
Semantic Inferences Towards Smart IoT-Based
Systems Actuation Conflicts Management

Gérald Rocher(B), Jean-Yves Tigli, and Stéphane Lavirotte

I3S Laboratory, Université Côte d’Azur, CNRS, Sophia-Antipolis, France
{gerald.rocher,Jean-yves.tigli,

Stephane.lavirotte}@univ-cotedazur.fr

Abstract. IoT-based systems have long been limited to collecting field informa-
tion via sensors distributed at the edge of their infrastructure. However, in many
areas such as smart home, smart factory, etc. these systems include devices that
interact with the physical environment via common actuators. Throughout the
lifecycle of these systems, from design, to deployment to operation, the ability
to avoid actuation conflicts, both in terms of the commands that actuators receive
(direct conflicts) and the effects that they produce (indirect conflicts), is a new
challenge in the realm of trustworthy Smart IoT-based Systems (SIS). As part
of the European project ENACT, which aims to provide full DevOps support for
trustworthy SIS, we present a lightweight ontology that provides SIS designers
with (1) a semantic metamodel to formally describe SIS subsystems and the actu-
ators they interact with, and (2) a set of SWRL (Semantic Web Rule Language)
inference rules to automatically identify and semi-automatically resolve actuation
conflicts. Consistent with the best practices of the DevOps approach, a particular
emphasis is placed on facilitating the use and interpretation of inference results.
To provide insight into the appropriateness of the proposed approach in the con-
text of SIS, rule processing times for different actuation conflict configurations
are provided.

Keywords: Actuation · Conflict · Identification · Resolution · Ontology ·
Internet of Things · DevOps

1 Introduction

DevOps is one of the best practices in software engineering today [1]. Themethod aims to
harmonize software development (Dev) and software operations (Ops) in a collaborative
framework. It facilitates all phases of a system lifecycle, from design, development,
integration, testing and deployment, to runtime monitoring and behavioural analysis,
with the latter phases introducing a new design phase into a perpetual, incremental
and agile development cycle. If DevOps is obvious today, it is thanks to a number of
technical enablers, such as infrastructures that enable and facilitate the deployment of
systems designed on the basis of convergence and virtualization hypotheses. A backend
is deployed in a cloud while the frontend relies on web interfaces supported by similar

© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
L. M. Camarinha-Matos et al. (Eds.): IFIPIoT 2022, IFIP AICT 665, pp. 255–273, 2022.
https://doi.org/10.1007/978-3-031-18872-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18872-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-18872-5_15

256 G. Rocher et al.

target devices such as smartphones, PCs, tablets, SmartTVs, interactive terminals etc. at
the price of some web responsive design configurations.

However, in the context of the Internet of Things (IoT), these hypotheses are under-
mined by the strong heterogeneity and dynamics of the infrastructure. This heterogeneity
can be divided into two types. The first type of heterogeneity is that of computational tar-
gets, embodied in a three-tier infrastructure vision: cloud but also edge and IoT devices.
Consideration of computational and storage constraints along with the locality of edge
and IoT device targets is critical here. The second type of heterogeneity concerns the
wide variety of IoT devices, which by their nature cannot benefit from the well-known
convergence phenomenon in the evolution of IT media. This new characteristic is intrin-
sically linked to their vocation and results from the natural evolution of digital systems,
which has been observed from the 90s onwards: “Silicon-based information technology
[…] is far from having become part of the environment” (Mark Weiser). While Perva-
sive Computing and Ambient Intelligence (AmI) have reinforced the idea that modern
computing is not only confronted with the distribution, the availability (everytime) and
the mobility of their supports (everywhere), it must now be recognized that modern
computing is also confronted with the great diversity of IoT devices and their variability
in terms of sensors and actuators (everything).

