
Research in Mathematics Education
Series Editors: Jinfa Cai · James A. Middleton

Roza Leikin   Editor

Mathematical 
Challenges 
For All



Research in Mathematics Education

Series Editors

Jinfa Cai, Newark, DE, USA

James A. Middleton, Tempe, AZ, USA



This series is designed to produce thematic volumes, allowing researchers to access 
numerous studies on a theme in a single, peer-reviewed source. Our intent for this 
series is to publish the latest research in the field in a timely fashion. This design is 
particularly geared toward highlighting the work of promising graduate students 
and junior faculty working in conjunction with senior scholars. The audience for 
this monograph series consists of those in the intersection between researchers and 
mathematics education leaders—people who need the highest quality research, 
methodological rigor, and potentially transformative implications ready at hand to 
help them make decisions regarding the improvement of teaching, learning, policy, 
and practice. With this vision, our mission of this book series is: (1) To support the 
sharing of critical research findings among members of the mathematics education 
community; (2) To support graduate students and junior faculty and induct them 
into the research community by pairing them with senior faculty in the production 
of the highest quality peer-reviewed research papers; and (3) To support the 
usefulness and widespread adoption of research-based innovation.



Roza Leikin
Editor

Mathematical Challenges  
For All



ISSN 2570-4729     ISSN 2570-4737 (electronic)
Research in Mathematics Education
ISBN 978-3-031-18867-1    ISBN 978-3-031-18868-8 (eBook)
https://doi.org/10.1007/978-3-031-18868-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editor
Roza Leikin
Department of Mathematics Education, Faculty of Education, RANGE Center
University of Haifa
Haifa, Israel

https://doi.org/10.1007/978-3-031-18868-8


v

Contents

 1   Introduction to Mathematical Challenges  
for All Unraveling the Intricacy of Mathematical Challenge . . . . . . .    1
Roza Leikin

Part I  Mathematical Challenges in Curriculum  
and Instructional Design
Editors: Demetra Pitta-Pantazi and Constantinos Christou

 2   Introduction to Part I of Mathematical Challenges For All: 
Mathematical Challenges in Curriculum  
and Instructional Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19
Demetra Pitta-Pantazi and Constantinos Christou

 3   Development and Stimulation of Early Core  
Mathematical Competencies in Young Children:  
Results from the Leuven Wis & C Project . . . . . . . . . . . . . . . . . . . . . .   25
L. Verschaffel, B. De Smedt, K. Luwel, P. Onghena, J. Torbeyns,  
and W. Van Dooren

 4   Mathematical Modelling as a Stimulus for Curriculum  
and Instructional Reform in Secondary School Mathematics  . . . . . .   51
Merrilyn Goos, Niamh O’Meara, Patrick Johnson,  
Olivia Fitzmaurice, and Aoife Guerin

 5   Personalized Mathematics and Mathematics Inquiry:  
A Design Framework for Mathematics Textbooks  . . . . . . . . . . . . . . .   71
Constantinos Christou, Demetra Pitta-Pantazi, Marios Pittalis,  
Eleni Demosthenous, and Maria Chimoni

 6   Math-Key Program: Opening Mathematical Minds  
by Means of Open Tasks Supported by Dynamic Applets  . . . . . . . . .   93
Roza Leikin, Sigal Klein, Regina Ovodenko, Irina Gurevitch,  
Sariga Dinur, and Yael Leen



vi

 7   Making Mathematics Challenging Through Problem  
Posing in the Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
Jinfa Cai and Stephen Hwang

 8   Challenging Students to Develop Mathematical Reasoning . . . . . . . .  147
João Pedro da Ponte, Joana Mata-Pereira, and Marisa Quaresma

 9   Mathematical Argumentation in Small- Group Discussions  
of Complex Mathematical Tasks in Elementary  
Teacher Education Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
Gwendolyn M. Lloyd and P. Karen Murphy

 10   Commentary to Part I of Mathematical Challenges  
For All: Commentary on ‘Challenge’ in Terms  
of Curriculum Materials and Tasks, the Teacher’s Role  
and the Curriculum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Jeremy Hodgen

Part II  Kinds and Variation of Mathematically  
Challenging Tasks
Editor: Rina Zazkis

 11   Introduction to Part II of Mathematical Challenges  
For All: Many Faces of Mathematical Challenge. . . . . . . . . . . . . . . . .  209
Rina Zazkis

 12   Probing Beneath the Surface of Resisting  
and Accepting Challenges in the Mathematics Classroom . . . . . . . . .  219
John Mason

 13   Mathematical Challenge in Connecting Advanced  
and Secondary Mathematics: Recognizing Binary  
Operations as Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
Nicholas H. Wasserman

 14   Mathematical Challenge of Seeking Causality in Unexpected Results  261
Mark Applebaum and Rina Zazkis

 15   Visualization: A Pathway to Mathematical Challenging Tasks  . . . . .  283
Isabel Vale and Ana Barbosa

 16   Towards a Socio-material Reframing of Mathematically  
Challenging Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
Nathalie Sinclair and Francesca Ferrara

 17   Creativity and Challenge: Task Complexity as a Function  
of Insight and Multiplicity of Solutions  . . . . . . . . . . . . . . . . . . . . . . . .  325
Roza Leikin and Raisa Guberman

 18   Challenging Undergraduate Students’ Mathematical  
and Pedagogical Discourses Through MathTASK Activities  . . . . . . .  343
Irene Biza and Elena Nardi

Contents



vii

 19   Commentary on Part II of Mathematical Challenges  
For All: Making Mathematics Difficult? What Could  
Make a Mathematical Challenge Challenging? . . . . . . . . . . . . . . . . . .  365
David Pimm

Part III  Collections of Mathematical Problems
Editor: Alexander Karp

 20   Introduction to Part III of Mathematical Challenges  
For All: In Search of Effectiveness and Meaningfulness . . . . . . . . . . .  373
Alexander Karp

 21   Problem Collections and “The Unity of Mathematics” . . . . . . . . . . . .  381
Hyman Bass

 22   Meeting the Challenge of Heterogeneity Through  
the Self-Differentiation Potential of Mathematical  
Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409
Rita Borromeo Ferri, Gabriele Kaiser, and Melanie Paquet

 23   Taiwanese Teachers’ Collection of Geometry Tasks  
for Classroom Teaching: A Cognitive Complexity Perspective . . . . . .  431
Hui-Yu Hsu

 24   Problem Sets in School Textbooks:  
Examples from the United States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459
Alexander Karp

 25   Exams in Russia as an Example of Problem Set Organization. . . . . .  481
Albina Marushina

 26   Complexity of Geometry Problems as a Function  
of Field-Dependency and Asymmetry of a Diagram . . . . . . . . . . . . . .  501
Ilana Waisman, Hui-Yu Hsu, and Roza Leikin

 27   Structuring Complexity of Mathematical Problems:  
Drawing Connections Between Stepped Tasks  
and Problem Posing Through Investigations . . . . . . . . . . . . . . . . . . . .  521
Roza Leikin and Haim Elgrably

 28   Flow and Variation Theory: Powerful Allies  
in Creating and Maintaining Thinking in the Classroom . . . . . . . . . .  539
Peter Liljedahl

 29   Commentary on Part III of Mathematical Challenges  
For All: On Problems, Problem-Solving,  
and Thinking Mathematically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565
Alan H. Schoenfeld

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  585

Contents



1

Chapter 1
Introduction to Mathematical Challenges 
for All Unraveling the Intricacy 
of Mathematical Challenge

Roza Leikin

1.1  Introduction

In mathematics education literature the concept of “challenging mathematics” or 
“mathematical challenge” does not frequently appear. In contrast to problem solv-
ing, problem posing, and proving, which all can be challenging for learners, math-
ematical challenge is not considered to be a core element of mathematical instruction. 
For example, Stacy and Turner (2015) mention only once “challenging mathematics 
situation that call for the activation of a particular competency” (Niss, 2015) and 
mention “mathematical challenge” three times when considering real-world context 
categories as a source of challenge (Stacy & Turner, 2015). In Li, Silver and Li 
(2014) and in Felmer et al. (2019) all instances of “mathematical challenge” are 
concentrated in chapters by Leikin (2014, 2019). Huang and Li (2017) and Hanna 
and De Villiers (2012) do not include this terminology. In Amado et  al. (2018), 
Amado and Carreira address “challenging mathematics” in their chapter, in connec-
tion to affect and aesthetics in mathematics mainly related to extracurricular activi-
ties. Amado and Carreira (2018) discuss inclusive competitions aimed at all students, 
regardless of their school achievements, through which students deal with (mathe-
matical) challenges.

The authors in this volume consider mathematical challenge essential for 
mathematical development and attempt to put it at the forefront of mathematics 
education discourse. The essence of mathematical challenge is its call for mental 
attempt appropriate to an individual or group  of individuals in association with 
positive affect evoked in the process of tackling a problem or as a result of succeeding 
in solving it.
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The 16th ICMI Study focused explicitly on the concept of “challenging 
mathematics” (Barbeau & Taylor, 2009). Barbeau regards challenge as “a question 
posed deliberately to entice its recipient to attempt a resolution, while at the same 
time stretching their understanding and knowledge of the same topic” (Barbeau, 
2009, p. 5). In the volume edited by Barbeau and Taylor, ICMI Study participants 
in eight groups discussed mathematical challenges in connection to various prac-
tices, problems, and tasks accompanied by examples of challenging mathematical 
problems. Freiman et  al. (2009) addressed “challenging mathematics” as an 
expression that describes mathematical tasks that are “enjoyable but not easy to 
deal with” (p.103) and discussed the role of educational technologies for creating 
challenging mathematics beyond the classroom at the primary level. Holton et al. 
(2009) connected challenge with “what mathematics is” (p. 2005) and argued that 
this covers content that was historically developed for, and traditionally taught in, 
school, as well as the creative side that is connected, for example, to solving an 
open problem. Holton et  al. (2009) stressed that a problem is a challenge with 
respect to the mathematical proficiency of solvers and emphasized the centrality 
of teachers’ proficiency in managing mathematical challenges. Stillman et  al. 
(2009) discussed classroom practices and heuristic behaviors associated with 
challenging mathematics. Falk de Losada et al. (2009) described curriculums and 
assessments that provide challenge in mathematics, using examples from school 
exams in Singapore and in Norway, Brazilian Olympiads, and Iranian university 
entrance exams.

The goal of the current volume is to advance the centrality of mathematical 
challenge for the mathematical development of all students, and to provide 
research- based characterization and exemplification of different types of mathe-
matical challenge. The book is composed of three interrelated sections: Part I: 
Mathematical challenges in curriculum and instructional design (edited by Demetra 
Pitta-Pantazi and Costantinos Christou); Part II: Kinds and variation of mathemati-
cally challenging tasks (edited by Rina Zazkis); and Part III: Collections of math-
ematical problems (edited by Alexander Karp). Twenty-nine chapters by 
researchers from universities from different continents present various views on 
mathematical challenges for all. All of the authors explore theoretically grounded 
ideas related to the effectiveness of mathematical instruction. Some chapters 
develop new theoretical perspectives on mathematical challenges, supported by 
empirical evidence, while in other chapters theoretical lenses from the theories of 
mathematics education are used for the analysis of mathematically challenging 
experiences. In this chapter, I suggest a theoretical framing of mathematical chal-
lenge and use this framework to connect between challenging mathematical tasks, 
challenging collections of mathematical tasks and curricular approaches to chal-
lenge-rich mathematical instruction.

R. Leikin
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1.2  Challenge as a Springboard to Human Development

All human development is related to overcoming difficulties and striving to progress 
on an individual and societal level. It can be motivated either externally by social 
norms, expectations, and environmental requirements or intrinsically by individual 
goals, curiosity, and desire to succeed. The same applies to mathematical develop-
ment linked to different branches of mathematics as well as to different contexts, 
situations, and settings. Since any human activity is goal oriented (Leontiev, 1983), 
a disposition oriented to success in mathematics differs among different individuals 
and groups of individuals, depending on their goals.

The word “challenge” has multiple meanings, which are not necessarily 
associated with optimal experiences (https://www.merriam- webster.com/thesaurus). 
We choose to refer to challenge as an integral part of experiences that

• Require thought and skill for resolution (entry 1.2), or
• Demand proof of truth or rightness (entry 2.1), or
• Invite (someone) to take part in a contest or to perform a feat (entry 2.2).

According to Csikszentmihalyi and Csikzentmihaly (1990) (addressed in detail 
in Liljedahl, Chap. 28 in this volume), the development of a person is associated 
with optimal experiences of “stretching the limits” by “accomplishing something 
difficult and worthwhile” (p. 3). In this sense, overcoming a challenge is an optimal 
experience directed at learning. The process of overcoming a challenge is not neces-
sarily pleasant, but once attained is associated with enjoyment and satisfaction. 
Mason (Chap. 12, in this volume) examines a combination of cognitive and affec-
tive conditions associated with mathematical challenge and the recognition of 
something as a challenge. According to Mason, positive affect can develop in tack-
ling the challenge.

We apply these meanings to mathematical challenges that contribute to 
mathematics learning and development and ask the following questions:

• Do “optimal experiences” exist in mathematics learning?
• What makes a mathematical activity “optimal” for a student?
• Can mathematical activity be “optimal for all”?

As one of the possible answers this book suggests that mathematically challenging 
curricula, sets of tasks, and tasks make learning experiences optimal.

1.3  Mathematical Challenge

Mathematical education is aimed at the maximal development of the mathematical 
potential of each and every student. Mathematical potential is a function of the 
following:

1 Introduction to Mathematical Challenges for All Unraveling the Intricacy…
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• Cognitive (domain-specific (mathematical) and domain-general) abilities
• Affective characteristics associated with learning mathematics, including (but 

not limited to) motivation to learn mathematics and enjoyment from learning 
mathematics, which are mutually related

• Personality, which includes persistence, risk taking, teachability, and adaptability
• Learning opportunities from the past, present, and future.

Engagement with mathematical challenges is a core element of the learning 
opportunities that can lead to mathematical development. Mathematical challenge 
is a mathematical difficulty that an individual is able and willing to overcome 
(Leikin, 2009, 2014). The concept of mathematical challenge is rooted in Vygotsky’s 
(1978) notion of zone of proximal development – what a student can do today with 
the help of an adult or a more proficient peer, tomorrow the student will be able to 
alone. In addition, Davydov’s (1996) principles of developing education propose 
that learning tasks used to develop students’ mathematical reasoning should not be 
too easy or too difficult. Per cognitive load theory (Sweller et al., 1998), intrinsic 
cognitive load is linked to the cognitive resources a person must activate in order to 
satisfy task demands, and germane cognitive load is linked to the cognitive resources 
needed for the learning of new schema. As such, mathematically challenging tasks 
are cognitively demanding (in the terms used by Silver & Mesa, 2011). At the same 
time, the concept of mathematical challenge goes beyond the cognitive demand of 
a task and acknowledges such affective aspects as willingness, curiosity, and moti-
vation associated with being engaged with a task or with a set of tasks.

The connection between the cognitive and affective components of mathematical 
challenge is reflected in the concept of “flow,” defined by Csikszentmihalyi and 
Csikzentmihaly (1990) as a function of the balance between a person’s proficiency 
and the level of complexity of the task. Accordingly, flow stands in contrast to bore-
dom or frustration, which occur when the level of challenge and that of problem- 
solving proficiency are unbalanced. According to Liljedahl (2018), flow is a 
necessary condition for the development of mathematical skills by means of raising 
the level of mathematical challenge. In contrast, I consider mathematical challenge 
to be a function of the suitability of the task’s complexity to students’ mathematical 
potential (including its cognitive and affective components). Correspondingly, a 
task is challenging only when it embeds a difficulty that is appropriate for an indi-
vidual, and that individual has the motivation to take on the challenge.

The concept of mathematical challenge is an intricate concept within the 
educational terrain. Its intricacy is linked to multiple components that include:

• The notion of challenge and its relative nature (Csikszentmihalyi & 
Csikzentmihaly, 1990; Jaworski, 1992),

• The complexity of mathematics as a scientific field; hierarchy of mathematical 
concepts and principles (Barbeau & Taylor, 2009; https://undergroundmathemat-
ics.org/),

R. Leikin
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• Goals of mathematics education in general and of specific mathematical activities 
in particular (cf. Leont’ev, 1978),

• The varied characteristics of mathematical tasks (Goldin & McClintock, 1979; 
Kilpatrick, 1985; Silver & Zawodjewsky, 1997),

• Educational policy and subjective decisions about curricula and task design,
• The complexity of learners’ mathematical potential (Leikin, 2009, 2019), and
• Teachers’ professional potential in terms of monitoring mathematically 

challenging instruction (Jaworski, 1992; Leikin, 2019).

The intricate nature of mathematical challenge is obvious and is addressed in 
different chapters of this book. Figure 1.1 depicts components that influence the 
mathematical challenge embedded in a task. Note that there are multiple interpreta-
tions of the terms “mathematical tasks” and “problems.” Some researchers consider 
a mathematical problem to be a task that requires the individual, or group of indi-
viduals, to invest effort while solving it. On the other hand, a problem can also be 
defined as a question that requires an attempt to find an answer. In this case, a task 
is a problem accompanied by a requirement to do something about that problem or 
situation. Most of the chapters in this volume use the former interpretation.

Fig. 1.1 Model of factors influencing mathematical challenge

1 Introduction to Mathematical Challenges for All Unraveling the Intricacy…
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1.4  Model of Factors Influencing Mathematical Challenge

Analysis of mathematical challenge is usually associated with task complexity. 
This, in turn, can be examined theoretically according to predetermined task vari-
ables, or empirically according to the success of groups of participants in engaging 
with the task. Lester (1994) performed a meta-analysis of mathematical problem- 
solving research published from 1970 to 1994. He found that during the period of 
1970–1982, problem-solving research was directed at “isolation of key determi-
nants of problem difficulty” along with “identification of successful problem solv-
ers and heuristic training” (p. 664). Between 1982 and1990, there was a shift in 
researchers’ attention to metacognition and training for metacognition, and affect 
related to problem solving. From 1990 to 1994, social influence and problem solv-
ing in context appeared to be the focus of problem-solving research:

In 1979 a landmark book was published that synthesized the research on what were then 
referred to as "task variables" in mathematical problem solving (Goldin & McClintock, 
1979). To briefly summarize this and other closely related research, four classes of variables 
were identified that contribute to problem difficulty: content and context variables, structure 
variables, syntax variables, and heuristic behavior variables. Initially, these classes were 
studied via linear regression models, later via information-processing techniques. This line 
of inquiry was replaced eventually by investigations of the interaction between task vari-
ables and the characteristics of the problem solver (Kilpatrick, 1985). (Lester, 1994, p. 664).

All of the topics studied from the 1970s through the 1990s are relevant to contem-
porary problem-solving research, with clear emphasis on the interaction between 
different variables and attempts to understand how problem solving can be moni-
tored, and how it can provide mathematical challenge for all. The current volume 
nicely reflects recent advances in research on problem solving and problem solving 
in mathematical instruction and assessment.

Over the past three decades, mathematics education has undergone significant 
changes, with an emphasis on mathematical competencies (e.g., NAEP, TIMMS 
studies – Carpenter et al., 1983; Hiebert & Stigler, 2000), mathematical understand-
ing (e.g., BUSUN and Balanced Assessment projects  – Silver & Zawodjewsky, 
1997, Burke, 2010), contextualization and mathematical literacy (PISA studies – 
Cobb & Couch, 2022, Stacy & Turner, 2015), and mathematics creativity (OECD, 
2021). These changes are largely determined by technological and scientific prog-
ress, which has led to an emphasis on twenty-first century skills and deep learning 
(Pellegrino & Hilton, 2012), and by societal changes as expressed, for example, in 
the Sustainable Development Goals (https://sdgs.un.org/goals), such as quality edu-
cation (SDG-4) and reduced inequalities (SDG-10). The latter leads to the require-
ment of sustainable learning and to the understanding of the importance of students’ 
literacy in and beyond mathematics. Additionally, it directs us to see tools for attain-
ing SDGs globally in education in general and mathematics education in particular. 
This volume, which is centered on mathematical challenge for all, clearly demon-
strates that challenge-rich mathematical instruction strives for quality education, 
educational equity, and a “no child left behind” ideology.

R. Leikin
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As mentioned above, mathematical challenge is relative to a person’s 
mathematical potential. As agreed in multiple chapters in this book, the effectiveness 
of mathematically challenging instruction is a function of teachers’ proficiency in 
conveying mathematical activity  suited to each student’s potential. Taking into 
account the heterogeneity of a mathematical classroom, this seems to be almost a 
fantasy. However, the authors in this volume provide creative ideas which can make 
mathematically challenging tasks and collections of tasks accessible to all students.

Figure 1.1 demonstrates the major factors influencing mathematical challenge. It 
is an elaborated version of the model of mathematical challenge suggested in Leikin 
(2018) that included three characteristics: Conceptual characteristics of mathemati-
cal tasks, of which conceptual density and openness were at the center of the discus-
sion, the setting, including use of digital technologies and learning/teaching 
methods, and socio-mathematical norms. This elaborated model reflects the intri-
cacy of mathematical challenge as connected to multiple faces of mathematical 
instruction and is inspired by my long-term discussion with Avi Berman and Dina 
Tirosh (Sept 2021–May 2022) of the structure and nature of “advanced mathemati-
cal thinking in school.” Below I describe and exemplify the main component of this 
model in connection to different chapters in this book.

In what follows, I explain the model of factors influencing mathematical 
challenge using examples from different chapters in this book. Additional theoretical 
framing of mathematical challenge in curricula design, tasks, and collections of 
tasks can be found in the introductory chapters by the section editors (Demetra 
Pitta-Pantazi and Constantinos Christou (Chap. 2), Rina Zazkis (Chap. 11) and 
Alexander Karp (Chap. 20) and in commentary chapters by Jeremy Hodgen (Chap. 
10), David Pimm (Chap. 19). Alan Schoenfeld (Chap. 29) contributed retrospective 
analysis of problems, problem solving, and thinking mathematically).

1.5  Explaining the Model Using Works Presented 
in This Volume

It seems almost trivial that mathematical challenge is determined by the mathematical 
content taught. A fine illustration of different levels of complexity of mathematical 
content can be seen in underground mathematics concept maps that choose (https://
undergroundmathematics.org/) numbers, algebra, geometry, functions, and calculus 
as major lines along which the concepts and mathematical principles are developed 
and become increasingly more complex at the unions of different lines. PISA 
(OECD, 2021) suggest slightly different lines of mathematical content: Quantity, 
shape and space, change and relationship, uncertainty, and data (which are depicted 
in Fig. 1.1). Independent of terminology used and independent of design principles, 
development of mathematical content in any mathematical curriculum is hierarchical 
with an increasing level of complexity of mathematical concepts, their properties, 
and mathematical skills and presumed heuristic behaviors. Verschaffel et al. (Chap. 

