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Abstract. Triplet loss has been proven to be useful in the task of per-
son re-identification (ReID). However, it has limitations due to the influ-
ence of large intra-pair variations and unreasonable gradients. In this
paper, we propose a novel loss to reduce the influence of large intra-pair
variations and improve optimization gradients via optimizing the ratio
of intra-identity distance to inter-identity distance. As it also requires
a triplet of pedestrian images, we call this new loss as triplet ratio loss.
Experimental results on four widely used ReID benchmarks, i.e., Market-
1501, DukeMTMC-ReID, CUHK03, and MSMT17, demonstrate that the
triplet ratio loss outperforms the previous triplet loss.

Keywords: Person re-identification · Metric learning · Triplet ratio
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1 Introduction

The goal of person re-identification (ReID) is to identify a person of interest
using pedestrian images captured across disjoint camera views. Due to its widely
deployment in real-world applications such as intelligent surveillance, ReID has
become an important topic [6,12,14,32,33,37–39,42,48,52].

The key to robust ReID lies in high-quality pedestrian representations. How-
ever, due to the presence of detection errors, background occlusions and varia-
tions on poses, extracting discriminative pedestrian representations in ReID is
still challenging [18,25,27,31,34]. Previous methods typically adopt two different
strategies to improve the quality of pedestrian representations for ReID. The first
strategy involves equipping the deep network with various modules to enhance
the discriminative ability of extracted features [2,5,27,30,32]. In comparison,
the second strategy leaves the network unchanged and designs loss function that
directly optimizes the extracted features. Existing loss functions for ReID can
be categorized into two groups: classification-based and distance-based loss func-
tions [4,24,26,28,29], of which the triplet loss [24] is the most popular one. In
brief, the triplet loss typically optimizes pedestrian features via maximizing the
inter-identity distances and minimizing the intra-identity distances.
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Fig. 1. Illustration of intra-pair variations. The distance of the negative pair in (a) (b)
(c) is moderate, small and large, respectively. The green boxes indicate the anchor and
positive images while the red boxes denote the negative images. (Color figure online)

However, the triplet loss has two inherent problems. First, the quality of the
pedestrian features optimized with triplet loss is heavily affected by intra-pair
variations due to the fixed margin. More specifically, first, for the three triplets
presented in Fig. 1, the distance of the negative pair is moderate, small and
large, respectively. This means a reasonable margin for the triplet in Fig. 1(a)
is inappropriate for triplets in both Fig. 1(b) and Fig. 1(c). This is because the
triplet constraint becomes too tight or loose for the two triplets, respectively.
Second, the distance of the negative pair is small for triplet in Fig. 1(b); therefore
triplet loss might result in a collapsed ReID model when using an improper triplet
sampling strategy. From the mathematical point of view [36], this is because the
triplet loss only gives slight repelling gradient1 for hard negative image while
gives large attracting gradient (see footnote 1) for hard positive image. Therefore,
the embeddings of all pedestrian images will shrink to the same point.

Given the above, it is induced that an effective loss function is needed to
adjust the margin according to the respective triplet and provide more reasonable
gradient during the training stage. Accordingly, in this paper, we propose a novel
loss called, triple ratio loss.

First, different from the triplet loss which optimizes the “difference” between
intra-identity distance and inter-identity distance, in brief, the proposed triplet
ratio loss directly optimizes the “ratio” of the intra-identity distance to inter-
identity distance. More specifically, for a triplet, the triplet ratio loss requires the
“ratio” to be smaller than a pre-defined hyper-parameter. Based on the goals
and the approach, we name it as “triplet ratio loss”. Intuitively, as shown in
Fig. 2(a), {A,P0, N0} which denotes a triplet (A, P0, N0 represents the anchor,
positive, negative image in the triplet, respectively) is active but hard to be opti-
mized for triplet loss since the intra-identity distance is larger than the decision
boundary (The left boundary of the red rectangle). Besides, {A,P2, N2} has no
contribution to triplet loss since the intra-identity distance is already smaller
than the respective decision boundary. In comparison, as illustrated in Fig. 2(b),
the proposed triplet ratio loss is able to relax the tight constraint for triplet
{A,P0, N0} and tighten the loose constraint for triplet {A,P2, N2}.

