Frequentist Perspective on Robust ®)
Parameter Estimation Using the Qs
Ensemble Kalman Filter

Sebastian Reich

Abstract Standard maximum likelihood or Bayesian approaches to parameter
estimation for stochastic differential equations are not robust to perturbations in
the continuous-in-time data. In this paper, we give a rather elementary explanation
of this observation in the context of continuous-time parameter estimation using an
ensemble Kalman filter. We employ the frequentist perspective to shed new light
on two robust estimation techniques; namely subsampling the data and rough path
corrections. We illustrate our findings through a simple numerical experiment.

Keywords Parameter estimation - Stochastic differential equations - Ensemble
Kalman filter - Frequentist approach - Rough path theory

1 Introduction

In this note, we consider the well-studied problem of parameter estimation for
stochastic differential equations (SDEs) from continuous-time observations X j S
[0, T'] [25]. It is well-known that the corresponding maximum likelihood estimator
does not depend continuously on the observations X ,{ t € [0, T], which can result
in a systematic estimation bias [27, 14]. In other words, the maximum likelihood
estimator is not robust with respect to perturbations in the observations. Here, we
revisit this problem from the perspective of online (time-continuous) parameter
estimation [6, 11] using the popular ensemble Kalman filter (EnKF) and its
continuous-time ensemble Kalman-Bucy filter (EnKBF) formulations [15, 10, 26].
As for the corresponding maximum likelihood approaches, the EnKBF does not
depend continuously on the incoming observations Xj_, t > 0, with respect to
the uniform norm topology on the space of continuous functions. This fact has
been first investigated in [9] using rough path theory [16]. In particular, as already

S. Reich ()
Institute of Mathematics, University of Potsdam, Potsdam, Germany
e-mail: sebastian.reich@uni-postdam.de

© The Author(s) 2023 237
B. Chapron et al. (eds.), Stochastic Transport in Upper Ocean Dynamics,
Mathematics of Planet Earth 10, https://doi.org/10.1007/978-3-031-18988-3_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18988-3_15&domain=pdf

 885 56845 a 885 56845
a
 
mailto:sebastian.reich@uni-postdam.de

 10371 61494
a 10371 61494 a
 
https://doi.org/10.1007/978-3-031-18988-3_15

238 S. Reich

demonstrated for the related maximum likelihood estimator in [14], rough path
theory allows one to specify an appropriately generalised topology which leads to
a continuous dependence of the EnKBF estimators on the observations. Here we
expand the analysis of [9] to a frequentist analysis of the EnKBF in the spirit of [29],
where the primary focus is on the expected behaviour of the EnKBF estimators over
all admissible observation paths. One recovers that the discontinuous dependence
of the EnKBF estimators on the driving observations results in a systematic bias
from a frequentist perspective. This is also a well known fact for SDEs driven by
multiplicative noise [23].

The proposed frequentist perspective naturally enables the study of known bias
correction methods, such as subsampling the data [27], as well as novel de-biasing
approaches in the context of the EnKBF.

In order to facilitate a rather elementary mathematical analysis, we consider
only the very much simplified problem of parameter estimation for linear SDEs.
This restriction allows us to avoid certain technicalities from rough path theory and
enables a rather straightforward application of the numerical rough path approach
put forward in [13]. As a result we are able to demonstrate that the popular
approach of subsampling the data [2, 27, 5] can be well justified from a frequentist
perspective. The frequentist perspective also suggests a rather natural approach to
the estimation of the required correction term in the case an EnKBF is implemented
without subsampling.

We end this introductory paragraph with a reference to [1], which includes a
broad survey on alternative estimation techniques. We also point to [9] for an in-
depth discussion of rough path theory in connection to filtering and parameter
estimation.

The remainder of this paper is structured as follows. The problem setting and the
EnKBEF are introduced in the subsequent Sect. 2. The frequentist perspective and its
implications on the specific implementations of an EnKBF in the context of low
and high frequency data assimilation are laid out in Sect. 3. The importance of these
considerations becomes transparent when applying the EnKBF to perturbed data
in Sect. 4. Here again, we restrict attention to a rather simple model setting taken
from [17] and also used in [9]. As a result we build a clear connection between
subsampling and the necessity for a correction term in the case high frequency data
is assimilated directly. A brief numerical demonstration is provided in Sect. 5, which
is followed by a concluding remark in Sect. 6.

2 Ensemble Kalman Parameter Estimation

We consider the SDE parameter estimation problem
dX; = f(X:, 0)dt + 2w, (1

subject to observations X ,T ,t € [0, T, which arise from the reference system
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dx] = f1(x)de + ' 2aw), )

where the unknown drift function f7(x) typically satisfies f7(x) = f(x,0") and 67
denotes the true parameter value. Here we assume for simplicity that the unknown
parameter is scalar-valued and that the state variable is d-dimensional with d >
1. Furthermore, W; and W: denote independent standard d-dimensional Brownian
motions and y > 0 is the (known) diffusion constant.

