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Abstract. Apple segmentation is an important part of the automatic
picking system of apple plantation. However, due to the complexity of
apple orchard environments, including light change, branch and leaf
occlusion and fruit overlap, the segmentation accuracy of the existing
methods is limited, which affects the large-scale application of the auto-
matic picking system. To solve these problems, this paper proposes a
new apple instance segmentation method based on a dual attention-
guided network. Firstly, the image is preprocessed by the Image Cor-
rection Module (ICM) to improve the robustness of the network to the
natural environment. Secondly, the Multi-Scale Enhanced Fusion Feature
Pyramid Network (MSEF-FPN) is used as the feature extraction mod-
ule to enhance the ability of image feature extraction, so as to reduce
the interference of complex background on apple instance segmentation
results without increasing the amount of calculation. Then, a new Dual
Attention-Guided Mask (DAGM) branch is added to focus on the pixels
of irregular occlusion and overlapping objects, and accurate pixel-level
mask segmentation is carried out in the detection rectangular bounding
box. Finally, this study carried out instance segmentation experiments on
apples with different lighting conditions and different occlusion. The test
results show that the model proposed in this paper has excellent detec-
tion accuracy, robustness and real-time, and has important reference
value for solving the problem of accurate fruit recognition in complex
environments.

Keywords: Apple segmentation · Complex environments · Feature
extraction

1 Introduce

With the wide application of deep learning in the field of computer vision
[1,2], increasingly researchers are engaged in intelligent agriculture-related work.
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At present, practical problems in the agricultural production processes (such as
pest prediction and monitoring, automatic harvest, etc.) have been solved by
many network model methods. However, with the improvement in operating effi-
ciency and upgrading of agricultural equipment, the requirements for real-time
performance and accuracy of operating machines have also gradually increased
[3–5], and the requirements for agricultural equipment vision system are also
higher and higher [6,7]. In the complex orchard environment, the results of target
fruit detection [8,9] and segmentation [10–12] limit the performance of the visual
system. Such as apple density (Fig. 1)(a)), illumination angle change (Fig. 1)(b)),
branch and leaf occlusion (Fig. 1)(c)) and overlapping apple (Fig. 1)(d)) will have
a certain influence on target detection, which brings great difficulties and chal-
lenges to the accurate recognition of fruits.

Fig. 1. Illustration of our framework. (a) Apple density; (b) illumination angle change;
(c) branch and leaf occlusion; (d) overlapping apple

To address these deficiencies while considering the above factors, an effective
and accurate Apple Instance Segmentation method based on a dual attention-
guided network is proposed to improve the segmentation accuracy of apple in
complex environments. More precisely, the main contributions of this paper are
summarized as follows:

(1) Aiming at the problems of illumination, occlusion and overlap in a complex
environments, an anchor-free apple instance segmentation method based on
dual attention-guided.

(2) An adaptive Image Correction Module (ICM) is introduced to enhance the
robustness of the image to natural illumination and contrast changes.

(3) The Multi-Scale Enhancement Fusion (MSEF) module is introduced into the
feature pyramid network (FPN). Its purpose is to enhance the feature extrac-
tion ability of the image and reduce the interference of complex background
to apple detection results without increasing the amount of calculation.

(4) To improve the segmentation accuracy of overlapping and occluding apples
in complex environments, a new branch of Dual Attention-Guided Mask
(DAGM) is added to deal with fruit occlusion and overlap.
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2 Related Works

Traditional machine learning methods have made important contributions to
fruit detection and segmentation [13–15]. A yield prediction strategy based on
texture, fruit color and edge shape was proposed, and the recognition rate of
green apples under natural light was close to 95% [16]. Tian used RGB spatial
information to locate the center and radius of the apple, and combined with
depth image information to match the target area [17]. These methods are not
sufficient to identify overlapping or clustered fruits. To solve the above problems,
a robust apple image segmentation algorithm based on a fuzzy reasoning system,
which improves the generalization ability of segmentation [18]. However, due to
the lack of in-depth analysis of image features, the above methods are usually
poor in robustness and adaptability in complex environments with occlusion and
overlapping.