1 Repelling gradient denotes the gradient that pushes the features away from each
other, while attracting gradient indicates the gradient that pulls the features closer.
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Fig. 2. During optimization, (a) For triplet loss, {A, P0, N0} is active while {A, P2, N2}
has no contribution. (b) For triplet ratio loss, {A, P2, N2} is adopted while {A, P0, N0}
is abandoned. The red/blue/green rectangle represents the region where positive sam-
ples need to be optimized with N0/N1/N2. (Color figure online)

Second, the proposed triplet ratio loss improves the convergence of the ReID
model. Compared with triplet loss, the triplet ratio loss drives the gradients
of features in the same triplet to be adjusted adaptively in a more reasonable
manner. More specifically, the triplet ratio loss adjusts the gradients for the
anchor image, positive image and negative image considering both the inter-
identity distance and intra-identity distance. Therefore, the triplet ratio loss
gives larger repelling gradient for hard negative pair. Consequently, the proposed
triplet ratio loss encourages the ReID model easier to converge and is able to
prevent ReID models from shrinking to the same point [36].

The contributions of this work can be summarized as follows:

• We study the two problems that related to triplet loss for robust ReID: 1)
intra-pair variations and 2) unreasonable gradients.

• We propose the triplet ratio loss to address aforementioned problems via
optimizing the ratio of the intra-identity distance to inter-identity distance.

• Extensive experimental results on four widely used ReID benchmarks have
demonstrated the effectiveness of the proposed triplet ratio loss.

2 Related Work

We divide existing deep learning-based ReID methods into two categories, i.e.,
deep feature learning or deep metric learning-based methods, according to the
way adopted to improve pedestrian representations.

Deep Feature Learning-Based Methods. Methods within this category tar-
get on learning discriminative representations via designing powerful backbone.
In particular, recent methods typically insert attention modules into the back-
bone model to enhance the representation power [2,5]. Besides, part-level repre-
sentations that sequentially perform body part detection and part-level feature
extraction have been proven to be effective for ReID, as the part features contain
fine-grained information [27,30].
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Deep Metric Learning-Based Methods. Methods within this category can
be further categorized into two elemental learning paradigms, i.e., optimizing
via class-level labels or pair-wise labels. Methods using class-level labels, e.g.,
the softmax loss [17,29,40], typically learn identity-relevant proxies to represent
different identities of samples. In comparison, the methods based on pair-wise
labels usually enhance the quality of pedestrian representations via explicitly
optimizing the intra-identity and inter-identity distances [4,24,26,29]. As one of
the most popular method that using pair-wise labels, the triplet loss [24] has been
proven to be effective in enlarging the inter-identity distances and improving the
intra-identity compactness.

However, triplet loss has three inherent limitations [10,24,36]. First, the per-
formance of triplet loss is influenced by the triplet sampling strategy. Therefore,
many attempts have been made to improve the triplet selection scheme [36,41],
e.g., the distance-weighted sampling and correction. Second, the intra-identity
features extracted by models are not sufficiently compact, which leads to the
intra-pair variations. Accordingly, some methods [3,11] have been proposed to
constraint the relative difference between the intra-identity distance and inter-
identity distance, and push the negative pair away with a minimum distance.
Third, the choice of the constant margin is also vital for the learning efficiency.
More specifically, too large or too small value for the margin may lead to worse
performance. To this end, subsequent methods was proposed to adjust the mar-
gin based on the property of each triplet [8,44]. However, these variants of triplet
loss still methodically adopt the margin-based manner [3,8,11,44].

