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Chapter 23
Taiwanese Teachers’ Collection 
of Geometry Tasks for Classroom 
Teaching: A Cognitive Complexity 
Perspective

Hui-Yu Hsu

23.1 � Introduction

Many researchers have pointed out the crucial role of mathematical instructional 
tasks in student learning outcomes (Boston & Smith, 2009; Henningsen & Stein, 
1997; Silver & Stein, 1996; Stein et al., 1996). Mathematical tasks can direct stu-
dents’ attention to particular aspects of mathematics and structure their ways of 
thinking about mathematics (Doyle, 1983, 1988). The work students do determines 
how they think about a curricular domain and understand the meaning of mathemat-
ics. The types of tasks may also influence instruction, subsequently leading to dif-
ferent opportunities for students to learn mathematics (Doyle, 1988; Stein 
et al., 2000).

Of particular research interest is the relationship between mathematical tasks and 
the levels of cognitive demand, as this dramatically influences student learning out-
comes (Boston & Smith, 2009; Henningsen & Stein, 1997; Silver & Stein, 1996; 
Stein et al., 1996). Leikin (2014) further proposed a more comprehensive concep-
tion of mathematical tasks, namely mathematical challenge, which highlights the 
importance of students thinking of tasks as interesting, thus motivating them to 
engage with mathematically difficult tasks. One key to determining mathematical 
challenge is the cognitive complexity1 that a task entails. During instruction, teachers 

1 Cognitive complexity and cognitive demand share a similar construct that denotes task features 
entailed, which influence the kinds of cognitive processes students may need to perform to solve 
the task (Stein et al., 1996). Cognitive complexity particularly refers to cognitively demanding or 
cognitively complex tasks. It possesses features that appear to require students to engage in high-
level cognitive processes such as making connections or mathematical reasoning (Magone 
et al., 1994).
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have to maintain or increase the cognitive complexity of tasks to challenge students 
to move to a higher level of thinking (Leikin, 2009; Stein & Lane, 1996).

This study focuses on Taiwan mathematics instruction, as Taiwanese students are 
consistently in the top group in cross-national assessments (e.g., Mullis et al., 2012; 
OECD, 2014). One of the main reasons for these students’ out-performance could be 
the mathematical tasks that Taiwanese mathematics teachers collect for classroom 
teaching. Hsu and Silver (2014) examined the type of geometry tasks used by 
Taiwanese mathematics teachers. They reported several significant findings con-
cerning the collection of tasks and the cognitive complexity those tasks entail. The 
type of geometry task examined by Hsu and Silver was geometric calculation with 
numbers (GCN), which refers to tasks that involve numerical calculations done 
based on geometric properties or formulas in a geometric diagram environment. 
GCN tasks often require cognitive complexity as problem-solving requires high-
level thought and reasoning processes (Magone et al., 1994). Hsu and Silver (2014) 
reported that Taiwanese teachers used tasks not just from textbooks but from other 
sources as well, and GCN tasks from non-textbook sources tended to be more cog-
nitively challenging than those found in textbooks. This finding implies that the 
opportunity to practice tasks from non-textbook sources may be one of the critical 
factors in the superb mathematics achievements of East Asian students. Hsu and 
Silver’s study also anchored a study by Silver et al. (2009) that showed that tasks 
used by teachers for the assessment of mathematical understanding tended to have 
higher cognitive demand characteristics than tasks used to develop mathematical 
understanding.

The study reported here is a follow-up to Hsu and Silver (2014), with an attempt 
to further examining different Taiwanese teachers’ collections of sources of instruc-
tional/curricular materials from a cognitive complexity perspective. In particular, 
we intended to learn if students’ mathematics performance influences teachers’ col-
lection of tasks. The research question for the study was as follows:

What is the cognitive complexity of geometry tasks collected by Taiwanese mathematics 
teachers, and does the cognitive complexity of geometry tasks differ between schools with 
different mathematics performance levels?

23.2 � Analytical Framework

Hsu and Silver (2014) extended the construct of cognitive complexity and proposed 
an analytical framework that can examine the cognitive complexity of geometry 
tasks. As shown in Fig. 23.1, the analytical framework includes two dimensions—
diagram complexity and problem-solving complexity—each of which describes the 
kind of cognitive activity involved in geometry problem-solving. Diagram com-
plexity refers to the segments and lines comprising a geometric diagram, which can 
influence cognitive complexity in solving geometry problems. Problem-solving 
complexity identifies four kinds of cognitive activity involved in geometry problem-
solving processes. The details of each category of the dimensions are as follows.

