962 22.6155 1972 37.9967 1982 50.2976 1992 56.1831 2002 29.6419 2012 35.0484

1963 24.2528 1973 39.6063 1983 51.0162 1993 48.4131 2003 30.6267 2013 35.2147

1964 25.7922 1974 41.1199 1984 51.4731 1994 41.9498 2004 32.0781 2014 36.9752

1965 27.3607 1975 43.2284 1985 55.5106 1995 33.3122 2005 34.2864 2015 37.1986

1966 28.8946 1976 44.8933 1986 55.6589 1996 31.2426 2006 39.1086 2016 37.2784

1967 30.2132 1977 46.4212 1987 55.4359 1997 29.8049 2007 30.4584 2017 36.4979

1968 31.0615 1978 48.0155 1988 56.9194 1998 31.6655 2008 35.4506 2018 37.4884

1969 32.348 1979 48.4129 1989 55.6526 1999 28.5704 2009 31.8566 2019 39.8201

 Bahamas

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.41037 1970 2.5688 1980 7.9721 1990 1.8393 2000 1.9492 2010 2.3889

1961 0.54594 1971 6.7237 1981 2.7984 1991 1.843 2001 1.8686 2011 1.8027

1962 0.72547 1972 6.4813 1982 2.2585 1992 1.8503 2002 1.9273 2012 1.9089

1963 0.70715 1973 7.8627 1983 2.0144 1993 1.7587 2003 1.9639 2013 2.8836

1964 1.0845 1974 7.3798 1984 1.854 1994 1.7477 2004 1.9712 2014 2.3633

1965 1.3154 1975 8.2461 1985 1.5096 1995 1.7404 2005 1.8283 2015 2.0408

1966 1.0919 1976 6.4574 1986 1.4106 1996 1.7294 2006 1.777 2016 1.7954

1967 1.701 1977 9.7087 1987 1.4216 1997 1.5279 2007 1.7954 2017 1.9712

1968 1.6277 1978 6.597 1988 1.5389 1998 1.9089 2008 2.3596 2018 2.03

1969 1.7408 1979 6.9157 1989 1.9456 1999 1.9529 2009 1.6085 2019 1.9791

 Bahrain

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.57525 1970 2.5904 1980 7.8813 1990 12.4054 2000 18.7938 2010 29.0748

1961 1.7697 1971 3.0375 1981 8.5188 1991 11.8553 2001 14.0775 2011 28.6367

1962 1.5902 1972 3.6787 1982 9.8305 1992 10.8738 2002 15.8677 2012 27.3276

1963 1.1945 1973 5.518 1983 8.222 1993 14.6098 2003 16.7706 2013 31.1869

1964 1.5975 1974 5.4007 1984 9.2003 1994 14.7556 2004 17.8825 2014 31.1479

1965 1.2274 1975 5.7488 1985 10.1859 1995 14.7871 2005 19.803 2015 32.6721

1966 0.64853 1976 6.5696 1986 11.003 1996 15.5896 2006 19.4201 2016 31.3975

1967 1.0039 1977 7.4636 1987 11.4207 1997 17.2877 2007 26.7701 2017 32.7714

1968 1.1029 1978 7.7604 1988 12.1426 1998 18.3655 2008 29.6824 2018 31.5945

1969 1.2714 1979 8.1268 1989 11.7167 1999 17.9881 2009 28.0975 2019 34.3543
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 Bangladesh

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.2119 1970 3.8032 1980 7.5972 1990 14.0819 2000 26.5245 2010 53.9916

1961 2.2904 1971 3.6058 1981 7.8861 1991 14.7411 2001 31.035 2011 56.5563

1962 2.5168 1972 3.5059 1982 8.5523 1992 15.3796 2002 31.9808 2012 60.6913

1963 2.8932 1973 4.5497 1983 8.1883 1993 16.0621 2003 33.4589 2013 61.7816

1964 2.9746 1974 4.6531 1984 9.0772 1994 17.5379 2004 35.945 2014 65.9787

1965 3.1213 1975 4.8567 1985 10.1892 1995 21.0416 2005 37.6765 2015 72.8346

1966 3.1763 1976 5.5558 1986 11.4058 1996 21.4921 2006 41.6892 2016 75.8574

1967 3.3711 1977 5.7847 1987 11.7997 1997 23.1262 2007 42.6421 2017 80.3238

1968 3.8657 1978 5.9844 1988 13.4784 1998 23.1983 2008 45.3009 2018 85.7188

1969 3.7493 1979 6.6126 1989 13.3824 1999 25.0755 2009 49.1481 2019 102.1617

 Barbados

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.17221 1970 0.42869 1980 0.67418 1990 1.0702 2000 1.1516 2010 1.464

1961 0.19419 1971 0.48365 1981 0.68517 1991 1.2021 2001 1.1862 2011 1.5157

1962 0.26014 1972 0.50197 1982 0.64486 1992 0.97497 2002 1.1996 2012 1.4595

1963 0.19053 1973 0.47998 1983 0.68517 1993 1.0993 2003 1.2453 2013 1.4383

1964 0.17954 1974 0.49098 1984 0.74742 1994 0.74033 2004 1.2695 2014 1.2625

1965 0.20518 1975 0.56792 1985 0.84639 1995 0.80628 2005 1.3192 2015 1.2625

1966 0.26747 1976 0.53128 1986 0.91606 1996 0.82474 2006 1.3428 2016 1.2847

1967 0.33709 1977 0.5899 1987 0.94177 1997 0.89094 2007 1.3628 2017 1.1709

1968 0.43968 1978 0.63021 1988 0.94547 1998 1.1001 2008 1.6123 2018 1.2071

1969 0.47998 1979 0.6009 1989 0.98952 1999 1.1625 2009 1.5971 2019 1.1866

 Belarus

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 45.6884 1970 74.4069 1980 109.884 1990 103.6897 2000 54.8774 2010 63.1564

1961 47.1178 1971 78.9544 1981 107.786 1991 96.6471 2001 54.9679 2011 62.1067

1962 49.453 1972 83.0662 1982 109.8111 1992 88.662 2002 55.0777 2012 63.0083

1963 53.0347 1973 86.5711 1983 111.3581 1993 76.38 2003 56.485 2013 63.7434

1964 56.4022 1974 89.8653 1984 112.3329 1994 62.3679 2004 60.0765 2014 63.0836

1965 59.833 1975 94.4578 1985 121.1327 1995 57.3755 2005 61.3671 2015 58.6331

1966 63.1878 1976 98.081 1986 121.428 1996 58.2148 2006 64.1572 2016 60.2849

1967 66.072 1977 101.4044 1987 120.8916 1997 58.7206 2007 63.5699 2017 60.7429

1968 67.928 1978 104.8783 1988 124.1034 1998 57.3725 2008 65.6948 2018 61.8717

1969 70.7418 1979 105.7357 1989 121.3119 1999 54.9845 2009 61.4027 2019 62.4839
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 Belgium

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 90.9081 1970 125.4905 1980 134.8366 1990 120.3093 2000 126.7353 2010 114.561

1961 92.6983 1971 121.3706 1981 123.5745 1991 123.3821 2001 126.0847 2011 105.0461

1962 98.0183 1972 130.6378 1982 117.1028 1992 122.5078 2002 126.8786 2012 102.4288

1963 105.6764 1973 138.6394 1983 101.2027 1993 121.4442 2003 128.2753 2013 102.6744

1964 103.554 1974 134.9504 1984 104.9675 1994 124.8169 2004 128.8053 2014 96.8113

1965 105.3308 1975 121.8234 1985 104.0054 1995 125.9565 2005 125.6617 2015 100.9813

1966 105.0967 1976 129.6781 1986 102.3678 1996 129.4966 2006 123.9058 2016 99.8069

1967 107.361 1977 126.2 1987 102.5898 1997 124.0018 2007 120.4962 2017 99.4563

1968 118.4376 1978 135.451 1988 99.7441 1998 130.2271 2008 120.2029 2018 100.2078

1969 123.4918 1979 139.7873 1989 106.7935 1999 124.7189 2009 107.7434 2019 99.7089

 Belize

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.043968 1970 0.12091 1980 0.19053 1990 0.31144 2000 0.39571 2010 0.53861

1961 0.03664 1971 0.1429 1981 0.1832 1991 0.4067 2001 0.44701 2011 0.55693

1962 0.069616 1972 0.15755 1982 0.17221 1992 0.35541 2002 0.43235 2012 0.45067

1963 0.062288 1973 0.14656 1983 0.17221 1993 0.37739 2003 0.43235 2013 0.47632

1964 0.084272 1974 0.15389 1984 0.17221 1994 0.37373 2004 0.39205 2014 0.46899

1965 0.084272 1975 0.17587 1985 0.19053 1995 0.37739 2005 0.42136 2015 0.6412

1966 0.080608 1976 0.17587 1986 0.20518 1996 0.30778 2006 0.44334 2016 0.60822

1967 0.12091 1977 0.19786 1987 0.22717 1997 0.38838 2007 0.47632 2017 0.61555

1968 0.10259 1978 0.21618 1988 0.24915 1998 0.37006 2008 0.43602 2018 0.61221

1969 0.13557 1979 0.20885 1989 0.30045 1999 0.34808 2009 0.51662 2019 0.6328

 Benin

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.16122 1970 0.28213 1980 0.50746 1990 0.68068 2000 1.574 2010 4.9389

1961 0.12824 1971 0.29312 1981 0.41765 1991 0.79213 2001 1.7898 2011 4.8868

1962 0.13557 1972 0.38838 1982 0.47734 1992 0.86494 2002 2.0532 2012 4.6387

1963 0.12091 1973 0.38106 1983 0.43965 1993 1.0867 2003 2.3276 2013 4.8832

1964 0.1429 1974 0.4067 1984 0.4856 1994 1.2223 2004 2.4811 2014 5.2166

1965 0.15022 1975 0.44334 1985 0.72574 1995 1.2736 2005 2.3671 2015 6.0764

1966 0.11358 1976 0.26014 1986 0.66543 1996 1.2311 2006 3.7113 2016 6.74

1967 0.1429 1977 0.29678 1987 0.51719 1997 1.1982 2007 4.3196 2017 7.4249

1968 0.15389 1978 0.36274 1988 0.53805 1998 1.1944 2008 4.2548 2018 7.7598

1969 0.20152 1979 0.3664 1989 0.60965 1999 1.5423 2009 4.5079 2019 7.9981
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 Bermuda

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.15755 1970 0.22717 1980 0.43602 1990 0.50197 2000 0.51662 2010 0.51662

1961 0.17587 1971 0.23083 1981 0.38838 1991 0.53861 2001 0.52762 2011 0.52762

1962 0.15755 1972 0.25282 1982 0.39571 1992 0.46166 2002 0.55693 2012 0.55693

1963 0.15022 1973 0.42502 1983 0.45067 1993 0.53861 2003 0.56059 2013 0.56059

1964 0.20152 1974 0.44334 1984 0.44334 1994 0.53128 2004 0.58258 2014 0.58258

1965 0.17954 1975 0.458 1985 0.45067 1995 0.53128 2005 0.58258 2015 0.58258

1966 0.20152 1976 0.46899 1986 0.42136 1996 0.52762 2006 0.65219 2016 0.65219

1967 0.21251 1977 0.45434 1987 0.57158 1997 0.52395 2007 0.72914 2017 0.72914

1968 0.2235 1978 0.42502 1988 0.64486 1998 0.52029 2008 0.64853 2018 0.64853

1969 0.19786 1979 0.46166 1989 0.78043 1999 0.51296 2009 0.47632 2019 0.47632

 Bhutan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.003664 1980 0.021984 1990 0.12824 2000 0.38169 2010 0.46416

1961 1971 0.003664 1981 0.025648 1991 0.17612 2001 0.36911 2011 0.66746

1962 1972 0.003664 1982 0.032976 1992 0.20538 2002 0.40171 2012 0.77225

1963 1973 0.003664 1983 0.029312 1993 0.17303 2003 0.36113 2013 0.85325

1964 1974 0.003664 1984 0.051296 1994 0.20146 2004 0.29048 2014 0.94799

1965 1975 0.003664 1985 0.062288 1995 0.23614 2005 0.37812 2015 0.96621

1966 1976 0.003664 1986 0.05496 1996 0.28519 2006 0.37301 2016 1.1531

1967 1977 0.007328 1987 0.10259 1997 0.37675 2007 0.37203 2017 1.2568

1968 1978 0.010992 1988 0.10992 1998 0.36716 2008 0.40072 2018 1.6622

1969 1979 0.021984 1989 0.062288 1999 0.37076 2009 0.3678 2019 1.7068

 Bolivia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.0038 1970 2.4837 1980 4.659 1990 5.7268 2000 11.0047 2010 14.6407

1961 1.0404 1971 3.0589 1981 4.781 1991 5.974 2001 8.5606 2011 16.0381

1962 1.099 1972 3.5681 1982 4.3379 1992 6.622 2002 10.3281 2012 18.1193

1963 1.2125 1973 3.4545 1983 4.2781 1993 7.7918 2003 11.0112 2013 18.4259

1964 1.48 1974 3.5129 1984 4.0293 1994 8.5925 2004 11.0183 2014 19.6182

1965 1.5093 1975 4.055 1985 4.1098 1995 9.799 2005 12.0705 2015 19.421

1966 1.6888 1976 4.5748 1986 3.7637 1996 9.7745 2006 14.9209 2016 20.6933

1967 1.8904 1977 4.4749 1987 4.0118 1997 10.8831 2007 12.1768 2017 21.8106

1968 2.1761 1978 5.0201 1988 4.2868 1998 10.9238 2008 13.0406 2018 22.3455

1969 2.5462 1979 4.7301 1989 4.9684 1999 10.376 2009 13.4977 2019 22.5749
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 Bonaire, Saint Eustatius and Saba

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.47065 1970 0.70668 1980 0.44544 1990 0.24388 2000 0.25228 2010 0.20499

1961 0.49119 1971 0.61503 1981 0.42429 1991 0.19461 2001 0.2569 2011 0.26151

1962 0.53942 1972 0.59636 1982 0.47438 1992 0.16033 2002 0.24767 2012 0.31144

1963 0.5167 1973 0.66155 1983 0.2438 1993 0.2475 2003 0.24783 2013 0.32243

1964 0.50239 1974 0.59963 1984 0.60881 1994 0.23729 2004 0.26003 2014 0.32243

1965 0.45073 1975 0.43424 1985 0.71259 1995 0.23482 2005 0.25772 2015 0.3261

1966 0.42148 1976 0.92761 1986 0.13661 1996 0.21966 2006 0.2686 2016 0.32976

1967 0.51919 1977 0.4845 1987 0.12145 1997 0.22987 2007 0.30238 2017 0.33342

1968 0.48279 1978 0.41262 1988 0.11963 1998 0.012688 2008 0.29084 2018 0.34334

1969 0.63184 1979 0.43284 1989 0.22773 1999 0.09508 2009 0.2976 2019 0.33435

 Bosnia and Herzegovina

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 5.2623 1970 10.6464 1980 16.1415 1990 19.4137 2000 13.7013 2010 21.1457

1961 5.5158 1971 11.4738 1981 17.5672 1991 13.7351 2001 13.2638 2011 23.7613

1962 5.6602 1972 10.7535 1982 16.1367 1992 15.0276 2002 14.1726 2012 22.1363

1963 6.2968 1973 12.8453 1983 17.3766 1993 12.5794 2003 14.3502 2013 21.801

1964 7.1339 1974 12.9007 1984 18.3251 1994 3.2044 2004 15.4625 2014 19.311

1965 7.34 1975 13.4603 1985 18.6927 1995 3.4028 2005 16.046 2015 18.4607

1966 7.2734 1976 13.8918 1986 19.5213 1996 4.2385 2006 17.3868 2016 21.7329

1967 7.3468 1977 13.5081 1987 19.0575 1997 8.3653 2007 17.4743 2017 21.7915

1968 7.8578 1978 15.0941 1988 19.6644 1998 10.5513 2008 19.9586 2018 22.0861

1969 8.1472 1979 16.4168 1989 19.604 1999 10.3339 2009 20.5371 2019 26.6211

 Botswana

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 0.98562 1990 2.7004 2000 3.7776 2010 4.5363

1961 1971 1981 1.0076 1991 2.6344 2001 3.8472 2011 4.0287

1962 1972 0.021984 1982 1.0992 1992 2.7773 2002 3.9754 2012 5.0766

1963 1973 0.051296 1983 1.0296 1993 3.195 2003 3.8252 2013 5.6629

1964 1974 0.087936 1984 1.0442 1994 3.0301 2004 3.8948 2014 6.8501

1965 1975 0.18686 1985 1.1578 1995 3.0448 2005 4.0927 2015 5.4248

1966 1976 0.59357 1986 1.0662 1996 2.7553 2006 4.133 2016 6.3334

1967 1977 0.78043 1987 1.2384 1997 2.7993 2007 4.2283 2017 7.0589

1968 1978 0.83173 1988 1.3007 1998 3.3416 2008 4.5031 2018 6.8154

1969 1979 0.94165 1989 1.429 1999 3.1584 2009 3.8555 2019 6.3164
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 Brazil

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.33342 1970 8.2037 1980 6.8773 1990 6.1885 2000 4.591 2010 8.0608

1961 0.30411 1971 7.5112 1981 1.4693 1991 5.3055 2001 4.3895 2011 9.5447

1962 0.37006 1972 9.4531 1982 2.0921 1992 5.2102 2002 4.2539 2012 9.4935

1963 0.35541 1973 9.9734 1983 2.704 1993 4.9647 2003 4.4702 2013 7.6284

1964 0.34075 1974 8.178 1984 1.9163 1994 4.6899 2004 4.8731 2014 8.9255

1965 0.33342 1975 7.0752 1985 2.5941 1995 4.7852 2005 4.8695 2015 6.9543

1966 0.49098 1976 6.02 1986 2.2973 1996 4.7413 2006 4.7376 2016 7.5441

1967 0.43968 1977 6.39 1987 3.3159 1997 4.9317 2007 8.31 2017 9.552

1968 0.42869 1978 9.5337 1988 5.7122 1998 5.1589 2008 8.9915 2018 9.5604

1969 0.48731 1979 7.4343 1989 6.3424 1999 3.8032 2009 7.7457 2019 9.0887

 British Virgin Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 46.8518 1970 93.5305 1980 185.7584 1990 206.9211 2000 324.226 2010 411.2402

1961 49.1445 1971 102.3579 1981 170.4679 1991 217.2277 2001 332.9874 2011 429.9594

1962 53.6314 1972 114.0143 1982 170.7893 1992 218.3833 2002 327.4348 2012 460.098

1963 55.5509 1973 132.0196 1983 165.4269 1993 228.3332 2003 317.5083 2013 495.0468

1964 56.6667 1974 142.9273 1984 167.6056 1994 239.4706 2004 333.6751 2014 523.894

1965 56.3296 1975 150.5137 1985 179.9368 1995 255.5835 2005 342.0865 2015 495.2137

1966 64.2116 1976 154.3981 1986 197.2262 1996 281.1948 2006 341.9464 2016 478.4428

1967 66.0794 1977 162.0783 1987 205.7887 1997 296.5854 2007 356.9188 2017 484.5881

1968 77.2714 1978 175.9315 1988 207.563 1998 308.3055 2008 380.3447 2018 466.6493

1969 84.1327 1979 187.1551 1989 212.1136 1999 316.2824 2009 360.0908 2019 465.7158

 Brunei Darussalam

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.01832 1980 0.029312 1990 0.065952 2000 0.12458 2010 0.19786

1961 1971 0.021984 1981 0.043968 1991 0.07328 2001 0.12824 2011 0.20152

1962 0.003664 1972 0.021984 1982 0.03664 1992 0.084272 2002 0.13557 2012 0.20152

1963 0.003664 1973 0.025648 1983 0.040304 1993 0.087936 2003 0.14656 2013 0.20152

1964 0.007328 1974 0.025648 1984 0.040304 1994 0.098928 2004 0.16122 2014 0.21251

1965 0.007328 1975 0.025648 1985 0.047632 1995 0.10992 2005 0.17954 2015 0.21251

1966 0.010992 1976 0.025648 1986 0.05496 1996 0.11725 2006 0.1832 2016 0.21251

1967 0.003664 1977 0.029312 1987 0.062288 1997 0.11725 2007 0.18686 2017 0.16854

1968 0.014656 1978 0.029312 1988 0.065952 1998 0.12091 2008 0.19053 2018 0.17356

1969 0.01832 1979 0.029312 1989 0.065952 1999 0.12091 2009 0.19053 2019 0.16901
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 Bulgaria

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 22.2707 1970 61.174 1980 77.2506 1990 76.699 2000 45.305 2010 47.8629

1961 25.945 1971 64.2216 1981 80.0868 1991 61.2326 2001 49.0141 2011 53.178

1962 30.704 1972 66.0789 1982 89.8442 1992 57.0104 2002 46.2586 2012 48.349

1963 34.3741 1973 68.7173 1983 90.0613 1993 57.6756 2003 50.5097 2013 42.6495

1964 42.8181 1974 71.1365 1984 87.0449 1994 56.0835 2004 49.5707 2014 45.1693

1965 46.2691 1975 72.9222 1985 89.2213 1995 57.7164 2005 50.6564 2015 48.1943

1966 48.716 1976 72.9648 1986 91.1723 1996 58.108 2006 51.8952 2016 45.3537

1967 55.1077 1977 75.7959 1987 91.2732 1997 55.8613 2007 55.7408 2017 47.5052

1968 59.4635 1978 81.2071 1988 86.9133 1998 53.2752 2008 54.0796 2018 43.5516

1969 66.3077 1979 78.9279 1989 86.4822 1999 46.37 2009 45.7738 2019 42.0065

 Burkina Faso

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.043968 1970 0.1429 1980 0.43235 1990 0.58258 2000 1.0309 2010 2.0368

1961 0.0916 1971 0.15022 1981 0.55693 1991 0.62654 2001 0.99169 2011 2.1302

1962 0.084272 1972 0.16122 1982 0.57525 1992 0.63021 2002 1.0011 2012 2.62

1963 0.087936 1973 0.16854 1983 0.59357 1993 0.62654 2003 1.0743 2013 2.8642

1964 0.10992 1974 0.20518 1984 0.46533 1994 0.64486 2004 1.0999 2014 2.912

1965 0.10259 1975 0.21984 1985 0.47632 1995 0.62387 2005 1.1218 2015 3.2976

1966 0.10259 1976 0.20885 1986 0.47998 1996 0.70446 2006 1.3562 2016 3.3814

1967 0.10259 1977 0.24915 1987 0.51662 1997 0.80269 2007 1.5906 2017 3.9384

1968 0.10259 1978 0.34808 1988 0.55326 1998 0.85763 2008 1.7345 2018 4.1403

1969 0.12091 1979 0.4067 1989 0.82074 1999 0.91417 2009 1.8302 2019 4.3013

 Burundi

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.03643 1970 0.06229 1980 0.14656 1990 0.20885 2000 0.27114 2010 0.29678

1961 0.04774 1971 0.07328 1981 0.15755 1991 0.23816 2001 0.20518 2011 0.35481

1962 0.04397 1972 0.07328 1982 0.15755 1992 0.21618 2002 0.21251 2012 0.37987

1963 0.04763 1973 0.07328 1983 0.20518 1993 0.22717 2003 0.16122 2013 0.39914

1964 0.04763 1974 0.09160 1984 0.21984 1994 0.23450 2004 0.19786 2014 0.37656

1965 0.03664 1975 0.07694 1985 0.23083 1995 0.23816 2005 0.15389 2015 0.39164

1966 0.04763 1976 0.08794 1986 0.23450 1996 0.24182 2006 0.18320 2016 0.44293

1967 0.04763 1977 0.09893 1987 0.24915 1997 0.24915 2007 0.20152 2017 0.54918

1968 0.05496 1978 0.10259 1988 0.22717 1998 0.24915 2008 0.20885 2018 0.56803

1969 0.07328 1979 0.10992 1989 0.26747 1999 0.25282 2009 0.16854 2019 0.57979
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 Cambodia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.2345 1970 1.1723 1980 0.28579 1990 1.2604 2000 1.9749 2010 5.0305

1961 0.28579 1971 0.24891 1981 0.30045 1991 1.3044 2001 2.2497 2011 5.1053

1962 0.30778 1972 0.11704 1982 0.33709 1992 1.3484 2002 2.2057 2012 5.3335

1963 0.38838 1973 0.12791 1983 0.3664 1993 1.385 2003 2.3779 2013 5.4758

1964 0.34072 1974 0.073072 1984 0.41037 1994 1.4671 2004 2.4439 2014 6.5164

1965 0.40283 1975 0.073072 1985 0.4177 1995 1.5403 2005 2.7736 2015 8.4463

1966 0.46875 1976 0.072774 1986 0.43235 1996 1.5972 2006 2.9972 2016 9.724

1967 0.41746 1977 0.072476 1987 0.43602 1997 1.5251 2007 3.4525 2017 11.186

1968 0.49074 1978 0.051139 1988 0.45067 1998 1.9354 2008 3.805 2018 15.479

1969 1.3444 1979 0.029312 1989 0.45067 1999 1.8943 2009 4.5663 2019 16.027

 Cameroon

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.27114 1970 0.63742 1980 3.8859 1990 0.62663 2000 3.3458 2010 6.662

1961 0.28213 1971 0.80918 1981 5.3191 1991 0.056431 2001 3.325 2011 6.5212

1962 0.28946 1972 0.86036 1982 6.3159 1992 2.726 2002 3.324 2012 6.1582

1963 0.30045 1973 0.89691 1983 6.5545 1993 2.8795 2003 3.6985 2013 5.0692

1964 0.33709 1974 0.97376 1984 6.0529 1994 2.8404 2004 3.8501 2014 6.8503

1965 0.31144 1975 1.1605 1985 6.4706 1995 3.2035 2005 3.5913 2015 7.7439

1966 0.34442 1976 1.089 1986 1.9932 1996 3.5924 2006 3.7524 2016 8.2596

1967 0.458 1977 1.559 1987 1.843 1997 3.1564 2007 5.7019 2017 7.5305

1968 0.50563 1978 1.9932 1988 2.154 1998 3.1371 2008 5.4263 2018 7.5668

1969 0.57158 1979 1.8153 1989 7.5777 1999 2.9981 2009 6.5949 2019 7.5927

 Canada

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 192.716 1970 341.177 1980 442.817 1990 462.117 2000 572.162 2010 555.550

1961 194.001 1971 352.285 1981 429.598 1991 452.495 2001 564.946 2011 566.741

1962 206.991 1972 380.787 1982 414.426 1992 467.037 2002 570.845 2012 569.737

1963 210.911 1973 381.265 1983 408.310 1993 467.406 2003 587.178 2013 576.327

1964 237.578 1974 389.605 1984 425.199 1994 482.437 2004 585.703 2014 575.942

1965 251.917 1975 396.773 1985 421.676 1995 494.920 2005 576.435 2015 575.907

1966 259.074 1976 398.946 1986 404.660 1996 510.737 2006 570.950 2016 564.033

1967 281.637 1977 407.771 1987 430.922 1997 524.789 2007 594.221 2017 572.834

1968 303.261 1978 415.505 1988 455.608 1998 533.640 2008 575.587 2018 586.505

1969 307.119 1979 441.647 1989 462.818 1999 549.553 2009 542.550 2019 576.651
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 Cape Verde

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.02195 1970 0.03658 1980 0.12091 1990 0.09526 2000 0.21618 2010 0.55693

1961 0.02195 1971 0.03661 1981 0.03298 1991 0.09893 2001 0.23450 2011 0.61555

1962 0.01829 1972 0.05127 1982 0.03664 1992 0.10626 2002 0.27480 2012 0.50197

1963 0.01463 1973 0.06223 1983 0.03664 1993 0.10992 2003 0.30778 2013 0.49464

1964 0.02925 1974 0.06595 1984 0.08427 1994 0.11358 2004 0.32976 2014 0.48731

1965 0.02559 1975 0.07694 1985 0.08427 1995 0.12091 2005 0.43968 2015 0.49098

1966 0.02198 1976 0.07328 1986 0.05862 1996 0.14290 2006 0.47266 2016 0.53861

1967 0.01832 1977 0.08061 1987 0.08061 1997 0.14656 2007 0.50563 2017 0.57891

1968 0.02928 1978 0.20854 1988 0.07328 1998 0.15755 2008 0.46899 2018 0.60951

1969 0.03658 1979 0.24915 1989 0.08061 1999 0.18320 2009 0.52029 2019 0.63389

 Central African Republic

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.087936 1970 0.20885 1980 0.10626 1990 0.19786 2000 0.26747 2010 0.26381

1961 0.087936 1971 0.1832 1981 0.13557 1991 0.20518 2001 0.24549 2011 0.27846

1962 0.07328 1972 0.16854 1982 0.1429 1992 0.21618 2002 0.24549 2012 0.29312

1963 0.07328 1973 0.16122 1983 0.14656 1993 0.2235 2003 0.2345 2013 0.28579

1964 0.07328 1974 0.11358 1984 0.15022 1994 0.2345 2004 0.2345 2014 0.28946

1965 0.087936 1975 0.10259 1985 0.16122 1995 0.2345 2005 0.2345 2015 0.29312

1966 0.084272 1976 0.12824 1986 0.16122 1996 0.2345 2006 0.24915 2016 0.29678

1967 0.0916 1977 0.12824 1987 0.26014 1997 0.24549 2007 0.25282 2017 0.29678

1968 0.1832 1978 0.14656 1988 0.23083 1998 0.24915 2008 0.25282 2018 0.30048

1969 0.18686 1979 0.10259 1989 0.24915 1999 0.26381 2009 0.25282 2019 0.30765

 Chad

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.0550 1970 0.1246 1980 0.2089 1990 0.3774 2000 0.4873 2010 0.9966

1961 0.0513 1971 0.1502 1981 0.2089 1991 0.3847 2001 0.5020 2011 1.1175

1962 0.0843 1972 0.1209 1982 0.2052 1992 0.4067 2002 0.5093 2012 0.6140

1963 0.0916 1973 0.1612 1983 0.2052 1993 0.4030 2003 0.7438 2013 0.6549

1964 0.0989 1974 0.1502 1984 0.2162 1994 0.4067 2004 0.7475 2014 0.9893

1965 0.1063 1975 0.1832 1985 0.1795 1995 0.4214 2005 0.7658 2015 0.6961

1966 0.0843 1976 0.1832 1986 0.1869 1996 0.4360 2006 0.7914 2016 0.9929

1967 0.1173 1977 0.1979 1987 0.1979 1997 0.4507 2007 0.8537 2017 0.9966

1968 0.1246 1978 0.1942 1988 0.0660 1998 0.4617 2008 0.9270 2018 1.0080

1969 0.1612 1979 0.2015 1989 0.1026 1999 0.4763 2009 0.9417 2019 1.0303
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 Chile

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 13.4765 1970 24.6358 1980 25.0905 1990 32.8822 2000 58.1137 2010 71.3298

1961 14.4582 1971 27.055 1981 24.335 1991 31.1366 2001 52.5765 2011 78.0838

1962 16.7074 1972 28.1373 1982 20.4672 1992 32.2023 2002 54.4903 2012 79.7038

1963 17.337 1973 27.586 1983 20.6644 1993 34.2594 2003 54.8842 2013 81.6916

1964 17.5051 1974 25.8746 1984 21.993 1994 37.7401 2004 59.0475 2014 77.4228

1965 17.7473 1975 22.9437 1985 21.2795 1995 41.09 2005 60.9471 2015 81.6332

1966 18.7725 1976 24.0254 1986 22.0088 1996 47.6284 2006 63.9716 2016 84.1537

1967 19.2383 1977 23.0122 1987 22.394 1997 55.4502 2007 70.7069 2017 84.0621

1968 21.2022 1978 22.8364 1988 26.5798 1998 56.8073 2008 70.8187 2018 85.8291

1969 22.5315 1979 24.7224 1989 31.9951 1999 60.9073 2009 65.9199 2019 84.2666

 China

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 778.9795 1970 770.1672 1980 1458.887 1990 2420.789 2000 3349.295 2010 8500.543

1961 550.9585 1971 874.0164 1981 1442.782 1991 2538.03 2001 3426.144 2011 9388.199

1962 439.3421 1972 928.894 1982 1570.468 1992 2653.192 2002 3782.439 2012 9633.899

1963 435.5176 1973 965.6466 1983 1655.811 1993 2835.796 2003 4452.31 2013 9796.527

1964 435.7037 1974 985.0852 1984 1802.317 1994 3010.242 2004 5125.894 2014 9820.36

1965 474.6806 1975 1142.102 1985 1951.773 1995 3265.057 2005 5771.168 2015 9683.201

1966 521.4589 1976 1190.965 1986 2052.242 1996 3408.347 2006 6377.748 2016 9552.517

1967 432.2236 1977 1304.403 1987 2191.053 1997 3414.549 2007 6861.751 2017 9750.726

1968 467.8056 1978 1455.258 1988 2347.764 1998 3265.903 2008 7375.19 2018 9956.569

1969 575.9447 1979 1487.113 1989 2386.885 1999 3258.135 2009 7758.812 2019 10174.68

 Colombia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 16.3905 1970 28.3701 1980 44.1742 1990 56.8977 2000 56.2588 2010 76.2784

1961 18.1963 1971 30.2814 1981 44.2603 1991 56.6541 2001 55.9389 2011 76.0798

1962 19.4195 1972 31.4252 1982 45.6793 1992 61.4947 2002 55.4304 2012 79.7272

1963 21.2328 1973 33.6308 1983 49.2096 1993 63.3378 2003 57.0939 2013 89.9888

1964 21.6829 1974 36.3944 1984 48.7015 1994 66.7906 2004 54.5693 2014 90.9523

1965 22.8587 1975 35.809 1985 48.0795 1995 58.7754 2005 60.0596 2015 86.0711

1966 23.4742 1976 37.9797 1986 48.7543 1996 59.7709 2006 62.0045 2016 100.800

1967 24.6868 1977 39.241 1987 50.124 1997 64.4965 2007 60.1788 2017 91.6698

1968 26.5728 1978 41.5342 1988 52.0174 1998 65.1577 2008 66.6501 2018 92.2282

1969 28.0163 1979 44.2669 1989 52.7928 1999 54.7612 2009 72.5567 2019 102.202

M. D. K. L. Gunathilaka and W. T. S. Harshana



83

 Comoros

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.010992 1970 0.029312 1980 0.047632 1990 0.062288 2000 0.10259 2010 0.16122

1961 0.010992 1971 0.029312 1981 0.047632 1991 0.065952 2001 0.10259 2011 0.13557

1962 0.010992 1972 0.029312 1982 0.047632 1992 0.065952 2002 0.10259 2012 0.1429

1963 0.010992 1973 0.029312 1983 0.047632 1993 0.069616 2003 0.1319 2013 0.17587

1964 0.010992 1974 0.029312 1984 0.047632 1994 0.069616 2004 0.1429 2014 0.15389

1965 0.014656 1975 0.032976 1985 0.047632 1995 0.07328 2005 0.13923 2015 0.16854

1966 0.01832 1976 0.040304 1986 0.043968 1996 0.076944 2006 0.16122 2016 0.20152

1967 0.01832 1977 0.040304 1987 0.047632 1997 0.080608 2007 0.10259 2017 0.23816

1968 0.01832 1978 0.029312 1988 0.051296 1998 0.087936 2008 0.10626 2018 0.24593

1969 0.01832 1979 0.021984 1989 0.051296 1999 0.0916 2009 0.1319 2019 0.25311

 Congo

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.2235 1970 0.57158 1980 0.40553 1990 1.0072 2000 0.56585 2010 1.9621

1961 0.26747 1971 0.68517 1981 0.47072 1991 1.0828 2001 0.76578 2011 2.2412

1962 0.23816 1972 0.66318 1982 1.3431 1992 1.2902 2002 0.57525 2012 2.9434

1963 0.2345 1973 1.2201 1983 1.1425 1993 1.1619 2003 0.916 2013 3.208

1964 0.26747 1974 1.6232 1984 1.1395 1994 1.7691 2004 0.94898 2014 3.1034

1965 0.24549 1975 1.0992 1985 1.2752 1995 1.1859 2005 0.99726 2015 3.451

1966 0.30778 1976 1.2348 1986 1.0624 1996 1.34 2006 1.1286 2016 3.7018

1967 0.32243 1977 0.47998 1987 1.3201 1997 1.9216 2007 1.2123 2017 3.5259

1968 0.45067 1978 0.32243 1988 1.4929 1998 0.35541 2008 1.3292 2018 3.5183

1969 0.50197 1979 0.34808 1989 1.4956 1999 0.36274 2009 1.7242 2019 3.457

 Cook Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.01099 1980 0.02931 1990 0.03664 2000 0.04763 2010 0.05130

1961 1971 0.01099 1981 0.06595 1991 0.03664 2001 0.03298 2011 0.05862

1962 1972 0.01099 1982 0.05130 1992 0.03664 2002 0.02198 2012 0.06229

1963 1973 0.01099 1983 0.05130 1993 0.04030 2003 0.02931 2013 0.06229

1964 1974 0.01099 1984 0.02198 1994 0.04030 2004 0.04763 2014 0.06595

1965 1975 0.01466 1985 0.02198 1995 0.04030 2005 0.05496 2015 0.06229

1966 1976 0.01466 1986 0.02198 1996 0.04763 2006 0.04763 2016 0.06229

1967 1977 0.02931 1987 0.02198 1997 0.04763 2007 0.04763 2017 0.06962

1968 1978 0.02931 1988 0.02198 1998 0.04763 2008 0.04763 2018 0.07271

1969 0.01099 1979 0.02565 1989 0.02198 1999 0.04763 2009 0.04397 2019 0.07746
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 Costa Rica

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.49098 1970 1.2487 1980 2.4485 1990 2.912 2000 5.3945 2010 7.4937

1961 0.49098 1971 1.527 1981 2.2362 1991 3.2873 2001 5.6659 2011 7.3094

1962 0.5496 1972 1.7613 1982 2.0706 1992 3.7412 2002 6.2448 2012 7.2589

1963 0.6009 1973 2.0434 1983 2.0888 1993 3.891 2003 6.5832 2013 7.6327

1964 0.67406 1974 1.9041 1984 1.9809 1994 5.2003 2004 6.8416 2014 7.7486

1965 0.84591 1975 2.0358 1985 2.2425 1995 4.8019 2005 6.7234 2015 7.4071

1966 0.99247 1976 2.0819 1986 2.5775 1996 4.6867 2006 7.0056 2016 7.9237

1967 0.87525 1977 2.6074 1987 2.7239 1997 4.9167 2007 7.9613 2017 8.2352

1968 1.0364 1978 2.912 1988 2.9059 1998 5.2355 2008 7.9911 2018 8.2491

1969 1.1462 1979 2.781 1989 2.9333 1999 5.439 2009 7.7489 2019 8.5075

 Côte d’Ivoire

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.46166 1970 2.2424 1980 5.5693 1990 4.7815 2000 6.4633 2010 6.0639

1961 0.55326 1971 2.4549 1981 3.8655 1991 4.3089 2001 7.3976 2011 6.3424

1962 0.58624 1972 2.7114 1982 5.5546 1992 3.8435 2002 6.9579 2012 8.3393

1963 0.62288 1973 2.8762 1983 4.5177 1993 5.093 2003 5.1331 2013 9.5264

1964 0.76211 1974 3.2426 1984 5.1333 1994 4.133 2004 7.3353 2014 9.7389

1965 1.1725 1975 3.9864 1985 6.9836 1995 6.1155 2005 7.4965 2015 9.4055

1966 1.2384 1976 3.9608 1986 5.5766 1996 7.3353 2006 6.8114 2016 11.7981

1967 1.3593 1977 4.0524 1987 7.35 1997 7.0127 2007 6.5366 2017 11.8604

1968 1.5975 1978 4.8145 1988 8.8046 1998 6.5842 2008 6.5915 2018 12.5141

1969 1.8906 1979 5.4191 1989 8.266 1999 5.9395 2009 5.5143 2019 12.9465

 Croatia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 5.6749 1970 11.5282 1980 17.4567 1990 23.3292 2000 19.6944 2010 21.0509
1961 5.9504 1971 12.4185 1981 18.9747 1991 17.1823 2001 20.8067 2011 20.6824
1962 6.1063 1972 11.6263 1982 17.4282 1992 16.5061 2002 21.9127 2012 19.1148
1963 6.7938 1973 13.9033 1983 18.7672 1993 16.9598 2003 23.2682 2013 18.4546
1964 7.7017 1974 13.9584 1984 19.7928 1994 16.2142 2004 22.9168 2014 17.705
1965 7.931 1975 14.5586 1985 20.1916 1995 16.9263 2005 23.3301 2015 17.8408
1966 7.8614 1976 15.0228 1986 21.0923 1996 17.5153 2006 23.5295 2016 18.105
1967 7.9471 1977 14.6031 1987 20.5885 1997 18.5759 2007 24.8438 2017 18.7377
1968 8.501 1978 16.324 1988 21.2505 1998 19.2789 2008 23.6286 2018 17.7186
1969 8.8157 1979 17.7589 1989 21.1838 1999 20.1155 2009 21.8378 2019 17.8822
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 Cuba

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 13.6871 1970 18.6541 1980 31.3043 1990 32.7356 2000 25.9442 2010 33.9146

1961 12.1683 1971 19.5884 1981 32.6273 1991 28.899 2001 25.3322 2011 29.1693

1962 14.1545 1972 20.7763 1982 34.4206 1992 21.0203 2002 25.9656 2012 29.5222

1963 13.0259 1973 22.3737 1983 30.697 1993 19.787 2003 25.3551 2013 27.7483

1964 14.279 1974 22.8853 1984 32.4373 1994 21.2867 2004 24.8659 2014 27.426

1965 14.5941 1975 27.0356 1985 32.4051 1995 25.5862 2005 25.8476 2015 29.0528

1966 15.1694 1976 27.181 1986 33.3752 1996 26.8725 2006 26.3268 2016 27.9999

1967 15.7369 1977 29.345 1987 33.7334 1997 24.5091 2007 25.762 2017 25.1312

1968 16.0195 1978 30.6191 1988 35.3987 1998 24.3574 2008 27.7472 2018 26.0844

1969 17.2433 1979 31.6321 1989 35.513 1999 25.183 2009 28.0161 2019 25.9885

 Curaçao

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.9423 1970 13.4268 1980 8.4635 1990 4.6337 2000 4.7934 2010 3.8948

1961 9.3326 1971 11.6857 1981 8.0614 1991 3.6976 2001 4.881 2011 4.9687

1962 10.249 1972 11.3309 1982 9.0133 1992 3.0463 2002 4.7057 2012 5.9174

1963 9.8174 1973 12.5695 1983 4.6323 1993 4.7026 2003 4.7088 2013 5.1003

1964 9.5454 1974 11.393 1984 11.5674 1994 4.5085 2004 4.9405 2014 5.7561

1965 8.564 1975 8.2506 1985 13.5392 1995 4.4615 2005 4.8967 2015 6.2508

1966 8.0082 1976 17.6246 1986 2.5955 1996 4.1735 2006 5.1033 2016 5.3897

1967 9.8647 1977 9.2054 1987 2.3075 1997 4.3676 2007 5.7452 2017 5.093

1968 9.1729 1978 7.8397 1988 2.273 1998 0.24108 2008 5.526 2018 5.2694

1969 12.0049 1979 8.224 1989 4.3269 1999 1.8065 2009 5.6544 2019 5.1958

 Cyprus

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.88633 1970 1.7027 1980 3.2599 1990 4.6569 2000 7.1459 2010 8.089

1961 0.86432 1971 1.8835 1981 3.095 1991 5.1466 2001 7.0214 2011 7.7595

1962 0.90462 1972 2.4059 1982 3.1564 1992 5.5229 2002 7.2108 2012 7.2349

1963 0.98523 1973 2.5035 1983 3.1506 1993 5.767 2003 7.6056 2013 6.5544

1964 0.99997 1974 1.9287 1984 3.2338 1994 6.0111 2004 7.8409 2014 6.9346

1965 1.1501 1975 1.9906 1985 3.1444 1995 5.8823 2005 8.0313 2015 6.9601

1966 1.2417 1976 2.4873 1986 3.6052 1996 6.2332 2006 8.2232 2016 7.3682

1967 1.3623 1977 2.6989 1987 4.1841 1997 6.321 2007 8.5389 2017 7.5157

1968 1.6222 1978 2.8445 1988 4.1966 1998 6.6146 2008 8.7073 2018 7.3328

1969 1.6698 1979 3.0448 1989 4.4285 1999 6.8825 2009 8.4538 2019 7.3157
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 Czech Republic

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 99.0815 1970 154.4755 1980 184.6904 1990 164.2042 2000 127.0665 2010 117.5007

1961 107.5398 1971 162.0302 1981 182.6561 1991 148.8941 2001 126.9576 2011 115.0603

1962 114.601 1972 163.5033 1982 180.8599 1992 144.619 2002 123.8956 2012 110.9552

1963 120.5546 1973 164.1514 1983 181.0857 1993 138.6373 2003 127.3828 2013 106.4275

1964 125.4635 1974 166.0289 1984 187.1865 1994 132.3761 2004 128.1138 2014 104.0499

1965 122.2494 1975 173.7007 1985 184.6214 1995 131.6083 2005 125.6719 2015 104.8154

1966 121.5591 1976 180.4472 1986 185.8769 1996 134.9625 2006 126.4495 2016 106.629

1967 121.3051 1977 185.8315 1987 183.658 1997 130.7331 2007 128.2643 2017 105.6417

1968 126.915 1978 187.4934 1988 180.6114 1998 125.3177 2008 122.9414 2018 104.4112

1969 134.7347 1979 182.5758 1989 172.3122 1999 116.6234 2009 115.1937 2019 101.0098

 Democratic Republic of the Congo

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.3185 1970 2.7097 1980 3.485 1990 4.2499 2000 0.89277 2010 1.9633

1961 2.3554 1971 2.9587 1981 3.7554 1991 3.1326 2001 0.76877 2011 2.4387

1962 2.1719 1972 3.0172 1982 3.047 1992 2.8092 2002 0.84996 2012 2.3558

1963 2.2927 1973 3.1892 1983 3.998 1993 2.6615 2003 1.0372 2013 3.5381

1964 1.974 1974 3.3647 1984 3.9316 1994 1.6995 2004 1.1502 2014 4.6313

1965 2.4685 1975 3.2328 1985 3.6119 1995 2.1037 2005 1.4453 2015 2.7919

1966 2.4025 1976 3.4049 1986 3.3457 1996 2.3118 2006 1.5533 2016 1.996

1967 2.2888 1977 3.477 1987 3.8159 1997 1.8754 2007 1.6962 2017 2.2049

1968 3.366 1978 3.526 1988 3.978 1998 1.6548 2008 1.8108 2018 2.2313

1969 3.648 1979 3.7401 1989 4.352 1999 1.3186 2009 1.6953 2019 2.2827

 Denmark

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 29.7495 1970 62.0393 1980 60.3479 1990 53.5528 2000 54.2767 2010 49.1523

1961 31.7019 1971 57.0095 1981 51.7726 1991 64.1694 2001 55.8652 2011 44.1971

1962 36.8899 1972 59.5939 1982 53.6838 1992 58.3613 2002 55.5274 2012 39.8236

1963 40.6679 1973 59.2218 1983 50.1673 1993 60.6078 2003 60.6137 2013 41.7295

1964 43.1469 1974 55.0415 1984 50.8558 1994 64.6698 2004 55.0657 2014 37.5273

1965 44.2934 1975 55.7446 1985 60.0646 1995 61.5816 2005 51.4954 2015 35.1815

1966 50.0784 1976 60.1023 1986 58.9062 1996 74.8299 2006 59.417 2016 36.9887

1967 49.0264 1977 61.8174 1987 58.3455 1997 65.4296 2007 54.6427 2017 34.7222

1968 53.2727 1978 61.0958 1988 55.1114 1998 61.1995 2008 51.223 2018 34.6514

1969 59.3426 1979 62.9776 1989 48.8077 1999 58.6193 2009 48.8206 2019 32.0755
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 Djibouti

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.040304 1970 0.13923 1980 0.34808 1990 0.32243 2000 0.3664 2010 0.51662

1961 0.043968 1971 0.16122 1981 0.30045 1991 0.33709 2001 0.3664 2011 0.47266

1962 0.047632 1972 0.19053 1982 0.34808 1992 0.33709 2002 0.39938 2012 0.47998

1963 0.065952 1973 0.17954 1983 0.34808 1993 0.33709 2003 0.42136 2013 0.55554

1964 0.084272 1974 0.19419 1984 0.35174 1994 0.32976 2004 0.4067 2014 0.3733

1965 0.12091 1975 0.19786 1985 0.35907 1995 0.32976 2005 0.41403 2015 0.44577

1966 0.13923 1976 0.19786 1986 0.37739 1996 0.33342 2006 0.41037 2016 0.39814

1967 0.087936 1977 0.19786 1987 0.38838 1997 0.34808 2007 0.46166 2017 0.37982

1968 0.12091 1978 0.20152 1988 0.34808 1998 0.34075 2008 0.4983 2018 0.38997

1969 0.084272 1979 0.36274 1989 0.38838 1999 0.34075 2009 0.458 2019 0.39937

 Dominica

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.0399 1970 3.1051 1980 6.427 1990 9.1517 2000 19.5937 2010 20.5744

1961 1.0286 1971 3.5187 1981 6.1352 1991 9.9526 2001 19.5938 2011 21.3193

1962 1.2411 1972 4.6689 1982 6.3035 1992 10.8223 2002 21.4624 2012 21.4937

1963 1.2485 1973 5.959 1983 7.8656 1993 11.6672 2003 21.6227 2013 21.0497

1964 1.7465 1974 6.4096 1984 7.3905 1994 12.3768 2004 17.8425 2014 21.6457

1965 1.5453 1975 6.3327 1985 7.2415 1995 15.7714 2005 17.9041 2015 23.4879

1966 1.6697 1976 6.3224 1986 8.1211 1996 17.1977 2006 19.0867 2016 24.6291

1967 1.5669 1977 5.5989 1987 9.6873 1997 17.9046 2007 19.9504 2017 24.255

1968 2.3473 1978 5.4303 1988 9.7398 1998 18.2485 2008 20.269 2018 25.3052

1969 2.6512 1979 6.7856 1989 10.2579 1999 18.3839 2009 19.8137 2019 27.3788

 Dominican Republic

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01099 1970 0.02565 1980 0.03664 1990 0.05862 2000 0.10259 2010 0.17221

1961 0.01099 1971 0.02565 1981 0.03664 1991 0.05862 2001 0.10992 2011 0.15389

1962 0.01099 1972 0.02565 1982 0.04030 1992 0.05862 2002 0.10259 2012 0.16488

1963 0.01466 1973 0.02565 1983 0.04030 1993 0.06229 2003 0.11725 2013 0.16854

1964 0.01466 1974 0.02931 1984 0.04397 1994 0.06595 2004 0.14290 2014 0.17587

1965 0.01466 1975 0.02931 1985 0.04763 1995 0.08061 2005 0.14290 2015 0.17587

1966 0.01466 1976 0.02931 1986 0.04763 1996 0.07328 2006 0.14290 2016 0.17954

1967 0.02198 1977 0.02565 1987 0.04763 1997 0.08061 2007 0.18320 2017 0.16122

1968 0.02198 1978 0.02565 1988 0.05496 1998 0.07694 2008 0.16488 2018 0.16601

1969 0.01832 1979 0.03298 1989 0.05862 1999 0.08061 2009 0.16122 2019 0.16166
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 Ecuador

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.7616 1970 4.2782 1980 13.4072 1990 16.4578 2000 20.5626 2010 34.8254

1961 1.6442 1971 4.2194 1981 16.6528 1991 16.1578 2001 22.9394 2011 37.398

1962 1.5637 1972 4.589 1982 19.2351 1992 21.9596 2002 24.7531 2012 37.1528

1963 1.7943 1973 5.2559 1983 19.5026 1993 24.0874 2003 26.7478 2013 39.3619

1964 2.1423 1974 6.0836 1984 21.1895 1994 13.5385 2004 28.7858 2014 43.2078

1965 2.274 1975 7.3549 1985 19.3527 1995 22.6979 2005 29.9701 2015 40.6398

1966 2.4167 1976 8.1006 1986 15.1941 1996 24.0255 2006 28.8947 2016 39.5051

1967 2.5889 1977 7.4722 1987 15.0223 1997 18.2051 2007 33.6851 2017 39.2376

1968 3.1126 1978 10.4064 1988 17.1686 1998 22.3147 2008 29.573 2018 41.818

1969 3.5889 1979 12.1405 1989 20.1537 1999 21.365 2009 32.5026 2019 40.5403

 Egypt

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 16.0327 1970 21.654 1980 45.176 1990 75.2189 2000 140.3476 2010 198.8077

1961 17.0659 1971 23.0124 1981 50.9027 1991 77.2948 2001 124.2928 2011 211.0375

1962 18.5711 1972 25.475 1982 56.4312 1992 79.9395 2002 125.7814 2012 210.3549

1963 21.5269 1973 23.7611 1983 56.9805 1993 92.2776 2003 146.4621 2013 206.8676

1964 25.4912 1974 26.0891 1984 63.7043 1994 84.5565 2004 149.1437 2014 221.9423

1965 27.6095 1975 31.0599 1985 63.8072 1995 94.8884 2005 165.0417 2015 219.304

1966 26.5322 1976 34.4504 1986 74.3929 1996 93.5675 2006 176.0195 2016 233.5156

1967 19.6499 1977 37.8151 1987 74.6135 1997 107.512 2007 185.9052 2017 250.2401

1968 22.8726 1978 39.261 1988 74.3095 1998 121.4653 2008 195.2854 2018 251.4609

1969 19.6648 1979 42.8895 1989 71.9046 1999 124.4974 2009 202.7097 2019 246.6429

 El Salvador

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.61886 1970 1.4283 1980 2.1194 1990 2.4745 2000 5.6719 2010 6.317

1961 0.58228 1971 1.5088 1981 1.8187 1991 3.1532 2001 5.8581 2011 6.5005

1962 0.64826 1972 1.6772 1982 1.7521 1992 3.3168 2002 6.0737 2012 6.4691

1963 1.1245 1973 1.9666 1983 1.8854 1993 3.9753 2003 6.4343 2013 6.0936

1964 1.2307 1974 1.97 1984 1.5883 1994 4.5139 2004 6.2537 2014 6.1475

1965 1.0402 1975 2.1055 1985 1.9653 1995 4.9982 2005 6.298 2015 6.7154

1966 1.3038 1976 2.2067 1986 1.9675 1996 4.4147 2006 6.7169 2016 6.6384

1967 1.1573 1977 2.2817 1987 2.4145 1997 5.4166 2007 6.8459 2017 6.0156

1968 1.2598 1978 2.3814 1988 2.4331 1998 5.7317 2008 6.405 2018 6.0183

1969 1.1902 1979 2.3767 1989 2.5472 1999 5.5872 2009 6.3126 2019 6.2073
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 Equatorial Guinea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.021984 1970 0.03664 1980 0.058624 1990 0.062288 2000 0.46533 2010 6.8663
1961 0.021984 1971 0.065952 1981 0.069616 1991 0.065952 2001 4.5397 2011 8.8815
1962 0.021984 1972 0.087936 1982 0.07328 1992 0.065952 2002 6.1812 2012 7.5368
1963 0.025648 1973 0.029312 1983 0.062288 1993 0.069616 2003 6.6612 2013 7.72
1964 0.025648 1974 0.051296 1984 0.080608 1994 0.076944 2004 7.5185 2014 7.306
1965 0.029312 1975 0.062288 1985 0.065952 1995 0.084272 2005 7.5149 2015 6.434
1966 0.025648 1976 0.062288 1986 0.080608 1996 0.12824 2006 6.9616 2016 6.2068
1967 0.025648 1977 0.062288 1987 0.098928 1997 0.30411 2007 5.6279 2017 5.9796
1968 0.029312 1978 0.069616 1988 0.10626 1998 0.2235 2008 7.0166 2018 5.9058
1969 0.043968 1979 0.062288 1989 0.11725 1999 0.37006 2009 6.7528 2019 5.6338

 Eritrea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 0.60408 2010 0.497

1961 1971 1981 1991 2001 0.62599 2011 0.56017

1962 1972 1982 1992 2002 0.60027 2012 0.61843

1963 1973 1983 1993 2003 0.71012 2013 0.63832

1964 1974 1984 1994 0.70683 2004 0.76501 2014 0.67171

1965 1975 1985 1995 0.79041 2005 0.76494 2015 0.65217

1966 1976 1986 1996 0.86067 2006 0.54493 2016 0.6595

1967 1977 1987 1997 0.76768 2007 0.55935 2017 0.68881

1968 1978 1988 1998 0.58581 2008 0.40535 2018 0.70877

1969 1979 1989 1999 0.6151 2009 0.49697 2019 0.72723

 Estonia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 13.165 1970 21.3207 1980 31.514 1990 36.9072 2000 15.2442 2010 18.785

1961 13.5667 1971 22.6233 1981 30.8855 1991 33.9018 2001 15.5767 2011 18.8551

1962 14.2242 1972 23.8006 1982 31.4823 1992 24.3705 2002 15.0905 2012 17.685

1963 15.2469 1973 24.7993 1983 31.929 1993 18.9104 2003 16.9372 2013 19.552

1964 16.2088 1974 25.7348 1984 32.22 1994 19.734 2004 17.201 2014 18.7559

1965 17.1882 1975 27.0513 1985 34.7987 1995 18.0488 2005 16.9216 2015 15.8134

1966 18.1443 1976 28.1006 1986 34.9028 1996 18.7595 2006 16.2088 2016 17.3777

1967 18.9575 1977 29.0582 1987 34.8 1997 18.3173 2007 19.8386 2017 18.6359

1968 19.4757 1978 30.0475 1988 35.743 1998 16.8172 2008 17.6681 2018 17.711

1969 20.2732 1979 30.3051 1989 34.9376 1999 15.6533 2009 14.339 2019 13.8884
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 Ethiopia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.35163 1970 1.6517 1980 1.8175 1990 2.9858 2000 3.4638 2010 6.3371

1961 0.34063 1971 1.8495 1981 1.86 1991 2.9571 2001 4.2634 2011 7.402

1962 0.39553 1972 1.4062 1982 1.4739 1992 2.9373 2002 4.4305 2012 8.1099

1963 0.42121 1973 1.7509 1983 1.8348 1993 2.9948 2003 4.8711 2013 9.7808

1964 0.40653 1974 1.7363 1984 1.6503 1994 2.1969 2004 5.1586 2014 12.0174

1965 0.64448 1975 1.2085 1985 1.7987 1995 2.5057 2005 4.9551 2015 12.6934

1966 0.82398 1976 1.1747 1986 2.1952 1996 2.7947 2006 5.3169 2016 14.4321

1967 1.073 1977 1.0468 1987 2.5544 1997 2.9793 2007 5.8393 2017 15.5936

1968 1.725 1978 1.3685 1988 2.6401 1998 3.1474 2008 6.4164 2018 16.1849

1969 1.6664 1979 1.8441 1989 2.7941 1999 3.095 2009 6.4546 2019 16.2551

 Faeroe Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.058624 1970 0.25648 1980 0.42136 1990 0.70349 2000 0.68883 2010 0.63021

1961 0.11358 1971 0.26014 1981 0.43968 1991 0.65586 2001 0.76211 2011 0.56792

1962 0.11725 1972 0.2345 1982 0.458 1992 0.64853 2002 0.72547 2012 0.5899

1963 0.12458 1973 0.25282 1983 0.48731 1993 0.58258 2003 0.7328 2013 0.67784

1964 0.12091 1974 0.30045 1984 0.4983 1994 0.57525 2004 0.74746 2014 0.59723

1965 0.13557 1975 0.34808 1985 0.51662 1995 0.57158 2005 0.72181 2015 0.60822

1966 0.13923 1976 0.32976 1986 0.49098 1996 0.6009 2006 0.67784 2016 0.63021

1967 0.16854 1977 0.4067 1987 0.4983 1997 0.5899 2007 0.68883 2017 0.70715

1968 0.1832 1978 0.39938 1988 0.52762 1998 0.62288 2008 0.63021 2018 0.70545

1969 0.21251 1979 0.47998 1989 0.57891 1999 0.63021 2009 0.57525 2019 0.715

 Fiji

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.19419 1970 0.52005 1980 0.79242 1990 0.80604 2000 0.83358 2010 1.2012

1961 0.16854 1971 0.54927 1981 1.0772 1991 0.66312 2001 1.046 2011 1.0679

1962 0.23083 1972 0.57856 1982 0.83512 1992 0.74 2002 0.87945 2012 1.0411

1963 0.24182 1973 0.62985 1983 0.70893 1993 0.74364 2003 1.0361 2013 1.316

1964 0.42491 1974 0.67019 1984 0.57721 1994 0.7386 2004 1.34 2014 1.6228

1965 0.34427 1975 0.62258 1985 0.57299 1995 0.75389 2005 1.081 2015 2.1304

1966 0.32225 1976 0.483 1986 0.59809 1996 0.81317 2006 1.2014 2016 2.0188

1967 0.35523 1977 0.76463 1987 0.472 1997 0.78246 2007 1.1411 2017 2.0371

1968 0.3955 1978 0.70908 1988 0.54977 1998 0.76108 2008 0.87776 2018 2.1238

1969 0.43215 1979 0.83646 1989 0.6252 1999 0.77502 2009 0.77856 2019 2.2571
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 Finland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 15.0869 1970 40.355 1980 58.1395 1990 56.9719 2000 57.0382 2010 64.0995

1961 14.9217 1971 40.5368 1981 51.4035 1991 55.2304 2001 62.5362 2011 56.6657

1962 16.7903 1972 44.1061 1982 42.9767 1992 54.2855 2002 65.0598 2012 51.2221

1963 19.3365 1973 49.3202 1983 41.4636 1993 56.3526 2003 72.6578 2013 51.751

1964 22.8277 1974 46.6085 1984 42.1474 1994 61.7162 2004 68.9608 2014 47.6439

1965 25.3001 1975 46.0258 1985 49.5493 1995 58.1454 2005 57.0429 2015 44.1137

1966 29.4888 1976 51.1986 1986 53.2146 1996 64.0624 2006 68.3844 2016 47.2275

1967 28.5877 1977 50.1371 1987 57.5337 1997 62.723 2007 66.7603 2017 44.6731

1968 33.2815 1978 51.8252 1988 52.0584 1998 59.3733 2008 58.6096 2018 45.8493

1969 37.8968 1979 54.2372 1989 52.4483 1999 58.8948 2009 55.9244 2019 41.6526

 France

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 271.3608 1970 439.6251 1980 506.255 1990 400.9833 2000 416.2659 2010 389.3863

1961 281.3733 1971 463.1314 1981 455.6496 1991 426.5009 2001 420.8481 2011 362.5039

1962 298.8665 1972 481.588 1982 438.0556 1992 415.7089 2002 415.8383 2012 363.8091

1963 334.2264 1973 517.5423 1983 423.9971 1993 394.9725 2003 422.6412 2013 365.8312

1964 345.5381 1974 499.9684 1984 407.3412 1994 390.8153 2004 423.6306 2014 333.9221

1965 352.1116 1975 447.7482 1985 402.4876 1995 397.4555 2005 426.7792 2015 338.5007

1966 347.6048 1976 506.6147 1986 387.4457 1996 413.1973 2006 416.0038 2016 341.0257

1967 372.4753 1977 481.9079 1987 379.7093 1997 406.1874 2007 405.1944 2017 345.9213

1968 385.101 1978 506.7407 1988 374.6746 1998 425.465 2008 397.7251 2018 331.7254

1969 413.7595 1979 530.2807 1989 392.9246 1999 421.705 2009 381.5991 2019 323.7471

 French Polynesia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.03664 1970 0.19419 1980 0.29312 1990 0.43968 2000 0.57158 2010 0.80608

1961 0.05862 1971 0.22717 1981 0.32976 1991 0.43602 2001 0.6815 2011 0.77677

1962 0.04763 1972 0.21618 1982 0.33709 1992 0.4177 2002 0.68517 2012 0.75478

1963 0.06595 1973 0.20885 1983 0.42136 1993 0.42869 2003 0.74013 2013 0.76211

1964 0.06595 1974 0.21618 1984 0.46166 1994 0.44334 2004 0.72547 2014 0.74013

1965 0.08427 1975 0.21251 1985 0.5899 1995 0.43235 2005 0.7841 2015 0.76944

1966 0.12091 1976 0.26381 1986 0.60822 1996 0.43602 2006 0.78043 2016 0.74379

1967 0.13923 1977 0.2748 1987 0.61189 1997 0.45434 2007 0.76944 2017 0.74746

1968 0.15389 1978 0.31144 1988 0.57525 1998 0.45067 2008 0.79509 2018 0.78063

1969 0.16122 1979 0.28213 1989 0.54227 1999 0.4983 2009 0.79875 2019 0.83168
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 Gabon

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.1319 1970 2.0812 1980 6.6247 1990 4.4854 2000 4.6699 2010 4.7823

1961 0.16488 1971 2.8433 1981 6.564 1991 4.522 2001 4.773 2011 4.931

1962 0.087936 1972 2.737 1982 6.5436 1992 4.9176 2002 4.544 2012 5.0333

1963 0.07328 1973 5.3091 1983 5.5086 1993 4.9748 2003 4.6132 2013 5.2687

1964 0.19053 1974 5.4484 1984 5.9795 1994 4.3745 2004 4.6568 2014 5.3123

1965 0.21618 1975 5.3641 1985 6.2985 1995 4.6063 2005 4.8579 2015 5.2489

1966 0.38106 1976 5.7038 1986 4.9508 1996 4.7537 2006 4.1424 2016 5.2985

1967 1.0113 1977 6.3065 1987 4.0095 1997 4.7742 2007 4.0893 2017 4.7929

1968 1.9602 1978 7.5549 1988 4.3207 1998 4.9573 2008 4.162 2018 4.8031

1969 1.4326 1979 6.7468 1989 5.7575 1999 4.787 2009 4.2328 2019 4.7049

 Gambia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01832 1970 0.047632 1980 0.15755 1990 0.19786 2000 0.2748 2010 0.43235

1961 0.021984 1971 0.05496 1981 0.15755 1991 0.19786 2001 0.30045 2011 0.44701

1962 0.025648 1972 0.065952 1982 0.16122 1992 0.19786 2002 0.30045 2012 0.45434

1963 0.029312 1973 0.062288 1983 0.16122 1993 0.20885 2003 0.30045 2013 0.43235

1964 0.029312 1974 0.062288 1984 0.17221 1994 0.20885 2004 0.32243 2014 0.51296

1965 0.029312 1975 0.098928 1985 0.17221 1995 0.21618 2005 0.3261 2015 0.52395

1966 0.032976 1976 0.098928 1986 0.16122 1996 0.21984 2006 0.35174 2016 0.53128

1967 0.032976 1977 0.11358 1987 0.17954 1997 0.2235 2007 0.35174 2017 0.53494

1968 0.03664 1978 0.13923 1988 0.1832 1998 0.24182 2008 0.3664 2018 0.56324

1969 0.047632 1979 0.14656 1989 0.17954 1999 0.2748 2009 0.38106 2019 0.58571

 Georgia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.1212 1970 18.1122 1980 26.7828 1990 27.629 2000 4.4994 2010 6.2091

1961 11.4692 1971 19.2237 1981 26.2734 1991 21.471 2001 3.7337 2011 7.8037

1962 12.0377 1972 20.2294 1982 26.7673 1992 15.277 2002 3.3514 2012 8.2511

1963 12.9096 1973 21.0876 1983 27.1473 1993 9.9163 2003 3.7355 2013 8.0087

1964 13.7293 1974 21.8949 1984 27.3878 1994 6.069 2004 4.2762 2014 8.7871

1965 14.5644 1975 23.019 1985 29.5342 1995 2.2914 2005 5.017 2015 9.5887

1966 15.381 1976 23.9033 1986 29.61 1996 4.0551 2006 6.0961 2016 9.9052

1967 16.0831 1977 24.7145 1987 29.4872 1997 4.4251 2007 6.3648 2017 9.8319

1968 16.535 1978 25.561 1988 30.2735 1998 4.9386 2008 5.3082 2018 9.8622

1969 17.2199 1979 25.7704 1989 29.5963 1999 4.3097 2009 6.1349 2019 10.2867
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 Germany

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 813.9502 1970 1026.022 1980 1100.059 1990 1052.349 2000 899.7802 2010 832.6697

1961 834.8396 1971 1037.236 1981 1048.517 1991 1014.2 2001 916.3661 2011 809.4269

1962 883.1686 1972 1041.48 1982 1015.727 1992 965.8898 2002 899.8211 2012 813.8931

1963 945.498 1973 1085.736 1983 1011.597 1993 956.2331 2003 900.8664 2013 831.3163

1964 968.9175 1974 1062.724 1984 1033.237 1994 939.6303 2004 886.966 2014 792.6849

1965 960.1022 1975 1002.444 1985 1044.11 1995 939.1767 2005 866.3885 2015 795.8164

1966 951.422 1976 1090.837 1986 1047.463 1996 959.1241 2006 877.9974 2016 800.5103

1967 936.2294 1977 1052.604 1987 1032.434 1997 931.2301 2007 851.3833 2017 786.6546

1968 984.7908 1978 1079.127 1988 1029.014 1998 923.2759 2008 854.7063 2018 755.3623

1969 1052.001 1979 1117.882 1989 1008.782 1999 895.6429 2009 790.1957 2019 701.9551

 Ghana

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.4619 1970 2.6216 1980 2.5481 1990 3.7915 2000 6.1005 2010 9.7107

1961 1.3447 1971 2.2915 1981 3.0299 1991 4.2095 2001 6.7326 2011 11.2263

1962 1.4326 1972 2.4202 1982 3.0284 1992 3.6609 2002 7.2315 2012 14.3164

1963 1.7221 1973 2.4714 1983 3.639 1993 4.3107 2003 7.4373 2013 14.1798

1964 1.6488 1974 2.9328 1984 2.5671 1994 5.0887 2004 7.1521 2014 14.7545

1965 1.7038 1975 2.7416 1985 3.3017 1995 5.1542 2005 6.8034 2015 16.1147

1966 1.44 1976 2.4266 1986 3.0303 1996 5.4686 2006 9.16 2016 16.547

1967 1.4949 1977 2.9915 1987 3.2636 1997 6.2042 2007 9.6193 2017 13.817

1968 1.7615 1978 2.9574 1988 3.4112 1998 6.2459 2008 8.9259 2018 14.48

1969 1.6875 1979 2.6492 1989 3.295 1999 6.3695 2009 7.4978 2019 14.9599

 Greece

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 9.3915 1970 24.1262 1980 50.8883 1990 83.4255 2000 102.999 2010 97.3615

1961 9.8084 1971 27.7495 1981 50.1249 1991 83.4011 2001 105.385 2011 94.5496

1962 10.1488 1972 31.4773 1982 51.5082 1992 84.9827 2002 105.021 2012 91.4301

1963 12.2395 1973 37.1311 1983 54.7887 1993 84.2964 2003 109.089 2013 81.7351

1964 13.2016 1974 36.0617 1984 56.2843 1994 86.4422 2004 109.546 2014 78.6598

1965 16.999 1975 38.6696 1985 59.7712 1995 86.9791 2005 113.931 2015 74.9579

1966 18.6206 1976 42.6554 1986 58.2737 1996 89.132 2006 112.472 2016 71.3684

1967 19.5042 1977 46.6569 1987 62.5756 1997 93.8209 2007 114.592 2017 74.8528

1968 22.2863 1978 47.6778 1988 67.0511 1998 98.6415 2008 111.125 2018 71.7979

1969 25.4343 1979 50.8183 1989 73.23 1999 97.9584 2009 104.354 2019 67.184

3 Climate Change Effect on the Urbanization: Intensified Rainfall and Flood…
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 Greenland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.2235 1970 0.38106 1980 0.56426 1990 0.34808 2000 0.45434 2010 0.66318

1961 0.29312 1971 0.46899 1981 0.52762 1991 0.34808 2001 0.4067 2011 0.70715

1962 0.26381 1972 0.55326 1982 0.51662 1992 0.3261 2002 0.37739 2012 0.56792

1963 0.32976 1973 0.55693 1983 0.36274 1993 0.32243 2003 0.42869 2013 0.53494

1964 0.3151 1974 0.55693 1984 0.56792 1994 0.29678 2004 0.58258 2014 0.4983

1965 0.34442 1975 0.50563 1985 0.5093 1995 0.32243 2005 0.60822 2015 0.4983

1966 0.38838 1976 0.21984 1986 0.3261 1996 0.36274 2006 0.62654 2016 0.4983

1967 0.4177 1977 0.72181 1987 0.2345 1997 0.38472 2007 0.63754 2017 0.51296

1968 0.54227 1978 0.39205 1988 0.54594 1998 0.35907 2008 0.65952 2018 0.51173

1969 0.4067 1979 0.57158 1989 0.47266 1999 0.37373 2009 0.57525 2019 0.51866

 Grenada

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.021984 1970 0.043968 1980 0.047632 1990 0.10626 2000 0.19053 2010 0.26014

1961 0.01832 1971 0.047632 1981 0.058624 1991 0.10992 2001 0.19419 2011 0.25282

1962 0.025648 1972 0.047632 1982 0.062288 1992 0.11725 2002 0.20518 2012 0.27114

1963 0.014656 1973 0.05496 1983 0.062288 1993 0.12091 2003 0.21618 2013 0.30411

1964 0.021984 1974 0.03664 1984 0.062288 1994 0.1429 2004 0.20518 2014 0.2345

1965 0.021984 1975 0.047632 1985 0.062288 1995 0.15022 2005 0.21618 2015 0.26014

1966 0.029312 1976 0.047632 1986 0.065952 1996 0.15389 2006 0.23083 2016 0.26747

1967 0.03664 1977 0.047632 1987 0.07328 1997 0.16854 2007 0.23816 2017 0.27846

1968 0.040304 1978 0.051296 1988 0.095264 1998 0.17587 2008 0.25282 2018 0.2786

1969 0.047632 1979 0.047632 1989 0.10259 1999 0.19419 2009 0.25282 2019 0.28795

 Guatemala

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.3442 1970 2.2964 1980 4.4926 1990 4.9702 2000 9.7658 2010 11.0977

1961 1.4065 1971 2.4393 1981 3.9495 1991 4.9521 2001 10.2332 2011 11.2384

1962 1.3809 1972 2.7066 1982 3.6068 1992 5.9179 2002 10.7216 2012 11.5586

1963 1.5199 1973 2.9336 1983 3.1599 1993 5.5772 2003 10.4479 2013 12.5823

1964 1.769 1974 3.0655 1984 3.4011 1994 6.7508 2004 11.1797 2014 13.5686

1965 1.9739 1975 3.5195 1985 3.4968 1995 7.0793 2005 12.108 2015 15.4263

1966 1.7396 1976 3.3049 1986 3.6646 1996 6.5703 2006 12.1753 2016 16.3759

1967 1.9813 1977 3.8045 1987 3.9184 1997 7.5016 2007 12.1446 2017 17.2143

1968 2.1391 1978 4.1171 1988 4.0753 1998 8.6394 2008 10.8931 2018 19.4113

1969 2.2781 1979 4.678 1989 4.1882 1999 8.807 2009 11.442 2019 20.5134
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 Guinea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.41037 1970 0.79142 1980 0.96363 1990 1.0039 2000 1.4912 2010 2.4842

1961 0.61555 1971 0.81341 1981 0.98928 1991 1.0259 2001 1.5609 2011 2.5941

1962 0.65952 1972 0.83173 1982 0.98195 1992 1.0589 2002 1.6232 2012 2.4219

1963 0.69616 1973 0.80242 1983 0.95264 1993 1.0882 2003 1.7001 2013 2.1105

1964 0.69982 1974 0.83906 1984 0.97829 1994 1.1248 2004 1.7624 2014 2.1654

1965 0.69616 1975 0.84272 1985 0.99294 1995 1.1652 2005 1.8247 2015 2.4512

1966 0.71814 1976 0.88669 1986 0.99661 1996 1.2348 2006 1.8906 2016 2.7443

1967 0.72547 1977 0.90134 1987 0.99294 1997 1.2897 2007 1.9676 2017 2.8799

1968 0.74746 1978 0.90134 1988 1.0259 1998 1.363 2008 1.9969 2018 3.0321

1969 0.74746 1979 0.94531 1989 1.0442 1999 1.4326 2009 2.1105 2019 3.1534

 Guinea-Bissau

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01832 1970 0.069616 1980 0.14656 1990 0.17221 2000 0.14656 2010 0.23816

1961 0.029312 1971 0.07328 1981 0.1429 1991 0.17587 2001 0.15022 2011 0.24549

1962 0.040304 1972 0.065952 1982 0.1429 1992 0.17954 2002 0.15389 2012 0.25282

1963 0.047632 1973 0.10992 1983 0.1429 1993 0.1832 2003 0.19419 2013 0.25648

1964 0.058624 1974 0.10259 1984 0.16122 1994 0.1832 2004 0.20152 2014 0.27114

1965 0.065952 1975 0.11358 1985 0.17221 1995 0.1832 2005 0.21251 2015 0.27846

1966 0.065952 1976 0.095264 1986 0.1832 1996 0.1832 2006 0.21618 2016 0.29312

1967 0.047632 1977 0.10259 1987 0.19419 1997 0.20152 2007 0.23083 2017 0.29312

1968 0.062288 1978 0.10259 1988 0.21618 1998 0.17221 2008 0.22717 2018 0.30861

1969 0.058624 1979 0.10992 1989 0.23083 1999 0.19419 2009 0.2345 2019 0.32096

 Guyana

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.65952 1970 1.5792 1980 1.788 1990 1.1285 2000 1.7477 2010 1.887
1961 0.73646 1971 1.4986 1981 1.799 1991 1.1065 2001 1.7441 2011 1.9602
1962 0.67784 1972 1.5609 1982 1.4033 1992 1.0406 2002 1.7148 2012 1.9602
1963 0.61555 1973 1.8027 1983 1.2458 1993 1.0442 2003 1.8576 2013 1.9053
1964 0.64853 1974 1.5535 1984 1.4033 1994 1.4583 2004 1.9273 2014 1.9712
1965 1.0772 1975 1.8247 1985 1.418 1995 1.5719 2005 1.6195 2015 2.0045
1966 1.1798 1976 1.7514 1986 1.0442 1996 1.6561 2006 1.5096 2016 2.344
1967 1.3227 1977 1.898 1987 1.308 1997 1.8064 2007 1.7807 2017 2.3183
1968 1.33 1978 2.0555 1988 1.4033 1998 1.8283 2008 1.7074 2018 2.3426
1969 1.3667 1979 1.5206 1989 1.1835 1999 1.832 2009 1.9089 2019 2.3904
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 Haiti

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.28558 1970 0.38448 1980 0.74507 1990 0.99436 2000 1.341 2010 2.0934

1961 0.29661 1971 0.40274 1981 0.75893 1991 0.97613 2001 1.5527 2011 2.0866

1962 0.30387 1972 0.39172 1982 0.8173 1992 0.88788 2002 1.8022 2012 2.1903

1963 0.24894 1973 0.42091 1983 0.88603 1993 0.68546 2003 1.7097 2013 2.2934

1964 0.30021 1974 0.47209 1984 0.90315 1994 0.1832 2004 1.9604 2014 2.7847

1965 0.30393 1975 0.48302 1985 0.92952 1995 0.8757 2005 2.0474 2015 3.1914

1966 0.30396 1976 0.67218 1986 0.83022 1996 1.0186 2006 2.0841 2016 3.2353

1967 0.26 1977 0.70414 1987 0.89879 1997 1.3484 2007 2.361 2017 3.272

1968 0.26363 1978 0.75064 1988 1.0077 1998 1.2311 2008 2.3658 2018 3.367

1969 0.3149 1979 0.7499 1989 1.0231 1999 1.3117 2009 2.237 2019 3.2809

 Honduras

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.6154 1970 1.388 1980 2.0443 1990 2.4227 2000 4.9781 2010 7.9585

1961 0.73629 1971 1.3294 1981 1.812 1991 2.445 2001 5.6528 2011 8.6345

1962 0.69959 1972 1.5344 1982 1.7531 1992 2.6931 2002 5.913 2012 8.9886

1963 0.71058 1973 1.5086 1983 1.9824 1993 2.8343 2003 6.6643 2013 9.2447

1964 0.72151 1974 1.5563 1984 1.9635 1994 3.1748 2004 7.247 2014 9.3387

1965 0.75073 1975 1.6659 1985 1.8894 1995 3.7825 2005 7.5767 2015 10.082

1966 0.80566 1976 1.7749 1986 1.8286 1996 3.8394 2006 6.863 2016 9.5544

1967 0.87525 1977 1.9974 1987 2.1485 1997 3.9755 2007 8.5984 2017 9.8991

1968 1.2232 1978 2.0437 1988 2.4699 1998 4.7657 2008 8.5177 2018 10.4707

1969 1.1756 1979 1.9262 1989 2.6856 1999 4.6459 2009 8.0727 2019 10.9284

 Hong Kong

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.9526 1970 8.3925 1980 16.6002 1990 27.1471 2000 40.2839 2010 40.0637

1961 3.3701 1971 9.1506 1981 18.6167 1991 28.4627 2001 37.8018 2011 43.1496

1962 3.6815 1972 9.2756 1982 19.6228 1992 32.9171 2002 39.485 2012 42.7426

1963 4.2457 1973 9.2865 1983 20.9121 1993 34.7782 2003 43.2034 2013 44.3056

1964 4.2201 1974 10.6673 1984 22.2248 1994 31.079 2004 41.5683 2014 45.4907

1965 4.8025 1975 11.008 1985 22.8814 1995 31.2664 2005 43.7313 2015 42.3909

1966 5.1616 1976 12.4904 1986 25.5259 1996 28.9096 2006 41.9137 2016 43.3875

1967 6.0521 1977 14.2039 1987 28.0856 1997 30.4975 2007 43.5724 2017 42.5521

1968 6.198 1978 15.7141 1988 29.2848 1998 38.924 2008 42.7907 2018 42.5057

1969 7.7515 1979 15.8376 1989 30.1412 1999 42.55 2009 41.5798 2019 41.5364
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 Hungary

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 45.3283 1970 69.9346 1980 86.709 1990 73.4649 2000 58.6083 2010 52.1237

1961 48.9299 1971 69.2094 1981 86.4616 1991 69.7845 2001 60.2388 2011 50.3221

1962 50.5122 1972 69.3544 1982 86.7135 1992 62.4159 2002 59.197 2012 46.7767

1963 56.2278 1973 72.9817 1983 88.9748 1993 63.6328 2003 61.9815 2013 43.7048

1964 62.3412 1974 74.0102 1984 90.6861 1994 61.9735 2004 60.4899 2014 43.8627

1965 61.2341 1975 75.2883 1985 85.947 1995 61.6908 2005 60.6065 2015 46.6276

1966 61.6729 1976 79.8971 1986 83.2408 1996 63.2575 2006 59.9154 2016 47.3957

1967 58.7708 1977 83.075 1987 84.1365 1997 61.8131 2007 58.6886 2017 49.6848

1968 61.0932 1978 88.0461 1988 78.0548 1998 61.415 2008 57.5308 2018 49.6285

1969 62.3582 1979 86.0818 1989 75.9172 1999 61.9116 2009 51.775 2019 49.101

 Iceland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.2125 1970 1.3883 1980 1.8609 1990 2.2478 2000 2.9465 2010 3.6601

1961 1.0916 1971 1.4721 1981 1.747 1991 2.1284 2001 2.8752 2011 3.5106

1962 1.1977 1972 1.4826 1982 1.5927 1992 2.2743 2002 3.0005 2012 3.5029

1963 1.304 1973 1.7497 1983 1.5414 1993 2.4322 2003 2.9946 2013 3.4928

1964 1.3076 1974 1.738 1984 1.8085 1994 2.3733 2004 3.1169 2014 3.4697

1965 1.3955 1975 1.6129 1985 1.6213 1995 2.4767 2005 2.986 2015 3.5453

1966 1.4944 1976 1.7007 1986 1.7789 1996 2.532 2006 3.1644 2016 3.4975

1967 1.4431 1977 1.9019 1987 1.8434 1997 2.6275 2007 3.5121 2017 3.6149

1968 1.5934 1978 1.9201 1988 1.8394 1998 2.6479 2008 3.8249 2018 3.6745

1969 1.2637 1979 1.9822 1989 1.8948 1999 2.854 2009 3.7402 2019 3.3217

 India

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 111.5 1970 182.0 1980 292.1 1990 578.7 2000 978.4 2010 1678.5

1961 120.6 1971 192.2 1981 315.4 1991 616.1 2001 992.5 2011 1766.1

1962 132.8 1972 203.3 1982 325.8 1992 656.2 2002 1022.8 2012 1941.3

1963 142.7 1973 209.4 1983 352.6 1993 678.1 2003 1059.4 2013 2033.4

1964 139.7 1974 216.1 1984 362.0 1994 717.1 2004 1125.3 2014 2184.4

1965 153.9 1975 234.5 1985 398.1 1995 762.3 2005 1185.8 2015 2253.4

1966 159.6 1976 245.1 1986 426.8 1996 826.1 2006 1259.5 2016 2392.4

1967 159.8 1977 259.3 1987 455.9 1997 859.9 2007 1357.9 2017 2456.8

1968 174.3 1978 263.5 1988 492.3 1998 877.9 2008 1462.6 2018 2591.3

1969 177.6 1979 276.6 1989 541.3 1999 951.7 2009 1612.5 2019 2616.4

3 Climate Change Effect on the Urbanization: Intensified Rainfall and Flood…
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 Indonesia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 21.3852 1970 35.7914 1980 94.873 1990 150.2859 2000 265.8034 2010 428.1743

1961 26.0016 1971 38.9553 1981 100.2972 1991 180.6221 2001 297.5303 2011 508.0733

1962 22.9749 1972 43.3063 1982 105.5842 1992 203.5774 2002 307.3615 2012 526.3831

1963 22.7631 1973 49.0981 1983 105.1841 1993 219.7623 2003 316.6547 2013 411.191

1964 22.3743 1974 51.2265 1984 112.4605 1994 222.8542 2004 339.8479 2014 416.8232

1965 24.6682 1975 53.9325 1985 121.5977 1995 226.5452 2005 343.3365 2015 507.012

1966 23.375 1976 61.7883 1986 122.1665 1996 255.0688 2006 346.4433 2016 568.1939

1967 24.54 1977 82.4164 1987 123.8789 1997 280.7363 2007 376.8653 2017 531.012

1968 27.5626 1978 93.9382 1988 132.7217 1998 215.97 2008 417.5618 2018 576.5844

1969 33.3622 1979 95.1371 1989 131.6742 1999 243.9519 2009 447.0988 2019 617.5126

 Iran

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 37.3586 1970 91.7875 1980 120.5645 1990 209.2383 2000 369.2635 2010 564.0345

1961 36.5088 1971 101.6278 1981 112.5286 1991 225.9542 2001 394.9314 2011 579.04

1962 37.4284 1972 106.0152 1982 137.515 1992 226.957 2002 397.7983 2012 600.684

1963 41.3049 1973 129.4753 1983 149.2134 1993 235.5766 2003 413.9935 2013 608.7101

1964 47.5191 1974 143.7754 1984 149.9427 1994 263.5204 2004 442.0897 2014 641.9164

1965 53.7184 1975 139.214 1985 159.9471 1995 271.1475 2005 463.5299 2015 640.8112

1966 64.1034 1976 156.4591 1986 147.536 1996 274.0078 2006 503.7906 2016 648.0607

1967 67.8809 1977 163.7319 1987 158.6074 1997 267.0993 2007 513.3138 2017 724.5785

1968 82.3296 1978 162.1039 1988 175.1078 1998 306.0063 2008 534.9101 2018 755.4022

1969 83.0387 1979 163.6733 1989 190.098 1999 379.627 2009 546.885 2019 779.5265

 Iraq

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.2562 1970 23.8838 1980 45.3582 1990 49.0568 2000 71.7154 2010 110.985

1961 8.7092 1971 28.8319 1981 31.9015 1991 45.1853 2001 84.5559 2011 135.274

1962 9.0208 1972 29.5205 1982 30.3744 1992 58.8893 2002 86.3209 2012 152.814

1963 9.3834 1973 30.6127 1983 38.4651 1993 63.1298 2003 90.7866 2013 163.676

1964 9.064 1974 30.9095 1984 39.771 1994 71.0892 2004 113.635 2014 165.150

1965 19.2931 1975 33.1203 1985 44.1964 1995 74.0842 2005 112.980 2015 165.646

1966 27.6761 1976 48.7355 1986 47.2296 1996 69.2844 2006 98.1811 2016 194.361

1967 18.373 1977 43.6295 1987 52.1838 1997 68.0788 2007 61.4918 2017 208.713

1968 19.6957 1978 42.1931 1988 67.1274 1998 72.1015 2008 92.167 2018 211.270

1969 22.6013 1979 52.8231 1989 72.2418 1999 71.6813 2009 103.489 2019 221.383
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 Ireland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.1685 1970 19.3937 1980 26.2708 1990 32.9443 2000 45.249 2010 41.7479

1961 12.3526 1971 22.4761 1981 26.0607 1991 33.674 2001 47.6074 2011 38.0522

1962 13.1067 1972 22.0363 1982 25.5656 1992 33.4949 2002 46.082 2012 38.2096

1963 13.4473 1973 22.8462 1983 25.728 1993 33.7162 2003 45.684 2013 37.2353

1964 14.2161 1974 23.293 1984 25.5487 1994 34.8382 2004 46.1669 2014 36.7853

1965 13.7174 1975 22.0474 1985 26.749 1995 35.8527 2005 48.1555 2015 38.5453

1966 15.0949 1976 22.293 1986 28.5495 1996 37.4691 2006 47.6039 2016 40.0298

1967 16.3948 1977 23.5683 1987 30.2254 1997 38.8052 2007 47.6651 2017 38.9102

1968 17.8016 1978 23.5791 1988 29.8825 1998 40.7088 2008 47.3662 2018 38.8034

1969 18.4944 1979 27.402 1989 30.0599 1999 42.4401 2009 42.1795 2019 37.1177

 Israel

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 6.46 1970 16.5594 1980 20.9845 1990 35.8231 2000 59.5194 2010 68.2869

1961 7.0608 1971 16.2189 1981 21.0175 1991 36.1486 2001 63.0224 2011 68.5947

1962 7.9324 1972 16.8909 1982 23.8547 1992 42.083 2002 59.2997 2012 74.7846

1963 8.1996 1973 19.2611 1983 23.7089 1993 44.2342 2003 62.4147 2013 64.9747

1964 9.1373 1974 19.3689 1984 23.4983 1994 47.4745 2004 58.6792 2014 62.2791

1965 12.9288 1975 19.5404 1985 24.6128 1995 49.8652 2005 56.5241 2015 64.9498

1966 13.5814 1976 19.4967 1986 26.3481 1996 51.9358 2006 62.149 2016 63.9072

1967 13.5279 1977 19.7658 1987 27.0687 1997 54.8639 2007 62.7999 2017 62.4673

1968 13.7942 1978 21.0316 1988 29.7024 1998 56.0093 2008 67.9802 2018 62.2126

1969 14.8009 1979 20.8643 1989 31.394 1999 54.7545 2009 63.8609 2019 64.1721

 Italy

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 109.203 1970 296.365 1980 386.433 1990 438.009 2000 468.442 2010 433.688

1961 124.375 1971 311.049 1981 375.301 1991 437.539 2001 468.643 2011 422.040

1962 146.255 1972 328.238 1982 366.880 1992 437.830 2002 476.251 2012 401.555

1963 164.556 1973 353.349 1983 358.410 1993 430.180 2003 494.183 2013 367.569

1964 175.721 1974 358.253 1984 364.602 1994 424.582 2004 499.619 2014 347.861

1965 189.528 1975 341.053 1985 368.983 1995 448.333 2005 500.006 2015 360.088

1966 213.982 1976 365.796 1986 363.188 1996 442.277 2006 495.124 2016 356.556

1967 234.130 1977 354.418 1987 380.099 1997 448.045 2007 487.693 2017 351.474

1968 249.172 1978 371.274 1988 385.963 1998 460.049 2008 476.230 2018 348.085

1969 269.661 1979 385.256 1989 404.743 1999 464.549 2009 422.624 2019 337.086
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 Jamaica

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.4684 1970 4.9886 1980 8.4454 1990 7.5271 2000 10.314 2010 7.6773

1961 2.1279 1971 5.7472 1981 7.4086 1991 7.7506 2001 10.5764 2011 8.2556

1962 2.117 1972 6.2824 1982 6.2142 1992 7.7108 2002 10.2026 2012 7.9128

1963 2.3955 1973 8.2904 1983 6.4451 1993 8.0003 2003 10.6671 2013 8.4922

1964 4.0622 1974 7.5944 1984 5.1408 1994 8.191 2004 10.5742 2014 7.6791

1965 2.9886 1975 8.1808 1985 5.0419 1995 9.1734 2005 10.4165 2015 7.9366

1966 3.516 1976 7.276 1986 4.5474 1996 9.6876 2006 11.5772 2016 8.1414

1967 3.8642 1977 7.441 1987 5.3793 1997 10.0682 2007 10.7492 2017 7.7975

1968 3.8785 1978 9.112 1988 4.5258 1998 9.694 2008 10.7796 2018 8.0097

1969 4.2669 1979 8.5296 1989 6.7245 1999 9.9582 2009 7.9338 2019 8.0142

 Japan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 232.4996 1970 767.9631 1980 944.8703 1990 1158.391 2000 1264.844 2010 1214.069

1961 282.7869 1971 796.5444 1981 926.8374 1991 1170.066 2001 1250.211 2011 1264.155

1962 292.8644 1972 852.1705 1982 897.4097 1992 1179.74 2002 1279.453 2012 1305.433

1963 324.8355 1973 914.2657 1983 880.9115 1993 1172.647 2003 1287.642 2013 1314.703

1964 358.8911 1974 914.3068 1984 937.0721 1994 1227.567 2004 1282.872 2014 1263.05

1965 386.4712 1975 868.5114 1985 912.403 1995 1239.928 2005 1290.056 2015 1222.781

1966 419.2451 1976 907.1454 1986 912.2622 1996 1251.868 2006 1266.829 2016 1203.167

1967 489.3074 1977 933.2387 1987 902.5328 1997 1245.112 2007 1302.524 2017 1187.662

1968 561.9126 1978 901.5914 1988 985.4671 1998 1205.416 2008 1231.91 2018 1135.688

1969 653.2154 1979 953.0729 1989 1021.685 1999 1242.015 2009 1162.648 2019 1106.664

 Jordan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.74314 1970 1.5557 1980 4.6958 1990 10.4779 2000 15.2 2010 20.6143

1961 0.9774 1971 1.6544 1981 5.8252 1991 9.903 2001 15.6105 2011 21.2438

1962 1.047 1972 1.9136 1982 6.2557 1992 11.9831 2002 16.4207 2012 23.8131

1963 1.219 1973 2.1996 1983 7.2999 1993 11.7741 2003 16.982 2013 23.8126

1964 1.2408 1974 2.2253 1984 8.2469 1994 13.2495 2004 18.6695 2014 25.8939

1965 1.4204 1975 2.4892 1985 8.4215 1995 13.2077 2005 20.4361 2015 25.27

1966 1.5813 1976 2.9446 1986 9.1651 1996 13.8264 2006 20.5274 2016 23.9943

1967 1.413 1977 3.1539 1987 9.506 1997 14.0736 2007 21.437 2017 25.4672

1968 1.504 1978 3.6273 1988 9.177 1998 14.2519 2008 20.7179 2018 24.9238

1969 1.7568 1979 3.7769 1989 9.0798 1999 14.2654 2009 21.3363 2019 26.0716
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 Kazakhstan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 91.874 1970 149.6398 1980 220.1724 1990 281.214 2000 148.7562 2010 250.897

1961 94.7491 1971 158.7323 1981 215.791 1991 271.741 2001 142.9239 2011 240.6512

1962 99.4464 1972 166.9406 1982 219.7972 1992 246.7414 2002 160.8042 2012 246.7504

1963 106.6505 1973 173.9172 1983 222.7578 1993 219.39 2003 178.7746 2013 254.5474

1964 113.4238 1974 180.4566 1984 224.5884 1994 185.8353 2004 188.4759 2014 278.7756

1965 120.3236 1975 189.5953 1985 242.2487 1995 178.2075 2005 202.3262 2015 288.5781

1966 127.0707 1976 196.7938 1986 242.7351 1996 163.5438 2006 221.6493 2016 288.4214

1967 132.8732 1977 203.3784 1987 241.5543 1997 155.5722 2007 227.9611 2017 307.9265

1968 136.6081 1978 210.2611 1988 247.8811 1998 150.5412 2008 229.0963 2018 319.6474

1969 142.2691 1979 211.9163 1989 242.1091 1999 124.9524 2009 224.1456 2019 313.7978

 Kenya

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.4241 1970 3.0782 1980 6.1515 1990 5.6861 2000 10.3016 2010 11.746

1961 2.3986 1971 3.6791 1981 6.4731 1991 4.7104 2001 9.2357 2011 12.9281

1962 2.622 1972 3.8659 1982 4.6338 1992 5.4021 2002 7.8196 2012 11.9868

1963 2.8529 1973 3.9136 1983 4.5947 1993 6.2152 2003 6.5856 2013 12.7704

1964 2.8233 1974 4.943 1984 4.2531 1994 6.4204 2004 7.438 2014 13.7732

1965 2.4639 1975 4.9684 1985 3.716 1995 7.4055 2005 8.3386 2015 16.3006

1966 2.6801 1976 4.5962 1986 4.073 1996 9.155 2006 9.3366 2016 17.1518

1967 2.6984 1977 5.0352 1987 5.0759 1997 8.1198 2007 9.5404 2017 16.5325

1968 2.8154 1978 5.2968 1988 4.69 1998 9.896 2008 9.9117 2018 17.1367

1969 3.1265 1979 5.0119 1989 5.0885 1999 10.0293 2009 11.9677 2019 17.3153

 Kiribati

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.02198 1980 0.02931 1990 0.02198 2000 0.03298 2010 0.05862

1961 0.00733 1971 0.02931 1981 0.02931 1991 0.02198 2001 0.02931 2011 0.05496

1962 0.01099 1972 0.02565 1982 0.02565 1992 0.02565 2002 0.04030 2012 0.05130

1963 0.01832 1973 0.03664 1983 0.02198 1993 0.02931 2003 0.04397 2013 0.05130

1964 0.01832 1974 0.03298 1984 0.02198 1994 0.02931 2004 0.04763 2014 0.05862

1965 0.01099 1975 0.03298 1985 0.02198 1995 0.02931 2005 0.05862 2015 0.06229

1966 0.01099 1976 0.03298 1986 0.01832 1996 0.02931 2006 0.06595 2016 0.06595

1967 0.02198 1977 0.02198 1987 0.02198 1997 0.02931 2007 0.05862 2017 0.06595

1968 0.03298 1978 0.02198 1988 0.02198 1998 0.02931 2008 0.06595 2018 0.06888

1969 0.01099 1979 0.02565 1989 0.02198 1999 0.02931 2009 0.05496 2019 0.07338
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 Kosovo

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 2010 8.3722

1961 1971 1981 1991 2001 2011 8.31

1962 1972 1982 1992 2002 2012 7.8739

1963 1973 1983 1993 2003 2013 8.0058

1964 1974 1984 1994 2004 2014 7.1265

1965 1975 1985 1995 2005 2015 8.3393

1966 1976 1986 1996 2006 2016 8.8596

1967 1977 1987 1997 2007 2017 8.0938

1968 1978 1988 1998 2008 7.3866 2018 8.1919

1969 1979 1989 1999 2009 8.1304 2019 9.7414

 Kuwait

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 7.797 1970 25.0215 1980 24.6162 1990 37.8058 2000 53.3841 2010 89.2722

1961 9.9734 1971 27.1173 1981 25.1396 1991 14.9154 2001 57.4847 2011 86.2626

1962 14.2786 1972 27.6119 1982 21.0903 1992 29.6469 2002 57.9799 2012 100.073

1963 17.012 1973 24.2227 1983 21.5412 1993 49.1294 2003 59.6229 2013 93.5828

1964 25.3146 1974 19.312 1984 28.2852 1994 55.2258 2004 63.1079 2014 91.0333

1965 35.3906 1975 16.8129 1985 29.0702 1995 54.589 2005 71.1664 2015 96.2649

1966 35.1231 1976 18.4562 1986 35.2303 1996 49.9136 2006 73.3891 2016 101.5743

1967 25.4208 1977 17.2014 1987 31.3779 1997 54.6706 2007 74.8748 2017 104.784

1968 22.4237 1978 20.9716 1988 32.8251 1998 51.5606 2008 82.2983 2018 104.2176

1969 26.8095 1979 17.6277 1989 35.7716 1999 53.8222 2009 86.9549 2019 107.532

 Kyrgyzstan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.4661 1970 13.7919 1980 20.397 1990 21.1073 2000 4.6025 2010 6.3129

1961 8.7314 1971 14.6383 1981 20.01 1991 18.4945 2001 3.8623 2011 7.5535

1962 9.1647 1972 15.4042 1982 20.3858 1992 11.0821 2002 4.9193 2012 9.9998

1963 9.8287 1973 16.0581 1983 20.6757 1993 8.5016 2003 5.3816 2013 9.6585

1964 10.453 1974 16.6732 1984 20.8592 1994 6.1458 2004 5.8068 2014 10.0946

1965 11.0892 1975 17.5295 1985 22.4932 1995 4.511 2005 5.5136 2015 10.2775

1966 11.7114 1976 18.2032 1986 22.5518 1996 5.6642 2006 5.419 2016 9.6403

1967 12.2464 1977 18.8215 1987 22.4591 1997 5.573 2007 6.5183 2017 9.2629

1968 12.5908 1978 19.4664 1988 23.0581 1998 5.9131 2008 7.5483 2018 10.1689

1969 13.1125 1979 19.626 1989 22.5428 1999 4.6468 2009 6.7374 2019 11.4826
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 Laos

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.08061 1970 0.57158 1980 0.18686 1990 0.51296 2000 0.95818 2010 3.00030

1961 0.11358 1971 0.42136 1981 0.15022 1991 0.54594 2001 1.06060 2011 3.16700

1962 0.13190 1972 0.48731 1982 0.15755 1992 0.59289 2002 1.16320 2012 3.39790

1963 0.14656 1973 0.51662 1983 0.17954 1993 0.60755 2003 1.21700 2013 4.00660

1964 0.17221 1974 0.29312 1984 0.18320 1994 0.63319 2004 1.27880 2014 4.32930

1965 0.17954 1975 0.25282 1985 0.20518 1995 0.66983 2005 1.33700 2015 8.80580

1966 0.23450 1976 0.22350 1986 0.20885 1996 0.75090 2006 1.75250 2016 14.26140

1967 0.31877 1977 0.23083 1987 0.21251 1997 0.79115 2007 1.83090 2017 17.91440

1968 0.16854 1978 0.23083 1988 0.21251 1998 0.82042 2008 2.12650 2018 32.26250

1969 0.31877 1979 0.22350 1989 0.23083 1999 0.84605 2009 2.66430 2019 32.81480

 Latvia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 6.7342 1970 10.9672 1980 16.2685 1990 19.5041 2000 7.0647 2010 8.5489

1961 6.9447 1971 11.6437 1981 15.9656 1991 17.7831 2001 7.4744 2011 7.8054

1962 7.2888 1972 12.2564 1982 16.2695 1992 14.0798 2002 7.5026 2012 7.5152

1963 7.8169 1973 12.7799 1983 16.5076 1993 11.8186 2003 7.7226 2013 7.382

1964 8.3133 1974 13.2727 1984 16.6607 1994 10.2968 2004 7.7278 2014 7.1826

1965 8.8188 1975 13.9581 1985 17.9696 1995 9.0903 2005 7.8067 2015 7.2727

1966 9.3131 1976 14.5001 1986 18.025 1996 9.1703 2006 8.3057 2016 7.2208

1967 9.7383 1977 14.9981 1987 17.9616 1997 8.646 2007 8.632 2017 7.2228

1968 10.012 1978 15.5166 1988 18.4471 1998 8.2807 2008 8.1928 2018 7.8593

1969 10.4269 1979 15.6484 1989 18.0438 1999 7.696 2009 7.4519 2019 8.2623

 Lebanon

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.576 1970 3.9407 1980 5.8898 1990 7.8679 2000 15.4663 2010 19.9972

1961 2.6785 1971 5.3006 1981 5.8443 1991 8.1149 2001 16.4063 2011 20.2641

1962 2.8508 1972 5.6534 1982 5.7195 1992 9.727 2002 16.2445 2012 22.3316

1963 3.0228 1973 7.0667 1983 6.9422 1993 10.355 2003 18.5276 2013 22.1634

1964 3.2611 1974 7.0879 1984 6.7132 1994 11.1108 2004 17.2081 2014 23.7808

1965 3.312 1975 6.2651 1985 7.765 1995 12.2546 2005 16.6541 2015 25.7698

1966 3.6229 1976 5.924 1986 7.4785 1996 12.7527 2006 14.7924 2016 26.5024

1967 3.5646 1977 5.3855 1987 7.6704 1997 15.0994 2007 13.7499 2017 27.9353

1968 3.6933 1978 5.4959 1988 7.3457 1998 16.2862 2008 17.4191 2018 27.5654

1969 4.3441 1979 5.7852 1989 7.7208 1999 16.4289 2009 20.9579 2019 28.2021
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 Lesotho

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 1.4729 2000 1.8503 2010 2.2753

1961 1971 1981 1991 1.5279 2001 1.876 2011 2.3266

1962 1972 1982 1992 1.5865 2002 1.9053 2012 2.3963

1963 1973 1983 1993 1.6341 2003 1.9309 2013 2.4219

1964 1974 1984 1994 1.6744 2004 1.9822 2014 2.4292

1965 1975 1985 1995 1.7074 2005 2.0115 2015 2.3266

1966 1976 1986 1996 1.7367 2006 2.0372 2016 2.3596

1967 1977 1987 1997 1.7697 2007 2.0738 2017 2.5282

1968 1978 1988 1998 1.8027 2008 2.1251 2018 2.4256

1969 1979 1989 1999 1.8247 2009 2.2167 2019 2.2232

 Liberia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.16488 1970 1.4506 1980 2.0376 1990 0.46814 2000 0.42177 2010 0.76115

1961 0.16122 1971 1.5239 1981 1.9349 1991 0.37006 2001 0.44801 2011 0.85167

1962 0.25282 1972 1.5055 1982 0.59741 1992 0.38773 2002 0.43468 2012 0.96379

1963 0.35541 1973 1.4799 1983 0.70652 1993 0.42436 2003 0.46681 2013 0.87683

1964 0.48365 1974 1.7217 1984 0.69543 1994 0.42136 2004 0.54511 2014 1.1912

1965 0.55693 1975 1.4836 1985 0.71608 1995 0.42436 2005 0.65551 2015 1.205

1966 0.61189 1976 1.4756 1986 0.72288 1996 0.43467 2006 0.6725 2016 1.3581

1967 0.61189 1977 1.4714 1987 0.75846 1997 0.45366 2007 0.6277 2017 1.2152

1968 0.88282 1978 1.5032 1988 0.80918 1998 0.48297 2008 0.53507 2018 1.2745

1969 1.2711 1979 1.9419 1989 0.65959 1999 0.39067 2009 0.47532 2019 1.3217

 Libya

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.6925 1970 32.3051 1980 26.7806 1990 36.513 2000 46.793 2010 61.1217

1961 1.1945 1971 21.6283 1981 28.668 1991 42.6192 2001 47.7738 2011 39.2646

1962 1.0479 1972 15.22 1982 30.5651 1992 37.025 2002 47.4722 2012 52.4087

1963 1.4619 1973 14.5751 1983 30.146 1993 38.709 2003 48.781 2013 55.3391

1964 0.66318 1974 9.3376 1984 28.2762 1994 43.753 2004 49.9558 2014 58.3613

1965 1.0149 1975 11.5684 1985 31.0022 1995 45.6911 2005 51.6963 2015 50.8444

1966 2.6271 1976 17.8879 1986 33.8955 1996 43.7968 2006 52.6663 2016 42.8392

1967 18.4922 1977 20.0517 1987 32.3483 1997 44.7065 2007 49.3397 2017 43.7294

1968 30.1144 1978 21.1554 1988 36.1604 1998 45.1589 2008 55.3415 2018 45.206

1969 35.5222 1979 25.9264 1989 37.0685 1999 44.3033 2009 57.1956 2019 46.4278
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 Liechtenstein

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.19897 2000 0.21685 2010 0.19081

1961 1971 1981 1991 0.20633 2001 0.21466 2011 0.17678

1962 1972 1982 1992 0.20695 2002 0.22001 2012 0.18531

1963 1973 1983 1993 0.21503 2003 0.22935 2013 0.19254

1964 1974 1984 1994 0.20111 2004 0.22938 2014 0.16124

1965 1975 1985 1995 0.2042 2005 0.22897 2015 0.15971

1966 1976 1986 1996 0.20596 2006 0.2311 2016 0.14988

1967 1977 1987 1997 0.21837 2007 0.20077 2017 0.15628

1968 1978 1988 1998 0.22923 2008 0.21951 2018 0.14375

1969 1979 1989 1999 0.22656 2009 0.20535 2019 0.1458

 Lithuania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 12.5815 1970 20.4915 1980 30.6223 1990 35.7718 2000 11.8739 2010 13.9267

1961 12.976 1971 21.7744 1981 30.0765 1991 37.8516 2001 12.6214 2011 14.2711

1962 13.6197 1972 22.9396 1982 30.6587 1992 21.2006 2002 12.69 2012 14.3308

1963 14.6055 1973 23.9401 1983 31.1376 1993 16.348 2003 12.6799 2013 13.3403

1964 15.5326 1974 24.8847 1984 31.455 1994 15.7883 2004 13.2723 2014 13.0875

1965 16.4783 1975 26.1931 1985 33.9365 1995 15.0845 2005 14.0911 2015 13.2971

1966 17.4031 1976 27.2308 1986 34.0844 1996 15.7576 2006 14.408 2016 13.3275

1967 18.1972 1977 28.1871 1987 34.0198 1997 15.1822 2007 15.7978 2017 13.5458

1968 18.7079 1978 29.1725 1988 34.9605 1998 16.0397 2008 15.1792 2018 13.6695

1969 19.482 1979 29.4354 1989 34.2341 1999 13.477 2009 13.0228 2019 13.4834

 Luxembourg

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.5078 1970 13.7354 1980 11.0821 1990 11.8476 2000 8.7316 2010 11.2193

1961 11.581 1971 13.1947 1981 9.496 1991 12.4658 2001 9.2264 2011 11.1146

1962 11.5407 1972 13.4948 1982 8.9351 1992 12.2322 2002 10.003 2012 10.8514

1963 11.4382 1973 14.1782 1983 8.3762 1993 12.3728 2003 10.476 2013 10.3039

1964 12.2956 1974 14.4279 1984 9.0167 1994 11.5639 2004 11.8443 2014 9.8252

1965 12.1929 1975 11.8685 1985 9.2485 1995 9.1703 2005 12.1054 2015 9.3332

1966 11.6104 1976 11.8666 1986 9.1276 1996 9.2199 2006 11.9363 2016 9.0803

1967 11.3503 1977 10.9594 1987 8.8351 1997 8.5731 2007 11.3336 2017 9.2504

1968 12.259 1978 11.8874 1988 9.1267 1998 7.6951 2008 11.1952 2018 9.5685

1969 13.1822 1979 12.1698 1989 9.8758 1999 8.148 2009 10.6478 2019 9.7849
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 Macao

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.051296 1970 0.20518 1980 0.52762 1990 1.0332 2000 1.6305 2010 1.2348

1961 0.069616 1971 0.22717 1981 0.53494 1991 1.0919 2001 1.6854 2011 1.4557

1962 0.095264 1972 0.23083 1982 0.48365 1992 1.0809 2002 1.5169 2012 1.2912

1963 0.10626 1973 0.2235 1983 0.6815 1993 1.1798 2003 1.5316 2013 1.204

1964 0.12824 1974 0.26747 1984 0.60456 1994 1.2714 2004 1.7148 2014 1.5069

1965 0.1319 1975 0.29678 1985 0.7328 1995 1.2311 2005 1.8283 2015 2.0291

1966 0.15022 1976 0.25282 1986 0.8757 1996 1.407 2006 1.6195 2016 1.9998

1967 0.16488 1977 0.30778 1987 0.97096 1997 1.4876 2007 1.363 2017 2.15

1968 0.16854 1978 0.41403 1988 0.96363 1998 1.5572 2008 1.1322 2018 2.2165

1969 0.16854 1979 0.41403 1989 1.0296 1999 1.5169 2009 1.8906 2019 2.0647

 Madagascar

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.39938 1970 0.97066 1980 1.6139 1990 0.92916 2000 1.8675 2010 1.9383

1961 0.35541 1971 1.0256 1981 1.0245 1991 1.0097 2001 1.7355 2011 2.3769

1962 0.39565 1972 1.2858 1982 1.0133 1992 0.98038 2002 1.2319 2012 2.7399

1963 0.46149 1973 1.0733 1983 0.65039 1993 1.006 2003 1.6805 2013 3.1445

1964 0.48347 1974 1.1869 1984 0.86637 1994 1.2461 2004 1.7894 2014 3.1022

1965 0.55678 1975 1.6925 1985 1.053 1995 1.2864 2005 1.7254 2015 3.5199

1966 0.5787 1976 0.99223 1986 1.1371 1996 1.3406 2006 1.6662 2016 3.3586

1967 0.84248 1977 0.8456 1987 1.2824 1997 1.6234 2007 1.7834 2017 3.8863

1968 0.91207 1978 1.0172 1988 1.2858 1998 1.7107 2008 1.8686 2018 4.1878

1969 0.84975 1979 1.1302 1989 0.9258 1999 1.8169 2009 1.7539 2019 4.0148

 Malawi

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.43835 1970 0.45407 1980 0.708 1990 0.73902 2000 0.86484 2010 1.0264

1961 0.37332 1971 0.5017 1981 0.60154 1991 0.78472 2001 0.79213 2011 1.1399

1962 0.36061 1972 0.54564 1982 0.59135 1992 0.78527 2002 0.84665 2012 1.1334

1963 0.34671 1973 0.57123 1983 0.57167 1993 0.87914 2003 0.90368 2013 1.1623

1964 0.32964 1974 0.54924 1984 0.55294 1994 0.9047 2004 0.91151 2014 1.0214

1965 0.34796 1975 0.5785 1985 0.55343 1995 0.90696 2005 0.90607 2015 1.1195

1966 0.42851 1976 0.58173 1986 0.54845 1996 0.90426 2006 0.91779 2016 1.263

1967 0.36622 1977 0.63608 1987 0.54071 1997 0.94737 2007 0.96885 2017 1.4021

1968 0.38815 1978 0.66836 1988 0.5372 1998 0.92206 2008 1.0871 2018 1.4703

1969 0.38076 1979 0.63484 1989 0.55821 1999 0.92081 2009 1.0945 2019 1.4663
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 Malaysia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 4.2015 1970 14.5859 1980 28.0324 1990 55.2772 2000 126.5143 2010 216.5373

1961 4.6849 1971 16.6626 1981 30.8774 1991 66.7304 2001 134.9481 2011 217.4275

1962 4.7765 1972 17.9006 1982 30.6416 1992 72.961 2002 136.3381 2012 215.8124

1963 5.828 1973 17.5051 1983 38.048 1993 86.7186 2003 157.2664 2013 234.4188

1964 7.3994 1974 19.0446 1984 34.7941 1994 90.2243 2004 171.6946 2014 241.1278

1965 8.3802 1975 19.4451 1985 36.3294 1995 113.9337 2005 181.7549 2015 233.2682

1966 9.8344 1976 23.8976 1986 40.1014 1996 112.8995 2006 178.9297 2016 246.7224

1967 10.1276 1977 22.6207 1987 40.8772 1997 120.817 2007 182.832 2017 248.8695

1968 10.5302 1978 23.2603 1988 42.8687 1998 114.2375 2008 202.4981 2018 249.1445

1969 9.1378 1979 27.3058 1989 50.0832 1999 108.2914 2009 196.9484 2019 250.0947

 Maldives

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 0.043968 1990 0.17221 2000 0.45067 2010 0.93432

1961 1971 0.003664 1981 0.047632 1991 0.15389 2001 0.46166 2011 0.98562

1962 1972 0.003664 1982 0.047632 1992 0.23083 2002 0.59357 2012 1.1102

1963 1973 0.003664 1983 0.051296 1993 0.19786 2003 0.50563 2013 1.0919

1964 1974 0.003664 1984 0.058624 1994 0.19786 2004 0.66685 2014 1.3154

1965 1975 0.007328 1985 0.065952 1995 0.24915 2005 0.6009 2015 1.3007

1966 1976 0.010992 1986 0.080608 1996 0.28946 2006 0.75845 2016 1.4436

1967 1977 0.014656 1987 0.080608 1997 0.32976 2007 0.78043 2017 1.4986

1968 1978 0.021984 1988 0.095264 1998 0.30045 2008 0.84272 2018 1.5651

1969 1979 0.029312 1989 0.12458 1999 0.42136 2009 0.88302 2019 1.6674

 Mali

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.12091 1970 0.20152 1980 0.39134 1990 0.42309 2000 0.83173 2010 1.9749

1961 0.11725 1971 0.22717 1981 0.39488 1991 0.43407 2001 0.83906 2011 2.1581

1962 0.13923 1972 0.24549 1982 0.36513 1992 0.44871 2002 0.85738 2012 2.2973

1963 0.17587 1973 0.26729 1983 0.41662 1993 0.45969 2003 0.85738 2013 2.6486

1964 0.17587 1974 0.30393 1984 0.43482 1994 0.46766 2004 0.89035 2014 2.9055

1965 0.19786 1975 0.34054 1985 0.40538 1995 0.47132 2005 0.916 2015 3.0956

1966 0.19053 1976 0.34026 1986 0.37961 1996 0.49329 2006 1.0809 2016 3.1066

1967 0.2235 1977 0.41347 1987 0.3575 1997 0.52857 2007 1.2971 2017 3.1213

1968 0.19786 1978 0.39495 1988 0.38303 1998 0.76944 2008 1.5572 2018 3.2733

1969 0.16122 1979 0.42791 1989 0.41588 1999 0.80242 2009 1.7844 2019 3.3944
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 Malta

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.34075 1970 0.66318 1980 1.0223 1990 2.4085 2000 2.5455 2010 2.5818

1961 0.29312 1971 0.65952 1981 1.1432 1991 2.2554 2001 2.6652 2011 2.5781

1962 0.32976 1972 0.83906 1982 1.3117 1992 2.3149 2002 2.7075 2012 2.7621

1963 0.41037 1973 0.80608 1983 0.99661 1993 2.8911 2003 2.9793 2013 2.4378

1964 0.4983 1974 0.74379 1984 1.363 1994 2.6697 2004 2.8464 2014 2.4424

1965 0.47266 1975 0.66685 1985 1.1981 1995 2.4603 2005 2.6543 2015 1.7353

1966 0.41403 1976 0.76211 1986 1.4839 1996 2.5784 2006 2.6659 2016 1.3995

1967 0.52029 1977 0.80242 1987 1.854 1997 2.5862 2007 2.7357 2017 1.553

1968 0.63754 1978 0.93432 1988 2.0115 1998 2.5451 2008 2.7471 2018 1.5316

1969 0.65219 1979 0.90501 1989 2.1691 1999 2.6276 2009 2.5326 2019 1.5538

 Marshall Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 0.098928 2010 0.13557

1961 1971 1981 1991 2001 0.10259 2011 0.13923

1962 1972 1982 1992 0.076944 2002 0.10992 2012 0.13557

1963 1973 1983 1993 0.084272 2003 0.10626 2013 0.13923

1964 1974 1984 1994 0.084272 2004 0.11725 2014 0.1429

1965 1975 1985 1995 0.087936 2005 0.11358 2015 0.1429

1966 1976 1986 1996 0.087936 2006 0.12091 2016 0.1429

1967 1977 1987 1997 0.087936 2007 0.12458 2017 0.14656

1968 1978 1988 1998 0.0916 2008 0.12824 2018 0.15307

1969 1979 1989 1999 0.087936 2009 0.1319 2019 0.16307

 Mauritania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.03664 1970 0.42869 1980 0.63021 1990 0.85371 2000 1.1139 2010 1.9602

1961 0.04763 1971 0.39938 1981 0.63371 1991 0.86837 2001 1.1725 2011 2.1105

1962 0.06228 1972 0.44701 1982 0.88302 1992 0.90501 2002 1.2494 2012 2.3303

1963 0.08793 1973 0.46899 1983 0.93798 1993 0.92699 2003 1.2897 2013 2.0445

1964 0.11725 1974 0.48365 1984 0.87203 1994 0.9563 2004 1.385 2014 2.4988

1965 0.16122 1975 0.5093 1985 0.65586 1995 1.0149 2005 1.4363 2015 2.8872

1966 0.17954 1976 0.51662 1986 0.37373 1996 1.0626 2006 1.4216 2016 2.7627

1967 0.19786 1977 0.55693 1987 3.2426 1997 1.0772 2007 1.6378 2017 3.7373

1968 0.2345 1978 0.58258 1988 3.184 1998 1.0699 2008 1.7734 2018 3.9348

1969 0.2748 1979 0.60456 1989 2.803 1999 1.0955 2009 1.9602 2019 4.0922
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 Mauritius

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.17954 1970 0.4983 1980 0.5899 1990 1.4619 2000 2.6894 2010 3.9132

1961 0.18686 1971 0.39571 1981 0.54227 1991 1.5206 2001 2.8616 2011 3.9168

1962 0.25282 1972 0.68883 1982 0.50197 1992 1.7074 2002 2.8836 2012 3.9644

1963 0.20885 1973 0.67784 1983 0.59723 1993 1.7734 2003 3.0594 2013 4.067

1964 0.30778 1974 0.6925 1984 0.62654 1994 1.6232 2004 3.0888 2014 4.2063

1965 0.30411 1975 0.5899 1985 0.70715 1995 1.8283 2005 3.2939 2015 4.2099

1966 0.2748 1976 0.61922 1986 0.79875 1996 1.9492 2006 3.6274 2016 4.3455

1967 0.4983 1977 0.6412 1987 0.93066 1997 1.9969 2007 3.686 2017 4.536

1968 0.63754 1978 0.63021 1988 0.85371 1998 2.1691 2008 3.7666 2018 4.9016

1969 0.57158 1979 0.65952 1989 1.0516 1999 2.4256 2009 3.708 2019 4.6868

 Mexico

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 63.0523 1970 113.9507 1980 267.8175 1990 317.0424 2000 396.0664 2010 463.7825

1961 65.2399 1971 126.1901 1981 283.7971 1991 330.1332 2001 410.6979 2011 484.1648

1962 63.7437 1972 132.2791 1982 304.0101 1992 332.7801 2002 411.9677 2012 496.2996

1963 66.2922 1973 144.0717 1983 277.6665 1993 338.0672 2003 437.7575 2013 490.1297

1964 74.2001 1974 154.7465 1984 276.7657 1994 351.5282 2004 438.8567 2014 481.1288

1965 75.1679 1975 164.1654 1985 287.5112 1995 331.5966 2005 463.9932 2015 481.9746

1966 80.8446 1976 183.7738 1986 293.5555 1996 345.7661 2006 476.5652 2016 484.6289

1967 90.0055 1977 192.4362 1987 306.1944 1997 368.6448 2007 479.7868 2017 461.238

1968 93.8872 1978 222.1673 1988 305.8494 1998 388.3569 2008 492.9797 2018 451.0808

1969 102.1762 1979 240.3207 1989 360.5553 1999 390.5165 2009 475.9031 2019 438.4976

 Micronesia (Federated States of)

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 0.12824 2010 0.10259

1961 1971 1981 1991 2001 0.1429 2011 0.11725

1962 1972 1982 1992 0.10259 2002 0.13557 2012 0.12458

1963 1973 1983 1993 0.10259 2003 0.14656 2013 0.13557

1964 1974 1984 1994 0.10626 2004 0.1429 2014 0.13557

1965 1975 1985 1995 0.11358 2005 0.12091 2015 0.1429

1966 1976 1986 1996 0.11358 2006 0.12091 2016 0.1429

1967 1977 1987 1997 0.12091 2007 0.1319 2017 0.1429

1968 1978 1988 1998 0.12091 2008 0.10992 2018 0.14924

1969 1979 1989 1999 0.12458 2009 0.14656 2019 0.159
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 Moldova

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 10.942 1970 17.8212 1980 26.3434 1990 27.779 2000 3.573 2010 4.8309

1961 11.2844 1971 18.9128 1981 25.8425 1991 22.3727 2001 3.7866 2011 4.945

1962 11.8438 1972 19.9 1982 26.3294 1992 20.9781 2002 4.0517 2012 4.7657

1963 12.7017 1973 20.742 1983 26.7033 1993 15.8458 2003 4.4043 2013 4.8994

1964 13.5084 1974 21.5335 1984 26.9403 1994 12.427 2004 4.6134 2014 4.7478

1965 14.33 1975 22.6364 1985 29.053 1995 11.4054 2005 4.9375 2015 4.7851

1966 15.1335 1976 23.507 1986 29.1281 1996 11.6871 2006 5.0297 2016 4.8963

1967 15.8245 1977 24.3057 1987 29.0074 1997 7.3013 2007 4.9786 2017 5.2916

1968 16.2692 1978 25.1397 1988 29.7816 1998 6.4438 2008 5.1904 2018 5.8778

1969 16.9434 1979 25.3468 1989 29.1156 1999 4.6845 2009 4.5395 2019 5.9578

 Mongolia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.2934 1970 2.8465 1980 6.8552 1990 9.89 2000 7.4868 2010 13.82

1961 1.3923 1971 3.0324 1981 6.6147 1991 12.121 2001 7.8699 2011 21.4265

1962 1.9712 1972 3.2759 1982 6.7123 1992 10.9939 2002 8.2625 2012 35.0309

1963 1.6012 1973 3.4721 1983 6.9691 1993 9.2626 2003 8.0079 2013 43.5588

1964 2.0445 1974 3.7408 1984 6.4247 1994 7.9271 2004 8.5707 2014 29.586

1965 1.9566 1975 4.0546 1985 8.9979 1995 7.8994 2005 8.5737 2015 23.2436

1966 1.9529 1976 4.39 1986 9.5951 1996 8.0233 2006 9.4058 2016 25.3239

1967 2.1251 1977 4.9607 1987 10.4825 1997 7.6884 2007 12.0787 2017 34.1542

1968 2.4802 1978 5.7638 1988 11.4928 1998 7.6875 2008 12.0167 2018 64.5083

1969 2.6818 1979 6.2773 1989 10.459 1999 7.5352 2009 13.074 2019 65.5137

 Montenegro

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.51928 1970 1.0506 1980 1.5939 1990 1.9155 2000 1.5208 2010 2.4219

1961 0.5443 1971 1.1323 1981 1.7346 1991 1.3551 2001 1.6673 2011 2.4072

1962 0.55855 1972 1.0612 1982 1.5936 1992 1.4833 2002 1.7662 2012 2.2131

1963 0.62136 1973 1.2677 1983 1.716 1993 1.2936 2003 1.8892 2013 2.1508

1964 0.70397 1974 1.2733 1984 1.8097 1994 1.2567 2004 2.0413 2014 2.1068

1965 0.72431 1975 1.3286 1985 1.846 1995 1.3273 2005 1.7508 2015 2.2387

1966 0.71773 1976 1.3713 1986 1.9279 1996 1.553 2006 2.0628 2016 2.0152

1967 0.72497 1977 1.3335 1987 1.8823 1997 1.6698 2007 2.0555 2017 2.1031

1968 0.77538 1978 1.4902 1988 1.9422 1998 1.7576 2008 2.6051 2018 2.1231

1969 0.80394 1979 1.6209 1989 1.9363 1999 1.2119 2009 1.6818 2019 2.4614
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 Montserrat

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.014656 1980 0.014656 1990 0.029312 2000 0.025648 2010 0.065952

1961 1971 0.014656 1981 0.01832 1991 0.029312 2001 0.025648 2011 0.040304

1962 0.003664 1972 0.014656 1982 0.01832 1992 0.029312 2002 0.03664 2012 0.043968

1963 0.003664 1973 0.014656 1983 0.021984 1993 0.029312 2003 0.03664 2013 0.051296

1964 0.007328 1974 0.014656 1984 0.021984 1994 0.032976 2004 0.03664 2014 0.047632

1965 0.003664 1975 0.010992 1985 0.025648 1995 0.032976 2005 0.03664 2015 0.058624

1966 0.007328 1976 0.010992 1986 0.029312 1996 0.03664 2006 0.03664 2016 0.029312

1967 0.007328 1977 0.025648 1987 0.029312 1997 0.032976 2007 0.040304 2017 0.029312

1968 0.007328 1978 0.025648 1988 0.029312 1998 0.029312 2008 0.047632 2018 0.030184

1969 0.007328 1979 0.025648 1989 0.029312 1999 0.029312 2009 0.047632 2019 0.029393

 Morocco

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.636 1970 7.282 1980 15.9152 1990 22.5276 2000 33.6099 2010 56.2696

1961 3.7714 1971 8.1903 1981 15.8269 1991 24.0219 2001 37.452 2011 56.7116

1962 3.0749 1972 8.0361 1982 17.0279 1992 25.118 2002 38.1074 2012 59.0277

1963 3.9541 1973 9.6259 1983 17.7637 1993 27.1805 2003 37.5315 2013 58.7347

1964 4.415 1974 11.1195 1984 17.783 1994 28.5428 2004 43.3988 2014 59.6426

1965 4.2544 1975 11.0933 1985 17.8337 1995 29.157 2005 45.5691 2015 61.0279

1966 5.4595 1976 11.5279 1986 18.8482 1996 29.9264 2006 47.4388 2016 61.0315

1967 5.4083 1977 12.6796 1987 20.0825 1997 30.3983 2007 50.2889 2017 63.8308

1968 5.6202 1978 13.0535 1988 21.1392 1998 31.2927 2008 52.916 2018 65.3674

1969 5.8174 1979 15.9312 1989 22.8796 1999 32.3852 2009 52.6482 2019 71.9289

 Mozambique

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.8824 1970 2.9809 1980 3.1985 1990 1.0152 2000 1.3228 2010 2.6339

