
Skeleton-Based Action Quality Assessment
via Partially Connected LSTM

with Triplet Losses

Xinyu Wang, Jianwei Li(B), and Haiqing Hu

School of Sports Engineering, Beijing Sports University, Beijing, China
jianwei@bsu.edu.cn

Abstract. Humanaction quality assessment (AQA) recently has attracted increas-
ing attentions in computer vision for its practical applications, such as skill train-
ing, physical rehabilitation and scoring sports events. In this paper, we propose
a partially connected LSTM with triplet losses to evaluate different skill lev-
els. Compared to human action recognition (HAR), we explain and discuss two
characteristics and countermeasures of AQA. To ignore the negative influence of
complex joint movements in actions, the skeleton is not regarded as a single graph.
The fully connected layer in the LSTM model is replaced by the partially con-
nected layer, using a diagonal matrix which activates the corresponding weights,
to explore hierarchical relations in the skeleton graph. Furthermore, to improve
the generalization ability of models, we introduce additional functions of triplet
loss to the loss function, whichmake samples with similar skill levels close to each
other.We carry out experiments to test ourmodel and compare it with seven LSTM
architectures and three GNN architectures on the UMONS-TAICHI dataset and
walking gait dataset. Experimental results demonstrate that our model achieves
outstanding performance.
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1 Introduction

Automatic action quality assessment has attracted research interest in recent years
because of its practical applications, such as skill training [1–3], physical rehabilitation
[4, 5] and scoring sports events [6–8]. RGB videos [6, 7, 9, 10] and joint coordinates [4,
11] are widely used for this task. Unlike RGB videos, models based on skeleton data
not only reduce the number of parameters but also focus on the human body itself, not
environmental noise. Recent advances have provided reliable methods based on skeleton
data in HAR. However, there are still many works to complete in AQA.

Compared to HAR, we discover two characteristics of action quality assessment:
fine granularity, which makes it a challenging problem, and continuity. The process of
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improvement in action is a continuous process. The former has already been referenced
in numerous articles [7, 8, 10], but the latter has not.

Fig. 1. Examples of two characteristics with (a) fine granularity and (b) continuity.

Fine Granularity. AQA is a challenging process due to the intricacy of human motion.
Human motion can be defined as the movements of joint points, which are split into
small and large amounts of movement. In fact, large amount of movement of joint points
are usually regarded as the features of motion, such as the joint of the hand in the
action “drinking”. But experts may focus on small action changes, represented by small
amounts of movement or small changes in large amounts of movement. Therefore, it
is necessary to make models focus on small differences in the skeleton data. As shown
in Fig. 1(a), the dashed lines in red and green represent the final positions of different
subjects’ right legs. α and θ are large amounts of movement.

Continuity. To better illustrate this characteristic, we will take a classification problem
as an example. Say there is a problem classifying “desk”, “tree” and “cat”. It is obvious
that there is no order of preference in these labels. Feature vectors, transformed from
the inputs of the same class, form a cluster in feature space. There are long distances
between clusters from different classes. But if samples of “dog” are added to this task, the
distance between “cat” and “dog” is closer than other distances because of similarities
between animals, as shown in Fig. 1 (b). In AQA, labels representing different skill levels
are continuous, which shows hierarchical relations. The feature vectors of samples don’t
distribute randomly in feature space.

In this paper, based on two characteristics of AQA, we propose a partially connected
LSTM with triplet losses. Based on the characteristic of fine granularity, we design a
partially connected layer to precisely capture the relations among corresponding joints.
All nodes on neighboring layers in the original LSTMmodel are fully connected. In this
way, the joints interactwith each other, whichmay have good or bad effects. For example,
“standing with feet shoulder width apart” requires models to focus on the subjects’
shoulders and feet, which means that the wrist joint is a negative factor. To avoid it, each
part is represented by a graph, which constructs a diagonal matrix, activating the model’s
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parameters selectively. Based on the characteristic of continuity, extra information is
introduced to the loss function. Extras consists of two triplet loss functions [12], which
are used to make the clusters of classes in feature space distributed in order. In the
proposed model, the positive and negative samples in the triplet loss are restricted by the
distance between classes of different skill levels, rather than the same or distinct classes.