H.-Y. Hsu



433

Diagram Complexity

Segments deleted from reference 

diagram

Original vertices influenced be-

cause of the deleted segments

New segments added to reference 

diagram

Original vertices influenced be-

cause of the added segments

New vertices formed because of 

the added segments

Problem-Solving
Complexity

Auxiliary lines

Diagram Transformations 

Solution steps 

Required geometric properties 

Slide Turn Flip

Fig. 23.1  The cognitive-complexity framework (Hsu & Silver, 2014)

23.2.1 � Diagram Complexity Dimension

Hsu and Silver (2014) recognized the cognitive complexity that a geometric diagram 
might cause. The psychology literature confirms that the schemas used in problem-
solving processes are strongly tied to diagrams, especially when dealing with high-
level cognitive activities (Carlson et al., 2003; Greeno, 1978; Koedinger & Anderson, 
1990; Larkin & Simon, 1987; Lovett & Anderson, 1994; Mousavi et  al., 1995). 
Here, schemas refer to a “cluster of knowledge that contains information about the 
core concepts, the relations between concepts and knowledge about how and when 
to use these concepts” (Chinnappan, 1998, p. 202). To this end, geometry problem 
solving requires diagram parsing to identify familiar configurations with 
corresponding schemas in the diagram, which can be used to formulate a solution 
plan by reasoning forward and backward between the givens and the goals 
(Koedinger & Anderson, 1990).

Hsu and Silver proposed the construct of reference diagrams to analyze cognitive 
complexity concerning schema searching in geometry diagrams. They used it as the 
basis to analyze diagram complexity in a geometry task. They defined a reference 
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diagram as a geometric diagram shown with a geometric property that is formally 
introduced in a textbook. A reference diagram provides a common point of contact 
through which many geometric concepts and properties are linked.

Hsu and Silver (2014) further explained the reasons for using a reference diagram 
as the basis for examining the cognitive complexity embedded in geometry 
diagrams. First, analyzing a geometry task diagram by comparing it to a reference 
diagram provides information regarding possible visual obstacles that students may 
encounter when identifying the reference diagram and its corresponding geometric 
properties in the given geometry task. Second, a reference diagram is an external 
representation (Laborde, 2005) presented in textbooks, thereby preventing coding 
inconsistencies that can arise when making inferences about the mental images of a 
diagram as processed internally by individuals.

Figure 23.2 shows a reference diagram of an isosceles triangle that is usually 
shown in textbooks. The reference diagram conveys not only the definition (e.g., 
that two of the three sides in the triangle are congruent) but also other related geo-
metric properties (e.g., the sum of the interior angles of the triangle is 180°). A ref-
erence diagram also possesses visual features that can help draw attention to the 
salient geometric properties. For instance, one can easily recognize the congruence 
of the segments in an isosceles triangle. Figure 23.2 presents its reference diagram 
that has the lengths of the two congruent legs standing symmetrically on the two 
sides with the base side on the bottom parallel to the horizontal axis.

The categories of diagram complexity describe how a diagram given in a 
geometry task is altered compared to a reference diagram. Diagram complexity 
includes five categories used to describe the changes in terms of segments and 
vertices in a geometric diagram. Those five categories are the number of segments 
deleted from the reference diagram (category 1), the number of original vertices 
influenced by the deleted segments (category 2), the number of segments added to 
the reference diagram (category 3), the number of original vertices influenced by 
the added segments (category 4), and the number of new vertices created because of 
the added segments (category 5). One can see the details of analyzing diagram 
complexity for a geometry task along with the five categories in 2.3 in the session.

23.2.2 � Problem-Solving Complexity Dimension

The problem-solving complexity in the analytical framework includes four 
categories, each of which refers to the cognitive processing that appears to be 
essential in geometry problem-solving. The categories are auxiliary lines, solution 
steps, required geometric properties, and diagram transformations.

Fig. 23.2  Reference 
diagram for an isosceles 
triangle
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The auxiliary lines category concerns cognitive complexity in analyzing 
geometry tasks to determine if drawing auxiliary lines is needed and, if so, where to 
draw the lines such that new subconfigurations and new geometric properties can be 
created and used to generate a solution. Drawing the lines requires recalling prior 
knowledge and previous problem-solving experiences (Pólya, 1945; 2nd edition 
1957). Drawing auxiliary lines on a diagram is often cognitively demanding. It 
forces one to anticipate creating subconfigurations associated with corresponding 
geometric properties that can be used to generate a solution plan.

The solution steps category involves the analysis of the reasoning steps required 
to obtain a solution. A reasoning step is defined as a problem-solving action taken 
based on a geometric property. Hsu and Silver (2014) counted the number of rea-
soning steps required to solve a geometry task, as the number can significantly 
influence cognitive demand. Researchers have indicated that generating a multi-step 
solution is cognitively demanding as it requires students to identify geometric prop-
erties for each reasoning step and chain the reasoning steps into a logic sequence 
(Ayres & Sweller, 1990; Heinze et al., 2005). Thus, the number can be an indicator 
used to describe cognitive complexity in reasoning a geometry task. It is also recog-
nized that a geometry task can be solved in multiple ways, which might lead to 
different numbers of reasoning steps. Hsu and Silver (2014) stipulated that the solu-
tion used to classify the number of steps for a task should require the minimum 
number of reasoning steps to obtain the correct answer. They noted that each rea-
soning step in the solution should be supported by a geometric property that stu-
dents have learned or will learn in the current instructional unit. Thus, classifying 
geometry tasks based on the minimum number of reasoning steps provides informa-
tion regarding what prior geometric knowledge students have to access to success-
fully solve the tasks.

