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Abstract. 3D object detection is an essential task in autonomous driv-
ing and virtual reality. Existing approaches largely rely on expensive
LiDAR sensors for accurate depth information to have high performance.
While much lower-cost stereo cameras have been introduced as a promis-
ing alternative, there is still a notable performance gap. In this paper, we
explore the idea to leverage sparse LiDAR and stereo images obtained by
low-cost sensors for 3D object detection. We propose a novel multi-modal
attention fusion end-to-end learning framework for 3D object detection,
which effectively integrate the complementarities of sparse LiDAR and
stereo images. Instead of directly fusing LiDAR and stereo modalities, we
introduce a deep attention feature fusion module, which enables interac-
tions between intermediate layers of LiDAR and stereo image paths by
exploring the interdependencies of channel features. These fused features
connect higher layer features after upsampling and lower layer features
from the stereo image pathway and sparse LiDAR pathway. Hence, the
fused features have high-level semantics with higher resolution, which is
beneficial for the following object detection network. We provide detailed
experiments on KITTI benchmark and achieve state-of-the-art perfor-
mance compared with the low-cost based methods.

Keywords: 3D object detection · Sparse LiDAR · Stereo images ·
Low cost

1 Introduction

Autonomous driving is receiving more and more attention from the industry
and the research community, the requirements for 3D object detection are also
getting more and higher. Besides autonomous driving, 3d object detection has
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been applied to many other fields, such as virtual reality and medical simulation.
It is one of the most important tasks in the field of computer vision.

Different from 2D object detection, 3D object detection can estimate depth
and orientation of bounding boxes of objects by input sensor data. Depending
on the different type of sensor, 3D object detection can be divided into LiDAR-
based methods(point cloud-based methods) [6,9,12,16,20,36,40] , monocular
image-based methods [1,18,21,27,32], and binocular stereo image-based meth-
ods [5,17,24,30,31,35,39]. Existing LiDAR-based methods provide accurate
depth information by 3D point clouds. Although highly precise and reliable,
LiDAR sensors are notoriously expensive: a 64-beam model can cost around
$75,000 (USD). Compared with LiDAR and binocular stereo cameras, monocu-
lar cameras provide the cheapest data for 3D detection. However, a single image
lacks reliable depth information, which results in low precision for 3D detection.
Compared to monocular cameras, binocular stereo cameras can provide abso-
lute depth information. And it is not expensive and can provide denser image
information for small objects. While much lower-cost stereo cameras have been
introduced as a promising alternative, there is still a notable performance gap
compared with the results of LiDAR. All these sensors have their own advantage
and disadvantage, in which none of them complete well on all practical scenarios.
Some works [7,19,25,33,37] have researched how to fuse multiple sensors infor-
mation so that improve the performance of 3D object detection. However, these
methods take LiDAR data with 32 or 64 beams as input, which are very expen-
sive. LiDAR sensors with 4 beams are cheaper compared with 64 beams and
thus it is easily affordable. However, it cannot be used to detect small 3D object
only by themselves, since 4 beams LiDAR data are very sparse. As aforemen-
tioned, stereo images can provide denser information for small objects. Therefore,
we consider the fusion of binocular stereo camera and 4 beams LiDAR sensor
for 3D object detection, which is a more practical choice. Depending on sparse
LiDAR and stereo images, You et al. [41] proposed Pseudo-LiDAR++ method
for 3D object detection. In this method, they first generate a dense depth map
by stereo images, and then correct depth map by using sparse LiDAR informa-
tion. However, in process of generating depth map, they need 64-beams LiDAR
supervision.

In this paper, we propose a novel multi-modal fusion architecture that make
full use of the advantages from both sparse LiDAR and stereo image feature
fusion. It is worth noting that our proposed architecture is designed from low-
cost sensors. Since 4-beam LiDAR information is extremely sparse, the fusion
is from LiDAR feature to image feature, which augments image features with
information accuracy of LiDAR features.

