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Abstract. The skeletons extracted from 3D point clouds depict the gen-
eral distributions of the mesh surfaces, which are affected by the local
geometrical relations embedded in the neighboring points. However, the
local mesh geometry is still not effectively utilized by the popular contrac-
tion based skeleton extraction method LOP and its variants. Therefore,
this paper improves LOP from two aspects based on the local geometri-
cal distributions. One is the bilateral filter based weighting scheme which
additionally takes curvature similarities between neighboring points to
better distribute the samples and the other is the eigenvalue based adap-
tive radius scheme which makes the contraction area varied according to
the local shape. These two updates combine together so that an effective
contraction of samples during optimization can be obtained. The exper-
iments demonstrate that the improved LOP can obtain more efficient
skeleton extractions than existing methods.
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1 Introduction

Skeleton extraction has been studied for a long time and can be applied to various
areas [4,8,11,13,21,24,26,37,43], such as computer graphics, computer vision
and image processing. We are interested in the contraction based methods [7,
17,22,35,36,39,44] which gradually shrink the clouds to obtain the skeleton.

In particular, we are interested in the Locally Optimal Projection (LOP) [25]
based methods [17,23,32] among the contraction oriented ideas. LOP was orig-
inally for computing the geometry surfaces of raw scans, which projects each
point to its nearby local center according to a support radius. It was recruited
by Hang et al. [17] to compute L;-medial skeletons of 3D point clouds. How-
ever, this method is not stable because it does not consider the local geometrical
structure when doing the contraction. In addition, its contraction can be very
inefficient without discriminating the surface variations of the local shapes.
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Existing improvements [23,32] either rely on an additional local medial sur-
face for effective contraction [23] or take a mixture model for fast computa-
tion [32]. However, their performances are still limited. The local distribution of
points reflects the shape of the object and thus plays an important role in the
skeleton estimation during the contraction process However, it is not explicitly
considered in these methods.

Therefore, this paper takes the local geometrical distribution as the starting
point and revises LOP from two aspects for better skeleton estimation. One is a
bilateral filter [3,38] based idea adopted in the contraction process so that the
geometrical similarity in curvature is additionally considered for better shape
consensus. The other is an eigenvalue based radius estimation so that adaptive
radii reflecting the variations of the local surface can be used for effcient contrac-
tion of different object parts. These two combine together so that an improved
LOP algorithm incorporating local geometrical distributions are proposed.

2 Related Work

Skeleton extraction has been studied for a long time [11,37]. One popular type
of methods for curve extraction is the contraction based method [1] which,
however, cannot ensure a central skeleton because of the varying contraction
speeds [7,36,39]. Therefore, some studies [17,22] focus on generating the centered
curves, which is interesting to us. Especially Huang et al. [17] adopted locally
optimal projection (LOP) [25] for extracting the skeletons from raw scanned
data. They adopted L1-medians locally for 1D based L;-medial skeletons, which
is also used by [35,44] through iteratively contracting sample points while grad-
ually increasing their neighborhood sizes.

There are also variants of LOP [16,23,32]. Huang et al. [16] extended LOP
to cope with non-uniform distributions by a weighted locally optimal projection
operator, which was later improved by Preiner et al. [32] with a Gaussian mixture
model for fast computation. Wang [23] extended LOP for 3D curve skeletons by
two ideas, constraining the LOP operator applied on the medial surface and
adaptively computing variable support radii, and fulfilled fast computation and
accurate localization without interference.

There have been other non-contraction based methods, such as image
based [27], medial surface based [10,40], graph based [2,9,28] and geodesic dis-
tance based methods [18,19,41]. Qin et al. [33] took the mass transport view and
estimated the skeleton with the minimization of Wasserstein distance between
mass distributions of point clouds and curve skeletons. Jiang et al. [20] even
combined the contraction and graph based ideas together and proposed a graph
contraction method, including a contraction term in graph geodesic distances and
a topology-preserving term by the local principal direction. Similar compound
way is taken by Fu et al. [14]. However our focus here is on the contraction based
methods, especially on LOP and its variants.

Deep learning based methods [12,15,29-31,42] become popular nowadays.
For example, Panichev et al. [31] took an U-Net based approach for direct skele-
ton extraction; Luo et al. [29] included an encoder-decoder network to fulfill
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hierarchical skeleton extraction. Deep learning techniques are attractive, how-
ever, they generally require skillful training with large data for high performance.

Some studies also extend skeleton extraction to structure or outline estima-
tion from point sets [8,34], whose foci are on fitting outer structure lines but not
the skeletons.

3 The Improved LOP

This section introduces the proposed LOP method, where the general idea of
LOP and its two proposed local geometry based improvements are presented in
succession.

3.1 Overview

Generally, LOP is to find the set I representing the L;-medial skeleton point set
X = {x;,., } of an unorganized and unoriented set .J of points P = {p;,_,} C R3.

argIr}}nG(X)—&—R(X), (1)
where G(X) keeps the geometry of J in I and R(X) lets points in I evenly
distributed.

