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Abstract. Semantic segmentation of point clouds at the scene level
is a challenging task. Most existing work relies on expensive sampling
techniques and tedious pre- and post-processing steps, which are often
time-consuming and laborious. To solve this problem, we propose a new
module for extracting contextual features from local regions of point
clouds, called EEP module in this paper, which converts point clouds
from Cartesian coordinates to polar coordinates of local regions, thereby
Fade out the geometric representation with rotation invariance in the
three directions of XYZ, and the new geometric representation is con-
nected with the position code to form a new spatial representation. It
can preserve geometric details and learn local features to a greater extent
while improving computational and storage efficiency. This is beneficial
for the segmentation task of point clouds. To validate the performance
of our method, we conducted experiments on the publicly available stan-
dard dataset S3DIS, and the experimental results show that our method
achieves competitive results compared to existing methods.

Keywords: Semantic segmentation · Scale point clouds · Rotational
invariance

1 Introduction

In recent years, image recognition technology has developed rapidly relying on
deep learning. In addition to 2D image recognition, people are increasingly inter-
ested in 3D vision, because directly learning 3D tasks from acquired 2D images
always has certain limitations. With the rapid development of 3D acquisition
technology, the availability and value of 3D sensors are increasing, including var-
ious types of 3D scanners, lidar, and RGB-D cameras. The advent of large-scale
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high-resolution 3D datasets with scale information has also brought about the
context of using deep neural networks to reason about 3D data. As a common 3D
data format, the point cloud retains the original geometric information in three-
dimensional space, so the point cloud is called the preferred data form for scene
understanding. Efficient semantic segmentation of scene-level 3D point clouds
has important applications in areas such as autonomous driving and robotics. In
recent years, the pioneering work PointNet has become the most popular method
for directly processing 3D point clouds. The PointNet [1] architecture directly
processes point clouds through a shared MltiLayer Perceptron (MLP), using the
MLP layer to learn the features of each point independently, using maximum
pooling to obtain global features. On the other hand, since PointNet learns the
features of each point individually, it ignores the local structure between points.
Therefore, to improve this, the team introduced PointNet++ [2], as the core of
this network hierarchy, with an ensemble abstraction layer consisting of three lay-
ers: a sampling layer, a grouping layer, and a PointNet-based learning layer. By
overlaying several ensemble abstraction layers, this network learns features from
local geometric structures and abstracts local features layer by layer. PointWeb
[3] connects all local point pairs using local geographical context, and finally
forms a local fully connected network, and then adjusts point features by learn-
ing point-to-point features. This strategy can enrich the point features of the
local region and form aggregated features, which can better describe the local
region and perform 3D recognition.

The effect of these methods in processing small-scale point clouds is grati-
fying, but it will bring some limitations to processing scene-level point clouds,
mainly because: 1) High computational volume and low storage efficiency caused
by the sampling method. 2) Most existing local feature learners usually rely on
computationally expensive kernelization or graph construction, and thus cannot
handle large numbers of points. 3) Existing learners have limited acceptance
and size to effectively capture complex structures, and do not capture enough
local area features for large-scale point clouds, RandLA-Net [4] provides us with
a solution to these problems. RandLA-Net [4] based on the principle of sim-
ple random sampling and effective local feature aggregator, can increase the
sampling rate while gradually increasing the receptive field of each neural layer
through the feature aggregation module to help effectively learn complex local
structures. However, after research, it was found that RandLA-Net [4] did not
pay attention to the relationship between each point and point in a neighborhood
when learning the local structure.

Our main contributions are as follows:

– As the input point cloud is direction-sensitive, we propose a new local space
representation that is rotationally invariant in the X-Y-Z axis, which can
effectively improve the performance of point cloud segmentation.

– We propose a new local feature aggregation module, Local Representation
of Rotation Invariance (LRRI) , which connects the spatial representation
with rotation invariance in X-Y-Z axis to the local relative point position
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representation to form a new local geometric representation that effectively
preserves local geometric details.

– We perform experimental validation on a representative S3DIS dataset, and
our method is compared with state-of-the-art methods and achieves good
performance.

