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Face clustering is a fundamental task in face analysis and has been extensively
studied in resent years [8,15,20,22,23]. Existing face clustering methods roughly
fall into two categories, i.e., unsupervised methods and supervised methods.
Unsupervised approaches, such as K-Means [10] and DBSCAN [6], rely on spe-
cific assumptions and lack the capability of resonating with high-dimensional
structured data information. Supervised face clustering methods mainly aim to
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Abstract. Face clustering is the task of grouping faces by their under-
lying identity, and is still a challenging task in practical use due to the
common low-quality face images caused by pose, blur, occlusion, illumi-
nation etc. To address the issue, this paper proposes a face clustering
algorithm, referred as FC-Q, that takes the quality score as extra input.
Based on the main observation that two nodes similar in feature sub-
space but with different identity may have larger score difference, the
algorithm first integrates this prior with the modified self-attention mech-
anism of Transformer to infer reliable linkage likelihood between similar
node pairs. Then the algorithm combines the face quality information
with the label propagation module to further suppress the abnormal
pairings. The effectiveness of the algorithm is evaluated on two pub-
lic face datasets in good and bad quality. Experimental results validate
that our algorithm outperforms the state-of-the-arts under the general
circumstance of clustering faces with mixed face quality.
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Fig. 1. (a) Demonstration of two node pairs with quality score shown on the images and
similarity given in the parentheses. (b) Mean absolute value of quality score difference
between every two pair nodes on IJB-C dataset [11] under the same and different
identities with respect to similarity threshold. The node pairs with similarity higher
than threshold are involved in this statistic. The face score is obtained by EQFace [9],
the identity feature is extracted by pre-trained IResNet50 [4,5].

learn more distinguishing embedding subspace [3,14] or the complex cluster pat-
terns [23]. These existing methods mainly based on the node distance in feature
space, while ignore the negative effect caused by the face images in low quality.
Face node with low quality is common and goes against the clustering due to its
ambiguous identity. Figure 1(a) shows the example that the pair nodes with one
in low quality can also have high similarity even they are under different identity.
These low face quality nodes will obviously degrade the face clustering precision
if not handled appropriately. It is essential for face clustering algorithms to have
the ability to deal with this general application circumstance.

Fortunately, face quality score provides helpful auxiliary information for clus-
tering. Figure 1(b) shows the mean absolute value of quality score difference
between every two pair nodes under same and different identities with respect
to similarity threshold. The node pairs in IJB-C dataset [11] with similarity
higher than threshold are involved in this statistic. There always exists a gap
between the score differences, which implies that two nodes similar in feature
subspace but with different identity may have larger score difference. Based on
this main observation, this paper proposes a face clustering algorithm, which
is referred as FC-Q, intuitively takes the face quality as extra input to exploit
unlabeled face data.

Face quality can be conveniently assessed beforehand by recent deep learn-
ing based methods. SER-FIQ [17] obtains the face quality by measuring the
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Fig. 2. Flowchart of our FC-Q algorithm. The proposed algorithm follows the link-
based clustering paradigm, Given one pivot face node and its K nearest neighbors in
feature subspace, the proposed algorithm first obtains the input vectors by concatenat-
ing the identity features and face scores of pivot-neighbor pairs as well as the specific
Pearson correlation encoding. Its linkage prediction module is in the form of modified
Transformer encoder, and infers linkage likelihood with the help of pre-calculated prior
relevancy matrix. Its label propagation module transitively merges face nodes accord-
ing to the linkage likelihood refined with local face quality information. Instances with
the same pseudo label constitute a cluster.

embedding variations generated from random sub-networks of the face recogni-
tion model. A deep tiny network [13] is also proposed to learn a face quality
prediction function that is recognition-oriented. Meanwhile, face quality can be
explicitly given along with the identity feature by face recognition network. Mag-
Face [12] introduces an adaptive mechanism to learn a universal feature embed-
ding with magnitude measuring the face quality. EQFace [9] outputs face quality
and identity feature at the same time by adding a quality network branch to the
baseline network of face recognition. Such methods make our work more efficient
in gathering input data.