Following the Bayesian paradigm, we treat the unknown parameter as a random
variable ®. Furthermore, we apply a sequential approach and update ® with
the incoming data X ,T as a function of time. Hence we introduce the random
variable ®; which obeys the Bayesian posterior distribution given all observations
XI, T € [0,¢], up to time ¢ > 0. Furthermore, instead of exactly solving
the time-continuous Bayesian inference problem as specified by the associated
Kushner—Stratonovitch equation [6, 26], we define the time evolution of ®; by
an application of the (deterministic) ensemble Kalman—Bucy filter (EnKBF) mean-
field equations [10, 26], which take the form

46, = y~'m [0 — mlo) ® f X/, 0)] dy, (3a)
i1 i i
dly = dX] = 3 (F(X[.0) +mlf (X[ 0)]) . (3b)

where m; denotes the probability density function (PDF) of ®; and m[g] the
associated expectation value of a function g(6). The column vector [;, defined by
(3b), is called the innovation, while the row vector

KiGm) =y ~'m [0 = mlo) © f(X],0)]. @

premultiplying the innovation in (3a) is called the gain. Here the notation a ® b =
abT, where a, b can be any two column vectors, has been used. The initial condition
®g ~ my is provided by the prior PDF of the unknown parameter.

A Monte-Carlo implementation of the mean-field equations (3) leads to the
interacting particle system

a0 =y~'zM [© - m"1on © £ X[, 0)]dr?, (5)
. 1 .
df = ax] = 3 (£x;. 0 +xMf (X[ 0))) . (5b)
i = 1,..., M, where expectations are now taken with respect to the empirical

measure. That is,

1 X ;
gl = o> 8(0) ©6)
i=1
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for given function g(6), and all Monte-Carlo samples are driven by the same (fixed)
observations X ;L The initial samples @0@, i=1,..., M, are drawn identically and
independently from the prior distribution 7.

We note in passing that there is also a stochastic variant of the innovation process
[26] defined by

dI, = dX| — f(X], @)dr — y'2aw,, (7)
which leads to the Monte-Carlo approximation
i = dax{ - fx7, 0ydr — y'2aw” ®)

of the innovation in (5).

Remark 1 There is an intriguing connection to the stochastic gradient descent
approach to the estimation of 87, as proposed in [30], which is written as

do, = %veﬂx} AL (9a)
dI, = dX{ — f(X].6,)dt (9b)

in our notation, where ¢«; > 0 denotes the learning rate. We note that (9) shares
with (3) the gain times innovation structure. However, while (3) approximates
the Bayesian inference problem, formulation (9) treats the parameter estimation
problem from an optimisation perspective. Both formulations share, however, the
discontinuous dependence on the observation path X QL , and the proposed frequentist
analysis of the EnKBF (3) also applies in simplified form to (9). We also point
out that (3) is affine invariant [18] and does not require the computation of partial
derivatives.

We now state a numerical implementation with step-size At > 0 and denote the
resulting numerical approximations at t, = nAt by &, ~ m,, n > 1. While
a standard Euler—-Maruyama approximation could be applied, the following stable
discrete-time mean-field formulation of the EnKBF

1
Ont1 = O + Ky {(XT = x}) =5 (F&X]. 00 +ml (X, 0) At

Int1
(10)
is inspired by [3] with Kalman gain
Ko =1 [0 =l ® f(X],.0)] x (11a)

(v + amm [(rx.0) ~mlrx.on) © Fx[.0)]) iy
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It is straightforward to combine this time discretisation with the Monte-Carlo
approximation (5) in order to obtain a complete numerical implementation of the
EnKBF.

Remark 2 The rough path analysis of the EnKBF presented in [9] is based on a
Stratonovich reformulation of (3) and its appropriate time discretisation. Here we
follow the It6/Euler—Maruyama formulation of the data-driven term in (3),

T ) L
/O sX!.0dX{ = lim 3 e(X) . 0)(X], — X]) (12)
i=1

for any continuous function g(x,#) and Ar = T /L, as it corresponds to standard
implementation of the EnKBF and is easier to analyse in the context of this paper.

The EnKBF provides only an approximate solution to the Bayesian inference
problem for general nonlinear f(x, 8). However, it becomes exact in the mean-field
limit for affine drift functions f(x,0) = 6Ax + Bx + c.

Example 1 Consider the stochastic partial differential equation
du = —Udyu + pdyu + W (13)

over a periodic spatial domain y € [0, L), where W(t, y) denotes space-time
white noise, U € R, and p > 0 are given parameters. A standard finite-difference
discretisation in space with d grid points and mesh-size Ay leads to a linear system
of SDEs of the form

du, = —(UD + pDD)u,dt + Ay~ '2dw,, (14)

where u, € R? denotes the vector of grid approximations at time t, D € R?*?
a finite difference approximation of the spatial derivative dy, and W; the standard
d-dimensional Brownian motion. We can now set X; = u;, ¥ = Ay~! and identify
either 8 = U or 6 = p as the unknown parameter in order to obtain an SDE of the
form (1).

In this note, we further simplify our given inference problem to the case
f(x,0) =0Ax, (15)

where A € R?*¢ is a normal matrix with eigenvalues in the left half plane. That is
0(A) C C_. The reference parameter value is set to &7 = 1. Hence the SDE (2)

possesses a Gaussian invariant measure with mean zero and covariance matrix

C=-yA+AH" (16)
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We assume from now on that the observations X ,T are realisations of (2) with initial
condition X ~ N(0, ).
Under these assumptions, the EnKBF (3) simplifies drastically, and we obtain

4o, = %(Axf )Tdl,, (17a)
dr, = dx) — % (©; + m[0]) AX] dt, (17b)

with variance
or = [(9 - nt[G])z] . (18)

Remark 3 For completeness, we state the corresponding formulation for the
stochastic gradient descent approach (9):

% T 47

do, = —L(Ax)HTdi,, (19a)
%

di, = dX] — 6,AX]dr. (19b)

We find that the learning rate o, takes the role of the variance o; in (17). However,
we emphasise again that the same pathwise stochastic integrals arise from both
formulations, and therefore, the same robustness issue of the resulting estimators
6;,t > 0, arises.