In comparison, the proposed triplet ratio loss introduce a novel ratio-based
mechanism for optimization: optimizing the ratio of intra-identity distance to
inter-identity distance. Therefore, the triplet ratio loss could adaptively adjust
the margin according to respective triplet so as to weaken the influence of intra-
pair variations. Besides, the optimization gradients are also improved to be more
reasonable by the proposed triplet ratio loss; therefore the ReID model enjoys
faster convergence and more compact convergence status.

3 Method

3.1 Triplet Loss

As one of the most popular loss function for ReID, the triplet loss [24] aims at
improving the quality of pedestrian representations via maximizing the inter-
identity distances and minimizing the intra-identity distances. More specifically,
the triplet loss is formulated as follows:

Ltriplet =
∑

a,p,n∈N
[D (fai , fpi ) − D (fai , fni ) + α]+. (1)

Here α is the margin of the triplet constraint, and N indicates the set of sampled
triplets. fai , fpi , fni represent the feature representations of the anchor image, posi-
tive image and negative image within a triplet, respectively. D(x,y) = ‖ x − y ‖22
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represents the distance between embedding x and embedding y. [·]+ = max(0, ·)
denotes the hinge loss. During the optimization, the derivatives for each feature
representations are computed as follows:

∂Ltriplet

∂fai
= 2(fni − fpi ),

∂Ltriplet

∂fpi
= 2(fpi − fai ),

∂Ltriplet

∂fni
= 2(fai − fni ). (2)

However, the triplet loss simply focuses on obtaining correct order for each
sampled triplet, it therefore suffers from large intra-pair variations [26] and
unreasonable repelling gradient for fni [36].

3.2 Triplet Ratio Loss

To address the aforementioned two drawbacks, we propose the triplet ratio loss
which optimizes triplets from a novel perspective. In brief, the triplet ratio loss
directly optimizes the “ratio” of the intra-identity distance to inter-identity dis-
tance. More specifically, the triplet ratio loss is formulated as:

Ltri ratio =
∑

a,p,n∈N

[
D (fai , fpi )
D (fai , fni )

− β

]

+

, (3)

where β ∈ (0, 1) is the hyper-parameter of the triplet ratio constraint.
During the optimization, the derivatives of the triplet ratio loss with respect

to fai , fpi , fni are:

∂Ltri ratio

∂fai
=

−2D (fai , fni ) · (fpi − fai ) − 2D (fai , fpi ) · (fai − fni )
[D (fai , fni )]2

,

∂Ltri ratio

∂fpi
=

2(fpi − fai )
D (fai , fni )

,

∂Ltri ratio

∂fni
=

2D (fai , fpi ) · (fai − fni )
[D (fai , fni )]2

.

(4)

• Addressing the intra-pair variations. Compared with triplet loss, the
triplet ratio loss handles the intra-pair variations via adjusting the constraint
for fpi according to D (fai , fni ). More specifically, first, the triplet ratio loss
relatively relaxes the constraint on the intra-identity pair when D (fai , fni ) is
small. Second, it encourages the constraint on the intra-identity pair to be
tighter, when D (fai , fni ) is large. For example, when setting the value of α
and β as 0.41, the constraint deployed on the intra-identity pair is adjustable
for each triplet in triplet ratio loss, but rigid in triplet loss. More specifically,
for the triplet in Fig. 1(b) where D (fai , fni ) = 0.5, the triplet loss requires
D (fai , fpi ) ≤ 0.1; while the triplet ratio loss only requires D (fai , fpi ) ≤ 0.2;
therefore it relaxes the constraint on the intra-identity pair. Besides, for
the triplet in Fig. 1(c) that D (fai , fni ) = 1, the triplet ratio loss requires
D (fai , fpi ) ≤ 0.4. This constraint is tightened compared with that of triplet
loss that requires D (fai , fpi ) ≤ 0.6.

