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Chapter 3
Development and Stimulation of Early 
Core Mathematical Competencies 
in Young Children: Results 
from the Leuven Wis & C Project

L. Verschaffel, B. De Smedt, K. Luwel, P. Onghena, J. Torbeyns, 
and W. Van Dooren

3.1 � Introduction

Mathematics has always been a central curricular domain in elementary and 
secondary education worldwide (De Corte et al., 1996; Kilpatrick, 1992). For a long 
time it was common to pay only little attention to mathematics education in the 
preschool years, both by teachers in preschool and by parents and other caretakers 
at home. The general idea was that preschool children should essentially spend their 
time at developing their psychomotor and social-emotional skills, together with 
their language and emergent literacy skills. Little or no attention was paid to inter-
ventions aimed at children’s early mathematical growth. And, if some attention was 
paid to it, there was a remarkably narrow focus on the acquisition of some basic 
numerical abilities, such as reciting the counting words, identifying the numerosity 
of a small set of objects, indicating which set has the largest numerosity, and solving 
simple additive problem situations involving small whole numbers (Dede, 2010). 
However, the past two decades have witnessed a great research interest in early 
mathematical cognition, early mathematical development, and early mathematics 
education, both in home and preschool settings.

A starting point of this line of research – with its main origins in cognitive (neuro)
science – is the idea that young children are equipped with some foundational core 
systems to process quantities (Butterworth, 2015; Dehaene, 2011). This allows 
them to exactly identify small (i.e., below 4) non-symbolic quantities, to compare 
non-symbolic quantities that are too numerous to enumerate exactly, or to perform 
some very basic approximate arithmetic on these quantities (Andrews & Sayers, 
2015; Butterworth, 2015; Torbeyns et al., 2015; Verschaffel et al., 2017). Within 
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these foundational core number sense systems, magnitudes are represented non-
verbally and non-symbolically, but, over development and through early (mathe-
matics) education, verbal and symbolic representations are gradually mapped on 
these foundational representations, to evolve into a more elaborate system for num-
ber sense and more complex mathematical concepts and skills (Torbeyns et  al., 
2015). The dynamics of this development remain one of the most debated areas in 
research on these foundational representations (e.g., Leibovich & Ansari, 2016). 
This research has shown large individual differences in these early numerical abili-
ties, which predict later general math achievement (De Smedt et al., 2013; Schneider 
et  al., 2017; Siegler & Lortie-Forgues, 2014). Furthermore, researchers working 
within this research tradition have also tried to stimulate children’s foundational 
numerical abilities with (game-based) intervention programs before or at the begin-
ning of formal instruction in number and arithmetic in elementary school (e.g., 
Maertens et al., 2016; Wilson et al., 2009).

As shown in the above description, this prominent line of research has strongly 
focused on young children’s basic numerical abilities (Cohen Kadosh & Dowker, 
2015). More recently, this narrow focus on only early numerical and arithmetic abili-
ties with non-symbolic and symbolic entities has been increasingly questioned on 
various grounds (e.g., Bailey et al., 2014; Dede, 2010; English & Mulligan, 2013). 
From a disciplinary perspective, it is evident that mathematics is much more than 
understanding whole numbers, counting, and basic arithmetic. Therefore, even in the 
early years of education, mathematics education should already represent a broader 
coverage of the richness of the discipline, including early reasoning about mathe-
matical relations, shapes, and patterns and structures (Clements & Sarama, 2013; 
Mulligan & Mitchelmore, 2009). From an empirical perspective, recent meta-
analytic work has shown that children’s early numerical and counting skills explain 
only a small percentage of the individual differences in general mathematics achieve-
ment (Schneider et al., 2017). Accordingly, some other scholars have suggested that 
early quantitative reasoning about additive and multiplicative relations may be more 
predictive for later achievement in school mathematics (Nunes et al., 2012). Finally, 
and in line with the results of the above developmental studies, the abovementioned 
intervention studies on the early enhancement of children’s foundational numerical 
abilities yielded mixed findings, with mainly marginal effects in terms of retention 
and transfer (Torbeyns et al., 2015).

As a result of the abovementioned critiques on early numerical cognition, 
researchers have started to go beyond analyzing young children’s basic numerical 
abilities and to look at the early development of other, more complex, mathematical 
competencies in younger ages than is currently the case, i.e., already before the start 
of elementary school and/or while children are making the transition from preschool 
to elementary school (Bryant & Nunes, 2012; Dowker, 2003; Mulligan & 
Mitchelmore, 2009). This complementary research line has started to provide evi-
dence of the possibility and value of broadening and deepening the scope of math-
ematics for young children beyond initial experiences with small whole numbers 
and simple arithmetic with them.

As part of that complementary approach, we embarked some years ago on a 
research project involving a large-scale longitudinal study about the early 
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development of four such additional core mathematical competences: mathematical 
patterning, computational estimation, proportional reasoning, and probabilistic rea-
soning, followed by four intervention studies on the same four competencies.

This kind of research project may first of all help us rethink the traditional early 
mathematics curriculum with a view to make it more challenging both in terms of 
breadth and depth. Second, the analysis of the developmental steps children take as 
revealed by the longitudinal study may lead to well-articulated research-based 
learning trajectories. Armed with these learning trajectories, one can assess any 
child’s thinking, locate the child on a trajectory, and determine the next step in the 
child’s learning related to these additional mathematical topics, analogous to the 
trajectories developed for number, counting, and early addition and subtraction by 
Clements and Sarama (2013). Third, the diagnostic tools designed for the develop-
mental studies and the instructional materials and techniques developed for the 
intervention studies may yield valuable building blocks for implementing these 
challenging curricula and designs. Finally, paying special attention in these studies 
to the children at the lower and the higher ends of the continuum of mathematical 
ability may help make these early mathematics curricula and designs more chal-
lenging and inclusive for all children.

In the present chapter, we provide a selective overview of some provisional results 
of this ongoing longitudinal research project. After a brief presentation of the overall 
aims and scope of the study and its overall methodology, available data from the 
various parts of the study are used to provide illustrative evidence for the basic claim 
that early mathematical development involves much more than children’s early 
numerical abilities, that also with respect to these other core mathematical compe-
tencies important initial steps are being made much earlier in children’s develop-
ment than traditionally thought, and that these core mathematical competencies 
develop in close relation to each other and to the development of children’s early 
numerical abilities. At the end we formulate some general conclusions of the research 
being reviewed in this chapter and we summarize its contribution to understanding 
how a focus in the curriculum and instructional design on challenging domains such 
as patterns, computational estimation, proportional reasoning, and probabilistic rea-
soning may enhance the mathematical competence of all young children.