Similarly, the discrete-time mean-field EnKBF (10) reduces to

. 1
Ont1 = On + K, {(Xjn+1 = X;) = 5 (O + ml6]) Ax;nm} (20)
with Kalman gain
-1
Ko =ou(AX))T (v + Aton(AX[)TAX] ) . @1)

Furthermore, since X ;L ~ N(0, C),
(AXHTAX] = (ATA): (X[ @ X)) ~ (AT4) : C 22)

for d > 1, and we may simplify the Kalman gain to

Kn =0y (AX])T (y + Ato, (ATA) c)f1 . (23)
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Here we have used the notation A : B = tr(ATB) to denote the Frobenius inner
product of two matrices A, B € R*?. The approximation (22) becomes exact in
the limit d — oo, which we will frequently assume in the following section. Please
note that

K, = “7 (AX))T + O(Ar) (24)

under the stated assumptions.

Remark 4 The Stratonovitch reformulation of (17) replaces (17a) by
ot \T Y
do, = 2 {(Ax,) odl, — S (4) dt] . (25)
Y

The innovation I; remains as before. See Appendix B of [9] for more details. An
appropriate time discretisation of the innovation-driven term replaces the Kalman
gain (21) by

. B -1
Kusi2 = ou(AX] | )T (y + Atou(AX] | ITAX] /2) : (26)
where
i | T
Xjn =50+ X0, @7

Please note that a midpoint discretisation of the data-driven term in (25) results in

(AX[ DTG = X0 = AxX)TX] L - X7) + (28a)
AT, XD e’ X)) @)

and that
%AT LX) XD e - X~ A;ytr(A), (29)

which justifies the additional drift term in (25). A precise meaning of the approxi-
mation in (29) will be given in Remark 5 below.

Alternatively, if one wishes to explicitly utilise the availability of continuous-time
data X ,T , one could apply the following variant of (20):

on [T Tyt L t
Ops1 = O, + 7/ (AX)'4X] = SK,AX] O, +ml0) A1, (30)
In
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and following the It6/Euler—Maruyama approximation (12), discretise the integral
with a small inner step-size At = At/L, L > 1; thatis,

tn+1 L-1
/ (AxDTax] ~ Y (axhTxt | - xt) 31)
=0

In

with t; = 1, + [ At. We note that

L-1
D_AXDTOG,, = X]) = (AX)T(G = X)) + (320)
=0

L—-1
AT (Z(X; o X;rn) ® (X;H - X;)) ’
=0
(32b)

which is at the heart of rough path analysis [13] and which we utilise in the following
section.

3 Frequentist Analysis

It is well-known that the second-order contribution in (32) leads to a discontinuous
dependence of the integral on the observed X ;L in the uniform norm topology on the
space of continuous functions. Rough path theory fixes this problem by defining
appropriately extended topologies and has been extended to the EnKBF in [9].
In this section, we complement the path-wise analysis from [9] by an analysis
of the impact of second-order contribution on the EnKBF (17) from a frequentist
perspective, which analyses the behaviour of EnKBF over all possible observations
X ;L subject to (2). In other words, one switches from a strong solution concept to
a weak one. While we assume that the observations satisfy (2), throughout this
section, we will analyse the impact of a perturbed observation process on the EnKBF
in Sect. 4.

We first derive evolution equations for the conditional mean and variance under
the assumption that @ is Gaussian distributed with given prior mean mpjor and
variance oprior- It follows directly from (17) that the conditional mean u, = m[6],
that is the mean of ®;, satisfies the SDE

Oy

s = (AxDTax] = (AT (X[ @ XD dr), (33)



Frequentist Perspective on Estimation Using the EnKF 245
which simplifies to
0, )
dus = 2+ ((AXDTaX] =y (ATA) : C ), (34)
4

under the approximation (22). The initial condition is (o = Mmprior- The evolution
equation for the conditional variance, that is the variance of @, is given by

d o2
—or = ——(ATA) : (X] ® X]) (35)
dr y

with initial condition 69 = oprior and which again reduces to

d Utz T
—or=—"-(A"A):C 36)
dr y

under the approximation (22).

We now perform a frequentist analysis of the estimator u; defined by (34) and
(36), that is, we perform a weak analysis of the SDE (34) in terms of the first
two moments of u; [29]. In the first step, we take the expectation of (34) over all
realisations X ,T of the SDE (2), which we denote by

my =R ] (37)

The associated evolution equation is given by

d o lof
S =2 (ATA) - B [X} ® x}] ~2ATA): Cm,, (38)
dr y 14

which reduces to

%m, = % ATA) :Cc( —=my) =0, (ATA) : A+ ADHT 1 —my). (39)

In the second step, we also look at the frequentist variance
T 2
pr=E'"[(uy —m)7]. (40)