Whilemany IoT-based systems focus onmassively collecting field data from sensors,
their scope becomes increasingly complex once they are able to act on the physical envi-
ronment using actuators shared by multiple independent subsystems. The management
of such devices becomes critical, as their sharing or simultaneous use potentially leads to
the occurrence of conflicts that can result in user dissatisfaction at best and dramatic con-
sequences in the field at worst. From a design standpoint, managing actuation conflicts
is made difficult by the complexity of so-called Smart IoT-based Systems (SIS) and the
large number of shared actuators they may rely on at the edge of the infrastructure. As
we move towards trustworthy SIS, it is imperative to provide DevOps stakeholders with
tools that can support both the identification of actuation conflicts and their resolution
through the instantiation of Actuation Conflicts Managers (ACM) at relevant conflict
points in the design. The local nature of ACM here suggests the possibility of their reuse
which is relevant in the context of DevOps best practices because it enables continuous
and rapid deployment.

Given this context, this paper makes a threefold contribution:

1. We present a lightweight ontology that provides DevOps stakeholders with a seman-
tic metamodel for formally describing Smart IoT-based Systems (SIS) and the actu-
ators with which they interact. The formal description is automatically obtained
from the deployment and implementation models provided as part of the DevOps
framework,

2. The identification and resolution of actuation conflicts are automatically and system-
atically derived from SWRL rules (Semantic Web Rule Language) used in conjunc-
tion with a Description Logic (DL) reasoner. Special attention is paid to facilitating
the use and interpretation of inference results:

a. Detected conflicts are clarified by special instances, and querying the knowledge
base after inference is not required,

Semantic Inferences Towards Smart IoT-Based Systems 257

b. ACM components are automatically instantiated at relevant conflict points in the
design. Theymake their inputs and outputs explicit for further use. As such,ACM
components are black boxes whose associated resolution logic must be selected
by designers from off-the-shelf reusable solutions or designed as needed,

c. Specific object properties are derived to help designers understand the reasons
for identified conflicts.

3. Performance metrics for different actuation conflict configurations are provided.
They provide insight into the relevance of the proposed approach to the targeted SIS,
which can range from a few dozen (smart-home) to tens of thousands of actuators
(smart-city).

The paper is organized as follows. In Sect. 2, we discuss direct and indirect actuation
conflicts and review some relevant work that uses semantic web languages to identify
and resolve them. In Sect. 3, we describe a lightweight ontology and 6 SWRL rules for
automatic identification and semi-automatic resolution of actuation conflicts. In Sect. 4,
we use the Stanford Protégé tool to illustrate the proposed ontology and associated
SWRL ruleswith a small example. In Sect. 5,we present performance results for different
actuation conflict configurations. In Sect. 6, we discuss future work.

2 Related Works

Potential actuation conflicts are likely to occur whenever independent subsystems com-
pete for access to common actuators (direct actuation conflicts) or common physical
properties through different actuators (indirect actuation conflicts). There is a rich lit-
erature and culture on feature interaction in telecommunication systems, in software
systems and, more recently, in IoT-based systems [2].

However, as highlighted in [2], the proposed methods mainly consider the identifica-
tion and resolution of direct conflicts. Indirect actuation conflicts can be subtle, making
them difficult to detect. For example, a ventilation system indirectly affects physical
properties such as temperature and humidity by influencing airflow. A TV, understood
primarily as an entertainment device, can also be understood as an actuator that affects
sound, brightness, and, to a lesser extent, temperature. Indirect actuation conflicts involve
non-trivial semantic and subjective considerations and are therefore difficult to resolve
automatically while still satisfying all SIS end users. For example, if one user wants to
increase the temperature in a room while another wants to increase the airflow in the
same room by opening a window and then possibly lower the temperature, what must
be the resolution strategy that satisfies both? In this context, the use of semantic web
formal description languages [4] and their reasoning capabilities seems to be a relevant
approach for describing SIS, identifying and resolving their actuation conflicts.