Different from the previous fusion methods based on LiDAR and images, we
take a sparse 4-beam LiDAR and stereo images to detect 3D object by using the
complementary information between both. In the proposed framework, we first
take a sparse 4-beam LiDAR and make it dense image coordinate by using a sim-
ple and fast depth completion method. And then, the feature of stereo images
and sparse LiDAR depth maps is extracted respectively, an feature attention
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fusion module is proposed to integrate the feature information from two path-
ways. Next, this network takes Stereo RPN [17] to output corresponding left
and right RoI proposals. Left and right feature maps are fed into two differ-
ent branches. One is the stereo regression branch to regress accurate 2D stereo
boxes, dimensions, viewpoint angle and 2D center. Another is the depth predic-
tion branch employed to predict the single-variable depth z of the 3D bounding
box’s center.

Our main contributions of this paper are summarized as follows:

– We propose a novel multi-modal fusion end-to-end learning framework for 3D
object detection, which effectively integrate the complementarities of sparse
LiDAR and stereo images.

– An deep attention feature fusion module is proposed to explore the interde-
pendencies of channel features in the sparse LiDAR and stereo images while
fusing the significant multi-modality spatial features.

– The proposed method achieves state-of-the-art performance compared with
the low-cost sensor based methods without depth map supervision.

2 Related Work

2.1 LiDAR-Based 3D Object Detection

Since LiDAR sensors can provide the more accurate 3D information, most 3D
detection approaches [6,9,12,16,20,36,40] utilize LiDAR data as input to obtain
the best performance. Current LiDAR data can be processed into different rep-
resentations for input to 3D object detection, including raw point clouds [20,36],
volumetric forms [9,40], and 2D projection [16]. The representations of raw point
clouds and volumetric forms can make full use of the 3D information of the
object. However, they improve the computation cost drastically, especially for
large-scale datasets. To improve the efficiency of 3D representations, the 3D
point clouds are projected into a 2D image to utilize standard 2D object detec-
tion networks for predicting 3D bounding boxes.

2.2 Monocular-Based 3D Object Detection

Some works focus on 3D object detection using monocular cameras due to its
low cost and convenient use. MonoGRNet [27] utilizes instance-level depth esti-
mation to obtain a coarse 3D location, which is then refined by combining early
features. M3D-RPN [1] proposes a standalone 3D region proposal network for
joint prediction of 2D and 3D boxes. RTM3D [18] first predicts nine perspective
keypoints of the 3D bounding box and then leverages geometric constraints of
perspective projection to optimize 3D object information. SMOKE [21] uses the
prediction information of a single key point paired with each object and the
3D regression information to predict a 3D bounding box. M3DSSD [22] solves
the feature mismatching problem based on anchor-based methods by feature
alignment and extracts depth-wise features for accurate depth prediction.
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2.3 Stereo-Based 3D Object Detection

With the improvement of 3D object detection performance based on stereo
vision, the gap with LiDAR-based methods is narrowing. Stereo-RCNN [17]
extends Faster RCNN [29] to match objects in stereo images and utilizes dense
alignment to refine the center depth of 3D bounding boxes. Disp R-CNN [31]
and ZoomNet [39] share a similar idea that constructing the instance point cloud
to improve detection quality. Pseudo-LiDAR [35] first converts the depth map
from stereo vision to pseudo-LiDAR representation and then applies existing
LiDAR-based algorithms to detect 3D bounding boxes. DSGN [5] transforms
2D feature to differentiable volumetric representation for encoding 3D geometry
structure in 3D regular space. IDA-3D [24] proposes an IDA module for accurate
the depth predicted of objects center to have high performance.