Using
lof
Ay —my) = 7’ {(ATA) : (X: ® X — c) dr + yl/z(AXZ)TdW,T} — (41

Oy T
?(A A) : C (uy — my)dt, (41b)
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we obtain
d Oy T
Gh=— WA Cp—a) + (422)
! 4
20 -
—rata:E o @ X! =0 (- m]. (420)

which we simplify to

d
op= % (ATA): C (0, —2p1) = 01 (ATA) : (A + AT V(o —2p)  (43)

under the approximation (22). The initial conditions are mo = mpror and py =
0, respectively. We note that the differential equations (36) and (43) are explicitly
solvable. For example, it holds that

00
T 14 (ATA) : (AT + A)~ Lot

(44)

Ot

and one finds that o, ~ 1/((ATA) : (AT + A)~!¢) for t > 1. It can also be shown
that p; < oy for all r > 0. Furthermore, this analysis suggests that the learning rate
in the stochastic gradient descent formulation (19) should be chosen as

e 1
o = mln{a, TEAT e A)lt}, (45)

where @ > 0 denotes an initial learning rate; for example @ = op.

We finally conduct a formal analysis of the ensemble Kalman filter time-stepping
(20) and demonstrate that the method is first-order accurate with regard to the
implied frequentist mean m;. We recall (24) and conclude from (20) that the implied
update on the variance o, satisfies

2
Onil = 0 — 2L (ATA) - C AL + O(AD), (46)
y

which provides a first-order approximation to (36).
We next analyse the evolution equation (34) for the conditional mean w; and its
numerical approximation

tn =t + Ko [(X] = XD) = paaX] A 47)

arising from (20). Here we follow [13] in order to analyse the impact of the data X ;
on the estimator. An in-depth theoretical treatment can be found in [9].
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Comparing (47) to (34) and utilising (24), we find that the key quantity of interest
is

. Iyl
Tp ey = [ (Ax)HTax;, (48)
t)l

which we can rewrite as

B =AT X @X], D+AT X

(49)

In+1 Iny1 "

Here, motivated by (32) and following standard rough path notation, we have used

.
XlnytrH»l = XZH»I - X:;l (50)
and the second-order iterated It6 integral
t ot oyt ;
thstn+1 = / (Xt - th) ® dXt . (51)
T

The difference between the integral (48) and its corresponding approximation in
(47) is provided by AT : XrT,,,zn .1 Dlus higher-order terms arising from (24).

The iterated integral Xjnsfn+l becomes a random variable from the frequentist
perspective. Taking note of (2), we find that the drift, f(x) = Ax, contributes

with terms of order O(Ar?) to X/ and the expected value of X,I) therefore

i tnstnt1 15 In+1
satisfies

EfX! ., 1=0?), (52)

Tnsln+1

since IET[WI:,T] =0fort > t,, and

t oyt At
- [th’ W[n’tn+l]] - I= 0’ (53)

1
]ET il — _ET T
(W ] > (W, 2

+
Iyl In+1 ® th»tn-H

where we have introduced the commutator

.
(Wi, Wr:,tm] =W, ® szstnﬂ - Wt:stn+1 W, (54

Hence we find that, while (47) is not a first-order (strong) approximation of the SDE
(34), the approximation becomes first-order in m; when averaged over realisations
X ;L of the SDE (2). More precisely, one obtains

E'l, 1= (ATA): CAr+ Oar?). (55)

Int+1
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We note that the modified scheme (30) leads to the same time evolution in the
variance o, while the update in u, is changed to

O [ Tax i
o1 = pon + 1 (AX)TdX] — K, AX] pa At (56)
In

This modification results in a more accurate evolution in the conditional mean
Wn, but because of (52) it does not impact to leading order the evolution of the
underlying frequentist mean, m, = Ef[u,]. We summarise our findings in the
following proposition.

Proposition 1 The discrete-time EnKBF implementations (20) and (30) both pro-
vide first-order approximations to the time evolution of the frequentist mean, my,
and the frequentist variance, p;. In other words, both methods converge weakly
with order one.

We also note that the frequentist uncertainty is essentially data-independent and
depends only on the time window [0, T'] over which the data gets observed. Hence,
for fixed observation interval [0, T], it makes sense to choose the step-size At
such that the discretisation error (bias) remains on the same order of magnitude
as p;/ T x o;/ 2, Selecting a much smaller step-size would not significantly reduce
the frequentist estimation error in the conditional estimator 7.

Remark 5 We can now give a precise reformulation of the approximation (29):

%ET[AT:(XT ® X! )]:Aty

Inytn1 Instn+1

tr (A) + O(Ar), (57)

which is at the heart of the Stratonovich formulation (25) of the EnKFB [9].

4 Multi-Scale Data

We now have all the material in place to study the dependency of the EnKBF
estimator on a set of observations X ,(E), € > 0, which approach the theoretical X II
with respect to the uniform norm topology on the space of continuous functions as
€ — 0. Since the second-order contribution in (32), that is (51), does not depend
continuously on such perturbations, we demonstrate in this section that a systematic
bias arises in the EnKBF. Furthermore, we show how the bias can be eliminated
either via subsampling the data, which effectively amounts to ignoring these
second-order contributions, or via an appropriate correction term, which ensures
a continuous dependence on observations X t(e) with respect to the uniform norm
topology. More specifically, we investigate the impact of a possible discrepancy
between the SDE model (1), for which we aim to estimate the parameter 6, and
the data generating SDE (2). We therefore replace (2) by the following two-scale
SDE [17]:
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1/2

dx© = ax©9dr + L mp© ar, (58a)
€
1 .
AP = ——MP© dr + dw,, (58b)
€
where
1 B
M= : 59
(—ﬁ 1 > o2

B =2 and € = 0.01. The dimension of state space is d = 2 throughout this section.
While we restrict here to the simple two-scale model (58), similar scenarios can
arise from deterministic fast-slow systems [24, 7].

