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Abstract. Single image dehazing is a key prerequisite of high-level computer
vision tasks since degraded images seriously affect the recognition ability of com-
puters. Traditional prior-basedmethods conduct favorable dehazing effect but tend
to cause artifacts and color distortions due to inaccurate parameter estimations. By
contrast, recent learning-based methods can provide better color fidelity via the
supervised training of synthetic images. But unfortunately, these methods always
acquire under-dehazed results due to the domain differences between synthetic
hazy images and their real-world ones. To combine the merits of these two cate-
gories, we propose a multi-priors guided dehazing network (MGDNet) based on
knowledge distillation. Specifically, we adopt the dehazed images of dark channel
prior and non-local dehazing prior as fake ground truths, and use them to pretrain
two teacher networks. Then we build a student network based on encoder-decoder
structure, and set up both feature-level andpixel-level knowledge distillation losses
to guide the training process of the student network. Experimental results on some
real-world datasets widely used in recent works demonstrate that ourMGDNet can
generate visually appealing images with more discriminative textures and vivid
color when compared with the state-of-the-arts.

Keywords: Single image dehazing · Knowledge distillation · Multi-priors
guiding

1 Introduction

Particles in the atmosphere absorb and scatter the reflected lights of object and result in
poor image visibility, which hinders the performance of high-level computer vision tasks
[1]. Hence, as a key prerequisite, single image dehazing has been widely studied in the
latest decade, which can be roughly divided into model-based methods and model-free
methods [2].

Traditional model-basedmethods estimate the unknown atmospheric light and trans-
mission maps by the statistical rules of haze-free images, which include dark channel
prior (DCP) [3], color-lines prior (CLP) [4], color attenuation prior (CAP) [5], and
non-local dehazing (NLD) [6]. These methods achieve favorable dehazing effect and
generalization ability, but tend to cause some color distortion and artifacts since unilat-
eral hypothesis cannot maintain the accuracy of parameter estimations in various scenes.
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To this end, recent model-based methods utilize convolutional neural networks (CNNs)
to estimate the atmospheric light and transmission maps respectively [7, 8] or simultane-
ously [9, 10]. These learning-based methods estimate parameters by data driving rather
than man-made priors, and thus acquire more visually pleasing images. However, the
atmospheric scattering model is just an ideal model, which influences the convergence
of networks and restricts the final dehazing performance [11].

More recently, learning-based methods [12–16] tend to avoid the atmospheric scat-
tering model and adopt an end-to-end training strategy (directly building the mapping
between hazy images and haze-free images) to acquire high quality results. However,
due to the huge differences between the features of hazy images and their haze-free ones,
model-free methods always expand the network depths and scales to enhance feature
extraction ability, which results in large computational consumption. Moreover, these
methods fail to dehaze when applied to real scenes, mainly because networks trained on
synthetic dataset cannot fit in uneven haze distribution and complex illumination existing
in real scenes. To this end, some works [17–19] start to combine prior-based methods
and model-free methods to reduce the differences between synthetic domain and real
domain, which achieve better dehazing effect when applied to real-world images.

In this paper, we propose a multi-priors guided dehazing network (MGDNet) based
on knowledge distillation. Different from a recent work [20], we pretrain two teacher
networks byminimizing the losses betweenhazy images and supervised images (dehazed
images of dark channel prior and non-local dehazing), and then teach a student network
to learn their features by minimizing both feature-level and pixel-level distillation loss.
Considering that the supervisions of teacher networks contain some color distortion, we
utilize discrete wavelet transform (DWT) to get the high-frequency and low-frequency
of the outputs of teacher networks and only use the high-frequency part to build the
pixel-level distillation loss.

Comparative experiments on some real-world hazy images show that our MGDNet
performs favorably against the state-of-the-arts, which validates that guiding with the
partially correct teacher networks (the supervisions are dehazed images ofDCP andNLD
rather than ground truths) can effectively improve the dehazing ability in real scenes.
In addition, these added negative information from teacher networks can be refined by
the training process and the student network finally acquire dehazed images with more
vivid color.