1961 2.6299 1971 3.611 1981 2.479 1991 1.0151 2001 1.5539 2011 3.1074

1962 1.9852 1972 3.2957 1982 2.5239 1992 1.0013 2002 1.5386 2012 2.9808

1963 1.6591 1973 3.5589 1983 1.9545 1993 1.0752 2003 1.8567 2013 4.057

1964 2.139 1974 3.1455 1984 1.5109 1994 1.0572 2004 1.8645 2014 8.2593

1965 2.0033 1975 2.8824 1985 1.1349 1995 1.1085 2005 1.7707 2015 6.3056

1966 2.1242 1976 2.5554 1986 0.97714 1996 1.0904 2006 1.9148 2016 7.726

1967 1.8713 1977 2.7064 1987 0.97675 1997 1.1705 2007 2.1872 2017 8.1473

1968 2.7762 1978 2.8658 1988 1.0062 1998 1.1124 2008 2.1799 2018 8.3835

1969 3.2378 1979 2.6346 1989 1.0345 1999 1.1672 2009 2.4399 2019 8.7058
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 Myanmar

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.7148 1970 4.6123 1980 5.5088 1990 4.2348 2000 10.0425 2010 13.0838

1961 2.5903 1971 5.0995 1981 5.623 1991 4.1367 2001 8.6802 2011 15.0679

1962 2.8797 1972 4.8943 1982 5.5795 1992 4.8416 2002 9.1538 2012 11.8919

1963 2.6339 1973 4.1066 1983 5.7538 1993 5.3018 2003 9.7802 2013 12.9362

1964 2.8574 1974 4.6709 1984 6.5485 1994 6.1962 2004 12.3712 2014 16.1695

1965 2.7255 1975 4.5829 1985 6.6755 1995 6.9063 2005 11.529 2015 22.0764

1966 2.8061 1976 4.8928 1986 6.7563 1996 7.2036 2006 12.7804 2016 25.4688

1967 3.6158 1977 5.1657 1987 4.9434 1997 7.4445 2007 12.7951 2017 23.6698

1968 2.9268 1978 5.1461 1988 4.0867 1998 8.0371 2008 9.7225 2018 26.0956

1969 3.2126 1979 5.086 1989 4.4253 1999 8.93 2009 10.1555 2019 26.2316

 Namibia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 1.6415 2010 3.0961

1961 1971 1981 1991 1.0552 2001 2.0152 2011 2.7648

1962 1972 1982 1992 1.1505 2002 1.7587 2012 3.3639

1963 1973 1983 1993 1.3887 2003 1.8723 2013 2.6012

1964 1974 1984 1994 1.5719 2004 1.9602 2014 3.7087

1965 1975 1985 1995 1.6195 2005 2.3083 2015 3.8857

1966 1976 1986 1996 1.7221 2006 2.3303 2016 4.1236

1967 1977 1987 1997 1.7697 2007 2.3596 2017 4.0982

1968 1978 1988 1998 1.8173 2008 3.3232 2018 4.1543

1969 1979 1989 1999 1.6635 2009 3.0668 2019 4.168

 Nauru

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.065952 1980 0.12458 1990 0.12458 2000 0.08427 2010 0.04396

1961 1971 0.087936 1981 0.12458 1991 0.12458 2001 0.08060 2011 0.04030

1962 1972 0.076944 1982 0.12458 1992 0.12091 2002 0.07694 2012 0.04396

1963 1973 0.084272 1983 0.12458 1993 0.11358 2003 0.06595 2013 0.04763

1964 0.02931 1974 0.098928 1984 0.12458 1994 0.10992 2004 0.06595 2014 0.05129

1965 0.03297 1975 0.10259 1985 0.12458 1995 0.10626 2005 0.06228 2015 0.05496

1966 0.03297 1976 0.10259 1986 0.16122 1996 0.10259 2006 0.04396 2016 0.04396

1967 0.04763 1977 0.11358 1987 0.15755 1997 0.10259 2007 0.04396 2017 0.04763

1968 0.04763 1978 0.11358 1988 0.15755 1998 0.098928 2008 0.04396 2018 0.04974

1969 0.06595 1979 0.11358 1989 0.15755 1999 0.0916 2009 0.04030 2019 0.05299
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 Nepal

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.080608 1970 0.22717 1980 0.5413 1990 0.76674 2000 3.038 2010 4.8244

1961 0.080608 1971 0.19786 1981 0.45319 1991 1.0725 2001 3.2368 2011 5.2215

1962 0.087936 1972 0.26747 1982 0.44236 1992 1.2902 2002 2.5951 2012 5.4698

1963 0.098928 1973 0.42136 1983 0.49242 1993 1.4698 2003 2.81 2013 6.2188

1964 0.15022 1974 0.42488 1984 0.70142 1994 1.7001 2004 2.5829 2014 7.5924

1965 0.17954 1975 0.35171 1985 0.67602 1995 2.4064 2005 2.9855 2015 6.0141

1966 0.19053 1976 0.28184 1986 0.69701 1996 2.4553 2006 2.4561 2016 8.8411

1967 0.21251 1977 0.3364 1987 0.86068 1997 2.7595 2007 2.5707 2017 10.1235

1968 0.25282 1978 0.32898 1988 0.97597 1998 2.2233 2008 3.3513 2018 13.4104

1969 0.39938 1979 0.51236 1989 0.89356 1999 3.1898 2009 4.1288 2019 13.9135

 Netherlands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 73.4376 1970 141.8033 1980 176.6319 1990 162.3851 2000 171.8874 2010 182.1179

1961 75.8188 1971 140.6662 1981 164.1099 1991 170.7964 2001 176.7985 2011 169.0657

1962 83.2819 1972 157.4954 1982 133.4873 1992 170.6302 2002 176.113 2012 165.827

1963 91.1446 1973 165.2599 1983 137.3575 1993 170.8176 2003 179.565 2013 165.7179

1964 96.7766 1974 159.9852 1984 144.073 1994 171.4014 2004 181.3818 2014 158.768

1965 100.4036 1975 152.5255 1985 146.9802 1995 172.9662 2005 177.459 2015 166.3667

1966 103.5575 1976 169.1309 1986 144.0146 1996 182.1483 2006 172.6865 2016 166.2821

1967 106.6822 1977 163.6058 1987 151.4805 1997 175.0196 2007 172.5872 2017 164.4448

1968 113.4455 1978 169.7932 1988 145.603 1998 176.1369 2008 175.4815 2018 160.1701

1969 115.8021 1979 187.0072 1989 161.6645 1999 170.7273 2009 170.1677 2019 154.8266

 New Caledonia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.86104 1970 2.3926 1980 1.9986 1990 1.5768 2000 2.2216 2010 3.5572

1961 0.88669 1971 2.4182 1981 1.3903 1991 1.758 2001 1.8777 2011 3.5401

1962 0.56426 1972 1.7038 1982 1.2618 1992 1.5747 2002 2.3934 2012 3.6379

1963 0.61922 1973 2.5976 1983 1.1512 1993 1.8275 2003 2.7267 2013 3.8482

1964 1.0992 1974 2.7807 1984 1.2022 1994 1.9704 2004 2.5161 2014 4.8721

1965 1.2311 1975 2.5279 1985 1.451 1995 2.0642 2005 2.809 2015 4.7357

1966 1.5096 1976 2.3884 1986 1.4008 1996 2.1851 2006 2.706 2016 5.3118

1967 1.4729 1977 2.139 1987 1.4545 1997 1.8187 2007 2.928 2017 5.3448

1968 1.8393 1978 1.5413 1988 1.5012 1998 1.81 2008 2.849 2018 8.209

1969 1.5572 1979 1.6399 1989 1.6395 1999 2.0555 2009 2.9332 2019 8.4516
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 New Zealand

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.5318 1970 14.18 1980 17.479 1990 25.4463 2000 32.2814 2010 34.9578

1961 11.7551 1971 15.049 1981 16.5611 1991 26.1104 2001 34.4574 2011 34.2496

1962 11.1983 1972 16.1896 1982 18.2703 1992 28.1051 2002 34.6381 2012 36.0004

1963 12.2165 1973 18.2004 1983 17.9982 1993 27.6995 2003 36.3519 2013 35.2409

1964 13.092 1974 18.76 1984 19.3367 1994 27.8803 2004 35.9401 2014 35.4578

1965 13.6853 1975 18.2704 1985 21.8581 1995 28.0018 2005 37.571 2015 35.8392

1966 14.0003 1976 19.2486 1986 22.9461 1996 29.2951 2006 37.4663 2016 34.2676

1967 13.6268 1977 20.3135 1987 24.1654 1997 31.2893 2007 36.5599 2017 36.1533

1968 13.4731 1978 18.0241 1988 25.4495 1998 29.8828 2008 37.5923 2018 35.0803

1969 14.257 1979 16.4945 1989 25.4534 1999 31.4723 2009 34.7624 2019 36.541

 Nicaragua

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.53116 1970 1.4028 1980 2.0223 1990 1.9552 2000 3.7211 2010 4.469

1961 0.56044 1971 1.5054 1981 2.1349 1991 1.9879 2001 3.922 2011 4.8053

1962 0.65934 1972 1.6044 1982 2.1107 1992 2.3736 2002 3.9908 2012 4.5452

1963 0.84251 1973 1.8276 1983 1.9967 1993 2.2834 2003 4.3353 2013 4.3514

1964 0.94874 1974 1.9483 1984 1.846 1994 2.5179 2004 4.3783 2014 4.598

1965 0.78016 1975 1.9266 1985 1.9848 1995 2.7548 2005 4.2697 2015 5.2502

1966 0.95964 1976 2.2222 1986 2.2555 1996 2.8474 2006 4.4178 2016 5.448

1967 1.0805 1977 2.8331 1987 2.431 1997 3.1136 2007 4.5504 2017 5.3747

1968 1.2307 1978 2.6275 1988 2.24 1998 3.3919 2008 4.3653 2018 5.3772

1969 1.2856 1979 1.7093 1989 1.4683 1999 3.5984 2009 4.4448 2019 5.5486

 Niger

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.02931 1970 0.003664 1980 0.57017 1990 0.60262 2000 0.69268 2010 1.1692

1961 0.05496 1971 0.003664 1981 0.6838 1991 0.56963 2001 0.65164 2011 1.3224

1962 0.06595 1972 0.003664 1982 0.74588 1992 0.52866 2002 0.69481 2012 1.7539

1963 0.08793 1973 0.003664 1983 0.96184 1993 0.60194 2003 0.75337 2013 1.8911

1964 0.09526 1974 0.003664 1984 0.99095 1994 0.57992 2004 0.80824 2014 2.075

1965 0.0916 1975 0.003664 1985 0.9944 1995 0.5616 2005 0.70848 2015 2.0351

1966 0.13551 1976 0.003664 1986 0.89895 1996 0.64217 2006 0.68628 2016 2.0645

1967 0.13181 1977 0.003664 1987 0.99766 1997 0.64582 2007 0.7169 2017 2.0058

1968 0.16113 1978 0.003664 1988 0.98703 1998 0.69711 2008 0.80306 2018 2.0938

1969 0.19044 1979 0.003664 1989 1.0382 1999 0.68241 2009 0.9623 2019 2.1353
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 Nigeria

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.4032 1970 21.52 1980 68.0352 1990 38.8572 2000 78.8231 2010 112.314

1961 4.1096 1971 32.2515 1981 65.8105 1991 41.9291 2001 86.7175 2011 129.5684

1962 4.175 1972 41.3876 1982 65.3936 1992 46.2651 2002 94.3047 2012 116.3306

1963 5.3436 1973 49.5323 1983 59.7052 1993 44.8134 2003 100.0086 2013 122.0978

1964 7.2667 1974 62.2355 1984 69.4059 1994 34.9337 2004 98.6858 2014 127.8226

1965 11.7501 1975 47.3517 1985 69.636 1995 33.4172 2005 105.7571 2015 113.5395

1966 12.8932 1976 55.1896 1986 73.1922 1996 36.7882 2006 97.8094 2016 116.7736

1967 12.8245 1977 50.5046 1987 59.0244 1997 41.0096 2007 94.2691 2017 130.2755

1968 6.6259 1978 48.2229 1988 70.4213 1998 37.7453 2008 94.772 2018 136.0783

1969 12.0999 1979 70.1856 1989 42.1194 1999 39.5868 2009 74.8849 2019 140.0265

 Niue

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.003664 1980 0.003664 1990 0.007328 2000 0.007328 2010 0.003664

1961 1971 0.003664 1981 0.003664 1991 0.007328 2001 0.007328 2011 0.007328

1962 1972 0.003664 1982 0.003664 1992 0.007328 2002 0.007328 2012 0.007328

1963 1973 0.003664 1983 0.003664 1993 0.007328 2003 0.003664 2013 0.007328

1964 1974 0.003664 1984 0.003664 1994 0.007328 2004 0.003664 2014 0.010992

1965 1975 0.003664 1985 0.003664 1995 0.007328 2005 0.003664 2015 0.007328

1966 1976 0.003664 1986 0.003664 1996 0.007328 2006 0.003664 2016 0.007328

1967 1977 0.003664 1987 0.003664 1997 0.007328 2007 0.003664 2017 0.007328

1968 1978 0.003664 1988 0.003664 1998 0.007328 2008 0.007328 2018 0.007653

1969 1979 0.003664 1989 0.003664 1999 0.007328 2009 0.003664 2019 0.008154

 North Korea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 23.7884 1970 73.4763 1980 114.0822 1990 122.4 2000 69.166 2010 50.0236

1961 26.4266 1971 107.453 1981 114.3949 1991 117.2266 2001 71.665 2011 36.1844

1962 30.6874 1972 89.5049 1982 116.8921 1992 102.9626 2002 68.6429 2012 37.566

1963 32.8265 1973 97.3253 1983 125.1631 1993 94.8685 2003 70.1365 2013 27.0146

1964 35.6182 1974 101.6115 1984 134.6616 1994 86.7195 2004 71.722 2014 30.5443

1965 44.2221 1975 107.6238 1985 144.2847 1995 81.2599 2005 74.9187 2015 24.6207

1966 47.5999 1976 110.0309 1986 156.8353 1996 71.6379 2006 76.1728 2016 27.4666

1967 52.392 1977 113.6652 1987 175.6187 1997 65.1583 2007 63.4792 2017 21.754

1968 59.269 1978 108.2129 1988 200.8081 1998 58.7688 2008 70.3281 2018 38.1629

1969 64.0794 1979 110.263 1989 213.0715 1999 64.0994 2009 53.5653 2019 38.7622
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 North Macedonia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.8456 1970 7.7803 1980 11.8039 1990 14.1855 2000 11.9959 2010 8.5005

1961 4.0309 1971 8.3852 1981 12.8463 1991 10.0358 2001 11.9263 2011 9.1966

1962 4.1364 1972 7.8592 1982 11.8019 1992 10.9847 2002 10.8674 2012 8.735

1963 4.6016 1973 9.3885 1983 12.7085 1993 10.1236 2003 11.2265 2013 7.7713

1964 5.2134 1974 9.4296 1984 13.4021 1994 10.2482 2004 11.1056 2014 7.4599

1965 5.3641 1975 9.8392 1985 13.6711 1995 10.6366 2005 11.1789 2015 7.0239

1966 5.3153 1976 10.1554 1986 14.2777 1996 11.6845 2006 10.8344 2016 6.9872

1967 5.3689 1977 9.8759 1987 13.9394 1997 10.578 2007 9.3835 2017 7.5075

1968 5.7423 1978 11.0362 1988 14.3836 1998 12.5712 2008 9.2956 2018 6.9809

1969 5.9537 1979 12.0041 1989 14.3397 1999 11.6662 2009 8.5921 2019 8.0414

 Norway

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 13.0868 1970 27.9787 1980 31.8978 1990 35.3213 2000 42.5186 2010 46.2317

1961 13.3355 1971 27.1662 1981 31.9425 1991 33.8165 2001 43.8664 2011 45.5134

1962 14.0604 1972 29.3954 1982 31.0626 1992 34.7347 2002 42.9857 2012 45.0383

1963 14.9653 1973 30.4923 1983 32.1199 1993 36.2242 2003 44.3057 2013 44.9824

1964 16.1703 1974 27.7057 1984 34.0109 1994 38.089 2004 44.6226 2014 44.9166

1965 16.3899 1975 30.6358 1985 32.4946 1995 38.7075 2005 43.9232 2015 45.3505

1966 19.5401 1976 33.3869 1986 35.0292 1996 41.8303 2006 44.4848 2016 44.4727

1967 19.3042 1977 33.3821 1987 33.4575 1997 41.97 2007 46.2313 2017 43.5625

1968 21.1137 1978 32.7134 1988 35.8789 1998 42.2202 2008 45.3777 2018 43.8177

1969 22.1938 1979 34.738 1989 34.4416 1999 42.974 2009 43.89 2019 42.4408

 Occupied Palestinian Territory

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.86104 2000 1.6598 2010 2.0335

1961 1971 1981 1991 0.88302 2001 1.3484 2011 2.246

1962 1972 1982 1992 0.916 2002 1.1542 2012 2.1984

1963 1973 1983 1993 0.93432 2003 1.2787 2013 2.4366

1964 1974 1984 1994 0.9673 2004 2.1947 2014 2.8359

1965 1975 1985 1995 0.94531 2005 2.7407 2015 3.0045

1966 1976 1986 1996 1.0369 2006 2.2644 2016 3.2316

1967 1977 1987 1997 0.8647 2007 2.323 2017 3.2683

1968 1978 1988 1998 1.4619 2008 2.0518 2018 3.2198

1969 1979 1989 1999 1.3667 2009 2.0885 2019 3.3032
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 Oman

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.2345 1980 6.0419 1990 11.2224 2000 21.5345 2010 46.7501

1961 1971 2.0921 1981 6.0126 1991 11.5937 2001 20.1059 2011 53.2631

1962 1972 2.0885 1982 5.7305 1992 11.893 2002 25.2344 2012 58.6907

1963 1973 2.1105 1983 7.5259 1993 13.2247 2003 32.0275 2013 61.1207

1964 0.010992 1974 2.334 1984 8.0535 1994 15.0535 2004 27.5912 2014 60.4098

1965 0.025648 1975 7.2511 1985 8.6185 1995 15.7188 2005 29.4666 2015 61.604

1966 0.029312 1976 8.3209 1986 9.8249 1996 14.8827 2006 39.0464 2016 60.0331

1967 0.13557 1977 8.5005 1987 9.4018 1997 15.2481 2007 43.9704 2017 65.5108

1968 0.16122 1978 7.7897 1988 10.5166 1998 16.2998 2008 42.1107 2018 71.0299

1969 0.2345 1979 7.7164 1989 9.9857 1999 20.5579 2009 40.5146 2019 71.6846

 Pakistan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.9264 1970 20.5044 1980 31.9316 1990 67.8285 2000 105.4184 2010 154.1447

1961 12.3496 1971 19.4407 1981 34.2328 1991 67.4779 2001 107.1262 2011 154.6585

1962 13.5699 1972 18.903 1982 37.1896 1992 72.015 2002 112.9036 2012 153.8759

1963 15.6002 1973 20.0085 1983 40.0222 1993 77.1766 2003 117.4907 2013 150.4513

1964 16.039 1974 21.3874 1984 42.5573 1994 84.0193 2004 129.9595 2014 154.2908

1965 16.8296 1975 23.1878 1985 46.8135 1995 83.6151 2005 134.7562 2015 170.1753

1966 17.1257 1976 22.7885 1986 49.0586 1996 93.5374 2006 143.7267 2016 203.1458

1967 18.1759 1977 24.3199 1987 52.9885 1997 93.7876 2007 155.8442 2017 232.4248

1968 20.8418 1978 26.0506 1988 57.6074 1998 96.7421 2008 155.3562 2018 247.4254

1969 20.2134 1979 28.1345 1989 60.3166 1999 99.3905 2009 155.219 2019 248.8439

 Palau

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 0.20885 2010 0.20885

1961 1971 1981 1991 2001 0.21618 2011 0.21618

1962 1972 1982 1992 0.19786 2002 0.21251 2012 0.21618

1963 1973 1983 1993 0.19786 2003 0.21251 2013 0.21984

1964 1974 1984 1994 0.19786 2004 0.21618 2014 0.2235

1965 1975 1985 1995 0.19786 2005 0.21984 2015 0.2235

1966 1976 1986 1996 0.19786 2006 0.22717 2016 0.2235

1967 1977 1987 1997 0.19786 2007 0.25282 2017 0.23083

1968 1978 1988 1998 0.19786 2008 0.20518 2018 0.24108

1969 1979 1989 1999 0.19786 2009 0.19786 2019 0.25684
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 Panama

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.99616 1970 2.2011 1980 3.1076 1990 2.6328 2000 5.7277 2010 9.0727

1961 1.1024 1971 2.6003 1981 3.3227 1991 3.1053 2001 6.9546 2011 9.9521

1962 1.1903 1972 2.7982 1982 3.2785 1992 4.1124 2002 5.8109 2012 9.7676

1963 1.1829 1973 3.2372 1983 3.4797 1993 3.786 2003 6.0903 2013 11.366

1964 1.2416 1974 3.0175 1984 2.8674 1994 4.1784 2004 5.7117 2014 10.8558

1965 1.5272 1975 3.6592 1985 2.6133 1995 3.6541 2005 6.7411 2015 10.877

1966 1.6555 1976 3.6067 1986 2.7348 1996 4.4468 2006 7.3671 2016 10.463

1967 1.6957 1977 3.4554 1987 3.1796 1997 4.6296 2007 7.1963 2017 11.9615

1968 2.0182 1978 2.8346 1988 2.9147 1998 5.9005 2008 7.3136 2018 12.0963

1969 2.0511 1979 3.1808 1989 2.5103 1999 5.6211 2009 8.4194 2019 12.5031

 Papua New Guinea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.17954 1970 0.6925 1980 1.8283 1990 2.1544 2000 2.6637 2010 4.6606

1961 0.20152 1971 0.8244 1981 1.9309 1991 2.1691 2001 3.206 2011 5.2249

1962 0.19786 1972 1.2677 1982 1.9456 1992 2.1911 2002 3.4845 2012 4.9757

1963 0.25648 1973 1.3447 1983 2.0079 1993 2.1911 2003 3.9425 2013 5.3311

1964 0.26747 1974 1.5865 1984 2.0445 1994 2.1801 2004 4.4847 2014 6.0493

1965 0.30411 1975 1.5316 1985 2.1251 1995 2.0592 2005 4.3821 2015 6.3643

1966 0.34075 1976 1.5719 1986 2.0628 1996 2.1874 2006 4.3052 2016 6.6794

1967 0.43602 1977 1.5792 1987 2.334 1997 2.5758 2007 6.1152 2017 6.5476

1968 0.50197 1978 1.6744 1988 2.1984 1998 2.8616 2008 4.7925 2018 6.7861

1969 0.55693 1979 1.7954 1989 2.0335 1999 2.4439 2009 5.0893 2019 7.0869

 Paraguay

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.30405 1970 0.74344 1980 1.4858 1990 2.1356 2000 3.6061 2010 5.0218

1961 0.36268 1971 0.63348 1981 1.3834 1991 2.1034 2001 3.6955 2011 5.1987

1962 0.39199 1972 0.71379 1982 1.3626 1992 2.5799 2002 3.8573 2012 5.1733

1963 0.41031 1973 0.86747 1983 1.4083 1993 2.9141 2003 4.0315 2013 5.1721

1964 0.43226 1974 0.95111 1984 1.4903 1994 3.4043 2004 4.0613 2014 5.4582

1965 0.54948 1975 0.8366 1985 1.5479 1995 3.9371 2005 3.7799 2015 6.051

1966 0.51284 1976 1.0301 1986 1.6551 1996 3.7188 2006 3.9087 2016 7.1538

1967 0.48725 1977 1.1533 1987 1.8774 1997 4.128 2007 4.0416 2017 8.0149

1968 0.58981 1978 1.4539 1988 2.1447 1998 4.3839 2008 4.278 2018 8.103

1969 0.52014 1979 1.3257 1989 2.2245 1999 4.3759 2009 4.5315 2019 8.2723
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 Peru

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.1646 1970 17.7658 1980 24.0627 1990 21.3666 2000 30.0783 2010 57.1505

1961 8.6336 1971 18.5926 1981 24.0193 1991 20.7242 2001 26.9287 2011 48.9588

1962 9.9596 1972 18.1522 1982 23.59 1992 20.9559 2002 26.9306 2012 54.1558

1963 10.2232 1973 19.7321 1983 20.3822 1993 23.852 2003 26.1046 2013 42.9289

1964 12.2528 1974 21.3351 1984 20.619 1994 23.7202 2004 31.5555 2014 49.0534

1965 11.9515 1975 21.9397 1985 19.4399 1995 24.6276 2005 36.7331 2015 48.6962

1966 13.2411 1976 22.4103 1986 21.7533 1996 24.184 2006 28.2627 2016 52.3601

1967 13.6403 1977 23.3028 1987 25.6642 1997 27.2456 2007 34.5236 2017 52.4886

1968 14.4866 1978 22.4169 1988 24.9858 1998 27.572 2008 40.6693 2018 54.2103

1969 15.2853 1979 22.2186 1989 21.7319 1999 29.1468 2009 51.2072 2019 54.5332

 Philippines

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.3251 1970 24.7514 1980 36.8686 1990 41.3495 2000 72.3464 2010 82.9512

1961 8.7125 1971 27.5517 1981 34.5282 1991 43.4712 2001 70.3045 2011 83.7437

1962 10.3359 1972 26.4094 1982 34.8385 1992 48.2938 2002 70.1551 2012 88.4068

1963 11.4718 1973 31.5013 1983 35.2391 1993 48.9292 2003 70.2147 2013 95.7926

1964 12.8228 1974 30.4923 1984 30.8313 1994 54.1233 2004 72.7708 2014 101.1821

1965 13.9646 1975 32.4824 1985 27.8991 1995 59.9488 2005 73.2713 2015 112.1425

1966 16.1041 1976 35.0662 1986 29.0247 1996 61.2537 2006 66.5219 2016 122.2368

1967 18.2089 1977 36.6761 1987 32.4958 1997 70.0626 2007 70.7641 2017 134.5185

1968 22.2228 1978 37.3802 1988 37.4847 1998 68.253 2008 77.3 2018 138.9244

1969 22.8295 1979 38.031 1989 38.9065 1999 68.1767 2009 76.4925 2019 144.2628

 Poland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 199.577 1970 304.1434 1980 463.3291 1990 376.5465 2000 317.338 2010 334.606

1961 207.235 1971 312.8808 1981 408.997 1991 373.7933 2001 313.647 2011 333.952

1962 216.607 1972 329.5064 1982 420.9704 1992 364.6779 2002 306.403 2012 326.348

1963 230.998 1973 335.59 1983 421.0238 1993 365.3707 2003 319.406 2013 322.225

1964 242.880 1974 346.2366 1984 432.4674 1994 360.4168 2004 324.146 2014 309.920

1965 246.980 1975 374.7801 1985 444.5079 1995 362.7613 2005 323.161 2015 313.099

1966 252.431 1976 398.1187 1986 451.8487 1996 377.4078 2006 337.037 2016 324.011

1967 259.025 1977 417.955 1987 463.7326 1997 367.3853 2007 336.368 2017 337.340

1968 275.801 1978 430.8701 1988 444.23 1998 339.1329 2008 330.145 2018 337.705

1969 293.365 1979 441.3086 1989 422.1751 1999 329.1673 2009 316.607 2019 322.626
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 Portugal

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 8.2135 1970 15.2365 1980 26.7737 1990 45.083 2000 65.5266 2010 52.9894

1961 9.078 1971 16.3757 1981 27.0007 1991 46.9603 2001 65.1493 2011 51.7927

1962 9.2899 1972 18.3073 1982 29.0001 1992 50.8892 2002 69.5561 2012 49.9626

1963 10.0116 1973 19.9451 1983 29.9019 1993 49.3919 2003 64.4193 2013 48.1619

1964 11.0074 1974 20.645 1984 28.794 1994 50.2464 2004 67.2553 2014 47.9484

1965 11.5825 1975 21.2753 1985 27.1299 1995 54.4508 2005 69.484 2015 52.2941

1966 11.8351 1976 22.3258 1986 30.2214 1996 51.7032 2006 64.7677 2016 50.4556

1967 12.3916 1977 22.6051 1987 31.1986 1997 54.5976 2007 62.2804 2017 54.72

1968 12.9924 1978 22.5849 1988 32.5679 1998 59.1384 2008 59.9731 2018 51.4825

1969 14.5928 1979 24.8557 1989 40.8226 1999 66.7632 2009 57.2003 2019 48.5978

 Qatar

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.17587 1970 7.5615 1980 13.0817 1990 11.7437 2000 34.5662 2010 71.9199

1961 0.16122 1971 9.1443 1981 12.8407 1991 17.6453 2001 41.2145 2011 79.6476

1962 0.19053 1972 10.7754 1982 12.3349 1992 26.9966 2002 40.7019 2012 92.3035

1963 6.1335 1973 12.4572 1983 11.2426 1993 30.985 2003 41.2994 2013 82.6979

1964 6.2691 1974 10.4785 1984 12.298 1994 30.7044 2004 42.7103 2014 105.9796

1965 6.2874 1975 10.9474 1985 12.3778 1995 31.7171 2005 50.6901 2015 105.7561

1966 6.2728 1976 10.3749 1986 13.267 1996 32.2038 2006 63.1962 2016 102.1726

1967 6.6831 1977 9.916 1987 11.4705 1997 37.3935 2007 62.8994 2017 105.5691

1968 7.0752 1978 10.519 1988 11.8977 1998 32.271 2008 64.2571 2018 109.2447

1969 7.1666 1979 14.3424 1989 14.2924 1999 31.2711 2009 68.5969 2019 109.3447

 Republic of South Sudan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.1132 1970 0.40398 1980 0.31184 1990 0.43389 2000 0.45982 2010 1.3133

1961 0.11534 1971 0.41466 1981 0.30299 1991 0.40642 2001 0.52908 2011 1.2812

1962 0.12357 1972 0.44762 1982 0.31855 1992 0.3634 2002 0.67432 2012 1.33

1963 0.13975 1973 0.45158 1983 0.32526 1993 0.25051 2003 0.75335 2013 1.4473

1964 0.1547 1974 0.47294 1984 0.2917 1994 0.34448 2004 0.95198 2014 1.5352

1965 0.20199 1975 0.35272 1985 0.33899 1995 0.35608 2005 0.91201 2015 1.9419

1966 0.21999 1976 0.31245 1986 0.35364 1996 0.36737 2006 0.99867 2016 1.7257

1967 0.26515 1977 0.31672 1987 0.27888 1997 0.44975 2007 1.1732 2017 1.4912

1968 0.25844 1978 0.28621 1988 0.40337 1998 0.38995 2008 1.2391 2018 1.5399

1969 0.34815 1979 0.29719 1989 0.31275 1999 0.4229 2009 1.2907 2019 1.5849
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 Romania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 53.3941 1970 119.9815 1980 196.199 1990 169.2859 2000 95.4558 2010 84.2897

1961 55.7161 1971 125.6815 1981 197.7302 1991 139.3703 2001 100.3571 2011 89.5182

1962 63.8128 1972 132.2542 1982 195.3292 1992 131.0723 2002 101.7353 2012 86.2557

1963 69.4555 1973 144.765 1983 200.1164 1993 122.8323 2003 105.2952 2013 76.8759

1964 72.037 1974 150.7203 1984 188.8166 1994 121.9615 2004 104.2698 2014 77.4324

1965 78.6369 1975 162.0064 1985 193.9069 1995 127.0329 2005 102.6945 2015 77.7256

1966 84.0907 1976 174.472 1986 201.6413 1996 130.0959 2006 105.0828 2016 75.8128

1967 92.0288 1977 178.0767 1987 211.6316 1997 121.0747 2007 108.4405 2017 78.0775

1968 100.0794 1978 193.5394 1988 212.2216 1998 107.5615 2008 105.5346 2018 76.9512

1969 111.5274 1979 195.6764 1989 213.5994 1999 90.7782 2009 86.0241 2019 75.0841

 Russian Federation

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 885.8611 1970 1442.53 1980 2132.301 1990 2525.294 2000 1471.052 2010 1612.885

1961 913.5253 1971 1530.889 1981 2091.653 1991 2395.978 2001 1507.501 2011 1664.953

1962 958.7569 1972 1610.796 1982 2131.136 1992 1957.659 2002 1495.484 2012 1679.866

1963 1028.218 1973 1678.915 1983 2161.338 1993 1859.46 2003 1525.39 2013 1619.173

1964 1093.519 1974 1742.934 1984 2180.496 1994 1641.399 2004 1530.474 2014 1622.349

1965 1159.985 1975 1832.155 1985 2351.675 1995 1612.928 2005 1547.376 2015 1622.861

1966 1224.976 1976 1902.632 1986 2357.643 1996 1580.161 2006 1606.313 2016 1618.304

1967 1280.896 1977 1967.275 1987 2347.912 1997 1475.157 2007 1604.324 2017 1646.18

1968 1316.893 1978 2034.807 1988 2410.627 1998 1458.157 2008 1636.694 2018 1691.36

1969 1371.484 1979 2051.615 1989 2356.63 1999 1486.09 2009 1528.765 2019 1678.367

 Rwanda

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.06982 1970 0.058624 1980 0.49464 1990 0.52332 2000 0.51971 2010 0.5734

1961 0.09149 1971 0.062288 1981 0.6009 1991 0.47179 2001 0.52145 2011 0.64702

1962 0.08427 1972 0.065952 1982 0.60822 1992 0.47895 2002 0.5195 2012 0.71846

1963 0.08427 1973 0.069616 1983 0.69616 1993 0.48241 2003 0.50816 2013 0.78227

1964 0.03664 1974 0.07328 1984 0.63387 1994 0.46103 2004 0.51513 2014 0.81274

1965 0.04763 1975 0.17587 1985 0.61555 1995 0.45367 2005 0.51477 2015 0.92648

1966 0.04396 1976 0.26747 1986 0.59723 1996 0.46486 2006 0.51442 2016 1.0469

1967 0.04030 1977 0.26747 1987 0.61138 1997 0.4816 2007 0.54218 2017 1.0505

1968 0.05496 1978 0.28946 1988 0.69227 1998 0.48139 2008 0.52782 2018 1.0801

1969 0.05862 1979 0.29678 1989 0.6842 1999 0.50243 2009 0.55826 2019 1.1109
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 Saint Helena

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.007328 2000 0.010992 2010 0.010992

1961 1971 1981 0.007328 1991 0.007328 2001 0.010992 2011 0.010992

1962 1972 1982 0.003664 1992 0.007328 2002 0.010992 2012 0.010992

1963 1973 1983 0.003664 1993 0.010992 2003 0.010992 2013 0.010992

1964 1974 1984 0.003664 1994 0.010992 2004 0.010992 2014 0.010992

1965 1975 1985 0.003664 1995 0.010992 2005 0.010992 2015 0.010992

1966 1976 1986 0.003664 1996 0.010992 2006 0.010992 2016 0.010992

1967 1977 1987 0.003664 1997 0.010992 2007 0.010992 2017 0.010992

1968 0.003664 1978 1988 0.007328 1998 0.010992 2008 0.010992 2018 0.011319

1969 1979 1989 0.007328 1999 0.010992 2009 0.010992 2019 0.011023

 Saint Kitts and Nevis

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.10626 2000 0.17221 2010 0.21984

1961 1971 1981 0.05496 1991 0.10626 2001 0.17587 2011 0.23083

1962 1972 1982 0.065952 1992 0.10992 2002 0.19786 2012 0.21984

1963 1973 1983 0.051296 1993 0.11358 2003 0.19786 2013 0.2235

1964 1974 1984 0.051296 1994 0.12091 2004 0.21251 2014 0.23083

1965 1975 1985 0.051296 1995 0.12824 2005 0.19786 2015 0.2345

1966 1976 1986 0.058624 1996 0.1319 2006 0.20152 2016 0.23816

1967 1977 1987 0.05496 1997 0.1429 2007 0.21618 2017 0.24182

1968 1978 1988 0.065952 1998 0.15022 2008 0.21618 2018 0.24901

1969 1979 1989 0.065952 1999 0.16122 2009 0.2235 2019 0.2425

 Saint Lucia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01465 1970 0.065952 1980 0.11358 1990 0.16122 2000 0.34808 2010 0.3664

1961 0.01832 1971 0.069616 1981 0.095264 1991 0.16854 2001 0.34808 2011 0.33342

1962 0.01832 1972 0.076944 1982 0.11358 1992 0.15022 2002 0.28946 2012 0.32976

1963 0.02198 1973 0.080608 1983 0.10259 1993 0.23083 2003 0.37006 2013 0.30778

1964 0.02198 1974 0.07328 1984 0.11358 1994 0.25648 2004 0.37006 2014 0.34808

1965 0.02564 1975 0.076944 1985 0.12824 1995 0.30778 2005 0.33709 2015 0.35907

1966 0.02931 1976 0.084272 1986 0.1319 1996 0.32243 2006 0.3664 2016 0.33342

1967 0.03297 1977 0.069616 1987 0.14656 1997 0.30411 2007 0.29312 2017 0.35174

1968 0.03664 1978 0.098928 1988 0.16488 1998 0.29312 2008 0.30045 2018 0.3622

1969 0.06228 1979 0.15022 1989 0.16488 1999 0.33342 2009 0.32976 2019 0.35272
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 Saint Pierre and Miquelon

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.03664 1970 0.03664 1980 0.03664 1990 0.0916 2000 0.05496 2010 0.069616

1961 0.047632 1971 0.047632 1981 0.040304 1991 0.10259 2001 0.05496 2011 0.069616

1962 0.032976 1972 0.069616 1982 0.040304 1992 0.095264 2002 0.058624 2012 0.069616

1963 0.03664 1973 0.040304 1983 0.032976 1993 0.07328 2003 0.065952 2013 0.07328

1964 0.047632 1974 0.043968 1984 0.03664 1994 0.069616 2004 0.062288 2014 0.076944

1965 0.040304 1975 0.032976 1985 0.032976 1995 0.069616 2005 0.065952 2015 0.076944

1966 0.043968 1976 0.047632 1986 0.047632 1996 0.069616 2006 0.065952 2016 0.076944

1967 0.051296 1977 0.03664 1987 0.051296 1997 0.047632 2007 0.065952 2017 0.076944

1968 0.040304 1978 0.032976 1988 0.065952 1998 0.05496 2008 0.065952 2018 0.079232

1969 0.032976 1979 0.03664 1989 0.10259 1999 0.05496 2009 0.065952 2019 0.077158

 Saint Vincent and the Grenadines

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.010992 1970 0.029312 1980 0.03664 1990 0.080608 2000 0.14656 2010 0.21984

1961 0.010992 1971 0.029312 1981 0.03664 1991 0.084272 2001 0.17954 2011 0.19786

1962 0.010992 1972 0.03664 1982 0.040304 1992 0.084272 2002 0.18686 2012 0.25282

1963 0.014656 1973 0.040304 1983 0.047632 1993 0.10259 2003 0.19786 2013 0.20885

1964 0.01832 1974 0.032976 1984 0.065952 1994 0.12091 2004 0.21984 2014 0.2748

1965 0.014656 1975 0.032976 1985 0.065952 1995 0.12824 2005 0.21984 2015 0.21251

1966 0.01832 1976 0.032976 1986 0.065952 1996 0.1319 2006 0.21618 2016 0.25282

1967 0.01832 1977 0.032976 1987 0.076944 1997 0.1319 2007 0.26014 2017 0.25648

1968 0.021984 1978 0.03664 1988 0.065952 1998 0.16122 2008 0.19053 2018 0.26411

1969 0.029312 1979 0.029312 1989 0.076944 1999 0.16488 2009 0.31144 2019 0.25719

 Samoa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01465 1970 0.029312 1980 0.098928 1990 0.10259 2000 0.1429 2010 0.18686

1961 0.01832 1971 0.03664 1981 0.10259 1991 0.10626 2001 0.14656 2011 0.20152

1962 0.01832 1972 0.03664 1982 0.11358 1992 0.10992 2002 0.14656 2012 0.19786

1963 0.02198 1973 0.03664 1983 0.11358 1993 0.10992 2003 0.15389 2013 0.19786

1964 0.02564 1974 0.032976 1984 0.11358 1994 0.11358 2004 0.15022 2014 0.20885

1965 0.02931 1975 0.058624 1985 0.11358 1995 0.11725 2005 0.16122 2015 0.2345

1966 0.02564 1976 0.047632 1986 0.11358 1996 0.12458 2006 0.16488 2016 0.24549

1967 0.02564 1977 0.080608 1987 0.11358 1997 0.12824 2007 0.17221 2017 0.25648

1968 0.02931 1978 0.10626 1988 0.11358 1998 0.1319 2008 0.17954 2018 0.26786

1969 0.02931 1979 0.095264 1989 0.12091 1999 0.13557 2009 0.18686 2019 0.28538
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 Sao Tome and Principe

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.010992 1970 0.014656 1980 0.040304 1990 0.047632 2000 0.047632 2010 0.098928

1961 0.010992 1971 0.010992 1981 0.043968 1991 0.047632 2001 0.051296 2011 0.10259

1962 0.010992 1972 0.010992 1982 0.047632 1992 0.047632 2002 0.058624 2012 0.11358

1963 0.007328 1973 0.014656 1983 0.05496 1993 0.047632 2003 0.065952 2013 0.11358

1964 0.010992 1974 0.01832 1984 0.051296 1994 0.047632 2004 0.07328 2014 0.11358

1965 0.010992 1975 0.01832 1985 0.05496 1995 0.047632 2005 0.076944 2015 0.11358

1966 0.010992 1976 0.029312 1986 0.051296 1996 0.047632 2006 0.084272 2016 0.12091

1967 0.010992 1977 0.029312 1987 0.051296 1997 0.047632 2007 0.084272 2017 0.12458

1968 0.014656 1978 0.032976 1988 0.047632 1998 0.047632 2008 0.084272 2018 0.12613

1969 0.014656 1979 0.032976 1989 0.047632 1999 0.047632 2009 0.0916 2019 0.12914

 Saudi Arabia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.6744 1970 45.2513 1980 169.2398 1990 185.4853 2000 296.3533 2010 517.7159

1961 3.5683 1971 59.7566 1981 175.3034 1991 267.3862 2001 296.5749 2011 497.659

1962 6.25 1972 70.2817 1982 157.8914 1992 285.0741 2002 325.6812 2012 563.1795

1963 6.9388 1973 95.0535 1983 160.8347 1993 313.3274 2003 326.5171 2013 540.8052

1964 7.0412 1974 98.7018 1984 155.5102 1994 307.4732 2004 394.5849 2014 601.8959

1965 4.2163 1975 83.2608 1985 172.4185 1995 234.712 2005 395.8548 2015 645.4086

1966 6.4073 1976 101.4595 1986 204.6006 1996 258.2636 2006 431.292 2016 565.7507

1967 25.4855 1977 118.0703 1987 190.4437 1997 215.7967 2007 386.5071 2017 579.4166

1968 29.0791 1978 115.0243 1988 202.2477 1998 207.2305 2008 432.3364 2018 576.7578

1969 35.271 1979 138.0043 1989 203.4192 1999 225.9765 2009 465.8443 2019 582.1496

 Senegal

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.82738 1970 1.3071 1980 3.3364 1990 3.139 2000 3.9009 2010 7.2801

1961 0.81267 1971 1.351 1981 3.2799 1991 3.378 2001 4.2577 2011 7.8193

1962 0.81267 1972 1.4532 1982 3.0366 1992 3.4234 2002 4.4369 2012 7.3629

1963 0.86027 1973 1.5487 1983 2.6114 1993 3.538 2003 4.9263 2013 7.8535

1964 0.9225 1974 1.849 1984 3.2842 1994 3.8367 2004 5.2377 2014 8.796

1965 1.692 1975 2.578 1985 2.6505 1995 3.429 2005 5.5396 2015 9.8463

1966 1.7176 1976 1.7697 1986 2.6364 1996 3.6632 2006 4.4218 2016 9.859

1967 0.69914 1977 2.2373 1987 2.4246 1997 3.1823 2007 4.8633 2017 9.3643

1968 1978 2.6196 1988 2.7108 1998 3.3331 2008 4.739 2018 9.6904

1969 0.49014 1979 2.8881 1989 3.6619 1999 3.6036 2009 4.713 2019 9.8227
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 Serbia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 15.3025 1970 30.962 1980 46.833 1990 56.4484 2000 44.9502 2010 45.6964

1961 16.0382 1971 33.3625 1981 50.9624 1991 39.9836 2001 49.2661 2011 48.9571

1962 16.4592 1972 31.2687 1982 46.7929 1992 43.6843 2002 52.147 2012 43.7245

1963 18.3108 1973 37.342 1983 50.383 1993 38.0957 2003 55.716 2013 44.5458

1964 20.7438 1974 37.4943 1984 53.1292 1994 37.0401 2004 60.212 2014 37.1891

1965 21.3437 1975 39.1106 1985 54.1876 1995 39.1408 2005 51.6341 2015 43.7471

1966 21.1519 1976 40.3541 1986 56.5792 1996 45.8247 2006 60.8614 2016 45.0357

1967 21.3669 1977 39.2283 1987 55.2231 1997 49.2646 2007 59.6302 2017 45.4827

1968 22.8559 1978 43.8209 1988 56.9738 1998 51.8821 2008 51.6801 2018 46.0531

1969 23.6988 1979 47.6476 1989 56.7923 1999 35.7907 2009 45.8582 2019 54.6667

 Seychelles

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.029312 1980 0.095264 1990 0.15022 2000 0.57158 2010 0.44334

1961 1971 0.032976 1981 0.098928 1991 0.17221 2001 0.63387 2011 0.3261

1962 1972 0.043968 1982 0.084272 1992 0.17221 2002 0.53861 2012 0.42136

1963 0.007328 1973 0.047632 1983 0.098928 1993 0.1832 2003 0.5496 2013 0.32976

1964 0.007328 1974 0.05496 1984 0.098928 1994 0.20152 2004 0.73646 2014 0.48731

1965 0.007328 1975 0.058624 1985 0.15022 1995 0.19786 2005 0.68883 2015 0.47998

1966 0.007328 1976 0.080608 1986 0.16488 1996 0.2345 2006 0.7328 2016 0.59357

1967 0.007328 1977 0.084272 1987 0.20152 1997 0.34075 2007 0.6412 2017 0.58624

1968 0.007328 1978 0.076944 1988 0.19786 1998 0.43235 2008 0.6925 2018 0.60536

1969 0.007328 1979 0.12091 1989 0.2345 1999 0.5093 2009 0.52395 2019 0.62305

 Sierra Leone

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.71448 1970 0.85738 1980 0.60822 1990 0.53861 2000 0.38838 2010 0.57525

1961 0.28946 1971 0.80242 1981 0.6925 1991 0.6009 2001 0.4177 2011 0.74379

1962 0.3261 1972 0.67784 1982 0.55326 1992 0.45067 2002 0.53456 2012 0.86104

1963 0.37006 1973 0.53861 1983 0.68883 1993 0.45434 2003 0.56792 2013 1.0332

1964 0.30411 1974 0.52029 1984 0.61555 1994 0.47998 2004 0.55326 2014 1.1395

1965 0.28213 1975 0.52395 1985 0.66318 1995 0.24915 2005 0.46166 2015 0.90501

1966 0.30045 1976 0.45067 1986 0.67418 1996 0.29312 2006 0.61555 2016 0.93066

1967 0.25282 1977 0.51296 1987 0.4983 1997 0.2235 2007 0.51662 2017 0.93798

1968 0.36274 1978 0.71082 1988 0.458 1998 0.25648 2008 0.53494 2018 0.98756

1969 1.0845 1979 0.67784 1989 0.37373 1999 0.14656 2009 0.53494 2019 1.0271
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 Singapore

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.3923 1970 18.1925 1980 31.3433 1990 44.2906 2000 48.8563 2010 56.6198

1961 2.0921 1971 16.5771 1981 26.7406 1991 45.0494 2001 49.4421 2011 30.272

1962 2.5753 1972 22.2181 1982 29.6058 1992 48.2127 2002 47.1727 2012 48.145

1963 3.3958 1973 21.1994 1983 34.8104 1993 50.8711 2003 49.4968 2013 54.3664

1964 3.6998 1974 21.9468 1984 33.2169 1994 61.3446 2004 46.8589 2014 55.2092

1965 2.5273 1975 24.5178 1985 33.2666 1995 41.8418 2005 36.4678 2015 62.1304

1966 0.67259 1976 29.9985 1986 34.8765 1996 49.3492 2006 43.0447 2016 40.2747

1967 3.0539 1977 28.2649 1987 32.4605 1997 58.0718 2007 47.5184 2017 39.0656

1968 5.4131 1978 33.1082 1988 35.9492 1998 48.3564 2008 57.5724 2018 38.2881

1969 7.1972 1979 36.0573 1989 41.7087 1999 49.8705 2009 90.0978 2019 38.9448

 Slovakia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 31.6416 1970 49.3314 1980 59.1112 1990 61.6335 2000 41.2891 2010 38.5232

1961 34.3427 1971 51.7534 1981 58.4749 1991 53.4379 2001 43.3783 2011 38.112

1962 36.5977 1972 52.2334 1982 57.9094 1992 49.0291 2002 42.1124 2012 36.0212

1963 38.4981 1973 52.4515 1983 57.9966 1993 46.4842 2003 42.4381 2013 35.5778

1964 40.0659 1974 53.0645 1984 59.9588 1994 43.8787 2004 42.9247 2014 33.6545

1965 39.0398 1975 55.5274 1985 59.1478 1995 44.3224 2005 42.9109 2015 34.4842

1966 38.8198 1976 57.6949 1986 59.5624 1996 44.1861 2006 42.6873 2016 34.9218

1967 38.7391 1977 59.4281 1987 58.8684 1997 44.3137 2007 41.0951 2017 36.0873

1968 40.5304 1978 59.9753 1988 57.922 1998 44.0731 2008 41.5032 2018 36.0878

1969 43.0275 1979 58.4188 1989 55.2857 1999 43.2006 2009 37.7551 2019 33.3148

 Slovenia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 4.3408 1970 8.7896 1980 13.2445 1990 15.0938 2000 15.4449 2010 16.3764

1961 4.551 1971 9.4667 1981 14.3972 1991 14.0012 2001 16.3783 2011 16.3603

1962 4.6695 1972 8.8601 1982 13.2097 1992 14.0067 2002 16.5253 2012 15.8218

1963 5.1945 1973 10.5855 1983 14.2263 1993 14.3035 2003 16.289 2013 15.1889

1964 5.8864 1974 10.6234 1984 15.004 1994 14.6427 2004 16.651 2014 13.5319

1965 6.0572 1975 11.0765 1985 15.3045 1995 15.2543 2005 16.9481 2015 13.6175

1966 6.0018 1976 11.4233 1986 15.983 1996 15.9166 2006 17.1425 2016 14.4167

1967 6.0631 1977 11.0963 1987 15.5792 1997 16.2449 2007 17.281 2017 14.2648

1968 6.4841 1978 12.3979 1988 16.147 1998 15.9611 2008 18.22 2018 14.4878

1969 6.7229 1979 13.4827 1989 16.067 1999 15.3372 2009 16.3298 2019 13.6964
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 Solomon Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.010992 1970 0.040304 1980 0.10259 1990 0.14656 2000 0.2235 2010 0.32976

1961 0.014656 1971 0.047632 1981 0.13557 1991 0.15755 2001 0.2345 2011 0.34442

1962 0.014656 1972 0.05496 1982 0.12091 1992 0.16122 2002 0.24549 2012 0.34808

1963 0.014656 1973 0.065952 1983 0.1429 1993 0.17221 2003 0.25648 2013 0.37373

1964 0.01832 1974 0.065952 1984 0.1429 1994 0.1832 2004 0.2748 2014 0.32976

1965 0.025648 1975 0.058624 1985 0.15022 1995 0.19053 2005 0.28213 2015 0.29312

1966 0.025648 1976 0.062288 1986 0.15389 1996 0.19786 2006 0.28946 2016 0.28946

1967 0.032976 1977 0.080608 1987 0.16122 1997 0.20518 2007 0.30045 2017 0.28579

1968 0.03664 1978 0.062288 1988 0.15755 1998 0.21618 2008 0.30778 2018 0.29848

1969 0.03664 1979 0.10992 1989 0.16122 1999 0.21618 2009 0.31877 2019 0.31799

 Somalia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.084272 1970 0.21618 1980 0.81341 1990 0.72957 2000 0.47998 2010 0.61189

1961 0.087936 1971 0.18686 1981 0.2748 1991 0.7065 2001 0.50197 2011 0.61189

1962 0.10626 1972 0.2345 1982 0.71814 1992 0.67954 2002 0.58624 2012 0.60822

1963 0.10259 1973 0.26381 1983 0.93432 1993 0.63922 2003 0.59357 2013 0.63021

1964 0.13557 1974 0.32976 1984 0.71448 1994 0.62822 2004 0.59357 2014 0.63021

1965 0.1319 1975 0.50197 1985 0.85738 1995 0.5879 2005 0.59357 2015 0.63021

1966 0.13923 1976 0.47998 1986 0.92333 1996 0.56792 2006 0.59357 2016 0.63754

1967 0.22717 1977 0.79875 1987 0.99294 1997 0.53861 2007 0.60822 2017 0.63754

1968 0.15389 1978 0.55693 1988 1.0037 1998 0.51296 2008 0.6009 2018 0.65833

1969 0.16122 1979 0.48731 1989 0.95207 1999 0.49098 2009 0.59723 2019 0.67757

 South Africa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 97.8435 1970 149.6182 1980 228.2175 1990 312.9722 2000 378.254 2010 466.93

1961 102.119 1971 168.4051 1981 257.0996 1991 326.0689 2001 371.516 2011 473.949

1962 105.67 1972 171.5569 1982 280.4596 1992 301.3682 2002 356.357 2012 461.139

1963 109.725 1973 173.3578 1983 291.9301 1993 320.3899 2003 404.173 2013 455.865

1964 119.546 1974 176.5523 1984 315.6243 1994 338.6248 2004 449.078 2014 481.884

1965 128.14 1975 185.011 1985 323.8902 1995 361.6414 2005 415.924 2015 451.590

1966 128.234 1976 192.9166 1986 330.5265 1996 363.6731 2006 446.622 2016 460.043

1967 133.760 1977 199.7472 1987 328.696 1997 385.4583 2007 464.800 2017 466.103

1968 137.953 1978 201.8908 1988 342.6964 1998 377.3122 2008 494.642 2018 472.001

1969 143.142 1979 218.6841 1989 340.7527 1999 374.8301 2009 502.259 2019 478.608

3 Climate Change Effect on the Urbanization: Intensified Rainfall and Flood…



128

 South Korea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 12.5401 1970 53.7164 1980 134.8886 1990 247.4382 2000 445.4407 2010 565.9608

1961 14.4487 1971 58.5498 1981 139.7775 1991 262.0383 2001 448.5506 2011 588.4039

1962 17.2616 1972 60.2773 1982 141.9832 1992 282.1943 2002 463.628 2012 583.6319

1963 21.0832 1973 73.0319 1983 151.0378 1993 321.8378 2003 462.4073 2013 591.5399

1964 22.1952 1974 75.6331 1984 164.0488 1994 344.2638 2004 478.6058 2014 586.5479

1965 24.9783 1975 81.784 1985 178.4848 1995 373.9924 2005 459.3457 2015 595.3939

1966 29.9822 1976 93.2708 1986 182.6718 1996 401.5296 2006 465.6059 2016 617.9601

1967 35.1132 1977 105.6916 1987 192.9399 1997 427.7861 2007 493.3534 2017 620.61

1968 37.1971 1978 113.4017 1988 222.3078 1998 363.5483 2008 505.7826 2018 634.9341

1969 42.4682 1979 133.2189 1989 236.2482 1999 398.3253 2009 506.7644 2019 611.2632

 Spain

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 48.8656 1970 116.7665 1980 213.9115 1990 231.2136 2000 311.267 2010 283.725

1961 53.6069 1971 128.4585 1981 206.0957 1991 240.953 2001 313.1198 2011 284.5438

1962 59.9758 1972 144.7162 1982 208.598 1992 249.8132 2002 333.3795 2012 278.8507

1963 58.7429 1973 154.9572 1983 203.4345 1993 241.1952 2003 337.5889 2013 252.7638

1964 64.3238 1974 172.6656 1984 197.6667 1994 253.6614 2004 354.4856 2014 255.1002

1965 71.0205 1975 181.0534 1985 199.9308 1995 267.4167 2005 369.4921 2015 271.6873

1966 77.617 1976 197.7457 1986 189.1121 1996 254.7953 2006 360.5786 2016 260.7596

1967 86.394 1977 194.8288 1987 189.5075 1997 267.3064 2007 368.4327 2017 274.6713

1968 97.0172 1978 199.5135 1988 197.4572 1998 276.0216 2008 336.6242 2018 269.6543

1969 96.7369 1979 202.7462 1989 224.8846 1999 299.4987 2009 297.2412 2019 252.6832

 Sudan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.2458 1970 4.4467 1980 3.427 1990 4.7689 2000 5.0554 2010 14.3976

1961 1.2694 1971 4.5641 1981 3.3299 1991 4.4665 2001 5.8171 2011 14.0169

1962 1.36 1972 4.927 1982 3.4989 1992 3.9893 2002 7.4179 2012 14.5387

1963 1.538 1973 4.9705 1983 3.571 1993 2.7463 2003 8.2846 2013 16.1755

1964 1.7027 1974 5.2053 1984 3.2016 1994 3.785 2004 10.4708 2014 16.6448

1965 2.2233 1975 3.8822 1985 3.7204 1995 3.9029 2005 10.0281 2015 20.1626

1966 2.4214 1976 3.4383 1986 3.8834 1996 4.0276 2006 10.9837 2016 19.3113

1967 2.9185 1977 3.4844 1987 3.0612 1997 4.94 2007 12.9047 2017 21.7149

1968 2.8445 1978 3.1468 1988 4.4298 1998 4.2853 2008 13.6341 2018 22.3724

1969 3.832 1979 3.2669 1989 3.4308 1999 4.6452 2009 14.1889 2019 22.9807
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 Suriname

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.43235 1970 1.6085 1980 2.3694 1990 1.738 2000 2.1918 2010 2.3954

1961 0.42869 1971 1.7145 1981 2.0283 1991 2.0238 2001 2.3634 2011 2.1796

1962 0.49464 1972 1.7438 1982 1.8706 1992 2.0311 2002 1.5606 2012 2.6364

1963 0.53128 1973 2.1066 1983 1.3721 1993 2.0384 2003 1.5383 2013 2.7449

1964 0.60456 1974 1.601 1984 1.552 1994 2.0417 2004 1.5564 2014 2.8361

1965 0.79509 1975 2.0187 1985 1.5959 1995 2.06 2005 1.589 2015 2.7328

1966 1.0955 1976 1.9965 1986 1.7569 1996 2.082 2006 1.7391 2016 2.3261

1967 1.3337 1977 1.8975 1987 1.7568 1997 2.1039 2007 1.7569 2017 2.5203

1968 1.4509 1978 2.3919 1988 1.8739 1998 2.1039 2008 1.9357 2018 2.5518

1969 1.5206 1979 2.2928 1989 1.8518 1999 2.1222 2009 1.9953 2019 2.606

 Swaziland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.032976 1970 0.3664 1980 0.46533 1990 0.96363 2000 1.2128 2010 1.0149

1961 0.003664 1971 0.39938 1981 0.43602 1991 0.8757 2001 1.0955 2011 1.0259

1962 1972 0.38106 1982 0.43602 1992 0.83539 2002 1.0809 2012 1.1908

1963 1973 0.37006 1983 0.27114 1993 0.71082 2003 1.0039 2013 1.5462

1964 0.010992 1974 0.31144 1984 0.33342 1994 1.0809 2004 1.0003 2014 0.90134

1965 0.080608 1975 0.33709 1985 0.43968 1995 1.0626 2005 1.0149 2015 0.97829

1966 0.20152 1976 0.33342 1986 0.458 1996 0.79142 2006 1.0149 2016 1.1798

1967 0.22717 1977 0.34075 1987 0.43602 1997 1.1468 2007 1.0516 2017 0.98562

1968 0.27846 1978 0.43968 1988 0.43602 1998 1.1652 2008 1.0332 2018 0.98795

1969 0.30411 1979 0.44701 1989 0.43602 1999 1.2421 2009 1.0736 2019 0.97385

 Sweden

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 49.1705 1970 92.287 1980 71.7142 1990 57.3488 2000 54.6844 2010 53.0422

1961 48.7995 1971 84.509 1981 69.3891 1991 57.7072 2001 55.6171 2011 49.1669

1962 51.2726 1972 84.7034 1982 62.2574 1992 57.4515 2002 56.5725 2012 46.692

1963 55.3131 1973 87.2898 1983 58.269 1993 57.4934 2003 57.1606 2013 45.0863

1964 60.3681 1974 79.8231 1984 57.3088 1994 59.9538 2004 56.4759 2014 43.3376

1965 62.5622 1975 80.7605 1985 62.3647 1995 59.3662 2005 53.8529 2015 43.3368

1966 72.5174 1976 88.2412 1986 62.0105 1996 63.3028 2006 53.6743 2016 42.9726

1967 68.9297 1977 85.7408 1987 59.6956 1997 58.2126 2007 52.9409 2017 42.3068

1968 77.606 1978 79.4769 1988 57.426 1998 58.6967 2008 50.856 2018 41.7662

1969 86.3811 1979 84.8691 1989 55.5218 1999 55.8202 2009 47.2311 2019 42.7666
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 Switzerland

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 19.4949 1970 40.2443 1980 40.49 1990 44.1544 2000 43.6176 2010 45.0496

1961 20.3573 1971 41.8879 1981 38.8117 1991 46.1338 2001 45.0824 2011 40.9855

1962 24.1197 1972 42.9158 1982 36.585 1992 46.0097 2002 43.4676 2012 42.2547

1963 29.0667 1973 46.2024 1983 40.0221 1993 43.601 2003 44.6519 2013 43.1858

1964 28.1257 1974 41.4268 1984 39.1279 1994 42.6759 2004 45.2364 2014 39.2344

1965 30.3289 1975 39.0511 1985 39.78 1995 43.4128 2005 45.7882 2015 38.7332

1966 31.4856 1976 40.4371 1986 42.2456 1996 44.0988 2006 45.3737 2016 39.1926

1967 32.5194 1977 41.0377 1987 40.2041 1997 43.0373 2007 43.3684 2017 38.1823

1968 35.9813 1978 42.1698 1988 40.6612 1998 44.6148 2008 44.7143 2018 36.8955

1969 38.047 1979 39.8645 1989 39.4176 1999 44.4458 2009 43.5347 2019 37.6815

 Syria

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.2187 1970 6.6499 1980 20.7267 1990 37.0453 2000 50.4815 2010 60.7164

1961 3.0609 1971 8.8742 1981 26.5346 1991 42.2007 2001 48.1407 2011 56.1393

1962 3.1999 1972 7.7563 1982 24.3644 1992 42.5611 2002 38.4386 2012 43.7901

1963 3.6063 1973 7.8852 1983 27.7745 1993 45.2217 2003 53.5814 2013 35.809

1964 4.3613 1974 9.6544 1984 32.849 1994 46.1898 2004 50.3846 2014 30.112

1965 3.6723 1975 11.1712 1985 29.3894 1995 41.2002 2005 49.8808 2015 28.6755

1966 4.9109 1976 13.7371 1986 31.0732 1996 42.3223 2006 52.8404 2016 28.5082

1967 4.6032 1977 14.6324 1987 35.9429 1997 45.3772 2007 65.7185 2017 26.4014

1968 5.9539 1978 15.1814 1988 36.6791 1998 49.7575 2008 66.8774 2018 25.8777

1969 7.2326 1979 22.4846 1989 34.2713 1999 51.7714 2009 61.5622 2019 26.9607

 Taiwan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.8739 1970 28.734 1980 83.1194 1990 120.4397 2000 221.919 2010 264.819

1961 12.5285 1971 31.4754 1981 74.567 1991 130.616 2001 224.030 2011 266.485

1962 14.1648 1972 35.8725 1982 74.854 1992 139.1358 2002 235.360 2012 255.476

1963 15.1086 1973 40.2464 1983 82.4673 1993 152.1717 2003 241.630 2013 257.707

1964 16.9072 1974 39.3118 1984 84.1396 1994 157.8755 2004 250.259 2014 261.243

1965 17.8448 1975 43.4569 1985 83.9175 1995 165.6482 2005 255.803 2015 257.156

1966 19.4616 1976 56.0537 1986 93.411 1996 173.7284 2006 248.964 2016 265.283

1967 21.9699 1977 61.0163 1987 97.1234 1997 186.9362 2007 273.733 2017 272.450

1968 24.1406 1978 70.8362 1988 111.8178 1998 197.6516 2008 260.072 2018 273.104

1969 26.291 1979 75.4992 1989 121.6922 1999 205.3138 2009 246.906 2019 262.639
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 Tajikistan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 4.068 1970 6.6257 1980 9.8 1990 10.1331 2000 2.2321 2010 2.5104

1961 4.1953 1971 7.0323 1981 9.614 1991 9.1224 2001 2.2855 2011 2.3164

1962 4.4033 1972 7.4003 1982 9.795 1992 7.2946 2002 1.8729 2012 2.9041

1963 4.7223 1973 7.7143 1983 9.9345 1993 5.1614 2003 2.0622 2013 2.8692

1964 5.0222 1974 8.0097 1984 10.0229 1994 2.3474 2004 2.5473 2014 4.4855

1965 5.3276 1975 8.421 1985 10.8086 1995 2.4429 2005 2.4212 2015 5.1628

1966 5.6264 1976 8.7449 1986 10.8369 1996 2.8225 2006 2.6341 2016 6.3054

1967 5.8833 1977 9.0421 1987 10.7925 1997 2.1489 2007 3.2043 2017 6.8727

1968 6.0486 1978 9.3523 1988 11.0807 1998 2.4944 2008 2.8816 2018 7.4733

1969 6.2993 1979 9.4292 1989 10.8333 1999 2.5155 2009 2.431 2019 8.9799

 Tanzania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.82806 1970 1.7654 1980 1.8736 1990 2.111 2000 2.5709 2010 6.9249

1961 0.70349 1971 2.4615 1981 2.1068 1991 2.2536 2001 3.0396 2011 7.7521

1962 0.76578 1972 2.1645 1982 2.1483 1992 2.1763 2002 3.487 2012 9.0622

1963 0.80242 1973 3.1827 1983 2.1963 1993 2.425 2003 3.6862 2013 9.9081

1964 1.0332 1974 2.3035 1984 2.347 1994 2.0636 2004 4.2317 2014 9.9003

1965 1.1615 1975 2.2816 1985 2.3379 1995 2.4337 2005 5.3601 2015 10.6375

1966 1.3701 1976 2.786 1986 2.2776 1996 2.5275 2006 5.879 2016 10.5353

1967 1.7581 1977 2.0076 1987 2.3675 1997 2.823 2007 5.7103 2017 11.0186

1968 1.6518 1978 2.1973 1988 2.2717 1998 2.4815 2008 5.9154 2018 11.5019

1969 1.7947 1979 2.0628 1989 2.1616 1999 2.4579 2009 5.7709 2019 11.6263

 Thailand

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.7095 1970 15.3525 1980 39.9562 1990 87.9172 2000 170.697 2010 256.422

1961 4.1407 1971 19.2211 1981 37.8168 1991 96.7461 2001 182.484 2011 253.800

1962 5.0268 1972 21.8055 1982 37.6356 1992 106.0945 2002 192.054 2012 270.174

1963 5.5616 1973 24.4202 1983 42.1173 1993 121.2135 2003 203.237 2013 286.068

1964 7.4703 1974 24.2105 1984 45.5558 1994 134.5066 2004 218.514 2014 279.994

1965 7.4402 1975 24.3715 1985 48.2304 1995 156.6361 2005 224.346 2015 283.293

1966 9.4654 1976 28.7162 1986 49.2234 1996 173.7286 2006 227.716 2016 281.704

1967 12.1501 1977 32.0649 1987 56.3062 1997 179.0595 2007 230.761 2017 286.336

1968 17.0757 1978 34.947 1988 66.2029 1998 159.2394 2008 228.116 2018 292.453

1969 14.54 1979 36.5865 1989 77.7842 1999 166.1435 2009 243.279 2019 288.279
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 Timor-Leste

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 2010 0.2345

1961 1971 1981 1991 2001 2011 0.24549

1962 1972 1982 1992 2002 0.16122 2012 0.29312

1963 1973 1983 1993 2003 0.16122 2013 0.44334

1964 1974 1984 1994 2004 0.17587 2014 0.51296

1965 1975 1985 1995 2005 0.17587 2015 0.50197

1966 1976 1986 1996 2006 0.17954 2016 0.49464

1967 1977 1987 1997 2007 0.1832 2017 0.4983

1968 1978 1988 1998 2008 0.20152 2018 0.52042

1969 1979 1989 1999 2009 0.22717 2019 8.9799

 Togo

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.065952 1970 0.2748 1980 0.7933 1990 0.97267 2000 1.3314 2010 2.5957

1961 0.0916 1971 0.3151 1981 0.7053 1991 1.0485 2001 1.1589 2011 2.5039

1962 0.087936 1972 0.40486 1982 0.81661 1992 1.0307 2002 1.3225 2012 2.2156

1963 0.10626 1973 0.41151 1983 0.62247 1993 1.0689 2003 1.8047 2013 2.1287

1964 0.1319 1974 0.39027 1984 0.6933 1994 1.0049 2004 1.7439 2014 2.2381

1965 0.1319 1975 0.31144 1985 0.65741 1995 1.1747 2005 1.7216 2015 2.6864

1966 0.17954 1976 0.32243 1986 0.84583 1996 1.2652 2006 1.5005 2016 3.0976

1967 0.19786 1977 0.46166 1987 0.92262 1997 0.87899 2007 1.5168 2017 3.0492

1968 0.19419 1978 0.35541 1988 0.96091 1998 1.29 2008 1.5228 2018 3.1673

1969 0.24182 1979 1.3813 1989 1.0214 1999 1.8504 2009 2.7408 2019 3.2614

 Tonga

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01099 1970 0.025648 1980 0.040304 1990 0.076944 2000 0.09526 2010 0.11725

1961 0.01099 1971 0.01832 1981 0.047632 1991 0.095264 2001 0.08793 2011 0.10259

1962 0.01099 1972 0.021984 1982 0.043968 1992 0.069616 2002 0.10259 2012 0.10626

1963 0.01099 1973 0.025648 1983 0.047632 1993 0.084272 2003 0.11725 2013 0.11358

1964 0.01099 1974 0.021984 1984 0.047632 1994 0.0916 2004 0.10992 2014 0.11358

1965 0.01099 1975 0.032976 1985 0.047632 1995 0.095264 2005 0.11358 2015 0.12091

1966 0.01099 1976 0.029312 1986 0.047632 1996 0.076944 2006 0.12824 2016 0.12824

1967 0.01465 1977 0.029312 1987 0.05496 1997 0.098928 2007 0.11358 2017 0.15755

1968 0.01465 1978 0.03664 1988 0.069616 1998 0.087936 2008 0.12091 2018 0.16455

1969 0.01099 1979 0.040304 1989 0.069616 1999 0.10992 2009 0.1319 2019 0.1753
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 Trinidad and Tobago

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.5787 1970 8.9904 1980 16.9194 1990 16.9825 2000 24.191 2010 46.9586

1961 4.5979 1971 8.0964 1981 17.2424 1991 16.9683 2001 26.57 2011 46.6787

1962 7.2321 1972 8.2355 1982 18.4052 1992 19.1042 2002 28.5906 2012 45.556

1963 1.3074 1973 9.3898 1983 16.2755 1993 17.4118 2003 32.2505 2013 45.2357

1964 3.7915 1974 10.042 1984 17.5044 1994 17.0232 2004 32.5742 2014 46.3448

1965 5.1911 1975 9.6133 1985 20.7231 1995 16.4602 2005 37.943 2015 45.121

1966 4.0515 1976 15.9108 1986 17.3548 1996 20.7683 2006 42.4141 2016 40.0521

1967 4.6342 1977 16.1593 1987 17.4891 1997 20.5602 2007 45.2356 2017 39.9678

1968 4.0369 1978 15.3119 1988 15.8331 1998 19.7511 2008 44.0949 2018 37.8656

1969 3.9012 1979 16.7071 1989 16.105 1999 22.4658 2009 44.2193 2019 37.8639

 Tunisia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1.7241 1970 3.7387 1980 9.4653 1990 13.1271 2000 19.6703 2010 27.1025

1961 1.7647 1971 4.2076 1981 9.8002 1991 15.3629 2001 20.5453 2011 25.5243

1962 1.7939 1972 4.7314 1982 9.4929 1992 14.8918 2002 20.5586 2012 26.3064

1963 1.9441 1973 4.8234 1983 11.2497 1993 16.3539 2003 20.9255 2013 26.8655

1964 2.7535 1974 5.3912 1984 11.4885 1994 15.7761 2004 21.9266 2014 27.8921

1965 2.4604 1975 5.5411 1985 11.8709 1995 15.5488 2005 22.2687 2015 29.2746

1966 2.8816 1976 5.8414 1986 11.9924 1996 16.5808 2006 22.6025 2016 29.0081

1967 3.0832 1977 6.7487 1987 11.6633 1997 16.7478 2007 23.6844 2017 29.62

1968 3.5923 1978 7.4779 1988 12.3768 1998 17.8085 2008 24.3334 2018 30.3571

1969 3.8521 1979 8.7503 1989 13.1404 1999 18.1202 2009 24.3216 2019 31.0129

 Turkey

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 16.7985 1970 42.5792 1980 75.2124 1990 151.5085 2000 229.790 2010 314.38

1961 17.3408 1971 47.6382 1981 79.1862 1991 157.982 2001 213.486 2011 339.482

1962 21.6045 1972 53.7219 1982 86.2102 1992 163.9222 2002 220.977 2012 353.666

1963 22.6399 1973 59.31 1983 89.8124 1993 171.0112 2003 236.483 2013 345.220

1964 26.303 1974 60.9287 1984 94.9063 1994 167.4331 2004 244.464 2014 361.675

1965 27.353 1975 65.4194 1985 105.6626 1995 180.903 2005 264.200 2015 381.331

1966 31.5058 1976 73.3595 1986 115.6182 1996 199.5219 2006 281.649 2016 401.239

1967 33.4791 1977 81.1208 1987 128.4426 1997 212.0056 2007 312.736 2017 425.329

1968 36.2655 1978 76.714 1988 124.728 1998 212.0403 2008 309.321 2018 419.194

1969 38.7527 1979 75.038 1989 137.5705 1999 207.8042 2009 315.359 2019 405.126
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 Turkmenistan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 16.5798 1970 26.997 1980 39.8942 1990 41.1621 2000 37.4656 2010 57.1089

1961 17.098 1971 28.6526 1981 39.1318 1991 35.6167 2001 37.9998 2011 62.1823

1962 17.9449 1972 30.1513 1982 39.8646 1992 31.9954 2002 39.8896 2012 64.5329

1963 19.2437 1973 31.4303 1983 40.4271 1993 27.5175 2003 44.5201 2013 66.3741

1964 20.4647 1974 32.6331 1984 40.7827 1994 33.4425 2004 46.4471 2014 68.0321

1965 21.7093 1975 34.3083 1985 43.9769 1995 33.9322 2005 48.2316 2015 70.231

1966 22.9266 1976 35.621 1986 44.0842 1996 30.6037 2006 49.3721 2016 70.1638

1967 23.9727 1977 36.8252 1987 43.901 1997 30.5559 2007 55.8901 2017 70.1931

1968 24.6456 1978 38.082 1988 45.0702 1998 32.025 2008 56.6657 2018 78.0347

1969 25.6661 1979 38.3901 1989 44.0591 1999 37.605 2009 50.1707 2019 85.6465

 Turks and Caicos Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.029312 2000 0.069616 2010 0.1832

1961 1971 1981 1991 0.029312 2001 0.07328 2011 0.1832

1962 1972 1982 1992 0.032976 2002 0.098928 2012 0.1832

1963 1973 1983 1993 0.040304 2003 0.10259 2013 0.18686

1964 1974 1984 1994 0.043968 2004 0.10259 2014 0.19786

1965 1975 1985 1995 0.047632 2005 0.12091 2015 0.20518

1966 1976 1986 1996 0.047632 2006 0.1429 2016 0.21618

1967 1977 1987 1997 0.05496 2007 0.16488 2017 0.23083

1968 1978 1988 1998 0.058624 2008 0.17221 2018 0.2377

1969 1979 1989 1999 0.065952 2009 0.17954 2019 0.23147

 Tuvalu

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 0.007328 2000 0.00732 2010 0.00732

1961 1971 1981 1991 0.007328 2001 0.00732 2011 0.00732

1962 1972 1982 1992 0.007328 2002 0.01099 2012 0.01092

1963 1973 1983 1993 0.007328 2003 0.01099 2013 0.01099

1964 1974 1984 1994 0.007328 2004 0.01099 2014 0.01099

1965 1975 1985 1995 0.007328 2005 0.01099 2015 0.01099

1966 1976 1986 1996 0.007328 2006 0.00732 2016 0.01099

1967 1977 1987 1997 0.007328 2007 0.01099 2017 0.01099

1968 1978 1988 1998 0.007328 2008 0.01099 2018 0.01148

1969 1979 1989 1999 0.007328 2009 0.01099 2019 0.01223
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 Uganda

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.42106 1970 1.4428 1980 0.62602 1990 0.76171 2000 1.3608 2010 3.5696

1961 0.40644 1971 1.4377 1981 0.52704 1991 0.7803 2001 1.4175 2011 3.8241

1962 0.42845 1972 1.3784 1982 0.54469 1992 0.79827 2002 1.4461 2012 3.627

1963 0.43214 1973 1.1764 1983 0.61354 1993 0.79792 2003 1.5124 2013 3.7545

1964 0.49068 1974 1.1897 1984 0.58041 1994 0.70841 2004 1.6069 2014 4.097

1965 0.62601 1975 1.1286 1985 0.61691 1995 0.92648 2005 2.0179 2015 4.5219

1966 0.73232 1976 0.98537 1986 0.70185 1996 1.0179 2006 2.3834 2016 4.8051

1967 0.80918 1977 0.80195 1987 0.76857 1997 1.0607 2007 2.71 2017 5.2264

1968 0.98133 1978 0.69515 1988 0.86287 1998 1.2093 2008 2.7796 2018 5.3848

1969 1.1754 1979 0.67086 1989 0.80048 1999 1.254 2009 2.9998 2019 5.5313

 Ukraine

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 267.4304 1970 435.6509 1980 642.992 1990 705.83 2000 285.3372 2010 294.0783

1961 275.8111 1971 462.2622 1981 630.6241 1991 632.5366 2001 303.5592 2011 307.9528

1962 289.4974 1972 486.3162 1982 642.4406 1992 589.0603 2002 295.6735 2012 303.9526

1963 310.4692 1973 506.814 1983 651.4437 1993 510.1995 2003 307.0175 2013 297.2943

1964 330.1882 1974 526.0687 1984 657.1193 1994 419.2663 2004 310.3627 2014 257.5847

1965 350.2842 1975 552.9187 1985 708.6647 1995 389.8646 2005 313.1181 2015 223.9119

1966 369.9364 1976 574.0917 1986 710.3668 1996 351.4088 2006 332.6703 2016 234.2003

1967 386.8343 1977 593.5025 1987 707.3431 1997 340.2427 2007 336.364 2017 223.2322

1968 397.7108 1978 613.7679 1988 726.1392 1998 328.5789 2008 325.5327 2018 231.6942

1969 414.1898 1979 618.7449 1989 709.7377 1999 298.204 2009 277.2935 2019 223.2294

 United Arab Emirates

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 0.01099 1970 15.2349 1980 36.8234 1990 51.7026 2000 111.788 2010 155.977

1961 0.01099 1971 21.1669 1981 36.7669 1991 56.6723 2001 100.592 2011 169.174

1962 0.01832 1972 23.4349 1982 36.7528 1992 57.7577 2002 83.698 2012 217.361

1963 0.02198 1973 30.6054 1983 35.2205 1993 65.5654 2003 105.618 2013 221.836

1964 0.01832 1974 31.3016 1984 46.1556 1994 72.6046 2004 111.801 2014 215.906

1965 0.02198 1975 31.0451 1985 49.6525 1995 70.0127 2005 114.477 2015 239.670

1966 0.02564 1976 39.617 1986 47.0301 1996 72.7748 2006 121.737 2016 228.583

1967 0.916 1977 38.7513 1987 47.4504 1997 73.1007 2007 133.263 2017 186.623

1968 1.2421 1978 44.7536 1988 48.0956 1998 80.6825 2008 153.968 2018 188.541

1969 20.5074 1979 36.5465 1989 54.1861 1999 77.5426 2009 165.500 2019 190.683
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 United Kingdom

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 584.02 1970 652.5774 1980 579.036 1990 600.4795 2000 567.5039 2010 512.0237

1961 588.6148 1971 660.3883 1981 560.555 1991 608.5792 2001 576.1954 2011 469.8038

1962 592.9315 1972 648.0264 1982 548.241 1992 593.0927 2002 560.3006 2012 487.7958

1963 603.3857 1973 659.5773 1983 545.4858 1993 578.8422 2003 571.7706 2013 477.901

1964 607.866 1974 617.1839 1984 529.1089 1994 575.1079 2004 573.2158 2014 439.0575

1965 622.1116 1975 603.2474 1985 559.6281 1995 566.8113 2005 569.9274 2015 422.4906

1966 618.0747 1976 598.5263 1986 568.5548 1996 588.4442 2006 567.5277 2016 399.1096

1967 592.057 1977 604.3621 1987 571.6685 1997 562.5613 2007 559.2488 2017 388.0884

1968 606.4883 1978 604.714 1988 570.2949 1998 567.8137 2008 544.812 2018 380.1386

1969 628.3825 1979 644.5133 1989 581.5773 1999 560.9515 2009 494.2942 2019 369.8784

 United States of America

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2887.82 1970 4325.501 1980 4716.716 1990 5128.301 2000 5998.07 2010 5698.056

1961 2877.37 1971 4351.309 1981 4530.37 1991 5078.89 2001 5900.437 2011 5565.294

1962 2984.002 1972 4558.453 1982 4301.971 1992 5182.707 2002 5942.652 2012 5367.569

1963 3116.022 1973 4762.452 1983 4335.917 1993 5283.438 2003 5991.96 2013 5514.029

1964 3252.755 1974 4592.958 1984 4468.262 1994 5377.033 2004 6107.618 2014 5561.719

1965 3388.193 1975 4400.795 1985 4484.338 1995 5438.906 2005 6131.893 2015 5412.432

1966 3559.179 1976 4607.168 1986 4487.856 1996 5626.912 2006 6051.051 2016 5292.268

1967 3693.298 1977 4735.366 1987 4680.834 1997 5703.707 2007 6128.43 2017 5253.606

1968 3828.306 1978 4882.964 1988 4885.591 1998 5751.052 2008 5930.54 2018 5424.882

1969 4021.503 1979 4894.043 1989 4948.021 1999 5830.298 2009 5491.036 2019 5284.697

 Uruguay

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 4.3145 1970 5.7358 1980 5.8185 1990 3.9671 2000 5.2671 2010 6.2967

1961 4.1168 1971 5.8019 1981 5.356 1991 4.5275 2001 5.0306 2011 7.6538

1962 4.0069 1972 6.0694 1982 4.8538 1992 5.1429 2002 4.5577 2012 8.5931

1963 4.3148 1973 5.7687 1983 3.8035 1993 4.4392 2003 4.5279 2013 7.4935

1964 4.5527 1974 5.677 1984 3.4382 1994 4.0299 2004 5.5638 2014 6.6563

1965 5.5163 1975 5.9624 1985 3.2838 1995 4.5585 2005 5.7258 2015 6.6552

1966 5.3988 1976 5.8871 1986 3.1649 1996 5.4044 2006 6.5961 2016 6.5253

1967 4.8788 1977 5.6396 1987 3.5425 1997 5.5132 2007 5.9465 2017 6.1735

1968 4.8784 1978 5.7293 1988 4.786 1998 5.6401 2008 8.2007 2018 6.2518

1969 5.5894 1979 6.2624 1989 4.8526 1999 6.681 2009 7.9473 2019 6.3781
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 Uzbekistan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 44.5398 1970 72.5449 1980 106.6222 1990 109.9389 2000 120.994 2010 103.3433

1961 45.9351 1971 76.93 1981 104.5426 1991 112.7555 2001 122.5864 2011 112.8219

1962 48.2136 1972 80.8919 1982 106.4895 1992 110.9843 2002 127.5183 2012 114.924

1963 51.7042 1973 84.2586 1983 107.948 1993 115.6172 2003 125.936 2013 109.3234

1964 54.9859 1974 87.4163 1984 108.8654 1994 107.98 2004 125.1182 2014 103.4952

1965 58.3315 1975 91.8339 1985 117.3962 1995 102.6637 2005 116.5762 2015 101.7913

1966 61.6035 1976 95.3138 1986 117.6026 1996 105.546 2006 119.3649 2016 105.2219

1967 64.416 1977 98.499 1987 117.0915 1997 106.6296 2007 119.1132 2017 109.2815

1968 66.2253 1978 101.8351 1988 120.1952 1998 118.4989 2008 123.0388 2018 113.9384

1969 68.9679 1979 102.6365 1989 117.4423 1999 121.7392 2009 106.2518 2019 110.246

 Vanuatu

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 0.040304 1980 0.062288 1990 0.065952 2000 0.084272 2010 0.12091

1961 1971 0.058624 1981 0.051296 1991 0.065952 2001 0.087936 2011 0.1319

1962 0.040304 1972 0.062288 1982 0.051296 1992 0.062288 2002 0.084272 2012 0.11358

1963 0.032976 1973 0.05496 1983 0.05496 1993 0.062288 2003 0.084272 2013 0.10626

1964 0.062288 1974 0.062288 1984 0.05496 1994 0.062288 2004 0.058624 2014 0.15389

1965 0.047632 1975 0.05496 1985 0.12091 1995 0.065952 2005 0.058624 2015 0.1319

1966 0.076944 1976 0.043968 1986 0.058624 1996 0.084272 2006 0.047632 2016 0.14656

1967 0.084272 1977 0.051296 1987 0.047632 1997 0.084272 2007 0.098928 2017 0.13923

1968 0.062288 1978 0.058624 1988 0.065952 1998 0.080608 2008 0.095264 2018 0.14541

1969 0.043968 1979 0.062288 1989 0.062288 1999 0.084272 2009 0.12091 2019 0.15492

 Venezuela

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 57.0168 1970 74.4894 1980 90.6406 1990 121.822 2000 151.871 2010 184.083

1961 51.8798 1971 62.5002 1981 91.7916 1991 115.0525 2001 171.974 2011 170.400

1962 54.0561 1972 62.5141 1982 93.201 1992 105.5781 2002 192.746 2012 190.974

1963 56.1517 1973 66.4329 1983 92.9079 1993 123.9679 2003 191.456 2013 182.850

1964 56.55 1974 75.0576 1984 93.0029 1994 129.5309 2004 151.268 2014 184.136

1965 60.7296 1975 63.7504 1985 101.0265 1995 132.8747 2005 163.823 2015 170.899

1966 56.974 1976 57.2734 1986 109.2398 1996 122.3396 2006 160.160 2016 163.190

1967 65.7524 1977 63.6501 1987 110.6611 1997 133.4835 2007 149.923 2017 146.673

1968 65.5721 1978 68.5914 1988 115.7518 1998 166.8022 2008 168.69 2018 129.596

1969 68.9332 1979 76.4474 1989 108.5711 1999 172.5625 2009 169.571 2019 116.687
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 Vietnam

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 7.4839 1970 28.173 1980 16.7857 1990 21.1999 2000 52.3321 2010 136.1131

1961 7.9783 1971 24.5054 1981 17.6907 1991 21.2629 2001 59.5292 2011 145.0478

1962 9.3377 1972 23.0372 1982 18.3319 1992 21.3237 2002 68.6613 2012 135.6859

1963 9.1104 1973 25.0733 1983 19.2553 1993 22.7106 2003 76.277 2013 140.8932

1964 11.7878 1974 19.0646 1984 17.4744 1994 26.0186 2004 87.8002 2014 159.5828

1965 13.1499 1975 21.7797 1985 21.0685 1995 28.5235 2005 94.8591 2015 184.4356

1966 19.1811 1976 13.9049 1986 20.7513 1996 34.0229 2006 99.1304 2016 185.4322

1967 22.9622 1977 15.251 1987 24.096 1997 44.3092 2007 100.5773 2017 182.584

1968 23.6009 1978 15.389 1988 23.0087 1998 46.5548 2008 113.2445 2018 211.7741

1969 27.0556 1979 16.2484 1989 17.326 1999 46.658 2009 122.8329 2019 247.7089

 Wallis and Futuna Islands

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1970 1980 1990 2000 2010 0.029312

1961 1971 1981 1991 2001 0.014656 2011 0.025648

1962 1972 1982 1992 2002 0.025648 2012 0.025648

1963 1973 1983 1993 2003 0.025648 2013 0.021984

1964 1974 1984 1994 2004 0.025648 2014 0.021984

1965 1975 1985 1995 2005 0.029312 2015 0.021984

1966 1976 1986 1996 2006 0.029312 2016 0.025648

1967 1977 1987 1997 2007 0.029312 2017 0.025648

1968 1978 1988 1998 2008 0.021984 2018 0.026786

1969 1979 1989 1999 2009 0.029312 2019 0.028538

 Yemen

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 3.631 1970 2.5098 1980 3.3135 1990 9.5214 2000 14.4742 2010 23.1519

1961 2.6637 1971 1.9712 1981 4.2254 1991 9.1286 2001 16.0167 2011 20.1907

1962 3.8838 1972 1.4949 1982 5.9336 1992 9.8742 2002 15.5535 2012 18.2675

1963 2.9165 1973 2.7296 1983 6.2856 1993 8.626 2003 17.0825 2013 24.9767

1964 3.631 1974 2.2458 1984 7.097 1994 8.9826 2004 18.6462 2014 24.1852

1965 3.9278 1975 2.1689 1985 8.5734 1995 10.3522 2005 19.7948 2015 13.0063

1966 3.4625 1976 2.5643 1986 8.192 1996 10.5269 2006 21.0851 2016 10.4258

1967 3.0521 1977 2.978 1987 8.6267 1997 11.316 2007 20.719 2017 10.1071

1968 11.6369 1978 3.1021 1988 9.5502 1998 12.0635 2008 22.025 2018 9.9453

1969 4.6753 1979 3.2185 1989 9.9351 1999 13.7247 2009 24.2512 2019 10.255
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 Zambia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 4.3553 1970 3.7659 1980 3.5233 1990 2.4058 2000 1.7851 2010 2.5626

1961 3.709 1971 3.7867 1981 3.358 1991 2.3821 2001 1.8849 2011 2.7814

1962 3.5827 1972 4.0614 1982 3.5108 1992 2.4241 2002 1.9601 2012 3.4891

1963 3.4445 1973 4.5857 1983 3.2608 1993 2.4672 2003 2.0756 2013 3.7561

1964 3.275 1974 4.1972 1984 2.8044 1994 2.393 2004 2.1043 2014 4.2557

1965 3.9123 1975 4.0762 1985 2.7327 1995 2.141 2005 2.2421 2015 4.2956

1966 3.4982 1976 4.0194 1986 2.8656 1996 1.837 2006 2.2317 2016 4.8378

1967 4.7876 1977 3.7349 1987 2.6738 1997 2.3537 2007 1.8676 2017 6.5196

1968 4.5676 1978 3.4709 1988 3.109 1998 2.2792 2008 2.1056 2018 6.9301

1969 4.2709 1979 3.5965 1989 2.57 1999 1.7782 2009 2.4063 2019 6.7205

 Zimbabwe

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 5.9431 1970 8.1541 1980 9.614 1990 15.5693 2000 13.8182 2010 7.8642

1961 5.0613 1971 8.7327 1981 9.4054 1991 15.8653 2001 12.5092 2011 9.4803

1962 4.889 1972 8.2158 1982 8.7799 1992 16.9174 2002 11.897 2012 7.6589

1963 4.7004 1973 9.2709 1983 10.4251 1993 16.2591 2003 10.6083 2013 11.6166

1964 4.4691 1974 9.047 1984 9.8796 1994 17.6845 2004 9.4286 2014 11.9726

1965 5.2092 1975 8.3109 1985 10.2137 1995 15.0294 2005 10.6996 2015 12.1705

1966 6.0409 1976 10.8549 1986 13.068 1996 14.8906 2006 10.3649 2016 10.8148

1967 5.2945 1977 9.2844 1987 15.1701 1997 14.2942 2007 9.834 2017 10.2468

1968 6.3777 1978 9.2797 1988 16.0295 1998 14.1396 2008 7.7189 2018 11.3406

1969 6.7439 1979 9.4317 1989 16.1137 1999 15.7277 2009 5.4759 2019 10.3743

 Appendix 2: Region CO2 Data

 EU27

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2067.81 1970 3298.380 1980 4056.047 1990 3868.052 2000 3613.122 2010 3442.0

1961 2157.634 1971 3382.078 1981 3843.272 1991 3807.339 2001 3669.487 2011 3336.5

1962 2312.447 1972 3509.603 1982 3752.486 1992 3681.107 2002 3671.263 2012 3260.9

1963 2500.409 1973 3693.407 1983 3712.335 1993 3611.340 2003 3755.270 2013 3179.9

1964 2611.538 1974 3674.085 1984 3741.947 1994 3597.386 2004 3765.850 2014 3044.6

1965 2655.791 1975 3586.972 1985 3799.637 1995 3648.794 2005 3746.530 2015 3098.9

1966 2715.403 1976 3879.810 1986 3790.143 1996 3732.12 2006 3755.001 2016 3103.5

1967 2777.134 1977 3832.649 1987 3823.892 1997 3668.239 2007 3716.530 2017 3127.4

1968 2949.083 1978 3965.622 1988 3781.32 1998 3659.816 2008 3630.984 2018 3054.4

1969 3150.778 1979 4095.180 1989 3821.090 1999 3600.88 2009 3340.520 2019 2916.9
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 Canada

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 192.72 1970 341.18 1980 442.82 1990 462.12 2000 572.16 2010 555.55

1961 194.00 1971 352.29 1981 429.60 1991 452.49 2001 564.95 2011 566.74

1962 206.99 1972 380.79 1982 414.43 1992 467.04 2002 570.84 2012 569.74

1963 210.91 1973 381.26 1983 408.31 1993 467.41 2003 587.18 2013 576.33

1964 237.58 1974 389.61 1984 425.20 1994 482.44 2004 585.70 2014 575.94

1965 251.92 1975 396.77 1985 421.68 1995 494.92 2005 576.43 2015 575.91

1966 259.07 1976 398.95 1986 404.66 1996 510.74 2006 570.95 2016 564.03

1967 281.64 1977 407.77 1987 430.92 1997 524.79 2007 594.22 2017 572.83

1968 303.26 1978 415.51 1988 455.61 1998 533.64 2008 575.59 2018 586.50

1969 307.12 1979 441.65 1989 462.82 1999 549.55 2009 542.55 2019 576.65

 China

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 778.98 1970 770.17 1980 1458.89 1990 2420.79 2000 3349.30 2010 8500.54

1961 550.96 1971 874.02 1981 1442.78 1991 2538.03 2001 3426.14 2011 9388.20

1962 439.34 1972 928.89 1982 1570.47 1992 2653.19 2002 3782.44 2012 9633.90

1963 435.52 1973 965.65 1983 1655.81 1993 2835.80 2003 4452.31 2013 9796.53

1964 435.70 1974 985.09 1984 1802.32 1994 3010.24 2004 5125.89 2014 9820.36

1965 474.68 1975 1142.10 1985 1951.77 1995 3265.06 2005 5771.17 2015 9683.20

1966 521.46 1976 1190.96 1986 2052.24 1996 3408.35 2006 6377.75 2016 9552.52

1967 432.22 1977 1304.40 1987 2191.05 1997 3414.55 2007 6861.75 2017 9750.73

1968 467.81 1978 1455.26 1988 2347.76 1998 3265.90 2008 7375.19 2018 9956.57

1969 575.94 1979 1487.11 1989 2386.89 1999 3258.14 2009 7758.81 2019 10174.68

 India

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 111.49 1970 181.95 1980 292.08 1990 578.68 2000 978.42 2010 1678.48

1961 120.58 1971 192.20 1981 315.36 1991 616.10 2001 992.52 2011 1766.07

1962 132.78 1972 203.29 1982 325.78 1992 656.22 2002 1022.84 2012 1941.31

1963 142.65 1973 209.35 1983 352.64 1993 678.11 2003 1059.41 2013 2033.40

1964 139.69 1974 216.13 1984 361.99 1994 717.12 2004 1125.26 2014 2184.44

1965 153.92 1975 234.51 1985 398.07 1995 762.33 2005 1185.75 2015 2253.43

1966 159.59 1976 245.07 1986 426.82 1996 826.15 2006 1259.52 2016 2392.36

1967 159.78 1977 259.29 1987 455.89 1997 859.92 2007 1357.91 2017 2456.85

1968 174.30 1978 263.48 1988 492.29 1998 877.93 2008 1462.57 2018 2591.32

1969 177.64 1979 276.62 1989 541.29 1999 951.67 2009 1612.51 2019 2616.45
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 Iran

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 37.36 1970 91.79 1980 120.56 1990 209.24 2000 369.26 2010 564.03

1961 36.51 1971 101.63 1981 112.53 1991 225.95 2001 394.93 2011 579.04

1962 37.43 1972 106.02 1982 137.52 1992 226.96 2002 397.80 2012 600.68

1963 41.30 1973 129.48 1983 149.21 1993 235.58 2003 413.99 2013 608.71

1964 47.52 1974 143.78 1984 149.94 1994 263.52 2004 442.09 2014 641.92

1965 53.72 1975 139.21 1985 159.95 1995 271.15 2005 463.53 2015 640.81

1966 64.10 1976 156.46 1986 147.54 1996 274.01 2006 503.79 2016 648.06

1967 67.88 1977 163.73 1987 158.61 1997 267.10 2007 513.31 2017 724.58

1968 82.33 1978 162.10 1988 175.11 1998 306.01 2008 534.91 2018 755.40

1969 83.04 1979 163.67 1989 190.10 1999 379.63 2009 546.89 2019 779.53

 Japan

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 232.50 1970 767.96 1980 944.87 1990 1158.39 2000 1264.84 2010 1214.07

1961 282.79 1971 796.54 1981 926.84 1991 1170.07 2001 1250.21 2011 1264.16

1962 292.86 1972 852.17 1982 897.41 1992 1179.74 2002 1279.45 2012 1305.43

1963 324.84 1973 914.27 1983 880.91 1993 1172.65 2003 1287.64 2013 1314.70

1964 358.89 1974 914.31 1984 937.07 1994 1227.57 2004 1282.87 2014 1263.05

1965 386.47 1975 868.51 1985 912.40 1995 1239.93 2005 1290.06 2015 1222.78

1966 419.25 1976 907.15 1986 912.26 1996 1251.87 2006 1266.83 2016 1203.17

1967 489.31 1977 933.24 1987 902.53 1997 1245.11 2007 1302.52 2017 1187.66

1968 561.91 1978 901.59 1988 985.47 1998 1205.42 2008 1231.91 2018 1135.69

1969 653.22 1979 953.07 1989 1021.68 1999 1242.02 2009 1162.65 2019 1106.66

 Russian Federation

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 885.86 1970 1442.53 1980 2132.30 1990 2525.29 2000 1471.05 2010 1612.88

1961 913.53 1971 1530.89 1981 2091.65 1991 2395.98 2001 1507.50 2011 1664.95

1962 958.76 1972 1610.80 1982 2131.14 1992 1957.66 2002 1495.48 2012 1679.87

1963 1028.22 1973 1678.91 1983 2161.34 1993 1859.46 2003 1525.39 2013 1619.17

1964 1093.52 1974 1742.93 1984 2180.50 1994 1641.40 2004 1530.47 2014 1622.35

1965 1159.99 1975 1832.16 1985 2351.68 1995 1612.93 2005 1547.38 2015 1622.86

1966 1224.98 1976 1902.63 1986 2357.64 1996 1580.16 2006 1606.31 2016 1618.30

1967 1280.90 1977 1967.28 1987 2347.91 1997 1475.16 2007 1604.32 2017 1646.18

1968 1316.89 1978 2034.81 1988 2410.63 1998 1458.16 2008 1636.69 2018 1691.36

1969 1371.48 1979 2051.61 1989 2356.63 1999 1486.09 2009 1528.76 2019 1678.37
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 Saudi Arabia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2.67 1970 45.25 1980 169.24 1990 185.49 2000 296.35 2010 517.72

1961 3.57 1971 59.76 1981 175.30 1991 267.39 2001 296.57 2011 497.66

1962 6.25 1972 70.28 1982 157.89 1992 285.07 2002 325.68 2012 563.18

1963 6.94 1973 95.05 1983 160.83 1993 313.33 2003 326.52 2013 540.81

1964 7.04 1974 98.70 1984 155.51 1994 307.47 2004 394.58 2014 601.90

1965 4.22 1975 83.26 1985 172.42 1995 234.71 2005 395.85 2015 645.41

1966 6.41 1976 101.46 1986 204.60 1996 258.26 2006 431.29 2016 565.75

1967 25.49 1977 118.07 1987 190.44 1997 215.80 2007 386.51 2017 579.42

1968 29.08 1978 115.02 1988 202.25 1998 207.23 2008 432.34 2018 576.76

1969 35.27 1979 138.00 1989 203.42 1999 225.98 2009 465.84 2019 582.15

 South Korea

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 12.54 1970 53.72 1980 134.89 1990 247.44 2000 445.44 2010 565.96

1961 14.45 1971 58.55 1981 139.78 1991 262.04 2001 448.55 2011 588.40

1962 17.26 1972 60.28 1982 141.98 1992 282.19 2002 463.63 2012 583.63

1963 21.08 1973 73.03 1983 151.04 1993 321.84 2003 462.41 2013 591.54

1964 22.20 1974 75.63 1984 164.05 1994 344.26 2004 478.61 2014 586.55

1965 24.98 1975 81.78 1985 178.48 1995 373.99 2005 459.35 2015 595.39

1966 29.98 1976 93.27 1986 182.67 1996 401.53 2006 465.61 2016 617.96

1967 35.11 1977 105.69 1987 192.94 1997 427.79 2007 493.35 2017 620.61

1968 37.20 1978 113.40 1988 222.31 1998 363.55 2008 505.78 2018 634.93

1969 42.47 1979 133.22 1989 236.25 1999 398.33 2009 506.76 2019 611.26

 United States of America

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 2887.82 1970 4325.50 1980 4716.72 1990 5128.30 2000 5998.07 2010 5698.06

1961 2877.37 1971 4351.31 1981 4530.37 1991 5078.89 2001 5900.44 2011 5565.29

1962 2984.00 1972 4558.45 1982 4301.97 1992 5182.71 2002 5942.65 2012 5367.57

1963 3116.02 1973 4762.45 1983 4335.92 1993 5283.44 2003 5991.96 2013 5514.03

1964 3252.76 1974 4592.96 1984 4468.26 1994 5377.03 2004 6107.62 2014 5561.72

1965 3388.19 1975 4400.80 1985 4484.34 1995 5438.91 2005 6131.89 2015 5412.43

1966 3559.18 1976 4607.17 1986 4487.86 1996 5626.91 2006 6051.05 2016 5292.27

1967 3693.30 1977 4735.37 1987 4680.83 1997 5703.71 2007 6128.43 2017 5253.61

1968 3828.31 1978 4882.96 1988 4885.59 1998 5751.05 2008 5930.54 2018 5424.88

1969 4021.50 1979 4894.04 1989 4948.02 1999 5830.30 2009 5491.04 2019 5284.70
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 Appendix 3: Landuse Emitted CO2 Data

 Canada

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 111.5096 1970 148.5686 1980 168.1168 1990 96.6678 2000 53.04728 2010 36.56384

1961 110.3195 1971 146.3471 1981 156.491 1991 87.83631 2001 36.80386

1962 146.9886 1972 143.1117 1982 125.2439 1992 256.0776 2002 40.59827

1963 147.5292 1973 157.1652 1983 133.4731 1993 238.7394 2003 21.87173

1964 148.4875 1974 148.5043 1984 132.411 1994 250.8148 2004 37.41198

1965 147.9572 1975 131.0509 1985 130.1756 1995 238.6652 2005 27.823

1966 151.1009 1976 147.2265 1986 133.3355 1996 217.8494 2006 7.19687

1967 142.9784 1977 150.6898 1987 139.3646 1997 78.85656 2007 −46.2662

1968 145.4964 1978 169.1143 1988 133.2929 1998 61.97786 2008 34.83124

1969 149.271 1979 175.9101 1989 125.0358 1999 58.313 2009 10.0591

 Caribbean

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 −7.3280 1970 −10.043 1980 −8.4996 1990 −12.532 2000 −10.428 2010 −6.7448

1961 −8.9030 1971 −10.836 1981 −9.2137 1991 −13.683 2001 −9.7767

1962 −8.0595 1972 −9.6483 1982 −8.6822 1992 −13.203 2002 −11.325

1963 −7.9850 1973 −7.9048 1983 −11.883 1993 −12.495 2003 −9.0106

1964 −8.3999 1974 −7.0837 1984 −13.165 1994 −11.771 2004 −8.3712

1965 −9.2273 1975 −7.0361 1985 −15.217 1995 −10.097 2005 −7.3969

1966 −8.5263 1976 −8.5440 1986 −14.707 1996 −10.376 2006 −7.8399

1967 −9.1324 1977 −8.1065 1987 −14.829 1997 −10.109 2007 −7.3178

1968 −9.4438 1978 −7.7831 1988 −13.475 1998 −11.430 2008 −7.6148

1969 −9.8281 1979 −7.8713 1989 −12.844 1999 −10.372 2009 −6.9302

 Central Africa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 287.0916 1970 367.6628 1980 440.3328 1990 275.9077 2000 231.4603 2010 216.7678

1961 295.7209 1971 373.9976 1981 440.378 1991 248.208 2001 233.0872

1962 304.4915 1972 381.4084 1982 441.7183 1992 226.8864 2002 234.8051

1963 313.287 1973 384.9074 1983 436.7021 1993 222.1003 2003 232.8186

1964 321.8432 1974 389.8788 1984 434.3236 1994 221.385 2004 238.2913

1965 329.1825 1975 392.2199 1985 433.8769 1995 228.8814 2005 231.8849

1966 337.8154 1976 400.3122 1986 433.3929 1996 232.0794 2006 218.9309

1967 343.4951 1977 409.0751 1987 434.0373 1997 233.8252 2007 216.7447

1968 352.916 1978 419.6546 1988 434.4223 1998 237.0666 2008 217.4057

1969 359.3403 1979 429.7364 1989 433.4435 1999 238.7709 2009 222.9565

3 Climate Change Effect on the Urbanization: Intensified Rainfall and Flood…



144

 Central America & Mexico

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 139.9749 1970 191.8401 1980 162.3546 1990 239.3857 2000 199.1995 2010 128.8346

1961 170.0605 1971 206.9909 1981 175.9949 1991 261.3767 2001 186.7487

1962 153.9481 1972 184.2968 1982 165.8429 1992 252.2072 2002 216.3293

1963 152.5259 1973 150.9922 1983 226.9913 1993 238.6796 2003 172.1157

1964 160.4495 1974 135.3089 1984 251.4713 1994 224.8473 2004 159.9015

1965 176.2547 1975 134.4005 1985 290.6787 1995 192.8838 2005 141.2917

1966 162.8651 1976 163.2023 1986 280.9407 1996 198.1998 2006 149.7544

1967 174.4421 1977 154.845 1987 283.2712 1997 193.1081 2007 139.7804

1968 180.3908 1978 148.6684 1988 257.3955 1998 218.3389 2008 145.4535

1969 187.7315 1979 150.3529 1989 245.3402 1999 198.1301 2009 132.3769

 China

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1301.469 1970 1003.436 1980 733.2899 1990 38.67776 2000 −175.56 2010 −392.84

1961 1212.751 1971 996.2703 1981 586.9446 1991 13.8337 2001 −198.36

1962 1139.186 1972 991.8263 1982 426.687 1992 18.54561 2002 −199.72

1963 1056.75 1973 991.685 1983 273.0062 1993 −9.92221 2003 −233.77

1964 1046.165 1974 989.1953 1984 197.8541 1994 −34.9883 2004 −264.02

1965 1040.017 1975 984.0672 1985 163.5712 1995 −52.2883 2005 −287.32

1966 1035.99 1976 985.6086 1986 136.4352 1996 −79.9113 2006 −309.24

1967 1024.403 1977 983.4649 1987 109.0148 1997 −108.372 2007 −336.32

1968 1018.607 1978 979.2099 1988 78.66131 1998 −128.146 2008 −355.91

1969 1007.137 1979 876.4331 1989 54.76264 1999 −156.206 2009 −371.93

 East Africa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 208.7558 1970 198.652 1980 197.4394 1990 195.6994 2000 204.7475 2010 231.6823

1961 202.0739 1971 195.88 1981 192.7348 1991 206.6904 2001 193.6534

1962 200.8419 1972 194.219 1982 188.8142 1992 221.3689 2002 192.5755

1963 203.4215 1973 198.2068 1983 165.1001 1993 223.6612 2003 191.2066

1964 207.9323 1974 194.6678 1984 158.9484 1994 228.7265 2004 199.3893

1965 211.3689 1975 192.083 1985 154.3716 1995 234.8444 2005 219.9266

1966 217.7906 1976 185.1533 1986 164.8447 1996 233.761 2006 224.324

1967 219.8113 1977 187.2258 1987 173.1308 1997 242.9125 2007 233.7096

1968 210.9013 1978 187.9165 1988 172.1696 1998 246.6879 2008 238.6318

1969 205.3923 1979 193.8322 1989 172.8522 1999 253.1955 2009 236.439
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 East Asia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 205.4774 1970 95.29375 1980 −57.757 1990 −119.811 2000 −138.728 2010 −159.471

1961 208.5004 1971 82.23626 1981 −61.639 1991 −122.513 2001 −140.213

1962 159.3653 1972 51.87068 1982 −56.029 1992 −106.045 2002 −156.215

1963 149.2952 1973 33.05202 1983 −59.965 1993 −100.403 2003 −162.273

1964 147.6063 1974 22.44609 1984 −69.679 1994 −114.984 2004 −180.282

1965 143.7697 1975 6.99869 1985 −75.335 1995 −124.251 2005 −184.429

1966 142.7913 1976 −3.73569 1986 −81.871 1996 −128.29 2006 −184.328

1967 136.6745 1977 −12.7833 1987 −89.137 1997 −130.285 2007 −187.652

1968 117.8209 1978 −41.3712 1988 −108.49 1998 −125.503 2008 −157.394

1969 106.5218 1979 −53.0843 1989 −117.62 1999 −128.248 2009 −148.127

 Europe

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 56.86995 1970 −63.917 1980 −172.416 1990 −191.43 2000 −224.51 2010 −177.08

1961 56.35432 1971 −78.507 1981 −179.299 1991 −198.85 2001 −233.64

1962 44.36443 1972 −98.066 1982 −182.352 1992 −184.43 2002 −232.84

1963 40.56378 1973 −113.31 1983 −203.684 1993 −181.90 2003 −233.25

1964 36.27318 1974 −116.04 1984 −186.15 1994 −181.42 2004 −235.63

1965 31.52016 1975 −127.21 1985 −184.415 1995 −171.90 2005 −223.27

1966 −6.68417 1976 −144.62 1986 −187.524 1996 −200.74 2006 −226.21

1967 −27.1936 1977 −146.59 1987 −190.812 1997 −215.67 2007 −216.89

1968 −40.3983 1978 −149.47 1988 −192.498 1998 −223.90 2008 −206.67

1969 −55.4365 1979 −166.01 1989 −188.935 1999 −225.99 2009 −199.26

 Former Soviet Union

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 832.4753 1970 309.0015 1980 −66.8336 1990 −148.355 2000 −457.699 2010 −542.885

1961 832.1967 1971 241.0438 1981 −67.822 1991 −167.388 2001 −500.034

1962 830.3992 1972 166.1196 1982 −70.6622 1992 −193.059 2002 −515.969

1963 755.6475 1973 80.65412 1983 −83.9351 1993 −241.337 2003 −536.293

1964 752.0623 1974 54.59198 1984 −87.1673 1994 −273.386 2004 −544.926

1965 724.7718 1975 20.85037 1985 −91.7893 1995 −280.916 2005 −581.793

1966 638.4171 1976 2.504408 1986 −104.658 1996 −333.449 2006 −582.484

1967 539.5953 1977 −24.1119 1987 −104.345 1997 −346.388 2007 −591.483

1968 467.4963 1978 −30.2837 1988 −113.075 1998 −393.463 2008 −585.465

1969 388.7323 1979 −44.0209 1989 −139.944 1999 −415.688 2009 −569.498
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 NonTropical S. America

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 114.2005 1970 194.5151 1980 78.9072 1990 90.42623 2000 65.0324 2010 39.25102

1961 141.6073 1971 148.5825 1981 117.974 1991 84.68635 2001 79.20044

1962 149.7063 1972 132.3288 1982 94.16229 1992 60.51096 2002 56.37597

1963 154.6476 1973 133.7509 1983 127.5964 1993 64.12811 2003 63.24328

1964 159.2674 1974 120.6891 1984 85.01628 1994 39.4136 2004 58.38676

1965 166.8756 1975 112.7039 1985 116.4238 1995 60.67097 2005 74.85075

1966 172.9506 1976 96.55293 1986 111.1867 1996 55.37957 2006 79.87461

1967 178.0655 1977 74.67422 1987 112.513 1997 59.56483 2007 78.32954

1968 189.6902 1978 69.40154 1988 106.4594 1998 37.68686 2008 16.41224

1969 196.0294 1979 76.663 1989 100.4431 1999 53.03701 2009 41.51321

 North Africa & Middle East

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 11.555 1970 5.075977 1980 −6.05844 1990 3.890567 2000 −9.9537 2010 −5.8048

1961 8.623399 1971 17.75142 1981 −2.3532 1991 3.237674 2001 −10.660

1962 3.793679 1972 8.304109 1982 −1.99685 1992 13.25347 2002 −10.393

1963 1.767472 1973 8.960305 1983 −3.51292 1993 11.53444 2003 −3.4611

1964 1.937393 1974 4.734667 1984 2.705891 1994 5.228649 2004 −8.4083

1965 5.497293 1975 5.124054 1985 −1.73408 1995 2.138509 2005 −8.6461

1966 6.393874 1976 5.139468 1986 −0.92337 1996 3.403925 2006 −9.7185

1967 5.552343 1977 1.746186 1987 1.234955 1997 −2.70699 2007 −12.347

1968 3.533476 1978 0.407737 1988 −1.77848 1998 −3.57972 2008 −10.184

1969 3.732023 1979 −4.10123 1989 3.527971 1999 −5.683 2009 −9.1217

 Oceania

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 231.3803 1970 170.8535 1980 127.5171 1990 45.05696 2000 11.30654 2010 96.91736

1961 228.7353 1971 163.7084 1981 121.4267 1991 50.77665 2001 −2.99949

1962 245.7263 1972 142.9762 1982 109.5469 1992 59.64117 2002 34.14935

1963 250.2665 1973 130.7118 1983 101.8399 1993 55.76382 2003 39.52884

1964 255.5043 1974 144.1704 1984 51.94445 1994 79.99793 2004 36.97598

1965 256.6673 1975 139.3477 1985 37.55768 1995 81.34849 2005 33.92621

1966 257.9823 1976 134.5727 1986 22.25928 1996 81.23765 2006 66.41416

1967 251.9873 1977 120.2762 1987 20.28996 1997 77.02853 2007 65.20306

1968 202.8989 1978 133.246 1988 19.31448 1998 65.01038 2008 83.23413

1969 187.4089 1979 128.8526 1989 18.92105 1999 58.92992 2009 78.12549
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 South Asia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 100.0937 1970 7.339266 1980 −12.102 1990 −47.8777 2000 −23.8884 2010 −73.7956

1961 98.33435 1971 1.86436 1981 −12.669 1991 −57.9574 2001 −28.3886

1962 96.74487 1972 −3.56651 1982 −16.553 1992 −65.0687 2002 −36.7745

1963 53.59741 1973 −9.38823 1983 −20.313 1993 −73.8532 2003 −47.0039

1964 40.95647 1974 −15.0345 1984 −23.782 1994 −64.5604 2004 −60.5532

1965 30.83094 1975 −12.0963 1985 −26.903 1995 −56.0339 2005 −56.3848

1966 22.66409 1976 −11.3667 1986 −23.783 1996 −51.6828 2006 −61.198

1967 19.6756 1977 −11.6963 1987 −26.993 1997 −31.039 2007 −72.1247

1968 16.04744 1978 −8.93535 1988 −32.120 1998 −25.9161 2008 −70.9224

1969 10.70172 1979 −11.035 1989 −35.618 1999 −21.388 2009 −74.3425

 Southeast Asia

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 487.3268 1970 630.8576 1980 916.6001 1990 1230.001 2000 1907.158 2010 1164.185

1961 483.3405 1971 683.2274 1981 1003.639 1991 1412.26 2001 1893.909

1962 453.2263 1972 703.3951 1982 1086.775 1992 1692.256 2002 2482.048

1963 442.2526 1973 721.9 1983 1106.945 1993 1939.527 2003 1506.625

1964 443.0274 1974 755.3095 1984 1146.693 1994 2249.312 2004 1475.699

1965 474.6411 1975 730.4621 1985 1128.291 1995 2490.987 2005 1490.453

1966 493.4421 1976 713.1522 1986 1043.388 1996 2601.024 2006 2357.698

1967 543.1035 1977 737.964 1987 976.9074 1997 5920.389 2007 1045.493

1968 585.2002 1978 790.6509 1988 1029.539 1998 2599.888 2008 1120.382

1969 616.2337 1979 857.6996 1989 1067.395 1999 2029.166 2009 1515.536

 Southern Africa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 158.061 1970 219.7112 1980 264.0881 1990 284.7146 2000 291.082 2010 321.9996

1961 154.4384 1971 235.2455 1981 281.4824 1991 292.8521 2001 311.2142

1962 167.3208 1972 244.6209 1982 273.6594 1992 308.3982 2002 326.1577

1963 171.6756 1973 248.7038 1983 266.74 1993 304.9286 2003 365.8693

1964 177.217 1974 256.6255 1984 259.7795 1994 310.6149 2004 377.7036

1965 190.0348 1975 268.637 1985 255.3421 1995 323.9039 2005 399.9948

1966 192.5047 1976 271.5815 1986 247.4318 1996 306.7988 2006 393.1777

1967 196.4507 1977 278.2502 1987 249.9101 1997 304.4008 2007 377.9572

1968 204.6649 1978 281.0141 1988 250.7072 1998 299.8852 2008 352.5688

1969 213.1411 1979 278.4429 1989 254.5072 1999 289.4037 2009 337.9597
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 Tropical S. America

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 1350.744 1970 1795.862 1980 1284.542 1990 2107.146 2000 1576.328 2010 1269.565

1961 1343.977 1971 1819.265 1981 1289.31 1991 2172.687 2001 1494.054

1962 1334.51 1972 1752.701 1982 1228.485 1992 2153.583 2002 1530.779

1963 1524.797 1973 1507.329 1983 1210.761 1993 1795.117 2003 1481.419

1964 1604.577 1974 1452.894 1984 1605.312 1994 1738.368 2004 1595.247

1965 1613.251 1975 1432.227 1985 1906.159 1995 1594.538 2005 1481.575

1966 1669.365 1976 1359.174 1986 2017.089 1996 1585.134 2006 1447.226

1967 1755.21 1977 1320.703 1987 2044.318 1997 1539.826 2007 1395.328

1968 1731.451 1978 1332.527 1988 1917.468 1998 1574.098 2008 1343.552

1969 1806.265 1979 1277.165 1989 2007.195 1999 1527.5 2009 1291.378

 USA

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 −98.9278 1970 49.40994 1980 105.4362 1990 1.214036 2000 −101.81 2010 −152.869

1961 −137.291 1971 −77.5258 1981 88.85914 1991 81.91073 2001 −100.12

1962 −124.228 1972 −52.4204 1982 121.7772 1992 −21.8684 2002 −104.07

1963 −137.445 1973 −104.211 1983 83.61545 1993 −45.7161 2003 −104.92

1964 −154.726 1974 −101.117 1984 62.17164 1994 −72.6851 2004 −104.22

1965 −133.428 1975 −57.3551 1985 45.25073 1995 −81.2641 2005 −108.52

1966 −33.1012 1976 −19.7736 1986 52.96654 1996 −82.3276 2006 −113.42

1967 −18.7214 1977 −1.04889 1987 50.21808 1997 −97.0168 2007 −117.24

1968 −22.1631 1978 27.64611 1988 51.1576 1998 −98.3516 2008 −128.83

1969 33.23002 1979 36.39466 1989 40.63864 1999 −100.871 2009 −139.32

 West Africa

Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2 Year MtCO2

1960 269.0143 1970 312.4253 1980 279.0514 1990 344.519 2000 353.6016 2010 486.457

1961 263.4877 1971 322.4051 1981 275.3983 1991 370.5658 2001 344.3227

1962 266.0155 1972 319.9678 1982 272.227 1992 390.6469 2002 342.2789

1963 270.0496 1973 311.728 1983 278.4524 1993 404.4656 2003 349.1278

1964 275.8482 1974 300.5737 1984 265.1766 1994 402.0382 2004 342.4499

1965 276.0471 1975 293.9758 1985 281.2648 1995 411.3626 2005 402.3124

1966 273.7897 1976 279.5637 1986 278.1563 1996 411.8492 2006 417.3524

1967 273.0014 1977 272.8583 1987 289.5854 1997 399.4846 2007 437.1521

1968 301.5144 1978 272.4325 1988 292.4495 1998 399.485 2008 448.8516

1969 300.6948 1979 280.8871 1989 301.6043 1999 411.3989 2009 467.7191
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Chapter 4
Climate Change, a Strong Threat to Food 
Security in India: With Special Reference 
to Gujarat

Diwakar Kumar

Abstract Gujarat contributes to around 16% of industrial and 12% of agricultural 
production in India (GoI, India: greenhouse gas emissions 2007. Technical report. 
Ministry of Environment and Forests, Government of India, New Delhi, 2010b). 
The Government of Gujarat acknowledges that Climate Change is not just a threat 
to the environment; it has profound implications for economic expansion, social 
progress, and nearly all other aspects of human wellbeing (Grafton et al., Nat Clim 
Chang 3:315–321, 2013). A Department of Climate Change has been established by 
the government of Gujarat to deal with climate change (GoI, Twelfth five year plan 
(2012–2017). Economic sectors. Government of India, New Delhi, 2013). It 
includes Missions on Solar Energy, Augmented Power Efficiency, Resilient 
Ecosystems, Water, Green procurement India, Climate resilient Agriculture, and 
Collaborative Knowledge for Climate Change (Bring et  al., Earth’s Future 
3:206–217, 2015). The state of Gujarat has put in place a variety of policies and 
programs to address some of the issues associated with Climate Change while also 
assuring the attainment of sustainable development goals (Doll and Bunn, The 
impact of climate change on freshwater ecosystems due to altered river flow regimes. 
In: Climate change 2014. Assessment report of the Intergovernmental Panel on 
Climate Change, pp 143–146, 2014). Efforts are being taken to make farming more 
environmentally friendly, like setting up agro-meteorological field stations, setting 
up automatic weather stations, and studying Climate Change in State agriculture 
universities (Douglas et al., Glob Planet Chang 67:117–128, 2009). According to 
the Department of Agriculture, Gujarat, about 51% of the state’s land is used for 
farming. Agriculture makes up about 18.3% of India’s most populous state’s GDP 
(GoI, Climate change and India: a 44 assessment a sectoral and regional analysis for 
2030s. Technical report. Ministry of Environment and Forests, Government of 
India, New Delhi, 2010a). Despite the Government’s efforts to address climate 
change, challenges persist. Agriculture in India faces numerous difficulties, one of 
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which includes environmental unpredictability (Gosling et al., Hydrol Earth Syst 
Sci 7:279–294, 2011). A report from the IPCC says that by 2080–2100, India could 
lose 10%–40% of its crop production due to climate change. The cumulative result 
is expected to be a reduction in the viability of terrain for agriculture in arid and 
semi-arid regions. Salt concentrations’ infiltration is an issue in Gujarat due to its 
lengthy shoreline (Garduno et  al., India groundwater governance case study. 
Technical report. World Bank, Washington, DC, 2011). An increase in CO2 will 
increase the output of rice, wheat, legumes, and oilseeds by 10–20%. With each 
degree Celsius increase in temperature, yields of grains such as wheat, soybeans, 
mustard, peanuts, and potato are expected to fall by 3%–7%. There is a probability 
that yields of chickpeas, rabi, maize, millets, and coconuts will increase on the west 
coast of India (Hsu et al., J Geophys Res Atmos 118:1247–1260, 2013). In particu-
lar, to the state of Gujarat, there are not nearly enough data on the impacts of climate 
change on agriculture. It is anticipated that irrigated rice production in some parts 
of Gujarat will go down by 2030 (Gordon et al., Natl Acad Sci 102:7612–7617, 
2005). According to the most recent available information, climate change will 
almost certainly result in more people at threat of going hungry. In 2080, the num-
ber of people who are not well-fed could rise by 5%–26% because of climate 
change. Agriculture, according to some assessments, is likely to be impacted in 
coastal regions since agriculturally productive areas are subject to flooding and soil 
salinity (Ghose, J Sci Ind Res 60:40–47, 2001). Climate change will have different 
impacts on food security in different regions of the state of Gujarat. Climate change 
will make it more difficult for people living in poor socio-economic regions to get 
their food and make food insecurity even more important (Hoff, Understanding the 
nexus. Background paper for the Bonn 2011. Stockholm Environment Institute, 
Stockholm, 2011). The future policy environment will have a significant impact on 
the long-term effects of climate change (GRDC, Long-term mean monthly dis-
charges and annual characteristics of GRDC stations/online provided by the Global 
Runoff Data Centre of WMO 3 19. http://www.bafg.de/GRDC/EN/01_GRDC/
grdc_node.html, 2020).

Keywords Climate change · Agriculture · CO2 · India

 Introduction to Climate Change Measures in Gujarat

Gujarat distinguishes out, amongst all the Indian territories, for its economic prog-
ress. With only five percent of the country’s population and six percent of the coun-
try’s geographical area, Gujarat contributes to around 16% of industrial and 12% of 
agricultural production in India and is prominent in the manufacturing and infra-
structure sectors (FAO 2002a, b; Jarvis et al. 2018). However, given the context of 
rising international importance regarding potential risks of climate impacts, there is 
a need to guarantee that Gujarat’s economic performance and socioeconomic devel-
opment maintains robust and competent of withstanding climatic stress and shocks 
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(IPCC 2007a, b). The sophistication of the climate-economy association has been 
made apparent by countless studies and the Government of Gujarat acknowledges 
that Climate Change is not just a threat to the environment; it has profound implica-
tions for economic expansion, social progress, and nearly all other aspects of human 
wellbeing (Tubiello et  al. 2007). Correspondingly, the Government of Gujarat 
undertaken a series of processes, involving external partners at numerous levels, 
representative of all segments of society, to work cooperatively and begin creating a 
framework that results to the realization of a growing, low-emitting, and productive 
economy with a much more climate adaptation population in Gujarat (IPCC 2007a, 
b). The Government of India published a National Action Plan on Climate Change 
(NAPCC) in 2008, highlighting eight primary concern deployments: Missions on 
Solar Energy, Augmented Power Efficiency, Resilient Ecosystems, Water, 
Maintaining the Eastern Himalayas Environment, Green procurement India, Climate 
resilient Agriculture, and Collaborative Knowledge for Climate Change-that outline 
a comprehensive plan aimed at promoting development goals while also achieving 
co-benefits for acknowledging Climate Change (IPCC 2000; IEA 2015a). To bring 
about the implementation of these planned steps at the subnational level, the Hon’ble 
Prime Minister of India requested each state government to develop its own State 
level plan of action that was compatible with the policies outlined in the National 
Plan in August 2009 (Rosenzweig et al. 2002).

Gujarat has taken a pro-active commitment to climate change, and in 2009, the 
hon’ble Chief minister announced that the government has decided to establish a 
special Department of Climate Change (IINCD 2015). With a purpose to operate as 
a bridge inside the public and policymakers, the Gujarat Government’s Climate 
Change Department was established on September 17, 2009 (Fischer et al. 2002). A 
Department of Climate Change has been established in Gujarat. “Convenient 
Action – Gujarat’s Response to the Challenges of Climate Change” is a book writ-
ten by the current Prime Minister of India, Shri Narendra Modi who was earlier 
chief minister of the Gujarat state (CEA 2015). Published document addresses 
policy- based responses to climate change impacts and mitigation (FAO 2015). 
Gujarat has indeed proved its commitment through a variety of policies and pro-
grams that have the ability to address some of the issues associated with Climate 
Change while also assuring the attainment of sustainable development goals (FAO 
2002a, b). Economy, mass transit, and households/services sectors are all being 
investigated and benefited from energy efficient technologies such as energy effi-
ciency investigations, the use of alternate fuels, the introduction of a Bus Rapid 
Transit System, and the establishment of unified State-wide gas grids (IEA 2015b). 
Thrust has been on renewable energy in Gujarat during last two decades (Goi 2014). 
In 2009, the state put in place an optimistic solar power policy and a wind energy 
policy in 2007 (IPCC 2001). Apart from that, numerous interventions, such as the 
Smart Grid Project, the formation of a Solar Park, and the development of 
Gandhinagar as a Solar City, and the introduction of fiscal incentives to encourage 
private investment in renewables, are being implemented in Gujarat to fully exploit 
the tremendous potential of renewable energy sources (IPCC 2007a, b).
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Moreover, new initiatives like the “Green Credit Scheme,” social afforestation, 
and urban greening help to plan for the widening of vegetation and tree shield, as 
well as to make sure that ecological systems like carbon sinks will continue to cir-
culate over time (Parry et al. 2004). There are also steps being taken to make farm-
ing more environmentally friendly, like setting up agro-meteorological field stations, 
setting up automatic weather stations, and studying Climate Change in State agri-
culture universities (Tubiello and Fischer 2007). The implementation of numerous 
cutting-edge efforts in the areas of urban development, water conservation as well 
as coastal regions development and conservation efforts. The strategic planning 
concentrates on the involvement of underrepresented groups and women (Bruinsma 
2003). The directions of the National Action Plan on Climate Change are primarily 
reflected in the efforts that are now underway (Lehane and Lewis 2000).