Some research has been done in this direction recently. In [5], the authors propose a
generic knowledgegraph to represent the relations between IoT services and environment
entities. The indirect actuation conflicts are then identified based on Event-Condition-
Action (ECA) automation rules defined by end-users. No resolution is proposed in this
work. In [6] the authors present A3ID, an automatic indirect actuation conflicts detection

258 G. Rocher et al.

method based on IF-This-Then-That (IFTTT) rules and knowledge graphs that capture
the functionality, effect and scope of the devices involved in the design. No resolution
method is proposed in this work. In [7], the authors consider the case where different
end-users interact with a Building Automation System (BAS). End-user requirements
are encoded by an ontologymodel that provides semantic information about the physical
environment. Identification of indirect conflicts is achieved by SPARQL queries [3] to
this model, while resolution operations are performed using constraint solving.

Most of these approaches are based on knowledge of the functional logic of the
systems under consideration, end-user requirements, rules and policies. SIS, as defined
in this paper, may be large-scale systems (e.g., smart city) built on highly dynamic
subsystems (e.g., cloud services, containerized microservices, embedded software, het-
erogenous edge devices, etc.) whose functional logic (hardware and software) is not
necessarily under the control of the DevOps stakeholders. The knowledge is therefore
limited to the structural interactions between subsystems and the actuators they act upon
at the edge of the infrastructure provided by deployment and implementation models as
part of the DevOps approach (e.g., [8, 9]). By focusing on the structural interactions,
the identification of potential actuation conflicts can be done systematically, and their
resolution applied locally through reusable ACM that implement different resolution
strategies, in line with DevOps best practices.

Finally, none of the above approaches provides processing time data for managing
actuation conflicts. For example, in [6], although the authors conducted experiments
with 11,859 IFTTT-like rules with up to 99 actuators, no performance data is provided.

3 A Lightweight Ontology for Identifying and Resolving Actuation
Conflicts

The Semantic Web can be defined as “a vision for the future of the Web in which infor-
mation is given explicit meaning, making it easier for machines to automatically process
and integrate information available on the Web” [10]. In this context, explicit meaning
is provided by semantically rich metadata that relies on ontologies. An ontology (a.k.a.
vocabulary) is a meta-model that defines concepts and relationships used to describe
and represent a particular domain1. It is based on logic-based knowledge representation
languages such as RDF (Resource Description Framework), RDFS (RDF-Schema) [11]
and OWL-* family of languages [12] (OWL-LITE, OWL-DL and OWL-FULL), each
providing different levels of expressiveness for asserting facts or axioms.

What makes ontologies interesting is their capacity, from their underlying logic-
based knowledge representation languages, to derive logical consequences (i.e., implicit
assertions) from a set of asserted facts or axioms (i.e., explicit assertions). However, the
derivational capacity is limited by the expressive capacity of the language in question.
The greater the expressive capacity of the language, the lower the inference and the com-
putability [13]. For example, OWL-LITE and OWL-DL are decidable and correspond
to SHIFand SHOIN Description Logics (DL) respectively, with SHOIN DL providing
higher expressivity than SHIFDL. OWL-FULL, provides the highest expressivity, but is
not decidable.
1 https://www.w3.org/standards/semanticweb/ontology.

https://www.w3.org/standards/semanticweb/ontology

Semantic Inferences Towards Smart IoT-Based Systems 259

In the context of SIS and DevOps, the use of semantic web technologies seems to
be relevant assuming:

1. Explicit statements describing (1) the structural relationships between SIS subsys-
tems and the actuators they interact with, (2) the actuators (at least, their localization
and the physical properties they act upon), can be extracted fromDevOps deployment
and implementation models,

2. The knowledge representation language is expressive enough to identify direct and
indirect actuation conflicts and guide DevOps stakeholders towards their resolution
from inference under constraint of decidability.

Based on these assumptions, a lightweight OWL-DL ontology is presented below
for automatically identifying and semi-automatically resolving actuation conflicts.

