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Abstract. Conditional imitation learning provides an efficient framework for
autonomous driving, in which a driving policy is learned from human demon-
stration via mapping from sensor data to vehicle controls, and the navigation
command is added to make the driving policy controllable. Navigation command
matching is the key to ensuring the controllability of the driving policy model.
However, the vehicle control parameters output by the model may not coin-
cide with navigation commands, which means that the model performs incorrect
behavior. To address the mismatching problem, we propose a stochastic naviga-
tion command matching (SNCM) method. Firstly, we use a multi-branch convo-
lutional neural network to predict actions. Secondly, to generate the probability
distributions of actions that are used in SNCM, a memory mechanism is designed.
The generated probability distributions are then compared with the prior probabil-
ity distributions under each navigation command to get matching error. Finally,
the loss function weighted by matching and demonstration error is backpropa-
gated to optimize the driving policy model. The significant performance improve-
ment of the proposed method compared with the related works has been verified
on the CARLA benchmark.

Keywords: Autonomous driving * Driving policy - Imitation learning

1 Introduction

Driving policy has a pivotal role in autonomous driving system, which builds a bridge
from perception to control. Many researches effort within the field of intelligent vehi-
cles have been focused on learning a driving policy. Different from traditional motion
planning system [1—4] which realizes autonomous driving from high level to low level
(as shown in Fig. 1 left), learning-based method uses a deep neural network to param-
eterize the driving policy and trains through imitation learning (IL) or reinforcement
learning (RL). The learned driving policy model directly maps sensor observations to
vehicle controls.

Learning-based methods provide a concise framework for autonomous driving. A
series of researches [5-8] for learning driving policy model follow the conditional imi-
tation learning (CIL) [9] which leverages navigation command generated from global
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Fig. 1. Overview of the modular pipeline (left) and driving policy model in CIL framework (right).
CIL parameterizes driving policy with a neural network and selects the behavior with navigation
commands generated from global planner.

route planner to guide motion planning (as shown in Fig. 1 right). The navigation com-
mand provides guidance for the vehicle at the intersection and reinforces the control-
lability of imitation learning. However, during the test of CIL, we find that the vehicle
may take wrong actions that are inconsistent with the navigation command in some
cases, such as the example shown in Fig. 2. We define this problem as “navigation com-
mand mismatch”, which most of the existing methods didn’t attach importance to as far
as we know. Navigation command mismatch may cause the vehicle to spend more time
than the optimal global path planning and even make the global planner have to replan
the global path.

One possible reason behind the problem of navigation command mismatch in CIL
is that it only uses the navigation command as gating function and ignores its strong
influence on action generation. The essence of CIL is an end-to-end solution, which
may lead learned model only capture weak navigation information. Moreover, CIL only
use lowdimensional control parameters as supervision data, effective exploration of the
supervision information implied in demonstration data could be used to further improve
the performance of the driving policy model. Thus, navigation command matching
(NCM) is very important for training an efficient driving policy model.

An NCM model [8] was proposed to generate a smooth reward for reinforcement
learning of driving policy model. The model uses conditional probability to measure
the matching degree between trajectory (state-action pairs) and navigation commands.
Motivated by this work, we further find that relationship between actions and navigation
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commands could be used in supervised learning. Thus, we propose stochastic naviga-
tion command matching (SNCM) which measures matching error by a metric between
two probability distributions of actions under each navigation command.

As illustrated in Fig. 3, we adopt a multi-branch architecture-based convolutional
neural network (CNN) (as shown in Fig.4) as driving policy model. Firstly, images
are fed into the multi-branch CNN to compute proposed actions, which are steering
angle, throttle and brake. Secondly, we use probability distributions of actions under
each kind of navigation commands to describe the matching degree between actions
and navigation commands and propose a memory mechanism to compute the distri-
butions. The statistical distributions generated from the model output are compared to
the prior distribution to calculate matching error, and computed actions are compared
with demonstration data to get demonstration error. Finally, the weighted summation of
matching error and demonstration error is backpropagated into the driving policy model
to optimize the weights of the network.

The rest of this paper is organized as follows. Section 2 discusses the related works.
Section 3 introduces the architecture of our driving policy model and the novel SNCM
method for model training. Finally, Sect. 4 presents the experimental results, and Sect. 5
concludes the paper and discusses the future work.