In addition to using the solution steps to describe the cognitive complexity of a 
geometry task, Hsu and Silver (2014) also considered the analysis of the number of 
geometric properties needed for a solution. They included this category because the 
number of geometric properties needed to solve a geometry task may not be the 
same as the number of solution steps. The reason is that different reasoning steps in 
a solution may require using the same geometric property. Analyzing the number of 
geometric properties required in a solution could provide richer information for 
describing the cognitive complexity of a geometry task. Geometric properties are 
those geometric statements or definitions that have been formally introduced in 
textbooks.

The diagram transformation category focuses on analyzing the cognitive 
complexity involved in diagram transformations (e.g., rotating). When solving a 
geometry task, one may need to perform a diagram transformation to map reference 
diagrams onto the task diagram. The performance enables recognizing and retriev-
ing the geometric properties embedded in subconfigurations in the diagram. The 
mapping process requires mentally or physically transforming the reference dia-
grams to check if they resemble a diagram configuration in the geometry task. 
Operations on diagrams cause cognitive challenges for students as the orientation 
and position of a geometry task diagram may influence the identification of the 
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corresponding reference diagrams (Fischbein & Nachlieli, 1998). Hsu and Silver 
(2014) included three types of diagram transformation in this category: slide (trans-
lation), turn (rotation), and flip (reflection).

The analytical framework proposed by Hsu and Silver allows one to systematically 
and scientifically analyze geometry tasks without constraints caused by the diversity 
of students’ prior knowledge and learning experiences. This is because the basis for 
analysis is the geometric properties and diagrams presented in textbooks. As the 
properties and reference diagrams offered in textbooks are the materials used by 
students to learn, analysis based on the proposed framework is still closely tied to 
student cognition.

23.2.3 � Analysis Examples of GCN Tasks

To unpack the cognitive complexity embedded in a GCN task, we provide two 
analysis examples based on the analytical framework (see Table 23.1).

Task A is considered as a low cognitive-complexity task, whereas Task B is a 
high cognitive-complexity task. Details of the analysis of Task B can be seen in the 
appendix as an external link to Hsu and Silver (2014). The elaboration of the cogni-
tive complexity of the two tasks begins from the problem-solving dimension. The 
problem-solving processes influence the cognitive complexity related to decompos-
ing and recomposing diagram configurations into subconfigurations in order to 
retrieve the geometric properties for a solution (Gal & Linchevski, 2010; Hsu & 
Silver, 2014).

Analysis Based on the Categories in Problem-Solving Complexity Dimension
Solving Task A does not require the cognitive work of drawing the auxiliary line as 
the given information is enough to generate a solution. However, Task B cannot be 
solved unless an auxiliary line is drawn. Figure 23.3 shows a strategy to draw an 

Table 23.1  Descriptions of two GCN tasks

Task A Task B

The given 
diagram

The written task Given that L1‖L2 and L 
intersects L1 and L2, and 
m ∠ 1 = 66°.
Find m∠5.

In a quadrilateral ABCD, given that 
AD‖BC and AD = 10, BC = 16, AB = 6, 
m ∠ DCB = 48°.
Find m ∠ BAD.
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Fig. 23.3  The drawing of 
auxiliary line AO

auxiliary line AO such that AO is parallel to DC. The drawing of the auxiliary line 
allows one to reason that ABCD is a parallelogram as well as OC = 10 and BO = 6.

Table 23.2 shows the minimum solution steps and the geometric properties 
required as supportive reasons for Task A and Task B. As can be seen, Task A can 
be solved in one reasoning step and with one geometry property. In contrast, Task B 
involves higher cognitive complexity as it requires five reasoning steps and five 
geometric properties to find the answer.

Concerning the analysis of diagram transformation, it has to identify reference 
diagrams corresponding to each geometric property required in the solution (see 
Table 23.3). Identifying individual reference diagrams forms the basis for analyzing 
what transformation actions are needed to map the reference diagrams onto the 
GCN task diagram. After checking the reference diagrams for the geometric proper-
ties required in the solution, diagram transformations are examined. For Task A, as 
its task diagram structure is the same as that of the reference diagram (e.g., a pair of 
parallel lines and a transversal), no diagram transformation action is needed. 
However, Task B necessitates diagram transformations to map the reference dia-
grams onto the GCN task diagram (see Table 23.4). As a result, five diagram trans-
formation actions are required for Task B.