With the rapid development of deep learning theory, an increasing number
of deep learning methods have been proposed for agricultural fruit detection
[19–24]. Liu used the improved single-stage detector Yolo-V3 to conduct tomato
positioning detection in complex scenes [25]. Jia combined DenseNet and ResNet
as the feature extraction backbone of the original model to improve the Mask R-
CNN, greatly improving the identification accuracy of Apple in the overlapping
and occlusion environments [4]. Compared with traditional visual methods, the
accuracy and applicability of the recognition model based on deep learning have
been greatly improved. However, these methods usually require many computing
and storage resources, which will seriously affect the segmentation speed and
operation stability of agricultural equipment in practical applications.

3 Methods

Fig. 2. Illustration of our framework. (a) Image Correction Module (ICM); (b) Anchor-
free Detection Module; (c) Dual Attention-guided Mask (DAGM) Module

To improve the accuracy and efficiency of apple instance segmentation in complex
environments, an accurate and efficient anchor-free apple instance segmentation
method based on dual attention-guided network. The framework of our method is
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shown in Fig. 2, which includes three parts: (a) Image Correction Module (ICM);
(b) Anchor-free Detection Module; (c) Dual Attention-guided Mask (DAGM)
Module.

3.1 Image Correction Module (ICM)

To cope with the challenge of illumination change, ICM is used to transform
images under different illuminations into similar illumination. The module fol-
lows IBNNet [26] and realizes image adaptive correction by constructing an
encoding and decoding network (as shown in Fig. 3). First, the convolutional
neural network is used to extract image features, and then deconvolution is used
as a decoder for resampling to restore and correct the image with the same size
as the input image. In the deconvolution process, network parameters are trained
to ensure that the corrected images have similar illumination intensities.

Fig. 3. Schematic diagram of the image correction module (ICM).

ICM is built on a trainable network, allowing for end-to-end training and
adaptive correction of images rather than increasing or decreasing brightness at
a specific rate during data enhancement. The basic network structure of ICM
is shown in Fig. 3(a). The underlying features of convolutional neural network
reflect the appearance features of objects, such as texture and color, while the
high-level features reflect the semantic information of the target. Therefore, by
adding image normalization in the lower layer of the network, the distribution
of image data under different illumination can be adjusted to a similar area,
increasing the adaptability of the network to illumination, and thus reducing
the influence of illumination changes.
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Fig. 4. Architecture of bounding box pre detection. (a) MSEF-FPN Backbone; (b)
FCOS Boxes Prediction Head; (c) Multi-scale enhanced feature module (MSEF).

3.2 Feature Extraction MSFM-FPN Detection Network

Our model uses FCOS (shown in Fig. 4) as the basic detection model and
improves it. The introduction of MSFM into the lateral connection in FPN solves
some defects of FPN. For example, direct fusion of these features may be reduce
the representation of multi-scale features due to the inconsistency of seman-
tic information. In addition, in the process of picking, due to the interference of
shooting distance, occlusion, or overlap, the proportion of the target in the image
is insignificant. After the deep convolution operation on the image, the target
feature map will be changed to a small extent, which greatly reduces the spatial
information contained in the feature map, thus reducing the detection accu-
racy. Therefore, to gather multi-scale features and maintain a high-resolution
representation in the process of convolution, MSFM is introduced at the lateral
connection of FPN to improve the feature extraction capability of the image.
Figure 4(c) shows the overall content of MSFM after improvement.

First, we use two weight transformations WαXq And WβXp to reduce the
number of channels and then reduce the amount of calculation. Multiply the
two output matrices (where WαXq will be transposed), calculate the similarity,
and then perform the softmax operation to obtain the position attention, that
is, the normalized correlation between each pixel in the current feature map and
all other position pixels. Finally, by multiplying with WjXp matrix, the position
attention mechanism is applied to the corresponding position of each feature
graph of all channels. Restore the output channel through 1× 1 convolution to
ensure that the input and output scales are exactly the same. The corresponding
nonlocal operations are shown in Eqs. (1), (2) and (3).

f(xq, xp) = e(WαXq)
T (WβXp) (1)
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C(x) =
∑

∀p

f(xq, xp) (2)

yq =
1

C(x)
f(xq, xp)(WjXp) = softmax((WαXq)T (WβXp)(WjXp)) (3)

3.3 Dual Attention-Guided Netword for Instance Segmentation

Fig. 5. The architecture of DAGM.