Fig.2. An example of navigation command failure. The navigation command given at the inter-
section is Go Straight (as shown by the green arrow in the figure), but the motion controls output
by the driving policy model make the vehicle turn right at the intersection (as shown by the red
arrow in the figure). (Color figure online)

2 Related Works

In learning-based autonomous driving, the mainstream method [9—11] adopts camera
image as environment observation, and the methods roughly fall into two categories:
imitation learning and reinforcement learning. Our work shares the idea of training a
vision-based driving policy model by imitation learning.
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Imitation learning enables the agent to learn how to perform a given task through the
demonstration of human experts [12]. Bojarski ef al. [10] did pioneering work in apply-
ing the imitation method in learning an end-to-end driving policy, and they trained a
CNN through human driving data to control the steering wheel angle so that the vehi-
cle can complete lane following task. Pan ef al. [13] presented a similar IL system to
achieve high-speed off-road autonomous driving in the real world. Similar work e.g.
[14-16] focused on basic driving tasks like lane-keeping and obstacle-avoiding. Based
on previous work, CIL [9] improved traditional policy network with multi decision
branches and activated different branches through navigation command. The introduc-
tion of navigation command has been proven to improve the controllability of the driv-
ing policy model at intersections and improve the performance of autonomous cars in
complex urban environments.

[ @ @ N J Demonstration data

Network
computed

actions Demonstration error
Camera image Driving Policy Model > —

—/

Statistical distribution Matching I

error

Prior distribution

.

Stochastic navigation command matching

Back propagation

Fig.3. The process of training driving policy model through stochastic navigation command
matching.

As for imitation learning of a driving policy, model optimization uses a loss func-
tion. Most studies on driving policy model [7,9,16] adopt mean square error (MSE)
between the predicted action value and the ground-truth value as loss functions. Dif-
ferent loss functions are designed along with different factors considered in the driv-
ing policy model. Uncertainty-aware imitation learning [6] suggested considering the
uncertainty of the model output and proposed an uncertainty-aware loss function, which
enabled the vehicle to learn a safer driving policy in unfamiliar scenarios. Li ef al.
[17] proposed a driving approach that splits the driving policy model into a percep-
tion module and a driving module. In their approach, softmax categorical cross-entropy
and binary cross-entropy are used for perception module training, and MSE is used for
driving module training. Conditional affordance learning [18] added the class-weighted
categorical cross-entropy and mean average error to its loss function.

Our approach differs from existing methods by introducing NCM into the imitation
learning of driving policy model, and we design matching loss to measure the matching
degree between generated actions with navigation commands.
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Fig. 4. Network architecture of our driving policy model. Image and speed measurement is fed
into the network as input. The four branches follow, and navigation command activates relevant
branch which outputs proposed actions.

3 Method

3.1 Problem Formulation

To realize effective driving policy imitation learning, we propose a multi-branch CNN
driving policy model trained via SNCM, which generates steering, acceleration and
braking commands from camera images, vehicle speeds and navigation commands. Our
network architecture is shown in Fig. 4. The driving policy model is built via learning a

mapping:

(8¢, Vg, 1, 0) 0 8¢ — ay (1)

where s; € S is the observation state of the environment, a; € A represents the actions
the car will take, v; is speed, ¢; € C is the navigation command and € is the policy
parameter. At each time step ¢, the agent will receive an observation s; and take an
action a;.

3.2 Backbone Network

As the most popular network architecture for driving policy model, CNN has shown
good performance in vision-based autonomous driving. Our backbone network is a
CNN, which is composed of four convolutional layers and four max-pooling layers
sequentially and alternatively. The first layer has 32 5 x 5 filters with stride 2 followed
by three other layers which have respectively 64, 128 and 256 kernels of size 3 x 3
and stride 1. Through the backbone network, each input image will result in a feature
map. The feature map will be flattened and transformed into a feature vector of size 512
through 2 fully connected layers.

3.3 Navigation Command

In conditional imitation learning [9], navigation commands provide guidance for vehi-
cle’s action at intersections, which include:
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— Follow Lane : lane keeping

Turn Left : turn left at the next intersection

— Turn Right : turn right at the next intersection
Go Straight : go straight at the next intersection

In driving policy model, navigation commands are generated from a global path planner
and equivalent to the behavioral decision in the modular framework.

3.4 Multi-branch Architecture

To make driving policy model output actions respond to navigation commands, our
model adopts a multi-branch structure in policy network. We use gating function G(¢;)
to activate the appropriate branch via control command c¢;. In each branch, the feature
vector f; acts as input to three fully connected layers. At the output of the network, the
activated branch delivers the action a;, which consists of steering angle, throttle and
brake.

3.5 Stochastic Navigation Command Matching

In the course of interaction with environment, at time step ¢, the agent receives current
observation s;, speed measurement v; and navigation command c;, and then learns to
perform an action a;.

Navigation command has a strong influence on steering angle. To qualitatively
describe the relationship between them, we obtain the distribution of steering angles
for each navigation command according to the data set in [9] and we use them to
describe the relationship between navigation commands and steering angles. There-
fore, the navigation command not only activates the branch but also guides generating
vehicle actions.