3.2 � A Research Project Consisting of Four Parts

In 2016, we started a 6-year-long research project on the development of 4- to 
9-year-olds’ competencies in four early core mathematics-related domains1: 
mathematical patterns, computational estimation, proportional reasoning, and 
probabilistic reasoning. While the rationale for this selection was partly pragmatically 

1 C16/16/001 project “Early development and stimulation of core mathematical competencies” of 
the Research Council of the KU Leuven, with Nore Wijns, Elke Sekeris, Elien Vanluydt, Anne-
Sophie Supply, and Merel Bakker as PhD researchers and, consecutively, Joke Torbeyns, Greet 
Peters, and Laure De Keyser as project coordinator.

3  Development and Stimulation of Early Core Mathematical Competencies in Young…



28

grounded in the fields of expertise of our research team, a common characteristic of 
these four domains is that they all receive little or no instructional attention in cur-
rent early mathematics education curricula, while they do represent important 
domains of mathematics and while there is increasing empirical evidence that they 
start to emerge much earlier than traditionally thought, and therefore, children may 
be challenged in these domains at an earlier age than is currently the case.

For each of these four domains, we tried to document the emergence and early 
development of intuitive concepts and basic skills related to the domain, to look for 
interrelations between these emerging concepts and skills, with a view to explore 
ways to organize early and elementary school mathematics such that this organiza-
tion does not undermine these intuitive concepts and emerging skills but rather cre-
ates an environment wherein they can be acknowledged and stimulated.

In order to longitudinally map the emergence and development of these core 
mathematical competencies, as well as children’s early numerical abilities, a cohort 
of over 400 children from 17 schools is followed from the second year of preschool 
(±4 years of age) to the third year of elementary school (±9 years of age). Using a 
stratified cluster sampling strategy to ensure an SES distribution that is representa-
tive for the Flemish context, schools were selected based on the relative number of 
pupils who receive study allowance and/or whose mother did not obtain a secondary 
school certificate. In Flanders, children go to preschool from the age of 2.5 years 
onwards. Preschool consists of three years (P1, P2, and P3). It is fully government 
subsidized and non-mandatory, yet it is attended by nearly all children. In September 
of the year children turn 6, they start in elementary school, which consists of six 
grades and which is mandatory.

As shown in Fig. 3.1, a rich battery of measures was administered during the 
5 years of data collection. This battery comprised tasks and instruments assessing 
children’s mathematical patterning, computational estimation, proportional reason-
ing, and probabilistic reasoning (parts 1 to 4, see further), as well as children’s 
domain-specific early numerical abilities, domain-general cognitive abilities, and 
general mathematics achievement. The domain-specific early numerical abilities 
test comprised a wide variety of tasks measuring verbal counting, object counting, 
Arabic number recognition, number comparison, number order, and non-verbal 

Fig. 3.1  Timeline for school years, time points of assessments, and administered measures
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calculation; the domain-general cognitive abilities measures were two working 
memory and one spatial ability test; and general mathematics achievement was 
measured by means of a Flemish standardized mathematics achievement test. 
Finally, data on children’s home and class environment were, respectively, collected 
via parent and teacher questionnaires. For more details about these instruments see 
Bakker et al. (2019).

3.3 � Early Mathematical Patterning

Patterning is an aspect of early mathematical ability that is defined as children’s 
performance on a wide set of tasks, such as extending, translating, or identifying a 
pattern’s structure, that can be done with regular configurations of elements in the 
environment (Wijns et al., 2019c). These regular configurations are called patterns. 
There are different types of patterns, and a distinction is often made between repeat-
ing (e.g., ABABAB), growing (e.g., 2 4 6), and spatial structure patterns (e.g.,:::; 
Mulligan & Mitchelmore, 2009). Repeating and growing patterns are both sequences 
that can be continued indefinitely. Their underlying structure or rule describes how 
the sequence continues. For repeating patterns (e.g., ABABAB, Δ□□Δ□□Δ□□), 
the structure is defined on the basis of a unit (e.g., AB, Δ□□) that is reiterated. The 
structure of growing patterns (e.g., 2 4 6, Δ□Δ□□Δ□□□) involves a systematic 
increase or decrease between the units in the sequence (e.g., +2, + □). Spatial struc-
ture patterns, by contrast, represent two-dimensional configurations of elements. In 
part 1 of the project, we investigate the development of 4- to 6-year-olds’ repeating 
and growing patterning competencies, and their associations with these children’s 
numerical abilities.

Children are confronted with repeating patterns from a very young age in their 
daily life activities (e.g., day-night-day-night and yellow-red-yellow-red lines on 
their T-shirt). Repeating patterns are also the most common type of patterns in early 
childhood education and research (for a review, see Wijns et al., 2019c). At the start 
of the project, a number of empirical studies on young children’s repeating pattern-
ing competencies had provided evidence for preschoolers’ ability to solve tasks 
involving repeating patterns, and for the association between children’s repeating 
patterning abilities and both concurrent and later numerical and mathematical abili-
ties (e.g., Collins & Laski, 2015; Lüken, 2012; Rittle-Johnson et al., 2015, 2017; 
Zippert et  al., 2019). Repeating patterning competencies were also shown to 
uniquely contribute to later mathematical performance, in addition to children’s 
early numerical abilities (Lüken, 2012; Nguyen et al., 2016; Rittle-Johnson et al., 
2017). However, systematic analyses of the mechanisms that might explain the 
association between young children’s patterning and early numerical ability as well 
as the developmental associations between these two early mathematical competen-
cies were non-existent. Moreover, researchers were criticized for their exclusive 
focus on repeating patterning abilities, arguing that young children are already 
capable of handling more complex patterns, such as growing patterns (Pasnak 
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et al., 2019). As far as growing patterns were included in empirical studies, they 
were analyzed in view of their contribution to the development of elementary school 
children’s algebraic skills (e.g., Warren & Cooper, 2008). To the best of our knowl-
edge, no research had investigated preschool children’s ability to successfully deal 
with activities focusing on growing patterns. Finally, although several researchers 
had already hinted toward the idea that children who by themselves look for patterns 
in their environment are good mathematicians, young children’s spontaneous atten-
tion for patterns was not yet systematically investigated. This contrasted with the 
domain of number, where researchers had already documented the pivotal role of 
young children’s spontaneous attention for quantities (SFON; Hannula & Lehtinen, 
2005) and number symbols (SFONS; Rathé et al., 2019) for their concurrent and 
later mathematical development. Part 1 of the present project aimed to increase cur-
rent insight into the role of patterning within early mathematical development by 
addressing the abovementioned weaknesses and systematically analyzing (a) young 
children’s spontaneous attention for patterns in their environment, (b) their ability in 
handling repeating as well as growing patterns, and (c) the association between their 
repeating and growing patterning ability and their numerical ability.

