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Abstract. The research work of synthetic aperture radar (SAR) image
target detection based on deep learning has made great progress. How-
ever, most of them apply the methods applicable to optical images
directly to SAR images, ignoring the characteristics of targets in SAR
images. For instance, the size of target in SAR images is usually small
and volatile. Meanwhile, the target distribution is relatively sparse and
the detection is affected by the complex background noise. In this paper,
we propose an improved backbone network, called WAFormer, for ship
targets detection in SAR images, based on the latest Swin-Transformer.
WAFormer improves the local window attention mechanism of Swin-
Transformer by introducing the new window settings. Our model can
be more suitable to match the shape of the target, so that it obtains
more accurate detection in SAR images. Experimental results show that
the WAFormer achieves 74.4% mAP on the Official-SSDD SAR dataset,
surpassing Swin-Transformer by +1.0, especially for large targets.

Keywords: Synthetic-Aperture Radar (SAR) · Ship detection ·
Transformer · Window attention

1 Introduction

As an active microwave remote sensing device, synthetic aperture radar (SAR)
is capable generate all-day, all-weather and high-resolution earth observations.
SAR images are of great importance in reconnaissance and surveillance missions
in the military and civilian domains. SAR images target detection can be applied
in many tasks, such as environmental monitoring, battlefield reconnaissance,
geographic survey and ocean monitoring.

Deep learning technology has achieved excellent results in solving optical
images detection and recognition tasks, and has attracted more and more schol-
ars to use deep learning technology in SAR images interpretation tasks [1–4].
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But the complex imaging mechanism of SAR images is different from optical
image, leads to the fact that algorithms perform well on optical images may not
be perfectly adapted to SAR images. In general, the challenges of applying deep
learning to study the tasks of SAR images target detection are mainly as follows:
(1) As shown in Table 1 and Fig. 1 statistics from Official-SSDD [5,6] and HRSID
[7], two mainstream SAR image dataset, the size of sparse targets is generally
small and the scale varies greatly, it undoubtedly increases the difficulty of SAR
images target detection. (2) SAR images are often accompanied by cluttered
noise and complex backgrounds such as docks, islands and reefs, resulting in
lots of false detection or missed detection. (3) The difference between different
datasets is large, lead to the generalization of the model trained on a single
dataset is weak.

(a) Official-SSDD (b) HRSID

Fig. 1. Distribution of the ratio of the long side to the short side of the target bounding
box.

As above, we aim to extract precise target features from complex SAR images
to solve the problem of small target detection and multi-scale target detection.
We propose an improved Transformer backbone based on Swin-Transformer [8]
which called WAFormer. The backbone redesign the window attention module
considering the size and shape of the SAR images targets. The improved window
can better capture targets of various sizes and directions and distinguish them
from the background. WAFormer achieves higher box AP than Swin-Transformer
and other classic convolutional neural network (CNN) method with lower FLOPS
than Swin-Transformer. Meanwhile we prove the Transformer method is suitable
for SAR images target detection.

The main contributions of this paper are as follows:

(1) We redesign the Transformer window attention module with the size variable
window. The resizable window make feature extraction more suitable for
SAR images targets of various postures.

(2) To enhance connections between non-overlapping windows in abovemen-
tioned window attention module, we improve the original shift window mech-
anism in Swin-Transformer to make it more reasonable.
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(3) In order to alleviate the computational redundancy problem caused by the
new window attention, we introduce a channel splitting mechanism to cal-
culate the window attention of different direction at the same time.

Table 1. Statistical results of multi-scale ships in Official-SSDD and HRSID.