The associated EnKBF mean-field equations in the parameter ®;, which we now
denote by @t(g) in order to explicitly record its dependence on the scale parameter
€ < 1, become

de© = ?(Axff’)le,(é’, (60a)
d1© = dx© — % (@}9 + nt“)[e]) Ax©dr, (60b)

with variance
Gt(e) _ 7'[,(6) [(9 _ 77,“)[9])2] 61)

and ®; ~ n,(e). The discrete-time mean-field EnKBF (20) turns into

Int1

1
0 =6 + Kk {(X“) . X§j)) = (@,56’ + n,ﬁ“[@]) AXt(,f)At} (62)
with Kalman gain
-1
K(© = 00X (v + a0 (axiHTAx))) 63)

We also consider the appropriately modified scheme (30):

(€) Int1 1
=6+ 07 /t AX{)Tax(? = SKOAX() (6 +7101) Ar.
' (64)
In order to understand the impact of the modified data generating process on the
two mean-field EnKBF formulations (62) and (64), respectively, we follow [17] and
investigate the difference between X t(e) and X ,T :

o (€)
On+1
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o MW w" Wf‘m M
08 WM\WWWW i \W WM Mwm* V%WWt

o ! ! !
0 0.6 0.7 0.8 0.9 1

Fig. 1 SDE driven by mathematical vs. physical Brownian motion (¢ = 0.01). The top panel
displays both X j (blue) and X ,(6) (red) over the long time interval ¢ € [0, 10], while the lower
panel provides a zoomed in perspective over the interval ¢ € [0, 1]

p12
dx© — xH = Ax© — xhdr + L mP©dr — ' 2aw! (652)

= AX© — xNadr — yl/zdpf). (65b)
When Pt(e) is stationary, it is Gaussian with mean zero and covariance

€
Eqo [ ) ® P(f)] —eM+MH ! = St (66)

Hence P,(e) — 0 ase — 0 and also
x© - x7 (67)

in L? uniformly in 7, provided o (A) c C_ and X((f) = Xg. This is illustrated in
Fig. 1.
In order to investigate the problem further, we study the integral

J(f)

tnytp1 *

41
= / (AX)Tdax© (68)
In

and its relation to (48). As for (48), we can rewrite (68) as

AT (X(G) Xt(:)tn+1)+AT XE:)th'

](5)

Instny1

(69)

We now investigate the limit of the second-order iterated integral

Tnslnt1

Int1
X© = f X ©dx© (70a)
In
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2 [N tntn1 2

1 Il
®X© / (X, dx(] (70b)
In

as € — 0 [17]. Here [., .] denotes the commutator defined by (54).

Proposition 2 The second-order iterated integral Xg,f,)z,,ﬂ satisfies
— ¥ Aty
ggr(l)xtritlﬂrl = thvtn+l + TM (71)

Proof The proof follows [17] and can be summarised as follows:

Int1
Xz(f,)rnﬂ = / X @ dx;® (72a)
ty
el i [ e ©
- / X)  @dx] —y! / X, ®dp, (72b)
In In
tn+|
=X} o — V'K, @ P+ f xXO P (720
t71
. tn+1 yl/z
= X} g +7'2 / {Axt‘” + TMP,("} ® POdr (72d)
ty
. At
- X!+ T’/M Estat [P,f) ® P,ff)] (72€)
Aty
=X7 .+ — M. (72f)

As discussed in detail in [9] already, Proposition 2 implies that the scheme (64) does
not, in general, converge to the scheme (64) as ¢ — 0 since

At
—1imJ© 2Ty (73)

Tn+1 e—0 Instnt1 2

T,

This observation suggests the following modification

© © o [T gy Al (€ 4T
(")n+1 = @nf + 7‘[ (AXI ) dXt — 70’}16 A M — (743)
1
SKOAX;) (0 + n,ﬁe)[e]) At (74b)

to (64). Please note that it follows from (70) that
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1
O X0y =5 [ XD ax()
In

In+1/2 Insth+1 2

Int
/ (Ax(f))de(é) AT (X(E)
In
(75)
Proposition 3 The discrete-time EnKBF (62) converges to (20) for fixed At as € —
0. Similarly, (74) converges to (30) under the same limit.

()

Proof The first statement follows from o, * = oy, the limiting behaviour (67), and

lim K(© = K,,. (76)

e—0

The second statement additionally requires (73) to be substituted into (74) when
taking the limit € — O.