The proposed FC-Q algorithm incorporates the face quality into its two main
modules, i.e., the linkage prediction module and the label propagation module.
In the linkage prediction module, the algorithm adopts the framework of Trans-
former encoder [18]. It is specially modified to fit the general clustering circum-
stance. One relevancy prior is designed according to the quality score relationship
among nodes in neighborhood. The prior helps the self-attention mechanism of
Transformer encoder better infer the linkage likelihood between node pairs. In
the label propagation module, the algorithm utilizes the face quality to recal-
ibrate the abnormal linkage likelihood based on the local quality information.
The linkage with one node having inconsistent quality score with its neighbors
will be suspected of being unreliable, and its likelihood will be suppressed if the
two pair nodes have a large gap with respect to their local quality information.
Finally, our proposed algorithm transitively merges face nodes according to the
refined linkage likelihood, and obtains the clusters.

To summarize, the main contributions of this work are as follows:

— A face clustering algorithm named FC-Q is proposed with the face quality as
extra input. Compared with the state-of-the-arts, this algorithm deals with
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the more general circumstance that the face nodes are not all guaranteed in
good quality.

— The proposed FC-Q algorithm modifies the Transformer encoder and designs
the relevancy prior with face quality to infer more reliable linkage likelihood
between similar pairs in feature subspace.

— The proposed FC-Q algorithm utilizes the local quality information of each
node to further suppress the pairing with abnormal high linkage likelihood.

— The proposed FC-Q algorithm specifically conducts face clustering experi-
ments on IJB-C dataset with low face quality and achieves 91.7% pairwise
F-score on partial IJB-C, which provides a strong baseline for low-quality face
clustering.

2 Methodology

In this section, we introduce the details of the proposed FC-Q algorithm, which
includes the specific linkage prediction module and label propagation module.
Figure 2 shows the flowchart.

2.1 Linkage Prediction with Prior Attention

Following the link-based clustering paradigm, the proposed algorithm selects
every face node as a pivot, and estimates the linkage likelihood between the
pivot and its K nearest neighbors in feature subspace.

Given ith pivot face node fi € R% and its K mnearest neighbors f;, j €
{1, ..., K}, the input of the linkage prediction module consists of K + 1 vectors
with each has the form

gj = cat (szvf(;7q;aqg)7pj) € Rdyv ] € {07"'7K}a (]-)

where ¢§ € R denotes the face quality score of pivot node, and qj,j e{1,..,K}
denotes the face quality score of its neighbor. Operator cat() denotes concate-
nation operation along the feature dimension, thus dy = 2ds 42+ K + 1. Vector
p; € REF! represents Pearson correlation encoding of each involved face node.
The element in p; € REFL i.e., the Pearson correlation coefficient, is calculated
as U

pt = M ke {0,... K}, (2)

Ogi0g

where cov and o denote the covariance and the standard deviation of f} and f}
respectively. Concatenating pivot feature ) in (1) aims to inform the linkage
prediction module to learn the relationship between pivot-neighbor pair. Con-
catenating quality scores q} qé in (1) aims to let the linkage prediction module
infer the link likelihood with more references. Concatenating Pearson correlation
encoding p; in (1) is under the consideration that the Pearson correlation coef-
ficient can offer the linkage prediction module robust linear relations between
pair nodes, which is highly sensitive to outliers [2].
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Fig. 3. Architecture of our modified self-attention mechanism. The input vectors are
first projected into three super vectors named key, query and value. The key and query
are forced to share the same projection. A prior relevancy matrix is added into the
learned relevancy, and offers the negative relevancy information if the pair nodes have
large quality score difference. The brighter the color, the larger the value.

With the input vectors generated, the linkage prediction module adopts the
framework of modified Transformer encoder to estimate the linkage likelihood of
pivot-neighbor pair. Compared with the GCN based framework [20], the Trans-
former encoder framework has the ability to learn relation weights based on
its effective self-attention mechanism. As shown in Fig.2, the linkage predic-
tion module is composed of a stack of 3 identical layers. Each layer has three
sub-layers. The first is a pre-layer normalization [21], the second is a modified
multi-head self-attention mechanism, and the third is a simple fully connected
feed-forward network. Note that the skip connections of the last two sub-layers
are specifically removed to let the whole module focus more on inferring the
difference between pivot and neighbor nodes. The last feed-forward sub-layer
performs the binary node classification followed by softmax activation, which
outputs the probability of whether the corresponding input belongs to the same
class as the pivot.