2.4 Multi-modal 3D Object Detection

Recently, some techniques [7,19,25,33,37] are proposed to improve 3D object
detection performance by exploiting multiple sensors(e.g. 64 beams LiDAR and
camera). Though LiDAR sensors with 64 beams are notoriously expensive,
LiDAR sensors with only 4 beams are cheaper and easily affordable. In this
respect, Pseudo-LiDAR++ [41] proposes a propagation algorithm to integrate
the two data modalities, which takes advantage of sparse LiDAR to de-bias the
3D point cloud converted by the depth map from stereo vision. It is complex
since it incorporates several independent networks. SLS-Fusion [23] proposes a
approach to fuse sparse LiDAR and stereo camera for depth estimation, which
is then converted to Pseudo-LiDAR for 3D object detection. However, it fuse
the two data modalities by adding directly, not a weighted, which may lead to
non-discriminative depth estimation. Inspired by the above approaches, we pro-
pose a novel attention network with fusing sparse LiDAR and binocular stereo
images to accurately predict the information of 3D bounding box.

3 Proposed Method

In this section, we introduce the proposed 3D object detection architecture by
using binocular stereo images and 4-beam sparse LiDAR information in detail.
Our detection architecture consists of three stages: we first extract feature for
input binocular stereo images respectively by weight-shared Resnet network and
extract feature for sparse LiDAR in the same way as stereo images. And then
different modal features are fused by attention fusion module. Finally, stereo
information and single depth is obtained by regression network to predict 3D
bounding boxes. Our architecture is shown in Fig. 1. In this architecture, we fuse
LiDAR point cloud information to stereo images feature to augment image fea-
tures with geometry information accuracy of LiDAR features. However, instead
of directly using a 3D point cloud from 4-beam LiDAR, we form two sparse
LiDAR depth maps corresponding to stereo images by reprojecting the 4-beam
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LiDAR to both left and right image coordinates using the calibration parameters.
LiDAR can provide accurate 3D information for 3D object detection. However,
the observation is sparse, especially 4-beam LiDAR. Here, we perform depth
completion of sparse LiDAR depth maps to produce dense depth maps, similar
to the approach in [14]. The holes in the sparse LiDAR depth image are filled by
morphological operations and Gaussian blurring operations using nearby valid
depth values. The filled depth image is then normalized by the maximum depth
value in the dataset, resulting in depth values between 0 and 1. Next, we present
each component in detail.
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Fig. 1. Network architecture. Our network has three stages. First, sparse LiDAR and
stereo RGB images use ResNet-50 as encoder to extract features respectively. Next,
stereo images features and their corresponding sparse LiDAR features are fused by
attention mechanism. After left and right features (LF,RF) passed through Stereo
RPN, we obtain rough alignment region of interest of left and right view (LR RoIs).
Finally, we predict position, dimensions and orientation of 3D bounding box.

3.1 Feature Extraction

The stereo images and sparse LiDAR use identical feature encoder architectures,
one for each input sensor information. Both encoders for stereo images and sparse
LiDAR consist of a series of ResNet blocks. By convolution with stride and
downsampling operation, the feature resolution eventually is 1/16 of the input.
Each feature encoder weight are shared with left and right input.

We propose a deep fusion approach to fuse sparse LiDAR and stereo image
features hierarchically. Specifically, we fuse left sparse LiDAR with corresponding
left feature maps in this module, which is the same way for the right. For a
network with L layers in encoder stage, early fusion [15,34] combines features
from multiple views in the input stage:

FL = DL(DL−1(· · · Dl(D1(F s
0 ⊕ F l

0)))) (1)

where Dl is feature transformation function, ⊕ is a join operation (e.g., summa-
tion [15], concatenation [34]), F s

0 , F l
0 are the input information of stereo images
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and sparse LiDAR data respectively. Recently, [26] uses separate subnetworks to
learn feature transformation independently and combines their outputs in the
prediction stage:

FL = Ds
L(Ds

L−1(· · · Ds
1(F

s
0 )))

⊕ Dl
L(Dl

L−1(· · · Dl
1(F

l
0)))

(2)

where Ds,Dl are the separate feature transformation function of stereo images
and LiDAR data respectively.