Analysis Based on the Categories in Diagram Complexity Dimension
For Task A, as its task diagram shares the same structure as the reference diagram, 
the analysis of diagram complexity is denoted as 0 because no changes in terms of 
the segments and vertices can be identified. For Task B, one of the reference dia-
grams shown in Table 23.3 is used as the basis for the analysis of its diagram com-
plexity. The reference diagram for the corresponding angles property is determined 
as the basis for the analysis of diagram complexity because the geometric property 
is one of the main contents to be learned in the lessons. Figure 23.4 shows how the 
reference diagram for the corresponding angles property resembles part of the Task 
B diagram. The diagram shown on the left side in Fig. 23.4 is the reference diagram 
for the corresponding angles property. The diagram shown on the right side is how 
the reference diagram resembles the GCN task diagram.

The analysis of diagram complexity along with the five categories is used to 
describe the changes to the reference diagram so that it becomes the Task B dia-
gram. As shown in Table 23.5, the analysis of diagram complexity for Task B based 
on the analytical framework shows ten changes.

Table 23.6 summarizes the analysis results for Task A and Task B based on the 
categories of problem-solving complexity and diagram complexity in the analytical 
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framework. As can be seen, the coding for Task A is denoted as 2, whereas that for 
Task B is 26. The numbers allow one to understand how geometry tasks are made 
cognitively complex based on the requirements with respect to diagram complexity 
and problem-solving complexity. The bigger the coding number, the more cognitive 
complexity the GCN task entails.

23.3 � Methodology

23.3.1 � Selection of Teachers

To select subjects for this study, we first searched for experienced Taiwanese 
mathematics teachers with more than 5 years of teaching experience who were 
willing to participate in the study. We then checked if those teachers taught eighth-
grade students because a geometry topic designed for those students was the focus 
of the analysis. We then identified students’ overall mathematics performance in the 
schools those teachers taught. In Taiwan, student mathematics performance varies 
between schools, which can be due to factors such as school reputation, the socio-
economic status of the students’ parents, and residential areas (e.g., remote areas) 
(Huang, 2017). In general, overall student mathematics performance in a school 
does not change much over the years. We decided to use overall school mathematics 
performance as an indicator for the students taught by the teachers who participated 
in the study. The first reason was that students in the same school have to be ran-
domly grouped into classes. Thus, overall school mathematics performance can rep-
resent the students in classes due to the random assignment process.

The second reason was that overall school mathematics performance on high 
school entrance examinations could be obtained, which allowed a fair comparison 
among the classes the participating teachers taught. Taiwan’s high school entrance 
examination is a nationwide examination that has to be taken by Taiwanese middle 
school students as they need an examination score to apply to high schools. The 
examination ranks students as level A, B, or C, where A represents a high-perfor-
mance level, and C indicates a low-performance level. According to a report on the 
mathematics subject in the high school entrance examination (Comprehensive 
Assessment Program for Junior High School Students, 2020), 22% of students who 
took the examination were identified as level A, 50% were identified as level B, and 
about 28% were identified as Level C. We considered a school as having high math-
ematics performance if more than 50% of its students achieved level A, middle 
performance if more than 50% of its students achieved level B. Low performance if 
more than 50% of its students identified as level C. In the end, a total of six Taiwanese 
mathematics teachers participated in the study. Two of them represented high math-
ematics performance schools, two middle mathematics performance schools, and 
two low mathematics performance schools.
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As shown in Table 23.7, the highest number of years of teaching was 27, and the 
lowest was 5. The mathematics teachers’ majors were either in mathematics or 
mathematics-related areas (e.g., mathematics education). Teacher Jyu and Teacher 
Ing taught at high math performance schools; Teacher Sheng and Teacher Yao 
taught at middle math performance schools; Teacher May and Teacher Wen taught 
at the same school identified as a low math performance school.

23.3.2 � Data Collection

The teaching of a geometric topic—properties related to parallel lines—in eighth-
grade textbooks in Taiwan was the data collection context. The instructional goals 
set up with the geometric topic included helping students become familiar with 
geometric properties related to parallel lines and the concept of geometric proofs. In 
this regard, a high percentage of GCN tasks were included in the textbooks. All 
mathematical tasks situated in sources of instructional/curricular materials collected 
by the six teachers when they taught the geometric topic were the data for the analy-
sis. The six teachers’ teaching of the geometric topic was videotaped and analyzed. 
As a result, four sources of instructional materials were identified, including text-
books, supplementary materials, tests, and tasks created by the teacher during class-
room teaching. The textbooks included both student textbooks and student 
workbooks. Different textbooks published in Taiwan all have to be evaluated based 
on the national mathematics curriculum, but the mathematical tasks included in the 
textbooks can be slightly different. The student textbook contained both instruc-
tional blocks comprised of diverse mathematical activities (e.g., diagram construc-
tion and proving) and exercise blocks. The student workbook included additional 
exercises for students to practice.

