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Abstract. Nowadays, smart devices have invaded the market and con-
sequently our daily life. Their use in smart home contexts, to improve
the quality of life, specially for elderly and people with special needs, is
getting stronger and stronger. Therefore, many systems based on smart
applications and intelligent devices have been developed, for example,
to monitor people’s environmental contexts, help in daily life activities,
and analyze their health status. However, most of the existing solu-
tions present disadvantages regarding accessibility, as they are costly,
and applicability, due to lack of generality and interoperability.

This paper is intended to tackle such drawbacks by presenting SHPIA,
a multi-purpose smart home platform for intelligent applications. It is
based on the use of a low-cost Bluetooth Low Energy (BLE)-based
devices, which “transforms” objects of daily life into smart objects. The
devices allow collecting and automatically labelling different type of data
to provide indoor monitoring and assistance. SHPIA is intended, in par-
ticular, to be adaptable to different home-based application scenarios,
like for example, human activity recognition, coaching systems, and occu-
pancy detection and counting.

The SHPIA platform is open source and freely available to the scien-
tific and industrial community.

Keywords: Smart home platform · Automatic data annotation ·
Automatic data collection · Human activity recognition

1 Introduction

Nowadays, smart systems have invaded our daily lives with a plethora of devices,
mainly from consumer electronics, like smartwatches, smartphones and personal
assistants, and domestic appliances with intelligent capabilities to autonomously
drive modern homes. These are generally based on wireless protocols, like WiFi,
Bluetooth Low Energy (BLE) and ZibBee, low-cost sensing components, includ-
ing Passive InfraRed (PIR) and Radio Frequency Identification (RFID)-based
technologies, and several other kinds of environmental sensors. These devices
communicate with each other without the need for human intervention, thus
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contributing to the implementation of the Internet of Things (IoT) paradigm.
Their number is continuously increasing, and their versatility enables several
opportunities for different scenarios, ranging from simple environmental moni-
toring solutions to more complex autonomous control systems, in both private
life (i.e., at home) and public contexts (i.e., social and working environments).
Without claiming to be exhaustive, examples of applications can be found in
healthcare [3,16] and elderly assistance [21,22], in smart building for Human
Activity Recognition (HAR) [5], and energy management [11,20], as well as in
smart industries [12] and smart cities [18].

In particular, concerning private life, in the last decade, the idea of a smart
home has become of central interest, where its main aim concerns the recog-
nition of the activities performed by the environment occupants (e.g., cooking,
sitting down, sleeping, etc.), and the detection of changes in the environmental
status due to such activities (e.g., temperature variation related to the opening
or closing of a window) [2,7]. The concept of home, indeed, includes different
connotations, and according to [13], it is characterized as a place for a) secu-
rity and control, b) activity, c) relationships and continuity, and d) identity
and values. Thus, to guarantee and promote these peculiarities, the design of a
smart home cannot ignore the need of implementing the capability of recognizing
human activities through HAR systems to provide real-time information about
people’s behaviors. HAR algorithms are based on pattern recognition models fed
with data perceived by on-body sensors, environmental sensors, and daily life
smart devices [2,9]. HAR algorithms and smart devices provide, then, the basics
for implementing and integrating intelligent systems, which autonomously take
decisions and support life activities in our homes.

1.1 Related Works

The literature concerning smart home platforms is extremely vast and differen-
tiated, which makes impossible to exhaustively summarize them in a few lines.
Among the cheapest solutions, we can cite the CASAS platform proposed in [6].
It integrates several ZigBee-based sensors for door, light, motion, and temper-
ature sensing, with a total cost of $2,765. Based on the data collected by the
platform, the authors were able to recognize ten different Activities of Daily Life
(ADLs) executed by the environment occupants achieving, on average, approxi-
mately 60% accuracy.

In a similar way, in [19], the authors proposed a HAR model, fed with data
collected through a smart home platform based on motion, door, temperature,
light, water, and bummer sensors, to classify more than ten ADLs, achieving
approximately 55% accuracy.