1 Introduction to Mathematical Challenges for All Unraveling the Intricacy…
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3) explore teaching and learning of quantity domain with  a special focus on 
mathematical patterns and structures, computational estimations, proportional 
reasoning, and probabilistic reasoning. They justify the importance of these topics 
using previous cognitive and neurocognitive research as well as the longitudinal 
study they conducted for their project. The chapter stresses the importance of early 
acquired numerical abilities – much earlier than have been traditionally studied. The 
study of Wasserman (Chap. 13) focuses on challenges associated with binary 
operations and the links between university and school mathematical content.

The underground mathematics maps mentioned above demonstrate raising 
conceptual density across the different topics and branches of mathematics. At the 
same time, mathematical tasks within the topics may differ in their conceptual 
density, determined by both complexity of the concept included in the task as well 
as the need for using different concepts and different rules and theorems (cf. Silver 
& Zawodjewsky, 1997) concurrently. Leikin and Elgrably (Chap. 27) demonstrate 
systematic bottom-up variation in conceptual density of geometry problems through 
construction of chains of problems posed by participants. Top-down structuring of 
mathematical challenge is illustrated in this chapter using stepped tasks. Verschaffel 
et al. (Chap. 3) also present examples of tasks of different levels of conceptual den-
sity and explain variations in the challenge embedded in related tasks.

Complexity of mathematical tasks is a function of the skills required from 
solvers. The relationships between skills, such as proving, problem solving, 
problem- posing, modeling, and generalization, are not necessarily hierarchical and 
depend on other variables included in the model of mathematical challenge 
(Fig. 1.1). However, while problem posing precedes solving the posed problems, 
the level of complexity of mathematical activity increases. Cai and Hwang (Chap. 
7) present a rich collection of problem-posing tasks framed by a theoretical analysis 
of the types of problem-posing tasks and accompanied by analysis of the challenges 
embedded in problem-posing activities. Similarly, modeling tasks, in which 
participants must develop a mathematical model of a contextual situation, are more 
complex than problems in which an identical mathematical model is introduced to 
students along with the problem conditions. Applebaum and Zazkis (Chap. 14) 
describe how simple computational tasks can be transformed into challenging tasks 
by requiring a generalization process. Solutions by different groups of participants – 
mathematicians, teachers, and students – are discussed to illustrate how mathematical 
proficiency affects mathematical performance.

Goos et al. (Chap. 4) apply “the curriculum policy, design and enactment system” 
(with reference to Remillard & Heck, 2014) in their discussion of mathematical 
curriculum “enhanced” by modeling activities. They introduce contextual 
opportunities and constraints embedded in the implementation of modeling activi-
ties on a systematic basis. Borromeo Ferri et al. (Chap. 22) present a collection of 
modeling tasks to demonstrate the developmental power of these tasks. The com-
plexity of the modeling activity is described in terms of a mathematical modeling 
cycle (borrowed from Kaiser & Stender, 2013). They demonstrate how modeling 
activities are inherently integrated in differentiated instructional settings based on 

R. Leikin
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self-differentiation of the learning process. Note here that Borromeo Ferri et  al. 
clearly demonstrate  the openness of mathematical modeling tasks expressed in a 
variety of student-generated models.

Vale and Barbosa (Chap. 15) provide examples of different types of visual 
problems and draw connections between mathematical challenges and visualization 
skills. They show that visual thinking is a tool that helps indicate the level of 
mathematical challenge embedded in the task, and can be applied to multiple solution 
tasks (considered also in Leikin & Guberman Chap. 17) to develop creative thinking. 
Interestingly, the principles described by Vale and Barbosa can be applied to multiple 
problems included in different chapters in the book. Using symmetry in solving prob-
lems, which is analyzed by Vale and Barbosa, is also one of the heuristics described 
by Polya (1973/45). Symmetry of geometric diagrams is implemented in the design of 
mathematical problems of varying levels of mathematical challenge in Waisman 
et al. (Chap. 26). Empirically, they demonstrate that when solving equivalent prob-
lems, a  symmetrical diagram decreases the complexity of a problem. In addition 
Waisman et al. address field dependency of geometry diagrams and Hsu (Chap. 23) 
analyzes complexity of geometry diagrams as a meaningful variable of solving 
geometry problems. I invite readers to solve Problem 18 presented in Marushina 
(Chap. 25) both visually and using symmetry. The solution is elegant and enjoyable.

Personalized mathematics and mathematical inquiry is introduced in Chap. 5 by 
Christo et al. through a precise analysis of tasks that require and further develop 
exploration and investigation skills, and an accurate distinction between these skills 
is integrated in a technology supported instructional setting with applets designed 
to support students’ explorations and investigations. The ideas presented in this 
chapter are illustrated using specific tasks that are mathematically challenging for 
all students. Contextualization of the mathematical content, inquiry that leads to 
curious experiences, and the connection of mathematical fluency with mathematical 
understanding create an activity challenging for all because of its cognitive com-
plexity, social involvement, and positive affect.

The readers of this volume can learn about different levels of openness of 
exploration and investigation tasks in Christo et al., in the modeling tasks in Goos 
et al. and in Borromeo Ferri et al. The openness is related both to the multiplicity of 
ways in which students can approach the tasks and in the solution outcomes attained 
by different students. Such openness emphasizes the discursive nature of a 
mathematics lesson, with socio-mathematical norms of justification, consistency, 
and explanation. The requirement of explaining or justifying each idea presented in 
the classroom contributes to the creation of challenging-for-all mathematical 
activities. Leikin et al. (Chap. 6) stress the importance of the integration of open 
tasks in mathematical instruction. They present examples of tasks that are 
recommended in a computer-based instructional setting since exploratory applets 
are designed to support students’ understanding of the task structure. Positive affect 
is related to multiple tasks outcomes, which are usually surprising and develop 
curiosity linked to the completeness of the solution spaces. Attaining a complete set 
of solution outcomes or production of multiple solution strategies (which become a 
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norm in Math-Key classrooms) allows variations in the level of mathematical 
challenge as connected to the mathematical potential of different students.

Each of the chapters in the book describes different types of instructional settings 
associated with mathematically challenging activities. Common to all the settings 
are norms of preciseness and justification as well as mathematical discussion, 
whether in small groups or as a whole class. Sinclair and Ferrara (Chap. 16) suggest 
a socio-material framing of mathematically challenging tasks based on Leikin’s 
(2014) concept of mathematical challenge. While solving challenging tasks with 
technological tools the first grade students make progress in solving problems 
through interaction with the environment. They are motivated as a result of finding 
a solution and the socio-material system is reactive to students’ progress. This varia-
tion in mathematical challenge that ensures challenges-for-all is rooted in students’ 
interactions in working groups and with technological tools. In this learning envi-
ronment the students experience moments of insight related to knowledge advance-
ment. All the chapters in this book either implicitly or explicitly address the 
development of students’ creativity through engagement with mathematical chal-
lenges. The development of creativity is linked to the openness of the tasks, multi-
plicity of solution strategies and solution outcomes, and students’ mathematical 
learning through engagement with new tasks. Leikin and Guberman (Chap. 17) 
analyze the relationship between mathematical challenge and insight-based tasks 
and make a distinction between insight-requiring and insight-allowing mathemati-
cal tasks to discuss different levels of mathematical challenge embedded in insight- 
based tasks.

The level of challenge is related to mathematical reasoning, which includes 
conjecturing, generalization, and justification. Da Ponte et al. (Chap. 8) focus their 
study on an exploratory approach to developing students’ mathematical reasoning. 
They discuss tasks and a learning environment that allows students to develop new 
knowledge through conjecturing, generalization, and justification of findings. The 
tasks in this study allow a variety of solution strategies. Special skills and beliefs are 
required from the teachers when monitoring exploratory mathematical instruction. 
Lloyd and Murphy present conceptualization of argumentative practices and con-
nected features of mathematical reasoning. In their study they discuss requirements 
for teachers’ knowledge and skills essential for conducting scaffolding moves, 
while developing critical-analytic thinking in their students. Liljedahl (Chap. 28) 
discusses the thinking classroom and classifies instructional settings based on col-
lections of problems with varying levels of conceptual density. In Chap. 8, Lloyd 
and Murphy, Wasserman (Chap. 13), and Applebaum and Zazkis (Chap. 14) analyze 
the development of teachers’ proficiency in monitoring challenging mathematical 
tasks. In addition to the discussion of mathematically challenging activities in math-
ematics teacher education, Biza and Nardi (Chap. 18) describe how they use math-
ematics education research in the education of undergraduate students. They 
introduce design principles using Math Tasks within learning situations emerging in 
the mathematics classroom. They stress the importance of teachers’ awareness of 
the interaction between mathematical challenge and pedagogical challenge.

R. Leikin
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The characteristics of challenging mathematical tasks and curricular design 
observed above can be applied to collections of problems as well (Fig. 1.1). Bass 
(Chap. 21) introduces five principles of deliberate production of collections of prob-
lems to readers. The principles are related to curricular principles, task structure, 
mathematical content, task models, and task outcomes. In addition, Karp (Chap. 20) 
considers “the morphology of problem sets – the role of each problem within a set, 
its position in it, and the mental processes that take place during the transition from 
one problem to another” (Karp, 2002). For example, in Chap. 7, Cai and Hwang 
present characterization of problem-posing activities and include collections of 
problem-posing tasks that exemplify these characterizations. The collections of 
problems are differentiated depending on whether they are designed by mathemati-
cians, mathematics educators, teachers, or researchers and can be differentiated 
depending on their goals and morphological structures. For example, Karp 
(Chap.  24) analyzes collections of problems in mathematical textbooks and 
Marushina (Chap. 25) analyzes sets of exam problems – all created by instructional 
designers who are professional mathematicians. While in Waisman et al. the collec-
tions of problems are designed by researchers, Hsu examines complexity of prob-
lems designed by mathematics teachers. In addition, there are culturally dependent 
and policy-related characteristics of the sets of problems. Analyses of school text-
books in the United States (Karp, Chap. 24), of problem sets in exams in Russia 
(Marushina, Chap. 25), and of collections of problems generated by Taiwanese 
teachers are examples of culturally dependent collections that also reflect decisions 
related to educational policies in different countries at different periods of time. 
Both in Marushina and Karp and in Liljedahl (Chap. 28), the collections of prob-
lems include variations based on the conceptual density of the tasks included in the 
collections of problems borrowed from the education documents (in Karp and 
Marushina) or created by the author.

Collections of mathematical problems of varying levels of mathematical 
challenge, theoretically justified and connected to different mathematical and 
cognitive skills, can be found in Krutetskii (1976) in his seminal research on 
characterization of higher mathematical abilities. Collections of mathematical 
problems can be created for mathematical textbooks, evaluation tools, Olympiad 
problem collections, and sets of problems for particular instructional activities. The 
construction of the set of problems in Wiseman et  al. (Chap. 26) is based on 
integration of psychological domain-specific characteristics (symmetry and field 
dependency) with domain- specific geometry properties.

1.6  Concluding Notes and Questions for Future Research

This volume “Mathematical Challenges for All” considers mathematical challenge 
to be an “optimal experience” in mathematics education (cf. Csikszentmihalyi & 
Csikzentmihaly, 1990). Optimal experiences in mathematics education are directed 
to the realization of the mathematical potential of each and every student.
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As presented in the book chapters, mathematical challenge integrates the 
following:

• Cognitive demand determined by the characteristics of mathematical activity, 
including:

 – Characteristics of tasks that include conceptual density, contextual framing, 
and task structure with an emphasis on openness

 – Required domain of general and mathematical skills and associated 
mathematical thinking, reasoning, and argumentative practices

 – Setting in which the participants are involved in the mathematical activity 
including competitive and cooperative elements (coopetition), personaliza-
tion and technological affordance of the activity

 – Socio-mathematical norms of preciseness, justification, and explanation.

• Affective components evoked by the mathematical activity including motivation 
to overcome the difficulty, frustration or curiosity caused by the task’s complex-
ity, and enjoyment from the process or outcome of engagement with the task.

Figure 1.1 suggests an elaborated view of the factors that influence the intricacy 
of a mathematical challenge.

The volume proposes multiple ways in which mathematically challenging 
activities become “optimal for all.” The characteristics of mathematical activities 
emphasized by the majority of the authors in this volume include but are not limited 
to the following:

• The novelty of mathematical content or context or types of tasks for learners. 
Novelty develops motivation to learn mathematics and evokes mathematical 
curiosity.

• Variations in the level of mathematical challenge by means of collections of 
tasks of different levels of challenge. This includes problem sets, problem chains, 
and stepped tasks designed by instructional designers or teachers.

• Openness of tasks and tasks of an explorative nature that allows self-regulation 
of the level of mathematical challenge by students. This includes engagement 
with mathematical investigations, problem posing, mathematical modeling, mul-
tiple solution-strategy tasks or multiple solution-outcome tasks.

• Use of digital technologies that support self-regulation of mathematical challenge 
by students, development of new knowledge through mathematical experiences, 
and encouragement of interpersonal interactions. Explorative dynamic applets 
are among the recommended technological tools.

• Discursive and argumentative practices that support variations in levels of 
mathematical challenge to fit the  mathematical potential of each and every 
student, including norms of asking hypothetical and elaborative rather than 
verification questions, and norms of preciseness and  of justification of all 
mathematical conjectures raised.

• Scaffolding practices with no funneling that “reduces the challenge” or “closes 
the openness.” Such practices require a high level of proficiency of teachers, 
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deep mathematical knowledge, and belief in the centrality of mathematical chal-
lenge for high quality mathematical instruction for all students.

• Teacher training directed at advancing teachers’ professional potential that 
combines their mathematical and pedagogical knowledge and skills with the 
ability to identify students’ mathematical potential. Developing teachers’ 
proficiency in navigating mathematically challenging activities includes giving 
them experience in varying the level of mathematical challenge in accordance 
with students’ mathematical potential and with enhancing students’ enjoyment 
from doing mathematics and from successful task completion, and will allow 
teachers to enjoy their own pedagogical challenges.

This book has the potential to be useful for a broad range of mathematics 
educators, educational researchers, and mathematicians who work with mathematics 
teachers and instructional designers. I am certain that readers will be able to learn 
from the variety of theoretical, practical, and methodological ideas that the authors 
present. More research about mathematical challenge for all is required, and this 
book opens new venues of research in mathematics education. Finally, as noted 
above, the volume includes a wonderful collection of mathematical challenges at 
different levels that readers are invited to explore and enjoy.
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Chapter 2
Introduction to Part I of Mathematical 
Challenges For All: Mathematical 
Challenges in Curriculum 
and Instructional Design

Demetra Pitta-Pantazi and Constantinos Christou

This section of the volume “mathematical challenges for all” is about mathematical 
challenges in curriculum and instructional design. Taylor (2006) stated that “chal-
lenge is not only an important component of the learning process but also a vital 
skill for life. People are confronted with challenging situations each day and need to 
deal with them” (p. 349). Mathematics is among the subjects that offer the most 
opportunities for students to confront challenges. Mathematics is about productive 
struggle, solving everyday problems, and seeing patterns in the world around us. 
Challenges are a natural part of mathematics. The scope of this section is to address 
mathematical challenge from two aspects, that of mathematics curriculum, and that 
of instructional design. Thus, this section is divided into two parts, where the first 
part discusses the challenges of mathematics curriculum and the second one refers 
to the  designing of learning experiences taking into account the components of 
effective learning of mathematics, such as the learning objectives and learning 
activities.

The first part of this section includes two chapters discussing curriculum devel-
opment and how mathematical ideas translate into classroom practicalities. In the 
first chapter Verschaffel, De Smedt, Luwel, Onghena, Torbeyns, and Van Dooren 
(Chap. 3, this volume) provide a suggestion for how we may rethink the traditional 
early mathematics curriculum with a view to make it more challenging both in 
terms of breadth and depth. The chapter focuses on a longitudinal study which 
emphasizes four key strands of the curriculum: (1) mathematical patterns and struc-
tures, (2) computational estimation, (3) proportional reasoning, and (4) probabilis-
tic reasoning. The authors claim that the competencies young students develop in 
early years involve much more than numerical abilities and that the four strands 
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mentioned above develop in close relation to each other and to the development of 
numerical abilities. They suggest that the developmental steps that students take 
during preschool years may lead learning trajectories useful for teachers in prepar-
ing their students to understand mathematics and dealing with more mathematical 
challenging topics in the future. The diagnostic tools designed for the longitudinal 
study presented by the authors and the instructional materials and techniques devel-
oped for the intervention studies may yield valuable building blocks for implement-
ing these challenging curricula. However, as the authors clearly state, the 
effectiveness of the results in this longitudinal study remain open depending on the 
future implementation of their recommendations in real classroom situations.

In Chap. 4, Goos, O’Meara, Johnson, Fitzmaurice, and Guerin (this volume) 
consider mathematical modeling as a kind of mathematical challenge which is 
rarely found in elementary or secondary school curricula and classrooms. The 
authors first address the similarities and differences between applications and mod-
eling. Then, setting off from Remillard and Heck’s (2014) model of the curriculum 
enactment processes, they articulate the main purpose of their research which aims 
at finding out the factors supporting or hindering the implementation of modeling as 
a mathematical challenge in the school curriculum. To answer this main question, 
the authors analyze two different strategies which may promote modeling as a stim-
ulus for curriculum and instructional reform. The first strategy Goose et al. (Chap. 
4, this volume) suggest is approaching curriculum developers in forming challeng-
ing curricular aims and objectives, while the second strategy supports mathematics 
teachers in translating curricular goals into classroom interactions with students. 
The authors also present two case studies in which they illustrate how modeling was 
introduced into the secondary school mathematics curriculum in Ireland. In both 
case studies, they presented in an interesting way the factors that influenced the 
introduction of modeling in mathematics curriculum. Finally, in their conclusions, 
the authors referred to meta-challenges, meaning the idea that it is challenging to 
introduce teachers and students to challenging tasks and the ways of working with 
modeling.

The second part of this section includes five chapters discussing instructional 
design and how textbooks, tasks, and teaching may offer mathematical challenge to 
students. In Chap. 5, Christou, Pitta-Pantazi, Demosthenous, Pittalis, and Chimoni 
(this volume) present an instructional design whose corner stone is mathematical 
challenge. The authors describe the theoretical framework “Personalized 
Mathematics and Mathematics Inquiry” (PMMI) which supported the instructional 
design and development of the Cyprus Mathematics Textbooks and exemplify it 
through examples taken from the mathematics textbooks. Mathematics Inquiry is at 
the core of the PMMI theoretical framework and consists of challenging problems, 
namely, explorations and investigations, which capture students’ curiosity and 
invite them to make hypotheses and pursue their hunches. During these challenging 
explorations and investigations, the teachers’ role is to provide students with key 
elements which will facilitate them to take control and ownership of their learning. 
The chapter describes this framework and also provides specific examples from the 
mathematics textbooks in order to bring closer together theory and practice.
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In Chap. 6, Leikin, Klein, and Ovodenko (this volume) propose the integration of 
the Math-Key program within the regular mathematics curricula of junior schools 
which offers the opportunity to teachers and students to engage with mathematically 
challenging tasks. The aim of the Math-Key program is to open mathematical minds 
through the use of Multiple Solution-Strategies Tasks (MSTs) and Multiple Outcome 
Tasks (MOTs). These tasks support the development of mathematical creativity and 
mental flexibility along with the advancement of mathematical knowledge and 
skills. At the same time, the Math-Key program provides opportunities to teachers 
to enrich their instructional strategies of problem solving. Leikin et al. (Chap. 6, this 
volume) provide numerous and rich examples of Multiple Solution-Strategies Tasks 
(MSTs) and Multiple Outcome Tasks (MOTs) explaining in detail the types of 
openness, the number of possible solution strategies, and different types of solution 
outcomes. What is also of interest to the readers of this article is that most of the 
problems are accompanied by dynamic applets. These applets allow students to 
explore and investigate the situation of the problems in a way to support their under-
standing of the mathematical concepts which are needed in order to reach a mean-
ingful solution. The inclusion of applets also provides an opportunity to develop 
positive “growth mindset.” Teaching with Math-Key tasks requires changing the 
classroom culture, an important factor for changing students’ mindset (Boaler, 
et al., 2021).

Cai’s and Hwang’s (Chap. 7, this volume) chapter focuses on another particular 
kind of instructional task which offers mathematical challenge to students, that of 
mathematical problem posing. They consider problem posing from the perspective 
of the student, who may be asked to pose problems, and from the perspective of the 
teacher, who can either pose problems for students to solve or use problem-posing 
tasks as instructional tasks with students (Cai & Hwang, 2020). They investigate 
how teachers could present problems to engage students and provide a more pro-
ductive learning environment for them. They discuss various types of problem pos-
ing situations and prompts that can be used in problem-posing tasks. They also 
highlight that one of the affordances of problem posing is that it provides levels of 
mathematical challenge that correspond to students’ level of understanding. 
Furthermore, Cai and Hwang (Chap. 7, this volume) offer suggestions and examples 
of problem-posing tasks and outline ideas for professional development that can 
help teachers use problem posing in teaching mathematics. The authors indicate that 
unfortunately in many curricula there is lack of problem-posing tasks. Thus, to 
assist teachers in promoting problem posing, one needs to develop their knowledge 
and beliefs about teaching through problem posing. The authors suggest that a use-
ful approach to help teachers understand how problem posing can be enacted in 
classrooms is through the use of teaching cases. They close their chapter with some 
interesting results from empirical studies on problem posing and suggestions for 
future directions for research.

In the last two chapters of this section, Ponte, Mata-Pereira, and Quaresma 
(Chap. 8, this volume) and Lloyd and Murphy (Chap. 9, this volume), the attention 
shifts to the work done in the classroom and the role of mathematical challenge. 
Ponte et al. (Chap. 8, this volume) investigate the way in which teachers’ actions 
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supported by the work on mathematically rich tasks enhance students’ development 
of mathematical reasoning. They present two situations, one in a grade 8 and one in 
a grade 9 class, and discuss the features of the tasks and the learning environment of 
the students. They explore the guiding actions and suggestions or challenges teach-
ers may provide in their mathematics classroom that will offer a fruitful environ-
ment for students to extend their thinking, consider other possibilities, and 
communicate their justifications and arguments. The authors present and discuss 
teachers’ actions aimed to develop students’ mathematical reasoning, generaliza-
tions, and justifications in various instances during mathematics lessons. Both 
teachers organized their lessons according to the three phases of the exploratory 
approach. The first phase is the task launching, the second one is the students’ 
autonomous work, and the third phase of the lesson is the collective discussion, 
where all students’ solutions are presented and discussed. What is of interest to the 
readers is the new knowledge about the general and specific actions that teachers 
may use in their lessons in order to help students develop mathematics reasoning 
and find out students’ strategies and difficulties.