Teachers may feel that textbooks and workbooks are not enough for their students 
and decide to include supplementary materials for classroom teaching. 
Supplementary materials are either designed by mathematics teachers themselves 
or are published by textbook companies. No matter whether designed by mathemat-
ics teachers or by textbook publishers, supplementary materials usually have several 
characteristics. First, they are often arranged in the same sequence as textbooks. 
Second, they often include a large number of tasks. Third, they usually summarize 
the main mathematical content (e.g., definitions and geometry properties). Four out 
of the six teachers in our sample used supplementary materials for their teaching. 
However, the underlying reasons for the use of supplementary materials were differ-
ent. Teacher Jyu indicated that she thinks textbooks are too easy to prepare students 
to obtain high scores on examinations. Thus, she decided to include supplementary 
materials in her teaching. Teacher Wen pointed out that she uses supplementary 
materials as they can provide students with extra opportunities to practice tasks and 
learn mathematical concepts. In particular, she indicated that she often chooses 
supplementary materials that include tasks with similar cognitive complexity to 
those included in textbooks.

23  Taiwanese Teachers’ Collection of Geometry Tasks for Classroom Teaching…
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Another primary source of curricular/instructional material collected during 
classroom teaching was the tests often used for formative or summative purposes. 
Teachers may use tests to evaluate students’ learning outcomes or assign test sheets 
as homework. All six teachers used tests in their teaching. In addition, they all cre-
ated tasks as they thought those tasks would benefit student learning during class-
room teaching. Table 23.7 shows the number of pages and tasks for each source of 
curricular/instructional materials collected by the six teachers. Table 23.7 also pres-
ents the number of lessons each teacher spent on teaching the geometric topic. In 
Taiwan, a lesson at the middle school level lasts for 45 minutes.

Interviews with the teachers were also implemented to better understand the 
reasons underlying their collection of tasks situated in sources of instructional/
curricular materials.

23.3.3 � Data Analysis

The data analysis started by identifying the types of tasks from the different kinds 
of instructional/curricular material collected from the six Taiwanese mathematics 
teachers. Different task types were identified, including exploration activities, geo-
metric proof (GP) tasks, GCN tasks, geometric algebra (GA) tasks, and diagram 
construction tasks. Exploration refers to those activities that aim to help students 
understand geometric concepts through manipulation work. Construction refers to 
the work of drawing a geometric diagram using a compass and straightedge. 
Regarding the similarities and differences among GCN, GA, and GP, Table 23.8 
shows examples of the three kinds of tasks. As can be seen, the three tasks use the 
same diagrams and given information to describe the diagram. The only difference 
among the three tasks is that GCN includes numerical information that can be used 
to reason unknown measures. GA requires applying algebraic skills in order to 
obtain a solution. GP involves finding reasons based on geometric properties that 
can be used to prove that a statement is always true. We counted the number of each 
type of task situated in the sources of instructional/curricular materials, where a task 
was defined as a problem asking for an answer (Charalambous et al., 2010).

After identifying a GCN task from sources of curricular/instructional materials, 
the problem-solving complexity dimension with its four analysis categories (auxil-
iary lines, solution steps, required geometric properties, and rigid transformation) 
was performed. The number of minimum solution steps was determined, which 
consequently became the basis for checking if drawing auxiliary lines was neces-
sary. We also counted the number of geometric properties used to support the rea-
soning steps in the identified solution. In particular, we checked if those geometric 
properties had been formally introduced in the textbooks or had been learned previ-
ously by the students. Any geometric properties that 8th grade students have not 
learned were excluded, even if they could be used to generate a solution to a GCN 
task. The task analysis then focused on identifying diagram transformations with 
sliding, turning, and flipping actions. The diagram transformation analysis required 

23  Taiwanese Teachers’ Collection of Geometry Tasks for Classroom Teaching…
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the presence of given diagrams in the GCN tasks. Tasks in which a diagram was not 
provided were excluded. The minimum number of transformation actions necessary 
to map the reference diagrams representing the identified solution’s geometric prop-
erties onto the given GCN task diagram was determined.

The next step was to analyze the diagram complexity of the GCN task. We 
determined the reference diagram as the basis for the examination of diagram 
complexity in a GCN task. As a solution often is generated by more than one 
geometric property, the reference diagram was decided based on two criteria. The 
first was that the reference diagram identified had to correspond to the geometric 
properties needed to obtain the minimum number of solution steps in a GCN task. 
The second was that the identified reference diagram represented one of the to-be-
learned geometric properties in the current teaching topic. Once a reference diagram 
was determined for a GCN task, diagram complexity and its five coding categories 
were analyzed. Finally, we counted the number of changes needed to transform a 
reference diagram into a GCN task diagram and used the number to describe the 
GCN task’s diagram complexity.