2 Related Work

2.1 Model-Based Methods

Model-based methods estimate the atmospheric light and transmission maps, and then
restore dehazed images by atmospheric scattering model. Early model-based methods,
also called prior-based methods, adopt statistical assumptions concluded from haze-free
images to estimate the atmospheric light and transmission maps. For example, dark
channel prior (DCP) [3] assumes clear RGB images have low intensity in at least one
channel, and quickly acquires these two parameters based on the theory. Color-lines prior
(CLP) [4] constructs a local formation model to recover the transmission map based on
the lines offset. In addition, Color attenuation prior (CAP) [5] builds a linear relationship
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among color, haze concentration and scene depth to estimate the atmospheric light and
transmissionmaps. Differently, another methodNLD [6] estimates the transmissionmap
by hundreds of distinct colors. Above prior-based methods dehaze favorably and have
strong generalization in real scenes but tend to cause artifacts, halos and color distortion
since unilateral assumption cannot estimate accurate atmospheric light and transmission
maps in various scenes. To this end, recent model-based methods tend to estimate the
atmospheric light and transmission maps by convolutional neural networks (CNNs). For
example, some works estimate transmission maps by stacked CNN [7] or multiscale
CNN [8]. Moreover, to avoid the cumulative error of two times estimation, AOD-Net
[9] sets a linear equation to combine the atmospheric light and transmission map into
a parameter K(x). Another method DCPDN [10] embeds the atmospheric scattering
model into CNN, which directly acquires dehazed images by the joint estimation of
atmospheric light and transmission maps. However, the atmospheric scattering model,
as a simplified mathematical model, cannot completely replace the formation process of
haze. Hence, model-based methods cannot acquire high quality results and still suffer
from some color and illumination changes.

2.2 Model-Free Methods

Model-free methods, also called end-to-end methods, directly establish the mapping
between hazy images and clear images instead of using atmospheric scattering model.
Due to the huge gap between the features of hazy images and clear images, model-free
methods often increase network depths and scales to enhance the feature extraction abil-
ity. For example, FFA [12] andDuRN [13] build a deep network based on residual blocks,
and directly recover dehazed images by merging features from convolutional layers in
different depths. GFN [14] utilizes white balance (WB), contrast enhancing (CE), and
gamma correction (GC) to derive three subimages of the hazy input, and directly recov-
ers dehazed images by using learned confidence maps to fuse these three subimages.
Moreover, EPDN [15] acquires high contrast results by the adversarial training between a
multiscale generator and discriminator. MSBDN [16] adopts back-projection feedback
to connect non-adjacent layers, which reduces the loss of spatial information during
sampling and improves the resolution of restored results. However, due to lacking of the
knowledge to real-world haze, above networks conduct poor dehazing performance in
real scenes. To this end, DANet [17] builds a bidirectional translation network to solve
the domain adaptation problem, and acquires visually pleasing results on both synthetic
and real scenes. RefineDNet [18] embeds DCP in CNN-based method, and adopts an
adversarial training between unpaired real-world images to improve dehazing effect in
both synthetic and real scenes. PSD [19] uses multiple prior losses to guide the train-
ing process, which acquires high contrast results in real scenes but tend to overenhance
images. Differently, KDDN [20] pretrains a reconstruction network of clear images, and
adopts the intermediate features to guide the training process of a dehazing network.

3 Proposed Method

As shown in Fig. 1, considering that dark channel prior (DCP) and non-local dehazing
(NLD) dehaze favorably in real scenes, we dehaze images by these two prior-based
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methods and use them as fake ground truths to pretrain two teacher networks. During
the training process of student network, we use the features of teacher networks to guide
the student network, and make it achieve favorable dehazing effect in real scenes.

Fig. 1. The architecture of the proposed MGDNet

3.1 Teacher Networks

The DCP and NLD teacher networks have the same architecture, which are based on
classic encoder-decoder architecture. As shown in Fig. 1, we first extract features on four
scales by an encoder E containing four convolutions. The first convolution preliminarily
extracts features of hazy inputs and change the shape from256×256×3 to 256×256×64,
and the following three convolutions sequentially adjust the shape of features to 128 ×
128×128, 64×64×256 and 32×32×512, respectively. Moreover, considering paper
[21] has shown that applying dilated convolutions into bottleneck layers of encoder-
decoder structure can effectively alleviate the generation of artifacts. Hence, we design
smoothed dilated residual block (SDRB) and add two SDRBs in the bottleneck layers
of these two teacher networks. After that, a decoder D, consists of four deconvolutions,
unsamples features to the shape of the corresponding layer in the encoder E, and finally
outputs the dehazed images.