For this part of our longitudinal research project, we followed the development 
of children’s early patterning and number abilities between 4 and 6 years. This age 
range covers a critical developmental period in which several aspects of patterning 
and numerical ability are known to be acquired rapidly. In the spring of preschool 
year 2, preschool year 3, and elementary school Grade 1, children were offered two 
patterning ability measures, one focusing on repeating patterns and one focusing on 
growing patterns. Both patterning ability measures consisted of three types of pat-
terning activities: extending the pattern (i.e., what comes next in the pattern?), trans-
lating the pattern (i.e., make the same pattern using different materials), and 
identifying the structure of the pattern (i.e., identifying the unit of repeat that defines 
the repeating pattern, identifying the systematic increase or decrease that defines the 
growing pattern). Figure 3.2 provides an example item for the three patterning activ-
ities in the repeating patterns and growing patterns ability measure. The patterning 
ability measures consisted of 18 items (6 items per activity) that were scored as 
either correct or incorrect, resulting in a maximum score of 18 per measure. Before 
they solved the two patterning ability measures, children engaged in an activity that 
addressed their spontaneous attention for patterns, the so-called tower task, in which 
children were asked, in a free-play context, to make a tower construction with 15 
building blocks in three colors (five per color). Children’s tower constructions were 
scored as (a) pattern, when the tower included at least two full units and the start of 
the third unit of a pattern, (b) sorting, when all the blocks were sorted per color, or 
(c) random, indicating no pattern or sorting construction.

In a first study (Wijns et  al., 2019a) we focused on 4-year-olds’ spontaneous 
attention for patterns when solving the tower task (i.e., SFOP). We looked for indi-
vidual differences in 4-year-olds’ SFOP as well as their associations with children’s 
repeating patterning and numerical ability. We found individual differences in 
4-year-olds’ SFOP and showed that children who spontaneously created a pattern 
had higher repeating patterning ability and numerical ability than children who 
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Fig. 3.2  Example items for the two pattern types (repeating and growing) and the three activities 
(extending, translating, and identifying)

made a random arrangement. The positive associations between 4-year-olds’ SFOP 
and their repeating patterning and numerical ability can be hypothetically explained 
via the mechanism of self-initiated practice (cf. Hannula & Lehtinen, 2005, and 
Rathé et  al., 2019, for a similar explanation related to, respectively, SFON and 
SFONS). This mechanism suggests that children with a spontaneous tendency to 
focus on mathematical elements in their environment will have more opportunities 
to practice their mathematical abilities and therefore improve them. Related to 
SFOP, children who spontaneously look for and create patterns during daily life 
activities are assumed to have more opportunities to practice their patterning abili-
ties and, by extension, numerical skills. Although viable, this hypothetical explana-
tion requires further research attention.

In a second study (Wijns et al., 2019b), we analyzed 4-year-olds’ ability in both 
repeating and growing patterning tasks, and their association with children’s numer-
ical ability. A confirmatory factor analysis showed that the 2 × 3 structure of our 
patterning ability measure (two types of patterns, three patterning activities) could 
also be found in our data, confirming the validity of our measure. Additionally, both 
the pattern type and the patterning activity had an impact on children’s patterning 
performance. Concerning the pattern type, we found that growing patterns were 
more difficult than repeating patterns. This difference in difficulty level might be 
due to differences in the complexity of the structure of the different pattern types 
(i.e., a clearly visible unit that repeats versus a systematic increase or decrease that 
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needs to be deduced from the visible pattern) as well as the emphasis on mainly 
repeating patterns in current educational practice, which might lead children to 
think that all patterns are repeating patterns. Importantly, the study also showed 
that, despite the high difficulty level of activities with growing patterns, growing 
patterns are already feasible for a significant number of children of this young age. 
Turning to the impact of patterning activity, our study indicated that translating pat-
terns was easier than both extending patterns and identifying the structure of pat-
terns. The difference in difficulty level of extending and translating patterns is not in 
line with earlier studies with only repeating patterns (Lüken, 2012; Rittle-Johnson 
et al., 2015) but might be due to children’s use of a one-one matching strategy to 
solve the latter type of tasks. Although our observational data do not support this 
explanation, future studies on the strategies that children use when solving different 
types of patterning tasks are required (cf. the recent study of Lüken & Sauzet, 2020). 
Finally, we also found that most patterning tasks uniquely predicted children’s 
numerical ability.

Our third study involved a longitudinal analysis of the direction of the associations 
between repeating patterning, growing patterning, and numerical ability from age 4 
to 6 (Wijns et al., 2021a). Although several studies had already provided evidence 
for an association between patterning and numerical ability, little was known about 
the direction of this association. Moreover, at the start of the project, it was unclear 
whether the association with numerical ability was different for distinct pattern 
types. Our cross-lagged panel analysis revealed bidirectional associations between 
all three abilities from age 4 to 5, suggesting that performance on one ability 
supports performance on another ability 1 year later. From age 5 to 6, patterning 
abilities predicted numerical ability, but the reverse was no longer true. Also, from 
age 5 to 6, repeating patterning abilities predicted growing patterning abilities, but 
not vice versa. These findings suggest that children’s repeating and growing pattern-
ing ability supports the acquisition of later numerical ability, and that, within chil-
dren’s patterning ability, repeating patterning ability supports the acquisition of 
growing patterning ability. Although several researchers already hinted at the pos-
sibility to explore regularities in both patterning and number tasks (e.g., the base-10 
structure of our number system with repeating units across decades, or the system-
atic increase with one of our counting row) as a mechanism that explains their asso-
ciations, theoretical models are missing. It is a challenge for future work in the 
domain to first develop these theoretical models and next conduct focused interven-
tion studies that help reveal the mechanisms underlying the frequently observed 
associations between patterning ability and numerical ability.