It includes the following concepts and relationshipswhose individuals are taken from
DevOps deployment and implementation models, shown in green in Fig. 1:

Entity - An entity is an abstract element,

Subsystem - A subsystem is an entity that sends commands to an entity,

Physical Property - A physical property is any observable and measurable prop-
erty whose value characterizes a state of a physical system [14] (e.g. temperature,
brightness, humidity, pressure, sound, etc.),

Context - A context can be any abstract, spatially bounded physical system (e.g.
kitchen, living room, etc.) whose state can be characterized by physical properties,

Fig. 1. Concepts and object properties of the proposed lightweight ontology.

260 G. Rocher et al.

Actuator - An actuator is an entity that has exactly one context, acts on (i.e. changes)
at least one physical property and receives commands from at least one subsystem.

On this basis, an example of a knowledge description is given below, the graphical
representation of which is shown in Fig. 2 is given below:

<!-- An actuator -->

<rdf:Description rdf:about="#TV">

<hasContext rdf:resource="#Livingroom"/>

<actsOn rdf:resource="#Luminosity"/>

<actsOn rdf:resource="#Sound"/>

</rdf:Description>

<!-- A SubSystem -->

<rdf:Description rdf:about="#RemoteControl">

<sendsCommandTo rdf:resource="#TV"/>

</rdf:Description>

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="#TV"/>

<rdf:Description rdf:about="#RemoteControl"/>

</owl:distinctMembers>

</owl:AllDifferent>

Fig. 2. Example of semantic description that can be expressed from DevOps deployment and
implementation models (properties depicted in yellow are inferred from a DL-based reasoner).

This structured representation of knowledge provides a formal description of SIS
and a basis for identifying and resolving direct and indirect actuation conflicts from
inferences.

3.1 Automatic Actuation Conflicts Identification

The proposed ontology is equipped with the following concepts and properties related
to the identification of direct and indirect conflicts (shown in pink in Fig. 1):

DirectConflictNotFixed - The individuals of this concept correspond to all
actuators that are potentially subject to a direct actuation conflict.

Semantic Inferences Towards Smart IoT-Based Systems 261

An actuator is potentially subject to a direct conflict if it receives its commands from
at least two different entities,

IndirectConflictNotFixed - The individuals of this concept correspond to all
actuators that are potentially subject to an indirect actuation conflict.

An actuator is potentially subject to an indirect conflict if it shares its context with at
least one other actuator acting on the same physical property.

While OWL-DL ontologies provide simple, reusable, and easy-to-understand models
of domain knowledge, they lack the declarative expressiveness that rules provide, espe-
cially when it comes to designing complex assertions of facts that go beyond the sim-
ple declaration of domain concepts, as is the case with the above concepts [15]. The
Semantic Web Rule Language (SWRL) [16] enables declarative assertions using OWL
concepts. By combining first-order Horn logic (HL) and DL-based reasoners such as
Pellet, Fact++, etc., it achieves higher expressive power and reasoning capacity. In this
paper, the proposed ontology is SWRL-enabled, i.e. it contains a set of Horn clause rule
axioms (Table 1 and Table 2) that conform to DL-Safety (i.e. rule axioms contain only
known concepts, which makes them decidable [17]).

Table 1. Horn-clause axioms for Direct/Indirect actuation conflicts identification

The identification of actuation conflicts is then done in two steps:

1. The first step consists in asserting the object properties hasDirectCon-
flictWith and hasIndirectConflictWith to each actuator that is poten-
tially subject to direct and/or indirect conflicts. This step is achieved thanks to the
axioms of the Horn-clause rule defined in Table 1,

2. The second step relies on a DL-based reasoner, i.e. DirectConflictNotFixed
individuals are derived from actuator individuals that have the hasDirectCon-
flictWith property. The same is true for IndirectConflictNotFixed
individuals.

