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Abstract. In this paper, we observe that the point cloud density affects
the performance of different categories in 3D point cloud semantic seg-
mentation. Most existing point-based methods implicitly deal with this
density issue via extracting multi-scale features in a single forward path.
Instead, we propose a Waterfall-Net that explicitly utilizes the density
property via cross-connected cascaded sub-networks. In Waterfall-Net,
three sub-networks successively process the input point cloud. Each sub-
network handles the point features sampled at different densities, obtain-
ing the information at various densities. The output features of one
sub-network are up-sampled via a learnable up-sample method and fed
into the next sub-network. This Sub-Network Fusing aligns the density
of two sub-networks and maintains the contextual information. Mean-
while, Sub-Stage Fusing fuses the sub-stage features between successive
sub-networks according to the density. Such waterfall-like feature aggre-
gation ensembles all the features from different densities and enhances
the model learning ability. We empirically demonstrate the effectiveness
of the Waterfall-Net on two benchmarks. Specifically, it achieves 72.2%
mIoU on S3DIS and 55.7% mIoU on SemanticKitti.

Keywords: Point cloud semantic segmentation · Density property ·
Feature aggregation

1 Introduction

Point cloud semantic segmentation is a fundamental task in 3D scene analysis. It
plays a vital role in many applications, such as autonomous driving and robotics.
Recently, many methods have obtained promising performance on several bench-
marks [2,3]. In this paper, we focus on the point-based methods [7,13,19,31]
directly processing the 3D points as no information conversion occurs.

For point-based methods, we observe that the density of the input points can
significantly affect the performance of different categories. As shown in Fig. 1, we
feed the point cloud of S3DIS randomly sampled at different densities into the
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Fig. 1. The performance of RandLA-Net on S3DIS at different input densities. Different
categories achieve the best performance at different densities.

RandLA-Net and evaluate the IoU of all the categories. The results demonstrate
that a particular category is better resolved at a certain density. Some cate-
gories are better predicted at high resolution while some other categories achieve
the best performance at lower densities. The reasons for this phenomenon are
twofold. First, points sampled at different densities can reflect the geometric
property of the objects. For example, when points are sampled at low density,
the performance of ceiling and floor increases because low density can smooth
the noise on these large planes. On the contrary, the performance of the window
and clutter decreases as these objects need more detailed geometric information
for accurate prediction. Second, the density of the sampling procedure affects
the receptive field of the sampled points. At different densities, the K nearest
neighbor points of a point will provide contextual information of different scopes.
So, how can we take advantage of all the superiority of different densities?

The naive idea to utilize multiple densities is to combine the results pre-
dicted at a range of densities, but we do not know the best density for each
category. An alternative is to aggregate the feature arising from various densi-
ties. Some previous works utilize points sampled via various rules or features
with different receptive fields intuitively. PointNet++ [17] employs the density
adaptive layer to aggregate multi-scale features from the neighborhood of differ-
ent scopes, dealing with the non-uniform sampling density in the point cloud.
JSNet [33] fuses the features from multi-layers with concatenating and adding
operations at the end of the backbone. RandLA-Net [7] and KPConv [19] et al.
both use a U-shape encoder-decoder structure, in which features with different
receptive fields are fused via skip connections between the encoder and decoder.
These methods extract multi-scale features in a single “funnel” forward path,
and the density of the point decreases as the depth of the layer increases. The
features from early layers are detailed features at high density and the features
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from layers in the back are abstract features at low density, but some features
of various semantics-and-density combinations (such as abstract features with
high density) are missing. Obviously, we can obtain more abundant features in
different states via further exploring the density property.