In our fourth study, we evaluated the effectiveness of an intervention aiming to 
enhance 5-year-olds’ repeating and growing patterning ability for their development 
of early patterning competency (Wijns et al., 2021b). A 20-week intervention pro-
gram (with 30  minutes patterning activities per week, focusing on the patterns’ 
structure) resulted in significant improvements in the patterning competency of the 
children following the intervention compared to the control group, but there was no 
transfer effect to their numerical ability.
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The findings of the longitudinal and intervention study provide important 
building blocks for optimizing current early mathematics education. First, the 
longitudinal analyses add to current insights into children’s learning trajectories in 
the domains of number and patterning, pointing to the pivotal role of preschoolers’ 
patterning competencies. Second, our focused intervention on the structure of 
repeating and growing patterns greatly enhanced preschoolers’ patterning compe-
tency. These findings call for more attention than is currently the case for stimulat-
ing patterning competency in preschool curricula, integrating also more complex, 
growing patterns and more challenging patterning activities, such as translating the 
pattern or identifying its structure.

3.4 � Early Computational Estimation

Computational estimation can be described as providing an approximate answer to 
an arithmetic problem without calculating it precisely. This mathematical skill 
shows a commonality with the approximate arithmetic competence that is assumed 
to be part of young children’s foundational approximate number system (ANS), in 
the sense that in both cases one has to mentally perform an arithmetic operation on 
two operands in an approximate way. However, the two skills are also fundamen-
tally different: while in approximate arithmetic children have to process the oper-
ands approximately, the numerical value of the operands is known in computational 
estimation (Sekeris et al., 2019).

Computational estimation is viewed as an important mathematical competence 
in our daily life since many situations only require calculations with a reasonable 
degree of accuracy, such as splitting the bill among a group of friends in restaurant. 
In addition, it is widely agreed that computational estimation should play an impor-
tant role in the elementary mathematics curriculum (Siegler & Booth, 2005; Sowder, 
1992; van den Heuvel-Panhuizen, 2000) as it involves a complex interplay of vari-
ous types of mathematical knowledge and skills, including conceptual knowledge 
(e.g., accepting more than one value as an outcome of an estimation), procedural 
knowledge (e.g., being able to modify the problem to arrive at a mentally more 
manageable problem), and arithmetic knowledge and skills (e.g., mental computa-
tion skills). Given that computational estimation problems can be solved in many 
different ways, it allows children to develop number sense (LeFevre et al., 1993) 
and strategy flexibility (Siegler & Booth, 2005). Although computational estimation 
is nowadays widely recognized as an important part of the elementary mathematics 
curriculum (e.g., NCTM, 2000), it has, compared to its counterpart exact arithmetic, 
received far less attention from curriculum developers and researchers (Dowker, 
2003; Siegler & Booth, 2005).

A recent literature review by our team revealed that the vast majority of studies 
on computational estimation investigated this skill from the age of eight and onward 
(Sekeris et al., 2019). This could be related to the fact that computational estimation 
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is typically only instructed from the middle grades of elementary school onwards, 
when children have already acquired ample experience with whole-number exact 
arithmetic (Common Core State Standards Initiative, 2010). However, a few studies 
suggested that children are already able to engage in computational estimation at a 
younger age than is traditionally expected (Dowker, 1997, 2003; Jordan et  al., 
2009). This might not be so surprising, given that recent studies provided empirical 
evidence that preschool children can use their basic numerical abilities to solve 
approximate arithmetic problems with both non-symbolically and symbolically pre-
sented comparisons (e.g., “15 + 13 vs. 49, which is more?”) before they have been 
taught exact arithmetic in school.

Part 2 of our research project therefore aimed at charting the emergence and 
early development of computational estimation from the age of 5 (third grade of 
preschool) until the age of 9 (third grade of elementary school). Children’s compu-
tational estimation skills were tested on an individual basis once each year. To that 
aim, we developed a task in which children had to estimate the outcome of addition 
problems and that consisted of a non-verbal and a verbal variant. In the non-verbal 
variant, which was used in third grade of preschool and first grade of elementary 
school, the estimation problems were presented by means of manipulatives. Both 
addends were represented by a number of cows that were consecutively positioned 
in a horizontal row in front of the child, verbally labeled by the experimenter (“Here 
are N cows”), and hidden in a stable afterward. Next, children were asked to indi-
cate about how many cows there were altogether in the stable by putting a number 
of cows from their own pile on the table (see Fig. 3.3).

In the verbal variant, which was used in the first three grades of elementary 
school, the estimation problems were presented with Arabic numerals on a com-
puter screen for 20 seconds and simultaneously read out loud by the experimenter 
after which children had to respond verbally. To ensure that children would engage 
in computational estimation, we presented them with addition problems that were 
numerically just too difficult to be solved by means of exact arithmetic (Dowker, 
1997, 2003). The level of exact arithmetic in each grade was based on children’s 
curriculum and extensive pilot testing. Over the entire duration of the longitudinal 
study, children had to estimate the outcome of 24 addition problems of different 
difficulty levels, which were defined by the size of the exact outcome of the estima-
tion problems. More specifically, these outcomes ranged between 11 and 30 in third 

Fig. 3.3  Example of a computational estimation problem from the non-verbal task variant with (a) 
the first addend, (b) the second addend, and (c) the child’s answer
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year of preschool, 11 and 100 in first and second years of elementary school, and 
51–10.000 in third year of elementary school.

We focused both on computational estimation performance and strategy use (see 
e.g., Sekeris et al., in press). At present, data have been collected from third year of 
preschool until second year of elementary school. Estimation performance in both 
tasks was measured in terms of children’s accuracy and was operationalized in 
terms of percentage absolute error (PAE) of children’s estimates relative to the exact 
answer. We observed that children’s PAE evolved from 34% in third year of pre-
school to 19% in second year of elementary school, indicating that children became 
more accurate in their estimates when growing older. Interestingly, in the first year 
of elementary school – where both task variants were administered with exactly the 
same problems – we found that children were, as expected, more accurate in the 
non-verbal (34%) than in the verbal task variant (27%). Presumably, this lower per-
formance on the verbal task variant could be attributed to children being insuffi-
ciently familiar with two-digit numbers being represented with Arabic numerals. 
Similar findings have been reported by Dowker (2003) for computational estimation 
and Levine et al. (1992) for exact arithmetic. In both task variants we also observed 
an effect of problem size. Children’s estimates became less accurate with increasing 
problem size, suggesting that children were not merely guessing the outcome of the 
estimation problems.