G(X) =YY llwi —pjllo(lz: - psl), (2)
i€l jeJ
where
o(r) = e/ (h/4)? (3)

is a fast-decreasing smooth weighting function with the compact support radius
h defining the size of the influence radius [25].

RX) =" Y il -z )0(||z:i — 2 ), (4)

i€l iel\i

where: \; represents the balancing term; and 7(r) is another decreasing function
penalizing x; too close to each other, which is generally set to be 1/3r2, or —r
for slow decreasing of large contraction radii.

Accordingly, I is generated as follows. First the input cloud is down sampled
to obtain the sampling points evenly. These sampled points are the future source
points of the estimated skeleton. Then the displacement of each sampling point
x; is estimated recursively till convergence, which is based on the eigen decompo-
sition with the neighboring points. Here, weighted principal components analysis
(PCA) is used to compute the eigenvalues in decreasing order A*(m € {0, 1,2})
and their corresponding eigenvectors v;" from the covariance matrix Cj,

Ci = Z 9(”% - a:,/H)(:m - CCi/)T(ﬂ?i - 337/) (5)

irel\i
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These values will guide the update of x; according to Eq. 1 [17,25].

As can be seen, the contraction process relies heavily on the distances of
points between I and J. However, it only considers the spatial distances, which
can mislead the process to wrong positions without considering the local geo-
metrical relationships. In addition, the decay weight relies on a fixed radius for
contraction which also omits the differences of local shapes of the cloud object,
i.e., a wide and flat shape can have a big radius for robust contraction and vice
versa. Apparently, local geometrical distributions should be considered when
doing the contraction. Therefore, two geometry based improvements are pro-
posed to update the optimization process for more robust contraction, which
will be discussed in details in the following.

3.2 Bilateral Filter Based Weighting

The weighting function (Eq. 3) computes the weights by the spatial distance only,
which may overlooks the importance of the geometrical similarities. Therefore,
local geometrical similarities should also be considered in weighting the contri-
butions. Therefore, the bilateral filter [38] based weighting scheme which takes
these two properties together is proposed.

Traditional, the bilateral filter aims at replacing the intensity of the central
pixel, u., at ¢ with a weighted average of the intensities of the neighboring
pixels {We,, Uy, -+, Uey }, Ue. These weights are estimated by both Euclidean
distances and radiometric differences between the central pixel and its neighbors.

N
e = o 37 ol — e ) fole — e, (6)
€ i=1

Here, W, is a normalization term, and f;, and f, are the spatial and range
weighting kernels for the Euclidean and radiometric distances respectively.

For the skeleton estimation of 3D clouds, the Euclidean distance for the spa-
tial difference measurement is kept. But the radiometric difference can be substi-
tuted with geometrical similarity, where curve distance of two points is adopted.
Consequently, a bilateral filter based on the spatial and geometrical distances
can be superimposed to the neighboring points by the following equation:

p(xi,pj) = ws(5(xi, pj))we(9(2i, Pj)h(wi, P;), (7)
where standard Gaussian filters represent ws(z) and wy(t) respectively, i.e.,
ws(z) = e=*"/29% and wy(t) = e~*/2%5 with o, and 04 being the variances. Here
§ and g targets at spatial and geometrical distances and measure the Euclidean
distances and the curvature distances between x; and p; respectively:

3(zi,pj) = llzi — pjl (8)

and
9(mi, p;) = [|6(x;) — 6(pj) I, (9)



Locally Geometry-Aware Improvements of LOP 7

where 6(+) computes the curvatures. Note that in Eq. 7, to effectively capture the
local geometrical variance, the weights are superimposed on the sample points
according to their distanaces projected to the tangent plane, i.e.,

i, pj) =< mni,x; —p; > . (10)

To constraint the contraction process, o is chosen according to the standard
deviation among neighboring points and o, is defined to be the radius of the
neighboring set, i.e., 0, = ||&; — m;|| with m; being the fartherest point in the
neighbors of ;. Consequently, the following updated version for the contraction
(Eq. 2) is obtained based on Eq. 7,

G(X) =) llai —pjlo(@:p;) (11)

i€l jeJ

Figure 1 shows the effects before (Fig.1b) and after (Fig.1c) applying the
bilateral filter based weights. There are more stray samples shown in the tradi-
tional LOP than the proposed method. This experiment shows that the addi-
tionally bilateral filter based weighting scheme makes the samples distributed
more conformal and consistent with the object shape than the original LOP.

(a) ) ©

Fig. 1. Color figure onlinetracted samples by LOP or the bilateral filtering updated
LOP. The sample points are shown in red. (a) Source cloud; (b): samples contracted
by LOP; and (c): samples contracted by the bilateral filter based LOP. (Color figure
online)

3.3 Adaptive Radius

The contraction radius is also very important because it decides the contraction
scale and affects the areas to be contracted. Intuitively, the wide and flat area can
have a bigger contraction scale while the narrow area should be with a smaller
one. Figure2a demonstrates this observation, where the belly should have a
bigger radius than the arm for an efficient contraction. However the traditional
one is fixed and thus cannot cope with the contraction efficiently and may lead
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(a)

Fig. 2. Illustration of the adaptive contraction radius and its working examples. The
dashed circus show the sizes of radii for the principle (a), and the sample contraction
in the intermediate (b) and 5 more iteration steps (c) during the optimization.

to wrong estimation. Therefore, an adaptive radius is expected, where the local
geometrical property can be taken as the clue to the solution.