To make more interactions among features from different modalities, the
following deep feature fusion process is presented as:

Fi+1 = Fi ⊕ F s
j ⊕ F l

j

iε{l + 1, · · · , L}; jε{L − l + 1, · · · , 2} (3)

where Fi represents the fused feature, F s
g , F l

g are the feature activations output
of stereo images and sparse LiDAR by each stage’s last block in encoder, F s

l , F l
l

refer to the last left view feature output in encoder. By this fusion, higher resolu-
tion features are produced by upsampling feature obtained by Resnet network in
higher layers of stereo image pathway and LiDAR pathway, which are spatially
coarser, but semantically stronger feature. These features are then enhanced with
lower layer features from the stereo image pathway and sparse LiDAR pathway
via connections. Moreover, These lower layer features from the stereo image
pathway and LiDAR pathway are of lower-level semantics, but its activations
are more accurately localized due to its higher resolution. Therefore, the fused
features have high-level semantics with higher resolution, which is beneficial for
object detection. In our network, F r

1 and F s
1 aren’t added to the fusion module

due to its large memory footprint.
Since the input sparse depth is strongly related with the decoder output(the

prediction depth of object Z), features from the sparse depth should contribute
more in the decoder. As such, we add the features from the sparse depth onto the
stereo features in decoder instead of concatenation. As the summation favors the
features on both sides in the same domain [4], the decoder is encouraged to learn
features more related to depth, which keep consistent with the feature from the
sparse depth. However, the 4 laser beams LiDAR are too sparse to alone provide
sufficient information for 3D detection. Therefore, the fusion is directed from
LiDAR steam to image steam to augment image features.

3.2 Attention Fusion

As Eq. 3 indicates that features of different models are fused equally, not a
weighted, which may lead to the different importance of each models cannot
be correctly reflected. To solve this problem, we employ an attention mechanism
to add sparse LiDAR feature into image feature, which sets the weight wi for
each feature level. Since the depth information in sparse LiDAR is accurate,
we hope to capture the depth information from sparse LiDAR map to stereo
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Fig. 2. Illustration of attention fusion module.

images. Therefore, the wi is obtained by calculating the correlation between
sparse LiDAR and corresponding stereo feature maps on each level. It is defined
as:

wi = cos < F s
i , F l

i >=
F s

i
� · F l

i

‖ F s
i ‖ · ‖ F l

i ‖ , i = 2 . . . , 5 (4)

where F s
i , F l

i ∈ R
(Hi×Wi×Ci)×1 are the ith stereo images and sparse LiDAR

feature maps in the feature extraction. Technically, as shown in Fig. 2, we first
upsample Fi+1 by a factor of 2 into F

′
i+1 ∈ RHi×Wi×C (using nearest neighbor

upsampling for simplicity). Next, we apply 1 × 1 convolution operation to F s
i

and F l
i to reduce channel dimensions. The process can be described as:

F
′
i+1 = upsample(Fi+1)

F s′
i = f1×1(F s

i )

F l′
i = f1×1(F l

i )

(5)

where upsample is the up-sampling operation via nearest neighbor interpolation,
and f1×1 refers to the 1 × 1 convolution layer.

Further, we fuse the upsampled feature map F
′
i+1 and the corresponding F s′

i

feature map by element-wise addition. Here, a 3 × 3 convolution is appended on
each merged feature map to reduce the aliasing effect of upsampling. Finally,
the merged feature is added to the sparse LiDAR feature F l′

i , which applies the
wi. The output feature is computed as follow:

Fi = f3×3(F s′
i + F

′
i+1) + wi · F l′

i (6)

where f3×3 represent the 3 × 3 convolution layer. The fusion result Fi is exactly
the higher level feature of the next fusion stage. This process is iterated until
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the final feature map is generated. To start the iteration, we simply to produce
the init fusion feature map F5, which can be formulated as:

F5 = f3×3(F s′
i + w5 · F l′

i ) (7)

where F s′
i , F l′

i are the 5th feature level of the stereo image and sparse LiDAR,
respectively, which is used in the decoder stage.