 Climate Change, a Strong Threat to Agriculture Productivity

In Gujarat, there is a tropical climate that is mostly humid, but there are also parts 
that are arid and semi-arid. The dry climate prevails in regions of northern Gujarat 
such as Kutch, Banas kantha, Mehsana, and the northwestern part of Saurashtra, 
whereas the sub-humid climate prevails in southern Gujarat and the semi-arid cli-
mate prevails throughout the rest of the state (Hall et  al. 2002). Annual rainfall 
ranges from 250 mm in the north to over 1500 mm in south Gujarat. Drought is a 
problem in 56 of the 225 talukas that exist at the time. MoEF’s report on all of 
India’s climate changes called INCCA (Hunter 2003; Kouadri et al. 2022) shows 
that the Gujarat State has been getting warmer over time. The report also shows that 
extreme rainfall could be getting worse in the future. Agriculture is a significant 
sector due to the fact that it represents one of the principle means of subsistence for 
more than half (52.0%–598%) of the total working population (labor force)  in 
Gujarat state (Korenberg 2004). According to the Department of Agriculture, 
Gujarat, about 51% of the state’s land is used for farming. Agriculture makes up 
about 18.3% of the state’s GDP. Horticulture, animal husbandry, and fisheries are all 
key sub-sectors in the agricultural sector of Gujarat. In Gujarat, farm output 
increased at an annual pace of more than 11% on average (D’Souza et al. 2004; 
Rajesh et al. 2021). Depending on precipitation, soil composition, and crop man-
agement, the state is classified into eight agro-climatic zones (Kovats et al. 2004). 
The South Gujarat (an intense rainfall location south of the River Ambika), South 
Gujarat (between the rivers Ambika and Narmada), Middle Gujarat (between the 
rivers Narmada and Vishwamitri), the entire Panchamal and Vadodra districts as 
well as portions of Bharuch, Anand, and Kheda districts, North Gujarat (between 
the rivers Vishwamitri and Sabarmati and portions of Mehsana, Ahmedabad, and 
Banaskantha (Fleury et al. 2006). Constraints on agriculture are diverse, with the 
majority of them being contingent on ecology and natural resources. Despite the 
Government’s efforts to address these, challenges persist (Checkley et  al. 2000). 
Almost all of Gujarat’s kharif crops are rainfed, which makes the state’s agriculture 
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somewhat vulnerable on the state’s monsoon. Notably in the Saurashtra and Kutch 
regions, as well as in the northern portion of Gujarat region, rainfall is very variable 
in terms of both frequency and spatial dispersion. This causes frequent droughts in 
certain areas (GoG). Consequently, kharif crops in Gujarat are limited by a lack of 
adequate rainfall. However, improvements in irrigation infrastructure in the state 
have contributed to strengthen the adaptability of agricultural processes to climate 
variability. According to research performed by the Coastal Salinity Prevention Cell 
(CSPC), landowners who grew groundnut and pearl millet (bajra) in the coastal 
parts of Rajkot district switched toward cotton and castor. Coconut plantations that 
once existed in certain villages have been removed. The farming community’s mon-
etary requirements have grown as a result of a growing transition toward cash crops 
that require a lot of investment (McMichael et al. 2003). More than half of the farm-
ers located in such regions require loans, according to several studies conducted in 
those regions. Individuals are migrating to find employment of this phenomenon 
(Vasilev 2003). Salt concentrations’ infiltration is an issue in Gujarat due to its 
lengthy shoreline. Additionally, a rise in the CL/CO3 HCO3 concentration was spot-
ted closer to the shoreline, demonstrating extensive blending of saltwater and local 
underground aquifers (Schmidhuber and Shetty 2005). Saltwater infiltration was 
detected somewhere around 2.5 and 4.5 km from the coastline in 1971, and have 
between 5.0 and 7.5 km from the coastline in 1977. As a result, overall crop value 
and productivity (up to 90%) decreased in the coastline of Saurashtra and Kutch, 
which are recognized for cultivating substantial cash crops such as wheat, mango, 
coconut, and garden vegetables (Alexandratos 1995).

 Temperature and Drought: Major Challenge to Food Security

IPCC 2007 projects that world average temperatures will rise by around 1 °C by 
2030, while worldwide median rainfall and washout would climb by 1.5%–3% dur-
ing the same time, respectively (FAO 2006a, b). Environmental alterations will have 
a disproportionate influence on world agricultural production, with adverse effects 
being stronger in the tropics than in temperate climates, resulting in a detrimental 
impact on developing nations (Fischer et al. 2005). The cumulative result is expected 
to be a reduction in the viability of terrain for agriculture in arid and semi-arid 
regions (Panneerselvam et al. 2022; Elbeltagi et al. 2022a, b; Pande et al. 2021a, 
2022a). Mankind in Gujarat will have less access to water from river systems and 
water table because of less streamflow and underground reservoirs recovery (Reilly 
et al. 1995). Causing additional reliance on irrigation while simultaneously reduc-
ing irrigation capacity owing to increasingly frequent droughts (Mishra et al. 2021). 
It is projected that after 2030, the threat to water supply will be worse, and there 
may be adverse consequences on irrigation (Darwin et al. 1995; Pande et al. 2022b). 
Agriculture in India faces numerous difficulties, one of which includes environmen-
tal unpredictability. A report from the IPCC says that by 2080–2100, India could 
lose 10%–40% of its crop production due to climate change (Tubiello et al. 2006). 
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According to United Nations Framework Convention on Climate Change, an 
increase in CO2 to 550 parts per million (ppm) will increase the output of rice, 
wheat, legumes, and oilseeds by 10%–20% (Tubiello 2005). With each degree 
Celsius increase in temperature, yields of grains such as wheat, soybeans, mustard, 
peanuts, and potato are expected to fall by 3%–7% (Alcamo et al. 2005). There is a 
probability that yields of chickpeas, rabi, maize, sorghum, millets, and coconuts 
will increase on the west coast. Potato, mustard, and vegetable losses in the north- 
west of India will be decreased due to a reduction of freezing (cold stress) (Hill et al. 
2006). In particular, to the state of Gujarat, there are not nearly enough data on the 
impacts of temperature variation on agriculture to make a conclusion (Rosenzweig 
and Parry 1994). Rainfall patterns and temperature data are essential for kharif 
crops, which are primarily rainfed, and rabi and other summer crops, which are 
primarily irrigated. Monsoon data show that the western part of the state, which 
includes Saurashtra and Kutch, has been receiving less rain for the last 100 years by 
5% per year (Arnell et al. 2002). According to studies of thermal patterns, the maxi-
mum temperature has grown by 0.2–0.90  °C per decade. According to the (IEA 
2012), Saurashtra had the largest increasing trend (0.90 °C) (McKibbin et al. 2004). 
Temperature is the primary constraint on the yield of rabi crops such as wheat and 
mustard, according to GoG. As a result of a significant temperature increase at the 
flowering stage, wheat productivity decreased from 3013  kg per hectare in the 
2007–2008 season to 2400  kg per hectare throughout the rabi period (Darwin, 
Climatic Change 2004).

It is anticipated that irrigated rice production in some parts of Gujarat will go 
down by 2030 (FAO 2006a, b). There will be a decrease in irrigated wheat produc-
tion in the southern regions, particularly Saurashtra (Abeysingha et al. 2015). It is 
predicted that the coast would lose up to 40% of its coconut crop due to hot sum-
mers temperatures, which are expected to rise further than in the western coastal 
belt (Arnell 2004). Agriculture, according to some assessments, is likely to be 
impacted in coastal regions since agriculturally productive areas are subject to 
flooding and soil salinity (Elbeltagi et  al. 2022a, b; Arnell and Gosling 2013). 
Furthermore, planted commodities in these locations are more susceptible to be 
harmed as a result of cyclonic activity (Asokan and Destouni 2014). According to 
the most recent available information, climate change will almost certainly result in 
more people at threat of going hungry. In 2080, the number of people who are not 
well-fed could rise by 5%–26% because of climate change (Asokan et al. 2010). 
Current studies of climate change and food security have focused exclusively on the 
implications on food supply and accessibility to food, despite quantifying the 
expected significant consequences of climate change on food quality and suscepti-
bility (Bandyopadhyay et  al. 2009). As a result, these studies do not take into 
account the possible negative effects of extreme weather events like drought and 
floods (Bhushan et  al. 2015a). Similarly, they also ignore the agricultural output 
consequences of a probable sea-level rise, including those linked with potential 
declines in ocean or inland fish production (Bhushan et al. 2015b).

Climate change will have an impact on various elements of food security: food 
abundance (production and trade), food accessibility, food supply consistency, and 
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food usage (Panda et al. 2013). Climate change will have different impacts on food 
security in different regions of the state and over time, these consequences will rely 
heavily on how well the state is doing economically to handle such challenges 
(Siam et al. 2013). Climate change will have a negative impact on food security, 
according to quantitative studies. Climate change will make it more difficult for 
people living in poor socio-economic regions to get their food and make food inse-
curity even more important (Vittal et al. 2013). Differences in socioeconomic devel-
opment trajectories, on the other hand, are likely to be the most important driver of 
food use in the long term and to determine the ability to deal with problems of food 
instability, driven by climate change. The future policy environment will have a 
significant impact on the long-term effects of climate change (UNFCCC 2021).

 Issues and Challenges in Semi-Arid and Arid Regions 
of Gujarat

Gujarat suffers from drought/lack of irrigation water for the crops on a consistent 
basis (Sreeja et al. 2016). Majority of the farmlands in Gujarat are in the semi-arid 
regions. The Central Water Commission has classified 14 and 17 districts as 
“drought prone districts” for the year 2015 and 2013 (Rodell et al. 2009). These 
regions have a scarcity of water. Groundwater levels are too low, rainfall is minimal, 
and water run-off is excessive (Vitousek et al. 1997). Annual rainfall ranges between 
100 and 400 millimeters (mm) or 400 and 800 millimeters (mm) (WCD 2000). 
There is very little water in the northern arid areas, which are mostly deserts like the 
Rann of Kutch, and the semi-arid areas of Gujarat. They mostly get their water from 
wells, tanks, ponds, and other traditional sources. In these areas, there are no rivers 
(Bring et al. 2014). The southern province, on the other hand, is supplied mostly by 
groundwater flows and monsoon rainfall by the peninsular rivers (Schellnhuber 
et al. 2014). Small- and medium-sized water storage facilities serve as the primary 
supply of water for these regions throughout the year. The tank is often the only 
place where people can store rainwater (Bhushan et al. 2015b).

Food security and economic opportunity for the numerous people who live in 
such regions pose severe concerns (Shah and Kumar 2008). The region’s vulnerabil-
ity has been exacerbated by poor land productivity and small landholdings, which 
have resulted in hidden unemployment (Prudhomme et  al. 2014). Many dryland 
farmers cannot make a living all year round because of present agricultural irriga-
tion constraints (Ravindranath et al. 2011). There are numerous issues that affect 
pastoralists or goat/cattle keepers, including water scarcity, feed scarcity, disease in 
the animals (Schewe et al. 2014). Reducing pasturelands and community grazing 
lands puts additional strain on the land. Regional residents frequently depend on a 
blend of rain-fed farming, animal rearing, and other revenue activities to survive 
(van Vliet et al. 2016). Additionally, families develop a buffer reserve of grains or 
liquid assets and rely on loans to survive during tough times (Rao 1995). People are 
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less equipped to protect themselves from large-scale shocks (Taheripour et  al. 
2015). Extreme weather, such as lengthy dry spells or delayed rain, has a significant 
negative impact on harvest yield and makes people’s life considerably more difficult 
(Prakash et al. 2014).

Without including migration, it would be impossible to discuss dry and semi-arid 
regions (Shashikanth et al. 2014b). Migration is relatively common because of the 
nomadic and semi-nomadic lifestyles which is triggered by extreme weather condi-
tions and lack of resources for livelihood (Purohit and Fischer 2014). It exists in 
numerous ways and trends, such as seasonal/distress, rural-to-rural, and rural-to- 
urban. For the impoverished, migration is an essential source of income and a means 
of ensuring their survival and well-being; in some cases, it is their sole means of 
doing so (Raje and Krishnan 2012). Movement to other irrigated areas is possible 
because of agricultural wage labor in the construction sites for building canal/dam 
work, road/cable construction, etc., self-employment by skilled craftsmen and tal-
ented laborers as masons, statue makers, mechanics/drivers, etc. (Salvi et al. 2013). 
Extreme weather events, in combination with other physical, social, and political- 
economic factors, contribute to economic hardship, starvation, drought, and dis-
placement vulnerability (Pandit 2012). Food security and biodiversity are strongly 
intertwined. Intercropped, traditional varieties of crop have a considerably better 
chance of surviving a severe and irregular monsoon and provide the farmer with 
basic food security (Ritzema et al. 2008). Agronomists use crop diversity and mixed 
cropping to lessen the possibility of crop loss due to weather or pest attacks (SWBD 
2005). Traditional, hardy agricultural seed banks are gradually disappearing, giving 
place to monocropping of commercial crops such as groundnut, sunflower, and so 
on. Furthermore, the failure of a single mono-cropped, high-yielding hybrid crop 
might bankrupt a farmer and force him or her into debt (Bouwer et al. 2006).

 Climate Change Impact on Cropping Patterns

Climate change is not the only thing that is causing problems for farmers in the 
dryland areas. These will be amplified even further by the consequences of climate 
change (Sreeja et al. 2012). The rise in population will exacerbate the fragmentation 
of landholdings. Fragmentation impacts will worsen agricultural productivity losses 
caused by rainfall and temperature fluctuations (Peters et al. 2013). Reduced pre-
cipitation, coupled with water constraint, will further erode land productivity (Roxy 
et al. 2015). This decline will result in a reduction in the amount of food produced 
(Shashikanth et al. 2014a, b). More people will migrate in search of food, which 
will result in a reduction in the number of people available to labor on agricultural 
land (Saha et al. 2014). The Gujarat Institute of Desert Ecology in Kutch discovered 
major findings during a 3-year study (Tian et al. 2014). The institute examined the 
trend of climate transition over the last 5 years with a particular emphasis on Kutch, 
which is technically arid but is now experiencing unusual rainfall (Skaggs et  al. 
2012). During the study, Gujarat has been hit by three consecutive cyclones – Vayu, 
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Kyarr, and Maha  – which have dropped massive rains on the coastal parts of 
Saurashtra, causing massive crop losses for farmers (Green et al. 2000). Meanwhile, 
the state recorded 1185 mm of rain, the most in a decade, and the biggest rainy sea-
son ever that lasted for 6 months starting June (Bobba 2002). Crops such as legumes 
and horticultural crops such as coconut, mango, and sitafal (custard apple) are 
diminishing as saline levels rise in coastal areas of Porbandar (Green et al. 2000). 
Cotton and castor crop areas have increased in recent years due to the shift toward 
groundnut crops, which are extremely sensitive to salt water (Solomon et al. 2007). 
In the regions of Rajkot, groundnut and bajra plantations have been replaced with 
cotton and castor; similarly, coconut plantations in certain villages are not culti-
vated/left (Tuanmu and Jetz 2014). Additionally, bajra, jowar, castor, and cotton 
production have all been cut in half on an average basis (Stocker et  al. 2013). 
Farmers are not planting new mango and coconut plantations in the regions of 
Junagadh, and the acreage within horticulture is progressively shrinking 
(Vaidyanathan 1999). Whereas cotton is being cultivated in substitute of groundnut 
in most regions. Cropping patterns in saline villages have shifted away from horti-
culture and groundnut cultivation and toward cotton and fodder crops such as jowar 
(Sinha et al. 2015; CWC 2015). Crops such as chilli and groundnut have seen a 
decline in area under cultivation. Change in the agricultural season from three crops 
to one crop reflects the detrimental consequences of climate change in the Jamnagar 
region (Sundararajan and Mohan 2011). There is a decrease in the amount of land 
used for horticulture and land used for pulse farming in the Kutch regions of Gujarat 
(Sherif and Singh 1999).

 Climate Change Impact on the Landscape and Irrigation

India is the biggest user of agricultural resources in the globe, both in terms of the 
amount of land that can be cultivated and irrigated and the amount of underground 
aquifers used (FAO 2015; Shiklomanov and Rodda 2004). Agriculture, the primary 
source of subsistence (60%) and the most important land use (42%) in the nation, 
utilizes the biggest share of water (80%) and a significant quantity of energy, result-
ing in a complex web of nexus relationships (Siebert et al. 2015). Substantial dam 
surface water irrigation covers 16  Mha, whereas minor irrigation covers 2  Mha 
(TERI 2015; MoWR 2013; CWC 2015). There has been significant growth in the 
use of surface water sources, but for the time being, surface water irrigation is not 
only confined to the paddy-growing regions (Cullet et al. 2015). Surface water irri-
gation through canals and other medium has a reach to many remote areas of Gujarat 
(Deser et al. 2012). A significant proportion (62%) of India’s gross irrigated area is 
still reliant on groundwater supplies with considerable geographical seasonal vari-
ability, according to the latest findings (GoI 2014; Shiva et  al. 1991). Irrigation 
exemplifies the numerous nexus relationships that exist between water resources, 
land, energy, and climate. Large-scale groundwater extraction and extensive surface 
water infrastructure have affected river basin hydrology, resulting in a loss of 
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groundwater reserve and availability in several regions (WCD 200; Rodell et  al. 
2009; CGWB 2014; Pande et al. 2021b; Glazer and Likens 2012). With a cumula-
tive underground water irrigated area ranging from 60 to 70 million ha in India, that 
requires up to 120,000–150,000 GWh of power and 5–8 million m3 of gasoline to 
pump up 230–250  km3 of irrigated water yearly, according to the World Bank 
(Mukherji et al. 2012; Huntington 2006). Depleting groundwater aquifers, enlarg-
ing the area under groundwater irrigation, and raising the demand for energy 
resulted from the provision of subsidized energy for groundwater irrigation 
(Mukherji et al. 2012; Hirabayashi et al. 2013; GoI 2015). Significant advances in 
saline water intrusion are expected along coastal areas as a result of excessive 
groundwater removal, which may intensify as sea levels rise and water demands 
increase as a consequence of environmental warming (Sherif and Singh 1999; 
Bobba 2002; Hagemann et al. 2013). Because to this excessive extraction, majority 
of blocks in Gujarat are classed as semi-critical, critical, or fully exploited (Douglas 
et al. 2006; Pande et al. 2020). Increased irrigation, on the other hand, has resulted 
in salinity, alkalinity, and water logging difficulties over different regions of Gujarat 
(Howells et al. 2013; Ritzema et al. 2008).

Climate variability imposes additional limitations on the linkage, making the 
interrelations more fragile and unpredictable (Jain and Kumar 2012). Residents 
living nearby water reservoirs say that climate change makes it even worse because 
dams and water withdrawals have already cut off the natural flow of water through-
out most portions of the state (Doll et al. 2012; Hawkins and Sutton 2009). The 
considerable rise in temperature since 2008 has been determined to have influenced 
the current acute water shortages in the Indo-Gangetic lowlands, which is mostly 
attributed to agricultural water demands (Ghosh et  al. 2012). Climate change- 
induced increases in water demand and decreased water supply are anticipated to 
significantly diminish the area irrigated by 2030 (Taheripour et al. 2015; Hansen 
and Cramer 2015). Strengthened irrigated agriculture interventions in the water and 
land sectors have a major impact on regional climate through increasing evapo-
transpiration fluxes (Gordon et al. 2005; Asokan et al. 2010; Jaramillo and Destouni 
2015; Chaturvedi et al. 2012). Agricultural adaptations have resulted in an average 
annual vapor flow increase with significant seasonal changes 7% during the wet 
season and 55% during the dry season, with irrigation accounting for 2/3 of the 
increase (Doll et al. 2012; Douglas et al. 2006). According to reports, the South 
Asian rainfall trend is more vulnerable to anthropogenic irrigation-induced flux 
variations than to the climate implications of land use alteration (Douglas et  al. 
2009; Haddeland et  al. 2014). During the years 1956–2000, irrigation in the 
Mahanadi basin increased ET by 40 mm year-1 and decreased annual average tem-
perature by 0.13  °C and runoff by 32  mm  year-1 (Asokan and Destouni 2014; 
Jaramillo and Destouni 2014). Fluxes exhibit a significant degree of geographical 
heterogeneity as a result of differences in irrigation volume across the watershed 
(Asokan et al. 2010; Immerzeel et al. 2013). Evaporation rates have risen by 77% 
in the Krishna River basin since 1900, a result of increasing buffer accumulation 
and irrigation (Jaramillo and Destouni 2015; Destouni et  al. 2010). Widespread 
land use land cover (LULC) transition, which encompasses deforestation, changes 
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in the amount of cultivated lands, and urbanization as a result of direct human inter-
ventions, has a negative impact on water supplies (Lambin et al. 2003; Pande et al. 
2021a, b; Chattopadhyay and Hulme 1997). In India, a sixfold rise in populace over 
the last century, spanning 200–1200 million, along with rapid economic expansion, 
has resulted in considerable LULC shifts (Bouwer et al. 2006). It has been shown 
that the amount of forest land has decreased from 89 to 63  Mha, whereas the 
amount of agriculture has expanded from 92 to 140 Mha during same time period 
(Tian et al. 2014; Gordon et al. 2005; Hoekstra and Chapagain 2007). Additionally, 
it has been reported that emerging and developing clusters of urban populations, 
most frequently near coastal zones and key rivers, have boosted water resource 
requirements and consequences (Destouni et al. 2013; McDonald et al. 2011). The 
purity of water is also deteriorating in many regions as a result of changes in land 
use (Asokan et  al. 2012). Surface and aquifer pollution, caused primarily by 
untreated sewage, industrial effluents, fertilizer runoff, and urban garbage, is a sig-
nificant environmental concern, affecting not just the supply of fresh water rather 
the health of millions of inhabitants (Jaramillo and Destouni 2015; CGWB 2010; 
CWC 2011).

 Climate Change Effect on Rainfall Trend

Humans have been influencing the environment for ages (MoWR 2013). However, 
human activities have only begun to reach a global scale since the commencement 
of the industrial revolution (Khare et al. 2013; CWC 2012). Today, environmental 
issues have surpassed all other concerns for humanity as a result of scientific facts 
on the increasing quantity of greenhouse gases in the atmosphere and the Earth’s 
changing climate (Jhajharia et al. 2014). Worldwide, temperatures are rising and 
precipitation amounts and distributions are changing (Mujumdar and Ghosh 2008). 
Rainfall is an important component of the hydrological cycle, and changes in its 
pattern have a direct impact on water resources. The policymakers and hydrologists 
are now concerned about the shifting patterns of rainfall as a result of climate change 
(Molle and Berkoff 2006). It has been shown that variations in rainfall amounts and 
frequency have an immediate effect on stream flow patterns and demand, as well as 
the spatiotemporal allocation of runoff, ground water reserves, and soil moisture, 
according to Srivastava et al. and Islam et al. (Kothawale and Kumar 2005). As a 
response, these changes had far-reaching implications for water resources, the envi-
ronment, terrestrial ecosystems, the ocean, biodiversity, agriculture, and food secu-
rity (Lehner et al. 2016). Significant shifts in rainfall patterns can lead to droughts 
and food shortages, which can occur on a regular basis (McDonald et al. 2011). 
According to Gupta et al., the proportion of soil moisture available for agricultural 
production is entirely dependent on the amount of rainfall (Krishna et al. 2011).

Numerous initiatives to detect rainfall trends at regional and national scales have 
already been carried out through different policy measures (Mukherji et al. 2012). 
The trend detection studies have been considered a valuable instrument since it 
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offers meaningful insight about the probability of future changes (Lima et al. 2008). 
However, projecting future climatic variables is more valuable to planners because 
it helps them comprehend the present and historical climate changes (Joshi et al. 
2011). A regional forecasting approach might be used to project future knowledge 
about climatic factors, in supplementary to the complex climate model that operates 
on a global scale (Elbeltagi et al. 2022a, b; Lambin et al. 2003). Statistical approaches 
and machine learning computer techniques could be used to accomplish this (Mall 
et al. 2006). Agriculture is heavily dependent on precipitation, and the country’s 
whole economy depends on it (Nakamura et al. 2014). Consequently, regional and 
sectoral economy cannot function without ample water supply (Koirala et al. 2014). 
However, as a result of climate change, the regional rainfall pattern has been dis-
rupted (Jayaraman and Murari 2014; CWC 2011). Therefore, many researches have 
been conducted in varied regions to measure the pattern of rainfall variations and to 
establish a strategic approach in accordance with the results of such studies 
(Jarvis 2006).

 Conclusion

The climate change is forcing every individual and organization to create actionable 
strategies for addressing the most pressing threats, consequences, and vulnerabili-
ties related to food security (Jhajharia et al. 2012). Thus, three key developmental 
transition alternatives are recognized: increasing the productivity of food grains and 
socioeconomic systems, developing new sustainable livelihoods, and/or shifting 
population from fragile to resilient habitats (Oki and Kanae 2006). Thus, develop-
mental paths should be capable of sustaining existing ecosystems, respecting 
embedded socio-cultural dynamics, innovating around governance and regulatory 
structures, and responding to current climate-related hazards (Kraucunas et  al. 
2014). However, despite rapid economic growth, particularly in the recent two 
decades, this has not been reflected significant into poverty alleviation or propor-
tionate improvement on other human welfare metrics (Lee and Wang 2014). Major 
challenges include environmental deterioration, stagnating crop production, rising 
regional inequality, low levels of employment, as well as insufficient access to wel-
fare initiatives for those from lower socioeconomic strata (Nohara et al. 2006). It is 
also important to note that agriculture sector in India continues to be the most 
important source of income for the majority of people (CWC 1993). Because it is 
mostly dependent on rainwater, it is extremely vulnerable to changes in the climatic 
conditions (Joy et al. 2008). Semi-arid regions’ development relies on mitigating 
ecosystem disintegration, integrating sustainable resource management, and 
enhancing the already-existing resilience capabilities of communities and organiza-
tions (Nune et al. 2014). The failure of previous initiatives to generate the promised 
outcomes has resulted in, regional, and national institutions deciding to divert their 
resources to other ecosystems, which they deem to be superior investments (CGWB 
2014). Climate change will put even more strain on the livelihoods of individuals 
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who live in these vulnerable environments, potentially leading to increased resource 
scarcity (CGWB 2010). Consequently, it is essential to assure people economic 
access to food, to have contingency plans for crop varieties, feed for farm animals, 
and drinkable water, to have crop stabilization and watershed development pro-
grams, to have community-based natural resource management practices, to prac-
tice such farming that increases land productivity, to revitalize traditional crops and 
practices to ensure food security, and to revitalize traditional livestock breeds (Jung 
et al. 2010).
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Chapter 5
Livelihood Vulnerability Assessment 
and Drought Events in South Africa

Israel R. Orimoloye

Abstract Livelihood and the economies of South Africa are highly vulnerable to 
climatic fluctuations. Drought, in particular, is one of the most significant natural 
factors contributing in many parts of South Africa to agricultural losses, poverty, 
famine, and environmental degradation. Several factors rely on the cumulative 
effect of drought on a given area and its ability to recover from the resulting social, 
economic, and environmental impacts. South Africa’s vulnerability to climate vari-
ability and the risks posed by climate change and other natural disasters needs to be 
mitigated urgently. “This paper seeks to highlight the challenges of drought in South 
Africa and examines the existing livelihood vulnerability of drought, particular 
assets, and well-being vulnerability. This study indicates that a pragmatic strategy 
that incorporates innovative technology, institutional, and policy solutions to man-
age risks within vulnerable communities implemented by institutions operating at 
different levels (community, regional, and national) is considered to be the way 
forward for the management of drought and climate variability. This study recom-
mends that a pragmatic strategy that incorporates innovative technology, institu-
tional, and policy solutions to manage risks posed by recurring droughts on 
vulnerable communities must be continually explored. This calls for firm partner-
ship cooperation by implementing institutions operating at different levels (com-
munity, regional, and national) as the way forward for managing drought and 
climate variability.
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 Introduction

Many developing countries are currently undergoing increasing population growth 
with various climate-related risks including drought disasters, which contribute in 
turn to urban livelihood vulnerability. Though this population growth may seem to 
benefit these countries, it can also, if inappropriately managed, create distinct chal-
lenges for the poor or low-income groups (Pande et al. 2021a). Droughts are a com-
mon occurrence in South Africa’s environment and it has impacts on society as well 
as agricultural production. South Africa’s climate is tremendously varied over time 
and space due to its location in the southern tip of Africa, situated between cold and 
warm sea currents, as well as its topography. As a result of these attributes, the coun-
try is regarded as having one of the world’s most fluctuating river flow regimes, with 
drought being one manifestation of this fluctuation (Haile et al. 2019; Kusangaya 
et al. 2021). Droughts typically occur regularly and have negative impacts on peo-
ple, such as the drought disaster of 2003–2004, 2009–2010, and 2014–2019 
(Gumenge 2010; Orimoloye et al. 2021). Drought risk is determined by a conjunc-
tion of drought frequency, intensity, and geographic area, as well as the degree to 
which a population is vulnerable to drought’s impacts (UNISDR 2005). Section 1 of 
Act 57 of the Disaster Management Act, 2002, as revised by Act 2015 No. 16, 
defined vulnerability as the conditions dictated by physical, social, economic, and 
environmental elements or processes that raise a community’s sensitivity to the 
effect of hazards. The act has been amended to align with widely accepted defini-
tions used in the international context and across industries on a national level, in 
order to make the main act simpler and easier to comprehend (Government 
Gazette 2015).

Vulnerability arises as a paradigm for comprehending what it is about people’s 
situations that allow a hazard to turn into a disaster (Adger 2006; Tapsell et  al. 
2005). As a result, vulnerability assessment is the process of estimating the suscep-
tibility of elements at risk to drought disaster, which involves an evaluation of the 
underlying reasons for their vulnerability (Muyambo et  al. 2017). Vulnerability 
assessment, according to Dunning and Durden (2011), defines the relationship 
between social traits and drought vulnerability, identifying those who are at risk. 
Vulnerability, according to Bogardi and Birkmann (2004), comprises exposure, sus-
ceptibility, and coping capacity. Scientists have been paying increased attention to 
vulnerability assessment in the context of climate change and natural disasters in 
recent years. Historical narrative, comparative analysis, statistical analysis, model 
and GIS-based (Pande et  al. 2021a, b), participatory approach, indicator-based 
approaches, and agent-based modeling are all methods for assessing vulnerability. 
These methods have their strengths and weaknesses. However, the indicator-based 
method is one of the most extensively used methodologies for assessing susceptibil-
ity to climate change and natural catastrophes (Thao et al. 2019; Mohmmed et al. 
2018). An example of the indicator-based method includes the Livelihood 
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Vulnerability Index (VI) (Hahn et  al. 2009) among others. The Livelihood 
Vulnerability Index (LVI) has proved to be a useful and popular tool in assessing 
farmers’ vulnerability to climate change and disasters around the world (Mohmmed 
et al. 2018; Thao et al. 2019). The livelihood vulnerability provides tools for observ-
ing potential vulnerability over time and space, identifying the processes that lead 
to vulnerability, prioritizing mitigation actions, and evaluating the effectiveness of 
these tactics in various social and ecological settings (Shah et al. 2013). According 
to Panthi et  al. (2016), the impact of climate change and catastrophes differs by 
region, and vulnerability assessments must be conducted on a regional basis to be 
reliable. The role of environmental and social elements in drought susceptibility is 
yet to be well-explored or accepted in South Africa, particularly at local and regional 
levels. Considering the current drought occurrence in South Africa, identifying and 
analyzing livelihood vulnerability in accordance with drought risk reduction is a 
critical issue to mitigate and reduce the risk of drought (Orimoloye et al. 2022). 
However, all persons living in drought-stricken areas are vulnerable, and the effects 
of droughts disproportionately affect the most vulnerable members of society. The 
question is, ‘who are the people in South Africa that are vulnerable to drought, and 
what features or systems make them vulnerable or resilient to drought?’ The neces-
sity to understand these potential vulnerabilities prompted the researchers to con-
duct this research in order to make effective suggestions on vulnerability reduction 
strategies to farmers, policymakers, and decision-makers. This study focuses on the 
livelihood vulnerability influenced by drought disasters in South Africa; however, 
more research is needed to look into the physical, economic, and environmental 
aspects of vulnerability as a result of recurring drought disasters in the country 
(Muyambo et al. 2017).

 Study Area

The world, including South Africa, has been affected by disaster both human and 
natural disasters. Droughts, floods, landslides, and storms are common natural 
disasters, but climate change is increasing the frequency and severity of these 
weather-related risks in the Africa continent (Orimoloye et al. 2021). South Africa 
(Fig. 5.1) covers around 1,218,000 square kilometers and has a coastline of nearly 
3000 km. Namibia, Botswana, Zimbabwe, Mozambique, Swaziland, and Lesotho 
share boundaries with South Africa, as well as Namibia, Botswana, Zimbabwe, 
Mozambique, Swaziland, and Lesotho. South Africa has a low precipitation rate, 
with an average annual rainfall of 497  mm which contributed to the persistent 
drought in the region. The climate is typically warm and dry, with winter tempera-
tures rarely falling below 0  °C and summer maxima frequently above 35  °C 
(Schulze 1997).
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Fig. 5.1 Map showing South Africa

 Impact of Drought in South Africa

Information in Table 5.1 is a list of few impacts of drought in South Africa, though 
these may also apply to other drought-prone places in any part of the world (Gebre 
and Getahun 2016). This demonstrates that, depending on the duration and severity 
of the drought, drought impacts are considerably more than just a food supply issue.

As the impact of drought events cannot be overemphasized, this requires govern-
ment intervention in the form of emergency relief, often supported by large amounts 
of food or social relief. Governments’ drought preparedness has generally taken the 
form of creating food reserves at the national level to compensate for production 
shortfalls and provide for possible emergency relief (Vose et al. 2016; Xulu et al. 
2018). While these costly relief initiatives from the impact of drought were seen as 
necessary, such short-term interventions tended to prevent support for longer-term 
development processes, especially in locations with arid climate conditions. Because 
low and erratic rainfall is a key feature of these dryland areas, this fact must be 
reflected in government preparedness plans and in longer-term development strate-
gies aimed at preventing future droughts from having serious consequences for the 
environment and people’s livelihoods. This will also reduce livelihood vulnerability 
to drought disasters.
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Table 5.1 Drought impacts

No Impacts Implications of livelihoods References

1 Disrupted 
distribution of 
water resources

Communities are in grave danger due to the drought. 
When it gets exceedingly hot, a lack of drinking water can 
cause dehydration and even heat stroke. With less water 
available, the water’s quality deteriorates. Because there is 
less water, the concentration of dissolved compounds rises

Olds et al. 
(2011)

2 Drought impact 
on the economy

The economic and political implications of water scarcity 
are significant. Drought is disastrous for affected local 
economies, especially those relying on agriculture; 
limited water can jeopardize agricultural production

Shahpari et al. 
(2021)

3 Marginal lands 
become 
unsustainable

The effects of government policies and further economic 
liberalization on the competitiveness of dryland crops in 
South Africa reflect the pervasiveness of poverty, as 
evidenced by increasing water constraints, land 
degradation, ongoing concerns about malnutrition, 
migration due to frequent droughts, lack of infrastructure, 
poor dissemination of improved technologies, and the 
effects of government policies and further economic 
liberalization on the competitiveness of dryland crops

Chipfupa 
et al. (2021)

4 Reduced 
grazing quality 
and crop yields

Drought has a negative influence on agricultural and 
animal farming systems in South Africa, but livestock 
systems, crop yields, particularly in humid temperate 
climates, have received less attention

Salmoral 
et al. (2020) 
and Mazibuko 
et al. (2021)

5 Employment 
lay-offs

Thousands of jobs have been shed in the agriculture 
industry in the Western Cape and other drought-affected 
provinces in South Africa, as the devastating water crisis 
continued. Despite interventions by all spheres of 
government, the looming job losses would be a further 
blow to the drought-stricken sector that had been under a 
worsening dry spell for the past few years. There were 
water restrictions imposed on the agricultural sector by 
the national government in order to find a solution or 
preventive measures toward combatting or reducing 
livelihood vulnerability to drought. Still, this place a 
heavy burden on one of the biggest employment sectors in 
the region, this will affect food production and other 
water-reliant industries

Cape Argus 
(2017)

5 Increased food 
insecurity

Drought conditions in South Africa resulted in lower crop 
yields and higher food costs. According to a recent study, 
this has gotten worse as a result of human-caused climate 
change

Piesse (2016)

6 Inequitable 
drought relief

Drought impacts are exacerbated by inequitable access to 
land. Most of the problems emanated from the inadequacy 
of financial resources for drought management and human 
development. The unavailability of drought policies and 
plans results in failure to adequately deal with drought 
impacts. These problems could be addressed with the 
assistance of some United Nations agencies and nations 
that have developed innovative drought policies

Dube (2008)

(continued)
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Table 5.1 (continued)

No Impacts Implications of livelihoods References

7 Increased 
damage to 
natural habitats

More than 80% of South Africa’s land surface is covered 
by rangelands, with over 69% of these rangelands located 
in semi-arid areas where livestock and/or game farming 
are the most suited land uses. With the recurring drought 
events, many of these natural habitats have been affected 
and plantation trees suffered drought stress during the 
drought period

Vose et al. 
(2016) and 
Xulu et al. 
(2018)

8 Reduction of 
livestock 
quality

Drought caused feed prices to increase to record levels, 
making it unprofitable for producers to feed their own 
lambs for finishing. Drought in South Africa prompted 
producers to shrink the national commercial cattle herd by 
14.4% on average between 2013 and 2016, according to 
research. However, certain provinces were more affected 
than others, and while the drought reduced the cattle herd 
in the Northern Cape by 34.8 percent, it also reduced the 
herd in the Western Cape by 4% during the same time 
period

Mare et al. 
(2018)
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 Livelihood Vulnerability in South Africa

The information in Fig. 5.2 presents livelihood vulnerability to drought in South 
African Provinces and the number of affected settlements. The data were obtained 
from the National Integrated Water Information System database (https://www.dws.
gov.za/NIWIS2/DroughtStatusManagement/DroughtAffectedSettlements). Eastern 
Cape Province was more affected by drought disaster and various settlements were 
vulnerable to this event. About 2952, 2421, 1524 settlements faced moderate, 
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severe, and extreme drought impacts as presented in Fig. 13.2. It has been shown 
that extensive livelihood livestock in Eastern Cape was affected mostly by the 
drought of which 19% of grazing areas in the province accounting for some 5600 
jobs. Drought effects have caused delays in soil preparation and planting of grain 
crops. The Province has been officially declared as drought-stricken (Amoah 2020; 
Mahlalela et  al. 2020). This drought has had significant socioeconomic conse-
quences, particularly for the largely impoverished rural population as well as some 
metropolitan areas where water supply systems have failed in multiple instances. 
Both mid-latitude and tropical systems influence the region, resulting in a compli-
cated regional climate that has received little attention compared to other parts of 
South Africa. Drought is one of the common disasters in the Eastern Cape, resulting 
in a significant socioeconomic impact on livelihood (Table 5.1), including the loss 
of life in some circumstances, farmland, low crop yield among others. The province 
is currently experiencing a severe drought (which began in 2015), with numerous 
settlements (Fig. 5.1) facing severe water restrictions and being on the verge of run-
ning out of potable water from the corresponding sources (Mahlalela et al. 2020). 
KwaZulu-Natal Province was affected by drought disaster where some regions in 
the province were vulnerable. This province was ranked second in South Africa 
with about 3619 settlements vulnerable to drought episodes. According to reports, 
the 2015 drought in South Africa reduced the national livestock herd by 15%, and 
the Red Meat Producers’ Organisation projected that more than 40,000 cattle died 
in the KwaZulu-Natal region by the end of 2015 (Vetter et al. 2020). For example, 
rainfall in several parts of South Africa, particularly the Eastern Cape and neighbor-
ing KwaZulu-Natal Province, shows that there were more multi-year droughts from 
the late 1970s to the late 1970s than from 1950 to the late 1970s (Blamey et al. 
2018). The result also revealed that Limpopo Province was ranked third vulnerable 
to drought in South Africa with about 148, 143, and 32 moderate, severe, and 
extremely vulnerable to drought, respectively. The study has shown that the current 
climate event in Limpopo province is dominated by drought and that as a result of 
the severe drought, the province has seen reduced grazing, water for cattle, and 
irrigation, significantly impacting agricultural livelihoods and resulting in food 
scarcity (Maponya and Mp 2012; Botai et  al. 2020). Two thousand six hundred 
ninety-one settlements were affected or vulnerable to drought in Limpopo. This 
development required a more proactive strategy to reduce assets or well-being loss 
to drought in South Africa.

Western Cape and Northern Cape Provinces affected where about 1602 and 1151 
settlements were vulnerable to drought disaster, respectively. In the Western Cape 
province’s agriculture industry, drought has resulted in employment losses (Kalaba 
2019; Ziervogel 2019). According to the third quarterly labor force survey from 
2017, the agricultural industry lost almost 25,000 jobs across the country. In the 
Western Cape province, about 20,000 of these were lost and many of them were 
linked to the drought. The province’s economy lost more than R5 billion as a result 
of the drought. This is significant for the country as a whole because the Western 
Cape accounts for 22% of the country’s agricultural GDP. The citrus sector, as well 
as the deciduous fruit and wine industries, is important exports that contribute 
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significantly to South Africa’s total agri-economy. More so, drought in the Northern 
Cape is one of the worst the province has seen in over a century. It has spread to all 
five districts of the Northern Cape. Drought has affected about 10,000 farms, cover-
ing more than 5.8 million hectares, with a carrying capacity of 166,000 big stock 
units. Droughts have become more frequent and severe in South Africa recently, 
particularly in water-dependent industries such as agriculture. South Africa is 
extremely vulnerable to new weather extremes including drought since it relies 
largely on climate-sensitive industries including eco-tourism, agriculture, hydro-
power, and fisheries. The region is already paying the price in terms of decreased 
food production and dam levels. Some regions of South Africa are still facing the 
threat of the devastating 2015/16 drought, which extended into 2018. Drought- 
stricken provinces such as the Eastern Cape, Northern Cape, and KwaZulu-Natal 
are rapidly running out of water (Amoah 2020; Mahlalela et al. 2020). Agriculture 
has been one of the hardest devastated sectors. As water levels decreased, crop yield 
and livestock numbers declined. Rural communities are particularly vulnerable in 
these circumstances. Winter crops become critical to family food security when the 
major, rainfed crops fail. However, the drought conditions are already having an 
adverse effect on these. Despite the fact that weather extremes are unavoidable, 
their impact can be mitigated via smart planning, if not, disasters can occur, leading 
to massive direct and indirect economic and societal costs. This has happened much 
too often in South Africa (Wamsler 2014; Mangani et al. 2019; Dube et al. 2020). 
Due to a lack of adequate early warning systems, the country is always responding 
to disasters rather than planning and implementing proactive measures in advance. 
To minimize South Africa’s drought susceptibility, the Water Research Commission 
(WRC) policies and the findings from this study can help mitigate and reduce 
drought vulnerability by improving national coordination, planning, and prepara-
tion for extreme weather events.

Information in Table  5.2 presents assets vulnerability in South Africa, this is 
significant to livelihood stability, and the more assets vulnerable, the less the liveli-
hood stability. South Africa recorded assets vulnerability (poor people) and non- 
poor people with about 70% and 64%, respectively, and access to early warning 
with about 607%. This development might have affected various sectors including 
farmers, local communities, water reliant to be vulnerable to drought disasters. 
According to studies, Southern Africa, particularly South Africa, is vulnerable to a 
number of natural and human-caused disasters that are becoming increasingly 

Table 5.2 Resilience factors

Vulnerability

Asset vulnerability, poor people 
(%)

Asset vulnerability, non-poor 
people (%)

Access to early warning 
(%)

70 64 60
New risk levels and socioeconomic resilience
Risk to assets (%) Socioeconomic resilience (%) Risk to well-being (%)
0.39 56.01 0.69
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intertwined (FAO 2018; Aryal and Marenya 2021; Branca et al. 2021). Risk levels 
and socioeconomic resilience in South Africa for risk to assets, socioeconomic 
resilience, and risk to well-being are 0.39%, 56.01%, and 0.69%, respectively. The 
increasing frequency and severity of disasters erode rural households’ already 
weakened ability to forecast, cope with, and recover from risks, particularly those 
who rely on agriculture and are most vulnerable. Building stronger, more resilient 
livelihoods are critical to meeting the United Nations’ 2030 Agenda for Sustainable 
Development’s joint commitments.

 Conclusion

Livelihood vulnerability to drought-related events in South Africa was exacerbated 
by the government’s limited involvement in drought risk mitigation, the farmers’ 
capacity, and the imbalance of decision-making authority between the experts and 
non-experts. People who live in drought-prone areas should build livelihood and 
production systems to reduce the risks posed by extreme climatic changes, such as 
drought disasters. Despite low returns on land, labor, and capital, farmers have long 
used a variety of indigenous strategies and options to manage risk and deal with 
poor overall productivity. However, it is widely acknowledged that low-resource 
agriculture may no longer be capable of meeting the livelihood demands of rising 
populations in these fragile dryland environments, particularly in South Africa. 
Land use has gotten more intensive, and land and people have become more sensi-
tive to drought occurrences, due to the increased population in the last century and 
greater strain on natural resources such as land, water, and ecosystems. People, 
cattle, crops, and wildlife are competing for more scarce resources in a more com-
plicated environment and through sophisticated production systems. Pressures and 
intensification will increase sensitivity to subsequent droughts over time, leading to 
increased resource degradation and output loss—a negative spiraling impact. This 
study recommends that a pragmatic strategy that incorporates innovative technol-
ogy, institutional and policy solutions to manage risks posed by recurring droughts 
on vulnerable communities must be continually explored. This calls for firm part-
nership cooperation by implementing institutions operating at different levels (com-
munity, regional, and national) as the way forward for managing drought and 
climate variability.
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Chapter 6
Possible Influence of Urbanisation 
on Rainfall in Recent Past

Prabhat Kumar, Archisman Barat, P. Parth Sarthi, 
and Devendra Kumar Tiwari

Abstract The detection of weather and climate change caused by urbanisation is 
an important issue to understand and future projection of local weather change due 
to anthropogenic activities. Observational and climatological studies of alteration in 
convective phenomena over and around the urban area are reviewed with a focus on 
urban-modified downwind enhancement of rainfall. Causative factors for the altera-
tion of urban precipitation can be urban heat island, surface roughness and anthro-
pogenic aerosol. Monitoring of urban climate through high-resolution datasets was 
found to be quite important in today’s era of climate change. A detailed study 
through high-resolution CHIRPS-gridded data has been done for the cities of Patna 
and Gaya. The Mann–Kendall test and Pettitt’s test also indicated a changing trend 
in the rainfall intensity regime in the recent past for Patna, while a decreasing rain-
fall over Gaya has been envisaged by time-series analysis.

Keywords Climate change · CHIRPS · Precipitation · Proba-V · Urbanisation

 Introduction

Around the globe, the enormous growth of urban areas has been occurring due to 
the migration of people from rural areas to the city. It is estimated that by 2050 
about 66% of the world population will reside in urban areas (UN 2014). According 
to census records of India 2011, India’s population has risen from 1.02 billion in 
2001 to 1.21 billion in 2011 and the urban population of India is approximately 
31.20% of the total population of the country and is greater than 377.1 million. The 
rapid growth of urban population and economic activities implies a growing need 
for space. In the year 1900, only about 13% of the global population lived in urban 
areas, which increased to 29% and crossed the 50% in 2012 (UN 2010). It was 
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estimated that in 2030 approximately 70% of the world population will be living in 
cities. The process of urbanisation got strengthened after the industrial revolution in 
the western countries which led to the development of infrastructure, transportation, 
communication and intensified urban migration (Bhagat 2005). Basically, the 
growth of urbanisation in India is taking place in two ways, one is through the 
increase in urban population, which will be natural and the second is through the 
migration of people from non-urban to urban areas. The high demand for space 
modifies the natural land surfaces to the artificial surfaces that cause modification of 
microclimate and enhancement in the surface roughness, resulting in alteration of 
energy budget in cities and regional atmospheric parameters. Alteration in surface 
roughness causes a change in energy budget in cities and regional atmospheric 
parameters. Larger surface roughness causes the air/storm passing over a city to 
slow down and bifurcate and split near the upwind side of the city and the bifurcated 
air can remerge towards the leeward side of the city as a more powerful storm 
(Cotton and Pielke 1995; Tumanov et al. 1999; Miao et al. 2011). The urban heat 
islands, one of the most common urban climatic phenomena, induces the downwind 
updraft cells which initiate deep moist convection. The strong updraft cell is also 
responsible for downwind enhancement in precipitation (Han et al. 2014a). Another 
major effect of urbanisation is the lowering of albedo, which can be due to the 
darker surface material having high radiation trapping capacity (Heisler and Brazel 
2010). Urbanisation also alters the rainfall patterns by changing the convective 
available potential energy (CAPE) (Shepherd and Burian 2003). Rainfall is a het-
erogeneous weather parameter that can be varied with space and time, and it depends 
on the local condition prevailing in a particular area. Increased population and emis-
sion of anthropogenic aerosols in urban areas also in turn interact as cloud conden-
sation nuclei (CCN) and causing the cloud to store more droplets of cloud water that 
influence regional rainfall (Zhong and Yang 2015; Parth Sarthi et al. 2021). Heavy 
convective activity releases latent heat which plays an important role in extreme 
rainfall and thunderstorms. Due to convection warm air rises and the water vapour, 
it contains condenses onto cloud condensation nuclei. Rising air parcels become 
saturated when the water vapour condenses and forms a cloud, which releases latent 
heat to the atmosphere. The released latent heat warms the surrounding air and 
causes instability in new cloud droplets. The warmth near the cloud droplet will 
start to rise and condensate. That causes enhancement in cloud height and thunder-
storms can be formed from these growing clouds (Kishtawal et  al. 2010) in the 
downwind, resulting in an enhancement in rainfall in the downwind side.

 Studies on the Rainfall and Urbanisation Through Observations

Many studies evaluated the relationship between urban areas and precipitation 
(Table 6.1). Oke (2002) states that cities have different climatology with respect to 
their surrounding rural area. In cities, the natural land surface (grass, crops and soil) 
is replaced by the artificial surface (concrete and asphalt) that have different surface 
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Table 6.1 Some important studies regarding urbanisation and rainfall from last two decades

Authors Key finding

Thielen et al. 
(2000)

Urban rainfall is increasing with an increase in surface roughness

Shepherd et al. 
(2002)

Increase rainfall rate in downwind impact area by 48%–116% to the mean 
value of upwind control area

Rozoff et al. 
(2003)

Interactions associated with urban surface friction, momentum drag, and 
heating could induce downwind converge

Han and Baik 
(2008)

UHI-induced air parcel upward motion on downwind side is factor for the 
rainfall enhancement in the downwind side of an urban area

Shem and 
Shepherd 
(2009)

Enhancement in rainfall amount is attributed to intensify activity within the 
boundary layer result from UHI effect

Kishtawal 
et al. (2010)

Urban areas are more(less) likely to experience heavier (lighter) rainfall rate 
compared to non-urban areas

Niyogi et al. 
(2011)

Indianapolis urban area change the convective system structure, intensity and 
the wind split when they approach the city and converge towards the downwind 
side of the city

Han et al. 
(2012)

Aerosol concentration of urban area causes strong convective cloud 
development mainly due to the release of the higher amount of latent heat 
released in the condensation process

Hazra et al. 
(2017)

In a polluted atmosphere, the increased release of latent heat invigorates the 
cloud system to generate more ice hydrometers and cloud condensed nuclei 
eventually more rain at the downwind side

Sarangi et al. 
(2018a)

Aerosol-induced microphysical change which delay the initiation of warm 
rainfall (over the upwind region) but increase in ice phase particle formation 
(over the downwind area) resulting enhancement in downwind rainfall

roughness and thermal inertia (albedo, thermal conductivity and emissivity). These 
surfaces have more capacity to store solar energy and convert it to sensible heat. 
Urbanisation changes the rainfall patterns by the changes in convective available 
potential energy (CAPE) as a result of mesoscale circulation (Shepherd and Burian 
2003; Niyogi et al. 2006), the larger the CAPE, the more intense the convection. 
This change by the formation of convective clouds causes alterations in precipita-
tion and the hydro-meteorological environment. Convective rainfall generally 
depends on the vertical stratification of temperature, wind and water vapour (Pielke 
2001). Huff and Changnon (1972) reported in the past that warm season rainfall 
increases by 9%–17% over the downwind side of the cities. An urban area is also 
associated with increased emission of anthropogenic aerosols which interact with 
cloud microphysics by serving as cloud condensation nuclei (CCN). This can be 
better understood with reference to the first and second indirect effects and the 
semi-direct effect (Tripathi et al. 2007). The first indirect effect (FIE) or Twomey 
effect (Twomey 1977) states that when CCN increases (mainly the fine mode aero-
sols like anthropogenic aerosols), in a constant cloud water content, there will be the 
formation of numerous small droplets. These clouds with smaller particles will not 
precipitate easily and the cloud lifetime will be increased (as defined by Albrecht 
effect/ second indirect effect (SIE)) (Albrecht 1989), further depreciation of rainfall 
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will happen by evaporation of these smaller cloud particles, i.e. the semi-direct 
effect (SDE) (Khain et al. 2005; Lohmann and Feichter 2005), and this will further 
influence regional rainfall (Rosenfeld and Woodley 2003; Zhong and Yang 2015; 
Zhong et al. 2017). Guo et al. (2014) observed the 40 years (1966–2005) data of 
aerosol concentration and rainfall at the seven stations during summer months over 
North China. They categorise hourly rainfall data into four groups: high (8 mm/h), 
moderate (2–8 mm/h) and low (0.6–2 mm/h and very low (0.6 mm/h). They found 
an enhancement in aerosol concentration causes the decreasing trend of light rain-
fall along with the orographic enhancement factor. They also checked the trend of 
environmental parameters like wind speed and direction; CAPE and vertical wind 
shear are responsible for the suppression of light rainfall, but they found no direct 
links. At the same time, the enhancement of rainfall is also widely documented by 
researchers across the globe. Burian and Shepherd (2005) analysed the rainfall pat-
tern over Houston for the pre-urban time period (1940–1958) and a post-urban time 
period (1984–1999) to envisage the impacts of urbanisation. In this study, the aver-
age maximum 1-h rainfall intensity during warm season found to be increased by 
16% from the pre- to post-urban period in the urban area. A 4% increase in rainfall 
over the upwind control region was also noticed. Sarangi et al. (2018b) analysed the 
spatial distribution of rainfall around metropolitan cities located in the central 
Gangetic Basin (GB). They used 4-year in situ data (2013–2016) between June and 
September from three automatic weather stations (AWS) in and around Kanpur. The 
analysis found that the amount of precipitation received in the urban area is signifi-
cantly higher than the region located to the south of the city, and also the frequency 
of occurrence in late evening rainfall is higher in an urban area than in a rural area. 
In the same study, observations of TRMM-PR data at fine resolution (5 Km × 5 Km) 
visualised that the downwind regions of Kanpur had received heavier rainfall com-
pared to the urban region. Sarangi et  al. (2018b) also simulate a high-resolution 
WRF model (version .3.6.1) to the regional weather over India using three nested 
domains during 4–20 August 2011 (Output at the hourly frequency) on various cit-
ies of North India. The observation of the WRF dataset supported that downwind 
enhancement of rainfall is a prevalent phenomenon not only in Kanpur but also in 
other cities in North India. CCN concentration is reduced by a factor of 100 (over 
the Greater Kanpur region) when urban land use land covers (LULC) of Kanpur 
city, in all domains, are replaced with cropland LULC (Pande et al. 2018, 2021a). 
The LULC change affects the surface energy balance that causes the higher tem-
perature in the near-surface layer over the urban area. Wind convergence at lower 
troposphere height over the city is caused by the formation of the low-pressure 
region due to an increase in temperature. Convergence caused an enhancement in 
the updraft cell that increased the water concentration in the cloud, which led to an 
enhancement in surface rainfall over the urban region. The Metropolitan Experiment 
(METROMEX) was an extensive study performed in St Louis (Midwest USA) in 
the 1970s to investigate the alteration in convective precipitation due to urbanisa-
tion. The observational result from METROMEX shows that urbanisation causes 
enhancement in rainfall amounts of 5%–25% in downwind of the cities (Changnon 
et al. 1977). Shepherd et al. (2002) used data from the world’s first satellite-based 
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TRMM satellite’s precipitation radar (PR) data to identify warm season rainfall pat-
terns for the cities of Atlanta, Montgomery, Dallas, Waco and San Antonia in the 
USA. Results reveal that the average percentage increase in mean monthly rainfall 
rate is 28% towards the 30–60  km leeward side of the urban area with a 5.6% 
enhancement over the city. The result shows the maximum rainfall rate in down-
wind impact areas increased by 48%–116% to the mean value of the upwind control 
area (UCA). Shepherd and Burian (2003) used data from precipitation radar (PR) 
aboard the Tropical Rainfall Measuring Mission (TRMM) and ground-based rain 
gauges to quantify rainfall anomalies that they hypothesise to be linked to extensive 
urbanisation in the Huston River. The observational analysis of 5-year data showed 
a 28% enhancement in the mean rainfall rate in the downwind side of the urban- 
impacted region (UIR) over an upwind control region (UCR). The high amount of 
release of latent heat in the urban environment is also found to be quite important in 
earlier studies, as this may induce the cloud system to generate more ice hydrome-
teors and eventually resulting in more precipitation (Hazra et al. 2017; Prabha et al. 
2012). In a study over Indianapolis, urban areas found to change the convective 
system structure, pathway and intensity; the wind found to split when they approach 
the city and converge towards the downwind side of the city (Niyogi et al. 2011). 
Kishtawal et al. (2010) investigated the in situ and satellite-based precipitation data 
and the population dataset to observe the relationship between urbanisation and 
Indian monsoon rainfall change. The urban region experiences a decreasing trend of 
light precipitation and a higher occurrence of intense precipitation compared to the 
non-urban region. They used 10-year Tropical Rainfall Measurement Mission 
(TRMM) combined rain rate product (3G68) at 0.5° × 0.5° resolution grids. The 
result from satellite data indicates that urban areas are more(less) likely to experi-
ence heavier (lighter) rainfall rates compared to rural areas. Shastri et  al. (2015) 
analysed the impact of urbanisation on Indian summer monsoon rainfall. For this 
observation, they select 42 urban regions and compare their extreme rainfall charac-
teristics with the surrounding non-urban area. They observed urban signatures on 
extreme precipitation are not uniformly visible at all places. They consider seven 
metrological homogeneous zones of India for analysis, identified by India 
Meteorological Department (IMD) (Parthasarathy and Yang 1995). Zonal analysis 
reveals that the impact of urbanisation on extreme rainfall in Southern, Central and 
Western India is clearly visible but in North India; this impact shows a large-scale 
decreasing trend. To detect the impact of urbanisation on rainfall, the most popu-
lated coastal city of Mumbai with its nearby non-urban area Alibaug has taken. Both 
have the same geographical area but differ in the context of urbanisation. The result 
reveals that urbanisation has intensified the extreme rainfall in Mumbai, which is 
not seen in Alibaug.

Han et  al. (2014a) reviewed urban impacts on precipitation and analysed the 
cause for changes in convective phenomena over and around the cities with a focus 
on the enhancement of rainfall in downwind of cities. Thielen et al. (2000) demon-
strated that rainfall is increasing with an increase in surface roughness. Han et al. 
(2012) explain the increased aerosol concentration of urban areas causes strong 
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convective cloud development mainly due to the release of the higher amount of 
latent heat in the condensation process (Table 6.1).

 Urban Features, Processes and Mechanisms Influencing 
the Rainfall

Causative factors of urban climate modification are often linked to aerosol-cloud 
interactions, UHIs, surface roughness effect and heat fluxes (Arnfield 2003; Oke 
1988). The key processes may be summarised as follows.

 Aerosols, Cloud Physics and Heat Fluxes

Anthropogenic aerosols in urban areas interact with cloud microphysics by serving 
as CCN which interact with solar radiation and influence the regional climate 
(Collier 2006; Zhong et al. 2017). Urbanised areas are associated with a high rate of 
emission of anthropogenic aerosol. While some studies show that enhancement in 
aerosol number concentration suppresses rainfall from warm shallow clouds by the 
formation of the narrow drop size distribution (Teller and Levin 2006; Muhlbauer 
and Lohmann 2006; Parth Sarthi et al. 2021), other studies indicate that enhance-
ment in aerosol concentration increases the precipitation (Rosenfeld et  al. 2012; 
Khain et al. 2008). While summarising, a number of studies indicate that the impact 
of enhancement of aerosol concentration can either increase or decrease rainfall 
depending upon the environmental conditions, wind shear and cloud type (Fan et al. 
2009). In a polluted atmosphere, the increased release of latent heat invigorates the 
cloud system to generate more ice hydrometers and cloud condensed nuclei, eventu-
ally more rain at the downwind side (Hazra et  al. 2017). Enhancement in cloud 
condensed nuclei concentration is directly associated with the formation of smaller 
effective radios cloud droplets that lead to lower efficient collision-coalescence pro-
cesses and inhibit raindrop formation processes (Rosenfeld 2000). The cloud con-
densed nuclei induced buoyancy that would push the lower condensates above the 
freezing level (Lensky and Rosenfeld 2006). Borys et al. (2003) analysed combined 
remote sensing and in situ mountaintop measurement data and showed that pollu-
tion in the urban areas decreases the cloud droplet size causing lower snowfall rates 
from mixed-phase clouds in a mountainous region by decrease in the rimming pro-
cess. Some studies show the downwind shift of precipitation from the orographic 
clouds which is due to aerosols; aerosol inhibits the conversion of cloud ice to rain-
fall (Konwar et  al. 2010). Heever and Cotton (2007) investigate the mechanism 
associated with downwind precipitation modification involving the effect of urban 
aerosol concentration. Studies highlight urban aerosol can directly link with the 
convective storm and intense rainfall. Some studies also demonstrate that high aero-
sol concentration is directly proportional to the summer precipitation (Lacke et al. 
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2009). A positive correlation between cloud to ground lightning activity and aerosol 
concentration is found in many areas. Choi et al. (2008) observed both surface and 
satellite data and found higher aerosol concentration is directly correlated with an 
increase in moderate rainfall events. Some studies explain the observed enhance-
ment in rainfall in the polluted area by the mechanism of strong convection to move 
more cloud water to the upper atmosphere and after freezing release additional 
latent heat. Enhancement in aerosol concentration can increase the air humidity and 
intense convection occurs (Farias et al. 2014). Some previous modelling and obser-
vational studies indicate that aerosol concentration can increase or decrease the 
rainfall amount, which depends upon the relative humidity, wind shear, 
CAPE. Sarangi et  al. (2019) demonstrate aerosol-induced microphysical change 
which delays the initiation of warm rainfall towards the upwind side but increases 
in ice phase particle formation over the downwind area side resulting in an enhance-
ment in downwind rainfall. Sarangi et  al. (2018a) explain enhancement in cloud 
condensed nuclei in urban areas is associated with the formation of more cloud 
droplets with a very small effective radius, which leads to a lower efficient collision- 
coalescence process that delays the formation of raindrops. A smaller rain droplet 
causes lower effective terminal velocity and enhancement in cloud droplet mobility 
upward. An increasing CCN concentration induces buoyancy that pushes the smaller 
condensates above the freezing level. The supercooled liquid above freezing liber-
ates latent heat that exhilarates the cloud microphysics (Altaratz et al. 2014), which 
enhances the ice-water accretion process (Rosenfeld et al. 2008). Urban polluted 
areas enhance the cloud condensation nuclei that increase the convective- 
convergence zone, resulting in more instability and updraft. Enhancements in clouds 
invigorate the spatiotemporal shift of occurrence of precipitation towards the down-
wind region. Systematic modelling study is required to understand the mechanism 
for the enhancement of rainfall in the downwind side and the size distribution of 
aerosol particles. Also, the cloud-aerosol interactions and the mechanism involved 
need to be investigated. The lower collision efficiency of cloud droplets causes 
strong updraft under higher aerosol concentrations to result in enhancement of liq-
uid water content (LWC) at a higher level, leading to the increased riming process 
that produces large ice particles. The melting of a larger amount of hail caused 
enhancement of rainfall in the downwind side of the urban area with increasing 
urban aerosol (Han et al. 2012). Changnon and Westcott (2002) documented the fast 
development of moving storms was observed in some urban areas which were seen 
in the London area. Pinto et al. (2013) demonstrate that enhancement in rainfall rate 
in Korean cities is directly related to the population growth in the cities. Inoue and 
Kimura (2004) hypothesised higher sensible heat flux causes enhancement in the 
mixing layer height, so the formation of the cloud is taken at the top of the enlarged 
thermals, and uplift and convergence of air occurred due to urban–rural temperature 
contrast. They saw an enhancement in a low-level cloud over Tokyo Japan. Schmid 
et al. (1991) demonstrate variation in solar flux across urban areas, due to the vari-
ability in building material, artificial surfaces and land use across the urban area. In 
cities, lower albedo is due to the darker surface material having high radiation trap-
ping capacity and converting it to sensible heat (Heisler and Brazel 2010). These 
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surfaces have more capacity to store solar energy and convert it to sensible heat. 
Observation of previous studies of boundary layer and urban energy balance shows 
the flowing generic characteristic of urban areas. Harman and Belcher (2006) have 
discussed the different types of fluxes observed in an urban environment. These are 
(a) momentum flux (rural areas are less rough than the urban counterparts (Oke 
2002)), (b) latent heat flux (lower in urban areas (Cleugh and Oke 1986)), (c) sen-
sible heat flux (urban areas have higher sensible heat flux and positive sensible heat 
flux is found throughout the night (Oke et al. 1999) and (d) ground heat flux (artifi-
cial surfaces of urban areas stored larger ground heat flux than surrounding rural 
areas (Cleugh and Oke 1986)).

 Urban Land Cover and Surface Roughness

Alteration in surface roughness causes a change in energy budget in cities and 
regional atmospheric parameters. Larger surface roughness causes the air/storm 
passing over a city to slow down and split near the upwind side of the city. The 
bifurcated air can remerge towards the leeward side of the city as a more powerful 
storm (Cotton and Pielke 1995; Tumanov et al. 1999; Miao et al. 2011; Pande et al. 
2021b). Changes in surface roughness of urban and non-urban areas lead to a change 
in airflow. Enhancement in surface roughness alters the energy budget in cities and 
regional atmospheric parameters. Due to larger surface roughness in an urban area 
than the surrounding non-urban area air reaching the city to slow down nears the 
upwind side of the city. Larger surface roughness causes the air/storm passing over 
a city to slow down and bifurcate and split near the upwind side of the city. The 
bifurcated air can remerge towards the leeward side of the city as a more powerful 
storm (Cotton and Pielke 1995; Tumanov et al. 1999; Miao et al. 2011). Some stud-
ies show the downwind shift of precipitation from demonstrating that rainfall is 
increasing with an increase in surface roughness. Shepherd (2005) reviews the 
mechanism of rainfall enhancement due to urbanisation. He demonstrated that 
enhancement in the surface roughness in a city causes an increment in sensible heat 
fluxes and enhancement in aerosol concentration that works like clouds condensa-
tion nuclei. Han and Baik (2008) and Rozoff et al. (2003) used a three-dimensional 
model to show the upward motion of airflow will become stronger with an increase 
in surface roughness.

 Urban Heat Island and Their Consequences on Rainfall

An urban heat island (UHI) occurs when the city experiences warmer temperatures 
than the nearby non-urban or rural areas. In the urban area, the natural land surface 
(grass, crops and soil) is replaced by the artificial surface (concrete and asphalt) that 
have different surface roughness, albedo and thermal properties (thermal inertia, 
thermal conductivity and emissivity). These surfaces have more capacity to store 
solar energy and convert it to sensible heat. During daytime urban areas store 
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radiating energy in concrete, asphalt and building material. This stored energy is 
used to compensate negative radiation at night, resulting the high night temperature 
of the urban area than the surrounding rural area. The UHI is regarded as a low-level 
heat source that induces airflow/circulation and modifies urban boundary layer pro-
cesses. Baik (1992) carried out a two-dimensional study to investigate the charac-
teristic of airflow past and UHI in a basic state flow with shear. Olfe and Lee (1971) 
also carried out two-dimensional uniform steady-state flow calculations. They anal-
yse that upward motion in the downwind side and downward motion in the upwind 
side of the urban heat island. Lin and Smith (1986) solve the time- dependent prob-
lem of airflow near the hot sources. They found that air parcels descend over a heat 
island side and rise over the downwind side. Han and Baik (2008) and Baik et al. 
(2007) also suggested that UHI-induced air parcel upward motion on the downwind 
side is a factor for the rainfall enhancement in the downwind side of an urban area. 
Baik and Chun (1997) used the perturbation method to solve a weakly nonlinear 
problem in two dimensions. Bornstein and Lin (2000) analyse the surface precipita-
tion data in the Atlanta area and states that convective thunderstorms were induced 
due to urban heat island. Baik et  al. (2001) demonstrated that urban heat island 
induced the downwind updraft cells which initiate deep moist convection. The 
strong updraft cell is responsible for downwind enhancement in precipitation. Han 
et al. (2014b) conclude that urban heat island and the mechanism of occurrence of 
thunderstorms over the downwind of cities are often in the afternoon and in the 
morning in summer. The Indian summer monsoon is a mesoscale convective cloud 
system that mainly mixed-phase clouds. The above study reveals that urban heat 
island-induced strong updraft can produce more clouds/thunderstorms on the down-
wind side, resulting in an enhancement in rainfall on the downwind side. Dou et al. 
(2015) have investigated why somewhere show enhancement in rainfall over the 
urban area, while others indicate an increasing trend towards the downwind of the 
cities. They state that high UHI and low wind over the urban area induce conver-
gence that causes enhancement in rainfall over the urban area or on the other hand 
the high wind and low urban heat island impact create a barrier effect that intensi-
fied rain downwind and around the urban area.

 Modelling Studies on Rainfall and Urbanisation

Thielen et al. (2000) used a two-dimensional mesoscale model with cloud micro-
physics to analyse the impact of urban surfaces on urban and non-urban rainfall 
anomalies. This model is started with surface temperature, dew point temperature, 
and surface roughness. The result of this model implies that increasing near-surface 
temperature in the urban area is mostly due to the larger sensible heat flux in urban 
areas than non-urban areas; this exhibits an increase in the urban heat island effect. 
Kusaka et al. (2001) used a single-layer canopy model for energy and momentum 
exchange between the urban rough surface and surrounding. They demonstrated 
that the urban area leads to breaking the squall line into convective cells over the 
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city. By the observation of extensive previous studies, it is not clear whether surface 
roughness alone can initiate moist convection, also bifurcated convective systems 
can enhance the rainfall in the downwind side of the city or not. Rainfall can increase 
or decrease depending upon the flowing factor such as surface roughness and water 
vapour supply. Georgescu et al. (2008) used an atmospheric model and urban land 
cover data from 1973 to 2001 and simulated the impact of urbanisation and irriga-
tion in the Phoenix area rainfall during monsoon seasons (Shahid et al. 2021). They 
found that enhancement in rainfall in the north and northeast of the phoenix urban 
area during the dry monsoon years. Shem and Shepherd (2009) used a three- 
dimensional mesoscale model to analyse the case of two studies over Atlanta. They 
found precipitation amounts in the downwind of the urban area to be 10%–13% 
higher than the city. In the simulation model, the city of Atlanta is replaced by the 
land use land cover type of the nearby non-urban area. Zhang et al. (2018) have 
investigated the impacts of urbanisation on rainfall modification by using the WRF 
and concluded that urbanisation causes enhancement in precipitation and flooding 
in the urban area. Freitag et al. (2018) have investigated rainfall modification over 
San Miguel De Tucuman, Argentina, by using satellite data and the WRF model and 
found that 20%–30% less rainfall towards the downwind of the city. Zhang et al. 
(2009) observed the decreasing trend of summer rainfall over Beijing, and the result 
reveals that urbanisation causes reduction in CAPE that is the reason for less pre-
cipitation. Previous studies indicate that some regions of the world show an increas-
ing trend of precipitation over and downwind due to urbanisation, but some regions 
show a decreasing trend. To find the cause and mechanism, further in-depth analysis 
of the climatological model is required.

All these previous works show a close link between the impacts of urbanisation 
on weather events and climatic precipitation trends. Most of the observation reveals 
that urbanisation increases the mean rainfall rate in the downwind side of the urban 
area. In upcoming decades, the urban–rural ratio will be expected to increase more 
rapidly, so it is important to start the assessment of the impact of such urbanisation 
on the climate. While most of the earlier rainfall studies were based on spatial reso-
lutions nearing quarter to half degree, which were incapable of recording precipita-
tion for smaller cities. It is evident that the smaller cities are also showing fast 
increasing trends of climate modification at microscales (Barat et al. 2018, 2021) 
hence are needed to be studied at priority. For this purpose, in the present study, we 
have considered documenting the long-term changes in rainfall trends using very 
high-resolution gridded data for two cities from Bihar in the middle Gangetic plains 
of India. After a thorough review of the existing knowledge of urban–rainfall rela-
tions in Introduction (section “Introduction”), the materials (Study area and Data) 
and methods have been documented in section “Changes in rainfall characteristics 
over a typical urban centre of gangetic plain”. Results are reported and discussed in 
section “Results and discussion” followed by conclusions, recommendations and 
references thereafter.
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Fig. 6.1 General topography of the study area

 Changes in Rainfall Characteristics Over a Typical Urban 
Centre of Gangetic Plain

 Study Area

Two largest cities from Bihar state lying in the middle Gangetic plain (Fig. 6.1), 
India, are selected for the study, namely, Patna and Gaya. Both of the stations fall in 
the Cwa category in Köppen classification. These cities being important settlements 
are directly linked with fast urbanisation. The census data for these cities reflects 
Patna is home to 1,697,976 people and the Gaya has 394,945 residents (https://
censusindia.gov.in/towns/town.aspx). The Gangetic plains is the home to the 40% 
people in India (Mishra et al. 2017), and due to fast urbanisation currently facing 
many severe issues, especially the urban centres.

 Data and Methods

In the present research, it has been undertaken to analyse the characteristics of 
Indian Summer Monsoon Rainfall (ISMR) over the urban areas of Patna and Gaya 
for the months of June, July, August and September (hereafter JJAS). For this pur-
pose, the urban areas are delineated using very high-resolution Copernicus 
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CGLS-LC 100 (v. 3.0.1) land cover data from Proba-V satellite (Buchhorn et al. 
2020). The high-resolution (0.05° × 0.05°) daily gridded rainfall data from CHIRPS 
(Funk et  al. 2015) dataset is considered for the present study for the period of 
1981–2021. Each month of JJAS is analysed to visualise the trend of low-to- 
moderate rainfall events (0–35.6  mm/day) and rather heavy to extremely heavy 
rainfall (>  =  35.6  mm) events during the last four decades. The statistical tests 
Mann–Kendall test (Mann 1945; Kendall 1975) and Pettitt’s test (Pettitt 1979) were 
used to detect the trend in time series along with the change in central tendency.

 Results and Discussion

All the 4 months were individually analysed for the trends in rainfall. Through the 
time-series analysis (Fig. 6.2a–d), we can see that the days with light rains are found 
to be increasing, especially over Patna (for June and August) and Gaya (for August), 
whereas a slight decrease in heavy rainy days was observed for Gaya (August). The 
Gaya falls under agro-climatic zone 3b which is infamous for the severe drought- 
like conditions (Kumar et  al. 2019) and decrease in the heavy rainfall cases and 
increase in light rainy days may have a linkage with the urban aerosols and suppres-
sion of rainfall as discussed by previous researchers (Parth Sarthi et al. 2021). On 
the other hand, the increase in light intensity rainfall days over Patna is noticed. As 
Patna is situated on the riverfront and its microclimatic variability is very much 
influenced by the river Ganga (Barat et al. 2021), there may be an effect of localised 
convection intensified by urban processes. To visualise any significant trend and 

Fig. 6.2 No. of light and heavy rainfall days over Patna (a–b) and no. of light and heavy rain-
fall over Gaya (c–d)

P. Kumar et al.



199

Table 6.2a Pettitt’s test and Mann–Kendall test result for light rainfall Patna

Pettitt’s test Mann-Kendall test(α = 0.05)
Months U p-value K S Tau p-value

June 307 0.0006645 18 283.00 0.3601 0.0014
July 117 0.6249 17 20.84 23.1861 0.4154
August 247 0.0112 13 235.0 0.2947 0.00831
September 91 0.9895 38 14.86 15.5035 0.5722

Table 6.2b Pettitt’s test and Mann–Kendall test result for heavy rainfall Patna

Pettitt’s test Mann-Kendall test(α = 0.05)
Months U p-value K S Tau p-value

June 104 0.7977 25 105.00 0.2085 0.104
July 123 0.5529 25 90.000 0.1262 0.2965
August 107 0.7559 28 −99.00 −0.153 0.2203
September 140 0.3781 24 19.484 24.8029 0.4207

Table 6.3a Pettitt’s test and Mann–Kendall test result for light rainfall Gaya

Pettitt’s test Mann–Kendall test (α = 0.05)
Months U p-value K S Tau p-value

June 142 0.3604 17 131.00 0.16605 0.1417
July 127 0.5079 28 −18.00 −0.0225 0.848
August 222 0.03034 14 171.00 0.21618 0.05484
September 120 0.5882 35 93.00 0.1169631 0.2991

Table 6.3b Pettitt’s test and Mann–Kendall test result for heavy rainfall Gaya

Pettitt’s test Mann–Kendall test (α = 0.05)
Months U p-value K S Tau p-value

June 78 1 23 50.00 0.1104 0.3982
July 128 0.497 33 76.00 0.1115 0.3637
August 91 0.9895 04 −39.0 −0.054 0.6576
September 102 0.8261 13 −0.423 −0.05 0.6722

possible change point in the data, Mann–Kendall test and Pettitt test have been 
applied for Patna (Table 6.2a and 6.2b) and Gaya (Table 6.3a and 6.3b). Mann–
Kendall test showed a significant increasing trend in light rainy days for the month 
of June and August in Patna, the same 2  months a significant change point is 
observed in the 18th and 13th year, respectively, and this implies that the Patna’s 
rainfall regime is changing in recent past, especially for the months when the mon-
soon peak in approaching and departing as seen from long-term climatology 
(Fig. 6.3). However, no significant trend was observed for Gaya, although a change 
point in the 14th year was found in Pettitt’s test. Rainfall pattern shift was also 
noticed by several researchers in the past. Sadler (2002) envisaged an increment of 
~20% for the precipitation over natural vegetation cover; this research also linked 
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Fig. 6.3 Daily climatological JJAS rainfall for (a) Patna and (b) Gaya

this increment with the shift in the precipitation from agricultural cover towards the 
natural vegetation cover under a prevailing dry climate (Junkermann et al. 2009). 
The cities selected here are often visited by drought episodes as reported in past for 
this agro-climatic zone (Kumar et al. 2019); thus, the region somewhat possesses 
the characteristics of a drier climate. Hence, the regional influences may also cause 
a reduction in the precipitation amounts over non-natural covers (viz urban area) in 
a greater manner than the larger circulations due to change in surface roughness, 
moisture and energy fluxes and albedo (Ray et  al. 2003; Pitman et  al. 2004; 
Junkermann et al. 2009). We know that the impact of enhancement of aerosol con-
centration can trigger both enhancement and suppression of rainfall (Fan et  al. 
2009) depending upon the local conditions; hence, the change in the rainfall pattern 
over the cities may be linked with localised microclimatic variability triggered by 
urban aerosols. Moreover, Seifert et al. (2012) demonstrated that clouds may act as 
a natural buffer in larger scale-clouds systems also and cause significant 
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aerosol- induced change on surface rainfall. Rosenfeld (2000) indicated that both 
warm and cold season rainfall is inhibited in polluted clouds due to the absence of 
primary and secondary cloud producing nuclei. Cloud condensed nuclei may also 
induce more upward transportation of cloud water and suppress warm rainfall by 
the increase in the freezing of cloud drops to the ice phase. Lynn et  al. (2007) 
observe the impact of aerosol on orographic precipitation by performing a two-
dimensional mesoscale model over the Sierra Nevada of California. The result 
reveals that anthropogenic aerosols suppress the summer rainfall process by produc-
ing more cloud ice and snow that can be advected towards the downwind because of 
their lower sedimentation velocity. Svoma and Balling (2009) also found winter 
precipitation is inversely proportional to the aerosol concentration number. 
Muhlbauer and Lohmann (2006) demonstrated that enhancement in aerosol concen-
tration suppresses the overall precipitation. This reduction in rainfall is due to the 
raindrop size distribution. Furthermore, the cities are having heavy perturbed micro-
climate as discussed by previous researchers, leading to formation of quite strong 
surface UHIs (Ghosh and Mukhopadhyay 2014; Barat et al. 2018, 2021), and thus, 
the urban boundary layer may also be quite modified resulting in changes regarding 
other meteorological characteristics. The changes in rainfall patterns over urban 
areas may lead to severe depletion of groundwater resources (Kumar et al. 2016; 
Dey et  al. 2020), and under the drought conditions, the situation may get even 
worse. Thus, there is an exigency for monitoring the rainfall pattern changes and 
thus disaster preparedness to ensure a sustainable and climate smart city in the future.

 Conclusions

In this research, an attempt has been made to document the urban impact on precipi-
tation. The rainfall is very heterogeneous in nature and its spatial distribution is very 
unpredictable. An increase in light intensity rainfall days in early and departing 
months is observed, which in turn is giving rise to speculations of localised altera-
tions in precipitation. As the microscale influences are only evident in absence of 
strong synoptic influences (Kumar et al. 2017; Barat et al. 2021), July may have not 
been showing any trend. A regional change in aerosol concentration could be an 
important factor for the rainfall depletion. High aerosol concentration suppresses 
the formation of rainfall by inhibiting the coalescence process of cloud droplets into 
raindrops (Rosenfeld 2000; Dave et al. 2017). Increased aerosol loading makes the 
atmosphere stable causing reduction in convection and enhancement in the diver-
gence of moisture leading to aggravation of monsoon break condition and subse-
quently suppression of precipitation (Dave et al. 2017). In the future, cities are more 
likely to be influenced by regional weather conditions, so it is important to predict 
urban precipitation anomalies. A systematic modelling study is required to under-
stand the mechanism for the enhancement of rainfall in the downwind side and the 
size distribution of aerosol particles. Also, the cloud-aerosol interactions and the 
mechanism involved need to be investigated.

6 Possible Influence of Urbanisation on Rainfall in Recent Past
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 Recommendations

The urbanisation has a well-defined impact on the rainfall distribution and amount. 
While the underlying causes point towards anthropogenic modifications in surface 
roughness, heat fluxes and aerosol loads, this is also true that all these modifications 
are inevitable. In this era of changing climate and fast urbanisation, the climatic 
vulnerability and climate resilience frameworks are matters of key concerns. To 
mitigate the ill impacts like heat stress, poor air quality and catastrophic hazards like 
urban flooding, scientific monitoring of the key precursors is utmost important. 
Long-term monitoring of urban environments through high-resolution meteorologi-
cal data is very much important to assess the changing climatic trends. Furthermore, 
green town planning and strict pollution norms are much needed to manage the 
precursors like UHI and urban aerosols. The disaster risk assessment studies and 
abatement policies must also be framed in the context of urban flooding. Although 
urbanisation in present times seems to be inevitable, however the magnitude of the 
changes to local climate due to urbanisation must be minimised to the most possible 
extent by following sustainable development pathways to ensure a  safe and 
sustainable environment.
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Chapter 7
Influence of Climate Change on Crop Yield 
and Sustainable Agriculture

M. Aali Misaal, Syeda Mishal Zahra, Fahd Rasul, M. Imran, Rabeea Noor, 
and M. Fahad

Abstract Climate change (CC) is one of the serious matters regarding the global 
food supply, safety, and sustainability of agriculture. The population of the world is 
increasing at a rapid pace, especially in South Asia. To fulfill the food consumption 
of the growing population and encountering CC at the same time in agriculture is 
the toughest challenge of today’s world. The events like severe hot summer and 
extremely cold winters, uncertain prolonged seasons, and randomness of precipita-
tion are the biggest evidence of CC. Global warming and increased anthropogenic 
human activities are meant to be the cause of CC. Crops at early and even advanced 
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stages are significantly affected by CC, the processes like photosynthesis, evapo-
transpiration, plant growth, metabolic activities, and other chemical reactions. The 
variability of climate at the specific crop period slows down reactions within the 
plant which results in decreased crop production. There is a wide range of farmers 
with different socioeconomic conditions and life experiences. The progressive 
farmers have conceptualized the climate in recent years and updated their farm 
practices, while the others are still trying to cope up with CC. Thus, this is the need 
of time that farmers must be educated with the ongoing environmental conditions 
and best cropping pattern, crop rotation, and practices are informed so that the 
emerging issue of food security and safety of the developing world can be over-
come. The review is carried out to understand the effect of CC on crop production 
and sustainable agriculture.

Keywords Climate change · Agriculture · Crop Yield · Sustainability

 Introduction

Climate change (CC) is one of the biggest threats of the twenty-first century creat-
ing complex environmental and social challenges for sustainable developments. It 
has been recognized as a major reason for the downfall of most sectors like fisheries, 
agriculture, livestock, tourism, and forestry (Kalele et al. 2021). CC refers to change 
in the average weather patterns of a region. The change in global climate is being 
observed continually since the pre-industrial revolution (Dissanayake et al. 2018) 
due to increased anthropogenic human activities and greenhouse gasses (GHGs). 
The anthropogenic activities have led to massive GHGs emissions through the burn-
ing of fuels and air conditioning. It is estimated that 50% of CO2 emissions are 
accumulated during 1750–2011. Growing population and economy have led to 
changing lifestyles, increased energy use which is directly linked with CC (van der 
Keur et al. 2016). CC events can have a severe impact on food security such as non- 
availability, less utilization, and access issues with food (Nguyen and Drakou 2021). 
CC coupled with global warming and other environmental factors is contributing 
immensely to the global system. The temperature of the globe is expected to increase 
by 1.5 °C from 2030 to 2052 (Barry and Hoyne 2021). About 40% of the global 
population is living in a climate with an average daytime temperature above 30 °C 
(Ansah et al. 2021). The strong evidence of CC is the melting of glaciers, floods, 
tsunamis, rising sea levels, uncertain precipitations, shifting of seasons, and the 
increase in earth temperature. Currently, most of the indicators are focused on 
change in environmental conditions (Ziogas et al. 2021); however, factors other than 
the environment will allow nations to switch towards more sustainable society. 
Adopting mitigation and adaptation strategies has now become necessary to counter 
the ongoing CC. Many international and local agencies have developed mitigation 
and adaptation measures to deal with climate-associated risks (Anandhi 2017). The 
studies on adaptation strategies and CC impacts are dominated by quantifying 
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modeling the future of CC using relatively less socio-economic and biophysical 
parameters (Kalele et  al. 2021). Some progressive farmers in South Africa have 
adopted adaptation strategies and minimized the impact of CC on food production 
(Ogunleye et al. 2021). Experts have said that the capacity to adopt new strategies 
is affected by CC, access to technology, and level of information. Estimation of 
vulnerability has become a prerequisite to planning adaptation technologies (Malley 
et al. 2021). The influence of different factors put stress on the international com-
munity to invest further in adaptation and mitigation programs for sustainable agri-
culture. The implementation of adaptation measures will result in a reduction in the 
vulnerability of agroecosystems and improve the resilience of agrosystems to 
CC. Most people believe that CC is a real thing while some have different percep-
tions about the consequences of CC effects, which ultimately plays a significant role 
in policy-making, mitigating, and adapting strategies. The devasting effects of CC 
have become more evident across geographies, and new approaches are aimed to 
integrate effective relations among the food system, humans, and the environment 
(Medina Hidalgo et al. 2021). Global warming coupled with CC has been turned 
into a devasting threat for global climate and sustainable development (Fu et  al. 
2021; Srivastava and Chinnasamy 2022). The international agencies have been pay-
ing significant attention to counteractive measures to cushion farmers for the 
national cause. CC often results in land degradation, soil erosion, deforestation, and 
desertification. Land degradation negatively affects the functionality of the ecosys-
tem and the capacity such as water retention and nutrient cycling (Eekhout and de 
Vente 2022). Soil erosion is the main cause of land degradation which affects bio-
geochemical cycles and interacts with CC itself. Scientists have discovered that 
food production is at the stake of high-risk globally especially the South Asian 
countries (Alvi et al. 2021). Assessment of the world’s food production from the 
ongoing CC is one of the trending research projects. The legislation and policy-
making at micro- and macro-levels need time for sustainability and the provision of 
food for the growing population. Pakistan ranks in the fifth position of the world’s 
most vulnerable countries to CC (Syed et al. 2022). Vulnerability is the susceptibil-
ity of being affected adversely by CC. Being an under developing and agricultural 
country, the agriculture sector is at the edge of food safety and security due to 
CC. The vulnerability coupled with other parameters like soil erosion, uncertain 
rainfall, erratic distribution, and change in cropping patterns led to a great hindrance 
in achieving high yields (Kalele et al. 2021). The vulnerability rate in low-income 
countries is expected to be high due to the large population, poor infrastructure, 
development, and weak adaptation capacity (Wilts et al. 2021). Within the coun-
tries, vulnerability differs across farms, topography, and income levels. Farming is 
often vulnerable to CC and results in low-crop yield and crop failure in some cases 
as well. Lesser supply of food can increase produce price but a direct hit for the 
end-user.

Pakistan’s economy is based on the agriculture sector mainly. Around 60% of the 
country’s population has direct and indirect linkage with agriculture. Pakistan 
stands at the 12th position among the countries where agriculture sector and liveli-
hood of people are significantly and detrimentally affected because of CC (Syed 
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et al. 2022). The country is striving its best to meet the food demand due to the 
growing population by bringing total arable land under cultivation. The agriculture 
systems throughout the world have been driven by multiple factors including 
CC. The temperature increase due to global warming has resulted in abrupt rainfall 
patterns, which has directly affected agricultural production and water reserves. The 
effects of CC can be estimated by shifting cropping patterns in different areas 
around the globe (Singh and Kumar 2021). The consumption of agricultural inputs 
has seen an abrupt increase due to changes in fertilization, recollection of land, and 
alternate agricultural water use (Guo et  al. 2020) which considerably affects the 
produce. The agriculture sector is closely related to the ecosystem and sensitive to 
human behaviors, and a slight change in practice can lead to unexpected results. 
Studies have shown that CC will ultimately affect water reserves, and water avail-
ability for agriculture and domestic use is a future threat (Guo et al. 2020). Wheat, 
rice, sugarcane, maize, and cotton are important crops of Pakistan. The performance 
of the agriculture sector seems competing as the growth was 2.77% while the set 
target was 2.80% (Anonymous 2021). The government has a keen eye on key crops 
and trying the best efforts in policy-making and other interventions to tackle impor-
tant challenges like CC, temperature variation, uncertain rainfall, reducing arable 
lands, and water shortages as well. With the growing population at the rate of 2.6% 
per annum and shrinking culturable areas, the pressure for sustainable practices and 
development is increasing day by day (Anonymous 2017; Pande et al. 2021; Shahid 
et al. 2021). The production of sugarcane, rice, maize, and wheat showed an increase 
of 22, 13.6, 7.4, and 8.1% increase in production, However, a clear decline of 22.8% 
is observed in the cotton crop (Anonymous 2021). The key factors that boosted the 
production are certified seeds, subsidized fertilizer, pesticides, and agriculture 
credit. The population of the world is growing at a rapid pace, specifically in 
Pakistan. Urbanization, industrialization, and deforestation are the key factors that 
have a significant effect on reduced land for arable farming. Uncertain and erratic 
rainfall, long dry spell, early withdrawal of monsoon are the factors that have mas-
sively reduced the crop yields and crop failure as well in some regions. Therefore, 
the objective of the research is to estimate the effects of CC on crop yield in Punjab.

 Materials and Methods

 Study Area

The research study was carried out in Punjab, Pakistan, with 71 m elevation from 
minimum and 2193  m from the maximum. It falls within the coordinates of 
29.30°–32.32° N and 73.55°–76.50° E. Punjab is located in the lower north-east of 
the country with an area of 205,344 km2. The population of Pakistan is increasing at 
a rapid pace and Punjab being the most populated province contributes the largest 
share of agricultural produce to GDP as well. The landuse-landcover of Punjab in 
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Fig. 7.1 Recurrence of food insecurity and land use land cover (LULC) of Punjab

November 2021 is shown in Fig. 7.1. Pakistan ranked 92nd out of 116 countries in 
Global Hunger Index (GHI) with a score of 24.7 which indicates the seriousness of 
hunger in the country. Increasing population poses direct pressure on food safety 
and security, therefore the recurrence of food insecurity of Pakistan of 2017 can be 
observed in Fig. 7.1. Also, Table 7.1 indicates the population increase as contrary to 
conducted census since partition.

 Data Collection

It is estimated that 75% of Pakistan’s exports are agricultural commodities and 60% 
of those are comprised of Punjab. About 83% geographic area of Punjab is under 
cultivation of important crops like wheat, cotton, rice, maize, sugarcane, millet, 
barley, fruits, etc. The average temperature in summer ranges from 36 °C to 49 °C 
and from 2 °C to 18 °C in winters. The average annual rainfall of Punjab is 650 mm. 
More than 16% of land in Punjab lies in the arid regions (rainfall dependent). Arid 
regions are characterized by uncertain rainfalls, erratic distributions, and long dry 
spells which makes it impossible to achieve inadequate yield levels to meet the food 
demand in the country.

Cotton (Gossypium), sugarcane (Saccharum officinarum), and maize (Zea mays 
subsp. mays) crops are frequently cultivated during the summer. During the winter, 
rice (Oryza sativa) and wheat (Triticum) are grown in Punjab, Pakistan, as shown in 
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Table 7.1 Population census of Pakistan since partition

Sr. No. Year Population (000’s)

1 1951 33,740
2 1961 42,880
3 1972 65,309
4 1981 84,254
5 1998 132,352
6 2017 207,774

Season Jan Feb Mar April May Jun July Aug Sep Oct Nov Dec

Summer

Cotton

Sugarcane
Sugarcane

Maize

Winter Rice

Wheat Wheat

Table 7.2 Growing season of different crops in Punjab, Pakistan

Table 7.2 above. Wheat-cotton and sugarcane-wheat are the predominant cropping 
patterns in the research area, with others being secondary crops. Wheat is the staple 
food in Pakistan, accounting for 72% of protein and calories in the overall diet. As 
a result, wheat is the most important crop in terms of diet. Other crops are the prin-
cipal cash crops of Pakistan, and contributions to exports are heavily influenced by 
agricultural production from Punjab province. Pakistan Agricultural Research 
Council (PARC) conducted a research that indicated 120 kg per capita was wheat 
utilization of the nation in Pakistan. In rural areas, wheat production is the main 
source of income for the farmer community.

The data of five major crops, i.e., wheat, rice, cotton, sugarcane, and maize, were 
taken to estimate the impacts of CC on crop production and future recommenda-
tions. Historical (30 years) data of minimum, maximum, and mean temperature was 
collected from the Pakistan Meteorological Department (PMD), while the parame-
ters like cultivation area, yield, and agriculture share to GDP were collected from 
Crop Reporting Service (CRS) Punjab and Pakistan Economic Survey (PES) since 
1990–2021 and 2000–2021, respectively, as described in Table 7.3 below.
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Table 7.3 Data used in the study area along with the duration and sources

Sr. No. Data type Details of data Duration Source

1 Climate Maximum temperature 1990–2018 Pakistan meteorological department
Minimum temperature 1990–2018
Rainfall 1990–2018

2 Crops Cotton Yield Area 1990–2021 Crop reporting service, Punjab
Sugarcane Yield Area 1990–2021
Maize Yield Area 1990–2021
Rice Yield Area 1990–2021
Wheat Yield Area 1990–2021

 Results and Discussion

 Agriculture Sector and GDP of Pakistan

Pakistan is the country with population crossing over 220 million by giving a nomi-
nal GDP (Gross Domestic Production). The main exports of country are textiles, 
leather and sports products, chemical, and rugs. The GDP of country has been 
abruptly increasing or severe declining since 2000 as seen in Fig. 7.1. Similarly, the 
contribution of agriculture to GDP has been fluctuating as well. The highest share 
of agriculture sector, i.e., 25.62%, was recorded in during 2000–01 when the growth 
rate was 4.3%. The highest growth rate of 7.7% was achieved in 2005–06 but the 
contribution of agriculture remained 22.90%. Being an agricultural, under develop-
ing and affected by CC, the predictions about growth rate of agriculture sector 
would not be very close to reality. During the fiscal years of least growth rate, i.e., 
2008, 2010, and 2019, the agriculture contribution remained around 22.00% 
throughout. On the other hand, the agriculture share remained below 20% on growth 
rate of 5.5% and above. The sectors other than agriculture contributing to GDP are 
industry and services. Agriculture is directly affected by CC; long dry spells, uncer-
tain rains, global warming, and erratic distribution of rains, which ultimately results 
in lower crop yields and threats like food security and safety may arose. Figure 7.2 
indicates the 20 years agriculture contribution and growth rate of Pakistan.

 Major Crops of Pakistan

 Cotton

Cotton crop was cultivated on 5250 thousand acres with production of 8501 thou-
sand bales and the average yield stood 22.13 maund/acre in 1990–91. However, the 
cultivation area was reduced by 72 and 59% in production; the net yield was 
decreased to 15.81 maund/acre in 2020–21. The trend of cotton cultivation and pro-
duction remained very random throughout the study period. The highest yield 
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Fig. 7.2 GDP growth and agriculture share of Pakistan 2000–2021

(27.62 maund/acre) was obtained in 1991–1992 followed by 24.49 maund/acre in 
2004–2005 and 21.47 maund/acre in consecutive years of 2012–2014. Cotton is the 
only crop that has suffered the most, and the main reasons are less competitiveness 
due to other major crops, low water availability, unfavorable weather conditions, 
uncertified seeds, stunting of crops, attack of whitefly, pink bollworm, pest infesta-
tion, localized monsoon, widespread attack of cotton leaf curl virus (CLCV), floods 
of 2010 and closure of canals, high temperatures, excessive fruit shedding, and less 
use of DAP.

 Sugarcane

Sugarcane was cultivated on 1299 thousand acres with production of 19,633 thou-
sand tonne and the average yield of Punjab stood 405 maund/acre in 1990–1991. 
However, the cultivation area was increased 47 and 290% increase in production; 
the net yield was increased to 742 maund/acre. The sugarcane yield remained very 
less by 1993–1994 but afterwards the linear increase was observed, and the maxi-
mum yield was obtained in 2020–2021. The extensive study of historical crop data 
indicates that the reasons of production shortages are payment difficulties by sugar 
mills, disposal of cane, shifting to other competitive crops, significant attack of pest 
and disease, shortage of irrigation water, less usage of DAP, and high-fertilizer 
prices. The factors of increased crop productions were favorable weather condi-
tions, better cultural management, higher economic returns, timely availability of 
inputs, flood of 2010 increased the fertility of soil, and balanced dose of inputs.
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 Maize

Maize crop was cultivated on 790 thousand acres with production of 425 thousand 
tonne and the average yield of Punjab stood at 14.41 maund/acre in 1990–1991. 
However, the cultivation area was increased by 295 and 1645% increase in produc-
tion; the average yield stood 80.26 maund/acre in 2019–2020. The yield of maize 
crop remained stagnant with slight increase up to 25.86 maund/acre till 2003–2003 
afterwards a significant increase in yield was seen till 2021. The maximum yield of 
84.05 maund/acre was obtained in year 2020–2021. The trend of crop yield remained 
linearly increasing throughout the study period. The reasons of better production 
were good economic return of the crop, improved seed quality, healthy grain forma-
tion, intensive use of fertilizer, favorable weather conditions and shifting from cot-
ton and sugarcane.

 Rice

Rice crop was cultivated on 3118 thousand acres with production of 1422 thousand 
tonne and the average yield of Punjab stood at 12.22 maund/acre in 1990–1991. 
However, the cultivation area was increased by 89.7% with an increase of 372% in 
production; the average yield remained at 22.40 maund/acre in 2020–2021. The 
30  years’ trend of rice yield showed a linear increase. The highest yield (22.96 
maund/acre) was achieved in growing season of 2017–2018. The study of 30 years 
crop data evaluated that the reasons of declined production are dry weather, short-
age of water, decreased in cultivation area, domestic price, less economic returns, 
shifting from sugarcane and maize, abundant supply during FY 2014–2015, effect 
of monsoon rains, devasting floods of 2010, and pest and disease attacks. The 
parameters effecting increased production were better unit price of commodity, 
increased export demand, subsidized input, high-yielding hybrid varieties, and non- 
payment from sugarcane mills led to shifting towards rice crop.

 Wheat

Wheat crop was cultivated on 14,114 thousand acres with production of 10,514 
thousand tonne and the average yield of Punjab stood at 20 maund/acre in 
1990–1991. However, the cultivation area was increased by 15.6 with 25.6% 
increase in crop production; the net yield was increased to 31.34 maund/acre in 
2020–2021. The slight increase in crop yield was observed from 1990 to 1999, but 
the significant increase in crop yield was seen afterwards with slight variations. The 
highest crop yield (33.32 maund/acre) was obtained in growing season of 2017–2018. 
The statistical reports and publications were studied extensively, and the reasons of 
decline and increase in production was find out. The reasons of low production were 
decline in sown area, delayed and prolonged crushing of sugarcane, late cotton 
picking by growers, acute shortage of water, higher prices of fertilizers, extended 
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Fig. 7.3 Area cultivation of major crops in Punjab (1990–2021)

winter season, dry season, and lastly the uncertain rains of April–May which led to 
damage of grains at maturity stage. The significant increase in production resulted 
due to availability of certified seed, urea fertilizer, water availability, timely rains, 
high-yielding varieties, agricultural credit, better supply of inputs, and early matu-
rity of cotton crop (Figs. 7.3 and 7.4). These figures indicate the area cultivation and 
average yield of major crops in Punjab.

 Meteorological Parameters

 Temperature

Figure 7.5 indicates the month-wise temperature (minimum and maximum) aver-
ages of Punjab from 1990 to 2021. The key months for five major crops are April, 
June, July, September, and November. The minimum monthly average temperature 
of April month remained 12.27  °C and maximum of 16.40  °C was recorded. 
Similarly, 20.38 °C and 24.92 °C for June, 22.71 °C and 31.52 °C for July, 18.06 °C 
and 22.60 °C for September and the minimum monthly average temperature was 
recorded 5.96 °C as minimum and 9.70 °C as maximum. The moderate increase in 
minimum monthly temperatures (5 °C increase) was observed in four key months, 
i.e., February, May, October, and December. However, the increase of up to 8 °C 
was observed for the 30 years data of June month. Increased temperature at initial 
phenological stages of crops effects pollination as it is directly affected by it. High- 
vapor pressure enhances the effects of temperature on pollen viability. The response 
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Fig. 7.4 Average yield of major crops in Punjab (1990–2021)

Fig. 7.5 Minimum and maximum monthly average temperature of Punjab (1990–2021)

of some crops like maize is good at high temperatures at vegetative stages. The 
effects of CC are most significant in maximum monthly temperature. The observa-
tion of 30 years average monthly data showed the 8 °C above increase for January–
May, 6 °C increase for June, July, October, and December, and moderate increase of 
4 °C for rest of month. It resulted in long dry spell and heat waves, which ultimately 
effects the crop production.
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 Rainfall

Rainfall pattern are being shifted due to CC. Low rainfall with high intensity has 
becoming more apparent producing floods, droughts, and off-season precipitations 
as well. Floods are the major cause of food security as it destroys the standing crops 
and extend the sowing time of other crops due to high-moisture content. The several 
models have predicted that rainfall during critical stage of crops leads to abrupt 
reduction in crop production (Asseng et  al., 2019). Rainfall during winter and 
autumn may increase the effect of disease attack to crop which ultimately affects the 
crops yield. Uncertain precipitations and more intense rainfall during spring season 
provoke early damage of young plants in maize crop. Although drought resists the 
cropping area, but the production is severely affected due to hot dry spells and 
warmer temperature. The most damaging impact of droughts is at early growing 
stage. Figure 7.6 shows the average rainfall, minimum, maximum, and mean tem-
perature of historical (1990–2021) data of Punjab.

Fig. 7.6 Mean, minimum, and maximum temp with average rainfall in Punjab
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 Strategies and Future Recommendations

Keeping in view the condition of global climate, the yield increase started in century 
is now stagnant and even have a decreasing trend in some areas (Lobell and Field 
2007). The effects of global warming resulted in heat shock waves. Even the slight 
change in ambient temperature has a profound effect on crop growth. Scientists 
have predicted that continued increase of temperature will result in heavy loss of 
production in medium latitudes (Guo et al. 2020), whereas the more fertile soils 
located at higher latitudes are getting worsened effects of climate (Long and Ort 
2010). Higher global temperatures have shortened the crop growing seasons, allow-
ing crops to undergo photosynthesis for a significantly shorter length of time, espe-
cially in case of irrigated and resistant crops. Heat stress has an immediate influence 
on photosynthesis rate. As a result, less biomass is available for anthesis and grain 
filling (Fahad et al. 2017). Furthermore, the rise in temperature increases evapo-
transpiration which reduces the soil moisture, and grain filling is ultimately affected 
(Sharif et al., 2017). Plants exposed to higher temperatures directly reduce the pro-
duction by effecting its processes. Crop quality and composition of seed are reduced 
due to high temperatures. The main challenge of the century is to feed the global 
population in context of CC. The population of world is expected to reach 9 billion 
by 2050, whereas the temperature increase of 1.5–2 °C is also predicted. Elevated 
temperature, long dry spells, uncertain and erratic rainfalls are now becoming more 
common and adversely affecting the crop yield. It will result in food shortage, 
increased prices of agricultural commodity, increasing global hunger index, and 
poverty. It is necessary to adopt the improved seed to withstand the biotic and abi-
otic stresses. The sustainability of agriculture along with ongoing global threat (CC) 
is possible through improved cultural, agronomic management, use of diversified 
genetics of crops, temperature stress elevation by beneficial bacteria’s, use of non- 
destructive and non-invasive methods of phenotyping.
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Chapter 8
Hybrid Daily Streamflow Forecasting 
Based on Variational Mode Decomposition 
Random Vector Functional Link 
Network- Based Ensemble Forecasting

Salim Heddam 

Abstract Streamflow forecasting using advance machine learning models have 
received great importance during the last few years regarding its importance for 
water resources management, especially for facing climate change. Several 
approaches based on the exploitation of a wide variety of models have been pro-
posed and successfully applied for accurately daily and monthly streamflow fore-
casting. However, since streamflow and rainfall are closely interconnected, they 
were always combined for building more robust forecasting models. While, other 
climatic variables, i.e., temperature and evapotranspiration, were rarely, if ever, 
combined for streamflow forecasting, an important part of the developed models 
used only the value of streamflow measured at previous time lag as input variables. 
Recently, the use of signal processing decomposition algorithms, i.e., wavelet 
decomposition (WD) and more recently the variational mode decomposition 
(VMD), has attracted considerable attention and its success was highlighted up to 
this date without serious criticism. In the present chapter, we introduce a new 
scheme for daily streamflow forecasting using the random vector functional link 
network (RVFL) combined with the VMD. The VMD was used for decomposing 
the streamflow signal, and then the different intrinsic mode functions (IMF) were 
used as input variables. For more in depth conclusions, obtained results using the 
RVFL were compared to those using the extreme learning machine (ELM). Models 
accuracies were evaluated using several performances metrics and, overall, our best 
estimation resulted in an overall low RMSE and MAE, and high correlation between 
measured and predicted streamflow. Furthermore, the best forecasting accuracies 
were obtained using the RVFL combined with the VMD, for which the R and NSE 
values were ranged from 0.922 to 0.995 and from 0.850 to 0.991 using the RVFL_
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VMD compared to the values of 0.836–0.947 and 0.691–0.898 obtained using the 
ELM_VMD. It was found that the gained improvement in terms of model perfor-
mances was more significant using the RVFL models compared to the ELM models.

Keywords Forecasting · Stream flow · RVFL · ELM · VMD · IMF

 Introduction

During the last few decades, improving water resources management has attracted 
the interest of hydrologists worldwide, and among the hydrological cycle compo-
nents, river flow is certainly the most important (Pande et  al. 2021; Kilinc and 
Haznedar 2022). Accurate forecasting of streamflow is highly important and used 
for improving water resources planning, flood control, and for many hydraulic oper-
ations (Moharir et al. 2017; Khosravi et al. 2022). With the increase in human activi-
ties and climate change, the natural of streamflow has been influenced which has led 
to an increase if the researches having as objectives the understanding of streamflow 
variation over times and space (Aher and Yadav 2021). Recently, Ossandón et al. 
(2022) argued that the need for robust tools used for short-, mild-, and long-terms 
planning of flood risk is extremely related to the accurate forecasting of streamflow, 
and these tools are mainly based on the application of available hydrological mod-
els, i.e., physical models. While the use of physical models is well known and prac-
ticed for a long time (Pande et al. 2022; Hai Nguyen et al. 2022), the advancement 
in the computer science has allowed the development of robust artificial intelligence 
models for streamflow forecasting and other hydrological components (Shen et al. 
2022). Streamflow is a dynamic hydrological variable (Chen et al. 2022) and, to 
deal with its potential non-stationarity and high non-linearity, has motivated the 
development of new modelling strategies based on preprocessing signal decomposi-
tion and a large number of applications that are available in the literature. Kisi 
(2011) used the generalized regression neural network coupled with the discrete 
wavelet transform (DWT) (WGRNN) for forecasting monthly streamflow at one 
time in advance using data collected at two stations in Turkey. By using streamflow 
measured at several previous time-lag (i.e., four lag), the authors demonstrated that 
the WGRNN was more accurate compared to the standalone GRNN and the multi-
layer perceptron neural network (MLPNN), exhibiting a root mean square errors 
(RMSE) and correlation coefficient (R) of approximately ≈5.31m3/s and ≈0.728 
compared to the values of ≈6.36m3/s and ≈0.553 and ≈6.15m3/s and ≈0.589 
obtained using the GRNN and MLPNN, respectively. Kisi and Cimen (2011) com-
pared between the support vector regression coupled with the discrete wavelet 
transform (WSVR) and the standalone SVR for monthly streamflow forecasting. It 
was found that the WSVR was more accurate compared to the SVR with mean 
absolute error (MAE), RMSE, and R values of ≈8.14m3/s, ≈13.9m3/s, and ≈0.700 
compared to the values of ≈10.0m3/s, ≈15.7m3/s, and ≈0.590, respectively. 
Danandeh Mehr et al. (2014) used the wavelet transform as preprocessing signal 
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decomposition for improving the performances of the MLPNN model applied for 
monthly streamflow forecasting. By comparing the standalone MLPNN and the 
hybrid WT-MLPNN, it was found that the WT-MLPNN was more accurate having 
RMSE and Nash–Sutcliffe efficiency (NSE) of ≈0.034m3/s and ≈0.955 compared 
to the values of ≈0.037m3/s and ≈0.948, respectively. Yarar (2014) applied the 
adaptive neuro fuzzy inference systems (ANFIS) coupled with WT for monthly 
streamflow forecasting, and a comparison with the seasonal autoregressive- 
integrated moving average SARIMA has been conducted showing the superiority of 
the WANFIS model. The obtained RMSE and R2 values using the WANFIS at five 
stations were ranged from ≈0.89m3/s to ≈5.58m3/s and from ≈0.82 to ≈0.94, com-
pared to the values of ≈1.93m3/s–≈10.14m3/s and ≈0.60–≈0.69 obtained using 
SARIMA model, respectively. Fouchal and Souag-Gamane (2019) used monthly 
streamflow, precipitation and evapotranspiration for better forecasting of multi-step 
ahead forecasting of monthly streamflow. A comparison between MLPNN and 
WT-MLPNN showing the superiority of the WT-MLPNN with RMSE and NSE 
ranging from ≈2.46 to ≈8.26 and from ≈0.978 to ≈0.984, compared to the values 
of ≈18.04–≈39.28 and ≈0.160–≈0.478 obtained using the MLPNN. In addition, it 
was demonstrated that increasing the forecasting horizon yielded very poor model 
performances, and the forecasting accuracies were dramatically decreased. A new 
forecasting approach for monthly streamflow was proposed by Tikhamarine et al. 
(2019). They introduced a hybrid model composed of SVR, WT, and the meta-
heuristics grey wolf optimizer (GWO) algorithm, and the hybrid model was called 
WT-SVR-GWO.  It was found that the use of WT contributed to an important 
improvement in the models’ performances, and the NSE, RMSE, and NSE were 
significantly improved exhibiting the values of ≈0.964, ≈0.0686, and ≈0.0885, 
respectively.

Over the years, the issues raised by the standalone models have become more 
numerous and more complex (Moosavi et al. 2022), which has lead to a high appli-
cation of the hybrid models based on the signal decomposition and the number of 
published papers has significantly increased. Recently, several kinds of signal 
decomposition algorithms have been successfully used among them; DWT-SVR for 
monthly streamflow forecasting in Indiana, United States (Liu et al. 2014), empiri-
cal mode decomposition (EMD) and singular spectrum analysis (SSA) coupled with 
the MLPNN and the autoregressive-moving-average (ARMA) (Zhang et al. 2015), 
continuous wavelet transformation coupled with multigene genetic programming 
(Hadi and Tombul 2018a), improved complete ensemble empirical mode decompo-
sition with adaptive noise (ICEEMDAN), ensemble EMD, EMD, and SSA coupled 
with extreme learning machine (ELM) and ARIMA models (Wang et  al. 2019), 
ICEEMDAN coupled with deep learning gated recurrent unit (GRU) (Zhao et al. 
2021), bootstrap wavelet artificial neural network (Saraiva et al. 2021; Kouadri et al. 
2022; Elbeltagi et al. 2022), variational mode decomposition (VMD) coupled long 
short-term memory (LSTM) deep learning (Zuo et al. 2020), VMD-coupled SVR 
(VMD-SVR) (Feng et al. 2020), M5 model tree (M5Tree) and multivariate adaptive 
regression spline (MARS) coupled with EEMD (Rezaie-Balf et al. 2019), the VMD 
and ICEEMDAN coupled with the ELM model (Wen et al. 2019), DWT, EMD, and 
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VMD coupled with SVR (Fang et  al. 2019), continuous wavelet transformation 
(CWT), DWT, and discrete continuous wavelet transformation (DCWT) coupled 
with ANFIS and SVR models (Hadi and Tombul 2018b), and the VMD coupled 
deep neural network (He et al. 2019).

The literature review discussed above confirms that preprocessing signal decom-
position, i.e., WT, DWT, EMD, EEMD, ICEEMDAN, and VMD, has been widely 
used and applied by the researchers for improving the accuracies of streamflow 
forecasting at different time scales, and also it was found that high number of simi-
lar studies are available in the literature, and there is no one single method that has 
been proven to be more accurate compared to the other, and each one possess some 
advantages and some disadvantages. Therefore, the present chapter was inspired 
from these previous studies for which the VMD signal decomposition has been suc-
cessfully applied and its high robustness has been proven. Two machine learning 
models were applied and compared according to two modelling scenarios: (i) single 
ELM and random vector functional link network (RVFL) models without signal 
decomposition and (ii) the ELM and RVFL were combined with the VMD algo-
rithm. In this chapter, single models, i.e., ELM and RVFL and hybrid models, i.e., 
ELM_VMD and RVFL_VMD, were for daily streamflow forecasting, and their per-
formances have been compared. This chapter follows the following structure. 
Section “Introduction” presents introduction and discussion of the related work on 
streamflow forecasting using different machines learning models. Briefs description 
of the data used is presented in section “Materials and methods”. In section 
“Methodology”, a brief description of different modelling techniques is presented. 
In section “Results and discussion”, obtained results are presented and deeply dis-
cussed. Conclusion is drowning in section “Summary and conclusions”.

 Materials and Methods

 Study Site

Daily streamflow data collected at two USGS stations were used in the present 
study (Fig. 8.1). The two stations were: (i) USGS 14141500 little Sandy River near 
Bull Run River, Clackamas County, Oregon, USA (latitude 45°24′56″, longi-
tude  122°10′13″ NAD27) and (ii) USGS 14142500 Sandy River blw Bull Run 
River, nr bull run, Clackamas County, Oregon, USA (Latitude 45°26′57″, Longitude 
122°14′38″ NAD27). Data were measured at daily time step with different periods 
of record. For the USGS 14141500, we used data corresponding to the period from 
01 January 2001 to 10 November 2021, with a total of 7619 patterns. In addition, for 
the USGS 14142500, we used the data for the period form 01 January 2003 to 10 
November 2021, with a total of 6889 patterns. Daily data were measured in cubic 
foot per second. In the present chapter, we split the data into training and validation 
with splitting ratios of 70% and 30%, respectively. In Table  8.1, we report the 
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Fig. 8.1 Map showing the location of the two USGS stations

Table 8.1 The statistical parameters of the streamflow for the two stations

Variables Subset Unit Xmax Xmean Xmin Sx Cv

USGS 14141500

Q Training cu.ft/s 2400.000 135.924 9.750 162.599 0.836
Validation cu.ft/s 1470.000 129.004 9.280 169.593 0.761
All data cu.ft/s 2400.000 133.839 9.280 164.741 0.812

USGS 14142500

Q Training cu.ft/s 38500.000 2388.490 235.000 2907.294 0.822
Validation cu.ft/s 22900.000 1953.557 295.000 2157.777 0.905
All data cu.ft/s 38500.000 2258.067 235.000 2711.609 0.833

Abbreviations: Xmean mean, Xmax maximum, Xmin minimum, Sx standard deviation, Cv coefficient of 
variation

statistical descriptive of the data set for the two stations. For selecting the relevant 
input variables, we calculate the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) which were depicted in Fig.  8.2. According to 
Fig.  8.2, six-time lag were selected and used as input variables, i.e., streamflow 
measured at (t-1), (t-2), (t-3), (t-4), (t-5), and (t-6), while the output variable starts 
from the time (t), and in total we have adopted six input combination (Table 8.2). 
Two scenarios were tested and compared, using only the streamflow without decom-
position, and in a second scenario the six streamflow selected using the ACF and 
PACF were decomposed into several intrinsic mode functions (IMF) 
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Fig. 8.2 Sample autocorrelation (ACF) and partial autocorrelation function (PACF) for daily 
streamflow (Q)

Table 8.2 The input combinations of different models

ELM RVFL Input combination Output

ELM1 RVFL1 Q(t-1) Q(t)

ELM2 RVFL2 Q(t-2), Q(t-1) Q(t)

ELM3 RVFL3 Q(t-3), Q(t-2), Q(t-1) Q(t)

ELM4 RVFL4 Q(t-4), Q(t-3), Q(t-2), Q(t-1) Q(t)

ELM5 RVFL5 Q(t-5), Q(t-4), Q(t-3), Q(t-2), Q(t-1) Q(t)

ELM6 RVFL6 Q(t-6), Q(t-5), Q(t-4),Q(t-3), Q(t-2), Q(t-1) Q(t)

subcomponents using the VMD algorithm, and example was provided in Fig. 8.3. In 
the present chapter, we adopted a decomposition level of nine, and the ELM and the 
RVFL have in total sixty (60) input variables. Flowchart of the proposed modelling 
strategies adopted in the present work is depicted in Fig. 8.4.

 Methodology

 Extreme Learning Machine (ELM)

Extreme learning machine (ELM) is an improved training algorithm for the single- 
layered feedforward neural network (SLFN) proposed by Huang et al. (2006a, b). 
The major and principal difference between the ELM and SLFN is that the param-
eters of the ELM model, i.e., the hidden layer weights and biases, are chosen 
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Fig. 8.3 Intrinsic mode functions (IMF) subcomponents of daily streamflow (Q) dataset obtained 
using the variational mode decomposition (VMD) algorithm
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Fig. 8.4 Flowchart of the extreme learning machine (ELM) architecture based on VMD algorithm
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randomly and they are not required to be tuned, while the output layer weights and 
biases are determined analytically. The ELM consists of three successive layers 
namely, input, hidden, and output layers (Fig. 8.4). The input weights matrix (W), 
i.e., linking the input and the hidden layer, is randomly chosen, while the output 
matrix (β) is analytically determined. Figure 8.4 shows the architecture of the ELM 
proposed for streamflow forecasting. For M samples with xi as the input and zi as 
the output:

 
N x zi isample ,: ,� �  

(8.1)

where

 
x x x x x R z z z z z Ri i i i in

T n
i i i i im

T m� �� � � � �� � �1 2 3 1 2 3, , , , and , , , ,
 

(8.2)

The ELM with N hidden nodes and activating function f(x) can be expressed as 
follows:

 
Output � � � � � �� �

� �
� �O f x f w x bj
i

N

i i j
i

N

i i j i
1 1

� � • ,
 

(8.3)

where wi = [wi1, wi2, wi3, …, win]T corresponds to the weights matrix linking the ith 
input to the ith hidden neuron, βi = [βi1, βi2, βi3, …, βim]T corresponds to the weights 
matrix linking the ith hidden to the single output neuron, and the bi is the bias of the 
ith hidden node (Gan et al. 2021). More details about the ELM algorithm can be 
found in Huang et al. (2006a, b).

 Random Vector Functional Link Network (RVFL)

Similar to the ELM, the RVFL network (RVFL) is a single hidden layer neural net-
work with direct link between the input and output layers, for which only the output 
weights are required to be updated (Pao et al. 1992, 1994). The general structure of 
the RVFL neural network as depicted in Fig. 8.5 consists of one input layer having 
a direct link (i.e., functional link) to the output layer (i.e., blue-dashed line), a hid-
den layer having several enhancement neurons, and an output layer (Pao et al. 1992, 
1994). From a mathematical point of view, the overall RVFL algorithm and its 
advantages can be summarized as follow: (i) possess high ability to avoid the over-
fitting because only the output weights are updated during a training process, (ii) the 
overall computational time and cost is highly reduced by the fact that the input 
weights are randomly generated, (iii) the output weights were obtained using the 
Moore Penrose Pseudo Inverse method (Abd Elaziz et al. 2021; Elmaadawy et al. 
2021). The RVFL can be formulated as follow:
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Red dashed line: Weights between Input and Hidden Neurons: Randomly Generated

Blue dashed line: direct link with Weights between Input and output Neurons: Adaptable Parameter.
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where N is the number of hidden neurons, m represents the number of input vari-
ables, wj is the input weights, bj corresponds to the bias of the hidden neuron, fj is 
the sigmoid activation, and x is the input variable or the predictor (Majumder 
et al. 2021).

 Variational Mode Decomposition (VMD)

The variational model decomposition (VMD) was proposed by Dragomiretskiy and 
Zosso (2014). The idea behind the development of the VMD is to overcome some 
of the disadvantages of the empirical model decomposition (EMD) algorithm by 
decomposing the signal into a series of band called intrinsic mode functions (IMFs) 
(Ali et al. 2021; Li et al. 2022). Use of the VMD is based on the idea that the optimal 
center frequency and limited bandwidth are determined adaptively for each IMF 
and are defined as follow (Chang et al. 2022):

 
u t A t tk k k� � � � � � � ��� ��cos

 
(8.5)

8 Hybrid Daily Streamflow Forecasting Based on Variational Mode Decomposition…



234

where uk (t) corresponds to one IMF, Ak (t) is the instantaneous amplitude of uk (t), 
and ϕk (t) denotes the instantaneous phase function (Chang et al. 2022). The VMD 
calculates the IMFs using an iterative process having as its principal objective the 
establishment of the best solution obtained by an effective separation of the signals 
from low to high frequency (Gu et al. 2022).

 Results and Discussion

To verify the performances of the developed hybrid forecasting models, results are 
presented and discussed in this section. As stated above, two models were used and 
compared: the ELM and RVFL neural network model. These two models were 
applied and compared according to two scenarios: (i) standalone models without 
decomposition and (ii) hybrid models using the VMD signal decomposition. For 
selecting the best input variables, the ACF and the PACF were used, and in total six 
input combinations were selected and reported in Table 8.2. The effective decom-
posing technique, i.e., VMD, is adopted to decompose the six input variables into 
several IMFs, and then, the obtained IMFs were used as new input variables. In the 
present chapter, each input variable was decomposed into 10 successive IMFs as 
shown in Fig. 8.3. Finally, the evaluation of the models was done using four com-
mon performance criteria of forecast accuracy including, mean absolute error 
(MAE), root mean square error (RMSE), correlation coefficient (R), and Nash–
Sutcliffe efficiency (NSE). In this chapter, the effectiveness of the proposed hybrid 
models is evaluated by two different datasets with data at daily time scale: the USGS 
14141500 and the USGS 14142500 stations. Obtained results at the USGS 14141500 
station are reported in Table 8.3. As mentioned above, six different input combina-
tions are adopted with and without the VMD. According to the results of the six 
models without VMD (i.e., ELM1 to ELM6 and RVFL1 to RVFL2) reported in 
Table 8.3, it is observed that the ELM models have acceptable performances mea-
sured by the R and NSE values and the errors criterions, i.e., the RMSE and 
MAE. The six ELM models exhibited a mean R and NSE values of approximately 
≈0.840 and ≈0.707, and a mean RMSE and MAE of approximately ≈86.99(cu.ft./s) 
and ≈36.27(cu.ft./s); in addition, the best forecasting accuracy was obtained using 
the ELM3 having as input variables Q(t-3), Q(t-2), and Q(t-1), respectively. The 
ELM3 exhibited the high R and NSE values ≈0.847 and ≈0.718, and the lowest 
RMSE and MAE values of 85.124(cu.ft./s) and 35.434(cu.ft./s), respectively. It is 
also clear that beyond the third input combination, i.e., ELM3, the performances of 
the models were decreased to be the poorest for the ELM6 model, which leads to 
conclude that only three lag times (i.e., Q (t-3), Q (t-2), Q (t-1)) are necessary for 
better for forecasting of daily streamflow at time (t). It is clear from Table 8.3 that 
the R and NSE were dropped from ≈0.847 and ≈0.718 to ≈0.836 and ≈0.700 show-
ing a decreasing rate of approximately ≈1.30%–≈2.5%, respectively. In addition, as 
reported in Table 8.3, the RMSE and MAE were increased from ≈85.124(cu.ft./s) 
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Table 8.3 Performances of different forecasting models at the USGS 14141500 station

Models Training Validation
R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.830 0.689 88.992 37.305 0.828 0.687 89.901 37.011
ELM2 0.844 0.712 85.698 35.329 0.844 0.713 86.280 35.716
ELM3 0.843 0.711 85.850 35.721 0.847 0.718 85.124 35.434
ELM4 0.845 0.713 85.476 35.364 0.844 0.712 86.179 35.707
ELM5 0.844 0.712 85.652 35.786 0.842 0.710 86.501 36.018
ELM6 0.856 0.733 82.435 35.482 0.836 0.700 87.984 37.733
ELM1_VMD 0.969 0.939 39.458 22.446 0.846 0.691 89.381 41.451
ELM2_VMD 0.987 0.975 25.282 15.689 0.947 0.898 51.417 27.625
ELM3_VMD 0.977 0.955 33.946 20.596 0.935 0.874 57.044 32.173
ELM4_VMD 0.954 0.910 47.841 27.253 0.932 0.869 58.187 33.453
ELM5_VMD 0.953 0.908 48.518 28.939 0.923 0.852 61.808 35.530
ELM6_VMD 0.961 0.924 43.878 27.159 0.918 0.841 64.061 38.195
RVFL1 0.830 0.690 88.933 37.325 0.831 0.691 89.320 36.903
RVFL2 0.841 0.707 86.349 35.293 0.847 0.718 85.317 34.812
RVFL3 0.844 0.712 85.743 35.003 0.850 0.723 84.564 34.829
RVFL4 0.846 0.716 85.096 34.819 0.851 0.724 84.382 34.667
RVFL5 0.845 0.714 85.413 35.050 0.848 0.720 84.975 35.028
RVFL6 0.846 0.716 85.102 35.128 0.849 0.721 84.963 34.880
RVFL1_VMD 0.918 0.842 63.442 29.326 0.922 0.850 62.188 30.542
RVFL2_VMD 0.997 0.994 11.889 7.409 0.993 0.987 18.602 12.068
RVFL3_VMD 0.998 0.995 10.980 6.871 0.994 0.988 17.906 11.777
RVFL4_VMD 0.999 0.998 7.425 4.812 0.995 0.990 16.107 10.691
RVFL5_VMD 0.999 0.998 6.209 4.006 0.995 0.990 15.673 10.461
RVFL6_VMD 0.999 0.999 5.745 3.721 0.995 0.990 15.678 10.564

and ≈35.434(cu.ft./s) to ≈87.98(cu.ft./s) and ≈37.73(cu.ft./s) showing an increasing 
rates of approximately ≈3.25%–≈6.09%, respectively. It can be seen in Table 8.3 
that the proposed RVFL models were slightly more accurate compared to the ELM 
models, and numerical comparison revealed that the RVFL models improve the 
mean R, NSE, RMSE, and MAE of the ELM by ≈0.7%, ≈1.32%, ≈1.618%, and 
≈2.98%, respectively. Among the six RVFL model, the best performances were 
obtained using the RVFL4 showing the high R (≈0.851) and NSE (≈0.724) values, 
and the lowest RMSE (≈84.38) and MAE (≈34.66) values, respectively. While we 
can see that the RVFL4 was slightly more accurate compared to the RVFL3 with 
negligible difference, we can conclude that the overall forecasting accuracies were 
captured using only the first three lag time (i.e., Q (t-3), Q (t-2), Q (t-1)). In the 
second stage of the investigation, the VMD algorithm was used for decomposing the 
input variables into several IMFs, and the hybrid models were designated as 
ELM_VMD and RVFL_VMD, respectively. From the results reported in Table 8.3, 
we can conclude that the use of the VMD yielded high improvement in model 
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performances and forecasting accuracy. The mean R, NSE, RMSE, and MAE of the 
ELM models were improved by ≈8.36%, ≈15.62%, ≈26.83%, and ≈4.22%, respec-
tively, using the ELM_VMD. The best accuracies were obtained using the 
ELM2_VMD having a high R (≈0.947) and NSE (≈0.898) values, and lowest 
RMSE (≈51.41) and MAE (≈27.62) values, respectively. Beyond the second input 
combination, i.e., the ELM2_VMD, it is clear that the performances of the models 
continued to worsen, which lead to conclude that only the Q (t-2), Q (t-1) are neces-
sary for better forecasting of daily streamflow. Numerical comparison between the 
models with and without VMD revealed that, the ELM2_VMD model improves the 
performances of the best ELM3 model by ≈10.56%, ≈20.045%, ≈39.59%, and 
≈22.03%, respectively. The improvement of model performances gained using the 
RVFL models was more obvious. According to the Table 8.3, by using the VMD, 
the mean R, NSE, RMSE, and MAE of the single RVFL models were improved by 
≈13.87%, ≈25.85%, ≈71.54%, and ≈59.21%, respectively, which is an excellent 
improvement in terms of forecasting accuracies. More specifically, we can conclude 
that the RVFL models were more stable in terms of model performances, and 
beyond the RVFL2_VMD, the performances remained fairly consistent with slightly 
fluctuation, and the best accuracies were obtained using the RVFL5_VMD with R, 
NSE, RMSE, and MAE values of approximately ≈0.995, ≈0.990%, ≈15.67, and 
≈10.46, respectively, significantly higher than the values obtained using the 
ELM2_VMD with an improvement rate of approximately ≈4.82%, ≈9.29%, 
≈69.51%, and ≈62.13%, in terms of R, NSE, RMSE and MAE values, respectively. 
Finally, the scatterplots measured against forecasted daily streamflow (Q) at the 
USGS 14141500 for the validation stage are depicted in Fig. 8.6. In addition, the 
comparison between measured and forecasted data is plotted in Fig. 8.7.