In the experiments, we test our model on the UMONS-TAICHI dataset [3] and the
walking gait dataset [13]. We make a comparison of seven LSTM architectures and
three GNN architectures. Finally, we compare the experimental results of models before
and after adding the triplet losses. In summary, we have made the following three main
contributions to this work.

• We explain and discuss two characteristics and countermeasures of AQA, compared
to HAR.

• We propose a partially connected layer and apply this structure to the LSTM for
assessing the quality of action from skeleton data.

• We introduce triplet losses to the loss function, based on the character of continuity,
which significantly improve models’ performance.

2 Related Work

2.1 Action Quality Assessment

We classify the tasks of AQA based on two factors: certainty of action and annotation
type. Actions are decomposed into several certain or uncertain motion units. We all
know that each diving consists of various action units, such as somersaults and twists.
The final score is made up of the difficulty score and the completion score. Recently,
because of the available data from the Olympic projects [6, 7, 9], assessment of uncertain
units has been extensively studied. Xu et al. [6] splits video into 9 clips, which were
put into 9 different C3D networks, and then used two parallel LSTMs to encode the
execution and difficulty scores. Parmar et al. [7] uses related auxiliary tasks, such as
counting somersaults and twists, to improve the model’s performance.

But in some cases, we just want to know howwell that moves, namely the completion
score, which helps people do some deeper analysis, such as physical rehabilitation,
training skills, and detecting abnormalities. Li et al. [14] figures out the differences
between diving actions, which is unsuitable for skill assessment. To avoid the influence
of differences, it is required that the actions are composed of a series of units based on
fixed rules, such as golf swing [1], rehabilitation exercises [4], and karate kicking [2].

Concerning annotation type, the annotation scores are usually replaced by the fea-
tures of subjects, such as skill levels, physical conditions, due to the great labor cost of the
domain experts’ professional annotations. This approach, which skips expert grading,
converts this task from grading the videos of actions to classifying the subjects. Szczęsna
[2] presents a dataset which consists of recordings of 37 karate athletes at different skill
levels. JIGSAWS [15], collected from eight surgeons of varying skill levels, has been
widely used as a bench dataset in many studies. But there are problems which need to be
considered. If there are two subjects, one expert and one novice, doing the same actions,
especially for simple actions, the novice is able to perform as well as the expert, which
is a misleading guide to the model.
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2.2 Graph-Based Methods

Models [10, 16–18] based on graphs of spatial-temporal joint relations have been devel-
oped and explored in HAR andAQA. Graph Convolutional Networks (GCNs) are classi-
fied as static [16] or dynamic [10, 17, 18] methods by Chen et al. [19] This paper expands
it to include more tasks. Song et al. [18] proposes a spatio-temporal attention LSTM to
learn discriminative features adaptively. Pan et al. [10] proposes an action assessment
network with two learnable relation graphs: the spatial relation graph and the temporal
relation graph. Given the complexity of motion and the lack of data in AQA, our model
is proposed to find the right patterns via a static method. Like ST-GCN, static methods
achieve good performance [16].

The methods can be categorized by hierarchical relations in graphs. In most methods
[16–18], the human skeleton is treated as a single graph. The complexity of human action
manifests in the positive or negative influences between joints. It is hard to explain the
complex relations between joints with a single graph. So, part-based models are pro-
posed. Our model constructs multiple graphs based on the human structure and assess-
ment rules. Du et al. [20] proposes a hierarchical recurrent neural network, divided into
five subnets. Each part of the skeleton based on physical structure is fed to the corre-
sponding subnet. But the more parts are divided from the skeleton, the more subnets
are required, which raises the model parameters. The PB-GCN [21] is designed to learn
properties from each part and relations between them by performing a convolution on
each partition, and then aggregating them. Si et al. [22] extends the part-based model
architecture to graph convolutional LSTM, extracting spatial and temporal features.
Instead of independent parameters between different parts, our model shares parameters
partially.

3 Methods

We propose a partially connected LSTMwith triplet losses for AQA. An overview of the
proposed approach is given in Fig. 2. The parts with corresponding activation matrixes
are fed into a partially connected LSTM. The Hadamard product is used rather than
concatenating the output vectors together to create a high-dimensional vector. The final
representation of parts is used in the triplet loss. In the following, we present the details
of each technical component.