Remark 6 The analogous adaptation of (74) to the gradient descent formulation
(19) with X ,T replaced by X ,(E) becomes

Int1 At
4
'), =6 + ( / (Ax;) X — AT (772)
14 tn
0 (AX, T AX( Ar). (77b)

Alternatively, subsampling the data can be applied which leads to the simpler
formulation

9(5)

n+1 — tht1

— g 4 (AX,‘j))T ((X(E) Xf?)—@,ﬁ“AXf?At). (78)

Remark 7 A two-scale SDE, closely related to (58), has been investigated in [8] in
terms of the time integrated autocorrelation function of P,(E) and modified stochastic
integrals. In our case, the modified quadrature rule, here denoted by ¢, has to satisfy

tit1 Tnt1
/ (AX)T o dx] = lim / (AX{)Tdx, (79)
1, In

n

and it is therefore related to the standard It6 integral via

tn+1 T T t’l .’. ty
/ (AX)HT o dX] :/ Ax)HTax] + 5 AT M. (80)
I In

Hence M playes the role of the integrated autocorrelation function of Pt(é) in
our approach. We note that the modified quadrature rule reduces to the standard
Stratonovitch integral if either § = 0 in (59) or A is symmetric. While the results
from [8] could, therefore, also be used as a starting point for discussing the induced
estimation bias, practical implementations would still require knowledge of the
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integrated autocorrelation function of P,(e) or, equivalently, the estimation of M in
addition to observing X t(e). We address this aspect next.

The numerical implementation of (74) requires an estimator for the generally

unknown M in (73). This task is challenging as we only have access to Xt(é)
without any explicit knowledge of the underlying generating process (58). While
the estimator proposed in [9] is based on the idea of subsampling the data, the
frequentist perspective taken in this note suggests the alternative estimator Meg
defined by

At
TyMest = Ef X, 1, (81)

Inslnt1

which follows from (72f) and (52). That is, Ef[X| , ] = O(Ar?) for At

thn-H
sufficiently small. Note that second-order iterated integral X ,(’i),w , satisfies (70) and
is therefore easy to compute. In practice, the frequentist expectation value can be

replaced by an approximation along a given single observation path X ,(E) ,t€[0,T],
under the assumption of ergodicity.

An appropriate choice of the outer or sub-sampling step-size At [27] constitutes
an important aspect for the practical implementation of the EnKBF formulation (62)
for finite values of ¢ > 0 [26]. Consistency of the second-order iterated integrals
[13] implies

(€) _ w®© (€) (€) (€)
thvtn+2 - ths[rH»l + th+la[n+2 + Xtﬂvtn+l ® th+ls[n+2' (82)
A sensible choice of At is dictated by
(€) (€) 2
ET I:thesanrl ® Xf)le+lstn+2:| = O(At ) ’ (83)

that is, the sub-sampled data X ,(:) behaves to leading order like solution increments
from the reference model (2) at scale Ar independent of the specific value of €. Note
that, on the other hand,

Ef [X<e> ® X©

T, Ti+1 T+1,T1+2

] — O ATY) (84)

for an inner step-size At ~ €. In other words, a suitable step-size At > 0 can be
defined by making

h(AL) := A2 HE? [X}j},

n+1

| (85)

Tn+1 ,l‘n+2j|

as small as possible while still guaranteeing an accurate numerical approximation
in (62).
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Remark 8 The choice of the outer time step At is less critical for the EnKBF
formulation (74) since it does not rely on sub-sampling the data and is robust
with regard to perturbations in the data provided the appropriate M is explicitly
available or has been estimated from the available data using (81). Furthermore, if
A is symmetric, then it follows from (75) and the skew-symmetry of the commutator
[., .] that

In+1
/t’ | AxXHTax© = a: (x, ,@ X, ). (86)
which can be used in (74). The same simplification arises when M is symmetric.
This insight is at the heart of the geometric rough path approach followed in [9]
and which starts from the Stratonovich formulation (25) of the EnKBE. See also
[28] on the convergence of Wong—Zakai approximations for stochastic differential
equations. In all other cases, a more refined numerical approximation of the data-
driven integral in (74) is necessary; such as, for example, (31). For that reason, we
rely on the It6/Euler—-Maruyama interpretation of (68) in this note instead, that is the
approximation (12).

5 Numerical Example

We consider the linear SDE (2) with y = 1 and

—1/1-1
A=7(11>. (87)

We find that C = I and ATA = 1/21. Hence (ATA) : C = 1, and the posterior
variance simply satisfies o; = 0o/(1 + oot) according to (44). We set mprior = 0
and opior = 4 for the Gaussian prior distribution of @, and the observation interval
is [0, T] with T = 6. We find that o7 = 0.16. Solving (39) for given o; with initial
condition mgy = 0 yields

Oy

mp=1—— (88)
00

and m7 = 0.96. The corresponding curves are displayed in red in Fig. 2.

We implement the EnKBF schemes (20) and (30) with 7, = n At. The inner
time-step is At = 10~* while Ar = 0.06, that is, L = 600. We repeat the
experiment N = 10* times and compare the outcome with the predicted mean value
of mr = 0.96 and the posterior variance of or = 0.16 in Fig.2. The differences
in the computed time evolutions of m; and p; are rather minor and support the
idea that it is not necessary to assimilate continuous-time data beyond Ar. We
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Fig. 2 (a-b) Frequentist mean, m, and variance, p;, from EnKBF implementation (20) with step-
size At = 0.06; (c—d) Same results from EnKBF implementation (30) with inner time-step At =
At /600. We also display the curves arising for o; and m; from the standard Kalman theory using
the approximation (22). Note that the posterior variance, o;, should provide an upper bound on the
frequentist uncertainty p;
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Fig. 3 Same experimental setting as in Fig. 2 but with the data now generated from the multi-scale
SDE (58). Again, subsampling the data in intervals of At = 0.06 and high-frequency assimilation
with step-size At = 10~ lead to very similar results in terms of their frequentist means and
variances

also find that the simple prediction (88), based on standard Kalman filter theory,
is not very accurate for this low-dimensional problem (d = 2). The corresponding
approximation for o; provides, however, a good upper bound for p;.