1 0.4 is an empirical value for both α [31] and β. Please refer to Sect. 4.2 for extensive
evaluation on the value of β.
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Fig. 3. Gradients for fai , fpi , fni when respectively using (a) Triplet loss and (b) Triplet
ratio loss. The green/red dot denotes the positive/negative images. The red/blue/green
dotted line denotes the decision boundary for positive sample with negative sample
N0/N1/N2. The red/blue/green arrows denote the gradients of fai , fpi , fni with negative
sample N0/N1/N2. (Color figure online)

• Addressing the gradients issue. During the training stage, the triplet
ratio loss provides fni a more reasonable repelling gradient. As illustrated
in Eq. (4), the amplitude of repelling gradient for fni is inversely related to
D (fai , fni ). Therefore, as shown in Fig. 3, the amplitude of repelling gradient
for fni becomes reasonably significant when D (fai , fni ) is small, which is coher-
ent to the intuition. In opposite, when D (fai , fni ) is large that has almost sat-
isfied the optimization purpose, the repelling gradient for fni becomes slight
so that weak optimization is employed. This is intuitive since fni does not
need much optimization in this situation. However, the triplet loss assigns
counter-intuitive repelling gradient for fni as presented in Fig. 3.

Besides, the gradients for both fni and fpi are also become more reasonable
in triplet ratio loss. As illustrated in Eq. (4), gradient for fni is determined by
both D (fai , fni ) and D (fai , fpi ), gradient for fpi is determined by D (fai , fni ). More
specifically, first, the amplitude of gradient for fni is proportional to D (fai , fpi ).
This means that the attention on fni will not be significant if the intra-identity
pedestrian images are similar to each other. Second, the amplitude of gradi-
ent for fpi is inversely proportional to D (fai , fni ). Therefore, a triplet where the
pedestrian images in the inter-identity pair are obviously dissimilar will not put
emphasis on optimizing fpi .

During the training stage, the ReID model is optimized with both cross-
entropy loss and triplet ratio loss, the overall objective function can be therefore
written as follows:

L = LCE + λLtri ratio. (5)

Here LCE represents the cross-entropy loss, λ denotes the weight of triplet ratio
loss and is empirically set to 1.
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4 Experiment

We evaluate the effectiveness of the proposed triplet ratio loss on four popular
ReID benchmarks, i.e., Market-1501 [45], DukeMTMC-reID [47], CUHK03 [16],
and MSMT17 [35]. We follow the official evaluation protocols for these datasets
and report the Rank-1 accuracy and mean Average Precision (mAP).

Market-1501 contains 12,936 images of 751 identities in the training dataset
and 23,100 images of 750 identities in the test dataset. DukeMTMC-ReID con-
sists of 16,522 training images of 702 identities and 19,889 testing images of 702
identities. CUHK03 includes 14,097 pedestrian images of 1,467 identities. The
new training/testing protocol detailed in [49] is adopted. MSMT17 is divided
into a training set containing 32,621 images of 1,041 identities, and a testing set
comprising 93,820 images of 3,060 identities.

4.1 Implementation Details

Experiments are conducted using the PyTorch framework. During the training
stage, both offline and online strategies are adopted for data augmentation [16].
The offline translation is adopted and each training set is enlarged by a factor
of 5. Besides, the horizontal flipping and the random erasing [50] with a ratio of
0.5 are utilized. All images mentioned above are resized to 384 × 128.

ResNet50 [9] trained with only cross-entropy is used as the baseline. ImageNet
is used for pretrain. In order to sample triplets for the triplet ratio loss, we set
P to 6 and A to 8 to construct a batch (whose size is therefore 48). The value of
β is set as 0.4 for CUHK03 and 0.7 for the other three datasets. The standard
stochastic gradient descent (SGD) optimizer with a weight decay of 5×10−4 and
momentum of 0.9 is utilized for model optimization. All the models are trained
in an end-to-end fashion for 70 epochs. The learning rate is initially set to 0.01,
then multiplied by 0.1 for every 20 epochs.

4.2 Impact of the Hyper-Parameter β

In this experiment, we evaluate the performance of triplet ratio loss with different
value of β on Market-1501 and CUHK03-Label. The other experimental settings
are consistently kept to facilitate the clean comparison.