In [24], a study is presented where the authors installed a sensor network,
composed of motion sensors, video cameras, and a bed sensor that measures
sleep restlessness, pulse, and breathing levels, in 17 flats of an aged eldercare
facility. They gathered data for 15 months on average (ranging from 3 months
to 3 years). The collected information was used to prevent and detect falls and
recognize ADLs by identifying anomalous patterns.
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In [28], the authors used an application to continually record raw data from
a mobile device by exploiting the microphone, the WiFi scan module, the device
heading orientation, the light proximity, the step detector, the accelerometer,
the gyroscope, the magnetometer, and other built-in sensors. Then, time-series
sensor fusion and techniques such as audio processing, WiFi indoor positioning,
and proximity sensing localization were used to determine ADLs with a high
level of accuracy.

When developing a strategy to deploy technology for discreet in-home health
monitoring, several questions arise concerning, for example, the types of sensors
that should be used, their location, and the kind of data that should be collected.
In [26], the authors deeply studied such issues, pointing out that no clear answer
can be identified, but the perceived data must be accurately evaluated to provide
insights into such questions.

Recently, relevant pilot projects have been developed and presented, such as
HomeSense [25,27], to demonstrate seniors’ benefits and adherence response to
the designed smart home architecture. HomeSense exposes the visualization of
activity trends over time, periodic reporting for case management, custom real-
time notifications for abnormal events, and advanced health status analytics.
HomeSense includes magnetic contact, passive infrared motion, energy, pressure,
water, and environmental sensors.

However, all these innovative systems and applications frequently present
disadvantages in terms of accessibility and applicability. In several cases, they
are based on ad-hoc and costly devices (e.g., cameras) which are not accessible
to everyone. In fact, as shown in [14], among 844 revised works, the system cost
is the principal reason for the failure of projects concerning the design of smart
health/home systems.

Some projects targeting the definition of low-cost solutions have been also
proposed, but they are generally devoted to monitoring or recognizing single
activities and/or specific use-case scenarios, thus lacking generality, or requiring
the final users to install several non inter-operable solutions in their homes. For
example, in [4] a set of very low-cost projects focusing on solutions for help-
ing visually-impaired people are presented. Less effort has been spent, instead,
designing solutions that use low-cost objects of daily life (ODLs) to monitor and
recognize people’s activity in general.

Finally, a further limitation of the existing smart home environments regards
the necessity of annotating the collected data based on the video registration of
the environment for training the pattern recognition algorithms, which is of
central importance for the implementation of efficient HAR algorithms. Unfor-
tunately, the annotation process is generally a very time-consuming and manual
activity, while only a few prototypical automatic approaches are currently avail-
able in the literature [8].

1.2 Paper Contribution

According to the previous considerations and the limitation of existing solutions,
this paper presents SHPIA, an open-source multi-purpose smart home platform
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for intelligent applications. It is based on the use of low-cost Bluetooth Low
Energy (BLE)-based devices, which “transform” objects of daily life into smart
objects. The devices allow collecting and automatically labeling different types of
data to provide intelligent services in smart homes, like, as example, indoor mon-
itoring and assistance. Its architecture relies on the integration among a mobile
Android application and low-cost BLE devices, which “transform” objects of
daily life into smart objects. By exploiting these devices, SHPIA flexibly collects
and annotates datasets that capture the interaction between humans and the
environment they live in, and then the related behaviors. These datasets repre-
sent the basics for implementing and training HAR-based systems and develop-
ing intelligent applications for different indoor monitoring and coaching scenar-
ios. SHPIA can be set up with less than $200 and operates in a ubiquitous and
not invasive manner (i.e., no camera is required). SHPIA’s software is available
to the scientific community through a public GitHub repository [1].

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 introduces preliminary
information concerning the devices and the communication protocols used in
SHPIA. Section 3 details the SHPIA architecture and describes how it enables
data collection and labeling. Section 4 showcases and discusses the experimental
results and application scenarios. Finally, Sect. 5 concludes the paper with final
remarks.