The author and a coder were responsible for the data analysis. To ensure the 
consistency of the coding results, tasks that were difficult to classify were selected 
for checking their reliability. Two coders analyzed those complex tasks individually 
and then discussed the coding results together. If an inconsistency occurred, both 
coders discussed the inconsistency until an agreement was reached. Regarding the 
interviews, we used a back-and-forth analysis process. Once we found something 
interesting from the data analysis, we showed those findings to the teachers to learn 
the reasons. It was also possible for the teachers’ responses from the interviews to 
inform how we analyzed the collected data.

23.4 � Results

23.4.1 � Collections of Types of Mathematical 
Instructional Tasks

Among the multiple sources of instructional/curricular materials collected from the 
six teachers, we first identified the types of tasks and activities. Table 23.9 shows the 
types of tasks and the number that the six teachers collected. As can be seen, the 
types of tasks collected by the teachers included exploration activities, diagram con-
struction activities, GCN tasks, GP tasks, and GA tasks. It is worth noting that 
teachers who taught in high mathematics performance schools collected more tasks 
than those teaching in middle and low mathematics performance schools (Teacher 
Jyu: 371 tasks; Teacher Ing: 214 tasks; Teacher Seng: 110 tasks; Teacher Yao: 110 
tasks; Teacher May: 135 tasks; Teacher Wen: 140 tasks). It is recognized that tasks 
may entail different cognitive complexity and may be used in different ways (e.g., 
worked example vs. exercise) and for different instructional purposes (e.g., 
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understanding the mathematical concept vs. applying the concept to a more com-
plex task context). We found that high mathematics performance school teachers 
were inclined to collect more tasks for their students. Teacher Jyu said the following:

I intended to include a high amount of tasks for my students as they can learn mathematics 
from a variety of tasks….By practicing the tasks, they can correct their misconceptions and 
understand what they did not understand previously….This is a very useful strategy to 
prepare students for the high school entrance examination.” (Transcript of interview data, 
20200302)

Among the types of tasks, GCN tasks occupied the highest percentage of tasks 
collected by the six teachers (Teacher Jyu: 62%; Teacher Ing: 62%; Teacher Sheng: 
76%; Teacher Yao: 69%; Teacher May: 70%; Teacher Wen: 66%). The result made 
it reasonable to compare the cognitive complexity of the tasks collected for class-
room teaching among the teachers. In addition, for the high and middle mathemat-
ics performance schools, the second-highest percentage of tasks collected by the 
teachers was GP tasks (Teacher Jyu: 19%; Teacher Ing: 21%; Teacher Sheng: 9%; 
Teacher: Yao 20%). Interviews with those teachers showed that they think their stu-
dents can learn proofs even though textbooks do not include tasks that require stu-
dents to construct geometric proofs themselves. For the low mathematics 
performance schools, the second-highest percentage of tasks collected for class-
room teaching was GA (14% for both Teacher May and Teacher Wen). High-
performance schools also used many GA tasks for teaching (Teacher Jyu: 16%; 
Teacher Ing: 14%). Only Teacher Wen included exploration tasks in her classroom 
teaching (5%).

23.4.2 � Cognitive Complexity of the Tasks Collected by 
Taiwanese Teachers

We further examined the cognitive complexity of the GCN tasks collected by the six 
teachers. Table 23.10 shows the number of GCN tasks analyzed and the average 
diagram complexity, problem-solving complexity, and cognitive complexity for 
each teacher. Only GCN tasks accompanied by diagrams collected by the teachers 
were surveyed. As shown in Table 23.10, the tasks collected by the six teachers 
tended to entail both diagram complexity and problem-solving complexity, no mat-
ter if they taught at high mathematics performance or low mathematics performance 
schools. The average diagram complexity for the GCN tasks collected by all six 
teachers was 6.52, indicating that a GCN task was made about seven changes on 
average. The average problem-solving complexity was 5.39, implying that the GCN 
tasks were inclined to require multiple reasoning steps, multiple geometric proper-
ties for a solution, and the performance of diagram transformation. It is also likely 
that those GCN tasks asked students to draw auxiliary lines to obtain enough geo-
metric properties to generate a solution. The average cognitive complexity for the 
GCN tasks collected by all six teachers was 11.90.
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452

Ta
bl

e 
23

.1
0 

C
og

ni
tiv

e 
co

m
pl

ex
ity

 o
f 

th
e 

G
C

N
 ta

sk
s 

co
lle

ct
ed

 b
y 

th
e 

te
ac

he
rs

Te
ac

he
r

M
at

h 
pe

rf
or

m
an

ce
N

um
be

r 
of

 ta
sk

s
D

ia
gr

am
 c

om
pl

ex
ity

Pr
ob

le
m

-s
ol

vi
ng

 c
om

pl
ex

ity
C

og
ni

tiv
e 

co
m

pl
ex

ity
A

ve
ra

ge

Jy
u

H
ig

h
21

6a
6.