From the experimental results illustrated in Fig. 4, we can make the following
two observations. First, the performance of the triplet ratio loss tends to be
better when the value of β increases; this is because a small value of β leads to
too strict constraint on intra-identity distances. Second, the performance of the
triplet ratio loss drops when the value of β further increase. This is because a
large value of β brings loose constraints on intra-identity distances; therefore it
harms the intra-identity compactness.

4.3 Triplet Ratio Loss vs. Triplet Loss

We show the superiority of the proposed triplet ratio loss over triplet loss by
comparing them from both quantitative and qualitative perspectives.
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Fig. 4. The Rank-1 accuracy and mAP using different value of β on (a) Market-1501
dataset and (b) CUHK03-Label dataset.

Fig. 5. The Rank-1 accuracy and mAP using different value of α on (a) Market-1501
dataset and (b) CUHK03-Label dataset. The blue and red solid lines denote the Rank-1
accuracy and mAP of using triplet ratio loss. (Color figure online)

Table 1. Evaluation of triplet ratio loss on ResNet50. R-1 in Table 1 and Table 2
denotes the Rank-1 accuracy.

Method Market-1501 Duke CUHK03-D CUHK03-L MSMT17

R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Baseline 91.6 81.1 84.6 71.2 63.2 59.1 67.9 63.0 68.3 41.4

w/ Triplet loss 94.1 85.1 86.8 73.5 74.1 68.3 76.8 71.7 75.4 51.4

w/ Triplet ratio loss 95.0 86.7 88.6 76.4 75.4 69.3 77.9 72.5 79.3 55.2

We compare the performance of triplet ratio loss with that of triplet loss
under different value of α (the margin of triplet loss) in Fig. 5. It is concluded
that the triplet ratio loss consistently outperforms triplet loss in both Rank-1
accuracy and mAP. For example, the triplet ratio loss beats the best performance
of triplet loss by 0.9% in Rank-1 accuracy and 1.6% in mAP on Market-1501. The
above experiments demonstrate the superiority of triplet ratio loss. Besides, the
experimental results listed in Table 1 show that triplet ratio loss brings consistent
performance improvement for the baseline: in particular, the Rank-1 accuracy is
improved by 11.0% while mAP is also promoted by 13.8% on MSMT17. These
experimental results verify the effectiveness of the proposed triplet ratio loss.
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Fig. 6. Distribution of the pedestrian features extracted by ResNet-50 that trained
respectively with (a) Triplet loss and (b) Triplet ratio loss.

Fig. 7. The cross-entropy loss curves of the training process on Market-1501.

The conclusion is further supported by visualizing the features optimized by
triplet ratio loss and triplet loss in Fig. 6, as well as the curves associated with the
cross-entropy loss when adopting the two losses in Fig. 7. After assessing Fig. 6
and Fig. 7, we can make the following observations: first, the features optimized
with triplet ratio loss are more compact than that learned using triplet loss;
this indicates the triplet ratio loss is more effective on addressing the intra-
pair variations. Second, the cross-entropy loss with triplet ratio loss converges
faster than that with triplet loss. This is because triplet ratio loss improves
optimization procedure via providing more reasonable gradients. The above
analyses prove the superiority of triplet ratio loss.

4.4 Comparison with State-of-the-Art

We compare the proposed triplet ratio loss with state-of-the-art methods on
Market-1501 [45], DukeMTMC-ReID [47], CUHK03 [16], and MSMT17 [35]. For
fair comparison, we divide existing approaches into two categories, i.e., holistic
feature-based (HF) methods and part feature-based (PF) methods.
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Table 2. Performance comparisons on four popular benchmarks. “-” represents these
results are not available.