Considering that fruits are located in complex environments, many interfer-
ence factors greatly reduce the segmentation effect of the model. Therefore, we
designed a Dual Attention-guided Mask module (DAGM), as shown in Fig. 5.
Compared with the general segmentation framework, this method has obvious
advantages in the segmentation of small objects with serious occlusion or overlap.
At the front-end of the framework, the convolutional network is used for feature
extraction, and at the back end, conditional/Markov random fields are used to
optimize the front end output, and the segmentation results are obtained.

The DAGM branch applies the boundary box predicted by FCOS to fur-
ther predict the segmentation mask of each region of interest (ROI). Firstly, the
predicted ROI is distributed to different FPN feature layers according to the
resolution, and ROI Align is used for feature alignment. This is similar to using
the Mask R-CNN to predict the segmentaion mask. However, the relationship
between the original image resolution and the ROI size must be considered in
order to reasonably allocate the ROI to the feature layer of the corresponding
resolution (considering the FPN multi-scale strategy). Secondly, after extracting
the features in ROI with 14 × 14 resolution in ROI Align, these features are
transmitted to Convolutional Block Attention (CBA) network. Specifically, the
characteristics are divided into maximum pool and average pool to obtain two
groups 1 × 1 × C characteristic matrix and transfer it to MLP, and then add
the two output characteristic matrices to obtain the weight information Chan-
nel Attention (CA) of different channels. The calculation method is shown in
Eq. (4). After CA is multiplied by the input characteristic matrix, the charac-
teristic matrix combined with channel attention is obtained, as shown by Fea-
ture X’ in Fig. 5. Then the feature matrix fused with channel attention is passed
through W ×H × 1, and condense the two feature maps in the depth direction,
and then perform convolution operation to obtain spatial attention (SA) inte-
grating spatial weight information. The calculation method is shown in Eq. (5).



Dual Attention-Guided Network for Anchor-Free Apple Instance 539

In Eq. (5), f7×7 indicates that the size of the pooling kernel is 7× 7. Finally, SA
is multiplied by feature X’ to obtain the feature map Refined Feature X”, which
combines channel andspatial attention information.

CA(X) = Σ(MLP (maxPool(X)) + MLP (avgPool(X))) (4)

SA(X) = σ(f7×7([maxPool(X ′); avgPool(X ′)]) (5)

Then, the obtained enhanced spatial attention feature map is up sampled to
generate a feature map with a resolution of 28×28. The 1×1 convolution kernel
is used to generate the mask of instance segmentation.

3.4 The Loss Functions

The overall loss function Ltotal (as shown in Eq. (6)) of the model is composed
of Lcls, Lreg, Lcenter and Lmask, where Lcls is the classification loss, Lcenter is
the center-ness loss, Lreg is the box regression loss, and Lmask is the mask loss
using the average binary crossentropy loss

Ltotal =
1

Npos

∑

x,y

Lcls(px,y, p∗
x,y) +

λ

Npos

∑

x,y

p∗
xLreg(dx,y, d∗

x,y)

+
β

Npos

∑

x,y

p∗
x,yLcenter(centerx,y, center∗

x,y) + Lmask(sx, s∗
x)

(6)

In Eq. (6), px,y , dx,y and centerx,y are the predicted values of classification
branch, regression branch and centrality branch at the spatial position (x, y).
p∗

x,y , d∗
x,y and center∗

x,y correspond to the training target at the spatial position
(x, y). Among the three loss items, Lreg and Lcenter are only for positive samples,
Npos is the number of positive samples, and λ and β are the balance coefficients
of each loss item.