95
5.

44
12

.4
0

13
.2

3
In

g
H

ig
h

12
9

8.
87

5.
76

14
.6

3
Sh

en
g

M
id

dl
e

80
5.

65
5.

61
11

.2
6

11
.0

8
Y

ao
M

id
dl

e
74

6.
54

4.
35

10
.8

9
M

ay
L

ow
94

5.
63

4.
88

10
.5

0
10

.4
4

W
en

L
ow

92
5.

53
4.

85
10

.3
7

A
ve

ra
ge

11
4.

17
6.

52
5.

39
11

.9
0

11
.9

0
a T

he
 n

um
be

r 
of

 G
C

N
 ta

sk
s 

re
fe

rs
 to

 th
os

e 
ac

co
m

pa
ny

in
g 

a 
di

ag
ra

m
, w

hi
ch

 m
ay

 b
e 

in
co

ns
is

te
nt

 w
ith

 th
e 

nu
m

be
r 

of
 G

C
N

 ta
sk

s 
re

po
rt

ed
 in

 T
ab

le
 2

3.
9

H.-Y. Hsu



453

Of interest is the relationship between school mathematics performance and the 
cognitive complexity of GCN tasks. Table 23.10 shows that the better the mathe-
matics performance of a school, the higher the cognitive complexity of the tasks that 
the teachers tended to collect for their students. The average cognitive complexity 
for Teacher Jyu and Teacher Ing, who taught high mathematics performance stu-
dents, was the highest (13.23). The average cognitive complexity for Teacher May 
and Teacher Wen, who taught lower mathematics performance students, was the 
lowest (10.44). The average cognitive complexity for Teacher Sheng and Teacher 
Yao was in between, at 11.08. This finding shows that Taiwanese mathematics 
teachers consider cognitive complexity when collecting tasks from sources of 
instructional/curricular materials for classroom teaching.

23.4.3 � Cognitive Complexity of Tasks Situated in Sources 
of Curricular/Instructional Materials

Four sources of instructional/curricular materials were identified from the six 
Taiwanese teachers, including textbooks, supplementary materials, tests, and tasks 
created by the teachers during classroom teaching. Table 23.11 shows the analysis 
of the cognitive complexity specific to each source of instructional/curricular mate-
rials collected by the six teachers. As can be seen, textbooks collected by the teach-
ers possessed lower cognitive complexity than non-textbook sources. The average 
cognitive complexity of tasks situated in textbooks was 9.15. For the six teachers, 
the cognitive complexity of the tasks situated in the textbooks they used was similar. 
Cognitive complexity was 9.21 for Teacher Jyu, 9.82 for Teacher Ing, 9.12 for 
Teacher Sheng, 9.74 for Teacher Yao, and 9.12 for Teacher May and Teacher Wen.

The average cognitive complexity of the tasks situated in supplementary materials 
was slightly higher than that in textbooks, which was 10.7. Four out of the six 
teachers used supplementary materials in their teaching. An analysis of the supple-
mentary materials showed that the cognitive complexity of the tasks collected by 
Teacher Ing (14.68) was much higher than those managed by Teacher Jyu (9.68), 
Teacher May (11.65), and Teacher Wen (11.65). Of interest is that the cognitive 
complexity of the tasks situated in supplementary materials used by Teacher Jyu, 
who taught high mathematics performance students, was lower than those used by 
Teacher May and Teacher Wen, who taught low mathematics performance students.

The interviews with Teacher Jyu and Teacher Wen revealed the underlying 
reason. Teacher Jyu said

...The supplementary materials used in my classes were designed by my colleagues and 
me….I use it [supplementary materials] for my teaching…but not the textbooks…because 
we have our own ideas on selecting tasks and sequencing them for our students….We use 
the materials to develop students mathematics concepts. (Transcript of interview data, 
20190810)

23  Taiwanese Teachers’ Collection of Geometry Tasks for Classroom Teaching…
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Teacher Jyu indicated that she and her school colleagues write supplementary 
materials themselves and use them for classroom teaching. They use supplementary 
materials to scaffold students in building up new mathematical concepts. For the use 
of supplementary materials, Teacher Wen said

….We often use textbooks to teach our students as our students’ mathematics is not very 
good….However, sometimes we select more challenging tasks from supplementary materi-
als and discuss the tasks with our students….Even our students do not perform mathematics 
very well, they can learn from practicing those tasks from the supplementary materials 
(Transcript of interview data, 20190810)

Teacher Wen expressed a different way of using supplementary materials. She 
thinks textbooks are the appropriate instructional materials that fit her students’ 
mathematical competence. Thus, Teacher Wen often teaches students mainly based 
on textbooks. Concerning the supplementary materials, she thinks they can provide 
her students with more opportunities to practice mathematics. In this regard, she 
collects tasks from supplementary materials to challenge her students. Different 
ways of using supplementary materials also influence the design of tasks concern-
ing cognitive complexity. If the materials are used to help students build up mathe-
matical concepts, the tasks included in the materials cannot be too cognitively 
demanding. If the materials are used to create more opportunities to practice math-
ematics, the tasks’ cognitive complexity will increase.