Obtained results at the USGS 14142500 station are reported in Table 8.4. The 
scatterplots measured against forecasted daily streamflow (Q) for the validation 
stage are depicted in Fig. 8.8. In addition, the comparison between measured and 
forecasted data is plotted in Fig. 8.9. According to Table 8.4, it is clear that the mod-
els without VMD were relatively acceptable with only negligible difference whether 
for the ELM or for the RVFL models. The ELM models worked with R and NSE 
values ranging from ≈0.863 to ≈0.890 (mean≈0.875) and from ≈0.754 to ≈0.799 
(mean≈0.773), respectively. The best performances were obtained using the ELM3 
slightly higher than the other models. In addition, the RVFL models worked with R 
and NSE values ranging from ≈0.871 to ≈0.891 (mean≈0.885) and from ≈0.767 to 
≈0.801 (mean≈0.792), respectively. The best performances were obtained using the 
RVFL4 slightly higher than the RVFL3 model. It is also clear that the difference 
between the ELM and RVFL models was marginal and does not exceed ≈1.22%, 
≈2.37%, ≈4.22%, and ≈7.18% in terms of mean R, NSE, RMSE, and MAE, respec-
tively. It is also clear that increasing the number of input variables does not contrib-
ute to the improvement of model performances and beyond the third input 
combination, the performances remain constant with slightly variation.
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Fig. 8.6 Scatterplots measured against forecasted daily streamflow (Q) at the USGS 14141500 for 
the validation stage

According to Table 8.4, it is clear that the use of hybrid models based on the 
VMD decomposition contributes to the improvement of forecasting accuracies with 
a high degree of accuracy. Using the ELM_VMD yielded an improvement of 
approximately ≈3.97% and ≈6.58% in terms of mean R and NSE values compared 
to the ELM models. Similarly, the RVFL_VMD guaranteed high rates of improve-
ment in terms of mean R and NSE exhibiting the values of ≈10.25% and ≈18.71%, 
and an improvement of approximately ≈71% and ≈52.61% in terms of mean RMSE 
and MAE values, respectively. The RVFL_VMD models were more accurate com-
pared to the ELM_VMD models for which the best accuracy was obtained using the 
RVFL6_VMD with R, NSE, RMSE, and MAE values of ≈0.996, ≈0.992, ≈196.82, 
and ≈133.69, respectively. However, from RVFL2_VMD to RVFL6_VMD, it is 
clear that the difference between the models in terms of model performances was 
negligible, and beyond the second input combination, the improvement was com-
pletely marginal and only the first two time lags (Q (t-2) and Q (t-1)) contributed to 
the better streamflow forecasting.
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Fig. 8.7 Comparison between measured against forecasted daily streamflow (Q) at the USGS 
14141500 for the validation stage

 Summary and Conclusions

In the present work, an approach based on preprocessing signal decomposition was 
proposed for better forecasting of daily streamflow at two USGS stations. Two 
machine learning models were tested and found to be capable for accurately fore-
casting streamflow. High difference in terms of model performances was found 
between the RVFL and the ELM models yet whether it was calibrated with or with-
out the VMD signals decomposition. However, the difference in terms of numerical 
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Table 8.4 Performances of different forecasting models at the USGS 14142500 station

Models Training Validation
R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.891 0.795 1317.512 493.477 0.863 0.754 1092.044 383.579
ELM2 0.880 0.774 1382.997 509.810 0.867 0.760 1077.100 395.762
ELM3 0.899 0.809 1270.749 464.372 0.890 0.799 985.448 356.882
ELM4 0.877 0.768 1398.975 524.913 0.871 0.767 1062.187 392.377
ELM5 0.905 0.819 1237.323 456.061 0.880 0.783 1026.153 377.796
ELM6 0.900 0.810 1266.096 491.006 0.876 0.776 1042.393 401.731
ELM1_VMD 0.947 0.898 929.545 471.537 0.923 0.848 857.846 443.046
ELM2_VMD 0.971 0.943 696.664 388.025 0.941 0.886 741.542 412.469
ELM3_VMD 0.952 0.906 890.342 509.096 0.918 0.840 879.950 491.620
ELM4_VMD 0.970 0.940 709.858 436.473 0.900 0.811 957.697 532.699
ELM5_VMD 0.975 0.950 648.718 414.530 0.890 0.789 1011.838 568.189
ELM6_VMD 0.968 0.937 731.870 467.903 0.892 0.792 1003.970 596.458
RVFL1 0.886 0.784 1349.723 507.392 0.871 0.767 1061.677 380.077
RVFL2 0.901 0.811 1263.698 457.336 0.884 0.789 1010.822 356.671
RVFL3 0.903 0.816 1247.916 450.079 0.890 0.801 982.817 348.141
RVFL4 0.904 0.818 1240.348 447.346 0.891 0.801 981.663 349.597
RVFL5 0.904 0.816 1246.018 450.376 0.888 0.797 991.717 351.941
RVFL6 0.905 0.819 1236.624 450.471 0.888 0.797 991.194 355.816
RVFL1_VMD 0.952 0.905 893.687 392.400 0.939 0.887 740.675 336.720
RVFL2_VMD 0.999 0.998 141.960 82.733 0.996 0.991 202.974 137.860
RVFL3_VMD 0.999 0.998 127.284 75.761 0.996 0.992 201.564 136.715
RVFL4_VMD 0.999 0.999 107.364 64.613 0.996 0.992 198.520 134.849
RVFL5_VMD 0.999 0.999 98.965 58.717 0.996 0.992 199.891 135.378
RVFL6_VMD 0.999 0.999 88.563 52.027 0.996 0.992 196.829 133.695

performances was especially more evident for the models based on VMD. Using the 
models without VMD, it was found that all ELM and RVFL models worked rela-
tively with the same performances for which the R and NSE for the ELM models 
were ranged from 0.828 to 0.847 and from 0.687 to 0.718 for the first station, and 
from 0.863 to 0.890 and 0.754 to 0.799, for the second station, respectively. Using 
the RVFL models the R and NSE were ranged from 0.831 to 0.851 and 0.691 to 
0.724 for the first station, and from 0.871 to 0.891 and 0.767 to 0.801, respectively, 
which were slightly higher than the values obtained using the ELM, and the differ-
ence was completely marginal. By using the VMD as preprocessing signal decom-
position, two important conclusions can be drawn. First, using the RVFL_VMD 
models were found to be more appropriate and high forecasting accuracy was 
obtained compared to the ELM_VMD. Second, an interesting concluding remark 
regarding the RVFL_VMD was that, beyond the first input combination using only 
the Q at (t-1), all models were equal in terms of numerical performances exhibiting 
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Fig. 8.8 Scatterplots measured against forecasted daily streamflow (Q) at the USGS 14142500 for 
the validation stage

very high R (≈0.99) and NSE (≈0.99) values, while for the ELM_VMD models, it 
was found that numerical performances have fluctuated significantly between the 
six input combination and increasing the number of input variables does not appear 
to have yielded any improvement in the achievement rate, and the performances of 
the models were decreased beyond the combination three (i.e., ELM3_VMD), high-
lighting the instability of the ELM models compared to the RVFL models. For con-
cluding, models that aim to forecast and predict streamflow are for great interest, 
and they have become important tools for better monitoring and management of 
water resources. It is therefore very important to create robust, stable, and well- 
validated models that can accurately and correctly forecast streamflow at different 
time scales.
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Fig. 8.9 Comparison between measured against forecasted daily streamflow (Q) at the USGS 
14142500 for the validation stage
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Chapter 9
Climate Change and Natural Hazards 
in the Senegal River Basin: Dynamics 
of Hydrological Extremes in the Faleme 
River Basin

Cheikh Faye

Abstract Extreme events punctuate the climate variability that directly affects the 
national economies of West African countries, those of the Sahel in particular, due 
to the low level of water control and poor reservoir filling conditions. This paper 
examines the dynamics of hydrological extremes and thus droughts and floods from 
the Faleme basin to the Gourbassi and Kidira stations, taking into account the con-
text of climate change. The analyses are based on daily maximum (Dmax) and mini-
mum (Dmin) discharge data for the period 1954–2019. The XLStat and KhronoStat 
software made it possible to calculate a set of indices (irregularity index, drying 
coefficient and Myer coefficient A). These software were also used to determine 
trends in the temporal evolution of the data. The discharges of the Faleme River 
make it possible to distinguish the hydroclimatic conditions in the basin over the 
study period. At station level, the Dmin underwent three successive breaks, in 
1966–67 and 2007–08, with a decrease in values of more than 50%. These ruptures 
reflect the transition from wet conditions to a marked drought. From 2007 onwards, 
conditions became particularly contrasted, with the return of years with excess dis-
charges. On average, Myer’s coefficient A is 7.2. This reflects a low flood strength. 
The annual value of the Dmax/Dmin ratio is very high, reflecting the variability of 
the discharge. The drying coefficient is generally low (0.06/day on average). Not all 
of the catastrophic floods in the study area occurred in wet years. This reflects the 
important role played by other factors, such as the spatial distribution of rainfall.
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 Introduction

Today, hydroclimatic risks are the most recurrent and devastating in all continents 
(World Bank 2014; Guhasapir et al. 2016; Pande et al. 2022a). Many rivers experi-
ence the occurrence of extreme discharges (Moharir et  al. 2020; Rodier 1981). 
Droughts are associated with low discharges and floods with high discharges (Giret 
2004; Khadri and Pande 2016), with their consequences in terms of economic losses 
and human lives (Easterling et al. 2000). Within the framework of ongoing climate 
change studies, various works report the resurgence of extreme rainfall, with an 
impact on surface discharges (Sow 2007; Field et  al. 2012; Saha et  al. 2020; 
Srivastava and Chinnasamy 2021). In recent decades, climate change has been one 
of the hottest topics in climatology and hydrology. Beyond temperature, precipita-
tion and runoff are considered to be the most important elements that can directly 
reflect climate change. Climate change is causing an increase in natural disasters 
and extreme events (drought, floods, etc. (IPCC 2014)). Extreme precipitation 
events often cause a series of extreme hydrological events such as droughts and 
floods (Xu et  al. 2015;  Pande et  al. 2022c; Pande 2022). In this situation, areas 
where the main source of economic income depends on agriculture can be clearly 
influenced by changes in precipitation and temperature and their impact on water 
resources (Radinovi’c and C’uric’ 2012). Since the beginning of the twenty-first 
century, numerous studies on extreme precipitation and runoff (Sighomnou 2004; 
Milly et al. 2005; Sharma and Panu 2010) at global, regional and national scales 
have been carried out. These studies have indicated the climatic upheaval since the 
1970s, which has resulted in a general downward trend in river discharges in some 
regions, particularly in West Africa. Faced with a succession of extreme climato-
logical (droughts and floods) and hydrological (floods and low water levels) epi-
sodes, it is common to invoke climate change as the basis for analysing the data to 
explain their increase. It is in this same wake that many studies have been carried 
out on the Senegal River catchment basin (Sow 2007; Faye 2013, 2017a, b; Faye 
et al. 2015a, b; Orimoloye et al. 2022). The Senegal River basin has experienced 
climatic variability since the 1970s marked by a drop in rainfall (Sow 2007; Faye 
et al. 2019a), which has resulted in a significant decrease in surface runoff as illus-
trated by the years 1983 and 1984 when runoff even stopped at Bakel. This drop in 
runoff has had a negative impact on many sectors of activity (agricultural produc-
tion, industry, drinking water supply, navigation, etc.), placing the basin in an 
unprecedented ecological crisis (Tropica Environmental Consultants 2008). 
However, new studies have highlighted the increase in rainfall and runoff in the 
area, which augurs well for an improvement in the hydrological regime (Ali et al. 
2008; Niang 2008; Pande et al. 2019, 2022b) and a resurgence of floods. A flood 
situation exists when the discharge of a river cannot be discharged within the mar-
gins of its normal channel, with water spilling over adjacent lowlands occupied by 
agricultural or urban land, including residential areas (Strahler and Strahler 2003; 
Abashiya 2006; Pande and Moharir 2017). In recent years, there has been an 
increase in floods that have caused enormous damage in terms of loss of life and 
property (Abashiya et al. 2017). However, significant floods and overflows of the 

C. Faye



247

Senegal River are indicated in travellers’ accounts, historical documents and old 
maps well before 1903 (the beginning of the first water level measurements). The 
major floods recorded are those of 1827, 1841, 1843 and 1853 (Kane 2002), result-
ing in river overflows so large that their homes were full of water up to the first floor 
(Hardy 1921). Devastating floods are occurring due to heavy rains in many parts of 
the country. Studies have shown that the Senegal River basin is prone to frequent 
floods and droughts due to high interannual variability in rainfall; the most devastat-
ing effects of these extreme events, particularly floods, are the leaching of agricul-
tural land, affecting agricultural production and food security, destruction of homes, 
increased health risks and the spread of infectious diseases (Sawa 2002; Abashiya 
et al. 2017; Ahmed et al. 2022). The resource can thus become a problem because 
of its overabundance, as was the case with the devastating floods of 1890, 1906, and 
1950 (Roche 2003). The Bafing basin was not spared and heavy rainfall often causes 
flooding and many inconveniences. Drought, which is characterised by a reduction 
or poor distribution, or even the absence of rainfall in a given area for a period of 
time (Bootsma et al. 1996; Orimoloye et al. 2022), is primarily meteorological. It is 
then hydrological and agricultural. Meteorological drought is defined as a period of 
reduced rainfall relative to the average over a long period of time (Esfahanian et al. 
2017; Elbeltagi et al. 2022b). Soil drought is associated with soil moisture deficits 
leading to reduced vegetation development and crop yields (Li et  al. 2016). 
Hydrological drought is related to changes in groundwater and surface water levels 
and disruption of runoff. The consequences of drought are not immediate, its effects 
are felt over a larger area and are more widespread over time than those of other 
natural phenomena (Łabędzki 2004; Pande et  al. 2021, 2022a). The impact of 
droughts first manifests itself on the agricultural sector and then gradually on other 
water-dependent sectors. The risk of drought is a major concern in many parts of 
Senegal, particularly in the arid and semi-arid regions of the North, where climatic 
conditions are extremely variable in space and time (Faye 2018; Faye et al. 2019b). 
The combination of rainfall deficits with other climatic factors is likely to cause 
severe droughts in Senegal, where agriculture is the main occupation for most of the 
population. The impact of drought in Senegal is considerable, affecting agriculture, 
irrigation and the economy. In a climatic context marked by a possible increase in 
the occurrence and impact of floods and droughts in the coming years, it is essential 
to be able to analyse hydrological variables with a view to proposing adaptation 
measures to populations. It is within this framework that the present study was initi-
ated in the Faleme basin, a tributary of the Senegal River, which has been subject to 
hydrometric surpluses and deficits in recent years. The purpose of this paper is to 
analyse the characteristics of extreme discharge in the Faleme basin in order to 
examine the implications for floods and droughts. Discharge observations are then 
compared with available knowledge on droughts and the frequency and magnitude 
of catastrophic floods. This is of paramount importance because floods (floods) and 
low discharges (droughts) are natural hazards that need to be protected against both 
through prevention and prediction. In addition, the rational management of the 
waters of the Senegal River basin and of the major works and the control of floods 
and droughts in the valley require a better knowledge of floods and low water levels 
throughout the basin.
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 Study Area

The Faleme, a tributary of the Senegal River, rises at an altitude of 800 m at the foot 
of the Fouta Djallon. Its watershed lies between latitudes 12°11′ and 14°27′ N and 
longitudes 11°12′ and 12°15′ W (Fig. 9.1). It covers an area of 28,900 km2, i.e., 10% 
of the total area of the Senegal River catchment basin of which it is the last major 
tributary, 625  km long. The Faleme hydrographic network is made up of two 
“mother branches”, the Koila Kabé and the Balinn Ko, enlarged by numerous tribu-
taries: The Kouloun Ko, the Gombo, the Kounda Ko and the Khassaye. At the con-
fluence of these two “mother branches”, the Faleme is formed and stretches 625 km 
long to the confluence with the Senegal River. Its course is irregular and interspersed 
with small rapids (Faye 2013).

 Data and Methods

 Data

The analysis of extreme discharge characteristics in the Faleme basin and the exam-
ination of their implications on floods and droughts were assessed on the basis of 
hydrological data provided by the Organisation for the Development of the Senegal 

Fig. 9.1 Situation of the Faleme catchment area
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River (OMVS). The hydrographic conditions of the years 1954–2019 in the Faleme 
catchment area were characterised on the basis of daily measurements of the dis-
charge at the Gourbassi and Kidira stations, respectively, in the middle and lower 
Faleme basin.

 Methods

The series of daily discharges we have processed are those for the period 1954–2019. 
The annual values were determined from May 1 to April 30, which corresponds to 
the hydrological year. The treatments and analyses (Table 9.1) specifically concern 
annual modules and extreme daily discharges (maximum and minimum). The inter-
annual variability of the hydrological regime is assessed through variations in the 
various indices. The drying coefficient makes it possible to assess the intensity of 
hydrological droughts when the discharge is only sustained by the emptying of the 
water table (Saha et  al. 2020; Elbeltagi et  al. 2022a). The strength of flood dis-
charges is translated by the Myer coefficient A (Table 9.1).

In order to detect trends in the distribution of annual data, we applied different 
homogeneity tests on KhronoStat 1.01 and XLStat as Hubert’s rank tests. The speci-
ficity of Hubert’s segmentation lies in its ability to detect several changes in the 
mean, unlike other procedures specialised in detecting a single break (Hubert et al. 
1998; Lubès-Niel et al. 1998). The information on the droughts and floods of the 
Senegal River Valley comes not only from the OMVS archives and documentation 
but also from writings on the same theme. Major studies on floods and droughts in 
the Senegal River Valley have also been used. These data are analysed in relation to 
the hydrological extremes of the basin to highlight useful relationships for guiding 
early warning policies and disaster management in general.

 Results

 Extreme Discharges in the Faleme Basin Between Humidity 
and Drought

The Senegal River, some 1700 km long, drains a basin of 300,000 km2, straddling 
four countries  – Guinea, Mali, Senegal and Mauritania from upstream to down-
stream, and is made up of several tributaries, the main ones being the Bafing, Bakoye 
and Faleme, which have their sources in Guinea and form the upper basin (OMVS 
2008). The Faleme, which is the subject of this study, produces 25% of the dis-
charge of the Senegal River at the Bakel station (the rest coming from the Bafing 
(which is the main tributary) at 50%, the Bakoye with 20% and the other tributaries 
of the river at 5%) (OMVS 2012). The Faleme has severely suffered from the long 
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drought that has plagued tropical Africa since 1970 (Faye 2013). If, towards the 
middle of the twentieth century, rainfall in the basin was abundant, analysis of the 
rainfall series shows breaks between 1964 and 1971. These breaks are manifested 
by droughts causing rainfall deficits of the order of 13.9–30.5%, which is very high 
and has considerable effects on water resources (Faye 2013). This trend also affects 
discharges and hydrological regimes that have undergone profound changes with 
significant discharge deficits. Analysis of the hydrological series shows that the dis-
charge (as for rainfall) has also undergone breaks noted as early as 1970. The three 
hydrometric stations of the basin record a decrease (in addition to the irregularity) 
of the discharges of the order of 50.8% at the hydrological station of Fadougou in 
the upper basin, 56.4% at Gourbassi and 59.3% at Kidira, in the middle and lower 
course of the basin (Faye 2013). This drop also affects the extreme daily discharges 
at Gourbassi and Kidira in the middle and lower reaches of the basin.

 Minimum Daily Discharges

The low water levels, although occurring during the low water period, are different 
from them. Low water is an extreme phenomenon of the discharge that occurs dur-
ing the low water period, in the non-rainy season when, in tropical areas, the param-
eters that contribute to the discharge deficit, such as evaporation and temperatures, 
are high. Sow (2007) defines low discharge as the period of time over several days 
or months when there is low discharge. These discharges decrease to the absolute 
daily minimum discharge for the year (Dmin). The study of low discharges is not an 
easy task because of the difficulties in measuring discharges, especially for season-
ally flowing rivers, but they are painful in their severity.

At the Gourbassi station in the middle Faleme basin, the mean Dmin is only 
0.045 m3/s over the period 1954–2019 (hydrological years), but with a high interan-
nual variability (coefficient of variation of 3.2) (Fig.  9.2). The break occurs in 
1968–69, the year from which the Dmin cancels out until the end of the series. In 
total, 55 years (85% of the series) recorded a zero Dmin. As regards the Kidira sta-
tion in the lower Faleme basin, which controls the whole basin, the mean Dmin of 
the series (1954–2019) is slightly higher than Gourbassi with a value of 0.2 m3/s for 
a coefficient of variation of 2.96. The number of years at zero Dmin remains less 
important and counts a total of 43 years (i.e. 66.2%). This weakness of the Dmin 
and its generally nil character testify to the seriousness of the drought in the basin 
whose socio-economic and environmental consequences are numerous and need to 
be evaluated. With an average of 0.045 m3/s at Gourbassi and 0.2 m3/s at Kidira, the 
Dmin is highly variable. The difference between the most sustained DMIN (1 m3/s 
at Gourbassi and 4.2 m3/s at Kidira) and the lowest that cancels out is 1 m3/s at 
Gourbassi and 4.2 m3/s at Kidira. Over the 65 years, only 10 and 24 years have not 
recorded zero discharges at Gourbassi and Kidira, respectively. The highest Dmin is 
noted at Gourbassi in 1966–67 with 1 m3/s and in 1974–75 at Kidira with 4.2 m3/s, 
as opposed to the year of the highest average discharge 1954–55, when the Dmin 
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Fig. 9.2 Variability and segmentation of the Dmin of the Faleme basin at Gourbassi and Kidira 
from 1954 to 2019

was 0.02 m3/s at Gourbassi and 0.01 m3/s at Kidira. As for the year 1983–84 with 
the lowest average discharge, the Dmin cancels itself out.

 Maximum Daily Discharges

Floods and high waters differ in frequency, duration and discharge values (Frécaut 
1982). Flooding, therefore, occurs when the conditions favourable to runoff are met: 
saturated soil and atmosphere, low evaporation and temperatures and high precipi-
tation (Faye 2013). It is characterised by great variability (Fig.  9.3). The Dmax 
(maximum daily discharge of the year) and the flood characteristic discharge (FCD) 
are used to study the flood. In the Faleme basin, the interannual evolution of the 
flood is irregular. At the Gourbassi station, annual Dmax values ranged from 
148  m3/s in 1983–84 to 1912  m3/s in 1964–65 (Fig.  9.3). The average over the 
period 1954–2019 is 935 m3/s, with a standard deviation of 429 m3/s, a coefficient 
of variation of 46% and a slight general tendency to decrease over time, despite a 
slight increase in recent years. Hubert’s segmentation method highlights a first 
break in 1966–69 and a second break in 2007–08, dividing the series into three 
phases. The average of the values increases from 1391 m3/s over the period 1954–66, 
to 706 m3/s over the period 1967–07 (representing a 49% decrease compared to the 
first phase), to 1240 m3/s over the period 2008–19 (representing a 75.6% decrease 
compared with the first phase but a 46% increase compared with the second phase). 
The largest deficits are thus recorded over the 1970s, 1980s and 1990s, the “heart of 
the drought”.

At the Kidira station, Dmax values are higher than at Gourbassi over the period 
1954–2019 and vary from 152.5 m3/s in 1983–84 to 3108 m3/s in 1961–62 (Fig. 9.3) 
for an average of 1229 m3/s, a standard deviation of 707 m3/s, a coefficient of varia-
tion of 58% and a slight general tendency to decrease over time, despite a slight 
increase in recent years. As at Gourbassi, Hubert’s segmentation method highlights 
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Fig. 9.3 Variability and segmentation of the Dmax of the Faleme basin at Gourbassi and Kidira 
from 1954 to 2019

two breaks in the series (1966–69 and 2007–08), dividing it into three phases. The 
first phase, from the beginning of the series (1954–55) to 1966–69, remains the wet-
test with an average value of 2162 m3/s. As for the second phase, the longest and 
driest, it runs from 1967–68 to 2007–08 with an average value of 872 m3/s. This 
phase shows a 62.4% decrease compared with the first phase. Finally, the third and 
last phase, which runs from 2008–09 to 2018–19, sees an increase in Dmax values 
and remains more or less wet, with an average value of 1447 m3/s. This period, 
although registering a 33.1% decrease compared with the first phase, is experienc-
ing a 66% increase compared with the second phase. As in Gourbassi, in Kidira, the 
greatest deficits are thus recorded over the 1970s, 80s and 90s, the “heart of the 
drought”. Analysis of the Dmax indicates that the deficits affected Faleme in 
Gourbassi more severely than Faleme in Kidira. The downstream situation of the 
Kidira station, which benefits from the discharge of the entire surface of the basin, 
can be cited in this respect.

 Dynamics of the Hydrological Extremes of the Faleme Basin 
Through Some Indices

 Power of Peak Discharges

To characterise the flood power calculated by Myer’s coefficient A, the classifica-
tion of Pardé (1968) was used. According to this classification, whenever the coef-
ficient is less than 60, it is qualified as poor. According to this classification, 
whenever the coefficient is less than 60, it is classified as poor. However, this crite-
rion, in relation to the discharge of large African rivers in tropical regimes, gives 
values below 60, and their flood powers are classified as poor. This is why, in the 
Faleme basin, this classification must be evaluated with caution, especially since for 
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the calculation, daily maximum discharges are used instead of instantaneous maxi-
mum discharges.

At the Gourbassi station, the year 1964–65 saw the largest flood over the study 
period with a Myer A coefficient of 14.6 (Fig. 9.4). The years 1961–62, 2011–12, 
1974–75 and 2015–16 followed, with 13.8, 12.9, 12.2 and 12.1, respectively. The 
lowest flood was recorded in 1983–84 with a coefficient of 1.13. For an overall aver-
age of 7.2, the coefficient A is 10.6 over the period 1954–66, 5.4 over the period 
1967–07 and 9.4 over the period 2008–19. Of course, we find the same indications 
as those provided by the Dmax: break in 1966–67, low values over the period 
1968–07, slight increase over the current period marked by the alternation of low 
values. At the Kidira station, the year 1961–62 saw the largest flood over the study 
period with a Myer A coefficient of 18.3 (Fig. 9.4). The years 1964–65, 1954–55, 
1966–67 and 1974–75 followed, with 16.8, 15.8, 15.6 and 13.2, respectively. The 
lowest flood was recorded in 1983–84 with a coefficient of 0.90. For an overall aver-
age of 7.23, the coefficient A is 12.8 for the period 1954–66, 5.2 for the period 
1967–07 and 8.4 for the period 2008–19. We find the same indications as those 
provided at the Gourbassi station: Dmax. According to Olivry et al. (1994a), this 
“poor flood performance” is a general characteristic of rivers on the African conti-
nent, both in dry Africa where rainfall remains modest and the catchment area’s 
ability to discharge is weak, and in west Africa where more abundant rainfall only 
produces a flood wave that is widely spread over time due to the dense vegetation of 
the continent. The flood powers are very low according to Pardé’s classification 
(which is unsuitable for characterizing flood power in the tropics). The low flood 
powers have become more pronounced since the 1970s with the climatic deteriora-
tion and the decrease in Dmax values.
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Fig. 9.4 Evolution and segmentation of the flood coefficient of the Faleme basin at Gourbassi and 
Kidira from 1954 to 2019
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 Irregularity Index

Since the calculation of the irregularity index requires values of Dmin which are not 
zero, for each year of the series (1954–19) whose Dmin is equal to 0, the value of 
the average Dmin of the series was used instead at the Gourbassi and Kidira sta-
tions, the interannual mean of the irregularity index R is 18,960. It shows a very 
slight upward trend (Fig. 9.5). The observation remains the same at the Kidira sta-
tion, but with a much lower mean value of 6280. While the difference between 
Dmax and Dmin is greater over the 1950s and 1960s, it fell over the 1970s, 1960s 
and 1990s before rising again in the recent period. Some years stand out for their 
very high R values at Gourbassi (42,488  in 1964–65, 40,177  in 1961–62 and 
38,187 in 1957–58) and at Kidira (4,972,800 in 1961–62, 3,139,200 in 1967–68 and 
458,212 in 1954–55). These were years that saw very high floods and very severe 
low water levels.

With all the precautions imposed by very low coefficients of determination, there 
is a certain tendency for the gaps between Dmin and Dmax to widen at Gourbassi, 
while the opposite is observed at Kidira (beyond the 3 years reported at astronomi-
cal R values).

 Taring Coefficient

Depletion represents “the phase of discharge in a river or spring corresponding to 
the steady decrease in discharge in the absence of meteoric inputs and human inter-
vention” (Dacharry 1997). It begins on the day when the decrease in discharge is 
continuous and corresponds to the phase of emptying of the water table, thus caus-
ing a decrease in the underground reserves supporting the discharge of the water-
course during the non-rainy period. The drying up follows the temporal distribution 
of rainfall, which conditions the period of low water and low water levels (Faye 
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Fig. 9.5 Evolution and segmentation of the irregularity index of the Faleme basin at Gourbassi 
and Kidira from 1954 to 2019
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2013). At the Gourbassi and Kidira stations, the beginning of the drying-up period 
is spread over nine decades, from September to December. The month of October is 
the normal month of onset of drying up (Q0) and accounts for nearly 3/4 of the 
frequencies, and the second dekad is the normal dekad. The end of the drydown Qt 
is more variable, with 12 dekad ranging from September to April, which is the nor-
mal month of the end. For this normal month, April, the third dekad is the normal 
end dekad. The high frequencies of this dekad reflect the perennial nature of the 
discharge at Kidira over certain years. The average discharge at the beginning of 
tapping (Q0) is 308 m3/s at Gourbassi and 355 m3/s at Kidira, and the average dis-
charge at the end of tapping (Qt) is 0.2 m3/s at Gourbassi and 4.2 m3/s at Kidira. The 
average duration of tapping (t) at Gourbassi is 170 days, and the average tapping 
coefficient (k) is 0.062. At Kidira, the average dry period (t) is 156 days, and the 
average drying coefficient (k) is 0.054. At Gourbassi, if the mean inter-annual dry-
ing coefficient is 0.062/day, the maximum annual value reached 0.098/day (in 
1984–85) and the minimum value 0.012/day (in 1954–55). For Kidira, the interan-
nual average drying coefficient is 0.054/day with an annual maximum value of 0.11/
day (in 1985–86) and a minimum value of 0.02/day (in 1967–68). The coefficient of 
variation, 29% at Gourbassi and 33% at Kidira, reflects a spread from 1954 to 2019 
(Fig. 9.6).

Analysis of the extreme discharge patterns of floods and low discharges confirms 
the variability of the discharge. The drying up in the basin is faster and shows the 
severity of low water levels at Gourbassi and Kidira in the pure tropical domain.

 Hydroclimatic Risks in the Faleme Basin

Water-related risks in the Faleme basin can be partly considered by taking into 
account hydrological extremes.
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Fig. 9.6 Evolution and segmentation of the irregularity index of the flow of the Falémé basin at 
the Gourbassi and Kidira stations from 1954 to 2019
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 Different Aspects of the Hydrological Drought in the Faleme Basin

The analysis of the discharge over the period 1954–19 revealed significant fluctua-
tions with multiple consequences on the environment, hence the interest of studying 
them. It shows a hydroclimatic rupture at the beginning of the 1970s marked by the 
beginning of a drought phase affecting all the rivers of the African Sahel. At 
Gourbassi, if the average interannual discharge is 105 m3/s, the maximum annual 
value reached 214 m3/s (in 1954–55) and the minimum value 20 m3/s (in 1983–84). 
For Kidira, the mean interannual flow discharged is 159 m3/s for a maximum annual 
value of 558 m3/s (in 1954–55) and a minimum value of 32.6 m3/s (in 1983–84). As 
with rainfall, the evolution of hydrological parameters reflected in the basin’s runoff 
from 1954 to 2019 first showed a decrease during the 1970s before recognising an 
increase from 2009 onwards (Fig. 9.7). This new upward trend in the Faleme basin, 
although not significant, corresponds to the improvement in rainfall conditions that 
began in the 1990s and confirms numerous studies (Ali et al. 2008; Niang 2008).

The probability of occurrence of different categories of wet and dry periods at 
Gourbassi and Kidira is shown in Fig. 9.7. In Gourbassi, 53.8% of the years are dry 
with varying intensities, indicating the slight dominance of drought. The mild 
drought with the highest percentage (35.4%) has a probability of 1 in 2.8 years. It is 
followed by light humidity with a percentage of 29.9% and a probability of occur-
rence of 1 in 3.4 years. There is no such thing as an extremely dry year. Extremely 
wet (4.6%) and severely wet (6.1%) years showed very low percentages. The same 
is true for severely dry years with a percentage of 1.5% and a probability of occur-
rence of 1 in 65 years.

At Kidira, 61.5% of the years are dry with variable intensities, a little more than 
what is noted at Gourbassi. The mild drought that has the highest percentage 
(53.8%) has a probability of 1 in 1.8 years. It is followed by light humidity with a 
percentage of 24.6% and a probability of occurrence of 1 in 4.1 years. There is no 
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Fig. 9.7 Evolution of the reduced centred variables (RCV) of the annual modules of the Faleme 
basin at Gourbassi and Kidira from 1954 to 2019

9 Climate Change and Natural Hazards in the Senegal River Basin: Dynamics…



258

such thing as an extremely and severely dry year. Extremely wet (6.2%) and severely 
wet (1.5%) years showed very low percentages. The same is true for moderately dry 
years with a percentage of 7.7% and a probability of occurrence of 1 in 13 years and 
moderately wet years with a percentage of 6.2% and a probability of occurrence of 
1 in 16.2 years.

As regards low water levels, the situation is slightly different between the 
Gourbassi and Kidira stations. Indeed, the first half of the series is clearly in surplus 
(with values that can reach 1573% in 1966–67 at Gourbassi and 2017 in 1973–74 at 
Kidira) (Fig. 9.8). At Gourbassi, the year 1968–69 marks the beginning of the defi-
cits, which reach their maximum (100%) there. For the Kidira station, beyond the 
years of deficits noted between 1954 and 1985, the deficits globally concern the 
period 1985–2019 and are at their maximum (100%).

Unlike the Dmin, which showed some deficits from the beginning of the observa-
tion series at Gourbassi and Kidira, the Dmax remained in surplus until 1967–68 
(Fig. 9.9). The Dmax thus appears to be more in line with the general discharge 
trend in this basin. While the first phase of the series (1954–67) remains in surplus, 
Dmax deficits begin in 1967–68 and continue thereafter (with the exception of a few 
surplus years noted over the 1970s at both stations) until 2008–09, after which a 
return to surplus years is noted (despite the presence of a few deficit years at Kidira). 
All these analyses make it possible to measure the extent of the hydrological drought 
that affected the Faleme basin. For the most part, average, minimum and maximum 
discharges evolve in the same way from 1  year to the next (Saha et  al. 2020), 
although some exceptions can be noted at the beginning and end of the drought 
period. Indeed, over the period 2008–19, for example, the Faleme River had a deficit 
Dmin, while the mean annual discharge and Dmax are in surplus and have caused 
flooding in several localities of the Senegal River valley. In general, many Dmax 
have been in surplus in years when the mean annual discharge and the Dmin were 
in deficit (period 2008–19). Figure 9.10 presents a synthetic drought index resulting 
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Fig. 9.8 Evolution of the Deviations (in %) of the annual Dmin of the Faleme basin at Gourbassi 
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Fig. 9.9 Evolution of the deviations (in %) of the annual Dmax of the Faleme basin at Gourbassi 
and Kidira compared to the interannual mean values from 1954 to 2019
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Fig. 9.10 Evolution of the values of the synthetic hydrological drought index of the Faleme basin 
at Gourbassi and Kidira from 1954 to 2019

from the addition of the reduced centred variables of the modules, Dmin and Dmax. 
Drought years are characterised by a negative result.

Based on available data, the persistent drought started in 1967–68 on Faleme and 
subsided in 2007–08. The socio-economic context of the Kédougou region of the 
Faleme basin makes it highly vulnerable to natural hazards in general and to drought 
in particular. Indeed, food insecurity rates are as high as in the three departments of 
the Kédougou region (30.4% of households in Kédougou, 30.9% in Salémata and 
38.5% in Saraya are food insecure) (ANSD 2015a). Kédougou is, today, a region 
undergoing demographic and economic change and where 71% of the population 
lives below the poverty line (ESPS 2011). Given the inadequacy of water infrastruc-
ture for water supply, the Faleme and Gambia Rivers, the two major rivers, play an 
important role in local development (agriculture, human and livestock water supply) 
(ANSD 2019). The region’s population growth is one of the highest in Senegal over 
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the last decade. Over the 2014–16 period, the annual population growth rate in 
Kédougou is 3.3% (ANSD 2019). However, although the labour force is abundant, 
many young people are fleeing to the gold panning sites. The other obstacles to 
agriculture are related to the lack of fertilisers, and their late implementation, the 
unsuitability of agricultural equipment often made available to producers, soil deg-
radation that affects agricultural production and environmental degradation that 
threatens the health of the population. It is under these conditions that the hydro-
logical deficits of the 1970s and 1980s caused real disasters in the eastern Senegal 
region, as evidenced by the worsening of food shortages (Faye 2013). With good 
rainfall and hydrography, Kédougou is one of the regions of Senegal where rainfed 
farming is most widespread. Indeed, according to the results of the 2013 RGPHAE, 
69% of households in Kédougou practice agriculture in the broad sense, and nearly 
81% of these farming households are engaged in rainfed farming. Agriculture is 
therefore the main economic activity of the people of Kédougou on which their 
livelihood is essentially based (ANSD 2015b). Thus, 69% of households were 
engaged in agriculture in 2013 (ANSD 2014). Similarly, livestock and fishing are 
also common activities practiced by the population, with a good part of the popula-
tion engaged in livestock farming (49.6% in 2013). However, despite the region’s 
multiple potentialities in agriculture and the efforts made by the State and develop-
ment partners through programmes and projects, this agriculture sub-sector still 
faces many difficulties that prevent it from fully playing its role as the main lever in 
the process of poverty reduction and food security (ANSD 2015b). Indeed, accord-
ing to the Kédougou Regional Development Agency, from 2005–06 to 2011–12, 
there is a downward trend in cereal production, and this situation is reflected in a 
recurrent food deficit observed during the same period. Several challenges need to 
be addressed to improve agricultural production, including finding solutions to live-
stock raiding, mechanizing local agriculture with adapted equipment, facilitating 
access to inputs in a timely manner, setting up model farms, helping to develop the 
Faleme and Gambia Rivers, strengthening livestock rangelands, supporting the val-
orisation of local agricultural products, strengthening the development of off-season 
activities, fighting bush fires and other forms of soil and environmental degradation 
and reducing the misuse of chemical fertilisers.

 Hydrological Parameters and Flooding in the Valley

With regard to floods, the surpluses on the modules (see Fig. 9.8) and on peak dis-
charges (see Fig. 9.9) provide elements for analysis. However, it is also useful to 
look at discharges equalled or exceeded for 10 days per year or flood characteristic 
discharges (FCD). The average FCD is 593 m3/s on the Faleme at Gourbassi and 
818 m3/s on the Faleme at Kidira. Like the other hydrological parameters studied, 
the FCDs are highly variable on an interannual scale (Fig. 9.11). The most numer-
ous and highest high values are at the beginning of the observation series. The maxi-
mum FCD values are noted in 1954–55 with 1527 m3/s at Gourbassi and 2330 m3/s 
at Kidira, and the minimum values are noted in 2006–07 at Gourbassi with 96.1 m3/s 
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and in 1984–85 at Kidira with 77 m3/s. Years of catastrophic flooding do not always 
correspond to average discharges above the module, nor even to daily peak dis-
charges or FCDs above the interannual averages. Information on a few examples of 
catastrophic floods in the Senegal River valley in relation to hydrological variables 
in the upper basin (including the Faleme) shows that they have not always occurred 
in wet years compared with average and peak discharges in the upper basin. Most of 
the catastrophic floods have occurred during years of hydrological drought. The 
location of catastrophic floods depends both on the distribution of rainfall over the 
territory and on the local measures taken to avoid damage (Saha et al. 2020). An 
example is the floods of the 1994–95 season, which correspond to an average flood. 
Indeed, in 1994, 120,000 people were left homeless in the Saint-Louis region, caus-
ing the displacement of populations suffering from health problems and the flood-
ing of farmland (Kane 2002). In that year, the maximum discharge observed during 
the flood at Kidira on the Faleme River was 675  m3/s on 25 September 1994. 
However, higher discharges have already been observed without triggering today’s 
catastrophic floods, such as the highest daily discharge observed on the Faleme and 
the Senegal River in general. The same is also true for the floods of 2003 (which 
caused a breach to save the city) and 2013 in the river valley and delta.

The current flooding in the valley can be explained by a combination of several 
facts. Firstly, it is getting wetter and wetter during the winter months. Secondly, 
there is also a significant inflow of water from tributaries not yet equipped with 
water control structures, namely the Bakoye and Faleme, which play a major role in 
triggering the floods. The agitation of the sea swell in the winter period on the coast, 
which prevents the discharge of river water and contributes to a rise in the water 
level in all branches of the river and in the water table, is also to be noted (Diack 
2000). Thirdly, the OMVS often carries out large releases. Fourthly, the modifica-
tion of the discharge regime can cause water saturation in the soil as a result of the 
rising roof of the water table, which is now practically flush. Finally, anarchic land 
use leads to the stagnation of rainwater in the absence of drainage, or to garbage 
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Fig. 9.11 Occurrences of surplus FCDs from the Faleme Basin at Gourbassi and Kidira from 
1954 to 2019
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dumps, which contribute to very slow runoff towards the river branches, etc. The 
damming of the delta in 1964 also modified the natural feeding conditions of the 
peripheral depressions, which can no longer play their buffer role in the accumula-
tion of overflow (Kane 2002). Thus, the implementation of complex hydraulic 
developments in the river delta combined with the construction of a large dam was 
not sufficient to control flooding.

 Discussion

The dynamics of extreme discharges in the Faleme basin are part of the hydrological 
context of the entire Sahelian zone and even beyond. In this basin, analysing data 
from 1954 to 2008, highlights a downward trend in Dmin and Dmax. It is accompa-
nied by a break in hydrological conditions at the very beginning of the 1970s, which 
marks the transition from a wet period to a deficit period. The same trend has been 
observed over Senegal and all the West African basins by several authors (Faye 
2013; Saha et al. 2020). It should be noted that, in general, on the large African riv-
ers, the behaviour of Dmax is identical to the trends observed for mean annual dis-
charges (Olivry et al. 1998). Dmin, on the other hand, is much less related to them. 
It should also be noted that the rivers of West Africa have suffered more severely 
from the deterioration of discharges compared with Central Africa (Olivry et  al. 
1998; Saha et al. 2020). In fact, on the Faleme, the deficits are higher than 50%, 
which is in line with the results of Cissé et al. (2014) on Senegal, which indicate a 
57% deficit between 1971 and 1993, with an increase in humidity from 1994 
onwards, and much higher than those obtained by Saha et  al. (2020) on Central 
African rivers (25.5% on the Logone and 36% on the Chari). Hydrological indices 
are tools for assessing the dynamics of African rivers. Olivry et al. (1994a, b) speak 
of low flood power on tropical African rivers (Myer A coefficients from 6 to 28 for 
Niger and from 2 to 20 for Senegal). The vastness of the basins of these rivers can 
be cited as an explanatory factor. The year 1983–84, which had the lowest flood 
power on the Faleme (average discharge of 20 m3/s at Gourbassi and 32.5 m3/s at 
Kidira), is identified as the most deficient year of the dry period on several African 
rivers (Olivry et  al. 1998). Faleme’s dry periods are much slower (170  days at 
Gourbassi and 156 days at Kidira) than those of West African rivers where only 
2 months separate Dmax from Dmin (Olivry et al. 1994a, b). In this respect, the 
functioning of the Faleme is increasingly different from that of rivers in equatorial 
Africa, such as the Oubangui (tributary of the Congo), for which Nguimalet (2017) 
finds practically a different average value of the drying coefficient (0.020). However, 
the increase in this coefficient from the early 1970s on the Faleme is noted by 
Nguimalet (2017) on the Oubangui and by Saha et al. (2020) on the Logone and 
Chari. The differences between the annual Dmin and Dmax (irregularity index) are 
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very pronounced in Faleme (on average 18,961 in Gourbassi and 137,840 in Kidira). 
This is due to the low water discharges, which are very low. Indeed, on many of their 
tributaries, discharges dry up a few months after the end of rainfall (Saha et  al. 
2020). This drying coefficient is on average 0.062 at Gourbassi and 0.054 at Kidira, 
which reflects a more or less significant support of the water table in the river during 
the low-water season.

In the Senegal River basin, Sow (2007) and Faye (2013), for example, place the 
onset of drought between the late 1960s and early 1970s, which corresponds to the 
beginning of the decline in rainfall. The hydrological parameters were not affected 
until a few years later. The same applies to the end of the drought, the date of which 
varies according to the data taken into account. The weak relationship between dis-
charges and the occurrence of damage in the area is an exception in the case of cata-
strophic floods in the cities bordering the major African rivers (Saha et al. 2020). 
But the proximity of a river and the violence of its discharges are, of course, only 
two of the factors that contribute to the construction of flood risk. The negative con-
sequences of recent hydraulic developments provide a good illustration of this.

 Conclusion

Among the strong trends highlighted by this study, it should first be noted that peak 
daily discharges (and thus also Myer’s coefficient A) decreased in the early 1970s. 
This is in line with observations made by other authors on rivers in tropical Africa. 
For the Dmin, the evolutions appear more contrasted. In the Faleme basin, after a 
decrease in discharges at the very beginning of the 1970s following the decades of 
hydrological abundance (1950 and 1960), the values started to increase again from 
the 2000s onwards, in phase with the increase in rainfall. In the basin, the variability 
of the discharge is explained by the importance of the annual values of the irregular-
ity index R (Dmax/Dmin) (on average 18,961 at Gourbassi and 137,840 at Kidira). 
This can be explained by the fact that the minimum discharge can fall very low in 
some years or even cancel out, which explains the very high R values. The average 
tapping coefficient is around 0.062 at Gourbassi and 0.054 at Kidira. This coeffi-
cient had its highest values during the period of drought that hit all tropical and even 
equatorial Africa from the 1970s onwards. From the late 1970s to the end of the 
1990s, all the variables studied (Dmin, Dmax, irregularity index and drying up coef-
ficient) were strongly affected by the drought that hit Africa. However, conditions 
may have been heterogeneous in the catchment basins, so that catastrophic floods 
occurred on tributary rivers during this period. The return to high maximum dis-
charges on the Faleme and other Senegal River rivers and the dyking of long sec-
tions in the valley and delta0 resulted in catastrophic floods as had not been 
experienced before 1971, at a time when the valley was admittedly less anthropised.

9 Climate Change and Natural Hazards in the Senegal River Basin: Dynamics…
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Chapter 10
Review of Various Impacts of Climate 
Change in South Asia Region, Specifically 
Pakistan

Rabeea Noor, Chaitanya B. Pande, Syeda Mishal Zahra, Aarish Maqsood, 
Azhar Baig, M. Aali Misaal, Rana Shehzad Noor, Qaiser Abbas, 
and Mariyam Anwar

Abstract Climate change is a dire and increasing crisis worldwide in South Asian 
region, especially Pakistan. This region is highly vulnerable to climate change, 
while awareness of climate change issues and adaptation strategies is very low. 
Pakistan faces a perpetual threat in its ecosystem, biodiversity, and oceans. Much of 
the country’s threats stem from poverty, a lack of financial resources, and natural 
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disasters. Pakistan endures ongoing seasonal changes, including extreme climate 
events, an ongoing shortage of water, pest diseases, human health issues, and more. 
The country has a low adaptive capacity to these threats, given its ongoing eco-
nomic struggles and varying living conditions from season to season. The likely 
effects of climate change on the common Pakistani citizens are devastating, espe-
cially for local animals like lions, tortoises, dolphins, and vultures. These animals, 
regardless of their small global impact, will face extinction. In fact, the effects on 
local people, such as the per capita impact on global greenhouse gas emissions, are 
severe. The findings of this review support the theory that GHG emissions cause 
climate change. The effects of this global phenomenon have been seen in Pakistan 
in agriculture, livestock, precipitation and temperature trends and patterns, food and 
energy reliability, water resources, and community. According to a recent sectorial 
assessment, this review evaluates climate change alleviation and adaptation tech-
niques in the sectors mentioned above, which caused a huge economic loss in 
Pakistan every year. A new study finds that governmental intervention is necessary 
for recent climate policy development. The research suggested that strict account-
ability of resources and regulatory actions are vital to creating climate policy.

Keywords Climate change · Greenhouse gases emissions · Adaptation · 
Alleviation

 Introduction

The term “climate” refers to overall environmental conditions observed in a specific 
region—variations in temperature, precipitation, pressure, and humidity in the 
atmosphere. It can be altered by natural phenomenon or human interventions, result-
ing in “climate change.” The changing climate is causing more extreme events 
across the world, like global warming and melting ice glaciers. These changes are 
caused by greenhouse gases, which are released into the atmosphere from various 
sources and activities (Lipczynska-Kochany 2018). Natural disasters, such as hur-
ricanes Harvey and Irma, and the devastating wildfires burning in the western states 
are frequently cited as evidence of climate change by numerous researchers, scien-
tist, and environmentalists (Orimoloye et al. 2022). The consequences of climate 
change are growing at an alarming rate and require immediate action. All people 
must now engage in actions that promote climate change adaptation, such as con-
serving water, reducing the use of fossil fuels, and recycling materials (Fawzy et al. 
2020). The accumulation of greenhouse gases (GHGs) in the earth’s natural atmo-
sphere is the primary cause of global climate change (CO2, CH4, N2O, and H2O). 
This buildup of GHGs can be naturally found but raises the planet’s temperature 
(Kweku et al. 2018). Climate change has been causing a rise in atmospheric events 
all over the world. In response, its claimed that this is causing global warming to be 
underestimated. Humanity is not the only cause of environmental degradation. 
Natural disasters like volcanic eruptions, earthquakes, and solar cycles also heavily 
impact environment (van Pelt 2018). Natural sinks, such as plants and oceans, have 
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historically absorbed GHGs like carbon dioxide—but human activities have 
increased their output. For example, the number of cars on the road, land used for 
agriculture, forests (Huang et al. 2016), industrial revolution, and burning fossil fuel 
(Udeh and Kidak 2019; Yousaf et al. 2017) is all increasing at an accelerating pace. 
However, water vaporization is the exception (Ceglar et al. 2019). The damage done 
by global warming caused by GHG emissions has been happening for decades. In 
the past, before the Industrial Revolution, the environment and natural atmosphere 
were balanced and stable (Wiedmann et al. 2020). The two main contributors of 
anthropogenic carbon dioxide (CO2) emissions are human activities, i.e., the burn-
ing of fossil fuels and changes to land. These factors have contributed to global 
warming since the mid-twentieth century (Anderson et al. 2016; Yousaf et al. 2017; 
Yue and Gao 2018).

The past few Septembers have been the fourth hottest since 2000 (Leonelli et al. 
2017). It was a record-setting hot summer, with ten of the warmest summers in 
recent times recorded since 2003 and September of 2014–2018 have been the five 
warmest Septembers on record (Hoy et al. 2020). This rise in temperature is not just 
a passing trend. It threatens the existence of civilization by way of erratic weather 
patterns, environmental devastation, commercial deprivation, and society destruc-
tion (Espeland and Kettenring 2018). The impacts of climate change are cata-
strophic, and they’re felt in two discrete time periods: short period and long period. 
Short period, humans feel the effects of climate change through the release of 
GHGs, while in long term, humans face the release of harmful gases, quantities of 
heat, and worldwide food shortage because of extreme weather (Godde et al. 2021). 
Pakistan is disproportionately affected by climate change because it is in Asia and 
surrounded by countries facing severe challenges due to a lack of resources, indus-
trial expansion, urbanization, and excessive economic development. These factors 
are making the country incapable of sustainable development (Abdul and Yu 2020; 
Shaffril et al. 2018). The amazing economic growth of Pakistan and much of the 
world relies on excessive use of natural and nonrenewable resources. But this mas-
sive exploitation is having harmful impacts over the atmosphere. The detrimental 
effects include permanent damage to the environment. To alleviate the negative 
effects of global climate change and other environmental degradation, it’s important 
to both implement policies that reflect ecological values and integrate these into 
public liability, intellectual fences, behavioral intents, and esteem for nature (Islam 
and Kieu 2020).

In 2010, there was a 5.8% increase in global GHG emissions and Pakistan con-
tributed to this dramatic rise with same percent (Ahmed et al. 2016; Hussain et al. 
2019a, b). Pakistan is experiencing extreme climate change impacts that are damag-
ing the economy and social and environmental development. Rapid urban develop-
ment, rising transportation needs, and a rise in energy usage could cause the country 
to become even more susceptible to climate change by 2030 (Babar et al. 2021). 
Pakistan is experiencing the effects of climate change. The adverse conditions 
include melting glaciers at an unprecedented rate, sudden flooding, unpredictable 
droughts, high temperatures, lack of water sources, and intense heat waves. In addi-
tion, human healthcare issues and pest diseases such as mosquitos and other 
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Fig. 10.1 Overview of climate change review on Pakistan

seasonal changes are occurring. Because of these issues, lifestyle changes are 
required (Abdul and Yu 2020; Hussain et al. 2018). Climate change is a reality with 
real, tangible effects. To tackle it effectively, it’s necessary to take steps toward both 
alleviation—stopping future GHGs emissions and lessening the present level of 
GHGs in the atmosphere—and adaptation, changing to meet the resulting effects of 
climate change (Castillo et  al. 2021; Enríquez-de-Salamanca et  al. 2017; Shahid 
et al. 2021). A systematic review was conducted on the Pakistan climate change 
influence using multiple sources of literature. The main aim is to evaluate how cli-
mate change will affect different sectors across the country. The analysis is thor-
ough and reveals notable climate changes that pose a threat to Pakistan. Climate 
change impacts on various sectors, including, but not limited to, agriculture, live-
stock, food security, water security, and energy security. In this review, you’ll dis-
cover that numerous strategies for alleviation and adaptation practices have been 
implemented in Pakistan with an emphasis on socioeconomic and environmental 
impacts (Fig. 10.1).

 National Level Climate Change Trends 
in International Context

In increasingly warming world, climate change is already having a significant 
impact on our lives. Rising sea levels and increased heat-related deaths are just two 
of the consequences of climate change’s impact. These effects are not only visible 
in our own region but also throughout the world. Climate change will likely inten-
sify these effects even further in the future (Cavicchioli et al. 2019). Climate change 
is a worldwide problem. However, its effects are more severe in developing 
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countries due to several reasons, including a lack of knowledge and understanding 
about effective measures, as well as limited resources and public funds exploitation 
(Ullah et  al. 2019). The IPCC has forecasted the disastrous effects of climate 
change—particularly on natural resources, anthropogenic measures, and natural 
disasters in the future (IPCC 2021). The El Nino and La Nina have already nega-
tively influenced reservoirs and aquifers throughout the world. The average annual 
temperature has increased by about 0.4 °C in the past century, from 1896 to 1995 
(Hughes 2003). In the past century, the mean annual temperature in the South Asia 
region has increased by 0.75 °C. In Pakistan, the rate of change has been accelerat-
ing. From 1961 to 2007, the temperature rose by 0.47 °C. The warmest year before 
2007 was 2004, and the most significant temperature increase was noticed during 
winter. The average winter temperature is typically between 0.5 and 1.1 at 2 degree 
centigrade. The warmest winter in Pakistan happened in Balochistan while the cool-
est summer was experienced in the northwestern regions. Pakistan’s annual tem-
peratures only raised by 0.87 °C (maximal) and 0.48 °C (minimal) from 1960 to 
2007 (Fig. 10.2a). It can be observed that droughts have hit Pakistan the hardest in 
1998 and 2004. Baluchistan, its largest province, has been severely influenced, 
killed 76% of its livestock and 84% of the population directly influenced, even the 
entire country suffered a great deal of devastation due to the massive floods (Arif 
et al. 2021). The flood displaced many people in both the northern and central parts 
of the country. Sizzling temperatures, severe droughts (Cayuela et al. 2016), pest 
problems, health- related issues, and lifestyles will be present in the forthcoming 
also (Hussain et al. 2018; Ullah et al. 2018).

Climate change is a global issue that is impacting many areas of the world. This 
issue includes things such as various dangerous temperatures, numerous famines, 
sudden rainfall patterns, and agriculture ruin (Lake et  al. 2012; Rojas-Downing 
et al. 2017; Pande et al. 2021a, b). Agrarian countries like Pakistan will be espe-
cially harmed by climate change; this will devastate the economy. While the per unit 
of population revenue is low and the country deficit in sufficient infrastructure 
building or development, the economy is dependent on agricultural exports (Noor 
et al.  2021a). Agricultural exports are made possible by large irrigable land. The 
80% economy relies on these products, and any decrease in either quantity or qual-
ity will have detrimental effects on Pakistan’s export industry (Grote et al. 2021; 
Rehman et al. 2015). Pakistan’s water supply relies heavily on the melting of gla-
ciers and snow at the country’s northernmost areas. These sources account for two- 
thirds of its irrigable land, while two-thirds of the population is involved in farming. 
However, Pakistan lacks an infrastructure to alleviate and acquire to climate effects 
(Khan et al. 2020). Pakistan is on the verge of climate change devastation. Their 
location, dependence on agriculture, reliance on water resources, and lack of emer-
gency response capacity makes them the country most threatened by climate change 
(Noor et al. 2021b; Grote et al. 2021). The other alarming concern is that not all 
areas will be affected with uniform severity (Ali and Erenstein 2017b; Rehman et al. 
2015). The poor farmers in rural areas are expected to be hit the hardest, which was 
illustrated by the 2010–2011 floods (Shah et al. 2020). Developing countries mostly 
depend on natural resources for their living actions, particularly people in 
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Fig. 10.2 (a) Change in annual temperature from 1960 to 2007. (Source: Chaudhary 2009) (b) 
Summary of Natural disaster in Pakistan from 1900 to 2020. (Source: INFORM 2020)

mountainous regions. Hence, this dependence, especially considering climate 
change, poses a massive economic and life-threatening danger to the country 
(Weiskopf et al. 2020). Despite its miniscule contribution to global greenhouse gas 
emissions, Pakistan ranks as one of the country’s most susceptible to the impacts of 
climate change (Cheema 2014; Khan et al. 2016). From Fig. 10.2b, it is noted that 
the average number of people affected by disasters has increased since 2010. In 
2012 and 2014, more than 1,000,000 people were influenced by floods alone, leav-
ing this population in a situation of disorder the number of refugees has decreased 
to less than a million, since 2015, due to the hard work of persons, profitless firms, 
and environmentalists to alleviate the climate change.
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 Climate Change Impacts on Various Sectors

In this section, after the climate change impact trend over the whole country, impacts 
of climate change on various sectors have been discussed: i.e., natural and economic 
catastrophes, water resources, agriculture, livestock, energy and food reliability, and 
community. This article will explore the physical and ecological impacts of climate 
change. In the end, we have provided you with additional information (i.e., allevia-
tion and adaptation) that may be helpful. The critical detail from the studies is also 
available in Table 10.2 and Fig. 10.2a.

 Climate Change Impact on Water Resource Sector

Climate change is a big problem—but the water sector is one of the most over-
whelmed by it. The majority of Pakistan’s largest irrigation system (i.e., Indus 
Basin) is dependent on rainfall, melting glaciers, and groundwater (Noor et  al. 
2021a; Podger et  al. 2021; Qureshi 2011). The key sources of water come from 
monsoon rain (50-million-acre feet), river inflow (142-million-acre feet), and 
ground water (48%). Most of the water use is for agriculture (92%), followed by 
industries (3%), and household and infrastructure (5%) (Anjum et al. 2021; Watto 
et al. 2021; Wescoat et al. 2021). The future is expected to bring an increase in water 
demand in sectors due to population growth and improvements in living standards. 
Annual river flow changes seem to be declining in (Fig. 10.3a). A particularly rapid 
decline was observed from 1998 to 2003, and this is attributed to the long drought 
that persisted throughout many of those years (Khan and Khan 2015). In a normal 
year, the annual flow of Kotri Barrage is lessened from 77.3 MAF to 39.2 MAF. The 
post-Kotri/Mangla era has caused a serious disruption in flows to the Indus Delta 
region (Basharat 2019). The area includes Hyderabad, Thatta, and Badin, where 
farmland is inundated, and groundwater quality is ruined by seawater intrusion 
(Khan et al. 2011; Radecki-Pawlik et al. 2015). The Indus River System will experi-
ence more substantial impacts from glacier melt because of climate change. This 
will cause more considerable alternations in the forthcoming water supply. The 
Western Himalayan glaciers, which feed the Indus River, are predicted to retreat in 
the next 50 years. Initially, it will enhance because of the glacier melt. But then, the 
glaciers will be empty and causes the river’s flow to decrease by 30–40% over the 
course of 50 years. Depending on a study from 1997 to 2002, it is announced that 
there are some large glaciers in the Karakoram Range, 40–70 km in length, that 
have an altitude of 5–15 m (Chen et al. 2005). This finding has led to conflicting 
results about the effects of climate change on the Indus River flow and Karakoram 
glaciers. More demanding key findings related to the water sector recognized by the 
climate change task force are shown in Fig. 10.3b.
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Fig. 10.3 (a) Indus River system annual rivers flow in MAF from 1946 to 2002. (Source: Ahmad 
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 Climate Change Impact on Seaside Sector

It has been anticipated that the seaside areas and its resources will be heavily 
impacted as sea levels rise. Low-lying areas have been inundated, mangroves for-
ests have been degraded, drinking water quality has diminished, and fish and shrimp 
productivity has reduced (Group 2012). Pakistan’s 1046 km long sea line is on the 
border of the Arabian Sea and stretches along the provinces of Sindh and Balochistan. 
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Sindh seaside area is more vulnerable to sea level rise than Baluchistan due to its flat 
topography and higher population density. It also has many industries that contrib-
ute to a large amount of pollution to the seaside, which can affect the environment 
in the long run (Masood et al. 2007). An underwater survey of the Indus Delta’s 
seabed is expected to encompass an area roughly equivalent to the size of 7500 
square kilometers. The low-lying seaside areas of Baluchistan, i.e., Pasni may also 
be affected by SLR.  The Baluchistan seaside is a seismically unsafe zone. This 
region experiences constant earthquake activity. Every year, this area is raised by 
1–2 mm because of the subduction process (Masood et al. 2007). Additionally, ris-
ing sea levels combined with the existing coastal erosion on the delta’s coastlines 
could worsen the extent of shoreline erosion over time. The cricks in the delta areas 
such as Hajamaro, Ghoro, Kaanhir, and Kahhar are areas with active shoreline ero-
sion (Grases et al. 2020). Their erosion rate, however, ranges from 31 meters per 
year to 176 meters per year. On the south side of the mouth of Ghoro Creek, erosion 
is the highest with a rate of 176 meters per year between 2006 and 2009. The area 
retreated 425 m during that time. The delta region will shrink and sink even more 
than it already has because of lack of sedimentation. There is about an 80% deple-
tion in the amount of river sediment due to extensive damming on the Indus River 
(Clift and Jonell 2021; Syvitski et al. 2009). The current rate of sediment accumula-
tion does not exceed relative projected SLR, which is one of the main sources for 
worthwhile SLR in almost 70% of the world’s deltas, involving the Indus Delta 
(Ericson et  al. 2006; Tessler et  al. 2015). The Indus River delta is at great risk 
because of the threats it faces. They are ranked third on the greater risk scale. There 
are many reasons for this ranking, but one of the most prominent is sinking or sub-
sidence rates, which are natural and usually range from <1 mm/year to >10 mm/
year. But this rate goes up because of humans’ oil extraction and groundwater activ-
ities (Kalhoro 2016a, b). In 2006, a research study found that the Indus Delta is at 
high risk for sea level incursion. The population there is at risk by 0.79%, and 2.73% 
of the total delta area could be vanished by 2050 (Ericson et al. 2006). Demanding 
key findings related to seaside sector recognized by climate change task force is 
shown in Fig. 10.3b.

 Climate Change Impact on Energy and Food 
Sector Reliability

Pakistan is vulnerable to climatic factors and food insecurity (Syed et  al. 2022). 
These issues are becoming more frequent due to climate change, and the negative 
impacts will only worsen in the future (Manisalidis et al. 2020). In South Asia, 300 
million people are classified as food insecure. This staggering number is the most in 
the world, and it’s highly undernourished. Pakistan’s high levels of poverty are the 
outcome of climate change variations, which have hugely impacted the economy of 
Pakistan (Ali and Erenstein 2017b). The present impact of climate change is 
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evident. The threat of water and food scarcity and extreme changes in the atmo-
sphere, such as colder winters and hotter summers, are becoming more common in 
many regions. Regions with less rainfall, such as deserts, hotter summers, and 
colder winters are also feeling the pressure of climate change. Furthermore, 
Pakistan’s food security is terribly affected by climate (Ali et al. 2017). A statistical 
comparison of the difference between crop yield (2020–2080) and actual crop yield 
(1961–1990) reveals that Pakistan’s climate is in a downward spiral as illustrated in 
Fig. 10.4a. Unpredictable precipitation and changing mercury levels can have dev-
astating effects on food crops. The main food crops are severely impacted during 
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critical growth periods. Unpredictable precipitation and changing mercury levels 
can have devastating impacts on food crops (Tirado et al. 2010). The hilly regions 
of Pakistan may be filled with natural resources, but the land is lacking proper man-
agement of agricultural activities and agricultural output in the face of erratic 
weather and unseasonal rainfall. Due to dry spells and flooding, Pakistan’s farmers 
are suffering (Ullah 2016). Another problem is the increase in crop pests. The peo-
ple living in hilly areas are increasingly dependent on those living in plain areas 
because of decreased food reliability (Aslam et  al. 2017; Hussain and Mumtaz 
2014). A challenge for farmers and other rural residents in the fight against climate 
change is implementing effective adaptation strategies. However, farmers will have 
to spend money on these strategies and take steps on their own (Ajani and van der 
Geest 2021; Ali and Erenstein 2017a). Modern agriculture is the key to effective 
food security, increased water efficiency, and a significant drop in CO2 emissions. A 
successful modern agriculture program has shown that farmers are able to achieve 
higher food security and reduced poverty levels by an average of 3–6% (Abid et al. 
2016b). According to a study, more educated and skilled farmers tended to take 
more agricultural practices than less educated and skilled farmers (FAO 2013). In 
the past century, rapid industrialization and urbanization encouraged the govern-
ment to take action to meet energy demand in the short term. This short-term policy 
has had various suggestions for the environment, energy security, and stable depos-
its (Aslam 2017). However, the government is still struggling to grapple with the 
energy crisis, which has resulted in a shortage of 3000 megawatts of electricity as 
the main source of energy in the country were gas (48%), oil (32%), hydropower 
(31%), coal (7%), and nuclear energy (2%) in 2013 (Fig. 10.4b) (Lin and Ahmad 
2017; Development Bank 2017). A major reason behind the shortage is that loop-
holes in energy planning deepened the demand–supply gap. Scientists have also 
pointed out that increasing demand for energy is caused by rapid urbanization, 
which is creating carbon emissions (Abdallah and El-Shennawy 2013; Ali and 
Nitivattananon 2012). In Pakistan, the situation with energy is dire. Urban centers 
are having a hard time keeping up with the energy demands of their citizens, who 
rely primarily on vehicular use for travel (Shah et al. 2020). This increase in vehi-
cles makes them susceptible to energy shortages and environmental pollution. In the 
case of Pakistan, research on GHG emissions and energy security is lacking. 
Pakistan is in a dilemma of growing the economy and improving sustainability also 
energy security (Lin and Ahmad 2016; Naeem Nawaz and Alvi 2018). CO2 emis-
sions must be curbed in order to limit their damage. Policies should put the reduc-
tion in emissions at the forefront to alleviate the growing levels of pollution. Smart 
grids, smart cities, and smart buildings are important concepts to cut life-threatening 
greenhouse gas emissions and ensure national energy security. Some of Pakistan’s 
crops are sensitive to climate changes, including rice, wheat, cereals, vegetables, 
spices, and grains. Food security is becoming a major concern. The worldwide pop-
ulation has increased in the recent years and productivity in staple crops, such as 
rice and wheat, has fallen due to extreme temperature changes and lack of rain 
(Saboor et al. 2019). Demanding key findings related to the energy sector recog-
nized by the climate change task force are shown in Fig. 10.3b.
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 Climate Change Impact on Agriculture Sector

The agricultural sector in Pakistan not only plays an essential role in the economy 
but also has experienced huge ramifications because of climate change. The climate 
changes in the agricultural areas have a big impact on the productivity and yields of 
crops. Climate change can affect crop production in a variety of ways, depending on 
the type of agricultural practices performed in the system (Abrahão et al. 2015). The 
crops in tropical climates are already suffering the effects of climate change. The 
effects include an increase in temperature and droughts, making it difficult for crops 
to thrive. If the temperature rises continuously, it is predicted that Agriculture will 
decrease by 8–10% by 2040 (El-Beltagy and Madkour 2012). A crop simulation 
study conducted in Pakistan found that major crops yields would decrease, specifi-
cally for wheat and rice. Four different agroclimatic zones were simulated, and all 
showed that the length of the growing season would shrink as well (Table 10.1). The 
lowlands are likely to experience flooding, sea level rise, and an increased frequency 
of droughts as a result of climate change. The reduction in snowfall and the rapid 
melting of glaciers will both converge to decrease the amount of water available for 
agricultural crops (Ponting et al. 2021; Poveda et al. 2020). Agriculture is the sector 
most sensitive to climate change. Climate change not only affects this sector but 
also affects the environment as well (Bhatti et al. 2016). Variations in rainfall pat-
terns in the Indus Basin will cause a decrease in water supply, which will impact the 
agriculture and the entire economy. Furthermore, the centuries-old indigenous crop 
varieties of Pakistan are at risk of extinction. A lack of modern irrigation techniques 
has led to crop field water waste as well (Qureshi and Perry 2021). In July 2015, the 
Chitral district of Khyber Pakhtunkhawa was hit with heavy rainfall and frequent 
floods. The resulting floods destroyed crops and livestock. In the Upper Indus basin, 
many residents saw a rise in drought during the years 2001–2011. This led to prob-
lems with agriculture and soil degradation. As a result, agricultural output decreased 
as well as livestock. Climate change and extreme weather have harmed rural liveli-
hoods and cash crops around the world. As a result, millions of people have been 
forced to migrate to urban centers in search of a better life (Abid et al. 2015, 2016a). 
It is important to keep in mind that climate change poses risks to farmers. A plan 

Table 10.1 Length of growing season of wheat in different climatic zones in days

Name Length of growing season in days
Temperature Humid Subhumid Semiarid Arid

Reference 246 161 146 137
1 232 155 140 132
2 221 149 135 127
3 211 144 130 123
4 202 138 125 118
5 194 133 121 113

Source: Muhammad Iqbal (2009)
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should be in place to educate farmers about these risks to prevent further vulnerabil-
ity in the future (Hussain et al. 2016).

 Climate Change Impact on Livestock

Pakistan is an important region for livestock, as these animals provide an important 
livelihood to the residents. However, climate change has had a devastating effect on 
the livestock. When climates are erratic, it can cause livestock to suffer from ill-
nesses that are adjacent and even deadly. Climate change is affecting many aspects 
of food production, making it hard for livestock to survive. The livestock’s feed, 
water, and grazing land are all affected as the climate changes and as CO2 and tem-
perature rise (Escarcha et  al. 2018). This is making meat and milk production 
decline (Abbas et al. 2019). Livestock is also affected by diseases, animal vectors, 
and biodiversity. Meanwhile, animal and plant species are at risk of extinction (Shah 
et al. 2020).

 Climate Change Impact on Natural 
and Economic Catastrophes

The backlashes of climate change, i.e., water and food security, are taking their toll 
on the world (Aggarwal et al. 2019; Myers et al. 2017). Global warming is causing 
water shortages, heat strokes, and mass migrations (Mekonnen and Hoekstra 2016). 
Thousands of millions of people are affected by these issues. The interior regions 
are vulnerable to soaring temperatures because of the changing weather patterns 
(Mannig et al. 2017). As glaciers melt, food security is jeopardized because there 
will be less fresh water for crops. There is also the risk of extinction to many plant 
species (Gomez-Zavaglia et al. 2020). Moreover, the coastal ecosystem’s health is 
at stake. It’s being threatened by a rise in the sea level (Braun de Torrez et al. 2021; 
Perera et al. 2018)—as well as an increase in temperature, disease, and more sea-
sonal and lifestyle changes. There’s a vigorous likelihood that these trends will per-
sist in the future (van den Broeke et al. 2016). Pakistan is a country with a lot of 
climate-related woes. Continuing the problems, there is insufficiency of environ-
mental knowledge and understanding, lack of adaptive capacity, shortage of good 
infrastructure, scarcity of inducements, scarcity of regulations, and insufficiency of 
government attention toward climate change (Mumtaz and Ali 2019). Hence, 
Pakistanis’ worries are constantly piling up. It’s predicted that an enhancement of 
2–3% in mercury and particular rainfall trends will severely affect Pakistan by 2050 
(Janjua et al. 2021). If this occurs, the effects of economic and natural catastrophes 
will reduce agricultural outputs, rehabilitation, and rebuilding of essential infra-
structure. In the past few years, Punjab has dealt with the consequences of the smog: 
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eye and skin infections and an enhancement in road accidents because of less dis-
tinctness (Ali and Erenstein 2017a).

 Impacts of Climate Change on Community

Climate change is having a plethora of suggestions for the environment and in 
socioeconomic sectors and is influencing community in several ways. Community 
is paying the price for these suggestions in the social fabric, such as human health, 
clean air, food, water, and diseases (Chen et  al. 2020; Pande et  al. 2021b; 
Panneerselvam et al. 2021, 2022). Climate change has a variety of consequences for 
community, such as untimely deaths and human health issues. It is also influencing 
food and water—two things that are necessary for survival (Li and Yap 2011). 
Natural calamities such as droughts, floods, earthquakes, and heat strokes are a 
worldwide problem. They affect the population in a number of ways. One way is 
through the rise in global temperature caused by global warming. In Pakistan, the 
warmest temperature observed in history has occurred in southern regions, making 
it one of the countries that will see a dramatic increase in global warming. The 
southern part of Pakistan is most at risk from global warming due to its close prox-
imity to the equator (Abid et al. 2021; Miyan 2015). Punjab, the central region of 
Pakistan, is experiencing intense waves of heat with an average temperature increase 
of 0.5 °C every year. Moreover, a marked increase in temperature by 31 days has 
been observed from 1980 to 2007 (Sultana et al. 2009). It is predicted that the north-
ern and central parts of Pakistan are most at risk from the negative effects of climate 
change. These regions could see temperature increases of up to 4% by 2050 and 3% 
in the north and nearly 1% in the south. The detailed trend of temperature and rain-
fall in Pakistan are illustrated in Fig. 10.5. Climate change could have a significant 
impact on the global economy. In developing countries, it’s expected that it will 
bring rising unemployment rates and a clogged job market. Because agriculture is 
one of the oldest forms of labor, it’ll soon be second to services in terms of the num-
ber of people involved, with one billion workers engaging in agricultural activities 
(Ludwig et al. 2004; Olsen and International Labour Office. 2009). The agriculture 
sector is anticipated to be at risk in the future. The trend is expected to be worsened 
by nonuniform weather patterns, higher temperatures, less rainfall, and deforesta-
tion. This will negatively impact the industry and the people employed in it (Olsen 
and International Labour Office. 2009).

Migration is one of the many environmental approaches for alleviating and 
adapting to the effects of climate change. It is the act of relocating and displacing 
people because conditions are no longer safe for living or because jobs are no longer 
available. Climate change can impact our education systems not only because of 
increased locational impacts but also because it can affect students’ performance in 
school (Schwerdtle et al. 2017). Extreme weather events are short-term disruptions 
to life. They cause unpredictable rainfall, storms, floods, and hurricanes. Many 
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Fig. 10.5 Average monthly temperature and rainfall in Pakistan from 1991 to 2020. (Source: 
CCKP 2021)

people believe that if these variations in climate persist, there will be more chances 
of disasters such as floods (Babar et al. 2021; Kara and Yucel 2015). The long-term 
effects of climate change on education include undernourishment and drought, lead-
ing to an inadequate food supply and a shortage of crops. Pakistan is experiencing 
such effects through increased occurrences of diseases and people being forced to 
relocate (Cheema 2014). These consequences also lead to economic instability in 
the country, with many people competing for low-wage jobs. These adverse impacts 
to the lives of people in developing countries are the result of natural disasters, such 
as floods or storms. In addition to the environmental impacts, income inequality can 
also arise from migrations. This often results in high rates of unemployment, which 
can lead to malnutrition in children and a low standard of living for individuals. It 
may also result in a scarcity of food (Ali and Erenstein 2017a, b; Hallegatte et al. 
2020). Heat waves are destroying developing countries. In Pakistan, the heat wave 
has been a shocking problem for citizens, with about 65,000 people needing treat-
ment in 2015. The heat waves have spread to the northern areas of the country as 
well (Hanif 2017). In 2016, over 100 casualties have been reported from the north-
ern regions due to the heat waves (Sheikh 2010). In the face of climate change, heat 
waves are becoming worse. Lack of adequate health facilities in developing coun-
tries makes these consequences more severe (Rauf et al. 2017). Climate changes are 
originating flooding and other disasters across worldwide. The effects of a flood-
related disaster can include health effects, dermatological problems, and a wide 
range of psychological problems. A wide range of dermatological problems is rising 
after floods. Many infectious diseases, such as impetigo, measles, dengue fever, and 
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malaria, that have a skin manifestation have increased. And inflammatory condi-
tions, such as irritant contact dermatitis are also increasing (Dayrit et al. 2018).

In addition, climatic aspects and weather variations can contribute to the spread 
of dengue hemorrhagic fever (DHF) (Banu et al. 2014). Variations in the weather 
can create conditions conducive to Aedes mosquitoes’ expansion, such as more pre-
cipitation and higher temperatures. High humidity and low vapor pressure are two 
of the most common causes of DHF (Noor et al. 2022; Bhatt et al. 2013; Bhatti et al. 
2016; Syed et al. 2022). In several districts of the Punjab province, morbidity and 
mortality rates were high. Faisalabad, for example, experienced the worst of these 
in 2011. Faisalabad has been hit the hardest by the disease. More than 300 people 
have died of DHF in the city alone, and it impacted more than 14,000 people in two 
big cities in the district: Faisalabad and Sialkot (Bakhsh et  al. 2018). Given the 
increase in global warming and the frequency of earthquakes and seismic activities, 
the latter may have severe impacts. Severe impacts can include health issues, stress, 
anxiety, lack of sleep, and depression (Cianconi et al. 2020). It is noted that seismic 
activity in Pakistan increased significantly, and the average temperature changed 
from −19 Celsius during winter to +53 Celsius during summer (Cheema 2014; 
Dimri et al. 2018). Citizens of Pakistan have been faced with the existence of mul-
tiple outbreaks in the past few months. Health policymakers need to focus on raising 
awareness through media campaigns. This will not only lead to a more informed 
population but also help protect citizens from these viruses. Access to health facili-
ties should increase, and facilities in Pakistan should be made much more extensive.

 Climate Change Adoption and Alleviation

Pakistan has suffered from the impact of climate change for years. The Ministry of 
Climate Change has taken various necessary steps to help people in Pakistan face 
this reality. It’s compulsory for the country’s economic and social development to 
be able to adapt to these effects. They have worked on ensuring that the masses are 
aligned with the national climate policy, which pertains to alleviation and adapta-
tion actions. To combat the climate crisis, companies in three sectors must work 
together. They include the agriculture, livestock, and energy industries. These sec-
tors must help alleviate the climatic effects by collaborating to achieve zero-carbon 
emissions (Abbas et al. 2019; Lin and Ahmad 2017). To ease the climatic changes 
at the national level, ensure a coordinated plan of action. According to the Intended 
Nationally Determined Contributions (INDCs), Pakistan needs 6.5–13.5 dollars bil-
lion per year to alleviate the effects of climate change. The country has planted 100 
million trees throughout the country to help alleviate the effects of climate change 
(Economic survey 2017–2018). Technology has made some massive advances in 
the fields of energy, forestry, and transport. The report emphasizes the eco-friendly 
advancements in energy, including solar power and micro-hydropower plants. 
Today, energy is also being generated more sustainably, with developments in for-
estry including viable forest governance and social forestry against deforestation, 
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whereas advances in transport include an advanced bus rapid transit system and 
high-performance vehicles (Climate Change Ministry 2016). Moreover, the study 
concludes that neither water nor agriculture nor energy is immune from climate 
change. The most vulnerable sectors are water, energy, and agriculture. The three 
important adaptation measures for the water sector are storm water management, 
harvesting of rainwater, and groundwater recharge. Suggested technologies for the 
agricultural sector include drip and sprinklers for efficient irrigation and drought- 
tolerant crops. Improved climate forecasts and early warning systems also provide 
important resources for farmers (Climate Change Ministry 2016). Moreover, In 
Table 10.2, Pakistani conservatives have begun to propose adaptation technologies 
and measures in response to the country’s agricultural, water, and energy sectors 
facing the threats of climate change (Mumtaz et al. 2019). As local residents are the 
most affected by climate change, it is vital that they have a say in how their environ-
ment can be alleviated and adapted to. As global awareness increases, it is of utmost 
importance that governments avoid inconsistency in climate change policy.

The Intergovernmental Panel on Climate Change points out that the lack of 
knowledge and inadequate data is hindering the ability to take adaptive actions 
(IPCC 2021; Neil Adger et al. 2014). Because of these factors, policies have been 
difficult to execute and face numerous obstacles (Solomon 2007). In Pakistan, the 
problem is even worse. Climate change is affecting the entire world, and there is an 
urgent need to create a comprehensive and multifaceted strategy to adapt and allevi-
ate. To protect the environment, it’s important to minimize interventions in forests, 
on glaciers, wetlands, and pastures. To meet the national sustainable developmental 
objectives, it is important to prioritize the crucial processes for alleviation and adap-
tation. Pakistan, relatively new to the climate finance world, has limited resources to 
receive and disburse global financial resources. Pakistan’s National Climate Change 
Policy of 2012 is the country’s leading paper on climate change. It sets out aims to 
ensure that the country is fully ready for changes in the climate. Objectives identi-
fied for each adaptation priority area are identified in Parry (2016). These policies 
are quite important because Pakistan is at-risk for climate change, due to its vulner-
ability to natural disasters and high population density in coastal regions (Noor et al. 
2022). In 2010–2014, 6% of the Pakistani federal budget was earmarked for climate- 
affected sectors such as energy and transportation. Pakistan has shown its commit-
ment to the Paris Agreement in its National Determined Contribution: to reduce 
20% of total greenhouse gas emissions by 2030. The country would need 40 billion 
USD in international grants to make up for the cost of the reduction. Pakistan 
requires 6.5–13.5 billion dollars in annual adaptation (Development Bank 2017). 
Pakistan has secured funds from the Asian Development Bank (ADB), Global 
Environment Facility (GFF), and the Adaptation Fund to help with climate financ-
ing. The ADB’s funding to Pakistan reached 389.8 million dollars during 2010–2015. 
96.4% of the 375.9 million US dollars was used for alleviation, and only 3.6% was 
used for adaptation. The Global Environment Facility also granted 12.5 million US 
dollars to be used for alleviation activities, and those funds have been completely 
distributed already. Pakistan’s annual adaption requirement is roughly between 6.5 
billion and 13.5 billion dollars. However, the accumulation of funding from 
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Table 10.2 Adaptation technologies and measures in response to the country’s agricultural, water, 
and energy sectors facing the threats of climate change

Climate change threats Adaptation techniques

Agriculture sector of Pakistan

Reduced crop production and water 
shortages

New crop varieties are emerging with increased heat and 
drought tolerance. Such crops will help farmers better 
withstand heat and dryness conditions. For example, 
mustard is a high-yielding crop that does not need as much 
water. Best of all, it can be grown during any season

As a result of changing rainfall 
patterns, the reduction of irrigation 
water

A new era requires new water-saving techniques to reduce 
wastage and help the environment. Promote efficient 
irrigation methods, including sprinkler and drip irrigation, 
and improve the irrigation system to minimize distribution 
loss and land leveling to save water

Pervasive soil decline, crop 
productivity decline, and 
underground water devastation are 
the results of excessive pumping 
from the ground

You should improve water management along with 
legislative and awareness support

Flooding, droughts, and heat waves 
are causing extensive damage to the 
agriculture and livestock sectors

A new early warning system is developing. It will enable 
businesses to plan ahead and prepare for more than one 
disaster at once

Water sector of Pakistan

With changing climatic patterns, 
such as drier winters, higher 
temperatures, and more 
precipitation in the summer, there 
are significant and increasing water 
shortages

There are many ways to promote water efficiency in urban 
areas. One way is to use efficient irrigation methods such 
as sprinkler and drip irrigation. Smart agriculture, such as 
recycling wastewater and promoting rainwater harvesting, 
can also help. An additional method is desalinating water

Water storage capacities are 
reduced by sedimentation

Initiate integrated watershed management efforts to restore 
forested areas around the country. Reforestation can help 
alleviate flooding and other natural disasters. Additional 
water storage areas can also help with flood control

A lack of awareness of climate 
change is affecting the availability 
of water in our country

Awareness-raising campaigns can help to teach people 
about water issues and the importance of conservation. 
These campaigns can engage consumers, giving them the 
knowledge, they need to make decisions and take action

The Indus delta has experienced 
severe saltwater intrusion, the result 
of reduced freshwater supplies from 
the dams

Water management is crucial for maintaining a healthy 
ecosystem in the delta area. Consumers must ensure that 
freshwater supplies are insufficient supply to the region to 
support a thriving ecosystem

Energy sector of Pakistan

Sea level rise and heavy rainfall- 
induced landslides

To deal with the risk of natural disasters, take preventative 
measures. To deal with the risk of natural disasters, take 
preventative measures. Construct dikes and walls to 
contain flooding and increase vegetation cover on the 
earth’s surface to help slow down the largely irreversible 
process of global warming

(continued)
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Table 10.2 (continued)

Climate change threats Adaptation techniques

Heavy rainfall and extreme weather 
events have a big impact on urban 
water supply systems

Urban storm drain channels must be enhanced to handle 
greater capacity of water. The city is experiencing a severe 
drought; improvements need to be made. They need to 
develop and promote rain gardens and bioswales as well as 
make efficient use of water. These parts of the city should 
especially be located in arid areas

Hotter air and water temperatures 
in many regions of the world could 
increase the cost of using thermal 
power plants

Invest in additional energy capacity and make it a priority 
to utilize renewable energy sources

Source: Development Bank (2017)

different governments is still less (Development Bank 2017). The Global Climate 
Risk Index shows that Pakistan suffers 141 annual uttermost events and 500 casual-
ties, which costs up to two billion dollars per year. This makes it one of the most 
climate- influenced countries in the world (Eckstein et al. 2021). Pakistan has devel-
oped an initiative, “Carbon Neutral Pakistan,” to reduce GHG emissions. This ini-
tiative is backed by technical support from China. The government of Pakistan 
commenced the initiative in June 2015 and is currently seeking foreign investment. 
This project has an estimated cost of 3.85 million US dollars. It is part of a public 
sector development program for 2016 (PSDP) (Development Bank 2017).

Pakistan’s lack of capacity building in terms of climate change alleviation and 
adaptation measures leaves it vulnerable to the changes in climate. Updates are 
essential because the government, corporations, and the general population all need 
to know what to do in order to minimize the negative impacts of climate change. In 
order to take a comprehensive approach, it is necessary to take it region wise. The 
climate in rural, urban, and peri-urban areas changes differently, so taking a region- 
specific approach is necessary to plan climate policy systems. By delivering the 
knowledge about the timing and magnitude of climatic impacts, the acceptance of 
anticipated feedback options, and the expected cost of both adaptation and allevia-
tion, a situational assessment can be made (Hussain et al. 2018, 2020). In this mod-
ern world, there is a need to understand the devastating impacts of climate change. 
In developing countries like Pakistan, a concrete understanding of climate change at 
a local and divisional level is critical for effective implementation of alleviation and 
adaptation policies. This requires basic information about the issue from all stake-
holders (FAO 2015).

 Conclusion

The past two decades have seen climate change at the forefront of research world-
wide, because of its effects on global warming. It’s been shown that GHG emissions 
(which are at their highest ever) are causing the world to heat up and the number of 

10 Review of Various Impacts of Climate Change in South Asia Region, Specifically…



288

hot days and nights to increase. Hot temperatures can result in intense heat waves 
that have led to numerous deaths in many countries each year, including Pakistan. 
Pakistan is suffering from high poverty and not enough economic or physical 
resources. This has severely limited their ability to adapt to climate change. Pakistan’ 
climate change is causing extremely serious effects, such as an unprecedented melt-
ing of Himalayan glaciers, erratic rainfalls, unpredictable flooding, and lack of 
water sources. Temperatures are rising, water is scarce, heat waves are frequent, and 
lakes are filling up. There are more storms and hurricanes now than ever before, 
earthquakes happen more frequently, diseases spread more widely and rapidly, and 
people have to change their lifestyles because of seasonal changes. To solve the 
climate crisis, there is a need to build awareness from the grassroots level, educate 
the population about environmental issues, and implement government policies and 
regulations. Governments, policymakers, environmental organizations, and com-
munity members should work together to devise strategies and approaches to allevi-
ate and adapt to climate change. The goal of the climate change review is to provide 
detailed information on climate change and its economic aspects. Review on the 
concentration on the cost of climate change, which reaches from 6.5 billion dollars 
to 13.5 billion dollars per year, will help to understand climate change alleviate and 
adaptation approaches. The study shows the present climate changes and how they 
may affect agriculture, livestock, forestry, food, and renewable energy. These 
insights are important for planning for the future. It also encourages awareness 
about climate change and its dangers, such as governments need to be proactive and 
eliminate inconsistencies. They should also establish and execute effective policies; 
sustainable development is important for the future of the planet. A national plan 
should be formulated to review and prioritize ecofriendly processes for alleviation 
and adaptation; beyond governmental interference, the residents should take action 
and share their experience with climate change. This can contribute to improved 
alleviation and adaptation strategies in their community; the authorities must take 
action to minimize human intervention in natural resources and landscapes. These 
landscapes include forests, oceans, wetlands, pastures, and fertile lands. 
Governments should develop strategies to manage the land that makes up the land-
scape for sustainability, and the majority of research on climate change in Pakistan 
focuses on hard numbers and quantitative findings. While there is a lack of in-depth 
studies on the effects of climate change, it is clear that it can have significant conse-
quences on the environment.

Furthermore, there are limitations to the data on observed changes of climate 
change. With only a restricted pond of research and data available at the national 
and subnational levels, there is still a great amount of uncertainty about the effects 
it may have on various socioecological systems and sectors. The agriculture, water, 
and coastal areas are in the most need of research. The vulnerability assessments in 
these spaces are generally geared toward understanding the risks without consider-
ing that the economic factors are intricately connected to people’s livelihoods. 
When this is taken into account, wealth inequality can be diminished by addressing 
the problems of local poverty. The Central and West Asia regions short of good 
knowledge of the impacts of climate change and its effects on the environment and 
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biodiversity because evidence on this topic is poor and inaccessible. Pakistan has 
many research gaps in its environment. The most significant effects of rising CO2 on 
biodiversity and its interaction with climate change are that it affects how well 
plants and animals cope with higher temperatures. Although there is uncertainty 
about the effects of climate change on rice, there is extensive research on rice within 
this region. However, other crops like wheat, maize, and cotton are not as well stud-
ied and do not have the appropriate data to predict their risks accurately. Researchers 
understand that the impacts of climate change on urban areas required more study 
on it. This includes understanding vulnerabilities and adaptations in large and 
medium-sized cities. Also, it is proposed that a more in-depth evaluation of the 
numerous sectors that affect climate should take place. The current research on cli-
mate change tends to focus on individual aspects but lacks a real understanding of 
how specific causes and impacts relate to one another.
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Chapter 11
Future Hydroclimatic Variability 
Projections Using Combined Statistical 
Downscaling Approach 
and Rainfall- Runoff Model: Case 
of Sebaou River Basin (Northern Algeria)

Bilel Zerouali, Mohamed Chettih, Zak Abda, and Mohamed Mesbah

Abstract Due to its location in the Mediterranean basin, Algeria is one of the most 
countries vulnerable to the effects of climate change. The aim of this study is to 
assess future flow rate projections of Sebaou basin (Northern Algeria), using the 
coupling of statistical downscaling approach (SDSM) based on the general circula-
tion model Hadley Centre Coupled Model version 3 (GCM-HadCM3) of the 
Royaume-Uni with an anthropogenic forcing SRES A2a (pessimist) and SRES B2a 
(optimistic) and GR2M model for rainfall-runoff transformation. The use of GR2M 
rainfall-runoff model has been able to control the hydrological functioning of the 
basin with very satisfactory performance values expressed by the Nash values over 
80% for most subbasins, except for the degradation the Nash coefficient after the 
commissioning of the Taksebt dam in the Oued Aissi subbasin after 2001. The com-
bining approach showed, on one hand, a decrease in rainfall ranging from 18% to 
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14% and that the maximum, average, and minimum temperatures could continue to 
increase with a maximum of 1.1–0.65 °C, 1.1–1.25 °C, and 2.7–3.4 °C, respectively, 
for the H3A2 and H3B2 emission scenarios until the long-term horizon 2080. On 
the other hand, the model indicated that these climatic changes have an effect on 
decreases in the basin’s water resources and that the 2050 and 2080 horizons are the 
most deficient with a decrease in flows estimated from −35% to −49% for A2 and 
from −45 to −57% for B2 scenarios, respectively, which represents approximately 
500–300 Hm3 by the end of the twenty-first century.

Keywords Rainfall · Temperatures · Flow rates · SDSM · HadCM3 · GR2M ·  
Algeria

 Introduction

Throughout the last century, water resources and climatic variables have been sig-
nificantly influenced by climate change (Elbeltagi et al. 2022d; Duan et al. 2017; 
Meenu et al. 2013; Kanber et al. 2019; Almazroui et al. 2020). Increased levels and 
concentration of greenhouse gases of anthropogenic direct, indirect, or natural ori-
gin in the terrestrial atmosphere could change the local climate at particular basins 
and area around the world (Meenu et  al. 2013). According to the report of the 
Intergovernmental Panel on Climate Change (IPCC 2007), the climate is changing, 
and that cannot be associated and explained by natural variability (Yilmaz and 
Imteaz 2011). Most of the studies carried out in the context of water resource show 
that the projections of future climate change could significantly affect the water 
cycle components and socioeconomic sectors of the basins around the world 
(Zerouali et al. 2021a, b; Bucak et al. 2017; Arnell 2004; Ragab and Prudhomme 
2002). According to Somot et al. 2008, the Mediterranean basin will experience a 
significant rise in temperatures during the twenty-first century. For this, the down-
ward and upward trends respectively for rainfall and temperatures will lead to the 
form of extreme weather phenomena. At regional scale in North Africa, the study of 
Tramblay et al. (2018) documented the climate change analysis and its impacts on 
water resources. The results indicate a reduction in most regions of northern Algeria 
and Morocco, but there is superior uncertainty for Tunisia, as some regional circula-
tion models shows insignificant increase. On the contrary, all the models indicate 
high-temperature projections, and this change in temperature is very similar over 
the region with a decrease in water availability is foreseen for all basins in all sce-
narios. In northern Algeria, El Meddahi et al. (2014) observed significant changes in 
the climatic conditions, which led to a decline in annual rainfall ranging between 
14% and 32%, an increase in mean temperatures by 0.9 °C compared with the refer-
ence period (1961–90). Which induced a flow deficit of 20–25% for 2050 in both 
scenarios “lows and high.” Recently, as part of water resources management in 
direct relation to the water demand of populations and the forecast of their evolu-
tion, several hydrological models have been proposed, such as the following: 
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deterministic, probabilistic, event-driven, global or distributed, based physics, and 
those with reservoirs destined to comprehend the internal karst processes and physi-
cal mechanisms that manage the water cycle and incorporate the physical laws of 
water circulation as well as the components linked with the watershed characteristic 
(Meenu et al. 2013). According to the literature, among the models most used in the 
modeling of the rainfall-runoff transformation, we can cite the rural engineering 
models with daily and monthly steps (GR4J, GR2M, and GR3M), the SHYPRE 
method, artificial neural networks (ANN) with its hybridizations, HEC-HMS, 
IHACRES, and SWAT (Kouadri et al. 2021; Elbeltagi et al. 2022a, b; Pande et al. 
2022). The difficulty of finding a unified classification stems from the fact that the 
great diversity of approaches leads to no less great diversity in the characteristics of 
the models (Perrin 2000). Currently, there are several tools and software to repro-
duce climate time series and obtain higher resolution climate change scenarios from 
a lower resolution general circulation model (GCM) for a given region (Wang et al. 
2020; Khorshidi et al. 2019), like stochastic generators: automated statistical down-
scaling (ASD), statistical downscaling model (SDSM), and Long-Ashton Research 
Station Weather Generator (LARS-WG) (Cherkaoui 2012; Ouyang et  al. 2019; 
Bayatvarkeshi et al. 2020). For example, the MAGICC/SCENGEN software is a 
coupled gas/climate cycle model, where the MAGICC is a space climate change 
scenario generator (SCENGEN); each generator has its own advantages and disad-
vantages (Galdies and Lau 2020). In the Subarnarekha River basin (India), the cli-
mate change impact was simulated by Sambaran et al. (2015) and Elbeltagi et al. 
(2022c) based on the regional climate projections model (RCM-PRECIS) for the 
A1B scenario. The outputs of this projection are inserted in HEC-HMS hydrologi-
cal model. The results revealed a decrease in rainfall and flow during the period 
June to September for half of the coming years, while potential evapotranspiration 
showed an increase from February to June. Raghavan et al. (2012) used the outputs 
of the RCM obtained from the Weather Research and Forecasting (WRF) as input 
series in the SWAT hydrological model for the future assessment of flows in the Bas 
Mekong basin in Vietnam, where MCG-ECHAM5 T63 has been reduced under the 
IPCC-A2 emission scenario. Results show that flow rates are expected to increase. 
Hassan et al. (2015) used a coupled model to determine current and future scenarios 
(HadCM3-A2 and HadCM3-B2) of climate change over the northern region of 
Peninsular Malaysia using SDSM and ANN models to assess their future impacts 
on hydrology (precipitation, flow, and evaporation) using HACRES.  The results 
show that daily precipitation and temperature will increase by 2.23 mm and 2.02 °C, 
respectively, during the 2080s and a maximum increase in daily flows of 52 m3/s. 
the study concluded that the ANN model was unable to provide an identical trend 
for the annual runoff series. The water resources sector in Algeria has 94 dams and 
five others under construction spread across the national territory, which are under 
the authority of the Ministry of Water Resources (MRE). The sector’s forecasts for 
2030 are 139 dams. Despite that, studies carried out in the context of assessing cli-
mate change and its impacts on the protection and management of these storage 
facilities are not sufficient. Among the works that are carried out, we cite the 
research of Bouabdelli et  al. (2020) and Chourghal et  al. (2016). In this study, 
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coupling statistical downscaling approach (SDSM) based on GCM-HadCM3 sce-
narios and GR2M model for rainfall- runoff transformation was used to assess future 
climate variability impacts on flow rates of Oued Sebaou basin (Northern Algeria).

 Study Area

The watershed of Sebaou River, its position between latitudes North 36°30 and 
37°00 and longitudes East 03°30 and 04°30, is part of coastal watersheds Algiers 
code (02) according to the nomenclature of the Algerian National Agency of Water 
Resources (Fig. 11.1). It extends over an area of 2500 km2 limited in the north by 
the Mediterranean coastal, in the south by the Djurdjura mountain chain (Wilaya of 
Bouira), in the East by the massif Akfadou and Beni-Ghobri (Wilaya of Bejaia), and 
in the west by the mountains of Sidi Ali and Jebel Bounab Bouberak (Wilaya of 
Boumerdes). The study area is dominated by the Mediterranean climate which char-
acterizes by warm to hot dry summers and mild to cool wet winters and are classi-
fied in the subhumid bioclimatological stage with alternation of two seasons during 
the year, a wet season that starts in October and ends at the end of May (Zerouali 
et al. 2020), and, moreover, a dry season that begins at the end of May and ends at 
September. The intra-annual average of precipitation in Sebaou River basin is 
between 720 and 1200 mm year−1 (Fig. 11.1).

 Materials and Methods

The rainfall, temperatures, and runoff series database collected as part of the study 
are taken from the Algerian National Agency of Water Resources (ANRH).

 Global Climate Models (GCM)

In climatology, the choice and availability of data for the future projection of meteo-
rological variables for a hydrological system is one of the essential elements for 
assessing and studying probably future water resources availability. Several models 
of general circulation models are proposed, which attempt to illustrate the compo-
nents of the climate system by computing the properties of the Earth’s atmosphere 
and their evolution over time. In this study, the National Centers for Environmental 
Prediction (NCEP) dataset was used. This center is based on the support and opera-
tional execution of numerical analyses of forecasting models and prepares NCEP 
data for dissemination. All of these data contain 41  years of forecast data daily 
observed, normalized over the entire period (1961–90) on a spatial scale of 
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Fig. 11.1 Location map of study area

2.5° × 3.75 ° and which includes 26 atmospheric variables (see Yang et al. 2017; 
Sigdel and Ma 2016). These variables are used to examine the relationships observed 
between atmospheric and surface variables at a regional scale on a continental  
scale within the limits of historical meteorological data (Hassan et  al. 2015). 
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According to Kaas and Frich (1995), these relationships are important for produc-
ing reduced climate scenarios from the outputs of other results of a climate model.

For this study, we used the climate model HadCM3 of the atmosphere-ocean 
global circulation model (AOGCM) type. According to Wilby and Dawson (2007), 
the recommended model (HadCM3) meets the following requirements:

 1. Explains the atmosphere-ocean couple in three dimensions.
 2. The model has been validated and published in one of the scientific journals 

indexed and subject to peer review.
 3. The stability of the model has been verified by control simulations over several 

centuries.
 4. AOGCM-HadCM3 is one of the models contributed to the intermodel compari-

son project (CMIP).
 5. The model has small-scale spatial resolution of at least 4° in latitude.

According to the IPCC Data Distribution Center, the data from MCG-HadCM3 
are available with free access on the website of “Canadian climate data and sce-
narios” (http://ccds- dscc.ec.gc.ca/index.php?page=pred- hadcm3&lang=fr).

The experiments in the HadCM3 module were carried out at au Hadley Centre 
for Climate Prediction and Research du Royaume-Uni for the third evaluation 
report, which is the successor to the HadCM2 used in the second evaluation report. 
The HadCM3 has a spatial resolution of 2.5 × 3.75 ° (latitude–longitude). It con-
tains a rectangular mesh of 96 (longitude) × 73 (latitude) grid points, which reduces 
the surface spatial resolution from 417 km × 278 km to approximately 295 × 278 km 
(45° North and South (comparable with a spectral resolution of T42)). The NCEP 
data were also interpolated on the same grid as the HadCM3 before normalization. 
The HadCM3 was developed and proposed to the world of climatology by Pope 
et al. (2000).

 Presentation of the Statistical Downscaling Model “SDSM Tool”

Statistical data reduction model 4.2 (SDSM 4.2) describes a decision support tool to 
assess the local impacts of climate change using a robust statistical disaggregation 
data technique. The SDSM facilitates the rapid development of multiple scenarios, 
with low cost and at a single site and with daily surface climate variables in the cur-
rent framework and future climate forcing. In addition, the tool performs auxiliary 
data quality transformation and control tasks: predictor variable pretest, automatic 
model calibration, basic diagnostic tests, statistical analysis, and graphical represen-
tation of climate data (Wilby and Dawson 2007). The main stages of statistical dis-
aggregation are summarized in the paper of Wilby and Dawson (2007).
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 Rainfall-Runoff Relationship Simulation Using 
the GR2M Model

Between the 1980s and 1990s, new versions of rainfall-runoff transformation mod-
els have been developed by the “Cemagref,” with objectives of application on 
hydrology and water resources management, named the rural engineering models 
(GR). The rural engineering model (GR2M) is one of them, which is a global 
monthly rainfall-runoff model that includes two parameters.

 Presentation of the GR2M Model

Several versions have been proposed successively to increase the performance and 
accuracy of the GR2M model; among them are the contributions of Mouelhi (2003) 
and Mouelhi et al. (2006). According to Perrin et al. (2007), the improved version 
by Mouelhi et al. (2006) implemented on MATLAB seems to be the most efficient. 
The structure of GR2M is one of the conceptual reservoir models with a procedure 
for monitoring the state of humidity in the basin, which appear to be the better man-
ner to take into account prior conditions and ensure continuous operation of the 
model. The concept of the structure of the GR2M combines a production tank and a 
routing tank, as well as an opening to the outside other than the atmospheric envi-
ronment. These functions make the model more flexible to simulate the hydrologi-
cal behavior of the watershed (Mouelhi et al. 2006).

 Assessment of the Performance, Robustness, and Uncertainties 
of the Model

The linear correlation coefficient is defined by
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 – Nash–Sutcliffe
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where n – observation number

Vobs – value observed in the original series.
Vsim – value simulated by the model.
Vavr – average of the values observed in the original series.

The criterion used is the criterion of least squares of errors, presented in the 
dimensionless form of the bounded Nash criterion (Nash and Sutcliffe 1970). Nash 
criterion is one of the best performing criteria (Perrin et al. 2007) and is universally 
used in hydrology. The calibration operation consists of finding values of the model 
parameters, which minimizes the modeling error over the period, considered (Abda 
et  al. 2022). The model is considered efficient when the modeled flows approxi-
mately equal to the observed flows, which is to say when the value of the Nash- 
Sutcliffe criterion is near to 100% and it can be considered satisfactory, if the 
performance is greater than or equal to 60% (Kouamẻ et al. 2013.) The difference 
between the observed flow in site and the modeled flow is a frequently used method 
for calculating errors and is no longer acceptable for better and practical use, as in the 
Nash criterion. The same absolute error can be minor, especially during hydrological 
extremes for peak flood flows and low-water flows (El Meddahi 2016). Therefore, 
the ratio observed flow and simulated flow is more adequate and consistent to calcu-
late the errors. The expression of uncertainty (I) is represented by Eq. (11.4):

 I Q Q=
observed simulated

/  (11.4)

where (Q) is the flow.
Calibration therefore consists in selecting on the chosen a set of model parame-

ters, simulates the watershed hydrological behavior in the better possible way 
(Madsen 2000). The calibration phase in the rainfall-runoff transformation models 
requires the following conditions:

 – A hydroclimatic series representative of the modeled system (input–output).
 – Insert initial parameters of the models and variables representative of the system 

(state variables).
 – Use one of the methods for adjusting and calibrating parameters (qualitative and 

quantitative approach).
 – Choose two or more methods and performance criteria that make it possible to 

quantify and assess the quality between the variables observed on the site and the 
variables simulated by the model (Haziza 2003).

Generally, a 5-year period is used to calibrate the model (El Meddahi et al. 2014; 
Perrin 2000). From the moment it is decided to build a structure on an ungauged 
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watershed, the manager will not possess an average of 5 years of data to operate the 
model (Berthier 2005). However, the validation focuses on the application of the 
models on the data that were not used during the calibration of the models. The 
evaluation of the robustness of a model is carried out only at the control, therefore, 
according to the results obtained in validation (Haziza 2003). Generally, in the 
rainfall- runoff transformation models, the cutting and the choice of calibration and 
validation periods always take into consideration the position of the change points 
and the climatic trend within the climatic series, such as those of 1975, 1984, and 
2001 for our case (Zerouali et al. 2020, 2022).

Another evaluation of the calibration quality and the examination of the perfor-
mance values of the model has been made based on the following criteria:

 – Examination and comparison of the monthly hydrographs plots observed and 
simulated for every subbasin in the calibration and validation phase (Nash, cor-
relation coefficients, and determination coefficients).

 – Analysis of the correlograms of the observed monthly flows compared with the 
simulated monthly flows.

 – Analysis of the uncertainties between the observed and simulated annual flows.

The methodology adapted for this research is as follows (Fig. 11.2):

 1. We chose the NCEP/NCAR data over the period (1961–2001) for the calibration 
and validation of the model that describes the current climate, to be better able 
to make the meteorological forecast.

Fig. 11.2 Schematically flowchart used for the analysis combining statistical downscaling 
approach of Wilby and Dawson (2007) and GR2M model of Mouelhi et al. (2006)
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 2. We have chosen the anthropogenic emission scenarios most appropriate for the 
technological, socioeconomic, and industrial development of Algeria, which is 
the GCM-HadCM3 of the Royaume-Uni with an anthropogenic forcing SRES 
A2a (pessimist) and SRES B2a (optimistic).

 3. Future projections in precipitation and temperatures in the Sebaou basin (north-
ern Algeria) were made for three time horizons, 2011–40, 2041–70, and 2071–99, 
compared with the reference period (1961–01).

 4. Finally, the series of precipitation and future temperatures for the period 
(2010–99) obtained from the SDSM tool will be used as input time series in 
GR2M rainfall-runoff transformation model to assess and study the impact of 
future (probable) climate change in rainfall and temperatures on the flows and 
water resources of the Sebaou basin.

 Results and Discussions

 Probable Change in Rainfall

In this part, the rainfall calibration period was 13 years between 1968 and 1980. 
However, the validation period was 31 years between 1981 and 2011. The results for 
the calibration period (Table 11.1) revealed good coincidence between the observed 
and simulated rainfall, particularly reasonable at seasonal and annual scale (Nash 
and R2 values equal to 0.99). With regard to validation with NCEP, HadCM3-A2, 
and HadCM3-B2 data (Table 11.1), the results show a somewhat obvious difference 
between the used data and the NCEP data, which clearly represents the rainfall in 
the study area (R2 = 0.99, Nesh = 0.99, and RMSE=10.016) compared with the cli-
mate scenario data (R2 = 0.99, Nesh = 0.93, RMSE=22.558 (A2), and RMSE=21.672 
(B2)). The statistical parameters and the results validation are presented in 
Table 11.1.

Figure 11.3 indicates rainfall time series until 2099 resulting from SDSM analy-
sis under scenarios A2 (bleu) and B2 (red). The change in totals monthly, seasonal, 
and annual average rainfall of stations in scenarios H3A2 and H3B2 has been 

Table 11.1 Performance indicator between the values of rainfall and temperatures observed and 
simulated in the validation phase using NCEP, HadCM-A2, and HadCM-B2 data

Variable

Validation stage
Using NCEP Using scenario A2 Using scenario B2
R2 NASH RMSE R2 NASH RMSE R2 NASH RMSE

Rainfall Total 0.99 0.97 10.016 0.93 0.85 22.558 0.93 0.86 21.672
Average 0.99 0.97 0.334 0.93 0.85 0.752 0.93 0.86 0.722

Temperatures Maximal 0.84 0.70 4.859 0.81 0.64 5.283 0.82 0.65 5.257
Average 0.78 0.55 4.624 0.70 0.43 5.187 0.70 0.43 5.192
Minimal 0.98 0.95 1.227 0.97 0.89 1.799 0.97 0.89 1.786
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Fig. 11.3 Rainfall time series until 2099 resulting from SDSM simulations under A2 and B2 
scenarios

presented in Figs. 11.3, 11.4 and 11.5. For the H3A2 scenario, we note that there is 
a decrease in annual rainfall for future periods 2020, 2050, and 2080, which would 
be 6.72, 13.9, and 18.26%, respectively (Fig. 11.5). Şen (2019) observed that a rain-
fall will decrease in the upper Tigris River basin (Turkey) at about 12.5% in 2030. 
In winter and spring, Taibi et al. (2019) observed in northern Algeria a significant 
upward trend of future rainfall projection (2021–50 and 2070–99). At High Atlas 
basins (Morocco) using CORDEX regional climate with high-resolution simula-
tions, under representative concentration pathway (RCP 4.5 and RCP 8.5), Zkhiri 
et al. (2019) and Zerouali et al. (2021a, b) observed a decrease in rainfall toward the 
year 2100 up to −65%.

The changes in seasonal rainfall for the H3A2 and H3B2 scenarios show obvious 
differences between them and between seasons, especially for H3B2. For the H3A2 
scenario, the seasons in which the variations in average seasonal rainfall would be 
most remarkable and significant in future periods with a tendency towards the driest 
conditions (Fig. 11.4). The decreases for the three horizons 2020, 2050, and 2080 
are, respectively, as follows: in autumn, (Sep–Nov) 9.02%, −13.53%, and 9.72%; in 
winter (Dec–Feb), 2.98%, 6.07%, and 9.48%; in spring (March–May), 6.94%, 
19.06%, and 27.29%; and in summer (June–August), 15.85%, 21.55%, and 35.69%. 
More or less, similar trends are observed for the results of B2 scenario with a differ-
ence in the variation of magnitude and percentage, more noted for the first period of 
the 2020s (Fig. 11.5). In most cases, models underestimate and overestimate the wet 
and the dry seasons respectively during the reference period.
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Fig. 11.4 Changes in rainfall amount for the future (2011–40, 2041–70, and 2071–99) as com-
pared with recent periods at monthly, seasonal, and annual scale corresponding to scenarios 
A2 and B2

 Probable Change in Minimum, Average, 
and Maximum Temperatures

The probable change in maximum, average, and minimum temperatures at Tizi 
Ouzou station were also calculated using the SDSM Tool. The Tizi Ouzou station is 
taken for the calculation since it is the most representative of our watershed studied. 
The calibration was carried out for the period from 1990 to 2001 for 12 years. The 
remaining series retained from 2002 to 2009 were used to validate the model. 
Table 11.1 and Fig. 11.6 show the validation between the simulated and observed 
maximum and average and minimum temperatures of the proposed model. The 
results indicate a good coincidence between the simulated temperatures and 
observed temperatures, explained by the calibration results that showed only con-
siderable uncertainty for the maximum temperatures of December and the autumn 
season. According to Wilby and Dawson (2007) and Bader et al. (2008), rainfall 
forecasts have a greater degree of uncertainty compared with those of temperature, 
and rainfall varies widely in space, and GCM models are not relatively efficient for 
capturing this variability. The results of validation with the NCEP, H3A2, and H3B2 
data also show a somewhat obvious dissimilarity concerning the data used and the 
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Fig. 11.5 Percentage (%) of change in rainfall for the periods (2011–40, 2041–70, and 2071–99) 
at monthly, seasonal, and annual scale, in millimeter corresponding to scenarios A2 and B2 com-
pared with the reference period

NCEP data, which are the most representative of the temperature of the study area 
(Fig. 11.6 and Table 11.1). As shown in Figs. 11.7 and 11.9, the monthly, seasonal, 
and annual temperature changes (temperature difference) compared with the refer-
ence period (recent) that showed, on the one hand, an upward trend for the two 
scenarios H3A2 and H3B2 and the three proposed horizons 2030, 2050, and 2080. 
On the other hand, the growths in the H3A2 scenario are much larger than in the 
H3B2 scenario. Maximum annual temperatures could rise by 2, 3, 3.5 °C and by 
2.5, 2.7, and 3.4 °C in 2030, 2050, and 2080, respectively, for the H3A2 and H3B2 
emission scenarios (Fig. 11.7). The results of the seasonal scale indicate that winter 
will have experienced the highest increases under the H3A2 emission scenarios of 
4.5 and 5.4 °C between 2030 and 2080 compared with H3B2, which indicated the 
opposite for winter, while the lowest increases were observed in autumn of nearly 
0.5 and 1.5 °C. On a monthly scale, the biggest growth in maximum temperatures 
could appear in the months of May and October for the two scenarios H3A2 and 
H3B2 (approximately between 5 °C and 6 °C) (Fig. 11.7).

The average annual temperatures could increase with a maximum of 1.1 °C for 
the H3A2 emission scenarios and 1.25 °C for the H3B2 emission scenarios up to the 
long-term horizon 2080s (Fig.  11.8). The results of the seasonal scale indicate 
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Fig. 11.6 Result of validation between the (a) maximum, (b) average, and (c) minimum monthly, 
seasonal, and annual temperatures observed and simulated at Tizi Ouzou station

homogeneous upward warming observed in all seasons under the H3A2 emission 
scenario from 1.1 to 1.7 °C and even on the monthly scale. However, the H3B2 
emission scenario indicates a nonhomogeneous upward trend, which differs from 
one season to another and that autumn will have experienced the highest increases 
of 1.7 °C for 2030, 1.9 °C for 2060, and 2.4 °C for 2080, while summer presents the 
lowest increases of 0.7 °C for 2030 and 0.25 °C for 2080. On a monthly scale, the 
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Fig. 11.7 Changes in maximum temperature for the future (2040–70 and 2071–99) as compared 
with recent period at monthly, seasonal, and annual scale corresponding to scenario A2 and B2

months of September and October for scenario H3B2 present the largest increase in 
average temperatures approximately between 1.4 and 2.4 °C (Fig. 11.8).

The minimum annual temperatures could increase with a maximum of 1.1 °C for 
the H3A2 emission scenarios and 0.65 °C for the H3B2 emission scenarios until 
2080 (Fig. 11.9). On a seasonal scale, winter will have experienced a decrease in 
minimum temperatures of 0.5 °C, observed for the two scenarios H3A2 and H3B2. 
On the other hand, the climatic scenarios indicate that there is an upward trend in the 
minimum temperatures of spring compared with that of summer from 1 to 1.7 °C for 
H3A2 and H3B2, the autumn from 0.25 to 2.25 °C for H3A2, and from 0.7 to 1.7 °C 
for H3B2 (Fig.  11.9). On a monthly scale, the minimum temperatures tend to 
increase, with the exception of winter months (Dec, Jan, and Feb) and the month of 
August observed for the two scenarios H3A2 and H3B2. On the other hand, the two 
scenarios indicate that the months of October and November will have the highest 
increases reaching 3  °C until 2080 (Fig.  11.9). Those results confirm the results 
obtained at regional and global scale, for example, in the central region of the 
Arabian Peninsula (Almazroui et al. 2020) which indicate that the temperatures of 
all seasons will increase during the twenty-first century. Using The Coordinated 
Regional Downscaling Experiment (CORDEX) ensemble scenarios, Zittis et  al. 
(2019) documented that the Mediterranean basin really at present ingoing the 
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Fig. 11.8 Changes in average temperature for the future (2040–70 and 2071–99) as compared 
with recent period at monthly, seasonal, and annual scale corresponding to scenario A2 and B2

climate-warming epoch with 1.5 °C, which can be reached 2 °C in two decades. In 
the Mediterranean region, Kanber et al. (2019) indicate that the temperatures are 
expected to rise at +3 °C and + 5 °C by 2050 and 2100, respectively. According to 
Lefebvre et al. (2019), the countries of Northern Africa, such as Algeria, Morocco, 
and southern Europe (Portugal and Spain), are the highest risk countries of loss and 
wetland degradation. From the results of simulations using climatic scenarios, it can 
be said that the observed changes in temperatures show great agreement, homogene-
ity, and similarity in terms of magnitude with the results obtained on a regional and 
global scale from +2 °C to +5 °C on average at the end of the twenty-first century.

 Rainfall-Runoff Relationship Analysis by GR2M

Table 11.2 illustrates the results of the rainfall-runoff modeling obtained from dif-
ferent stations on the basis of the best calibration parameters. In addition, in model-
ing, we tried to seek the best rainfall station, which represents the hydrometric of 
each subbasin area or basin area based on the comparison between the performances 
indicators (Table 11.2). Two calibration methods were used; the first corresponds to 
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Fig. 11.9 Changes in minimum temperature for the future (2040–70 and 2071–99) as compared 
with recent period at monthly, seasonal, and annual scale corresponding to scenario A2 and B2

Table 11.2 Best Nash and R2 values of the GR2M model for calibration and validation process the 
main subbasins and basin of Sebaou

Nash-calibration 
(%)

Nash-validation 
(%)

R2 calibration 
(%)

R2 calibration 
(%)

Oued Sébaou-1- basin 87.1 84.5 0.94 0.95
Oued Sébaou-2- basin 81.0 85.0 0.80 0.91
Oued Sébaou Rabta 
subbasin

84.3 84.2 0.86 0.88

Oued Aissi subbasin 
before 2001

87.5 80.3 0.92 0.72

Oued Aissi subbasin 
after 2001

35.2 45.9 0.55 0.67

calibration by varying the two parameters X1 and X2 and setting S0 and R0 “initial 
filling level,” and the second is to vary S0 and R0 and setting the values of X1 and 
X2 in order to seek and to optimize the Nash. The parameters X, R0, and S0 of the 
model are manually calibrated by changing their values.

The first observations on the values of the Nash criterion in Table 11.2 show that 
the GR2M was more efficient. In the Oued Sebaou basin, the values of the Nash 
criterion found are superior to 80% in calibration (87.1%) after optimization as in 
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validation (84.5%). In addition, a correlation coefficient R2 = 0.95, which indicates 
that the correlation is very good. It is the same case for the Oued Sebaou basin (2) 
and the subbasin of Sebaou Rabta, which also shows Nash values in calibration and 
validation exceeding 80%, which translates the robustness of the GR2M model on 
the Sebaou River. The results of the model show that the calibration period (1991–95) 
is the best to explain the Sebaou River system (1) in comparison with the periods 
1990–94, (1992–96, and 1993–97.

Based on the different 5-year calibration periods, in the performance results 
obtained in terms of the Nash criterion, correlation coefficient, and determination, 
from the GR2M, at the RN30 station (subbasin Oued Aissi), the Nash exceed 80%. 
From Table  11.2, we note that the best calibration period for this system is the 
period 1990–94 with a Nash value equal to 85%. As regards, the coefficient of cor-
relation is 0.92.

However, model validation indicates results that differ from one period to 
another; for example, the value of Nash before the 2000s (between 1995 and 1999) 
reaches 80% and therefore acceptable in the calibration and validation phase. The 
GR2M model therefore successfully reproduces the hydrological behavior of the 
basin (Kouamẻ et  al. 2013). After this period, we notice a deterioration in Nash 
values, which decrease to 45%between 2005 and 2009. This degradation is marked 
by the Nash in validation and not in calibration, which defines the robustness crite-
rion of the model is unacceptable after the implantation and the commissioning of 
the Taksebt dam in 2001. The latter modifies the flow regime of the Oued Aissi and 
requires the search for an efficient solution for considering reservoir dams in a 
rainfall- runoff-reservoir model. This problem is widely discussed in several coun-
tries of the world, for example, the Aswan dam, which was put into service in 1970, 
with a capacity of 169 billion m3, strongly disturbs the hydrological regime of the 
Nile, and poses many environmental problems. It completely eliminates floods and 
reduces the space of wetlands downstream (Remini 1997). Moreover, Zerouali et al. 
(2021a, b) have found in Sebaou River basin (northern central of Algeria) that rain-
fall and discharge relationship was nonlinear, which could be due to the dry periods. 
Moreover, the field investigation revealed that the commissioning of Taksebt dam 
and human activities such as the smuggling and trafficking of rocks and sands from 
the abdomen of the river since the year 1998 have had a negative and significant 
influence on the lows decline of river flows amount. Despite that, the results obtained 
from the hydrographs are also of good quality for all the simulated basins and that 
the model well respects the flow dynamics (Figs. 11.10 and 11.11).

Generally, the results are very satisfactory (Fig. 11.10); the model indicates that 
the simulated and observed peak flows are well located and coincide quite well over 
time with an overestimation in the validation phase for the Oued Sebaou basin (1) 
and an underestimation for Oued Sébaou Rabta, with the exception of a few peaks 
where the uncertainties are greater. During low-water periods, low flows are better 
and well reproduced than peak flows during floods, with the presence of overestima-
tion. In the Oued Aissi subbasin, the model estimates the flows after 2000 with poor 
quality and with underestimates. In addition, the commissioning of the dam and the 
rainfall in the Oued Sébaou basin, after the year 2001, experienced surplus years 
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Fig. 11.10 Comparison and assessment between the observed flows and simulated monthly flows 
at (a) Oued Sebaou (1), (b) Oued Sebaou (2), (c) Oued Sebaou Rabta, and (d) Oued Aissi

Fig. 11.11 Correlations between the observed and simulated flows at (a) Oued Sebaou (1), (b) 
Oued Sebaou (2), (c) Oued Sebaou Rabta, and (d) Oued Aissi

with an upward trend in comparison with the calibration period before the year 
2001. This explains why the calibration parameters are not representative during 
this period.

Graphical analysis of the results, specifically the correlation coefficients, the 
uncertainties (ratios of Qobs and Qsim), and the residuals (difference between Qobs and 
Qsim), with monthly and annual time scales, shows that the water slides (flows) sim-
ulated by the model are good with the measured water slides (Tramblay et al. 2018).
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Fig. 11.12 Relations between simulated flows and residues at (a) Oued Sebaou (1), (b) Oued 
Sebaou (2), (c) Oued Sebaou Rabta, and (d) Oued Aissi

The residuals as a function of the simulated monthly flows and the evolution of 
the annual uncertainty are well illustrated in Figs.  11.13 and 11.14. The residue 
values were examined in three stages:

 1. If the residue values are approximately zero, which indicates unbiased estimates.
 2. If the residue values are greater than zero (positive). This implies estimates 

affected by bias with a tendency to underestimate the flows by the model.
 3. If the residue values are less than zero (negative), which expresses estimates 

affected by bias with an overestimation of the flows by the model (Bodian 
et al. 2012).

Figure 11.12 shows that most of the clouds constituting the low flow peaks are 
concentrated around the error axis of the value 0. This observation is more marked 
for the Oued Sebaou basin (1) and the subbasin Sebaou Rabta. On the other hand, 
the high and medium values of the discharges of the different subbasins indicate 
errors, which are sometimes considerably greater, noted by a mixed trend toward 
underestimates and overestimations, with the exception of the underestimates of the 
model at the level of the subbasin of Oued Aissi.

B. Zerouali et al.



317

Fig. 11.13 Comparisons between the uncertainties of the observed and simulated average annual 
flows at (a) Oued Sebaou (1), (b) Oued Sebaou (2), (c) Oued Sebaou Rabta, and (d) Oued Aissi

Another method for better assessment of the errors remarked is the graphical 
representation of the evolution of the uncertainty as a function of the annual flows 
observed in site and simulated by the model during the calibration and validation 
phase. The results show the uncertainty in the calibration period around the values 
0.82–1.10 for Oued Sébaou (1) and (2) and between 1.01 and 1.5 for the subbasins 
of Oued Sébaou Rabta and Oued Aissi. However, in the validation phase, we note 
an increase in the uncertainty values with a trend toward the value 1 from 1997, 
more marked in the Oued Sebaou 1 and 2 and the Oued Sebaou Rabta. Between the 
period 2001 and 2007, the Oued Aissi subbasin experienced a significant increase in 
uncertainty and remains too far from reality (Fig. 11.13). The monthly modeling by 
the conceptual model of GR2M gives a general tendency to good simulation within 
a tolerable margin of uncertainties. According to the literature, the GR2M model 
remains more sensitive to input data such as precipitation and potential evapotrans-
piration. In addition, changes in surface conditions (land use, vegetation cover, 
hydraulic structures, water pumping, modification of the minor and major bed of the 
river, etc.) contribute to determining the soil’s water reserves (Ardoin-Bardin 2004).
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The results indicate the efficiency of the GR2M model in hydrological simula-
tion. Those models can give very satisfactory and adequate responses with a high 
degree of reliability for the prediction of flows in the studied subbasin.

 Elaboration of Hydrological Modeling Scenarios

In this part, the different climatic parameters, precipitation, temperature, and future 
evapotranspiration simulated by the HadCM3 model over the periods 2011–40, 
2041–70, and 2071–2099, are important for the elaboration of a hydrological impact 
model based on the GR2M model for better controlling and planning of water 
resources. The stages of the hydrological impact study caused by climate change are 
schematically mentioned in Fig. 11.2. This flowchart indicates the interface between 
the regional circulation model (RCM) and the GR2M hydrological models 
(Fig. 11.2). Before the implementation of the model, the databases of future vari-
ables were subjected to a bias correction based on the DELTA method (method of 
disturbances or anomalies). DELTA method consists of the climatic variables of the 
disturbances that are calculated monthly, as the ratio (or the difference in the case of 
the temperature) between the average monthly climate simulated under climate 
change and that simulated for the present climate taken as reference. These monthly 
disturbances are used to modify the current series observed, which if applied uni-
formly for the entire month considered, (R∗ (j) = O (j) and S∗ (j) = O (j) × (S/R)) or 
(+(S − R)) (R is the reference period, S is the future RCM scenarios, and O is the 
actual observations to give rise to new corrected data (R * and S *)). This technique 
is widely used in the case of hydrological impact studies (Beldring et  al. 2008). 
After the bias correction, the variables from the A2 and B2 scenarios were used as 
input datasets in the GR2M hydrological model to simulate future flows and water 
resources in the study basin. For our hypothesis, we keep the same parameters of the 
hydrological model calibrated and validated previously in the future simulation. 
Elmeddahi and Ragab (2019) in the Cheliff basin (North of Algeria) also applied 
this hypothesis.

 Assessment of Future Flow Rate Projections

Figure 11.14 shows the monthly flows corresponding to the climatic scenarios A2 
and B2 projected by the hydrological model GR2M in the basins of the Oued Sébaou 
(1) and (2).