The classification loss Lcls in Eq. (6) is shown in Eqs. (7) and (8):

Lcls(px,y, p∗
x,y) = −αt(1 − pt

x,y)γ log(pt
x,y) (7)

pt
x,y =

{
px,y if p∗

x,y = 1
1 − px,y otherwise,

αt =

{
α if p∗

x,y = 1
1 − α otherwise

(8)

where α Responsible for balancing the importance between positive and nega-
tive samples, γ responsible for adjusting the rate of weight reduction of simple
samples.

The regression loss Lreg in Eq. (6) is shown in Eq. (9):

Lreg(dx,y, d∗
x,y) = −ln

Intersection(dx,y, d∗
x,y)

Union(dx,y, d∗
x,y)

(9)

where intersection(dx,y, dx, y∗) and Union(dx,y, d∗
x,y) are the intersection area

and combined area between the prediction frame and the real frame respectively.
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The center-ness loss Lcenter in Eq. (6) is shown in Eq. (10):

Lcenter(centerx,y, center∗
x,y) = −(centerx,ylog(center∗

x,y)

+(1 − centerx,y)log(1 − center∗
x,y))

(10)

The mask loss Lmask in Eq. (6) is shown in Eq. (11):

Lmask =
∑

x

−[s∗
xlog(sx) + (1 − s∗

x)log(1 − sx)] (11)

where sx is the probability that the x-th pixel belongs to the target pixel and
s∗

x is the probability that the x-th pixel belongs to the real target pixel.

4 Experiment

4.1 Dataset and Evaluation Metrics

Apple Dataset Acquisition. In this paper, we choose the open dataset Fuji
SFM dataset, and make appropriate modifications to the data set to cooperate
with the experiment of this paper. We select 400 appropriate Apple images from
582 images (the resolution of each image is 5184 × 3456), then cut 15 images
with the resolution of 1024 × 1024 from each image, and get 6000 images with
the resolution of 1024× 1024. Then select the appropriate 1400 images from the
6000 images as the final data set. Finally, in order to make the network model
have high accuracy and robustness, we use the mainstream image annotation
tool labelme to annotate and store the data set manually. Figure 1 shows some
images in the dataset.

Evaluation Metrics. We follow the internationally unified measurement stan-
dards and use the AP (average precision), AP50 (AP for IoU threshold 50%)
and AP75(AP for IoU threshold 75%) to measure the quality of the model.

4.2 Implementation Details

In the training stage, we trained a total of 50 epochs with 200 steps each. And
the initial learning rate is 0.01. The Network parameters are also optimized using
adaptive moment estimation (Adam). The momentum, as well as decay weights,
are 0.9 and 0.0001, respectively.

4.3 Comparative Experiments

In this study, apple fruits with different occlusion and different lighting condi-
tions were detected on the computer workstation. The detection effects of Mask
R-CNN, SOLO [27], PolarMask [28] and our method under the above conditions
were compared, and the performance of the algorithm was evaluated with AP ,
AP50, AP75.
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Comparison Experiment of Overlapping and Branch and Leaf Occlu-
sion. In the natural environment, there will be overlapping fruits and fruits
covered by branches and branches. The contour information of the fruit part is
lost, which increases the difficulty of fruit detection. Therefore, this study tested
the overlapping of fruits and different degrees of branch and stem shielding. The
statistical results are shown in Fig. 6 and Table 1.

(a) Occlusion detection between fruits

(b) Leaf occlusion detection

Fig. 6. Detection effect of 4 algorithms on different occluded apples. (From left to right,
there are pictures of the detection results of Original Image, our Model, Mask R-CNN,
SOLO and Polar Mask)

Table 1. Experimental results of 4 algorithms for images with different occluded apples.