2 Preliminaries

SHPIA is based on the use of the Nordic Thingy 52 device shown in Fig. 1.
The choice of using such a device to implement the SHPIA platform has been
made on the basis of its versatile and complete set of characteristics, which are
summarized below in this section. However, this device can be easily replaced,
without affecting SHPIA functionalities, with many other BLE-based inertial
measurement units available on the market, provided that they allow to collect
a similar set of data through their sensors.

The Nordic Thingy 52 is a compact, power-optimized, multi-sensor device
designed for collecting data of various type based on the nRF52832 System on
Chip (SoC), built over a 32-bit ARM CortexTM-M4F CPU. The nRF52832 is
fully multiprotocol, capable of supporting Bluetooth 5, Bluetooth mesh, BLE,
Thread, Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary stacks. Furthermore,
the nRF52832 uses a sophisticated on-chip adaptive power management sys-
tem achieving exceptionally low energy consumption. This device integrates two
types of sensors: i) environmental and ii) inertial. Environmental concern tem-
perature, humidity, air pressure, light intensity, and air quality sensors (i.e., CO2

level). Instead, inertial concerns accelerometer, gyroscope, and compass sensors.
Besides the data directly measured by the integrated sensors, the Thingy com-
putes over the edge the following information: quaternion, rotation matrix, pitch,
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roll, yaw, and step counter. Concerning the communication capabilities, Thingy
52 instantiates a two-side BLE communication with the data aggregator device,
unlike BLE beacons. The communication between Thingy 52 and the data aggre-
gator occurs at a frequency that goes from 0.1 Hz to 133 Hz, making SHPIA
adaptable to applications scenarios were high sampling frequencies are required.
Moreover, since the BLE provides the possibility to send more than just one
value into every single transmitted package, the sensor’s sampling frequency is
not limited 133 Hz (i.e., the maximal frequency of the BLE communication), but
it enables the sensor to sample at higher frequencies.

L:   55 mm 
W: 55 mm 
H:  15 mm 
Cost: 36 $
Thingy 52

Fig. 1. SHPIA compatible device: Nordic Thingy 52.
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Fig. 2. Schematic view of the SHPIA platform.
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3 SHPIA Architecture

This section introduces the core of the SHPIA platform, which is shown in Fig. 2.
In particular, it describes the principal agents composing its architecture, and
how a smart home environment can be defined and configured for enabling data
collection and annotation.

3.1 Agents

The agents involved in the SHPIA architecture are classified as abstract agents
and real agents. The abstract agents are necessary to analyze the status of the
environment (in terms of included objects and environmental conditions) and
the status of people living in it (in terms of presence, quantity, movements, and
accomplished actions). On the other side, real agents are represented by the peo-
ple occupying the environment, their smartphones, and the Thingy 52 devices.
SHPIA enables communication capabilities among real agents as described below
in the paper.

3.2 Environment Definition

Concerning the home environment, SHPIA defines it as a set composed of the
home itself, people inside it, and available ODLs. In particular, ODLs enclose
mobile objects (bottles, pills container, keys, etc.) and motionless objects (e.g.,
doors, desks, coffee machine, etc.) present inside the environment, as those shown
in Fig. 2.

Therefore, given a set of mobile ODLs (M) and a set of motionless ODLs
(Ml), the environment (E) is formally defined as:

E = {{M ∪ Ml}, fs, fl, T,D},with
fs : M −→ T

fl : Ml −→ T

where, T is a set of Thingy 52 devices, D is a data aggregator node, while fs
and fl are functions that associate, respectively, a Thingy 52 device to each
mobile (M) and motionless (Ml) ODL. The data aggregator D identifies the
device that collects the data perceived by the Thingy 52 devices, behaving as a
gateway towards a Cloud database. SHPIA uses an Android smartphone as data
aggregator.

3.3 Environment Configuration

To handle the definition of the environment, we designed the Android application
shown in Fig. 3. It allows the users to create one or more environments and
associate a single specific Thingy 52 to each ODL of interest. In addition, this
application allows real-time visualization of the perceived data and enables the
smartphone to operate as the data aggregator.