Dataset Size of ships (number) Special size (pixels)

Small Medium Large Smallest Largest

Official-SSDD 1624 895 68 4 * 4 384 * 308

HRSID 9242 14776 321 3 * 1 800 * 653

2 Related Works

2.1 SAR Target Detection Based on Deep Learning

The analysis of SAR images data has become a research hot spot because of its
significance in the field of military and civil detection. In recent years, many SAR
images target detection methods based on deep learning are gradually developed.
Cui et al. [9] utilized a dense attention pyramid network (DAPN) to improve
the accuracy of multi-scale ship detection. Zhao et al. [10] proposed an atten-
tion receptive pyramid network (ARPN) with receptive fields block (RFB) and
convolutional block attention module (CBAM) to improve the performance of
detecting multi-scale ships. Cui et al. [11] proposed an anchor-free method which
introduces spatial shuffle-group enhance (SSE) attention module to CenterNet
to achieve better performance than some classic CNN methods. Fu et al. [12]
are also based on anchor-free strategy, proposed a feature balancing and refine-
ment network (FBR-Net) to achieve the state-of-the-art performance among the
general anchor-free methods. Guo et al. [13] presented CenterNet++ consists of
feature refinement module, feature pyramids fusion module, and head enhance-
ment module to improve the effectiveness and robustness. Tang et al. [14] pro-
posed a scale-aware feature pyramid network comprises a scale-adaptive feature
extraction module and a learnable anchor assignment strategy to address the
problem of feature misalignment and targets’ appearance variation. Xu et al.
[15] improved YOLOv5 to present Lite-YOLOv5, a lightweight onboard SAR
ship detector with decreasing FLOPS and without sacrificing accuracy. Xia
et al. [16] proposed a visual transformer framework based on contextual joint-
representation learning by combining the global information of Transformer and
the local feature representation of CNN.
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2.2 Vision Transformer

Transformer [17] is the framework of encoder-decoder with attention mechanism
for natural language processing (NLP). With Transformer’s impressive perfor-
mance in NLP, a growing number of computer vision research work based on
Transformer has emerged. ViT [18] presented a pure Transformer architecture
for vision by inputting the patches sequences splitted from an image to Trans-
former. But when the training data is not sufficient ViT will not generalize
well. Also based on convolution-free Transformers, DeiT [19] introduced distil-
lation strategy into Transformer to achieve competitive performance. DEtection
TRansformer (DETR) [20] realized an end to end detector including a trans-
former encoder-decoder architecture and a global loss calculated in the parallel
decoder. PVT [21] introduced pyramid structure to Transformer to generate an
excellent vision Transformer backbone with lower computation than ViT. But
these methods based on global attention have high computational complexity.
Swin-Transformer [8] presented a general vision Transformer backbone which
innovatively designed the shifted windows based on hierarchical architecture.
The non-overlapping local windows attention mechanism and cross-window con-
nection not only reduces the computational complexity, but also realizes the
state-of-the-art of multiple visual tasks. CSwin [22] proposed a cross-shaped
window consists of horizontal and vertical stripes split from feature in a parallel
manner, meanwhile introduced Locally-enhanced Positional Encoding (LePE)
to achieve better position encoding ability. However, local window attention is
not friendly to big target detection. Our method optimizes this disadvantage
inspired by Swin-Transformer and CSwin to optimize this disadvantage.

3 Method

3.1 Motivation

Swin-Transformer [8] is currently state-of-the-art vision Transformer backbone
with higher accuracy and lower cost than others. The excellent feature extraction
capability and advantages for small target detection of the window attention
mechanism inspired us to apply it to SAR images target detection. Nevertheless,
due to characteristics of small and diverse target size, sparse distribution and
different postures, Swin-Transformer can not be directly applied to SAR images.
Thus we redesign the window with variable size and apply it to the original
Swin structure, formed the improved backbone for ship target detection in SAR
images, called WAFormer.

3.2 Overview

The overall architecture of WAFormer is shown in Fig. 2. Because the proposed
method is based on Swin-Transformer, so that the overall structure of the net-
work tends to be similar. Taking an image as input, same to Swin-Transformer,
followed with the patch partition module to split the image into evenly divided
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patches. Then applying a linear embedding layer project the patch tokens to
C dimension. The setting of patch size and the number of tokens, and the
design of the hierarchical representation are both same to Swin-Transformer,
so that we also have H

2i+1 × W
2i+1 tokens in the ith stage with decreased res-

olution and increased channels. The difference is that we replace the original
Swin-Transformer block with our WAFormer block. The WAFormer block will
be described in detail as follows.