262 G. Rocher et al.

An example is shown in Fig. 3 where the TV instance has direct conflict with
RemoteControl#1 and RemoteControl#2 instances. So far, no ACM has been
instantiated to fix this conflict (DirectConflictNotFixed).

Fig. 3. Example of direct actuation conflicts identification

3.2 Semi-automatic Actuation Conflicts Resolution

Based on the assertions derived during the actuation conflicts identification phase, a
means should be proposed to resolve the conflicts identified semi-automatically. For
this purpose, the proposed ontology is equipped with additional concepts and proper-
ties, shown in purple in Fig. 1. Besides these concepts and properties, four additional
Horn-clause rule axioms are defined in the ontology (cf. Table 2). In particular, rule
3 and rule 4 are used to instantiate individuals of the concepts DirectConflict-
Manager and IndirectConflictManager at relevant points in the design. The
instantiation of these individuals is done automatically thanks to the built-in SWR-
LAPI extension swrlx:makeOWLThing, which can be used to create new individ-
uals directly from a rule, where a DirectConflictManager is instantiated for
each actuator that have the property hasDirectConflictWith asserted (rule 3); an
IndirectConflictManager is instantiated for each actuator that have the property
hasIndirectConflictWith asserted (rule 4).

Semantic Inferences Towards Smart IoT-Based Systems 263

Table 2. Horn-clause axioms for Direct/Indirect actuation conflicts resolution

In rule 3, DirectConflictManager individuals are created once per actu-
ator (swrlx:makeOWLThing(?acm,?act)) while in rule 4, IndirectCon-
flictManager individuals are created once for each pair (physical effect, context)
(swrlx:makeOWLThing(?acm,?eff,?ctx)). This prevents ACM from being
duplicated. As shown in Fig. 4, each instance of a direct/indirect ACM is bound to
subsystems that send commands to the faulty actuators and to the faulty actuators them-
selves by asserting the fixesDirectConflictFor or fixesIndirectCon-
flictFor properties depending on whether the ACM in question targets a direct or
an indirect actuation conflict (rules 3, 4 and 5). In line with DevOps best practices,

264 G. Rocher et al.

this approach enables the systematic implementation of local and reusable ACMwhose
integration into the deployment and implementation models can be greatly facilitated
thanks to their associated properties.

Fig. 4. Example of direct actuation conflicts resolution.

One special case must still be considered in order for the proposed actuation conflict
resolution to be complete. This is the case when an actuator is subject to both direct
and indirect conflicts. An example can be found in Fig. 5 where the TV receives its
commands from two different entities and both TV and Lamp have the same context
Livingroom and act on the same physical property (Luminosity).

Fig. 5. Example of direct/indirect actuation conflicts identification.

In such a configuration, two ACM individuals must be created, a DirectCon-
flictManager and an IndirectConflictManager, as shown in Fig. 6. Here,
both individualsmust bemerged to prevent an indirect actuation conflicts from occurring

Semantic Inferences Towards Smart IoT-Based Systems 265

between them. The solution to this is to consider both individuals as identical. This is
achieved by the rule 6 defined in Table 2 and the use of the property owl:sameAs.

Fig. 6. Example of direct/indirect actuation conflicts resolution.

As such, actuation conflict managers are not yet associated with conflict resolution
logic; they are black boxes. Concrete actuation conflict managers must be selected by
designers from off-the-shelf reusable solutions, hence the semi-automatic qualification
of the proposed resolution approach. We will have the opportunity to return to this point
in the perspectives of this research. Finally, the counterparts of the concepts Direct-
ConflictNotFixed and IndirectConflictNotFixed, are provided in the
proposed ontology:

DirectConflictFixed - Individuals of this concept correspond to all actuators
that are potentially subject to a direct actuation conflict and for which the prop-
erty hasDirectConflictFixedBy is asserted, derived from<owl:inverseOf
rdf:resource=“fixesDirectConflictFor”/>,

IndirectConflictFixed - Individuals of this concept correspond to all actuators
that are potentially subject to an indirect actuation conflict and for which the property
hasIndirectConflictFixedBy is asserted, derived from <owl:inverseOf
rdf:resource= “fixesIndirectConflictFor”/>.