3.3 3D Object Information Regression Prediction

After feature extraction and fusion, we employ stereo Region Proposal Network
(RPN) module [17] to generate some pairs of Regions of Interest (RoI) in the
left and right images. Different of RPN, the stereo RPN produces an union RoI
for left and right images in order to ensure the starting points of each pair of
RoIs, and then six regressing terms are used to predict the offsets of anchor
box in left and right images. The six regressing terms include the offsets of
horizontal and vertical coordinates, the offsets of width and height of the 2D
box in left image, and the offsets of horizontal coordinate and width in right
image. After stereo RPN, we can obtain corresponding feature maps in left-
right proposal pairs by applying RoI Align [10] on the left and right feature
maps respectively at appropriate pyramid level. The left and right RoI features
are concatenated and fed into the stereo regression branch, which includes four
sub-branches to predict 2D box, dimension, and viewpoint angle, 2D center
respectively. In addition to the stereo regression branch, we predict the 3D depth
of object center in the depth prediction branch. Instead of predicting the depth
information of each pixel, we only compute the depth of instance object between
left and right images. In our network, we takes Instance-Depth-Aware (IDA)
module [24] to predict the depth of instance object center.

Finally, 3D bounding box can be represented by 2D box, dimension, orien-
tation, and depth information.

3.4 Implementation Details

Our loss function can be formulated as:

L = w1L
s
cls + w2L

s
reg + w3L

r
box + w4L

r
dim

+ w5L
r
α + w6L

r
ctr + w7L

d
z

(8)

where we use (·)s,(·)r and (·)d for representing the loss in Stereo RPN
module [17], Stereo Regression module [10], and Depth Prediction module
[24]respectively. Ls

cls and Ls
reg denote the loss of classification and regression

on stereo RPN module respectively. Lr
box,Lr

dim, Lr
α, Lr

ctr are the loss of stereo
boxes, dimension, viewpoint, 2D center on stereo Regression respectively. Ld

z is
the loss of depth on Depth Precision module. Each loss is weighted to balance
the whole loss following [13]. In our experiment, the weight is 1,1,1,3,0.1,2,0.2
separately.
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Two weight-shared ResNet-50 [11] architecture are treated as the feature
encoder for stereo images and sparse LiDAR, respectively. For data augmen-
tation, we flip and exchange the left and right image in the training set and
mirror the image information. For sparse LiDAR information, we first project
it on image planes using the calibration parameters and then apply the same
flipping strategy as previous stereo images. Our model is implemented under
PyTorch 1.1.0, CUDA 10.0. By default, we train our network with batch-size 4
on 4 NVIDIA Tesla V100 GPUs for 65000 iterations, and the overall training
time is about 26 h. We apply stochastic gradient descent(SGD) optimizer with
initial learning rate 0.02.

4 Experiments

Table 1. 3D object detection results evaluated on the KITTI object validation set. We
report average precision of bird’s eye view (APbev) and 3D boxes (AP3d) for the car
category. PL(AVOD) is reported by [5] without LiDAR supervision. We use original
KITTI evaluation metric here.

Method APbev(IoU = 0.5) AP3d(IoU= 0.5)