3.1 Joints Graph and Activation Matrix

There are many methods to construct joint graphs, which are proposed to capture more
information about action patterns. For instance, traditional one considers a skeleton
graph as G(V, E), where V is the set of k joints and E is the set of m bones. To represent
the relations between specific joints and ignore the negative influence of other joints,
we divide the full set of k joints into subsets Vs = V1, . . .Vn. Unlike GCN, the bones
of the skeleton are ignored in this work. To some extent, the hierarchical relations of a
graph replace the edges among the joints.

A set of vertex matrices Ve = Ve0, . . .Ven, with Acn ∈ Rk×k , are diagonal matrices.
jnm, which is the element on the main diagonal of the vertex matrix, is 0 or 1 according



224 X. Wang et al.

Fig. 2. The architecture of our model.

to whether m-th joint is in the subset Vn or not. Given that the joint is represented by the
coordinates ( x, y, z), jnm is replaced with three corresponding elements.

3.2 Partially Connected Layer

Given the lack of priori information about data, fully and locally connected neural
networks are commonly used. Without considering the intrinsic relations between input
and output, there are lots of unnecessary connections in the models, which are not
conducive to capturing the underlying trend of the data.

Instead of directly multiplying the input vector with the weight matrix, we propose
an activation matrix to multiply the weight before the input is put into the model. We can
observe that the element in the activation matrix is 1 or 0. According to the basic matrix
operation, if the n-th element is 0, the corresponding parameters will be frozen and the
nth input node will not participate in the calculation. In this way, the proposed model
shares weights partially via activation matrices. Figure 3 shows different processes of
calculation in fully and partially connected layers. We can see that the activation matrix
activates corresponding parameters in different colors.

Fig. 3. Fully connected layer and partially connected layer.
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3.3 Partially Connected LSTM

To avoid the problem of long-term dependency in RNN, Hochreiter [23] proposed Long
Short-TermMemory, which is an advanced RNN architecture. Each standard LSTMunit
contains four interacting layers: input gateit , forget gateft , output gate ot and internal
memory cell state ct , together with a hidden stateht .

The activations of the memory cell and three gates are defined as follows
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where two fully connected layers W (x), U(h), are the main components of the LSTM
unit. The first is the input layer, which takes input at time step t. The second is the hidden
layer, which takes a vector storing the values of the hidden units at time t-1 as input.

The dimensions of the input vector are equal to the order of the activationmatrix. The
activationmatrixmultiplies theweight directly to share parameterswith coupled features.
But for the hidden layer, the size of theweightmatrix is decided by the number of features
in the hidden state. To solve the problem of dimension mismatch, we decomposed the
hidden layer:
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where the weight matrix of the hidden layer is split into two matrices Ul , Ur .

3.4 Triplet Loss

The loss function of cross-entropy is taken as the main component of the function. And
extras consist of triplet losses, which have beenwidely used for ranking [24] and scoring.
Given one anchor input Xa, triplet loss [18] is designed to minimize the distance with
positive samples Xp and maximize the distance with negative samples Xn at the same
time. Our loss function is composed of a set of triplet losses to make better use of
hierarchical relationships between samples.

In this work, OLSTM , which is the feature vector of sample Xa, is obtained as:

OLSTM =
n∏

k=1

aOk (5)
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where elements corresponding to the same rows and columns of Ok are multiplied
together to formOLSTM . While performing each Hadamard product operation, the result
is multiplied by a constant a, to avoid output value disappearing.

In the first extra function, a positive sample X 1
p is taken from a class of the same

level, and the distance between the input and negative sample X 1
n classes is 1. In the

second extra function, the negative sample from the first function is changed to a positive
sample X 2

p , and as a negative sample X 2
n , a sample is taken from a class of the next two

levels. The loss function is defined as:

Loss = Lcrossentropy + Ltriplet
(
Xa,X

1
p ,X 1

n

)
+ Ltriplet

(
Xa,X

1
n ,X 2

n

)
(6)

4 Experiments

4.1 Evaluation Datasets and Settings

We carry out experiments to test our model in twelve different taijiquan gesture classes
on the UMONS-TAICHI dataset and walking gait dataset.

UMONS-TAICHI: It is a dataset of tai chi gestures that includes 13 classes collected
from 12 participants at four different skill levels. It is captured by two motion capture
systems simultaneously:Qualisys andMicrosoftKinectV2. In thiswork,weuse skeleton
data from the Microsoft Kinect V2.