2 Related Work

The goal of point cloud semantic segmentation is to give a point cloud and
divide it into subsets according to the semantics of the points. There are three
paradigms for semantic segmentation: projection-based, discretization-based and
point-based.

2.1 Projection-Based Methods

To leverage the 2D segmentation methods, many existing works aim to project
3D point clouds into 2D images and then process 2D semantic segmentation. By
which conventional convolution of 2D images can be used to process point cloud
data, to solve target detection and semantic segmentation tasks. There are two
main categories of such methods: (1) multi-viewpoint representation [5–8]. (2)
spherical representation [9–12]. In general, the performance of multi-viewpoint
segmentation methods is sensitive to viewpoint selection and occlusion. In addi-
tion, these methods do not fully utilize the underlying geometric and structural
information because the projection step inevitably introduces information loss;
the spherical projection representation retains more information than the single-
view projection and is suitable for LiDAR point cloud labeling, however, this
intermediate representation also inevitably introduces problems such as disper-
sion errors and occlusion.

2.2 Discretization-Based Methods

Discretization-based methods, which voxelized point clouds into 3D meshes and
then apply the powerful 3D CNN in [13–17]. But the performance of these meth-
ods is sensitive to the granularity of voxels, and voxelization itself introduces
discretization artifacts. On the other hand, the main limitation of such methods
is their large computational size when dealing with large-scale point clouds. This
method is very important in practical applications when choosing a suitable grid
resolution.

2.3 Point-Based Methods

Different with the first two methods, point-based networks act directly on irreg-
ular point clouds. However, point clouds are disordered and unstructured, so
standard CNNs cannot be used directly. For this reason, the paper [1] proposes
the pioneering network PointNet. The irregular format and envelope invariance
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of the point set are discussed, and a network that uses point clouds directly is
proposed. The method uses a shared MLP as the basic unit of its network. how-
ever, the point-like features extracted by the shared MLP cannot capture the
local geometric structure and interactions between points in the point cloud. So
PointNet++ [2] not only considers global information, but also extends Point-
Net [1] with local details of the farthest sampling and grouping layers. Although
PointNet++ [2] makes use of the local environment, using only maximum pool-
ing may not aggregate information from local regions well. For better access
to contextual features and geometric structures, some works try to use graph
networks [18–20] and Recurrent Neural Networks (RNN) [21–23] to implement
segmentation. The article [4] proposes an efficient lightweight network Rand-LA
for large-scale point cloud segmentation, which utilizes random sampling and
achieves very high efficiency in terms of memory and computation, and proposes
a local feature aggregation module to capture and preserve geometric features.

3 EEP-Net

In this section, we discuss the EEP module for large-scale point cloud segmen-
tation, which mainly consists of two blocks: Local Representation of Rotation
Invariance (LRRI), Attentive Pooling (AP). Then we introduce EEP-Net, which
is an encoder-decoder network structure with EEP modules.

Fig. 1. Architecture of the EEP module.
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3.1 Architecture of EEP Module

The architecture of the EEP module is shown in Fig. 1. Given a point cloud
P and the features of each point (including spatial information and intermedi-
ate learned features), the local features of each point can be learned efficiently
using two blocks, LPPR and AP, as shown in Fig. 1. It shows how the local
features of a point are learned and applied to each point in parallel. The local
space representation constructed by LPPR with XY Z axis rotation invariance
is automatically integrated by AP, and we perform LPPR/AP operation twice
for the same point to obtain the information of K-squared neighboring points,
which can significantly increase the perceptual field of each point and obtain
more information. The final output of this module learns the local features with
XY Z axis rotation invariance.