Easy Moderate Hard Easy Moderate Hard

MonoGRNet [27] 54.21 39.69 33.06 50.51 36.97 30.82

M3D-RPN [1] 55.37 42.49 35.29 48.96 39.57 33.01

RTM-3D [18] 57.47 44.16 42.31 54.36 41.90 35.84

Decoupled-3D [2] 73.22 54.31 45.97 69.40 50.50 42.46

MLF [38] - 53.56 - - 19.54 -

3DOP [3] 55.04 41.25 34.55 46.04 34.63 30.09

TL-Net [28] 62.46 45.99 41.92 59.51 43.71 37.99

PL(AVOD) [35] 76.8 65.1 56.6 75.6 57.9 49.3

Stereo R-CNN [17] 87.13 74.11 58.93 85.84 66.28 57.24

IDA-3D [24] 88.05 76.69 67.29 87.08 74.57 60.01

Ours 88.58 77.70 68.15 87.92 75.32 66.27

4.1 KITTI Dataset

Our method is evaluated on the challenging KITTI object detection dataset [8],
which provides 7481 training images and 7581 testing images. In this paper,
the 4-beam LiDAR signal on KITTI benchmark is simulated by sparsifying the
original 64-beam signal as the way of [8]. Following [3], the training data is
divided into roughly the same amount of training set and validation set. The
ground-truth of Car, Pedestrian and Cyclist is provided by annotations in the
training set. Following the KITTI settings, each category is divided into three
regimes: easy, moderate, and hard, depending on the occlusion/truncation and
the size of 2D box height.
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Table 2. 3D object detection results evaluated on the KITTI object validation set. We
report average precision of bird’s eye view (APbev) and 3D boxes (AP3d) for the car
category. PL(AVOD) is reported by [5] without LiDAR supervision. We use original
KITTI evaluation metric here.

Method APbev(IoU= 0.7) AP3d(IoU = 0.7)

Easy Moderate Hard Easy Moderate Hard

MonoGRNet [27] 24.97 19.44 16.30 13.88 10.19 7.62

M3D-RPN [1] 25.94 21.18 17.90 20.27 17.06 15.21

RTM-3D [18] 25.56 22.12 20.91 20.77 16.86 16.63

Decoupled-3D [2] 44.42 29.69 24.60 26.95 18.68 15.82

MLF [38] - 47.42 - - 9.80 -

3DOP [3] 12.63 9.49 7.59 6.55 5.07 4.10

TL-Net [28] 29.22 21.88 18.83 18.15 14.26 13.72

PL(AVOD) [35] 60.7 39.2 37.0 40.0 27.4 25.3

Stereo R-CNN [17] 68.50 48.30 41.47 54.11 36.69 31.07

IDA-3D [24] 70.68 50.21 42.93 54.97 37.45 32.23

Ours 71.62 52.15 44.6 56.00 39.77 33.64

4.2 Evaluation Metrics

We use average precision of 3D detection (AP3d) and average precision of bird’s-
eye-view (BEV) detection (APbev) to evaluate the performance of our method.
The results of AP3d and APbev on the validation set are reported on the car’s
category. It is worth noting that the Intersection over Union (IoU) thresholds
are set at 0.5 and 0.7, following previous works [17,24]. In order to compare with
previous approaches fairly, our validation results are evaluated using the original
evaluation code, which calculates AP with 11 recall positions instead of 40 recall
positions.

4.3 Main Results

The main results as shown in Table 1, 2 (IoU = 0.5,0.7), where we compare the
proposed method with previous state-of-the-art approaches from low-cost sen-
sors (monocular to binocular). Our method obtains a significant improvement
in comparison to previous monocular-based methods in all cases across all IoU
thresholds. Comparing with binocular-based methods, our method gains the
highest performance at 0.5 IoU and 0.7 IoU. Specifically, our approach out-
performs previous state-of-art IDA-3D [24] by 1.94% and 1.67% in APbev across
moderate and hard sets at 0.7 IoU, respectively. The similar improvement trends
can be obverse in AP3d, which manifest that our approach achieves consistent
improvement compared with other approaches. The results of our approach in
the moderate and hard set on the most metric AP3d (IoU = 0.7) outperform
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IDA-3D by over 2.32% and 1.41%. Although only a small margin of our app-
roach outperforms IDA-3D (IoU = 0.7) in the easy set,the proposed method gain
significant improvement over 6.26% on AP3d (IoU = 0.5) in the hard set. The
reason is that our method fuses sparse LiDAR information to extract feature,
which provides more accurate depth.