Figure 4 presents the steps that the user has to perform in order to configure
the smart environment by means of the mobile application. They work as follows.
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Sub Environment
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Fig. 3. SHPIA Android mobile application.
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Fig. 4. SHPIA environmental configuration work-flow.
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User Account Creation: In this first step, the SHPIA application allows, if
not already existing, the creation of a user profile to associate the collected data.
Once the user is verified, she/he can set the IP address of a Cloud-based NoSQL
database from the setting page, to which the data will be transmitted. We want
to emphasize that the transmitted data can be saved at any NoSQL database
deployed on such IP. Users, for analysis purposes, need only to know the format
that the SHPIA mobile application uses to save the data.

Create Environment: Once authenticated, the user can create one or more
environments, as introduced in Sect. 3.2, by defining its name (i.e., env id) and
geographical address (i.e., address). Alternatively, if the environment already
exists, the user can share it with other SHPIA users (Fig. 3(a) and Fig. 3(b)).

Create Sub-environment: SHPIA users can create as many environments as
needed, and an environment is typically composed of other sub-environments
(Fig. 3(c)). For example, an apartment consists of a lounge, a kitchen, two bed-
rooms, and two bathrooms. SHPIA does not present any limit in the depth
of nested sub-environments (i.e., it can configure sub-environments of a sub-
environment of . . . of an environment). This specific feature has been developed
by considering the possibility of adopting SHPIA also in industrial, scholastic, or
smart city scenarios. Moreover, SHPIA can be used also for not environmental-
related contexts. For example, the users can adopt it for implementing a wireless
body area network by associating the Thingy 52 devices to body parts instead of
environments or ODLs, as in [15]. Overall, environments and sub-environments
are described as shown in the example of Listing 1.1. Besides, env id and address,
the environments and sub-environments are identified by owner, creation time,
list of sub environments and a brief description.

{

"env_id": "Home_1",

"description": "master bedroom",

"owner": "florenc.demrozi@univr.it",

"address": "Strada le Grazie 15, Verona , Italy",

"creation_time":’27/12/2021 15:13:52.085 ’,

"sub_environments ": ["Sub_Home_1","Sub_Home_2","

Sub_Home_3","Sub_Home_4"]

}

Listing 1.1. Example of environment description in SHPIA.

Create Smart ODLs: Once the environment has been created, the user can
finally attach a Thingy 52 device to each mobile or motionless ODL of interest
to transform it into a smart ODL. At this point, the user is required to move
his/her smartphone close (<10 cm) to the ODL equipped with the Thingy 52 to
allow SHPIA to recognize it. SHPIA automatically associates the ODL with the
nearest Thingy 52 device by exploiting the Received Signal Strength Indicator
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(RSSI) measurement (Fig. 3(d)). RSSI, often used in Radio Frequency (RF)–
based communication systems, is related to the power perceived by a receiver.
In particular, it provides an indication of the power level at which the data frames
are received. The rationale is that the higher the RSSI value, the stronger the
signal and the closer the receiver and the emitter. The RSSI is used to reduce
possible wrong associations in the presence of a high number of BLE devices
distributed in the environment.

Data Collection: After the environment definition and the association of ODLs
to Thingy 52 devices, the SHPIA mobile app will start collecting data from them
(Fig. 3(e) and Fig. 3(f)). The data perceived by the smartphone are internally
stored as JSON documents. As soon as an Internet connection is available, all
data are saved on the remote NoSQL database (Fig. 3(g)). Listing 1.2 shows an
example of the data perceived by the Thingy 52 device.

{

"deviceID": "00:00:5e:00:53: af",

"on_device_time":’27/12/2021 15:13:52.085 ’,

"on_aggreg_time":’27/12/2021 15:13:52.155 ’,

"parent_env_id": "Sub_Home_1"

"ODL": "Description",

"temp": 23.8,

"light": 43,

"pressure": 101.325 ,

"CO2": 56,

"accel": [{

"X": 0.0226898 ,

"Y": -0.382233 ,

"Z": 9.54773 ,

}],

"gyro": [{

"X": 15.022791 ,

"Y": -12.233382 ,

"Z": 3.73547 ,

}],

"comp": [{

"X": 0.6898022 ,

"Y": -2.233382 ,

"Z": 5.385477 ,

}],

"quaternion": [{

"a": 0.02,

"b": -0.38,

"c": 9.54,

"d": 5.47,

}],

"other": [{

"pitch": 8.2,

"roll": -3.8,
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"yaw": 9.54773 ,

}],

"rssi": -65

}

Listing 1.2. Data format of Thingy 52 device.