Lloyd and Murphy (Chap. 9, this volume) also address mathematical challenge 
from the perspective of the work done during mathematics lessons. They are inter-
ested in both classroom discourse elements and the way in which prospective teach-
ers and elementary students co-construct mathematical arguments related to 
complex mathematical tasks. Specifically, they describe an on-going project in 
which prospective teachers gain experience by participating in and facilitating 
small-group discussions which emphasize the construction of mathematical argu-
ments during the solution of complex mathematical tasks. To do so, Lloyd and 
Murphy (Chap. 9, this volume) introduce the discussion approach, the Quality Talk 
which can support prospective teachers’ learning to facilitate small-group discus-
sions that advance learners’ mathematical argumentation. Through two episodes, 
with elementary prospective teachers and with second-grade students, the authors 
explore how prospective teachers can use the experiences gained in their university 
methods course about Quality Talk to plan and facilitate productive discussions 
during their field experience classrooms. This investigation leads them to the iden-
tification of key discourse elements in enhancing the co-construction of mathemati-
cal arguments as prospective teachers and elementary school students work on 
complex solving tasks. In addition, Lloyd and Murphy (Chap. 9, this volume) dis-
cuss the importance of carefully selected questions and scaffolding moves to sup-
port students’ engagement and discussion-based mathematical argumentation while 
solving complex mathematical tasks.

The section closes with a commentary chapter by Hodgen. Hodgen (Chap. 10, 
this volume) addresses the “challenge” in mathematics to deal with the terminology 
of “challenge” itself, since it can carry different meanings and may refer to different 
aspects of mathematics education. He looks at challenge from various angles, in 
terms of curriculum materials and tasks, the role of teachers, and that of the 
curriculum.
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As a conclusion, the chapters in this section highlight the authors’ more recent 
findings and perspectives on mathematical challenge. In particular, the authors pro-
vided their suggestions as to the way in which mathematical challenge may be 
addressed, for instance, by rethinking the context of mathematics curriculum in 
early years and by considering the inclusion of modeling tasks. The authors also 
discussed role of textbooks and types of tasks which may promote mathematical 
challenge and highlighted the benefits of explorations, investigations, Multiple 
Solution-Strategies Tasks (MSTs), Multiple Outcomes Tasks (MOTs), modellng 
problems and problem-posing tasks. Moreover, the authors explored the work done 
in mathematics classrooms. Specifically, they investigated and discussed the types 
of tasks used, the discourse, and key actions that teachers take in order to support 
students’ development of mathematical reasoning and arguments. These chapters 
can be challenging to read. They tackle different issues in the broad field of mathe-
matical challenge and provide insights into this area of research from various angles. 
We believe such insights have the potential to support the work of teachers, teacher 
educators, curriculum developers, and researchers in the field of mathematics 
education.
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Chapter 3
Development and Stimulation of Early 
Core Mathematical Competencies 
in Young Children: Results 
from the Leuven Wis & C Project

L. Verschaffel, B. De Smedt, K. Luwel, P. Onghena, J. Torbeyns, 
and W. Van Dooren

3.1  Introduction

Mathematics has always been a central curricular domain in elementary and 
secondary education worldwide (De Corte et al., 1996; Kilpatrick, 1992). For a long 
time it was common to pay only little attention to mathematics education in the 
preschool years, both by teachers in preschool and by parents and other caretakers 
at home. The general idea was that preschool children should essentially spend their 
time at developing their psychomotor and social-emotional skills, together with 
their language and emergent literacy skills. Little or no attention was paid to inter-
ventions aimed at children’s early mathematical growth. And, if some attention was 
paid to it, there was a remarkably narrow focus on the acquisition of some basic 
numerical abilities, such as reciting the counting words, identifying the numerosity 
of a small set of objects, indicating which set has the largest numerosity, and solving 
simple additive problem situations involving small whole numbers (Dede, 2010). 
However, the past two decades have witnessed a great research interest in early 
mathematical cognition, early mathematical development, and early mathematics 
education, both in home and preschool settings.

A starting point of this line of research – with its main origins in cognitive (neuro)
science – is the idea that young children are equipped with some foundational core 
systems to process quantities (Butterworth, 2015; Dehaene, 2011). This allows 
them to exactly identify small (i.e., below 4) non-symbolic quantities, to compare 
non-symbolic quantities that are too numerous to enumerate exactly, or to perform 
some very basic approximate arithmetic on these quantities (Andrews & Sayers, 
2015; Butterworth, 2015; Torbeyns et al., 2015; Verschaffel et al., 2017). Within 
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these foundational core number sense systems, magnitudes are represented non-
verbally and non-symbolically, but, over development and through early (mathe-
matics) education, verbal and symbolic representations are gradually mapped on 
these foundational representations, to evolve into a more elaborate system for num-
ber sense and more complex mathematical concepts and skills (Torbeyns et  al., 
2015). The dynamics of this development remain one of the most debated areas in 
research on these foundational representations (e.g., Leibovich & Ansari, 2016). 
This research has shown large individual differences in these early numerical abili-
ties, which predict later general math achievement (De Smedt et al., 2013; Schneider 
et  al., 2017; Siegler & Lortie-Forgues, 2014). Furthermore, researchers working 
within this research tradition have also tried to stimulate children’s foundational 
numerical abilities with (game-based) intervention programs before or at the begin-
ning of formal instruction in number and arithmetic in elementary school (e.g., 
Maertens et al., 2016; Wilson et al., 2009).

As shown in the above description, this prominent line of research has strongly 
focused on young children’s basic numerical abilities (Cohen Kadosh & Dowker, 
2015). More recently, this narrow focus on only early numerical and arithmetic abili-
ties with non-symbolic and symbolic entities has been increasingly questioned on 
various grounds (e.g., Bailey et al., 2014; Dede, 2010; English & Mulligan, 2013). 
From a disciplinary perspective, it is evident that mathematics is much more than 
understanding whole numbers, counting, and basic arithmetic. Therefore, even in the 
early years of education, mathematics education should already represent a broader 
coverage of the richness of the discipline, including early reasoning about mathe-
matical relations, shapes, and patterns and structures (Clements & Sarama, 2013; 
Mulligan & Mitchelmore, 2009). From an empirical perspective, recent meta- 
analytic work has shown that children’s early numerical and counting skills explain 
only a small percentage of the individual differences in general mathematics achieve-
ment (Schneider et al., 2017). Accordingly, some other scholars have suggested that 
early quantitative reasoning about additive and multiplicative relations may be more 
predictive for later achievement in school mathematics (Nunes et al., 2012). Finally, 
and in line with the results of the above developmental studies, the abovementioned 
intervention studies on the early enhancement of children’s foundational numerical 
abilities yielded mixed findings, with mainly marginal effects in terms of retention 
and transfer (Torbeyns et al., 2015).

As a result of the abovementioned critiques on early numerical cognition, 
researchers have started to go beyond analyzing young children’s basic numerical 
abilities and to look at the early development of other, more complex, mathematical 
competencies in younger ages than is currently the case, i.e., already before the start 
of elementary school and/or while children are making the transition from preschool 
to elementary school (Bryant & Nunes, 2012; Dowker, 2003; Mulligan & 
Mitchelmore, 2009). This complementary research line has started to provide evi-
dence of the possibility and value of broadening and deepening the scope of math-
ematics for young children beyond initial experiences with small whole numbers 
and simple arithmetic with them.

As part of that complementary approach, we embarked some years ago on a 
research project involving a large-scale longitudinal study about the early 
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development of four such additional core mathematical competences: mathematical 
patterning, computational estimation, proportional reasoning, and probabilistic rea-
soning, followed by four intervention studies on the same four competencies.

This kind of research project may first of all help us rethink the traditional early 
mathematics curriculum with a view to make it more challenging both in terms of 
breadth and depth. Second, the analysis of the developmental steps children take as 
revealed by the longitudinal study may lead to well-articulated research-based 
learning trajectories. Armed with these learning trajectories, one can assess any 
child’s thinking, locate the child on a trajectory, and determine the next step in the 
child’s learning related to these additional mathematical topics, analogous to the 
trajectories developed for number, counting, and early addition and subtraction by 
Clements and Sarama (2013). Third, the diagnostic tools designed for the develop-
mental studies and the instructional materials and techniques developed for the 
intervention studies may yield valuable building blocks for implementing these 
challenging curricula and designs. Finally, paying special attention in these studies 
to the children at the lower and the higher ends of the continuum of mathematical 
ability may help make these early mathematics curricula and designs more chal-
lenging and inclusive for all children.

In the present chapter, we provide a selective overview of some provisional results 
of this ongoing longitudinal research project. After a brief presentation of the overall 
aims and scope of the study and its overall methodology, available data from the 
various parts of the study are used to provide illustrative evidence for the basic claim 
that early mathematical development involves much more than children’s early 
numerical abilities, that also with respect to these other core mathematical compe-
tencies important initial steps are being made much earlier in children’s develop-
ment than traditionally thought, and that these core mathematical competencies 
develop in close relation to each other and to the development of children’s early 
numerical abilities. At the end we formulate some general conclusions of the research 
being reviewed in this chapter and we summarize its contribution to understanding 
how a focus in the curriculum and instructional design on challenging domains such 
as patterns, computational estimation, proportional reasoning, and probabilistic rea-
soning may enhance the mathematical competence of all young children.

3.2  A Research Project Consisting of Four Parts

In 2016, we started a 6-year-long research project on the development of 4- to 
9-year-olds’ competencies in four early core mathematics-related domains1: 
mathematical patterns, computational estimation, proportional reasoning, and 
probabilistic reasoning. While the rationale for this selection was partly pragmatically 

1 C16/16/001 project “Early development and stimulation of core mathematical competencies” of 
the Research Council of the KU Leuven, with Nore Wijns, Elke Sekeris, Elien Vanluydt, Anne- 
Sophie Supply, and Merel Bakker as PhD researchers and, consecutively, Joke Torbeyns, Greet 
Peters, and Laure De Keyser as project coordinator.
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grounded in the fields of expertise of our research team, a common characteristic of 
these four domains is that they all receive little or no instructional attention in cur-
rent early mathematics education curricula, while they do represent important 
domains of mathematics and while there is increasing empirical evidence that they 
start to emerge much earlier than traditionally thought, and therefore, children may 
be challenged in these domains at an earlier age than is currently the case.

For each of these four domains, we tried to document the emergence and early 
development of intuitive concepts and basic skills related to the domain, to look for 
interrelations between these emerging concepts and skills, with a view to explore 
ways to organize early and elementary school mathematics such that this organiza-
tion does not undermine these intuitive concepts and emerging skills but rather cre-
ates an environment wherein they can be acknowledged and stimulated.

In order to longitudinally map the emergence and development of these core 
mathematical competencies, as well as children’s early numerical abilities, a cohort 
of over 400 children from 17 schools is followed from the second year of preschool 
(±4 years of age) to the third year of elementary school (±9 years of age). Using a 
stratified cluster sampling strategy to ensure an SES distribution that is representa-
tive for the Flemish context, schools were selected based on the relative number of 
pupils who receive study allowance and/or whose mother did not obtain a secondary 
school certificate. In Flanders, children go to preschool from the age of 2.5 years 
onwards. Preschool consists of three years (P1, P2, and P3). It is fully government 
subsidized and non-mandatory, yet it is attended by nearly all children. In September 
of the year children turn 6, they start in elementary school, which consists of six 
grades and which is mandatory.

As shown in Fig. 3.1, a rich battery of measures was administered during the 
5 years of data collection. This battery comprised tasks and instruments assessing 
children’s mathematical patterning, computational estimation, proportional reason-
ing, and probabilistic reasoning (parts 1 to 4, see further), as well as children’s 
domain-specific early numerical abilities, domain-general cognitive abilities, and 
general mathematics achievement. The domain-specific early numerical abilities 
test comprised a wide variety of tasks measuring verbal counting, object counting, 
Arabic number recognition, number comparison, number order, and non-verbal 

Fig. 3.1 Timeline for school years, time points of assessments, and administered measures
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calculation; the domain-general cognitive abilities measures were two working 
memory and one spatial ability test; and general mathematics achievement was 
measured by means of a Flemish standardized mathematics achievement test. 
Finally, data on children’s home and class environment were, respectively, collected 
via parent and teacher questionnaires. For more details about these instruments see 
Bakker et al. (2019).

3.3  Early Mathematical Patterning

Patterning is an aspect of early mathematical ability that is defined as children’s 
performance on a wide set of tasks, such as extending, translating, or identifying a 
pattern’s structure, that can be done with regular configurations of elements in the 
environment (Wijns et al., 2019c). These regular configurations are called patterns. 
There are different types of patterns, and a distinction is often made between repeat-
ing (e.g., ABABAB), growing (e.g., 2 4 6), and spatial structure patterns (e.g.,:::; 
Mulligan & Mitchelmore, 2009). Repeating and growing patterns are both sequences 
that can be continued indefinitely. Their underlying structure or rule describes how 
the sequence continues. For repeating patterns (e.g., ABABAB, Δ□□Δ□□Δ□□), 
the structure is defined on the basis of a unit (e.g., AB, Δ□□) that is reiterated. The 
structure of growing patterns (e.g., 2 4 6, Δ□Δ□□Δ□□□) involves a systematic 
increase or decrease between the units in the sequence (e.g., +2, + □). Spatial struc-
ture patterns, by contrast, represent two-dimensional configurations of elements. In 
part 1 of the project, we investigate the development of 4- to 6-year-olds’ repeating 
and growing patterning competencies, and their associations with these children’s 
numerical abilities.

Children are confronted with repeating patterns from a very young age in their 
daily life activities (e.g., day-night-day-night and yellow-red-yellow-red lines on 
their T-shirt). Repeating patterns are also the most common type of patterns in early 
childhood education and research (for a review, see Wijns et al., 2019c). At the start 
of the project, a number of empirical studies on young children’s repeating pattern-
ing competencies had provided evidence for preschoolers’ ability to solve tasks 
involving repeating patterns, and for the association between children’s repeating 
patterning abilities and both concurrent and later numerical and mathematical abili-
ties (e.g., Collins & Laski, 2015; Lüken, 2012; Rittle-Johnson et al., 2015, 2017; 
Zippert et  al., 2019). Repeating patterning competencies were also shown to 
uniquely contribute to later mathematical performance, in addition to children’s 
early numerical abilities (Lüken, 2012; Nguyen et al., 2016; Rittle-Johnson et al., 
2017). However, systematic analyses of the mechanisms that might explain the 
association between young children’s patterning and early numerical ability as well 
as the developmental associations between these two early mathematical competen-
cies were non-existent. Moreover, researchers were criticized for their exclusive 
focus on repeating patterning abilities, arguing that young children are already 
capable of handling more complex patterns, such as growing patterns (Pasnak 
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et al., 2019). As far as growing patterns were included in empirical studies, they 
were analyzed in view of their contribution to the development of elementary school 
children’s algebraic skills (e.g., Warren & Cooper, 2008). To the best of our knowl-
edge, no research had investigated preschool children’s ability to successfully deal 
with activities focusing on growing patterns. Finally, although several researchers 
had already hinted toward the idea that children who by themselves look for patterns 
in their environment are good mathematicians, young children’s spontaneous atten-
tion for patterns was not yet systematically investigated. This contrasted with the 
domain of number, where researchers had already documented the pivotal role of 
young children’s spontaneous attention for quantities (SFON; Hannula & Lehtinen, 
2005) and number symbols (SFONS; Rathé et al., 2019) for their concurrent and 
later mathematical development. Part 1 of the present project aimed to increase cur-
rent insight into the role of patterning within early mathematical development by 
addressing the abovementioned weaknesses and systematically analyzing (a) young 
children’s spontaneous attention for patterns in their environment, (b) their ability in 
handling repeating as well as growing patterns, and (c) the association between their 
repeating and growing patterning ability and their numerical ability.

For this part of our longitudinal research project, we followed the development 
of children’s early patterning and number abilities between 4 and 6 years. This age 
range covers a critical developmental period in which several aspects of patterning 
and numerical ability are known to be acquired rapidly. In the spring of preschool 
year 2, preschool year 3, and elementary school Grade 1, children were offered two 
patterning ability measures, one focusing on repeating patterns and one focusing on 
growing patterns. Both patterning ability measures consisted of three types of pat-
terning activities: extending the pattern (i.e., what comes next in the pattern?), trans-
lating the pattern (i.e., make the same pattern using different materials), and 
identifying the structure of the pattern (i.e., identifying the unit of repeat that defines 
the repeating pattern, identifying the systematic increase or decrease that defines the 
growing pattern). Figure 3.2 provides an example item for the three patterning activ-
ities in the repeating patterns and growing patterns ability measure. The patterning 
ability measures consisted of 18 items (6 items per activity) that were scored as 
either correct or incorrect, resulting in a maximum score of 18 per measure. Before 
they solved the two patterning ability measures, children engaged in an activity that 
addressed their spontaneous attention for patterns, the so-called tower task, in which 
children were asked, in a free-play context, to make a tower construction with 15 
building blocks in three colors (five per color). Children’s tower constructions were 
scored as (a) pattern, when the tower included at least two full units and the start of 
the third unit of a pattern, (b) sorting, when all the blocks were sorted per color, or 
(c) random, indicating no pattern or sorting construction.

In a first study (Wijns et  al., 2019a) we focused on 4-year-olds’ spontaneous 
attention for patterns when solving the tower task (i.e., SFOP). We looked for indi-
vidual differences in 4-year-olds’ SFOP as well as their associations with children’s 
repeating patterning and numerical ability. We found individual differences in 
4-year-olds’ SFOP and showed that children who spontaneously created a pattern 
had higher repeating patterning ability and numerical ability than children who 
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Fig. 3.2 Example items for the two pattern types (repeating and growing) and the three activities 
(extending, translating, and identifying)

made a random arrangement. The positive associations between 4-year-olds’ SFOP 
and their repeating patterning and numerical ability can be hypothetically explained 
via the mechanism of self-initiated practice (cf. Hannula & Lehtinen, 2005, and 
Rathé et  al., 2019, for a similar explanation related to, respectively, SFON and 
SFONS). This mechanism suggests that children with a spontaneous tendency to 
focus on mathematical elements in their environment will have more opportunities 
to practice their mathematical abilities and therefore improve them. Related to 
SFOP, children who spontaneously look for and create patterns during daily life 
activities are assumed to have more opportunities to practice their patterning abili-
ties and, by extension, numerical skills. Although viable, this hypothetical explana-
tion requires further research attention.

In a second study (Wijns et al., 2019b), we analyzed 4-year-olds’ ability in both 
repeating and growing patterning tasks, and their association with children’s numer-
ical ability. A confirmatory factor analysis showed that the 2 × 3 structure of our 
patterning ability measure (two types of patterns, three patterning activities) could 
also be found in our data, confirming the validity of our measure. Additionally, both 
the pattern type and the patterning activity had an impact on children’s patterning 
performance. Concerning the pattern type, we found that growing patterns were 
more difficult than repeating patterns. This difference in difficulty level might be 
due to differences in the complexity of the structure of the different pattern types 
(i.e., a clearly visible unit that repeats versus a systematic increase or decrease that 
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needs to be deduced from the visible pattern) as well as the emphasis on mainly 
repeating patterns in current educational practice, which might lead children to 
think that all patterns are repeating patterns. Importantly, the study also showed 
that, despite the high difficulty level of activities with growing patterns, growing 
patterns are already feasible for a significant number of children of this young age. 
Turning to the impact of patterning activity, our study indicated that translating pat-
terns was easier than both extending patterns and identifying the structure of pat-
terns. The difference in difficulty level of extending and translating patterns is not in 
line with earlier studies with only repeating patterns (Lüken, 2012; Rittle-Johnson 
et al., 2015) but might be due to children’s use of a one-one matching strategy to 
solve the latter type of tasks. Although our observational data do not support this 
explanation, future studies on the strategies that children use when solving different 
types of patterning tasks are required (cf. the recent study of Lüken & Sauzet, 2020). 
Finally, we also found that most patterning tasks uniquely predicted children’s 
numerical ability.

Our third study involved a longitudinal analysis of the direction of the associations 
between repeating patterning, growing patterning, and numerical ability from age 4 
to 6 (Wijns et al., 2021a). Although several studies had already provided evidence 
for an association between patterning and numerical ability, little was known about 
the direction of this association. Moreover, at the start of the project, it was unclear 
whether the association with numerical ability was different for distinct pattern 
types. Our cross-lagged panel analysis revealed bidirectional associations between 
all three abilities from age 4 to 5, suggesting that performance on one ability 
supports performance on another ability 1 year later. From age 5 to 6, patterning 
abilities predicted numerical ability, but the reverse was no longer true. Also, from 
age 5 to 6, repeating patterning abilities predicted growing patterning abilities, but 
not vice versa. These findings suggest that children’s repeating and growing pattern-
ing ability supports the acquisition of later numerical ability, and that, within chil-
dren’s patterning ability, repeating patterning ability supports the acquisition of 
growing patterning ability. Although several researchers already hinted at the pos-
sibility to explore regularities in both patterning and number tasks (e.g., the base-10 
structure of our number system with repeating units across decades, or the system-
atic increase with one of our counting row) as a mechanism that explains their asso-
ciations, theoretical models are missing. It is a challenge for future work in the 
domain to first develop these theoretical models and next conduct focused interven-
tion studies that help reveal the mechanisms underlying the frequently observed 
associations between patterning ability and numerical ability.

In our fourth study, we evaluated the effectiveness of an intervention aiming to 
enhance 5-year-olds’ repeating and growing patterning ability for their development 
of early patterning competency (Wijns et al., 2021b). A 20-week intervention pro-
gram (with 30  minutes patterning activities per week, focusing on the patterns’ 
structure) resulted in significant improvements in the patterning competency of the 
children following the intervention compared to the control group, but there was no 
transfer effect to their numerical ability.
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The findings of the longitudinal and intervention study provide important 
building blocks for optimizing current early mathematics education. First, the 
longitudinal analyses add to current insights into children’s learning trajectories in 
the domains of number and patterning, pointing to the pivotal role of preschoolers’ 
patterning competencies. Second, our focused intervention on the structure of 
repeating and growing patterns greatly enhanced preschoolers’ patterning compe-
tency. These findings call for more attention than is currently the case for stimulat-
ing patterning competency in preschool curricula, integrating also more complex, 
growing patterns and more challenging patterning activities, such as translating the 
pattern or identifying its structure.