We now replace the data generating SDE model (2) by the multi-scale formula-
tion (58) with € = 0.01 and B = 2. This parameter choice agrees with the one used
in [9]. We again find that assimilating the data at the slow time-scale Ar = 0.06
leads to very similar results obtained from an assimilation at the fast time-scale
At = 107* with the EnKBF formulation (74), provided the correction term
resulting from the second-order iterated integral (73) is included (See Fig. 3). We
also verified numerically that A = 0.06 constitutes a nearly optimal step-size in the
sense of making (85) sufficiently small while maintaining numerical accuracy. For
example, reducing the outer step-size to At = 0.02 leads to 4(0.02) — k(0.06) =~ 10
in (85).
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6 Conclusions

In this follow-up note to [9], we have investigated the impact of subsampling and/or
high-frequency data assimilation on the corresponding conditional mean estimators,
WUz, both for data generated from the standard SDE model and a modified multi-scale
SDE. A frequentist analysis supports the basic finding that both approaches lead to
comparable results provided that the systematic biases due to different second-order
iterated integrals are properly accounted for. While the EnKBF is relatively easy to
analyse and a full rough path approach can be avoided, extending these results to
the nonlinear feedback particle filter [26, 9] will prove more challenging. Extensions
to systems without a strong scale separation [4, 31] and applications to geophysical
fluid dynamics [22, 12] are also of interest. In this context, the approximation quality
of the proposed estimator (81) and the choice of the step-size Ar following (85) (and
potentially At) will be of particular interest. Finally, while we have investigated the
univariate parameter estimation problem, a semi-parametric parametrisation of the
drift term f in (1), such as random feature maps [21], lead to high-dimensional
parameter estimation problems and their statistics [19, 20]. This provides another
fertile direction for future research.

Acknowledgments SR has been partially funded by Deutsche Forschungsgemeinschaft (DFG)—
Project-ID 318763901—SFB1294 and Project-ID 235221301—SFB1114. He would also like to
thank Nikolas Niisken for many fruitful discussions on the subject of this paper.

References

1. A. Abdulle, G. Garegnani, G. A. Pavliotis, A. M. Stuart, and A. Zanoni. Drift estimation
of multiscale diffusions based on filtered data. Foundations of Computational Mathematics,
published online 2021/10/13: in press, 2021. https://doi.org/10.1007/s10208-021-09541-9.

2. Y. Ait-Sahalia, P. A. Mykland, and L. Zhang. How often to sample a continuous-time process
in the presence of market microstructure noise. The Review of Financial Studies, 18: 351-416,
2005.

3. J. Amezcua, E. Kalnay, K. Ide, and S. Reich. Ensemble transform Kalman-Bucy filters. Q.J.R.
Meteor. Soc., 140: 995-1004, 2014.

4. L. Arnold. Hasselmann’s program revisited: The analysis of stochasticity in deterministic
climate models. In Stochastic Climate Models, pages 141-158. Birkhduser Basel, 2001. https://
doi.org/10.1007/978-3-0348-8287-3.

5. R. Azencott, A. Beri, A. Jain, and I. Timofeyev. Sub-sampling and parametric estimation for
multiscale dynamics. Communications in Mathematical Sciences, 11: 939-970, 2013.

6. A.Bain and D. Crisan. Fundamentals of Stochastic Filtering, volume 60 of Stoch. Model. Appl.
Probab. Springer, New York, 2009. https://doi.org/10.1007/978-0-387-76896-0.

7. P. Bélint and 1. Melbourne. Statistical properties for flows with unbounded roof function,
including the Lorenz attractor. Journal of Statistical Physics, 172: 1101-1126, 2018. https://
doi.org/10.1007/s10955-018-2093-y.

8. S.Bo and A. Celani. White-noise limit of nonwhite nonequilibrium processes. Physical Review
E, 88: 062150, 2013. https://doi.org/10.1103/PhysRevE.88.062150.



 16426 37781
a 16426 37781 a
 
https://doi.org/10.1007/s10208-021-09541-9

 32220 45529 a 32220 45529
a
 
https://doi.org/10.1007/978-3-0348-8287-3
https://doi.org/10.1007/978-3-0348-8287-3

 12965 51064 a 12965 51064
a
 
https://doi.org/10.1007/978-0-387-76896-0

 32220 53278 a 32220 53278 a
 
https://doi.org/10.1007/s10955-018-2093-y
https://doi.org/10.1007/s10955-018-2093-y

 7566 56599 a 7566 56599 a
 
https://doi.org/10.1103/PhysRevE.88.062150

Frequentist Perspective on Estimation Using the EnKF 257

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

M. Coghi, T. Nilssen, N. Niisken, and S. Reich. Rough McKean—Vlasov dynamics for robust
ensemble Kalman filtering, 2021. arXiv:2107.06621.

C. Cotter and S. Reich. Ensemble filter techniques for intermittent data assimilation. Radon
Ser. Comput. Appl. Math., 13: 91-134, 2013. https://doi.org/10.1515/9783110282269.91.

D. Crisan, J. Diehl, P. K. Friz, H. Oberhauser, et al. Robust filtering: correlated noise and
multidimensional observation. The Annals of Applied Probability, 23: 2139-2160, 2013.