On the other hand, a wide and big range output of future changes can be obtained 
from A2 and B2 climate change scenarios at scale of basin hydrology. The GR2M 
model shows a diminution in flow rates compared with the current or reference 
period according to the upward trend in rainfall and the increase in temperatures. On 
a seasonal scale, future flows under the H3A2 and H3B2 scenarios present slightly 
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Fig. 11.14 The average monthly flows in m3/s probably up to the horizon 2100 from the GR2M 
model at (a) Oued Sebaou (1) and (b) Oued Sebaou (2)

significant differences between them and are evident from one season to the other 
(Figs. 11.15 and 11.16). For the autumn season, it shows an increase for water flow-
ing during the periods 2039–70 and 2071–99, of the order of 600–700% or 
20–170 Mm3/year observed at basin scale for the two scenarios. The winter and 
spring months show similar trends with a slight downward trend in flows but higher 
for the periods 2040–70 and 2071–99, between 50 and 85%. On the annual scale, it 
appears from the obtained results a decreasing trend in the average annual flows 
projected for future periods. The horizons 2050 and 2080 are the most deficit com-
pared with horizon 2020 with a probable decrease for the end of the twenty-first 
century, estimated by −49% (A2) and − 57% (B2) for Oued Sébaou (1) and − 35% 
(A2) and 45% (B2) for Oued Sébaou basin (2) (Figs. 11.15 and 11.16). Following 
the surface temperature increases, evapotranspiration may too increase, so in the 
future, a higher rate of evapotranspiration is probable, which could directly influ-
ence the flow creation routing. Thus, during this time, the evapotranspiration vari-
ability could significantly influence the change in simulated flow, which means that 
it cannot stay unchanged over the operation of projecting flows (Duong 2016). 
Another side, according to the uncertainty, of the GCM is one of the factors that can 
affect the future flow projections, and this is associated with the great simplification 
between the interface of the MCG and the local flow simulations, which can strongly 
affect the hydrograph.

In general, the decreases in flows for the scenarios A2 and B2 observed in the 
basin of the Sebaou River are coincident with studies developed in the Mediterranean 
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Fig. 11.15 Average annual and monthly runoff volumes probably at (a) annual, (b) autumn, (c) 
winter, (d) spring, and (e) summer over the horizons (2011–39, 2040–70, and 2071–99) in the 
Sebaou Oued basin (OS) (1) and (2) under scenarios A2 and B2

basin and Algeria. Our results show that climate change has a significant impact on 
decreases in rainfall and basin flows. For this, the Mediterranean region remains one 
of the most vulnerable to climatic variability. According to  Duong et al. is clear that 
the river flow regimes variability will probably have significant impacts on ecosystems 
and the environment, reduced water availability and increased atmospheric tem-
peratures during dry summer seasons will produce an increase of pressure on water 
resources. In addition, the shortage in water availability will lead to an additional 
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Fig. 11.16 Percentage change in the average annual and monthly runoff volumes probably at (a) 
annual, (b) autumn, (c) winter, (d) spring, and (e) summer scale over the horizons (2011–39, 
2040–70, and 2071–99) in the Sebaou Oued basin (OS) (1) and (2) under scenarios A2 and B2

intrusion of the salinity of groundwater in coastal basins, which reduces the culti-
vable area. Kabiri (2014) also reported that agricultural production is expected to 
decrease and water conflicts could multiply due to increasing water scarcity. The 
risk of flood disasters is also expected to occur more frequently due to changes in 
farming methods and rapid urbanization processes.
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 Conclusion

In this chapter, we discussed the following:

 1. The future projections of climate parameters to the horizon 2099 according to 
three periods, 2011–39, 2040–70, and 2071–99 from the IPCC HadCM3-A2 and 
HadCM3-B2 scenarios, have been assessed using the statistical disaggregation 
model. This tool was largely used as a decision support tool based on its 
simplicity.

 2. The climate series resulting from future projections were used in the GR2M 
rainfall-runoff model to simulate the hydrological behavior of Sebaou basin. The 
main results obtained are summarized in the following points:

 (a) The simulation using NCEP data is better than HadCM3-A2 and 
HadCM3- B2 in the calibration and validation phases.

 (b) The HadCM2-A2 and HadCM2-B2 models predict a decrease in annual pre-
cipitation averages, reaching 18–14%, respectively, to the horizon 2099. 
However, on a seasonal scale, autumn, winter, spring, and summer, it shows 
a decrease of 9.72, 9.48, 27.29, and 35.69% respectively for HadCM2-A2. 
In addition, for the HadCM2-B2 there are similar trends except for the 
increasing trends in the autumn season.

 (c) Minimum, maximum, and average annual temperatures could continue to 
increase with a maximum of 1.1–0.65 ° C, 1.1–1.25 ° C, and 2.7–3.4 ° C, 
respectively, for the H3A2 and H3B2 emission scenarios until the long-term 
horizon 2080.

 (d) The values of the Nash criterion obtained are greater than 80% in calibration 
and 84.5% in validation with a correlation coefficient equal to 0.95 except 
for the degradation the Nash coefficient after the commissioning of the 
Taksebt dam in the Oued Aissi subbasin.

 (e) The hydrographs show that the simulated and observed peak flows are well 
located and coincide fairly well over time, with some more significant peaks 
of the estimate in the validation phase during flood periods.

 (f) The uncertainty shows acceptable values varying between 0.6 and 1.1. 
However, the values of Oued Aissi model remain too far from reality after 
the year 2001.

 (g) The GR2M model appears very effective in simulating the flows and the 
hydrological functioning of the basin. The comparison between the vari-
ables observed in the site with those simulated by the model confirm that the 
GR2M can be preferred as a tool for managing water resources.

 (h) The coupling between series from the HadCM-A2 and HadCM-B2 scenar-
ios and the GR2M model has shown a wide and big range output of future 
changes in the basin hydrology with an upward trend in flows compared 
with the current period, particularly for the months between December and 
May for the period 2040–70.
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 (i) The results show that the horizons 2050 and 2080 are the most deficient 
compared with the current horizon 2020. With a probably decrease in flows 
by the end of the twenty-first century, estimated at −49% (A2) and − 57% 
(B2) for the Oued Sebaou (1) and − 35% (A2) and 45% (B2) for the Oued 
Sebaou (2) following the decreases in winter and spring during the periods 
2040–70 and 2071–99 between 50 and 85%.

Currently, we are working on two emission scenarios RCP 4.5 and 8.5 scenarios 
of CMIP 5 to assess future water resources on some representative basins of  northern 
Algeria by combining those output with artificial intelligence techniques and meta-
heuristic algorithm to reduce and assess the uncertainty associated with predictions 
of climatic, hydrological, and land use conditions.
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Chapter 12
Predication of Sugarcane Yield 
in the Semi-Arid Region Based 
on the Sentinel-2 Data Using Vegetation’s 
Indices and Mathematical Modeling

Chaitanya B. Pande, Sunil A. Kadam, J. Rajesh, S. D. Gorantiwar, 
and Mukund G. Shinde

Abstract This paper is aimed at developing the model of prediction of the sugar-
cane yield based on the satellite data and mathematical modeling. Remote sensing 
satellites have been monitoring agricultural crops with regard to growing, harvest-
ing, and other periods. Satellite data have provided accurate information on the 
earth surface and then easily interpreted which crop is in good health and which is 
unhealthy, and vegetation indices can give more valuable information for the pre-
diction of crop yield. In this regard, if farmers can estimate the yield before harvest-
ing this is very helpful to the farmers and countries. In this study, ground truth data 
were collected by farmer’s fields and validated with satellite indices and predicted 
yield. In this model sugarcane crop is first selected for the prediction of yield 
because 72% of crops consist of sugarcane and the duration of this crop is 
8–12 months. During the survey, information was collected on crop yield, the dem-
onstration plots were verified and the observed yield computed. Sentinel-2 data 
were selected for crop yield forecasting. This crop model used three vegetation 
indices (Normalized Difference Vegetation Index [NDVI], Enhanced Vegetation 
Index [EVI], and Green Chlorophyll Vegetation Index [GCVI]), which have been 
computed from sentinel-2 data using Raster Calculator. To correlate the sugarcane 
observed crop yield, NDVI, EVI, and GCVI values were computed by linear model. 
Sugarcane crop yield correlated strongly with the NDVI, EVI, and GSVI (NDVI: 
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R2 = 0.65, EVI: R2 = 0.598 and GCVI: R2 = 0.746). The GCVI index has a high cor-
relation with observed yield using a linear model. Therefore, three linear correlation 
models have been developed by vegetation indices to determine which indices cor-
related best with the prediction yield. The observed yield data were compared with 
normalized vegetation index and other indices. The sugarcane yield is high com-
pared with the observed yield.

Keywords Crop yield · NDVI · Linear correlation models · Sentinel-2 data

 Introduction

Regularly checking and monitoring agronomy crop situations in the growing period 
are significant for approximation before cutting the plant yield (Dorigo et al. 2007). 
The manufacture of agricultural crops and the forecast of crop yields have a 
direct an effect every year nationwide with worldwide economic and performance a 
significant part of the entire sustainable food quality and security management 
(Wendroth et  al. 2003; Sakhare 2017). In so many nations, including India and 
Ethiopia, crop yield assessment is dependent on conventional methods of yield and 
crop data accumulation and field information (CSA 2008; Anup et al. 2006; FAO 
2016, 2017). The conventional techniques are very expensive, time-intensive, and 
inclined to many mistakes for an unfinished field report (Gulhane et al. 2022). That 
information was directed to poor agronomy plant yield calculations. The agronomy 
crop growth mathematical model is very effectively utilized to forecast crop yields 
before harvesting crops at the demonstration plots (Jorgensen 1994; Bastiaanssen 
and Ali 2003; Dorigo et  al. 2007). Innovative technologies such as Geographic 
Information System (GIS), Global Positioning System (GPS), remote sensing, 
drones, machine programming language (Pande et al. 2022), image processing, and 
plant yield development models enabled chances of developing farming economic 
schemes (Jones 1982; Burke and David 2016; Pande et al. 2018). The advanced sen-
sors and satellite data can continuously detect large single areas of agriculture land 
that have been enhanced to give the opportunity to observe farm production within 
large sections of the globe (Tucker et al. 1983; Doraiswamy et al. 2003; Pinter et al. 
2003; Pande et al. 2021b; Shahid et al. 2021; Srivastava and Chinnasamy 2021). 
Additionally, geo-informatics with sensor techniques are able to give data on the 
exact varieties of plant with real-time snaps of variations under different circum-
stances directly affected by climate and various disaster activities (Reynolds et al. 
2000; Pande et al. 2021a, 2022). The technologies can also possibly permit opera-
tors to find the agronomy crop types and evaluation crop yields. The large correla-
tion with crop vegetation spectral values has been demarcated using unmanned 
aerial vehicles (UAVs) and satellite (Jones 1982; Zhao et  al. 2007; Fermont and 
Benson 2011).
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Presently, today’s geo-informatics advances have been useful for evaluating crop 
yields in countries such as Australia, Japan, China, United States, Malaysia, and 
India; still, broad examinations are as yet required, because past remote detecting 
procedures may have been extensively used for estimating the crop yield.  
As accurate appraisal for agronomy crop yields through UAV and satellite pictures 
with various sensors is not straightforward and significantly progressively extreme 
in the state of African horticultural plans (FAO 2017; Orimoloye et al. 2022).

In the Normalized Difference Vegetation Index (NDVI) has been indicated 
the crop growth development and future yields could forecasting using computation 
models by different strategies from simple coordination to enormous complex 
change. NDVI is shown a vegetation condition and stages of agriculture crop (Groten 
1993; Hayes and Decker 1996; Rosema et al. 1998); in this way, it shows levels of 
wellbeing and vermin in the farming improvement and adopted the digital technol-
ogy that time timely identified the damage and stress in the soil then full-fill whole 
need of crop after farmers can get the huge yield production under climate change. 
Despite the fact that different vegetation yield phases of plots may differ from those 
of green and regular vegetation on account of human impacts, including, for exam-
ple, water system, utilization of manure and pesticides, the NDVI is permitted as a 
significant wellspring of material for the circumstances of farming harvests. Such 
huge numbers of analysts and researchers have taken a shot at the different strate-
gies (Stoikos 1995; Jones 1982) autoregressive state space models least-square 
relapse, according to the exponential-direct farming harvest advancement calcula-
tion and arithmetical yield model, which have been applied to the estimation of 
harvest yields with better achievement, and those outcomes are helpful for horticul-
ture creation (Oroda 2001; Jackson and Huete 1991). Hence, the creation and appli-
cation of an appropriate and correct crop yields assessment cycle that decreases the 
manpower needed for the collection of data, with differences among the observed 
and assessed given are needed. A comparatively correct estimation of plant yield 
may be determined if plant development and other stage situations are regularly 
monitored using GIS and geospatial techniques. These technologies and methods 
also could, importantly, benefit farmers, administration, and further policy results to 
correctly assign properties and accept timely positive observation for an improve-
ment of sustainable food security. Suppose exact data and very fine resolution geo-
spatial data are utilized for the assessment of the sugarcane crop yield within India. 
The predicted crop yield is dependent upon the different techniques and material 
bases such as ground field surveys, subject expert knowledge, regression analysis, 
trend analysis, multi-regression analysis, statistical models, and sugarcane crop 
growth models. In this area one sugarcane plant yielding estimation and forecasting 
model is established depending on the sugarcane yield evaluations, applying the 
NDVI, Enhanced Vegetation Index (EVI), and Green Chlorophyll Vegetation Index 
(GCVI). These vegetation indices can be estimated from satellite data using geospa-
tial software. The different vegetation indices are compared with observed yield 
using the linear regression correlation model. The prediction of the sugarcane crop 
yield in the semiarid region is developed through satellite data and the linear regres-
sion model.
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 Study Area

The current study area is located in the Sadegaon village of Ta. Rahuri, Dist. 
Ahmednagar, Maharashtra, India (Fig. 12.1). The area is part of a semi-arid region 
and most of the land is familiar to the sugarcane crop owing to water availability and 
the farm land has the most cultivating agricultural demonstrations within the 
Sadegaon village (Fig. 12.2). The area latitude and longitude are 74° 40′ 0″ E, 19° 
21′ 0″ N to 74°41′ 30″ E, 19° 20′ 00″ E. The area has a well drainage network with 
irrigation waterways from the Mula River dam and a surrounding area of channels 
such as a key canal with extremely productive farm lands in the village.

Fig. 12.1 Location map of the study area
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Fig. 12.2 Photographs showing stages of the sugarcane crop. (a) Sugarcane crop during the 
months of November to December 2017. (b) Growth stage of the sugarcane crop during September 
to December 2018. (c) Harvested sugarcane crop during the months of January to February 2019
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 Materials and Methods

 Data Collection

Freely available Sentinel-2 data were collected from Google earth engine platform 
after all the images had been pre-processed, and reflectance values were extracted 
by GPS observation points data; the sugarcane crop yield was calculated from 
observation plots. The current analysis based on the 10-m high-resolution Sentinel-2 
data was acquired and in these data 13 spectral bands were combined, but the cur-
rent study used of four bands, 2 to 4 and 8, which were observed for the estimation 
of plant yield. These three bands play an important part in the creation of the vegeta-
tion index. In this study area, most farmers are familiar with sugarcane crop for 
12–14  months. For sugarcane crop modelling 12 plots were selected. From the 
selected 12 plots information was collected during the before and after harvesting 
stages of the sugarcane crop. All 12 observation areas of farm land at large locations 
were finally chosen and located using the GPS method, and then were regularly 
observed, including crop height and crop condition with yield estimation. This 
study’s only plant yield calculation was done for sugarcane crop modeling avail-
able. The crop sowing and harvesting periods are included in Fig. 12.3.

 Satellite Data Analysis

In the study area linear regression models were created for the forecasting of yield 
and these models were totally based on the satellite data analysis. In the satellite 
data pixel values to various indices were shown such as the GCVI, NDVI, and 
EVI. In this study the Raster Calculator of Arc GIS 10.1 was used to make the vari-
ous indexes with clip point data from every index4. These three indices values were 
inserted into the models and correlated with ground yields, then forecasting the 
sugarcane yield (see Fig.12.6). Three vegetation indices for every pixel were esti-
mated by two types of bands, red and near infrared (NIR) reflectance, as follows:

Fig. 12.3 Crop sowing and harvesting periods
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In the satellite data the red (B3) and NIR (B4) bands are 0.63 to 0.69 and 0.76 to 
0.90 μm respectively

 

NDVI
NIR band RED band

NIR band Red band
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After effective recognition of the best time for the predicted plant yield, the 
regression examination was completed among mean NDVI, EVI, and GCVI ranges 
of time with sugarcane crop information. The study area was analyzed and evalu-
ated based on results from the linear regression model so as to observe the large 
appropriate model. The procedure attempted to create the future plan and the model 
is digitally presented in Fig. 12.4.

Fig. 12.4 Flow chart of methodology

12 Predication of Sugarcane Yield in the Semi-Arid Region Based on the Sentinel-2…



334

 Field Work

The sites of the wheat crop were given by semi-arid regions in the Maharashtra 
state. During the field work ten wheat plots were selected in the semi-arid regions 
(Fig. 12.1). Cadastral maps were used as a reference to identify the plot borders. 
Samples were taken from the soil in order to look at soil properties of wheat- 
cultivated land. The plots were located by using a GPS instrument. Wheat-cultivated 
land was visited and photographed ten times in the procedure until the harvest phase.

 Application of Remote Sensing and the Role of GIS 
in Crop Yield

A common application of geoinformatics knowledge is for observing sugarcane 
crop yields. RS and GIS can be  identified the green plant vegetation’s using low 
reflectance wavelength and transmittance and converted them into the visible range 
of the spectrum (wavelength 400–700 nm) owing to the vigorous absorbance using 
photosynthetic crop colors. The study of reflectance and transmittance are both typi-
cally maximum values in the NIR section (700–1300 nm). The fact that the current 
study utilized the vegetation indexes (VIs) is significant for demarcating the green 
vegetation amount indication from the composite canopy spectrum. The study of 
plant yield estimation used various types of vegetation indices, whereas the analysis 
selected three major indices viz. GSVI, EVI, and NDVI and these three indices are 
working for a very easy and better accuracy of estimation of stressed and mature 
crops2. The common disadvantage of most approaches that use statistical associa-
tions with the NDVI and plant yield is higher empirical parameters using correlation 
coefficients11.

Temporal data for growing rates and crop replies to activate the climate situa-
tions and planning practices. This is a great chance for influences such as dryness, 
soil nutrients, pest infestation, and diseases to directly impact the crop yield, but 
particularly now when today’s climate change factors have affected crop yields and 
more pest and diseases have been observed on the plants.

 Crop Yield Modeling

The generation of mathematical models for sugarcane crop yield forecasting 
depends on the mean NDVI and the EVI with a GCVI profile, in which the best 
indices correlated with observed yield under linear regression model performance 
and evaluation of the developed model using root mean square error (RMSE). Crop 
yield modeling has been very helpful to farmers and agricultural departments 
(Fig. 12.4).
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 Results

These techniques are hugely expensive and require a lot of manpower, period over-
riding, and are disposed to maximum mistakes owing to the imperfect environment 
of field explanations. However, the developed models needed various input factors, 
which are precise with the agriculture crop, soil properties, agronomy practices, and 
climatic situations. The crop model predicts the yield before harvesting of the sug-
arcane crop. In developed nations the crop yield model has been effectively used 
during climate changes and water issues. Thus, currently, every country is facing the 
problems of climate change factors so much, because at any time, rainfall, day-by- 
day temperature increases, and most importantly pollution of air and water. directly 
impact climate change and agricultural production. Today’s new innovations are in 
advanced remote sensing techniques, satellite image analysis, and plant yield. The 
study of crop modeling and the geoinformatics framework consisted of the hopeful 
chances of refining farming system and farmer practices, so many climate changes 
affected on the crop and natural resources in the earth. The objectives consist of the 
data structure and are helpful for sugarcane crop yield prediction. This information 
may be helpful for the development of  agricultural practices and  change the 
advanced mode to development of this sector of India because agriculture sector is 
backbone of India and 70% peoples depend on the agriculture sector hence we can 
change the policy and practices as compare to climate. That time our farmers can 
facing any problems related to agriculture and farming system. The regression mod-
eling based on the NDVI, EVI, and GCVI ranges are used from the sugar crop sow-
ing within the best period and the past plant yield data within the Sadegaon village. 
The results from the study area are shown in Table 12.1. Regression model equa-
tions, the coefficient of determination (r2), and the connection to the vegetation 
models are presented in Fig. 12.5. The connection between the sugarcane yield and 
NDVI ranges is denoted efficiently by using the linear model as compared with 
other vegetation indices in Sadegaon village. However, the coefficient of determina-
tion for the regression models associated with the linear model are found to be 
highly related (Fig. 12.6).

In this paper we have developed four models: logarithmic, exponential, polyno-
mial, and linear models. The four models were compared with each other, but the 
linear model is best for the prediction of sugarcane crop yield. The GCVI is highly 
correlated with observed crop yield based on the linear model (Figs. 12.5 and 12.6).

A detailed statistical analysis was performed to examine the competence of the 
outcomes found by the linear model for the different vegetation indices on the cur-
rent proposed methodology. In this study, statistical analysis RMSE was worked out 

Table 12.1 Regression model equations for the yield estimation

Vegetation indices Model Equation Coefficient determination

NDVI Linear y = 46.80x + 22.68 0.655
EVI Linear y = −18.46x + 71.36 0.598
GCVI Linear y = 3.911x + 43 0.746
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Fig. 12.5 Correlation between the observed yield with the NDVI, EVI, and GCVI indices based 
on the linear model

Fig. 12.6 Correlation between the observed yield with the NDVI, EVI, and GCVI indices based 
on logarithmic, exponential, and polynomial models
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to calculate the act with the behavior of the suggested model observed, with suitable 
time for forecasting of the sugarcane crop yield assessment for the entire Sadegaon 
village.

 
RMSE ,= ∑ −( )1 2

n
Py Oyi i

 

where n is the total number of observations, Py denotes estimated or predicted yield, 
and Oy is the observed or actual yield.

Models, which can give the more accuracy for estimation of crop yield. we have 
observed the yield data from 12 various farmer fields for used of development of 
predicted crop models. The observed information was analyzed in the differences 
between the forecast and experiential yield information. The outcome values were 
calculated using the RMSE equation and these results are shown in Table 12.2 and 
Fig. 12.7. The predicted sugarcane crop yield is a smallest RMSE choice for model 
development, which based on the model we have better forecasting of sugarcane 
crop yield data in the semi-arid region.

 Discussion

 Prediction Versus Observed Sugarcane Yield

The NDVI, EVI, and GCVI are available to respond to changes in chlorophyll con-
tent, water stress, and green biomass. Actual values are forecasting surface charac-
teristics when the agriculture plant canopy is not so much thin or thick vegetations. 
Owing to the rise in NDVI, EVI, and GCVI values concurrently with increasing 
sugarcane crop yield, the NDVI, EVI, and GCVI ranges influence the maximum and 
minimum values during the development stage, and maturing growth stage of sug-
arcane crop. This decrease due to the detail that the sugarcane crop greenery is yel-
low during the maturing stage and the NDVI, EVI, and GCVI have been directly 
related to the chlorophyll content of sugarcane crop plants and vegetation. Soil 
moisture factors also increase the NDVI, EVI, and GCVI ranges during the crop 
growth period. The harvesting time crop has been shown the NDVI, EVI, and GCVI 
values decreased; accordingly, there is a good association with the sugarcane crop 
produce with NDVI ranges during the cutting period as they are victims of the 

Table 12.2 Model validation and performance indicator using RMSE

Vegetation indices Model RMSE

NDVI Linear 0.10
EVI Linear 0.17
GCVI Linear 0.04
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Fig. 12.7 Correlation of observed yield with predicted yield in Sadegaon village

humidity factor. Therefore, the best period for prediction of sugarcane production is 
around 60 days pre-harvest of sugarcane yield in the area.

Sugarcane Yield Prediction Using Linear Regression Model
Table 12.3 clearly show a summary of the statistics of sugarcane plant yield estima-
tion in a semiarid region based on various vegetation indices of 12 plots in Sadegaon 
village. In this study, linear regression models were utilized to predict the sugarcane 
yield with the help of the available data. Average sugarcane yield is large or less 
similar among plots. However, much variation exists in the sugarcane yield between 
plots. On the whole, the results clearly show that three of the vegetation indices have 
been upscaled with the help of the prediction of agriculturalists’ yields on small and 
larger scales (Fig. 12.8).

 Conclusion

The study area was created to support sugarcane crop yield assessment equation by 
using geoinformatics methods to estimate production and support farmers of the 
sugarcane plant in Sadegaon village. We collected yield information data from 
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Table 12.3 Sugarcane crop yield predicted based on the NDVI

Plot 
no.

Observed yield 
(tonne/acre)

Predicted yield 
(tonne/acre) (NDVI)

Predicted yield 
(tonne/acre) (EVI)

Predicted yield 
(tonne/acre) (GCVI)

1 54 51.08 53.54 54.73
2 53 50.29 53.25 54.73
3 46 49.91 51.04 47.69
4 49 48.42 50.68 46.91
5 50 49.36 49.2 50.82
6 55 56.38 52.9 54.73
7 48 47.01 47.36 46.91
8 47 45.61 49.2 46.91
9 52 52.63 48.47 50.82
10 44 47.95 44.04 46.91
11 56 54.04 54.75 52
12 50 50.76 52.16 50.82

Fig. 12.8 Spatial distribution maps of (a) the NDVI, (b) the EVI, and (c) the GCVI at the observa-
tion of sugarcane plots
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farmers’ fields, agricultural experts, and satellite images to create methods of pre-
dicting and assessing sugarcane crop yield modelling. Sugarcane yields are well 
fitted with the NDVI (R2 = 0.65) and/or the GCVI (R2 = 0.746). The EVI (R2 = 0.0598) 
is highly correlated with yield and whole indices but all vegetation indices show 
minimum values of RMSE. Such kinds of study so important for India, because so 
many farmers are facing the loss yield during last stage because heavy rainfall and 
climate change, hence crop insurance and government can be adopted advanced 
technology and models for measuring the past yield. After these responsible com-
pany and government can provide crops loss amount to farmer based on the remote 
sensing, GIS and ML models. We have strongly recommended whole crop losses 
amount provide to farmer based on the only remote sensing, GIS and ML models 
with verified. The linear model shows better practice than the other models. The 
outcome of the proposed crop yield forecasting technique demonstrates potential. 
Any crop model can develop that time most important input data from farmer sys-
tems and ecological parameters in the semi-arid region are included in the model-
ing. The comparison of observed and predicted yield is shown in Figs. 12.9, 12.10 
and 12.11.
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Fig. 12.9 Observed versus predicted sugarcane yield based on NDVI values
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Chapter 13
Effect of Urbanism on Land Surface 
Temperature (LST) in a River Basin 
and an Urban Agglomeration

J. Brema, Ahmed Khalid Alsalmi, C. Mayilswami, and Jenita Thinakaran

Abstract The environmental and social consequences of predicted climate change 
are expected to be magnified in urban regions due to the elevated temperatures, 
which are due to the continuous manmade processes. A research work was carried 
out by utilizing remote sensing and geographic information systems to explore the 
interactions between land surface temperatures (LST) and normalized difference 
vegetation index (NDVI) in an urban area and in a basin area. Increase in vegetative 
cover can provide microclimate formation through the process of evapotranspira-
tion by increasing the amount of urban vegetation. This might prove to be a highly 
effective solution in reducing the effect of temperature toward urbanization. The 
results were presented based on the observations carried out using Landsat 8/
Sentinel 2 satellite imageries and from the field by deriving land-use data as input 
and by comparing the temperature variations, normalized difference vegetation 
index (NDVI), normalized differential build-up index (NDBI), and normalized dif-
ferential water index (NDWI) derived from satellite imageries (2004–18) in an 
urban limit (Chennai City, India) and a subbasin (Noyyal River, India). The correla-
tion revealed that both the spatial and temporal variation in vegetation sprawl and 
surface temperature affect the local climatic temperature. It has been suggested that 
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future modeling studies should account for anthropogenic heating in the case of 
urban planning for better climatic control characteristics.

Keywords Land surface temperature · NDVI · NDWI · NDBI · Land use

 Introduction

The most significant biophysical feature of a river basin is its altered surface cover, 
which is a major contributor to the phenomenon commonly referred to as urban 
heating. The excess warmth in an urban environment is due to the heating phenom-
enon in the urban limits when compared to the rural environment (Shahid et  al. 
2021). This excess warmth is estimated based on the surface cooling rates that pre-
vail in urban and rural regions. The temperature in the surface and atmospheric 
region of the urban environment is generally higher when compared to the peripher-
ies. This excess warmth is naturally due to the concrete and metal surfaces and 
asphalt roads, which are generally considered as nonporous and non-evaporative 
with high heat absorption capacity and low solar reflectivity. These materials reflect 
reduction in cooling rates in urban areas with respect to their surroundings. The 
increase in urbanization results in decrease in vegetation cover, and hence, transpi-
ration is drastically diminished, thus causing warmer urban areas (Pande et  al. 
2021a, b). The most commonly observed physical phenomenon in urban region is 
urban heating, which can be described as elevated temperature in urban regions 
compared to the surroundings. Urban heat island (UHI) is of great importance for 
development in the field of sustainable urban planning. Anthropogenic modification 
of landscapes and the surroundings in the urban boundary layer results in the UHI 
effect. The occurrence of UHI is due to increased absorption of solar radiation, 
population density, vegetative cover, and the extent of built-up area (Lettenmaier 
et  al. 2014; Meehl and Tebaldi 2004). The UHI can be monitored based on two 
methods, namely through air temperature and surface temperature measurements. 
With the advent of remote sensing, it has become quite easy to monitor the surface 
temperature and is being monitored globally now (Coumou and Rahmstorf 2012; Li 
and Bou-Zeid 2013; Arnfield 2003). The studies of land surface temperature (LST) 
and UHI show that surface temperature is a reflection of land cover and vegetative 
cover (Oke 1987; Peng et al. 2012; Zhou et al. 2013, 2014, 2015; Ma et al. 2010). 
Research studies envisage that increase in urban vegetation with low emissions will 
definitely decrease the ozone concentrations (Taha 1996). Analysis of normalized 
difference vegetation index (NDVI) will result in monitoring the changes in vegeta-
tion and as a result the dynamics of the ecosystem (Zaitunah et al. 2018; Streutker 
2003; Chen et al. 2002; Ben et al. 2001; El-Ramady et al. 2014; Gibson 2006). In 
addition to the land use/land cover and LST derived from Landsat 8 were compared 
and the temperature difference were reckoned (Brema et al. 2019; Dagliyar et al. 
2015). The changes in land surface temperature were related to many factors such 
as land use changes, seasonal variations, economic development, etc. (Kumar and 
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Shekhar 2015). Vegetation changes in large scale can be predicted by comparative 
analysis of trend of derived NDVI (Nicholson et al. 1990). The application of satel-
lite imageries like Landsat 8 is highly suitable for urban planning, environmental 
protection, and climate studies by way of studying the correlation between LST, 
NDVI, and normalized difference built-up index (NDBI). In this study, the effects 
of UHIs and the relationship between LST, NDWI, and NDVI have been studied for 
the Chennai Metropolitan Area. For this purpose, Landsat 4, 5, 7, and 8 satellite 
imageries spreading over the period 2004–2018 have been downloaded from the 
USGS webpage, with an interval period of 5 years.

Multispectral Landsat-8 series imageries corresponding to the month of May 
corresponding to the years 2014–2017 were collected. Band 5 and Band 4 were 
considered for NDVI estimation. Band10, Band 11, and thermal infrared bands 
were considered for estimating land surface temperature in the subbasin. The obser-
vation stations have been identified as weather stations at Karunya University and 
Coimbatore airport. From the corresponding bands of the geocoded satellite imag-
eries, the land surface temperature was calculated based on the emissivity and NDVI 
value in the Noyyal subbasin. In order to understand the variations in land surface 
temperature, the study area has been considered in two different regions: one in a 
semiarid region (Noyyal river subbasin) and the other in a coastal humid place 
(Chennai Metropolitan Area).

 Study Area

Noyyal River basin, a tributary of river Cauvery, has a length of about 175 kms and 
an average width of about 25 kms. The basin sprawls over Coimbatore, Tiruppur, 
Erode, and Karur districts with a total extent of the basin of about 3646 sq. kms. The 
basin lies between the latitudes 10o53′1.06″ N–11o21′57″N and longitudes 
76o37′49″E–78o12’55.06″E. The study area is shown in Fig. 13.1a, b. The subbasin 

Fig. 13.1 (a) Noyyal River basin (b) Chennai Metropolitan Area
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considered in the study is in the head region of Noyyal basin and is of 1631.54 km2. 
The subbasin experiences wide spread rainfall during the northeast monsoon period 
from October to December. Another study area, Chennai normally receives an aver-
age annual rainfall of about 140 mm. The city experiences dry-summer tropical wet 
and dry climate. The region normally has maximum temperature in the range of 
35–40 °C and minimum temperature with 19–25 °C.

 Materials and Methods

 Normalized Difference Vegetation Index (NDVI)

Generally, vegetative cover absorbs electromagnetic spectrum in the visible region. 
Due to the internal structure of the leaves, normally healthy vegetation has high 
reflectance specially in the near infrared (NIR) region between 0.7 and 1.3 μm. The 
plants absorb blue (0.4–0.5 μm) and Red (0.6–0.7 μm) spectrum and reflects Green 
(0.5–0.6 μm) spectrum. Since there is high reflectance in NIR and high absorption 
in red spectrum, these two bands are used to calculate NDVI. The following formula 
gives normalized difference vegetation index (NDVI):

Fig. 13.1 (continued)
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NDVI NIR Red NIR Red� � � �� �� /

 

The NDVI value varies from −1 to 1. The NDVI value increases as the reflection 
increases. The NDVI is categorized as: −1 to 0 represent water bodies; −0.1 to 0.1 
represent Barren rocks, sand, or snow; 0.2–0.5 represent shrubs and grasslands; and 
0.6–1.0 represent dense vegetation or tropical rainforest.

 Land Surface Temperature(LST)

Land surface temperature is referred to as the radiation that is felt in a particular 
location. The land surface temperature depends on the object on the earth’s surface. 
In a satellite imagery, it could be snow and ice, the grass on a lawn, the roof of a 
building, or the leaves in the canopy of a forest. Thus, land surface temperature is 
not the same as air temperature.

In this study, the UHI has been extracted using the following method: 𝑈𝐻𝐼 = μ 
+ 𝜎/2, in which μ is the mean LST value of the study area and σ is the standard 
deviation of the LST.

The estimation of land surface temperature involves the following equations:

 L M Q AL L� � �
cal  (13.1)

where Lλ = top of atmosphere spectral radiance, ML= band-specific multiplicative 
rescaling factor, AL = band-specific additive rescaling factor, and Qcal = quantized 
and calibrated standard product pixel values.

 
T K K L
10 2 1

1 273� �� � �/ ln / �  
(13.2)

where T10 = top of atmosphere brightness temperature, Lλ = TOA spectral radiance, 
K1  =  band-specific thermal conversion constant, and K2  =  band-specific thermal 
conversion constant. The K1and K2, rescaling factor values used in the Eqs. 13.1 and 
13.2 were obtained from the Metadata of the satellite imageries. Table 13.1 gives the 
values of K1 and K2.

 
LST

10 10 10
1� � � � � �T T e/ ( / ln� �

 
(13.3)

Table 13.1 K1 and K2 values Thermal conversion 
constant Band10 Band11

K1 1321.08 1201.14
K2 777.89 480.89
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 Emissivity, . .e Pv� �0 004 0 986  (13.4)

Normalized difference vegetation index:

 
NDVI Float Band Band Float Band Band� � � �� �5 4 5 4� /

 
(13.5)

Proportion of vegetation:

 
Pv � � �NDVI NDVI NDVI NDVI� �

min max min
/

2

 
(13.6)

where LST is land surface temperature (in Kelvin), T10 is radiant surface tempera-
ture (in Kelvin), λ is the wavelength of emitted radiance (11.5 μm), ρ is h × c/s 
(1.438 × 10−2 m K), h is Planck’s constant (6.26 × 10−34 J s), c is the velocity of light 
(2.998 × 108 m/s), and s is Stefan Boltzmann’s constant (1.38 × 10−23 J K).

 Results and Discussions

 Noyyal Subbasin

In order to assess the impact of land use changes on the meteorological parameters, 
the land surface temperature estimated from the satellite imageries was used. The 
raster image of land surface temperature, estimated based on Band 10 and Band 11 
of the satellite imagery acquired on 02.05.2014 are shown in Figs. 13.2 and 13.3. 

Fig. 13.2 Land surface temperature for Band 11
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Fig. 13.3 Land surface temperature for Band 10

The temperature is very high nearer to the highly urbanized locations like Tiruppur, 
Coimbatore corporation, etc. In order to correlate the estimated values, the data cor-
responding to daily maximum and minimum temperatures from meteorological sta-
tions were used. The trends obtained for the maximum temperature showed a slight 
increase corresponding to the study period. The standard deviation (SD) and the 
coefficient of variation (Cv) for both were of less value indicating only minor varia-
tions from year to year.

The normalized difference vegetation index (NDVI) is a simple numerical indi-
cator that can be used for analyzing the existence of vegetation by using remote 
sensing imageries in the study area. The NDVI is calculated as a ratio between 
measured reflectivity in the red and near-infrared portions of the electromagnetic 
spectrum. The two spectral bands, Band 4 and Band 5, were chosen as they are good 
indicators of the absorption of chlorophyll in leafy green vegetation and the density 
of green vegetation on the surface. It is also observed that in red and near-infrared 
bands, the contrast between vegetation and soil is exhibited to a maximum extent. 
The maximum NDVI value has decreased from 0.55 to 0.52 during the study period. 
The values of NDVI during May 2014 and May 2017 are shown in Figs.13.4 and 
13.5, respectively.
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Value
High : 0.55257

N

Low : –0.0422896

Fig. 13.4 Normalized difference vegetation index during May 2014

Fig. 13.5 Normalized difference vegetation index during May 2017

 Statistical Analysis

The estimated land surface temperature values corresponding to both the bands 
were compared with the observed temperature values in two stations, namely 
Karunya University, Coimbatore, and Coimbatore airport. The estimated and 
observed values of temperature are given in Table 13.2. The correlation coefficient 
values were found to be 0.819 and 0.884 for Bands 10 and 11 at Karunya University, 
Coimbatore. The correlation values were found to be 0.432 and 0.505 correspond-
ing to bands 10 and 11, respectively, for Coimbatore airport station.

Table 13.3 shows the estimated values of maximum and minimum temperatures 
in the subbasin.

From Table 13.3, it can be observed that the minimum temperature values are 
almost same, but there are large variations corresponding to the maximum tempera-
ture values. This may be due to increase in temperature in the highly urbanized 
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Table 13.2 Estimated and observed temperature values

Years 2014 2015 2016 2017

Observed temp. oC Karunya University 36.00 34.50 35.00 34.10
Coimbatore Airport 35.30 32.00 34.50 34.00

Karunya University, Coimbatore Band 10 41.58 32.91 34.99 34.39
Band 11 38.89 29.50 34.03 30.97

Coimbatore Airport Band 10 35.63 32.94 38.98 37.39
Band 11 32.19 28.6 35.85 33.48

Table 13.3 Estimated temperature values in the subbasin

Category Years 2014 2015 2016 2017

Minimum temperature oC Band 10 22.50 9.96 23.84 16.17
Band 11 24.04 9.68 24.12 16.32

Maximum temperature oC Band 10 50.17 39.53 45.07 43.56
Band 11 45.52 33.98 41.39 38.35

R² = 0.819
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Fig. 13.6 Observed vs estimated temperature corresponding to Bands 10 and 11 at Karunya 
University station

locations, which is due to increased Co2 level. Figure 13.6 shows the scatter diagram 
between the estimated and the observed temperatures at Karunya University, 
Coimbatore.

Figure 13.7 shows the scatter diagram between the estimated and the observed 
temperatures at Coimbatore airport.

Table 13.4 shows the estimated values of NDVI in the subbasin for the years 
2014–2017.

The lowest positive and negative NDVI values are observed in the year 2017. 
Figure 13.8 shows the relationship between NDVI values with respect to years.

From Fig. 13.8, it can be seen that there is a decrease in NDVI value during the 
period of 4 years. The relationship between NDVI and surface radiance temperature 
was studied for the study period through correlation analysis. Surface radiant 
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Fig. 13.7 Observed vs estimated temperature corresponding to Bands 10 and 11 at Coimbatore 
Airport station

Table 13.4 Estimated NDVI values in the subbasin

Category/years 2014 2015 2016 2017

Minimum −0.42 −0.05 −0.05 −0.025
Maximum 0.552 0.547 0.547 0.52

-0.6
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-0.2

0

0.2

0.4

0.6

0.8

2014 2015 2016 2017

NDVI Minimum

NDVI Maximum

Fig. 13.8 Estimated extreme NDVI values

temperature values tend to negatively correlate with NDVI values. The methodol-
ogy will help to estimate the microclimate, heat pockets, and vulnerable study aids 
in identifying the regions susceptible to urban heating in the study area and to take 
the necessary scientific actions like afforestation, reduction of vehicle pollution, 
construction of seepage ponds, etc., which may lead to decrease in temperature.
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 Chennai Metropolitan Area

Figures 13.9 and 13.10 show the variations in land surface temperature during sum-
mer corresponding to the years 2004, 2009, 2014, and 2018. The temperature values 
ranged from 24.6 to 42.3 °C, from 21.2 to 42.3 °C, from 22.4 to 41.0 °C, and from 
and 17.7 to 34.3 °C during the corresponding years. It is observed that there is a 
decrease in the maximum and minimum values during 2018 when compared 
to 2014.

Figures 13.11 and 13.12 exhibit the variation in NDVI values, which varies 
between −0.51 and  +  0.71, −0.45 and  +  0.67, −0.18 and  +  0.51, and  −  0.16 
and + 0.50 during the years 2004, 2009, 2014, and 2018, respectively. The highest 
vegetative fraction is represented as +0.67 in the year 2009, and the lowest is −0.16 
during 2018. Figures 13.13 and 13.14 show that the vegetation is highly distributed 
during 2004 and the lowest is during 2014 and 2018.

From Table 13.5 and Figs.13.13 and 13.14, it is inferred that there is an increase 
in fractal vegetation cover in the Chennai Metropolitan Area. It is observed that 
there is a reduction in forest cover in the zone XIII of the metropolitan area. In zone 
VIII, which consists of Anna Nagar and Kilpauk, there is a decrease in vegetative 
cover of 50.6% and 86% in the years 2014 and 2018, respectively. The T. Nagar 
location decreases in vegetative cover by 73% during 2018, when compared to 
2014. A correlation coefficient between LST and NDVI has been calculated in order 
to explore the impact of the green land on UHI. The results from the land cover 
analysis showed that the vegetation area has slightly increased from 2004 to 2018 

Fig. 13.9 Land surface temperature during the years 2004 and 2009 (summer)
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Fig. 13.11 Normalized difference vegetation index corresponding to the years 2004 and 2009 
(summer)

Fig. 13.10 Land surface temperature during the years 2014 and 2018 (summer)
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Fig. 13.12 Normalized difference vegetation index corresponding to the years 2014 and 2018 
(summer)

Fig. 13.13 Fractal vegetation cover 2004 and 2009

13 Effect of Urbanism on Land Surface Temperature (LST) in a River Basin…



358

Fig. 13.14 Fractal vegetation cover 2014 and 2018

Table 13.5 Fractal vegetation cover on 2004, 2009, 2014, and 2018

Year NDVI range Area in km2 Increase in %

2004 >0.2 345.72 –
2009 >0.2 356.47 3.10
2014 >0.2 484.88 40.25
2018 >0.2 457.93 32.45

and expansion of some urban areas has been noticed. The surface temperature anal-
ysis showed that the minimum and maximum temperatures in the study area were 
24.69 °C and 42.35 °C for 2004 and 17.7 °C and 34.9 °C for 2018, which matches 
the air temperature differences from the meteorological data. Even though there is a 
drop in temperature, the area that experiences the urban heat effect has increased in 
the study area as follows 69.61, 173.26, 999.27, and 220.64 km2, respectively.

From the NDWI maps (Fig. 13.15), it was inferred that the water spread area of 
the water bodies in the study area where 97.73, 156.08, 119.85, and 131.20 km2 
during the years 2004, 2009, 2014, and 2018, respectively. When the results were 
compared, it was observed that there is an increase in water spread area of 34.24%. 
This is directly proportional to the percentage increase in the fractal vegetation 
cover in the study area.

It is a well-known fact that water bodies regulate temperature and attenuate daily 
and seasonal temperature differences, as can be seen in the limited daily and annual 
temperature ranges in the study area.

J. Brema et al.
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Fig. 13.15 NDWI for non-monsoon season for 2004 and 2014

27 - 29 29 - 30.5 30.5 - 32 32 - 33.5 33.5 - 35 35 - 36.5 36.5 - 38 38 - 40
2004 33.4 89.86 222.9 332.42 213.7 183.29 13.98 0.9
2009 92.03 59.042 93.49 406.29 252.48 148.94 75.79 33.63
2014 61.11 97.56 234.05 327.55 264.16 129.32 47.388 7.49
2018 260.23 361.08 294.62 24.16 0.429 0.0063
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Fig. 13.16 Fluctuations in land area with various ranges of temperature

Figure 13.16 shows that there is a shift in more land area from higher tempera-
ture toward lower temperature. This phenomenon is high, especially in the year 
2018. The variations in temperature were studied statistically, and the mean tem-
perature and the standard deviation are given as follows in Table 13.6.

The area of Chennai Metropolitan Area is around 1187.45 Km2, and it is classi-
fied into four types, namely, water bodies area, built-up area, vegetation, and barren 
land as shown in Fig. 13.17 and Table 13.7. From Table 13.8, it is observed that the 
percentage of water bodies area, built-up area, and vegetation have increased by 
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Table 13.6 Variations in temperature values through the study period

Year/statistical values 2004 2009 2014 2018

Mean temperature (°C) 33.12 33.51 32.70 28.90
Standard deviation 1.93 2.44 1.83 2.40

Legend
WATER

N N

BUILTUP LAND

VEGETATION
BARREN LAND

Legend
WATER

BUILTUP LAND
VEGETATION

BARREN LAND

Fig. 13.17 Land use maps corresponding to 2004 and 2018

Table 13.7 Classification, area, and percentage of land use

Year Land use type Area (km2) Percentage of total area

2004 Water bodies 97.73 8.23
Built-up area 429.51 36.17
Vegetation 392.03 33.01
Barren land 268.19 22.59

2018 Water bodies 131.20 11.05
Built-up area 470.40 39.61
Vegetation 431.11 36.31
Barren land 154.74 13.03

2.82%, 3.44%, and 3.29%, respectively, during 2018 when compared with 2004. On 
the other hand, the percentage of barren land has reduced by 9.55%.

In order to understand the variations in temperature at various points with 
changes in land use type, profiles were taken across the study area as shown in 
Fig. 13.18. The line AB was considered in the longitudinal direction, and the pro-
files CD and EF were considered across the study area, so that the distance increases 
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Table 13.8 Changes in land 
use type from 2004 to 2018

Land use type Change in %

Water bodies 2.82
Built-up area 3.44
Vegetation 3.29
Barren land −9.55

Fig. 13.18 Study area map with profiles

from the seashore. From Figs.13.19, 13.20 and 13.21, it is observed that along pro-
file AB, there is not much variation in temperature with respect to distance, whereas 
in the other two profiles, the graph shows a decrease in temperature as the distance 
increases from the shore. It was also observed that with change in land use from 
barren land to vegetation and barren land to water bodies, there was a decrease in 
temperature. This was assured with the help of NDVI and NDWI values also.

From Fig. 13.22, the area under urban heat effect was estimated, and it was found 
as 69.61, 173.26, 999.27, and 220.64 during the years 2004, 2009, 2014, and 2018. 
The results show that the estimated UHI value for the study area was 30.91, which 
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Fig. 13.19 Variations in temperature along profile AB
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Fig. 13.20 Variations in temperature along profile CD
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Fig. 13.21 Variations in temperature along line EF

was less when compared to that of 2004 (33.06). Even though the average annual 
temperature has decreased in the study area, the urban heat effect is high during the 
month of April. It was observed that the area under urban heat effect has increased 
from 69.61 km2 to 220.64 km2 during the period 2004–2018. From Table 13.9, it can 
be observed that the mean value has increased, and the standard deviation is also 
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Fig. 13.22 UHI for the years 2004 and 2009

Table 13.9 Variations in the urban heat value for the land with vegetative cover and non- 
vegetative cover

Year Type of land cover Std. deviation Mean Maximum Minimum

2004 Vegetative area 0.959 −0.0074 4.434 −3.647
Non-vegetative area 1.091 −0.1446 2.203 −3.676

2018 Vegetative area 0.983 −0.638 3.424 −4.164
Non-vegetative area 1.142 0.322 4.812 −4.387

high for the land with non-vegetative cover. As such, there are limited studies are 
available to understand the influence of sea in the coastal areas.

 Conclusions

In this research, the potential of remote sensing to study the temperature variation 
and its characteristics in two different regions has been demonstrated. The heat 
energy radiated by the earth’s surface is determined by including the factors such as 
different land use types, vegetation cover, and soil in the study area. Pearson corre-
lation coefficient(R) between surface temperature and NDVI for the study area is 
estimated as 0.88. The result shows that the urban region experiences high tempera-
ture whereas the water bodies and the vegetative cover region area have 
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comparatively low temperature. In the Chennai Metropolitan Area, the area extent 
under water bodies, built-up area, and vegetative cover have increased compared 
with the barren land by 2018. The results show that even though there is an increase 
in vegetative cover, the maximum urban heat value are high in the case of both veg-
etative and non-vegetative area, respectively. Considering this, necessary steps need 
to be taken for solving the urban heating effect in the future scenario in the Chennai 
Metropolitan Area. This study proves that the increase in vegetative cover does not 
have immediate effect over urban heating, especially in coastal areas.

References

Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of 
energy and water, and the urban heat island. Int J Climatol 23:1–26

Belal AA, El-Ramady HR, Mohamed ES et al (2014) Drought risk assessment using remote sens-
ing and GIS techniques. Arab J Geosci 7:35–53

Ben W, Redeker EJ, Thurow TL (2001) Vegetation and water yield dynamics in an Edwards pla-
teau watershed. J Range Manag 54(2):98–105

Brema J, Rahul TS, Julius JJ (2019) Study on drought monitoring based on spectral indices in 
Noyyal River Sub-watershed using Landsat-8 imageries. In: Proceedings of international con-
ference on remote sensing for disaster management. Springer, Cham, pp 473–482

Chen Y, Wang J, Li X (2002) A study on urban thermal field in summer based on satellite remote 
sensing. Remote Sens Land Resour 4:55–598

Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:1–6
Dagliyar A, Avdan U, Yildiz ND, Nefeslioglu HA (2015) Geophysical research, abstracts, vol 17. 

EGU, General Assembly
Gibson DJD (2006) Land degradation in the Limpopo Province, South Africa. Master of 

Science degree
Kumar D, Shekhar S (2015) Statistical analysis of land surface temperature-vegetation indexes 

relationship through thermal remote sensing. Ecotoxicol Environ Saf 121:39–44
Lettenmaier D, Mishra V, Ganguly A, Nijssen B (2014) Observed climate extremes in global urban 

areas. Environ Res Lett 16:14787
Li D, Bou-Zeid E (2013) Synergistic interactions between urban heat islands and heat waves: the 

impact in cities is larger than the sum of its parts. J Appl Meteorol Climatol 52:2051–2064
Ma Y, Kuang Y, Huang N (2010) Coupling urbanization analyses for studying urban thermal envi-

ronment and its interplay with biophysical parameters based on TM/ETM+ imagery. Int J Appl 
Earth Obs Geoinf 12:110–118

Meehl G, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st 
century. Science 305:994–997

Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rain-
fall in the Sahel and East Africa, using normalized difference vegetation index from NOAA 
AVHRR. Clim Chang 17:209–241

Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London
Pande CB, Moharir KN, Singh SK, Varade AM, Ahmed Elbeltagie SFR, Khadri PC (2021a) 

Estimation of crop and forest biomass resources in a semi-arid region using satellite data and 
GIS. J Saudi Soc Agric Sci 20(5):302–311

Pande CB, Moharir KN, Khadri SFR (2021b) Assessment of land-use and land-cover changes in 
Pangari watershed area (MS), India, based on the remote sensing and GIS techniques. Appl 
Water Sci 11:96. https://doi.org/10.1007/s13201- 021- 01425- 1

J. Brema et al.

https://doi.org/10.1007/s13201-021-01425-1


365

Peng S et al (2012) Surface urban heat island across 419 global big cities. Environ Sci Technol 
46:696–703

Shahid M, Rahman KU, Haider S et al (2021) Quantitative assessment of regional land use and 
climate change impact on runoff across Gilgit watershed. Environ Earth Sci 80:743. https://doi.
org/10.1007/s12665- 021- 10032- x

Streutker DR (2003) A remote sensing study of the urban heat island of Houston, Texas. Remote 
Sens Environ 85:282–289

Taha H (1996) Modeling impacts of increased urban vegetation on ozone air quality in the South 
Coast Air Basin. Atmos Environ 30(20):3423–3430

Zaitunah A, Samsuri, Ahmad AG, Safitri RA (2018) Normalized difference vegetation index (ndvi) 
analysis for land cover types using Landsat 8 OLI in Besitang watershed, Indonesia. IOP Conf 
Series: Earth and Environmental Science 126:012112

Zhou B, Rybski D, Kropp JP (2013) On the statistics of urban heat island intensity. Geophys Res 
Lett 40:5486–5491

Zhou D, Zhao S, Liu S, Zhang L, Zhu C (2014) Surface urban heat island in China’s 32 major cit-
ies: spatial patterns and drivers. Remote Sens Environ 152:51–61

Zhou D, Zhao S, Zhang L, Sun G, Liu Y (2015) The footprint of urban heat island effect in China. 
Sci Rep 5:srep11160

13 Effect of Urbanism on Land Surface Temperature (LST) in a River Basin…

https://doi.org/10.1007/s12665-021-10032-x
https://doi.org/10.1007/s12665-021-10032-x


367

Chapter 14
Estimation of Land Surface Temperature 
and Urban Heat Island by Using Google 
Earth Engine and Remote Sensing Data

Komal Gadekar, Chaitanya B. Pande, J. Rajesh, S. D. Gorantiwar, 
and A. A. Atre

Abstract This chapter aims at the surface temperature of urbanization, nonurban 
heat island (NUHI), and urban heat island, an important factor for heat changes that 
affect the surface of the earth. Therefore, due to local and global environmental 
changes and man-made operations, block land surface temperatures in so many 
areas of Nashik town are rising. The estimation of urban heat island, NDVI, and 
NDBI indices was calculated using GEE, machine learning algorithm, and also 
remote sensing data. In this chapter, the relationship and correlation between the 
LST, NDVI, and NDBI indies were established for the estimation of the surface 
temperature of the Nashik urban area and other areas of the Maharashtra block. The 
NDVI and NDBI indices were estimated using the machine learning algorithm and 
satellite data. The GEE platform has provided easy access to all satellite data with a 
java script algorithm for analysis and LST relationship between the built-up area 
and the vegetative land. Various urban thermal islands (UHIs) have demarcated as 
higher temperatures in urban areas within city borders due to more man-made activ-
ities and climate change factors. The UHI value threshold for 2015 was measured  
at 41.03  °C and in 2019 at 43.28  °C. The relationship between LST–NDVI and 
LST–NDBI was identified quantitatively by a correlation analysis based on the 
algorithm and the GEE platform. LST shows a strong negative correlation (−0.41 
for 2015 and −0.57 for 2019) with NDVI and a strong positive correlation (0.31 for 
2015 and 0.71 for 2019) with NDBI throughout the Nashik region. The non-UHI 
zones (green areas and water bodies) remain almost unchanged if any change is 
assumed to be very little altered, but only the UHI zones are in severe heat stress due 
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to urban air pollution. The study field results can help the urban, agricultural, and 
ecological planners decide on the sustainable practices of ecological and cli-
mate change.

Keywords Remote sensing · LST · NDVI · NDBI · GEE · UHI

 Introduction

The UHI is a very useful subject for studies on climate, atmospheric, and urban 
planning. The most known and contrasting climates are widely understood (Tan 
et al. 2010). Today, urban and industrial areas have developed, and these factors 
directly affect air and surface temperatures, soil water, and air pollution (Oke 1982; 
Pande et al. 2018). Air and land surface temperature assessments are useful for local 
and global surface temperatures directly related to this measurement device (typi-
cally estimated in Kelvin). LST has studied the outer layer of the earth where the 
heat and radiation of the sun have assimilated, mirrored, and refracted. Due to dif-
ferent climatic conditions and other man-made exercises, where the definite expec-
tations are checked, the surface temperature of the day has now changed (Santamouris 
2015). The overall urbanization of ozone-damaging substances has increased, and 
the landscape has been reshaped, which, due to the synchronous shift in the normal 
distribution of land and the presentation of urban resources, such as anthropogenic 
earth surfaces, has major climatic impacts on different scales. Ground overviews 
have allowed a deeply accurate land use land cover (LULC) characterization (Pande 
et al. 2021b; Srivastava and Chinnasamy 2021), but they are time-consuming, trou-
blesome, and expensive, featuring remote detection and an obvious and preferred 
alternative. Urban heat island (UHI) identifiable evidence and representation was 
established on LST that fluctuates spatially due to the nonhomogeneity of land sur-
face spread and other barometric components (Buyantuyev and Wu 2010). The 
main factor for calculating the maximum and lowest temperature of a given region 
is LST. Medium spatial target information, such as that given by LANDSAT and 
place, is suitable for land spread or vegetation mapping at a local nearby scale (Pande 
et al. 2022). OLI gathers data at a 30 m spatial target with eight groups positioned 
in the electromagnetic ranges of the visible and nea-infrared and shortwave infrared 
districts and an extra panchromatic 15 m spatial target band (Estoque et al. 2006). 
At a spatial target of 100 m, TIRS measures the TIR brilliance using two classes 
located in the air window somewhere in the range of 10–12 μm. In comparison with 
the twentieth period, nearly 50% of the population currently resides in the area. 
Since the last 5 years, fast-growing urbanization has had a direct effect on the atmo-
sphere, water, air pollution, and soil temperatures (Shahid et al. 2021).

The Earth’s surface temperature plays an important role in maintaining magnitude, 
ecological planning, crop yield production, and atmospheric conditions. Proper view 
of the different scales, i.e., local, global, and regional, has been derived. These fore-
casting levels were estimated using thermal sensors and satellite data (Pande et al. 
2021a). Remote sensing and GIS were quantitatively analyzed by urban thermal 
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islands. The results of the study directly affected urban climate problems and environ-
mental development and planning. For the study of urban thermal islands, soil mois-
ture, air, emissions, land use, and urban spatial information, remote sensing satellites 
may provide several types of resolution and time data. Available soil surface tempera-
tures have been studied by a number of researchers and scientists, but this analysis 
shows a very strong negative association between the different indices, i.e., the nor-
malized vegetation difference index and soil surface temperature. During the seasons, 
the calculated values of NDVI and land surface changes varied widely. The UHI was 
estimated with data on soil surface temperatures. UHII had generally estimated single 
environments in the below village zone from both existing in situ locations (Earl et al. 
2016). In comparison with the surrounding peri- urban region, the urban heat island 
(UHI) effect shows greater air pollution and LST in urban areas. The high levels of 
near-surface energy emissions, solar radiation absorption of ground objects, and low 
evapotranspiration rates were provided by this study (Small 2006). In this chapter, the 
main focus on the four objectives has been completed by using Google Earth Engine 
and remote sensing techniques. The following four are as follows: (1) to develop the-
matic LST maps from Landsat 8 OLI via Google Earth Engine Platform between 
2015 and 2019, (2) to study the UHI and non-UHI in the Nashik block and this study 
during the years 2015 and 2019 based on the LST maps, (3) to measure the algorithm-
based NDVI and NDBI maps over the years 2015 and 2019, and (4) to compared LST 
during the 2015 and 2019 cycles with NDVI and NDBI. This relative analysis of non-
UHI in semiarid regions takes a broad perspective of the UHI, its behavior, and its 
climate-related impact in semiarid areas into account.

 Study Area

The city of Nashik is the third town in the Maharashtra region located at 19°59′39″ 
N latitude and 73°47′50″ E with the area is 15,582 sq. km. in the Maharashtra area 
to the north. In contrast to other districts, the district has different croplands such as 
paddy, soybean, cotton, and maximum agriculture land under more horticultural 
crops. The surface temperature of the land is useful for calculating the semi-aerated 
area’s soil moisture. As per 2011 census data, the population of Nashik Tehsil is 1, 
317, 367. The larger eastern part of the district is situated under the Deccan rock 
region with larger cultivated land (Fig. 14.1).

 Climate

The town has a tropical location combined with a high elevation from the mean sea 
level to provide it with a relatively small tropical location in wet and dry climates. 
The maximum temperature range is 40–42 °C in May, and the minimum tempera-
ture range is 14–15 °C in January. April and May are the hottest months in the study 
region, while December and January are the coldest months. Red soils are mainly 
found in the north-west and black soils in the south-east.
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Fig. 14.1 Location map of the study area

 Methodology

An efficient method of analyzing and collecting satellite data using a java script 
algorithm is the Google Earth Engine  (Pande 2022). The data treatment is based on 
the GEE algorithm (Google Earth Engine). The NDVI, NDBI, and surface land 
temperatures measured in the semiarid zone have been determined for this platform 
(Majkowska et  al. 2017). In Landsat 8 satellite data, two sensors, including the 
Operational Land Imager (OLI) and the Thermal Infrared Sensor, were selected for 
terrestrial surface temperatures (TIRS). For wavelength 1–7 (visible and infrared) 
and 9 (Cirrus), the OLI data has been formed into nine spectral ribbons with a spa-
tial resolution of 30 m. Spatial resolution has been used for bands 8 (panchromatic) 
and 15 m. With a spatial resolution of 100 meters, both thermal infrared (10 and 11) 
bands were provided by TIRS. Urban heat and nonurban heat island surveys focus 
on NDVI and NDBI Landsat images, although they are widely used for LULC and 
UHI investigations. Evolving algorithms have been used to calculate NDVI, NDBI, 
and surface temperature. Terrestrial surface temperature maps were used to examine 
urban-heat islands and nonurban islands in the Nashik city. The temperature differ-
ence between the mean LST in urban areas and the average LST in the surrounding 
area (but still within urban borders) for each site was measured in order to detect the 
extent of the heat island (Fig. 14.3). Meteorological data sets have been used to vali-
date the surface temperature with metrological data. The tool used can be found in 
Fig. 14.2.
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Fig. 14.2 GEE Window showing Nashik Taluka shapefile

 For Extraction of Land Surface Temperature

Landsat 8 is a satellite series of Landsat launched by NASA. For the study of land 
surface temperature, these are the strongest satellites. The Landsat 8 data is acces-
sible from the cost-free United States Geological Survey (USGS) Earth Explorer 
site  (Gulhane et  al. 2022). The Landsat 8 satellite images the entire planet once 
every 16 days. The TIRS group 10 was used in the current investigation to evaluate 
splendor temperature and vegetation extent, and groups 4 and 5 were used to create 
NDVI of the examination zone. In this study, satellite information about Nashik 
Taluka for May 2015 and May 2019 was used. Landsat 8 includes group metadata, 
such as warm and reliable factor esteem, which can be used for the computation of 
computers such as LST (Lin et al. 2018).

 For Calculation of Indices

Landsat-8 satellite data has been collected from the data catalog and the surface 
reflectance data as an image collection in Google Earth Engine (Fig. 14.2). For the 
estimation of the NDVI and NDBI during the years 2015 and 2019, Landsat satellite 
data is the highest, although it is very significant for the study of land surface tem-
peratures. Sentinel-2 data was compiled from the data catalog of Google Earth 
Engine and is used for calculating NDVI and NDBI indices. In the Java script and 
satellite data on the Google Earth cloud-based platform (Kandekar et al. 2021; Pande 
2022), all indices were algorithms developed (Fig. 14.3).
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Fig. 14.3 Flow chart of the methodology

 Top of Atmosphere (TOA) Radiance

The atmosphere radiance is measured by radiance rescaling factor by using thermal 
infrared digital numbers. It is converted to TOA spectral radiance.

 L� � ��ML Qcal AL  

where

Lλ = TOA spectral radiance (Watts/ (m2 * sr * μm))
ML = radiance multiplicative Band (No.)
AL = radiance Add Band (No.)
Qcal = quantized and calibrated standard product pixel values (DN).

 Top of Atmosphere (TOA) Brightness Temperature

Spectral radiance data has been transformed to top of atmosphere brightness tem-
perature using the thermal constant values in the metadata file:

 
BT K k� �� � �2 1 1 272 15/ ln / .L�

 

K. Gadekar et al.



373

where

BT = Top of atmosphere brightness temperature (°C).
Lλ = TOA spectral radiance (Watts / (m2 * sr * μm)).
K1 = K1 constant band (no.)
K2 = K2 constant band (no.)

 Land Surface Temperature (LST)

The land surface temperature (LST) is the radiative temperature calculated by using 
top of atmosphere brightness temperature, wavelength of emitted radiance, land 
surface emissivity (Peng et al. 2018):

 
LST BT W BT E� � � � � �� � ��/ / ln1 14380

 

where

BT = Top of atmosphere brightness temperature (°C).
W = wavelength of emitted radiance.
E = land surface emissivity.

 Normalized Differential Vegetation Index (NDVI)

The normalized differential vegetation index (NDVI) is a standardized vegetation 
index calculated using near infrared (Band 5) and red (Band 4) bands. The NDVI 
also shows the vegetation condition on the surface of the earth if any climate change 
factors affect the vegetation. In these respects, NDVI plays an important role in 
estimating the temperature of the surface of the land:

 
NDVI NIR RED NIR RED� �� � �� �/

 

where

RED = DN values from the RED band.
NIR = DN values from Near-Infrared band.

 Land Surface Emissivity (LSE)

Land surface emissivity (LSE) is the average emissivity of an element of the surface 
of the Earth calculated from NDVI values:

 
PV NDVI NDVI NDVI NDVI� �� � �� ��� ��min / max min

2
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where

PV = Proportion of vegetation.
NDVI = DN values from NDVI image.
NDVI min = Minimum DN values from NDVI image.
NDVI max = Maximum DN values from NDVI image.

 Estimation of Normalized Difference Vegetation Index

NDVI is a linear combination between the near-infrared band and the red band, 
which is observed as the basic index for measuring the “greenness” of the earth’s 
surface. It was calculated by NDVI formula from satellite data.

 
NDVI NIR RED NIR RED� �� � �� �/

 

For Landsat 8:

 
NDVI Band Band Band Band� �� � �� �5 4 5 4/

 

For Sentinel 2:

 
NDVI Band Band Band Band� �� � �� �8 4 8 4/

 

 Normalized Difference Built-Up Index (NDBI)

It is estimated as the linear combination of the near-infrared band (0.76–0.90 μm) 
and the short-wave infrared (SWIR) band (1.55–1.75 μm). It is used for the extrac-
tion of urban built-up land.

 
NDBI SWIR NIR SWIR NIR� �� � �� �/

 

 Mapping UHI

Therefore, two types of UHI and non-UHI were measured by LST according to the 
following equations (Guha et al. 2018):

 

LST

LST

� �
� � �

�

�

� �
� �
0 5

0 0 5

:

:  
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where μ and δ are the mean and standard deviation of LST in the study area, 
respectively.

 Delineating the UHS

The analysis of LST maps was used to delineate UHS across the entire Nashik 
region. Unique significance has been granted to nonstop monitoring. This small sec-
tion is the hottest and often established within the UHI and unfavorable for human 
settlement (Ranagalage et al. 2017).

UHS was demarcated as per as following equation (Guha et al. 2018):

 LST � � �� �2  

where μ and δ are the mean and standard deviation of LST in the study area, 
respectively.

 Developed Algorithm

The following algorithm was developed for estimating the vegetation index and soil 
surface temperature for agriculture and ecological resource planning in the semi-
arid region.

var studyArea=ee.FeatureCollection('users/komalgadekar76/
Nasikt');
var style_1={color:'red'};
Map.addLayer(studyArea.style(style_1),{},'studyArea');
Map.centerObject(studyArea);
print(studyArea);
var Nashik_M15 = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
.filterDate('2015-05-05', '2015-05-15')
.filterBounds(studyArea)
var Nashik_15mosaic= Nashik_M15.mosaic()
print(Nashik_15mosaic)
var rgbVis={
 min:0.0,
 max:3000,
 bands:['B4','B3','B2'],
};

Map.addLayer(Nashik_15mosaic.clip(studyArea),rgbVis, 
'Nashik_15mosaic');
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 (a) Calculation of NDVI

var NDVI_M15 =Nashik_15mosaic.expression(
'(NIR-RED)/(NIR+RED)',
{'NIR':Nashik_15mosaic.select('B5'), 'RED':Nashik_15mosaic.
select('B4')}
);
var visParams = {
 min: -1,
 max:1,
 palette:['red','green'],
};
Map.addLayer(NDVI_M15.clip(studyArea),visParams, 'NDVI_M15');
print(NDVI_M15);

 (b) Calculation of NDBI

var NDBI_M15 =Nashik_15mosaic.expression(
'(SWIR-NIR)/(SWIR+NIR)',
{'SWIR':Nashik_15mosaic.select('B6'), 'NIR':Nashik_15mosaic.
select('B5')}
);
var visParams1 = {
 min: -1,
 max:1,
 palette:['orange','blue'],
};
Map.addLayer(NDBI_M15.clip(studyArea),visParams1, 'NDBI_M15');
print(NDBI_M15);

 Results and Discussion

More horticulture and agricultural land are the selected study area, and LST is more 
important for vegetation and human health. A significant factor in agriculture and 
ecological planning is the surface temperature of the ground. Various indices such 
as LST, NDVI, and NDBI for any wide area have been effectively provided to the 
GEE cloud-based platform (Fig. 14.4). For specific agricultural purposes and the 
urban heat index, this platform is useful for broad areas of extraction data. The 
NDVI maps showed the status of the vegetation with the amount of area occupied 
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Fig. 14.4 NDVI and NDBI index in the GEE platform

by agriculture and built-up land. These NDVI maps can be useful for estimating 
land surface temperatures and built-in indices used to estimate city temperatures 
since day-to-day city temperature rises due to climate change causes and man-made 
activities (Rasul et al. 2015). UHI temperatures directly affect crops, food security, 
and other vegetation trees in agriculture. These UHI values are increased from LST, 
while values have an effect on crop irrigation water and decreased agricultural soil 
moisture during the Kharif and Rabi seasons. The Nashik Taluka shape file was 
uploaded from the GEE platform. This platform has acquired Landsat images for 
the year 2015 and sentinel images for the year 2019 for unique periods measured for 
analysis of the NDVI, LST, and NDBI indices at the Nashik City in 2015 and 2019. 
As a result, 2 years of soil surface temperature and soil moisture status, crop condi-
tions, urban heat index, and other environmental planning in the semiarid zone have 
been calculated (Yao et al. 2019; Pande 2014). The values of NDVI and NDBI were 
compared with changes in ground surface temperatures in the years 2015 and 2019. 
Farmers and related regional departments will make perfect use of agro- advisory 
services. From satellite data, NDVI values such as −0.34–0.8 and 0.35–0.76 have 
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Fig. 14.5 NDVI map of Nashik Taluka for May 2015

been calculated using the GEE platform (Figs. 14.5 and 14.6). Due to drought and 
rising soil surface temperatures, the NDVI values were reflected in the reduced 
vegetation (Pande et al. 2018). The statistical effects of the two-year NDVI values 
are shown in Table 14.1. The NDVI of May 2015 was observed the maximum val-
ues of standard deviations (Table 14.1). There was a disparity between maximum 
and minimum NDVI values such as 0.043 and 0.010 on two separate days, respec-
tively (Fig. 14.7). These NDBI values were measured for Nashik Taluka in the years 
2015 and 2019 (Figs.  14.8 and 14.9). The statistical effects of NDBI values are 
shown in Table 14.2. While these values are shown on two different dates, the dif-
ference between the maximum and minimum NDBI values was 0.320 and 0.008 on 
the two dates, respectively (Figs. 14.10 and 14.11 and Table 14.2).
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Fig. 14.6 NDVI map of Nashik Taluka for May 2019

Table 14.1 NDVI for Nashik Taluka

Year
Statistical results
Max. Min. Mean SD

May 2015 0.8111 −0.3443 0.3021 0.1229
May 2019 0.7680 −0.3548 0.1913 0.1217

 Relationship of LST–NDVI and LST–NDBI Within the UHI 
and the Non-UHI

The correct values of the LST are defined. The color coding of the LST theme maps 
within the study area was developed in accordance with the thermal pattern. Average 
LST values such as 39.22 °C and 41.87 °C were calculated during 2015 and 2019, 
respectively. The Google Earth Engine development algorithm has calculated all of 
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Fig. 14.7 NDVI graph for 2 years of Nashik Taluka

the LST values. It has set the UHI threshold values. UHI values such as 41.03 °C 
and 43.28  °C were specified in the 2015 and 2019 algorithms (Figs.  14.11 and 
14.12). The LST maps are generated using Google Earth Engine algorithms and Arc 
GIS tools (Fig. 14.13).

LST has a good relationship between NDBI and NDVI. The LST was strongly 
negative in semiarid areas, −0.41 for 2015 and − 0.56 for 2019. In the region of 
0.31 in 2015 and 0.71 in 2019, the positive LST correlation for NDBI was shown to 
be strong (Fig. 14.11). The issue of landscape composition has established this phe-
nomenon (Pande and Moharir 2014). LST-NDVI and LST-NDBI both have a greater 
effect in a wide variety of natural environments (Tables 14.3 and 14.4).

 Spatial Distribution of UHI and Non-UHI

The intensity of UHI is defined as the difference between average UHI and non-UHI 
temperatures (Table 14.3). The UHI strength in Nashik Taluka is concentrated in a 
big industrial area, which is Ambad industrial area and this directly play in a major 
part for UHI. This area has more heat waves during the summer season. The area 
near the Godavari River and Kashyapi Dam was taken away from the non-UHI area. 
The UHI threshold value is calculated for 2015 at 41.03  °C and for 2019 at 
43.28 °C. For UHI, the LST standard deviation values indicate more heterogeneity 
in both cities (Fig. 14.14 and Table 14.5).
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Fig. 14.8 NDBI map of Nashik for May 2015

 Identification of UHS

In the built-up areas and bare land available near Devlali in the Nashik block, UHS 
was more abundant due to a lack of vegetation. For 2015 and 2019, the UHS was 
observed at a threshold of 46.44 °C and 47.52 °C, respectively. The most important 
locations for UHS growth are parking areas, roadways, power plants, metal roofs, 
and industrial factories. There are very few or small quantities of vegetation and 
water bodies in almost all such hot spots (Fig. 14.15).
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Fig. 14.9 NDBI map of Nashik for May 2019

Table 14.2 NDBI for Nashik Taluka

Year
Statistical results
Max. Min. Mean SD

May 2015 0.7011 −0.6492 0.0252 0.1036
May 2019 0.3808 −0.6581 0.0416 0.0958

 Conclusion

This research studied how urban shapes are related to the UHI by GEE and GIS 
software. With superior spatial resolution in the long-term sequenced TM/ETM 
images, the mechanisms involved in generating UHI arising from urban form could 
be recognized. Landsat-8 OLI and TIRS data were used for the UHI intensity effect 
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study on the town of Nashik. With dynamic interactions with NDVI and NDBI indi-
ces, LST has interpreted them. LST maps spread through Nashik’s industrial zone 
and city center–defined UHI areas. The primary responsibility for LST lands and 
built-up areas is to be established. The presence of vegetation and water has 
decreased LST levels. Some UHS in the UHI zones have detected elevated concen-
trated LST. In order to interpret the relations between LST–NDVI and LST–NDBI, 
correlation analysis was also used. Over the whole of Nashik, LST has a large nega-
tive correlation with the NDVI (−0.41 for 2015, −0.57 for 2019, −0.31 for 2015, 
and 0.71 for 2019) and a strong positive correlation with the NDBI. It demonstrates 
that there are practically unchanged or little altered non-UHI areas (green areas and 
water bodies). Only UHI areas are severely heat-stressed. The growing urban area 
can be used to research urban growth over time along with the area’s LST material; 
it will help decision-makers, in particular village-level preparation specialists, to 
have broad concepts in management and planning processes. It was therefore pro-
posed that predictors, technologists, and other experts involved in the processing of 
geographic information should follow an accurate method of generating efficient 
results for better performance. It shows that the Taluka area is larger than any other 
agricultural area in connection with most of its surroundings and can be linked to 
the reduction of trees and shrubs in order to accommodate farmland and other farm-
ing activities. In this context, it is suggested that planners and experts who are afraid 
should take action to estimate the advice given to farmers to plant trees and stop 
cutting down existing trees in order to have an unnecessary environmental balance.
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Fig. 14.12 Spatial distribution map of LST for May 2015
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Fig. 14.13 Spatial distribution map of LST for May 2019

Table 14.3 Correlation coefficient between LST, NDVI, and NDBI

Year LST-NDVI LST-NDBI

2015 −0.41 0.32
2019 −0.56 0.71
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Table 14.4 Statistical results of LST

Year
LST (Max.) LST (Min.) LST (Mean) LST (SD)
UHI NUHI UHI NUHI UHI NUHI UHI NUHI

May 2015 47.65 40.97 41.03 24.79 44.34 32.88 0.75 1.90
May 2019 49.29 43.27 43.28 26.65 46.28 34.96 0.82 1.35

Fig. 14.14 Spatial extent of UHI and Non-UHI

Table 14.5 Variation of LST in UHI and Non-UHI

Year
Statistical results of LST
Max. Min. Mean SD

May 2015 47.65 24.79 39.22 3.613
May 2019 49.29 26.65 41.87 2.852
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Fig. 14.15 Location of UHS within Nashik boundary

Acknowledgments We are grateful toward Principal Investigator, Center for Advance Agriculture 
Science and Technology on Climate-Smart Agriculture and Water Management, MPKV, Rahuri 
(Agricultural University) and ICAR, NAHEP, and World Bank for providing the necessary facili-
ties and financial support for conducting this research.

Conflict of Interest The authors declare that they have no conflict of interest.

References

Aslan N, Koc-San D (2016) Analysis of relationship between urban heat island effect and land use/
cover type using landsat 7 ETM+ and landsat 8 oli images. In: The international archives of 
the photogrammetry, remote sensing and spatial information sciences, volume XLI-B8. XXIII 
ISPRS Congress

Bala R, Prasad R, Yadav VP, Sharma J (2018) Comparative study of land surface temperature 
with different indices on heterogeneous land cover using Landsat 8 data. In: The international 
archives of the photogrammetry, remote sensing and spatial information sciences, volume 
XLII-5. https://doi.org/10.5194/isprs- archives- xlii- 5- 389- 2018

Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotempo-
ral variations in surface temperatures to land-cover and socioeconomic patterns. Landsc Ecol 
25(1):17–33. https://doi.org/10.1007/s10980- 009- 9402- 4

Carlson TN, Arthur ST (2000) The impact of land use land cover changes due to urbanization on 
surface microclimate and hydrology: a satellite perspective. Glob Planet Chang 25(1–2):49–65. 
https://doi.org/10.1016/S0921- 8181(00)00021- 7

14 Estimation of Land Surface Temperature and Urban Heat Island by Using Google…

https://doi.org/10.5194/isprs-archives-xlii-5-389-2018
https://doi.org/10.1007/s10980-009-9402-4
https://doi.org/10.1016/S0921-8181(00)00021-7


388

Earl N, Simmonds I, Tapper N (2016) Weekly cycles in peak time temperatures and urban heat 
island intensity. Environ Res Lett. https://doi.org/10.1088/1748- 9326/11/7/074003

Estoque RC, Murayama Y, Myint SW (2006) Effects of landscape composition and pattern on land 
surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci Total 
Environ 577:349–359

Franz (2018) How to calculate land surface temperature with Landsat 8 satellite images. Remote 
Sensing and GIS Tutorial

Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI 
and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur J Remote 
Sens 51(1):667–678

Gulhane VA, Rode SV et al. (2022) Correlation analysis of soil nutrients and prediction model 
through ISO cluster unsupervised classification with multispectral data. Multimed Tools Appl. 
https://doi.org/10.1007/s11042-022-13276-2

Kandekar VU, Pande CB, Rajesh J et al (2021) Surface water dynamics analysis based on sentinel 
imagery and Google Earth Engine Platform: a case study of Jayakwadi dam. Sustain Water 
Resour Manag 7:44. https://doi.org/10.1007/s40899-021-00527-7

Kaplan G, Avdan U, Avdan ZY (2018) Urban Heat Island analysis using the Landsat 8 satellite 
data: a case study in Skopje, Macedonia. PRO 2:358

Lin L, Ge E, Liu X, Liao W, Luo M (2018) Urbanization effects on heat waves in Fujian Province, 
Southeast China. Atmos Res 210:123–132. https://doi.org/10.1016/j.atmosres.2018.04.011

Majkowska A, Kolendowicz L, Półrolniczak M, Hauke J, Czernecki B (2017) The urban heat 
island in the city of Poznań as derived from Landsat 5 TM. Theor Appl Climatol 128:769–783. 
https://doi.org/10.1007/s00704- 016- 1737- 6.N

Oke TR (1982) The energetic basis of the urban heat island. Q J Roy Meteorol Soc 108:1–24. 
https://doi.org/10.1002/qj.49710845502

Pande C (2014) Change detection in land use/land cover in Akola Taluka using remote sensing and 
GIS technique. Int J Res 1(8):1–13

Pande CB (2022) Land use/land cover and change detection mapping in Rahuri watershed area 
(MS). India using the google earth engine and machine learning approach, Geocarto Int. 
https://doi.org/10.1080/10106049.2022.2086622

Pande C, Moharir K (2014) Analysis of land use/land cover changes using remote sensing data 
and GIS techniques of Patur Taluka, Maharashtra, India. Int J Pure Appl Res Eng Technol 
2(12):85–92

Pande CB, Moharir KN, Khadri SFR, Patil S (2018) Study of land use classification in the arid 
region using multispectral satellite images. Appl Water Sci 8(5):1–11. ISSN 2190-5487

Pande CB, Moharir KN, Singh SK, Varade AM, Ahmed Elbeltagie SFR, Khadri PC (2021a) 
Estimation of crop and forest biomass resources in a semi-arid region using satellite data and 
GIS. J Saudi Soc Agric Sci 20(5):302–311

Pande CB, Moharir KN, Khadri SFR (2021b) Assessment of land-use and land-cover changes in 
Pangari watershed area (MS), India, based on the remote sensing and GIS techniques. Appl 
Water Sci 11:96. https://doi.org/10.1007/s13201- 021- 01425- 1

Pande CB, Kadam SA, Jayaraman R, Gorantiwar S, Shinde M (2022) Prediction of soil chemical 
properties using multispectral satellite images and wavelet transforms methods. J Saudi Soc 
Agric Sci 21(1):21–28

Pattanayak SP, Diwakar SK (2018) Seasonal comparative study of NDVI, NDBI and NDWI of 
Hyderabad City (Telangana) based on LISS-III image using remote sensing and DIP.  Int J 
Geogr 5:78–86

Peng J, Jia J, Liu Y, Li H, Wu J (2018) Seasonal contrast of the dominant factors for spatial dis-
tribution of land surface temperature in urban areas. Remote Sens Environ 215(15):255–267. 
https://doi.org/10.1016/j.rse.2018.06.010

Ranagalage M, Estoque RC, Murayama Y (2017) An urban heat island study of Colombo metro-
politan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int J Geo-Inf 6:189. https://
doi.org/10.3390/ijgi6070189

Rasul A, Balzter H, Smith C (2015) Spatial variation of the daytime Surface Urban Cool Island 
during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim 14:176–186

K. Gadekar et al.

https://doi.org/10.1088/1748-9326/11/7/074003
https://doi.org/10.1007/s11042-022-13276-2
https://doi.org/10.1007/s40899-021-00527-7
https://doi.org/10.1016/j.atmosres.2018.04.011
https://doi.org/10.1007/s00704-016-1737-6.N
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1080/10106049.2022.2086622
https://doi.org/10.1007/s13201-021-01425-1
https://doi.org/10.1016/j.rse.2018.06.010
https://doi.org/10.3390/ijgi6070189
https://doi.org/10.3390/ijgi6070189


389

Santamouris M (2015) Analyzing the heat island magnitude and characteristics in one hundred 
Asian and Australian cities and regions. Sci Total Environ 512–513:582–598. https://doi.
org/10.1016/j.scitotenv.2015.01.060

Shahid M, Rahman KU, Haider S et al (2021) Quantitative assessment of regional land use and 
climate change impact on runoff across Gilgit watershed. Environ Earth Sci 80:743. https://doi.
org/10.1007/s12665- 021- 10032- x

Small C (2006) Comparative analysis of urban reflectance and surface temperature. Remote Sens 
Environ 104:168–189. https://doi.org/10.1016/j.rse.2005.10.029

Srivastava A, Chinnasamy P (2021) Investigating impact of land-use and land cover changes on 
hydro-ecological balance using GIS: insights from IIT Bombay, India. SN Appl Sci 3:343. 
https://doi.org/10.1007/s42452- 021- 04328- 7

Tan J, Zheng Y, Tang X, Guo C, Li L, Song G et al (2010) The urban heat island and its impact 
on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84. https://doi.
org/10.1007/s00484- 009- 0256- x

Tsou J, Zhuang J, Li Y, Zhang Y (2017) Urban Heat Island assessment using the Landsat 8 data: a 
case study in Shenzhen and Hong Kong. Urban Sci 1:10

Yao R, Wang L, Huang X, Gong W, Xia X (2019) Greening in rural areas increases the surface urban 
heat island intensity. Geophys Res Lett 46:2204–2212. https://doi.org/10.1029/2018GL081816

14 Estimation of Land Surface Temperature and Urban Heat Island by Using Google…

https://doi.org/10.1016/j.scitotenv.2015.01.060
https://doi.org/10.1016/j.scitotenv.2015.01.060
https://doi.org/10.1007/s12665-021-10032-x
https://doi.org/10.1007/s12665-021-10032-x
https://doi.org/10.1016/j.rse.2005.10.029
https://doi.org/10.1007/s42452-021-04328-7
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.1029/2018GL081816


391

Chapter 15
Study on Irrigated and Nonirrigated 
Lands in Ukraine Under Climate Change 
Based on Remote Sensing Data

Artur Ya. Khodorovskyi, Alexander A. Apostolov, Lesya A. Yelistratova, 
and Tetiana A. Orlenko

Abstract According to the UN, potential of Ukraine’s agricultural sector allows 
feeding of 450–500  million people. However, nowadays, its capabilities are 
exploited only by a third. The key factors, which characterize increasing average 
annual temperature, are primarily related to climate change. Increasing drought and 
desertification caused by global warming occur against the background of almost 
unaltered precipitation in the steppe zone of Ukraine. Climate change will derate the 
condition of the humidity. Therefore, the role of irrigation and drainage in agricul-
tural production increases. However, at present, melioration agriculture is in crisis 
concerning the level of use of the facilities engineering and infrastructure of irriga-
tion and drainage in Ukraine. Irrigation system recovery is a vital tool in the present 
conditions. Firstly, the development of the agricultural economy sector and increas-
ing the export potential of Ukraine. Secondary, climate impact minimizing on the 
processes of socioeconomic nature of the regions. Climate change monitoring is a 
crucial problem, in specific, due to the aridity of the climate, especially regarding 
regional changes on agroecosystems determining its impact on long-term develop-
ment and food security. Information on moisture conditions and the occurrence of 
the degradation process is continuously up to date with recent developments. 
Obtaining of the monitoring data would necessitate integrated remote sensing at the 
global, regional, and local scale. In addition, high spatial resolution and low satellite 
revisit period will supplement the use of optical and radar data from satellite images 
to overcome the problem of cloud cover. Remote sensing data of the Earth allows 
identifying and establishing regular variation in agroecosystems structure and deter-
mining their productivity. This research is based on remote sensing of the Earth, 
monitoring and underpinned by international experience and internal capacity, 
including integrated approaches and methods for reclaimed lands. The results of 
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this study will enable the effective use of reclaimed land. Furthermore, proposals 
based on the monitoring outcome allow improved governance in the agriculture of 
Ukraine.

Keywords Remote sensing data · Climate change · Irrigated agriculture · 
Irrigation systems · Moisture content · Moisture indices

 Introduction

Nowadays, climate change and crisis processes in the environment are two main 
interrelated processes on a global scale. Global warming has led to a decrease in 
water resources and the deterioration of their quality. A significant increase in 
potential evaporation in recent years and the water balance deficit have been the 
main reasons why crop yields decline (Pande et al. 2022a). All these situations are 
incredibly negative phenomena and are severe challenges for the sustainable devel-
opment of any country (Pande et al. 2021b; Pande 2022). They cause significant 
problems of environmental and socioeconomic nature and threaten the provision of 
society with the necessary food (Pande et al. 2020, 2021a). Irrigation is one of the 
main factors in the intensification of the crop industry in areas with insufficient and 
unstable natural moistening. That is why artificial humidification is widespread in 
arid regions. Over the past 20  years, the site of irrigated land has increased by 
50 million hectares, or 17%, and is more than 270 million hectares. Irrigated land 
provides more than 40% of world crop production, occupying only 18% of agricul-
tural land. The productivity of one irrigated hectare is more than twice the produc-
tivity of nonirrigated. During the same period, the world area under drip and other 
microirrigation methods increased at least 6.6 times – from 1.6 to 10.5 million hect-
ares. However, the world’s freshwater reserves make up 35 million m3, nearly 8.5% 
of which are the freshwater resources concentrated in rivers, lakes, and reservoirs, 
which are a traditional source of water supply (Khadri and Pande 2016; Pande et al. 
2022b; Rajesh et al. 2021; Srivastava and Chinnasamy 2021). The unequal distribu-
tion of water resources in the world calls for transformation in agriculture and, in 
particular, the introduction of resource-saving technologies and methods of irriga-
tion of crops (Elbeltagi et  al. 2022). For countries with limited water resources, 
which Ukraine belongs to, this issue becomes of particular importance. In addition, 
according to the National Oceanic and Atmospheric Administration of the United 
States, in the region in which Ukraine is based, the rate of temperature rise is one of 
the highest in the world in the last 30 years.

Over the past 30 years, the average annual air temperature in Ukraine has risen 
by 1.2 °C as a whole, and the rate of increase is much higher compared with global 
and European scales (Kulbida et al. 2009). Instead, the amount of precipitation in 
Ukraine as a whole region remains virtually unchanged (Lyalko 2015). Due to 
warming in Ukraine, the conditions of natural moisture supply have significantly 
deteriorated. As a result, the practical cultivation of almost all crops in the steppe 
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and southern forest-steppe zone without irrigation has become virtually impossible 
(Lyalko et al. 2020). Moreover, due to climate change, even in the Polissya area, soil 
moisture has been deficit since July, and obtaining high and stable yields is no lon-
ger possible without additional moisture. Therefore, if we do not develop irrigation 
in the south and water regulation in Polissya, Ukraine will not realize its massive 
potential for food production (Apostolov et al. 2020).

Further changes in the temperature regime may lead to two-thirds of the territory 
of Ukraine becoming an area of risk agriculture. The increased temperature has 
already led to a change in the season durations: the cold period will be much shorter 
and warmer and the warm period longer and hotter. In winter, more and more snow-
falls instead of snow, resulting in snow not accumulating with melted water. Thus, 
every year, the consequences of global warming for Ukraine become more and more 
destructive. That is particularly relevant in the case of Ukraine’s southern regions. 
The steppes are gradually turning into semideserts, which many areas are at risk in 
becoming unsuitable for agriculture. Moreover, due to climate change, agricultural 
production is slowly moving from the south of steppes to the north, to forest-steppe 
and woodland areas. In recent years, one of the trends in the land market of Ukraine 
has been the loss of interest in land located in the southern regions. Due to droughts 
and wind erosion, the grounds of south Ukraine are gradually losing soil layer, 
moisture-holding capacity, and fertility. Since 1991, the area of the dry zone has 
increased by 7%. Today, it covers almost a third of the territory, including 11.6 mil-
lion hectares of arable land. At the same time, the area with excessive and sufficient 
atmospheric moisture decreased by 10%, occupying only 7.6 million hectares of 
arable land. Thus, almost 19 million hectares of arable land require constant irriga-
tion, and 4.8 million hectares require water regulation. According to forecasts, fur-
ther climate change will worsen the conditions of natural moisture supply. As a 
result, the role of irrigation and drainage in agricultural production will only 
increase. Therefore, the only way to preserve the southern agricultural fields of 
Ukraine is land melioration. Based on the organizational, economic, technical mea-
sures to improve hydrological, soil, agroclimatic conditions to increase the effi-
ciency of land and water resources for high and sustainable agriculture. Today, 
many Ukrainian scientists study the management of reclaimed areas, including 
Kovalchuk et al. (2010), Bahniuk et al. (2002). However, a single system of optimal 
management of reclaimed lands has not yet been developed, ensuring economic 
stability, social well-being, and economic security, and, as a result, sustainable 
development of agriculture in reclaimed territories. Therefore, today, scientists such 
as Moshinsky (2005), Nasiedkin et al. (2008), Cvjetova et al. (2009), and others are 
engaged in monitoring melioration territories.

Regarding the experience of foreign states in the development of meliorating ter-
ritories, it is safe to say that a significant step forward has been taken compared with 
Ukraine. So abroad in most developed countries (England, Belgium, Netherlands, 
Germany, France, Denmark, Turkey, Israel, the United States, etc.), permanent 
reconstruction of drainage systems and permanent intensifying agriculture through 
land reclamation are being replaced by more intensive forms of land use.
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The reclamation fund for the modernization and refurbishment of drainage sys-
tems is constantly evaluated, depending on their design and the technical state for 
systems today. And the land that is not economically viable for use is withdrawn 
from the land reclamation fund altogether.

Several studies have shown that many world scientists have tried to resolve prob-
lems of irrigated and nonirrigated lands, including Eberhard et  al. (2013), Cosh 
et al. (2012), Brown and Pervez (2013), Hunt et al. (2014), Pun et al. (2017), Pervez 
and Brown (2010), Chance et al. (2017), Dinesh et al. (2021), Nickum and Ogura 
(2010), Dowgert (2010), Alon (2016), Satoh and Ishii (2021), Tabayashi (1987), 
Shevah (2015), Ruopu and Mahesh (2016), Wang et al. (2021), Rahmonov et al. 
(2016), Qiu et al. (2021), Jiang et al. (2021), Zhu et al. (2021), Isgandarov (2015), 
Pajic et al. (2014), Simsek and Arabacı (2021), Gunlu and Gol (2017), Guo et al. 
(2020), Teng et al. (2021), Johansson et al. (2009), Senturk et al. (2014), Abuzar 
et al. (2020), and others. Land and water resources are especially important to agri-
culture and rural development. They are intrinsically linked to global challenges of 
food insecurity and poverty, climate change adaptation and mitigation, and degrada-
tion and depletion of natural resources that affect the livelihoods of millions of rural 
people across the world. Studies show that much of the research work related to 
depleting freshwater resources stimulates and promotes collaborative actions and 
discussions toward sustainable water management solutions in agriculture 
(Orimoloye et al. 2022; Shahid et al. 2021). Today, the development of science and 
technology has reached a level where ignoring modern technologies in the manage-
ment of reclaimed areas can lead to a loss of potential benefits from their use. The 
introduction of the latest GIS technologies has emerged as an important new data 
source for environmental applications over the past few years.

However, the creation of geospatial data infrastructure for reclaimed areas is not 
sufficiently addressed in our country for now. Government decrees confirm the rel-
evance of such studies: “Irrigation and Drainage Strategy in Ukraine until 2030,” 
“Water Strategy for 2025,” several laws of Ukraine, regulations governing the 
design, construction, and operation of irrigation and drainage systems in Ukraine.

Currently, the state of melioration agriculture in terms of the use of existing irri-
gation and drainage engineering infrastructure is assessed as a crisis, with a further 
threat of deterioration. The introduction of innovative technologies is due to the 
worsening of environmentally friendly use of irrigated lands, which is associated 
with a decrease in their fertility, spreading erosion processes, and increasing the 
area of degraded lands for Ukraine. Furthermore, with minimal time and money, 
remote sensing data are essential for environmental control, thanks primarily to 
comprehensive spatial coverage, periodicity, and systematic data acquisition. The 
work aims to assess changes in the productivity of irrigated and drained lands using 
the analysis of remote sensing data in the monitoring mode and in nonstationary 
climate conditions, which will evaluate the possible impact of melioration measures 
on the environment. The study is based on the concept we had developed to evaluate 
the moisture content in lands of Ukraine using materials from regular satellite mul-
tizone surveys, which allows monitoring to conduct a variety of tasks. First, the 
degree of soil moisture and vegetation condition is taken based on assessing changes 
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in the intensity of soil brightness and vegetation in different spectral ranges under 
the influence of moisture content. It is known that with increasing moisture content, 
there is a decrease in the reflectivity of soils and vegetation, especially in the bands 
of water absorption, which lie in the red range. However, the curves of the spectral 
reflectivity of soils and vegetation are markedly different. Therefore, it is necessary 
to use the known relationships between the spectral brightness of soils and vegeta-
tion in different spectral ranges for their effective selection. Numerous indices are 
based on these ratios, which other performers successfully use. The involvement of 
the satellite data will make it possible to assess the degree of soil moisture and 
humidity changes in time and space, determine the impact of humidity on vegeta-
tion, control vegetation development, and identify crops that need fertilizing. In 
addition, the results of satellite data will monitor changes in water basins such as 
rivers, lakes, ponds, canals, and water levels in them, overgrowing with aquatic 
vegetation, siltation, changes in water composition, and others.

These studies can be conducted at different scale levels, from regions and regions 
to individual farms.

To implement the proposed concept, you need to implement the following 
approaches:

 1. Assessment of the impact of the melioration system on the environment in the 
context of modern climate change in Ukraine.

 2. Assessment of the impact of soil erosion processes on the reduction of their 
productivity.

These materials can be included in national databases, increasing the probability 
of forecasts of rational use of nature in melioration lands in the context of cli-
mate change.

 Materials and Methods

Data basis “Assessment of the impact of the melioration system on the environment 
in the context of modern climate change in Ukraine.” The proposed technology is 
based on satellite data – the most widely used optical data of different spatial and 
temporal resolutions. Therefore, the recognize and classify the underlying surface 
spectral and textural information from satellite apply. The most efficient solution for 
natural resource problems is materials of multizone space imagery from the 
Landsat-5 TM series satellites, which regularly conducted space imagery of the 
Earth’s surface for more than 50 years. Such a temporary archive of images allows 
you to solve the problems in the monitoring mode.

Images from Landsat-5TM satellites, dated 07.07.2004, and Landsat-8 OLI/TIRS, 
dated 23.08.2021, with a spatial resolution of 30  m, were used for the study 
(Fig. 15.1).
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Fig. 15.1 Landsat-5TM and Landsat-8 OLI/TIRS, satellite data, path178 rows 28 to the study area

 North Crimean Canal

Landsat satellites provide information in optical channels, so image quality depends 
on the percentage of clouds and precipitation. Therefore, synthetic aperture radar 
(SAR) images from the Sentinel-1 satellite, with a spatial resolution of 10 m, were 
used to obtain data regardless of weather conditions. Images from the Sentinel-1 
satellite for August 9, 2016 and August 22, 2021 were used for the study (Fig. 15.2).

 North Crimean Canal

Images from the Landsat-5TM, Landsat-8OLI/TIRS, and Sentinel-1 satellites com-
plement each other. In addition, they are data from different ranges of electromag-
netic waves, allowing you to significantly expand the list of tasks to improve the 
quality of the research. Using various moisture indices is an effective method for 
determining surface moisture by remote sensing data. These indices are designed to 
assess the presence of moisture in vegetation or soil. Table 15.1 shows the moisture 
index or water index used in our study.

Considering that the Landsat-5 TM and Lands at-8 OLI/TIRS satellites have two 
short-wave infrared bands (SWIR1 and SWIR2), the water indices were calculated 
separately for each infrared band. In addition, the authors proposed using the stud-
ied water index – WPCA1, which was calculated by the method of principal com-
ponents (principal component analysis, PCA). That is one of the methods of factor 
analysis based on the orthogonal transformation of many observations with possibly 
related variables (entities, each from which it acquires different numerical values) 
into a set of variables without linear correlation, which is called principal 
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Fig. 15.2 Example of a scene from the satellite Sentinel-1 (combination of channels: vv, vh, vv/
vh, polarization. C-band – wavelength 5.5 cm), for 22.08.202

Table 15.1 Water indices used to calculate the moisture content of the territory

№ Index Equations

1 DSWI DSWI = (NIR+GREEN)/
(SWIR+RED)

2 NDII NDII = (NIR-SWIR)/
(NIR+SWIR)

3 RDI RDI = SWIR/NIR
4 NWI NWI = (GREEN-SWIR)/

(GREEN+SWIR)

components. The proposed water index WPCA1 was calculated for four water indi-
ces considering the two infrared ranges (SWIR1 and SWIR2). For further analysis, 
the first component was used, which is known to contain helpful introductory 
information.

Thus, in the study, all the proposed water indices were calculated for SWIR1 and 
SWIR2. The scheme of the model for estimating water indices, DSWI, NDII, RDI, 
and NWI using the program for processing space images ERDAS Imagine, is shown 
in Fig. 15.3, and the new water index WPCA1 was calculated using the image inter-
preter module of the principal components function. The next step was to form a 
ten-band image consisting of these calculated water indices. We determined the 
influence of the North Crimean Canal on soil moisture within the areas of loose soil 
at different distances from the channel. Water index values were measured at the 
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Fig. 15.3 Scheme of the model of calculation of water indices: DSWI, NDII, RDI, and NWI tak-
ing into account two infrared ranges (SWIR1 and SWIR2) using the program for processing space 
images Erdas Imagine

following distances from the canal: up to 240 m; from 240 to 480 m, from 990 to 
1500 m, and from 2100 to 5100 m. To establish these distances in the images, the 
North Crimean Channel was vectorized, and the Model Maker module of the 
ERDAS Imagine space image processing program was used. Within each of the four 
established strips, areas of open ground with a homogeneous structure were identi-
fied. Within the selected regions, the values of ten water indices were determined 
from the generated ten-band image.

To determine the effect of irrigation on vegetation productivity, the normalized 
difference vegetation index (NDVI) was used, obtained by satellite sounding. The 
value of this index corresponds to different degrees of vegetation, its area, density, 
biomass, and reflectivity. The concept of the NDVI index is based on the fact that 
healthy vegetation generally has low reflectivity in the visible part of the electro-
magnetic spectrum due to absorption by plant pigments, mainly chlorophyll. At the 
same time, green leaves have high reflectivity in the near-infrared range. This index 
was demonstrated (Rouse et al. 1973) and is defined as the difference between the 
values   of the intensity of the reflected radiation in the red RRED (0.62–0.69 μm) and 
near-infrared RNIR (0.75–0.9 μm) ranges electromagnetic waves, divided by the sum 
of these values:

 
NDVI NIR RED

NIR RED

�
�
�

R R

R R  
(15.1)

To perform the second research stage, “Assessment of the impact of soil erosion on 
the reduction of their productivity,” morphometric indicators characterize the 
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terrain’s vertical and horizontal relief. They are established by analysis of digital 
terrain model (DEM) from the Shuttle satellite with a spatial resolution of 30 meters.

Evaluation of erosion dismemberment was performed according to the method 
developed and tested by the authors of this study (Lyalko et al. 2017, 2018).

Erosional dismemberment of the terrain:

 
ER �

� �� ��H N l

P2
 

(15.2)

where (N∗l)/P is horizontal dissection of the relief, N is the number of pixels of the 
isolines in the sliding window and l is the length of the pixel.

The calculation of the vertical dissection of the terrain was performed using the 
spatial modeler module of the ErdasImagine program according to the following 
equation:
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P
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(15.3)

where Hmin, Hmax are minimum and maximum values of heights in the sliding window.
To calculate the horizontal dissection of the relief, isolines were built for the 

whole territory of Ukraine with a height of the relief section of 5 m, firstly with the 
help of the Interpreter module of the ERDAS Imagine program.

The next step is the calculation in the sliding window of the horizontal dissection 
of the terrain. According to the equation:

 
N l P�� � /  (15.4)

Thus, the intensity of erosional dismemberment of the territory was calculated using 
Eq. 15.2 in the program ErdasImagine.

Since the values of the ER index depend on the height, to compare different 
areas, it was proposed to scale the values of the index by the equation:

 

ER
ER ER

ER ERnew
min

max min

�
�
�

�

�
�

�

�
�

�100
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According to the radar survey data from the Sentinel-1 satellite, the method of radar 
interferometry was used to determine the erosional dismemberment of the relief.

A synthetic aperture interferometric radar is a geodetic method that uses two or 
more images from a synthetic aperture radar (SAR) to create maps of surface defor-
mation or digital altitude using the phase differences of the waves returning to the 
satellite. The main idea of the proposed technique is to measure changes in the 
deformation of the land surface on a millimeter scale for days to years. The obtained 
images describe the latest geodynamic conditions in the study area. The mission of 
the European Space Agency (ESA) Sentinel-1 is based on a group of identical 
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satellites of the SAR band C.  Sentinel-1A provides SAR data to the ASF Data 
Search (https://search.asf.alaska.edu) with a viewing time of 10–12 days. The built-
 in SAR tool supports four image modes that provide different resolutions and 
coverage.

In this research, we used the pairs of satellite images of Sentinel-1 in 2016 and 
2020 August, which correlated with Landsat images. Image processing was per-
formed entirely using the open-source Sentinel Application Platform (SNAP), 
applying the built-in SNAPHU module.

We have the interferogram algorithm forming: previous preprocessing, coregis-
tration, interferogram formation, TOPS-Deburs, interferogram filtering, phase 
unwrapping, displacement of phase, and terrain correction (Piestova et al. 2020). 
The two SAR SLC Sentinel-1 interferometric products were taken in pairs with a 
difference between images of 12 days to determine changes in the land surface. The 
result of the algorithm is digital terrain models for 2016 and 2021 and changes in 
the height of the terrain surface (Orlenko 2021). The processing of space images 
was carried out in the program processing space images. Erdas Imagine, SNAP, 
ENVI, GIS systems were also used: ArcGIS on-line and MapInfo 
Professional (Gulhane et al. 2022).

The following methods were used to solve all the tasks:

• Information: bibliographic and analytical  – for a detailed analysis of existing 
approaches to monitoring irrigated lands, the state, and technology of its imple-
mentation, accuracy, completeness, reliability, and relevance of data.

• Abstract: logical – for theoretical generalization and formation of conclusions on 
the possibilities of using remote sensing data for monitoring irrigated lands.

• Multidimensional analysis, methods of geoinformation processing, and geosta-
tistical data analysis – for evaluation and verification of input data used for agri-
cultural purposes, by different composition of lands and by types of crops and 
reclamation measures (irrigated/drained).

• Statistical – to identify the reliability of the results.
• Mathematical (regression, correlation, and factor) – to establish the relationships 

and relationships between different data sets, particularly remote sensing data of 
the Earth and ground information.

 Results and Discussions

For the last few years, the discussion of the causes and consequences of the pre-
dicted changes in climate has continued. According to most scientists, the increase 
in anthropogenic greenhouse gas content in the atmosphere with high probability is 
the main reason for the rise in the global average temperature from the middle of the 
twentieth century. Therefore, it is doubtful that global climate change over the last 
50 years of the twentieth century and the first years of the XXI century could chal-
lenge only internal natural variability. The noticeable influence of the economic 
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activity of a person is now spread to other characteristics of climate, including aver-
age temperature on continents, atmospheric conditions, and some kinds of extreme 
phenomena. But, unfortunately, the current policy of all countries is not fully ade-
quate to remain within the limits of the increase in temperature of the eyelid by 
0.1–0.2 °C. In the decade, the world’s carbon dioxide emissions have reached a new 
peak, and no country has been on the way to preventing global climate change 
(Kostyuchenko et  al. 2017, 2020; Lyalko et  al. 2016; Yelistratova et  al. 2021; 
Tymchyshyn et al. 2021). The reluctance of some countries to recognize the impact 
of their industrial and agricultural potential on increasing greenhouse gas emissions 
leads to an increase in the effects of climate change. In addition, natural disasters are 
enhancing in different regions of the Earth, so there is a need from forecasting the 
climate to develop strategies to adapt to future changes, not only global climate but 
also climate at the regional level. This problem is quite urgent for our country. 
Actual observations on the territory of Ukraine show that our annual temperature 
exceeds the norm for the corresponding number of degrees every year. If the tem-
perature rise continues to keep the current trends and the government do nothing to 
adapt to the climate changes, Ukraine will have severe problems with food. 
Moreover, because a large part of the territory is located in zones of nonstatic and 
unstable moisture, the food provision depends on the efficiency of the irrigated 
lands. Finally, the analysis results allow us to assert the existence in Ukraine of 
economic and reclamation infrastructure, the capacity of which is used highly 
unsatisfactorily.

There are many methods of enhancing natural landscapes. Melioration hydroge-
ology studies only water reclamation: irrigation, the creation of optimal conditions 
for growing cultivated plants in the zone of insufficient moisture; drainage, the cre-
ation of optimal conditions for increasing cultivated plants in the location of exces-
sive moisture; bilateral regulation, the use of humidification and drainage at different 
times of the year in one area in certain climatic conditions; and flooding, water 
supply to dry regions without irrigation. In this work, we studied only the first 
method of improving natural landscapes  – “irrigation”  – because, with modern 
global warming, most of the territory of Ukraine suffers from a lack of moisture.

The territory of the study consists of two test sites: the southern part of the 
Kherson region, south of the Kakhovka reservoir, and the north of the Crimean 
peninsula, which differ in natural conditions. Therefore, to compare the results, fur-
ther studies were conducted separately for each test site. The area of the Kherson 
region, which is located south of the Kakhovka Reservoir, is characterized by fertile 
chernozem soils with a high humus content, from 3% to 4.5%. High yields of crops 
are possible on these lands, but the lack of moisture and the uneven distribution of 
rainfall over time significantly complicate agriculture in these areas. Getting high 
yields in this area is possible only with artificial irrigation. The central North- 
Crimean canal and other canals have solved the problem of water shortage. However, 
in 2014, after the annexation of the Crimean Peninsula by the Russian Federation, 
Ukraine blocked the North Crimean Canal on its territory with a 107  km dam 
(Kalanchak checkpoint) on the border with Crimea. Next to this dam, located 1 km 
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Fig. 15.4 Fragment of the study area with two dams on the North Crimean Channel on the 
Landsat-8 OLI/TIRS satellite, dated 2021.08.23. In the pictures from the QuckBird satellite: (a) 
“farmer‘s dam” and (b) dam near the checkpoint “Kalanchak”

from the border, another dam was built, located 16 km from the first (Fig. 15.4). As 
a result, a large area of the region was deprived of water, and yield losses reached 25%.

It should also be noted about the unsatisfactory technical condition of farm 
melioration systems in the region, due to which irrigation of land on large areas can-
not be used.

All these problems influence the climatic factor, namely the climate’s aridity, 
which is due to the onset of frequent droughts. In addition to deficits, crops are sig-
nificantly affected by abrupt changes in weather conditions, particularly rainfall. In 
these conditions, operational control over soil moisture, its variability over time, 
and the vegetation-grown state are necessary. Finally, and most importantly, the loss 
of water from irrigation canals is due to various technical problems. Irrigation 
canals are designed to transport water from the water intake to irrigation. At the 
same time, the efficiency of most irrigation systems today is 0.85–0.87. Therefore, 
about 25–30% of all water transported from the water intake to the irrigated field is 
lost to filtration from irrigation canals. If the total losses on the system are taken as 
100%, they are distributed as follows: losses on filtration, 70–75%; losses on evapo-
ration, 3–5%; and technical losses, 20–25%. As a result of filtration from canals, 
there are unproductive water losses, rising groundwater levels, flooding and water-
logging of territories, secondary salinization of soils, and the creation of emergen-
cies. Solving these problems by traditional ground methods requires significant 
funds and time. However, as our experience has shown, the use of multizone space 
images allows you to solve this problem quickly and with minimal time and money. 
The calculated water indices were compared using the infrared range SWIR1 and 
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Fig. 15.5 Graph of soil moisture change according to the data from Landsat 5 satellites 
(2004-07-07) (1), Landsat 8 (2021-08-23) (2) depending on the distance to the North – Crimean 
canal for the value of water indices. The territory of the southern part of the Kherson region: (a) 
WPCA1 using SWIR-1, (b) NWI using SWIR-2; the territory of northern Crimea (c) WPCA1 
using SWIR-1, and (d) DSWI using SWIR-1

SWIR2 according to the data from the Landsat-5TM satellite, for 07.07.2004 and 
according to the Landsat-8 OLI/TIRS satellite, for 23.08.2021, studying the soil 
moisture in the south of the Kherson region. Three water indices were selected 
based on the analysis, which best characterize the soil moisture (Fig. 15.5a, b). The 
research of these graphs shows a decrease in the values   of the calculated water indi-
ces for open ground with increasing distance from the North Crimean canal. This 
dependence is observed for all calculated water indices, regardless of the 
Landsat-5TM and Landsat-8 OLI/TIRS satellite series or the year of the study. 
Thus, for water indices, WPCA1 was calculated using the infrared range SWIR1 
(Fig. 15.5a), and NWI was calculated using the infrared range SWIR2 (Fig. 15.5b); 
the values   of the index for 2004 outweigh the corresponding values   for 2021; uneven 
change of values   of water indices at different distances from the channel. When 
analyzing water indices calculated at four distances from the canal ((1) up to 240 m, 
(2) from 240 to 480 m, (3) from 990 to 1500 m, and (4) from 2100 to 5100 m), it 
was found that at the first two distances, the average values   differ from the average 
values   of water indices measured at distances 3 and 4 from the channel. For the 
WPCA1 index calculated using the infrared range SWIR1 (Fig. 15.5a) for 2004, the 
difference between the average values   calculated at distances 1 and 2 and distances 
3 and 4 is 4.12%, for 2021 and is 2.86%. For the NWI index computed using the 
infrared range SWIR2 (Fig. 15.5b) for 2004, the difference between the average 
values   at distances 1 and 2 and distances 3 and 4 is 13.08%, for 2021 14, 11%.

15 Study on Irrigated and Nonirrigated Lands in Ukraine Under Climate Change…



404

Fig. 15.6 Influence of irrigation, on the example of the North-Crimean channel, on agrocenoses

When studying the soil moisture in the test area (north of the Crimean penin-
sula), an analysis of the distribution of the values   of the obtained water indices was 
also performed (Fig. 15.5c, d). A decrease the range of changes in the calculated 
water indices was found. Thus, the content of values   for the water index WPCA1 
calculated using the infrared range SWIR1 (Fig. 15.5c) for 2004 is 2.717 and for 
2021 is 0.495, and for the water index DSWI calculated using the infrared range 
SWIR1 (Fig. 15.5d) is 0.433 and for 2021 is 0.118. Thus, the decrease in the di- 
range of values   is from 72.74% to 81.78%.

The areas near the North Crimean Canal were analyzed until 2014 (we took 
2004 years images from the Landsat-5 TM satellite) and after 2014 (2021, photos 
from the Landsat-8 OLI/TIRS satellite), when part of the North Crimean Canal was 
blocked by two dams and water supply to the Crimean Peninsula was cut off 
(Fig. 15.6). In Fig. 15.6, four objects were identified: the territory of the south of 
Kherson region, where the North-Crimean canal was not blocked, the first (№1) 
object corresponding to rice checks; the part of the Crimean peninsula, where the 
channel was blocked, the second (№2) object corresponding to the rice checks; and 
the third (№3) and the fourth (№4) objects correspond to the changes of the hydro-
logical regime of the territory. The object №1 means that rice checks are well and 
visible, and according to the data from the Landsat 5 and Landsat 8 satellites, in 
2004 and 2021, only the brightness value changes. The North Crimean Canal block-
age on the border with the administrative boundary of the Autonomous Republic of 
Crimea did not particularly affect the situation in the Kherson region, as water 
supply continued there. The analysis of plot №2 means that rice checks showed that 
in 2004, plot №2 did not differ fundamentally from plot №1, as well as the areas 
near plots №3 and №4, which correspond to rice checks. On the contrary, the data 
analysis for 2021 showed that the closure of the North-Crimean canal in 2014 led to 
a significant reduction and, one might say, stops of rice cultivation in the north of 
the Crimean peninsula.
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Fig. 15.7 Construction of the vegetation index NDVI to determine the impact of irrigation on 
vegetation

The analysis of sections №3 and №4 shows that artificial water bodies disappear 
without ensuring the timely and complete provision of water resources by the North 
Crimean Canal (Sections №3 and №4).

The effect of moisture on vegetation productivity was shown, which is estab-
lished according to satellite imagery and allows to predict yields. Maps of the dis-
tribution of the NDVI index by Eq. (15.1) were constructed, and the values   of the 
index corresponding to irrigation fields (concentric circles in the space image) and 
nonirrigation areas of elongated rectangular shape were analyzed (Fig. 15.7). As a 
result, it was found that the average NDVI value for irrigated fields is 73,821, while 
for nonirrigated areas is 64,859, which is almost 12% less than irrigated.

Thus, studies of soil moisture using water indices have shown that it is possible 
to study the distribution of soil moisture in the southern part of the Kherson region 
and the north of the Crimean peninsula. Moreover, according to satellites Landsat, 
Sentinel-2, and others, such work can be carried out quickly at various scale levels. 
Since the study area is determined by the uneven distribution of erosion processes, 
both in intensity and in the area in which they are developed, an assessment of the 
impact of soil erosion processes on the reduction of their productivity was given. 
According to Eqs. (15.2), (15.3), (15.4) and (15.5), potentially dangerous erosion 
areas were calculated (Fig. 15.8).

Figure 15.8 shows the danger of erosional dismemberment levels of the relief 
according to the ER index in color gradations from red to light green. According to 
the values   of the index from 0 to 2 (from light to dark green), the level of danger is 
absent; from 2 to 7 (mustard and yellow colors), the level is weak; from 7 to 10 
(light orange), level is significant; and from 10 to 13 (dark orange), the level is 
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Fig. 15.8 Example of using the methodology for calculating the ER index in the area with coor-
dinates (37.22E 47.13 N) and (35.00E 45.00 N) in the scale 1: 800000: (a) digital terrain model 
from the Shuttle satellite, spatial resolution 30 m, and (b) the obtained values of the ER index

strong. Analysis of the results showed that the maximum values of the index are 
confined to the sloping surfaces (this is the value of the ER index from 7 to 13). 
Thus, these relief elements are naturally affected by erosion processes, complicated 
by ravines and gullies of different ages and origins, and require special attention 
from erosion safety. Figure 15.9 shows the difference in altitude from the Sentinel-1 
for 2021 and 2016. The most intense erosion processes occur in the north-right 
tributaries of the Dnieper River, as well as within the valley of the Dnieper River. In 
Fig. 15.9b, the boundary of the floodplain of the Dnieper River and the first flood-
plain terrace on the left bank of the Dnieper River are visible, and the borders of 
Oleshkiv Sands – the only sandy desert in Ukraine. In addition to large-sized erosive 
landforms, numerous small-sized erosive forms are observed throughout the 
study area.

Thus, within some small annual valleys, local areas are observed in which there 
is a more intensive development of erosion processes. Such processes lead to sig-
nificant losses, primarily of chernozem, reduction of arable land, and a considerable 
reduction in soil productivity. According to our previous research [VISNYK 2017], 
the loss of one hectare of chernozems leads to approximately $ 500,000, and due to 
the relatively comprehensive development of erosion processes throughout the 
study, losses in monetary terms will increase rapidly.

The values of the obtained ER index make it possible to identify potentially dan-
gerous areas of erosion. Erosion processes over time, mainly due to irrational man-
agement, can suddenly intensify in unpredictable places. The possibility of using a 
radar survey to determine the erosional dismemberment of the terrain and establish 
the loss of humus in monetary terms from erosion processes is shown. It is satellite 
monitoring that makes it possible to record the manifestations of negative phenom-
ena associated with soil erosion throughout the country.
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Fig. 15.9 Comparison of the space image from the Landsat-8OLI/TIRS, for 2021-08-23 and the 
height difference according to the data from the Sentinel-1, for 2016 and 2021 for the detection of 
erosion-hazardous areas

 Conclusion

To sum up, the management of reclaimed areas is not an easy task. Above all, it is 
determined by the existence of land reclamation systems that are not in the best pos-
sible condition today. Furthermore, the lack of quality, reliable data greatly compli-
cates managerial decision-making. Therefore, to develop melioration territories, it 
is necessary to introduce scientific and methodological bases based on the latest 
technologies, mainly using data from remote sensing of the Earth. Furthermore, 
remote sensing allows the identification of sites of excessive soil moisture resulting 
from water filtration during canal transport, which should be an action for introduc-
ing the necessary protective management measures. The technology proposed in the 
study, which is based on an estimation of soil moisture level and vegetation condi-
tion, can reveal the reasons for their nonsatisfactory state to prevent soil degradation 
and harmful effects of water. In addition, in monitoring mode, it is possible to con-
duct a timely assessment of the state of the meliorative system, assess the nonoper-
ating systems, and observe the clearing of channels and water transmission systems, 
the organization of existing dams, strengthening of drainage.
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 Recommendations

Today, remote sensing provides necessary information support for the most com-
mon tasks of nature conservation and economy. For this reason, timely monitoring 
of rural areas is one of the requirements of food security. Information about the dif-
ferent components of crops, types of crops, and small-scale measures is an essential 
component in the assessment of yield and the determination of statistical indicators 
by relevant state agencies, agricultural and insurance companies, as well as contrib-
utes to the development of modern micro-, small-, and medium-sized agricultural 
enterprises; this will allow them to integrate into competitive Ukrainian and world 
markets successfully. Today, it is proved that satellite remote sensing methods in the 
whole world have become significant for solving problems set in the study. The 
results of the study can be included in the preparation of proposals on the improve-
ment of existing legislation in Ukraine on derivative works. Their use for the envi-
ronmental monitoring system can ensure rational use of land and water resources.
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Chapter 16
Hybrid Kernel Extreme Learning 
Machine-Based Empirical Wavelet 
Transform for Water Quality Prediction 
Using Only River Flow as Predictor

Salim Heddam 

Abstract During the last few years, monitoring and controlling water quality in 
freshwater ecosystems was strongly facilitated by the increasing number of in situ 
stations, certainly in combination with the high number of developed models. 
Several water quality variables have received a great deal of attention regarding 
their environmental importance, while other variables have rarely been studied in 
detail using modeling strategies. Generally speaking, water variables were linked to 
building robust models and rarely are the models using fewer variables. Machine 
learning algorithm aiming to accurately build relationships between water quality 
variables are widely used and acknowledged. In the present investigation, we tried 
to introduce a new modeling strategy for predicting two water quality variables: 
water pH and specific conductance (SC) using kernel extreme learning machine 
models (KELM). The major contribution of our study is that we used only the river 
flow as relevant predictor and a single-input and single-output (SISO) model was 
proposed for predicting water pH and SC. Two scenarios were analyzed and com-
pared. First, SISO models were developed and compared. Second, to greatly 
increase the performances of the KELM models, we have used the empirical wave-
let transform (EWT) algorithm for decomposing the river flow time series into sev-
eral multiresolution analysis components (MRA), which were used as new input 
variables. Data collected at the USG websites were used to test the proposed algo-
rithms, and we find that the EWT clearly exhibited high accuracies compared with 
the SISO models, and it provides a very robust estimate of the water pH and SC. For 
water pH, it was found that the KELM models based on EWT were more accurate 
compared with the models without EWT, exhibiting R, NSE, RMSE, and MAE 
values ranging from 0.888 to 0.981, from 0.767 to 0.961, from 0.038 to 0.074, and 
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from 0.027 to 0.058, respectively. In addition, for the SC, it was found that KELM 
models based on EWT were more accurate exhibiting R, NSE, RMSE, and MAE 
values ranging from 0.897 to 0.974, from 0.804 to 0.947, from 2.352 to 5.374, and 
from 1.528 to 4.152, respectively.

Keywords Modeling · Water quality · pH · Electrical conductivity · KELM · EWT

 Introduction

Estimation of water quality variables is a challenging task, and several factors need 
to be taken into account and considered to be reasonable for the evaluation, control, 
and monitoring of water resources (Rizo-Decelis et al. 2017). Generally speaking, 
water quality variables were measured and controlled individually and combined 
together for calculating the water quality index (Babbar and Babbar 2017; Kouadri 
et al. 2022). Among a large number of water quality variables, water pH and specific 
conductance (SC) were reported to be among the most significant water quality 
variables that have received great attention from researchers worldwide (Dow and 
Zampella 2000). During the last few years, the use of machine learning models for 
predicting water quality variables has received great importance, and a few of them 
have largely modeled and studied, i.e., dissolved oxygen concentration (Moghadam 
et  al. 2021; Yaseen et  al. 2018; Yang et  al. 2021) and river water temperature 
(Piotrowski et al. 2021; Yousefi and Toffolon 2022), while other have been margin-
alized, i.e., water pH and specific conductance (SC), and few studies are available 
in the literature.

Lu and Ma (2020) used two hybrid decision tree models for predicting several 
water quality variables, i.e., water pH, specific conductance (SC), dissolved oxygen 
(DO), water temperature (Tw), turbidity (TU), and fluorescent dissolved organic 
matter (FDOM). The authors have coupled the random forest regression (RFR) and 
the extreme gradient boosting (XGBoost) models with the complete ensemble 
empirical mode decomposition with adaptive noise (CEEMDAN), i.e., RFR- 
CEEMDAN and the XGBoost-CEEMDAN.  The two hybrid models were devel-
oped using data from the Tualatin River, the United States. For comparison, results 
obtained using the RFR-CEEMDAN and the XGBoost-CEEMDAN were compared 
to those obtained using the least-squares support-vector machine (LSSVM), long- 
and short-term memory deep learning (LSTM), particle swarm optimization opti-
mized support vector regression (SVR-PSO), and the radial basis function neural 
network (RBFNN). The CEEMDAN was used for decomposing the water variables 
into several intrinsic mode functions (IMFS), which were used as input variables. 
Obtained results revealed that the best performances with high numerical indexes 
were obtained using the RFR-CEEMDAN and the XGBoost-CEEMDAN with 
MAE and RMSE of approximately 0.025 and 0.02 for water pH and 1.17 and 1.27 
for specific conductance, respectively. Ahmadianfar et al. (2020) adopted the same 
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modeling strategy of our present investigation for modeling river water SC, by 
selecting the river discharge as a single input variable to several machine learning 
models. They compared between hybrid wavelet locally weighted linear regression 
(W-LWLR) model and the multiple linear regression (MLR), the SVR, the LWLR, 
ARIMA, wavelet ARIMA (WARIMA), wavelet MLR (WMLR), and WSVR mod-
els. The wavelet decomposition WD was used for decomposing the river discharge 
into several subcomponents, and all models were applied and compared for monthly 
SC prediction. It was found that the W-LWLR model was the most accurate model 
and ranked in the first place with the coefficient of correlation (R), Nash-Sutcliffe 
coefficient of efficiency (NSE), RMSE, and MAE of 0.904, 0.785, 182.37, and 
147.26, respectively, while the poorest performances were achieved by the 
MLR model.

Dabrowski et  al. (2020) used the linear and nonlinear state space models for 
predicting water quality variables, i.e., water pH, DO, and Tw. The linear and non-
linear were applied with and without mean reversion, and acceptable forecasting 
accuracies were obtained for river water pH with normalized RMSE (NRMSE) of 
approximately 21.84 and 87.89 for the models with and without mean reversion. 
Eze et al. (2021) applied the LSTM deep learning model coupled with the ensemble 
empirical mode decomposition (EEMD) for predicting DO, Tw, pH, and TU. The 
EEMD was used as a signal preprocessing approach for decomposing the water 
quality variables into several IMFs, and it was found that for water pH, high fore-
casting accuracies were obtained with MAE and RMSE of approximately 0.0042 
and 0.0092 for the EEMD-LSTM and 0.014 and 0.0074 for the LSTM models, 
respectively. Fu et al. (2021) used the temporal convolutional network (TCN) model 
for predicting DO, water pH, and TW. They compared between the TCN, the LSTM, 
the recurrent neural network (RNN), the simple recurrent unit (SRU), bidirectional 
simple recurrent unit (BI-SRU), and the gated recurrent unit (GRU). Comparison 
between the models’ performances was found that the best predictive accuracy was 
achieved using the TCN model (RMSE ≈ 0.050, MAE ≈ 0.0214), while the lowest 
accuracy was obtained using the GRU model with (RMSE ≈ 0.0678, MAE ≈ 0.0338), 
respectively. Yang and Liu (2021) used the LSTM coupled with the CEEMDAN 
(LSTM- CEEMDAN) for predicting river pH. The authors have reported that the 
use of sample entropy (SE) for better selection of the IMFs helps in better improv-
ing the model accuracies for which the RMSE and MAE were dropped from 0.0293 
and 0.0307 obtained using the LSTM to the values of 0.0189 and 0.0107, obtained 
using the LSTM-SA-CEEMDAN, respectively. He et al. (2011) used the multilayer 
perceptron artificial neural network (MLPNN) for predicting several water quality 
variables, i.e., water SC and pH.  The authors have demonstrated that the use of 
partial mutual information (PMI) algorithm for selecting the best input variables 
contributed to the improvement of the MLPNN performances, and high accuracy 
was obtained with RMSE, MAE, and R2 of 0.641, 0.342, and 0.913 for water SC, 
and 0.087, 0.067, and 0.870 for water pH, respectively. Finally, Sahoo et al. (2006) 
used the MLPNN model for modeling river water pH and SC using river stage and 
discharge as input variables. It was found that water pH and SC were predicted with 
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high accuracies with R and RMSE of 0.847 and 7.180 for water SC and 0.799 and 
0.068 for water pH. Consequently, in the present chapter, we propose a new model-
ing strategy for predicting river water pH and SC using only river discharge. The 
novelty of our study is that we used the empirical wavelet transform (EWT) as a 
preprocessing signal decomposition for decomposing the river discharge (Q) to 
form a series of multiresolution analysis components (MRA), which were com-
bined together to form the input variables for the kernel extreme learning machine 
(KELM) models.