266 G. Rocher et al.

4 Identifying and Resolving Actuation Conflicts with the Stanford
Protégé Tool

This work is part of the DevOps approach, which aims, among other things, to enable
continuous and fast software deployment thanks to a set of tools and models shared
by all actors involved in the process. In this context, based on the semantic model
described previously, we propose the use of the Stanford Protégé [18] tool to reason
about the knowledge and analyze the results. Protégé is a free, open-source platform that
provides a set of tools for building domain models and knowledge-based applications
with ontologies2. The Protégé SWRLTab supports the execution of SWRL Horn-clause
rules using the Drools rule engine [19] in conjunction with Fact++ DL reasoner [20].
As an example, consider a SIS with five indirect actuation conflicts, as shown in Fig. 7
below.

Fig. 7. SIS with five indirect actuation conflicts.

Initially, only the rules for identifying actuation conflicts identification are enabled
(rule 1 and rule 2 in Table 1). Executing these rules in conjunction with the Fact++
reasoner produces the results shown in Fig. 8 and Fig. 9. Actuators that are subject
to indirect actuation conflicts are identified as individuals of the concept Indirect-
ConflictNotFixed (Fig. 8). Object properties associated with each actuator give
designers the opportunity to better understand the cause of the conflicts (Fig. 9).

Now, the rules for resolving actuation conflicts are activated (rule 3, rule 4, rule 5
and rule 6 defined in Table 2). Executing these rules in conjunction with the Fact++
reasoner produces the results shown in Fig. 10. Actuator individuals that are subject to
an indirect actuation conflict are now individuals of the IndirectConflictFixed
concept. Individuals of IndirectConflictMager have been created automatically,
as shown in Fig. 11.

2 https://protege.stanford.edu.

https://protege.stanford.edu

Semantic Inferences Towards Smart IoT-Based Systems 267

Fig. 8. Actuator individuals potentially
subject to indirect conflicts are made directly
available under the concept
IndirectConflictNotFixed.

Fig. 9. Object properties associated with each
actuator make the cause of conflict clear.

Fig. 10. Actuator individuals whose indirect
conflicts is fixed by an ACM are directly made
available under the concept
IndirectConflictFixed.

Fig. 11. ACM Individuals are made available
under the concept
IndirectConflictManager.

The object properties associated with each ACM give designers a better under-
standing of the actuators involved (Fig. 12). Since ACM are bound to conflict-
ing actuators (fixesIndirectConflictFor) and their associated subsystems
(receivesCommandFrom), this facilitates their integration into DevOps deployment
and implementation models.

268 G. Rocher et al.

Fig. 12. Object properties asserted to each ACM make clear further feedback in deployment and
implementation models.

5 Performance Analysis

SIS can be implemented from a few dozen (smart homes) to thousands of actuators
(smart cities). In this context, it is important to evaluate the performance of the proposed
approach to gain insight into its relevance against the targeted SIS. To this end, we
propose a set of synthetic actuation conflict configurations that serve as a reference for
experiments and benchmarks, divided into four categories defined as follows:

1. The first category represents SIS that have only direct actuation conflicts and follow
the pattern below, which is duplicated asmany times as the number of direct conflicts
requires:

Semantic Inferences Towards Smart IoT-Based Systems 269

2. The second one represents SIS that have only indirect actuation conflicts, following
the pattern below duplicated as often as the number of indirect conflicts requires:

3. The third category corresponds to SIS that have both direct and indirect actuation
conflicts, which are duplicated as many times as the number of indirect conflicts
requires, according to the pattern below:

4. The fourth category corresponds to SIS that have no actuation conflict and are
duplicated as many times as the number of actuators requires:

270 G. Rocher et al.

The experiments are conducted using the Protégé tool with either only the actuation
conflicts identification rules (rule 1 and rule 2 in Table 1) or both the actuation conflict
identification and resolution rules (rules 1, 2, 3, 4, 5 and 6 in Table 1 and Table 2) enabled.
The complete experimental setup is defined as follows:

Macbook pro Quad-Core i7 2.8 GHz,
16 GB RAM 2133 Mghz LPDDR3,
Protégé 5.5.0,
(OWL API 4.5.9.2019-02-01T07:24:44Z),
(SWRLTab Protege 5.0+ Plugin (2.0.6)),
Fact++ 1.6.5.

The performance results are shown in Fig. 13 and indicate that processing time of the
rules depends on the number of actuation conflicts to be identified and resolved.Without
actuation conflicts, the performance results are mainly determined by the number of
actuators involved in SIS. These results suggest that the proposed approach is suitable
for SIS with no more than a few thousand actuators and a few hundred conflicts (e.g.,
smart homes, smart buildings, etc.). It should be noted that the DevOps approach is an
agile and incremental approach. Due to the consecutive design loops, it is unlikely that
the number of potential conflicts detected in the design will be more than a few hundred.

Semantic Inferences Towards Smart IoT-Based Systems 271

Fig. 13. SWRL rule performance results for different actuation conflict configurations.

6 Future Work

While the identification of actuation conflicts is automatic, their resolution is semi-
automatic. Actuation Conflicts Managers (ACM) are automatically instantiated to
resolve conflicts at relevant points in the design. However, these ACM are black boxes
and require designers to manually select concrete ACM from a set of available off-
the-shelf ACM. To better assist designers in this task, we plan to extend the proposed
ontology with additional semantics that allow selection of relevant off-the-shelf ACM
based on their configuration (input/output types, command types, etc.).

Performance wise, we plan to compare the SWRL-based approach with an approach
based on Shapes Constraint Language (SHACL) [21]. SHACL is a standard validation
language that allows to define rules whose violations are formalized into reports. It also
can be used as a modelling language through SPARQL-based constructs.

Finally, the proposed ontology is simple enough to have its concepts and relationships
aligned with those from existing ontologies. For example, we plan to align the proposed
ontology with the Smart Applications REFerence ontology (SAREF) and its extensions
[22].

7 Conclusion

In the realm of trustworthy Smart IoT-based Systems (SIS), the implementation of actu-
ators at the edge of their infrastructure requires new development tools to help DevOps
stakeholders detect and resolve actuation conflicts that can lead to unexpected and poten-
tially harmful behavior as early as possible. While much work as gone into identifying
and resolving direct actuation conflicts (concurrent access to a common actuator), little
attention has been paid to the indirect conflicts (concurrent access to physical properties)
introduced by SIS and the devices they implement at the edge of their infrastructure.
These conflicts can be subtle, making them difficult to detect. Their resolution must

272 G. Rocher et al.

take into account subjective knowledge related to the context of use of SIS and user
expectations.

In this context, a lightweight ontologywas proposed to provide DevOps stakeholders
with (1) a semanticmeta-modelling framework to formally describe SIS and the actuators
with which they interact from deployment and integration models; (2) a set of 6 SWRL
rules used in conjunction with a DL-based reasoner to automatically identify and semi-
automatically resolve actuation conflicts. Performance analysis of the proposed approach
for different configurations of actuation conflicts has shown that it is acceptable for SIS
with up to a thousand actuators and a few hundred actuation conflicts, making it suitable
for smart home, smart building, etc. use-cases.

Acknowledgment. The research leading to these results has received funding from the European
Commission’s H2020 Program under grant agreement numbers 780351 (ENACT). This work
was conducted using the Protégé resource, which is supported by grant GM10331601 from the
National Institute of General Medical Sciences of the United States National Institutes of Health.