Local Representation of Rotation Invariance (LRRI). As a geometric
object, the learned representation of a point set should be invariant to rotation
transformations. Points rotated together should not modify the global point
cloud category, nor the segmentation of points. In many real scenes, such as
the common chairs in indoor scenes as shown in the figure below, the orienta-
tions of objects belonging to the same category are usually different. Further,
it can be clearly understood that the same object is not only represented by
the rotation invariance of the Z -axis (Figs. 2(d)(e)), the X -axis and the Y -axis
also have certain rotation invariance. To address this issue, we propose to learn a
rotation-invariant local representation, which utilizes polar coordinates to locally
represent individual points, and the overall structure of LRRI is shown in the
figure. As shown in Figure, local spatial information is input into the LRRI block
and the output is a local representation with rotationally invariant features in
the X, Y, and Z axes. LRRI includes the following steps: Finding neighboring
points: For the point Pi, the neighboring points are collected by the K-Nearest
Neighbors (KNN) algorithm based on the point-by-point Euclidean distance to
improve the efficiency of local feature extraction. Representation of local geo-
metric features in two coordinate systems:
(a) Local geometric representation based on polar coordinates: for the nearest K
points P1, P2, P3, . . . , Pk of the center point Pi, we use the X,Y,Z of each point
(based on the Cartesian coordinate system) to convert to the polar representa-
tion of each point, and then subtract the polar representation of the neighboring

Fig. 2. Pictures of the same chair from different angles.
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points and the center point to obtain the local geometric representation based
on polar coordinates, the specific operation is as follows:
1) Local representation is constant for Z-axis rotation:
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3) Local representation is constant for Y -axis rotation:

εki = arctan
(

xk
i

zki

)
− arctan

(
xim

zim

)
, (5)

ζki = arctan

⎛
⎝ yk

i√
xk2

i + zk
2

i

⎞
⎠ − arctan

(
yim√

x2
im + z2im

)
. (6)

(b) Relative point position encoding: For each of the nearest K points of the
centroid Pi, we encode the location of the points as follows:

rki = MLP
(
Pi ⊕ P k

i ⊕ (
Pi − P k

i

) ⊕ ‖Pi − P k
i ||) . (7)

(c) Point Feature Augmentation: The enhanced local geometric representation of
a point can be obtained by concatenating the relative position codes of adjacent
points and the representation of local geometric features in their corresponding
two coordinate systems.

f̂k
ı = MLP

(
α ⊕ β ⊕ γ ⊕ δ ⊕ ζ ⊕ rki

)
. (8)

Attentive Pooling (AP). In the previous section, we have given the point
cloud local geometric feature representation, most of the existing work for aggre-
gating neighboring features uses max/mean pooing, but this approach leads to
most of the information loss, we are inspired by SCF-Net [29] network, our atten-
tion pooling consists of the following steps:
(a) Calculate the distance: point features and local geometric features gener-
ated by the LRRI block, and neighboring point geometric distances are input
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to the AP module to learn the contextual features of the local region. We want
to express the correlation between points by distance, the closer the distance,
the stronger the correlation. Two distances are calculated: geometric distance
between points and feature distance between point features:

dkif = mean(|v(i) − v(k)|), (9)

dk
i = exp

(−dkig
) ⊕ λ exp

(−dkif
)
. (10)

(b) Calculate the attention score: use a shared MLP to learn the attention score
of each feature:

Ak
i = softmax

(
MLP

(
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i ⊕ fki

))
. (11)

(c) Weighted sum: use the learned attention scores to calculate the weighted sum
of neighboring point features to learn important local features:
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)
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i

)
. (13)

To summarize: given the input point cloud, for the i-th point Pi, we learn to
aggregate the local features of its K nearest points through two blocks LPPI
and AP, and generate a feature vector.

3.2 Global Feature (GF)

To improve the reliability of segmentation, in addition to learning locally relevant
features, we borrowed the GF module from SCF-Net to complement the global
features. The relationship between position and volume ratio is used.

Bi =
Vi

Vg
(14)

where Bi is the volume of the neighborhood’s bounding sphere corresponding to
Pi, and is the volume of the bounding sphere of the point cloud.

fiG = MLP ((xi, yi, zi) ⊕ Bi) (15)

The x-y-z coordinate of Pi is used to represent the location of the local neigh-
borhood. Therefore, the global contextual features are defined as fiG.

