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Abstract. Existing image dehazingmethods consider the learning-basedmethods
as the mainstream. Most of them are trained on synthetic dataset, and may not be
able to efficiently transfer to real outdoor scenes. In order to further improve the
dehazing effect of the model in real outdoor scenes, this paper proposes an end-
to-end Multi-Feature Fusion Network for Single Image Dehazing (MFFN). The
proposed network combines the prior-basedmethods and learning-basedmethods.
This paper first uses the method of supporting backpropagation in order to directly
extract the dark channel prior and color attenuation prior features. It then designs a
Multi-Feature Adaptive Fusion Module (MFAFM) which can adaptively fuse and
enhance the two prior features. Finally, the prior features are added to the decoding
stage of the backbone network in amulti-scalemanner. The experimental results on
the synthetic dataset and real-world dataset demonstrate that the proposed model
performs favorably against the state-of-the-art dehazing algorithms.

Keywords: Single Image Dehazing · Prior-based methods · Learning-based
methods

1 Introduction

In haze weather, the increase of suspended particles in the air absorbs and scatters light,
which results in poor visibility, reduced contrast and color distortion of the taken images.
This process can be modeled as [1, 2]:

I(x) = J (x)t(x) + A(1 − t(x)) (1)

where I(x) denotes the hazy image, J(x) is the corresponding clear image, t(x) represents
the transmission map, A is the global atmospheric light, and x represents the pixel
location. Image dehazing aims at making the image clear. That is, given I(x), in order to
get J(x), we focus on the solution of t(x) and A.
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The commonly used dehazing methods can be divided into two categories: the prior-
based methods [3–6] and learning-based methods [7–13]. The prior is generally based
on data statistics, which is often very efficient in real outdoor scenes. However, it still
has limitations. For instance, dark channel prior will fail in the sky region. The learning-
based methods can estimate t(x) or A using a neural network [7, 8], and then synthesize a
clear image according to Eq. (2). However, it will cause error superposition, and increase
the final error. Therefore, the recent methods for the estimation of clear images directly
from hazy images using a neural network [9–13] are the mainstream.

However, these methods lead to some problems. More precisely, training such a
neural network requires a large number of hazy/clear image pairs, and it is very difficult
to obtain such data. Therefore, the currently used training images are generally synthetic
images, while the hazy images are formed by hazing real and clear images according
to Eq. (3). As the neural network is trained on synthetic dataset, the effect of dehazing
in real scenes is often not satisfactory (see Fig. 1). Although NTIRE has organized
several dehazing challenges and introduced several small-scale real-world datasets, these
datasets are rare and incomplete. Several studies havebeenproposed to solve this problem
[22, 23]. In fact, we believe that, in order to improve the effect of themodel in real scenes,
we should extract as many real image features as possible from the hazy images that
are suitable for dehazing tasks, especially the prior features. This is due to the fact that
the prior features are very efficient in real outdoor scenes. However, they have some
limitations. In addition, deep learning is versatile. However, it relies too much on the
training set. Therefore, this paper uses the fusion of prior features and deep learning
features to further improve the performance of the network in complex real outdoor
scenes.

Fig. 1. Dehazing results on synthetic and real images using FFA-Net [13]. (a) synthetic hazy
image, (b) dehazed image for (a), (c) real hazy image, (d) dehazed image for (c).

An end-to-endMulti-Feature Fusion Network for Single ImageDehazing (MFFN) is
proposed. Note that the proposed network is based on our previous study [14]. The base-
line is a global feature fusion attention network based on encoder-decoder architecture,
which can extract global context information and fully fuse it. Through experiments, two
prior features are selected for extraction then fused into the network: the Dark Channel
Prior (DCP) [3] and color attenuation prior (CAP) [15]. According to the definition of
two priors, a simple and direct extraction method is designed using tensor calculation
and maxpooling, in order to make the extraction process support back-propagation. The
Multi-Feature Adaptive Fusion Module (MFAFM) is proposed to selectively fuse the
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two prior features using the attention mechanism, and enhance the features using resid-
ual connections. Finally, the fusion of two scales is performed in the decoder stage of
the baseline.