Attributes deviceID, on aggreg time and on device time uniquely identify the
document; the rest represents the data perceived by the device’s sensors and the
RSSI value measured by the smartphone. The on aggreg time variable represents
the timestamp when the aggregator receives the data. Instead, on device time
represents the timestamp when the data is perceived on the Thingy 52 device.
Finally, parent env id is used to identify the (sub-)environment to which the
device is collected. We want to emphasize that the transmitted data can be
saved at any NoSQL database deployed on the target IP (Fig. 3(g)). Users, for
analysis purposes, need only to know the data format (i.e., Listings 1.2) that the
SHPIA mobile application adopts to save the data.

4 SHPIA Evaluation

This section deals with the evaluation of the performance of the SHPIA data
aggregator to show the lightweight of the Android application in terms of power
consumption and use of resources. In addition, it illustrates four application sce-
narios where SHPIA can operate. Such scenarios do not require any modification
of the SHPIA platform, thus proving its versatility.

4.1 Data Aggregator Performance Evaluation

The performances of three Android smartphones with different characteristics
and prices have been evaluated while acting as data aggregators for the SHPIA
platform. The characteristics of the tested smartphones are reported in Table 1.
Instead, Table 2 presents the results of profiling the data aggregator nodes over
a collection phase of 4/4/4 h, by using five Thingy 52 with sensors sampling data
set 50 Hz, 100 Hz, 200 Hz. The data aggregator nodes were placed over a table at
the height of 100 cm. Instead, the Thingy devices were associated with different
desks. The distance between the data aggregator and the thingy nodes varied
between 2 and 7 m. Overall, the average RAM use per hour was <116 Mbh, the
storage memory use was <126 Mbh1, and the battery usage was <680 mAh2.
On average, CPU usage and data loss were respectively 37% and 0%.

It is worth noting that smartphones executing an Android version older than
v11 can be connected simultaneously with up to seven Thingy 52. Instead, smart-
phones running Android v11 can support the simultaneous connection with up

1 Cumulative, if Internet connection is missing, e.g., 1260 Mb in 10 h without connec-
tivity.

2 270 mAh excluding the results of the Honor 7S smartphone.
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Table 1. Characteristics of the tested data aggregator nodes.

Model RAM
(GB)

Storage
(GB)

Battery
(mAh)

Weight
(g)

Price
($)

Android
version

Honor 7S 2 16 3020 142 78 8.1

LG X Power 2 2 16 4500 164 89 8.1

Galaxy S9 4 64 3000 163 262 10.0

Table 2. Data aggregators profiling.

Honor 7S Galaxy S9 Edge LG X Power 2

Frequency (Hz) 50 100 200 50 100 200 50 100 200

RAM (MB/h) 93 93 92 127 132 140 100 100 110

Storage (MB/h) 50 100 196 48 99 198 104 127 219

CPU (%) 35 46 55 19 21 23 40 50 50

Battery (mAh) 1150 1208 1389 360 360 390 225 450 630

Data loss (%) 0 0 0 0 0 0 0 0 0

to eleven Thingy 52. To overcome this limitation, SHPIA implements a compu-
tation balancing module that allows different smartphones (thus, different users
sharing the same environment) to automatically balance the number of Thingy
52 devices connected to them and save their information on the same dataset.
Thus, in practice, SHPIA can handle more than 11 Thingy devices by jointly
using more than one smartphone. Moreover, this balancing process helps to fur-
ther reduce smartphone battery consumption.