Figure 3 further shows the architecture of our three modified self-attention
mechanism sub-layers. Taking the first one as an example, every normalized
vector g in ith input G| € RE+1)xdy jg first linearly projected into three super
vectors named key, query and wvalue, which can be expressed in matrix form as

K= GQWS, K € RE+Dxds
Q= GW* Qe RFTDx, 3)
V =G/WY Ve REFDxdu
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where matrices W9 € R% > and WV € R% 9> denote the learnable project

matrices. The key and query are forced to share the same projection, thus the

relevancy between the corresponding two samples will be symmetric. This setting

is helpful for face clustering, which is shown in the following experiment section.
The relevancy between the samples are constructed as

1
Vs

where matrix A € RETDX(K+1) represents the prior relevancy, and its element
in the mth row and nth col is of the form

Am,n = sim (fﬁm f’:L) ' (1 - abs(qin - Q;z)) ) (5)

where operator sim() calculates similarity between the identity features f, and
f?, and operator abs() denotes the absolute operation. Prior relevancy matrix A
is also symmetric, and can offer the negative relevancy information between two
samples if they have large quality score difference.

The output Z € RIK+Xdv ip self-attention mechanism is the aggregation of
value matrix V by attention weights, i.e.,

QKT + A
N )V’

where the attention weights are obtained by applying softmax normalization to
(4).

The modified self-attention is further incorporated into the multi-head mech-
anism, where the self-attention is performed H times in parallel. The outputs of
each self-attention are concatenated and once again projected, resulting in the
final output of multi-head self-attention sub-layer

QKT + A, (4)

Z = softmax < (6)

Z); = cat (Zl,...,ZH)WM, (7)

where matrix W, € RF4*Xds denotes learnable project matrix.
During the training stage, the whole linkage prediction module is trained by
cross-entropy loss

K
L£=-"> log(i,), (8)
k=0

where Q,il denotes the output probability, i.e., linkage likelihood, of whether the
ith pivot and its corresponding kth neighbor belong to the same class.

2.2 Label Propagation with Anomaly Suppression

As all the pivot nodes are involved in linkage prediction module, a set of pivot-
neighbor pairs £ = {ej } j=1,....nk Will be obtained along with the corresponding
linkage likelihood set P = {p;};=1,.. ~nK. The goal of the label propagation
module is to assign pseudo label y; to every face image x; with the help of
quality score set.
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Algorithm 1. Label propagation with anomaly suppression

Input: Pivot-neighbor pair set &, linkage likelihood set P, quality score set Q.

Parameter: Initial likelihood threshold 7, quality threshold 74, maximum size M, maximum
iteration number 7.

Output: Pseudo labels.

1: Let ¢ =0.

2: while i < T and £ # 0 do

3: for every pair e; in £ do

4: Find connected neighbors of nodes m and n in e;.

5: Calculate mean absolute value of quality score difference ¢, and ¢n using (9).
6: if gm < 74 or §n < 74 then

T Suppress linkage likelihood using (10).

8: end if

9: end for

10:  Remove pairs from & with its likelihood below 7.

11: Find connected components.

12:  Annotate components with the node number below M and remove its pairs from &.
13:  Letmp =7p+ (1 —7p)*0.15, and s =i+ 1.

14: end while
15: Annotate orphan nodes.
16: return pseudo labels for all nodes

The label propagation module starts with the initial linkage threshold T,
and performs in an iterative manner. In each iteration, the module first finds all
the connected neighbors of every unlabeled node according to the current pair
set £. Then Given one pivot-neighbor pair e; connecting nodes m and n, the
module calculates the mean absolute value of quality score difference between
each node and its connected neighbors,

9 1
qx = ‘N*| § a’bs(q* _qk)a *=1m,n, (9)
keEN.

where N, denotes the set of neighbor index, and |V,| denotes the number. If the
value ¢ of either node is larger than a predefined threshold 7, the pivot-neighbor
pair will be considered unreliable and its linkage likelihood will be suppressed as

pbj =Dy - (1 — abs ((jm - Qn)) ) (10)

where ¢, and g, denote the mean value of quality scores of the very node and
its connected neighbors. The gap in local face quality information between the
two nodes determines the degree to which the corresponding linkage likelihood
is suppressed.