Children’s strategy use was examined for both task variants separately. For the 
non-verbal variant we looked at two aspects of children’s externally observable 
behavior when lying down their answer by means of the manipulatives: (a) the way 
in which they constructed the answer set and (b) their counting behavior while con-
structing the answer set. With respect to the construction of the answer set, we dis-
tinguished, based on previous studies in arithmetic (Carpenter & Moser, 1982; De 
Corte & Verschaffel, 1987), among three different strategies that might reflect dif-
ferent representations of numbers and arithmetic operations: (a) creating two sets of 
manipulatives representing both addends which were either kept separate (addends 
only) or (b) put together afterward (combining), and (c) immediately putting all 
manipulatives in one group (result-only). For their counting behavior we looked at 
whether children counted or not when constructing the answer set. Results showed 
that both in third year of preschool and first year of elementary school about 95% of 
the problems were solved by means of the result-only strategy. This frequency did 
not change with age or problem size. The frequency of children’s counting behavior 
showed an age-related increase and decreased with increasing problem size. A 
structural equation model showed that in preschool none of the two aspects of chil-
dren’s material solution strategies were predictive of their estimation performance, 
whereas in first grade the result-only strategy was a negative predictor and counting 
frequency a positive predictor of their estimation performance. These findings 
might indicate that children in third year of preschool lack the insight that the way 
in which they use the manipulatives or their counting skills could help them make 
better estimates. By the first year of elementary school, they might have come to the 
understanding that a purposeful use of the manipulatives (i.e., by representing both 
addends first separately) and counting might lead to improved estimations.

3  Development and Stimulation of Early Core Mathematical Competencies in Young…



36

In the verbal variant of the computational estimation task, children’s strategy use 
was identified on the basis of immediate trial-by-trial verbal strategy reports. 
Strategies were classified according to an a priori classification scheme which dis-
tinguished among four broad strategy categories: (a) exact arithmetic in which chil-
dren calculated the answer exactly instead of estimating it, (b) 
exact-calculation-and-adjusting in which the answer was calculated exactly and 
then adjusted to make it look like an estimate, and (c) rudimentary computational 
estimation strategies that showed some basic and rough conceptual understanding 
of the principles of computational estimation, and genuine computational estima-
tion strategies in which the estimation problem is first simplified (e.g., by rounding 
the operands) before calculating the approximate outcome. We observed that chil-
dren hardly used any genuine computational estimation strategies, presumably 
because children at this age did not yet possess the necessary mathematical knowl-
edge and skills for applying such advanced estimation strategies. However, children 
already had a basic understanding of some of the underlying principles of computa-
tional estimation, as was evidenced by the fact that they referred to the proximity 
principle (i.e., the idea that an estimate should be close to the exact outcome) when 
applying a rudimentary computational estimation strategy or that they took into 
account the approximation principle (i.e., the estimate should be an approximation 
of the exact outcome) when using the exact-calculation-and-adjusting strategy. 
Interestingly, the use of the exact arithmetic and exact-calculation-and-adjusting 
strategies increased from first to second grade of elementary school. Probably, the 
strong focus on exact arithmetic in mathematics education at the beginning of ele-
mentary school makes children increasingly convinced that each arithmetic prob-
lem has only one correct answer.

To conclude, the present findings indicate that young children are already able 
to engage in computational estimation at a much younger age than is generally 
assumed. Their estimation performance increases with age, even in the absence of 
instruction in computational estimation. Young children already use a variety of 
strategies to solve computational estimation problems. This strategy use reveals 
traces of a beginning conceptual understanding of the principles underlying com-
putational estimation. Taking into account the aforementioned multi-componen-
tial nature of computational estimation, its potential for developing number sense, 
and the recurrent finding that people are generally bad at it (Siegler & Booth, 
2005), our findings suggest that computational estimation could be incorporated 
much earlier in the mathematics curriculum. Such an early learning trajectory for 
computational estimation could start by familiarizing young children with the 
concept of estimation, its underlying principles (e.g., the proximity and approxi-
mation principle), and the specific language of estimation (e.g., “about,” “near,” 
and “close to”). This earlier incorporation in the curriculum might prevent that the 
early development of children’s estimation skills becomes too much hampered by 
their strong focus on being exact as a result of their confrontation with formal 
school mathematics.
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3.5 � Early Proportional Reasoning

Proportional reasoning plays a critical role in people’s mathematical development. 
It is essential in the learning of numerous advanced mathematical topics, such as 
algebra, geometry, statistics, or probability, but people also encounter it in numer-
ous daily life situations (e.g., recipes, sales). Unfortunately, it is also considered to 
be hard to apprehend for children, and achieving a full understanding of proportion-
ality is considered a major challenge (Kaput & West, 1994). In the research litera-
ture, there is no unanimity about the age range in which proportional reasoning 
abilities develop.

The traditional Piagetian stance on the development of proportional reasoning is 
that it is a rather late achievement (Inhelder & Piaget, 1958). They see it as an indi-
cator of formal operational thought, typically only starting to develop from the age 
of 12. Typical evidence comes from tasks like the Paper Clip Task (Karplus & 
Peterson, 1970): learners get the height of Mr. Tall and Mr. Short expressed in a 
number of buttons, and the height of Mr. Short in expressed in a number of paper 
clips. They need to find the height of a Mr. Tall expressed in paper clips. Academically 
upper-track or upper middle-class students used proportional reasoning increas-
ingly at the age of 12 years, but only a small fraction of urban low-income and 
academically lower-track students used proportions at the age of 14 or even 17 years. 
Similar findings come from Noelting (1980), who used Orange Juice Problems: 
comparing mixtures of varying numbers of glasses of orange juice and water. He 
reported that proportional reasoning is a concept that finds its achievement only in 
late adolescence and that children did not reach the formal operational level before 
the age of 12.