The experiments show that the proposed algorithm has higher performance than
other state-of-the-art dehazing algorithms. The contributions of this paper include:

By combining the advantages of the prior-based methods and learning-based meth-
ods, the proposed MFFN fuses the two prior features and deep learning features. This
model has a better performance in real outdoor scenes.

DCP and CAP are directly and efficiently extracted, while supporting backpropaga-
tion in order to make the model end-to-end.

The MFAFM is proposed to select the effective feature from the two prior features
for fusion, so as to avoid excessive features that affect the network performance.

2 Proposed Method

In this section, the proposed MFFN is detailed. The latter consists of three parts:
extraction of two prior features, MFAFM and basic network (see Fig. 2).

Fig. 2. The architecture of theMulti-FeatureFusionNetwork for Single ImageDehazing (MFFN).

2.1 Extraction of Two Prior Features

DarkChannel Prior.He et al. [3] made statistics of a large number of outdoor hazy-free
images and determined a rule: in most of the local areas of the outdoor hazy-free image,
there are some pixels that have very low values (approaching 0) in at least one color
channel. It is referred to as the dark channel prior, expressed as:

J dark(x) = min
y∈�(x)

( min
c∈{r,g,b}

J c(y)) (4)

The input of the neural network is the hazy image. Due to the presence of haze, the
white area in the image increases, which makes the dark channel value of the image
not approaching 0. Therefore, the DCP feature map, obtained from the hazy image
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I(x), can represent the concentration and hazy area to a certain extent. In this paper,
three-dimensional maxpooling is used to perform DCP feature map extraction:

Idark(x) = 1 − max pool3D(1 − I(x)) (5)

The obtained result is shown in Fig. 3 (b). It can be seen that, in the near non-hazy
area, Idark(x) is almost all black, and it is possible to clearly distinguish between the
hazy area and the non-hazy area. Due to the dark channel value of each local area (of 7
♦ 7 size) is the same, it lacks detailed information.

Color Attenuation Prior. Hu et al. [15] found that the difference between brightness
and saturation is positively correlated with the haze density, using statistics of outdoor
hazy images. The CAP feature map is directly computed as:

sv(x) = HSV (I(x))v − HSV (I(x))s (6)

The hazy image is converted to the HSV format. The value of the s channel minus
that of the v channel is then used as the color attenuation prior feature map (sv(x)). It
can be seen from Fig. 3(c) that sv(x) has a larger pixel value in the area where the hazy
density is greater, and it contains lot of detailed information due to the direct extraction
method.

Fig. 3. Results of prior feature extraction, and intermediate results of MFSFM.

2.2 Multi-feature Adaptive Fusion Module

The two priors are based on statistics of real outdoor images. Therefore, their addition
will allow the model to capture features that are more suitable for real outdoor scenes.
In this paper, the extraction of prior feature maps is straightforward. The most primitive
prior features can then be extracted. However, these two types of prior feature maps
have some shortcomings. More precisely, the DCP feature map will be invalid in the
white or sky area, and the CAP feature map will also showwhite color in the close-range
hazy-free area. The direct introduction of these features to the network will affect the
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performance of the network. Therefore, this paper designs theMFAFM (see Fig. 2) using
the attention mechanism to adaptively and selectively fusion the two prior feature maps,
in order to obtain the most efficient features:

p1, p2 = split(softmax(conv(concat(Idark(x), sv(x))))) (7)

f = (p1 ⊗ Idark(x)) ⊕ (p2 ⊗ sv(x)) (8)

df = f ⊕ conv(conv(conv(f ))) (9)

The two prior feature maps are first concatenated. A 2-channel attention feature is
then obtained using a 3 × 3 convolution and softmax function. Afterwards, the feature
map of each channel is treated as an attention map of a prior feature map. The corre-
sponding multiplication and addition are then performed to obtain the fusion feature f,
which is gone and added using three convolutions. Finally, the residual connection is
used to enhance the feature of f, and therefore the enhanced feature ef is obtained.