 Materials and Methods

 Study Site

In the present chapter, data used for developing the KELM were collected at two 
USGS stations namely: (i) USGS 14206241 Tualatin River at Highway 219 Near 
Hillsboro, Washington County, Oregon, the United States (latitude 45°30′01″, lon-
gitude 122°59′24″ NAD27), and (ii) USGS 14211720 Willamette River at Portland, 
Multnomah County, Oregon (latitude 45°31′03″, longitude 122°40′09″ NAD83). 
River discharge (Q), river water pH, and river water-specific conductance (SC) were 
measured at daily time step. For the USGS 14206241 station, data were recorded for 
the period ranging from 01/January/2005 to 26/May/ 2020 with a total of 5300 pat-
terns. For the second station, i.e., the USGS 14211720 station, data were recorded 
for the period ranging from 21/January/2009 to 10/November/2021 with a total of 
4586 patterns. Dataset was divided into training (70%) and validation (30%), hence, 
for the USGS 14211720 station; 3211 and 1375 were used for training and valida-
tion, respectively, and for the USGS 14206241; 3710 and 1590 were used for train-
ing and validation, respectively. In Table 16.1, we reported the statistical values of 
the Q, pH, and SC, i.e., the mean, maximal, minimal, standard deviation, the coef-
ficient of variation, and the coefficient of correlation with Q, respectively. The loca-
tion of the USGS stations is shown in Fig. 16.1. In this chapter, for modeling the pH 
and SC, we adopted two scenarios: (i) using only the discharge as a single input 
variable, and (ii) river discharge was decomposed into several subcomponents, i.e., 
the multiresolution analysis components (MRA), which were combined and used as 
input variables. In this chapter, at each station, we decompose the river discharge 
into 12 MRA subcomponents (Fig. 16.2).
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Table 16.1 Summary statistics of discharge, pH, and specific conductance variables

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

Daily data for USGS ID 14211720 Willamette River at Portland, Oregon, USA

Q Training Kcfs 30.755 200.000 2.250 29.044 0.944 1.000
Validation Kcfs 31.372 176.000 3.510 28.482 0.908 1.000
All data Kcfs 30.940 200.000 2.250 28.875 0.933 1.000

pH Training / 7.295 8.200 6.700 0.155 0.021 −0.523
Validation / 7.298 8.000 6.700 0.153 0.021 −0.538
All data / 7.296 8.200 6.700 0.154 0.021 −0.528

SC Training uS/cm 76.603 102.000 49.000 10.262 0.134 −0.664
Validation uS/cm 76.861 107.000 50.000 10.254 0.133 −0.631
All data uS/cm 76.680 107.000 49.000 10.259 0.134 −0.654

Daily data for USGS ID 14206241 Tualatin River at HWY 219 near Hillsboro, Oregon, USA

Q Training cu.f/s 771.483 3670.000 60.100 852.823 1.105 1.000
Validation cu.f/s 767.080 3650.000 67.200 854.384 1.114 1.000
All data cu.f/s 770.162 3670.000 60.100 853.213 1.108 1.000

pH Training / 7.212 7.800 6.500 0.194 0.027 −0.754
Validation / 7.210 7.800 6.600 0.193 0.027 −0.747
All data / 7.211 7.800 6.500 0.194 0.027 −0.752

SC Training uS/cm 94.936 142.000 45.000 12.230 0.129 −0.567
Validation uS/cm 94.671 142.000 53.000 12.133 0.128 −0.573
All data uS/cm 94.857 142.000 45.000 12.200 0.129 −0.569

Abbreviations: Xmean mean, Xmax maximum, Xmin minimum, Sx standard deviation, Cv coefficient of 
variation, R coefficient of correlation with discharge, Q river discharge, SC specific conductance, 
Kcfs thousands of cubic feet per second, cu.f/s cubic feet per second

 Methodology

 Empirical Wavelet Transform (EWT)

The empirical wavelet transform (EWT) was proposed by Gilles (2013). The EWT 
is a preprocessing signal decomposition method used for reducing the nonstationar-
ity and high fluctuation of the signal in the presence of noise using a projection 
schema along the orthogonal subspace. As a result, the nonlinear signal becomes 
decomposed into a series of subcomponent called multiresolution analysis (MRA) 
components (Rout et  al. 2022; Chen et  al. 2022). From a mathematical point of 
view, the EWT is composed of two parts functions: the empirical wavelet and the 
empirical scale functions and considered as a filter for low-pass signals (Yang et al. 
2022). The EWT procedure consists of several stages, which are detailed in Gilles 
(2013), and can be summarized as follows (Peng et al. 2022):

 1. In the first stage, the Fourier transform is used for providing the Fourier spec-
trum of the signal and the frequency range is specified as [0,π].

 2. A series of N segments is obtained by decomposing the original signal.
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Fig. 16.1 Map showing the location of the two USGS stations

Fig. 16.2 Multiresolution analysis components (MRA) of daily discharge (Q) dataset obtained 
using the empirical wavelet transform (EWT) algorithm

 3. By applying the Littlewood-Paley and Meyer wavelet decomposition algorithms, 
the EWT is constructed.

 4. Calculates the detail and approximate coefficients of the EWT.
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In this chapter, the EWT was applied for decomposing the single input variable, 
i.e., the river discharge into several multiresolution analysis (MRA) components, 
which were reported in Fig. 16.2.

 Kernel Extreme Learning Machine (KELM)

The extreme learning machine (ELM) was introduced by Huang et al. (2006a, b) for 
improving the training of the single-layer feedforward neural network (SLFN). The 
mathematical formulation of the ELM can be expressed as follows: given N training 
data (xj, yj), j = 1,…, N. In ELM, the weights and biases from the input to the hidden 
neurons are assigned arbitrarily, while the weights from the hidden to the output 
layer are calculated analytically (Huang et al. 2006a, b). The output of the ELM 
model with L hidden nodes can be calculated as follows:
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(16.1)

For which g (.) is the sigmoid activation function, wi corresponds to the weight 
vector from the input to the hidden neurons, βi the weight vector from the hidden 
neurons to the single output neuron; and bi is the biases of hidden neurons.

Equation (16.1) can be written as follows:

 T H� .�  (16.2)

where H is the output matrix of the hidden layer.
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Huang et al. (2012) developed and improved ELM called kernel extreme learn-
ing (KELM) by replacing the sigmoidal function by new kernel functions. In this 
chapter, we selected three kernel functions expressed as follows (Hou et al. 2021; 
Xie and Wu 2021; Lu et al. 2021):

 1. The radial basis function (RBF) kernel ELM is:

 

K x x
x x

i j
i j

RBF ,� � � �
��

�
��

�

�
��

�

�
�
�

�

�
�
�

exp
2

22�
 

(16.4)

For which the σ is the width of the radial basis function.
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Fig. 16.3 Flowchart of the kernel extreme learning machine (KELM) based on empirical wavelet 
transform (EWT)

 2. The polynomial kernel (Pol):
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 3. The wavelet kernel (W):

 

K x x
x x x x

w i j w
i j i j,� � � ��

�
�

�

�
� �

��

�
��

�

�
��

�

�
�
�

�

�
�
�

�

�
cos exp�

� �

2

22
��
�

�

�
�
�

 

(16.6)

For which the σ is the width of radial basis function, and α and γ are parameters of 
the kernel functions. Figure 16.3 shows the flowchart of the kernel extreme learning 
machine (KELM) proposed for better prediction of water-specific conduc-
tance and pH.
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 Results and Discussion

This section presents obtained results on the application of the kernel extreme learn-
ing machine (KELM) for predicting river water pH and water-specific conductance. 
As described above, three kernel functions, i.e., the WKELM, RBELM, and 
POELM, were compared with the standalone ELM having a sigmoid activation 
function. The four models were applied according to two scenarios: (i) using only 
river discharge (Q) and (ii) using the river discharge decomposed using the EWT 
into several multiresolution analysis (MRA) components. The evaluation of the 
models was done using four common performance criteria of forecast accuracy 
including mean absolute error (MAE), root mean square error (RMSE), correlation 
coefficient (R), and Nash-Sutcliffe efficiency (NSE).

 Prediction of River Water pH

Table 16.2 reports the main simulation results for river water pH.  At the USGS 
14211720, using the first scenario with only the river discharge as input variables, it 
is clear that none of the four models was able to correctly predict the river pH, and 

Table 16.2 Performances of different models for water pH prediction

Models
Training Validation
R NSE RMSE (/) MAE (/) R NSE RMSE (/) MAE (/)

Daily data for USGS ID 14211720 Willamette River at Portland, Oregon, USA

ELM1 0.539 0.291 0.130 0.105 0.563 0.315 0.126 0.102
ELM2 0.975 0.951 0.034 0.026 0.914 0.818 0.065 0.048
WKELM1 0.537 0.289 0.131 0.105 0.560 0.313 0.127 0.103
WKELM2 0.980 0.955 0.033 0.023 0.950 0.897 0.049 0.035
RBELM1 0.538 0.290 0.131 0.105 0.561 0.313 0.127 0.102
RBELM2 0.985 0.970 0.027 0.018 0.954 0.907 0.047 0.031
POELM1 0.531 0.282 0.131 0.106 0.555 0.307 0.127 0.103
POELM2 0.927 0.859 0.058 0.044 0.880 0.767 0.074 0.058
Daily data for USGS ID 14206241 Willamette River at Portland, Oregon, USA

ELM1 0.800 0.640 0.117 0.091 0.800 0.640 0.115 0.091
ELM2 0.980 0.961 0.038 0.029 0.964 0.928 0.052 0.039
WKELM1 0.800 0.639 0.117 0.092 0.799 0.639 0.116 0.091
WKELM2 0.990 0.978 0.029 0.021 0.980 0.955 0.041 0.030
RBELM1 0.800 0.639 0.117 0.092 0.799 0.639 0.116 0.091
RBELM2 0.992 0.984 0.024 0.017 0.981 0.961 0.038 0.027
POELM1 0.800 0.639 0.117 0.092 0.800 0.640 0.116 0.091
POELM2 0.965 0.932 0.051 0.039 0.946 0.894 0.063 0.049
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very accuracy was obtained. The mean R and NSE values were approximately 
≈0.560 and ≈0.312, respectively, while the mean RMSE and MAE values were 
approximately ≈0.127 and ≈0.103, respectively. It is also clear that the four models 
worked equally with the same performances. For improving the models’ perfor-
mances, a preprocessing signal decomposition algorithm, i.e., the EWT, was used 
for decomposing the river discharge into several MRA components, which yielded 
high improvement in models’ performances. According to Table  16.2, using the 
EWT, the means R, NSE, RMSE, and MAE values were significantly improved 
reaching the values of ≈0.925, ≈0.847, ≈0.059, and ≈0.043 with improvement rates 
of approximately ≈39.45%, ≈63.17%, ≈53.65%, and ≈58.04% compared to the 
values obtained using the first scenario. The best accuracy was obtained using the 
RBELM2 (R ≈ 0.925, NSE ≈ 0.847), slightly higher than the WKELM2, while the 
POELM2 was the poorest model exhibiting the lowest R (≈0.880) and NSE 
(≈0.767) values, respectively. For comparison, the RBELM2 (i.e., with EWT) 
improve the accuracies of the RBELM1 (i.e., without EWT) by ≈41.19%, ≈65.49%, 
≈62.99%, and ≈69.60%, in terms of R, NSE, RMSE, and MAE values, respectively, 
which clearly highlighted the high contribution of the EWT in improving the perfor-
mances of the models. Scatterplots of measured against calculated river water pH at 
the USGS 14211720 for the validation stage are depicted in Fig. 16.4. At the USGS 
14206241, using the first scenario, all four models have the same performances 
without any difference. The obtained means R, NSE, RMSE, and MAE were 
approximately ≈0.800, ≈0.640, ≈0.115, and ≈0.091, respectively. Using the second 
scenario, i.e., using the EWT, the performances of the models were significantly 
improved and the means R, NSE, RMSE, and MAE reached the values of ≈0.968, 
≈0.935, ≈0.049, and ≈0.036, respectively, with improvement rates of ≈17.38%, 
≈31.56%, ≈58.09%, and ≈60.16%, respectively. The best accuracy was obtained 
using the RBELM2 slightly better than the WKELM2, and the POELM was the 
poorest model. Comparison between the models with and without EWT revealed 
that the RBELM2 improves the performances of the RBELM1 by ≈18.55%, 
≈33.50%, ≈67.24%, and ≈70.336%, in terms of R, NSE, RMSE, and MAE, respec-
tively. Scatterplots of measured against calculated river water pH at the USGS 
14206241 for the validation stage are depicted in Fig. 16.5.

 Prediction of River Water-Specific Conductance

Predicting river water-specific conductance was conducted according to two sce-
narios similar to what is reported in the previous section for the water pH. At the 
USGS 14211720 station as shown in Table 16.3, for the first scenario, using only the 
river discharge, it is clear that none of the models was able to correctly predict the 
river-specific conductance showing very low performances for which the R and 
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Fig. 16.4 Scatterplots of measured against calculated daily river pH (/) at the USGS 14211720 for 
the validation stage

NSE values were ranged from ≈0.709 to ≈0.715 (mean ≈ 0.713) and from ≈0.497 
to ≈0.504 (mean ≈ 0.502), while the RMSE and MAE were ranged from ≈7.223 to 
≈7.270 (mean ≈ 7.24) and from ≈5.685 to ≈5.734 (mean ≈ 5.70), respectively. The 
use of EWT lead to a high improvement in models’ performances for which the R 
and NSE values ranged from ≈0.925 to ≈0.974 (mean ≈ 0.953) and from ≈0.847 to 
≈0.947 (mean ≈ 0.903), while the RMSE and MAE were ranged from ≈2.352 to 
≈4.014 (mean ≈ 3.122) and from ≈1.528 to ≈3.054 (mean ≈ 2.211), respectively. 
The best accuracies were achieved using the RBELM2 slightly lower than the 
WKELM2, while the POELM2 was the lowest model in terms of numerical 
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Fig. 16.5 Scatterplots of measured against predicted daily river pH (/) at the USGS 14206241 for 
the validation stage

performances. For numerical comparison, the RBELM2 model improves the perfor-
mances of the RBELM1 by increasing the R and NSE values by ≈26.59% and 
≈46.78%, respectively, and by decreasing the RMSE and MAE by≈67.43% and 
≈73.12%, respectively. At the USGS 14206241 station, as shown in Table 16.3, the 
same concluding remarks can be drawn, by highlighting the poor predicting accura-
cies using only the river discharge and the high improvement in models’ perfor-
mances obtained using the EWT. It is clear that the best performances were obtained 
using the RBELM2 with R, NSE, RMSE, and MAE values of approximately 
≈0.963, ≈0.925, ≈3.330, and ≈2.298, respectively, with an improvement rates of 
approximately ≈31.56%, ≈53.08%, ≈63.51%, and ≈67.79%, respectively. 
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Table 16.3 Performances of different models for water-specific conductance prediction

Models

Training Validation

R NSE
RMSE (uS/
cm)

MAE (uS/
cm) R NSE

RMSE (uS/
cm)

MAE (uS/
cm)

Daily data for USGS ID 14211720 Willamette River at Portland, Oregon, USA

ELM1 0.743 0.553 6.862 5.430 0.715 0.502 7.239 5.699
ELM2 0.988 0.975 1.611 1.228 0.943 0.881 3.538 2.512
WKELM1 0.742 0.550 6.882 5.457 0.713 0.503 7.226 5.691
WKELM2 0.991 0.979 1.493 1.112 0.970 0.936 2.585 1.751
RBELM1 0.743 0.552 6.869 5.440 0.715 0.504 7.223 5.685
RBELM2 0.995 0.988 1.107 0.809 0.974 0.947 2.352 1.528
POELM1 0.737 0.543 6.934 5.509 0.709 0.497 7.270 5.734
POELM2 0.960 0.921 2.882 2.204 0.925 0.847 4.014 3.054
Daily data for USGS ID 14206241 Willamette River at Portland, Oregon, USA

ELM1 0.683 0.466 8.933 7.000 0.668 0.446 9.032 7.030
ELM2 0.962 0.925 3.345 2.553 0.919 0.842 4.823 3.583
WKELM1 0.655 0.428 9.244 7.323 0.649 0.421 9.235 7.246
WKELM2 0.980 0.958 2.500 1.849 0.957 0.912 3.605 2.544
RBELM1 0.669 0.447 9.091 7.171 0.659 0.434 9.126 7.135
RBELM2 0.987 0.973 2.019 1.470 0.963 0.925 3.330 2.298
POELM1 0.639 0.408 9.411 7.518 0.632 0.399 9.405 7.447
POELM2 0.929 0.863 4.521 3.495 0.897 0.804 5.374 4.152

Scatterplots of measured against calculated river water-specific conductance at the 
two stations for the validation stage are depicted in Figs. 16.6 and 16.7.

 Summary and Conclusions

Our study examined the use of signal decomposition paradigm for improving the 
performances of kernel extreme learning machine used for predicting river water 
pH and specific conductance. We compared three KELM, i.e., wavelet, radial basis, 
and polynomial kernel ELM and the standalone ELM models. Our modeling strat-
egy was based on the use of river discharge as a single input variable, and our analy-
sis indicates the potential of the EWT for decomposing the discharge into several 
MRA subcomponents, which has significantly contributed to the improvement of 
models’ performances. While similar studies based on signal decomposition have 
been done previously, our results are particularly encouraging because the EWT 
was introduced for the first time, and differences in terms of numerical perfor-
mances between models with and without the EWT were remarkably significant. In 
addition to providing a simple and easily applied algorithm for accurately 
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Fig. 16.6 Scatterplots of measured against calculated daily river-specific conductance (uS/cm) at 
the USGS 14211720 for the validation stage

predicting two water quality variables, with continuous investigations and an 
increase in the availability of in situ measured rivers discharge, our results can be an 
excellent tool for assessing and monitoring changes in water quality variables, and 
it should be more suitable to extends the developed approach for predicting other 
water variables.

Acknowledgments This study could not have been possible without the support of the USGS 
data survey. The author thanks the staffs of USGS web server for providing the data that makes this 
research possible.

S. Heddam



427

Fig. 16.7 Scatterplots of measured against calculated daily river-specific conductance (uS/cm) at 
the USGS 14206241 for the validation stage
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Chapter 17
Assessment of Climate Change Impact 
on Land Use-Land Cover Using Geospatial 
Technology

Syeda Mishal Zahra, Muhammad Adnan Shahid, Rabeea Noor, 
M. Aali Misaal, Fahd Rasul, Sikandar Ali, M. Imran, M. Tasawar, 
and Sidra Azam

Abstract Monitoring land cover variations is imperative for global resource man-
agement. Climatic variation influences land use–land cover (LULC) distribution 
steadily. Geospatial techniques are among the most comprehensive and efficient 
approaches for developing LULC categorization maps, which greatly enhance the 
overall utilization of agricultural, industrial, and urban areas of any region. The 
primary causes of LU change are urbanization and variation in temperature and 
precipitation leading to climate change. People have the innate desire to be close to 
nature, which drives them to relocate from densely populated places toward less 
heavily populated regions. Therefore, as a result, agricultural lands are being 
replaced by new communities created by deforestation and disrupting overall ecol-
ogy. In the perspective of urbanization and variation in climatic parameters, i.e., 
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precipitation and temperature, the present and previous LULC have been examined 
in this study by using geospatial techniques. Geographic information systems 
enable the examination of the changing patterns of LULC through monitoring by 
satellites. The key categorization indices in this study are the normalized difference 
vegetation index (NDVI) ranging between −0.28 and 0.74. As per  analysis, the 
forthcoming trend of climate change and its impact on LULC has been detected for 
the better management of land resources. The outcomes of this research will aid in 
the formulation of mitigation as a result of climate change.

Keywords Climate change · LULC · Precipitation · Temperature · Geographic 
information systems

 Introduction

Climate change is the major distribution of the weather pattern from decades to mil-
lions of years. It greatly influences the agriculture sector, and it leads to environ-
mental changes (Hussain 2020; Karuppannan 2021). Due to environmental changes, 
shifting of the season and cropping patterns occur. Pakistan has four distinct seasons 
throughout the year, and in recent decades, global warming has been observed as a 
man-made disaster in the environment (Hussain 2020; Karuppannan 2021). Global 
warming is occurring due to many human activities to make their lives luxurious 
i.e., factories, traffic, emission of GHGs, destruction of the ozone layer, burning of 
fossil fuels, deforestation, solar radiation, and changes in land use–land cover 
(LULC) (Pande et al. 2021; Hussain 2020; Karuppannan 2021). These all factors, 
directly or indirectly, are affecting the physical environment and becoming the 
cause of the sea-level rise, heat waves, increase in the average temperature, shifting 
of seasons, undistributed rainfall, abnormal behavior of winds, biosphere damage, 
vegetation, shifting of agroecological zones, social tensions, drinking water short-
age, human health effect, and urbanization (Hashim et al. 2020; Kawo et al. 2021). 
As per previous research (Majeed et  al. 2021), it has been observed that almost 
annually, there is a 1 °C rise in temperature occurring, which is the main cause of 
the melting of glacier and generation of GLOF events (Jabbar et  al. 2020). 
Agriculture is the foundation of Pakistan, contributing to almost 19.5% of GDP. The 
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average production (tons) per hectare of cash crops, mainly wheat, cotton, rice, 
maize, and sugarcane, is 70%, 53%, 61%, 82%, and 60%, accordingly, lower than 
the worldwide average production per hectare (Aslam 2016). Climate change is a 
major cause of that decreased yield and leads to a variant economy.

The socioeconomic status of the inhabitants who live on the land is greatly influ-
enced by LULC (Qureshi and Mahessar 2016). Extreme events such as tsunamis, 
earthquakes, and floods, among others, dramatically alter the structure of LULC and 
influence inhabitants over all aspects of life (Qureshi and Mahessar 2016). Because 
of the population boom, which disrupts the natural ecosystem and LULC types 
(Kefi et  al. 2021), assessing LULC and monitoring its variations seem to have 
become a significant concern; however, these LULC variations are crucial; thus, 
land use planning is required for the development of any territory (Dhinwa et al. 
1992). Analyzing the altering trends of LULC and its pattern is critical owing to 
massive human activities (Pasha et al. 2016), which are at a drastic level and could 
have a significant impact on the ecological environment, availability of food, and so 
these exponentially growing factors are major key drivers that convert LC from one 
form to another and endanger natural environment (Wakdok and Bleischwitz 2021). 
LULC mapping is the way by which its variation can be visualized and evaluated 
using remote sensing technologies.

Map-based LULC has indeed been performed effectively using satellite images 
at a variety of geographical, spectroscopical, and temporal resolutions (Hussain 
2020); however, in arid and semiarid environments, the use of multi-temporal satel-
lite data has just been decreased to establish and evaluate LULC variations (Maviza 
and Ahmed 2020). Changes in LULC could also be investigated though they have a 
long-term impact on the regional ecosystem, especially in major criteria with micro- 
global warming (Majeed et al. 2021; Srivastava and Chinnasamy 2021). Normalized 
difference vegetation index (NDVI) does have a high potential to convey seasonal 
fluctuation in vegetative covered activities and vegetation’s adaptation to climatic 
variation (Pande et  al. 2021; Hussain 2020). The NDVI scores are found to be 
related to the bioactivities of plants, and changes in NDVI characterize the bioac-
tivities in plants (Qureshi and Mahessar 2016). The regular fluctuations in land sur-
face temperature (LST) could also be easily characterized using the NDVI value, 
which represents the status of natural vegetation. The NDVI additionally aids in the 
analysis of various vegetation’s annual and seasonal patterns at international and 
provincial levels (Ullah et al. 2019). The reaction of vegetation to climatic fluctua-
tions, biological activities of different seasons, and the condition of native vegeta-
tion, all can be tracked using NDVI (Abdul Athick et al. 2019). NDVI can be used 
to track the growth-development processes of green plant cover (Kidane et al. 2019). 
The NDVI values are obtained by peak reflections near-infrared area and inside red 
area (Pande et al. 2021; Naz et al. 2017). Plant cover productivity is related to evap-
oration, transpiration, and precipitation, and NDVI seems to be a useful technique 
for assessing LULC efficiency at the global level (Rizvi et al. 2021). NDVI and LST 
are directly influenced by climatic variabilities.

The NDVI scale spans from −1 to 1, with the lowest value indicating total sur-
face resources and the highest value indicating green vegetation (Ahmad 2012). 
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Negative NDVI value indicates places having almost no vegetation, and positive 
value shows pixel with moderate to high vegetation. NDVI values are symbolized as 
soil surface while they are close to “0” (Lambin et al. 2003). The NDVI is widely 
used in remote sensing (RS) studies because that gives appropriate proof for inte-
grating and examining plants (Harris et al. 2014). Geographic information system 
(GIS) and RS are vital elements for researching urban proportions and densities 
with LULC mapping, as well as the environmental implications of urbanization 
planning across time (Pande et al. 2018; Näschen et al. 2019). RS enables inexpen-
sive on-time access to LULC and vegetative coverage statistics at specified intervals 
(Tariq et al. 2020). GIS effectively organizes and interprets geographical data, and 
that is an essential and core requirement of this field of research. RS is becoming 
crucial for evaluating vegetation changes because it delivers up-to-date remote sens-
ing data on vegetation. Moderate Resolution Imaging Spectroradiometer (MODIS) 
is just one of many RS sensors that can be used to analyze natural vegetation dete-
rioration as it gives worldwide information (MODIS Global Land Cover products) 
for LULCC mapping and also NDVI data (MODIS NDVI) for vegetation variability 
trends evaluation (Jacquin et al. 2010). Furthermore, MODIS vegetative indicators 
had enhanced resolution (250 m × 250 m) and were determined to be significantly 
associated with in situ observed vegetative indicators than NOAA/AVHRR NDVI 
or SPOT VGT (Fensholt et al. 2006). Different websites are available to get access 
to the MODIS NDVI data.

Numerous similar initiatives to analyze and monitor LULC variations and dete-
rioration using RS datasets have been investigated by many researchers from nations 
worldwide (Choudhury et  al. 2019), including Malaysia (Hussain 2020), China 
(Fan et al. 2007), Ethiopia (SAPURO 2016), Turkey (Nowacki and Abrams 2015), 
Nepal (Wang et  al. 2020), Zimbabwe (Maviza and Ahmed 2020), NW-Ethiopia 
(Tewabe and Fentahun 2020), S-Africa (Harris et al. 2014), Iran (Use et al. 2020), 
N-Ethiopia (Ayele et al. 2018), W-Africa (Zoungrana et al. 2018), Brazil (Lu et al. 
2013), Bangladesh (Rahman et al. 2017), Iraq (Rahman et al. 2021), NW-Ethiopia 
(Tewabe and Fentahun 2020), S-Africa (Harris et  al. 2014), Iran (Rahman et  al. 
2021), and N-Ethiopia (Ayele et  al. 2018). Multiple types of research in Multan 
(Ibrahim 2017), Faisalabad (Choudhury et al. 2019), Lodhran (Akar and Güngör 
2015), Vehari (Farooq and Qurat-ul-ain 2012), Khyber Pakhtunkhwa (Hussain 
2020), Sindh (Hussain 2020), S-Punjab (Hussain 2020; Shahid et al. 2021), Azad 
Jammu and Kashmir (Hussain 2020), and Islamabad (Hassan et al. 2016) have used 
RS data to evaluate and control changes that have occurred in LULC. The LULC is 
rapidly evolving as agricultural land becomes part of urban areas as a result of the 
exponential increase in population. Climate variability is exacerbated by urbaniza-
tion and industry. This is an alarming situation that is taking human beings to a very 
destructive end. There is a need to understand the climatic parameters, bring changes 
to improve the physical environment, and stop further destruction of natural param-
eters. In this study, LULC has been observed using RS and GIS techniques to fulfill 
the objectives of analyzing the spatiotemporal changes in LULC and developing 
correlations between different climatic parameters and LULC changes.
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 Materials and Methods

 Study Area

Sindh is a province of Pakistan with an area of 140,914 km2 and is located between 
23°53′23″ N to 28°29′44″ N latitude and 67°8′39″ E to 70°42′16″ E longitude, as 
shown in Fig. 17.1. It is situated in the southeast of Pakistan and elevation ranges 
from average and maximum is 857 m and 1714 m, respectively. It is a tropical 
region with maximum temperatures of 46  °C and lowest temperatures of 2  °C, 
making it hot in the summer and mildly cold in the winter. Sindh is the second-
largest province in terms of economics, with a GDP share ranging from 30% to 
32.7%. Sindh is sandwiched between the monsoon seasons: SW monsoon from the 
Indian Ocean and the NE monsoon, which is reflected toward it by the Himalayan 
Mountain range, hence escaping their impact. The region’s lack of precipitation is 
accounted for by the Indus River’s flooding twice a year, produced by the melting 
of Himalayan glaciers in the spring and early summer and precipitation during the 
monsoons.

Fig. 17.1 Study area – digital elevation model (DEM) of Sindh, Pakistan
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 Satellite Data

The AppEEARS was used to download Tera MODIS vegetation indices (NDVI and 
EVI) data from 2000 to 2021. MODIS operates on a 16-day cycle with swath mea-
surements of 2330 km (crosstracking) by 10 km (along-track at nadir). MOD13Q.006 
of MODIS, with a spatial resolution of 250 m, was downloaded in GeoTIFF format. 
Data were projected at the geographic datum of WGS84, EPSG: 4326, and PROJ: + 
proj  =  longlat + datum  =  WGS84  +  no_defs. The selected sublayers from Tera 
MODIS vegetation indices (NDVI and EVI) MOD13Q.006 were 250 m 16 days 
EVI, 250 m 16 days MIR reflectance, 250 m 16 days NDVI, 250 m 16 days NIR 
reflectance, 250  m 16  days VI quality, 250  m 16  days blue reflectance, 250  m 
16 days composite day of the year, 250 m 16 days pixel reliability, 250 m 16 days 
red reflectance, 250 m 16 days relative azimuth angle, 250 m 16 days sun zenith 
angle, and 250 m 16 days view zenith angle.

 Image Processing

Terra MODIS has 36 bands, although Bands 1 and 2 are just for surface reflectance. 
Band-1 represented the RED spectrum, whereas Band-2 represented the near- 
infrared (NIR) spectrum. The NDVI value was calculated using these two bands. 
The bands of the RED and NIR spectrum were processed in ArcGIS 10.8 and gave 
NDVI value of the Sindh. AppEEARS data was downloaded directly in GeoTIFF 
format of the designated study area (Fig.  17.2), and various supporting files in 
XML, txt, MD, JSON, and CSV were also provided to see the LULC change over a 
selected period.

 Estimation of NDVI

NDVI was calculated for the estimation of vegetation cover by using MODIS 
Band-1 and Band-2 data. The NDVI was calculated using MODIS images and has 
specific values ranging from −1 to 1. The NDVI was determined by using the fol-
lowing formula:

 
NDVI

NIR RED

NIR RED
�

�
�  

(17.1)
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VI Quality

MODIS Product (MOD13Q.006)
Terra MODIS Vegetation Indices (NDVI & EVI)

250 m Resolution, 16 days cycle
(2000-2021)

NDVI
EVI

Day of
Year

Screen for LULC, Water, Snow/Ice and
Shadow Flags, MODIS useful Product

Climatological Average for Every 16-day Period

Piecewise Linear Interpolation

Climatological Time Series of NDVI, EVI

Fig. 17.2 Flow chart of MODIS processing data

Table 17.1 NDVI classes range in ArcGIS 10.8

Classes of land NDVI ranges

Water bodies −0.28–0.015
Built-up area 0.015–0.14
Barren land 0.14–0.18
Shrubs and grassland 0.18–0.27
Spare vegetation 0.27–0.36
Dense vegetation 0.36–0.74

or

 
NDVI

Band Band

Band Band
�

�
�

2 1

2 1  
(17.2)

where NIR is near the infrared band (Band-2) and RED is a red band (Band-1) 
NDVI value.

The area of Sindh was classified into six classes to see the variation in LULC. The 
classes were water bodies, built-up area, barren land, shrubs and grassland, sparse 
vegetation, and dense vegetation with the ranges as mentioned above in Table 17.1.
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 Climate

Temperature, humidity, evapotranspiration, and precipitation were the main climatic 
elements that had a direct impact on LULC. These meteorological parameters’data 
were obtained from the Sindh province statistics agency. Monthly data of minimum, 
maximum, and mean temperature in °C, relative humidity (saturated and actual 
humidity) in %, and rainfall in mm have been collected. The meteorological data for 
these factors were collected from 2000 to 2021 and compared using LULC.

 Statistical Analysis of LULC

Sixteen-day data of total pixel count, minimum, maximum, range, mean, standard 
deviation (SD), variance, upper quartile (UQ), interquartile range (IQR), and lower 
quartile (LQ) of NDVI has been observed. Maximum and minimum NDVI were the 
maximum and minimum values of NDVI observed in the circle of 16 days, respec-
tively. The maximum and minimum values set the range of the NDVI in a given 
duration.

 Mean of NDVI

The mean was a variable with a quantity that was between the extreme elements of 
the collected data. There were several types of means and the process of determin-
ing a mean. The following was the formula for calculation of the mean of NDVI:

 

Mean of NDVI �
� � ��
� � �
f i i
f i

 

(17.3)

where i = spectral value and ⅀f(i) = number of pixels.

 The Standard Deviation of NVDI

The SD was a measure of the dispersion of how far apart the dataset was from the 
mean. A low SD indicated that data was grouped all-around mean, whereas a large 
SD showed that data was more dispersed. The formula for SD of NDVI is given below:

 

SD of NDVI �
� � � �� �� �� �

� � �
f i i

f i

� 2

 

(17.4)
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where μ = mean of NDVI.

 Variance of NDVI

The variance was a measurement of the dispersion between numbers in collected 
data. Further particularly, variance assessed how far every value in the set deviated 
from the mean and hence from every other number in the dataset. The variance of 
NDVI was estimated by the following formula:

 

Variance of NDVI �
� � � �� �

� � �
f i

f i

� 2

 

(17.5)

 Quartile of NDVI

The UQ, also known as the third quartile (Q3), was the value at which 75% of data 
points were located when sorted in ascending order. The median or LQ was regarded 
as the second quartile (Q2). The difference between the upper and lower quartiles 
was the IQR. The formulas for the determination of UQ, LQ, median, and IQR in 
NDVI are given below:

 
UQ of NDVI term

th
� � � �� �3

4
1f i

 
(17.6)

 
LQ of NDVI term

th
� � � �� �1

4
1f i

 
(17.7)

If f(i) was odd:

 

Median of NDVI term

th

�
� � ��

�
��

�

�
��

f i 1

2
 

(17.8)

If f(i) was even:

 
Median od NDVI

term term

th th

�

� ��

�
��

�

�
�� �

� �
�

�

�
��

�

�
��

f i f i

2 2
1

2  
(17.9)

 
Inter Quartile Range IQR UQ LQ� � � �

 
(17.10)
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 Results and Discussion

 Change detection of LULC

LULC categories with the maximum and minimum changes in LULC were ana-
lyzed at all stages to find the optimum comparative change in Sindh Province over 
the previous 21 years. The classification analysis revealed that the research province 
was covered with various land surface features (water bodies, built-up areas, barren 
land, shrubs and grassland, sparse vegetation, and dense vegetation) and the LULC 
classification configuration was carried out using satellite data with Sindh GIS 
information, as shown in Fig. 17.3. Classification of LULC is done based on NDVI 
values as explained in Table 17.1. Food demand is a major concern as Pakistan’s 
population is growing at an exponential rate. Agriculture is expanding to meet food 
demand, and cultivated land is rising in a linear pattern. The cultivated area was less 
in 2000, and Fig.  17.3 shows that it is rising with time. Farmers are using farm 
mechanization technologies to increase crop yield and maximize crop production. 
Sindh’s built-up area is dwindling as a result of people moving from rural to urban 

Fig. 17.3 Land use–land cover (LULC) changes occurring from 2000 to 2021
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areas at a rate of 3.1%. The motives for rural-to-urban migration are to obtain better 
facilities, educate their children, improve their lifestyles, and find a source of reve-
nue. Sindh’s barren land is growing as a result of migration. Because water is abun-
dantly available along the Indus River, vegetation and agricultural lands are 
expanding to a greater extent. Looking at the water bodies aspect, most flood events 
occur downstream of the Indus River when extreme glacier events occur. People are 
migrating from flood-affected places such as Dadu, Jamshoro, Qambar Shahadkot, 
and Malir, which are quickly becoming part of barren lands. Sindh is divided into 
four zones based on agricultural climate and soil conditions: upper Sindh (Shikarpur, 
Larkana, and Jacobabad), middle Sindh (Dadu, Nawabshah, and Nausherferoz), 
lower Sindh (Hyderabad, Mirpurkhas, and Sangar), and desert and kacho area 
(Dadu Larkana and Hyderabad), which is demonstrated in Fig. 17.1. Rice is grown 
as a major crop in Upper Sindh, with matter, mustard, rape, and sunflower as minor 
crops. Cotton is the most important crop in middle Sindh, whereas mustard, rape, 
and sunflower are minor crops. Cotton and wheat are the major crops in lower 
Sindh, with soybean, rape, sunflower, groundnut, and mustard as minor crops. 
Sindh’s desert area is predominantly rainfed, and crops grown there include sesa-
mum, sorghum, guar, caster, and millet. According to census 2017–2018 (Finance 
Division 2019), it has been observed that percentage change in production of Sindh 
was about 3.62% in 2011–12, and it was 3.81% in 2017–2018, so dense vegetation 
(cultivated area) has increased in the top and middle parts of Sindh, and shrubs, 
grassland, and spare vegetation have been replaced by dense vegetation.

 Statistical Trends of NDVI Data

From 2000 to 2021, the minimum value range of NDVI is from −0.2 to −0.19, 
maximum value range of NDVI is from 0.5 to 0.9, mean NDVI ranges between 0.08 
and 0.21, standard deviation range of NDVI is from 0.04 to 0.16, the variance of 
NDVI ranges between 0.0001 and 0.02, upper quartile range of NDVI is from 0.09 
to 0.3, upper 1.5 IQR has the range of 0.15–0.6, lower 1.5 IQR ranges between 
−0.19 and 0.01, and lower quartile has the range of 0.05–0.11. The trends of MODIS 
NDVI values are pixel count NDVI, minimum NDVI, maximum NDVI, mean of 
NDVI, SD of NDVI, the variance of NDVI, LQ, and UQ of NDVI as shown in 
Figs. 17.4, 17.5, 17.6, 17.7, 17.8, 17.9, 17.10, and 17.11, respectively. The statistical 
patterns of NDVI values are revealing themselves in an abrupt manner. Table 17.2 
shows the percent variation of various statistical parameters between 2000 and 
2021. Minimum and maximum NDVI values are deviated upto 0.13% and 11.2%. 
The mean NDVI has a deviation of 25.3%, indicating that there is increase in the 
green vegetation in Sindh from 2000 to 2021. Farmers are practicing farm mechani-
zation technology to increase crop production, due to which shrubs, grassland, and 
spare vegetation land are becoming part of dense vegetation. Sindh government is 
also aiding farmers in promoting new crop technology, pesticides, fertilizers, variet-
ies, weedicide, farm machinery, and tools; providing farmers with information on 
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Fig. 17.4 Pixel count of NDVI from 2000 to 2021

Fig. 17.5 Trend of minimum value of NDVI from 2000 to 2021

urgent issues such as insect/pest outbreaks, climate change, weather forecast, the 
evolution of new high-yielding and insect-, pest-, disease-resistant resistant variety 
of major and minor crops and providing farmers with crop subsidies. The reason 
behind this increase is to meet food security, fulfill the need of human beings, and 
get maximum profit.
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Fig. 17.6 Trend of maximum value of NDVI from 2000 to 2021

Fig. 17.7 Trend of mean value of NDVI from 2000 to 2021

 Climate Factors of the Research Area

Within Pakistan, Sindh has been the hardest hit by extreme weather events, which 
are quintessential indications of climate change. Temperature, rainfall, and relative 
humidity are all climatic elements that have a direct impact on land use–land cover. 
The average temperature range over the last 20 years has been 14.2–28.1 °C, with a 
mean temperature of 21.1 °C. Figure 17.12 illustrates the trends of various tempera-
ture ranges and the five-year average smooth curve. Maximum mean temperature is 
recorded in 2018. Figure 17.13 depicts the relative humidity range of 52–66.7%, 
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Fig. 17.8 Trend of SD of NDVI from 2000 to 2021

Fig. 17.9 Trend of variance of NDVI from 2000 to 2021

with a mean relative humidity of 59.3%. Rainfall ranged from 190.75 to 396.83 mm, 
with an average of 301 mm during the last 21 years. Figure 17.14 demonstrates the 
year-average and five-year average smooth curve of rainfall. Temperature and rain-
fall exhibit a relative increasing tendency; however, relative humidity shows the 
reverse pattern, with a linear declining trend.
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Fig. 17.10 Trend of LQ of NDVI from 2000 to 2021

Fig. 17.11 Trend of UQ of NDVI from 2000 to 2021

 Relationship Between Climatic Factors and NDVI

Temperature and NDVI have a direct relationship, as demonstrated in Fig. 17.15, as 
the temperature rises, so does the NDVI value. The annual mean temperature and 
the NDVI have a linear relationship. The following models have been developed 
based on the 21-year data:

 Annual mean temperature year� ��0 0114416 1 81706. .  (17.11)

 Annual mean NDVI year� ��0 001131 2 14716. .  (17.12)
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Table 17.2 %Variation of different parameters of NDVI between 2000 and 2021

Statically parameters of NDVI % variation

Minimum 0.13
Maximum 11.2
Mean 25.3
Standard deviation 23.9
Variance 40.9
Upper quartile 25.7
Upper 1.5 IQR 26.3
Median 27.5
Lower 1.5 IQR 31.6
Lower quartile 23.9

Fig. 17.12 Annual Mean Maximum, 5-Year Average Mean Maximum, Annual Mean Minimum, 
5-Year Average Mean Minimum, Mean Temperature, and 5-Year Average Mean Temperature in °C 
from 2000 to 2020

P-value (significance) for annual mean temperature and NDVI is 0.371365 and 
0.0006541, respectively. Residual degrees of freedom, sum squared error, mean 
squared error, and standard error for annual mean temperature trend are 19, 2.2847, 
0.12, and 0.346, respectively, while residual degrees of freedom, sum squared error, 
mean squared error, and standard error for annual mean NDVI trend are 19, 
0.0011302, 5.94 e−05, 0.0077, respectively. R2 value for annual mean temperature 
and NDVI is 0.042 and 0.46, which depict that there is low correlation among 
the data.
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Fig. 17.13 Average Relative Humidity (%) from 2000 to 2020

Fig. 17.14 Annual mean rainfall and five-year average rainfall from 2000 to 2020

Relative humidity and NDVI have an indirect relationship, as demonstrated in 
Fig. 17.16, as the relative humidity increases, the NDVI value decreases. The annual 
mean relative humidity and the NDVI have a linear relationship. The following 
model of relative humidity has been developed based on the 21-year data: Annual 
mean relative humidity = −0.0964935 * year + 253.328.

P-value (significance), residual degrees of freedom, sum squared error, mean 
squared error, and standard error for annual mean temperature trend are 0.54, 19, 
352.389, 18.5468, and 4.3066, respectively. R2 value is 0.019, which shows that the 
data has poor correlation (Fig. 17.17).
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Fig. 17.15 Relationship between annual mean temperature and NDVI

Fig. 17.16 Relationship between mean NDVI and average relative humidity

Rainfall and NDVI have a direct relationship, as demonstrated in Fig. 17.17, as 
the rainfall rises, so does the NDVI value. The annual mean rainfall and the NDVI 
have a linear relationship. The following model of rainfall has been developed based 
on the 21-year data:

 Annual mean temperature year� ��3 19186 6114 58. .  (17.13)

P-value (significance), residual degrees of freedom, sum squared error, mean 
squared error, and standard error for annual mean rainfall trend are 0.17, 19, 
75735.8, 3986.09, and 63.1355, respectively. R2 value 0.093 shows that the data has 
poor correlation.
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Fig. 17.17 Relationship between annual mean relative rainfall and NDVI

It has been observed from the climatic data (2000–2021) that with the increase in 
temperature and rainfall, NDVI value increases, and the case is opposite while hav-
ing look on the relative humidity. People are switching from villages to cities, and 
as a result, remote areas in certain districts of Sindh are becoming barren. Increased 
food demand causes farmers to engage in more cultivation practices, and instead of 
a single cropping system, farmers are adopting multiple cropping systems to meet 
demand and earn a higher profit. The NDVI value in Sindh province indicates sig-
nificant fluctuation in LULC because of multiple cropping. Because the environ-
ment in Sindh is conducive to this cropping system, the climate has a significant 
impact on LULC.

 Conclusion

The research had been carried out in Sindh province, Pakistan, to assess climate 
change impact on land use–land cover. Farmers’ livelihoods in the research region 
are fully dependent on agriculture and are related to average temperature and rain-
fall. However, average temperature changes led to a lack of rainfall, a rise in climate 
extremes, and a decline in the availability of water for irrigation, directly harming 
the agrarian population and agricultural advancements. In the research area, rising 
temperatures and decreased irrigation water supply due to less rainfall are regarded 
as severe concerns. Farmers need required government assistance as they are aware 
of climate variations and are reacquainting themselves with methods for mitigating 
their effects. The results reveal that the vegetation section gives an additional-based 
beneficial relationship with the NDVI at all stages, whereas built- up area have been 
inversely associated with LULC and the NDVI during the previous 21 years. On an 
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average, Sindh area was classified into water bodies, built-up areas, barren land, 
shrubs and grassland, sparse vegetation, and dense vegetation on the base of NDVI 
value ranging between −0.28 and 0.74. It has been concluded that climate change 
has direct impact on LULC. In the whole time period the main variation occur in 
barren land and dense vegetation area. The latest results provide the primary obser-
vation basis for regular inspections of variances in LULC, which will assist policy-
makers in improving strategies for managing land capitals effectively.

References

Abdul Athick ASM, Shankar K, Naqvi HR (2019) Data on time series analysis of land surface tem-
perature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono 
window, split window algorithm and spectral radiance model. Data Br 27:104773

Ahmad F (2012) A review of remote sensing data change detection algorithms: comparison of 
Faisalabad and Multan districts, Punjab Province, Pakistan. J Geogr Reg Plan 5:236–251

Akar, Güngör O (2015) Integrating multiple texture methods and NDVI to the random forest 
classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int J 
Remote Sens 36:442–464

Aslam M (2016) Agricultural productivity current scenario, constraints and future prospects in 
Pakistan. Sarhad J Agric 32:289–303

Ayele GT, Tebeje AK, Demissie SS, Belete MA, Jemberrie MA, Teshome WM, Mengistu DT, 
Teshale EZ (2018) Time series land cover mapping and change detection analysis using 
geographic information system and remote sensing, Northern Ethiopia. Air Soil Water Res 
11:117862211775160

Choudhury D, Das K, Das A (2019) Assessment of land use land cover changes and its impact 
on variations of land surface temperature in Asansol-Durgapur Development Region. Egypt J 
Remote Sens Sp Sci 22:203–218

Dhinwa PS, Pathan SK, Sastry SVC, Rao M, Majumder KL, Chotani ML, Singh JP, Sinha RLP 
(1992) Land use change analysis of Bharatpur district using GIS. J Indian Soc Remote Sens 
20:237–250

Fan F, Weng Q, Wang Y (2007) Land use and land cover change in Guangzhou, China, from 1998 
to 2003, based on Landsat TM/ETM+ imagery. Sensors 7:1323–1342

Farooq A, Qurat-ul-ain F (2012) Algorithm and n-dimensional visualization for ETM+ image 
analysis: a case of district Vehari. Glob J Hum Soc Sci Arts Humanit 12:23–32

Fensholt R, Sandholt I, Stisen S (2006) Evaluating MODIS, MERIS, and VEGETATION vegeta-
tion indices using in situ measurements in a semiarid environment. IEEE Trans Geosci Remote 
Sens 44:1774–1786

Finance Division, G. of P (2019) Pakistan economic survey 2017–18. Pakistan Econ Surv, 
pp 115–131

Harris A, Carr AS, Dash J (2014) Remote sensing of vegetation cover dynamics and resilience 
across southern Africa. Int J Appl Earth Obs Geoinf 28:131–139

Hashim AM, Elkelish A, Alhaithloul HA, El-hadidy SM, Farouk H (2020) Environmental moni-
toring and prediction of land use and land cover spatio-temporal changes: a case study from 
El-Omayed Biosphere Reserve, Egypt. Environ Sci Pollut Res 27:42881–42897

Hassan Z, Shabbir R, Ahmad SS, Malik AH, Aziz N, Butt A, Erum S (2016) Dynamics of land 
use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad 
Pakistan. Springerplus 5:812

S. M. Zahra et al.



451

Hussain S (2020) Land Use/Land Cover Classification by Using Satellite NDVI Tool for Sustainable 
Water and Climate Change in Southern Punjab By MS Thesis COMSATS University Islamabad 
(CUI). https://doi.org/10.13140/RG.2.2.32363.69923

Ibrahim GRF (2017) Urban land use land cover changes and their effect on land surface tempera-
ture: case study using Dohuk City in the Kurdistan Region of Iraq. Climate 5:13

Jabbar A, Othman AA, Merkel B, Hasan SE (2020) Change detection of glaciers and snow cover 
and temperature using remote sensing and GIS: a case study of the Upper Indus Basin, Pakistan. 
Remote Sens Appl Soc Environ 18:100308

Jacquin A, Sheeren D, Lacombe JP (2010) Vegetation cover degradation assessment in 
Madagascar savanna based on trend analysis of MODIS NDVI time series. Int J Appl Earth 
Obs Geoinf 12:3–10

Karuppannan S (2021) Land use/land cover changes and their impact on land surface tem-
perature using remote sensing technique in district Khanewal, Punjab Pakistan. Geol Ecol 
Landscapes 00:1–13

Kawo NS, Hordofa AT, Karuppannan S (2021) Performance evaluation of GPM-IMERG early 
and late rainfall estimates over Lake Hawassa catchment, Rift Valley Basin, Ethiopia. Arab J 
Geosci 14:256

Kefi C, Mabrouk A, Halouani N, Ismail H (2021) Comparison of pixel-based and object- 
oriented classification methods for extracting built-up areas in coastal zone. Environ Sci Eng 
8:2151–2155

Kidane M, Tolessa T, Bezie A, Kessete N, Endrias M (2019) Evaluating the impacts of climate and 
land use/land cover (LU/LC) dynamics on the Hydrological Responses of the Upper Blue Nile 
in the Central Highlands of Ethiopia. Spat Inf Res 27:151–167

Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical 
regions. Annu Rev Environ Resour 28:205–241

Lu D, Li G, Moran E, Hetrick S (2013) Spatiotemporal analysis of land-use and land-cover change 
in the Brazilian Amazon. Int J Remote Sens 34:5953–5978

Majeed M, Tariq A, Anwar MM, Khan AM, Arshad F, Mumtaz F, Farhan M, Zhang L, Zafar A, 
Aziz M, Abbasi S, Rahman G, Hussain S, Waheed M, Fatima K, Shaukat S (2021) Monitoring 
of land use–land cover change and potential causal factors of climate change in Jhelum district, 
Punjab, Pakistan, through GIS and multi-temporal satellite data. Land 10:1026

Maviza A, Ahmed F (2020) Analysis of past and future multi-temporal land use and land cover 
changes in the semi-arid Upper-Mzingwane sub-catchment in the Matabeleland south province 
of Zimbabwe. Int J Remote Sens 41:5206–5227

Näschen K, Diekkrüger B, Evers M, Höllermann B, Steinbach S, Thonfeld F (2019) The impact of 
land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania 
under different climate change scenarios. Sustainability 11(24):7083

Nowacki GJ, Abrams MD (2015) Is climate an important driver of post-European vegetation 
change in the Eastern United States? Glob Chang Biol 21:314–334

Pande CB, Moharir K, Khadri SFR, Patil S (2018) Study of land use classification in Aried region 
using multispectral satellite images. Appl Water Sci (Springer J)., ISSN 2190-5487 8(5):1–11

Pande CB, Moharir KN, Khadri SFR (2021) Assessment of land-use and land-cover changes in 
Pangari watershed area (MS), India, based on the remote sensing and GIS techniques. Appl 
Water Sci. Impact factor: 3.87, Five Year Impact Factor: 4.39. 11:96. https://doi.org/10.1007/
s13201- 021- 01425- 1

Pasha SV, Reddy CS, Jha CS, Rao PVVP, Dadhwal VK (2016) Assessment of land cover change 
hotspots in Gulf of Kachchh, India using multi-temporal remote sensing data and GIS. J Indian 
Soc Remote Sens 44:905–913

Qureshi A, Mahessar AA (2016) Time  – dependent flow through asymmetric contraction and 
expansion channel. Sindh Univ Res J (Sci Ser) 45:153–157

Rahman MTU, Tabassum F, Rasheduzzaman M, Saba H, Sarkar L, Ferdous J, Uddin SZ, Zahedul 
Islam AZM (2017) Temporal dynamics of land use/land cover change and its prediction using 
CA-ANN model for southwestern coastal Bangladesh. Environ Monit Assess 189:565

17 Assessment of Climate Change Impact on Land Use-Land Cover Using Geospatial…

https://doi.org/10.13140/RG.2.2.32363.69923
https://doi.org/10.1007/s13201-021-01425-1
https://doi.org/10.1007/s13201-021-01425-1


452

Rahman G, Rahman AU, Ullah S, Dawood M, Moazzam MFU, Lee BG (2021) Spatio-temporal 
characteristics of meteorological drought in Khyber Pakhtunkhwa, Pakistan. PLoS One 16:1–16

Rizvi SH, Fatima H, Alam K, Iqbal MJ (2021) The surface urban heat island intensity and urban 
expansion: a comparative analysis for the coastal areas of Pakistan. Environ Dev Sustain 
23:5520–5537

Sapuro JT (2016) No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関す
る共分散構造分析Title. Euphytica 18:22280

Shahid M, Rahman KU, Haider S et al (2021) Quantitative assessment of regional land use and 
climate change impact on runoff across Gilgit watershed. Environ Earth Sci 80:743. https://doi.
org/10.1007/s12665- 021- 10032- x

Srivastava A, Chinnasamy P (2021) Investigating impact of land-use and land cover changes on 
hydro-ecological balance using GIS: insights from IIT Bombay, India. SN Appl Sci 3:343. 
https://doi.org/10.1007/s42452- 021- 04328- 7

Tariq A, Riaz I, Ahmad Z, Yang B, Amin M, Kausar R, Andleeb S, Farooqi MA, Rafiq M (2020) 
Land surface temperature relation with normalized satellite indices for the estimation of spatio- 
temporal trends in temperature among various land use land cover classes of an arid Potohar 
region using Landsat data. Environ Earth Sci 79:1–15

Tewabe D, Fentahun T (2020) Assessing land use and land cover change detection using remote 
sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ Sci 6:E09267

Ullah S, Tahir AA, Akbar TA, Hassan QK, Dewan A, Khan AJ, Khan M (2019) Remote sensing- 
based quantification of the relationships between land use land cover changes and surface tem-
perature over the lower Himalayan region. Sustainability 11(19):5492

Use L, Cover L, Using C (2020) CA-Markov chain analysis of seasonal land surface tempera-
ture and land use land cover change using optical multi-temporal satellite data of Faisalabad, 
Pakistan. Remote Sens 12:3402

Wakdok SS, Bleischwitz R (2021) Climate change, security, and the resource nexus: case study of 
Northern Nigeria and Lake Chad. Sustainability 13:1–18

Wang SW, Gebru BM, Lamchin M, Kayastha RB, Lee WK (2020) Land use and land cover 
change detection and prediction in the Kathmandu district of Nepal using remote sensing and 
GIS. Sustainability 12(9):3925

Zoungrana BJB, Conrad C, Thiel M, Amekudzi LK, Da ED (2018) MODIS NDVI trends and frac-
tional land cover change for improved assessments of vegetation degradation in Burkina Faso, 
West Africa. J Arid Environ 153:66–75

S. M. Zahra et al.

https://doi.org/10.1007/s12665-021-10032-x
https://doi.org/10.1007/s12665-021-10032-x
https://doi.org/10.1007/s42452-021-04328-7


453

Chapter 18
Impacts of Climate-Induced Events 
on the Season-Based Agricultural 
Cropping Pattern and Crop Production 
in the Southwestern Coastal Region 
of Bangladesh

Shimul Roy, Rezuana Afrin, Md. Younus Mia, and Sanjoy Kumar Mondol

Abstract Agricultural cropping pattern and crop production in the Southwestern 
coastal region of Bangladesh is affected severely by climate-induced events and 
climatic variability. This study shows the impacts of climatic-induced events (e.g., 
cyclone Sidr and Aila) on agricultural cropping patterns and crop production in two 
disaster-prone Southwestern coastal districts (i.e., Khulna and Satkhira) in 
Bangladesh. For analyzing the trend of climatic variability (e.g., temperature, rain-
fall, and relative humidity), 35 years (1980–2014) of climatic data were used. This 
study shows that the agricultural crop production in the selected Southern coastal 
region of the country had declined significantly when the two major cyclones (i.e., 
Sidr and Aila) approached in 2007 and 2009, respectively. A correlation analysis has 
been performed between annual average crop production and annual average cli-
matic data to identify the influence of climatic variability on crop production.

Keywords Climate · Crop production · Climatic variability · Bangladesh

 Introduction

In South Asian countries, the impacts of climate change on various sectors, includ-
ing freshwater, rainfall, temperature, soil moisture, etc., have severely hindered crop 
yield (Arnell et al. 2016). In Bangladesh, the impact of climate change on agricul-
tural crop production is a growing concern, especially for long-term agricultural 
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development. As the vast majority of the country’s population relies on agriculture, 
crop production is highly vulnerable to changes in the climatic system in Bangladesh 
(Amin et al. 2015). Different studies (e.g., Islam et al. 2020; Chen et al. 2016; Amin 
et al. 2015; Zakaria et al. 2014; Rimi et al. 2009; Rokonuzzaman et al. 2018; Hossain 
et al. 2019; Sikder and Xiaoying 2014) reported that agricultural cropping patterns 
and crop productivity could be severely affected due to the changing pattern of sea-
sonal climatic factors, including temperature, rainfall, humidity, and day length. 
Additionally, different climate-induced events, such as cyclones, floods, storm 
surges, droughts, sea level rise, coastal flooding, etc., profoundly impact agricul-
tural cropping patterns and production in Bangladesh (Islam et al. 2020). Agriculture 
is the backbone of Bangladesh, which significantly influences the country’s food 
security. Apart from food security, this sector has considerable impacts on the coun-
try’s GDP and employment generation (GED 2021). Currently, this sector generates 
12.65% of the country’s GDP and employs around 50% of the population (World 
Bank 2021; Imdad 2021). Although the government of Bangladesh envisioned 
achieving the universal food security target by 2021, the most pressing concern is 
increased crop production demand for the rapidly growing population and the cli-
mate change impacts on the agricultural sector (GED 2021). It is evident that 
Bangladesh is one of the highly vulnerable countries worldwide in terms of climate 
change impacts due to its geographic location between the Himalayas and the Bay 
of Bengal, making it vulnerable to natural events (Ahmed 2006). The agricultural 
sector is the most vulnerable and affected in Bangladesh due to climate change 
(Islam et al. 2015).

In the coastal regions of Bangladesh, the agricultural sector is highly susceptible 
to climate change impacts, where a significant portion of the population relies on it 
for livelihood (Islam et al. 2020). Out of 2.85 million hectares of the coastal and 
offshore regions in Bangladesh, approximately 0.83  million hectares are arable 
lands, covering more than 30% of the total cultivable lands of the country (Petersen 
and Shireen 2001). In Bangladesh, the Southern coastal region is severely affected 
by climate change, notably agricultural crop production (Islam et  al. 2020). For 
instance, two devastating cyclones (i.e., Sidr and Aila) approached in 2007 and 
2009, respectively, severely damaged agricultural production in the Southern region 
of the country (BBS 2009). In Bangladesh, the impacts of climate change on the 
agricultural sector have drawn much attention in the recent decade. Some studies 
were conducted on this issue, primarily focusing on the climate change vulnerabil-
ity and adaptation practices (Rokonuzzaman et al. 2018; Sikder and Xiaoying 2014; 
Abedin and Shaw 2013; Huq et  al. 2015). Rimi et  al. (2009) and Hossain et  al. 
(2019) conducted a study to investigate the impacts of changing climatic variables 
on rice production in the Southern region of Bangladesh. Islam et al. (2020) studied 
the influence of climate-induced events and climatic variability on cropping patterns 
and crop production in the Satkhira region, Bangladesh. In this study, we investigate 
the existing agricultural cropping patterns and status of crop production in two 
disaster-prone Southwestern coastal districts in Bangladesh (i.e., Khulna and 
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Satkhira), the influence of climatic variability and major climate-induced events 
(e.g., Sidr and Aila) on annual crop production, and the correlation between annual 
crop production and different climatic parameters in the study areas.

 Methodology

 Study Area

This study was conducted in different Upazilas (i.e., Dacope, Koyra, Paikgachha, 
Batiaghata, Dumuria, Assasuni, and Kalaroa) of the Khulna and Satkhira districts 
located in the Southwestern coastal part of Bangladesh (Fig. 18.1). The annual aver-
age temperature and rainfall of this region range from 12.5 to 35.5 °C and 1710 to 
2500 mm, respectively (Islam et al. 2020; Hossain et al. 2019). This study consid-
ered these two Southwestern coastal districts of Bangladesh to provide an overview 
of the impacts of climatic variability and climate-induced events on agricultural 
cropping patterns and annual crop production. This study selected this region as the 
country’s Southwestern coastal part is more susceptible to climate-induced events 
(e.g., cyclones, saltwater intrusion due to coastal flooding or storm surge, etc.).

Fig. 18.1 Map of Khulna and Satkhira districts showing the selected study
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 Data Collection

This study was mainly conducted based on the secondary data gathered from differ-
ent local and national sources. Agricultural land area, cropping pattern, and crop 
production data (e.g., Aus, Aman, and Boro rice) for different seasons (i.e., Kharif-I, 
Kharif-II, and Robi) for the selected study areas had been collected from the local 
Agriculture Extension Office (AEO). To analyze this region’s climatic variability, 
35 years (1980–2014) of climatic data (temperature, humidity, and rainfall) were 
collected from the Bangladesh Meteorological Department (BMD). However, pri-
mary data were also collected from the farmers, local communities, and relevant 
professionals for obtaining in-depth information regarding various issues relevant to 
the study (e.g., existing cropping patterns, the status of crop production, concept on 
climate change, climate-induced events and their frequency in the study areas, and 
adaptation practices). Primary data were collected through the questionnaire survey, 
key informant interview (KII) with the government officials (i.e., Upazila Agriculture 
Extension Officers) and NGOs (e.g., BRAC and Muslim Aid, Winrock International, 
Prodipon, Rupantor), and through the focus group discussion (FGD) with the farm-
ers of selected Upazilas and local communities. A total of 10 KII had been con-
ducted with the officials of government organizations and NGOs. For the 
questionnaire survey, 200 respondents (100 from each district) were selected ran-
domly. Besides, a total of eight FGD sessions were conducted between March and 
October 2015.

 Data Analysis

Microsoft Excel and SPSS-20 software were used for data calculation and data 
analysis. Based on the availability of annual crop production data in three different 
seasons (i.e., Kharif-I, Kharif-II, and Robi season) and climatic data (temperature, 
rainfall, and humidity) for the selected study areas, Pearson correlation has been 
performed among annual average crop production and annual average climatic 
variability.

 Results and Discussion

 Climate Change and Its Impacts on the Agricultural Sector 
in Bangladesh: An Overview

Bangladesh is one of the world’s most vulnerable countries to climate change. 
Located as an interface of the Himalayas and the Bay of Bengal, the country is 
highly susceptible to natural disasters (Hossain et al. 2018; Huq and Shoaib 2013). 
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Climate change has increased the severity and frequency of different events, includ-
ing cyclones, salinity intrusion, droughts, erratic rainfall, high temperatures, flash 
floods, etc. (Aggarwal et al. 2013; Huq et al. 2015; Rokonuzzaman et al. 2018). As 
a heavily populated deltaic region, Bangladesh is experiencing the early effects of 
climate change due to its geographical location, height above sea level, and flood-
plains (Ahmad 2019; Islam et al. 2020). The Fifth Assessment Report (AR5) of the 
Intergovernmental Panel on Climate Change (IPCC) mentioned that Bangladesh 
has already experienced these devastating impacts resulting from climate change 
(Hijioka et al. 2014). These climate-induced events would be more frequent and 
extreme in the future and would severely impact various sectors of the country, 
including agriculture, fisheries, livestock, health, and human livelihood (Ahmad 
2019). Sikder and Xiaoying (2014) reported that in the agricultural sector, crop 
agriculture is highly vulnerable to climate change impacts in Bangladesh.

In Bangladesh, the coastal area covers an area of 47,201 km2, with more than 
37  million people relying on it (Dasgupta et  al. 2015). The coastal regions of 
Bangladesh, mainly the Western and Central coastal regions, are highly vulnerable 
to climate change impacts (Karim and Mimura 2008). The Western coastal part of 
the country is surrounded by the world’s largest mangrove forest (i.e., the 
Sundarbans). However, it is a low-lying area subjected to frequent coastal flooding 
caused by cyclones or storm surges (Ahmad 2019), which have significant impacts 
on the agricultural sector (including crop agriculture) (Islam et al. 2020). As the 
population in the coastal region could reach 60 million by 2050 (Dasgupta et al. 
2015), the decline in agricultural yield due to climate change could severely impact 
food security for the growing population (Ismail 2016). Shahid (2010) reported that 
climate change is anticipated to result in a constant increase in temperature and a 
change in rainfall pattern, resulting in substantial impacts on agriculture. Table 18.1 
shows the reported or possible impacts of climate-induced events in Bangladesh.

 Cropping Seasons and Major Cultivated Crop Species

The climate of Bangladesh ranges from subtropical to tropical, which favors the 
cultivation of a large variety of crops (both rice and non-rice) in different seasons. 
Generally, crop cultivation has been performed in three different seasons across the 
country. These include Kharif-I (extended from mid-March to mid-July), Kharif-II 
(extended from mid-July to mid-November), and Robi (extended from mid- 
November to mid-March). The Southern region of the country is characterized by 
the tropical climate, where different crops have been cultivated in these seasons 
under two different environmental conditions (Table 18.2). The study identified that 
in the Kharif-I season, the dominant crop species is the Aus rice. In contrast, it has 
been observed that T. Aman (transplanted Aman) is the major crop species during 
the Kharif-II season in the Southern region. In Robi (dry season), Boro rice is the 
main cultivated rice species, along with other non-rice crops (Table 18.2).
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Table 18.1 Impacts of Climate-Induced Events in Bangladesh

Events Reported/possible impacts or changes References

Sea level rise, storm 
surges, and coastal or 
riverine flooding

Inundation of crops and increased soil 
salinity, resulting in substantial loss of 
agricultural productivity
More than 7% reduction in annual rice 
production during 2005–2050

Sikder and Xiaoying (2014) 
and Yu et al. (2010)

Cyclones The tropical cyclone Sidr damaged 
698,391 tons of Aman rice in 
2007–2008 in the Southern coastal 
region
The tropical cyclone Sidr damaged 
1446 acres of Boro seedbed in 
2007–2008 in the Southern coastal 
region
Significant changes in annual rice 
(Aus, Aman, and Boro) production 
after 2007–2008 due to cyclone Sidr

Haque et al. (2016) and 
Islam et al. (2020)

Temperature 1.9 °C increase in temperature by 
2030
Rising temperature caused by climate 
change resulting in lower crop 
production
Substantial decline in cereal (rice and 
wheat) production, resulting from 
increased temperature
Boro rice and wheat would drop by 
55–62% and 61%, respectively, by 
2050 due to increased temperature

IPCC (2007), Sikder and 
Xiaoying (2014), Stern 
(2006) and Mondal (2010)

Rainfall 5–6% increase in rainfall by 2030
Changes in rainfall could result in 
reduced crop yields in the country
Substantial decline in cereal (rice and 
wheat) production, resulting from 
erratic rainfall

IPCC (2007), Sikder and 
Xiaoying (2014) and CDMP 
II (2013)

Table 18.2 Crop cultivation in different environmental conditions in the Southern coastal region

Conditions Robi Kharif-I Kharif-II

Rainfed condition Wheat/potato/pulses/oil seeds/sugarcane Boro (local), Aus Fallow
Irrigated condition Wheat/Boro/potato/winter vegetables Fallow/T. Aus T. Aman/fallow

Notes: FGD and KII conducted in 2015. T. Aus Transplanted Aus, T. Aman Transplanted Aman

 Status of Cropping Patterns in the Southwestern Coastal Region 
in Bangladesh

Cropping patterns are yearly sequences of crop production on a particular area of 
land (Alam 1994). In different regions of the country, a wide range of crops are 
grown under various cropping patterns, which vary from one location to the next. 
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Agricultural cropping patterns in Bangladesh and variation in crop production are 
heavily influenced by several factors, including climate, meteorological conditions 
(e.g., rainfall, temperature range), soil moisture, soil types, irrigation facilities, and 
availability of cultivable land (Islam et al. 2020; Rashid et al. 2017; Pande et al. 
2021; Elbeltagi et al. 2022). However, in the coastal districts of Bangladesh, agri-
cultural land usage is particularly low. For instance, in 2007–2008, the country’s 
average cropping intensity was 179%, whereas in the Southern region, it was much 
lower (ranging from 128% to 147%) (BBS 2014). The study identified different 
cropping patterns (both rice and non-rice) that have been practiced recently in the 
study areas (Tables 18.3 and 18.4).

In Bangladesh, most of the regions (including the Southern coastal region) are 
covered by rice-based cropping patterns, with the dominance of three main rice 
varieties (i.e., Aus, Aman, and Boro) (Huq and Shoaib 2013). This study identified 
that the existing cropping patterns in the selected Southwestern coastal region con-
sist of “two-crop combinations” and “three-crop combinations” (Tables 18.3 and 
18.4). Islam et al. (2020) also reported similar cropping patterns for the Satkhira 
region. Rashid et  al. (2017) reported that a significant portion of land area (i.e., 
63%) in the Khulna region is covered by rice-based cropping patterns. This study 
shows that in Khulna, “Fallow land-Fallow land-T. aman” is the dominant cropping 
pattern, covering more than 44% of the area. “Boro-Fallow-T. aman” and “Boro- 
Fallow land-Ropa aman” also cover a considerable portion (i.e., 29.5% and ⁓15%, 
respectively). However, the proportion of other cropping patterns ranged from 0.2% 
to ⁓7%, as presented in Table 18.3. In Satkhira, the dominant cropping pattern is 
identified as “Boro-Fallow land-Ropa aman,” covering more than 60% of the land, 
followed by “Boro-Aus-Ropa aman” (26.5%) and others (Table 18.3).

Apart from the existing cropping pattern of wide rice varieties, the study identi-
fied some major non-rice cropping patterns commonly practiced in the study areas 

Table 18.3 Existing cropping pattern (rice) in the study area

Sl. Cropping pattern (rice) Land under cropping pattern (hec.)a Percentage (%)

Khulna

1. Fallow land-Fallow land-T. aman 23,732 44.17
2. Boro-Fallow-T. aman 15,818 29.44
3. Boro-Fallow land-Ropa aman 8008 14.91
4. Boro-Aus-Ropa aman 3522 6.56
5. Boro-Fallow-Fallow 1789 3.33
6. Boro-Aus-T. aman 452 0.84
7. Boro-Aush-Fallow land 305 0.57
8. Fallow-Aus-T. aman 100 0.19
Satkhira

1. Boro-Fallow land-Ropa aman 8008 60.26
2. Boro-Aus-Ropa aman 3522 26.50
3. Boro-Fallow land-Fallow land 1759 13.24

Notes: AEO (2014). aTotal land under cropping pattern in the selected study areas in 2014
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Table 18.4 Existing cropping pattern (non-rice) in the study areas

Sl. Cropping pattern (non-rice) Land under cropping pattern (hec.)a Percentage (%)

Khulna

1. Vegetables-vegetables-vegetables 4423 67.70
2. Vegetables-jute-vegetables 1050 16.07
3. Mustard seed-vegetables-vegetables 558 8.54
4. Vegetables-vegetables-Fallow 175 2.68
5. Potato-vegetables-vegetables 104 1.59
6. Potato-vegetables-Fallow 100 1.53
7. Spices-lentil-vegetables 61 0.93
8. Spices-vegetables-vegetables 50 0.77
9. Wheat-vegetables-vegetables 12 0.18
Satkhira

1. Potato-jute 2208 41.97
2. Mustard seed (local) 1950 37.07
3. Vegetables-vegetables-vegetables 1103 20.97

Notes: AEO (2014). aTotal land under cropping pattern in the selected study areas in 2014

(Table 18.4). This study shows that in Khulna, “vegetables-vegetables-vegetables” 
is the dominant cropping pattern, covering more than 68% of the land. Besides, 
“vegetables-jute-vegetables” and “mustard seed-vegetables-vegetables” also cover 
significant land under the cropping pattern (i.e., 16% and ⁓9%, respectively). In 
Satkhira, the dominant non-rice cropping pattern is identified as “potato-jute,” cov-
ering ⁓42% of the land under the cropping pattern, followed by “mustard seed 
(local)” and “vegetables-vegetables-vegetables” (Table 18.4).

 Impacts of Climate Change on Crop Production

The agricultural cropping pattern in the Southwestern coastal region of Bangladesh 
is largely dominated by rice, followed by non-rice crops (Rashid et al. 2017). Hence, 
this study emphasized the influence of climate-induced events on rice production in 
the selected region of the country. Different climate-induced events are frequent in 
this region, resulting in substantial damage in cultivable land areas and the annual 
crop production. Islam et al. (2020) reported that as the land areas in this region are 
inundated by saline water during and post-cyclone period, soil salinity increases 
and, therefore, makes the land unfavorable for crop cultivation. According to the 
Soil Resource Development Institute (SRDI), the Southwestern part of the country, 
mainly Khulna, Satkhira, and Bagerhat, are highly vulnerable to soil salinity, which 
has profound impacts on crops produced in this region (SRDI 2010). Islam et al. 
(2015) reported that due to the salinity intrusion, different local rice varieties (e.g., 
kalojira, najirsail, boran, etc.) have already been extinct from the country’s coastal 
regions. According to Nishat and Mukherjee (2013), increased salinity triggered by 
climate-induced events reduces annual average rice production by around 
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0.2 million metric tons and affects the Boro and wheat production in the coastal 
saline soils. The estimated loss of rice due to the cyclones in 2007 and 2009 was 
nearly two million metric tons (CIAT 2017). In Bangladesh, climatic-induced events 
(e.g., floods, cyclones, etc.) are anticipated to become more frequent and intense 
and could affect the crop agriculture severely (CIAT 2017). For instance, it is pro-
jected that salinity intrusion due to climate-induced events could reduce rice and 
wheat production by 8% and 32%, respectively, in the coastal regions by 2050 (The 
Financial Express 2018).

The study reveals that in the Southwestern coastal regions, agricultural land 
areas and rice production vary considerably in different seasons (Fig.  18.2a, b), 
which is believed to be because of climate-induced events, mainly cyclone as 
reported by the majority of the respondents, that is, 60% (average) of the study 
areas. Figure 18.2a shows that in the Kharif-II season (extended from mid-July to 
mid-November), annual production of T. Aman rice per hectare during 2007–2008 in 
Satkhira reduced considerably (⁓15%) compared to 2006–2007 (i.e., 2.7 vs. 2.3 Mt/
hec.). A significant reduction in Boro rice (⁓10%) in the Robi season (extended from 
mid-November to mid-March) had also been observed (i.e., 5.3 vs. 4.8 Mt/hec.). 
The production of Aus rice in the Kharif-I season (extended from mid-March to 
mid-July) reduced by 5% during the same period compared to 2006–2007 in this 
coastal part of the country. This reduction is due to cyclone Sidr, which struck 
Bangladesh on 15 November 2007.

In 2008–2009, the production of Aus rice in the Kharif-I reduced significantly 
(⁓50%) compared to the production rate in 2007–2008 (i.e., 18.3 vs. 9.3 Mt/hec.), 
which is because of the cyclone Aila (which struck Bangladesh on 25 May 2009). 
The study also identified that cyclone Sidr and Aila caused massive destruction for 
agricultural crop production in the Khulna region. For instance, in 2006–2007, the 
T.  Aman high yield variety (HYV) production was 52,984 Mt, which decreased 
substantially (24%) in 2007–2008 (i.e., 52,984 Mt vs. 40,295.7 Mt) when cyclone 
Sidr hits at the coastal region of Bangladesh and cyclone Aila swept up almost all 
the crop fields during 2009–2010 (Fig. 18.2b).

Fig. 18.2 Annual rice production with land area in different seasons: (a) Assasuni Upazila, 
Satkhira, and (b) production of Aman rice (HYV and local variety) in Koyra Upazila (Khulna). 
(Notes: Kh-I Kharif-I, Kh-II Kharif-II, Ro Robi, HYV high yield variety)
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 Trend of Variability in Climatic Parameters

The variability trends in different climatic parameters were analyzed for the Khulna 
and Satkhira region of Bangladesh using the average annual temperature, relative 
humidity, and rainfall data during the period 1980–2014 (Fig.  18.3). The study 
shows that in Khulna, the highest and lowest average annual temperatures were 
26.7 °C (in 2010) and 25.2 °C (in 1981), respectively. An increasing trend (0.0254%) 
of average temperature was observed during this period in Khulna, where the coef-
ficient of determination is 0.4908 (Fig. 18.3a). Hossain et al. (2019) reported a simi-
lar increasing temperature trend in Khulna during 1980–2010. In Satkhira, the 
highest and lowest average annual temperatures were recorded at 27.7 °C (in 1987) 
and 25.5 °C (in 1997), respectively. However, a decreasing trend (0.0371%) of aver-
age temperature was observed in this region during that period, where the coeffi-
cient of determination is 0.3666 (Fig. 18.3d). Islam et al. (2020) also reported a 
decreasing trend in average temperature for the Robi season (i.e., 0.071%) in the 
Satkhira region during 1980–2014.

The trend analysis of average annual rainfall during the study period in Khulna 
shows a slightly decreasing trend (0.7591%), where the coefficient of determination 
is 0.0006. The average rainfall during this period ranged from 1130 to 2594 mm, 
with the highest average rainfall in 2002 and the lowest in 1994 (Fig. 18.3b). Hossain 
et al. (2019) reported a slightly increasing trend in annual temperature during the 
monsoon season in the Khulna region. For Satkhira, a decreasing trend (3.3445%) 
was also observed during the same period, where the coefficient of determination is 
0.019. The average rainfall during this period ranged from 1295 to 2195 mm, with 
the highest average rainfall in 1986 and the lowest in 2010 (Fig. 18.3e). Islam et al. 
(2020) reported a decreasing trend in average rainfall for Robi season (characterized 
by dry season) in the Satkhira region and a moderate trend for Kharif-I 

Fig. 18.3 Variability in different climatic parameters during 1980–2014 in (a–c), Khulna region, 
and (d–f), Satkhira region
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(pre- monsoon) and Kharif-II (monsoon) season during 1980–2014. As variability in 
temperature and humidity significantly impacts the overall rainfall (Mawonike and 
Mandonga 2017), this erratic rainfall pattern might be occurred due to variability in 
temperature and relative humidity.

The average relative humidity during 1980–2014 ranged from 78% to 83% and 
from 69% to 81% in Khulna and Satkhira, respectively. The study identified a 
decreasing trend in the average relative humidity (0.0148%) in the Khulna region 
during this period, where the coefficient of determination is 0.0153 (Fig. 18.3c). 
However, in Satkhira, an increasing trend in the average relative humidity (0.2574%) 
was observed, where the coefficient of determination is 0.5186. A similar finding 
has been reported by Islam et al. (2020) for the Satkhira region, with an increasing 
trend in average relative humidity in different seasons (ranging from 0.248% to 
0.431%) during 1980–2014 (Fig. 18.3f).

 Correlation Between Crop Production 
and Climatic Parameters

Pearson correlation among annual average crop production and annual average cli-
matic data (e.g., temperature, humidity, and rainfall) was performed in this study 
(Table 18.5), as we assumed that the climatic parameters influence annual crop pro-
duction in the study areas. Rahman and Rahman (2019) reported that crop produc-
tion in Bangladesh is largely influenced by climatic variability. It should be 
mentioned that the Pearson correlation has been performed based on the availability 
of annual crop production data. This study found a significant strong positive cor-
relation between annual average rainfall and average crop production in Batiaghata 
Upazila in the Khulna region (r = 0.961, p < 0.05). A strong positive correlation 
between average yearly rainfall and average crop production (r = 0.641, p < 0.05) 
and between annual average humidity and annual average crop production 
(r = 0.668, p < 0.05) has been observed in Koyra Upazila in the Khulna region. 
However, a moderate to strong negative correlation was observed between the 
annual average temperature and annual average crop production (Table 18.5). For 
the Satkhira region, no significant correlation was found among annual average 
crop production and average annual climatic data (Table 18.5).

 Local People’s Perception of Climate-Induced Events, Possible 
Causes, and Impacts

This study used different approaches (mentioned earlier) to gather local peoples’ 
responses regarding the climate-induced events, possible causes, and impacts in the 
study areas. As local people were the direct observers of different climate-induced 
events and the damages that occurred in the past, it was crucial to have their 
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Table 18.5 Pearson correlation among annual average crop production and average climatic data 
of Khulna region

Avg. production Avg. temperature Avg. rainfall Avg. humidity

Dacope Upazila, Khulna (2007–2014)a

Avg. production 1
Avg. temperature −0.629 1
Avg. rainfall 0.003 −0.660 1
Avg. humidity 0.372 −0.390 0.541 1
Koyra Upazila, Khulna (2007–2012)a

Avg. production 1
Avg. temperature −0.520 1
Avg. rainfall 0.641 −0.704 1
Avg. humidity 0.668 −0.391 0.342 1
Batiaghata Upazila, Khulna (2011–2014)a

Avg. production 1
Avg. temperature −0.629 1
Avg. rainfall 0.961* −0.757 1
Avg. humidity 0.407 −0.366 0.32 1
Assasuni Upazila, Satkhira (2000–2013)a

Avg. production 1
Avg. temperature 0.037 1
Avg. rainfall −0.222 −0.247 1
Avg. humidity −0.007 −0.129 −0.286 1

Notes: *Correlation is significant at the 0.05 level (two-tailed). aRice production data during the 
period used for the correlation analysis has been considered based on data availability

responses. We believe that these findings will better understand the appearance of 
climate-induced events and the associated impacts on the agricultural cropping sys-
tem. The result (average response rate of two regions) revealed that local people 
now realize that climate-induced events are approaching frequently compared to the 
past decades with immense impacts on the agricultural sector. Most of the respon-
dents (⁓63%) reported that the Southwestern coastal areas are highly vulnerable to 
climate-induced events and asserted the frequency of massive cyclones that occurred 
every 4–5-year interval, resulting in a substantial loss in crop production. A similar 
finding was reported by Sikder and Xiaoying (2014) and Islam et al. (2020), with a 
considerable loss in the agricultural sector in Southern Bangladesh due to cyclones.

Our result shows that local people in all the study areas agreed that the cropping 
pattern had been changed significantly in their regions, possibly due to climatic 
influences. For instance, a considerable proportion of the respondents (37%) 
reported that the cropping pattern has changed due to unreliable rainfall in the past 
decades and increased soil salinity (35%) due to coastal flooding and storm surges. 
However, some respondents mentioned that soil fertility and productivity reduction 
due to increased soil salinity results in changing cropping patterns. Besides, intro-
ducing high yield varieties (HYV) to cope with climate change is another reason for 
cropping pattern change (Fig. 18.4).
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Fig. 18.4 Local peoples’ responses on climate change, its causes, and impacts

 Conclusions and Recommendations

In summary, climate-induced events (e.g., cyclone Sidr and Aila) significantly 
impact annual crop production and change cropping patterns in Southwestern 
coastal Bangladesh. For instance, in the Satkhira region, rice production of major 
varieties (i.e., T. Aman, Aus, and Boro) in different crop growing seasons reduced by 
5–15% in 2007–2008 compared to the production amount in 2006–2007, which is 
mainly due to effects of cyclone Sidr. In the Khulna region, the loss in crop produc-
tion was even more. This study shows a 24% reduction in T.  Aman production 
caused by the effects of cyclone Sidr during that period, and Aus rice production 
reduced by ⁓50% due to the impact of cyclone Aila in 2008–2009. The study also 
identified the changing trend in climatic variables (temperature, rainfall, and rela-
tive humidity) in these regions, which considerably influences annual crop produc-
tion. A strong positive correlation has been observed between average annual 
rainfall/humidity and average crop production, while average annual temperature 
and average crop production were found negatively correlated. As the agricultural 
sector is highly susceptible to climate change, this study recommends that con-
cerned authorities of the government should adopt proper adaptation measures in 
the crop agricultural production system to meet the growing demand of the coun-
try’s large population through policy reforms and effective implementation. For 
instance, salt-tolerant and flood-tolerant rice varieties could be practiced on a large 
scale in these climate-sensitive areas to cope with the climate change impacts. 
Besides, the government should prioritize the sustainable management of water 
resources for irrigation in the disaster-prone coastal regions of Bangladesh.
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Chapter 19
Toward Smart Agriculture for Climate 
Change Adaptation

Rinku Moni Devi

Abstract Agriculture plays a significant role in food security and forms the back-
bone of the economic system of a country. The increase in population has led to an 
urgent need to balance demand and supply, threatening sustainability and putting 
pressure on agricultural systems. Furthermore, climate change challenges like 
extreme weather conditions, climatic changes, and environmental impact have 
adversely impacted agriculture and linked resources. Besides this, about 85% of 
Indian farmers are marginal and small landholders. About 60% of the net sown area 
is under rainfed agriculture, and this makes India vulnerable to climate change con-
siderably affecting the cropping system, livestock, and soil and increasing pests and 
diseases. Climate change would have a serious impact on Indian agriculture in the 
coming years which would negatively impact some important crops leading to food 
insecurity. The present trend and scenario are evident that without an efficient mea-
sure, it would be very difficult to meet agro-demand of the country. Therefore, there 
is an urgent need of efficient measures of adaption and mitigation. Therefore, smart 
agriculture using IoT (Internet of Things) technology has opened up extremely pro-
ductive ways for farmers, helps in managing agricultural systems, and deals with 
weather uncertainties and challenges improving resource management. It enables 
farmers to collect real-time data related to weather updates, irrigation, production, 
yield quality, and soil moisture and predict pest, diseases, and market information 
and strengthen good agricultural practices in farms. Additionally, IoT solutions 
along with smart practices in agriculture offer opportunities for innovation in cli-
mate adaptation reducing the ecological footprints and enhancing the livelihoods of 
farmers. Thus, the present paper aims to review the current and future trends of IoT 
in the Indian agriculture system, highlighting potential challenges and also its role 
in combating climate change. Additionally, the study recommends adoption of good 
agricultural practices, capacity building, and switching from traditional to precise 
farming with IoT-based technology. For future scope, institutional innovations, net-
working of farmers, regulatory authorities, clear policies supporting the necessary 
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legal and market architecture for smart farming, and transparent data management 
system will be required.

Keywords Smart agriculture · Internet of Things · Climate change · Livelihood · 
Adaptation

 Introduction

Climate change is a global concern impacting the Earth’s ecosystem and humankind. 
A recent report by IPCC (Intergovernmental Panel on Climate Change) (2021) pro-
vides new estimates of the chances of crossing the global warming level of 1.5 °C in 
the next decades and is unequivocal (IPCC 2021). There will be intensification of 
extreme events globally, and weather uncertainties will be natural resources includ-
ing agriculture sector. Most importantly, water scarcity is also one of the greatest 
challenges of the twenty-first century (FAO 2011), and agriculture accounts for an 
estimated 70% of global water withdrawals (WWAP 2015). Therefore, it is also 
important to address water scarcity as well as water use efficiency (Hatfield and 
Dold 2019; Pande et al. 2022a). In the Indian context, agriculture is the main back-
bone of Indian economy and accounts for around 20% of India’s gross domestic 
product (GDP) (Economic Survey 2020–2021). Climate change impacts will be 
more visible in developing countries like India as compared to developed countries 
as millions of populations are dependent on agriculture and natural resources for 
their livelihood (IPCC 2014). Additionally, the rise in population increases the 
demand for food security putting pressure on natural resources (Adamides et  al. 
2020; Pande et al. 2021a; Rajesh et al. 2021). Furthermore, developing countries are 
more vulnerable due to low adaptation measures, lack of financial resources, and 
technological constraints. Thus, these impacts in turn have significant economic, 
social, and environmental consequences, so a better understanding of all the changes 
that might arise in view of climate change and variability is essential. To meet the 
needs and to overcome these challenges, one has to adopt new technologies to gain 
a much-needed edge. New agricultural application in smart farming is precise 
through IoT which enables crop farmers to collect real-time data related to irrigation 
and plant protection processes, aiming to increase production volume, improve 
product quality, and predict diseases, while optimizing resources and farming pro-
cesses (Adamides et al. 2020). It improves the livelihoods of farmers and helps them 
in tackling climate change challenges. Thus, this chapter reviews the potential of 
current and future trends of smart agriculture using IoT-based tools in India and 
challenges and role in combating climate change. The study recommends the use of 
good agricultural practices along with adoption of IoT-based smart agriculture in 
combating climate change.
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 Smart Farming Approach

Smart agriculture with IoT-based solution is “a group of infrastructures intercon-
necting connected objects and allowing their management, data mining and the 
access to the data they generate” (Dorsemaine et al. 2015). By utilizing data like 
temperature, rainfall, soil moisture, humidity, wind, pH, etc. from IoT devices in the 
field and using cloud computing and analytics, farmers are timely notified to pro-
ceed with such targeted activities, and proper planning is done for farming based on 
the real-time database (Ayaz et al. 2019; Adamides et al. 2020).

The schematic diagram below shows the use of IoT-based techniques where dif-
ferent sensors, microcontrollers, power supply, and cloud computing and its appli-
cation in the agricultural system (Fig. 19.1).

The application of IoT in agriculture aims at empowering farmers, enhancing 
livelihoods of farmers, and providing decision tools and automation technologies 
that integrate products, knowledge, and services for increased productivity, quality 
improvement, and profit (Elijah et  al. 2018). It utilizes advance information and 
communication technology (ICT) and deploys smart sensors in the field, scanning 
the field with drones and enhancing the use of spatial and real-time events (Walter 
et al. 2017). This approach improves farm productivity, quality yield, increased pro-
duction, profitability, efficient irrigation, identification of pests/diseases, and pre-
cise use of pesticides. Good practice approach enhances the use of organic manure, 
less use of pesticides, selection of crops, timings, crop rotation, maintaining soil 
health, and efficient use of water in agriculture which in turn also reduces environ-
mental footprint. Thus, for an economically and environmentally sustainable pro-
duction system, there is a need to develop techniques that can increase crop 

Fig. 19.1 Schematic diagram of IoT and its application
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production through increased efficiency of input use and reduced environmental 
losses, and smart agriculture using IoT solutions is the key component of sustain-
able agriculture in the twenty-first century (Delgado et  al. 2019; Sishodia et  al. 
2020). Smart agriculture is based on three important pillars: (i) better resource man-
agement, (ii) improved conservation of ecosystem and landscape, and (iii) smart 
farming technologies with more adequate services for farmers (Adamides et  al. 
2020). It is estimated that the smart agriculture market will grow by 12.7%, annu-
ally (Chen et al. 2019). In the next several years, the use of smart solutions powered 
by IoT will increase in agricultural operations. In fact, a few of the recent reports 
depicted that the IoT device installation will see a compound annual growth rate of 
20% in the agriculture industry and a number of connected devices (agricultural) 
will grow from 13 million in 2014 to 225 million by 2024 (Machina 2017; Elijah 
et  al. 2018). Thus, most countries are switching from traditional farming to 
technology- based farming in the long run.

 From Data Collection to Farming Advisories

Different emerging technologies like the Internet of Things (IoT), Big Data analy-
sis, artificial intelligence (AI), remote sensing, geographic information systems 
(GIS), and global positioning systems (GPS) are very important tools in agricultural 
operations which aimed to enhance production and reduce inputs and yield losses 
(Elijah et al. 2018; Delgado et al. 2019; Jha et al. 2019; Pande et al. 2021b, 2022a, 
b). Furthermore, IoT technology systems utilizing cloud computing, wireless sensor 
networks, and big data analysis have been developed for smart farming operations 
such as automated wireless-controlled irrigation systems and intelligent disease and 
pest monitoring and forecasting systems (Elijah et al. 2018; Jha et al. 2019; Shisodia 
et al. 2020). AI techniques, including machine learning, have been used to estimate 
different parameters like evapotranspiration (ET), soil moisture, soil pH, and crop 
predictions for automated and precise application of water, fertilizer, herbicides, 
and insecticides (Boursianis et al. 2020). These technologies and tools enable farm-
ers to characterize the important crop growth parameters enabling the management 
of good growth and yield and avoiding losses (Koch et al. 2004).

The ecosystem of smart agricultures includes the following as mentioned below:

 Internet of Things (IoT)

IoT is a technology aimed at connecting all intelligent objects within a single net-
work, that is, the Internet. It involves all kinds of computer technologies, both (a) 
hardware (intelligent boards and sensors) and (b) software (advanced operating 
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systems and AI algorithms). Its primary target is the establishment of applications 
for devices, in order to enable the monitoring and control of a specific domain pri-
marily used in agriculture for the management of agricultural products within gath-
ered real-time data, alongside: (1) searching, (2) tracking, (3) monitoring, (4) 
controlling, (5) managing, (6) evaluating, and (7) operations within a supply chain.

 Big Data Analytics (BDA)

It refers to the large volume of data gathered from different dataset sources over a 
long period of time, that is, sensor, the Internet, and business data. Thus, BDA 
involved the utilization of (a) tools, classification and clustering; (b) techniques, 
data mining, machine learning, and statistical analysis; and (c) technologies 
(Alreshidi 2019). The use of BDA in agriculture focusses on the management of the 
supply chain of agricultural products, in order to enhance decision-making and 
minimize the cost of production cost. It is also employed for the analysis of the 
properties of different types of soil for classification and further enhancement. 
Furthermore, it is useful for improved prediction and crop production.

 Cloud Computing

It is “a model for enabling convenient, on-demand network access to a shared pool 
of configurable computing resources (networks, servers, storage, applications and 
services) that can be rapidly provisioned and released with minimal management 
effort or service provider interaction” (Alreshidi 2019). The cloud computing can be 
seen as a high virtualization method for datacenter infrastructure distributed over a 
wide geographical area, linked by means of high bandwidth network cables provid-
ing a variety of virtualized services. All these advanced data acquisitions and pro-
cessing techniques aid the decision-making process for field crops, horticulture, 
pasture, and livestock (Shisodia et al. 2020).

 Mobile Computing

It refers to infrastructure in which data processing and data storage take place exter-
nally to the mobile device. Systems collect and send daily data to farmers, inform-
ing them of both the production status and weather conditions.
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 Artificial Intelligence (AI)

AI covers many areas, including computer vision, data mining, deep learning, image 
processing, and neural networks (Kale and Patil 2019; Elbeltagi et al. 2022a, b). It 
includes robots, monitoring crops and soils, and predictive analytics, as the 
following:

 (a) Robots: These are developed and programmed to handle fundamental agricul-
tural tasks/human force.

 (b) Monitoring crop and soil: It employs computer vision and deep learning algo-
rithms for processing captured data by sensors monitoring crop and soil health.

 (c) Predictive analytics: This analysis captures data, based on machine learning 
models capable of tracking and predicting various environmental impacts on 
crop harvest, that is, changes in weather. IoT/AI technologies (such as drone 
and satellite) that generate a large amount of data on a daily basis have the 
potential to enable agricultural production to forecast changes and detect oppor-
tunities (Alreshidi 2019).

 Applications

Smart agriculture also includes Farm Management Systems (FMS) that assist farm-
ers with a variety of collected information, by managing and controlling various 
tracking devices and sensors (Alreshidi 2019). The devices are attached to solar 
panel for power supply, and good network connectivity is the outmost need. Remote 
sensing and GIS tools can be also used for monitoring farms, crop yields, water 
management, nutrient management, disease management, and production spatially 
and temporally. Remote sensing uses sensor-based technology, and these sensors 
differ based on spatial, spectral, radiometric, and temporal resolution. Numerous 
vegetation indices like NDVI (normalized difference vegetation index), EVI 
(enhanced vegetation index), and statistical/machine learning approaches, such as 
deep convolutional neural network and random forest, have been applied to reduce 
the dimensionality of hyperspectral data to extract useful information on crop con-
ditions (Zarco-Tejada et  al. 2016; Chlingaryan et  al. 2018; Chang et  al. 2020; 
Elbeltagi et al. 2022a). More recently, quantification of solar-induced chlorophyll 
fluorescence (SIF) from hyperspectral images has increasingly been applied to esti-
mate photosynthesis, plant nutrients, and biotic and abiotic stresses such as disease 
and water stress (Zarco-Tejada et al. 2016; Mohammed et al. 2019).

Additionally, special devices like automated weather stations collect weather- 
related data like rainfall, temperature, humidity, wind, etc. Disease models and 
sensor-based cameras provide accurate information on pest−/insect-related diseases 
in crops and help in predicting the trends. Precise information on crop pests/insects 
provides alerts when there is rise in pest attacks and saves the crops from further 
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damage. Additionally, it provides guidance in the use of appropriate  pesticides/
insecticides in farms. The utilization process of IoT/AI technologies aids in estab-
lishment, monitoring, management, processing, and analysis of data generated from 
various agricultural resources, such as field, crops, livestock, etc. and further 
enriches decision-making of stakeholders (Kumar et al. 2012).

 Decision-Making in Farmers

The large data obtained from sensor offers learning opportunities to improve 
decision- making in constantly changing environmental conditions; such decision- 
making can be over a short, medium, or long term (Adamides et al. 2020). It allows 
various farms to be connected and managed on a single platform, where information 
on scientific advances, production, marketing, farm management, recommenda-
tions, and other related topics are disseminated to maximize productivity, yield, and 
revenue. Automated decisions can be made from the IoT system when certain con-
ditions are reached, therefore requiring less or no human interventions. Such auto-
mated decision could range from regulating the temperatures to the control of water 
supply from an irrigation system.

 Insurance

Farmers are usually exposed to extreme weather conditions which could lead to 
poor harvest and yield loss due to unpredictable rain and lack of storage system. 
However, with the implementation of IoT technology, farmers can be insured with 
their crops and livestock. A network of sensors can be deployed, and monitoring can 
be achieved by remote unmanned stations (Alreshidi 2019). The data can be sent to 
the cloud and analyzed. The insurance policy can be embedded with a warning sys-
tem, where extreme weather conditions are predicted and the insured farmers are 
alerted by text messages. This can enable the farmers to take precautionary approach 
to protect their farms.

 Advisories

With the help of various applications and interfaces in smartphones, farmers can 
receive advisories at regular intervals at their doorsteps. They can plan agricultural 
practices as per the precise information reducing the risks. Additionally, with con-
nectivity through online interface, they get platform to connect to markets for buy-
ing and selling their produce with the right price (Fig. 19.2).
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Fig. 19.2 Mobile application

 Climate Change and Agriculture

India is the third highest greenhouse gas (GHG) emitter after China, and the United 
States accounts for 18% of gross national emissions from agriculture and livestock. 
The agriculture sector is the main source of CH4 and N2O emissions (BUR 2021). 
In the year 2016, the agriculture sector emitted 407,821 Gg of CO2e. Within agri-
culture, in 2016, 54.6% of GHG emissions were due to enteric fermentation, fol-
lowed by 17.5% from rice cultivation, 19.1% from fertilizer applied to agricultural 
soils, and 6.7% from manure management, and 2.2% due to field burning of agricul-
tural residues (BUR 2018). Climate change is threatening India’s food security with 
frequent dry spells, heat waves, and erratic monsoonal rainfall, adding to farmers’ 
woes. As the global population continues to surge, developing countries will need to 
double food production by 2050. Consequently, scientists and policymakers are 
faced with the challenge of meeting the growing demand for food while also reining 
in on GHG emissions. Creating sustainable and climate-resilient agricultural sys-
tems has been highlighted as part of India’s plan to meet its ambitious pledge to the 
United Nations Framework Convention on Climate Change international treaty to 
reduce the emission intensity of its GDP by up to 35% by 2030, compared to 2005 
levels (INDC 2015). Moreover, frequent dry spells, heat waves, and erratic mon-
soonal rainfall add to farmers’ woes. It is very much evident that climate change has 
a severe impact on global food production influencing both demand and supply of 
food grains, globally (Srinivasarao et al. 2018); under such conditions, the program 
of sustainable development goals will continuously slow down, affecting the com-
munities immensely. Besides this, about 85% of Indian farmers and marginal and 
small landholders (Agricultural census 2011) and about 60% of the net sown area 
are under rainfed agriculture. This makes India vulnerable to climate change, 
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considerably affecting the cropping system, livestock, fisheries, poultry, soil, pest, 
and diseases. Climate change would have a serious impact on Indian agriculture in 
the coming years which would negatively impact some important crops that would 
lead the country to food insecurity. The present trend and scenario are evident that 
without an efficient measure, it would be very difficult to meet agro-demand of the 
country. Thus, efficient measures of adaption and mitigation are required.

 Advantages of Smart Agriculture Based on IoT and Good 
Agricultural Practices (GAPs)

IoT system has wide applications in the agricultural system. It can manage water 
content efficiency and soil health and also maintain crop growth. It has more advan-
tages in multi-cropping agricultural system with diverse crops and huge yields. It 
saves time and minimizes manpower. It reduces the agriculture issues due to uncer-
tainties in weather- or environment-related issues. It minimizes the manual works 
and makes a very effective farming system which promotes efficient use of water 
and soil management approach. It is a fast technology; increases crop production; 
improves crop quality, large production, and regular advisories; minimizes loss; and 
increases profits. To enable farm, produce to be internationally competitive innova-
tive farming practices incorporating the concept of globally accepted good agricul-
tural practices (GAP) within the framework of commercial agricultural production 
for long-term improvement and sustainability is essential. Good agricultural prac-
tices are “practices that address environmental, economic and social sustainability 
for on-farm processes, and result in safe and quality food and non-food agricultural 
products” (Hobbs 2003). The four “pillars” of GAP are economic viability, environ-
mental sustainability, social acceptability, and food safety and quality. GAP in addi-
tion to improving the yield and quality of the products also has environmental and 
social dimensions. Implementation of GAP would promote optimum utilization of 
water resources such as pesticides, fertilizers, water, and eco-friendly agriculture. 
Efficient use of fertilizer not only lowers emissions at the field but also reduces the 
need for fertilizer and the emissions associated with production and transportation. 
It also represents savings for the farmer. Mitigation options would include applying 
fertilizer at the right time and the right place for plant uptake or using slow-release 
fertilizer forms or nitrification inhibitors. Adoption of zero tillage farming and resi-
due management-maintaining crop residues on the soil surface to protect the ground 
from erosion in rice, wheat, maize, cotton, and sugarcane was shown to reduce emis-
sions. The use of sprinkler or micro-sprinkler irrigation and fertigation together 
reduces greenhouse gas emissions. Other good practices include the use of organic 
manure vermicompost, farm yard manures, integrated pest management, irrigation 
management, neem use of drip farming, zero tillage, no crop burning after harvest, 
timely sowing, harvesting, storage, transportation, and knowledge of markets. The 
implementation of GAPs contributes to sustainable agriculture and rural development.
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 Key Problems Faced in Indian Agriculture System

There are numerous factors which restrain India’s agricultural output. Some of them 
are systemic or historical in nature, while others are related to environmental or 
technological factors. The technological factors have emerged primarily due to lack 
of advancement of agricultural techniques and affordability of machinery and 
equipment (Dixon et al. 2004). Systemic factors include cropping pattern mono- 
cropping; application of obsolete cropping patterns inhibits agricultural productiv-
ity and leads to soil degradation. Small/fragmented landholdings of farmers and 
land tenure make it difficult to achieve economies of scale and introduce new tech-
nologies and machinery. Further, due to lack of systematic agriculture financing 
provision, it is unaffordable for farmers to take load at high interest, thereby making 
finance unaffordable for farmers. Similarly, environmental factors like unpredict-
able behavior of monsoons influence agricultural productivity, overuse of fertilizers, 
increase in tillage, abandonment of traditional organic soil revival techniques, and 
insufficient rotation of crops resulted in soil degradation and loss of fertility (World 
Bank 2012). Furthermore, the diverse topography of India’s land makes it essential 
to identify the right crops for the various soil variants and climatic conditions. Other 
factors include technological factors like lack of farm equipment, new farming tech-
niques, lack of efficient ways of water supply for irrigation, groundwater, lack of 
storage facilities, awareness and illiteracy among farmers, market connectivity, and 
the use of traditional farming system (FAO 2017). An important aspect in rural India 
is the dependence of all household members on single source of livelihood which 
makes even more necessary to tackle the problems with a comprehensive strategy. 
While addressing most of these factors needs policy interventions, tackling some of 
them can be easier through the adoption of analytics and smart farming. Some of the 
drawbacks of IoT comprises requirement of continuous Internet connectivity, cost-
lier, several kinds of security issues to maintain these types of networks, and a need 
of equipment maintenance done regularly.

 Conclusion and Recommendations

Climate change is a global challenge affecting the natural ecosystem and human-
kind. It has detrimental effects on natural resources by altering their natural proper-
ties. Due to altering of soil and water properties, it not only impacts agriculture but 
also faulty farming practices have detrimental effects on the climate. Therefore, 
there is a need of smarter, better, and more efficient crop growing technology which 
meets the growing food demand of the increasing population, promotes sustainable 
agriculture, and reduces emissions. Thus, the use of AI and IoT techniques can help 
to practice sustainable agriculture and also contribute in climate mitigation by 
reducing the carbon footprint. Thus, this review paper highlights the role of IoT- 
based technology in agriculture in order to make agriculture smarter and more 
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efficient to meet future expectations. Moreover, the high efficiency of integrated 
agriculture production systems delivers socioeconomic and ecological benefits that 
profit farmers as well as the whole society. There are many ways in which integrated 
agriculture production systems can help producers to adapt to climate change and 
provide important mitigation co-benefits. However, several factors hamper the 
effective adaptation of integrated production systems, such as lack of data on the 
impacts of climate change and high requirements in terms of knowledge and labor 
and initial investments that may pay off only over long time periods. Besides, a key 
area to be worked upon is the strategy to ensure economic feasibility and ease of 
adoption. Emphasis must be given to pilots, and after learnings from implantations, 
it can be further scaled up and framework could be developed. Furthermore, oppor-
tunities for entrepreneurs will arise in future in this sector. They can further help in 
capacity building of farmers and encourage for more adoption of such technology 
in their farms. Thus, the sustainable intensification of integrated agriculture produc-
tion systems requires a better understanding of the impacts of changes in climate 
and climate variability on these systems; the generation and sharing of local and 
global knowledge, experiences, and practices; capacity development through 
research and development, dialogue, and dissemination of information; and the sup-
port and coordination of policies, particularly policies that can provide incentives 
and create enabling institutions. Climate-smart policies will emphasize incentives 
and capabilities to encourage improved decision-making at the farm level. This 
includes the adoption of best feasible technologies, improved input use, and post-
harvest practices. Establishment of extension and improved supply chains may go a 
long way to meet this objective. Governments may also consider introducing insur-
ance schemes with low transaction costs and moral hazard potential to reduce the 
cost of risk and risk aversion. Further, governments may provide input subsidies in 
short-term situations in which learning by doing is needed, as well as insured and 
subsidized credit. These activities should be designed to induce transition to sus-
tainable and economically viable practices.

Thus, adopting smart agriculture IoT and practicing good agricultural practices 
in farms would be a boon in agriculture. It is a platform for development of new 
methods of improving crop yield and handling, technology, and innovation; track-
ing the crop growth, profit, safety, and nutrition labeling, and partnerships between 
growers, suppliers, and retailers and buyers. Additionally, IoT solution has bridged 
the gap between production and quality and quantity yield and increases profits. 
Real-time data provides precise information in the form of advisories related to 
weather updates, irrigation, production, yield quality, and soil moisture; predicts 
pest, diseases, and market information; and minimizes loss. The livelihoods of 
smallholder farmers will improve by adopting technology-based agriculture and 
play major role in managing food security in long run. Additionally, it acts as a 
viable climate change mitigation and adaptation approach to tackle climate change 
targets. Thus, it can be concluded that every inch of farmland is vital to maximize 
crop production and using of sustainable IoT-based sensors and communication 
technologies is not optional – it is necessary. This will further help in achieving our 
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sustainable development goals and development of management practices, contrib-
ute in climate adaptation, and have implications in policy aspects.

In the way forward, it can be concluded that institutional innovations would be 
possible, leading to networks of farmers who are more self-organized and flexible 
than today. Joint use of machinery and applications can promote private exchange 
of sowing, maintenance, and harvesting operations. Yet, because regulatory authori-
ties need to have access to some aspects of the data gathered, clear policies and a 
transparent data management system will be required. ICT and data management 
can provide novel ways into a profitable, socially accepted agriculture that benefits 
the environment (e.g., soil, water, climate), species diversity, and farmers in devel-
oping and developed countries. But this can only happen with the proactive devel-
opment of policies supporting the necessary legal and market architecture for smart 
farming, with a dialogue among farming technology supporters and skeptics, and 
with careful consideration of emerging ethical questions.
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Chapter 20
Flood Impact and Damage Assessment 
Based on the Sentitnel-1 SAR Data Using 
Google Earth Engine

Sachin Shinde, Chaitanya B. Pande, V. N. Barai, S. D. Gorantiwar, 
and A. A. Atre

Abstract Floods, as cataclysmic events, are often commonly brought on by floods 
and heavy downpours or by overflowing streams, rivers or seas; this sort of destruc-
tive occurrence is one of the most frequently recognised and affects nearly every 
sector and Earth area. This recommended practice involves supplying vital disaster 
data for both short- and long-haul flood worries. The tool offers a flood scale chart 
using Sentinel-1 SAR (synthetic aperture radar) images, just as cropland and com-
munity focus data presentations have been affected to address the entirety of essen-
tial issues caused by floods. Remote sensing data is a valuable asset for outlining 
areas. As of late, the availability of free satellite data has dramatically increased in 
terms of form and recurrence, making it easier to build flood maps across the globe. 
Propose a semiautomatic flood mapping system right now with free satellite imag-
ery and open-source tools in mind. Google Earth Engine (GEE) is given an essential 
platform for impact analysis and damage assessment based on the SAR data. Rapid 
analysis of SAR data also identified how much area was affected due to flood. The 
possibility of flooding causes a significant loss of life and property, leading to the 
instability of human civilisation. Flood risk analysis is also needed to understand 
flood singularities, particularly for development and mitigation determinations. The 
central portion of the Panchganga River was chosen for current research. The essen-
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tial purpose of the present thesis was to use Google Earth Engine mapping to  
determine the possible flood risk regions of the Panchganga River. A flood setup 
was done based on the SAR data of 5 August 2005 around the river area. The holding 
method was used to SAR data applied on separate flooded and non-flooded areas. 
Area outcomes can be significant for flood planning and damage.

Keywords Surface water dynamics · Google Earth Engine · Kolhapur flood · 
Water spread-out area

 Introduction

Disaster hazards globally have affected cost-effective damages worth billions of US 
dollars and influenced millions of public faced so much disaster vulnerabilities in 
last and current eras (UNISDR 2012). Hazard mitigation of natural risks has been 
grown as an essential ecological advancement of the human nation (Wang et  al. 
2018a, b). While universal community urban growth is beneficial, human settle-
ments and livelihoods must be exposed to disaster threats on a regular basis (Elbeltagi 
et al. 2022; Orimoloye et al. 2022). Increased natural hazards and extreme circum-
stances as a result of global climate change will provide rising problems for numer-
ous countries and territories in preventing and mitigating financial and social 
disruptions (Huang et al. 2018; Lin and Han 2001). As a result, new research recom-
mends that flood control should use a risk-based strategy (Feyisa et al. 2014; Zhang 
et al. 2014). Such techniques are designed to lower the total risk of flooding, which 
has a determined probability multifunction. The extent and likelihood of the flood 
(hazard), the potential damage (exposure) and how flood events are handled (coping 
capacity) can be limited (Gorelick et al. 2017; Han 2010). Various forms of floods 
occur, all of them result in flooding outside the river. The EU (European Union) 
directive covers river floods, seas, ephemeral streams, mountain torrents and water 
systems floods. The directive requires the Member States to develop plans for the 
management of flood risks before 2015 (Ji et al. 2015). A preliminary flood risk 
assessment took place in 2011 in preparation for this, and by 2013, flood risks and 
risk maps must be developed as they are essential instruments in establishing man-
agement strategies. Since the risk of flooding is not permanent over time, these 
maps (and the plans) have to be reviewed every six years. The mapping of floods is 
therefore crucial for EU countries to comply with the new Flood Directive criteria. 
Flood hazard mapping is not new, and many governments and commercial entities 
have mapped flood dangers for various objectives (Mei et al. 2016; Xu et al. 2019).

A common and accurate strategy for assessing the magnitude of significant 
flooding is SAR-based flood mapping. In any climate conditions, SAR can join the 
overcast spread and run and provide comfortable and vital details regarding one of 
the most successive and obliterating cataclysmic events: floods (Jiang et al. 2017). 
The critical way was collected from data; this recommended practice includes a 
virtually constant, cloud-based and easy-to-use flood grade mapping technique 
designed to address technological constraints (Rokni et al. 2014). This cloud-based 
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preferred practice completes all exams without consuming hard drive space or man-
aging the end-computer user’s strength without the need to import enormous and 
complicated details. This method generates in seconds what a GIS (Geographic 
Information System) client can take hours to finish by inserting the provided code 
and remote the locale of interest just as the when dates (Pande 2022). Flooding 
influences around each area on the globe are one of the most commonly recognised 
catastrophe incidents. Every year, flooding obliterates 800 crores (80,000 lakhs) 
beyond the 100 people who lose their lives, creating severe challenges for on-call 
experts and emergency chiefs to handle after a disaster hits. Not only does this sug-
gested technique produce a simple and easy flood diagram, but it overlays it with 
land use and population data, such as the crop area and number of communities 
within the harmed regions, in instant production statistics.

 Materials and Methods

 Description of Study Area

The study area is located in Fig. 20.1. Nowadays, this research focuses on the flood 
impact and potential damage assessment analysis within the Kolhapur area in the 
southwest of Maharashtra state. Kolhapur area’s mean sea level is 569 metres 
(1867 ft). The area is presented in Sahyadri mountains in the Western Ghats with a 

Fig. 20.1 Study area of the entire Kolhapur District
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boundary between 16.5764° N and 74.1240° E with 7685 km2. Chandgad is a cool-
est spot in Kolhapur area. Tambraparni waterway dam is a fabulous spot close to 
Umgaon town. Additionally, close by dams are Radhanagari and Kalambawadi. 
Kolhapur’s atmosphere is a mix of beachfront and inland components normal of 
Maharashtra. The temperature has a moderately tight value between 10  °C and 
35 °C. Kolhapur is nearly cooler in the summer period, yet significantly moister, 
than neighbouring inland urban areas. Most extreme temperatures infrequently sur-
pass 40  °C and ordinarily extend somewhere between 33  °C and 35  °C.  The 
Kolhapur gets plenteous precipitation from June to September because of its near-
ness towards at the Western Ghats. Years of 2005 and 2006 were floods happened.

 Flood-Prone Area in Kolhapur District

 Topography

The town of Kolhapur is located on the bank of the Panchganga River, which is a 
major Krishna River tributary. Kolhapur city’s average altitude is 540.00 m on the 
riverbank and 560.00 m on the hilly part.

 Flood-Prone Area

In the Kolhapur District, three main rivers, namely, Krishna, Warna and Panchganga, 
receive very high rainfall in the upper catchment. Almost all dams, including 
Radhanagari (automatic gates), usually release higher outflows during heavy rains. 
During very heavy inflows, in Kolhapur town, sections of tehsils, namely, Karvir, 
Panhala, Radhanagari, Hatkanangale, Shirol, Bhudargad, Gadhinglaj and Ajra, are 
typically flooded.

 Data Used and Methodology

The purpose of phase-by-phase process of flood is to estimate the affected areas at 
local and regional scale. This research on flood risk analysis has used important data 
such as flood, elevation, built-up area and land use and cover map (Pande et  al. 
2018, 2021a, b). A flood scale change detection approach is established based on 
Sentinel-1 (SAR) data. Further datasets will be interrelated and visualised with the 
derived flood amount map to determine the number of potentially vulnerable resi-
dents and impacted cropland and urban areas. Google Earth Engine, a versatile web 
interface for cloud-based remote sensing analysis on a wide scale, is used in the 
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following step-by-step method (Rover et al. 2012; Kandekar et al. 2021; Srivastava 
and Chinnasamy 2021). The advantage lies predominantly in its computing 
speed (Gulhane et al. 2022). Several continuously updated datasets are supported by 
the platform that can be viewed directly inside the code editor. No raw imagery 
download is needed. Although it is free of charge, you need to trigger your Google 
account with the Google Earth Engine (Pande et al. 2022). Normally, an approval 
arrives in two or three working days (Kandekar et al. 2021).

 Data Preparation/Pre-processing

Step 1

 Option of Research Field

We will provide three separate techniques to determine the site of river area in the 
subsequent section. This knowledge is essential to restrict the complexity of the 
research and prevent repetitive measurements from being processed. The use of 
GEE feature set can be used to manually create the field of interest, upload geo-
graphical information out of a file, or import the country’s borders.

 Hand-Drawn Polygons

It is important to interactively establish boundaries. GEE is a shortest and simplest 
choice for discovering and checking the script entire various areas. In the upper- 
right corner of the map pane, the polygon tool can be triggered. Through left clicks, 
vertices are formed, and the polygon is finished by double-clicking. More than one 
polygon may consist of a geometry. When you are finished with background 
research regions, click ‘Exit’. Geometry has described at the highest of the script 
under ‘Imports’.

 Shape File

The most accurate approach is to describe the spatial processing amount with a 
shape file (.shp). When investigating a very different research area, this is recom-
mended (e.g. a watershed). In the top-left corner, start importing through the 
‘Assets’-tab. Select ‘Upload the Table’ from the ‘New’ drop-down menu, and select 
file. Careful: Create certain the .dbf and .shx files are still used, as shape file depends 
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on them. It regularly takes a little minute to transfer files. You will import the form 
into the script until the ‘Asset ingestion’ task is done (which turns blue). Click the 
‘Import’ button under ‘Assets’ to list the table in the column for imports. Rename it 
to ‘geometry’ to make the script understand this new table.

 In-Build Country Boundary Features

GEE gives small range of shapes, like big administrative constraints. However, if 
one attempts to do this analysis at the national level, if there is a sufficient dataset 
containing simpler features, there is an acceptable dataset.

Step 2

 Time Frame and Sensor Parameter Selection

Besides the region of concern, in the first few lines of the code, the consumer is 
expected to identify pre- and post-flood times. The consumer allows appropriate 
tiles to cover the area of interest by setting intervals, not single dates. For each point 
on the globe, Sentinel-1 imagery is collected at least 12 days. To carry out the analy-
sis, the operator should select amongst ‘HV’ and ‘VV’ polarisation. For flood map-
ping, ‘HV’ is commonly recommended because it is more resilient to changes on 
the surface of the Earth, whereas ‘VV’ is rather vulnerable to vertical structures and 
could be valuable for delineating open water from the surface of the land. To prevent 
false-positive signals which were generated by variations in viewing angle, it is 
important to choose the equal passway for the images to be associated when per-
forming change detection. Depending on the study location, the user could select 
amongst the ‘DESCENDING’ and ‘ASCENDING’ permit paths. Increase ‘Layers’ 
in the top-right angle of the map viewer, and pick ‘Before and After Flood’ to verify 
if the region of interest is protected provided the chosen factors.

Step 3

 Run the Script

Hit ‘Run’ all the factors which are chosen, and wait a little minute for results of 
study area to be shown.

Step 4
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 Visualise Results in GEE

Click the full-screen key to show flood product in the top-right angle viewer of the 
map. You can have checked or unchecked the maps you are involved in under 
‘Layers’ and a screenshot of the map as a first summary.

Step 5

 Export Products

Click ‘Tasks’ in the top-right angle of code editor to export the created items to your 
Google Drive account, hit ‘RUN’ and select where to save file. A GeoTIFF raster 
file was generated of the flood amount by ‘Flood extent raster’. A shape file is flood 
extent vector, which may be useful for further research. A raster layer is used in the 
‘Exposed population’, indicating the place and number of possible individuals 
exposed.

 Processing Steps

The processing steps that are taken automatically while the Google Earth Engine 
script is running are discussed in this section.

Step 6

 Data Filtering

The full Sentinel-1 GRD archive is filtered by instrument mode, polarisation, direc-
tion of passage and spatial resolution according to established parameters and 
trimmed to the region of interest’s boundaries, which is called Image Collection in 
the Google Earth Engine. The ImageCollection filter’s time intervals will be 
lowered.

Step 7
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 Preprocessing

• The following preprocessing processes have already been applied to data from 
Google Earth Engine’s Sentinel-1 Level-1 Ground Range Detected (GRD) 
imagery:

• Apply-orbit-file.
• Removal of ARD boundary noise (which removes low-intensity noise and invalid 

data on the scene edges).
• Noise reduction due to thermal decrease (which removes additive noise in 

sub-swaths).
• Radiometry calibration (which estimates backscatter intensity by sensor calibra-

tion factors).
• Land correction (orthorectification).
• Conversion of the coefficient of backscatter (σ°) into decibels (dB).

The code of suggested exercise therefore only applies a softly filter to decrease 
the radar imagery’s intrinsic speckle effect.

Step 8

 Change Detection

In this script, the following flood mosaic is divided by the pre-flood mosaic, and a 
raster layer shows that the degree of change per pixel is used to detect a straightfor-
ward change. Big values show a high (luminous pixels) change; low values (dark 
pixels) shows a small change. A predetermined threshold of 1.25 is applied by 
assigning 1 to all values over 1.25 and 0 to all values below 1.25. The binary raster 
layer generated by this approach indicates the possible magnitude of the flood. By 
trial and error, the threshold of 1.25 was chosen and could be calibrated for high 
rates of false-positive or false-negative values.

Step 9

 Refining the Flood Extent Layer

In order to remove false positives within flood extent map, multiple additional data-
sets are helpful. To obscure all areas that have been protected by water, Global 
Surface Water dataset is used. A digital elevation model by SRTM (Shuttle Radar 
Topography Mission) data. It is a spatial resolution of 3 arc-seconds which was 
selected to exclude areas with over 5% slope. In addition, to exclude those con-
nected to eight or fewer neighbours, the jointed of the flood pixels is measured. This 
process minimises the noise of the flood scope product.
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 Assessment

Step 10

 Area Calculation of Flood Extent

In order to measure the flood region, a new raster layer is formed, measuring the 
area in m2 for every pixel, enchanting into account the projection. The area knowl-
edge is resulting and translated into hectares by summing up all the pixels. The 
outcome is shown in the map viewer’s bottom-left corner in ‘Results’ column.

Step 11

 Exposed Population Density

The code utilises global human settlement population map, which has a spatial reso-
lution (250 m), to approximate the number of exposed individuals, which was previ-
ously revised in 2015. It provides details on the numeral of individuals residing in 
every cell. The flood extent raster must first be reprojected to the resolution and 
prediction of the population dataset in order to intersect the flood layer with the 
people layer. Next, a connection is measured and shown as a new raster layer 
between both layers. The pixel values of the showing population raster are sum-
marised to determine the number of exposed individuals and presented in the 
‘Results’ board on the map viewer.

 Processing Platform

Google’s open cloud framework for collecting and studying geoscience data is GEE 
(Gorelick et al., 2017). It supports web programming and an interactive display, and 
without downloading images, it can have procedure of satellite images available on 
the Internet. Its powerful computational ability facilitates remote sensing data anal-
ysis at the PB level, creating it ideal for big and long-term research sequences (Pekel 
et al., 2016; Kandekar et al. 2021). Furthermore, numerous greater image process-
ing algorithms or models are consumed by GEE’s rich API papers, which are 
friendly to individuals who concentrate on data processing rather than program-
ming. The GEE GUI (graphical user interface) in Fig. 20.2 is shown.
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Fig. 20.2 Image showing Google Earth Engine platform

 Methodology

The methodology adopted is described in Fig.  20.3. The Google Earth Platform 
makes satellite and population data very easy for disaster prevention and flood plan-
ning purposes. Since there have been so many floods in India for five years, many 
people face critical problems such as crop destruction, weak economy, increased 
death rate, etc. From that point of view, it is extremely easy to observe how many 
individuals in the Google Earth and machine learning algorithms have affected 
floods and damage assessments (Figs. 20.4 and 20.5). For a given year and period, 
Sentinel-2 data is first shown with code on the GEE platform. This image is also 
preprocessed for a minimum cloud coverage or cloud-free picture in GEE. After 
processing, the mosaic of many images was made. The water index NDWI 
(Normalised Difference Water Index) is calculated using a formula and is displayed 
in the GEE platform. It is called the Normalised Difference Water Index (Lai et al. 
2019). This NDWI was then exported to a disc for a certain year using GEE java 
code and processed further with Arc GIS (Mcfeeters 1996; Tong et al. 2017). This 
raster database is further categorised to discover the real water distribution area of 
the dam and turned to a polygon with the Arc tool for area calculation.

 Results and Discussion

Since they are widespread fiascos, floods leave disaster managers with a wide range 
of problems. The immediate goal during a disaster is that of human survival, and the 
framework is expected to have a crisis solution. Flooding can sweep away 
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Fig. 20.3 Image showing Google Earth Engine platform

scaffolding and infrastructure, power frameworks can be devastated and bits of met-
ropolitan centres or regional networks can even be isolated from callers that need to 
access them. Long-haul problems caused by massive floods focus on fundamental 
damage; nutrition is the most important problem regularly when harvests are 
crushed, and significant flood disasters suffocate domesticated animals. In general, 
the risk of flooding is measured using the Google Earth Engine as a function of 
probability and consequences. It is essential to provide comprehensive information 
on floods and flood zones to ensure sound planning and conservation of urban and 
rural land. It also provides the basic line information needed to help describe the 
phenomenon of floods. Luckily, this study would be valuable information to assess 
the damage caused by flood hazards. Planners and managers would have a signifi-
cant advantage in overcoming the conflict between civilisation and the workings of 
the river system. It is challenging to penetrate optical sensors through clouds. It is 
therefore important to see an alternative way of addressing certain subjects. 
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Fig. 20.4 Image showing Google Earth Engine platform

Fig. 20.5 Image showing Google Earth Engine platform

Synthetic aperture radar (SAR) is the most powerful sensor that can penetrate clouds 
and detect floods (Kandekar et al. 2021). In SAR, the smooth water shows the least 
backscattering values of the natural objects in the microwave field. The same back-
scattering range is available underwater for calm water and completely dissolved 
soil coverings. The RADARSAT image of 5 August 2019 has been used in order to 
create a flood inundation map. Geometrically and radiometrically, the RADARSAT 
image was rectified. For the picture, then, dB values were observed for land and 
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water. Water pixel threshold values range from 17 to 35 dB when the water pixel is 
removed from satellite data (Elbeltagi et al. 2022). The ERDAS modeller was used 
to create flood charts to delete the water pixel (Kandekar et  al. 2021). The total 
population and population affected are defined in Table 20.1. Because of the afteref-
fects of the examination, we can presume that Earth observation and geospatial 
technologies give brief data to successful choices for exhaustive flood catastrophe 
of the executives for Kolhapur. Because of the prevalence of extreme climate condi-
tions during flooding time, uninhibitedly accessible and routinely examined 
Sentinel-1 SAR Earth perception information has incredible potential in delivering 
flood data with high precision and high spatial resolution in a multi-day interim. 
The strategy depended on openly accessible gratis information, especially helpful 
for less created nations. Cloud-based calculation conditions, for example, the GEE 
platform, end up being especially significant for operational clients in arranging a 
flood- related crisis reaction and for understanding flood damage via land cover 
mapping (Wang et al. 2018a, b). Regular flood fiascos are normal and cannot be 
halted. Be that as it may, proficient instruments for flood immersion mapping and 
flood harm evaluation can be valuable for emergency response and disaster 
management.

 Elevation Data Generation

The DEM (digital elevation model) research indicates that the area has a minimum 
and maximum elevation of 550 and 957 m. The vertical and horizontal precision of 
the DEM produced is approximately 6 and 3 m, respectively. The high gradient of 

Table 20.1 Block-wise total populations and populations affected Taluka wise of Kolhapur 
District

Sr. 
no. Taluka

Populations affected 
block-wise

Total 
population

Area 
(km2)

Population 
density

1. Chandgad 166,174 187,220 956.48 196
2. Gadhinglaj 160,054 225,734 472.38 478
3. Hatkanangle 642,071 807,751 612.57 1319
4. Kagal 292,200 275,372 545.23 505
5. Panhala 154,290 259,417 566.67 458
6. Radhanagari 149,378 199,713 880.75 227
7. Shahuwadi 138,633 185,661 1025.27 181
8. Shirol 350,320 391,015 503.39 777
9. Kolhapur 732,393 1,037,713 664.65 1561
10. Ajra 104,210 120,265 543.96 221
11. Gargoti 134,076 150,368 635.63 237
12. Bavda 15,149 35,772 278.02 129

20 Flood Impact and Damage Assessment Based on the Sentitnel-1 SAR Data Using…

https://www.censusindia2011.com/maharashtra/kolhapur/hatkanangle-population.html


496

Fig. 20.6 False colour composite map of Kolhapur District

the northwest and southern portion of the catchment area is dominated by hills with 
rough topography, and the level surface is in the eastern part (Fig. 20.6).

 Flood Inundation Maps Based on the Interpretation 
of RADARSAT-2 Satellite Data

While from 5 August 2019 onwards, all the banks of the Krishna, Warna, Panchganga 
and Dudhganga Rivers of the Sangli and Kolhapur Districts were flooded, there was 
still substantial flooding over large areas on 9 August 2019 (as seen in the flood 
map) and slowly receded until 15 August 2019.

 Inundation on 9 August 2019

A total of 215 villages in nine Talukas, covering an area of 332.30 km2 (21.20% of 
the area) in these villages, were affected in Kolhapur District.
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 Inundation on 13 August 2019

A total of 78 villages in four Talukas were affected in Kolhapur District, covering 
an area of 207.91 km2 (24.47% of the area) in these villages.