Fig. 2. (a) The overall architecture of our proposed WAFormer; (b) an effective Trans-
former block for ship detection in SAR images described in Sect. 3.4). VW-MSA and
SVW-MSA are multi-head attention modules with vertical/horizontal and shifted win-
dowing configurations, respectively.

3.3 Variable Size Window Self-attention

Variable Size Window. Based on the local window attention mechanism,
we propose a variable size window more suitable for ship target in SAR images.
Firstly, in order to allow multi-scale input, the image is padded. Then the padded
feature is partitioned into non-overlapping windows. The window size is set as
M × N mean that each window contains M × N patches. As shown in Fig. 1,
statistics indicate that the ratio of long and short sides of the bounding box of
SAR images is mostly in the range of 4:1. While the aspect ratio of the window
of Swin-Transformer is 1:1 which can not cover all targets and will truncate some
targets. Thus we set the window size according to this ratio range as shown in
Fig. 3. Specifically, from “Stage 1” to “Stage 4”, we empirically set the long and
short sides of the window to 224

7∗2i−1 (i = 1, 2, 3, 4) and [7, 4, 2, 1]. Meanwhile, we
set horizontal and vertical windows to capture the targets of different postures.
Inspired by CSWin [22], we introduce the channel split method to calculate
horizontal and vertical window attention at the same time to reduce costs.
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Shifted Window. Since our window is no longer a fixed size, the original shifted
window is not applicable. To increase the connection between non-overlapping
windows, we replace the original shift step with

(⌊
short-side

2

⌋
,
⌊
short-side

2

⌋)
to dis-

place the regularly partitioned windows. In other words, the shift size becomes
half of the short side of the window, which is proved to be effective by experi-
ments.

Convolution Position Encoding. It is well known that position encoding is
of great significance to the Transformer model [17,26,27]. However, we aban-
doned absolute position encoding and chose to utilize relative position encoding.
Because we notice that the absolute position encoding does not lead to perfor-
mance improvement. Inspired by LePE of CSWin, we also utilize a learnable
additive positional encoding by performing convolution operation on value V of
the window. We calculate the attention for a window according to the following
formula:

Attention(Q,K, V ) = SoftMax(QKT /
√

d)V + Conv(V ) (1)

Experiments show that this position encoding can effectively improve the accu-
racy.

W

H

C

W

H

f1

fC/2...

fC/2

fC...

H

W
ConcatSplit

Horizontal Window

Vertical Window

Fig. 3. The illustration of the variable size window with channel splitting manner

Computation Complexity Analysis. Omitting SoftMax, the computation
complexity of a variable size window attention module based on an SAR image
of h × w patches is:

Ω(V W -MSA) = 4hwC2 + 2MNhwC (2)
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where hw denote the patch num, it can be seen that our computational com-
plexity is also linear with hw when MN set as we design.

3.4 WAFormer Block

Our network is built on WAFormer block, with other layers kept same with Swin-
Transformer. A WAFormer block contains a pair of regular and shifted variable
size window attention modules. This block is defined as:

X̂ l = V W -MSA(LN(X l−1)) + X l−1,

X l = MLP (LN(X̂ l) + X̂ l),

X̂ l+1 = SV W -MSA(LN(X l)) + X l,

X l+1 = MLP (LN(X̂ l+1) + X̂ l+1), (3)

where VW - MSA and SVW - MSA respectively denote the regular and shifted
variable size window attention modules; X̂ l and X l+1 denote the output feature
of the (S)VW - MSA module and the MLP module for block l.

4 Experiments

4.1 Dataset and Evaluation Metrics

SSDD [6] is the first open dataset which is widely used in the SAR remote sensing
community. It includes 1160 SAR images with about 500 × 500 pixels and under
1–15 m resolutions. The dataset contains 2456 ship targets of different sizes
and materials, good and bad sea condition, offshore and inshore scenes. Official-
SSDD [5] is an optimized version based on the initial SSDD. Compared to SSDD,
Official-SSDD revises labels, formulates stricter using standards and provides a
comprehensive data analysis. HRSID [7] includes 5604 SAR images with 800×800
pixels and three resolutions(0.5 m, 1 m, 3 m). It contains 16951 ship targets
covering different resolutions, polarization, sea condition, sea area, coastal port.
We choose Official-SSDD as the main training and testing dataset, and HRSID
as the validation dataset for comparison with Swin-Transformer. For detection
evaluation metrics, we apply the mean Average Precision (mAP), detection rate
at IOU = 0.5 (AP50) and IOU = 0.75 (AP75), and detection performance of
target detection on small, medium, large targets (APS , APM , APL). The FLOPS
and parameters of model used are also calculated and compared.