However, more recent studies suggested that proportional reasoning may start to 
develop much earlier than suggested by Piaget and colleagues. We mention a few 
examples. Resnick and Singer (1993) presented 5- to 7-year-old children with a 
proportional missing-value task. Children had to feed fish of different lengths. All 
children tended to give proportionally larger amounts of food to larger fish. Boyer 
and Levine (2012) used an orange juice task to assess proportional reasoning in 6-to 
9-year-old children. Results showed that these young children could already match 
equal proportional mixtures, but performance depended on the scaling magnitudes 
in the problems. Finally, in preparation for part 3 of the current longitudinal study 
we also found early traces of proportional reasoning in 4- to 5-year-old children 
(Vanluydt et al., 2018). Many of them were able to make the ratio between puppets 
and grapes in a set B equal to the ratio between puppets and grapes in a set A, and 
strategies pointed to the emergence of a notion of one-to-many correspondence, 
which is an important first step in the development of proportional reasoning. While 
the full understanding of proportionality might only be achieved at the age of 12, the 
development of proportional reasoning seems to begin much earlier, allowing young 
children to reason proportionally in certain tasks (involving specific contexts and 
ratios) and under certain conditions (i.e., individual interview settings with hands-
on activities).
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In part 3 of the longitudinal study, we are mapping the development of children’s 
proportional reasoning ability from the age of 5 (last year of kindergarten) until 9 
(third year of elementary school). For this purpose, we developed and validated a 
task about a fair sharing context, involving manipulatives, and avoiding the need to 
use number symbols (Vanluydt et al., 2019). Children are given missing-value prob-
lems involving discrete and/or continuous quantities. In tasks with discrete quanti-
ties, they have to construct a set B equivalent to a comparison set A by putting the 
elements in set B in the same ratio as the elements in set A. The two discrete quanti-
ties are puppets and grapes that need to be shared among them. In tasks with con-
tinuous quantities, the context is similar, but the grapes are replaced by a continuous 
quantity, chocolate bars of varying lengths. Example items are shown in Fig. 3.4.

We are currently awaiting the results of the longitudinal study to map the 
development in detail, and to link it to various learner characteristics. A cross-
sectional exploration with a comparable sample (Vanluydt et  al., 2019) already 
revealed several qualitatively different early stages of proportional reasoning, in 
which the nature of the quantities involved in the problem (discrete vs. continuous) 
as well as the unknown quantity (the grapes/chocolate or the puppets) played a role. 
For instance, while performing equally well in general, some children showed a 
greater ability to reason proportionally when the problem involved only discrete 
quantities, whereas others performed better when continuous quantities were 
involved. Some children already showed full mastery on the proportional reasoning 
tasks at the age of 9, but most children were still developing this ability. Our 
longitudinal data will allow to reveal which children progress fastest and furthest by 
the age of 9: those who can reason about discrete quantities at an early age or those 
who can reason about continuous quantities.

Instruction: “All puppets are equally 
hungry. If I give this chocolate bar to 
these puppets, which chocolate bar do 
you have to give these puppets for it 
to be fair? You can give a chocolate 
bar to the puppets so that it’s fair.” 

Instruction: “All puppets are equally 
hungry. If I give four grapes to these 
puppets, how many grapes do you 
have to give to these puppets for it to 
be fair?” 

Fig. 3.4  Example items of the proportional reasoning tasks involving discrete and continuous 
quantities
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Along with the study of the development of early proportional reasoning, we 
were also able to investigate how other mathematical competencies, such as math-
ematical patterning, are associated with children’s proportional reasoning ability. 
We have shown the predictive association between patterning in the second year of 
kindergarten and proportional reasoning ability in the first year of elementary 
school. Two measures of patterning ability (repeating and growing patterns, see 
paragraph 3) were used as a predictor for two measures of proportional reasoning 
ability (involving a discrete or a continuous quantity). Patterning ability turned out 
to be a unique predictor of proportional reasoning ability over and above sex and 
general cognitive and numerical abilities. More specifically and quite remarkably, 
performance on repeating patterns was uniquely related to performance on propor-
tional reasoning with a discrete quantity, whereas performance on growing patterns 
was uniquely related to performance on proportional reasoning with a continuous 
quantity.

Another aspect that we investigated is the role of language abilities in proportional 
reasoning. It is generally known that language – be it language in general or language 
related to mathematics – plays a crucial role in mathematical thinking and learning 
(Peng et  al., 2020). However, so far no studies studied the role of language in 
proportional reasoning at an early age. We longitudinally investigated if specific 
mathematical vocabulary related to proportional reasoning (e.g., understanding 
expressions like “half” or “three times more”) in the first year of elementary school 
predicts proportional reasoning abilities in the second year of elementary school. A 
hierarchical linear regression analysis showed that specific mathematical vocabu-
lary related to early proportional reasoning in the first year of elementary school is 
a unique predictor for proportional reasoning abilities in the second year of elemen-
tary school over and above age, socio-economic status (SES), and general vocabu-
lary (Vanluydt et al., 2021). Although more evidence based on intervention studies 
is needed to reveal the causal nature and the direction of this relation, these results 
suggest more attention to specific mathematical vocabulary related to proportional 
reasoning in young children might stimulate early proportional reasoning.

Several other studies are planned using the available longitudinal data, in order 
to obtain a deeper understanding of the development of proportional reasoning abil-
ities at a young age. From second grade on, we started to offer arithmetic word 
problems, in addition to the proportional reasoning fair sharing tasks with manipu-
latives that were described above. Some of these word problems are proportional, 
but also additive word problems are included, such as the following:

Roos and Loes are running around a track. They run equally fast, but Loes started later. 
When Loes has run 2 rounds, Roos has run 8 rounds. When Loes has run 4 rounds, how 
many has Roos run?

The literature (e.g., Van Dooren et al., 2010) reports that young children often 
erroneously solve proportional problems additively while older children solve addi-
tive problems proportionally (in the problem above, they would answer that Roos 
has run 16 rounds). Our longitudinal data will reveal whether early individual dif-
ferences in proportional reasoning abilities predict these two kinds of errors.
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So far, our findings indicate that children in the third grade of kindergarten and 
the first years of elementary school can make sense of the one-to-many correspon-
dences in proportional situations and suggest that these may already be stimulated 
and developed into an understanding of many-to-many situations. This seems pos-
sible even before the arithmetic skills for addition and multiplication are extensively 
practiced. Attention to the specific mathematical vocabulary involved in propor-
tional situations seems important in doing so. We are currently developing instruc-
tional materials for this purpose, which will be tested in an intervention study.

3.6 � Early Probabilistic Reasoning

Parallel to the research and discussion about early proportional reasoning, there is a 
growing body of developmental research showing that very young children have 
basic intuitions about chance events and that these intuitions develop into a more 
formal probability concept during elementary school (Bryant & Nunes, 2012; Piaget 
& Inhelder, 1951/1975). The successive developmental stages of probabilistic rea-
soning have been given several labels, but boil down to three main stages: non-
probabilistic reasoning (preoperational; until the average age of 6 years), emergent 
probabilistic reasoning (concrete operational; from 6 to 11 years old), and finally 
quantification of probability (formal operational; from about the average age of 
11 years) (Green, 1991; Jones et al., 1999; Way, 2003).