As shown in Fig. 2(a), the SDRB consists of two smoothed dilated convolutions
(SDC) [22] and a residual connection [23], and each SDC contains a ShareSepConv,
a 3 × 3 convolution and a ReLU function. The ShareSepConv (Separable and Shared
Convolution) performs as a preprocessing module, which builds a connection between
non-adjacent regions and solves the spatial discontinuity caused by the expansion of
receptive field. The theories and details of ShareSepConv can be seen in paper [22].
The 3× 3 convolution sets the dilation as 2 to expand the receptive fields, and enhances
the perception ability to global features. Finally, the ReLU function improves network
nonlinearity and the residual connection after two SDCs enhances feature flow.
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Fig. 2. The structure of SDRB and RDB.

3.2 Student Networks

The student network is a dehazing network trained by synthetic hazy images, which has
the similar structures to the teacher networks. As shown in Fig. 1, the student network
is still based on a encoder-decoder structure but two residual dense blocks (RDBs)
are applied to the bottleneck layers. RDB [24] combines the advantages of residual
connection and densely connected network [25], which extracts structures effectively
and helps the feature backpropagation. As shown in Fig. 2 (b), these two RDBs contain
four 3 × 3 convolutions and one 1 × 1 convolution. All 3 × 3 convolutions are densely
connected to avoid the loss of structure information extracted by shallower layers, and
then the 1 × 1 convolution merges these abundant features to provide clear texture
perception.

3.3 Overall Loss Function

Recent research [26] has shown that the combination of pixel-wise loss and feature-wise
loss can effectively accelerate network training. Hence, for the training of MGDNet, the
overall loss function contains L1 loss, perceptual loss, and distillation loss, which can
be expressed as Eq. (1):

Lloss = L1 + Lper + λLdiss (1)

where L1, Lper and Ldiss denotes the L1 loss, perceptual loss and distillation loss, respec-
tively. λ is a trade-off coefficient to balance the effect of learning-based method and
prior-basedmethod.As shown in Fig. 3, ourmethod can effectively improve the dehazing
effect while maintain the color fidelity when setting λ as 1.

Fig. 3. The results when setting different λ.
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L1 Loss. L1 loss (mean absolute error) can rapidly minimize the feature differences
between hazy images and clear images by per-pixel comparison, thus we add L1 loss for
network training. Different from L2 loss (mean squared error), L1 loss trains networks
more stably, which can be expressed as Eq. (2):

L1 = ‖J − G(I)‖1 (2)

where J represents haze-free images and G(I) represents the dehazed images of student
network.

Perceptual Loss. Perceptual loss [27] compares two images by perceptual and semantic
differences, which effectively helps the network restore more vivid images. In this paper,
we pretrainVGG19 network on the ImageNet and extract the features of the convolutions
in number 2, 7, 15, 21, and 28 (the last convolution of each scale) to calculate loss, which
can be expressed as Eq. (3):

Lper =
5∑

i=1

1

CiHiWi
‖�i(J ) − �i(G(I))‖1 (3)

where J presents clear images andG(I) represents dehazed images generated by student
network. �i(J ) and �i(G(I)) respectively represent the five scales perceptual features
of the dehazed images and clear images extracted from the trained VGG19 network. Ci,
Hi, and Wi represent the number of channels, height, and width of feature maps.

Distillation Loss. As shown in Fig. 1, to make the trained student network conduct
stronggeneralization ability to real scenes,wepretrain two teacher networks byminimize
the L1 loss betweenN (I) (D(I)) and the dehazed images of NLD (DCP) (named as JNLD
(JDCP)), respectively. Then we adopt the pretrained networks to optimize the training
of student network by both of feature-level losses (LN1,LD1,LN2,LD2) and pixel-level
distillation losses (LN3,LD3). For feature-level guiding, we output the features after each
SDRB (RDB) in the teacher networks (student network) by an extra 3 × 3 convolution.
For pixel-level guiding, considering that the supervisions (dehazed images of NLD and
DCP) contain some negative information such as color and illumination distortion, we
adopt discrete wavelet transform (DWT) in paper [28] to distinct the high-frequency
and low-frequency parts of the outputs of teacher networks, and only the high-frequency
images are sent to guide the training process of student network. Hence, the whole
distillation loss can be expressed as Eq. (4):