Walking Gait Dataset: It is a dataset of gait that includes normal walking gait and
8 simulated abnormal ones by padding a sole under foot. And we divided different
thicknesses into different abnormal levels. Each subject performed 9 walking gaits.
Each video in the dataset contains point cloud, skeleton, and frontal silhouette and is
acquired in 1200 consecutive frames.

All experiments are carried out with an NVIDIA GeForce GTX 1650 Ti. The neuron
size of LSTM cell in the LSTM layer is 128. As shown in Fig. 4, the skeleton is divided
into multiple parts based on human structure and assessment rules.

Fig. 4. The parts divided from the human skeleton.
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4.2 Data Preprocess

To improve generalization and reduce the risk of over-fitting, models require a large
amount of data during the training process. Furthermore, in a small dataset, model per-
formances are excellent and similar, making it difficult to compare and analyze each
model. Given the limited size of public dataset for action quality assessment, it is nec-
essary to use data augmentation strategies. According to the different characteristics of
the two datasets, we have formulated the following strategies, respectively.

For theUMONS-TAICHI, samples are divided into training and test sets,which are of
equal size. Three data augmentation procedures increase the size of the training set to 12
times. First, we select random time steps from the sequence to reduce them to a specific
length. Second, we randomly rotate the 3D coordinate in the range of [−15◦, 15◦], along
the x, y axis. The Cartesian coordinates of a vector are mapped to new coordinates by the
multiplication of the rotation matrix. Third, apart from the joint of crotch, we randomly
add Gaussian noise in data with the θ = 0, σ = 0.01.

For the walking gait dataset, each video contains 1200 frames, which is composed
of a lot of samples of walking. But the clips of samples are not split from the video. It
is totally different from UMONS-TAICHI. If the strategy of video cropping as above is
used again, the sample most likely contains a chaotic action sequence. Therefore, the
frame sequence but not the frame itself is randomly selected from the video.

Figure 5 shows different data augmentation strategies for the UMONS-TAICHI and
the walking gait dataset.

Fig. 5. Two data augmentation strategies
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Table 1. Experimental results of partially connected LSTM on the UMONS-TAICHI (%).

Action 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy Tr 100 100 100 100 100 100 100 100 100 100 100 100

Te 62.5 56.3 91.9 93.4 87.2 91.9 94.0 95.1 93.7 80.3 78.9 72.7

Spearman Tr 100 100 100 100 100 100 100 100 100 100 100 100

Te 62.9 22.5 94.8 94.0 82.2 92.3 92.3 96.1 95.7 85.2 85.8 66.4

4.3 Experimental Results and Analysis

The experimental results of partially connected LSTM tested in 12 different taijiquan
gesture classes. The number of samples of actions 1 and 2 is only 32. We can see that
the proposed model is overfitted in Table 1. Partially connected LSTM gets 100% train
accuracy and test accuracy is over 90% in actions 3, 4, 6, 7, 8, 9.

In the next set of experiments, we compare our architecture with seven other deep
LSTM architectures. LSTM and Bi-LSTM don’t pay attention to spatial or temporal
relations between actions. Compared to LSTM, SA-LSTM learns spatial patterns and
TA-LSTMlearns temporal patterns fromdata. STA-LSTM[18] is a joint spatial-temporal
attention network. All of them automatically produces their attentionmapwhile training.
It is mentioned in Sect. 2 that the right pattern is difficult to learn. Instead of learning
attention weights, the attention mechanism calculates them from the hidden state of the
decoder. Both hierarchical LSTM and partially LSTM are designed by specific graph
structure. Table 2 shows a comparison of the highest accuracy of each model in 30
epochs for action 8. Table 3 shows a comparison of the highest accuracy and spearman
correlation of each model in 50 epochs for the walking gait dataset. Figure 6 shows
the difference between training accuracy and test accuracy. We discover that models
with sub-network learning attention weights automatically perform poorly. Expect our
model, the differences between training and test accuracy are all over 10%. Our model
has improved the test accuracy to 95.1%, respectively. It turned out that partially LSTM
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reduces over-fitting by avoiding entering too many features at the same time. On the
walking gait dataset, our model obtains accuracy of 70.0%.

Table 2. Experimental results of LSTM architecture on the UMONS-TAICHI (%).