 Inundation on 15 August 2019

A total of 68 villages in four Talukas, covering an area of 133.59  km2 (almost 
19.28% of the area) in these villages, were affected in Kolhapur District. Due to the 
mixing of digital signatures of the metropolitan region with water spread and course 
resolution (+50–100 m) of RADARSAT-2, flooding in the town area of Kolhapur 
could not be obtained.

 Encroachment/Blocking of Kolhapur City River 
and Tributaries

The Panchganga River surrounds Kolhapur, making an inverted ‘U’ form. 
Panchganga’s Rajaram barrage has a river-gauging system. The study of the terrain 
indicates that the central portion of Kolhapur city is higher than the western, north-
ern and eastern parts of the city. Much urbanisation has taken place in the western, 
northern and eastern parts of the town, where the landscape is almost flat and tribu-
taries are deep. Such areas, especially in low-lying areas in the western, northern 
and eastern part of Kolhapur District, are observed at lower elevations than the high 
flood level of 2019. In the past ten years, these regions have been heavily urbanised.

 Flood Vulnerability

Complete image of a wide variety of dam inflows. The stations in the above parts 
have been addressed in depth. Koyna, Dhom, Tarali, Kanher, Urmodi and Warna 
dams (Inundation) are located in the fragile catchment area above Sangli city, out of 
10 dams. Similarly, some weak catchment areas in the Panchganga basin above 
Kolhapur Town are Tulsi, Kasari, Kumbhi and Radhanagari dams. The flood- 
affected area shown in Fig. 20.7 with block-wise flood-affected details is presented 
in Fig. 20.8. The flood-affected cropland and urban map are depicted in Fig. 20.9.
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Fig. 20.7 Flood-affected area map of Kolhapur District during August 2019

Fig. 20.8 GEE generated bar chart of population affected by Flood Taluka wise during 2019

 Affected Cropland

The MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Form 
product has been selected to approximate the amount of damaged cropland (Shahid 
et al. 2021; Pande et al. 2022). The dataset has a 500 m spatial resolution and is 
updated periodically. It is the only global ground cover dataset accessible on Google 
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Fig. 20.9 Flood-affected cropland and urban map of Taluka wise during 2019

Earth Engine. The Type 1 band of the land cover consists of 17 classes with 2 
classes of cropland (Class 12, at least 60% of the field under cultivation, and Class 
14, cropland/natural vegetation mosaics, 40–60% small-scale cultivation of natural 
forest, shrub, or herbaceous vegetation). Both groups are removed from the dataset 
and intersected with the layer of flood magnitude, which was resampled to the 
MODIS layer scale and prediction (Fig. 20.9).

 Affected Urban Areas

Using the MODIS Land Cover Style dataset, impacted urban areas are measured the 
same as the prior two phases. In order to determine currently impacted metropolitan 
areas, ‘Urban Class 13’ of band ‘Land Cover Form 1’ is extracted. Due to the com-
plexities of water detection in build-up environments, affected urban areas are very 
likely to be underestimated in this process. For more info, see strengths and 
weaknesses.
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 Conclusions

For the study of climate change, the shift in surface water supplies will be funda-
mental. Surface water changes produced by human activities significantly affect 
surface temperature, soil humidity, biodiversity, the working of the ecosystem and 
even human well-being. Surface water monitoring is essential for health and sus-
tainable economic development, as is the natural environment as a cloud platform 
for the processing and analysis of geoscience data. GEE is Google’s open cloud 
platform for the processing and analysis of geoscience data. It offers interactive 
online programming and display and can handle remote data without downloading 
images online. Due to its high interaction capacity and computing performance, 
GEE reduces picture download time and significantly shores the work cycle, allow-
ing remote sensing science to examine more than the waste in the repeated process-
ing system. Thanks to the GEE support for remote sensing image processing, vector 
information on the body of water can easily and rapidly be obtained, which provides 
the basis for additional hydrological element removal. A change in the surface or 
dam of the reservoir can effectively reflect a change in the amount of water. Analysis 
of their changing characteristics will assist in monitoring changes in the amount of 
water and make scientific judgements easier for the relevant departments.
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Chapter 21
Application of Hyperspectral Remote 
Sensing Role in Precision Farming 
and Sustainable Agriculture Under 
Climate Change: A Review

Chaitanya B. Pande and Kanak N. Moharir

Abstract Each year, scholars, agronomists, scientists, and engineers have imple-
mented several technologies to improve low-cost agricultural production, but this 
has detrimental environmental impacts. Precision agriculture deals with the study of 
the use of hyperspectral remote sensing (RS) and other technologies to boost culti-
vation as opposed to traditional farming methods which reduce harmful environ-
mental consequences. Hyperspectral remote sensing technology plays a significant 
role in agricultural precision and agricultural growth, with its use in precision agri-
culture providing different ways to enhance agricultural practices. The idea of preci-
sion farming has attracted significant interest from farmers and scholars in the entire 
globe. The decision-making method includes making the best management choices 
based on the knowledge on uncertainty obtained from evidence gathered in the sec-
tor. The hyperspectral remote sensing and the various field data such as slope, 
dimension of plant indices, soil nutrients, crop quality, and yield can be calculated. 
This analysis illustrates hyperspectral remote sensing technologies, GIS, RGB, and 
multispectral, thermal imagery and gives you an understanding of how accurate 
farming and agricultural development can be useful.
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 Introduction

 Hyperspectral Remote Sensing: A Major Role 
in the Precision Farming

Hyperspectral remote sensing can provide the exact and timely knowledge needed 
to establish preparation for the growth of agriculture and precision farming (FICCI 
2012; Gowrisankar and Adiga 2001; Rock et al. 1986; Tucker 1979; Elbeltagi et al. 
2022). This is precisely a planned instrument that can provide full images of hun-
dreds of small spectral bands of observed objects. The extractable spectral signa-
tures from the hyperspectral picture cube are utilized to categorize or identify 
artifacts inside the area being displayed (Agro-Informatics 2001; Aziz et al. 2008; 
Bairagi and Hassan 2002; Bingfng and Chenglin 2000; Burrough and McDonnell 
1998). Hyperspectral imaging detectors usually absorb light in the spectrum of 
400–2500 nm, spanning the frequency bands of the visible, near- infrared (NIR), and 
short-wave infrared (SWIR), though multispectral details were collected over fairly 
narrow spectral bands (< 20 nm) (Gulhane et al. 2022). Spaceborne systems appear 
to have weaker spatial resolution (30–150 m) relative to their equivalents in the soil 
(35 cm–4 m) (Thenkabail et al. 2012; Pande et al. 2022). One significant use of 
hyperspectral imaging technology is that of agriculture and in particular of agricul-
tural precision and development of agriculture. Precision farming may mostly be 
described as the use of observations to maximize resource use and management of 
farming practices. Usually, a global navigation system has combined with geo-
graphic information systems (GIS) readings, and satellite data and UAV (unnamed 
aerial vehicles) have used to track agricultural crops on a regular basis, control and 
schedule resource use, and make decisions on farming activities. An illustration of 
a hyperspectral sensor has been used to classify crop varieties, pests, and diseases 
and estimate crop yields and water stress on crops, with soil characteristics such as 
shape, composition, physical characteristics, humidity, and nutrient rates (Goetz 
et al. 1985). This chapter is an overview of the technology and usage of hyperspec-
tral remote sensing imagers, GIS, and remote sensing functions in the growth and 
management of agricultural production (Doad et al. 2022; Pande 2022). This would 
be a stupendous undertaking and a daunting obstacle for space and agricultural sci-
entists alike, all of whom are actually positioned distant from Indian farming’s 
ground reality. Nevertheless, alongside the financial capital available, the pace of 
these transitions depends largely on the degree of engagement of leaders, adminis-
trators, technocrats, and scientists. Indian agriculture is called as for providing fruit, 
work, livelihood, and nutritional and ecological securities with multifunctionalities 
(Pande et al. 2021a).

C. B. Pande and K. N. Moharir



505

 Hyperspectral Sensors and Data Processing

Hyperspectral sensors, also known as optical spectrometers, constitute the next 
phase of spectral imaging beyond multispectral imaging radiometers, providing 
existing spatial examples such as LANDSAT, Location, IKONOS, and WorldView. 
Spectral photography requires collecting numerous photographs over several bands 
of wavelengths. The data were calibrated in such a manner that all defined wave-
lengths include details for increasing spatial position or pixel. Thus, hyperspectral 
artifacts are simply a tridimensional data cube (Fig. 21.1). The importance of hyper-
spectral sensing resides in its capacity to collect knowledge about the spatial and 
spectral features of the Earth that were reproduced on the transmitted signal through 
contact with the Earth, which can be used to decipher a multitude of properties 
regarding the artifacts being studied. The difference in reflectance and wavelength 
at each pixel, for example, thus generates a distinctive spectral signature which can 
be used to differentiate artifacts observed.

 Understanding Various Imageries

Different types of imaging such as color, thermal, multispectral, and hyperspectral 
can provide unique applications in precision agriculture (Fig. 21.2).

Fig. 21.1 Hyperspectral image cube
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Fig. 21.2 Different types of imaging

Fig. 21.3 RGB image. (Source: Corn crop filed was captured by the Phantom 4 UAV-NDSU 
Research Center. (Carrington 2016))

 RGB Imagery

In agronomy crop fields, color or RGB (red, green, blue) images are essential for 
recognizing disease indications, fertilizer shortages, damaged plants, and different 
weeds and plant species. For RGB pictures, the color of an object is the outcome of 
the light reflected from the source and its optical properties and human vision. For 
cultivation, RGB-based picture processing has proven useful for weed identification 
and field visualization, vector physiological procedures around the surface of the 
plants, plant height, and plant stand counting. The numerous vegetation indices 
(VIs) and water stress can be calculated using RGB image. The RGB picture repre-
sentation is shown in Fig. 21.3.

 Thermal Imagery

Thermal imaging is based on the assumption that objects release infrared (heat) 
energy as a function of their temperature. The warmer objects usually produce more 
radiation than the colder objects. Thermal cameras are essentially heat sensors that 
measure changes in temperature of objects. The thermal infrared camera detects 
radiation in the electromagnetic spectrum infrared range (800–1400  nm) and is 
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shown as a false color image (Grant et al. 2016). Within a thermal imaging, every 
pixel has a single temperature point. Thermal imaging may help track the tempera-
tures of plants and soil over a region. Thermal imaging may help track the tempera-
tures of plants and soil over a region. Symptoms of plant disease, water-stressed 
plants, and infestations of pests may all induce higher temperatures for the canopy 
or plant surface (Elarab et  al. 2015). Farmers may use thermal imaging to track 
disease outbreak cycles or infestation of the insect and soil moisture in crop fields 
and shelter from rainout. The thermal imaging illustration is seen in Fig. 21.4.

 Multispectral Imagery

Multispectral pictures consist of spectral source details in specific wavebands of 
spectra. Multispectral sensors typically note spectral details in the electromagnetic 
spectrum in red, green, and blue, as well as the violet edge and near-infrared wave 
ranges. From multispectral imaging, vegetation indices like the uniform normalized 
difference vegetation index (NDVI), SAVI (soil-adjusted vegetation index), and 
GCVI (green chlorophyll vegetation index) and band ratio are two important tech-
niques for multispectral image processing (Pande et al. 2021b). Such techniques can 
be utilized to track crop safety, plant pests, crop damage after spraying of herbi-
cides, and signs of diseases. Images of two forms are shown in Fig. 21.5.

 Hyperspectral Imagery (Sensor)

Hyperspectral cameras assess spectral reflectance of plants in the parts of the electro-
magnetic spectrum visible, near-infrared, and mid-infrared (350–2500  nm) in 
5–10  nm wavelengths. Spectral reflectance at the canopy or single leaf scale of 

Fig. 21.4 Heat map of local leaf density
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Fig. 21.5 UAV images collected by the two cameras: (a) RGB camera and (b) multispec-
tral camera

individual plant species is special and is stated as a spectral signature. Spectral 
reflectance calculations may be the capacity of remote spectral data to categorize 
weeds and crops and to classify indicators of crop and horticultural diseases. Light 
absorption by plant pigments, plant composition, and leaf chemistry establishes spe-
cial spectral signatures that are useful for tracking crop conditions in agronomy. 
Hyperspectral picture plays a significant role in climate change, food health, soil 
selection, calculation of crop yields, and water tension (Yu et al. 2017). There are 
actually two groups of hyperspectral sensors or satellite systems required for selec-
tion functions such as ground-based and airborne. Hyperion, Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS), and Portable Airborne Spectrographic 
Imager (CASI) are spacecraft with hyperspectral sensors. The illustrations of disease 
detection through a hyperspectral picture of the leaf are shown in Figs. 21.6 and 21.7.

 Hyperspectral Vegetation Indices

With the advent of hyperspectral data, vegetation indices have been developed spe-
cifically for hyperspectral data:

 1. Discrete-band normalized difference vegetation index
 2. Yellowness index
 3. Photochemical reflectance index
 4. Discrete-band normalized difference water index
 5. Red-edge position determination
 6. Crop chlorophyll content prediction
 7. Moment distance index (MDI)
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Fig. 21.6 Disease detection of fungal plant diseases based on hyperspectral images on sugar beet
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Fig. 21.7 Vegetation health detection by satellite data

 Hyperspectral Remote Sensing Importance and Spectral 
Data Uses

Within this paper, different correct details relate to the present situation of remote 
sensing and advanced remote sensing, geographical information system (GIS), and 
agricultural Indian cameras and sensors. These techniques may be used to predict 
crop yield tracking, field acreage, and output prediction using detailed farming 
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technology activities. Their prospects and threats have been addressed as follows. 
Today’s “Space Age” has continued to give tremendous possibilities for well- 
organized preparation, production, and control of agricultural tools on science con-
cepts through machine and networking technology (Bajcsy and Groves 2004). The 
past hyperspectral remote sensing data has deemed vulnerable and used mainly for 
defense purposes, but currently, hyperspectral data is more important for the map-
ping of effective cultivation, growth of agriculture, urban planning, land usage, soil 
and natural resource properties, and sustainable farming in India. However, space 
scientists and researchers are now able to exchange data on the hyperspectral satel-
lite and various image processing sensors for precession farming and agricultural 
development in India but on a high-cost basis. Application of agricultural smart 
technology in agricultural resource management is increasing due to exponential 
steps in ground-based sensors and spaceborne remote sensing satellites in the con-
text of geographical, temporal, spectral, and radiometric resolutions (Govender 
et al. 2007). Using RS and GIS tools, many of the traditional methods to execute 
multi-theme knowledge to achieve maximal strategies are computerized. Precision 
cultivation has limited to developing countries (Bannari et al. 2006). Land tenure 
scheme smaller farm size (< 1 ha) and crop variety restrict India’s potential for pre-
cision agriculture. However, in irrigated areas/commercial crops/fruit and vegetable 
crops/high-value crops, there is a broad possibility for precision farming. It is evi-
dent from the above that there is a wonderful potential for the use of hyperspectral 
remote sensing, GIS, and precision farming techniques in the creation of a natural 
resource database and farm-level decision support systems (< 1 ha).

 Spectral Signatures

Remote sensing can identify interactions between the reflected, ingested, and dis-
tributed electricity. The changes in the colors of the leaves, materials, forms, or just 
how the leaves are bound to the plants decide how much energy can be transmitted, 
stored, or transferred. To establish spectral signatures of separate plants, the interac-
tion between reflected, absorbed, and transmitted energies is employed. Spectral 
signatures are special to certain types of plants. Remote sensing is utilized by first 
starting spectral signatures of healthy plants to distinguish stressed areas in farm 
area. Stressed plant spectral signatures appear to be changed from those of good 
plant. The spectral signatures of balanced and stressed sugar beets are contrasted in 
Fig. 21.3. Stressed sugar beets in the visible portion of the spectrum have a higher 
reflectance intensity from 400 to 700  nm of stressed sugar beets; this trend is 
changed in the non-visible range of about 750–1200 nm. Within the higher reflec-
tance spectrum from around 1300–2400  nm, the apparent pattern is replicated 
(Fig. 21.8). Interpreting the reflectance values at specific energy wavelengths can be 
used to determine crop health (Clark 1999).
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Fig. 21.8 Handheld SVC (scalable video coding)-spectroradiometer instruments

Deficit irrigation is the practice of irrigation of crops deliberately below their 
water requirements. Such practice is aimed at minimizing water applied to the crop 
to maximize crop yield per unit of water applied. The NDVI values of wheat crop 
were determined from spectral reflectance data by spectroradiometer during crop 
growth stages at a suitable interval.

There are several indices of vegetation (VIs), all of which are functionally simi-
lar. The inverse association between red and near-infrared reflectance correlated 
with good green plants has included in many of the indices (Maresma et al. 2016). 
Scientists have been utilizing remote satellite sensing since the 1960s to track 
changes of plants at the surface of the Earth. Measurements of plant characteristics 
include index of leaf area (LAI), percentage of green cover, chlorophyll quality, 
green biomass, and absorbed photosynthetically active radiation (APAR) absorption 
(Perry et al. 2018). The analysis of reflectance ranges at numerous wavelengths is 
widely utilized to measure plant vigor, known as vegetative measure. The common 
vegetative index is uniform vegetative difference index (NDVI). NDVI measures 
the electromagnetic spectrum reflectance values for the red and NIR zones. The 
NDVI meaning for growing region on an image helps to distinguish areas inside 
fields of differing amounts of plant vigor. Drone images have estimated the various 
indices for used of precision farming and water management (Fig. 21.9).
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Fig. 21.9 Hyperspectral remote sensing showing field view of agriculture field

 Uses of Vegetation Indices Have Been Used 
to Precision Farming

Important vegetation indices can be used for precision farming (Fig. 21.9):

• Examine climate trends.
• Estimate water content of soils remotely. Monitor drought. Schedule crop irriga-

tion. Improve crop management. Monitor evaporation and plant transpiration. 
Assess changes in biodiversity (Kandekar 2021).

• Classify vegetation.

 Hyperspectral Remote Sensing in Agriculture: 
Present Scenario

Remote sensing techniques play a crucial role in the identification of crops in agri-
culture, in the evaluation of acreage and productivity, in the finding of diseases and 
stress, in the characterization of soil and water supplies, and also in providing the 
required inputs for the following: planning of watershed growth plans, cultivation of 
additional land using thematic mapping and recovery of wastelands, and increase of 
irrigation (Pande et  al. 2020, 2021a; 2022). Hyperspectral remote sensing 
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Table 21.1 Current and recent hyperspectral sensors and data providers

Satellite sensors Manufacturer
Number of 
bands

Spectral range in 
μm

FTHSI on MightySat II Air Force Research 
Laboratory

256 0.35–1.05

Hyperion on EO-1 NASA Goddard Space 
Flight Center

220 0.4–2.5

Airborne sensors Manufacturer Number of 
bands

Spectral range

AVIRIS NASA Jet Propulsion Lab 224 0.4–2.4
HYDICE Naval Research Lab 210 0.4–2.5
PROBE-1 Earth Search Sciences Inc. 128 0.4–2.5
CASI ITRES Research Limited 228 0.4–1.0
HyMap 00 to 200 visible to 
thermal infrared

Integrated Spectronics 100–200 Visible to thermal 
infrared

AISA Spectral Imaging Up to 288 0.43–1.0 um

technologies (Table 21.1) in agriculture have evolved to a point where these obser-
vations are being used throughout the country for a range of policy-level decisions 
related to food protection, scarcity mitigation, and sustainable growth (Zhang et al. 
2002). Decision on buffer stocks of food grains may be focused on preharvest crop 
acreage and estimation of growth, whereas maps of groundwater prospects act as 
the key source of knowledge for confirming drinking water and other requirements 
in rainfed and less-favored regions (Mulla 2013; Elbeltagi et  al. 2022a; Kouadri 
et al. 2022). State desert, land usage, ground cover, and soil analysis have led to the 
extension and intensification of agricultural practices and to the definition of ground 
efficiency groups and crop adaptability indices (Fig. 21.9).

 Crop Acreage and Production Estimation

The usage of spaceborne remote sensing data for crop acreage calculation and out-
put forecasts in selected districts for wheat, rice, and groundnut was tested in India 
in the early 1980s. The positive and inspiring findings of this initial study led to a 
1985–1986 attempt to estimate wheat acreage at state level using LANDSAT MSS 
data for Haryana and Punjab. The findings were encouraging, and the program, 
called ‘Crop Acreage and Development Forecast’ (CAPE), was launched in selected 
major rising states/districts covering wheat, rice, groundnut, and rabi sorghum. As 
the quality of optical data is a problem in monsoon seasons, the usage of data from 
active sensors, such as RADARSAT SAR, has been operationally used in 12 dis-
tricts of Karnataka for kharif rice. Microwave results, which have all the weather 
capabilities, have displayed that the rice crop can be discriminated against at greater 
than 90% precision, which can help with numerous forecasting in early detection. 
In addition to using high-resolution single-date satellite images to give district-level 
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crop acreage predictions under CAPE, multi-date WiFS data (coarse resolution and 
strong receptivity) is utilized to understand the possibility of national-level fore-
casts. The Department of Agriculture and Cooperation is setting up a National Crop 
Forecasting Center, Government of India, to carry out the project. (As remote sens-
ing, weather, and field observation provide complementary and supplementary crop 
forecasting knowledge, FASAL (Forecasting Agricultural output using Space, 
Agro-meteorology and Land-based observations) suggests a method that incorpo-
rates the three forms of observation into the pulses to allow forecasts of required 
range, precision, and timeliness.) The FASAL’s definition, therefore, enhances the 
latest early crop season forecasting capacities from econometric and weather-based 
approaches with mid-season remote sensing evaluations that can be integrated with 
the data-based multi-temporal coarse resolution research. Direct contribution of 
remote sensing in the form of acreage projections and yield predictions is possible 
throughout the time after half of crop growth phase. However, incorporating more 
detailed field knowledge and forecast measurements will also improve the predic-
tive quality in this scenario, too. India is also preparing to provide agricultural- 
specific data for some unique satellites (Fig. 21.10).

Fig. 21.10 Cropping pattern map

C. B. Pande and K. N. Moharir



515

 Quantifying Soil Property Variability

Hyperspectral imaging may be used to measure the soil electrical conductivity 
(ECa) and soil fertility rates. The data collected have been transformed to reflec-
tance with the help of chemically modified reference tarps with eight identified rates 
of reflectance (Pande et al. 2022). Through a rubber sheeting process, dimensional 
irregularities of the push broom sensor images are rectified. Statistical analyses, 
including basic correlations, multiple regressions, and PCA (Principal Component 
Analysis), were utilized to link HSI data and LANDSAT-like bands to soil proper-
ties measured in the field (Naveen et al. 2014; Pande et al. 2022).

 Weed Detection

Usually it is patchy, so UAVs have a better direction to map weeds so enabling site- 
specific weed control (SSWM). There are double distinct methods to identify UAV 
weeds. Next, spectral discrimination begins from observable shifts in the spectrum 
of weeds and crop plants and has a long tradition of remote sensing in non-UAV 
(López-Granados 2011). In UAV applications, if the weed’s spectral signal varies 
from that of the crops, supervised classification methods may be effective, also with 
(modified) RGB cameras (Alexandridis et al. 2017), and permit the making of pre-
scription maps for herbicide spraying (Castaldi et al. 2017). Nevertheless, controlled 
instruction is time-consuming and not necessarily promised results (Lambert 
et al. 2018).

 Classification of Agricultural Crops

Traditionally, mapping the vegetation of a whole field involves time-intensive field 
surveys; however, with hyperspectral remote sensing images, particularly hyper-
spectral data, the classification and mapping of vegetation can be calculated with 
further precision farming in less time in a more cost-effective way (Govender et al. 
2007). Several experiments (Dalponte et al. 2009) indicate that the precision of the 
sorting of agricultural crops obtained from hyperspectral narrowband data is signifi-
cantly higher than that achieved with multispectral data. Hyperspectral data will be 
composed before seeding and during planting and harvesting to detect improve-
ments within the region. Data collection prior to seeding offers details on soil qual-
ity, soil fertility, and soil physical properties – texture, density, mechanical intensity, 
moisture content, organic soil chemical properties, salinity, and water-holding capa-
bility required for soil plants (Bannari et  al. 2006). LULC (land use/land cover) 
mapping is a very important study for changes of crops and soil  (Pande 2022). 
Drone images have given a better resolution for mapping of LULC (Figs. 21.11 
and 21.12).
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Fig. 21.11 Hyperspectral image based on the UAV. (Source: http://vespadrones.com/product/
hyperspectral- camera- rikola/)
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Fig. 21.12 Classification map of hyperspectral image and UAV. (Source: Boggavarapu et al. 2017)

 Yield Forecasting

Accurate forecasting of early yields is as important for farmers as it is for the whole 
agricultural sector. RGB image could be used for measuring the plant height and 
canopy cover (Chu et al. 2016), multispectral imagery or VIs (Kyratzis et al. 2017) 
and strong crop yield forecasting correctness were found with UAVs and hyperspec-
tral remote sensing. Multitemporal VIs, like a cumulative VI over the rising period, 
outperform only measurements as is the instance with satellite data (Rembold 
et al. 2013).
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 Precision Farming

Precision agriculture is a new concept of smart farming within varying conditions 
of climate change. It is a micromanagement framework that benefits from the use of 
knowledge generated by geospatial technology to arrive at better agricultural and 
land management decisions (Kim et al. 2017). In other terms, it is “Virtual Smart 
Agriculture” involving farmer-level mapping of far greater size, extensive database 
development of required tools prepared by space-based information and field obser-
vations, and a robust work plan to optimize yield and minimize input costs via the 
hyperspectral remote sensing and decision support network (Deng et  al. 2018; 
Elbeltagi et al. 2022b). It is very important for the growth of Indian agricultural 
output. The period of precision farming is seen in Fig. 21.13.

 Conclusion

Throughout this short study, we presented hyperspectral field photography, imaging 
technologies, precision cultivation software, and hyperspectral data processing 
techniques. Hyperspectral imaging systems enable researchers to acquire knowl-
edge required to conduct agricultural precision practices. The regular exactness of 
hyperspectral imaging is increased relative to the rendering of multispectral pic-
tures. The interest in and description of precision farming (PF) has resulted in a 
discrepancy between technical capacities and theoretical knowledge of the 
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Fig. 21.13 Precision farming cycle
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relationship between accessibility of inputs and outcome production. Agriculture, 
the energetic mechanism regulated by a grouping of biotic and abiotic forces, 
requires to be maintained, as it is the main function in the Indian economy. Although 
we are self- appropriate in food grain development, there are many gray areas that 
need to be developed for the ever-green revolution to be accomplished. Translation 
of remote sensing data, GIS innovations, and precision farming database knowledge 
into field- level implementable schemes and grassroot absorption of technology by 
the actual beneficiaries remains a bigger challenge. A short survey should act as a 
starting point for farm and image processing experts alike to consider the usage of 
hyperspectral picture processing in agriculture.
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Chapter 22
Tools and Solutions for Watershed 
Management and Planning Under Climate 
Change

Abbas Mirzaei , Nasser Valizadeh , and Hassan Azarm 

Abstract Water resources in watersheds are severely affected by climate change, 
water scarcity, and frequent droughts. This leads to a conflict between different 
users of water, especially between agriculture and the environment sectors. Due to 
the multidimensional and multiscale nature of watershed management and climate 
change, it is necessary to provide some tools and solutions for sustainable manage-
ment and planning of watersheds under climate change. In this regard, the purpose 
of this study was to develop a conceptual framework in the field of tools and solu-
tions for integrated watershed management and planning to optimally allocate water 
resources between different sections in the watersheds. In order to achieve this goal, 
the literature on the watershed management was reviewed, and it was found that 
there are three categories of studies in this field. The first category includes studies 
that have managed the watershed using hydrological and economic simulation tools. 
The second category is studies that consider environmental aspects as well and 
combine hydrological, economic, and environmental simulation tools. The third 
category is studies that consider users’ behavior very important in watershed man-
agement and employ some behavior-specific tools to simulate the behavioral com-
plexities of users. The results showed that the combination of all hydrological, 
socioeconomic, environmental, and behavioral components and the use of 
component- specific tools to simulate these components can achieve sustainable 
watershed management. Furthermore, the present integrated framework can be used 
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in various case studies around the world due to its comprehensiveness and opera-
tionality for integrated watershed management.

Keywords Climate change · Watershed management · Sustainability of water 
resources · Water management strategies

 Introduction

Today, issues such as limited water and energy resources, unsustainable agricultural 
production practices, climate change, and increasing population have posed chal-
lenges in food production and sustainable management of the resources (Pande and 
Moharir 2021; Hoff 2011; Bizikova et al. 2013; Alloisio 2015; El-Gafy 2017; Wang 
et al. 2018; Nhamo et al. 2020). Water scarcity is the most important problem facing 
humans in the twenty-first century (Eliasson 2015; Li et al. 2017; Lu et al. 2018; 
Moharir et al. 2020). Population growth, the need for more food, land use change, 
and policy problems in developing and developed countries exacerbate this complex 
situation (Ward 2014). It is estimated that about 2.8 billion people in 43 countries 
are affected by water scarcity, of which 1.2 billion do not even have access to ade-
quate drinking water (Pande et al. 2019; United Nations World Water Development 
Report 2015). In addition, it is projected that by 2050, the world’s population will 
increase to 9.8  billion, and half of this population will live in urban areas (UN 
2017). This population growth, along with economic development, will increase the 
need to produce more food, and as a result, water demand will grow by 40% by 
2050 (UN 2015).

Changes in water resources have a dynamic trend and many factors affect the 
amount of water resources over time. Increased consumption and demand, popula-
tion growth, climate change, and changes in ground/surface water abstraction are all 
factors that affect the water system of an area or watershed over time (Pande and 
Moharir 2015; Döll 2002; Arnell et al. 2011). Furthermore, users of water resources 
in the watershed are interconnected, and water use in one sector affects other sec-
tors. Therefore, the water sector should be considered as a whole in countries’ 
development plans, and the environmental and economic impacts of policies on this 
resource should be accurately examined (Fiorillo et al. 2007).

Watersheds are important components in the water cycle and water resources 
management (Kharrazi et al. 2016a, b). Therefore, improving the hydrological pro-
cess and sustainable management of water resources through watershed manage-
ment has a high feasibility. It should be mentioned that the consumption of water 
resources in watersheds involves a complex process of social, economic, and envi-
ronmental dimensions (Cai et al. 2003).

Climate change such as precipitation and temperature changes can affect the 
hydrological processes of watersheds (Arnell and Gosling 2013; Jiménez Cisneros 
et al. 2014). Climate change is defined as statistically significant changes in climate 
conditions over a period of more than a decade (Intergovernmental Panel on Climate 
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Change (IPCC) 2007). The climate change phenomenon as one of the most threat-
ening factors of human beings has strongly affected various sectors (Koutiva and 
Makropoulos 2016). Climate change in recent decades has posed many challenges 
for watershed planners and managers in the sustainable use of water resources, envi-
ronmental protection, and adequate food production, leading to a global crisis 
(Wilhite 2005; OECD 2006).

Increasing competition between different sectors for the use of limited water 
resources in watersheds along with the climate change and drought leads to further 
food and water shortages (Steffen et al. 2015; Pastor et al. 2019; Abdelkader and 
Elshorbagy 2021). In fact, water supply scarcity due to severe droughts and increased 
competition for water consumption between urban-rural, agricultural, industrial, 
and the environmental sectors have led to imbalances between water resources 
capacity and consumption in many watersheds (Brinegar and Ward 2009; Mirzaei 
and Zibaei 2021). Although various stakeholders including urban, agricultural, 
industrial, tourism, energy, and financial and insurance market sectors are affected 
by climate change (Tol 2002; Hope 2005; Kemfert 2009), the agricultural sector as 
one of the most vulnerable sectors to climate change has always been prominent 
(Chang 2003).

The agricultural sector is the main consumer of water in the world, which has a 
significant contribution to the scarcity of water resources in the watersheds (Han 
et  al. 2011). In recent years, due to the expansion of agricultural activities, the 
demand for surface and groundwater resources has increased significantly, and the 
scarcity of water resources in the watersheds has intensified (Mishra et al. 2016). 
Therefore, due to the scarcity of water resources for agricultural production, espe-
cially in arid and semiarid areas of the world, sustainable management of water 
resources at watershed level is essential (D’Odorico et  al. 2019; Sadeghi et  al. 
2020). Watershed management decision-makers face many challenges in the field of 
sustainable management of water resources. They must decide on the allocation of 
scarce water supply in a way that leads to the achievement of economic goals of 
activities such as agriculture and environmental sustainability (Forni et al. 2016).

In general, due to limited water resources, increasing demand, reduced supply, 
complexity, conflicts in consumption systems, and dynamics of the water sector, the 
development of strategic planning for sustainable management of water resources in 
the watersheds is an inevitable necessity. In this context, the systematic, integrated, 
and systematic management of watershed water resources is one of the most impor-
tant issues facing policy makers (Simonovic and Fahmy 1999). Different policies to 
manage the watersheds can result in adverse outcomes if they do not consider all 
potential communications in a system and in an integrated manner (FAO 2011). 
Integrated watershed management requires an initial description of aquatic ecosys-
tem performance and related values and services (Bino et al. 2015; Gilvear et al. 
2013; Lamers et al. 2015). Therefore, an integrated view of watershed management 
is necessary due to the multidimensional and multiscale nature of water resources 
management and climate change (Downing 2012; Mirzaei and Zibaei 2021).

Today, considering technical, socioeconomic, hydrological, environmental, and 
behavioral variables is essential for the integrated watershed management under the 
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climate change (Mirzaei and Zibaei 2021). Agents’ behavioral rules and the interac-
tion methods of them with each other’s environment must be considered to make 
decisions about issues of the watershed management (Bonabeau 2002). In other 
words, for the sustainability of watershed management, it is important to pay atten-
tion to the conflicting goals among users and the need for their participation in the 
form of a prescriptive or optimal model (Akhbari and Grigg 2013). International 
efforts in recent years have added an integrated and comprehensive view of water 
resources to water management models. The United Nations Conference on Water in 
Mar del Plata in 1977 was the first meeting to discuss the concept of integrated water 
resources management (IWRM). However, the implementation of the concept of 
IWRM in practice was discussed after the Summit on Sustainable Development in 
1992, and at the International Water and Environment Conference in Dublin in 1992, 
representatives of more than 100 countries agreed on four principles as follows:

• Water is a limited and vulnerable resource and plays a key role in the sustain-
ability of life, development, and the environment.

• Water management should be based on participatory and consensual solutions 
between consumers, planners, and policy makers at all levels.

• The role of women in water management and safeguarding is central.
• Water must be recognized as an economic commodity because it has economic 

value in all its competing uses.

According to the Global Water Partnership (GWP), IWRM refers to the coordi-
nated development and management of water, soil, and related resources in order to 
maximize economic and social well-being in a fair way without compromising the 
sustainability of ecosystems. The United Nations Development Programme (UNDP) 
defines IWRM as a principled process for the sustainable development and optimal 
allocation of water resources in the social, economic, and environmental fields. The 
United States Agency for International Development (USAID) defines IWRM as 
the cooperation of governors, communities, and stakeholders to select solutions for 
the proper use of freshwater and coastal resources. According to the World Bank, 
IWRM ensures the social, economic, and environmental dimensions of water use 
(Zargar and Noorzad 2010).

Efficient management of water resources at watershed levels and under climate 
change exposes the decision-makers of arid and semiarid regions of the world to 
difficult conditions in terms of designing climate-adaptive policies and strategies 
(Kahil et al. 2016). Impact assessment of the water resources management policies 
and adaptive strategies used by stakeholders should be in the form of integrated 
modeling at the watershed level. In other words, impact assessment and application 
of adaptive strategies should be done based on the economic, social, and environ-
mental goals and according to the hydrological and behavioral conditions of water-
shed stakeholders (Esteve et  al. 2015). Therefore, it is necessary to integrate 
watershed management and planning solution under the climate change conditions. 
In this way, a set of comprehensive and agreed solutions meeting the goals of all 
users in a system are developed (Mirzaei and Zibaei 2021). This chapter attempts to 
develop and describe the tools and solutions for sustainable watershed management 
under climate change.
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 Components of Watershed Management Under 
Climate Change

As mentioned earlier, climate change poses major challenges to watershed manage-
ment. The literature shows that so far, five reports have been published by the 
Intergovernmental Panel on Climate Change (IPCC) in the context of a comprehen-
sive analysis of the climate change, which is the main basis for climate-related stud-
ies. Currently, the fourth and fifth reports are used in various studies. In the fourth 
evaluation models, the Special Report on Emissions Scenarios (SRES) have been 
used, and in the fifth evaluation models, new scenarios based on forcing radiation 
(FR) have been applied. In the fourth report, the main scenarios B1, B2, A1, and A2 
represented the most optimistic to the most pessimistic emissions, respectively, 
which were later transformed into three scenarios B1, A1B, and A2. In the fifth 
report, the new scenarios RCP2.6, RCP4.5, RCP6.0, and RCP8.5 replaced them. 
CMIP6 (Coupled Model Intercomparison Project) has recently designed many 
updated climate model outputs and will contribute to the IPCC. CMIP6 data makes 
future scenarios more rational and practical by combining the RCPs and shared 
socioeconomic pathways (SSPs) (Eyring et al. 2016; Nature Climate Change 2019). 
Some studies have focused on simulation of climate variables, climate extremes, 
and ocean-atmosphere systems by the CMIP6 data (Di Luca et al. 2020; Kim et al. 
2020; Nie et al. 2020; Srivastava et al. 2020; Su et al. 2021). From a scale point of 
view, water resources management can take place at the level of a farm, a plain, a 
subbasin, or even a watershed (Molden et  al. 2009). Water management at the 
watershed level results in a comprehensive framework of economic efficiency, 
equity (equitable distribution), and sustainability. Since the mid-1990s, many stud-
ies have been conducted on water management at the watershed level (Gurluk and 
Ward 2009; Ward and Pulido-Velazquez 2009; Gohar and Ward 2010; Nikouei et al. 
2012; Nikouei and Ward 2013; Gohar et al. 2013, 2015; Ward 2014; Kahil et al. 
2015). A review of the literature in this field shows that an integrated view of water-
shed management under climate change is based on four components: hydrological, 
socioeconomic, environmental, and behavioral components. In this section, each of 
the components and related studies are described in detail.

 Hydrological Component

In recent decades, the assessment of the impacts of climate change on various sec-
tors (especially the agricultural sector) at the watershed scale is mostly based on 
biophysical modeling with a focus on the agronomic dimension (Moriondo et al. 
2010; Ventrella et  al. 2012) or the hydrological dimension (Joyce et  al. 2011; 
Rochdane et al. 2012). In other words, most water resource allocation studies at the 
watershed level have been based on a water supply-demand equilibrium approach 
and allocation optimization scenarios by using physical and hydrological aspects 
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(Rosegrant et al. 2000; Ringler and Huy 2004). This approach is suitable for inform-
ing planners to meet current and future demand and to show the volume of demand 
and water supply at a specific time at the watershed level. However, it does not 
provide sufficient information on the economic consequences of allocation policies.

Hydrological simulation models represent complex systems of natural hydro-
logical communication and management of water resources and infrastructure of 
these resources at limited spatial and temporal scales. In some studies, it was found 
that integration of Earth observation datasets in geographical information system 
(GIS) provides more reliable parameters for hydrological simulation of the basin 
(Rawat and Singh 2017; Maliqi and Singh 2019). Hydrological simulation models 
can show the interaction of urban, agricultural, industrial, and environmental sys-
tems. In addition, they can be used to illustrate the temporal-spatial dependencies 
and the effects of climate change and human activities on environmental systems 
(Joyce et al. 2011; Girard et al. 2015; Forni et al. 2016). For example, Rawat et al. 
(2021) used a curve number method and then compared empirical mathematical 
models with SCS-CN (Soil Conservation Service-curve number) to simulate runoff 
as one of the main hydrological parameters of the basin.

Water Evaluation and Planning (WEAP) simulation model is an efficient tool for 
depicting the above characteristics and analyzing the effects of climate change in 
watersheds (Bhave et  al. 2014; Satti et  al. 2015; Forni et  al. 2016). The WEAP 
model was first used in 1992 to simulate water supply and demand in the Russian 
Aral Sea region (Raskin et al. 1992). This model has been used mainly for planning 
water resources at the regional, local, and watershed scales (Huber-Lee et al. 2004; 
Groves et al. 2008; Purkey et al. 2008; Demertzi et al. 2014). Lévite et al. (2003) 
first used the WEAP model to allocate water resources at the watershed scale. Then, 
Gaiser et al. (2008) analyzed a wide range of water management models and con-
cluded that the WEAP model is a comprehensive model for watersheds. By provid-
ing detailed details to planning officials, it can assess the long-term effects of 
population change and economic development. Since 2008, this model has been 
modified and tested in Central Asia and East Africa under various ecological, hydro-
logical, and socioeconomic conditions. The results have revealed that the WEAP 
model has the potential to simulate future scenarios in strategic water resources 
management plans.

Today, the WEAP model is the most widely used hydrological simulation tool in 
the watersheds to achieve various goals (Lévite et al. 2003; Li et al. 2015; Adgolign 
et al. 2016; Mishra et al. 2017; Khalil et al. 2018). For example, Yaqob et al. (2015) 
used the WEAP model to evaluate and analyze the role of wastewater treatment in 
the Nablus watershed in Palestine. Esteve et al. (2015) investigated the yield and net 
water requirement of agricultural products in the Middle Guadiana Basin, using the 
WEAP model. To this end, they used hydrological simulation to articulate the cli-
mate change scenarios and adaptive strategies of farmers. Hum and Talib (2016) 
examined the effect of population growth scenarios in the Selangor watershed of 
Malaysia using the WEAP model to assess the future status of water supply. In a 
study by Adgolign et al. (2016), the WEAP model was applied to allocate the sur-
face water to agricultural and environmental sectors in western Ethiopia. Mishra 
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et al. (2017) investigated water balance under different management scenarios in 
one of the watersheds of Sri Lanka using WEAP tools. Cetinkaya and Gunacti 
(2018) in a study created 16 different scenarios of water allocation in the watersheds 
of Turkey by changing and combining different irrigation and under- irrigation pri-
orities. Then the results of these scenarios were simulated using the WEAP model, 
and their performance was evaluated through economic, social, and environmental 
indicators. Khalil et al. (2018) used the WEAP model to evaluate water supply and 
demand under water transfer and climate change scenarios in the Mae Klong water-
shed of Thailand. Furthermore, Mirzaei and Zibaei (2021) used WEAP tool to simu-
late the yield and net water requirement of crops in Halilrud watershed of Iran under 
climate change scenarios and farmers’ adaptive strategies.

 Socioeconomic Component

Water is a vital resource for life, but it has become a limiting factor for social and 
economic development in many parts of the world. Water scarcity, droughts, and 
increasing the pressure on water resources and the environment have led to the 
growth of social and economic conflicts in various sectors (Gleick et  al. 2009). 
Water scarcity will ultimately limit economic and social development, which means 
that in the near future, water will be recognized as a major obstacle to world devel-
opment (Kojiri et al. 2008). Therefore, considering social and economic goals in the 
allocation of water resources at the watershed level is very important.

Allocating water between different sectors based on economic efficiency will 
maximize the overall value of water. In other words, in order to achieve the eco-
nomic goals of water consumption, water allocation must be shifted from low-profit 
activities to high-yield economic activities (Tisdell 2010; Turner et  al. 2010). 
Another aspect of economic efficiency in water allocation is Pareto efficiency. 
According to this rule, any change in water allocation is appropriate when at least 
one beneficiary gains more prosperity and no beneficiary of this change suffers (Just 
et al. 2005; Thomas and Durham 2003). This principle is difficult to apply in the real 
world, so another criterion called the Kaldor-Hicks criterion is used to this end. 
According to this criterion, any change in allocations would be appropriate if the 
welfare interests of one group of individuals offset the losses of another group 
(Turner et al. 2010). In general, water engineering economics emphasizes the use of 
economic principles for decision-making, integrated and flexible management, 
profit valuation, program design, alternative evaluation, financial resources, and 
institutional design (Griffin 1998; Braden 2000; Lund et al. 2006).

Efforts to manage the demand for water resources between different sectors at 
the watershed level require knowledge of the economic value of water in crop pro-
duction and changes in this value over time and space. Economic value and its 
changes can be due to physical differences (climate and soil type) and socioeco-
nomic production conditions (input or output prices and regulations). Therefore, by 
entering water economic modeling studies, production functions evaluate the 
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economic effects of different policies at the watershed scale and determine the opti-
mal allocation of water consumption between different economic sectors, environ-
ment, cities, and hydropower plants (Cai 2008; Bekchanov et al. 2015; Erfani et al. 
2015; Kahil et al. 2015). For example, production functions related to watershed 
economic- hydrological models can provide a powerful tool for assessing the spatial 
and temporal conflict between agricultural profitability and environmental conse-
quences in groundwater-based irrigation systems (Kuwayama and Brozović 2013; 
Foster and Brozović 2018). In general, allocating water to meet any needs at the 
watershed level has social and economic consequences. Therefore, it is necessary to 
pay attention to the socioeconomic component along with the hydrological compo-
nent in the framework of integrated water management (Harou et al. 2009; George 
et al. 2011).

The relationship between economic issues and the hydrological process in water 
resources management developed from the 1960s to the 1970s in arid regions of 
Israel and the southwestern United States. During these years, Gisser and Mercado 
(1972, 1973), and Rogers and Smith (1970) used the water demands’ economic 
curves to optimize the water resources system. The conceptual framework of eco-
nomic models of integrated regional water resources management was formed by 
maximizing the area under water-derived demand curves (Gisser and Mercado 
1973; Noel et al. 1980). Since then, researchers have used economic modeling in the 
water resources system under different names. For example, concepts such as 
economic- hydrology (Gisser and Mercado 1972), water economics (Noel and 
Howitt 1982), hydrological-agricultural economics (Lefkoff and Gorelick 1990), 
institutional economics (Booker 1995), institutional-economic-hydrological inte-
gration (Booker 1995), integrated river optimization (Ward and Lynch 1996), allo-
cation efficiency (Diaz and Brown 1997), hydrological-economic integration 
(McKinney et  al. 1999; Rosegrant et  al. 2000), engineering economics (Newlin 
et al. 2002; Draper et al. 2004; Lund et al. 2006), integrated agro-hydrological eco-
nomics (Cai et al. 2003), supply and demand (Griffin 2006), integrated hydrological 
economics (Cai et al. 2003; Ringler and Cai 2006; Pulido-Velazquez et al. 2006), 
and water resources economics (Volk et  al. 2008) are examples of different 
terminologies.

There are various studies around the world that have used economic- hydrological 
modeling and mathematical planning methods to manage water resources at the 
watershed level (see Gurluk and Ward (2009), Ward and Pulido-Velazquez (2009), 
Gohar and Ward (2010), Nikouei et  al. (2012), Blanco-Gutierrez et  al. (2013), 
Nikouei and Ward (2013), Gohar et  al. (2013, 2015), Akter et  al. (2014), Ward 
(2014), and Kahil et al. (2015)). However, one of the main disadvantages of such 
modeling is that not all variables affecting hydrological conditions can be formu-
lated in the form of mathematical programming methods. To overcome this weak-
ness, it is necessary to perform accurate hydrological simulations using information 
about products, type of irrigation, soil, climate, geographical relationships, and etc. 
The simulation results can then be used as input to the economic model (Esteve 
et al. 2015; Forni et al. 2016; Mirzaei and Zibaei 2021).

A. Mirzaei et al.



529

 Environmental Component

As water harvesting and consumption increase due to population growth and eco-
nomic growth, awareness of environmental conservation is also increasing (Kahil 
et al. 2015). Therefore, the role of government agencies and water resources manag-
ers as decision-makers in water allocation process is very important (Johansson 
et al. 2002; Orubu 2006; Hanak and Lund 2012; Farhadi et al. 2016; Hu et al. 2016). 
In relation to water consumption, there is a conflict between the urban, agricultural, 
and industrial sectors on the one hand and the recovery of ecosystems on the other. 
Excessive exploitation of water resources destroys ecological aquatic environments 
in the watersheds (Abdulbaki et al. 2017). Since 1990, more than half of the world’s 
natural wetlands have been degraded by human activities (Stacke and Hagemann 
2012; Russi et al. 2013; WWAP 2018). The development of agriculture as the larg-
est consumer of water (Siebert et al. 2010; WWAP 2012) has been a major cause of 
wetlands’ degradation over the last hundred years (Davidson 2014; Ramsar 
Convention on Wetlands 2014). By emphasizing the lack of integrated water 
resources management policies at the watershed level, some studies have warned of 
wetlands’ extinction (Turner 1991). Irrigation water storage in the agricultural sec-
tor to meet the environmental needs of the watersheds is one of the management 
policies used in this field (Peck et al. 2004; Nikouei et al. 2012; Zou et al. 2018; 
Mirzaei and Zibaei 2021). Other existing policies to further protect wetlands include 
reducing part or all of the rights to use surface water for irrigation with economic 
incentives for farmers (Peck et al. 2004). In general, the need for a comprehensive 
approach to water use and the ecological needs of wetlands in the watersheds is 
essential (Ringler and Cai 2006; Nikouei et al. 2012; Zou et al. 2018; Meng et al. 
2019; Vinten et al. 2019; Mirzaei and Zibaei 2021).

On the other hand, paying attention to the quality of water resources in the water-
sheds is of special importance. Past studies have focused on the distribution, output, 
handling, and transfer of contaminant resources (Shen et al. 2015). A number of 
studies (see Centner et al. (1999), Liu et al. (2013), Strauch et al. (2013), and Strokal 
et al. (2015)) have also identified areas with a critical source of pollution and best 
management practices (including ecological and engineering measures) to control 
pollution from these sources. Many researchers (like Mouri et al. (2011), Wu et al. 
(2011), Shen et al. (2012, 2015), and Meaurio et al. (2015)) have evaluated the fac-
tors affecting temporal and spatial changes of pollution by calculating the total 
amount of nitrogen and phosphorus. Nitrogen overload in watersheds is one of the 
deepest impacts of human activities on the environment (Vorosmarty et al. 2010). In 
recent years, research efforts on the characteristics and methods of pollution man-
agement for agricultural resources have increased in many parts of the world (Liu 
et al. 2015; Villamizar and Brown 2016; Naghavi et al. 2021). Agricultural growth 
has consequences such as increased water consumption (Mosavi and Esmaeili 
2012), increased use of chemical fertilizers (Lepistö et al. 2001), and pollution of 
water resources (Maillard and Santos 2008; Salehi et al. 2018). Agriculture is one of 
the main sources of nitrate and phosphate loading in the watersheds and aquatic 
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ecosystems (Vorosmarty et al. 2010). Some research (see Ongley et al. (2010) and 
Van Meter et al. (2018)) has been conducted in the field of simulations and provid-
ing solutions to reduce the nitrate and phosphate loads due to agricultural activities 
in watersheds around the world.

Studies on the environmental effects of agricultural activities on water, soil, and 
air have also increased (Yaqubi et al. 2016). Due to the use of pollutant inputs in the 
production process, a set of rebound effects is created simultaneously with the prod-
uct (Zhou et al. 2014). For example, energy use in the agricultural sector leads to the 
release of carbon dioxide into the atmosphere (Mosavi 2016). Thus, pollutants from 
agriculture are released into the atmosphere and eventually transferred to water and 
soil resources (Rong et al. 2017). In China, since the 1990s, the need to examine 
environmental factors in the water resources management decision-making process 
has been recognized (Bao et al. 2004). In addition, the evaluation of environmental 
strategies has been discussed in the academic community of this country as an 
important decision-making element (Zhu et al. 2010; Wu et al. 2011; Gao et al. 2017).

Economic or market tools are recognized as an optimal way to reduce the harm-
ful effects of pollution in the watersheds (Freeman 2003). In recent decades, the 
willingness to use the economic incentives to achieve environmental goals has 
increased (Eisner 2004). Taxes on input, taxes or environmental subsidies, govern-
mental grants, licenses and rules of liability, and the creation of exchangeable liabil-
ities and licenses are among the economic policies adopted to reduce the pollutions 
(Edson 2004). This type of tax, if raised enough, can be an efficient tool to achieve 
the desired level of pollution reduction. Of course, tax increases in this area should 
be politically feasible (Larson et al. 1996). Most studies in this field have focused 
on determining the optimal input for tax collection, and few studies have been con-
ducted on the overall effectiveness of this policy (Shortle et al. 1998; Dowd et al. 
2008). An environmental tax or subsidy sets a specific level of pollution for different 
pollutants. Now, if the pollution is lower than the acceptable cutoff, targeted subsi-
dies will be paid, and if the pollutant output is more than the set amount, they will 
be fined (Shortle and Horan 2001). In this type of tax, due to different climatic 
conditions and the occurrence of accidental phenomena, the concentration of pollut-
ants changes drastically, and as a result, these events may lead to unfair fines for 
people who have tried to reduce the level of pollution. In fact, in such circum-
stances, the problem of free riding is not detectable, and the increase in pollution by 
some people leaves other people’s efforts to reduce the level of pollution fruitless 
(Shortle and Horan 2001; Shortle et al. 1998). Government grants come in the form 
of grants and green payments or subsidies. By financing and reducing the capital 
needed by taxpayers, these programs provide a favorable environment for reducing 
nonpoint pollution. Paying farmers for not using farmlands in the United States has 
been the most prominent example of these programs in recent decades. Green pay-
ments are made by the government to reduce the spread of pollution in agriculture 
(USDA-FSA 2007; Horan et  al. 1999). According to the rules and regulations 
related to environmental responsibility, people related to pollution can be sued 
according to the amount of damage to the environment. In this method, the court 
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may cost more than other corrective methods. In other words, individuals seeking to 
convict polluters may drop their grievances due to significant costs (Shortle and 
Horan 2001). Another method in this type of program is to receive some money 
from the polluters to confiscate that if the pollution is not sufficiently controlled in 
the future (Lichtenberg 1992). Some scholars, for political reasons, suggest that 
environmental responsibility regulations and laws be combined with other instru-
ments (Menell 1990; Wetzstein and Centner 1992). Successful implementation of 
the exchange permission program has become a popular policy in reducing point 
pollution (Salamon 2002). This method is mentioned as an effective approach in 
achieving environmental goals (Shortle and Horan 2001). Emission exchange of the 
inputs and exchange related to loading are considered as two methods in the point 
and nonpoint pollution sources (Horan et  al. 2002). In an input-related emission 
exchange system, changes in the emission of point sources are exchanged against 
the use of input management methods by pollutants. In contrast, in the loading 
emission exchange system, the emission of point sources is exchanged against the 
nutrient charge (Horan et al. 2002). Due to the unequal ratio of contamination in 
point or nonpoint sources, adjusting the ratio required for exchange is a major chal-
lenge in implementing this program (Horan et al. 2002). In addition, the profitability 
of agricultural activity is one of the reasons that makes the exchange process a 
major challenge (Obropta et al. 2008; Corrales et al. 2014).

 Behavioral Component

As mentioned earlier, in the field of water resources management at the watershed 
level, the interaction between users and the simulation of these interactions is of 
particular importance. It should be noted that these interactions are rooted in their 
behavioral characteristics. Therefore, modeling the behavior of stakeholders in the 
practical management of water resources is essential. Since in water resources man-
agement, due to conflicting goals between the users, the participation or nonpartici-
pation of them in a prescriptive or optimal model is very important. Efficient 
communication between different users of water resources can be defined in the 
framework of non-compromising game theory models. In this type of games, the 
interaction between the actors (stakeholders) is based on their strategic goals 
(Carraro et al. 2007). The Stackelberg or leader-follower game is a special type of 
non-compromising game (Kahil et  al. 2015; Hu et  al. 2016). The application of 
leader-follower game in the field of optimal allocation of water resources was first 
proposed by Bhaduri and Barbier (2008) and then used in various studies of water 
resources management (see Bhaduri and Liebe (2002), Parsapour-Moghaddam 
et al. (2015), Hu et al. (2016), and Zhang et al. (2016)).

If at the watershed level, stakeholder participation is not achieved to implement 
an efficient management model, that model will certainly fail at the operational 
level. In other words, the operation and applicability of optimal models at the 
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watershed level should be examined. Agent-based models (ABMs) have been used 
to simulate these behavioral and social complexities on a large scale, especially in 
water resources management (Bandini et al. 2009; Farhadi et al. 2016; Mirzaei and 
Zibaei 2021). Today, the applications of ABMs have been considered by many 
researchers. For example, Kock (2008) showed that socio-hydrological systems are 
highly correlated with institutional capacity and conflicts. Galán et al. (2009) pre-
sented an ABM for the water management in urban areas of Valladolid, Spain. 
Barthel et al. (2010) proposed a multiactor model for climate adaptation. Zechman 
(2011) provided an ABM for analyzing management strategies in water distribution 
systems. Nikolic et al. (2013) used a biological-economic-socio-physical system as 
a management tool. Akhbari and Grigg (2013) used the ABM to investigate the 
resolution of consumption disputes in the San Joaquin Basin in California. In this 
study, they resolved water disputes between agriculture and the environment. The 
three objectives of maximizing water abstraction for agricultural use, maximizing 
water output to the wetlands, and minimizing salt loaded by water used in agricul-
ture were considered as the objectives of the study. This study ultimately led to an 
optimal and workable solution at the watershed level. Zhao et al. (2013) compared 
the behavior of water users under the system of allocation of administrative and 
market-based water resources. In this study, the ABM was used to analyze the water 
allocation in two different allocation systems. Yuan et al. (2014) and Tamene et al. 
(2014) used ABM for modeling the water resources management and conflict reso-
lution. Mulligan et  al. (2014) evaluated groundwater management policies using 
multiagent system models and combining economic models with the physical 
groundwater flow model. Gorelick and Zheng (2015) also studied the challenges of 
groundwater management and the role of multiagent system models in this field. 
Akhbari and Grigg (2015) modeled the optimal allocation of water resources using 
a simulation and optimization model and then examined farmers’ participation with 
this model. In this study, they simulated the behavior of farmers. Koutiva and 
Makropoulos (2016) employed ABM to socially model urban water demand. 
Farhadi et  al. (2016) used an agent-based modeling framework for sustainable 
groundwater management in Fars Province of Iran. For this purpose, a multiobjec-
tive optimization model was used with the objectives of reducing irrigation water, 
increasing parity in water allocation, and reducing groundwater abstraction to 
achieve Pareto optimization. In addition, Nash’s bargaining model was used to 
reach an agreement among stakeholders. Then, an ABM was implemented to exam-
ine social factors and policy mechanisms and to encourage stakeholders to partici-
pate in managerial decisions. Mirzaei and Zibaei (2021) employed an ABM to 
investigate the participatory behavior of farmers. The aim of this work was to iden-
tify the optimal models and to investigate the relationship between climate change 
adaptive strategies and the identified models in the Halilrud watershed.

A. Mirzaei et al.



533

 Discussion

According to the review and analysis of the research literature, it can be concluded 
that the integrated model of watershed management and planning is an effective 
way to analyze the hydrological, socioeconomic, environmental, and behavioral 
characteristics of the users at the watershed level and under climate change. Review 
of the literature showed that most studies have considered only one or some influen-
tial components in watershed management. Some studies focus on integrated man-
agement at the watershed level and with regard to hydrological and socioeconomic 
components emphasize the optimal allocation of water resources between different 
sectors at the watershed level. Today, the combination of economic modeling with 
hydrological simulation of the watersheds is used in studies (see Gurluk and Ward 
(2009), Ward and Pulido-Velazquez (2009), Gohar and Ward (2010), Nikouei et al. 
(2012), Blanco-Gutierrez et  al. (2013), Nikouei and Ward (2013), Gohar et  al. 
(2013), Akter et al. (2014), Ward (2014), Esteve et al. (2015), Kahil et al. (2015), 
and Gohar et al. (2015)). These studies present the hydrological relationships and 
economic objectives comprehensively using mathematical programming. In such 
models, physical interactions between different uses at the watershed level (agricul-
tural, urban, industrial, recreational, and environmental sectors), reserves (dams and 
groundwater aquifers), flows (diversion, pumping, abstraction, discharge, and return 
of water), and waste (at farm level and transferring and evaporation processes) are 
included. Economic goals also include maximizing the total economic benefits of 
different sectors at the watershed level (Nikouei et al. 2012; Ward 2014).

Mathematical programming framework and its use for optimal and economical 
allocation of water resources according to the hydrological situation is a risky and 
complex decision-making problem that is associated with multilevel, multistage, 
multisubject, multiobjective, and nonlinear correlation features (Hassan-Esfahani 
et al. 2015; Davijani et al. 2016; Abdulbaki et al. 2017; He et al. 2017; Lu et al. 
2018). Hence, in such cases, mathematical programming methods such as nonlinear 
programming (Li et al. 2017; Georgakakos 2012), dynamic programming (Anvari 
et al. 2014), degree programming Two (Marques et al. 2010), positive mathematical 
programming (Esteve et al. 2015), and multiobjective programming (Mosleh et al. 
2017) are used. In this regard, it should be noted that with the development of 
applied mathematical theories, game theory (Girard et al. 2016) and fuzzy mathe-
matical theory (Nikoo et al. 2013) have been widely used. Given the weakness of 
mathematical models in simulating all variables affecting the hydrological situation, 
it cannot be considered a suitable tool for integrated management of watersheds 
(Mirzaei and Zibaei 2021). Therefore, the use of hydrological simulation tools and 
its integration with economic models can be effective in the integrated management 
of watersheds. Studies in this field have shown that the WEAP model is an effective 
tool to simulate the hydrological status of watersheds under climate change condi-
tions (Lévite et al. 2003; Bhave et al. 2014; Li et al. 2015; Satti et al. 2015; Forni 
et al. 2016; Adgolign et al. 2016; Mishra et al. 2017; Khalil et al. 2018).
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The WEAP model is a water resources planning tool based on the principle of 
water balance and represents the different and interrelated sectors such as water 
demand nodes, infrastructure, water flows, and water transmission channels (Yates 
et al. 2005). This model calculates the features of the hydrological cycle of water-
sheds by simulating rainfall-runoff processes and time series of climate data. Each 
watershed unit is divided into different land use classes, and the water balance is 
calculated under the climatic conditions of the watershed. In this model, experimen-
tal functions are used to describe and simulate evapotranspiration, runoff and sur-
face currents, changes in soil moisture, basal river flow trends, and deep infiltration 
for each agricultural unit (Sieber and Purkey 2011). The MABIA method in WEAP 
software is a suitable tool for simulating such variables. This method simulates 
water requirements and crop performance and allows users to understand the effects 
of climate change and available water on crop growth. However, it should be noted 
that this method cannot evaluate the effects of CO2 pollution on crops (Esteve et al. 
2015). WEAP tool has various capabilities such as analyzing the components of 
surface and groundwater resources balance in different scales, evaluating quantita-
tive and qualitative changes of water resources according to water withdrawals in 
different parts of the watershed, determining the share of different areas of water-
shed water resources, communication with remote sensing software such as GIS, 
calibration with existing watershed conditions, graphical display of the results of 
implementation of different policies in watersheds on sensitive variables, and flex-
ibility of the model to change its components depending on the watershed condi-
tions. The main advantage of WEAP in the integrated model of watershed 
management and planning approach is related to the simulation of water systems 
and its policy orientation. In its equations, WEAP equates issues of need (water 
consumption patterns, equipment efficiency, reuses, costs, and allocation) with 
resource issues (surface runoff, groundwater, reservoirs, and water transfers). 
WEAP is able to solve the water mass equilibrium equation for each node and con-
nection in the system in different time steps.

Lack of attention to all environmental issues in watershed management is another 
weakness of integrated watershed management studies. Storing water resources and 
meeting the water needs of natural ecosystems such as wetlands in the watershed, 
balancing groundwater resources, reducing the withdrawal of surface water 
resources, paying attention to the quality of water resources, and the release of pol-
lutants from various activities are environmental components that should be consid-
ered in watershed management and planning. Studies in this area show that most of 
the researchers have focused on the storage of water resources for environmental 
protection and environmental benefits (Nikouei et al. 2012; Nikouei and Ward 2013; 
Gohar et al. 2013; Akter et al. 2014; Kahil et al. 2015; Mirzaei and Zibaei 2021). In 
environmental economics, various methods are applied to measure the environmen-
tal benefits. These methods are classified into two general categories: revealed pref-
erences and stated preferences. Revealed preferences are based on individuals’ 
actual behaviors and choices, whereas the stated preferences are based on the indi-
viduals’ statements about their choices in a hypothetical context (White and Lovett 
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1999). Contingent valuation is a method that has been used for more than 30 years 
to determine the preferences of consumers of environmental goods (which cannot 
be traded directly in the market) (MacMillan et al. 2006). Contingent valuation is 
one of the most widely used methods to estimate the economic value of nonmarket 
goods and services (Ndebele 2009; Johnston et al. 2017). This method is based on 
the existence of a hypothetical market in which the value assigned by each person 
to the product is examined (Pedroso et al. 2007). The literature on the valuation of 
nonmarket goods shows that contingent valuation has been widely used to estimate 
the benefits of the environment, especially wetlands (Bateman and Langford 1997; 
Loomis et  al. 2000; Zhongmin et  al. 2003; Wattage and Mardle 2007; Dias and 
Belcher 2015; Trenholm et al. 2017; Hassan 2017; Ndebele and Forgie 2017; Pueyo- 
Ros et al. 2018).

Some studies (see Van Meter et al. (2018) and Huang et al. (2019)) have pointed 
to the issue of water quality as a key environmental component in watershed man-
agement. A review of studies in this field revealed that the Soil and Water Assessment 
Tool (SWAT) is an effective tool in simulating the quality parameters of water 
resources (Malagó et al. 2019). The SWAT model is a complete watershed-scale 
tool developed by the US Agricultural Research Service to simulate the flow, sedi-
ment, nutrients, and chemical balance in the watersheds. This tool is provided for 
watersheds with soil, land use, and different management conditions in the future 
(Kumar et  al. 2018). SWAT model inputs include hydrological information, cli-
matic conditions, soil type, plant growth, agricultural and pesticide management, 
land management, and flow routing. The SWAT model is a process-oriented semi-
distributed model that uses specific information in the fields of air, soil, topography, 
vegetation, and land cover. Also, this model enables users to simulate the parame-
ters in long-term periods and thus is a continuous model in terms of time. In addi-
tion, this model can be schematic by incorporating GIS software and take advantage 
of it. The SWAT model includes key components of the US Department of 
Agriculture-Agricultural Research Service (USDA-ARS) models (Gassman 
et al. 2007).

Atmospheric pollutants from various activities in the watersheds are other envi-
ronmental components that have received less attention from researchers in inte-
grated watershed management studies. Today, the application of 
water-energy-food-environment nexus can overcome the weakness of integrated 
watershed management studies in addressing energy consumption issues and air 
pollution caused by these uses (González-Bravo et al. 2018; Li et al. 2019). For this 
purpose, mathematical programming methods are a suitable tool for formulating 
goals such as minimizing environmental pollution, like carbon dioxide and green-
house gases from various activities in the watershed (González-Bravo et al. 2018; Li 
et al. 2019).

Recognizing and analyzing the users’ behavior at the watershed level is a key 
component for management and planning. Therefore, it is necessary to use an effi-
cient tool to simulate the behavior of different users in the watersheds. Various stud-
ies (Bandini et al. 2009; Akhbari and Grigg 2015; Farhadi et al. 2016; Mirzaei and 
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Zibaei 2021) show that ABMs are an effective and efficient tool for simulating 
behavioral and social complexities in water resources management in the water-
sheds. In ABMs, agents are recognized as independent entities that have specific 
knowledge and information (Parker et al. 2003). These agents can interact with each 
other and with a common environment. Agents are goal-oriented and can act on the 
environment and respond to political and market conditions (Wooldridge and 
Jennings 1995). Agents are identified by their intentions, rules of behavior, and 
decision complexities. An agent can be a software, model, individual, organization, 
group, etc. (Bonabeau 2002). In social processes, people or groups of people are 
known as agents, and agents’ relationships represent the social relationships between 
them (Gilbert and Troitzsch 1999). Hence, in an ABM, the people and the social 
relations between them are modeled to achieve a specific goal (Macal and North 
2006). Key factors in developing an ABM include defining the agents, accurately 
determining the different behaviors of the agents, defining the environment in which 
the agents are located, determining the relationship between the agents, developing 
a theory for the agents’ reciprocal behavior together with the environment, develop-
ing an agent-related data set, and validating the behavioral model of the agents 
(Macal and North 2006).

Based on the literature analysis, it can be mentioned that integrated watershed 
management and planning has four dimensions: socioeconomic simulation, hydro-
logical simulation, environmental simulation, and behavioral simulation (Fig. 22.1). 
It also introduces the most appropriate tools and solutions for simulating each of the 
components of integrated watershed management and planning.

Fig. 22.1 Proposed framework for integrated management and planning of watersheds under cli-
mate change
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 Summary and Concluding Remarks

The main purpose of this chapter was to provide a conceptual framework in the field 
of tools and solutions for watershed management and planning in order to optimally 
allocate water resources between different sectors. To achieve this goal, the research 
literature was analyzed, and a conceptual framework was developed. The results 
demonstrated that most studies have considered the two main objectives of improv-
ing the economic efficiency of water consumption and environmental sustainability. 
In balance, the studies were divided into three general categories. The first group 
were studies that tried to help improve the economic efficiency of water consump-
tion by simulating the hydrological components of the watershed. Most studies in 
this category have analyzed water resources management with respect to 
hydrological- economic modeling. In this category, different tools have been used 
for hydrological-economic modeling. The most important of these tools are simula-
tion using mathematical functions in the form of mathematical programming soft-
ware such as GAMS and WEAP software. The second group consisted of studies 
that estimated environmental benefits and simulated environmental factors affecting 
watershed management. The most widely used tools in this group of study were the 
use of mathematical relations to formulate the functions of environmental benefits 
and air pollutants resulting from various activities and the use of SWAT to simulate 
water pollution factors. The third category included studies that consider the users’ 
behavior as an important component of watershed management. These studies have 
used tools such as game theory and ABM to simulate the behavioral complexities of 
the users. Finally, by summarizing the studies, a conceptual framework for sustain-
able watershed management tools and solutions was presented. Future researchers 
can use this model to study the impacts of climate change and water resources man-
agement policies in the watersheds. Given the comprehensiveness and operational-
ity of this framework, it is suggested that it be used in integrated case studies around 
the world for integrated watershed management.

References

Abdelkader A, Elshorbagy A (2021) ACPAR: a framework for linking national water and food 
security management with global conditions. Adv Water Res 147:103809

Abdulbaki D, Al-Hindi M, Yassine A, Najm MA (2017) An optimisation model for the allocation 
of water resources. J Clean Prod 164:994–1006

Adgolign TB, Rao GS, Abbulu Y (2016) WEAP modeling of surface water resources allocation in 
Didessa Sub-Basin, West Ethiopia. Sustain Water Resour Manag 2(1):55–70

Akhbari M, Grigg NS (2013) A framework for an agent-based model to manage water resources 
conflicts. Water Resour Manag 27(11):4039–4052

Akhbari M, Grigg NS (2015) Managing water resources conflicts, modelling behavior in a deci-
sion tool. Water Resour Manag 29(14):5201–5216

Akter S, Grafton RQ, Merritt WS (2014) Integrated hydro-ecological and economic modeling of 
environmental flows: Macquarie marshes, Australia. Agric Water Manag 145:98–109

22 Tools and Solutions for Watershed Management and Planning Under Climate Change



538

Alloisio I (2015) The water-energy-food nexus. Equilibrium 19(2):299–310
Anvari S, Mousavi SJ, Morid S (2014) Sampling/stochastic dynamic programming for optimal 

operation of multi-purpose reservoirs using artificial neural network-based ensemble stream-
flow predictions. J Hydroinf 16(4):907–921

Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global 
scale. J Hydrol 486:351–364

Arnell NW, van Vuuren DP, Isaac M (2011) The implications of climate policy for the impacts of 
climate change on global water resources. Glob Environ Chang 21(2):592–603

Bandini S, Manzoni S, Vizzari G (2009) Agent-based modeling and simulation: an informatics 
perspective. J Artif Soc Soc Simul 12(4):4

Bao C, Lu Y, Shang J (2004) Framework and operational procedure for implementing strategic 
environmental assessment in China. Environ Impact Assess Rev 24(1):27–46

Barthel R, Janisch S, Nickel D, Trifkovic A, Horhan T (2010) Using the multi actor-approach in 
Glowa-Danube to simulate decisions for the water supply sector under conditions of global 
climate change. Water Resou Manag 24:239–275

Bateman IJ, Langford IH (1997) Non-users’ willingness to pay for a National Park: an application 
and critique of the contingent valuation method. Reg Stud 31(6):571–582

Bekchanov M, Ringler C, Bhaduri A, Jeuland M (2015) How would the Rogun Dam affect water 
and energy scarcity in Central Asia. Water Int 40:856–876

Bhaduri A, Barbier EB (2008) International water transfer and sharing: the case of the Ganges 
River. Environ Dev Econ 13(1):29–51

Bhaduri A, Liebe J (2002) Cooperation in trans boundary water sharing with issue linkage: game- 
theoretical case study in the Volta Basin. J Water Resour Plann Manag 139(3):235–245

Bhave AG, Mishra A, Raghuwanshi NS (2014) A combined bottom-up and top-down approach for 
assessment of climate change adaptation options. J Hydrol 518:150–161

Bino G, Sisson SA, Kingsford RT, Thomas RF, Bowen S (2015) Developing state and transition 
models of floodplain vegetation dynamics as a tool for conservation decision-making: a case 
study of the Macquarie Marshes Ramsar wetland. J Appl Ecol 52(3):654–664

Bizikova L, Roy D, Swanson D (2013) The water-energy-food security nexus: towards a practical 
planning and decision-support framework for landscape investment and risk management. The 
International Institute for Sustainable Development, Winnipeg

Blanco-Gutierrez I, Varela-Ortega C, Purkey DR (2013) Integrated assessment of policy interven-
tions for promoting sustainable irrigation in semi-arid environments: a hydro-economic model-
ing approach. J Environ Manag 128:144–160

Bonabeau E (2002) Agent-based modelling, methods and techniques for simulating human sys-
tems. Proc Natl Acad Sci 99(3):7280–7287

Booker JF (1995) Hydrological and economic impacts of drought under alternative policy 
responses. J Am Water Resour Assoc 31(5):889–906

Braden JB (2000) Value of valuation: introduction. J Water Resour Plan Manag 126(6):336–338
Brinegar HR, Ward FA (2009) Basin impacts of irrigation water conservation policy. Ecol Econ 

69(2):414–426
Cai X (2008) Implementation of holistic water resources-economic optimization models for river 

basin management – reflective experiences. Environ Model Softw 23:2–18
Cai X, McKinney DC, Lasdon LS (2003) Integrated hydrologic-agronomic- economic model for 

river basin management. ASCE J Water Resour Plann Manag 129(1):235–245
Carraro C, Marchiori C, Sgobbi A (2007) Negotiating on water: insights from non-cooperative 

bargaining theory. Environ Dev Econ 12(2):329–349
Centner T, Houston J, Keeler A, Fuchs C (1999) The adoption of best management practices to 

reduce agricultural water contamination. Limnologica-Ecol Manag Inland Waters 29:366–373
Cetinkaya CP, Gunacti MC (2018) Multi-criteria analysis of water allocation scenarios in a water 

scarce basin. Water Resour Manag 32(8):2867–2884
Chang CC (2003) The potential impact of climate change on Taiwan s agriculture. Agric Econ 

27:51–64

A. Mirzaei et al.



539

Corrales J, Melodie G, Bhat MG, Mirrales-Wilhelm F (2014) Modeling a phosphorous credit trad-
ing program in an agricultural watershed. J Environ Manag 14:162–172

D’Odorico P, Carr J, Dalin C, Dell’Angelo J, Konar M, Laio F, Tuninetti M (2019) Global virtual 
water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. 
Environ Res Lett 14(5):053001

Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global 
wetland area. Mar Freshw Res 65:936–941

Davijani MH, Banihabib ME, Anvar AN, Hashemi SR (2016) Optimization model for the alloca-
tion of water resources based on the maximization of employment in the agriculture and indus-
try sectors. J Hydrol 533(1):430–438

Demertzi ΚА, Papamichail DМ, Georgiou PЕ, Karamouzis DN, Aschonitis VG (2014) Assessment 
of rural and highly seasonal tourist activity plus drought effects on reservoir operation in a 
semi-arid region of Greece using the WEAP model. Water Int 39(1):23–34

Di Luca A, Pitman AJ, de Elía R (2020) Decomposing temperature extremes errors in CMIP5 and 
CMIP6 models. Geophys Res Lett 47(14):e2020GL088031

Dias V, Belcher K (2015) Value and provision of ecosystem services from prairie wetlands: a 
choice experiment approach. Ecosyst Serv 15:35–44

Diaz GE, Brown TC (1997) Aquarius: an object-oriented model for efficient allocation of water in 
river basins. In: Warwick JJ (ed) Symposium water resources education, training, and practice: 
opportunities for the next century, June 29–July 3, 1997, Keystone, CO, pp 835–844

Döll P (2002) Impact of climate change and variability on irrigation requirements: a global per-
spective. Clim Chang 54(3):269–293

Dowd BM, Press D, Los Huertos M (2008) Agricultural nonpoint source water pollution policy: 
the case of California’s Central Coast. Agric Ecosyst Environ 128:151–161

Downing TE (2012) Views of the frontiers in climate change adaptation economics. WIREs Clim 
Change 3:161–170

Draper AJ, Munevar A, Arora SK, Reyes E, Parker NL, Chung FI, Peterson LE (2004) CalSim: 
generalized model for reservoir system analysis. J Water Resour Plan Manag 130(6):480–489

Edson D (2004) Executive Director, National Association of Resource Districts. Brian Dowd, per-
sonal communication, September 25, 2004

Eisner MA (2004) Corporate environmentalism, regulatory reform, and industry self-regulation: 
toward genuine regulatory reinvention in the United States. Governance 17(2):145–167

El-Gafy I (2017) Water–food–energy nexus index: analysis of water-energy-food nexus of crop’s 
production system applying the indicators approach. Appl Water Sci 7:2857–2868

Eliasson J (2015) The rising pressure of global water shortages. Nature 517(7532):6
Erfani T, Binions O, Harou J (2015) Protecting environmental flows through enhanced water 

licensing and water markets. Hydrol Earth Syst Sci 19:675–689
Esteve P, Varela-Ortega C, Gutierrez I, Downing TE (2015) A hydro-economic model for the assess-

ment of climate change impacts and adaptation in irrigated agriculture. Ecol Econ 120:49–58
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of 

the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organi-
zation. Geosci Model Dev 9(5):1937–1958

FAO (2011) The state of the World’s land and water resources for food and agriculture. Managing 
systems at risk. Earthscan, Abingdon

Farhadi S, Nikoo MR, Rakhshandehroo GR, Akhbari M, Alizadeh MR (2016) An agent-based- 
Nash modeling framework for sustainable groundwater management: a case study. Agric Water 
Manag 177:348–358

Fiorillo F, Esposito L, Guadagno FM (2007) Analyses and forecast of water resources in an ultra- 
centenarian spring discharge series from Serino (Southern Italy). J Hydrol 336(1–2):125–138

Forni LG, Medellin-Azuara J, Tansey M, Young C, Purkey D, Howitt R (2016) Integrating complex 
economic and hydrologic planning models: an application for drought under climate change 
analysis. Water Resour Econ 16:15–27

22 Tools and Solutions for Watershed Management and Planning Under Climate Change



540

Foster T, Brozović N (2018) Simulating crop-water production functions using crop growth mod-
els to support water policy assessments. Ecol Econ 152:9–21

Freeman AM (2003) The measurement of environmental and resource values: theory and methods, 
2nd edn. Resources for the Future Press, Washington, DC, 496 pp

Gaiser T, Printz A, Schwarz von Raumer HG, G€otzinger J, Dukhovny VA, Barthel R, Sorokin A, 
Tuchin A, Kiourtsidis C, Ganoulis I, Stahr K (2008) Development of a regional model for inte-
grated management of water resources at the basin scale. Phys Chem Earth 33(1–2):175–182

Galán JM, López-Paredes A, del Olmo R (2009) An agent-based model for domestic water man-
agement in Valladolid metropolitan area. Water Resour Res 45(5):1–17

Gao J, Christensen P, Kørnøv L (2017) Indicators’ role: how do they influence strategic envi-
ronmental assessment and sustainable planning – the Chinese experience. Sci Total Environ 
592:60–67

Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: histori-
cal development, applications, and future research directions. Trans ASABE 50(4):1211–1250

Georgakakos KP (2012) Water supply and demand sensitivities of linear programming solutions to 
a water allocation problem. Appl Math 3(10):1285–1297

George B, Malano H, Davidson B, Hellegers P, Bharati L, Massuel S (2011) An integrated hydro- 
economic modelling framework to evaluate water allocation strategies I: model development. 
Agric Water Manag 98(5):733–746

Gilbert N, Troitzsch KG (1999) Simulation for the social scientist. Open University Press
Gilvear DJ, Spray CJ, Casas-Mulet R (2013) River rehabilitation for the delivery of multiple eco-

system services at the river network scale. J Environ Manag 126:30–43
Girard C, Rinaudo J-D, Pulido-Velazquez M, Caballero Y (2015) An interdisciplinary modelling 

framework for selecting adaptation measures at the river basin scale in a global change sce-
nario. Environ Model Softw 69:42–54

Girard C, Rinaudo J, Pulido-Velazquez M (2016) Sharing the cost of a river basin adaptation 
portfolios to climate change: insights from social justice and cooperative game theory. Water 
Resour Res 52(10):7945–7962

Gisser M, Mercado A (1972) Integration of the agricultural demand function for water and the 
hydrologic model of the Pecos basin. Water Resour Res 8(6):1373–1384

Gisser M, Mercado A (1973) Economic aspects of ground water resources and replacement flows 
in semiarid agricultural areas. Am J Agric Econ 55(3):461–466

Gleick HP, Cooley H, Cohen M, Morikawa M, Morrison J, Palaniappan M (2009) The world’s 
water 2008–2009: the biennial report on freshwater resources. Island Press, Washington, DC

Gohar AA, Ward FA (2010) Gains from expanded irrigation water trading in Egypt: an integrated 
basin approach. Ecol Econ 69:2535–2548

Gohar AA, Ward FA, Amer SA (2013) Economic performance of water storage capacity expansion 
for food security. J Hydrol 484:16–25

Gohar AA, Amer SA, Ward FA (2015) Irrigation infrastructure and water appropriation rules for 
food security. J Hydrol 520:85–100

González-Bravo R, Sauceda-Valenzuela M, Mahlknecht J, Rubio-Castro E, Ponce-Ortega JM 
(2018) Optimization of water grid at macroscopic level analyzing water-energy-food nexus. 
ACS Sustain Chem Eng 6:12140–12152

Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water 
Resour Res 51(5):3031–3051

Griffin RC (1998) The fundamental principles of cost-benefit analysis. Water Resour Res 
34(8):2063–2071

Griffin RC (2006) Water resource economics: the analysis of scarcity, policies and project. MIT 
Press, London

Groves DG, Yates D, Tebaldi C (2008) Developing and applying uncertain global climate change 
projections for regional water management planning. Water Resour Res 44:W12413

Gurluk S, Ward FA (2009) Integrated basin management: water and food policy options for Turkey. 
Ecol Econ 68:2666–2678

A. Mirzaei et al.



541

Han Y, Huang YF, Wang GQ, Maqsood I (2011) A multi-objective linear programming model 
with interval parameters for water resources allocation in Dalian city. Water Resou Manag 
25:449–463

Hanak E, Lund JR (2012) Adapting California's water management to climate change. Clim Chang 
111(1):17–44

Harou JJ, Pulido-Velazquez M, Rosenberg D, Mdellin-Azuara J, Howitt R (2009) Hydro-economic 
models: concepts, design, applications and future prospects. J Hydrol 375:627–643

Hassan S (2017) Environmental attitudes and preference for wetland conservation in Malaysia. J 
Nat Conserv 37:133–145

Hassan-Esfahani L, Torres-Rua A, Mckee M (2015) Assessment of optimal irrigation water alloca-
tion for pressurized irrigation system using water balance approach, learning machines, and 
remotely sensed data. Agric Water Manag 153:42–50

He L, Du P, Chen YZ, Lu HW, Cheng X, Chang B, Wang Z (2017) Advances in microbial fuel cells 
for wastewater treatment. Renew Sust Energ Rev 71:388–403

Hoff H (2011) Understanding the nexus. Background paper for the Bonn 2011 conference: the 
water, energy and food security nexus. Stockholm Environment Institute, Stockholm

Hope C (2005) Integrated assessment models. In: Helm D (ed) Climate change policy. Oxford 
University Press, Oxford, pp 77–98

Horan RD, Shortle JS, Abler DG (1999) Green payments for nonpoint pollution control. Am Agric 
Econ Assoc 81(5):1210–1215

Horan RD, Shortle JS, Abler DG (2002) Point-nonpoint nutrient trading in the Susquehanna River 
basin. Water Resour Res 38(5). https://doi.org/10.1029/2001WR000853

Hu Z, Wei C, Yao L, Li C, Zeng Z (2016) Integrating equality and stability to resolve water alloca-
tion issues with a multi-objective bi-level programming model. J Water Resour Plann Manag 
142(7):1–12

Huang J, Zhang Y, Arhonditsis GB, Gao J, Chen Q, Wu N et al (2019) How successful are the 
restoration efforts of China’s lakes and reservoirs? Environ Int 123:96–103

Huber-Lee A, Purkey DR, Sieber J, Swartz C, Young C (2004) Sustainable water supply planning 
for three US cities: contrasts in climates and stakeholder issues. In: Paper presented at the 
Stockholm water symposium, August 2004. Stockholm, pp 16–20

Hum NNMF, Abdul Talib SA (2016) Modeling water supply and demand for effective water man-
agement allocation in Selangor. Jurnal Teknologi 78(5–5). https://doi.org/10.11113/jt.v78.8569

IPCC (2007) Impacts, adaptation, and vulnerability. Contribution of working group II to the third 
assessment report. Cambridge University Press, Cambridge

Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS 
(2014) Chapter 3: Freshwater resources. In: Field CB, Barros VR, Dokken DJ, Mach KJ, 
Mastrandrea MD, Bilir TE, Chatterjee M (eds) Climate change 2014: impacts, adaptation, and 
vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth 
assessment report of the intergovernmental panel on climate change. Cambridge University 
Press, Cambridge/New York, pp 229–269

Johansson RC, Tsur Y, Roe TL, Doukkali R, Dinar A (2002) Pricing irrigation water: a review of 
theory and practice. Water Policy 4(2):173–199

Johnston RJ, Boyle KJ, Adamowicz W, Bennett J (2017) Contemporary guidance for stated prefer-
ence studies. J Assoc Environ Resour Econ 4(2):319–405

Joyce BA, Mehta VK, Purkey DR, Dale LL, Hanemann M (2011) Modifying agricultural water 
management to adapt to climate change in California’s central valley. Climate Change 
109:299–316

Just RE, Hueth DL, Schmitz A (2005) The welfare economics of public policy: a practical approach 
to project and policy evaluation. Edward Elgar Publishing

Kahil MT, Dinar A, Albiac J (2015) Modelling water scarcity and droughts for policy adaptation 
to climate change in arid and semiarid regions. J Hydrol 522:95–109

Kahil MT, Ward F, Albiac J, Eggleston J, Sanz D (2016) Hydro-economic modeling with aquifer–
river interactions to guide sustainable basin management. J Hydrol 539:510–524

22 Tools and Solutions for Watershed Management and Planning Under Climate Change

https://doi.org/10.1029/2001WR000853
https://doi.org/10.11113/jt.v78.8569


542

Kemfert C (2009) Climate protection requirements – the economic impact of climate change. In: 
Handbook utility management. Springer

Khalil A, Rittima A, Phankamolsil Y (2018) The projected changes in water status of the Mae 
Klong Basin, Thailand, using WEAP model. Paddy Water Environ 16(3):439–455

Kharrazi A, Akiyama T, Yu Y, Li J (2016a) Evaluating the evolution of the Heihe River basin using 
the ecological network analysis: efficiency, resilience, and implications for water resource 
management policy. Sci Total Environ 572:688–696

Kharrazi A, Fath BD, Katzmair H (2016b) Advancing empirical approaches to the concept of 
resilience: a critical examination of paparchy, ecological information, and statistical evidence. 
Sustainability 8(9):935

Kim YH, Min SK, Zhang X, Sillmann J, Sandstad M (2020) Evaluation of the CMIP6 multi-model 
ensemble for climate extreme indices. Weather Clim Extremes 29:100269

Kock BE (2008) Agent-based models of socio-hydrological systems for exploring the institutional 
dynamics of water resources conflict. Master’s thesis, Massachusetts Institute of Technology

Kojiri T, Hori T, Nakatsuka J, Chong T (2008) World continental modeling for water resources 
using system dynamics. Phys Chem Earth Parts A/B/C 33(5):304–311

Koutiva I, Makropoulos C (2016) Modelling domestic water demand, an agent based approach. 
Environ Model Softw 79:35–54

Kumar N, Singh SK, Singh VG, Dzwairo B (2018) Investigation of impacts of land use/land cover 
change on water availability of Tons River Basin, Madhya Pradesh, India. Model Earth Syst 
Environ 4(1):295–310

Kuwayama Y, Brozović N (2013) The regulation of a spatially heterogeneous externality: tradable 
groundwater permits to protect streams. J Environ Econ Manag 66:364–382

Lamers LP, Vile MA, Grootjans AP, Acreman MC, van Diggelen R, Evans MG et  al (2015) 
Ecological restoration of rich fens in Europe and North America: from trial and error to an 
evidence-based approach. Biol Rev 90(1):182–203

Larson DM, Helfand GE, House BW (1996) Second-best tax policies to reduce nonpoint source 
pollution. Am J Agric Econ 78(4):1108–1117

Lefkoff LJ, Gorelick SM (1990) Benefits of an irrigation water rental market in a saline stream- 
aquifer system. Water Resour Res 26(7):1371–1381

Lepistö A, Kenttämies K, Rekolainen S (2001) Modeling combined effects of forestry, agriculture 
and deposition on nitrogen export in a Northern River basin in Finland. Ambio 30:338–348

Lévite H, Sally H, Cour J (2003) Testing water demand management scenarios in a water- 
stressed basin in South Africa: application of the WEAP model. Phys Chem Earth Parts A/B/C 
28(20–27):779–786

Li X, Zhao Y, Shi C, Sha J, Wang ZL, Wang Y (2015) Application of water evaluation and planning 
(WEAP) model for water resources management strategy estimation in coastal Binhai New 
Area, China. Ocean Coast Manag 106:97–109

Li M, Fu Q, Singh VP, Ma M, Liu X (2017) An intuitionistic fuzzy multi-objective non-linear pro-
gramming model for sustainable irrigation water allocation under the combination of dry and 
wet conditions. J Hydrol 555:80–94

Li M, Fu Q, Singh VP, Ji Y, Liu D, Zhang C, Li T (2019) An optimal modelling approach for manag-
ing agricultural water-energy-food nexus under uncertainty. Sci Total Environ 651:1416–1434

Lichtenberg E (1992) Alternative approaches to pesticide regulation. Northeastern J Agric Resour 
Econ 21:83–92

Liu R, Zhang P, Wang X, Chen Y, Shen Z (2013) Assessment of effects of best management 
practices on agricultural non-point source pollution in Xiangxi River watershed. Agric Water 
Manag 117:9–18

Liu R, Xu F, Zhang P, Yu W, Men C (2015) Identifying non-point source critical source areas based 
on multi-factors at a basin scale with SWAT. J Hydrol 533:379–388

Loomis J, Kent P, Strange L, Fausch K, Covich A (2000) Measuring the total economic value of 
restoring ecosystem services in an impaired river basin: results from a contingent valuation 
survey. Ecol Econ 33:103–117

A. Mirzaei et al.



543

Lu HW, Li J, Ren LX, Chen YZ (2018) Optimal groundwater security management policies by con-
trol of inexact health risks under dual uncertainty in slope factors. Chemosphere 198:161–173

Lund JR, Cai X, Characklis GW (2006) Economic engineering of environmental and water 
resource systems. J Water Resour Plan Manag 132(6):399–402

Macal CM, North MJ (2006) Tutorial on agent-based modeling and simulation part 2, how to 
model with agents. Winter Simulation Conference, pp 73–83

MacMillan D, Hanley N, Lienhoop N (2006) Contingent valuation: environmental polling or pref-
erence engine. Ecol Econ 60:299–307

Maillard P, Santos NA (2008) A spatial-statistical approach for modeling the effect of non-point 
source pollution on different water quality parameters in the Velhas river watershed-Brazil. J 
Environ Manag 86:158–170

Malagó A, Bouraoui F, Pastori M, Gelati E (2019) Modelling nitrate reduction strategies from dif-
fuse sources in the Po River basin. Water 11(5):1030

Maliqi E, Singh SK (2019) Quantitative estimation of soil erosion using open-access earth obser-
vation data sets and erosion potential model. Water Conserv Sci Eng 4(4):187–200

Marques GF, Lund JR, Howitt RE (2010) Modeling conjunctive use operations and farm decisions 
with two-stage stochastic quadratic programming. J Water Resour Plan Manag 136(3):386–394

McKinney D, Cai X, Rosegrant MW, Ringler C, Scott CA (1999) Modeling water resources man-
agement at the basin level: review and future directions, SWIM Paper 6. International Water 
Management Institute, Colombo

Meaurio M, Zabaleta A, Uriarte JA, Srinivasan R, Antigüedad I (2015) Evaluation of SWAT mod-
els' performance to simulate streamflow spatial origin. The case of a small forested watershed. 
J Hydrol 525:326–334

Menell P (1990) The limitation of legal institutions for addressing environmental risk. J Econ 
Perspect 5:93–114

Meng B, Liu JL, Bao K, Sun B (2019) Water fluxes of Nenjiang River Basin with ecological 
network analysis: conflict and coordination between agricultural development and wetland res-
toration. J Clean Prod 213:933–943

Mirzaei A, Zibaei M (2021) Water conflict management between agriculture and wetland under 
climate change: application of economic-hydrological-Behavioral modelling. Water Resour 
Manag 35(1):1–21

Mishra AK, Kumar B, Dutta J (2016) Prediction of hydraulic conductivity of soil bentonite mix-
ture using Hybrid-ANN approach. J Environ Inf 27(2):98–105

Mishra BK, Regmi RK, Masago Y, Fukushi K, Kumar P, Saraswat C (2017) Assessment of Bagmati 
river pollution in Kathmandu Valley: scenario-based modeling and analysis for sustainable 
urban development. Sustain Water Qual Ecol 9:67–77

Moharir K, Pande C, Singh S, Choudhari P, Rawat K, Jeyakumar L (2020) Spatial interpolation 
approach-based appraisal of groundwater quality of arid regions in. Aqua J (IWA Publication) 
68(6):431–447. Impact Factor: 1.05

Molden D, Oweis T, Steduto P, Bindraban P, Hanjra MA, Kijne J (2009) Improving agricultural 
water productivity, between optimism and caution. Agric Water Manag 97(4):528–535

Moriondo M, Bindi M, Zbigniew W, Kundzewicz Szwed M, Chorynski A, Matczak P, Radziejewski 
M, McEvoy D, Wreford A (2010) Impact and adaptation opportunities for European agriculture 
in response to climatic change and variability. Mitig Adapt Strat Glob Change 15(7):657–679

Mosavi SH (2016) Energy price reform and food markets: the case of bread supply chain in Iran. 
Agric Econ 47(2):169–179

Mosavi SH, Esmaeili A (2012) Self-sufficiency versus free trade: the case of rice in Iran. J Int Food 
Agribus Mark 24(1):76–90

Mosleh Z, Salehi MH, Fasakhodi AA, Jafari A, Mehnatkesh A, Borujeni IE (2017) Sustainable 
allocation of agricultural lands and water resources using suitability analysis and mathematical 
multi-objective programming. Geoderma 303:52–59

22 Tools and Solutions for Watershed Management and Planning Under Climate Change



544

Mouri G, Takizawa S, Oki T (2011) Spatial and temporal variation in nutrient parameters in stream 
water in a rural-urban catchment, Shikoku, Japan: effects of land cover and human impact. J 
Environ Manag 92:1837–1848

Mulligan KB, Brown C, Yang YCE, Ahlfeld DP (2014) Assessing groundwater policy with cou-
pled economic-groundwater hydrologic modeling. Water Resour Res 50(3):2257–2275

Naghavi S, Ebrahimi-Khusfi Z, Mirzaei A (2021) Decoupling pollution-agricultural growth and 
predicting climate change impacts on decoupling index using Bayesian network in different 
climatic regions. Environ Sci Pollut Res 29:1–18

Nature Climate Change (2019) The CMIP6 landscape. Nat Clim Change 9:727–727
Ndebele T (2009) Economic non-market valuation techniques: Theory and application to ecosys-

tems and ecosystem services. Ph.D. thesis, Massey University, Palmerston North, New Zealand
Ndebele T, Forgie V (2017) Estimating the economic benefits of a wetland restoration program in 

New Zealand: a contingent valuation approach. Econ Anal Policy 55:75–89
Newlin BD, Jenkins MW, Lund JR, Howitt RE (2002) Southern California water markets: poten-

tial and limitations. J Water Resour Plann Manag – ASCE 128(1):21–32
Nhamo L, Mabhaudhi T, Mpandeli S, Dickens C, Nhemachena C, Senzanje A, Naidoo D, Liphadzi 

S, Modi AT (2020) An integrative analytical model for the water-energy-food nexus: South 
Africa case study. Environ Sci Pol 109:15–24

Nie S, Fu S, Cao W, Jia X (2020) Comparison of monthly air and land surface temperature 
extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate 
model. Theor Appl Climatol 140(1):487–502

Nikolic VV, Simonovic SP, Milicevic DB (2013) Analytical support for integrated water resources 
management, a new method for addressing spatial and temporal variability. Water Resou 
Manag 27:401–417

Nikoo MR, Kerachian R, Karimi A, Azadmia AA (2013) Optimal water and waste-load alloca-
tions in rivers using a fuzzy transformation technique: a case study. Environ Monit Assess 
185(3):2483–2502

Nikouei A, Ward FA (2013) Pricing irrigation water for drought adaptation in Iran. J Hydrol 
503:29–46

Nikouei A, Zibaei M, Ward FA (2012) Incentives to adopt irrigation water saving measures for 
wetlands preservation: an integrated basin scale analysis. J Hydrol 464–465:216–232

Noel JE, Howitt RE (1982) Conjunctive multi-basin management-an optimal control approach. 
Water Resour Res 18(4):753–763

Noel JE, Gardner BD, Moore CV (1980) Optimal regional conjunctive water management. Am J 
Agric Econ 62(3):489–498

Obropta CC, Niazi M, Kardos JS (2008) Application of an environmental decision support sys-
tem to a water quality trading program affected by surface water diversions. Environ Manag 
42:946–956

OECD (ed) (2006) Water and agriculture sustainability, markets and policies. OECD Publishing
Ongley ED, Xiaolan Z, Tao Y (2010) Current status of agricultural and rural non-point source pol-

lution assessment in China. Environ Pollut 158(5):1159–1168
Orubu CO (2006) Water resources, environment and sustainable development in Nigeria. J Hum 

Ecol 19(3):169–181
Pande CB, Moharir K (2015) GIS based quantitative morphometric analysis and its consequences: 

a case study from Shanur River Basin, Maharashtra India. Appl Water Sci, Springer Journal, 
ISSN 2190-5487, Volume-7, Number-2 Published online 23 June 2015

Pande CB, Moharir KN (2021) Estimation of crop and forest biomass resources in semi – arid 
region using satellite data and GIS. J Saudi Soc Agric Sci. Elsevier. 2021 Source Normalized 
Impact per Paper (SNIP): 3.560. https://doi.org/10.1016/j.jssas.2021.03.0021658- 077X/_2021

Pande CB, Moharir KN, Singh SK, Varade AM (2019) An integrated approach to delineate the 
groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central 
India. Environ Dev Sustain, Springer Journal, Impact Factor: 1.67. https://doi.org/10.1007/
s10668- 019- 00409- 1

A. Mirzaei et al.

https://doi.org/10.1016/j.jssas.2021.03.0021658-077X/_2021
https://doi.org/10.1007/s10668-019-00409-1
https://doi.org/10.1007/s10668-019-00409-1


545

Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent sys-
tems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 
93(2):314–337

Parsapour-Moghaddam P, Abed-Elmdoust A, Kerachian R (2015) A heuristic evolutionary game 
theoretic methodology for conjunctive use of surface and groundwater resources. Water Resour 
Manag 29(11):3905–3918

Pastor AV, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, Ludwig F (2019) The global 
nexus of food-trade-water sustaining environmental flows by 2050. Nat Sustain 2(6):499–507

Peck DE, Mcleod DM, Hewlett JP, Lovvorn JR (2004) Irrigation dependent wetlands versus 
instream flow enhancement, economics of water transfer from agriculture to wildlife uses. 
Environ Manag 34(6):842–855

Pedroso C, Freitas H, Domingos T (2007) Testing for the survey mode effect on contingent valua-
tion data quality: a case study of web based versus in-person interview. Ecol Econ 62:388–398

Pueyo-Ros J, Garcia X, Ribas A, Fraguell RM (2018) Ecological restoration of a coastal wetland 
at a mass tourism destination. Will the recreational value increase or decrease? Ecol Econ 
148:1–14

Pulido-Velazquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of 
surface water and groundwater at the basin scale. J Water Resour Plan Manag 132(6):454–467

Purkey DR, Joyce B, Vicuna S, Hanemann MW, Dale LL, Yates D, Dracup JA (2008) Robust 
analysis of future climate change impacts on water for agriculture and other sectors: a case 
study in the Sacramento Valley. Clim Chang 87(S1):109–122

Ramsar Convention on Wetlands, FAO, International Water Management Institute (2014) Wetlands 
and agriculture: partners for growth. Accessed 19 Jan 2018

Raskin P, Hansen E, Zhu Z, Stavisky D (1992) Simulation of water supply and demand in the Aral 
Sea region. Water Int 17(2):55–67

Rawat KS, Singh SK (2017) Estimation of surface runoff from semi-arid ungauged agricultural 
watershed using SCS-CN method and earth observation data sets. Water Conserv Sci Eng 
1(4):233–247

Rawat KS, Singh SK, Szilard S (2021) Comparative evaluation of models to estimate direct runoff 
volume from an agricultural watershed. Geol Ecol Landsc 5(2):94–108

Rogers P, Smith DV (1970) The integrated use of ground and surface water in irrigation project 
planning. Am J Agric Econ 52(1):13–24. https://doi.org/10.2307/1238158

Ringler C, Cai X (2006) Valuing fisheries and wetlands using integrated economic–hydrologic 
modeling Mekong River Basin. J Water Resour Plan Manag 132(6):480–487

Ringler C, Huy NV (2004) Water allocation policies for the Dong Nai River Basin in Vietnam: an 
integrated perspective. International Food Policy Research Institute

Rochdane S, Reichert B, Messouli M, Babqiqi A, Khebiza MY (2012) Climate change impacts on 
water supply and demand in Rheraya watershed (Morocco), with potential adaptation strate-
gies. Water 4:28–44

Rong Q, Cai Y, Chen B, Yue W, Yin X, Tan Q (2017) An enhanced export coefficient-based opti-
mization model for supporting agricultural nonpoint source pollution mitigation under uncer-
tainty. Sci Total Environ 580:1351–1362

Rosegrant MW, Ringler C, McKinney DC, Cai X, Keller A, Donoso G (2000) Integrated economic- 
hydrologic water modeling at the basin scale: the Maipo River basin. Agric Econ 24(1):33–46

Russi D, ten Brink P, Farmer A, Badura T, Coates D, Förster J et al (2013) The economics of eco-
systems and biodiversity for water and wetlands. IEEP, London/Brussels, p 78

Sadeghi SH, Moghadam ES, Delavar M, Zarghami M (2020) Application of water-energy-food 
nexus approach for designating optimal agricultural management pattern at a watershed scale. 
Agric Water Manag 233:106071

Salamon LM (2002) The new governance and the tools of public action: an introduction. In: 
Salamon LM (ed) The tools of government. Oxford University Press, New York

Salehi S, Chizari M, Sadighi H, Bijani M (2018) Assessment of agricultural groundwater users in 
Iran: a cultural environmental bias. Hydrogeol J 26(1):285–295

22 Tools and Solutions for Watershed Management and Planning Under Climate Change

https://doi.org/10.2307/1238158


546

Satti S, Zaitchik B, Siddiqui S (2015) The question of Sudan: a hydro-economic optimization 
model for the Sudanese Blue Nile. Hydrol Earth Syst Sci 19(5):2275–2293

Shen Z, Liao Q, Hong Q, Gong Y (2012) An overview of research on agricultural non-point source 
pollution modelling in China. Sep Purif Technol 84:104–111

Shen Z, Zhong Y, Huang Q, Chen L (2015) Identifying non-point source priority management 
areas in watersheds with multiple functional zones. Water Res 68C:563–571

Shortle JS, Horan RD (2001) The economics of nonpoint pollution control. J Econ Surv 
15(3):255–289

Shortle JS, Horan RD, Abler DG (1998) Research issues in nonpoint pollution control. Environ 
Resour Econ 11(3–4):571–585

Sieber J, Purkey D (2011) WEAP, water evaluation and planning system. User Guide, Stockholm 
Environment Institute, U.S. Center, Somerville

Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater 
use for irrigation-a global inventory. Hydrol Earth Syst Sci 14:1863–1880

Simonovic SP, Fahmy H (1999) A new modeling approach for water resources policy analysis. 
Water Resour Res 35(1):295–304

Srivastava A, Grotjahn R, Ullrich PA (2020) Evaluation of historical CMIP6 model simulations of 
extreme precipitation over contiguous US regions. Weather Clim Extremes 29:100268

Stacke T, Hagemann S (2012) Development and evaluation of a global dynamical wetland's extent 
scheme. Hydrol Earth Syst Sci 16(8):2915–2933

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter 
SR, Vries WD, Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, 
Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing 
planet. Science 347(6223):1259855

Strauch M, Lima JE, Volk M, Lorz C, Makeschin F (2013) The impact of best management prac-
tices on simulated streamflow and sediment load in a Central Brazilian catchment. J Environ 
Manag 127:S24–S36

Strokal M, Kroeze C, Li L, Luan S, Wang H, Yang S, Zhang Y (2015) Increasing dissolved nitro-
gen and phosphorus export by the Pearl River (Zhujiang): a modeling approach at the sub-basin 
scale to assess effective nutrient management. Biogeochemistry 125:221–242

Su B, Huang J, Mondal SK, Zhai J, Wang Y, Wen S, Gao M, Yanran L, Jiang S, Jiang T, Li A (2021) 
Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos Res 
250:105375

Tamene L, Le QB, Vlek PLG (2014) A landscape planning and management tool for land and 
water resources management, an example application in Northern Ethiopia. Water Resour 
Manag 28(2):407–424

Thomas JS, Durham B (2003) Integrated water resource management: looking at the whole pic-
ture. Desalination 156(1–3):21–28

Tisdell J (2010) Acquiring water for environmental use in Australia: an analysis of policy options. 
Water Resour Manag 24(8):1515–1530

Tol RSJ (2002) New estimates of the damage costs of climate change, part I: benchmark estimates. 
Environ Resour Econ 21:47–73

Trenholm R, Haider W, Lantz V, Knowler D, Haegeli P (2017) Landowner preferences for wet-
lands conservation programs in two Southern Ontario watersheds. J Environ Manag 200:6–21

Turner K (1991) Economics and wetland management. Ambio 20:59–63
Turner RK, Morse-Jones S, Fisher B (2010) Ecosystem valuation. Ann N Y Acad Sci 1185(1):79–101
UN (2015) World population prospects: the 2015 revision. Department of Economic and Social 

Affairs, Population Division, New York. http://esa.un.org/unpd/wpp/
UN (2017) World population prospects: the 2017 revision. Department of Economic and Social 

Affairs, Population Division, New York. http://esa.un.org/unpd/wpp/
United Nations World Water Development Report (2015) Water for a sustainable World, the 2015 

edition of the United Nations World Water Development Report (WWDR 2015, on March 20)

A. Mirzaei et al.

http://esa.un.org/unpd/wpp/
http://esa.un.org/unpd/wpp/


547

United States Department of Agriculture, Farm Service Agency (USDA-FSA) (2007) Conservation 
reserve program monthly survey July 2007. USDA, Washington, DC. Available at: http://www.
fsa.usda.gov/Internet/FSA_File/jul2007.pdf. Accessed 24 Aug 2007

Van Meter KJ, Van Cappellen P, Basu NB (2018) Legacy nitrogen may prevent achievement of 
water quality goals in the Gulf of Mexico. Science 360(6387):427–430

Ventrella D, Charfeddine M, Moriondo M, Rinaldi M, Bindi M (2012) Agronomic adaptation 
strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation 
and nitrogen fertilization. Reg Environ Chang 12:407–419

Villamizar ML, Brown CD (2016) Modelling triazines in the valley of the River Cauca, Colombia, 
using the annualized agricultural non-point source pollution model. Agric Water Manag 
177:24–36

Vinten A, Kuhfuss L, Shortall O, Stockan J, Ibiyemi A, Pohle I et al (2019) Water for all: towards 
an integrated approach to wetland conservation and flood risk reduction in a lowland catchment 
in Scotland. J Environ Manag 246:881–896

Volk M, Hirschfeld J, Dehnhardt A, Schmidt G, Bohn C, Liersch S, Gassman PW (2008) Integrated 
ecological-economic modelling of water pollution abatement management options in the upper 
Ems River basin. Ecol Econ 66(1):66–76. S0921800908000402. https://doi.org/10.1016/j.
ecolecon.2008.01.016

Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn 
SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security 
and river biodiversity. Nature 467:555–561

Wang Q, Jiang R, Li R (2018) Decoupling analysis of economic growth from water use in City: a 
case study of Beijing, Shanghai, and Guangzhou of China. Sustain Cities Soc 41:86–94

Ward FA (2014) Economic impacts on irrigated agriculture of water conservation programs in 
drought. J Hydrol 508:114–127

Ward FA, Lynch TP (1996) Integrated river basin optimization: modeling economic and hydro-
logic interdependence. Water Resour Bull 32(6):1127–1138

Ward FA, Pulido-Velazquez M (2009) Water conservation in irrigation can increase water use. Proc 
Natl Acad Sci 105:18215–18220

Wattage P, Mardle S (2007) Total economic value of wetland conservation in Sri Lanka identifying 
use and non-use values. Wetland Ecol Manag 16(5):359–369

Wetzstein ME, Centner TJ (1992) Regulating agricultural contamination of groundwater through 
strict liability and negligence legislation. J Environ Econ Manag 22:1–11

White PCL, Lovett JC (1999) Public preferences and willingness-to-pay for nature conservation in 
the North York Moors National Park UK. J Environ Manag 55:1–13

Wilhite DA (2005) Drought and water crises science, technology and management issues. CRC 
Press/Taylor & Francis Group

Wooldridge MJ, Jennings NR (1995) Intelligent agents, theory and practice. Knowl Eng Rev 
10(2):115–152

Wu J, Chang I, Bina O, Lam K, Xu H (2011) Strategic environmental assessment implementation 
in China d five-year review and prospects. Environ Impact Assess Rev 31(1):77–84

WWAP (United Nations World Water Assessment Programme/UN-Water) (2018) The United 
Nations world water development report 2018: nature-based solutions for water. UNESCO, Paris

WWAP (World Water Assessment Programme) (2012) The United Nations world water develop-
ment report 4: managing water under uncertainty and risk. UNESCO, Paris

Yaqob EY, Sorial G, Sudian M (2015) Simulation of transboundary wastewater resource man-
agement scenarios in the Wadi Zomer watershed, using a WEAP model. Int J Basic Appl 
Sci 4(1):27

Yaqubi M, Shahraki J, Sabouhi Sabouni M (2016) On dealing with the pollution costs in agricul-
ture: a case study of paddy fields. Sci Total Environ 556:310–318

Yates D, Sieber J, Purkey D, Huber-Lee A (2005) WEAP21 – a demand-, priority-, and preference- 
driven water planning model. Part 1: model characteristics. Water Int 30(4):487–500

22 Tools and Solutions for Watershed Management and Planning Under Climate Change

http://www.fsa.usda.gov/Internet/FSA_File/jul2007.pdf
http://www.fsa.usda.gov/Internet/FSA_File/jul2007.pdf
https://doi.org/10.1016/j.ecolecon.2008.01.016
https://doi.org/10.1016/j.ecolecon.2008.01.016


548

Yuan XC, Wei YM, Pan SY, Jin JL (2014) Urban household water demand in Beijing by 2020, An 
agent-based model. Water Resour Manag 28(10):2967–2980

Zargar PR, Noorzad A (2010) A conceptual model of integrated water resource management for 
national water security. Iran Water Resour Res 5(3):86–88

Zechman EM (2011) Agent-based modeling to simulate contamination events and evaluate threat 
management strategies in water distribution systems. Risk Anal 31:758–772

Zhang L, Yin X, Xu Z, Zhi Y, Yang Z (2016) Crop planting structure optimization for water scarcity 
alleviation in China. J Ind Ecol 20(3):435–445

Zhao J, Cai X, Wang Z (2013) Comparing administered and market-based water allocation sys-
tems through a consistent agent-based modeling framework. J Environ Manag 123:120–130

Zhongmin X, Guodong C, Zhiqiang Z, Zhiyong S, Loomis J (2003) Applying contingent valuation 
in China to measure the total economic value of restoring ecosystem services in Ejina region. 
Ecol Econ 44:345–358

Zhou P, Zhou X, Fan LW (2014) On estimating shadow prices of undesirable outputs with effi-
ciency models: a literature review. Appl Energy 130:799–806

Zhu Z, Wang H, Xu H, Bai H (2010) An alternative approach to institutional analysis in strategic 
environmental assessment in China. JEAPM 12(02):155–183

Zou Y, Duan X, Xue Z, Mingju E, Sun M, Lu X et al (2018) Water use conflict between wetland 
and agriculture. J Environ Manag 224:140–146

A. Mirzaei et al.



549

Chapter 23
Isotopic Proxy to Identify Climate Change 
During the Anthropocene

Manpreet Singh and Prosenjit Ghosh

Abstract Stable isotopes are widely used in past climate reconstruction studies. 
They find a wide range of applications in climatology, and isotopic values in tree 
rings, ice cores, and marine sediments enable us to decipher past climatic conditions 
at the global scale. Since the onset of  the industrial revolution in the eighteenth 
century, the burning of fossil fuels had accentuated the rate of CO2 rise and exacer-
bated global warming. The CO2 uptake by plants is reflected in 13C variations in the 
atmosphere and helps us in understanding how plants responded to past climatic 
conditions. However, climatic reconstruction using tree rings is an invasive sam-
pling technique, and hence this chapter attempts to check whether paper samples 
obtained from trees may also preserve the climate record or not. Therefore, using 
paper samples from 1832 to 1880, an attempt has been made to reconstruct the cli-
mate record using 13C variations in that period. Our results show that paper samples 
may act as a significant archive for climatic reconstruction especially in Anthropocene 
due to the prolific growth of the printing industry in that period. Our results further 
show that there is a net positive trend in 13C values from 1832 to 1880. The paper 
sample is a more cost-effective method and does not require field-intensive sam-
pling for taking samples of tree rings. Therefore, it may act as an important substi-
tute for tree rings for climatic reconstruction in Anthropocene.
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 Introduction

Since the onset of the industrial revolution, the concentration of atmospheric CO2 
has been increasing due to natural and anthropogenic factors. The burgeoning 
impacts that human activities have on the planet led scientists to coin the new term 
“Anthropocene.” The term denotes the transition of  the Holocene epoch to the 
Anthropocene in the nineteenth century, which is characterized by the strong driv-
ing forces led by humankind and their tremendous impact on planet Earth and its 
processes (Steffen et al. 2011; Crutzen and Stoermer 2000; Voir Crutzen 2002). In 
the nineteenth century, the industrial revolution saw the prolific growth of manufac-
turing units and a large-scale industrial boom. This large-scale industrial explosion 
exacerbated the dependency on fossil fuels. Thus, fossil fuel burning caused unprec-
edented and catastrophic damage to the atmospheric fluxes and further disrupted the 
equilibrium between different atmospheric processes. Anthropogenic sources of 
CO2 emissions include deforestation, emissions from industrial units, intensified 
agriculture farming systems, burning of solid waste, dependency on fossil fuels for 
different activities, etc. (Wuebbles and Jain 2001). Land use changes, soil degrada-
tion, human respiration, vehicular emissions, and airplane emissions are some of the 
other anthropogenic sources of CO2, especially in urban metropolitan areas (Koerner 
and Klopatek 2002). However, the burning of fossil fuels like coal, oil, natural gas, 
etc., is the single most important and largest contributor to overall atmospheric CO2 
emissions (Yoro and Daramola 2020). Especially, coal combustion is the largest 
contributor to CO2 emissions among fossil fuel-based power generation plants 
(Yoro and Daramola 2020; Tian and Yang 2016). The natural sources of CO2 emis-
sions include decaying vegetation matter and decomposition of other biomass, vol-
canic emissions, wildfires, soil effluxes, and outgassing from oceans, and even 
ruminant animals (Cloy and Smith 2018; Fischer et  al. 2019; Guo et  al. 2019; 
Lacroix et al. 2020). Many scientists in the second half of the twentieth century 
speculated that the rising atmospheric CO2 values, due primarily to fossil fuel burn-
ing, might lead to an increase in temperature by the end of that century (Manabe and 
Wetherald 1975). The global warming is attributed to many drivers by scientific 
community such as greenhouse gas emissions (CO2, CH4, N2O, etc.), change in 
energy fluxes due to radiative forcing, and ocean circulation (Chen et al. 2014; Piao 
et al. 2011; Toggweiler and Russell 2008; Van Gennip et al. 2017; Zhu et al. 2017; 
Bellouin et al. 2020). However, among these, the role of CO2 emissions in global 
warming got considerable attention from researchers (Chen et al. 2014; Piao et al. 
2011). With the help of modeling, researchers predicted the response of temperature 
to increase in CO2 concentration (Manabe and Wetherald 1975; Snyder et al. 2002). 
With the help of the RegCM2.5 model, Snyder et al. (2002) reported an increase of 
1.4–3.8 °C in temperature over California with a doubling of CO2 concentration. 
However, there are still uncertainties in predicting the response of climate change to 
changing atmospheric CO2 levels (Reilly et al. 2001; Murphy et al. 2004; Stainforth 
et al. 2005). The accurate monitoring of atmospheric CO2 only started in the late 
1950s, and thus the accurate atmospheric CO2 values are only 72  years old. 
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Moreover, the monitoring of atmospheric 13C started only in the 1990s (Yakir 2011). 
Therefore, all the past climatic records have been reconstructed using different 
proxies, that is, tree rings and ice cores. Tree rings are a widely used proxy mecha-
nism for reconstructing past climatic conditions. The dendrochronology studies 
using stable isotope analyses of carbon, hydrogen, and oxygen in tree rings have 
increased manifold since past few decades. Not only living trees but also dead trees 
or tree rings from fossils are being extensively used for climatic reconstruction with 
high annual resolution and precision (Zhang 2015). Although some of the tree ring- 
based chronologies are 1000 years old, they are few. The interaction of temperature 
and CO2 also affects the growth of plants (Morison and Lawlor 1999). The tech-
niques employing stable isotopes helped us tremendously in advancing our knowl-
edge about plant-climate interactions and the drivers that shape these interactions 
(Dawson et al. 2002). Hence, carbon isotopes in tree rings are important indicators 
of climatic fluctuations or the response of plants to temperature variability. After 
atmospheric assimilation of CO2 through stomata in tree leaves, fractionation of 
CO2 takes place by virtue of diffusion, in which CO2 fractionates in favour of 
the  lighter isotope 12C compared to 13C.  In addition, photosynthesis, by virtue of 
producing sugars via carboxylation, also contributes to the fractionation of CO2 in 
favour of 12C over 13C. The net effect of fractionation dictates if the consumption 
rate of CO2 due to photosynthetic uptake of leaves is greater than the replenishment 
rate. If yes, then the 12C reservoir would decline, and hence, fractionation against 
13C would decrease, which means, δ13C value would be high (Farquhar and Lloyd 
1993; Loader et al. 2007). This differential rate of CO2 consumption and replenish-
ment in the form of δ13C values helps us understand the climatic fluctuations and 
changes over time.

This can be summed up in the following equation given by Farquhar et al. (1982):
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Here, symbol a denotes the fractionation of CO2 due to diffusion in tree leaves, 
and  symbol b denotes the net fractionation due to photosynthetic uptake of tree 
leaves. Whereas Ci denotes the intercellular partial pressure of CO2 within leaves 
and, Ca denotes the ambient partial pressure of the leaves.

The literature is inundated with studies of using stable isotopes in tree rings as a 
means for reconstructing climatic parameters like atmospheric CO2, precipitation, 
etc. (Danis et al. 2006; Loader et al. 2007; Young et al. 2015; Sidorova et al. 2013; 
Rinne et  al. 2013; Buajan et  al. 2016). Schubert and Jahren (2012) showed how 
atmospheric CO2 might affect the fractionation process of carbon isotopes in plants. 
Using close chamber experiments and employing different environmental control 
factors, Schubert and Jahren (2012) showed the potential of δ13C in reconstructing 
past atmospheric CO2 values. Danis et al. (2006) studied the reconstruction of pre-
cipitation using δ18O through tree ring data from oak trees in France. Many studies 
in the past few years have advanced our understanding of climate response, 
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adaptability, and drought stress tolerance of forests using stable isotopes (Cernusak 
and English 2015; Hartl-Meier et al. 2015; Belmecheri et al. 2018; Belmecheri and 
Lavergne 2020; van Mantgem et al. 2020). Pu et al. (2021) studied the determinants 
of tree line formation by comparing stable isotopes in the tree rings of high and low 
elevation trees. Thus, apart from reconstructing these climatic parameters, there has 
been a paradigm shift in recent years towards using the stable isotopes in tree rings 
to find the forests’s response to climatic fluctuations over time.

Although climate reconstruction using tree ring as a proxy is well studied and 
extensively documented in the available literature (Loader and Switsur 1996; Loader 
et al. 2007; McCarroll and Loader 2004; Planells et al. 2009; Aguilera et al. 2011; 
Gebrekirstos et al. 2009; Zhang et al. 2020; Szejner et al. 2021; Lukač et al. 2021), 
our research tries to demonstrate that stable isotopes in paper samples from trees 
can also act as a substitute for a  climatic archive, as suggested by Yakir (2011). 
Especially prior to 1958, we did not have any reliable and accurate atmospheric CO2 
monitoring systems in place. Therefore, to understand how the onset of the indus-
trial revolution exacerbated climatic fluctuations and atmospheric CO2 levels, we 
have to rely on proxies. In addition, paper production involves  the utilization of 
material from many trees, and hence, stable isotopes in paper samples may not help 
us in species-level identification (Yakir 2011). However, the advantage in disguise 
may be that for studies focusing on climatic trends, running mean values of 13C 
in different tree species’ wood may help us achieve the ultimate objective of deci-
phering  the climatic record. Although tree rings provide high-resolution annual 
data, they do so at the cost of invasive sampling techniques. Therefore, the major 
objective of this article is to determine, despite all the limitations, whether the cli-
matic trend through 13C values is preserved in paper samples or not.

We have tried to compare our δ13C results with  those from Beck (2007) and 
Etheridge et al. (1996). Interestingly, Beck (2007) has compiled the atmospheric 
CO2 measurement data from the independent observations made by investigators 
in the last two centuries using chemical analysis techniques. Beck (2007) is of the 
view that although these CO2 measurements are on a local scale only, they are still 
of paramount importance to fit into the global CO2 curve of the last two centuries. 
He argues that all the 138 CO2 measurements that he has compiled are in congru-
ence with other phenomena such as sunspot cycles, moon phases, etc. He further 
iterates that the researchers ignored most of the historical records of atmospheric 
CO2 surreptitiously because these did not fit into their hypotheses and, most impor-
tantly, to further promulgate and fit their findings into  the global CO2 curve. 
Etheridge et al.’s (1996) data, which is from Law Dome ice cores, showed very few 
fluctuations because it is a 20-year smoothed data. Given the fact that our study 
spans over 49 years (if we exclude the few measurements of the eighteenth century), 
a 20-year smoothed data does not capture the small-scale temporal fluctuations and 
hence does not afford us much leeway to draw parallels from the Etheridge et al.’s 
(1996) data.
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Clipping off paper 
samples (1.5 cm ×

1.5 cm) from 
periodicals dating 
back to 1832-1880

•Stage 1: Sample 
collection

Purification of 
samples, weighing 

the samples  to bring 
them to desired 

weight of 200±5 µg

•Stage 2:Pre-
processing of 
samples

Loading the samples 
in IR mass 

spectrometer to 
quantify δ13C  values 

of samples  

•Stage 3: 
Processing of 
samples

Fig. 23.1 Flow diagram of the sampling methodology followed for the calculation of δ13C values 
of paper samples

 Materials and Methods

For ease of understanding, the methods are here split into three parts, that is, sample 
collection, preprocessing of the data, and processing the samples. The flow diagram 
of methodology is briefed in Fig. 23.1.

 Sample Collection

Paper samples were obtained from 12 different periodicals, for which we had access 
to the archives from 1832 to 1880. Samples were obtained from the National Forest 
Library and Information Centre, FRI Dehradun, which houses one of the oldest col-
lections of periodicals. We used samples from publications dated between 1832 and 
1880, along with some miscellaneous samples dating back to 1775, 1792, 1793, etc. 
It is due to the reason that, from 1775 to 1832, we did not have access to the journals 
from each year, and thus only six samples were taken in that time period. For each 
year, samples from two journals were clipped off. Therefore, two samples per year 
were taken and two series of samples were formed. The names of the journals from 
which samples were taken are listed in Table 23.1.

The origin of publication of these journals was confined to London, Edinburgh, 
or Paris, so the origin of publication does not differ much. The care was taken to not 
deliberately incorporate periodicals published in other continents or different parts 
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Table 23.1 Details of the journals from which the paper samples have been clipped off

Sr. 
no. Name of journal

Total no. of 
samples Year range

Place of 
publication

1. Annales de la Societe 
Entomologique de France

23 1832–1850 and 1853–1856 Paris

2. Proceedings of Zoological 
Society of London

27 1834–1848, 1850–1852, 
1854–1861, 1863, and 1865

London

3. Transactions of the 
Entomological Society of 
London

19 1849, 1851–1853, 1858, 
1861, 1864, 1866–1870, 
1873–1877, and 1879–1880

London

5. Journal of the Proceedings of 
the Linnean society

3 1857, 1859, and 1863 London

6. The Annals and Magazine of 
Natural History

2 1860 and 1862 Paris

7. Transactions of the Scottish 
Arboricultural society

1 1862 Edinburgh

8. The Record of Zoological 
Literature

17 1864–1880 London

9. Journal of Chemical Society 1 1871 London
10. Transactions of the Highland 

and Agricultural Society of 
Scotland

2 1872 and 1878 Edinburgh

11. Entomologia systematica 
emendata et aucta

6 1775, 1781, and 1792–1794 Paris

12 Species Insectarium 1 1781 London

of the world so that variability arising due to regional climatic factors could be kept 
as minimum as possible. However, as these sources of origin are quite distant from 
each other, it is not surprising to see huge scatter in data. In all, 103 non-inked 
samples from the bottom-left margin of a page in a journal were clipped off. All the 
paper samples measured 1.5 cm × 1.5 cm. Special care was taken to cut off the paper 
samples in  such a way that hands did not come in direct contact with the paper 
because sweaty hands may damage the sample and alter the carbon isotopic values 
of paper samples. Once cut, paper samples were picked up with a tweezer and 
placed carefully in zip lock bags. All the zip lock bags were labelled according to 
the year and series number.

 Preprocessing of Samples

All the paper samples were purified using alcohol and then dried up for further pro-
cessing in the isotope ratio mass spectrometer. From these paper samples, small 
subsamples were cut off and put into capsules. These capsules were weighed on a 
weighing machine to ensure that the weight of the sample remains within the limit 
of 200 ± 5 μg.
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 Processing the Samples

These sample-containing capsules were then combusted for quantification of 13C/12C 
values in an IR mass spectrometer. The carbon isotopic ratios of samples were then 
converted to international standards by measuring the ratios of the samples relative 
to those of a standard (Coplen 1994), as given below:
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Rsample denotes the isotopic ratio of the sample, and Rstandard denotes the isotopic 
ratio of the standard. Delta notation is expressed in parts per mill (‰). In an IR mass 
spectrometer, the gases of a standard and  an unknown sample is made to pass 
through the capillary tubes, from where they enter the source region, and the ioniza-
tion of gases takes place. Deflection of ions depends upon the charge-mass ratio 
where heavy ions do not deflect as strongly as the lighter ions do. Hence, intensities 
of the ion beams correspond to their respective abundance of isotopologues. Further, 
delta values from isotopic ratios are calculated in the digital machine attached to the 
IR mass spectrometer (Sharp 2017). We have used the Vienna Pee Dee Belemnite 
(VPDB) standard for converting the isotopic ratios to international isotopic scales. 
The atmospheric CO2 data was taken from two sources:

 (i) Beck (2007) who has compiled the atmospheric CO2 data of 1812–1961 from 
138 literature articles like Buch (1948), Kreutz (1941), Scholander (1947), and 
Lockhart and Court (1942).

 (ii) Etheridge et al. (1996) data which they sourced from Law Dome ice cores.