This paper establishes a network that can sufficiently utilize the density prop-
erty with cascaded sub-networks. As visualized in Fig. 2, the proposed method
employs a U-shape encoder-decoder architecture. The encoder consists of three
sub-networks. Each sub-network handles the point features sampled at different
densities. In this way, the encoder can extract clues at different densities. The
output of one sub-network acts as the input of the next one via a learnable
up-sampling, to fully utilize the contextual information and provide features of
multiple granularity. From another perspective, the cascaded sub-networks is a
polishing process for the features. This mechanism is termed as sub-networks
fusing. Meanwhile, each sub-network consists of several sub-stages. The corre-
sponding sub-stage features from adjacent sub-networks are fused according to
the same density, and we term this mechanism as sub-stage fusing. Overall, the
features from different layers are cross-connected like a waterfall. Such waterfall
feature aggregation assembles features at different states and enhances the model
learning ability. Thus, we name the proposed method as Waterfall-Net. We eval-
uate the Waterfall-Net on two standard benchmarks, S3DIS and SemanticKitti,
and the results demonstrate that the proposed method can significantly improve
the baseline’s performance. Our main contributions are summarized as follows:

1. We observe that the density of input point cloud can significantly affect the
performance of different categories.

2. We propose a Waterfall-Net to take advantage of the density property. It
extracts abundant features at different densities and aggregate them in an
waterfall-like manner for better prediction.

3. We propose a learnable up-sampling method for point cloud feature inter-
polation. It can adaptively incorporate the contextual clues for interpolation
and outperforms the rule-based methods.

2 Related Work

Point-Based Point Cloud Semantic Segmentation: Point-based methods
process the raw point cloud directly. PointNet [16] is the first method to employ
point-wise MLP and symmetry function for point cloud analysis. Based on Point-
Net, PointNet++ [17] and PointSIFT [8] use shared point-wise MLPs for point-
wise manipulation and adopt aggregate modules to capture the context informa-
tion. Subsequently, Francis et al. [6] further utilizes K-means and KNN in both
the world space and the latent feature space to regularize feature learning. To
overcome the drawback that MLPs only process points individually, PointWeb
[30] and RSCNN [13] design some measurements to explore the relationship
between the point pairs in a local region. Besides, PCCN [23] and KP-FCNN
[19] explore effective convolution operations for point clouds. Along with the rise
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Fig. 2. The overview architecture of Waterfall-Net. The Waterfall-Net employs an
encoder-decoder architecture. The encoder consists of three sub-networks, each sub-
network handles point features sampled at a certain density. These sub-networks are
cross-connected via Sub-Network Fusing and Sub-Stage Fusing mechanisms.

of Graph Neural Networks, PyramNet [34] and GAC [22] use graph-based net-
works to model point clouds and capture the underlying shapes and geometric
structures. DGCNN [24] proposes an Edge-Conv based on a graph to recover
the topological information of the point cloud. Beyond that, RandLA-Net [7]
employs a local feature aggregation module on randomly sampled points to pro-
gressively increase the receptive field. These methods process the point cloud
in a single forward path, and the density of the points decreases as the depth
increase. However, the density property we observed is not explicitly considered
by previous methods. In this paper, we take full use of the density property
through several cascaded sub-networks.

Multi-scale Feature Fusing: In image analysis methods, the multi-scale fea-
ture is very important to deal with the scale space. The straightforward method
is using image pyramid [1] to feed multi-resolution images into multiple networks
and aggregate the output [20]. To improve efficiency, PSPNet [32] and Deeplab
series [4] aggregate features from different scales. Hourglass [15] and its exten-
sion [9] combine the low-level and high-level features with short-cut connections.
HRNet [21] and DFANet [11] construct several subnetworks for different reso-
lution and conduct multi-scale fusion repeatedly. For the 3D point cloud, the
multi-scale feature fusing methods are relatively few. PointNet++ [17] employs
the density adaptive layer to aggregate multi-scale features from the neighbor-
hood of different scopes like PSPNet. JSNet [33] fuses the features from multi-
layers with concatenating and adding operations at the end of the backbone.
RandLA-Net [7], KPConv [19], and GAC [22] et al. fuse features with different
receptive fields via skip connections between the encoder and decoder. These
methods extract multi-scale features in a single forward path, but the density
property of the point cloud is not fully utilized. Inspired by the idea of HRNet
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and DFANet, we establish a network that processes point features at multi-
ple densities in cascaded sub-networks. In this way, the information at various
densities is extracted and the network architecture is not bloated.