Methods Market-1501 Duke CUHK03-D CUHK03-L MSMT17

R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

PF PCB+RPP [27] 93.8 81.6 83.3 69.2 63.7 57.5 - - 78.2 52.5

CASN (PCB) [46] 94.4 82.8 87.7 73.7 71.5 64.4 73.7 68.0 - -

Auto-ReID [22] 94.5 85.1 - - 73.3 69.3 77.9 73.0 69.8 43.6

MHN-6 (PCB) [1] 95.1 85.0 89.1 77.2 71.7 65.4 77.2 72.4 - -

BAT-net [7] 95.1 87.4 87.7 77.3 76.2 73.2 78.6 76.1 79.5 56.8

MuDeep [21] 95.3 84.7 88.2 75.6 71.9 67.2 75.6 70.5 - -

MGN [30] 95.7 86.9 88.7 78.4 66.8 66.0 68.0 67.4 - -

DSA-reID [43] 95.7 87.6 86.2 74.3 78.2 73.1 78.9 75.2 - -

HF SFT [19] 93.4 82.7 86.9 73.2 - - 68.2 62.4 73.6 47.6

PGR [15] 93.9 77.2 83.6 66.0 - - - - 66.0 37.9

IANet [13] 94.4 83.1 87.1 73.4 - - - - 75.5 46.8

CAL [23] 94.5 87.0 87.2 76.4 - - - - 79.5 56.2

OSNet [51] 94.8 84.9 88.6 73.5 72.3 67.8 - - 78.7 52.9

3DSL [2] 95.0 87.3 88.2 76.1 - - - - - -

BDB-Cut [5] 95.3 86.7 89.0 76.0 76.4 73.5 79.4 76.7 - -

IDE∗+AM-Softmax [29] 92.4 83.8 - - - - - - 75.6 49.3

IDE∗+Soft‡+Tri† [20] 94.1 85.7 86.2 75.9 - - - - - -

IDE∗+Circle loss [26] 94.2 84.9 - - - - - - 76.3 50.2

IDE∗+Soft‡+Ratio 95.0 86.7 88.6 76.4 75.4 69.3 77.9 72.5 79.3 55.2

IDE∗+Soft‡+Ratio∗∗ 95.8 93.6 91.6 88.7 83.7 83.9 85.8 85.6 83.5 71.3
† Triplet loss ‡ Softmax loss * ResNet-50 ** Re-ranking [49]

After examining the results tabulated in Table 2, we can make the following
observations. First, compared with the PF-based methods, equipping ResNet-
50 with the proposed triplet ratio loss achieves comparative performance though
PF-based methods extract fine-grained part-level representations. Second, equip-
ping ResNet-50 with the proposed triplet ratio loss also achieves comparative
performance when compared with the state-of-the-art HF-based methods. For
example, the Rank-1 accuracy of our method is the same as that of 3DSL [2],
a most recent method that requires additional 3D clues, with the mAP of our
method is merely lower than that of 3DSL by 0.6% on Market-1501. Third,
compared with works that explore loss functions for ReID, the proposed method
achieves the best performance when using the same backbone for feature extrac-
tion. Specifically, the proposed triplet ratio loss outperforms Circle loss [26] by
3.0% and 5.0% in terms of the Rank-1 accuracy and mAP, respectively, on the
MSMT17 benckmark. At last, the Re-ranking [49] further promotes the per-
formance of triplet ratio loss: the triplet ratio loss finally achieve 95.8% and
93.6%, 91.6% and 88.7%, 83.7% and 83.9%, 85.8% and 85.6%, 83.5% and 71.3%
in terms of the Rank-1 accuracy and mAP, respectively, on each dataset. The
above comparisons justify the effectiveness of triplet ratio loss.
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5 Conclusion

In this paper, we propose a novel triplet ratio loss to address two inherent prob-
lems: 1) heavily influenced by intra-pair variations and 2) unreasonable gradi-
ents, that associated with triplet loss. More specifically, first, the triplet ratio loss
directly optimizes the ratio of intra-identity distance to inter-identity distance,
therefore the margin between intra-identity distance and inter-identity distance
could be adaptively adjusted according to respective triplet. Second, the triplet
ratio loss adjusts the optimization gradients for embeddings considering both the
inter-identity distances and intra-identity distances. The experimental results
on four widely used ReID benchmarks have demonstrated the effectiveness and
superiority of the proposed triplet ratio loss.
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