 Results and Discussion

We have used two samples per year to calculate the 13C value of paper samples. We 
have designated them as Series 1 and Series 2. There were 54 paper samples in 
Series 1 and 49 paper samples in Series 2. The carbon isotopic ratio of samples in 
both series is given in Table 23.2. The 13C values of both series are also depicted 
in the scatter plot given in Fig. 23.2. Although the continuous data from periodicals 
was available only from 1832 to 1880, a few samples have been additionally chosen, 
that is, 1775, 1781, and 1792–1794, to extend the time series to date back in 
Anthropocene as far as possible. This is because the continuity from 1775 to 1832 
was not possible due to access to very few periodicals in this time duration. There 
is a 57% correlation between Series 1 and Series 2, which is not unanticipated due 
to the huge variation in data arising from different sources of origin. It may be noted 
here that the Series 1 and Series 2 paper samples for a year are from the different 
periodicals and hence causing large variation in data, as can be seen from scatter 
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Table 23.2 Carbon isotopic ratio of paper samples from Series 1 and Series 2 and the weight of 
sample combusted (μg)

Year Amount μg (series 1) δ13C (series 1) Amount μg (series 2) δ13C (series 2)

1775 205 −25.2 – –
1781 200 −25.5 195 −25.4
1792 198 −24.8 – –
1793 202 −24.8 205 −25.1
1794 203 −25.2 – –
1832 195 −25.1 – –
1833 203 −24.8 – –
1834 205 −25.6 198 −25.2
1835 205 −21.5 200 −25.4
1836 205 −25.4 205 −25.3
1837 202 −24.8 200 −25.0
1838 197 −25.4 201 −25.7
1839 205 −25.4 203 −25.1
1840 196 −26.0 205 −25.3
1841 200 −25.1 200 −25.2
1842 195 −24.8 199 −25.4
1843 203 −25.6 203 −24.7
1844 202 −26.0 205 −24.6

1845 205 −25.1 205 −25.3
1846 202 −25.5 203 −24.9
1847 198 −25.3 201 −25.3
1848 202 −25.3 205 −20.9
1849 196 −25.1 205 −24.8
1850 203 −25.3 201 −25.1
1851 205 −21.5 203 −23.8
1852 205 −24.2 198 −25.0
1853 199 −25.6 198 −25.3
1854 202 −25.1 197 −25.3
1855 195 −25.6 205 −25.5
1856 204 −24.9 205 −24.7
1857 205 −24.4 204 −25.5
1858 201 −24.7 205 −24.7
1859 196 −25.0 198 −25.2
1860 195 −25.0 205 −25.2
1861 205 −24.7 204 −24.7
1862 201 −25.5 200 −25.3
1863 204 −24.9 195 −25.2
1864 195 −24.9 202 −25.0
1865 200 −23.2 205 −24.6
1866 201 −25.2 198 −25.0
1867 203 −23.5 205 −23.5

(continued)
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Table 23.2 (continued)

Year Amount μg (series 1) δ13C (series 1) Amount μg (series 2) δ13C (series 2)

1868 205 −23.8 205 −24.3
1869 201 −24.1 204 −24.9
1870 197 −23.2 205 −24.3
1871 200 −24.4 195 −24.4
1872 205 −22.3 200 −24.1
1873 200 −22.2 199 −21.1
1874 195 −22.2 195 −23.2
1875 203 −21.6 205 −23.3
1876 205 −22.7 195 −23.0
1877 205 −21.8 198 −20.8
1878 200 −21.1 195 −22.6
1879 202 −20.7 203 −25.5
1880 200 −20.9 205 −21.4

plots of series 1 and series 2. The minimum value of 13C in Series 1 is −20.7 in the 
year 1879, and the maximum value of 13C in Series 2 is −26, which occurs twice in 
the time series, that is, 1840 and 1844. For Series 2, the minimum value is −20.8 
which occurs in 1877, and the maximum value is −25.7, which occurs in 1838. On 
average, the 13C value increased 0.0875 ± 0.024 for Series 1 and 0.082 ± 0.029 for 
series 2. If we look at both Series 1 and Series 2, we can see that until 1865, 13C 
values remain stable; however, there is an abrupt increase in carbon isotopic values 
from 1865 onward, although it is expected that 13C values would decline over time 
with a corresponding increase in atmospheric CO2 values (Yakir 2011). However, 
due to a sudden rise in 13C values around 1865, this peak could be the reason behind 
the overall net positive increase of 13C values in this time period. In addition, there 
are some outliers in the data, which could be due to a variations in the sources of 
origin or other reasons and hence, need more investigation. There are two outliers in 
Series 1 and Series 2, that is, 1835 and 1851  in Series 1 and 1848 and 1879  in 
Series 2.

Yakir (2011) has tried to reconstruct the climate since the Industrial Revolution 
(1880–2000) using 13C in paper samples. He has observed declining 13C values over 
this period with a corresponding increase in atmospheric CO2 levels. He also attrib-
uted the large variability and scatter in data to the various sources of origin. Compared 
with our results, we find that δ13C values remain stable until 1865 and then increase 
suddenly, although Yakir (2011) has also correlated the δ13C values of original paper 
samples with δ13C values of cellulose extracted from paper samples. Cellulose 
extraction although may be helpful to decouple the effects arising from paper pro-
duction and environmental signal, but nevertheless it is a time-consuming process 
and is not generally suggested if the emphasis is on temporal trend of climatic 
record (Yakir 2011). Furthermore, in the study of Yakir (2011), the slope of correla-
tion between the 13C values of the cellulose extracted and the original paper samples 
was near 1. Therefore, we did not incorporate cellulose purification as a part of this 

23 Isotopic Proxy to Identify Climate Change During the Anthropocene



558

Fig. 23.2 δ13C values of paper samples from Series 1 (above) and Series 2 (below). The trend line 
indicates the overall net positive direction over the time period from 1775 to 1880. The gaps of data 
points from 1775 to 1832 are due to inaccessibility of paper samples in that time period

research because our focus is on the temporal trend of the climate record deciphered 
from 13C paper sample data. We tried to compare the δ13C values of paper samples 
with the atmospheric CO2 trend from two sources, that is, Beck (2007) and Etheridge 
et  al. (1996) (Fig.  23.3). There is an upward trend in atmospheric CO2 data 
from Etheridge et al. (1996), which is sourced from Law Dome ice cores. However, 
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Fig. 23.3 Comparing the δ13C values from paper samples of periodicals with atmospheric CO2 
(ppm) data from available literature (Beck 2007; Etheridge et al. 1996, 2001). While the atmo-
spheric CO2 trend from Beck (2007) fluctuates vigorously, there is a negative downward trend 
corresponding to an increase in δ13C. However, study by Etheridge et al. (1996), on the contrary, 
shows an upward trend in atmospheric CO2 with an increase in δ13C values.

the study of Beck (2007), on the contrary, shows a downward trend in the data with 
fluctuations from 1832 to 1880. In the data of Beck (2007), there is one maxima in 
CO2 concentration around 1857, which is quite congruent with the abrupt upward 
trend in 13C values of our results from 1860 onward. It may be worth mentioning 
here that the data from Etheridge et al. (1996) is a 20-year smoothed data, whereas 
the data from Beck (2007) is an 11-year smoothed data. Hence, the small fluctua-
tions are not visible in the curves shown in Fig. 23.3. Friedli et al. (1986) in their 
study, which deciphered the atmospheric CO2 trend in the nineteenth and twentieth 
centuries from ice core data, reported δ13C (PDB standard) value of −6.43‰ in 
1791, which remains stable until 1854, that is, 6.48‰ in 1854 (with minor fluctua-
tions between 1791 and 1854), and then increases from −6.51‰ in 1847 to −6.42‰ 
in 1887. With a few exceptions, our results seem to be in good agreement with the 
results of Friedli et al. (1986); however, due to the disparate standards used in both 
of the studies (PDB and VPDB), it does not allow us to make any concrete 
comparisons.

There is still not much research effort directed towards the temporal 13C signal in 
paper samples as a means to advance our understanding of past climate change, 
although the results of our study are in contradiction with Yakir (2011), who 
observed declining 13C values in paper samples with increasing atmospheric CO2 
trend over temporal scale. However, the time period of his study was different 
(1880–2000) compared to our study (1832–1880). Most importantly, our results are 
congruent with the nineteenth-century atmospheric CO2 trend of Beck (2007). 
Moving forward, future research could be extended to incorporate the drivers and 
different contributing factors of climatic fluctuations in this time period (1832–1880) 
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as seen from the 13C trend. The primary focus of this study was to check the feasibil-
ity of paper samples in archiving climate record through 13C trend, and the results 
though show optimistic premise but due to a lack of studies centering on 13C trend 
in paper samples do not afford us any reliable interpretation.

 Conclusion

Tree rings and ice cores are widely used proxies for  the reconstruction of  the 
Anthropocene climate. The documentation of the paper trail for archiving climate 
trends is available in  the literature for the time since  the industrial revolution 
(1880–2000). However, to the best of our knowledge, the use of chapter samples 
for the reconstruction of climate change in the Anthropocene remains neglected by 
climatologists. Hence, it is a well-guided effort in this direction to corroborate the 
Anthropocene climate with studies from available literature. We have observed a net 
positive and upward trend in 13C values over time. It could be due to two reasons. 
First, there is a huge scatter in the data due to different sources of origin. Second, 
the abrupt upsurge in 13C values around 1857 culminated in the overall positive 
trend. Comparing 13C values with records of atmospheric CO2 from the available 
literature yielded different conclusions. The one outcome indicates an increase in 
13C values over time with a corresponding increase in atmospheric CO2, and the 
other outcome shows an increase in 13C values with a decline in the atmospheric 
CO2 trend over time. Although our results, despite the scatter in data due to vari-
ability in the source of origin, point toward the potential of paper samples to archive 
past climate record, there is still a need for more research in this direction to bolster 
this claim.

 Recommendations

Although this is a novel effort toward understanding  the Anthropocene climate 
using paper samples, there is still some contention among scientists about the reli-
ability of proxies for past climatic reconstruction. So, future studies should be aimed 
at understanding the Anthropocene climatic records using different methods for bet-
ter precision, efficiency, and statistical inference. In addition, efforts should be 
directed toward extending the application of stable isotopes in paper samples to 
plant physiology studies.
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Chapter 24
Estimation of Land Surface Temperature 
for Rahuri Taluka, Ahmednagar District 
(MS, India), Using Remote Sensing Data 
and Algorithm

J. Rajesh and Chaitanya B. Pande

Abstract As an outcome of the global warming influence on the atmosphere, India 
faces grave problem like the rest of the globe. Land surface temperature (LST) is 
more significant for urban LULC (land use/land cover), climate change, crop water 
requirement, temperature measurement studies and other essential input materials 
that contribute to atmosphere models. LANDSAT satellite data have provided many 
opportunities to use remote sensing and GIS (geographic information system) meth-
ods to study the Earth’s surface analysis. This study showed that topography, in an 
extra to human activity, also significantly impacts on the land surface temperature. 
Such type of research has provided the automated LST developed by LANDSAT-8 
images based on algorithms. The majority of climate modelling and analytic appli-
cations require this. Remote sensing and geographic information systems suggest 
many possible uses in climate change assessments when they have been used to 
calculate LST. The results are presented in that area, where the standard deviation 
calculated was 4.83 °C LST, as the NDVI (normalized difference vegetation index) 
values have attained by red and near-infrared bands. Thermal infrared bands were 
utilized to determine land surface emissivity (LSE). The NDVI, LSE and LST stud-
ies have given sufficient accuracy for understanding the temperature variability. 
Results of study area show the lowest temperature in between 26.65 and 32.31 °C 
(1.85%), tolerance of 37.73–40.64 °C (24.05%) and deeply below at 43.47–47.89 °C 
(32.05%) during April 2019.
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 Introduction

On national and global levels, land surface temperature (LST) is a fundamental 
parameter in land–surface physical interactions, and it has been broadly utilized for 
hydrology, meteorology and the surface energy balance. At regional and global lev-
els, remote sensing is a distinctive method of collecting the LST. Many LST outputs 
generated from various satellite data have been commonly applied in urban ecology, 
water management and natural disasters (Wan and Dozier 1996; Shahid et al. 2021). 
Surface temperature of land is a better predictor of energy availability on the Earth’s 
surface, the essential components of large-scale and global terrestrial–surface pro-
cesses in the physical sciences. The consequences of surface–atmosphere interfaces 
and energy flow with cloud and the ground have been intergraded (Sellers et  al. 
1988; Mosammam et al. 2017). A global temperature is directly related to the mea-
surement tool (most measured in Kelvin). The LST is a wood-burning hearth of 
crust in which warmth and radiation from the sun have been engrossed, redirected 
and directed. Land surface temperature changes due to climate change and artificial 
actions, where direct expectations become a challenge. Surface temperature has 
been recovered from thermal band information based on the particular infrared 
channel technique or the divided window process and the total bands utilized  
(Pu et al. 2006). Urban sprawl has been measured as one of the maximum critical 
changes in climate (McCarthy et  al. 2010) and is the main reason for numerous 
ecological problems (Fathi et al. 2021; Kandekar et al. 2021; Pande 2022; Pande 
et al. 2022). Continuous urbanization has shown more variation in the LULC classes 
entirely in the previous two times (Weng 2007; McCarthy et  al. 2010; Turkoglu 
2010; Pande et al. 2018, 2021a).

Ground surveys would make land-use cover accurate but laborious and expen-
sive and make remote sensing a definite and desirable one (Pande et  al. 2021a). 
Recognized and considered LST varies regionally because of changes in the width 
of the distributed Earth’s and other atmospheric elements. Decreasing urban heat 
island (UHI) is often dependent on it (Jayaraman and Chokkalingam 2021). 
Moderate spatial resolution data from LANDSAT-7 and LANDSAT-8 is appropriate 
for ground cover or vegetation coverage at the village level. The operational land 
imager (OLI) and thermal infrared sensor (TIRS) are both instruments aboard 
LANDSAT-8  (Pande et  al. 2021b; Pande 2022). OLI assembles data with eight 
bands. These satellite data cover a wide variety of wavelengths in the electromag-
netic spectrum, including visible, near and shortwave infrared and a panchromatic 
band with a spatial resolution of 15 metres (Pande et al. 2021b; Gulhane et al. 2022). 
TIRS detects TIR radiation at spatial resolution of 100 metres in both bands posi-
tioned between 10 and 12 metres in the atmosphere (Candy et al. 2017; Reddy et al. 
2017; Wang et al. 2015; Barsi et al. 2014; Gallo et al. 2011; Liu & Zhang 2011).  
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The main aim of this chapter is to estimate LST based on the algorithm and remote 
sensing data. However, data have been utilized for crop water requirement during 
three periods.

 Study Area

The Rahuri taluka is situated in the Ahmednagar district of Maharashtra in India. 
The area is between 19.38° N and 74.65° E″. As per the GPS average, the elevation 
of the mean sea level (MSL) is 511 m of the area. The weather of the Rahuri taluka 
is regularly dry, especially in regions characterized by medium precipitation taking 
inconsistent spreading, exceeding daytime and yearly temperatures, high humidity, 
sunshine and wind velocity. According to the 2011 Census India, Rahuri taluka has 
64,707 households, with a total population of 3,22,823. The population of children 
whose age range is 0–6 is 41,564, which is 12.88% of the total population. The lit-
eracy rate of Rahuri taluka is 69.48%, out of which 75.58% males are literate and 
62.94% females are literate. The rainfall of the study area is found to be 450–600 m 
overall every year, when this is facing problems of drought, crop damage and drink-
ing water availability; in over the areas, basaltic rocks are found in this area. The 
total area of Rahuri is 1017.49 sq. km, with a population density of 317 per sq. km. 
Out of the total population, 78.38% of the population live in urban areas and 21.62% 
live in rural areas (Fig. 24.1).

Fig. 24.1 Location map of study area
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 Methodology

 Materials and Methods

LANDSAT-8 data is accessible on the Earth Explorer platform by USGS (US 
Geological Survey) site; it is an open-source data to study Earth’s surface and atmo-
sphere (Sun et al. 2009; Weng et al. 2004; Rajeshwari and Mani 2014; USGS 2013). 
LANDSAT-8 satellite images are at 16-day time intervals. It is entirely based on 
remote sensing images with different indices estimated using raster calculator tool 
in ArcGIS software (Mani et al. 2014; Latif et al. 2014). The algorithm was con-
structed using LANDSAT-8 data, including the thermal infrared sensor (band 10). 
Several approaches and measurements were used to compute the return of ground 
surface temperature. TIR band 10 was utilized to assess the Earth’s temperature, 
vegetation ratio and NDVI for this study region, while bands 4 and 5 have used to 
calculate the NDVI. In addition, satellite data has been utilized in this investigation 
for April 2019. LANDSAT-8 contains group metadata such as fixed exchanges, fea-
ture value recovery and other features that have been used with an LST algorithm 
(Fig. 24.2).

TIRS Band 10 Band 4 (Red) Band 5 (NIR)

Conversion of Digital

numbers to Spectral 

Radiance

Calculation of NDVI

Calculating Proportion of 

Vegetation Pv

Conversion of 

Spectral Radiance to 

Brightness 

Temperature
Calculation of Emissivity

Calculate Brightness 

Temperature for 10 

Band

Estimation of LST 

Result

Fig. 24.2 Flow chart of method
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 Top-of-Atmosphere (TOA) Radiance

The radiance recalibration parameter has been used to translate digital infrared ther-
mal data to TOA spectral data:

 L ML ALλ = +∗ Qcal  (24.1)

where:

Lλ, spectral radiance; ML, multiplicative band; AL, add band; and Qcal, quantized 
and calibrated value.

 Top-of-Atmosphere (TOA) Brightness Temperature

The constant thermal values in the metadata file are utilized to transform spectral 
radiance observations to the maximum air brightness temperature. The following 
equations are used to study land surface temperature (Eqs. 24.2 and 24.5):

 
BT K k L= +( ) −2 1 1 272 15/ ln / .λ

 (24.2)

 
PV = ( ) +( ) NDVI NDVI NDVI NDVI– min / max min

2

 (24.3)

 E PV= +∗0 004 0 986. .  (24.4)

 
LST = ( ) + ( ) ( )∗ ∗

BT W BT E/ / ln1 14380
 (24.5)

where:

BT, upper of atmosphere brightness hotness (°C); W, wavelength; and E, land sur-
face emissivity.

 Results and Discussion

LST refers to the air temperature measured within one-metre Earth’s surface in an 
open area. The exchange of radiation from the ground to the atmosphere heats the 
air. The LST was always higher than the ambient temperature, depending on the 
meteorological conditions and the relationship and disparity between air and land 
surface temperatures.
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Fig. 24.3 Top-of-atmosphere brightness temperature

 Top-of-Atmosphere Brightness Temperature

The TOA map has been shown to be in the range between 0.1 and 12.85 during the 
month of April. This map is enclosed in Fig. 24.3.

 Land Surface Emissivity

The LSE map is shown to be in the range between 0.98 and 0.98  in April 2019 
(Fig. 24.4).
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Fig. 24.4 Land surface emissivity

 Normalized Difference Vegetation Index

The NDVI map was prepared based on LANDSAT-8 OLI (April 2019) data used in 
the ArcGIS software to observe the vegetation changes. These map values show the 
condition of vegetation on the Earth’s surface. It is used for the identification of 
vegetation thickness based on satellite data. The technique separates the substantial 
rise in reflectance from visible to near-infrared wavelengths. The NDVI equation is

 
NDVI NIR RED NIR RED= −( ) +( )/

 

Bands have changed from DN (digital number) value of raw to reflectance of solar 
electromagnetic energy. The method uses an only band data set with frequencies 
between 1 and +1, with higher numbers representing more vegetation and lower 
values showing water bodies (Fig. 24.5).

Figure 24.5 shows NDVI values to be between – 0.14 and 0.52 in April 2019.

 The Proportion of Vegetation

Figure 24.6 shows the range value to be between 0.18 and 0.58 in April 2019.
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Fig. 24.7 Land surface temperature

Table 24.1 Details of LST in April 2019

Temperature in °C Area in sq. km Area in %

26.65–32.31 °C 19.59 1.85
32.31–37.73 °C 170.32 16.07
37.73–40.64 °C 254.88 24.05
40.64–43.47 °C 275.27 25.98
43.47–47.89 °C 339.58 32.05
Total area in sq. km 1059.64 100.00

This map has been derived from the brightness of temperature and land surface 
emissivity. The land surface temperature ranged between 26.65 and 47.89 °C for 
April 2019, and this is depicted in Fig. 24.7 (Table 24.1).
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Table 24.2 Details of the MPKV (Mahatma Phule Krishi Vidyapeeth), Rahuri near-surface 
temperature data in the month of April 2019

Station Month/year Week Date
Temperature
Max °C Min °C

Rahuri April 2019 First 02-04-2019 39.6 18.3
03-04-2019 39.8 19.4
04-04-2019 39.4 19.9
05-04-2019 40.8 23.9
06-04-2019 39.4 19.9
07-04-2019 39.0 18.9
08-04-2019 40.0 19.4

Second 09-04-2019 40.2 18.9
10-04-2019 40.0 17.9
11-04-2019 40.8 19.9
12-04-2019 41.0 20.9
13-04-2019 40.2 21.9
14-04-2019 40.4 22.9
15-04-2019 40.5 25.9

Third 16-04-2019 37.4 21.4
17-04-2019 34.4 18.4
18-04-2019 35.8 14.9
19-04-2019 36.0 18.9
20-04-2019 39.0 18.4
21-04-2019 38.6 22.9
22-04-2019 38.8 19.5

Fourth 23-04-2019 38.4 20.9
24-04-2019 40.0 22.9
25-04-2019 40.8 24.4
26-04-2019 42.0 23.4
27-04-2019 42.2 25.9
28-04-2019 43.0 24.9
29-04-2019 42.4 25.5

Average temperature (°C) 39.6 °C 21.1 °C

 Near-Surface Air Temperature in April 2019

The monthly average temperature has been observed to be at 39.6 °C. The minimum 
and maximum temperatures of 21.1  °C and 41.3  °C were recorded in the fourth 
week of April 2019. A minimum temperature of 37.1 °C was recorded in the second 
week of April 2019. In the fourth week, the temperature was observed to be higher 
than all other weeks, due to the lack of monsoon, anthropogenic activities and dense 
population pressure in the area with moderate land surface temperature (Table 24.2).
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 LST Validation

The comparison has been made with a near-surface air temperature that is varied 
and often can lead to significant variations as the LANDSAT-8 30 m resolution and 
thermal band 100 m included in this study. The pixel of LST, while climate station 
was placed, was calculated and recorded. Depending on the weather and other con-
ditions, the changes can be rather significant. It is substance noting that the LST and 
the near-surface airborne temperature differ by 1.1–2 m, implying that temperature 
discrepancies are typical and expected.

 Evaluation of LST Validation with Result

The available data has been selected to compare the findings of Rahuri taluka by 
taking the remote sensing image at http://earthexplorer.usgs.gov/. Surface tempera-
tures were derived by using an algorithm using ArcGIS. In this area, only one mete-
orological station has been identified, and the contrast between the recovered LSTs 
and near-surface airborne temperatures is shown, and the station details are shown 
in Tables 24.1 and 24.2.

 Conclusion

The landscape impact on the LST has been created from satellite data; it is a calcula-
tion performed on ArcGIS10. The thermal radiation recorded by TIRS band 10 of 
LANDSAT-8 was helpful for the development of algorithm. The standard deviation 
for this field estimated based on the weather stations was 4.83∘C in the Rahuri 
taluka. It is described that perhaps the variance between the air temperature near the 
surface and the LST can be changed significantly, we connect the different tempera-
tures in this area. The estimated LST values reveal that in the month of April 2019, 
a low amount of the land surface temperature lies in the range of 26.65–32.31 °C 
(1.85%) and moderately 37.73–40.64  °C (24.05%) and highly 43.47–47.89  °C 
(32.05%). LST measurements should be used to develop the instrument for future 
investigations. In future, temperature can be increased due to pollution, The study 
area results may help in planning the use of water for agriculture and the effect of 
climate changes in semiarid regions.
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Chapter 25
Analytical Hierarchy Process (AHP) Based 
on the Spatial Assessment 
of an Endangered Alpine Medicinal Herb 
Aconitum heterophyllum in the Western 
Himalayan Environment

Arun Pratap Mishra, Naveen Chandra, Juan James Mandy, S. K. Dwivedi, 
Ali Alruzuq, and Chaitanya B. Pande

Abstract Rare and endemic species comprise globally a priority conservation con-
cern in view of being at a higher risk of extinction. Recording the occurrence data 
for such species, especially in hardly accessible alpine habitats, is a rather challeng-
ing task. Modeling serves as an effective tool for predicting habitat suitability as 
well as in practicing artificial introductions for such species with encouraging con-
servation implications. A. heterophyllum is a critically endangered and endemic 
medicinal herb that is distributed along 2400–4500 m in Western Himalayas. The 
excessive demand for Aconitum heterophyllum in the herbal and pharmaceutical 
industry due to the biologically active compounds (aconitine) has led to extensive 
exploitation of the species from the wild, which has made its survival in its natural 
habitat miserable. In the present communication, effective criteria were identified in 
determining suitable areas for the Aconitum heterophyllum, which include the eight 
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criteria of precipitation, temperature, slope, aspect, elevation, topographic wetness 
index (TWI), vegetation type, and soil texture based on the purpose of the study, 
regional characteristics, field surveys, local information, and expert opinions. The 
analytical hierarchy process (AHP), a pair comparison method, was used to deter-
mine the incompatibility rate of the criteria based on the questionnaire.

Keywords Site suitability · Multicriteria analysis · A. heterophyllum · Alpine 
regions · Analytical hierarchy process (AHP)

 Introduction

Himalaya is well known for its rich plant biodiversity since ancient times and sup-
ports the growth of an umpteen number of medicinal and aromatic plant species. 
The wide phytogeography and peculiar climatic conditions of the area provide a 
conducive environment for the development of a myriad of signature plant species 
endowed with lifesaving vital secondary metabolites (Singh and Hajra 1996). The 
Indian Himalayan Region (IHR) is considered as a biodiversity hotspot with over 
8000 species of vascular plants (Samant et al. 1998), out of which 1740 species of 
MAPs (medicinal and aromatic plants) and around 964 species of medicinal plants 
are known to occur in this small Himalayan state of India. As per the estimates of 
Kala (2010), about 1740 species of medicinal and aromatic plants (MAPs) from 
IHR are used in traditional and modern therapeutic systems. The state of Uttarakhand 
is endowed with a rich diversity of MAPs, and around 964 species of medicinal 
plants are known to occur in this small Himalayan state of India (Rau 1975). The 
plant diversity of the Himalayan region is facing surmounting threats due to various 
anthropogenic activities in the region, and several plant species of the region are 
facing the risk of extinction in the imminent future (Ved et al. 2003). The number of 
such threatened species is increasing every year, due to the unsustainable exploita-
tion of natural resources. Aconitum heterophyllum Wall. ex Royle is a signature 
species of the Himalayan region, facing various threats in the wild, and has been 
assigned by the International Union for Conservation of Nature (IUCN) threatened 
species status (Kaul 1997).

A. heterophyllum Wall. is a highly medicinal herb distributed in the high-altitude 
regions of Western Himalayas and extends to Eastern Himalayas at an altitude range 
of 2400–4500 m. The species is commonly known as “Atees” or “Patis” and is used 
for the treatment of various ailments by local people including fever, gastric disor-
ders, and general debility. It is also used by local inhabitants of the Himalayan 
region for the treatment of gastric clutters, fever, and toothache. An extract of the 
root is taken as a tonic and also as a substitute for quinine (IUCN 1993). The low 
regeneration of this species mobilized with the high exploitation rate has rendered 
the species into a critically endangered status (Nautiyal et al. 2002; Goraya and Ved 
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2017; Feizizadeh et al. 2014). Observing the present urge of time, it has become 
imperative to adopt sustainable methods for the use of our natural resources and 
apply modern scientific techniques for their proper conservation and cultivation as 
well. The analytical hierarchical process (AHP) is utilized as a decision-making tool 
for the identification of suitable sites. AHP is one of the multicriteria decision- 
making methods that were originally developed by Prof. Thomas L. Saaty in 1980. 
As a multicriteria decision-making strategy, the AHP has been applied for tackling 
a wide assortment of problems that involve complex criteria over distinctive levels, 
where the interaction among criteria is common (Boroushaki and Malczewski 
2008). In short, it is a method to derive ratio scales from paired comparisons. The 
input can be obtained from actual measurements such as price and weight or from 
subjective opinion such as satisfaction feelings and preference. AHP allow some 
small inconsistency in judgment because human is not always consistent. Weighted 
overlay besides the AHP gives exceptionally promising results for the location suit-
ability analysis of the endangered and endemic plant species. It can be utilized to 
multilevel hierarchical structure on different criteria and obliges (Lal et al. 1991).

In view of the critically endangered status and unsustainable exploitation of 
A. heterophyllum from its natural habitat, the use of modern tools and techniques for 
the effective conservation of this high value medicinal herb is the need of hour. AHP 
studies for the habitat suitability analysis of the species are urgently required for 
effective conservation, management, and designing future conservation policy for 
this high-value medicinal herb.

Therefore, the present investigation is intended for predicting spatial extent and 
most suitable sites for A. heterophyllum in Alpine region of Uttarakhand. Findings 
of the study might be helpful in conducting species-specific recovery programs 
through habitat rehabilitation and reintroduction for A. heterophyllum (Fig. 25.1).

 Study Area

The study was conducted in the alpine area of Uttarakhand above 2700 m between 
28° 53′ to 31° 27′ N scopes and 77° 34′ to 81° 02′ E longitudes (Fig. 25.2). The 
alpine area is bordered by the Tibet (China) in the north, Himachal Pradesh in the 
west and northwest, and Nepal in the east. The alpine landscape (locally known as 
Bugyal or meadows) contributes almost 24.11% of the topographical region of the 
state over 2700 m asl (Sahani 2020). A total of 82 alpine meadows are reported from 
this region (Singh and Hajra 1996). The physiognomic unit of elevated vegetation is 
stunted forest, alpine scrub, alpine meadows, and pioneer communities on scree 
slopes and moraines. Based on elevation, aspect, moisture accessibility, and length 
of the developing season, six types of alpine meadows are recognized within the 
region (Singh and Hajra 1996).

25 Analytical Hierarchy Process (AHP) Based on the Spatial Assessment…
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Fig. 25.1 Habitat of A. heterophyllum

 Materials and Methods

In the present study multi-criterion analysis and site suitability were developed to 
appropriate sites for A. heterophyllum based on different criteria. Depending on 
their importance and significance, eight diverse constraints and criteria were cho-
sen. The identification of diverse criteria depended on the most extreme limitation 
strategy that impacts the A. heterophyllum which includes temperature, rainfall, 
topographic wetness index (TWI), soil texture, forest type, aspect, elevation, and 
slope (Table 25.1). These criteria have been selected since temperature and rainfall 
could briefly cover the influence of climatic parameters on the species. This is since 
the distribution of the species throughout a region is very much dependent on opti-
mum temperature and rainfall conditions. Further, soil texture could be indicative of 
soil fertility and the kind of support system that is available for the plant species. 
The forest type present in the surrounding plays a very critical role as it influences 
the vegetation pattern as well as the presence and absence of certain species based 
on its compatibility with the dominant species variety. Finally, terrain indices such 
as TWI, aspect, elevation, and slope are indicative of amount of sunlight received, 
sun duration, other climatic factors, etc. These highly influential parameters were 
believed to be a representative that could cover the multitude of factors that 
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Fig. 25.2 Location map of the study area

Table 25.1 Details of the parameter used in the site suitability analysis

Datasets Source Link

Temperature Wordclim 30 arc 
second (1 km)

www.worldclim.org

Rainfall Wordclim 30 arc 
second (1 km)

www.worldclim.org

Soil texture FAO Soils Portal http://www.fao.org/soils- portal/
data- hub/soil- maps- and- databases/en/

Forest type (supervised 
classification using Sentinel-2)

USGS (Earth 
Explorer)

https://earthexplorer.usgs.gov/

Aspect, elevation, slope, and 
TWI

Generated from 
DEM

https://earthexplorer.usgs.gov/

influence the presence of a vegetative species and its distribution. Additionally, 
weights for each selected criterion were assessed utilizing AHP, and after that, 
weighted overlay method was received to set up the suitability map. Schematic 
representation of the methodology for present study is shown in Fig.  25.3. The 
equation to generate TWI is also stated here as follows:

 
TWI � � �ln / tana b
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Fig. 25.3 Schematic representation of the methodology

where:

a = upslope contributing area (m2)
b = slope in radians

 Generation of Criterion Maps Using Geospatial Techniques

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) was 
used to generate slope, aspect, elevation, and TWI. Supervised classification tech-
nique was used for image classification, in order to prepare the forest type of Alpine 
region. This was carried out with the help of a classified map of Forest Survey of 
India using Sentinel-2 imagery that was obtained from the United States Geological 
Survey (USGS). Rainfall and temperature data with 30 arc second (1 km) spatial 
resolution were downloaded from Worldclim dataset (www.worldclim.org). Soil 
texture data was taken from the FAO Digital Soil Map of the World (DSMW) (www.
fao.org). Erdas 14 and ArcGIS 10.3 were used to create the spatial data layers 
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(Pande et al. 2021a). Finally, all the data were resampled into the spatial resolution 
of satellite imagery in order to facilitate raster analysis using nearest neighbor resa-
mpling technique.

 Standardization of Selected Criteria Maps

All the chosen criteria have different units. Hence, to execute weighted overlay 
strategy, they have to be kept in the same units and consequently have to be stan-
dardized. Standardization procedures change over the estimation to uniform units, 
and the resultant score lose their measurement in conjunction with their estimation 
unit of all criteria (Miller et al. 1998). The vector layers of all criteria maps were 
converted to the raster layer, and all the raster layers were reclassified and utilized 
for the input information to the weighted overlay method which finally makes the 
suitability outline for A. heterophyllum. Reclassified strategy in the spatial analyst 
toolbox of ArcGIS program standardizes the value of all selected criteria for the 
investigation of comparative centrality.

 Calculation of Weight for Each Criterion

AHP is one of the most significant multicriteria decision-making techniques. The 
method is applied to a set of criteria or sub-criteria to set up a distinct leveled struc-
ture by giving the weight of each model (Kiker et al. 2005). The weight analyzes the 
relative centrality of individual criterion and subsequently needs to be chosen pur-
posely. AHP offers a structural ground for quantifying the strong comparison of 
design criteria and elements in a pairwise technique and thus decreases the com-
plexity of the decision-making process (Satty 1977, 2008; Rajesh et al. 2021; Pande 
et al. 2021b). The method decides the weight values by pairwise comparison method 
by the relative significance of criteria, taken two at a time (Garfi et al. 2009; Satty 
1980). Utilizing the pairwise comparison matrix, the analytic hierarchy process cal-
culates the weights for the individual model by taking the eigenvalue and comparing 
it to the most noteworthy eigenvector of the completed matrix and normalizing the 
whole of the variables to solidarity (Malczewski 1999). Utilizing the AHP over the 
pairwise comparison matrix was calculated using a scale of 1–9, where 9 shows 
extraordinary importance and 1 shows the break-even with the importance of the 
in-between basis of the network (Malczewski 1999; Satty 1990 and Boroushaki and 
Malczewski 2008). The comparison framework primarily has the criteria of corre-
spondence which is scientifically communicated as n (n  – 1)/2 for n number of 
components in a pairwise comparison matrix (Akıncı et  al. 2013; Garcia and 
Zimmermann 2014). After the computation of the pairwise framework, relative 
weights/eigenvectors are calculated utilizing Saaty’s strategy. Additionally, AHP 
also distinguishes and calculates the irregularities of decision-makers which is one 
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of the critical characteristics (Boroushaki and Malczewski 2008; Cengiz and 
Akbulak 2009). The effectiveness criteria of AHP are evaluated by consistency rela-
tionship (CR) which is measured by Eq. 25.1:

 CR CI RI= /  (25.1)

Condition 1 represents the CR where CI shows the consistency index and RI shows 
the random index. Consistency relationship encourages the assurance of conceiv-
able events and measures coherent irregularities of the decision-makers/judgments 
(Chen et al. 2012; Girvan et al. 2003). It represents the probability where the net-
work judgments were shaped arbitrarily. The CR primarily depends on the consis-
tency index and random index:

 
Consistency index CI� � � � � � ��max /� �n n 1

 (25.2)

Equation 25.2 indicates the consistency index (CI) when λmax is the principle or 
highest eigenvector of the computed matrix and n denotes the order of the matrix.

The weighted overlay method is compelling to resolve spatial complexity in suit-
ability analysis and site selection based on a common estimation of contrasting and 
differing impacts (Parimala and Lopez 2012). AHP decides the influential variables 
within the pecking order of chosen divergent inputs to weighted overlay investiga-
tion (Mojid et al. 2009; Mishra et al. 2022). Chosen raster layers were overlaid by 
recognizing their cell values to the same scale, giving weight to the person model, 
and coordinating the weight cell values together (Eq. 25.1). The cell values of each 
raster layer are moreover duplicated by their weight esteem (Pamucar et al. 2021; 
Parmesan and Yohe 2003 and Chen et al. 2012) utilizing the show builder toolbox 
of Arc-GIS 10.3:

 
LS WiXi� �

�

n

i 1

 
(25.3)

where LS demonstrates the whole suitability score, Wi indicates the weight of the 
chosen suitability criteria, xi demonstrates the allowed sub-criteria score of i suit-
ability criteria, and n indicates the overall number of capability criteria (Fig. 25.4; 
Tables 25.2 and 25.3).

Step 1: Two criteria are assessed at a time in terms of their relative significance. 
Index values from 1 to 9 are utilized. On the off chance that model A is precisely 
as imperative as basis B, this combination gets a record of 1. In case A is much 
more vital than B, the record is 9. All degrees are conceivable in between. For a 
“less imperative” relationship, the divisions 1/1–1/9 are accessible: in case A is 
much less critical than B, the rating is 1/9. The values are entered row by row into 
a cross-matrix. The diagonal of the matrix contains as it were values of 1. To 
begin with, the correct upper half of the matrix is filled until each criterion has 
been compared to the other one. In the event that A to B was evaluated with the 
relative significance of n, B to A has got to be evaluated with 1/n.
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Fig. 25.4 Parameters used for suitable site identification: (a) annual mean temperature, (b) annual 
mean rainfall, (c) topographic wetness index, (d) soil texture, (e) forest type, (f) aspect, (g) eleva-
tion, and (h) slope

Table 25.2 Explanation of scale and degree of preference

Scale Degree of preference Explanation

1 Equally Two activities contribute equally to the objective
3 Moderately Experience and judgment slightly to moderately favor 

one activity over another
5 Strongly Experience and judgment strongly or essentially favor 

one activity over another
7 Very strongly An activity is strongly favored over another and its 

dominance is showed in practice
9 Extremely The evidence of favoring one activity over another is 

of the highest degree possible of an affirmation
2, 4, 6, and 8 Intermediate values Used to represent compromises between the references 

in weights 1, 3, 5, 7, and 9
Reciprocals Opposite Used for inverse comparison

Source: Saaty and Vargas (1980). Completion of the pairwise comparison framework

Step 2: The weights of the individual criteria are calculated. To begin with, a nor-
malized comparison matrix is made: each esteem within the framework is divided 
by the sum of its column. To urge the weights of the person criteria, the mean of 
each row of this second matrix is decided. These weights are as of now normal-
ized; their entirety is 1.
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Table 25.3 Pairwise comparison matrix for multi-criteria decision problems for A. heterophyllum

Class Temperature Rainfall TWI
Soil 
texture

Vegetation 
type Aspect Elevation Slope

Temperature 1 2 3 5 6 7 8 9
Rainfall 1/2 1 2 4 5 6 7 8
TWI 1/3 1/2 1 3 4 5 6 7
Soil texture 1/5 1/4 1/3 1 2 3 4 5
Forest type 1/6 1/5 1/4 1/2 1 2 3 4
Aspect 1/7 1/6 1/5 1/3 1/2 1 2 3
Elevation 1/8 1/7 1/6 1/4 1/3 1/2 1 2
Slope 1/9 1/8 1/7 1/5 1/4 1/3 1/2 1

Table 25.4 The synthesized matrix for all criteria decision-making

Class Temperature Rainfall TWI
Soil 
texture

Forest 
type Aspect Elevation Slope

Temperature 0.3876 0.4566 0.4231 0.3501 0.3145 0.2819 0.2540 0.2308
Rainfall 0.1938 0.2283 0.2821 0.2801 0.2621 0.2416 0.2222 0.2051
TWI 0.1292 0.1142 0.1410 0.2101 0.2096 0.2014 0.1905 0.1795
Soil texture 0.0775 0.0571 0.0470 0.0700 0.1048 0.1208 0.1270 0.1282
Forest type 0.0646 0.0457 0.0353 0.0350 0.0524 0.0805 0.0952 0.1026
Aspect 0.0554 0.0381 0.0282 0.0233 0.0262 0.0403 0.0635 0.0769
Elevation 0.0484 0.0326 0.0235 0.0175 0.0175 0.0201 0.0317 0.0513
Slope 0.0431 0.0285 0.0201 0.0140 0.0131 0.0134 0.0159 0.0256

 Synthesized Matrix

The pairwise comparison matrix was then synthesized by dividing each element of 
the matrix by its column total. The priority vector can be obtained by finding the 
row averages (Table 25.4).

 Consistency Ratio Calculation

Then, the appropriate value of average random consistency index (RI) for a matrix 
size of eight is 1.41. The consistency ratio (CR) is calculated as

 

CR CI RI=
=
=

/

. / .

.

0 05182 1 41

0 036752  

As the value of CR was less than 0.1, the above calculation was acceptable 
(Table 25.5).
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Table 25.5 Average random consistency index (RI)

Size of matrix 1 2 3 4 5 6 7 8 9 10

Random consistency 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

 Results and Discussion

 Habitat Suitability of A. heterophyllum

In the present study, the six main criteria of precipitation, temperature, slope, alti-
tude, soil texture, and orientation were used to localize A. heterophyllum using 
AHP. AHP results revealed that a total of 567 km2 area was predicted as highly suit-
able and about 485 km2 area is suitable and 914 km2 area is moderately suitable, 
while the rest of the area that is 6282 km2 was not suitable for the species (Fig. 25.5). 
Most of the highly suitable sites are close to 3000–4000 m elevation. The predicted 
suitable sites for A. heterophyllum lie in grassy slopes and most of the suitable areas 
fall in the northern aspect. On the basis of our analysis, it has been found that tem-
perature, rainfall, and moisture have a high impact on its distribution. Suitable site 
identification and multicriteria-based modeling based on their ecological knowl-
edge on its natural sites suggested that A. heterophyllum prefers north-facing and 
grassy slopes in sub-alpine and alpine areas of Uttarakhand Himalaya. A. hetero-
phyllum commonly grows in alpine meadows on partly shaded grassy slopes and 
along the edges of Betula utilis (Bhoj Patra) forest between 3000 and 4000 m eleva-
tion in Uttarakhand alpine areas.

 Discussion

A previous study had used the machine learning algorithm (MaxEnt) to determine 
the potential sites of threatened MAPs in the region (Chandra et al. 2021; Singh 
et al. 2020). The present study identified the habitat suitability of A. heterophyllum 
in high-altitude regions of Uttarakhand through AHP using different environmental 
parameters including temperature, rainfall, TWI, soil texture, vegetation type, 
aspect, elevation, and slope. Since temperature influences most plant processes, 
including photosynthesis, transpiration, respiration, germination, and flowering, 
therefore it was given first criteria. Rainfall plays a critical character in deciding the 
vegetation of a place. The different characteristics of the vegetation of a place are 
imposing on numerous geological factors. Rainfall is one of the foremost vital geo-
logical components which influence the development of the vegetation in a region. 
Based on the ecology of A. heterophyllum in alpine region, we choose the rainfall as 
the second criterion. TWI is a highly useful index in vegetation ecology (Zinko et al. 
2006), and the index could be a work of both the slope and the upstream contribut-
ing zone per unit width orthogonal to the flow direction. Due to the specialty of TWI 
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Fig. 25.5 Suitability map of the A. heterophyllum in alpine areas of Uttarakhand

index, we choose it as the third criteria. The texture of the soil is imperative since it 
decides soil characteristics that influence plant growth. So, this was part of our 
fourth criterion. Major grassland was found to be most suitable for the suitable sites 
of A. heterophyllum, so vegetation types were the fifth criterion. Aspect plays a criti-
cal role in influencing vegetation pattern in alpine areas. It was part of the sixth criti-
cal criterion. As the seventh criterion, elevation map showed the height variation of 
the study area. As the eighth and last criterion, slope plays a critical role to differen-
tiate species composition and vegetation pattern. In this study all the criteria are 
selected based on their importance. The weighted value of selected parameter cal-
culated in AHP and a designated score of sub-criteria were used in weighted overlay 
analysis to generate the suitable site for A. heterophyllum in alpine region of 
Uttarakhand. Rare and endemic species have acquired top priority for conservation 
worldwide because these species are at high risk of extinction. Mapping potential 
habitats for rare and endemic species can aid in conservation planning and manage-
ment. It is recommended that the species should be reintroduced for conservation in 
the predicted suitable habitats. Cultivation of target species can reduce the pressure 
in its natural habitat and may lead to its conservation and sustainable use in the 
future. This approach will provide more chances to species survival and manage-
ment easier and more efficient than other practices. Model predictions and field 
assessments reveal that A. heterophyllum has a limited potential distribution. 
Majority of the predicted habitats are also highly affected by livestock grazing and 
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human activities like overexploitation, habitat fragmentation, and road construction 
The increasing demand for this compound in herbal medicines and health-care com-
pounds has led to overharvesting of the tubers, resulting in rapid depletion of the 
natural stocks of this valuable plant (Pandey et al. 2020). Thus, there is an immedi-
ate need to go for in situ and ex situ conservation measures. The predicted suitable 
areas encompass habitats including alpine grassy slope, dry slope, and shrubbiest 
and subalpine forest (Rhododendron campanulatum). Grassy slope and shrubbiest 
habitats are among high probability areas for the species; hence, these areas could 
be used for in situ conservation of the species. Reintroduction of the target species 
in the predicted habitats would help a great deal in rehabilitating the species popula-
tion and in improving conservation status, hence in conserving the overall biodiver-
sity of the region.

Climate change, especially global warming, not only causes temperature changes 
in different regions but also alters the distribution pattern of precipitation. When the 
change of these climatic factors is close to plant growth, it will lead to the migration 
of their distribution (Parmesan and Yohe 2003). The increasing demand for this 
compound in herbal medicines and health-care compounds has led to overharvest-
ing of the tubers, resulting in rapid depletion of the natural stocks of this valuable 
plant (Pandey et al. 2020). Water availability has a significant impact on physiologi-
cal responses. Thus, precipitation can constrain species distribution and influence 
distribution in various ways (Harsch and HilleRisLambers 2016). The increase of 
precipitation during the driest month results in a longer growing season and helps 
species migrate to more suitable habitats within their distribution (Vaganov et al. 
1999). In addition, extreme high and low temperatures also have a significant influ-
ence on plant growth. The decrease of the minimum temperature of the coldest 
month results in premature freezing injuries to plants, and long-term low tempera-
tures will lead to the death of plants at the distribution limit. Field investigations and 
modal output revealed that moist meadows, grassy slope, and shrubbies encoun-
tered as preferable habitat for the species. Local communities should be encouraged 
to cultivate the species in such sites and their fellow lands. Involvement of farmers, 
both indigenous and migrant, and community-based nongovernment organization 
will be helpful in cultivation of the species that reduce the pressure in the wild. 
These sites/locations should be managed as in situ conservation sites linking with 
the Biodiversity Management Committee (BMC) at Gram Panchayat level.

 Conclusion

The study was focused on the identification of suitable sites for critically endan-
gered A. heterophyllum in the study area. AHP framework with the integration of 
GIS is utilized for the investigation in which eight diverse criteria were considered. 
The suitable areas identified in the present study for A. heterophyllum would not 
only help in eco-restoration of degraded forests and habitats, where the species had 
existed before but also in rehabilitating the species population and improving its 
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conservation status. Therefore, the findings would be quite useful in sustainable 
management of the species and conserving overall biological diversity in the region. 
The integration of informative layers was done using GIS. The results showed that 
the temperature, rainfall, and TWI were the first, second, and third priority to locate 
A. heterophyllum in the area. A total 567 km2 area in the alpine zone of Uttarakhand 
is suitable for the species. Using all these criteria, the most suitable sites for A. het-
erophyllum were predicted. The findings of this study further can be complemented 
with the species recovery programs through habitat rehabilitation and reintroduc-
tion. Moreover, the findings can be useful for initiating farming of this valuable 
commercial crop in the remote villages and tribal pockets of the state, thereby pre-
venting their migration. Thus, the scope of present study is having both socioeco-
nomic and ecological impacts. The final result can be adopted for the reintroduction 
and conservation purposes in the study area.
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Chapter 26
Land Use and Cover Variations 
and Problems Associated with Coastal 
Climate in a Part of Southern Tamil Nadu, 
India, Using Remote Sensing and GIS 
Approach

B. Santhosh Kumar, J. Rajesh, Chaitanya B. Pande, and Abhay Varade

Abstract Land use is an important factor in planning and managing land resources. 
Increasing pressure due to population and human resources in the world’s resources 
to meet growing needs contributes to significant land reform in various land uses. 
Remote sensing and GIS (geographic information system) techniques have been 
used to study land use change and land cover on the Tuticorin coast in Tamil Nadu. 
This study examines land use and land cover (LULC) changes from 2001 to 2017 
for the coast of Tuticorin. The main objective of this study was to assess changes 
under the NRSC (National Remote Sensing Center) classification using Landsat 
ETM + and OLI images using visual interpretation with the help of image interpre-
tation keys. The digitized land use and land cover features are categorized as aqua-
culture, built-up land, water bodies, cropland, fallow land, forest, a forest plantation, 
industrial area/mining, mangrove/swamp area, plantation, salt-affected land, salt-
pan, sandy areas, land with scrub, land without scrub, and waterlogged area. 
Apparently the whole study from 2001 to 2017 found that built-up land (+20.44 sq. 
km) and industrial/mining activities (+5.78 sq. km) were increased and cropland 
(−8.04 sq. km) and plantation (−7.62 sq. km) were decreased. The ground truth 
verification of the LULC features performed is made with an effective assessment 
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of the changes. This study shows a significant environmental impact in the study 
area. In addition, it is crucial to strongly monitor the land use/land cover changes to 
maintain sustainable growth and in-depth coastal management requirements that 
can be taken to protect human health and property.

Keywords Environmental issue · Land use/land cover · Remote sensing and GIS · 
Coastal zone · Change detection

 Introduction

Recent developments in global demand for food and fuel bioenergy exchanges, 
which are directly linked to food and energy prices and volatility, have generated 
issues about LUCC transformation’s influence on biodiversity and other environ-
mental issues. In addition, LUCC change could lead to the depletion of natural 
resources, affecting the poorest because they rely heavily on natural resources (Mishra 
et al. 2022). Since the World Summit in 1992, the international community, indi-
vidual states, communities, civil society, and businesses have been aware of the 
environmental impact of LUCC change (van Lier 2002). Land cover (LC) is an 
essential parameter for monitoring and tracking changes to the Earth’s surface on a 
local, regional, and worldwide scale. Climate change, food security, environmental 
studies, conservational strategies, hydrology, and landscape planning have all used 
it as a critical variable (Pande et al. 2021a, b; Liu et al. 2021; Verburg et al. 2011). 
A technique for assessing land use and land cover (LULC) changes is the long-term 
Earth’s observation data record (Ban et al. 2015; Shahid et al. 2021; Pande 2022). 
Remote sensing has proven to be an effective tool for researching LC patterns at a 
lower cost and less effort. Satellite imageries have made it feasible to examine LC 
patterns on a regional and global scale, which would have been difficult, if not 
impossible, without them (Hansen et al. 2013; Pande et al. 2021a). The foundation 
of LC is image classification, which involves assigning LC classes to a multiband 
raster image. Pixel-wise classification, sub-pixel-wise classification, and object-
based image classification are the three methods of image classification used in 
remote sensing. Pixel-wise classification considers each pixel to be pure and assigns 
it to a single land use-land cover type based on the spectral signature and depen-
dents such as vegetation indices (Gulhane et al. 2022), further separated into unsu-
pervised and supervised classification (Li et al. 2014; Pande et al. 2021a). Geographic 
information systems and remote sensing approaches provide an opportunity to com-
plete the visions like the changes of land use and land cover maps with spatiotem-
poral data. However, these approaches have been proven for land use change classes, 
resulting in better and vastly processing satellite datasets to any natural resources 
applications by scientific communities (Pande et al. 2021a; Orimoloye et al. 2022). 
Five ongoing developments were made during the World Summit on Sustainable 
Development held in Johannesburg in 2002: water, energy, health, agriculture, and 
biodiversity management. All of the above share the interdependence of the Earth 
and its use. The land management process determines land use and land cover and 
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their changes in patterns to processes. Otherwise, without understanding only the 
effectiveness of land management practices, we will not understand land use deci-
sions or predict the outcome of policy interventions. Land management practices 
include many factors such as land division, land resource status and suitability, land 
use potential, policy interventions social and economic practices and enforcement, 
science, and technology. The various approaches help formulate an integrated land 
use policy to reduce land degradation, ensure biomass production and food security, 
expand social and economic benefits to people and their livelihoods and environ-
mental sustainability, and monitor global health (Gautam and Narayanan 1983; 
Pande et al. 2021b; Mishra et al. 2021).

Coastal regions are the most important and densely populated region in the 
world. Coastal properties have been subject to severe constraints, and transforma-
tion is one of the key factors in land reform (Xiubin 1995; Santhiya et al. 2010). 
Rapid population growth and coastal migration associated with uncontrolled coastal 
assets have increased exposure to coastal areas (industry, housing, hospitals, univer-
sities, military bases) and increased the effects of extreme incidents (Brown et al. 
2011). Globally, approximately more than 60% of the population living in the 
nearby coastal area has been affected by coastal ecosystems. The Intergovernmental 
Panel on Climate Change (IPCC) has reported that climate change and rising sea 
levels will significantly impact the environment and human society in coastal areas 
(IPCC 2007). Global temperatures have skyrocketed over the past century, while 
global warming over the past three decades is set at 0.6 °C at 0.2 °C over a decade 
(Hansen et al. 2006; IPCC 2007; Rosenzweig et al. 2008; Wood 2008). Changes in 
land redistribution and land use are spatial, unique, and more extreme, leading to 
global thinking (Lambin et al. 2006). People have been moving the cover of land 
since early history by removing land parcels of agriculture and livestock (de 
Sherbinin 2002; Pande et al. 2021b). Land use change information is essential to 
revitalize land cover maps and good management and planning of sustainable devel-
opment resources (Alphan 2003; Muttitanon and Tripathi 2005). The essential 
objective of this paper was to enclose the assessment of land use/land cover changes 
and issues related to coastal climate in part of southern Tamil Nadu, India.

 Study Area Description

An integrated study was done in the area from 77° 48′31.035″ E to 78° 22′24.481″ 
in longitude and 8° 18′51.239″ N to 9° 10′28.263″ N in latitude. The study area (part 
of Tuticorin District) lies in Tamil Nadu’s southern region. It covers a distance of 
about 163.5 km and a study area of 1630.32 sq. km (Fig. 26.1). It is bordered on the 
north by Virudhunagar and Ramanathapuram, on the south by Tirunelveli, and on 
the east by the Mannar Gulf. The climate in the Tuticorin District is tropical, with 
extremely hot summers and mild winters. The region experienced 645 mm of annual 
rainfall in 2011, with a high temperature of 35.7  °C and a low temperature of 
24.4 °C. In the coastline sector, Tuticorin has the highest humidity. Rainfall in the 
Tuticorin region is visible during periods of heavy rainfall in the southwest and 
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Fig. 26.1 Location map

northeast. The summer season starts in March and lasts until the end of May (CGWB 
2009; Anitha Parthasarathy 2015). There are eight taluks in the Tuticorin District. 
The taluks are further divided into 12 districts and 462 chunks (CGWB 2009). The 
district’s water supply network is controlled by the river, which originates in the 
Western Ghats and Tamil Nadu areas. A few streams originate in the region’s hill-
ocks and flow directly into the sea after a 10–20-mile journey. The primary rivers 
that pour into the district are the Vaipar, Tambraparni, and Karamanayar. Black soil, 
red soil, and sandy soil are the three main soil types. Pipes, tanks, and canals are 
used to irrigate the district. Tuticorin is responsible for 70% of Tamil Nadu’s total 
salt production and 30% of India. Tamil Nadu is India’s second largest salt producer, 
after Rajasthan.

 Methodology

Landsat satellite data photos with no clouds were taken for 2001, 2009, and 2017, 
and topographical maps from the Survey of India were also obtained. To find a land 
use/land cover mapping, 58k/4, 58k/8, 58L/1, 58L/2, 58L/3, 58H/14, and 58H/15 
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Fig. 26.2 Methodology of flow chart

were employed, along with extensive ground truth verifications. The global land 
cover facility (GLCF) (http://glcfapp.glcf.umd.edu:8080/esdi/) and the Earth’s 
exploration site (http://earthexplorer.usgs.gov/) provided satellite data for the 
research area. The satellite data was georeferenced and regionally corrected using 
the Survey of India (SOI) topographic maps as a ground control point. The World 
Geodetic System (WGS) 84 and the Universal Transverse Mercator (UTM) were 
utilized. Because the human brain is an excellent picture translator, visual transla-
tion is still one of the most extensively utilized methods of detecting, recognizing, 
and distinguishing aspects of space in an image. Definitions are based on the visual 
translation key derived from satellite data as well as changes in the Earth’s surface 
and cover. With the help of the Global Positioning System, a dubious location can 
be assured for field trips (Fig. 26.2).
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 Change Detection

Land use change detection and analysis plotting and mapping have been done based 
on the land use maps of 2001, 2009, and 2017 in the ArcGIS 10.3 software (Pande 
et  al. 2018). Pixels and spectral reflectance of features are used to classify from 
satellite images. These approaches were completely reliant on pixels or grids within 
a specific class. These possibilities, equivalent to different input bands, were 
approved as part of the basic principle. However, these strategies took a long time to 
compute since they rely heavily on regular data categorization in each input band to 
over-categorize signatures with large covariance matrix values (Owojori and Xie 
2005; Yuan et al. 2005; Pande et al. 2018). Therefore, 16 land use and land cover 
classes are carried out such as built-up land, industrial area, crop land, plantation, 
fallow, forest, forest plantation, salt-affected land, land with scrub, land without 
scrub, sandy areas, swamp/mangroves, waterlogged area, saltpan, river/tank/canal, 
and aquaculture during 2001, 2009, and 2017, respectively. The adopted methodol-
ogy is presented in Fig. 26.2.

 Results and Discussion

 Land Use/Land Cover Changes During 2001–2017

Now a days, costal regions is so much facing problems related to land use changes 
due to climate changes and man made activities, this regions is so much important 
for ecosystem and view of maintaining the climate on the earth surface. In this view, 
we are focus on the land use changes particularly in the coastal. So many important 
vegetation  are presented in the coastal part.    The land use/land cover study was 
conducted for 17 years, from 2001 to 2017, and data was obtained from satellite 
images and toposheet. The images of 2001, 2009 (Landsat ETM +), and 2017 
(Landsat 8 OLI) were used to analyze actual land use/land cover changes in the 
study area. Remotely sensed satellite images are georeferenced using ERDAS 
image processing software based on rectified toposheets. After that, geometrically 
adjusted satellite imagery is calibrated to radiometric and spatial adjustments to 
minimize error in data. ArcGIS 10.2.1 software is used to prepare the study area’s 
land use/land cover. The NRSC level two classification is adopted for the methodol-
ogy. After the mapping, the change detection of every class is analyzed. Land use 
and land cover are divided into 16 different categories, namely, aquaculture, built-
 up land, water bodies, cropland, fallow land, forest, a forest plantation, industrial 
area/mining, mangrove/swamp area, plantation, salt-affected land, saltpan, sandy 
areas, land with scrub, land without scrub, and waterlogged area. The land use and 
land cover maps are prepared with the help of image interpretation keys such as 
location, size, shape, pattern, height/depth and site, situation, and association. 
Analysis of the findings shows significant changes in the huge alteration in the 
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Fig. 26.3 Land use/land cover distribution of the year 2001

built-up land, rapid population and industrial activities, and the consequence of 
mining activities along the study area. It is evident that the population of the settle-
ment/hamlet increased to 92.84 in 2001, 102.68 in 2009, and 113.28 in 2017. The 
coastal area of   Tuticorin is densely populated in terms of salt products and other 
activities. Industrial/mining activities have been gradually increasing to 27.63 
(2001), 31.27 (2009), and 33.41 (2017). The plantation areas decreased slightly to 
253.58 (2001), 249.39 (2009), and 245.96 (2017) due to urban growth development. 
The land with scrub has gradually decreased to 130.19 (2001), 126.27 (2009), and 
119.63 (2017). It is clear that aquaculture was 3.51 in 2001 and increased to 5.11 in 
2017. Water bodies covered an estimated 121.85 in 2001 and 119.69 in 2009 and 
reduced by 119.16 in 2017 based on intervention in this study area (Figs. 26.3, 26.4, 
and 26.5). The cropland areas covered approximately 476.44  in 2001 and then 
471.59  in 2009 and reduced to 468.4  in 2017 based on urban development and 
coastal infrastructure. It is evident that the fallow land covered 82.58 in 2001 and 
then 84.49  in 2009 and increased to 86.55  in 2017 (Table  26.1). Improper land 
reform greatly affects the natural environment of the area. This method can be used 
to efficiently categorize and map LULC statistics and changes over time. The A 
value of LULC maps in 2001, 2009, and 2017 and their average are higher than 
90%, according to the thematic accuracy assessment (Figs. 26.6, 26.7, 26.8, 26.9, 
and 26.10).
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Table 26.1 Land use/land cover changes during 2001–2017

Classes

Area in sq. km
Changes
2001–2009 2009–2017 2001–2017

2001 2009 2017
Sq. 
km %

Sq. 
km % Sq. km %

Built-up land 92.84 102.68 113.28 9.84 10.60 10.6 10.32 20.44 22.02
Industrial area 8.63 9.27 11.46 0.64 7.42 2.19 23.62 2.83 32.79
Crop land 476.44 471.69 468.5 −4.75 −1.00 −3.19 −0.68 −7.94 −1.67
Plantation 221.16 219.18 217.21 −1.98 −0.90 −1.97 −0.90 −3.95 −1.79
Fallow 240.68 244.8 249.96 4.12 1.71 5.16 2.11 9.28 3.86
Forest 49.93 49.93 49.88 0 0.00 −0.05 0.00 −0.05 −0.10
Forest plantation 1.89 1.84 1.89 −0.05 −2.65 0.05 2.72 0 0.00
Salt-affected land 1.47 2.15 3.18 0.68 46.26 1.03 47.91 1.71 116.33
Land with scrub 130.19 126.27 118.59 −3.92 −3.01 −7.68 −6.08 −11.6 −8.91
Land without 
scrub

180.43 174.16 167.12 −6.27 −3.48 −7.04 −4.04 −13.31 −7.38

Sandy areas 10.17 9.86 9.12 −0.31 −3.05 −0.74 −7.51 −1.05 −10.32
Swamp/
mangroves

3.59 3.15 2.91 −0.44 −12.26 −0.24 −7.62 −0.68 −18.94

Waterlogged area 3.63 2.54 1.79 −1.09 −30.03 −0.75 −29.53 −1.84 −50.69
Saltpan 83.76 89.1 91.11 5.34 6.38 2.01 2.26 7.35 8.78
River/tank/canal 121.85 119.69 119.16 −2.16 −1.77 −0.53 −0.44 −2.69 −2.21
Aquaculture 3.59 3.92 5.11 0.33 9.19 1.19 30.36 1.52 42.34

 Environmental Problems Due to the Changes in Tuticorin 
Coastal Region

 Population Pressure

The land has been transformed into a thriving human settlement, resulting in which 
large amounts of garbage are being produced. For business and subsistence pur-
poses, people migrate to the coast, which has resulted in solid waste disposal, the 
dumping of solid waste generated by domestic wastewater mixed with seawater, and 
affects the coastal environment. The population density and household distribution 
are increasing due to population pressure at local to global scales. However, these 
activities have directly affected the environmental and land use and land cover map-
ping. In this context, LULC studies are important for understanding the environ-
mental problems due to the changes in Tuticorin coastal region (Figs. 26.11, 26.12, 
and 26.13).
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Fig. 26.6 Land use/land cover map of 2001

 Industrial/Mining Activities on Nearby Coastal Area

The coastal area of Tuticorin has industries such as the salt industry, the thermal 
power station, the Sterlite industry, and other related industries. Heavy metals and 
other toxic chemicals that attract directly to coastal waters are coastal industries, as 
they affect the coastal environment and the environment (Figs. 26.14 and 26.15).
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Fig. 26.7 Land use/land cover map of 2009

 Conclusion

The above study results indicate that there has been a change in the land use pattern 
and land cover in the study area. Some changes are good and some are unnatural. 
Satellite remote sensing and GIS are powerful tools for mapping, monitoring, and 
monitoring land use and land cover changes. Visual interpretation is essential for the 
effective analysis of changes. Significant changes in the coastal area of   Tuticorin are 
mainly due to population growth and urbanization. The map shows major changes 
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Fig. 26.8 Land use/land cover map of 2017

in coastal structures, namely, an increase in built-up land, industries, salt-affected 
land, and saltpan. On the other hand, cropland, land with and without scrub, and 
waterlogged land decreased. National governments are using the results provided in 
the study to develop flexibility programs and appropriate policies to avoid future 
losses. This study will help prevent environmental degradation and raise awareness 
of environmental issues and the importance of coastal ecosystems.
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Fig. 26.9 Land use/land cover changes during 2001–2017

Fig. 26.10 The above pictures are taken in Tuticorin coastal region during field investigations. (a) 
Salt pan activities, (b) land with scrub, (c) waterlogged area, and (d) mangrove species

26 Land Use and Cover Variations and Problems Associated with Coastal Climate…



608

Fig. 26.11 (a) Sewage pipes are contaminating the Tuticorin coastal area. (b) Mela Arasadi peo-
ple’s search for freshwater
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Fig. 26.12 Population density
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Fig. 26.13 Map showing the household distribution along the Tuticorin coast

Fig. 26.14 Industrial activities in the nearby coastal area
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Fig. 26.15 Map showing the major industries along the Tuticorin coast
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Chapter 27
Classification of Vegetation Types 
in the Mountainous Terrain Using Random 
Forest Machine Learning Technique

Raj Singh, Arun Pratap Mishra, Manoj Kumar, and Chaitanya B. Pande

Abstract Classification of vegetation into appropriate classes is important for 
management and conservation planning. Field-based observations are now exten-
sively supported with remote sensing-based observations for such classifications. 
We demonstrate here the application of a machine learning technique using the 
random forest (RF) to classify Landsat imageries in the mountainous terrain of the 
Indian Western Himalayas. The region represents a mega-diverse area having a 
wide variation in climate and vegetation types with a varied topography. In moun-
tainous regions, vegetation classification is crucial to identify the natural resources 
for its conservation and management planning. Normalized difference vegetation 
index (NDVI) using near infra-red and red bands was created for the period 
2013–2019. As the imageries are available at a temporal resolution of 16 days, a 
Fourier transformation was done to compress a large amount of data. To achieve a 
better accuracy of classification, topographic variables of elevation and slope 
together with climate variables of temperature and precipitation were considered 
while implementing the classification algorithm. We successfully characterized the 
mountainous terrain into the classes of non-forest, evergreen needle leaf trees, ever-
green broadleaf trees, moist deciduous trees, dry deciduous trees, shrub, and agri-
culture with an overall accuracy of 80%. We compared the classified maps with 
existing vegetation type maps to see inconsistency in mapping with the demon-
strated approach. The methodology demonstrated in this study can be used for clas-
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sifying the landscape into distinct classes with improved accuracy for various 
purposes.

Keywords Forest type · Indian Western Himalaya · Land use/land cover · NDVI · 
Remote sensing

 Introduction

The potential for using space-based remote sensing measurements to monitor natu-
ral resources has grown exponentially in recent decades (Banko 1998; Pal 2005). 
The classification of vegetation into appropriate types is one of the essential require-
ments for conservation planning and addressing research-related queries (Martin 
et al. 1998). The methods used to classify vegetation into various types are depen-
dent upon the field-based observations that can be supplemented with remote 
sensing- based observations (Pande et al. 2018, 2021a, b). Field-based observations 
are usually time-consuming and costly and may not be easy for difficult terrain such 
as mountains (Banko 1998; Martin et al. 1998). Remote sensing has widely been 
used in vegetation mapping using multiple approaches and using different data sets 
(Clerici et al. 2012; Han et al. 2004; Jin et al. 2016, 2017; Kumar et al. 2019a, 2021; 
Singh et al. 2020a, b; Stibig et al. 2003; Mishra et al. 2021). With remote sensing- 
based observations, it is easy to trace the spatial and temporal changes in a forested 
landscape as observations are available at planetary scales with repeated observa-
tions ranging from days to months. Observation related to the plant structure and its 
habitat and functional behaviors can be monitored using remote sensing (Clerici 
et al. 2012; Ivanova et al. 2019; Kumar et al. 2019b, 2021; Shouse et al. 2012; Singh 
et al. 2020c; Zhang et al. 2019). Among various available approaches to classify 
remote sensing images, nowadays, the machine learning-based approach has gained 
wider attention (Anchang et  al. 2020; Carreiras et  al. 2006; Praticò et  al. 2021; 
Orimoloye et al. 2022). Random forest-based classification is one of the machine 
learning techniques that is based on the ensemble of decision trees to vote for a 
particular class with greater probability (Breiman 2001). Various researchers have 
used multiple remote sensing data to process them using machine learning tech-
niques to classify forest, agriculture, and other land use types (Clerici et al. 2012; 
Ghazaryan et  al. 2018; Htitiou et  al. 2019; Li et  al. 2019; Mohite et  al. 2019; 
Shelestov et  al. 2017; Srinet et  al. 2020). Until recently, researchers used stand- 
alone software like ArcGIS, ERDAS, Q-GIS, and ENVI to analyze huge data 
sets (Pande 2022; Gulhane et al. 2022). However, Google has created and released 
“Google Earth Engine” (GEE), a cloud-based platform for processing remote sens-
ing data (Gorelick et al. 2017). GEE is a powerful tool that can be used to analyze 
petabyte-scale archives of remote sensing data (Olokeogun and Kumar 2020). GEE 
has a Java code editor web interface and a Python application programming 
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interface for quickly building geospatial processes (Kandekar et al. 2021). A web-
based interactive development environment (IDE) and Internet-accessible applica-
tion programming interface (API) allow researchers to utilize freely available data 
from numerous satellite agencies, topography, land cover, and socioeconomic, envi-
ronmental, and climatic sources. GEE supports image categorization, multi-tempo-
ral land use mapping, numerical and array/matrix operations, machine learning, 
per- pixel operations, and image-based operations. In this study, we attempt to clas-
sify the mountainous terrain of the Indian Western Himalaya to test the applicability 
of Google Earth Engine in implementing a machine learning-based algorithm (ran-
dom forest) into various vegetation classes. The major objectives of the study are (i) 
retrieval of NDVI time-series observation to distinguish vegetation types; (ii) utili-
zation of NDVI along with topographic variables of elevation and slope, and cli-
matic variables of temperature and precipitation to achieve better accuracy of 
classification; and (iii) comparison of vegetation type maps created by us with exist-
ing vegetation maps.

 Materials and Methods

 Study Area

The study region represents part of the Indian Western Himalaya in the state of 
Uttarakhand (Fig. 27.1). The region is a hilly terrain having undulating elevation 
and varying slopes forming distinct habitats to host a wide range of floral and faunal 
communities. The region receives monsoon rainfall starting in July till September. 
The annual rainfall in the outer region is 1500–1750 mm, the mid-altitude receives 
rainfall of 750–1000 mm, and in the alpine region, the average annual rainfall is 
about 1600  mm. The average summer temperature is approximately 30  °C, and 
winter temperature is approximately 18  °C.  Southern foothills make subtropical 
climate where average summer temperature is approximately 25 °C. Higher and the 
middle region has average summer temperature in the range of 15–18 °C, whereas 
winter temperature is often subzero. The region is dominated by five major forest 
types: (1) tropical forests, (2) subtropical forests, (3) temperate forests, (4) subal-
pine forests, and (5) alpine vegetation (Hajra and Rao 1990). The Himalayan moist 
temperate forest is the major dominant vegetation type (Champion and Seth 1968) 
in the region whereas the dominant broadleaved species are Rhododendron arbo-
reum, Betula utilis (Bhojpatra), Quercus semecarpifolia (Kharsu oak), Q. dilatata 
(Mohru oak), Q. incana, Q. leucotrichophora, and Q. oblongata (Ban Oak). 
Dominant coniferous species of the region are Abies pindrow (fir), Picea smithiana 
(spruce), Cedrus deodara (deodar), and Pinus roxburghii (chir pine).
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Fig. 27.1 Study region in the state of Uttarakhand representing part of the Indian Western 
Himalayas

 Data Sources and Their Description

We used Landsat 8 data to create time series of NDVI for the study region. The 
Landsat 8 (synchronous satellite) satellite data comprises of Thermal Infrared 
Sensor and Operational Land Imager which are available in 11 spectral bands with 
a revisit time of 16 days. Landsat 8 data is available in tiff format. In this study, 
Landsat 8 data was used from 2013 to 2019 for NDVI time-series analysis, which 
was later compressed using Fourier transform before implementing random forest 
algorithm in the GEE. We used WorldClim climatic variables of temperature and 
precipitation in this study which was downloaded from the website https://www.
worldclim.org/data/index.html. Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)  (https://
asterweb.jpl.nasa.gov/gdem.asp) was used to obtain the elevation of the study 
region. ASTER GDEM was further processed to obtain the slope map of the region 
using ArcGIS spatial analyst tool. Landsat 8 satellite imagery was used to compile 
the NDVI series for the period 2013–2019 at 16-day intervals. The periodicity of 
phenological evolution shown in the NDVI time-series data helped visualize a spe-
cific forest type. Fourier transform was applied on Landsat 8 NDVI data to obtain 
its sine and cosine components. Each point in the Fourier transformed image reflects 
the specific frequency of the spatial domain image (Li 2014). Mean pixel values of 
time series were also obtained using GEE. Field-based ground control points were 
obtained to provide the signature of different classes for classification using random 
forest. The final classified maps were compared with available vegetation class 
maps of ISRO (Indian Space Research Organization) (Roy et  al. 2015) and the 
MODIS (Moderate Resolution Spectroradiometer)-derived plant functional type 
maps obtained from the archives of LPDAAC (Land Processes Distributed Active 
Archive Center) (https://lpdaac.usgs.gov). The methodological procedures used to 
accomplish the goals of this research are shown in Fig. 27.2.
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Fig. 27.2 Flow chart of methodological steps implemented to classify vegetation types using ran-
dom forest algorithm in Google Earth Engine

 Fourier Transform

The Fourier transform is of fundamental importance in (McAndrew 2004) image 
processing. Fourier transform is a classical method to convert image from space 
domain to frequency domain, and it is also the foundation of image processing titled 
as the second language for image description. It provides another perspective for 
image observation and images to frequency distribution characteristics. The Fourier 
transform among other things provides a power for alternate to linear spatial filter-
ing. It is more efficient to use the Fourier transform than a spatial filter. For a large 
filter, the Fourier transform also allows us to isolate and process particular image 
frequencies and from low pass and high pass with a great degree of precision. The 
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image processing often tends to do corresponding transformation for image by con-
verting domain when facing problems that are complex and hard to deal with 
(Baharuddin et al. 2011). The Fourier transform is an important image processing 
tool which is used to decompose an image into its sine and cosine components. The 
output of the transformation represents the image in the Fourier or frequency 
domain, while the input image is the spatial domain equivalent. In the Fourier 
domain image, each point represents a particular frequency contained in the spatial 
domain image. The Fourier transform is used in a wide range of applications, such 
as image analysis, image filtering, image reconstruction, and image compression.

 Random Forest Approach

An ensemble classification algorithm, RF, consists of a group of tree-based classi-
fiers {h(x, Hk, k = 1,…)}, where x is the input vector and Hk are independent and 
identically distributed random vectors (Breiman 2001; Hastie et al. 2009). RF uses 
bootstrapping with replacement to enhance the diversity of classification trees, 
which allocate each pixel to a class in accordance with the maximum number of 
votes from the collection of trees. This method, although it has shown high accuracy 
and ability to model complex interactions among variables, is a “black box” because 
the individual trees cannot be estimated separately (Prasad et al. 2006). To run the 
RF model, it was necessary to define several important adjustable parameters. The 
primary parameters are the number of predictors at each decision tree node split 
(mtry) and the number of decision trees to run (ntree). Liaw and Wiener (2002) 
report that mtry = 1 can give good performance. Rodriguez-Galiano et al. (2012) 
showed that reducing mtry weakens each tree of the model, but it also reduces the 
correlation among individual trees, which increases the model accuracy. Oliveira 
et al. (2012) reported that an increase in values of mtry would result in a higher 
predictive performance of the model and attribution of higher importance to fewer 
variables. In consideration of these points, it is necessary to optimize the parameters 
mtry and ntree to maximize the model accuracy. First, to evaluate the model perfor-
mance, all data were divided with stratified random sampling ranging from 10% 
(11,781 pixels) to 90% (105,994 pixels) in increments of 10% for test data, left out 
of the training data. The set of test data, which is an independent validation set, was 
used only for the model evaluation. Moreover, the remaining training dataset was 
divided to 75% (training dataset) and 25% (validation dataset) for the sake of a 
repeated leave-group-out cross-validation (LGOCV) strategy. This procedure is 
repeated ten times to estimate robust prediction performance. Each datum of the 
validation data and test data is used to compute accuracies and error rates averaged 
over all predictions and to estimate each variable’s importance in the classification. 
To reduce data redundancy and to assist the model interpretation and the absolute 
values of pairwise correlation coefficients were considered. Predictors with near- 
zero variance values were removed. If two variables are highly correlated (>0.75), 
then the variable with the largest mean absolute correlation is automatically removed 
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from the model. In previous studies and recommendations and pretests from our 
dataset, we have selected 100 trees, while mtry was set to the default value (Zhu 
2013; Mishra et al. 2021).

 Results and Discussion

The terrain of the study region has undulating land features having a minimum 
elevation of 187  m and the highest elevation ranges of 4780  m (Fig.  27.3a). 
Temperature ranges between −2 and 24 °C (Fig. 27.3c), while the region receives 
an average annual sum of rainfall ranging between 87 and 197 cm (Fig. 27.3d). The 
various input layers that were used in mapping forest classes and their spatial varia-
tion are shown in Fig. 27.3. The temporal evolution of NDVI for the different veg-
etation classes is shown in Fig. 27.4. The majority of the region is dominated by dry 
deciduous vegetation followed by evergreen needle leaf, evergreen broadleaf, moist 
deciduous, and shrub vegetation. The final classified forest type map of the study 
region using random forest classification is shown in Fig. 27.5. The classified maps 

Fig. 27.3 Topographic and climatic variables used for classifying forest types using random forest 
algorithm: (a) elevation layer, (b) aspect layer, (c) temperature layer, (d) rainfall layer, (e) Fourier 
transformed sin value layer, and (f) Fourier transformed cosine value layer
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Fig. 27.4 Evolution of time-series average value of NDVI for the period 2013–2019: (a) ever-
green needle leaf, (b) evergreen broadleaf, (c) moist deciduous, (d) dry deciduous, (e) shrub, and 
(f) agriculture

are comparable with the land use cover maps of ISRO and MODIS-derived maps 
shown in Fig.  27.6. The mapping accuracy of moist deciduous and agriculture 
classes was low with user accuracy of 50 and 66.67%, respectively. However, for the 
rest of the classes, user accuracy was more than 80% (Table 27.1). The overall accu-
racy for all the classes was 75.49%, with a Kappa statistic of 0.80.

 Discussion

The research utilized Landsat images and Google Earth Engine to map the vegeta-
tion classes representing seven distinct classes of evergreen needle leaf, evergreen 
broadleaf, moist deciduous, dry deciduous, shrub, agriculture, and nonvegetation 
classes. It was observed that the use of GEE greatly lowers the processing time for 
processing a large collection of images. Unlike the traditional approach of down-
loading individual images and then processing them using paid software of image 
processing like Erdas, GEE is a freely available platform that can be used to classify 
remotely sensed images. The validation and accuracy evaluation of the classified 
vegetation map derived from this research was carried out utilizing established veg-
etation and land cover maps of MCD12Q1 and ISRO. The method provided in this 
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Fig. 27.5 Vegetation classes of study region mapped using random forest algorithm in Google 
Earth Engine

study shows that vegetation of the study region is mapped effectively, and the find-
ings are similar to the products currently utilized by researchers such as MCD12Q1 
and ISRO vegetation class map. The analysis of land cover changes in the area over 
a period of time can be achieved easily by using a similar approach as demonstrated 
by us. The demonstrated methodology will help the researcher to visualize changes 
over a period of time by easily implementing a similar approach in GEE. While it’s 
possible that during this time period, some land classes may have changed from one 
to another, such as the conversion of agricultural land into built-up class or the loss 
of forest cover area due to forest fire, we processed images of 2013–2019 to obtain 
vegetation classes. Hence, while considering any long period images for 
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Fig. 27.6 Land cover type map of the study region: land cover map developed by Indian Space 
Research Organization (left panel) and MODIS land cover type product MCD12Q1 (right panel)

Table 27.1 Accuracy assessment of classified vegetation type map

Class name Producer’s accuracy (%) User accuracy (%)

Non-forest 92.00 83.64
Evergreen needleleaf 84.16 81.14
Evergreen broadleaf 66.67 80.00
Moist deciduous 71.43 50.00
Dry deciduous 83.33 83.33
Shrub 62.50 87.00
Agriculture 40.00 66.67

Overall accuracy = 75.49%; Kappa coefficient (k) = 0.80

classification, one needs to be careful. The accuracy of classification in such cases 
would certainly be affected. Srinet et al. (2020) classified vegetation of the same 
region with an overall accuracy of 66% while we were able to achieve better accu-
racy in the range of ≥80% for the majority of classes except for agriculture and 
moist deciduous class. Greater accuracy in our case might have been attributed due 
to the lesser area mapped by us compared to the area mapped by Srinet et al. (2020). 
The lower accuracy for agriculture and moist deciduous class would have been due 
to the variation in NDVI values due to various growing seasons of crops with har-
vesting period in case of agriculture, while in the case of the moist deciduous forest, 
leaf shading period has low NDVI value attributing inconsistent value range. The 
vegetation map classified by us when compared with MCD12Q1 (Fig. 27.6) showed 
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an overall accuracy of 72% with a Kappa coefficient (k) of 0.68. The producer’s 
accuracy for evergreen needle leaf, evergreen broadleaf, moist deciduous, dry 
deciduous, shrub, and agriculture was 81.61, 62.56, 71.43, 80.30, 65.50, and 
45.00%, respectively, while the user’s accuracy for the respective classes was found 
to be 79.33, 58.02, 69.25, 78.26, 62.00, and 42.91%, respectively. The classified 
map by us when compared with ISRO vegetation cover map (Fig. 27.6) showed an 
overall accuracy of 68.58% with a Kappa coefficient (k) of 0.70. The producer’s 
accuracy for evergreen needle leaf, evergreen broadleaf, moist deciduous, dry 
deciduous, shrub, and agriculture was 80.51, 58.62, 69.71, 82.55, 68.75, and 
54.00%, respectively, while the user’s accuracy for the respective classes was found 
to be 78.79, 56.82, 64.20, 77.86, 60.00, and 52.89%, respectively.

 Conclusion

Classification of the land cover into its appropriate classes requires field-based 
observations to classify remotely sensed images. However, once the ground control 
points are available, it becomes very much easy to classify satellite images to obtain 
a vegetation class map of a region with reasonable accuracy. The accuracy of map-
ping depends upon the algorithm used and the variation in the reflectance behavior 
of the class of interest. The separability of one class from another influences clas-
sification accuracy. While mapping vegetation classes, one needs to test various 
available approaches and algorithm to achieve better accuracy. The classification 
accuracy is usually improved if additional layers such as topographical variables or 
climate-related parameters are considered. Likewise, an attempt should be made to 
identify possible additional layers that could be used to achieve better accuracy of 
mapping. This requires further study to effectively incorporate different factors that 
would improve the mapping accuracy. Using available newer machine learning 
techniques and the formulation of new algorithms to improve vegetation classifica-
tion is another research area leveraging the utility of remote sensing images.
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Chapter 28
Water Conservation Structure 
as an Unconventional Method 
for Improving Sustainable Use 
of Irrigation Water for Soybean Crop 
Under Rainfed Climate Condition

Chaitanya B. Pande, Kanak N. Moharir, and Abhay Varade

Abstract Rainwater harvesting through water conservation structures and tech-
niques is playing a vital role under the rainfed agriculture conditions of the Vidarbha 
region in Maharashtra. Soil and water conservation activity is one of the most 
important components for agronomy practices in rainfed conditions. In view of that, 
the Department of Agriculture (M.S.) is undertaking various projects with the objec-
tive of developing rainwater harvesting structures for sustainable use of harvested 
rainwater for mitigating the need for protective irrigation to the rainfed crops grown 
at the Akola District. That is utilized for protective irrigation during prolonged dry 
spells to the kharif crops grown in the vicinity of existing drainage line developed 
under high surface runoff area. During the kharif seasons 2016 and 2017, ten dem-
onstrations in watershed were conducted under rainfed condition. Protective irriga-
tion has resulted in significant increase in yield as compared to rainfed condition/
without irrigation at the watershed area. There was a 19.14–33% increase in yield 
during the kharif season of 2017–2018 as compared to 2016–2017. It was observed 
due to protective irrigation provided during the critical growth stage and dry spells. 
The results of study area should be more helpful for agriculture crops and what 
impacts of groundwater level and that is directly an impact on farmer’s income 
and production yields under different climatologically factors. All of these factors 
have been considered for dryland conditions based on rainwater conserved in the 
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rainwater harvesting structures for protective irrigation for agronomy crops under 
water stress situations.

Keywords Water · Conservation · Rainfed · Rainfall

 Introduction

“Dryland agriculture” means raising of agriculture crops totally under rainfed con-
ditions. In global, 6510 million hectares (m ha) of agriculture land is under rainfed 
agriculture of which about 60% is in the developing countries. India’s position is 
first among the dryland agricultural countries in the world. Out of every three hect-
ares of cultivated land in India, nearly about two hectares is under the influence of 
rainfed conditions. Dryland areas occupy an area of 91.0 million hectares out of a 
total 142.1 m ha cultivated areas in India, and it is predicted that about 60% of our 
population still depend upon dryland agriculture and rainfed conditions (Anonymous 
1997). The irregular climatic conditions in dryland in India consist of aberrant 
weather conditions such as late onset of the monsoon, prolonged dry spells, early 
withdrawal of monsoon, early midseason, and terminal droughts. Rainfed agricul-
ture is facing several problems such as resowing of crops, moisture stress during 
critical growth stages, unavailability of lifesaving irrigation, and efficient fertilizer 
use (Sharmila Zilve 2013). Most of the food crops are grown in rainfed areas, which 
plays a key part in food production and poverty decrease (Rockström et al. 2007a, 
b). The major number of poor people in the world depends on rainfed agriculture 
conditions for food and earnings and thus livelihood security (FAO 2002). The con-
sequence of rainfed agriculture changes regionally, but most food for poor societies 
in the developing countries are formed under rainfed agriculture (Elke Noellemeyer 
et al. 2013). Scarcity of irrigation water has now been globally the main constraint 
for raising the crops with good productivity (Pande  and Moharir 2017; Pande et al. 
2020; Pande et al. 2021; Elbeltagi et al. 2022). Availability of sufficient harvested 
rainwater for irrigation is the preventive measure for reduction in the productivity of 
agriculture crops in many parts of the world (Gutiérrez-Gómeza et al. 2018). The 
scarcity of water for agriculture is increasing not only because the sources are 
reducing but also because the quality of water is failing (Elliott et al. 2015; Crosson 
1994; Nagavallemma et al. 2005). Freshwater insufficiency is commonly discussed 
around the world. Over recent years, freshwater consumption has grown at two 
times the rate of human population enlargement, and there are an increasing number 
of areas experiencing constant freshwater shortages (UNESCO 2012). Dalin et al. 
(2017) state that a quick nonrenewable depletion of aquifers is due to an excessive 
extraction of water that is used for irrigation in many crop-producing regions 
worldwide, which threatens the sustainability of water use and food production 
(Vidya et al. 2021; Pande et al. 2022), not only in the producing regions but also 
globally due to the international food trade. In the last decades, new terms have been 
introduced to determine the efficiency and sustainability of water use. Hoekstra and 

C. B. Pande et al.



631

Hung (2002) introduced the water footprint concept (Lovarelli et  al. 2016). The 
impact of rainwater and groundwater development methods as water harvesting and 
conservation can be used for increasing productivity and water use efficiency of dif-
ferent agronomical crops during 2016–2017 and 2017–2018 kharif seasons.

 Material and Methods

 Study Area Description

The Kajaleshwar watershed area is situated between 20° 13′59″ N latitude and 77° 
13′23″ E longitude and at mean sea level elevation of 337 m and is having an aver-
age annual rainfall of 735–855 mm (Fig. 28.1). This area is under basaltic hard rock 

Fig. 28.1 Location map of study area

28 Water Conservation Structure as an Unconventional Method for Improving…
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terrain (Deccan trap), and most of the watershed areas were covered by unconsoli-
dated sediments, black cotton soil, red soils, and basaltic rock of Deccan Traps.

 Impact of Rainwater Conservation Activities 
on the Soybean Crop

The site selection for rainwater harvesting structure was done on drainage line, and 
it was finalized with agriculture engineering. In this watershed, water conservation 
structures developed with the widening and deepening work on the existing drain-
age line under the watershed programmed. It has been used for rainwater manage-
ment strategy through water conservation structures at watershed area. The digging 
work of the drainage deepening and widening was done, and the CNB was repaired 
during summer season 2012–2014. The catchment area of the rainwater conserva-
tion structures was in the vicinity of demonstrations conducted during kharif sea-
sons 2016–2017 and 2017–2018  in the dryland condition in soybean crop 
(Fig. 28.4b). The rainwater and runoff water were collected in the water conserva-
tion structure, and the stored water has been used for protective irrigation applied 
during dry spells for sustainable crop production. The water conservation structure 
is helpful for the development of groundwater regime (Rajesh et al. 2021) and sig-
nificant increase in crop productivity. It was observed that surrounding groundwater 
level is increasing due to drainage deepening and widening work on the drainage 
line at watershed area. The excess runoff water from upper, middle, and lower layers 
was collected on a daily basis and rainwater stored in the rainwater harvesting struc-
ture during kharif seasons 2016–2017 and 2017–2018 (Figs. 28.2 and 28.3). The 
total cumulative quantity of the stored water was measured using water level indica-
tor, and the total quantity of water available in the drainage widening and deepening 
work was obtained during every month (Table 28.1). Before the initiation of project, 

Fig. 28.2 Rainwater storage in deepened and widened drainage and CNB during kharif season 
2016–2017
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Fig. 28.3 Rainwater storage in deepened and widened drainage and CNB during kharif season 
2017–2018

Table 28.1 Yield of soybean crop during 2016–2017

Plot 
no.

Yield of soybean q/ha 
(without irrigation)

Yield of soybean q/ha (one protective 
irrigation at pod filling stage from water 
stored in widened and deepened 
drainage/CNB) % increase in yield

1 9.37 12.40 32.33
2 8.50 11.10 30.50
3 11.60 15.25 31.40
4 6.25 8.75 40.00
5 7.20 8.50 18.05
6 8.35 10.25 22.75
7 8.95 12.20 36.31
8 11.10 13.20 18.92
9 9.50 12.30 29.47
10 8.20 11.35 38.41

the area was suffering from various aberrant weather conditions such as high perco-
lation, evaporation and seepage rates, and high runoff, as a result of which there is 
severe loss in moisture conservation leading to declined productivity of crop. But 
after the construction rainwater harvesting structure on lower layer, the moisture 
availability in bottom toposequence was increased due to the seepage water, and the 
soybean crop yield is significantly increased due to protective irrigations provided 
during the dry spells (Fig. 28.4a). The soybean yield data was recorded from the 
demonstration plots conducted in the participatory action research mode with 
farmers.

28 Water Conservation Structure as an Unconventional Method for Improving…
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Fig. 28.4 (a) Stored rainwater and protective irrigation applied to soybean crop. (b) View of soy-
bean demonstration plots

 Result and Discussion

The study area is situated in the Akola District, that is, Vidarbha region of 
Maharashtra state in which major crops are grown in the rainfed conditions. In this 
study area, dry spells even during the monsoon periods are not uncommon, resulting 
in low crop yield. In these areas, it would be wise to harvest the runoff water, store 
the water, and reuse it for sustainable production of agronomical crops by establish-
ing and developing rainwater structures in the rainfed areas. It is very useful and 
lifesaving device for rainfed crops in the watershed area which is characterized by 
low and erratic rainfall due to climate change and ecological imbalance. Protective 
irrigations to soybean demonstration plots during the prolonged dry spells were 
applied to soybean crop at critical growth and pod stages. The annual rainfall 
received during the kharif seasons 2016–2017 and 2017–2018 and is below normal, 
along with the early midseason and terminal droughts responsible for severe decline 
in the productivity of soybean. Periodically the groundwater level monitoring would 
be done during pre-post monsoons. Throughout the country, there has been a severe 
need for conserving rainwater and thereby increasing the groundwater which is ben-
eficial for agriculture, industry, and domestic purposes in rainfed area (Barai and 
Patil 1991; Abuj et al. 2010).

 Rainfall Analysis

The rainfall data was collected from rain gauge established in the study area. In this 
study area, 707 mm and 428.2 mm rainfall were recorded during the kharif seasons 
2016–2017and 2017–2018, respectively (Fig. 28.5). During 2016–2017, the amount 
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June July August Sept.
Months

2016-17 199 312 98 98
2017-18 113 178 65 72.2
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Fig. 28.5 Rainfall differences during 2016–2017 and 2017–2018

of rain received was good compared to kharif 2017–2018, and during 2016–2017, it 
was the highest amount of rainwater collected in the water conservation structure as 
compared to kharif 2017–2018. The stored water is of significant use for demonstra-
tion plots during the dry spells due to lack of irrigation sources at the watershed area. 
Similar water conservation structure work has been suggested in the rainfed area for 
groundwater regime development. The annual rainfall received was deficient by 
34% during the year 2017–2018.

 Soybean Yield in 2016–2017

During kharif season 2016–2017, ten soybean demonstration plots were conducted 
in the adjacent vicinity of rainwater harvesting structure at watershed area. The 
rainwater harvesting work developed an irrigation source to the rainfed area. During 
the baseline survey conducted in the village, it was observed that most of farmers 
are in marginal and small category with minimum land holding, and hence the pro-
ductivity of crop is a very crucial issue for the small landholding farmers. Stored 
water was used for providing protective irrigations to soybean crop during the one- 
month dry spell from 13 August to 13 September 2016, at which the soybean is at 
pod filling stage. This dry spell of one month severely affected the soybean pod 
filling resulting in very poor yields of soybean in dryland conditions. One protective 
irrigation during this dry spell from stored water resulted in significant increase in 
yield as compared to rainfed condition, that is, without irrigation. An increase of 
18.05–40% in yield was observed due to protective irrigation provided during the 
critical growth stage of pod filling in soybean (Table 28.1).
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 Soybean Yield in 2017–2018

During kharif season, the stored water is utilized for soybean crop as a lifesaving 
irrigation during dry spells which occurred at vegetative and pod filling stages in 
soybean. The work of drainage widening and deepening was done under this proj-
ect, and the existing Cement Nalla Bandh (CNB) structure has been repaired for 
irrigation purpose and groundwater development. The study was undertaken to ana-
lyze the impact of rainwater harvesting structure on groundwater seasonal fluctua-
tions at watershed  area of Taluka Barshitakli, Akola District, Maharashtra. The 
annual rainfall received during the year 2017 was deficient by 34%. Due to rainwa-
ter harvesting structure, the significant rainwater was harvested in the drainage with 
CNB (Table 28.2). The stored water was utilized as a protective irrigation during 
kharif as well as rabi season for different agronomical crops grown in the vicinity 
of the demonstrations conducted. Protective irrigation has resulted in significant 
increase in yield as compared to rainfed condition/without irrigation at the 
Kajaleshwar watershed. 19.14–33% increase in yield during kharif season was 
observed due to protective irrigation provided during the critical growth stage and 
dry spells (Fig. 28.6 and Table 28.2).

 Rainwater Management During Kharif Seasons

The survey data was integrated with existing drainage line suitable for the sustain-
able use of irrigation and groundwater regime within watershed area. During the 
years 2015–2016, water conservation work was started on the existing drainage 
line, the widening and deepening work of about 100 m has been done, and the stor-
age of rainwater has been monitored. During 2016–2017, stored water is sufficient 
for soybean plots because annual rainfall intensity during 2016–2017 was good as 

Table 28.2 Yield of soybean crop during 2017–2018

Plot 
no.

Yield of soybean q/ha 
(without irrigation)

Yield of soybean q/ha (one protective 
irrigation at pod filling stage from water 
stored in widened and deepened 
drainage/CNB) % increase in yield

1 11.30 13.6 20.35
2 09.40 11.2 19.14
3 10.70 13.1 22.42
4 09.80 12.2 24.48
5 10.60 13.2 24.52
6 12.20 14.7 20.49
7 11.60 14.8 27.58
8 13.40 16.5 23.13
9 11.70 14.1 20.51
10 10.30 13.7 33.00
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Fig. 28.6 Soybean yield (q/ha) during kharif 2017–2018

compared to 2017–2018. The wells were periodically monitored and there is signifi-
cant increase in water level. The farmers having wells have been contacted, and the 
importance of the artificial recharge has been explained to them; the impact has 
been analyzed using land use and land cover mapping during kharif and rabi crops. 
The farmers without well or any other irrigation source but having their fields adja-
cent to the rainwater harvesting demonstration site were contacted, and as per the 
availability of stored water and need during kharif season, the crop planning was 
done. The rainwater storage data was collected in the drainage and CNB during 
2017–2018 is presented in Tables 28.3 and 28.4. During the months of June and July 
due to less rainfall, there is very low accumulation of harvested rainwater as there is 
not a single runoff event during these two months of 2017–2018.

 Impact of Water Conservation Structure 
on Groundwater Table

 Surface Water

In this study we measured the stored rainwater in the water conservation structure 
during two seasons of 2016–2017 and 2017–2018 (Tables 28.3 and 28.4). In this 
area, more farmers are familiar with the soybean crop or rainfed crops, but nowa-
days, dry spell increases the time interval which has a direct impact on the soybean 
crop. In this view, we studied the impact on the soybean crop in the rainfed area for 
two years. It is very important to study if in drought conditions such type of water 
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Table 28.3 Rainwater storage in the drainage with CNB during kharif season (2016–2017)

S. N. Month

Initial 
water vol. 
(m3)

Rainwater 
stored vol. 
(m3)

Total available 
water during this 
period vol. (m3)

Water 
usage 
(m3) Remarks

1 15-May-2016–
15-June-2016

0 500 500 200 Usage

2 15-June-2016–
15-July-2016

500 1800 2300 0 –

3 15-July-2016–
15-Aug-2017

2300 617 2917.20 0(full) Overflow

4 15-Aug-2016–
15-Sept.-2016

2917.20 2917.20 2917.20 0 (full) Overflow

5 15-Sept.-
2016–15-Oct.-
2016

2917.20 2545.20 2545.20 372.00 Usage

6 15-Oct.-2016–
15-Nov.-2016

2545.20 2100.00 2100.00 445.20 Usage

7 15-Nov.-
2017–15- 
Dec.-2017

2100.00 1530.00 570.00 Usage

Table 28.4 Rainwater storage in the drainage with CNB during 2017–2018

S. N. Months

Initial 
water vol. 
(m3)

Rainwater 
stored vol. 
(m3)

Total available 
water during this 
period vol. (m3)

Water 
usage 
(m3) Remarks

1 15-May- 
2017–15- 
June- 2017

0 – 0 0 Dry

2 15-June- 
2017–15- 
July- 2017

– – – – Dry

3 15-July- 
2017–15- 
Aug- 2017

– – – – Dry

4 15-Aug- 
2017–15- 
Sept.-2017

0 1425.00 1425.00 525.00 Usage, 
seepage, and 
other losses

5 15-Sept.-
2017–15- 
Oct.-2017

900.00 735.00 1635.00 430.00 Usage, 
seepage, and 
other losses

6 15-Oct.-
2017–15- 
Nov.-2017

1205.00 757.20 1962.20 1060.00 Usage

7 15-Nov.-
2017–15- 
Dec.-2017

902.20 – 902.20 480.00 Usage
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conservation structures plays a major role in the sustainable crop yield production 
and improves farmers’ practice during drought situations and climate variation.

 Groundwater Table

The study was undertaken to analyze the impact of rainwater harvesting structure on 
groundwater seasonal fluctuations at watershed area of Taluka Barshitakli, Akola 
District, Maharashtra. Impact of water conservation structure on groundwater table 
has been analyzed using graphical representations. Two years of groundwater levels 
data was collected from 35 observation wells in study area. The groundwater fluc-
tuation level (2015–2017) graph has been prepared. The groundwater level fluctua-
tion values are helpful for knowing the impact of rainwater harvesting on aquifer 
properties surrounding watershed area. The groundwater fluctuation graph has been 
useful for further analysis of water levels. From the monitored of groundwater level 
data for the year 2015 pre-monsoon (before completion of rainwater harvesting 
structure) and for the year 2017 pre-monsoon (after completion of the rainwater 
harvesting structure) in the watershed, it has been observed that due to rainwater 
harvesting structure and its recharge, the groundwater levels of all the wells during 
2017 have been increased as compared to the groundwater levels of wells during 
2015. The further insufficiency of water for various agricultural production systems 
should be essential for sustainable water for agriculture crops and the food security 
using soil and water conservation and management practices. Moreover, the strat-
egy decisions on water management are more essential for groundwater resource 
management and also impact assessment on groundwater regime efficient method 
in any country level. In this study, during the year 2017, groundwater level is high 
as compared to 2015 due to rainwater harvesting structures. In study area, stored 
water may be affected for groundwater level and are helpful for observation wells 
recharging in dryland area.

 Conclusion

In our work, an evaluation of the impact of water conservation structure which was 
implanted in watershed area was made with different climatic conditions faced in 
rainfed areas. Soybean is commonly known as golden bean and occupies coveted 
place with top rank among oilseed crops of India as well as Maharashtra. The soy-
bean demonstration plots were conducted on farmer’s field during kharif seasons 
2016–2017 and 2017–2018. These demonstration plots are proposed suitable sites 
near water conservation structure at the watershed area. In kharif seasons rainwater 
was not conserved in any rainwater harvesting structure, as a result of which the 
groundwater level decreases and agriculture production also decreases before drain-
age deepening and widening work. During the kharif seasons 2016–2017 and 
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2017–2018, soybean yields were recorded as 31–40% and 19.14–33% under rainfed 
condition. In the year 2016 soybean crop yield was increased due to sufficient rain-
fall as compared to 2017. However, the store water was utilization during dry spell 
period as per plan to soybean-based cropping systems from the water available in 
drainage and recharged of observation wells for sustainable irrigation in the rainfed 
condition. The results showed that farmer’s crop yield production increased after 
adopting soil and water conservation practices for rainfed areas.
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Chapter 29
Study of Image Segmentation 
and Classification Methods for Climate 
Data Analysis

Ahmed Elbeltagi, Kouadri Saber, Djamal Bengusmia, Behnam Mirgol, 
and Chaitanya B. Pande

Abstract Artificial intelligence (AI) has revolutionized information technology and 
has shaped the way we live. AI is a computational model that allows computer to 
learn out from data and approximate solutions for nonlinear, multi-input functions 
and doesn’t depend upon physical models. Due to their flexibility and robustness, AI 
has been widely applied in large-scale fields ranging from robotics to airplane flight 
control. This section of book aims to discuss the advances in all aspect of AI, includ-
ing machine/deep learning (ML-DL), data mining (DM), computer vision (CV), 
multi-agent systems (MS), evolutionary computation (EC), and fuzzy logic (FL) 
methods in image segmentation and classification. This chapter focuses specifically 
on various applications of AI related to mapping, classification, and segmentation  
of aerial images, including non-classification-/classification- based methods. 
Applications of AI are also discussed and showed the importance of AI in performing 
segmentation and outline extraction on aerial imagery. AI is performing very well on 
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the understanding of climate data analysis. Brief introductions of AI with their adapt-
ability for accurate segmentation, classification methods, and outline extraction are 
also interpreted. Furthermore, we illustrated how the AI tool will help the decision-
makers, and developers, in achieving better performance with less computational cost.

Keywords Artificial intelligence · Aerial image · Segmentation · Classification · 
Outline extraction

 Introduction

Man has been known to draw since ancient times, and he used it to express the phe-
nomena that were going on around him and also to record his daily events. Some 
real-life examples include the drawings on the walls of caves that belong to the oldest 
civilizations such as the Babylonian civilization, the Pharaonic civilization, the 
Chinese civilization, and many other civilizations. With the development of man, 
mankind witnessed the first photograph taken in 1826 by Nappes (Gernheim and 
Gernheim 1955; Bann 2002). With the development of technology, taking pictures 
became a daily matter in the life of every human being, so cameras began to come in 
different shapes and sizes, as well as with variable efficiency from one type to another 
(Mather and Koch 2011; Medjahed 2015; Nath et  al. 2014; Nhamo et  al. 2018; 
Rozenstein and Karnieli 2011; Stanchev et  al. 2003). In the early 1940s, the first 
model of an artificial neural network was developed  (Deepan and Sudha 2018; 
Hölbling et al. 2017; Jain and Singh 2003; Khalid et al. 2014; Kumar and Singh 2013; 
Lu and Weng 2007), which was inspired by the human nervous system (McCulloch 
and Pitts 1943; Kouadri et al. 2021). These artificial neural networks were created to 
solve some problems that are characterized by nonlinearity, which can be described 
as complex compared to linear regression problems. What we see today in camera 
technology and merging it with modern techniques such as facial recognition or locat-
ing and classifying objects is nothing but a merger of imaging techniques and deep 
learning techniques. This chapter will include a set of algorithms related to deep 
learning and its use in the image field, where we will explain how each algorithm 
works and identify the utility of image segmentation technique in different fields.

 Applications of Artificial Intelligence in Image Classification

 Classification System

The image classification defines as categorizing all pixels in a particular image into 
one of several land cover classes which can be used for various applications such as 
environmental change, agriculture, land use/land planning, urban planning, surveil-
lance, geographic mapping, disaster control, and object detection (Krizhevsky et al. 
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2012; Abburu and Golla 2015; Pande 2022). In other words, image classification is 
a pattern recognition method whose aim is to find the features of things on the Earth 
at the pixels in the satellite images and then tries to identify the most likely class to 
which the pixel belongs (Al-Doski et al. 2013).

 Feature Extraction

Feature extraction is one of the essential fields in artificial intelligence, which con-
sists of extracting an image’s most relevant features and assigning them to a label 
(Salvador et al. 2017). Generally, elements can be labeled as relevant, irrelevant, or 
redundant (Celebi et al. 2013).

 Selecting Good Training Samples

Using a sufficient number of training samples is necessary for successful classifica-
tion. In this step, a subset from available feature data is selected for the process of a 
learning algorithm (Pande et al. 2022). Then, the classifier learns its own classifica-
tion rules from a training set. The classifier decides based on the learning model and 
its own classification rules to distinguish which class that feature belongs to. The 
best subset has the least number of dimensions that contribute most to learning 
accuracy (Chuang et al. 2006; Davis et al. 1975).

 Image Preprocessing

Image preprocessing is an essential task to reduce the level of abstraction, which 
includes radiometric, atmospheric, geometric, and topographic detection and cor-
rections, image enhancement, and initial image clustering  (Shahid et  al. 2021). 
Preprocessing aims to improve the image data that suppresses undesired distortions 
or enhances some image features relevant for further processing and analysis tasks.

 Selection of Appropriate Classification Method

In order to obtain reliable information from satellite data, appropriate classification 
techniques are required. Several classification approaches have been developed over 
the past decades which each could have its advantages and disadvantages. These 
methods can be categorized broadly as automatic, manual, and hybrid (Dong et al. 
2006). Automated satellite image classification methods are the most common ones 
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and are classified into supervised and unsupervised classification methods. These 
methods use algorithms that apply the entire satellite image systematically to gather 
pixels into specific categories (Pande et al. 2018; Pande et al. 2021a). Manual satel-
lite image classification methods are robust but time-consuming procedures, and 
users must be familiar with the area covered by the satellite image. The classifica-
tion accuracy entirely relies on the analyst’s knowledge and familiarity with the 
field of study (Fitzgerald and Lees 1994). The hybrid approach is a combination of 
automated and manual methods. It uses automated satellite image classification 
methods to do initial classification; other manual methods are used to refine classi-
fication and correct errors (Pande et al. 2021b).

 Post-classification Processing

The accuracy of classified areas can be enhanced by post-classification correction 
so that isolated and noise pixels that appeared after the classification process could 
be reduced using this procedure (Lin et al. 2015; Gašparović 2020; Geng et al. 2020).

 Assessing the Overall Accuracy

In order to evaluate the classification accuracy rate, the overall accuracy percentage 
computed from the sum of the diagonal elements of the error, confusion, or misclas-
sification matrix resulting from the application of a classifier is expressed. As an 
excellent measurement, the Kappa test statistic assesses inter-classifier agreement 
and is applied in determining the classification accuracy of two classifiers.

 Applications of Artificial Intelligence in Images Segmentation

 Semantic Image Segmentation

The task of classifying the images pixel-wise into a predefined category (or to none 
of them) is called the semantic segmentation. This kind of problems belongs to 
supervised learning problems, where a training set of classifiers and a set of labeled 
pixels will be involved in the process of building the model. Computer vision tech-
niques, one of the promising applications of AI, can be applied for self-driving cars, 
damage detection, robotic systems, and satellite images to extract the objects 
embedded in it (Gulhane et al. 2022). Due to rich hierarchical features and an end- 
to- end trainable framework (Long et al. 2015; Zheng et al. 2015; Yu and Koltun 
2015; Lin et al. 2015; Chen et al. 2016), the recent success of deep convolutional 
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neural network (CNN) models (Krizhevsky et al. 2012; Simonyan and Zisserman 
2014; He et al. 2015) has enabled remarkable progress in pixel-wise semantic seg-
mentation tasks. Three of the most used methods in performing semantic segmenta-
tion tasks in the state of the art will be discussed in this section, that is, the fully 
convolutional network (FCN), conditional random fields (CRF), and dilated convo-
lution (DC).

 Fully Convolutional Network (FCN)

In FCN, each of the data layers is in the form of a three-dimensional array (h, w, d), 
where “h” and “w” are the areal dimensions and d is the vertical dimension, which 
is known as the feature. The image is the first layer in the network, where the image 
is divided into pixels with dimensions h × w and the color are the dimension d, what 
we previously called the feature. CFN is based on transferring each pixel from the 
first layer “image” to the receiving fields statically by means of what is known as a 
path connected to between each pixel in the image and the receiving field in the final 
layer. The basic components of CFN depend only on the relative spatial coordinates, 
and its center of action is at the level of the input area.

Writing xij for the data vector at location (i, j) in a particular layer, and yij for the 
following layer, these functions compute outputs yij by:

 
y f x sj kij ks si i j i� � �� � � �� �� � � �, ,0

 

where:
k: kernel size,
s: stride or subsampling factor
fks: determines the layer type

Layer type could be a matrix multiplication for convolution or average pooling, 
a spatial max for max pooling, or an element-wise nonlinearity for an activation 
function and so on for other types of layers.

This functional form is maintained under composition, with kernel size and 
stride obeying the transformation rule:

 
f gk s f g k k s ss .ks  

� � � � � � � �� � � �/ ,1
 

Whereas general deep networks compute general nonlinear functions, this type 
of layer-only network computes nonlinear filters called deep filters or fully convo-
lutional networks. The FCN works with inputs of all natural sizes and produces the 
output of the appropriate (resampled) spatial dimension. The mistake value of loss 
function configured in the FCN defines the task. If the loss function is the sum of the 

spatial dimensions of the final layer, 1 1
1

x; x ;ij� �� � � � ���
i

ij , the slope is the sum of 
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the slopes of each spatial component. Therefore, the “stochastic steepest descent 
method” calculated for the entire image is the same as the “0” stochastic gradient 
descent method and uses all end-layer receptive fields for mini-placement. When 
these fields of acceptance overlap significantly, it is much more efficient to calculate 
for each layer of the entire image instead of patch-by-patch, independently of feed-
forward calculation and selling backward. For pixel-by-pixel forecasts, this output 
must be reconnected to the pixels. Figure  29.1 presents the FCN process (Long 
et al. 2015).

 Dilated Convolution

The main idea of this method is to create holes (zeroes) between the pixels of the 
image in a convolutional manner to increase the accuracy of the original image, thus 
enabling dense feature extraction in deep CNNs. In the semantic segmentation 
framework, dilated convolution is also used to enlarge the field of convolutional 
kernels, where this method was developed in the form of an algorithm for wave 
analysis. Fisher Yu and Vladlen Koltun developed a new convolutional network 
architecture that systematically uses dilated convolutions for multi-scale context 
aggregation.

This architecture is driven by the fact that the stretched convolution supports the 
field of exponentially magnification without loss of resolution and range.

Three equations were involved in the definition of this new method as follows:

Discrete convolution operator
Generalization of operator

Fig. 29.1 Fully convolutional networks can efficiently learn to make dense predictions for per- 
pixel tasks like semantic segmentation. (Long et al. 2015)
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In a discrete function F: Z2 → R.
We found Ωr = [−r, r]2 ∩ Z2 and k: Ωr → R as a discrete filter of size (2r + 1)2.
The discrete convolution operator ∗ can be defined as

 

F k p�� �� � � � � � �
� �
�
s t p

F s k t

 

(29.1)

 

F k p�� �� � � � � � �
� �
�l
s t p

F s k t

 

(29.2)

where ∗l is the dilated convolution or an l-dilated convolution. The familiar discrete 
convolution ∗ is simply the 1-dilated convolution.

The dilated convolution operator was called “convolution with dilated filter” in 
the past. It plays an important role in the “algorithme à trous,” which is an algorithm 
for wavelet decomposition (Holschneider et al. 1987; Shensa 1992). Make it clear 
that the “extended filter” is set or not displayed.

The convolution operator itself has been modified to use filter parameters differ-
ently. The dilated convolution operator can apply the same filter in other ranges 
using other dilation factors.

Let F0, F1, ..., Fn−1 : Z2 → R be discrete functions and let k0, k1, ..., kn−2: Ω1 →R 
be discrete 3 × 3 filters.

Consider applying the filters with exponentially increasing dilation:

 Fi Fi ikifori n .� � � � � �1 2 0 1 2, , ,  (29.3)

Define the receptive field of an element p in Fi+1 as the set of elements in F0 that 
modify the value of Fi+1(p). Let the size of the receptive field of p in Fi+1 be the 
number of these elements. It is easy to see that the size of the receptive field of each 
element in Fi+1 is (2i + 2 − 1) × (2i + 2 − 1). The receptive field is a square of 
exponentially increasing size. This is illustrated in Fig. 29.2, where systematic dila-
tion supports exponential expansion of the receptive field without loss of resolution 
or coverage. (a) F1 is produced from F0 by a 1-dilated convolution; each element in 

Fig. 29.2 Systematic dilation supports exponential expansion of the receptive field without loss of 
resolution or coverage
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F1 has a receptive field of 3 × 3. (b) F2 is produced from F1 by a 2-dilated convolu-
tion; each element in F2 has a receptive field of 7 × 7. (c) F3 is produced from F2 
by a 4-dilated convolution; each element in F3 has a receptive field of 15 × 15. The 
number of parameters associated with each layer is identical. The receptive field 
grows exponentially while the number of parameters grows linearly.

 Conditional Random Fields (CRFs)

Conditional random fields (CRFs) are a class of statistical modeling methods often 
applied to pattern recognition and machine learning and used in structured predic-
tion. The CRF can consider the context, whereas the CRF predicts the label of a 
single sample without considering the classifier “neighbor” sample. For this reason, 
forecasts are modeled as a graphics model that implements the dependencies 
between forecasts. The type of graph used depends on the application. In image 
processing, graphs typically connect positions close and/or similar positions to 
receive similar predictions (Zheng et al. 2015).

For general graphs, the exact inference problem of CRF is awkward. CRF infer-
ence problems are basically the same as MRF, and the same claims are maintained 
(Sutton and McCallum 2006). However, there are special cases where accurate 
inference is possible.

If the graph is a chain or tree, the message delivery algorithm creates an accurate 
solution. The algorithm used in such cases is like the forward and Viterbi algorithm 
for HMMs (hidden Markov models). If the CRF contains only the pair-wise poten-
tial and the energy is a submodule, the combined, minimum cut/maximum flow 
algorithm will calculate the exact solution. If accurate inference is not possible, 
some algorithms can be used to obtain an approximate solution. These include 
loopy belief propagation, alpha expansion, mean field inference, and linear pro-
gramming relaxations.

Parameter Ө training is generally performed to train the maximum likelihood of 
p(Yi│Xi;Ө). This optimization is convex if all nodes have an exponential family 
distribution, and all nodes are observed during training (Sutton and McCallum 
2006). It can be solved using the quasi-Newton method, for example, the gradient 
descent algorithm. On the other hand, if some variables are not observed, you need 
to solve the inference problem of these variables. Accurate inference is awkward in 
ordinary graphs, so we use approximate values.

 Instance Segmentation

Instance splitting is a combination of two methods: object detection and semantic 
splitting. One of the most common approaches to solving the problem is to perform 
the first object detection to split the objects in the box, or vice versa, to split the 
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image first to detect the objects. It is the combination of various network structures 
that separate instances (Salvador et al. 2017). Object detection is the assignment of 
distinguishing objects of interest in the picture and deciding their positions and 
sizes. This can be addressed as a bouncing box and given a name with the antici-
pated class of the article inside the crate. There ought to be one box for every item 
(Salvador et al. 2017). The undertaking of item location was a few stages measured 
getting the hang of it, including methods, for example, edge discovery and element 
extraction. The pictures were then contrasted and placed in existing item formats to 
identify and limit the articles inside the pictures. In later years, the utilization of 
profound learning has been acquainted with space (Zhao et al. 2019; Fritz 2020).

Image segmentation is the way toward apportioning a picture into numerous sec-
tions. These fragments ought to add to a less difficult portrayal of the picture that is 
simpler to use for additional examination. This is normally used to find objects 
within the picture. Semantic division is a pixel-level classification, where the items 
that have a place with a similar class are grouped together. This will differentiate 
between different classes; however, it doesn’t consider the occurrences of numerous 
objects of a similar class (Xiaolong et al. 2018). There is a scope of utilizations for 
semantic division, and it is usually utilized in the clinical field (Ronneberger et al. 
2015; Fritz 2020). Figure 29.3 presents an original image of a teapot and three cups 
in section (a); in section (b), we can see that the objects in the photo have been 
detected, and this is what we called object detection technic where all the objects 
founded are annotated with a bounding box. The semantic segmentation is pre-
sented in section (c), where the different classes have been given a distinct color 
(teapot is in green and cups are in blue). In section (d), we see that each object has 

Fig. 29.3 Comparison between original image (a), object detection (b), semantic segmentation 
(c), and instance segmentation (d)
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a different color, each cup has its own color in addition to the teapot, and this is the 
instance segmentation where all pixels are aware of both classes and which instance 
of that class it belongs to.

 Mask R-CNN

As an extension of the faster R-CNN framework (Patil and Shaikh 2016), the Mask 
R-CNN framework (Fig. 29.4) for object instance segmentation was introduced in 
2017 (He et al. 2017). The method recognizes items in an image efficiently while 
also generating a high-quality segmentation mask for each instance. Faster R-CNN 
is extended in this framework by adding a branch for predicting segmentation masks 
alongside the existing branch for bounding box recognition. In COCO challenge 
2016, a large-scale object detection, segmentation, and captioning challenge, Mask 
R-CNN outperformed all current single model entrants on every job. The conven-
tional fastest R-CNN consists of two outputs, a class marker and a bounding box 
offset for each candidate’s object. The Faster R-CNN has two phases. The initial 
phase of the project is the Regional Proposal Network (RPN). In the second step, 
Fast R-CNN, the ROI Pool, and classification and bound regression characteristics 
of each candidate are drawn. The features used in both stages are common for faster 
deductions. Mask R-CNN utilizes the same two-step approach at a similar initial 
level. In the second step, however, the Mask R-CNN also releases a binary mask for 
each RoI parallel to the prediction of the class and box offset. Mask R-CNN is also 
substituted to a RoI Align, which allows for comparatively precisely created instance 
segmentation mask, for the rather imprecise RoI Pool operation used in Faster 
R-CNN. For each sampled RoI, the loss function is specified as L = Lcls + Lbox + 
Mask, with Lcl's and Lbox equal to those set out in this section 10. The branch has 
a size of km2 for each RoI, encoding K binary resolution masks of m to m, one for 

Fig. 29.4 The Mask R-CNN framework for instance segmentation. (He et al. 2017)
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every K class. A per-pixel sigmoid is applied, which is described by Lmask as aver-
age cross-entropy loss. Lmask is only specified on the kth mask for a RoI in associa-
tion with the ground-truth class k. Thus, this concept of mask indicates that the 
network creates masks without rivalry between classes for every class. The classifi-
cation branch forecasts the class label for the mask to be selected. The mask and 
class prediction are therefore uncoupled. Figure 29.4 illustrates the Mask R-CNN 
architecture (He et al. 2017).

 Region-Based Segmentation (Threshold Segmentation)

Threshold segmentation is the simplest and most common method of image seg-
mentation. This is a general division algorithm that directly divides the processing 
of the gradation information of an image based on the gradation values of different 
targets. Threshold splits can be divided into local threshold methods and global 
threshold methods. The overall threshold method divides the image into both target 
and background areas with a single threshold (Davis et al. 1975). The local thresh-
old method requires you to select multiple split thresholds and split the image into 
multiple thresholds with multiple target areas and backgrounds. The largest inter-
class variance method (Otsu) (Patil and Shaikh 2016) is the most used threshold 
segmentation algorithm that selects an optimal solution threshold by boosting the 
variance between classes. There is also entropy-based segmentation threshold 
method, the minimum error method, the method of matrix co-occurrence, moment 
preserving method, simple statistical method, probability relaxation method, fuzzy 
set method, and threshold methods combined with other methods (Kohler 1981). 
The benefit of the threshold method is that the estimation is basic and the activity 
speed is quicker. At the point when the objective and the foundation have high dif-
ferentiation, the division impact can be gotten. The detriment is that it is hard to 
acquire exact outcomes for picture division issues where there is no huge dim scale 
distinction or an enormous crossover of the dim scale esteems in the picture (Yuheng 
and Hao 2017). Since it just thinks about the dim data of the picture disregarding the 
spatial data of the picture, it is touchy to clamor and gray scale lopsidedness, driving 
it frequently joined with different techniques.

 Edge Detection Segmentation

The edges of an object are displayed as discrete local features of the image. That is, 
the most significant parts of the image change the local brightness, such as the gray 
values of the image. There is always a gray edge between two adjacent areas with 
different gray values in the image, and the gray values may not be contiguous. These 
discontinuities can often be detected using derivative operations, and derivative 
operators can be used to calculate derivatives (Senthilkumaran and Rajesh 2009). 
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Parallel edge detection is often performed using the space domain derivative opera-
tor to perform intricate image segmentation of templates and images. Parallel edge 
detection is commonly used in image preprocessing methods. The fashionable first 
derivative operators are the Prewitt operator, the Roberts operator, and the Sobel 
operator (Kundu and Pal 1986). Two-layer differential operators include nonlinear 
operators such as the Laplace operator, the Lerk operator, and the Wallis operator.

 Sobel Operator

The Sobel operator is a discrete differential operator that is used to determine the 
approximation of the gradient of the image luminance function. It is mostly utilized 
for edge detection. The Sobel operator is a standard edge detection operator based 
on the first derivative. As a result of the operator’s introduction of a similar local 
average operation, the noise has a smooth effect and can effectively eliminate the 
influence of noise. The influence of the Sobel operator on the position of the pixel 
is weighted, which is superior to the Prewitt and Roberts operators. In order to 
achieve the difference between the horizontal, the Sobel operator comprises two 
sets of 3 × 3 matrices that are cross and longitudinal models with an image plane. 
The image’s edges are detected using the following two templates: horizontal rim 
detection (Gx) and vertical edge detection (Gy) (Yuheng and Hao 2017).

 
Gx Gy� � � �� � � � � �� �101 202 101 121000 1 2 1

 

In order to calculate the gradient size, the horizontal and vertical gradient 
approximations of each pixel of the image may be combined; the following formula 
could be used:

 
G G Gx y� �2 22

 

 Laplace Operator

The Laplace operator is a second-order differential operator that is isotropic in 
nature. It is more appropriate when it is simply concerned with the position of the 
edge independent of the pixel gray scale difference around it (Haddon 1988). The 
Laplace operator’s reaction to isolated pixels is greater than the edge or line and 
hence applies exclusively to noise-free pictures. In the presence of noise, the Laplace 
operator must perform low-pass filtering before identifying the edge. As a result, the 
standard segmentation method combines the Laplace operator with the smoothing 
operator to produce a new template. The simplest isotropic differential operator 
with rotational invariance is the Laplace operator. The Laplace transform of a 
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Fig. 29.5 Original image (a), Sobel operator, and (b) Laplace operator application results

two-dimensional image function is an isotropic second derivative that is better 
suited for digital image processing, and the pull operator is given in discrete form: 
because it conforms to the descent model, the Laplace operator is employed to 
enhance the blurring effect caused by the blurring effect. The diffusion effect occurs 
often throughout the imaging process. Figure  29.5 presents the outputs of each 
operator (Yuheng and Hao 2017).

 Image Segmentation Based on Clustering

Theory of image segmentation is not all-encompassing. However, since many new 
theories and techniques from many fields have been introduced, many image seg-
mentation approaches have been coupled with certain particular theories and meth-
odologies. The term “class” refers to a grouping of related elements. Clustering 
follows specific rules and principles of classification of items in the process (Yuheng 
and Hao 2017). The feature space clustering method is used to divide pixels in the 
picture space into feature space points. The feature space is segmented based on 
their aggregate in the feature space, and the segmentation result is then projected 
back to the original picture space. One of the most often used clustering algorithms 
is K-means. The main principle behind K-means is to group data into various clus-
ters based on their distance. The closer the two locations are, the more likely it is 
that they will obtain compact and independent clusters as clustering targets 
(Sulaiman and Isa 2010). Figure 29.6 depicts the K-means implementation method.

The approach “K-means clustering” offers quick and easy, highly efficient, and 
highly skillful solutions for big data sets. The time complexity is likewise almost 
linear and suitable for large-scale data mining. K-means downside is that it is diffi-
cult to estimate its clustering K and does not have specific selection criteria (Chuang 
et al. 2006). Secondly, the K-means algorithm framework reveals that all the sam-
ples are visited by each iteration of the algorithm, which implies the algorithm time 
is quite costly. The K-means algorithm is also a distance-based partitioning 
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iterations

Fig. 29.6 Implantation process of K-means

technique (Celebi et al. 2013). It is only applicable to the data set which is convex 
and not suitable for clustering nonconvex clusters.

 Utility of Different Methods in Our Lives

After a theoretical presentation of each technic in the previous sections, here we will 
present the utility of each technic in our life by referring to the recent scientific 
papers including different application domains.

 In Medical Field

The diagnosis of Alzheimer’s disease is based largely on hippocampal segmenta-
tion, cortical thickness, and brain volume of brain MRI scans. By using the well- 
known LeNet-5 framework in CNNs (Sarraf and Tofighi 2016), trained AD samples 
for sMRI and fMRI yield 98.84% and 96.85% accuracy, respectively. To make brain 
tumor detection automated, authors used magnetic resonance imaging (MRI) image 
segmentation; they have also elaborated the basic concepts involved in segmenta-
tion and the image preprocessing steps (Mittal et al. 2020). In a work concerning 
tooth detection, authors proof that although the Mask R-CNN model mainly consid-
ers object detection, object location, and segmentation, it can also have efficient 
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results for the challenging task of a large number of crowded tooth image segmenta-
tion image analyses. Also, the authors founded that the Mask R-CNN seems to be 
easy to be adapted without the need for several improvements or customization 
(Guohua Zhu et al. 2020).

 In Water Science Field

In a study performed in Poyang Lake (the largest freshwater lake in China), the 
authors used image segmentation for the aim of detecting the freshwater surface 
area, where they implement the Otsu method. The results of this study contribute to 
the update of temporal and spatial variation of Poyang Lake, confirming that its 
surface water area fluctuated annually and tended to shrink both in the center and 
boundary of the lake on each January from 2017 to 2020 (Sulong Zhou et al. 2020). 
In Malaysia, the flood threat is strongly raised. And because of the lack of flood 
survey data, the protection system against flood won’t be developed very well. In 
the light of the development of new survey technic, the image segmentation meth-
ods have been used to extract water information from digital images, which help in 
providing more information in the development of protection systems against floods 
(Nur Atirah Muhadi et al. 2020).

 In Agricultural Field

Image segmentation is used also in agricultural domain. A new technic has been 
suggested in order to classify different diseases that affect citrus. The work targeted 
six different types of diseases, namely, anthracnose, black spot, canker, scab, green-
ing, and melanose. The proposed technique outperforms the existing methods and 
achieves 89–97% classification accuracy on citrus disease based on data set source 
(Muhammad Sharif et al. 2018). Another use of this technic was mentioned in the 
literature. For the aim of the detection of agriculture parcel boundaries, a two-step 
process followed. First, the segmentation of the images was done using the statisti-
cal region merging (SRM) technique (Orimoloye et al. 2022). The boundary infor-
mation and center of the segmentation were founded out using MATLAB. A match 
between the extracted boundary information’s and the parcel boundaries recorded in 
revenue registers was noticed (Khadanga and Jain 2020). In order to alleviate the 
hassle of the task of manually counting ripened chili fruit, as well as helping farmers 
to plan harvesting, shipping, selling, and postharvest operations, computer vision 
technology was used to analyze the plant images, which achieved high accuracy 
results (Nageswararao Naik Bhookya et al. 2020).
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 Other Uses

In addition to the mentioned fields above, the technic of image segmentation could 
be used in several other domains like spatial attention for self-driving cars (Sagar 
and Soundrapandiyan 2020), masked face recognition which is very useful espe-
cially in the light of the COVID 19 pandemic extension (Mengyue Geng et  al. 
2020), forest fire detection (Sharma et  al. 2020), and nanotechnology (Zeng 
et al. 2021).

 Conclusion

The technology of image segmentation is widely used in several domains, medical, 
water science, agricultural field, face recognition, etc. The integration of this technic 
in our daily life provides us a lot of help like avoiding disasters, predicting disease, 
developing economics, and finding more information about our environment. This 
work aims to open the doors of this research field by simplifying the theoretical part 
of the widely used techniques and also illustrates how this technique can help human 
beings in their lives.
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