With the linkage likelihood all updated, the label propagation module first
removes the pivot-neighbor pairs from £ whose linkage likelihood are below the
threshold 7,,. Then the module finds connected components based on the remain-
ing pivot-neighbor pairs. If the node number of one component is below the pre-
defined maximum size M, all nodes in the component are annotated with a new
pseudo label, and the corresponding pivot-neighbor pairs are also removed from
set £. The threshold 7, is increased at the end of every iteration.
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The process mentioned above is iterated until the pair set £ is empty. The
neglected orphan nodes are also annotated with new pseudo labels individually.
Finally, the face nodes with same pseudo label constitute a cluster. To summary,
Algorithm 1 lists the whole procedure of this label propagation. The maximum
computational complexity of one iteration is of order O(3NK), and decreases
as the iteration progresses. It is observed that involving face quality can help
improve the clustering precision along with a slight drop of recall.

3 Experiments

3.1 Experimental Settings

Datasets. We use the IJB-C dataset [11] of low face quality as well as the
refined MS1M dataset [4,7] of good face quality for training and testing in face
clustering. The 1JB-C contains about 138K face images from 3.5K identities,
and the MS1M contains about 5.8M face images from 85K identities. The IJB-C
dataset is randomly partitioned into 10 splits with equal identity number, and
each part has the same distribution of nodes per identity. As IJB-C dataset is
small, 9 parts are used for training to alleviate overfitting and 1 part for testing.
The MS1M dataset is partitioned in the same way with 1 part for training and
the other 9 parts for testing.

We evaluate the performance of face clustering by three commonly used met-
rics, i.e., Pairwise [16], BCubed [1] and NMI [19]. Pairwise and BCubed both
measure the precision and recall of clustering, with F-score being their harmonic
mean. The former metric emphasizes more on large clusters. NMI measures the
global closeness of the output pseudo labels and the ground-truth. All the metrics
have a range of [0, 1] with 1 being the perfect. Four state-of-the-art algorithms,
namely, L-GCN [20], GCN-DS [23], GCN-VE [22], and STAR-FC [15] are used
for comparison.

Our framework is implemented in Pytorch. We first use the pre-trained
TResNet50 [4,5] to extract the identity features of face nodes with dimension
dy = 512, and EQFace [9] to obtain the corresponding face quality scores. All
the competing algorithms share the same input. We then set the neighbor num-
ber K = 80, the dimension of key, query and walue ds = d, = 2048, and the
number of multi-head attention H = 2. We also empirically set the initial linkage
threshold 7, = 0.9, the quality threshold 7, = 0.3, and the maximum cluster size
M = 1000. The maximum iteration number T is set to 20 which is sufficient
to obtain a satisfactory clustering. These parameter values remain the same in
following experiments.

In addition, we train the model with 20 epochs from scratch, and optimize
the loss with the SGD optimizer. The weight decay and the momentum are
set to 0.0005 and 0.9, respectively. The initial learning rate is set to 0.01 and
is empirically divided by 10 at 8, 12 and 18 epochs. All the experiments are
performed on a single Tesla-P40 GPU, and one can use more for acceleration.
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Table 1. Results on IJB-C dataset and MS1IM dataset. “P” is short for “Pairwise”,
and “B” is short for “BCubed”

1JB-C MS1M

P F-score | B F-score | NMI | P F-score | B F-score | NMI

L-GCN 0.876 0.818 0.925 |0.959 0.975 0.994
GCN-D | 0.686 0.710 0.871 |0.899 0.906 0.980
GCN-DS |0.614 0.649 0.869 |0.857 0.880 0.975
GCN-V | 0.585 0.526 0.863 | 0.961 0.927 0.981
GCN-VE | 0.535 0.474 0.844 | 0.975 0.963 0.991
STAR-FC | 0.814 0.826 0.931 | 0.989 0.981 0.995
FC-Q 0.917 0.856 0.941 | 0.987 0.982 0.995