References

1. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33, 94–100 (2016)
2. Ibrhim, H., Hassan, H., Nabil, E.: A conflicts’ classification for IoT-based services: a

comparative survey. PeerJ Comput. Sci. 7, 480 (2021)
3. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C Recom-

mendation 21, 778 (2013)
4. Euzenat, J., Rousset, M.-C.: Semantic web. In: Marquis, P., Papini, O., Prade, H. (eds.) A

Guided Tour of Artificial Intelligence Research, pp. 181–207. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-06170-8_6

5. Huang, B., Dong, H., Bouguettaya, A.: Conflict detection in IoT-based smart homes. arXiv:
2107.13179 (2021)

6. Xiao, D.,Wang, Q., Cai, M., Zhu, Z., Zhao,W.: A3ID: an automatic and interpretable implicit
interference detection method for smart home via knowledge graph. IEEE Internet of Things
J. 7, 2197–2211 (2019)

7. Camacho, R.J.L.: Intelligent actuation in home and building automation systems. Master’s
thesis (2014)

8. Rocher, G., et al.: An actuation conflicts management flow for smart iot-based systems.
In: 7th International Conference on Internet of Things: Systems, Management and Security
(IOTSMS) (2020)

9. Ferry, N., et al.: Genesis: continuous orchestration and deployment of smart IoT systems. In:
IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), pp. 870–
875 (2019)

10. Heflin, J.: OWL web ontology language-use cases and requirements. W3C Recommendation
(2004)

11. McBride, B.: The resource description framework (RDF) and its vocabulary description lan-
guage RDFS. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 51–65. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_3

12. Van Harmelen, F., McGuinness, D.L.: OWL web ontology language overview. World Wide
Web Consortium (W3C) Recommendation (2004)

https://doi.org/10.1007/978-3-030-06170-8_6
http://arxiv.org/abs/2107.13179
https://doi.org/10.1007/978-3-540-24750-0_3

Semantic Inferences Towards Smart IoT-Based Systems 273

13. Colomo-Palacios, R.: Semantic competence pull: a semantics-based architecture for filling
competency gaps in organizations. In: Global, I. (ed.) Semantic Web for Business: Cases and
Applications, pp. 321–335 (2009)

14. Mark, B.: Theory of Knowledge: Structures and Processes. World scientific (2016)
15. Lawan, A., Rakib, A.: The semantic web rule language expressiveness extensions-a survey.

arXiv preprint arXiv:1903.11723 (2019)
16. Horrocks, I., et al.: SWRL: a semantic web rule language combining OWL and RuleML.

W3C Member Submission 21, 1–31 (2004)
17. Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and

rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer,
Heidelberg (2005). https://doi.org/10.1007/11552222_6

18. Musen, M.A.: The protégé project: a look back and a look forward. AIMatters 1, 4–12 (2015)
19. Browne, P.: JBoss Drools Business Rules. Packt Publishing Ltd. (2009)
20. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Fur-

bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771_26

21. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Recommenda-
tion (2017)

22. Daniele, L., Hartog, F., Roes, J.: Created in close interaction with the industry: the smart
appliances reference (saref) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol.
225, pp. 100–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21545-7_9

http://arxiv.org/abs/1903.11723
https://doi.org/10.1007/11552222_6
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/978-3-319-21545-7_9

	Semantic Inferences Towards Smart IoT-Based Systems Actuation Conflicts Management
	1 Introduction
	2 Related Works
	3 A Lightweight Ontology for Identifying and Resolving Actuation Conflicts
	3.1 Automatic Actuation Conflicts Identification
	3.2 Semi-automatic Actuation Conflicts Resolution

	4 Identifying and Resolving Actuation Conflicts with the Stanford Protégé Tool
	5 Performance Analysis
	6 Future Work
	7 Conclusion
	References