Preliminary results on these basic intuitions in young children have already been 
obtained with respect to several components of probabilistic reasoning: understand-
ing randomness, working out the sample space, comparing and quantifying proba-
bilities, and understanding relations between events (Bryant & Nunes, 2012). 
However, the developmental pathways of these components and their relation to the 
development of other competencies remain largely unexplored.

Based on these descriptive developmental studies, many countries around the 
world have introduced probability calculus as part of the curriculum in elementary 
school in the 1990s (Way, 2003). More recently, in two southern German states, 
Baden-Württemberg and Bayern, the basics of probabilistic thinking are included in 
the elementary school curriculum partly as a result of the rising awareness of the 
importance of “risk competency” (Granzer et  al., 2009; Martignon & Erickson, 
2014; Till, 2014). However, little is known about the effects of teaching probability 
and statistics in elementary school or about the processes involved.

With respect to probabilistic reasoning, our project had three main objectives. 
First, we aimed to construct a more comprehensive view on the development of dif-
ferent components of probabilistic reasoning in children from the age of five to nine. 
Second, we wanted to explore the relationship between the development of numeri-
cal abilities, mathematical patterning, computational estimation, and proportional 
reasoning on the one hand, and the development of probabilistic reasoning among 
elementary school children on the other hand. Our expectation was that these other 
abilities are important building blocks for emergent probabilistic reasoning. A third 
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objective was to investigate whether it is possible to stimulate probabilistic reason-
ing at a younger age than is currently the case in Flemish schools.

This part of the project is still ongoing, but we already have some first results 
from pilot studies and analyses from the first wave of the longitudinal study. Because 
we needed an instrument for the early assessment of probabilistic reasoning, we 
constructed several tasks that tapped into children’s ability to recognize (un)cer-
tainty and children’s ability to compare probabilities. The basic setup is an individu-
ally administered binary choice task in which children have to select one out of two 
boxes that has the best chance to blindly pick a winning element. The concrete setup 
is an adapted version of the setup proposed by Falk et al. (2012) and goes as follows 
(see Fig. 3.5):

Children sit in front of a laptop screen. They are introduced to a blindfolded bird and are 
told that the bird loves black berries but hates white berries. In each trial, the bird blindly 
picks a berry from one of two boxes that are filled with different number of berries of the 
desired and undesired color (see Fig. 3.5). Unlike the bird, children can see the content of 
each box and they are asked to help the bird by deciding which of two boxes is best for the 
bird to blindly pick a berry from.

An interesting property of this setup is that the difficulty of the items can be 
varied meaningfully by manipulating their features. For example, it is possible to 
vary the total number of berries, the proportion of black berries, and even more than 
two colors of berries can be used (after slightly adapting the instruction). Based on 
the study by Falk et al. (2012), we expected that items would become particularly 
challenging to the children if the optimal box would contain a smaller absolute 
number of black berries (see Fig. 3.6); and even if there are no white berries left in 
that box (see Fig. 3.7).

After pilot testing, the final instrument consisted of 29 items. For an independent 
validation and feasibility study, we presented the instrument to a cross-sectional 
sample of 177 5- to 9-year-olds in a school who did not participate in our larger 
longitudinal data collection. We found that our instrument was fit to use in kinder-
garten and elementary school. The children understood our instruction and it took 
no longer than 10  minutes to administer the task. Furthermore, the results were 
encouraging from the perspective of assessing probabilistic reasoning at these 

Fig. 3.5  Example item for the probabilistic reasoning task: Select the box that gives you the best 
chance to randomly draw a black berry from
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Fig. 3.6  Example of a difficult item for the probabilistic reasoning task: The box with the smaller 
number of black berries has a larger probability to randomly draw a black berry from

Fig. 3.7  Example of a difficult item for the probabilistic reasoning task: The box with the smaller 
number of black berries has a 100% probability to randomly draw a black berry from

young ages: item difficulty varied as expected, older children obviously had better 
performance than younger ones, and we found no indications for floor or ceiling 
effects in any age group. The extensions that we added to the setup by Falk et al. 
(2012) also seemed to improve the reliability and validity of the instrument (Supply 
et al., 2018, 2020).

When we applied this instrument to the 5- and 6-year-olds in our longitudinal 
study, we found that children within the same year of kindergarten strongly differed 
in their performance on the items that had one box with 100% probability to ran-
domly draw a black berry from. Furthermore, children’s performance on these items 
was predictive for their performance on the items that required a comparison of 
probabilities of only uncertain outcomes. These results demonstrate that, although 
conventional developmental theory assumes that there is no probabilistic reasoning 
in the preoperational stage, kindergarten children already have good performance in 
certain tasks that require probabilistic judgments. In addition, the recognition of 
uncertainty may act as a precursor for emergent probabilistic reasoning (Supply 
et  al., 2019a). In these 5- and 6-year-old children, we also explored the relation 
between the performance on the numerical tasks that were administered as part of 
the longitudinal study (see Sect. 3.1) and our binary choice instrument, extended 
with a construction task. For the construction task, children were introduced to two 
representations of identical birds, two rectangular boxes containing white and black 
marbles, and one larger square box containing 10 black marbles (see Fig. 3.8).
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Fig. 3.8  Example of an item for the construction task: Add black berries to the right-side 
rectangular box to have an equal probability to randomly draw a black berry from each of the boxes 
(the square box on the right hand contains the black berries that can be used to make the adjustment)

As with the binary choice instrument, the construction task was administered 
individually. The instruction was as follows:

These are Flip and Flap. Flip and Flap are twins. Flip and Flap are both blindfolded because 
we are going to play a game with them. Flip and Flap both like black berries (experimenter 
shows child black marbles), but get sick of these white berries (experimenter shows child 
white marbles). I will always give a box to each Flip and Flap and they can each blindly 
pick one berry from their own box. Of course, Flip and Flap cannot see what is in the box, 
because they are wearing that blindfold. Flip’s box contains white and black berries, but 
Flap’s box always contains only sickening white berries. That is not fair of course. You can 
add black berries to the box of Flap so that it becomes a fair game. You can add as many 
berries, until you think that Flip and Flap are just as likely to blindly pick a black berry 
when they are blindfolded and allowed to pick only once in their own box.

We found a strong general association between the performance on the numerical 
tasks and the items that required a comparison of probabilities of only uncertain 
outcomes. There was no association between numerical skills and the ability to 
distinguish uncertain from certain events, and we also found no association with the 
performance in the construction task. In the latter task, children with better numeri-
cal skills tended to add as many winning elements to the new box as there were in 
the box that was given, thereby ignoring the number of losing elements in the given 
box. This suggests that at this young age, good early numerical skills might promote 
the use of erroneous strategies in probabilistic situations. Future research could 

3  Development and Stimulation of Early Core Mathematical Competencies in Young…



44

investigate whether these erroneous strategies can be seen as the first step in reason-
ing about probabilities or whether they impede proper probabilistic reasoning 
(Supply et al., 2019b).