3.4  Early Computational Estimation

Computational estimation can be described as providing an approximate answer to 
an arithmetic problem without calculating it precisely. This mathematical skill 
shows a commonality with the approximate arithmetic competence that is assumed 
to be part of young children’s foundational approximate number system (ANS), in 
the sense that in both cases one has to mentally perform an arithmetic operation on 
two operands in an approximate way. However, the two skills are also fundamen-
tally different: while in approximate arithmetic children have to process the oper-
ands approximately, the numerical value of the operands is known in computational 
estimation (Sekeris et al., 2019).

Computational estimation is viewed as an important mathematical competence 
in our daily life since many situations only require calculations with a reasonable 
degree of accuracy, such as splitting the bill among a group of friends in restaurant. 
In addition, it is widely agreed that computational estimation should play an impor-
tant role in the elementary mathematics curriculum (Siegler & Booth, 2005; Sowder, 
1992; van den Heuvel-Panhuizen, 2000) as it involves a complex interplay of vari-
ous types of mathematical knowledge and skills, including conceptual knowledge 
(e.g., accepting more than one value as an outcome of an estimation), procedural 
knowledge (e.g., being able to modify the problem to arrive at a mentally more 
manageable problem), and arithmetic knowledge and skills (e.g., mental computa-
tion skills). Given that computational estimation problems can be solved in many 
different ways, it allows children to develop number sense (LeFevre et al., 1993) 
and strategy flexibility (Siegler & Booth, 2005). Although computational estimation 
is nowadays widely recognized as an important part of the elementary mathematics 
curriculum (e.g., NCTM, 2000), it has, compared to its counterpart exact arithmetic, 
received far less attention from curriculum developers and researchers (Dowker, 
2003; Siegler & Booth, 2005).

A recent literature review by our team revealed that the vast majority of studies 
on computational estimation investigated this skill from the age of eight and onward 
(Sekeris et al., 2019). This could be related to the fact that computational estimation 
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is typically only instructed from the middle grades of elementary school onwards, 
when children have already acquired ample experience with whole-number exact 
arithmetic (Common Core State Standards Initiative, 2010). However, a few studies 
suggested that children are already able to engage in computational estimation at a 
younger age than is traditionally expected (Dowker, 1997, 2003; Jordan et  al., 
2009). This might not be so surprising, given that recent studies provided empirical 
evidence that preschool children can use their basic numerical abilities to solve 
approximate arithmetic problems with both non-symbolically and symbolically pre-
sented comparisons (e.g., “15 + 13 vs. 49, which is more?”) before they have been 
taught exact arithmetic in school.

Part 2 of our research project therefore aimed at charting the emergence and 
early development of computational estimation from the age of 5 (third grade of 
preschool) until the age of 9 (third grade of elementary school). Children’s compu-
tational estimation skills were tested on an individual basis once each year. To that 
aim, we developed a task in which children had to estimate the outcome of addition 
problems and that consisted of a non-verbal and a verbal variant. In the non-verbal 
variant, which was used in third grade of preschool and first grade of elementary 
school, the estimation problems were presented by means of manipulatives. Both 
addends were represented by a number of cows that were consecutively positioned 
in a horizontal row in front of the child, verbally labeled by the experimenter (“Here 
are N cows”), and hidden in a stable afterward. Next, children were asked to indi-
cate about how many cows there were altogether in the stable by putting a number 
of cows from their own pile on the table (see Fig. 3.3).

In the verbal variant, which was used in the first three grades of elementary 
school, the estimation problems were presented with Arabic numerals on a com-
puter screen for 20 seconds and simultaneously read out loud by the experimenter 
after which children had to respond verbally. To ensure that children would engage 
in computational estimation, we presented them with addition problems that were 
numerically just too difficult to be solved by means of exact arithmetic (Dowker, 
1997, 2003). The level of exact arithmetic in each grade was based on children’s 
curriculum and extensive pilot testing. Over the entire duration of the longitudinal 
study, children had to estimate the outcome of 24 addition problems of different 
difficulty levels, which were defined by the size of the exact outcome of the estima-
tion problems. More specifically, these outcomes ranged between 11 and 30 in third 

Fig. 3.3 Example of a computational estimation problem from the non-verbal task variant with (a) 
the first addend, (b) the second addend, and (c) the child’s answer
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year of preschool, 11 and 100 in first and second years of elementary school, and 
51–10.000 in third year of elementary school.

We focused both on computational estimation performance and strategy use (see 
e.g., Sekeris et al., in press). At present, data have been collected from third year of 
preschool until second year of elementary school. Estimation performance in both 
tasks was measured in terms of children’s accuracy and was operationalized in 
terms of percentage absolute error (PAE) of children’s estimates relative to the exact 
answer. We observed that children’s PAE evolved from 34% in third year of pre-
school to 19% in second year of elementary school, indicating that children became 
more accurate in their estimates when growing older. Interestingly, in the first year 
of elementary school – where both task variants were administered with exactly the 
same problems – we found that children were, as expected, more accurate in the 
non-verbal (34%) than in the verbal task variant (27%). Presumably, this lower per-
formance on the verbal task variant could be attributed to children being insuffi-
ciently familiar with two-digit numbers being represented with Arabic numerals. 
Similar findings have been reported by Dowker (2003) for computational estimation 
and Levine et al. (1992) for exact arithmetic. In both task variants we also observed 
an effect of problem size. Children’s estimates became less accurate with increasing 
problem size, suggesting that children were not merely guessing the outcome of the 
estimation problems.

Children’s strategy use was examined for both task variants separately. For the 
non-verbal variant we looked at two aspects of children’s externally observable 
behavior when lying down their answer by means of the manipulatives: (a) the way 
in which they constructed the answer set and (b) their counting behavior while con-
structing the answer set. With respect to the construction of the answer set, we dis-
tinguished, based on previous studies in arithmetic (Carpenter & Moser, 1982; De 
Corte & Verschaffel, 1987), among three different strategies that might reflect dif-
ferent representations of numbers and arithmetic operations: (a) creating two sets of 
manipulatives representing both addends which were either kept separate (addends 
only) or (b) put together afterward (combining), and (c) immediately putting all 
manipulatives in one group (result-only). For their counting behavior we looked at 
whether children counted or not when constructing the answer set. Results showed 
that both in third year of preschool and first year of elementary school about 95% of 
the problems were solved by means of the result-only strategy. This frequency did 
not change with age or problem size. The frequency of children’s counting behavior 
showed an age-related increase and decreased with increasing problem size. A 
structural equation model showed that in preschool none of the two aspects of chil-
dren’s material solution strategies were predictive of their estimation performance, 
whereas in first grade the result-only strategy was a negative predictor and counting 
frequency a positive predictor of their estimation performance. These findings 
might indicate that children in third year of preschool lack the insight that the way 
in which they use the manipulatives or their counting skills could help them make 
better estimates. By the first year of elementary school, they might have come to the 
understanding that a purposeful use of the manipulatives (i.e., by representing both 
addends first separately) and counting might lead to improved estimations.
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In the verbal variant of the computational estimation task, children’s strategy use 
was identified on the basis of immediate trial-by-trial verbal strategy reports. 
Strategies were classified according to an a priori classification scheme which dis-
tinguished among four broad strategy categories: (a) exact arithmetic in which chil-
dren calculated the answer exactly instead of estimating it, (b) 
exact-calculation-and-adjusting in which the answer was calculated exactly and 
then adjusted to make it look like an estimate, and (c) rudimentary computational 
estimation strategies that showed some basic and rough conceptual understanding 
of the principles of computational estimation, and genuine computational estima-
tion strategies in which the estimation problem is first simplified (e.g., by rounding 
the operands) before calculating the approximate outcome. We observed that chil-
dren hardly used any genuine computational estimation strategies, presumably 
because children at this age did not yet possess the necessary mathematical knowl-
edge and skills for applying such advanced estimation strategies. However, children 
already had a basic understanding of some of the underlying principles of computa-
tional estimation, as was evidenced by the fact that they referred to the proximity 
principle (i.e., the idea that an estimate should be close to the exact outcome) when 
applying a rudimentary computational estimation strategy or that they took into 
account the approximation principle (i.e., the estimate should be an approximation 
of the exact outcome) when using the exact-calculation-and-adjusting strategy. 
Interestingly, the use of the exact arithmetic and exact-calculation-and-adjusting 
strategies increased from first to second grade of elementary school. Probably, the 
strong focus on exact arithmetic in mathematics education at the beginning of ele-
mentary school makes children increasingly convinced that each arithmetic prob-
lem has only one correct answer.

To conclude, the present findings indicate that young children are already able 
to engage in computational estimation at a much younger age than is generally 
assumed. Their estimation performance increases with age, even in the absence of 
instruction in computational estimation. Young children already use a variety of 
strategies to solve computational estimation problems. This strategy use reveals 
traces of a beginning conceptual understanding of the principles underlying com-
putational estimation. Taking into account the aforementioned multi-componen-
tial nature of computational estimation, its potential for developing number sense, 
and the recurrent finding that people are generally bad at it (Siegler & Booth, 
2005), our findings suggest that computational estimation could be incorporated 
much earlier in the mathematics curriculum. Such an early learning trajectory for 
computational estimation could start by familiarizing young children with the 
concept of estimation, its underlying principles (e.g., the proximity and approxi-
mation principle), and the specific language of estimation (e.g., “about,” “near,” 
and “close to”). This earlier incorporation in the curriculum might prevent that the 
early development of children’s estimation skills becomes too much hampered by 
their strong focus on being exact as a result of their confrontation with formal 
school mathematics.
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3.5  Early Proportional Reasoning

Proportional reasoning plays a critical role in people’s mathematical development. 
It is essential in the learning of numerous advanced mathematical topics, such as 
algebra, geometry, statistics, or probability, but people also encounter it in numer-
ous daily life situations (e.g., recipes, sales). Unfortunately, it is also considered to 
be hard to apprehend for children, and achieving a full understanding of proportion-
ality is considered a major challenge (Kaput & West, 1994). In the research litera-
ture, there is no unanimity about the age range in which proportional reasoning 
abilities develop.

The traditional Piagetian stance on the development of proportional reasoning is 
that it is a rather late achievement (Inhelder & Piaget, 1958). They see it as an indi-
cator of formal operational thought, typically only starting to develop from the age 
of 12. Typical evidence comes from tasks like the Paper Clip Task (Karplus & 
Peterson, 1970): learners get the height of Mr. Tall and Mr. Short expressed in a 
number of buttons, and the height of Mr. Short in expressed in a number of paper 
clips. They need to find the height of a Mr. Tall expressed in paper clips. Academically 
upper-track or upper middle-class students used proportional reasoning increas-
ingly at the age of 12 years, but only a small fraction of urban low- income and 
academically lower-track students used proportions at the age of 14 or even 17 years. 
Similar findings come from Noelting (1980), who used Orange Juice Problems: 
comparing mixtures of varying numbers of glasses of orange juice and water. He 
reported that proportional reasoning is a concept that finds its achievement only in 
late adolescence and that children did not reach the formal operational level before 
the age of 12.

However, more recent studies suggested that proportional reasoning may start to 
develop much earlier than suggested by Piaget and colleagues. We mention a few 
examples. Resnick and Singer (1993) presented 5- to 7-year-old children with a 
proportional missing-value task. Children had to feed fish of different lengths. All 
children tended to give proportionally larger amounts of food to larger fish. Boyer 
and Levine (2012) used an orange juice task to assess proportional reasoning in 6-to 
9-year-old children. Results showed that these young children could already match 
equal proportional mixtures, but performance depended on the scaling magnitudes 
in the problems. Finally, in preparation for part 3 of the current longitudinal study 
we also found early traces of proportional reasoning in 4- to 5-year-old children 
(Vanluydt et al., 2018). Many of them were able to make the ratio between puppets 
and grapes in a set B equal to the ratio between puppets and grapes in a set A, and 
strategies pointed to the emergence of a notion of one-to-many correspondence, 
which is an important first step in the development of proportional reasoning. While 
the full understanding of proportionality might only be achieved at the age of 12, the 
development of proportional reasoning seems to begin much earlier, allowing young 
children to reason proportionally in certain tasks (involving specific contexts and 
ratios) and under certain conditions (i.e., individual interview settings with hands-
 on activities).
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In part 3 of the longitudinal study, we are mapping the development of children’s 
proportional reasoning ability from the age of 5 (last year of kindergarten) until 9 
(third year of elementary school). For this purpose, we developed and validated a 
task about a fair sharing context, involving manipulatives, and avoiding the need to 
use number symbols (Vanluydt et al., 2019). Children are given missing-value prob-
lems involving discrete and/or continuous quantities. In tasks with discrete quanti-
ties, they have to construct a set B equivalent to a comparison set A by putting the 
elements in set B in the same ratio as the elements in set A. The two discrete quanti-
ties are puppets and grapes that need to be shared among them. In tasks with con-
tinuous quantities, the context is similar, but the grapes are replaced by a continuous 
quantity, chocolate bars of varying lengths. Example items are shown in Fig. 3.4.

We are currently awaiting the results of the longitudinal study to map the 
development in detail, and to link it to various learner characteristics. A cross-
sectional exploration with a comparable sample (Vanluydt et  al., 2019) already 
revealed several qualitatively different early stages of proportional reasoning, in 
which the nature of the quantities involved in the problem (discrete vs. continuous) 
as well as the unknown quantity (the grapes/chocolate or the puppets) played a role. 
For instance, while performing equally well in general, some children showed a 
greater ability to reason proportionally when the problem involved only discrete 
quantities, whereas others performed better when continuous quantities were 
involved. Some children already showed full mastery on the proportional reasoning 
tasks at the age of 9, but most children were still developing this ability. Our 
longitudinal data will allow to reveal which children progress fastest and furthest by 
the age of 9: those who can reason about discrete quantities at an early age or those 
who can reason about continuous quantities.

Instruction: “All puppets are equally 
hungry. If I give this chocolate bar to 
these puppets, which chocolate bar do 
you have to give these puppets for it 
to be fair? You can give a chocolate 
bar to the puppets so that it’s fair.” 

Instruction: “All puppets are equally 
hungry. If I give four grapes to these 
puppets, how many grapes do you 
have to give to these puppets for it to 
be fair?” 

Fig. 3.4 Example items of the proportional reasoning tasks involving discrete and continuous 
quantities
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Along with the study of the development of early proportional reasoning, we 
were also able to investigate how other mathematical competencies, such as math-
ematical patterning, are associated with children’s proportional reasoning ability. 
We have shown the predictive association between patterning in the second year of 
kindergarten and proportional reasoning ability in the first year of elementary 
school. Two measures of patterning ability (repeating and growing patterns, see 
paragraph 3) were used as a predictor for two measures of proportional reasoning 
ability (involving a discrete or a continuous quantity). Patterning ability turned out 
to be a unique predictor of proportional reasoning ability over and above sex and 
general cognitive and numerical abilities. More specifically and quite remarkably, 
performance on repeating patterns was uniquely related to performance on propor-
tional reasoning with a discrete quantity, whereas performance on growing patterns 
was uniquely related to performance on proportional reasoning with a continuous 
quantity.

Another aspect that we investigated is the role of language abilities in proportional 
reasoning. It is generally known that language – be it language in general or language 
related to mathematics – plays a crucial role in mathematical thinking and learning 
(Peng et  al., 2020). However, so far no studies studied the role of language in 
proportional reasoning at an early age. We longitudinally investigated if specific 
mathematical vocabulary related to proportional reasoning (e.g., understanding 
expressions like “half” or “three times more”) in the first year of elementary school 
predicts proportional reasoning abilities in the second year of elementary school. A 
hierarchical linear regression analysis showed that specific mathematical vocabu-
lary related to early proportional reasoning in the first year of elementary school is 
a unique predictor for proportional reasoning abilities in the second year of elemen-
tary school over and above age, socio-economic status (SES), and general vocabu-
lary (Vanluydt et al., 2021). Although more evidence based on intervention studies 
is needed to reveal the causal nature and the direction of this relation, these results 
suggest more attention to specific mathematical vocabulary related to proportional 
reasoning in young children might stimulate early proportional reasoning.

Several other studies are planned using the available longitudinal data, in order 
to obtain a deeper understanding of the development of proportional reasoning abil-
ities at a young age. From second grade on, we started to offer arithmetic word 
problems, in addition to the proportional reasoning fair sharing tasks with manipu-
latives that were described above. Some of these word problems are proportional, 
but also additive word problems are included, such as the following:

Roos and Loes are running around a track. They run equally fast, but Loes started later. 
When Loes has run 2 rounds, Roos has run 8 rounds. When Loes has run 4 rounds, how 
many has Roos run?

The literature (e.g., Van Dooren et al., 2010) reports that young children often 
erroneously solve proportional problems additively while older children solve addi-
tive problems proportionally (in the problem above, they would answer that Roos 
has run 16 rounds). Our longitudinal data will reveal whether early individual dif-
ferences in proportional reasoning abilities predict these two kinds of errors.
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So far, our findings indicate that children in the third grade of kindergarten and 
the first years of elementary school can make sense of the one-to-many correspon-
dences in proportional situations and suggest that these may already be stimulated 
and developed into an understanding of many-to-many situations. This seems pos-
sible even before the arithmetic skills for addition and multiplication are extensively 
practiced. Attention to the specific mathematical vocabulary involved in propor-
tional situations seems important in doing so. We are currently developing instruc-
tional materials for this purpose, which will be tested in an intervention study.

3.6  Early Probabilistic Reasoning

Parallel to the research and discussion about early proportional reasoning, there is a 
growing body of developmental research showing that very young children have 
basic intuitions about chance events and that these intuitions develop into a more 
formal probability concept during elementary school (Bryant & Nunes, 2012; Piaget 
& Inhelder, 1951/1975). The successive developmental stages of probabilistic rea-
soning have been given several labels, but boil down to three main stages: non-
probabilistic reasoning (preoperational; until the average age of 6 years), emergent 
probabilistic reasoning (concrete operational; from 6 to 11 years old), and finally 
quantification of probability (formal operational; from about the average age of 
11 years) (Green, 1991; Jones et al., 1999; Way, 2003).

Preliminary results on these basic intuitions in young children have already been 
obtained with respect to several components of probabilistic reasoning: understand-
ing randomness, working out the sample space, comparing and quantifying proba-
bilities, and understanding relations between events (Bryant & Nunes, 2012). 
However, the developmental pathways of these components and their relation to the 
development of other competencies remain largely unexplored.

Based on these descriptive developmental studies, many countries around the 
world have introduced probability calculus as part of the curriculum in elementary 
school in the 1990s (Way, 2003). More recently, in two southern German states, 
Baden-Württemberg and Bayern, the basics of probabilistic thinking are included in 
the elementary school curriculum partly as a result of the rising awareness of the 
importance of “risk competency” (Granzer et  al., 2009; Martignon & Erickson, 
2014; Till, 2014). However, little is known about the effects of teaching probability 
and statistics in elementary school or about the processes involved.

With respect to probabilistic reasoning, our project had three main objectives. 
First, we aimed to construct a more comprehensive view on the development of dif-
ferent components of probabilistic reasoning in children from the age of five to nine. 
Second, we wanted to explore the relationship between the development of numeri-
cal abilities, mathematical patterning, computational estimation, and proportional 
reasoning on the one hand, and the development of probabilistic reasoning among 
elementary school children on the other hand. Our expectation was that these other 
abilities are important building blocks for emergent probabilistic reasoning. A third 
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objective was to investigate whether it is possible to stimulate probabilistic reason-
ing at a younger age than is currently the case in Flemish schools.

This part of the project is still ongoing, but we already have some first results 
from pilot studies and analyses from the first wave of the longitudinal study. Because 
we needed an instrument for the early assessment of probabilistic reasoning, we 
constructed several tasks that tapped into children’s ability to recognize (un)cer-
tainty and children’s ability to compare probabilities. The basic setup is an individu-
ally administered binary choice task in which children have to select one out of two 
boxes that has the best chance to blindly pick a winning element. The concrete setup 
is an adapted version of the setup proposed by Falk et al. (2012) and goes as follows 
(see Fig. 3.5):

Children sit in front of a laptop screen. They are introduced to a blindfolded bird and are 
told that the bird loves black berries but hates white berries. In each trial, the bird blindly 
picks a berry from one of two boxes that are filled with different number of berries of the 
desired and undesired color (see Fig. 3.5). Unlike the bird, children can see the content of 
each box and they are asked to help the bird by deciding which of two boxes is best for the 
bird to blindly pick a berry from.

An interesting property of this setup is that the difficulty of the items can be 
varied meaningfully by manipulating their features. For example, it is possible to 
vary the total number of berries, the proportion of black berries, and even more than 
two colors of berries can be used (after slightly adapting the instruction). Based on 
the study by Falk et al. (2012), we expected that items would become particularly 
challenging to the children if the optimal box would contain a smaller absolute 
number of black berries (see Fig. 3.6); and even if there are no white berries left in 
that box (see Fig. 3.7).

After pilot testing, the final instrument consisted of 29 items. For an independent 
validation and feasibility study, we presented the instrument to a cross-sectional 
sample of 177 5- to 9-year-olds in a school who did not participate in our larger 
longitudinal data collection. We found that our instrument was fit to use in kinder-
garten and elementary school. The children understood our instruction and it took 
no longer than 10  minutes to administer the task. Furthermore, the results were 
encouraging from the perspective of assessing probabilistic reasoning at these 

Fig. 3.5 Example item for the probabilistic reasoning task: Select the box that gives you the best 
chance to randomly draw a black berry from
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Fig. 3.6 Example of a difficult item for the probabilistic reasoning task: The box with the smaller 
number of black berries has a larger probability to randomly draw a black berry from

Fig. 3.7 Example of a difficult item for the probabilistic reasoning task: The box with the smaller 
number of black berries has a 100% probability to randomly draw a black berry from

young ages: item difficulty varied as expected, older children obviously had better 
performance than younger ones, and we found no indications for floor or ceiling 
effects in any age group. The extensions that we added to the setup by Falk et al. 
(2012) also seemed to improve the reliability and validity of the instrument (Supply 
et al., 2018, 2020).