3.3 Architecture of EEP-Net

In this section, we embed the proposed EEP module into the widely used
encoder-decoder architecture, resulting in a new network we named EEP-Net,
as shown in Fig. 3. The input of the network is a point cloud of size N×d, where
N is the number of points and d is the input feature dimension. The point cloud
is first fed to a shared MLP layer to extract the features of each point, and the
feature dimension is uniformly set to 8. We use five encoder-decoder layers to
learn the features of each point, and finally three consecutive fully connected
layers and an exit layer are used to predict the semantic label of each point.
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Fig. 3. Architecture of the EEP-Net and the EEP module

4 Experiments

In this section, we evaluate our EEP-Net on a typical indoor field attraction cloud
benchmark dataset S3DIS. S3DIS is a large-scale indoor point cloud dataset,
which consists of point clouds of 6 areas including 271 rooms. Each point cloud
is a medium-sized room, and each point is annotated with one of the semantic
labels from 13 classes. Our experiments are performed on Tensorflow (2.1.0). We
also report the corresponding results of 8 methods on S3DIS. In addition, after
verifying the effectiveness of each module, we focus on ablation experiments on
Area 5 of S3DIS.

4.1 Evalution on S3DIS Dataset

We performed six cross-validations to evaluate our method, using mIoU as the
criterion, the quantitative results of all reference methods are shown in Table 1,
our method mIoU outperforms all other methods on this metric, and achieves
the best performance on 2 categories, including clut and sofa. Also near the
best performance in other categories. Figure 4 shows the visualization results of
a typical indoor scene, including an office and a conference room. In generally,
the semantic segmentation of indoor scenes is difficult, and the whiteboard on
the white wall is easily confused with the white wall itself, but our network can
still identify it more accurately.
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Table 1. Quantitative results of different methods on S3DIS and the classwise metric
is IoU (%).

Methods mIoU(%) Ceil Floor Wall Beam Col Wind Door Table Chair Sofa Book Board Clut

PointNet [1] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

RSNet [24] 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

SPG [25] 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [26] 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

Pointweb [3] 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

ShellNet [27] 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

RandLA-Net [4] 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 67.4 76.4 60.0 64.2 65.9 60.1

MuGNet [28] 69.8 92.0 95.7 82.5 64.4 60.1 60.7 69.7 82.6 70.3 64.4 52.1 52.8 60.6

Ours 70.9 93.3 96.0 80.6 61.8 46.4 64.4 68.1 69.9 82.0 68.5 63.4 65.4 61.5

Cell
Floor

Wall

Beam

Col.

Wind

Door

Table

Chair

Sofa

Book

Board

Clut

Fig. 4. Visualization examples of three typical indoor scenes on S3DIS. (a) RGB colored
input point clouds, (b) Predictions obtained via the proposed EEP-Net, (c) Ground
truths.

4.2 Ablation Study

The experimental results on the S3DIS dataset validate the effectiveness of our
proposed method, and in order to better understand the network, we evaluate it
and conduct the following experiments, which will be performed on Area 5, the
location of the S3DIS dataset, for this set of experiments. As shown in Fig. 5,
it is easy to see that the segmentation result of (d) is obviously closer to the
ground truth than (c), which proves that the performance of EEP-Net is better
than that of the network containing only Z -axis rotation invariance Table 2.
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Table 2. The mean IoU scores of all ablated networks based on our full EEP-Net.

mIoU(%)

(1) Rotational invariance for Z-axis only 63.04

(2) Local relative feature + Z-axis rotation invariance 63.38

(3) Rotational invariance of X − Y − Z axes 63.84

(4) Local relative feature + X − Y − Z axis rotation invariance 64.00

Fig. 5. Visualization example on S3DIS Area 5, (a) RGB color input point cloud, (b)
ground truth, (c) network segmentation result with only Z-axis rotation invariance,
(d) EEP-Net segmentation result. The circles of the same color are the comparison of
segmentation results of the same region.

5 Conclusion

In this paper, to better learn local contextual features of point clouds, we propose
a new local feature aggregation module EEP, which works by representing point
clouds from Cartesian coordinates to polar coordinates of local regions. To verify
the effectiveness of the method, we conduct experiments on the representative
dataset S3DIS, and compare with eight methods to verify the advanced nature
of our method. And we conduct ablation experiments on Area 5 of S3DIS to
verify the effectiveness of EEP-Net.
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