In sum, our preliminary findings suggest that probabilistic situations are already 
intelligible for 5- to 6-year-olds. At this age, children have not been formally intro-
duced to addition, multiplication, and proportionality, but nevertheless are able to 
give meaningful answers in binary choice tasks that involve probabilistic optimiza-
tion. These findings challenge the common notion that probability as a mathemati-
cal topic is too difficult for elementary school children and should only be included 
in the curriculum of secondary school or university. As such, these findings open up 
a perspective for a learning trajectory on probability and statistics from kindergarten 
(e.g., by playing games of chance) to elementary (e.g., calculating probabilities) and 
secondary school (e.g., deriving Bayes’ theorem).

In our opinion, this perspective is of paramount importance because the inclusion 
of probability as a topic in the elementary school curriculum can act as a counter-
weight to current mathematics and science curricula that − from the first years on 
− put a strong emphasis on exact arithmetic with small cardinal numbers, determin-
istic causal explanations, and certitude and that instill a view of science and a view 
of the world that leaves no room for doubt, uncertainty, intrinsic stochastic pro-
cesses, or measurement error. However, we must also acknowledge that our finding 
of developing probabilistic reasoning in 5- to 6-year-olds does not imply that educa-
tion can improve or accelerate this development. Therefore, an additional interven-
tion study is planned to investigate whether it is possible to stimulate probabilistic 
reasoning at a younger age than is currently the case in Flemish schools.

3.7 � Conclusion

In this chapter we gave a snapshot of the main results of a 6-year-long research 
project that started in 2016 and in which we longitudinally follow the integrated 
development of 4- to 9-year-olds’ competencies in four challenging mathematical 
domains – mathematical patterns, computational estimation, proportional reason-
ing, and probabilistic reasoning – using a rich battery of measures.

The preliminary findings of the longitudinal study confirm our basic claim that, 
with respect to these four core mathematical competencies, important initial steps 
are being made in children’s development (much) earlier than traditionally thought. 
Many preschoolers were able to handle repeating patterns and some even showed 
beginning mastery of growing patterns; a significant number of them solved compu-
tational estimation problems in ways that suggest a nascent conceptual understand-
ing of the principles underlying computational estimation; many of them were 
already able to reason proportionally and to make probabilistic judgments in certain 
tasks and under certain conditions.

We found that these four early mathematical competencies showed unique 
associations with children’s numerical abilities. These associations were observed 
both cross-sectionally and longitudinally. For example, we observed for the first 
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time that the association between patterning and numerical skills changed from 
bidirectional to unidirectional (i.e., from patterning to numerical ability) in 4- to 
6-year old children (Wijns et al., 2021a, b), but further work is needed to further 
pinpoint the direction of associations between these two abilities.

Furthermore, we also observed that these four early mathematical competencies 
were interrelated. For example, patterning in 4- to 5-year-olds turned out to be a 
unique predictor of proportional reasoning one and a half year later over and above 
various general cognitive and numerical abilities (Vanluydt et al., in press).

As was exemplarily shown for patterning, it is important to look not only at the 
ability side of young children’s early core mathematical competencies, but to look 
at the dispositional side of these competencies too. For this competence, we found 
individual differences in 4-year-olds’ spontaneous focusing on mathematical pat-
terns (SFOP), as well as significant associations between their SFOP scores and 
their scores on the patterning and numerical ability measures, which might be 
explained via the mechanism of self-initiated practice (cf. Hannula & Lehtinen, 
2005), in line with what has already been reported for other spontaneous mathemat-
ical focusing tendencies, such as spontaneous focusing on numerosity (SFON), 
spontaneous focusing on number symbols (SFONS), and spontaneous focusing on 
mathematical relations (SFOR) (Verschaffel et al., 2020).

An outstanding strand is the understanding of the cognitive origins of individual 
differences in the abovementioned four mathematical competencies. There is a large 
body of research that has examined individual differences in children’s mathemati-
cal development (e.g., Dowker, 2005), but again, this work is largely restricted to the 
study of numerical abilities and arithmetic, both in children with high and low 
achievement in mathematics. On the one hand, this strand will be informative for the 
study of children who excel in their mathematical achievement. Research on excel-
lence in mathematics almost exclusively focused on adolescents and adults (e.g., 
Lubinski & Benbow, 2006; Preckel et al., 2020) and hardly anything is known about 
the early seeds of this excellence in elementary school and earlier. It has been posited 
that numerical and arithmetic abilities, although useful, do not necessarily represent 
the quintessence of excellence in mathematical achievement (Krutetskii, 1976). As 
the abovementioned challenging domains are mathematically more complex than 
number and arithmetic, they might allow high achievers to show their mathematical 
potential. Our longitudinal data will allow us to investigate whether children who 
excel in mathematics in Grades 2 and 3 of elementary school also excel in the above-
mentioned mathematical competencies in earlier grades of elementary school and 
even preschool, and verify to which extent this excellence can be explained by 
domain-general cognitive capacities, such as spatial skills or working memory. On 
the other hand, this strand also has implications for the study of children with low 
mathematics achievement, a research area that has traditionally been focused on the 
study of numbers and arithmetic. Our longitudinal data will also allow us to investi-
gate whether children with low achievement in mathematics are also at risk for 
developing difficulties in patterning, computational estimation, proportional reason-
ing, and probabilistic reasoning. Again, we will be able to identify to which extent 
these difficulties can be explained by domain-general cognitive capacities.
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Finally, throughout the chapter we have pointed at several places how the findings 
of our longitudinal study may contribute to the development of educational 
standards, learning trajectories, and instructional tasks and techniques that give 
mathematical patterns, computational estimation, proportional reasoning, and prob-
abilistic reasoning a more prominent place in early mathematics education. In doing 
so, these changes in the early mathematics education curriculum and practice will 
make early mathematics education more challenging and inclusive for all young 
children, and provide them a better preparation for the challenges of the mathemat-
ics curriculum of the upper elementary school. However, we are well aware that 
concrete educational recommendations should be based on findings coming from 
intervention studies that test the feasibility and effectiveness of these more chal-
lenging early mathematical curricula and designs in real educational settings.
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