When we applied this instrument to the 5- and 6-year-olds in our longitudinal 
study, we found that children within the same year of kindergarten strongly differed 
in their performance on the items that had one box with 100% probability to ran-
domly draw a black berry from. Furthermore, children’s performance on these items 
was predictive for their performance on the items that required a comparison of 
probabilities of only uncertain outcomes. These results demonstrate that, although 
conventional developmental theory assumes that there is no probabilistic reasoning 
in the preoperational stage, kindergarten children already have good performance in 
certain tasks that require probabilistic judgments. In addition, the recognition of 
uncertainty may act as a precursor for emergent probabilistic reasoning (Supply 
et  al., 2019a). In these 5- and 6-year-old children, we also explored the relation 
between the performance on the numerical tasks that were administered as part of 
the longitudinal study (see Sect. 3.1) and our binary choice instrument, extended 
with a construction task. For the construction task, children were introduced to two 
representations of identical birds, two rectangular boxes containing white and black 
marbles, and one larger square box containing 10 black marbles (see Fig. 3.8).
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Fig. 3.8 Example of an item for the construction task: Add black berries to the right-side 
rectangular box to have an equal probability to randomly draw a black berry from each of the boxes 
(the square box on the right hand contains the black berries that can be used to make the adjustment)

As with the binary choice instrument, the construction task was administered 
individually. The instruction was as follows:

These are Flip and Flap. Flip and Flap are twins. Flip and Flap are both blindfolded because 
we are going to play a game with them. Flip and Flap both like black berries (experimenter 
shows child black marbles), but get sick of these white berries (experimenter shows child 
white marbles). I will always give a box to each Flip and Flap and they can each blindly 
pick one berry from their own box. Of course, Flip and Flap cannot see what is in the box, 
because they are wearing that blindfold. Flip’s box contains white and black berries, but 
Flap’s box always contains only sickening white berries. That is not fair of course. You can 
add black berries to the box of Flap so that it becomes a fair game. You can add as many 
berries, until you think that Flip and Flap are just as likely to blindly pick a black berry 
when they are blindfolded and allowed to pick only once in their own box.

We found a strong general association between the performance on the numerical 
tasks and the items that required a comparison of probabilities of only uncertain 
outcomes. There was no association between numerical skills and the ability to 
distinguish uncertain from certain events, and we also found no association with the 
performance in the construction task. In the latter task, children with better numeri-
cal skills tended to add as many winning elements to the new box as there were in 
the box that was given, thereby ignoring the number of losing elements in the given 
box. This suggests that at this young age, good early numerical skills might promote 
the use of erroneous strategies in probabilistic situations. Future research could 
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investigate whether these erroneous strategies can be seen as the first step in reason-
ing about probabilities or whether they impede proper probabilistic reasoning 
(Supply et al., 2019b).

In sum, our preliminary findings suggest that probabilistic situations are already 
intelligible for 5- to 6-year-olds. At this age, children have not been formally intro-
duced to addition, multiplication, and proportionality, but nevertheless are able to 
give meaningful answers in binary choice tasks that involve probabilistic optimiza-
tion. These findings challenge the common notion that probability as a mathemati-
cal topic is too difficult for elementary school children and should only be included 
in the curriculum of secondary school or university. As such, these findings open up 
a perspective for a learning trajectory on probability and statistics from kindergarten 
(e.g., by playing games of chance) to elementary (e.g., calculating probabilities) and 
secondary school (e.g., deriving Bayes’ theorem).

In our opinion, this perspective is of paramount importance because the inclusion 
of probability as a topic in the elementary school curriculum can act as a counter-
weight to current mathematics and science curricula that − from the first years on 
− put a strong emphasis on exact arithmetic with small cardinal numbers, determin-
istic causal explanations, and certitude and that instill a view of science and a view 
of the world that leaves no room for doubt, uncertainty, intrinsic stochastic pro-
cesses, or measurement error. However, we must also acknowledge that our finding 
of developing probabilistic reasoning in 5- to 6-year-olds does not imply that educa-
tion can improve or accelerate this development. Therefore, an additional interven-
tion study is planned to investigate whether it is possible to stimulate probabilistic 
reasoning at a younger age than is currently the case in Flemish schools.

3.7  Conclusion

In this chapter we gave a snapshot of the main results of a 6-year-long research 
project that started in 2016 and in which we longitudinally follow the integrated 
development of 4- to 9-year-olds’ competencies in four challenging mathematical 
domains – mathematical patterns, computational estimation, proportional reason-
ing, and probabilistic reasoning – using a rich battery of measures.

The preliminary findings of the longitudinal study confirm our basic claim that, 
with respect to these four core mathematical competencies, important initial steps 
are being made in children’s development (much) earlier than traditionally thought. 
Many preschoolers were able to handle repeating patterns and some even showed 
beginning mastery of growing patterns; a significant number of them solved compu-
tational estimation problems in ways that suggest a nascent conceptual understand-
ing of the principles underlying computational estimation; many of them were 
already able to reason proportionally and to make probabilistic judgments in certain 
tasks and under certain conditions.

We found that these four early mathematical competencies showed unique 
associations with children’s numerical abilities. These associations were observed 
both cross-sectionally and longitudinally. For example, we observed for the first 
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time that the association between patterning and numerical skills changed from 
bidirectional to unidirectional (i.e., from patterning to numerical ability) in 4- to 
6-year old children (Wijns et al., 2021a, b), but further work is needed to further 
pinpoint the direction of associations between these two abilities.

Furthermore, we also observed that these four early mathematical competencies 
were interrelated. For example, patterning in 4- to 5-year-olds turned out to be a 
unique predictor of proportional reasoning one and a half year later over and above 
various general cognitive and numerical abilities (Vanluydt et al., in press).

As was exemplarily shown for patterning, it is important to look not only at the 
ability side of young children’s early core mathematical competencies, but to look 
at the dispositional side of these competencies too. For this competence, we found 
individual differences in 4-year-olds’ spontaneous focusing on mathematical pat-
terns (SFOP), as well as significant associations between their SFOP scores and 
their scores on the patterning and numerical ability measures, which might be 
explained via the mechanism of self-initiated practice (cf. Hannula & Lehtinen, 
2005), in line with what has already been reported for other spontaneous mathemat-
ical focusing tendencies, such as spontaneous focusing on numerosity (SFON), 
spontaneous focusing on number symbols (SFONS), and spontaneous focusing on 
mathematical relations (SFOR) (Verschaffel et al., 2020).

An outstanding strand is the understanding of the cognitive origins of individual 
differences in the abovementioned four mathematical competencies. There is a large 
body of research that has examined individual differences in children’s mathemati-
cal development (e.g., Dowker, 2005), but again, this work is largely restricted to the 
study of numerical abilities and arithmetic, both in children with high and low 
achievement in mathematics. On the one hand, this strand will be informative for the 
study of children who excel in their mathematical achievement. Research on excel-
lence in mathematics almost exclusively focused on adolescents and adults (e.g., 
Lubinski & Benbow, 2006; Preckel et al., 2020) and hardly anything is known about 
the early seeds of this excellence in elementary school and earlier. It has been posited 
that numerical and arithmetic abilities, although useful, do not necessarily represent 
the quintessence of excellence in mathematical achievement (Krutetskii, 1976). As 
the abovementioned challenging domains are mathematically more complex than 
number and arithmetic, they might allow high achievers to show their mathematical 
potential. Our longitudinal data will allow us to investigate whether children who 
excel in mathematics in Grades 2 and 3 of elementary school also excel in the above-
mentioned mathematical competencies in earlier grades of elementary school and 
even preschool, and verify to which extent this excellence can be explained by 
domain-general cognitive capacities, such as spatial skills or working memory. On 
the other hand, this strand also has implications for the study of children with low 
mathematics achievement, a research area that has traditionally been focused on the 
study of numbers and arithmetic. Our longitudinal data will also allow us to investi-
gate whether children with low achievement in mathematics are also at risk for 
developing difficulties in patterning, computational estimation, proportional reason-
ing, and probabilistic reasoning. Again, we will be able to identify to which extent 
these difficulties can be explained by domain-general cognitive capacities.
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Finally, throughout the chapter we have pointed at several places how the findings 
of our longitudinal study may contribute to the development of educational 
standards, learning trajectories, and instructional tasks and techniques that give 
mathematical patterns, computational estimation, proportional reasoning, and prob-
abilistic reasoning a more prominent place in early mathematics education. In doing 
so, these changes in the early mathematics education curriculum and practice will 
make early mathematics education more challenging and inclusive for all young 
children, and provide them a better preparation for the challenges of the mathemat-
ics curriculum of the upper elementary school. However, we are well aware that 
concrete educational recommendations should be based on findings coming from 
intervention studies that test the feasibility and effectiveness of these more chal-
lenging early mathematical curricula and designs in real educational settings.
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Chapter 4
Mathematical Modelling as a Stimulus 
for Curriculum and Instructional Reform 
in Secondary School Mathematics

Merrilyn Goos, Niamh O’Meara, Patrick Johnson, Olivia Fitzmaurice, 
and Aoife Guerin

4.1  Mathematical Modelling in the School Curriculum

Curriculum documents often advocate making connections to the real world through 
the use of mathematical applications and modelling as a means of motivating and 
engaging students, as well as illustrating the usefulness of mathematics to describe 
and analyse real-world situations. Although applications and modelling are often 
coupled together, they have received differing attention in school curricula, with 
modelling viewed as being more challenging and complex than applications. 
Applications tasks are typically well structured and demonstrate the relevance of 
particular mathematical content for solving a problem set in a real-world context. 
The task situation is fully described; all assumptions about the situation are made 
explicit; and students know they will normally use all the data provided in order to 
find the solution. Modelling tasks, on the other hand, are usually more open and 
require mathematisation of a real-world situation. It is up to the modeller to define 
the real-world problem, specify assumptions and choose variables, identify relevant 
mathematical knowledge and tools, formulate and solve the mathematical problem, 
interpret and validate the solution, and modify the model if necessary. Teaching the 
modelling process is often viewed as a worthwhile educational goal in itself.

The inclusion of mathematical modelling and applications within school 
curricula has a history dating back to the early twentieth century. In 1904 the 
German mathematician Felix Klein developed a new curriculum that placed a larger 
emphasis on the inclusion of applications in the instruction of secondary 
mathematical education (Krüger, 2019). Much later, in the 1970s and 1980s, the 
focus on mathematical modelling and applications came to the fore in many English-
speaking countries as large-scale curriculum projects encompassing modelling and 
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applications were developed (see Schukajlow et al., 2018, for more on this). This 
resurgence in the focus on modelling and applications led to the first biennial con-
ference series on the teaching and learning of mathematical modelling and applica-
tions in the University of Exeter in 1983, which in 1987 was rebranded as the 
International Conference on the Teaching of Mathematical Modelling and 
Applications (ICTMA). A regular working/topic group on mathematical modelling 
and applications was also included at the quadrennial International Congresses on 
Mathematical Education (ICMEs). Although they are linked, the distinction between 
modelling and applications is evident when we realise that when considering math-
ematical applications, we are looking for ways to use mathematics that has already 
been chosen, that is, moving from the mathematical world to the real world. In these 
situations, the necessary mathematical tools and models are already learnt and exist. 
On the other hand, with modelling we are focusing on the process of finding some 
mathematics that will help us understand and potentially solve the real-world prob-
lem. In this case the model must be constructed through understanding, simplifying, 
and mathematising the real-world scenario.

While modelling and applications play more significant roles in many countries’ 
curricula and classrooms than in the past, the difficulties of implementing wide-
spread curriculum change represent core barriers to bringing about changes in 
mathematics teaching and learning (Burkhardt, 2018). Consequently, the inclusion 
of authentic modelling activities in mathematics classrooms is still rather scarce and 
sporadic. Recent mathematics curriculum reform in Ireland has promoted a move 
away from calculation using learned procedures towards engaging students in 
authentic, challenging tasks. Since 2008 the newly introduced secondary mathemat-
ics curriculum has advocated for the use of contexts and applications to develop 
students’ problem-solving abilities and to assist them in seeing the value and rele-
vance of the mathematics being taught (National Council for Curriculum and 
Assessment [NCCA], n.d.). Additionally, the recent inclusion of a “classroom-based 
assessment” component at lower secondary school level, which requires students to 
apply their mathematical knowledge to address a problem of their own choosing, 
again highlights the emphasis on mathematical modelling and applications in the 
curriculum.

Although the Irish secondary mathematics curriculum has undergone several 
major changes in recent years, targeted at making it more applicable and relevant in 
nature, there is a lack of evidence that this is happening effectively in practice. One 
possible reason for this is because mathematical modelling is seen to be challenging 
for both students and teachers. The facilitation of a modelling activity is challenging 
for teachers as it requires them to mediate a lesson in a manner that they may not 
have previously received training in nor been sufficiently exposed to as a viable 
approach to the teaching and learning of mathematics. Moreover, mathematical 
modelling may not explicitly be listed in the curriculum documentation, and there-
fore, the incentive to regularly engage in modelling activities in the mathematics 
classroom may be lacking as they are viewed by many teachers as time consuming 
and challenging to assess (Blum, 2015). Additionally, in Ireland many teachers still 
rely heavily on textbooks and use them primarily as their main source of 
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information when it comes to the planning and conducting of lessons (O’Keeffe, 
2011; O’Sullivan, 2017). While textbooks may be able to assist teachers in deliver-
ing a more standardised curriculum, they offer insufficient advice and ideas regard-
ing the planning and execution of modelling activities and so many teachers may 
find themselves lacking in confidence and knowledge to properly carry out appro-
priate mathematical modelling activities (Ang, 2010). Finally, teachers may be 
reluctant to utilise modelling as a teaching strategy because of the open nature of the 
tasks and the fact that it is not always clear in advance what mathematical tools and 
models are available, what assumptions need to be made, and what outcomes can be 
expected. This lack of certainty can leave teachers feeling underprepared and 
requires a significant paradigm shift in how teachers view their role in the class-
room; moving away from the position of being the authority on the subject knowl-
edge towards acting as a facilitator whose role is to question and query students’ 
approaches and strategies rather than provide answers and guide students towards a 
single correct solution.

From the student’s perspective, mathematical modelling is a demanding activity 
that requires them to possess a rich and connected mathematical knowledge in par-
allel with possessing other traits such as perseverance, curiosity, and creativity. The 
ability to “understand, judge, do, and use mathematics in a variety of intra- and 
extra-mathematical contexts and situations in which mathematics plays or could 
play a role” is defined by Niss (2003, p. 7) as mathematical competence. A key ele-
ment within the development of mathematical competence is the ability to model 
mathematically, that is, to be able to analyse and build models. For this reason, and 
others, many countries around the world now accept that the ability of students to 
model mathematically should be a key component within their school curricula. 
Additionally, modelling develops within students the ability to solve real-world 
problems that they may encounter outside of school, in society, or even in their 
future careers and so is deemed to be a valuable skill to foster and develop within a 
school curriculum (Mousoulides, 2009).

This brief analysis suggests that there are many elements of curriculum 
development and implementation that come into play when considering how to 
introduce mathematical modelling into the school curriculum. These considerations 
are captured in the analytical framework presented next, which guides our case 
study investigations.

4.2  Analytical Framework: Curriculum Policy, Design, 
and Enactment

Remillard and Heck (2014) defined curriculum as “a plan for the experiences that 
learners will encounter, as well as the actual experiences they do encounter, that are 
designed to help them reach specified mathematics objectives” (p.  707, original 
emphasis). This definition indicates that a curriculum is more than a list of topics or 
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learning objectives, and it points to the distinction between what the curriculum 
intends and what actually happens in classrooms. Remillard and Heck synthesised 
and extended existing conceptual frameworks for curriculum that examine relation-
ships between curricular intent and educational outcomes as well as how different 
actors reformulate curriculum at different levels within an educational system. Their 
resulting model (shown in Fig. 4.1) delineates the features of a broader curriculum 
policy, design, and enactment system.

The official curriculum is specified by governing authorities and sets out 
expectations for students’ learning. Remillard and Heck (2014) identify three 
components of the official curriculum: (a) curricular aims and objectives, (b) the 
content of consequential assessments, and (c) the designated curriculum. In Ireland, 
the official school curriculum is prepared by the National Council for Curriculum 
and Assessment (NCCA), and there are separate curriculum specifications for 
subjects in the junior and senior secondary school. At both these levels, expectations 
for student learning are expressed as learning outcomes that describe what students 
should know, understand, and be able to do as a result of having studied mathemat-
ics. For example, in every content strand of the senior secondary mathematics cur-
riculum, students are expected to “devise, select and use appropriate mathematical 
models, formulae or techniques to process information and to draw relevant conclu-
sions” (NCCA, 2015b, p. 15). Inclusion of the content of consequential assessments 
in the official curriculum acknowledges the influence of high-stakes assessment on 
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Fig. 4.1 The curriculum policy, design, and enactment system (Remillard & Heck, 2014)
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curricular goals. Yet it is common for state mandated assessments to sample only a 
subset of curriculum goals, especially those goals related to knowledge and skills 
that are amenable to measurement via a timed written test. In Ireland, the conse-
quential assessment of students’ performance in each senior secondary school sub-
ject takes place in the final Leaving Certificate examination. The third component of 
the official curriculum, the designated curriculum, refers to the instructional plans, 
textbooks, and other materials that might be specified by a ministry of education to 
offer guidance towards addressing the curriculum’s goals. Remillard and Heck note 
that across educational systems there is variation in the form and specificity of the 
designated curriculum. In Ireland, the education system does not specify a desig-
nated curriculum and schools are free to select from instructional resources pro-
duced by commercial publishers, professional associations, or support services 
within the education system.

In Remillard and Heck’s (2014) model, the operational curriculum includes (a) 
the teacher-intended curriculum, (b) the enacted curriculum, and (c) student out-
comes. Thus, the operational curriculum represents the transformation of the offi-
cial curriculum into teachers’ personal plans, whether these are in writing or in the 
teachers’ minds, and how these plans play out in the interactions between teachers 
and students in the classroom.

Around the perimeter of Fig. 4.1, Remillard and Heck (2014) pointed to factors 
that influence elements of the official curriculum and the operational curriculum. 
They noted that these factors “may be social, political, cultural, structural, or cogni-
tive” (p. 714). Drawing on existing research, they identified influencing factors such 
as societal needs, values, expectations, and beliefs; views of individuals and groups 
wielding power; research on learning, teaching, and assessment; teacher knowl-
edge, beliefs and practices; teachers’ access to resources and support; contextual 
opportunities and constraints; and a range of student characteristics and cultural 
resources. These factors interact with each other in complex ways, and their degree 
of influence on the curriculum system may be either direct or subtle. Remillard and 
Heck also commented that further research is needed in order to explore and elabo-
rate on the ways in which these factors exercise influence.

In this chapter, we draw on Remillard and Heck’s (2014) curriculum system 
model to address the following research question:

What factors support or hinder the implementation of modelling as an exemplar of 
mathematical challenge in the school curriculum?

To answer this question we present two case studies illustrating how modelling 
is being introduced into the secondary school mathematics curriculum in Ireland. 
The first case study explores contested attempts to infuse a modelling focus into the 
specialist Applied Mathematics curriculum at senior secondary level. The second 
discusses a university-led professional development project that exploited the 
Transition Year  – a non-academic year between the junior and senior secondary 
school examination cycles – as an opportunity to introduce teachers to modelling 
tasks and pedagogical strategies. Each case study begins with an account of the cur-
riculum and educational context. This is followed by an analysis of curriculum 
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change in terms of factors that are influencing either the official or operational 
curriculum.

4.3  Case Study 1: Modelling as a Stimulus for Mathematics 
Curriculum Reform

4.3.1  Background to Applied Mathematics Curriculum Reform

In Ireland, senior secondary students typically study between six and eight subjects 
for the final Leaving Certificate examination (O’Meara & Prendergast, 2017). 
Mathematics is considered a core subject that can be taken at Ordinary or Higher 
level, but without being compulsory. However, it is treated as such by schools due 
to the fact that mathematics is a gatekeeper for the vast majority of tertiary courses 
(Prendergast et al., 2020). On the other hand, Applied Mathematics is an additional, 
optional subject which is only available to students in a small number of secondary 
schools. Even in these schools, Applied Mathematics is not usually offered as part 
of the daily timetable. Instead, students take the subject either “off timetable”, that 
is, with lessons before or after school, or with a private teacher outside school hours.

Applied Mathematics is viewed as a subject which “mirror(s) a section of the 
Leaving Certificate Physics syllabus” (NCCA, 2014, p. 1). Its subject matter differs 
from that of the mainstream Mathematics subject at senior secondary level, which 
focuses on statistics, probability, geometry, trigonometry, number, algebra, func-
tions, and calculus. Applied Mathematics instead deals with topics from the domain 
of physics known as mechanics, including laws of motion, projectiles, and statics 
(State Examinations Commission, 2018). First introduced in Ireland over 40 years 
ago, the Applied Mathematics syllabus has undergone very few changes in the inter-
vening years. The syllabus lacks an explicit aim or rationale and consists only of the 
list of topics to be examined. However, in late 2014 the National Council for 
Curriculum and Assessment undertook a review process with the ultimate aim of 
revising this very dated curriculum. There were a multitude of concerns which led 
to the review of the Applied Mathematics curriculum and shaped the revised 
curriculum.

Firstly, there were concerns about the low numbers of students choosing Applied 
Mathematics. Figure  4.2 summarises data collected by the State Examinations 
Commission between 2014 and 2019, which shows the number of students who sat 
the Leaving Certificate examination across a range of different science subjects.

Figure 4.2 clearly highlights how, in the period from 2014 to 2019, Applied 
Mathematics was the least popular of all the science subjects among Leaving 
Certificate students. Data collected by the State Examinations Commission (2018) 
show that, from 2014 to 2018, Applied Mathematics candidates comprised around 
3.2% to 3.8% of the full Leaving Certificate cohort.
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In addition to poor uptake, concerns were also expressed regarding the gender 
imbalance in participation in Applied Mathematics. As demonstrated in Fig. 4.3, 
significantly more males than females opted for Applied Mathematics in 2019. The 
statistics revealed that 25.3% of those who sat the Applied Mathematics examina-
tion were female. Corresponding figures for physics, chemistry, and biology were 
26.6%, 57.2%, and 60.5%, respectively. Similar statistics were reported by the State 
Examinations Commission in previous years also.