These results show that the proposed platform works well on different data
aggregator nodes, proving there is no need to buy costly top-level smartphones
to run the SHPIA application. Concerning the Thingy 52, they can efficiently
operate for more than three days without recharging the battery. In addition, a
lower sampling frequency would further extend the battery life consistently for
both smartphone and BLE nodes [17].

4.2 SHPIA Application Scenarios

In the following, we provide an overview of four different applications exploiting
the SHPIA platform: a) environmental monitoring, b) occupancy detection and
counting, c) automatic data annotation of ADLs, and finally, d) virtual coaching.

Environmental Monitoring: The primary use of SHPIA is that of collect-
ing data concerning environmental conditions. For example, we used SHPIA to
monitor a working office, shown in Fig. 5, shared by ten persons. We associ-
ated the Thingy 52 devices with 5 motionless nodes (indicated by red arrows
in Fig. 5) and six mobile nodes (indicated by green arrows in Fig. 5) to perceive
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the environment status. The Honor 7S smartphone, permanently connected to
the electric current, described in Table 1 acted as a data collector. The Thinghy
52 associated with the motionless nodes were placed as follows: one at the office
door, two on the windows, one on the desk at the office center, and one inside the
locker. Instead, the mobile nodes were used to monitor different ODLs and the
activity that employees performed on them (e.g., one Thingy 52 was attached to
a bottle of water). The data collection process was conducted for two consecutive
weeks.

Door
Stock

WindowsWindows

W
indow

s

Data Collector

Legend

SmartphoneNordic Thingy

Fig. 5. Office 1.71. Motionless (red) and mobile (green) nodes and data collector (grey).
(Color figure online)

Table 3 shows an overview of the collected data. The first column introduces
the used sensors. The second and third columns show the sensor sampling fre-
quency and the measurement unit. Column four shows the number of samples
collected by the system during the two weeks (i.e., 1209600 s). Column five iden-
tifies the number of data sources (BLE Thingy 52 nodes). Finally, the last col-
umn shows the memory space required to store the sensed data. The last row
concerns the collection of RSSI data, since the data collector extracts and asso-
ciates the reception timestamp, the RSSI measure, and the emitter identity to
each received BLE packet.

Once collected through SHPIA, such data were successfully used by a HAR-
based analyzer to perform environmental monitoring, recognition of people’s
actions (e.g., drinking), and localization of ODLs and people in the environment.
Because of the adopted low sampling frequency, the mobile and motionless BLE
nodes perfectly worked for the overall duration of the experiments (2 weeks)
without being recharged.

Occupancy Detection and Counting: Occupancy detection and counting
represent a fundamental knowledge for implementing smart energy management
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Table 3. Results of data collection.

Sensor type Frequency
(Hz)

Measure
unit

# of samples # of BLE
devices

Stored data

Temperature 0.33 Celsius 2016000 5 ≈ 15Mb

Pressure 0.33 Bar 2016000 5 ≈ 15Mb

Brightness 0.33 Lux 2016000 5 ≈ 15Mb

Acceleration 10 m/s2 133056000 11 ≈ 1Gb

RSSI 10 dBm 133056000 11 ≈ 1Gb

Table 4. Distance estimation results based on RSSI measurements captured 60 Hz.

Regression model 5m 3m 2m

Raw data Features Raw data Features Raw data Features

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Gradient Boosting 51 31 57 33 17 12 30 15 12 9 30 15

Random Forest 51 31 55 28 17 12 25 8 12 9 25 8

Linear 74 58 104 79 27 22 80 60 22 16 80 60

Ridge 74 58 69 45 27 22 60 39 22 16 60 39

RANSAC 84 54 113 86 28 21 85 59 43 26 82 59

Bayesian 74 58 233 158 27 22 229 171 22 16 229 171

TheilSen 78 54 96 70 29 21 89 65 24 18 89 65

systems, as well as solutions for security and safety purposes [23]. Existing tech-
niques for occupancy detection and counting can be categorized as a) not device
free [29] and b) device free [30]. The SHPIA platform provides the capability to
implement both categories.