4.2 Implementation Details

We implement our proposed network on the PyTorch framework and MMDe-
tection [23] toolbox. Multi-scale training [20,24] and data augmentation tech-
niques [19] are adopted while the largest size is set as 1333 × 800 refer to Swin-
Transformer. The experiments run at a NVIDIA GeForce RTX 3090 GPU and
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the batch size is set as 4 limited by the compute capability. The initial learning
rate and training epoch are set as 0.0001 and 300. We use AdamW [25] optimizer
and cosine decay learning rate scheduler with 5 epochs of linear warm-up. The
weight decay is set as 0.05.

4.3 Comparison Results

We compare our proposed WAFormer backbone with Swin-Transformer using
Mask R-CNN [28] object detection framework. Meanwhile, we also choose 5
classic object detection methods including YOLOv3 [29], SSD-512 [30], Reti-
naNet [31], Faster R-CNN [32], Mask R-CNN using ResNet-50 [33] as back-
bone. Figure 4 shows the visual results on Official-SSDD of WAFormer and
Swin-Transformer with Mask R-CNN framework compared with other classic
methods. It can be seen that the detection performance of our method is better
than Swin-Transformer, and the confidence of the detection box is higher than
that of other methods.

Table 2. Detection results on Official-SSDD test set.

Method Image size mAP AP50 AP75 APS APM APL

YOLOv3 10242 65.7 96.1 78.1 66.3 65.3 67.7

SSD-512 5122 70.1 96.3 84.4 70.1 71.1 74.4

RetinaNet 10242 73.8 98.3 88.8 73.2 76.4 80.3

Faster R-CNN 10242 73.1 96.7 88.1 71.6 78.2 76.9

Mask R-CNN R-50 10242 73.5 96.8 87.8 72.0 78.2 75.0

Mask R-CNN Swin 10242 73.4 97.7 89.6 73.3 74.7 62.9

Mask R-CNN WAFormer 10242 74.4 98.6 90.4 73.7 77.9 71.8

Table 3. Parameter size and FLOPs of methods in experiment.

Method Image size #Params FLOPs

YOLOv3 10242 61.52M 198.5G

SSD-512 5122 24.39M 87.12G

RetinaNet 10242 36.1M 209.13G

Faster R-CNN 10242 41.12M 211.28G

Mask R-CNN R-50 10242 43.75M 262.76G

Mask R-CNN Swin 10242 47.37M 267.01G

Mask R-CNN WAFormer 10242 41.31M 250.55G
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Groud Truth Faster R-CNN SSD-512 YOLO-V3

RetinaNet Mask R-CNN(R-50) Mask R-CNN(Swin) Mask R-CNN(WAFormer)
(a)

Groud Truth Faster R-CNN SSD-512 YOLO-V3

RetinaNet Mask R-CNN(R-50) Mask R-CNN(Swin) Mask R-CNN(WAFormer)
(b)

Fig. 4. Visual results of methods involved on Official-SSDD. R-50 namely ResNet-50
and Swin namely Swin-Tranformer.

Table 2 shows the performance comparisons of WAFormer with Swin-
Transformer and other methods. Our WAFormer architecture achieves the high-
est detection accuracy among all the methods involved in the comparison. Specif-
ically, our method achieves 74.4% mAP surpassing Swin-Transformer by +1.0,
while the AP50 and AP75 are also bring advantages of +0.9 and +0.8 respec-
tively. Meanwhile, we achieve the best result at APS and competitive result
at APM with 73.7% and 77.9% respectively. The results demonstrate that our
method brings improvements for solving small and multi-scale targets detec-
tion of SAR images. Table 3 shows the parameters and FLOPs of these meth-
ods. When using Mask R-CNN detection framework, our WAFormer realize less
parameters and FLOPs than Swin-Transformer. Our method achieves the best
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results with a lighter architecture. This further shows the effectiveness and supe-
riority of WAFormer for target detection in SAR images.