3.2 Experimental Results

Table 1 first shows the competing results on IJB-C dataset. The GCN-D only
uses its detection module. The GCN-DS further incorporates the segmentation
module but archives no performance improvement. This is because the algorithm
fails in learning the complex cluster patterns as the identity similarities are not
so reliable among low-quality faces. Algorithms GCN-V and GCN-VE present
the same phenomenon, where the corresponding vertex confidence and edge con-
nectivity estimation modules are heavily dependent on the identity similarity in
feature subspace. The STAR-FC performs relatively better under the influence
of its structure-preserved sub-graph sampling strategy. Overall, our FC-Q algo-
rithm outperforms other algorithms on this dataset, and achieves 91.7% pairwise
F-score under the employment of face quality scores. Table 1 also shows the com-
peting results on MS1IM dataset. It is observed that all the algorithms achieve
performance improvements when the faces are in good quality. Overall, although
the assistance role of face quality is diluted, our FC-Q algorithm still gets the
satisfactory result. This indicates that our algorithm can be the first choice when
implementing face clustering under general circumstance where the face quality
is unknown or mixed.

3.3 Ablation Studies

In this subsection, we evaluate some design elements used in our algorithm.
The following experiments are all conducted on IJB-C dataset. Table 2 presents
the clustering results of our algorithm when individually removing the following
four design elements, i.e., concatenating the quality scores, concatenating the
Pearson correlation encoding, adding the prior relevancy matrix, and making
key and query share the same projection. It is observed that all these four design
elements contribute to the performance improvement, and the last element helps
the most.
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Table 2. Results on IJB-C when four design elements are removed successively. “P”
is short for “Pairwise”, and “B” is short for “BCubed”.

P F-score | B F-score | NMI

FC-Q 0.917 0.856 0.941
Remove ¢ in (1) 0.902 0.848 0.938
Remove p in (1) 0.895 0.799 0.921
Remove A in (4) 0.886 0.840 0.935

Remove Sharing W in (3) | 0.828 0.726 0.883

Table 3. Results of L-GCN and FC-Q algorithms with their label propagation modules
swapped. “A+B” denotes using A for linkage prediction and B for label propagation.

Pairwise Bcubed

Pre Rec F-score | Pre Rec F-score
L-GCN+L-GCN | 0.869 |0.882 |0.876 |0.890 |0.756 | 0.818
L-GCN+FC-Q |0.935 |0.870 |0.901 |0.942 |0.730 | 0.823
FC-Q+L-GCN |0.943 |0.885 |0.913 |0.961 |0.771 | 0.855
FC-Q+FC-Q 0.952 | 0.885|0.917 |0.964  0.770|0.856

We further swap the label propagation modules of L-GCN and FC-Q to val-
idate the effectiveness of incorporating the face quality. We can see from Table 3
that equipping our proposed label propagation module evidently improves the
clustering precision of L-GCN with a slight drop of recall. This is because our
module can further suppress the abnormal pairing based on extra local quality
information. The improvement is not so significant on FC-Q as its linkage pre-
diction module has already incorporated the face quality to output more reliable
linkage likelihood.

Figure 4 further shows the effectiveness of our modified self-attention mech-
anism. An attention map extracted from the last layer is list on the left, which
involves one pivot example and its K = 80 nearest neighbors. The neighbors
are sorted in descend order with respect to the similarity. The attention val-
ues are taken as logarithm to better demonstrate the numerical differences. The
sequence above the attention map describes the identity consistency, where the
black dot indicates the neighbor node at same sequence position having the dif-
ferent identity. Three pivot-neighbor pairs are also list on the right, with quality
score shown on the image and similarity below the arrow. We can see that the
first pivot-neighbor pair in red box and the second pivot-neighbor pair in rosy
box have close similarity but opposite identity consistency. The self-attention
mechanism successfully suppresses the attention values of the former neighbor
node based on the large score difference prior. Note that although the third
neighbor node in black box with different identity has small score difference,
the self-attention mechanism can also suppress its attention value based on the
relevancy aggregation among involved nodes.
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Fig. 4. Effect of self-attention mechanism. One attention map is list on the right and
three pivot-neighbor pairs are list on the right.

4 Conclusion

This paper has introduced a face clustering algorithm, referred as FC-Q, to tackle
with face nodes with mixed quality. The algorithm takes face quality score as
extra input, which is incorporated into the linkage prediction module and label
propagation module as a prior. The algorithm first modifies the Transformer
encoder, and uses quality relevancy to infer more reliable linkage likelihood.
Then the algorithm utilizes the local quality information to further suppress the
abnormal pairing with high linkage likelihood. Experimental results validate that
our algorithm gets the satisfactory clustering result under general circumstance
where the face quality is unknown or mixed.
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