In Fig. 3, p1 and p2 represent the attention maps of Idark(x) and sv(x), respectively. It
can be seen that for Idark(x), the close-range non-hazy area is mainly reserved, while for
sv(x), the hazy area and the detailed information of the close-range area are reserved.
In f, the recovery effect is better in the close-range non-hazy area. In addition, a certain
dehazing effect is achieved in the hazy area. Moreover, e f removes more haze while
retaining the detailed features. Finally, e f will be fused to the two scales of the decoder.

2.3 Baseline

The baseline in this paper is a global feature fusion attention network [14], based on the
encoder-decoder architecture.TheFeatureEnhancement (FE)module is itsmainmodule.
Figure 4 presents the FE module of the decoder, where x is the information passed by
the layer skip connection, y represents the prior features, and z is the information to be
up-sampled after decoding. The Global Feature Fusion Attention (GFFA) module is the
core of the FE module (see Fig. 5). It can extract the global context features, and fully
integrate them with the prior features using the multi-scale and attention mechanism, as
well as the residual connection of the FE module, in order to enhance the features. Note
that the Mean Square Error (MSE) and perceptual loss are used as the loss function.

Fig. 4. Architecture of the Feature Enhancement (FE) module [14].
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Fig. 5. The architecture of the Global Feature Fusion Attention (GFFA) module [14], including
the Muti-scale Global Context Fusion (MGCF) block (red box) and Simplified Pixel Attention
(SPA) block (black box). (Color figure online)

3 Experiments

3.1 Datasets

Synthetic Dataset. The synthetic RESIDE [16] dataset contains indoor and outdoor
images. The dataset used by MSBDN [17] after data enhancement, is considered as
training set. The Outdoor Training Set (OTS) is used as the test set, which contains 500
pairs of outdoor synthetic images.

Real-World Dataset. TheO-HAZEdataset [18] fromNTIRE2018DehazingChallenge
and NH-HAZE dataset [19, 20] from NTIRE2020 Dehazing Challenge are used. O-
HAZE contains 45 pairs of outdoor hazy and haze-free images, while the first 40 images
are used to train the models and the last 5 images are used to test. NH-HAZE contains
55 pairs of outdoor hazy and haze-free images, while the first 50 images are used to train
the models and the last 5 images are used to test.

3.2 Implementation Details

A 256 × 256 patch is cropped from the image and used as input, while the batch-size is
set to 8. The initial learning rate is set to 1 × 10 − 4, and the cosine annealing strategy
[25] is used to adjust the learning rate. The Adam optimizer is used, where β1 and β2
have the default values of 0.9 and 0.999, respectively. The network is trained for 1 ×
106 iterations. PyTorch is used to train the models with an NVIDIA GTX2080 SUPPER
GPU.

3.3 Comparison with the State-of-the-Art Methods

In order to more accurately evaluate the proposed MFFN, quantitative and qualitative
comparisons with the state-of-the-art methods are conducted on the synthetic dataset
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and real-world dataset, respectively. The involved state-of-the-art methods include DCP
[3], MSCNN [7], AOD-Net [10], DCPDN [8], GFN [9], GCA-Net [21], GDN [12], FFA
[13], MSBDN [17] and MSTN [22].

The comparison results on the three datasets, are presented in Table 1. It can be seen
that the proposed model has the highest PSNR and SSIM on the OTS and O-HAZE
datasets, where the PSNR values are 0.48 dB and 0.49 dB higher than the sub-optimal
models, respectively. On the NH-HAZE dataset, the SSIM of the proposed method is
only lower than that of MSTN, but the PSNR is much higher than MSTN.