3 Waterfall-Net

Waterfall-Net employs an encoder-decoder architecture, following a typical
semantic segmentation fashion. To sufficiently utilize the density property, we
design a Cascaded Sub-networks Encoder to extract informative features at dif-
ferent densities. These features are fused via Sub-Network Fusing and Sub-Stage
Fusing. Additionally, to align the density of different sub-networks, we propose
a learnable upsample method that increases the density of the point cloud.

3.1 Cascaded Sub-Networks Encoder

The Cascaded Sub-networks Encoder transforms the input point cloud P into
latent features via stacked sub-networks. Each sub-network consists of 4 sub-
stages, it decreases the number of points via Random Sample (RS) and expands
the dimension of per-point feature via the Local Feature Aggregate (LFA) mod-
ule inherited from RandLA-Net [7]. We represent the feature of j-th stage in i-th
sub-network as Fj

i , i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}. The multiple sub-networks
are cross-connected via Sub-Network Fusing and Sub-Stage Fusing mechanisms.

Sub-Network Fusing joins successive sub-networks via transmitting the fea-
tures in a cascaded manner. The output of the i-th sub-network acts as the input
of the (i + 1)-th sub-network. Each sub-network’s input is formulated as:

F1
i =

{
LFA(M(P)) if i = 1
LFA(M(F2

i−1 ⊕ UP(F4
i−1))) otherwise

(1)

where M represents the MLP, ⊕ is the concatenation operation, and UP is the
upsample operation will be introduced in the next subsection. Note that F4

i−1

has a sparser density than F2
i−1, so the upsample operation is necessary to align

their density. The preceding sub-network extracts features with high semantic
awareness but at low density. With the interpolation of upsample operation,
the Sub-Network Fusing inherits the semantic awareness from the previous sub-
network and retains structure details at high density. Thus, this mechanism
provides semantics-and-density combined features of more variety.

Sub-Stage Fusing establishes connections between sub-stages in adjacent sub-
networks. The feature F j

i−1 and F j−1
i contribute to the feature F j

i together. The
intermediate feature of each sub-stage in different sub-network is:

Fj
i =

{
LFA(RS(Fj−1

i )) if i = 1
LFA(M(RS(Fj−1

i ) ⊕ Fj+1
i−1 )) otherwise

(2)
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where j > 1. We first decrease the density of Fj−1
i . Then, Fj+1

i−1 and Fj−1
i are con-

catenated and fed to LAF. This mechanism constructs more informative features
via aggregating features with different information granularity.

Fig. 3. IDW interpolates the features of the target point via weighting the surround-
ing points with inverse distance as weighing coefficients. The learnable up-sampling
employs a network to estimate the weighting coefficients.

With these fusing methods, named waterfall feature aggregation, the multiple
sub-networks work in a complementary manner. The feature of various semantic-
and-density combinations is abstracted and fused. Through the waterfall-like
cross connections in sub-networks, the information flow can be transferred
through an arbitrary network pipeline.

3.2 Learn to Upsample

In the Cascaded Sub-network Encoder, the point cloud is randomly down-
sampled. However, point cloud semantic segmentation aims to assign a seman-
tic label for each point, which needs to propagate features from down-sampled
points to the original points. RandLA-Net [7] employs the nearest interpolation
that simply duplicates the features, making the interpolated features undistin-
guishable. More works, such as PointNet++ [17], uses Inverse Distance Weighted
(IDW) average on k nearest neighbours. However, IDW only considers the dis-
tance between points while missing the needed semantic clues of the point cloud.

We propose a learnable up-sampling that can better capture the semantic
clues of point cloud with a data-driven network. As shown in Fig. 3, given the
point cloud Pl and its feature Fl, the learnable up-sampling propagates Fl to
Fi+1, i.e. the feature of Pl+1 (Pi ⊂ Pl+1). For one point pl+1 in Pl+1, the
nearest K points of it, i.e. {pnl }Kn=1, are firstly selected from Pl. Then, a shared
MLP is designed to encode the relative position between pl+1 and {pnl }Kn=1 into
weights, followed by a softmax function for normalization:

wn = g(pnl − pl+1;W) (3)
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where pl+1 and pnl are the three-dimensional coordinates of points, W is the
parameters in MLP, and g() represents the MLP followed by softmax func-
tion. wn ∈ R

1 represents the weight between pl+1 and pnl . Compared with the
distance-based weight in [7,17], the learned weight derives from the relative
position and holistically optimized parameters. Thus, it can better reflect the
distribution of the point cloud, making the semantic information more distin-
guishable. Finally, the features of nearest points are weighted summed as follows:

fl+1 =
K∑

n=1

(wn · fn
l ) (4)

where fn
l represents the features of pnl , and fl+1 is the feature pl+1.