We use the standard distribution as benchmark and compare the similarity between
the probability distribution of the steering angle output by the model and the standard
distribution. The closer the statistical distribution is to the standard distribution, the
more actions output by the model matches the navigation commands.

Memory Mechanism. To make statistics on the steering angle output by the model, we
need to sample the steering angle under each navigation command. For the supervised
training, it is not available to get a large number of prediction results from the model at
every moment.

In deep Q-learning [19], a mechanism known as replay memory is used for
more efficient sampling. We consider applying replay memory in steering angle sam-
pling. Specifically, we collect the pair of navigation command and steering angle
{(¢;,af)}, output by the model at each training step, where N is batch size. It is
worth noting that we have set four memory units for four different navigation com-
mands (e.g. Follow Lane, Turn Left, Turn Right, Go Straight), the sampling result a;
will be stored in its corresponding memory unit according to its navigation command
c; (as shown in Fig. 5). Because the memory unit has a capacity limit, it is necessary
to check whether the capacity is exceeded after storing the data every time. If it is
exceeded, the earliest data stored in the unit will be deleted automatically.
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Fig. 5. The process of data storage and matching loss calculation. A batch of steering angles are
assigned to memory units according to their corresponding navigation commands respectively,
then the memory units update. For each memory unit, a batch of data is sampled to calculate
probability distribution. The loss under each navigation command is obtained according to the
error between the statistical distribution and prior distribution, and matching loss is the average
of them.

Matching Loss. In SNCM, we need to measure the similarity between two distri-
butions. Based on the data set, we get the standard discrete distribution X = {x° :
c € C} = {(«5,25,...,25%) : ¢ € C} (since we divided the steering angle into 200
units, n =200) of the steering angle under the four navigation commands ¢ (c € C,C
={Follow Lane, Turn Left, Turn Right, Go Straight}). At each training step, we sample
in each memory unit separately, and obtain the discrete distribution of steering angle
under each navigation command Y = {y°: c € C} = {(v§, 45, ....,v5) : c € C}.

We use Bhattacharyya distance to measure the similarity of the two sets of dis-
tributions. Bhattacharyya distance is the most common distance metric for measuring
the similarity of two probability distributions. For discrete probability distributions, its
definition is:

Dg(p,q) = —In(BC(p,q)) 2)
where
= > Vpx)g(x) 3)
rzeX

and p, g are probability distributions of x.
The matching loss calculated by Bhattacharyya distance is:

gmatching Z ln Z y1 ) (4)
|C| ceC i=1

3.6 Training

We use imitation learning method to train our driving policy network my. The demon-
stration data D = {(o;, ¢;, v;, a;)}_, consists of observation image o;, control com-
mand ¢;, speed v; and demonstration action a;.
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The complete training process is shown in Fig. 3. Observation o; and speed v; are
the main input, and we use gating function G(¢;) to activate appropriate branch via
navigation command ¢;. The parameter optimization of the driving policy network 7
through imitation learning is to minimize the target loss function ¢.,, which is com-
posed of action 10ss £ 4¢ti0n and matching 1oss €,q¢cning Weighted:

gﬂ'g = gaction + Wy - gmatching (5)

where the action loss is the MSE of the model’s predictive value and the ground-truth
value:

N
Loction = Ze(ﬂe(Oi,UuG(Ci)),ai) (6)
im1

and the matching loss is calculated according to (4).

4 Experiments

We evaluate our driving policy model in the open-source urban autonomous driving
simulator CARLA [20], which provides a dynamic and open environment for research,
development and testing of autonomous driving systems. In this section, we verify
the effectiveness of our SNCM training in four challenging driving tasks proposed by
CARLA.

4.1 Experiment Setting

Dataset. [9] provides an imitation learning dataset which contains more than ten hours
of human driving data in CARLA simulator. The dataset mainly consists of RGB
images, state measurements, control commands and navigation commands et al. We
train our driving policy model on the dataset with the form as D = {(o;, ¢;, v;, a;) }¥_,
which is mentioned in Sect. 3.6.

Evaluation Benchmark. The experimental benchmark includes two experimental con-
ditions: training and test, which are different in map and weather settings. The detailed
information about the conditions can be seen in Table 1.

Table 1. Summary of experimental condition.

Condition | Map | Weather

Training | Townl | clear noon, clear sunset, hard rain noon, noon after rain

Test Town2 | cloudy noon after rain, soft rain at sunset

The benchmark provides four tasks with increasing difficulty. In each task, the agent
car is randomly initialized in a start point and needs to reach a destination point. The
tasks include:
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— Straight : the start point and the destination point are in a straight line;

— One turn : there is a turn between the start point and the destination point;

Navigation : there is no special restriction between the start point and the destina-
tion point, the path usually includes several turns;

— Navigation with dynamic obstacles : same as Navigation, but there are dynamic
objects in the scenario.