Concerning the former, SHPIA can detect a user inside an environment by
estimating the distance between the user’s smartphone and a Thingy 52 device
associated with the environment itself, based on the RSSI measurement. To test
this scenario, we evaluate the accuracy of the distance estimation between the
user’s smartphone and ODLs equipped with Thingy 52 node. The evaluation
has been performed on three different distance ranges: a) 0–5 m, b) 0–3 m, and
c) 0–2 m by using two opposite setups: i) the smartphone in the user’s hand
and the ODL in a fixed position, and ii) the ODL on the user’s hand and the
smartphone in a fixed position.

Table 4 presents the results obtained by seven different regression models
trained on RSSI data perceived 60 Hz. The models were trained in two ways: by
using the raw data, and by using features extracted from one-second RSSI time
windows. The quality of the achieved results is shown in terms of Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) while estimating the
distance in centimeters between the emitter and the receiver. The Random Forest
model achieved the lowest RMSE/MAE value in both the raw and the feature-
based data representation. The second most performing model was Gradient
Boosting. Overall, we achieved an RMSE on raw RSSI data of 51 cm in the range
0–5 m, 17 cm in the range 0–3 m, and 12 cm in the range 0–2 m. Moreover, in
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terms of MAE, the features performed better than the raw data: 28 cm (range
0–5 m), 8 cm (range 0–3 m), and 8 cm (range 0–5 m). Furthermore, the most
essential characteristics of these regression models regard the reduced memory
and computation requirements, making them suitable for running on mobile and
hardware-constraint devices.

The second category of occupancy detection and counting systems behave
more intelligently. In fact, users do not need to carry any device. By using
SHPIA, we can detect their presence and number based on the variations of
the RSSI measurements associated with the BLE signals received by the data
aggregator from Thingy 52 located in the environment. The idea is that RSSI
measurement fluctuations are generated by people’s presence and movements
inside the environment. Figure 6 shows very clearly the difference between noc-
turnal (red plot [8:00 PM–8:00 AM]) and diurnal (blue plot [8:00 AM–8:00 PM])
RSSI observations at the office shown in Fig. 5. The same concept is applied as
regards the occupancy counting scenario (aka., identification of the number of
people present inside or in the environment).
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Fig. 6. Office 1.71. RSSI fluctuation between night and day for occupancy detection.
(Color figure online)

We carried out tests in a university classroom (8.8 m × 8.6 m) with 15 study
stations (chairs + tables) involving six different subjects. One female (29 years,
1.58 m height) and five males (25–29 years, 1.75–1.95 m height) were involved in
the experiment. Subjects entered and left the environment in an undefined order
with the only constraint that they must stay in the environment at least for
one minute. Besides, the following environmental situations were recreated: i)
all standing still, ii) all standing in motion, iii) all seated, and iv) some standing
in motion and some sitting.
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Table 5 presents the achieved results by using five different BLE nodes con-
nected to SHPIA. Tests were performed over five different well-known classifica-
tion models3. Columns two to five show results in terms of specificity, sensitivity,
precision, and comprehensive accuracy. Overall, the SVM model with a linear
kernel achieved the most noticeable results. Among all the other models, such
a model requires higher computational capabilities; however, the Keras library
provides a Quasi-SVM model implementation for Android-based mobile devices,
thus enabling the SHPIA data collector recognition capabilities. By verifying the
classification errors in detail, we observed that the incorrectly classified samples
are related to the situation in which people inside the environment are all seated,
independently by their number.

Table 5. Occupancy detection results.

Model Specificity Sensitivity Precision Accuracy

kNN 98.72% 99.10% 99.10% 99.10%

WkNN 98.29% 99.02% 99.03% 99.10%

LDA 99.83% 99.70% 99.70% 99.70%

QLDA 99.78% 99.77% 99.77% 99.77%

SVM 99.82% 99.86% 99.81% 99.82%

Table 6. Occupancy estimation results.