In addition to the aforementioned comparison methods, we also compare with
the current multi-modality based method. Since these methods [19,25,33,37]
use 64-beams LiDAR information as input or intermediate supervision, we
only compare the proposed method to the Pseudo-LiDAR++ (PL++) [41],
which takes L#+S as input. PL++ produced dense depth map with 64-beams
LiDAR supervision, however, the proposed method only use 4-beam LiDAR.
We show the reproduced result of PL++ without 64-beam LiDAR supervision
(PL++ * (AVOD)) in Table 3. The experimental results in Table 3 demonstrate
that our approach outperforms PL++ * (AVOD) approach on some metrics.
Specifically, we achieve 11.3% improvement for AP3d using IoU = 0.7 in the
easy set. For APbev, our method gains over 7.82% improvements. The reason is
the proposed network pays more attention to nearby objects, while the 3D point
cloud is projected onto the front-viewing image. In addition, Table 3 also reports
the running time comparison between PL++ * (AVOD) method and the pro-
posed method. Our approach has a high speed of 0.116 s per frame at inference
time, which far exceeds PL++ * (AVOD) method. The efficiency is attributed
to our network, which is an end-to-end architecture with light weight modules
compared to the network of PL++ method.

Table 3. APbev and AP3d of IoU= 0.7 on KITTI validation set.

Method Running time
(s/frame)

APbev AP3d

Easy Moderate Easy Moderate

PL++ * (AVOD) [41] 0.519 63.8 57.2 44.7 38.9

Ours 0.116 71.62 52.15 56 39.77

In addition to the above quantitative analysis, we also show the qualitative
detection results of several scenarios in the KITTI validation set in Fig. 3. It can
be observed that the proposed method can accurately detect objects in these
scenarios, and the detected 3D box are well aligned on the vertical view and
front view point cloud.

4.4 Ablation Study

In this section, we analyze the effectiveness of Sparse LiDAR, Depth Completion,
and Attention Fusion components in our method. Results are shown in Table 4.
In condition of just using Sparse LiDAR, we directly add the sparse LiDAR
features into their corresponding stereo images features at appropriate level in
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Fig. 3. 3D object detection results on the KITTI validation set. The predicted results
are shown in green box and the ground truth are shown in red box. In order to facilitate
observation, the detection results are shown on the vertical and front view point cloud.
(Color figure online)

the decoder. In condition of not using Depth Completion, we regard the sparse
LiDAR depth maps as the depth feature extractor input. In condition of not using
Attention Fusion module, the sparse LiDAR feature maps are added directly to
their corresponding image feature maps.

From Table 4, we can see that the performance achieves significant improve-
ment, when sparse LiDAR is only applied, which demonstrates that sparse
LiDAR is crucial for high-quality 3D detection. The absence of Depth Comple-
tion makes the percentage drop from 38.83% to 37.31% on AP3d with a threshold
IoU = 0.7 in the moderate set. Besides, the performance of our APbev has a drop
of 1.87% at 0.7 IoU in the easy set when Attention Fusion is removed. Large
improvements can be observed on all metrics by using these three key compo-
nents together, and results surpass almost all prior low-cost based methods.

Table 4. Ablation studies on the KITTI validation set.

Sparse Attention Depth APbev(IoU = 0.7) AP3d(IoU = 0.7)

LiDAR fusion completion Easy Moderate Hard Easy Moderate Hard

67.66 48.74 41.73 53.35 36.49 31.26

� 70.06 50.47 42.86 55.77 37.31 31.6

� � 69.75 51.52 44.22 55.93 38.83 33.05

� � 71.35 51.46 43.87 55.8 37.91 32.7

� � � 71.62 52.15 44.6 56 39.77 33.64

5 Conclusion

In this paper, we take 4-beam sparse LiDAR and stereo images as input for 3D
object detection. The key idea is that a deep fusion module combines features
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across multiple modalities by utilizing an attention mechanism. Our deep atten-
tion feature fusion module explores the interdependencies of channel features in
the sparse LiDAR and stereo images while fusing the significant multi-modality
spatial features. Experimental results show higher 3D detection performance of
our proposed method compared with other low-cost sensor based method.
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