4 Experiments

In this section, we first conduct ablation studies to verify the effectiveness of our
design on area 5 in S3DIS. Then, the results of Waterfall-Net in three popular
datasets are reported, including S3DIS and SemanticKITTI.

4.1 Analysis of Waterfall-Net Architecture

We verify the effect of each design, including the Sub-network Fusing, Sub-stage
Fusing, and Learnable upsampling. The quantitative results are reported on
area5 in S3DIS.

Waterfall Feature Aggregation: In this part, we set RandLA-Net as the
baseline. Then, a multi-scale block that extracts features from three parallel
branches with various densities is embedded between the encoder and decoder.
For Sub-Network Fusion verification, we remove the horizontal connection in
the Waterfall-Net (marked as purple arrows between the sub-networks). For
Sub-Stage Fusion verification, we remove the vertical connection between the
stages (marked as black arrows between the stages), and the encoder acts as
a forward network that consists of three cascaded subnetworks. The results of
all the above-mentioned modules and Waterfall-Net are shown in Table 1. The
RandLA-Net obtains mIoU of 62.8% in area5. However, embedding a multi-scale

Table 1. Performance of different modules on S3DIS area5

RandLA-Net Multi-scale block Sub-network fusing Sub-stage fusing mIoU(%)

� 62.8

� � 62.3

� � 64.3

� � 64.4

� � � 66.1
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block into RandLA-Net decreases the mIoU by 0.5%. The features at the end of
the encoder are all derived from the same forward path. Thus, the multi-scale
block is hard to introduce more abundant features but causes extra parameters,
leading to over-fitting. When we only employ Sub-Network Fusing, our method
obtains the mIoU of 64.3%, improving the baseline by 1.5%. When we only
employ Sub-Stage Fusing, the performance of the baseline is improved by 1.6%,
to 64.4%. It means that both the Sub-Network Fusing and Sub-Stage Fusing
are beneficial for the discriminative feature extracting. Finally, combining the
Sub-Network Fusing and Sub-stage Fusing into the waterfall feature aggregation,
Waterfall-Net obtains the mIoU of 66.1%, by 3.3%. The improvement is larger
than the sum of the gain arising from Sub-Network Fusing and Sub-Stage Fusing
individually. That is to say, the Sub-Network Fusing and the Sub-Stage Fusing
are complementary to each other.

Up-Sampling Method: The up-sampling method bridges the density gap
between successive sub-networks in Waterfall-Net. It should increase the den-
sity of the point cloud and keep the contextual information simultaneously. For
comparison, we implement the nearest-neighbor interpolation, inverse distance
interpolation, and the learnable up-sampling as the up-sampling method. Their
results are shown in Table 2. The nearest neighbor interpolation replicates the
feature of the nearest point but the contextual information of other surroundings
is not considered. Eventually, it achieves a performance of 64.3%. The inverse
distance interpolation exploits all the surrounding points and uses the inverse
of distance as the weighting coefficients. It outperforms the nearest neighbor
interpolation by 0.6% and achieves the mIoU of 64.9%. However, its weighting
coefficients are based on geometrical prior but what we need is the semantic
information. Our proposed learnable up-sampling also uses all the surrounding
points, and the weighting coefficients are inferred by a neural network. It explores
the semantic relation in a data-driven manner and achieves the mIoU of 66.1%,
outperforming the inverse distance interpolate by 1.2%.