Ldiss = ‖FNLD1 − FS1‖1 + ‖FDCP1 − FS1‖1 + ‖FNLD2 − FS2‖1 + ‖FDCP2 − FS2‖1
+ ‖DWTh(N (I)) − DWTh(G(I))‖1 + ‖DWTh(D(I)) − DWTh(G(I))‖1 (4)

where FDCP1, FDCP2 and FNLD1, FNLD2 denote the features extracted from each SDRB
of DCP teacher network and NLD teacher network, respectively. FS1 and FS2 denote
the features extracted from each RDB of student network.DWTh(·) is a high pass DWT,
which extracts the structures and textures of input images for pixel-level guiding and
makes the student network G(·) avoid the negative low-frequency information (color
and illumination distortion) from dehazed images N (I) and D(I).
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4 Experiments

In this section, we conduct some experiments on real-world images to show that the
proposed MGDNet performs better than some state-of-the-arts. These methods include
DCP [3], NLD [6], DANet [17], RefineDNet [18], PSD [19] and KDDN [20]. All these
methods are learning-based methods except DCP and NLD, which are two prior-based
methods. Moreover, DANet, RefineDNet and PSD are prior-combined methods, and
KDDN is a dehazing network using knowledge distillation similar to our MGDNet.

4.1 Dataset

To effectively train our MGDNet, we adopt the Indoor Training Set (ITS) in Realistic
Single Image Dehazing (RESIDE) [29], which is a synthetic indoor training set contain-
ing 13990 hazy images and the corresponding haze-free images. We test the MGDNet
and all comparative methods on IHAZE [30] and OHAZE [31] to verify the dehazing
performance, which contains 5 indoor and outdoor paired testing images, respectively.
Moreover, some real-world images in [17] and [32] are also adopted to further verify
the generalization of MGDNet in real scenes.

4.2 Implementation Details

The proposedMGDNet is trained and tested in the PyTorch framework. During the train-
ing, we randomly crop local regions (256 × 256) of input paired images, and randomly
flip or rotate them to enhance the diversity of training dataset. The training batch size is
set to 4, and we train the MGDNet 30 epochs. To accelerate the training process, we use
the Adam optimizer [33] and adopt a default value for the attenuation coefficient β1 and
β2 being 0.9 and 0.999 respectively. Moreover, we set the initial learning rate to 0.0002,
and decrease it to half every five epochs. All the experiments are implemented on a PC
with two RTX 2080Ti GPUs.

4.3 Comparisons with State-of-the-Art Methods

Results on IHAZE and OHAZE. The comparison results are shown in Table 1, where
the values are the average PSNR and SSIM of five indoor and outdoor testing images
of IHAZE [30] and OHAZE [31], respectively. For IHAZE, the proposed MGDNet
achieves the second-best performance of image dehazing in terms of both PSNR and
SSIM. For OHAZE, the proposed MGDNet also achieves the second-best PSNR, and
enhance SSIM by 0.02 when compared with second-best method DANet. These data
show the DANet and our MGDNet conduct better dehazing effect on these two datasets.
Also, we notice that prior-based methods DCP and NLD perform poorly in terms of
both PSNR and SSIM, which shows the generated artifacts and color changes seriously
reduce the quality of the dehazed images.
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Table 1. Comparison of the state-of-the-art dehazing methods on IHAZE and OHAZE. Number
in red and bule represent the best and second-best results, respectively.