However, it is difficult to directly capture the relationship between the local
geometry and radius. Luckily, the covariance matrix points a way out. A covari-
ance matrix of a point cloud captures the distribution or spread of the cloud,
e.g., the direction of the largest variance represents the largest dimension of
the data. In addition, these directions can be computed as the eignevectors by
decomposing the covariance matrix of the cloud through PCA (Fig. 3). Accord-
ingly, the eigenvalues can be adopted to measure the extensions of clouds in all
directions and, therefore, taken as a measurement of the local shape variation.

To capture the local shape variation, the eigenvalues of the covariance matrix
of the local neighbors (Eq. 5) which reflects the local geometrical distributions
are adopted to define a gradually increasing contraction radius. First, the direc-
tionality degree [17] defining the shape spreading feature of x;, d;, is adopted

P E— (12)
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Fig. 3. Illustration of the directions of a point cloud estimated by PCA with the covari-
ance matrix of a 2D cloud. The red and blue arrows represent the major and minor
directions respectively. (Color figure online)

It can be seen that the shape turns narrow as d; approaches 1. Clearly, it is
expected that the radius used in the narrow part to be also small for an effective
contraction. Therefore, the following adaptive radius h(i)(t) for t-th iteration of
x; can be obtained.

h(i)® = h(@) D 4 e, (13)

where h(i)(o) = 0. Accordingly, the contraction radius h in Eq. 3 is replaced with
Eq. 13 during the iterations.

The contraction happens first in narrow parts such as arms and legs with
small radii and then gradually find the correct position with big radii for the
wide parts, such as torso. Figure 2 gives the example of the adaptive radii during
the contraction process. It can be seen that the narrow parts are contracted
significantly first with smaller radii (Fig.2b) and then gradually the wide parts
are contracted apparently with bigger radii (Fig.2c). These varying radii can
help obtain a geometrically consistent skeleton.

The geometrically updated contraction weights and radii are incorporated
into the traditional LOP algorithm and then an improved method is resulted.
For more details on how to iteratively implement the algorithm, please check
[17,25].

4 Experimental Results

Experiments are undertaken with two human and animal mesh datasets:
TOSCA [6] and FAUST [5]. Two related improvements of LOP are considered
for performance comparison: the L; medial skeleton based method [17] (L1) and
the KNN based method [44] (KNN).

Figure 4 shows the results of our method on four clouds consisting of differ-
ent object shapes. They show that our method can contract the sample points
successfully to be the central skeleton points.
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Fig. 4. Example results of our method

Figure 5 shows the experimental results on TOSCA. Here performance com-
parisons with L1 and CNN are taken. There are apparent unconnected and
uncontracted samples for L1 and KNN, with L1 being generally worse. Ours, on
the other hand, obtains the best performances among all methods, even though
there are a few unconnected joints between some skeleton parts.

Figure 6 shows the performance comparisons on FAUST. The same observa-
tions about the three methods can be found, where ours still achieves the best
performaces among all methods.

Statistical evaluation of the proposed method are also undertaken. Generally
all skeleton points should be close to the neutral axis of the skeleton for a compact
skeleton generation. However, the true neutral axis may not be easy to localize for
each mesh. Here the max distance among all skeleton points to the center axis of
the skeleton bounding box is taken as the metric. The smaller the distance, the
better accuracy is. Figure7 visualizes the max distances of different methods
for 14 meshes from the two sets. Our method almost always the best one for
all meshes among all methods, which further demonstrates the merits of our
method.

KNN
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Fig. 5. Skeleton estimation by different methods for TOSCA.
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Fig. 6. Skeleton estimation by different methods for FAUST.
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Fig. 7. Statistical comparisons of the max distance of each estimated skeleton for 14
meshes by different methods.

5 Conclusions

This paper proposed an improved LOP algorithm for skeleton extraction.
Building on closely capturing the local geometrical variations, we update the
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traditional LOP algorithm from two aspects: One is a bilateral filter based
weighting scheme where additional local geometrical similarities are used to make
the contraction consensus to the mesh surface; and the other is an eigenvalue
based varying radius scheme where the local geometrical distributions are used
produce efficient contraction radii according to the shapes of different object
parts. Experimental results demonstrate the merits of the proposed method.

The estimated skeleton in the contraction oriented methods may be difficult
to converge to a skeleton keypoint connecting different skeleton segments, as the
experiments have shown. The density of the clouds is often different in different
part, which can lead to different contraction speed and, therefore, the common
joint is sometimes difficult to get. In addition, more samples will improve the
accuracy of skeleton estimation experimentally, however, this also incurs high
computation load. Those two shortcomings will be the focus of our future work
for more robust skeleton extraction.
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