The cognitive complexity of tests and tasks created by the teachers was much 
higher than those in textbooks and supplementary materials (cognitive complexity 
in tests: 15.10; cognitive complexity in tasks created by teachers: 17.69). The data 
shows that teachers intended to collect more cognitively complex tasks for forma-
tive and summative assessment purposes. They were also inclined to use very cog-
nitively demanding tasks created by themselves during classroom teaching. The 
cognitive complexity of the tasks situated in the tests for Teacher Jyu was 15.89, for 
Teacher Ing was 17.45, for Teacher Sheng was 14.43, for Teacher Yao was 14.76, 
and for both Teacher May and Teacher Wen was 12.29. This finding reveals that the 
better the student’s mathematics performance, the higher the cognitive complexity 
of the tasks in tests the teachers collected. Regarding the cognitive complexity of 
tasks created by the teachers, it was also higher than that of tasks in textbooks and 
supplementary materials (19.67 for Teacher Jyu, 42 for Teacher Ing, 16.5 for 
Teacher Sheng, and 16.5 for Teacher May). This finding suggests that the teachers 
tended to create more cognitively complex tasks during their classroom teaching.

23.5 � Discussion

As Taiwanese students consistently perform at the top in cross-national mathematics 
assessments, this study investigated how Taiwanese mathematics teachers collect 
mathematical instructional tasks for their students. In particular, we examined if the 
mathematics performance of schools influences teachers in collecting tasks for their 
students. Based on the cognitive-complexity framework developed by Hsu and 
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Silver (2014), we analyzed six Taiwanese mathematics teachers who represented 
schools with different levels of mathematics performance.

The empirical analysis revealed that Taiwanese mathematics teachers tended to 
collect geometry tasks that entailed diagram complexity and problem-solving com-
plexity, no matter the level of mathematics performance at the school where they 
taught. The diagrams accompanying geometry tasks are made complex, so they may 
not look like the reference diagrams accompanying geometric properties. The com-
plex diagrams may consequently cause visual obstacles in identifying geometric 
properties that can be used to generate a solution to a geometry task. The geometry 
tasks collected by Taiwanese mathematics teachers also tended to require multiple 
reasoning steps and multiple geometric properties for a solution. Such tasks may 
also require the cognitive work of performing diagram transformations to identify 
the geometric properties embedded in the task diagrams successfully. The cognitive 
work required of solving various cognitive-complexity and non-routine tasks may 
subsequently equip Taiwanese students with abilities to attack high-level problems 
found in cross-national mathematics assessments (e.g., PISA and TIMSS).

The analysis also showed that the mathematics performance in the schools where 
the teachers taught did influence their collection of geometry tasks. The better the 
mathematics performance of the school, the higher the cognitive complexity of the 
geometry tasks the teacher collected. In addition, the cognitive complexity of tasks 
collected from non-textbook sources was higher than those from textbooks. Tasks 
situated in tests and those created by the teachers possessed the most increased 
cognitive complexity compared to textbooks and supplementary materials. Hsu and 
Silver (2014) reported a case study of a Taiwanese mathematics teacher. They indi-
cated a tendency to include multiple sources of instructional/curricular materials 
with high cognitive-complexity tasks for classroom teaching. This study further 
confirmed this tendency by examining six Taiwanese mathematics teachers who 
taught students with different levels of mathematics performance.

Although the tasks situated in multiple instructional/curricular materials entail 
cognitive complexity, Taiwanese teachers consider students’ mathematics perfor-
mance when collecting tasks for classroom teaching. This finding implies a cultural 
script (Stigler & Hiebert, 1998) for teaching in East Asian countries, as teachers 
tend to increase the cognitive complexity as much as they can through the collection 
of tasks. Meanwhile, they also have to consider students’ mathematics competence 
when collecting the tasks. The finding also brings several follow-up research ques-
tions. For example, researchers have indicated that challenging students by main-
taining or increasing the cognitive complexity of tasks is vital for high-quality 
instruction (Leikin, 2009; Stein & Lane, 1996). In this regard, it is important to 
know how Taiwanese teachers manage to teach with those cognitive complexity 
tasks, especially when teaching in Taiwan is often described as teacher-centered 
(Lin & Tsao, 1999). Researchers from other countries may also expect to know the 
keys to determining the high quality of student learning outcomes. Can it be the case 
that collecting the cognitive complexity of tasks for classroom teaching ensures the 
high quality of student learning outcomes? Those questions require further 
investigations.

H.-Y. Hsu
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