J. Culina, S. Kravtsov, and A. H. Monahan. Stochastic parameterization schemes for use in
realistic climate models. Journal of the Atmospheric Sciences, 68: 284 — 299, 2011. https://doi.
org/10.1175/2010JAS3509.1.

A. M. Davie. Differential equations driven by rough paths: An approach via discrete approx-
imation. Applied Mathematics Research eXpress, 2008, 2008. https://doi.org/10.1093/amrx/
abm009. abm009.

J. Diehl, P. Friz, and H. Mai. Pathwise stability of likelihood estimators for diffusion via rough
paths. The Annals of Applied Probability, 26: 2169-2192, 2016. https://doi.org/10.1214/15-
AAP1143.

G. Evensen. Data assimilation. Springer-Verlag, Berlin, second edition, 2009. ISBN 978-3-
642-03710-8. https://doi.org/10.1007/978-3-642-03711-5.

P. Friz and M. Hairer. A course on rough paths. Springer-Verlag, 2020.

P. Friz, P. Gassiat, and T. Lyons. Physical Brownian motion in a magnetic field as a rough path.
Transactions of the American Mathematical Society, 367: 7939-7955, 2015.

A. Garbuno-Inigo, N. Niisken, and S. Reich. Affine invariant interacting Langevin dynamics
for Bayesian inference. SIAM J. Appl. Dyn. Syst., 19: 1633-1658, 2020. https://doi.org/10.
1137/19M1304891.

S. Ghosal and A. van der Vaart. Fundamentals of Nonparametric Bayesian Inference.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2017. https://doi.org/10.1017/9781139029834.

E. Giné and R. Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CB0O9781107337862.
G. A. Gottwald and S. Reich. Supervised learning from noisy observations: Combining
machine-learning techniques with data assimilation. Physica D: Nonlinear Phenomena, 423:
132911, 2021. ISSN 0167-2789. https://doi.org/10.1016/j.physd.2021.132911.

K. Hasselmann. Stochastic climate models Part 1. Theory. Tellus, 28: 473—485, 1976. https://
doi.org/10.1111/j.2153-3490.1976.tb00696.x.

N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North
Holland Publishing Company, Amsterdam-New York, 2nd edition, 1989.

D. Kelly and I. Melbourne. Deterministic homogenization for fast-slow systems with chaotic
noise. Journal of Functional Analysis, 272: 4063-4102, 2017. https://doi.org/10.1016/j.jfa.
2017.01.015.

Y. A. Kutoyants. Statistical inference for ergodic diffusion processes. Springer Science &
Business Media, 2013.

N. Niisken, S. Reich, and P. J. Rozdeba. State and parameter estimation from observed signal
increments. Entropy, 21 (5): 505, 2019. https://doi.org/10.3390/e21050505.

A. Papavasiliou, G. Pavliotis, and A. Stuart. Maximum likelihood estimation for multiscale
diffusions. Stochastic Processes and their Applications, 19: 3173-3210, 2009.

S. Pathiraja. L2 convergence of smooth approximations of stochastic differential equations
with unbounded coefficients, 2020. arXiv:2011.13009.

S. Reich and P. Rozdeba. Posterior contraction rates for non-parametric state and drift estima-
tion. Foundation of Data Science, 2: 333-349, 2020. https://doi.org/10.3934/fods.2020016.

J. Sirignano and K. Spiliopoulos. Stochastic gradient descent in continuous time. SIAM J.
Financial Math., 8: 933-961, 2017. https://doi.org/10.1137/17M1126825.

J. Wouters and G. A. Gottwald. Stochastic model reduction for slow-fast systems with moderate
time scale separation. Multiscale Modeling & Simulation, 17: 1172-1188, 2019.



 16531 3014 a 16531 3014 a
 
https://doi.org/10.1515/9783110282269.91

 30782 7442 a 30782 7442 a
 
https://doi.org/10.1175/2010JAS3509.1
https://doi.org/10.1175/2010JAS3509.1

 23769 10763 a 23769 10763
a
 
https://doi.org/10.1093/amrx/abm009
https://doi.org/10.1093/amrx/abm009

 24654 14084 a 24654 14084
a
 
https://doi.org/10.1214/15-AAP1143
https://doi.org/10.1214/15-AAP1143

 4768 17405 a 4768 17405
a
 
https://doi.org/10.1007/978-3-642-03711-5

 28107 22940
a 28107 22940 a
 
https://doi.org/10.1137/19M1304891
https://doi.org/10.1137/19M1304891

 1789 27367 a 1789 27367
a
 
https://doi.org/10.1017/9781139029834

 17485 29581 a 17485
29581 a
 
https://doi.org/10.1017/CBO9781107337862

 11904 32902 a 11904 32902 a
 
https://doi.org/10.1016/j.physd.2021.132911

 32220 34009 a 32220
34009 a
 
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x

 24248 39544
a 24248 39544 a
 
https://doi.org/10.1016/j.jfa.2017.01.015
https://doi.org/10.1016/j.jfa.2017.01.015

 14500 45079 a 14500 45079 a
 
https://doi.org/10.3390/e21050505

 19411 51720 a 19411
51720 a
 
https://doi.org/10.3934/fods.2020016

 13064 53934 a 13064
53934 a
 
https://doi.org/10.1137/17M1126825

258 S. Reich

Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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