A third concern in relation to the dated Applied Mathematics curriculum was 
connected to the misalignment between the Leaving Certificate Mathematics and 
Applied Mathematics curricula. In 2006 efforts began to completely overhaul the 
senior secondary Mathematics curriculum in Ireland with a new curriculum, known 
locally as Project Maths, being introduced nationally in 2010. As discussed 

4 Mathematical Modelling as a Stimulus for Curriculum and Instructional Reform…



58

previously, the new curriculum promoted a fundamental shift in the teaching and 
learning of mathematics in Ireland. The emphasis changed from examination-driven 
teaching that promoted memorisation and practice of learned procedures to student- 
centred teaching that promoted conceptual understanding (Department of Education 
and Skills, 2010). However, this change to the Mathematics curriculum did not 
occur in tandem with a change to the Applied Mathematics curriculum and resulted 
in the differences between the two curricula becoming even more stark. For exam-
ple, while problem solving and modelling were at the heart of the new Mathematics 
curriculum, Applied Mathematics continued to focus on particular types of prob-
lems in mechanics that were “quite disconnected from ‘applications’” (O’Reilly, 
2002, p.  1). Furthermore, the change to the Mathematics curriculum resulted in 
examination questions becoming much less predictable (Shiel & Kelleher, 2017). 
However, this was not the case with Applied Mathematics. In fact, many teachers 
involved in the consultation process for Applied Mathematics were of the opinion 
that “...you can train people to do well in Applied Mathematics because the exam is 
so predictable” (NCCA, 2015a, p. 7).

Due to these concerns a consultation process began in 2014 with the publication 
of the Background Paper for the Review of Applied Mathematics (NCCA, 2014). 
The consultation process subsequently led to the publication of a Consultation 
Report in December 2015 (NCCA, 2015a) and following this the Mathematics 
Development Group agreed that the revised Leaving Certificate Applied Mathematics 
subject would aim to develop the learner’s capacity to use mathematics to solve 
real-world, twenty-first century problems. The new Applied Mathematics syllabus 
is still under development, but from draft versions it is clear that it will focus on all 
aspects of the problem-solving cycle. In doing so it is envisaged that learners will 
see beyond calculating procedures and gain experience in asking appropriate ques-
tions, formulating mathematical representation of problems and interpreting and 
verifying results. Based on the consultation process it was also decided that the new 
Applied Mathematics specification would place a strong emphasis on mathematical 
modelling, as this was seen to be “...at the heart of modern applications of mathe-
matics” (NCCA, 2015a, p. 18).

The draft Applied Mathematics syllabus resulting from the consultation and 
review process describes the subject as involving the use of the language of mathe-
matics to study and solve real-world problems. It introduces mathematical model-
ling as the process through which real-world phenomena are represented, analysed, 
and understood. The syllabus aims and objectives are centred on the modelling pro-
cess: formulating a real-world problem, translating the problem into a mathematical 
representation, solving the mathematical problem, and interpreting the solution in 
the original real-world context. The syllabus is organised around four strands:

• Mathematical modelling
• Mathematical modelling with networks and graphs
• Mathematically modelling the physical world
• Mathematically modelling a changing world
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This organisation foregrounds the modelling process as a means by which to 
explore mathematical content.

4.3.2  Factors That Support or Hinder the Implementation 
of Modelling in the Applied Mathematics Curriculum

We analysed the two key documents that initiated the Applied Mathematics 
curriculum reform (the Background Paper) and collected stakeholder responses (the 
Consultation Report), looking for evidence of the influencing factors on the official 
curriculum that were identified by Remillard and Heck (2014).

The first factor acknowledges the perceived and expressed needs of society, and 
this was a source of tension in the consultation process. In the Background Paper, 
the context for curriculum reform was framed in terms of economic needs and the 
STEM (science, technology, engineering, and mathematics) agenda, with STEM 
education underpinned by mathematical knowledge and skills seen as “help[ing] 
Ireland to generate the capable and flexible workforce needed to compete in a global 
marketplace” (NCCA, 2014, p. 5). However, participants in the consultation process 
“who were critical of the background paper claimed it had been overly influenced 
by the needs of third level and industry and that it was prepared in response to 
PISA” (NCCA, 2015a, p. 7).

A second influencing factor is related to advancements in the fields of mathematics, 
learning, educational practice, and technology. As we have previously indicated, 
there had been many advancements to mathematics education in Ireland since the 
introduction of the original Applied Mathematics curriculum. In particular, the 
revised senior secondary Mathematics curriculum, launched in 2010, seemed to act 
as a catalyst for the reform of the Applied Mathematics curriculum. The Consultation 
Report indicated that many stakeholders believed there was a need for better align-
ment between these two subjects. Similar to curriculum reforms internationally, the 
revised Mathematics curriculum in Ireland placed increased emphasis on problem 
solving, and so there was now scope for the Applied Mathematics curriculum to 
continue to further develop students’ problem-solving skills through the lens of 
mathematical modelling. Giving more weight to problem solving led to removal of 
some content from the Mathematics syllabus, and this too led to calls for a reimag-
ining of the content of Applied Mathematics. For example, the Background Paper 
raised the possibility of shifting some of this excluded content, such as vectors and 
matrices, into the Applied Mathematics curriculum. However, this proposal was not 
welcomed by some participants in the consultation process who claimed that the 
content “is there for political reasons because it was left out of Project Maths and 
this was seen as a deficit and will be lumped into the new spec [i.e. into the Applied 
Mathematics subject] to say it is there” (NCCA, 2015a, p. 7).

The Background Paper and consultation process gave explicit attention to the 
potential impact of advancements in technology on the new Applied Mathematics 
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curriculum. Technology in mathematics education was now seen as “a tool with the 
potential to change how concepts are demonstrated, projects assigned and progress 
assessed” (NCCA, 2014, p. 22). The Consultation Report indicated all stakeholders 
agreed that technology had the potential to facilitate a shift towards mathematical 
modelling, but emphasised that technology should support, and not compromise, 
the development of skills. One challenge that arises here involves providing teach-
ers with professional development opportunities. A substantial amount of research 
on technology in mathematics education has found that developing teachers’ tech-
nology skills in isolation is insufficient; instead, professional development must 
seek to simultaneously develop teachers’ technological and pedagogical knowledge 
(e.g. Li et al., 2019). A second challenge in the Irish context is the need for invest-
ment in technology resources to complement the revised Applied Mathematics cur-
riculum. Research has shown that the textbook is the primary resource used in 
mathematics classrooms in Ireland and internationally (Nathan et al., 2002; O’Meara 
et al., 2020). However, textbooks alone will not facilitate the use of technology in 
the Applied Mathematics classroom and will not promote student-centred learning 
experiences in the area of mathematical modelling.

A third factor influencing the official curriculum is the values and beliefs about 
mathematics and the goals of education held publicly and by individuals and groups 
wielding power. The values and beliefs of different stakeholders played an impor-
tant role in the instigation of reform to Advanced Mathematics, but led to some 
challenges in the framing/design of the revised curriculum. In particular, values and 
beliefs relating to what constituted problem solving and how problem solving and 
content knowledge could co-exist within a curriculum document with a strong 
emphasis on mathematical modelling came to the fore in both documents, with dif-
ferent stakeholders, at times, holding contrasting views. For example, the 
Consultation Report indicated that proponents of the old Applied Mathematics syl-
labus believed that problem solving was already central to that curriculum. They 
feared that any additional content included in a revised curriculum would lead to a 
dilution of the problem-solving aspects of the course. Hence, calls to include con-
tent omitted from the revised mathematics curriculum were not welcomed by all, 
with some expressing the view that “...those involved in teaching Applied 
Mathematics do not believe that they should have to teach mathematics. Instead they 
see their focus as being on teaching problem solving skills” (NCCA, 2015a, p. 12). 
On the other hand, the Background Document suggested that “with its [the old cur-
riculum] emphasis on content as opposed to the development of skills and mathe-
matical reasoning students are not problem solving per se” (NCCA, 2014, p. 3).

These contrasting views and beliefs present their own set of challenges for this 
curriculum reform effort as they will have a significant impact on the content that is 
included in the syllabus, as well as the skills and dispositions that the curriculum 
promotes. Such differences could potentially lead to an overcrowded curriculum 
that lacks depth and causes practical difficulties with timetabling and the allocation 
of class time. Similar issues have plagued previous mathematics curriculum reform 
in Ireland (see O’Meara & Prendergast, 2017). However, another view expressed in 
the Consultation Document in relation to the content versus problem-solving debate 
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could offer a potential solution. One respondent suggested that Applied Mathematics 
should be viewed as a “subject [that] draws upon concepts and methods of mathe-
matics from the fields of application and in turn, brings ideas, techniques and scien-
tific knowledge back to influence the development of mathematics” (NCCA, 2015a, 
p.  12). Adopting this outlook would help overcome the “either/or” debate and 
instead mathematical content, problem solving, and mathematical understanding 
could be seen as key components which complement each other when engaging in 
the mathematical modelling process.

4.4  Case Study 2: Modelling as a Stimulus for Mathematics 
Instructional Reform

4.4.1  Background to the Young Modellers Transition 
Year Project

Transition Year (TY), an optional non-academic school year between the junior and 
senior secondary examination cycles, is unique to Ireland (Clerkin, 2012; Jeffers, 
2007; Smyth & Calvert, 2011). It was introduced as a pilot scheme in three schools 
in 1974 and was mainstreamed in secondary schools by 1994. Currently, it is offered 
in 75% of secondary schools in Ireland (Jeffers, 2011) with just over half of the 
potential student cohort participating (Clerkin, 2012). The guidelines distributed to 
schools emphasise that TY is to be neither viewed nor utilised as an extra year to 
prepare students for the Leaving Certificate examination. Indeed,

Where Leaving Certificate material is chosen for study it should be done so on the clear 
understanding that it is to be explored in an original and stimulating way that is significantly 
different from the way in which it would have been treated in the two years to Leaving 
Certificate. (Department of Education, 1993, p. 4).

The purpose of TY, therefore, is to replace formal study with a broad range of 
non-academic educational and vocational experiences in the absence of examina-
tion pressure (Department of Education, 1993; Smyth & Calvert, 2011). Teachers 
have great flexibility, and indeed are strongly encouraged, to create a TY programme 
to suit their students’ needs (Clerkin, 2012; Smyth & Calvert, 2011). As such, it 
offers an ideal period to implement innovative educational interventions. The Young 
Modellers project was one such intervention that aimed to introduce mathematically 
challenging tasks to teachers and students.

The significance of the Young Modellers project needs to be understood in the 
context of the high-stakes summative assessment environment in Irish secondary 
schools, and teachers’ perception of their role, “at least in part, as that of exam 
coach” committed to “covering” in class all question types that might be asked in 
the Leaving Certificate examination (NCCA, 2014, p. 16). Although the Leaving 
Certificate Mathematics curriculum purports to develop students’ ability to solve 
mathematical problems in familiar and unfamiliar contexts, there is little evidence 
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that this actually happens. For example, the most recent Chief Examiner’s Report on 
Leaving Certificate Mathematics stated that, in the Ordinary level examination, “the 
majority of candidates seemed unable to deal with problems presented in an unfa-
miliar context” (State Examinations Commission, 2015, p. 23). It was observed that 
students were more inclined to abandon their work than persevere when difficulties 
arose. Students taking the Higher level examination also struggled with problem 
solving, and applying knowledge in unfamiliar contexts. The report concluded by 
recommending that teachers should

provide students with opportunities to practise solving problems involving real-life 
applications of mathematics, and to get used to dealing with “messy data” in such problems. 
Students should also be encouraged to construct algebraic expressions or equations to 
model these situations, and / or to draw diagrams to represent them. (p. 30)

Young Modellers was a 10-week teaching and learning module implemented in 
15 secondary schools in Ireland that served to address many of the issues referred to 
in the Chief Examiner’s report mentioned above. The programme was designed and 
delivered by university-based mathematicians and mathematics educators, who 
have significant experience in both mathematical modelling and teacher profes-
sional development. The purpose of the initiative was to challenge students and 
teachers to exploit problem-solving skills to solve real-world problems that appear 
in science, engineering, technology, and industry, using mathematical techniques. 
Young Modellers aimed to engage students in how to use mathematics in realistic 
problems providing them with an insight into mathematics in action. It was hoped 
that participation in the Young Modellers programme would help develop persever-
ance skills and encourage different ways of approaching a problem. The Young 
Modellers development team wanted to encourage teachers and students to appreci-
ate the links between mathematical concepts and skills acquired at school with the 
utility of mathematics in the real world by applying the mathematics that they learn 
at school to solve real-world problems, giving them a first-hand experience of math-
ematical and statistical modelling.

TY teachers were provided with a 2-day professional development programme 
on how to move from a problem formulated in non-mathematical terms to develop-
ing a mathematical solution. Throughout the programme the use of collaborative 
and communication skills was emphasised and encouraged. Emphasis was placed 
on how to formulate a problem, represent it in mathematical terms, investigate vari-
ous different methods for solving the problem, and interpret that solution in terms 
of the real-world problem. Figure 4.4 shows an example of a modelling task from 
the professional development programme that illustrated important modelling strat-
egies, such as using an appropriate representation, making simplifying assumptions, 
developing a simulation, specialising and generalising, and considering extreme 
cases. A package of teaching and learning materials was also developed for use in 
the classroom. This package consisted of two parts. Part 1 comprised problem- 
solving tasks, some of which introduced students, in a structured way, to strategies 
which are also useful in modelling (using appropriate representations and identify-
ing assumptions). Part 2 provided real problems which required students to engage 
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Example of a modelling problem: 

At which kind of intersection (a roundabout or a crossroads with traffic lights) 

can more cars pass a crossing?

Strategies :

• Use an appropriate representation.

• Make simplifying assumptions (e.g. 

number of cars/hour; direction of travel 

at intersection; car length, acceleration, 

separation; timing of traffic lights).

• Make use of symmetry.

Fig. 4.4 Task from the Young Modellers professional development programme (Stender, 
2019, p. 202)

in mathematical modelling. Figures 4.5 and 4.6 show two tasks from Part 1 of the 
package of teaching and learning materials.

Teachers then implemented Young Modellers in the classroom over a 10-week 
period. They were supported by members of the Young Modellers development 
team and received three school visits from a team member along with two PhD 
students during the project. Participating teachers first introduced mathematical 
modelling to their students and explained how modelling fits into everyday life 
using simple examples. Students then were presented with a selection of real prob-
lems (e.g. modelling disease spread in a population) from Part 2 of the package of 
teaching and learning materials. Students selected one of these real problems to 
work on with a small group of their peers for the period. Throughout the school 
visits, the research team supported students in selecting parameters, identifying 
assumptions, producing a simple model, and eventually finalising and testing their 
models. Students were required to create a presentation of their work and present it 
as a team in front of other school participants, and answer questions from a panel of 
judges at a showcase event in the host university.

4.4.2  Factors Supporting or Hindering the Implementation 
of Modelling in the Young Modellers Transition 
Year Project

The Young Modellers project tried to address several factors among those identified 
by Remillard and Heck (2014) as influencing both the teacher-intended and the 
enacted components of the operational curriculum. We discuss the nature and role 
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On December 28th 2015, the average 

litre. 

A driver in Cork plans to drive to 

Donegal and back, a distance of ap-

proximately 850km return in one day. 

The driver owns a BMW with fuel 

consumption of 10km per litre.

Her tz Rent a Car, Ltd., offers a Golf 

It is estimated that the car has fuel 

consumption of 25km per litre. 

(i) Should the driver rent a Golf to 

drive to Donegal or should he drive the 

BMW to Donegal?

(ii) Solve this problem in a different 

way from how you did for (i) and com-

pare both solutions. Is your solution 

correct? 

(iii) From your solutions: 

• For what range of distances is it more expensive to rent the Golf?

• For what range of distances is it more expensive to drive the BMW?

• Illustrate your answers graphically if you have not already done so.

€

€

Fig. 4.5 Car hire task from the Young Modellers teaching and learning package (Guerin, 2017)

The back of a truck passes the exit sign for Shannon airport, travelling at 

42km/hr. One and a half hours later, the back of a car passes the same exit sign 

for Shannon airport traveling at a speed of 63km/hr. The length of the truck is 

three and a half times the length of the car.  

It is 3am and there is no traffic. 

(i)  At what distance from that exit sign, will the back of the car be in line with 

the back of the truck?  

(ii)  State all assumptions you are making in solving this problem.  

(iii) Under what conditions will it be possible that the car will catch up with the 

truck?  

(iv) Explain a few scenarios where it might be not possible for the car to catch 

up with the truck.  

Fig. 4.6 Motorway task from the Young Modellers teaching and learning package (Guerin, 2017)

of each of these factors as they played out in the Young Modellers project. To do so 
we draw on relevant literature as well as three sources of data from the project: 
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teacher surveys completed at the project’s beginning and end, teacher reflective 
diary entries collected from week 4 and week 8 of the classroom implementation 
period, and an interview conducted via email with the project leader.

The first influencing factor comprised contextual opportunities and constraints 
that create expectations about the value and feasibility of implementing a modelling 
focus. The decision to situate the project in the Transition Year took advantage of 
the contextual opportunities afforded by this unique curriculum context and avoided 
the constraints experienced by teachers and students in the senior secondary years 
leading to the Leaving Certificate examination. Firstly, teachers report experiencing 
tremendous pressure to complete the senior secondary mathematics syllabus, par-
ticularly at Higher level, within the 2 year time frame (O’Meara & Prendergast, 
2017). That, added to a heavy emphasis on performance in the Leaving Certificate 
examination, lends little opportunity to spend time on content that will not appear in 
examination papers (Gill, 2006). In contrast, in Transition Year there is a lack of 
examination pressure and teachers have much more flexibility in terms of what will 
be taught. Furthermore, activities which promote the application of mathematical 
skills and concepts to real-life problems and “problem-solving using interpretation, 
approximation, model making” are strongly endorsed in the TY Guidelines 
(Department of Education, 1993, p.13).

Teacher knowledge, beliefs, and practices in relation to mathematics and 
mathematical modelling also influence how teachers interpret the generalised aims 
and objectives of the official curriculum, and then plan, adapt, and enact instruction 
with the students in their classes. All teachers who participated in the Young 
Modellers project were new to modelling and they faced challenges to their 
conceptions of mathematics and mathematics teaching. In mathematical modelling 
students must figure out and formulate their own responses to problems and so a 
more student- centred approach is warranted in these situations. Dealing with these 
non-routine problems, from real-world situations, in a more student-centred 
classroom environment places the majority of mathematics teachers in a situation 
which is not routine for them and outside of their past experiences of teaching 
mathematics (Burkhardt, 2013). Facilitating mathematical modelling requires a 
broader range of teaching approaches than most teachers currently use (Burkhardt, 
2006), such as knowing when and how to help, orchestrating student discussion, and 
providing a wide range of authentic, non-routine tasks. Thus, teacher knowledge, 
beliefs, and practices were recognised and explicitly addressed as potential 
implementation barriers in the Young Modellers project.

Some teachers in the Young Modellers project reported feeling challenged 
because they were no longer in the position of “expert” knower in the classroom:

There were times I felt out of my depth as a teacher because one particular group found this 
interesting formula they wanted to use but there were elements of that formula that were 
very complex for them and I was unable to explain it to them. (Teacher KML3AHTU 
diary, week 4)

I felt out of my depth at times when students asking about coastal heights of areas across 
Ireland  – where could they get answers to certain questions. (Teacher BRL6NOHG 
diary, week 8)
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There were also mixed responses from teacher surveys regarding perceived changes 
in their self-reported levels of anxiety when engaging their students with modelling 
tasks, and levels of confidence in their mathematical content knowledge and math-
ematical pedagogical knowledge. While it might be unrealistic to expect significant 
change in teaching practice in the relatively short time frame of the project, some 
teachers did report changes in their questioning practice by “asking more higher 
order questions, getting students to lead their own learning” (Teacher TBR2RIYU, 
post-survey). Others described change in terms of what they learned about students, 
especially in relation to their desire to arrive at a correct answer:

[I learned] that students are too used to getting a definite answer in maths and can’t deal 
with a general answer problem. (Teacher IOG0IAMU, post-survey)

[I learned} that there is always more than one correct answer. Allow students to explore all 
answers. (Teacher TBR2RIYU, post-survey)

These comments from teachers show that student knowledge, beliefs, and practices 
in relation to mathematics can also influence the implementation of a modelling 
focus. The Young Modellers project leader, a research mathematician and modeller 
with many years of experience in working with school teachers, commented:

The ability and willingness to try and fail is crucial to good modelling. We find that most 
students’ concept of mathematics is heavily influenced by the notion of “there is one correct 
answer”, but good mathematical models cannot be created without trial and error. We 
emphasised to the teachers, and repeated on visits to schools, that the modelling process is 
an iterative one: we start with a very crude and probably inaccurate model, and only by 
solving this simple model do we gain insight into how it can be improved and made more 
accurate. Students who are not willing to have “wrong” models find this process very dif-
ficult to accept; indeed, it is the source of the “this isn’t mathematics!” comments that we 
sometimes get in feedback! Indeed, it is not mathematics as these students have learned it 
in the traditional classroom, but of course it very much is mathematics as it is applied in 
real-world industry and research applications!

Perseverance in the face of challenge and failure is an essential trait that students 
need to develop if they are to be successful at modelling. Many teachers were pleas-
antly surprised by the sustained engagement of their students in modelling tasks.

There is a lot more resilience. They don’t throw in the towel so quickly. (Teacher EBU0IANU 
diary, week 4)

Students seem more invested in the amount of time they are spending to solve a problem. 
They are committed to solving it and they are not giving up on the problem straight away. 
(Teacher KML3AHTU diary, week 4)

I noticed a huge difference in the time students were willing to spend to solve a problem. 
(Teacher HJR8GAAG diary, week 8)

Others commented on the increased levels of independence demonstrated by 
students:

It was good to see them working with problems on their own without the teacher dictating 
the approach or pace. (Teacher EBU0IANU diary, week 4)
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One group decided to carry out experimental work and did so independently. They didn’t 
look for prompts as how to design and implement the experiment and they worked in a very 
efficient and conscientious manner. I was hugely impressed with this as I felt it was a huge 
departure from the typical scenarios where students usually would need to be heavily 
coached when it comes to experimental work. (Teacher SMP diary, week 8)

A further factor that influences implementation of modelling in the operational cur-
riculum is teachers’ access to resources and support. We have already pointed to 
Irish mathematics teachers’ strong reliance on textbooks (O’Keeffe, 2011; 
O’Sullivan, 2017) for planning and instruction; however, the Young Modellers proj-
ect viewed textbooks as being inadequate for teaching modelling, and especially for 
developing the ability and willingness to try and fail that is crucial to a modelling 
disposition. Instead, a range of modelling tasks and resources was created or 
accessed from other sources, such as COMAP’s Mathematical Contest in Modelling 
(Consortium for Mathematics and Its Applications, n.d.). Teachers who were unfa-
miliar with modelling and accustomed to having textbooks were keen to have access 
to these exemplar tasks and strategies.