Regression model Raw data Features

RMSE MAE RMSE MAE

Gradient Boosting 0.9 0.6 0.5 0.3

Random Forest 0.7 0.4 0.5 0.3

Linear 1.4 1.0 1.3 1.0

Ridge 1.4 1.0 2.5 4.2

RANSAC 1.8 1.3 3.3 3.3

Bayesian 1.4 1.0 2.1 2.1

TheilSen 1.9 1.2 2.0 1.8

Table 6 presents the results obtained on raw and features data concerning
the occupancy counting scenario. The outcome is an estimation of the number
of persons in the environment. The lower the RMSE, the higher the estimation
accuracy. In particular, the proposed occupancy counting system, given a set of
features identifying a one-second time window of RSSI measurements, estimates
the number of people in the environment with an RMSE of 0.5 and an MAE of
3 k-Nearest Neighbor (kNN), Weighted kNN (WkNN), Linear Discriminant Analysis

(LDA), Quadratic LDA (QLDA), Support Vector Machine (SVM).
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0.3. Using the raw dataset, we achieved an RMSE of 0.7 and an MAE of 0.4. As
for the occupancy detection scenarios, the estimation error is amplified when all
people inside the environment are sitting down.

Automatic Annotation of ADLs: As already mentioned in Sect. 1, one of
the most significant limitations in the HAR research area concerns the creation
of the learning dataset through a data annotation process. This process usually
requires extensive manual work, during which at least two annotators associate
data samples (e.g., perceived through inertial sensors) with labels that identify
the activity (e.g., sleeping, eating, drinking, cooking, and many others) based
on a video recording of the context. SHPIA can automatically annotate these
activities by assigning a Thingy 52 device to specific objects or locations in
the environment (e.g., by associating the Thingy 52 to the eating table, to the
working desk, the bottle of water, the bed, etc.) and by estimating the distance
between the data collector (i.e., the smartphone that the user is carrying) and the
Thingy 52. Thus, when the user is eating, SHPIA assigns the label “eating” to
the data collected from the smartphone, based on the estimated distance between
the nearest Thingy 52 (i.e., the one on the table) and the user’s smartphone.
Preliminary results in this direction [8] showed that the approach works properly
for activities requiring more than 30 s to be performed (e.g., intensively washing
hands, or cooking).

Virtual Coaching: Virtual coaching capabilities can be easily supported by the
SHPIA platform. A virtual coaching system (VCS) is an ubiquitous system that
supports people with cognitive or physical impairments in learning new behaviors
and avoiding unwanted ones. By exploiting SHPIA, we set up a VCS comprising
a set of smart objects used to identify the user needs and to react accordingly.
For example, let us imagine a person requiring a new medical treatment based on
pill’s assumption that initially forgets to respect the therapy. By attaching a BLE
tag to the pills container SHPIA can monitor pills assumption. The user carries
the smartphone (e.g., into the pocket), and when he/she approaches the pills
container, SHPIA estimates the distance between the user and the container.
It can also understand when the user opens and closes the cap based on the
received motion information emitted by the BLE tag attached to the container.
Thus, it is possible to understand, with greater accuracy, whether the user has
taken medicines or not. If the person does not take medicines, the system warns
him. Otherwise, the system remains silent. A prototype of such a system has
been proposed in [10].

5 Conclusions

This paper presented SHPIA, a platform exploiting low-cost BLE devices and an
Android mobile application that transforms ODLs into smart objects. It allows
effective and efficient data collection for implementing various solutions in smart
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home and HAR scenarios. SHPIA works in a ubiquitous and non-invasive way,
using only privacy-preserving devices such as inertial and environmental sen-
sors. Its versatility has been evaluated by discussing four monitoring scenarios
concerning the automatic data annotation of ADLs, occupancy detection and
counting, coaching systems, and environmental monitoring. Moreover, despite
the mentioned scenarios, SHPIA can be easily used in other scenarios such as
industrial, smart buildings, smart cities, or human activity recognition. Never-
theless, although we have already implemented a computation balancing system
that overcomes SHPIAs scalability issue, further work is required to overcome
such weakness. Therefore, besides making open-source SHPIA, we intend to inte-
grate BLE broadcasting communication technology in future developments, thus
increasing the number of supported BLE devices per smartphone to hypotheti-
cally infinite.
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