Method Accuracy

Train Test

LSTM 94.1 89.9

Bi-LSTM 100 89.9

SA-LSTM 88.0 64.0

TA-LSTM 89.7 80.9

STA-LSMT 88.3 82.0

Attention LSTM 99.1 86.5

Hierarchical LSTM 100 93.3

Ours 100 95.5

Table 3. Experimental results of LSTM architecture on the walking gait dataset (%).

Method Accuracy Pearson correlation Spearman correlation

Train Test Train Test Train Test

LSTM 50.4 48.8 63.9 68.9 70.5 73.2

Bi-LSTM 60.5 57.1 73.8 80.3 75.5 80.4

SA-LSTM 29.2 30.2 47.4 57.8 51.1 60.8

TA-LSTM 52.2 45.2 68.9 65.8 71.0 67.8

STA-LSMT 25.6 23.4 49.8 41.1 58.4 54.9

Attention LSTM 51.4 47.6 69.9 70.9 71.2 74.1

Hierarchical LSTM 49.0 43.7 65.7 65.7 65.4 68.3

Ours 70.0 68.3 89.9 89.5 90.5 90.7

In the third experiment, we train other advanced methods listed in Table 4 on the
UMONS-TAICHI dataset. All graph-based models achieve 100% train accuracy. This
shows that the spatial or temporal pattern is beneficial for models to assess the quality
of action. However, models exhibit varying degrees of overfitting.

Finally, we evaluate the effect of additional triplet losses by comparing the models’
performance. As shown in Table 5, this approach improves the performance of models
especially for LSTM architectures.
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Table 4. Experimental results of GNN on the UMONS-TAICHI (%).

Method Train accuracy Test accuracy

ST-GCN [16] 100 88.8

2S-AGCN [17] 100 91.0

DGNN [25] 100 77.5

Ours 100 95.5

Table 5. Experimental results of models with triplet loss on the UMONS-TAICHI (%).

Method No triplet loss Triplet loss

Train Test Train Test

LSTM 94.1 89.9 97.5 93.3

Hierarchical LSTM 100 93.3 100 96.6

Attention LSTM 99.1 86.5 100 97.8

STA-LSTM 88.3 82.0 99.1 88.8

ST-GCN 100 88.8 100 88.8

Ours 100 95.5 100 97.7

4.4 Complexity Analysis

This subsection presents the complexity analysis of the runtime and parameters of our
model, compared to LSTM and hierarchical LSTM. We recorded the runtimes of three
models separately on the train set of the walking gait dataset. All LSTM models are
recreated by us. There is no significant difference in time spent between our model and
hierarchical LSTM, as shown in Fig. 7.

The complexity of model is related to the number of parameters in the network.
Assume that i is the size of the input vector, h is the size of the hidden layer and o is the
size of the output vector. Each standardLSTMcell contains 4dense layers,whichhas a set
of 2 matrices: U andW. U has dimensions i× h andW has dimensions h× h. Including
bias vectors, the number of parameters for LSTM cell, becomes 4 × (

ih + h2 + h
)
.

All models are comprised of a single hidden layer and output layer. The number of
parameters for LSTM, which is constructed with a hidden layer of a single LSTM
cell, becomes 4 × (

ih + h2 + h
) + oh + o. The hidden layer in hierarchical LSTM is

composed of multiple LSTM cells. So, the number of parameters for hierarchical LSTM
is

∑n
k=1 4 × (

ikh + h2 + h
) + oh + h, decided by the hierarchical relations. So, without

increasing the number of parameters, our model makes use of hierarchical relations.
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Fig. 7. Runtime per epoch of LSTM models

5 Conclusion

In this paper, we propose a partially connectedLSTMwith triplet losses for action quality
assessment. The Fully connected layer in the LSTM model is replaced by the proposed
partially connected layer to explore the hierarchical relations of skeleton graph. Activa-
tion matrix is proposed to multiply the weight, which make nodes partially connected.
Such an approach can reduce the impact of insignificant features. We introduce two
triplet losses to the loss function, which are used to make feature vectors distributed in
order. On the UMONS-TAICHI dataset and walking gait dataset, the proposed partially
connected LSTM achieves outstanding performance. In future work, we will plan to
use the multi-labels fusion method to explore the hierarchical relations in the skeleton
to improve the accuracy. We will also focus on employing more advanced models for
action quality assessment.
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