4.5  Discussion

The aim of this chapter was to explore strategies for promoting mathematical 
modelling as a stimulus for curriculum and instructional reform, where modelling is 
considered to exemplify a kind of mathematical challenge that is still rarely found 
in secondary school curricula and classrooms. Remillard and Heck’s (2014) model 
of the curriculum policy, design, and enactment system provided the framework for 
analysing factors that influence implementation of modelling in the official curricu-
lum and the operational curriculum in Irish secondary schools. While much research 
attention has been directed at the distinction between what the official curriculum 
endorses and how teachers translate this curriculum into classroom practice, there 
are other factors that mediate curriculum enactment. In this chapter we showed how 
a range of institutional constraints; needs, values, and beliefs expressed by various 
stakeholders; advances in mathematics, technology, and educational research and 
practice; and access to resources and support interacted to influence curriculum 
development and enactment.

There is no doubt that it is challenging to introduce teachers and students to the 
mathematically challenging tasks and ways of working that characterise modelling. 
We think of this as the meta-challenge of institutionalising mathematical challenge 
in the school curriculum. Nevertheless, the two case studies presented in this chap-
ter illustrate some ways in which the meta-challenge can be addressed. Common to 
both is a strategy for taking advantage of contextual opportunities which, while 
unique to Ireland, might find application in other curriculum contexts. In the first 
case, a dated curriculum for a mathematical physics subject, currently taken by very 
small numbers of students, is being overhauled by infusing a modelling focus. 
While this subject is offered in a high-stakes assessment environment that might 
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otherwise act as a constraint to curriculum and instructional reform, its “niche” 
character provides a small-scale and potentially less risky context for innovation 
than the mainstream Mathematics subject that is taken by almost all senior second-
ary students. In the second case, a low-stakes curriculum and assessment environ-
ment in the form of Transition Year presents ideal opportunities for small-scale 
innovation and experimentation with modelling, away from the pressures of exter-
nal examinations. In both cases, there is potential for teachers to become more com-
fortable with modelling, gradually building confidence and expertise without the 
expectation of implementing a full-scale modelling focus in an examinable mathe-
matics subject taken by nearly all senior secondary students across the country. 
While the numbers of teachers involved in these initiatives is relatively small, their 
participation creates an existence proof for implementing modelling that, over time, 
might encourage others to try this approach.

Good modelling requires the ability and willingness to try and fail, and these 
requirements apply just as much to teachers as to students. We would argue that, in 
addition, curriculum authorities and education systems need to embrace “trying and 
failing”, by taking a long-term view of the time and support that teachers need in 
order to meet the meta-challenge of embedding modelling into the school mathe-
matics curriculum.
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Chapter 5
Personalized Mathematics 
and Mathematics Inquiry: A Design 
Framework for Mathematics Textbooks

Constantinos Christou, Demetra Pitta-Pantazi, Marios Pittalis, 
Eleni Demosthenous, and Maria Chimoni

5.1  Introduction

Almost 30 years ago, Wigley (1992) discussed two contrasting models for the teach-
ing of mathematics, the path-smoothing model and the challenging model. The 
path-smoothing model involves more expository methods of instruction which pro-
vide students with structured and secured work pathways. The challenging model 
involves more exploratory, inquiry-based methods of instruction which allow stu-
dents to interact with challenging tasks. More recent articles and research studies, 
mainly in science education (Alfieri et al., 2011; Blair & Hindle, 2019; Lazonder & 
Harmsen, 2016), seem to suggest that inquiry-based methods can be more effective 
than expository methods of instruction. Still, the integration of mathematical chal-
lenge in the instructional process and more specifically in mathematics inquiry 
approaches is neither clear nor explicit in the way in which mathematics curricula 
and textbooks may promote this.

The effective integration of mathematical challenge in the instructional process 
was one of the main principles in the design of the Cypriot Mathematics Curriculum 
(Cyprus Ministry of Education and Culture, 2016a). The series of mathematics text-
books, which were designed to translate this policy into pedagogy tried to fulfill this 
principle. Research studies support that textbooks play a vital role in translating the 
educational policy into pedagogy (Valverde et al., 2002). In this chapter, we aim to 
present the design framework for the Cypriot Mathematics Textbooks and indicative 
examples, to illustrate the way in which these textbooks may evoke mathematical 
challenge in heterogeneous classes. It is beyond the scope of the current chapter to 
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present any empirical findings related to teachers’ training or findings regarding the 
impact of the textbooks on students’ learning.

In this chapter, we start by first looking at the role of mathematics textbooks in 
teaching and give some information about the Cypriot Mathematics Textbooks. 
Then we discuss the most frequently used design models for mathematics teaching. 
We then proceed to the presentation of the theoretical framework “Personalized 
Mathematics and Mathematics Inquiry” (PMMI) which we used for the develop-
ment of the Cypriot Mathematics Textbooks. We exemplify this theoretical model 
with some indicative examples from the mathematics textbooks of primary and sec-
ondary education.

5.2  Role of Mathematics Textbooks

The structure and content of mathematics textbooks is likely to have an impact on 
actual classroom instruction (Pepin et al., 2013; Rezat, 2006). Valverde et al. (2002) 
argued that the form of textbooks promotes a distinct pedagogical model and thus 
embodies a plan for the particular succession of educational opportunities. The 
development and design of mathematics textbooks are assessed through the oppor-
tunity they offer to students to learn and thus they are considered an important 
contributing factor in learning outcomes (Törnroos, 2005). Empirical studies have 
shown that the quality of mathematics textbooks has a significant effect on learning 
outcomes (Sievert et al., 2019).

The development of textbooks should be based on the idea that improvement of 
mathematics learning in classrooms is fundamentally related to the development of 
teaching, and that teaching develops through a learning process in which teachers 
and students grow into the practices in which they engage. Since textbooks strongly 
influence what students learn and what teachers teach, teachers and students should 
have suitable and appropriate textbooks (Reys et  al., 2004). Textbooks facilitate 
teachers to modify their methods for teaching mathematics, in such a way as to align 
with the principles of the textbooks. The philosophy and teaching procedures are 
often guided by the mathematics textbooks.

5.2.1  The Cypriot Mathematic Textbooks

Textbooks are probably one of the most important curriculum resources which help 
teachers transform the mathematics curriculum into practice. According to 
Koutselini (2012), Cypriot teachers adhere to textbooks’ teaching. The TIMSS 
study (2003) showed that 71% of the fourth-grade students were taught by teachers 
who used the mathematics textbooks as their primary source, while the remaining 
29% of teachers used textbooks as a supplementary resource.
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The Cypriot Mathematics Textbooks, published by the Ministry of Education, 
are used in all state schools in Cyprus. They are the only resources provided to 
schools and are based on the recently developed Cypriot Mathematics Curriculum. 
There are different types of schools in Cyprus and the textbooks intend to cater a 
diverse group of students. Thus, one of the main roles of textbooks is to help teach-
ers teach in the spirit of the curriculum and the only way for the curriculum to be 
implemented properly and consistently was to develop a good set of textbooks. 
These textbooks come with teacher guides which serve as manual for mastering 
teaching and learning. During the first years of the implementation of the new text-
books, in-service training was organized by the Ministry of Education to familiarize 
teachers with the new textbooks and their main principles.

The Cypriot Mathematics Curriculum was launched in schools in September 
2012. In the same year, the mathematics textbooks which aligned with the new cur-
riculum were introduced in Grade 1 (the first grade of primary education) and Grade 
7 (the first grade of secondary education). In September 2013, Grade 2 and Grade 8 
textbooks were introduced and the same pattern of introduction of new textbooks 
continued for 4 years, until 2017, when the whole series of textbooks from Grade 1 
to Grade 12 were completed. Two types of textbooks were introduced for Grade 10 
to Grade 12, one for students who take mathematics as a specialization subject and 
one for students who take mathematics as a common core subject. The textbooks are 
reviewed almost every year, based on the comments and suggestions received from 
teachers implementing them.

5.3  Design Models

Thirty years ago, Wigley (1992) argued that in order to develop mathematics text-
books, it is common to follow one of the two designs, the path-smoothing model or 
the challenging model. The essential methodology of the first model is to smoothen 
the path for the learner. The textbook, in this case, states the kind of problem which 
the class will be working on. The problem attempts to classify the subject matter 
into a limited number of categories and to present them one at a time. The key prin-
ciple is to establish secure pathways for the pupils. Thus, it is important to present 
ways of solving problems in a series of steps and exercises to practice the methods. 
The path-smoothing model is the instructional approach in which teachers, follow-
ing the textbooks, prescribe the content, present the content, and measure student 
acquisition of that content.

The challenging model promotes what its name denotes, the use of tasks that are 
challenging to students. The teacher provides sufficient time for students to work on 
a task, suggest their own approaches, and try different solving pathways. The teacher 
may have considered beforehand a syllabus, but this is not presented to students 
from the beginning. The teacher has a critical role in helping students share their 
ideas with the whole class and discuss different strategies. Students are encouraged 
to reflect on their work, recognize what they have learned, and how new knowledge 
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links to previous knowledge. Wigley (1992) and more recently Blair and Hindle 
(2019) argued that the challenging model can create better learning and more posi-
tive attitudes towards mathematics.

Since Wigley (1992) discussed the path-smoothing and the challenging model, 
there have been several meta-analysis studies, which did look not only at the two 
extremes but also at intermediate points of this spectrum. These more recent studies 
(see, for example, Alfieri et al., 2011; Lazonder & Harmsen, 2016) did not use the 
words smoothing and challenging model but referred to “explicit instruction and 
unassisted discovery” (Alfieri et al., 2011) or “guided and unguided inquiry learn-
ing” (Lazonder & Harmsen, 2016), which we believe resemble the path-smoothing 
and challenging models. They also referred to “enhanced discovery or minimally 
guided approach” which lies somewhere between these two extremes of the chal-
lenging spectrum.

Although the extent and the type of the guidance that students should receive is 
not yet completely clear, research studies have consistently shown that enhanced 
discovery is more effective than explicit instruction or unassisted discovery, as long 
as students are adequately supported (Lazonder & Harmsen, 2016). This is the rea-
son that we decided to follow an enhanced discovery instructional approach for the 
Cypriot Mathematics Textbooks.

We adopted an inquiry-based approach to mathematics with focus on problem 
solving, understanding, problems within a context, learning processes, and strate-
gies. We considered that the implementation of these central concepts improves 
students’ attitudes towards mathematics and their ability to use mathematics both in 
the “real world” and inner mathematical contexts. However, an inquiry-based 
approach is fundamentally based on the humanized aspects of mathematics which 
are inherent in the nature of mathematics. Thus, the essential characteristics of the 
challenging model, as it was implemented for the design of the Cypriot Mathematics 
Textbooks, has two interrelated elements that defined the design of the mathematics 
textbooks: Personalized Mathematics and Mathematics Inquiry. In the next section 
we present the structure and underlying principles of this framework.

5.4  The Structure of the PMMI Framework

We propose the “Personalized Mathematics and Mathematics Inquiry (PMMI),” as 
the overarching and fundamental theoretical framework for the design of mathematics 
textbooks and pedagogical instruction in Cyprus for K-12 grades in order to achieve 
desirable teaching–learning practices. The PMMI framework (Fig.  5.1) involves 
two major elements: (a) Personalized Mathematics and (b) Mathematics Inquiry. 
We set off from “Personalized Mathematics” where we present the fundamental 
practices of mathematics teaching: mathematics goals, reasoning, problem solving, 
mathematization, connections of mathematical representations, development of 
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Fig. 5.1 The PMMI framework

language, conceptual understanding, and procedural fluency. Then, we proceed to 
the second element of the PMMI framework “Mathematics Inquiry,” which is based 
on Whitehead’s (1929) theory of learning (Romance, Precision, Generalization), 
and present the rationale for the design of the phases in which students are intended 
to go through, while being taught a mathematics chapter.

The overarching aim of the PMMI framework is that the interweaving of 
“Personalized Mathematics” and “Mathematics Inquiry” will lead to the enhance-
ment of students’ positive attitude towards mathematics, development of mathemat-
ical concepts and procedures, as well as the development of more general skills, 
such as critical thinking, creativity, collaboration, and communication.

To make the PMMI framework explicit, Fig. 5.2a, b illustrates the way in which 
the teaching of slope of a straight line is introduced in the Cypriot Mathematics 
Textbooks in Grade 8. In the rest of the chapter, we will discuss the main principles 
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Fig. 5.2 (a) Exploration of slope in Grade 8 mathematics textbook (b) Investigation of slope in 
Grade 8 mathematics textbook (Cyprus Ministry of Education and Culture, 2016b)

of the PMMI framework alongside indicative examples from the mathematics text-
books in order to make the link between the theoretical principles and their imple-
mentation more transparent to the reader.

As illustrated in Fig.  5.2a, b, each chapter begins with an exploration and an 
investigation, which constitute important ingredients of the PMMI framework. These 
explorations and investigations are followed by further tasks to give students the 
opportunity to develop both conceptual understanding, procedural fluency, as well as 
use of clear and precise mathematical language. Real-life applications are often uti-
lized throughout the textbooks. These applications are opportunities for students to 
connect classroom lessons to realistic scenarios and assist teachers transforming 
mathematical learning into an engaging and meaningful way to explore the real 
world. Attention was also paid to organize content in a way in which learning math-
ematics would be an active, constructive, cumulative, and goal-oriented process.

5.4.1  Personalized Mathematics

As shown in Fig.  5.1, the two elements of the PMMI framework, “Personalized 
Mathematics” and “Mathematics Inquiry,” are intertwined in such a way as to pro-
vide a framework for teaching and learning that fully aligns with the learning of 
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mathematics. Personalized mathematics learning is an instructional approach which 
encompasses a number of practices to support mathematics teaching and learning. 
However, the lack of a consensus on the definition of personalized learning allows 
for a range of ideas on what it might entail.

In the context of the PMMI framework, personalized means that learning focuses 
primarily on improving students’ achievement without ignoring the humanizing and 
social aspects of mathematics teaching and learning. For example, our purpose was 
to focus on tailoring mathematics tasks and problems to learners. This means, for 
students, to find solutions based on their own mathematical understanding and what 
makes sense to them. We consider personalized mathematics learning as the space 
in which learners give voice to their own ways of mathematical thinking, represent 

Fig. 5.2 (continued)
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and discuss their mathematical ideas, and use mathematics to make sense of their 
worlds. “Personalized Mathematics” can help learners see themselves as doers of 
mathematics by providing support for developing perseverance and understanding. 
It is also personalized because the design of lessons provides students with multiple 
entry points and encourages different ways of students’ active engagement with 
various mathematical ideas through discussions, presentations, and use of various 
representations.

To encourage Personalized Mathematics instruction, the textbooks were based 
on five teaching practices (see Fig. 5.1), as these were defined by NCTM policy 
document, “NCTM’s Principles to Actions: Ensuring Mathematical Success for 
All” (NCTM, 2014). In particular, these practices were implemented by engaging 
students with tasks, which are expected to facilitate mathematics learning through 
the following:

• Establishing mathematics goals to focus learning (personalized goals that build 
up students’ mathematical understanding, increase student confidence, goals that 
ensure that each and every student has the opportunity to learn rigorous mathe-
matics content and develop mathematical processes and practices).

• Implementing tasks that promote reasoning and problem solving (Personalized 
Mathematics supports tasks that require reasoning, problem solving, and math-
ematizing our world through mathematical modeling and culturally relevant 
mathematics tasks).

• Using and connecting mathematical representations (Personalized Mathematics 
allows students to use representations familiar to them and age appropriate, use 
multiple representations so that students can draw on multiple resources,  and 
develop connections among multiple representations to deepen their understand-
ing of mathematical concepts and procedures).

• Facilitating meaningful mathematical discussions (Personalized Mathematics 
allows students to develop language to express mathematical ideas).

• Building procedural fluency from conceptual understanding (Personalized 
Mathematics routinely connects conceptual understanding and procedural flu-
ency to deepen learning and reduce mathematical anxiety. Procedural and con-
ceptual knowledge is more solid when it is built on students’ prior personalized 
knowledge and experiences).

For example, in the exploration in Fig. 5.2a, students are invited to decide which 
one of the four skateboard ramps is the least dangerous and justify their solution. It 
is likely that students will find this exploration interesting since it arises from real 
life and some of them may even have tried this activity themselves. Thus, students 
are expected to interpret the problem based on their prior knowledge and personal 
experience. Students may also become curious as to when the ramp is more danger-
ous and find challenging how to respond or explain their intuitive feelings. Students 
may try to communicate their own experiences or ideas, look critically at the prob-
lem, and try to be creative as to the way in which to investigate it or justify their 
answers. In this sense, students might formulate a personal goal for understanding 
the problem and offer a reasonable justification, while the problem reflects a 
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situation of the real world which students should mathematize. Furthermore, 
through students’ collaboration and communication it is likely that students may 
realize the need of a new mathematical concept which is neither the height nor the 
length of the ramp, but actually the combination of the two measures. Hence, the 
representations of the skateboard ramps which provide information about the height 
and the length are expected to trigger students’ curiosity. This is the sort of curiosity 
we expect to develop in the mathematics classroom, the romance of learning, which 
will eventually bring the evolution of a new mathematical concept for the students, 
that of slope. It is likely that if the mathematical concept of slope emerges through 
students’ curiosity and need to respond to a problem will remain in students’ mem-
ory longer (Gruber et al., 2014; Kang et al., 2009; Knuth, 2002; Peterson & Cohen, 
2019). Students will develop conceptual understanding of the concept of slope and 
not depend on the rote memorization of the formula slope  =  rise/run (Bos 
et al., 2020).

In the investigation that follows immediately after the exploration, students are 
invited to use a mathematical applet. The technological tool is recommended so as 
to offer students the opportunity to experiment with the slope of a straight line. In 
this activity, students are again offered with relevant representations which they 
may link to the skateboard ramp. Students are prompted to observe the changes that 
occur as a robot moves along the tilted line. Specifically, students are asked what the 
robot’s vertical displacement is, when it makes one-unit move to the right along the 
slope, then when it makes two-units move to the right and so on. Students are offered 
this applet to experiment, construct hypotheses, and investigate whether these 
hypotheses are confirmed or rejected. It is anticipated that this investigation will 
support the development of procedural fluency from conceptual understanding. 
Students’ active engagement with the technological tool, precision in calculations, 
and generalization is expected to lead to the conceptual development of the concept 
of slope and not the rote memorization of the formula slope = rise/run.

5.4.2  Mathematics Inquiry

The second element of the PMMI framework refers to “Mathematics Inquiry.” 
Mathematics inquiry-based learning is seen as the approach and pathway for imple-
menting the practices of Personalized Mathematics. On a European level, most edu-
cational policy documents and curriculum guidelines suggest inquiry-based 
instructional methods to school subjects (Dorier & Garcia, 2013; Supovitz & Turner, 
2000). Ιnquiry-based instruction in mathematics can loosely be defined as “a way of 
teaching in which students are invited to work in ways similar to how mathemati-
cians and scientists work” (Artigue & Blomhøj, 2013, p. 797). This approach pro-
motes problem solving and involves addressing questions that are epistemologically 
relevant from a mathematical perspective and triggering students to work autono-
mously in order to provide valid answers (Artigue & Blomhøj, 2013). It entails 
observing, asking questions, creating representations, making conjectures, looking 
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for relationships, generalizing, modeling, and communicating ideas (Dorier & 
Maass, 2020).

Although the level of guidance that the inquiry-based learning should involve 
may vary, a meta-analysis of 72 studies carried out by Lazonder and Harmsen 
(2016) suggests that guidance has a positive effect on inquiry learning activities, 
performance success and learning outcomes. Therefore, we chose to apply an 
approach which may be characterized as minimal guided or enhanced discovery 
approach.

Mathematics inquiry could be seen as a process that starts from a wonder, a ques-
tion or a problem, for which students seek answers through exploration and/or 
investigation following an enhanced discovery approach. The context for mathe-
matics inquiry often relies on problems arising from the world around us, and prob-
lems that emerge from history, art, or the science of mathematics. Designing lessons 
based on the inquiry approach entails consideration of the mathematical concepts 
involved, incorporation of artifacts that support exploration and experimentation, 
and the use of language and symbolic tools accessible to students for expressing and 
discussing their ideas.

In inquiry-based learning, the role of the teacher involves challenging students, 
probing questions, utilizing their prior knowledge, encouraging discussion, and 
structuring students’ opportunities for developing understanding (Dorier & Maass, 
2020). This presupposes that task sequences are developed to scaffold students’ 
work in reinventing and creating mathematics new to them (Laursen & Rasmussen, 
2019). Hence, the design of textbooks intends to provide these learning sequences 
in order to promote inquiry-based mathematics learning.

As described earlier, for the teaching of straight-line slope, students are presented 
with an exploration, where they need to decide which ramp is the steepest. At this 
point students are invited to explore and hypothesize, and are not offered any specific 
guidance. However, if students are unable to reach an answer or make conjectures, 
they are invited to work on an applet and are given more guided questions. Students 

are asked to explore the concept of slope as the constant ratio of 
vertical change

horizontal change
 .

The development of mathematics inquiry is affected by the nature of the mathe-
matical concepts involved, students’ conceptualization, language, symbolic tools 
accessible to students for expressing and discussing their ideas, and the artifacts 
accessible for supporting exploration and experimentation. In this sense, a variety of 
artifacts could support the experimental dimension of mathematics, like digital 
technologies. The history of mathematics shows that such an experimental dimen-
sion is not new, but over the last decades technological developments have put a 
large number of new resources at the disposal of teachers and students. Researchers 
generally agree that the strategic use of ICT could support students to develop 
understanding and advanced mathematical proficiencies, like problem solving, 
reasoning, and justifying (NCTM, 2015). Digital tools offer dynamic representa-
tions and classroom connectivity, which could optimize students’ access to basic 
mathematical concepts and procedures (Hegedus & Moreno-Armella, 2014).
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The PMMI framework adopts the idea that digital tools should be used in a way 
that corresponds to the conceptual schemas that students are expected to develop. 
This process is widely known as “instrumental genesis” (Artigue, 2002; Drijvers, 
2020). Therefore, the thoughtful use of digital tools in carefully designed ways at 
appropriate times, mostly through exploration and investigation settings could sup-
port schema construction, experimenting, sense making, communicating, and doing 
mathematics. For example, the use of the applet in the investigation about the con-
cept of straight-line slope (see Fig. 5.2b) is expected to facilitate the construction of 
a relevant schema that relates the concept of straight-line slope with the idea of 
coordinating the vertical and horizontal covariation.