Method DCP NLD DANet KDDN PSD RefineDNet Ours

IHAZE
PSNR 12.49 13.57 16.23 13.42 13.67 15.9 16.02
SSIM 0.58 0.59 0.72 0.62 0.63 0.75 0.73

OHAZE
PSNR 14.95 15.24 18.32 16.28 15.72 17.26 18.07
SSIM 0.67 0.69 0.74 0.71 0.68 0.71 0.76

Results on Natural Hazy Images. Considering that hazy images acquired by haze
machine may not completely verify the dehazing ability in real scenes, we further test
all these methods on some real-world images in [17] and [33]. As shown in Fig. 4, prior-
based methods DCP and NLD dehaze favorably but tent to cause color distortion and
artifacts, which shows these methods have excellent generalization ability in real scenes.
By contrast, learning-based methods tend to acquire under-dehazed results due to lack-
ing of the knowledge to real-world hazy images. KDDN fails to dehaze in these scenes
and a large amount of residual haze degrades the visibility of the generated results. More
importantly, DANet cannot remove haze thoroughly and leads to obvious color changes
although it shows favorable performance in IHAZE and OHAZE, which verifies this
method cannot fit in natural scenes. The results of PSD suffer from severe color and illu-
mination distortion, and some local regions have residual haze. Moreover, RefineDNet
dehazes effectively in these scenes and acquires visually pleasing results. However, the
results still contain some residual haze in local regions especiallywhen applied to images
with colorful textures. Better than above methods, the proposed MGDNet recovers high
quality results with discriminative structures and vivid color, which shows it has strong
dehazing effect in real scenes by the guiding of DCP and NLD methods. Moreover,
compared to the dehazed images of DCP and NLD, we also notice that the results of
MGDNet alleviate color distortion and artifacts by the training of synthetic images.

4.4 Ablation Study

To demonstrate the effectiveness of each module, we conduct an ablation study by the
combination of four factors: DCP teacher network (DCP), NLD teacher network (NLD),
pixel-wise distillation loss (PDL), discrete wavelet transform (DWT). We construct the
following variants with different component combinations: (1) Student: only the student
network is used; (2) Student+DCP: only the DCP teacher network is used to guide the
student network by feature-wise distillation loss. (3) Student + NLD: only.

the NLD teacher network is used to guide the student network by feature-wise
distillation losses. (4) Student+DCP+NLD: both the DCP and NLD teacher net-
works are used to guide the student network by feature-wise distillation losses.
(5) Student+DCP+NLD+PDL: two teacher networks guide the student network
by both feature-wise distillation losses and pixel-wise distillation losses (6) Stu-
dent+DCP+NLD+PDL+DWT (Ours): a DWTmodule is applied before pixel-wise guid-
ing, and only the high-frequency parts of DCP and NLD teacher networks are used
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Fig. 4. Comparison of the state-of-the-art dehazing methods on the real-world images.
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to guide the student network during pixel-wise comparison. The results are shown in
Table 2, it demonstrates that the proposed MGDNet achieves the best performance of
image dehazing in terms of PSNR and SSIM. Moreover, adding DCP teacher network,
we can improve PSNR from 19.68 dB to 20.32 dB and enhance SSIM by 0.01. And
adding NLD teacher network, we can also improve the metrics by 0.56 dB and 0.007.
These results show that the combination of prior-based methods improves the perfor-
mance in outdoor scenes although the network is only trained by indoor images, and
the DCP is more efficient than the NLD for our method. Moreover, adding both of DCP
teacher network and NLD teacher network also provides with a little gain, which means
that combining with multiple priors further improve the generalization ability since uni-
lateral prior cannot hold in various scenes. Additionally, we have also noticed that the
addition of PDL drops the performance. It shows that directly using pixel-wise distilla-
tion losses may degrade final results since prior-based dehazing images always contain
some negative information such as color shifts and artifacts. Fortunately, with the help
of DWT, the network can alleviate the distortions in the outputs of teacher networks and
further improves the metrics to 20.49 dB and 0.904, respectively.

Table 2. Comparison of variants with different components on the outdoor dataset of SOTS.

Method PSNR SSIM

Student 19.68 0.882

Student+DCP 20.32 0.892

Student+NLD 20.24 0.889

Student+DCP+NLD 20.34 0.902

Student+DCP+NLD+PDL 20.24 0.897

Ours 20.49 0.904

5 Conclusion

In this paper, we propose a multi-priors guided dehazing network (MGDNet) based
on knowledge distillation, which combines the complementary merits of prior-based
dehazing methods and learning-based dehazing methods. Specifically, we pretrain two
teacher networks to efficiently use the partially correct features of dark channel prior
(DCP) and non-local dehazing (NLD) dehazed results by both of feature-level and pixel-
level distillation losses. Moreover, we adopt a high-pass discrete wavelet transform
(DWT) before pixel-level guiding to alleviate the negative information of prior dehazed
images such as color shifts and artifacts. And the added features of two teacher networks
can be refined during the supervised training of student network. Experiments on real-
world images demonstrate that the proposed MGDN achieves favorable dehazing effect
by both of the quantitative and qualitative comparisons.
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