Table 2. Performance of different up-sample methods on S3DIS area5

Method mIoU(%)

Nearest neighbor interpolate 64.3

Inverse distance interpolate 64.9

Learnable up-sampling 66.1

Other Basic Block: Waterfall-Net is implemented based on the Local Feature
Aggregation module proposed in RandLA-Net. To verify the general applicability
of waterfall feature aggregation, we also implemented the Waterfall-Net based on
the hierarchical point set feature learning layer proposed in PointNet++. The
result of the PointNet++ based Waterfall-Net in S3DIS area5 is presented in
Table 3. The waterfall-Net improves the performance of PointNet++ to 54.1%,
by 3.2%. It demonstrates that the waterfall feature aggregation can generally
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improve the performance of point-based methods for point cloud semantic seg-
mentation.

Table 3. Quantitative results of different basic block on S3DIS (area 5)

Method mIoU (%) Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [16] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 5.9 40.3 26.4 33.2

PointNet++ [17] 50.9 90.7 98.1 75.5 0.0 2.7 35.8 31.9 70.8 73.9 25.7 54.1 42.5 49.8

PointNet++ & Waterfall-Net 54.1 90.9 98.3 79.8 0.0 10.3 38.4 30.8 74.5 77.2 47.3 59.3 40.2 55.7

RandLA-Net [7] 62.8 91.5 96.0 80.6 0.0 26.1 62.5 47.6 76.4 84.1 60.7 71.3 65.5 54.1

RandLA-Net & Waterfall-Net 66.1 92.9 97.8 83.3 0.0 30.8 61.5 54.5 77.6 89.4 79.9 72.1 63.9 55.7

Table 4. Quantitative results of different approaches on S3DIS (6-fold cross validation)

Method OA (%) mACC (%) mIoU (%) Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board. Clut.

PointNet [16] 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

SPG [10] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [12] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

PointWeb [30] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

ShellNet [29] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

PointASNL [27] 88.8 79.0 68.7 95.3 97.9 81.9 47.0 48.0 67.3 70.5 71.3 77.8 50.7 60.4 63.0 62.8

KPConv [19] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

RandLA-Net [7] 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1

Waterfall-Net 88.5 82.4 72.2 94.7 97.8 82.8 64.2 53.9 64.8 70.5 74.2 78.3 66.0 65.3 66.7 60.0

Input GT RandLA-Net Ours

Fig. 4. Qualitative results of Waterfall-Net on S3DIS.

4.2 Results and Visualization

To verify the effectiveness of Waterfall-Net, we conduct it in two benchmarks:
S3DIS and SemanticKitti, both indoor and outdoor scenarios.
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S3DIS: We use the 6-fold cross-validation for fair comparison, following previous
methods [7,16,17]. Results are reported in Table 4. Waterfall-Net outperforms
RandLA-Net in all criteria and achieves superior results over previous point-
based methods on mACC and mIoU. Compared with RandLA-Net, Waterfall-
Net obtains obvious improvements in a large plane (ceil, floor, wall) and complex
geometry (table, chair). It means waterfall feature aggregation can improve the
categories that need clues of different granularity. In other words, the multiple
density property is more sufficiently utilized in Waterfall-Net. Figure 4 displays
some results in S3DIS. Some elaborate objects surrounded by large objects are
misclassified by RandLA-Net, while the Waterfall-Net can handle these issues
properly.

SemanticKitti: We follow the official split of training and testing set and eval-
uate the results in the competition server. Results are presented in Table 5. The
Waterfall-Net outperforms all the point-based methods and improves the per-
formance of RandLA-Net in most categories. It is inferior to RandLA-Net in the
categories that have few samples as the number of samples in SemanicKitti is
unbalanced. The topic of unbalance sample is another tough issue in point cloud
analysis but out of the scope of our research.

5 Conclusion

In this paper, we present a Waterfall-Net to take advantage of the density prop-
erty of different categories. It extracts more informative features with cascaded
sub-networks. The sub-networks are connected via Sub-Network Fusing and the
sub-stages in sub-networks are connected via Sub-Stage Fusing. Such a water-
fall feature aggregation strategy provides more abundant semantics-and-density
feature combinations. Quantitative experimental results and analysis on S3DIS
and SemanticKitti demonstrate the effectiveness of our method.
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