For each combination of a task, a town, and a weather set, the paths are carried out
over 25 episodes. In each episode, the target of driving agent is to reach a given goal
location. An episode is considered successful if the agent reaches the goal within a time
budget, which is set to reach the goal along the optimal path at a speed of 10 km/h.

Implementation Details. Our model was trained using the Adam solver [21] with
batch size of 64 samples and an initial learning rate of 0.0001. The capacity of each
memory unit is 1000. Training is completed on NVIDIA Titan XP GPUs. Other param-
eter settings are the same as [9].

4.2 Quantitative Comparison

We compare our SNCM with modular pipeline (MP) [20], reinforcement learning (RL)
[20] and conditional imitation learning (CIL) [9] by success rate of autonomous driving
tasks on CARLA benchmark. From Table 2, we can observe that our method outper-
forms all baseline methods with the highest average success rate of about 300 episodes.

Table 2. Average success rate of different methods of all autonomous driving tasks.

Method Success rate
MP [20] 69.19%
RL [20] 27.44%
CIL [9] 72.19%
SNCM (ours) | 76.13%

Table 3 reports the quantitative comparisons with baseline methods by the percent-
age of successful episodes in each task. As we can see, the agent trained via SNCM
outperforms the baselines in most tasks, especially in Straight and One Turn tasks, e.g.
70% of SNCM vs. 50%, 20% and 48% of MP, RL and CIL. Besides, SNCM particu-
larly excels in generalizing to the new town & new weather, the condition where most
baselines did not perform well, but the average performance of our method is almost
70% better than the best baseline.
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Table 3. Quantitative evaluation on goal-directed navigation tasks, i.e. Straight (T1), One turn
(T2), Navigation (T3) and Navigation with dynamic obstacles (T4), measured in percentage of
successfully completed episodes of the driving tasks. Comparison results include four conditions
consisting of different maps and weather settings. The best is in bold.

Method Training conditions | New town New weather New town & weather
T1 |T2|T3|T4 |T1|T2|T3|T4|T1 |T2|T3|T4 Tl |T2|T3|T4
MP [20] 9882|8077 |92 |61 |24 |24 |100|95 |94 |89 | 50|50 |47 |44
RL [20] 89134 |14 | 7 (74|12 3| 2| 86|16 2| 2| 68,20 6| 4
CIL [9] 95189 |86 |83 |97 |59 |40 38| 98 /90 |84 |82 | 80|48 44 |42
SNCM (ours) | 100 | 93 | 87 |78 |98 | 63 |48 |42 | 100 |96 | 72 | 62 | 100 | 70 | 58 | 50

4.3 Qualitative Comparison

We do comparison between SNCM and CIL because CIL was chosen as baseline by
most driving policy learning methods. In addition, CIL has the most similar training
framework and network structure of SNCM. Figure 6 provides some examples of navi-
gation command mismatch that CIL fails and SNCM successfully avoids.

Go Straight Turn Left Turn Left Turn Right Turn Left

SNCM

Fig. 6. Comparison between conditional imitation learning (first line) and our stochastic navi-
gation command matching (second line) in some driving cases. The CIL fails with navigation
command mismatch while our method successfully completes the driving tasks. Navigation com-
mands of the cases are shown at the top of the images.

4.4 Visualization Results

To understand the input processing of the driving policy model, we extracted and com-
posed the first feature map layer of the CNN to generate a heatmap. The heatmap
demonstrates whether the network detects useful features for decision-making.

Figure 7 shows the examples of visualization results in some scenarios. We can
observe that the driving policy model trained via SNCM perceives the lane marking and
road boundary more clearly, and both static and dynamic targets (e.g. the traffic light
and car in the second and third line of Fig. 7) in the environment have more noticeable
feature map activations. Contrarily, the model trained without SNCM distracts attention
to the background unrelated to the driving task.
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Fig. 7. Visualization of the heatmaps. The first row is origin images, the second and third row are
the heatmaps of driving policy model trained with and without stochastic navigation command
matching.

5 Conclusions

In this paper, we proposed a novel driving policy training method, stochastic navigation
command matching (SNCM), utilizing the correlation between the actions and the navi-
gation commands for model optimization. By considering the matching degree between
actions and navigation commands, more reasonable actions are proposed by the learned
driving policy model. Experimental results show our method can make driving policy
model better overcome the navigation command mismatch problem and improve per-
formance in challenging autonomous driving tasks. Matching degree optimization can
be migrated into other hierarchical models, future work will explore its application in
more complicated hierarchical autonomous driving system.
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