To validate the universality of our method over Swin-Transformer in SAR
images target detection, we retrain and test WAFormer and Swin-Transformer
with Mask R-CNN framework on HRSID. Table 4 shows that we still have advan-
tage compared with Swin-Transformer.

Table 4. Detection results on HRSID test set.

Method Image size mAP AP50 AP75 APS APM APL

Mask R-CNN Swin 10242 64.3 87.0 75.3 65.3 67.4 38.5

Mask R-CNN WAFormer 10242 65.1 87.2 75.5 65.8 68.2 44.2

4.4 Related Configuration Adjustment

Window Size and Shift Size. To achieve the optimal performance, we con-
ducted different configuration experiments on the size and the shift size of the
window. Table 5 shows the results of different configuration. The results show
that the highest accuracy is achieved when the long side and short side are of
the window set as [32, 16, 8, 4] and [7, 4, 2, 1]. And when the shift size is set as(⌊

short-side
2

⌋
,
⌊
short-side

2

⌋)
, the shifted window can bring optimal performance.

Table 5. The performance of different configuration on size of the window and step
size of the shifted window. The long side and short side denote the size of the window.

Long side Short side Shift size mAP AP50 AP75 APS APM APL

[56, 28, 14, 7] [8, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
73.4 97.7 90.5 73.3 74.6 71.0

[56, 28, 14, 7] [7, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
73.5 97.7 89.3 73.0 76.5 68.8

[32, 16, 8, 4] [8, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
73.9 98.6 89.1 73.4 76.6 77.7

[32, 16, 8, 4] [7, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
74.4 98.7 90.4 73.8 77.4 71.0

[16, 8, 4, 2] [8, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
73.7 98.5 90.7 73.2 75.8 70.0

[16, 8, 4, 2] [7, 4, 2, 1]
(⌊

short-side
2

⌋
,
⌊

short-side
2

⌋)
73.3 97.7 89.8 72.6 76.1 65.9

[32, 16, 8, 4] [7, 4, 2, 1]
(⌊

long-side
2

⌋
,
⌊

short-side
2

⌋)
73.6 98.6 90.4 72.7 76.8 73.8

[32, 16, 8, 4] [7, 4, 2, 1]
(⌊

long-side
2

⌋
,
⌊

long-side
2

⌋)
73.9 98.6 89.4 73.0 77.5 66.7

Convolution Position Encoding. To validate the effect of convolutional rel-
ative position encoding, we also conducted relevant experiments. We calculate
the origin attention without the convolution position encoding, the attention
with additive and multiplicative convolutional position encoding, respectively.
The results show in Table 6, the results show that the additive convolutional
position encoding is beneficial to improve the accuracy.
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Table 6. The performance of different position encoding. mul conv rel pos.: multiplica-
tive convolutional position encoding, add conv rel pos.: additive convolutional position
encoding

Position encoding mAP AP50 AP75 APS APM APL

No pos. 73.3 97.8 90.3 72.5 76.5 71.3

Mul conv rel pos. 73.6 98.6 89.4 72.5 77.9 77.7

Add conv rel pos. 74.4 98.6 90.4 73.7 77.9 71.8

5 Conclusion

In this paper, according to the characteristics of the SAR images, we propose a
backbone focus on target size based on Swin-Transformer. Our method improves
the target detection performance in SAR images while reducing the cost. Exper-
iments show the targeted improvements have played an effective role in solving
the problem of difficult detection of small and multi-scale targets in SAR images.
At the same time, our size variable window is also applicable to other datasets,
since it is designed according to the dataset. However, it can be found that our
large target detection results are not excellent. We consider this may be a short-
coming of window attention mechanism. In future work, we plan to increase
the number of large windows in the shallow layer, and introduce the channel
attention mechanism to increase the information interaction between channels.
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