Table 1. Quantitative evaluation (PSNR/SSIM) with some state-of-the-art methods using there
datasets

Methods OTS O-HAZE NH-HAZE

DCP 19.13/0.815 16.78/0.653 10.57/0.520

MSCNN 19.48/0.839 17.56/0.650 13.42/0.489

AOD-Net 20.29/0.877 15.03/0.539 15.41/0.569

DCPDN 19.93/0.845 18.97/0.664 17.42/0.610

GFN Text follows 21.55/0.844 18.16/0.671 15.17/0.520

GCA-Net 28.13/0.945 16.28/0.645 17.58/0.594

GDN 30.86/0.982 18.92/0.672 15.23/0.560

FFA-Net 33.57/0.984 21.62/0.738 19.45/0.612

MSBDN 32.21/0.979 24.36/0.749 18.80/0.590

MSTN 32.61/0.981 - 18.42/0.630

Ours 34.05/0.985 24.85/0.762 19.59/0.615

Figure 6 and Fig. 7 present the qualitative comparison results. It can be seen that
DCP has clear color distortion, AOD-Net and DCPDN have poor dehazing effects,
some areas of FFA-Net are not completely dehazed, andMSBND has insufficient recov-
ery of detailed features. The proposed model has the best performance, and it is effi-
cient for color and details restoration, even in the case of hazy GT images. This proves
that the proposed model has a strong dehazing ability, and is suitable for real outdoor
environments.

3.4 Ablation Study

Table 2 presents the results of the ablation experiments, performed on the O-HAZE
real-world dataset. Both the fusion of sv(x) and Idark(x) are beneficial to the network.
Even if MFAFM is not used, the two prior features can be directly added to the decoder,
which can highly improve the network performance. This proves the effectiveness of the
prior features when dealing with real-world datasets. Furthermore, MFAFM can well
fuse the two prior features and further improve the performance of the model.
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Fig. 6. Qualitative evaluation with some state-of-the-art methods using the OTS synthetic dataset.
The bottom row is an enlarged version of the red box area on the top row. (Color figure online)

Fig. 7. Qualitative evaluation with some state-of-the-art methods on the O-HAZE andNH-HAZE
real-world datasets.

In order to verify whether the fusion of the two prior features is beneficial for the
model trained on the synthetic dataset to better transfer to the real scene, the model is
trained for 2*105 iterations on the RESIDE synthetic dataset, and then directly tested on
the OTS and O-HAZE datasets. The obtained results are presented in Table 3, where the
prior feature fusion uses MFAFM. The color attenuation prior is not applicable on the
synthetic dataset. However, the two prior features are applicable to real scenes, which
can improve the transfer ability of themodel and allow it to directly transfer to real-world
images. Finally, when usingMFAFM for multi-feature fusion, only a very small number
of parameters (0.07M) is increased, which verifies the operating efficiency of the model.
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Table 2. Comparison of different types of networks on the O-HAZE

Baseline
√ √ √ √ √

MFAFM
√ √ √

sv(x)
√ √ √

Idark(x)
√ √ √

PSNR 24.57 24.73 24,75 24.79 24.85

SSIM 0.756 0.760 0.753 0.759 0.762

Table 3. Comparison of the transfer ability and parameters of different models

Methods OTS O-HAZE Params

Baseline 30.98/0.975 19.39/0.677 8.49253M

+sv(x) 30.82/0.975 19.49/0.679 8.56696M

+Idark(x) 31.12/0.977 19.47/0.680 8.56696M

+sv(x) + Idark(x) 31.06/0.976 19.61/0.682 8.56699M

4 Conclusion

This paper proposed an end-to-end Multi-Feature Fusion Network for Single Image
Dehazing (MFFN). By combining dark channel prior, color attenuation prior and deep
learning, the neural network has a stronger dehazing capacity.Avery simple and effective
prior feature extraction method is first used. A Multi-Feature Selective Fusion Module
(MFSFM) is then designed. It combines the advantages and discards the disadvantages of
the two prior features, in order to perform feature enhancement. The experimental results
on synthetic and real-world datasets have shown that the proposedMFFN achieved better
results than those obtained by the state-of-the-art methods, which proves its effectiveness
for real outdoor scenes.
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