Occlusion category Algorithm AP AP50 AP75

Apple overlap Mask R-CNN 83.2 72.1 64.7

SOLO 86.3 75.7 67.8

PolarMask 86.8 75.5 68.2

Ours 88.1 77.2 69.3

Leaf occlusion Mask R-CNN 81.2 70.3 62.7

SOLO 83.6 74.9 66.8

PolarMask 84.8 74.7 64.2

Ours 85.1 76.8 68.6

As can be seen from Table 1, in the apple overlapping scenario, the AP value
of our algorithm is 4.9%, 5.1% and 4.6% higher than that of Mask R-CNN
respectively. The AP value of the latter two algorithms in both cases is lower
than that of the algorithm in this paper. From the comprehensive results, our
algorithm can be competent in the detection of different occlusion and overlap.
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(a) Apple detection in side light direction

(b) Apple detection in Back light direction

(c) Apple detection in natural light direction

Fig. 7. Detection effect of 4 algorithms on apples under different illumination. (From
left to right, there are pictures of the detection results of Original Image, our Model,
Mask R-CNN, SOLO and Polar Mask)

Comparison Experiment with Different Light. Under the conditions of
natural light, back light and side light, the fruit will be brighter or darker. And
due to the great influence of dense apple samples, dense apple samples will not
be considered when selecting images here.The statistical results are shown in
Fig. 7 and Table 2.

As can be seen from Table 2, the AP value of the improved model in three
different scenarios is higher than that of the other three algorithms. From dif-
ferent scenes, the four algorithms perform best in side light, while the model
performs worst in backlight. Because the texture of the apple is clear under side
light, the surface illumination intensity is uniform, and the backlight condition
will cause some interference to the detection. Overall, our model can adapt to
the influence of lighting conditions on apple surface color, texture features and
contour, and can effectively detect apples in complex images.

4.4 Ablation Experiment

In this section, in order to clarify the impact of image correction module (ICM)
and multi-scale enhaned fusion feature pyramid module (MSEF-FPN) on the
performance of the model, ablation research is carried out, and the role of each
module is analyzed in detail. We gradually introduced our module, tested the AP
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Table 2. Experimental results of 4 algorithms for apples under different illumination.

Illumination angles Algorithm AP AP50 AP75

Side light Mask R-CNN 88.9 80.2 72.7

SOLO 90.2 80.9 73.8

PolarMask 89.8 80.4 73.5

Ours 91.8 82.3 75.6

Back light Mask R-CNN 85.3 78.1 69.3

SOLO 88.6 79.4 71.8

PolarMask 87.9 78.8 71.7

Ours 90.0 80.2 73.6

Natural light Mask R-CNN 86.8 79.6 71.8

SOLO 88.9 80.6 72.3

PolarMask 88.6 80.8 72.6

Ours 90.2 81.8 73.8

value of each combined model, and obtained the experimental results shown in
Table 3. The working mode of each module in the actual environment is discussed
below.

As shown in Table 3, removing ICM will reduce the AP of the model by 1.3%.
This shows that by adding the image correction module, the images under differ-
ent lighting can be normalized to similar data distribution, which is equivalent
to increasing the robustness of the model to complex environmental lighting.
When MSEF-FPN is removed, the AP of the model decreases by 1.5%. This
shows that adding MSEF-FPN can enhance the feature extraction ability of the
image and reduce the interference of complex background to Apple detection
results without increasing the amount of calculation.

Table 3. The results of Ablation experiments.

Method ICM MSEF-FPN AP AP50 AP75

Ours 85.3 80.1 74.0

Ours � 86.6 81.2 75.3

Ours � 86.8 82.0 76.0

Ours � � 88.4 84.2 77.3

5 Conclusion

In this paper, we propose a new instance segmentation method based on dual
attention-guided network for Apple instance segmentation in complex environ-
ments, which solves the constraints of illumination, occlusion and overlapping
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changes in environments, so as to realize the visual guidance of automatic pick-
ing. The CNN model with an image correction module and a instance segmenta-
tion module is constructed to meet the challenges of illumination, occlusion and
overlap in complex environments. Experimental results show that the proposed
algorithm performs better performance than the previous algorithms in instance
segmentation. This enables the model to be deployed on the apple picking robot
detector for automatic Apple detection.
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