Concluding, “Mathematics Inquiry” in the PMMI framework refers to an instruc-
tional approach that is expected to serve enhanced learning and promote the prac-
tices of “Personalized Mathematics.” In the following section, we present in detail 
the three phases through which “Mathematics Inquiry” is expected to evolve: 
romance, precision, and generalization. The notions of exploration and investiga-
tion are also revisited to further illustrate their special characteristics, significance, 
and contribution to “Personalized Mathematics” and “Mathematics Inquiry.”

5.4.2.1  Mathematics Inquiry Phases

Mathematics inquiry, in the PMMI framework, evolves in three phases (see Fig. 5.1) 
which are based on Whitehead’s theory of education “Rhythm of learning” 
(Whitehead, 1929). According to Whitehead’s theory, the natural way that individu-
als learn is through the pattern of Romance–Precision–Generalization. Learners 
should be introduced with something interesting, something they care about, and be 
offered the opportunity to explore. Then, the precision phase follows where learners 
develop knowledge and skills that are needed for the development of a new concept. 
Of course, at this phase, romance should not be lost, since this will sustain the inter-
est and therefore the development of skills, knowledge, and applications. The last 
phase is generalization. At this phase learners link what they have learned with prior 
knowledge, apply this knowledge in a new context, make generalizations, return to 
romance with new competences, and become  ready to explore new concepts. 
Students are anticipated to pass through these three phases through two activities: 
the exploration and the investigation.

The romance of learning is introduced in the textbooks with the idea of explora-
tions while the phases of precision and generalization are substantiated by investi-
gations. Afterward, examples and activities allow students to practice and sharpen 
their skills as they work towards mathematical understanding. At the end of each 
chapter there are enrichment tasks which serve four purposes: (1) tasks for students 
who struggle with mathematics, (2) more challenging tasks for students who excel 
in mathematics, (3) tasks for all students who need further practice, and (4) tasks 
which offer a different approach to teaching to the one already presented in the 
preceding chapter.

5 Personalized Mathematics and Mathematics Inquiry: A Design Framework…



82

5.4.2.2  Exploration: Romance

The inquiry process starts with an exploration which, as reported earlier, has a 
unique goal, to create wonder, curiosity, engagement in mathematics, and the 
romance of learning, as mentioned by Whitehead (1929). Thus, exploration pro-
vides students with lived, curious experiences, in which they are expected to shape 
their own learning, as they work on mathematical problems. Students grow and 
change with opportunities to identify problems, generate personal wonderings, and 
engage in dialogue around these problems. They reflect as they apply their new 
knowledge, by discussing possible solutions in ways that transform thinking. 
Offering learners space to generate their own wonderings about problems helps 
them connect their own interests to real-life issues in ways that can lead to real 
change (Alberta Learning, 2004). One of the most valuable things that an explora-
tion can serve is to make students become more aware of and deliberate about their 
curiosity. This is why, in the Cypriot Mathematics Textbooks, exploration is the 
starting activity of each unit in the mathematics textbooks. Usually explorations are 
real-life or life-like learning experiences that are open and provide opportunities for 
students to wonder and develop their imagination. It is the essence of a mathematics 
inquiry. However, to “enquire” does not mean that we always have to reach an 
answer to a problem or to complete a task.

Exploration is the means to personalize mathematics since it is a purposeful, 
self-directed inquiry fulfilling learning experience (Pink, 2009). This is why it is 
important that individuals set their own goals, in this case mathematical goals, and 
seek to satisfy them. In order for individuals to set a mathematical goal, the topic 
must be of interest to them and trigger their curiosity. In addition, explorations 
request students to reflect, by discussing what they bring to the content and what 
ideas they actively construct as they interact. For example, during explorations, stu-
dents can use their wonderings and meaning to reflect on their process and seek 
feedback from others.

The exploratory approach provides an opportunity for mathematics to occur in a 
context, providing a balance between problem solving and skills-based activities 
and engage students in deep mathematical learning (Boaler, 2008). Explorations 
allow students to “do” mathematics, to “make sense” of their world, and “be math-
ematicians” (Marshman et  al., 2011). The exploratory tasks aim to get students 
involved in “problem formulation, problem solving, and mathematical reasoning” 
(Battista, 1994, p. 463).

In explorations, a substantial task can thus be presented, in which students help 
define the problem; develop ways of tackling it; generate examples; and predict and 
generalize. Explorations direct students to the realization that there is a need to learn 
or discover a new mathematical concept, or strategy which is useful for mathemat-
ics and life in general. Explorations have multiple entry points allowing students to 
think creatively in order to respond to complex challenging tasks “allowing students 
to think in a creative manner in the framework of challenging complex tasks” (Swan, 
2009, p. 1). These tasks facilitate the process of discussion and contextual use of 
mathematical vocabulary.
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In the context of Cypriot Mathematics Textbooks in Cyprus, the PMMI frame-
work situates classroom exploration experiences at the beginning of a chapter on a 
new concept or procedure. Approximately, every week students encounter new 
explorations and/or investigations. The time anticipated for the completion of an 
exploration and investigation varies, from 10 min to 40 min sessions. The explora-
tion is quite open, and teachers may ask further questions to orient the students 
towards the topic under investigation.

Figures 5.3 and 5.4 present examples of explorations. Figure  5.3 presents an 
exploration on the concept of exponents which is taught in Grade 7. Figure 5.4 pres-
ents an exploration on the concept of equivalent fractions which is taught in Grade 4.

In the exploration presented in Fig. 5.3, students are presented with the legend of 
Sissa which aims to engage students to the concept of exponent. Students are asked 
to explore why the emperor could not fulfill his promise and deliver to Sissa the 
grains of wheat that he had promised. This question anticipates to trigger students’ 
curiosity, make them wonder why this happened, and want to explore the problem. 
Some of the students may make certain hypothesis, others may bring to the fore 
their own experiences about the number of squares that a chess has and suggest 
possible strategies to address the problem. Thus, it is expected that this problem will 
direct students to set mathematical goals and they may try to respond to the problem 

Fig. 5.3 Exploration of exponents in Grade 7 mathematics textbook (Cyprus Ministry of Education 
and Culture, 2016c)
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Fig. 5.4 Exploration of fraction equivalence in Grade 4 mathematics textbook (Cyprus Ministry 
of Education and Culture, 2019)

by sharing their personal experiences and activating various procedures, such as 
multiplication. The exchange of ideas amongst students may also require the devel-
opment of specific mathematical language related to multiplication, the use of tools 
(such as a calculator) and creation of various representations (such as repeated mul-
tiplication). After their initial calculations, students may realize that numbers 
become very large. This is when some of them may intuitively feel the need of a new 
mathematical concept which will make this mathematical process simpler. Thus, 
this exploration triggers students’ curiosity, encourages them to collaborate and 
communicate by exchanging ideas, building appropriate language, and using vari-
ous representations, and offers them the opportunity to be critical and creative.

In the exploration presented in Fig. 5.4 students are asked to explore a real-life 
situation involving the concept of equivalent fractions. Based on the scenario, three 
pizzas of the same size were offered at a school party. One child ate two pieces from 
the first pizza, one child ate three pieces from the second one and one child ate four 
pieces from the third pizza; yet, all of them ate exactly the same quantity of pizza. 
Students are asked to explain how this could be possible. This question aims to trig-
ger students’ curiosity and wonder how this is feasible and probably start thinking 
that the three pizzas were cut in different ways. It is expected that students will 
make conjectures based on their own experience of cutting pizzas into slices. This 
discussion will probably lead to a realization that the three pizzas were cut in differ-
ent ways and students will need to find the way in which the pizzas were cut and 
what fractions are involved. Students may hypothesize about the number of pizza 
slices that each student had. Based on these hypotheses, students could be prompted 
to collaborate to construct representations or use tools (e.g., fraction circles) to 
show the way in which each pizza was cut. Students’ work and ideas will contribute 
to orchestrating a productive mathematical discussion about the fact that the same 
quantity of pizza could be expressed using different fractions. This discussion 
is anticipated to facilitate the introduction of a new mathematical concept, that of 
equivalent fractions. The concept could be explained through appropriate language 
and use of various representations arising from the scenario that students were 
invited to explore. Based on students’ answers, they could be prompted to find fur-
ther alternative solutions (be creative), communicate their mathematical ideas 
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through words, symbols, drawings, and representations, and explain how the differ-
ent cuts result to the same quantity of pizza.

5.4.2.3  Investigations: Precision and Generalization

Investigation is an activity originating in mathematics or the real world which lends 
itself to inquiry. A mathematics investigation allows students to satisfy their curios-
ity created in the exploration using various techniques. In the process of the investi-
gation, students develop skills that can be applied to other problems (da Ponte, 
2007). Students develop creative and critical thinking abilities and apply them to the 
expansion of their knowledge and skills. The intellectual satisfaction that one gets 
when discovering concepts and procedures as well as the generalizations of rules in 
different contexts are the major components of personalized mathematics.

The investigative approach is illustrated by posing questions, collecting data, 
hypothesizing, reflecting on, and drawing conclusions. These processes need to take 
place individually, in small groups and in the classroom as a whole. Explorations 
and investigations appear from Grade 1 to Grade 12. The level of difficulty and 
guidance offered varies, based on students’ age and experiences. In the textbooks 
three kinds of investigations were designed, following Harris and Hofer’s (2009) 
categories of activity types that provide students opportunities for knowledge build-
ing (i.e., students are expected to build the same content and process knowledge), 
convergent knowledge expression (i.e., students are expected to develop and express 
understanding of content which is similar to what they were introduced), and diver-
gent knowledge expression (i.e., students are encouraged to express their own 
understanding of a given topic). In an analogous way, we developed investigations 
for knowledge building, convergent knowledge expressions, and divergent knowl-
edge expressions with purpose to deepen and extend learning.

In the mathematics textbooks, the investigations follow the explorations. After 
students’ curiosity and wonder, students need an explanation and the information 
which demystifies the mathematical content. The knowledge of mathematical con-
cepts, skills, and procedures are the tools to justify mathematical phenomena 
through investigations. Mathematical investigation allows students to learn about 
mathematics, especially the nature of mathematical activity and thinking. It also 
makes them realize that learning mathematics involves intuition, conjecturing, and 
reasoning, and is not about memorizing and following existing procedures. The 
main component of an investigation is conjecturing which is followed by refinement 
of conjectures, refutation or proof of conjectures, and monitoring of proofs (Leikin, 
2014). Investigations stimulate a way of thinking that goes beyond the application 
of knowledge or isolated procedures and implies the mobilization of ideas from dif-
ferent areas of mathematics. They deal with complex thinking processes, but rein-
force the learning of facts, concepts, and procedures, making an important 
contribution to their consolidation (Abrantes et  al., 1999). The ultimate aim of 
mathematical investigation is to develop students’ mathematical habits of mind.
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Explorations encourage students to pursue their curiosity, helping students figure 
out just what they want to know, while investigations are showing them how to sys-
tematically go about getting the answers to the investigations and explorations. In a 
mathematical exploration, one begins with a very general question or from a set of 
little structured information from which one seeks to formulate a more precise ques-
tion and then produce a number of conjectures. Afterward, one tests those conjec-
tures and proceeds to investigations in a systematic manner. If someone finds 
counterexamples, those conjectures may be improved or put completely aside 
(rejected or discarded). In this process, sometimes new questions are formulated 
and the initial questions are abandoned, completely or partially. The conjectures 
that resist to several tests gain credibility, stimulating a proof that, if achieved, will 
confer mathematical validity.

Both explorations and investigations call for creativity and critical thinking. 
They require abilities that are much beyond simple computation and memorization 
of definitions and procedures (da Ponte, 2007). These abilities, sometimes called 
“higher order abilities,” are important not only for the mathematical development of 
the individual but for one’s overall development as an individual and as an active 
member of society (da Ponte, 2007).

In the following section (Figs. 5.5 and 5.6), we present the investigations on the 
concept of exponents and on the concept of equivalent fractions that follow the 
explorations presented earlier.

Fig. 5.5   Investigation of exponents in Grade 7 mathematics textbook (Cyprus Ministry of 
Education and Culture, 2016c)
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Fig. 5.6 Investigation of fraction equivalence in Grade 4 mathematics textbook (mathplayground.
com) (Cyprus Ministry of Education and Culture, 2019)

For the concept of exponents, the investigation aims to offer students a scaffold 
toward the solution of the problem. A table is presented where students are asked to 
find the number of grains, in the 1st, 2nd, 3rd, 4th, 8th, 10th, 32nd, and 64th square. 
The investigation is presented in this form in order to provide students the opportu-
nity to calculate with precision the answer in the first four cases (1st, 2nd, 3rd, 4th) 
and then try to find a pattern and a general rule that would apply for the number of 
grains in the subsequent squares and eventually in any number of squares. The table 
facilitates students’ observation and deduction of a general rule that when a number 
is multiplied by itself it may be represented in the form ab, where b indicates the 
number of times the number a will be multiplied by itself. Therefore, precision in 
the calculation of specific cases is expected to lead to generalization about a rule for 
calculating the number of wheat grains for any square.

In the investigation for equivalent fractions, students are invited to find at least 

4 equivalent fractions to 
1

2

1

3
, ,  and 

3

4
 by utilizing the affordances of an interactive 

applet (see Fig. 5.5). The applet involves the representation of fraction bars (math-
playground.com). Students can experiment by dragging sliders that define the 
numerator and denominator of each fraction bar. The goal of the activity is to align 
the colored fractions. The visualization and experimentation affordances of the 
applet might prompt students to make conjectures regarding the relation between 
the given fraction and the equivalent ones. Students will be asked to test the validity 
of their conjectures and find the relation between the denominators of the equivalent 
fractions and then the relation of the corresponding numerators. It is expected that 
students will study a number of examples and observe that the denominator of the 
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equivalent fractions is a multiple of the denominator in the given fraction and this 
can be done by aligning the vertical lines (precision). Students will be given the 
opportunity to gain a deep conceptual understanding of the fact that finding an 
equivalent fraction equals dividing n times each piece of the given fraction; this 
process results to a new fraction with a denominator that is n times bigger (general-
ization). The experimentation with the applet aims to both facilitate the generalization 
of a procedure for finding any equivalent fraction and justification as to why it is 
possible to find an infinite number of equivalent fractions. We anticipate that students 
will be able to argue that the general rule for determining an equivalent fraction is 
to multiply the numerator or denominator of a fraction with the same number, or 
divide the numerator or denominator of a fraction with the same number.

5.5  The PMMI and the 4C’s

The twenty-first-century skills of communication, collaboration, creativity, and 
critical thinking, often referred to as the “four C’s” may be developed through the 
PMMI framework. The PMMI design prompts students to engage with the four C’s 
(see Fig. 5.1).

Designing purposeful tasks that incorporate students’ wonder is the foundation 
upon which the PMMI framework is built. Explorations lead to student action or 
investigations, through both participation and creation. Participation is an essential 
step in the inquiry process. In fact, Casey (2013) argued that it is the ultimate goal 
of learning. Through participation, individuals assert their autonomy and ownership 
of learning; in turn, their inquiry becomes more personal and engaging (Pink, 2009; 
Zhao, 2012). Creation is viewed mainly in two ways: first, through tasks where 
students are invited to create a new concept that was not previously known to them 
and second, through tasks where students are invited to offer multiple or unique 
solutions (Kaufman & Beghetto, 2009). For example, in investigations students are 
required to put forward a proposition about objects and operation which may involve 
unexpected relationships; thus, both creativity and critical thinking are essential 
(Leikin, 2014). Ultimately, creation and participation are essential elements for 
knowledge construction. Creation is one common form of participation (Reilly 
et al., 2012).

5.6  The PMMI and the Role of the Teacher

In the PMMI framework the role of the teacher also changes. The teacher would 
need to become a co-learner in the classroom context in order to implement the les-
sons as intended according to the PMMI design framework. The teacher is not the 
one asking and answering questions, but the teacher facilitates students’ engage-
ment with the explorations and investigations. The teacher encourages students to 
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be in control of their leaning. It is the context of the explorations and investigations 
that supports this role of the teacher. Depending on whether the exploration and 
investigations are structured, guided or open, the control that teacher has over stu-
dents’ learning varies. However, in all types of explorations and investigations the 
students’ initiative is always high.

5.7  Conclusion

This chapter presents the PMMI framework which guided the design of the mathe-
matics textbooks in both elementary and secondary school grades. Despite the fact 
that PMMI was developed in the context of a particular country with certain tradi-
tions, goals, and aspirations, we suggest that it could provide a reference point that 
elaborates how teaching and learning mathematics might look like out of regional 
circumstances. In this final section, we highlight the affordances and strengths of 
PMMI as a potential framework for designing mathematics textbooks. We also sug-
gest some fruitful forthcoming pathways and challenges in implementation and 
teacher professionalization.

Looking across the elements of the PMMI framework, two cross-cutting themes 
arise. First, the importance of blending practices of teaching and learning enables 
students to experience “Personalized Mathematics.” These practices include estab-
lishment of mathematical goals, emergence and growth of reasoning, perseverance 
to problem solving, connections among mathematical representations, formation of 
concepts, and fluency with procedures (NCTM, 2014). In this sense, the PMMI 
framework deals with an issue that has been largely left subtle, i.e., how mathematical 
inquiry interweaves with and supports the needs of individual students for personal-
ized learning. Second, it entails the importance of identifying a possible route 
through which students could engage with “Mathematical Inquiry.” This route needs 
to integrate opportunities for students to experience the romance, exhibit precision, 
and achieve generalization of mathematical ideas (Whitehead, 1929). In addition, 
this route adopts an enhanced discovery approach, by varying the guidance and 
feedback offered to students, based on their needs (Lazonder & Harmsen, 2016).

The PMMI framework suggests that explorations and investigations constitute 
concrete examples of mathematical tasks that promote the realization of such oppor-
tunities in the classroom environment (Pink, 2009). Promoting inquiry-based 
learning is only part of the solution for achieving quality learning outcomes; 
students should also be given the opportunity to express and discuss their own ways 
of thinking mathematically. Hence, the PMMI framework contributes into compre-
hending the process through which students could make sense of the mathematics 
and at the same time develop skills such as critical thinking, creativity, collabora-
tion, and communication.

Furthermore, the PMMI framework elaborates the position that textbook’ tasks 
can be viewed as “shapers of the curriculum rather than merely presenting a given 
curriculum” (Thompson & Watson, 2013, p. 279). In this perspective, mathematics 
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textbooks should include lessons that “shape” the underlying principles of the 
PMMI framework about the way in which mathematics are expected to be taught 
and learnt. Specifically, each lesson in the textbooks provides insight into how 
“Personalized Mathematics” and “Mathematics Inquiry” could effortlessly be 
implemented through the enactment of explorations and investigations. In this way, 
teachers are given a concrete learning context that outlines the conceptual objectives 
of their instruction through structured, innovative, or even unusual tasks. Of course, 
we acknowledge that a coherent and well-structured textbook does not always 
ensure that different teachers in different school classrooms will implement the 
tasks in the same way and trigger similar learning outcomes. Efforts should be 
placed in training and supporting teachers in students’ engagement with the text-
book tasks as designed based on the PMMI framework. Future empirical research 
may also examine the way teachers perceive the PMMI framework, how they imple-
ment it in their classroom or what are the more challenging aspects of this 
implementation.

The PMMI framework was designed to be applicable for teaching and learning 
mathematics across K-12. The underline assumption is that students can perform 
inquiry-based learning and mathematical practices from their early years. This does 
not mean that advanced mathematical thinking or complex concepts will be pushed 
down in elementary school. Rather, the PMMI framework suggests that how the 
content of elementary school is approached and taught should be reformed. Still, 
several questions remain to be addressed. We agree with other researchers (Alfieri 
et al., 2011), that future studies should investigate the type and the extent of guid-
ance appropriate for various age groups. Additionally, further studies may investi-
gate what type of support students of various ages need in order to become more 
efficient in posing questions, collecting data, hypothesizing, reflecting, or drawing 
conclusions. In addition, further research is needed to define explicit design princi-
ples for explorations and investigations and evaluation criteria based on the targeted 
age. Furthermore, teaching interventions and design research studies may yield 
empirical data regarding the effectiveness of the framework, elaborate the design 
principles of explorations and investigations, and offer insightful details regarding 
the effect of the guidance given during the learning route. Finally, an empirical 
study may reveal the exploration and investigation characteristics that contribute to 
further enhancing the personalized dimension of the model, by providing opportu-
nities to find solutions based on students’ own mathematical understanding.

Concluding, the PMMI framework yields insights into how the ongoing goal for 
fostering Personalized Mathematics learning and mathematics inquiry-based learn-
ing could be served. Using the notions of exploration and investigation, the PMMI 
framework defines how the content of mathematics textbooks might look like, in 
order to boost students’ engagement in developing and reinventing mathematical 
concepts and ideas by linking relevant contexts with individual, sustainable concep-
tions. It offers a suggestion as to how mathematical challenge may look like in the 
mathematics classroom. Needless to say, that enacting “Personalized Mathematics” 
and “Mathematical Inquiry” requires investment in curriculum and textbook devel-
opment, as well as long-term teacher professional development.
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Chapter 6
Math-Key Program: Opening 
Mathematical Minds by Means of Open 
Tasks Supported by Dynamic Applets

Roza Leikin, Sigal Klein, Regina Ovodenko, Irina Gurevitch, Sariga Dinur, 
and Yael Leen

6.1  Introduction

The aim of the Math-Key program described in this chapter is to open mathematical 
minds through the use of open tasks. The program rationale is based on the position 
that intellectual openness determines the future of individuals and of society, deter-
mines learning motivation and curiosity, and advances technological and scientific 
progress as well as equity in a multicultural and highly heterogeneous society. We 
believe that mathematics in general and open mathematical tasks in particular are 
tools for  the advancement of intellectual openness, flexibility, and creativity and 
that they promote collaborative skills. We suggest systematic integration of the 
Math-Key instructional approach in teaching and learning mathematics. The Math- 
Key program is designed for junior-high school mathematics as a problem-solving 
path designed to complement the regular curricular instructional activities. It can be 
used though integration in the regular lessons or as an enrichment program.

The goal of the Math-Key program is the development of mathematical creativ-
ity and mental flexibility along with the advancement of mathematical knowledge 
and skills. Of equal importance, it is aimed at making mathematics lessons enjoy-
able and attainable for all students. This is done by piquing their curiosity by expos-
ing them to a variety of problem-solving strategies applied to a particular 
mathematical problem or a variety of solution outcomes attained.
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The openness of Math-Key tasks determines their mathematical challenge. To 
allow regulation of mathematical challenges with respect to students’ mathematical 
potential, the majority of Math-Key tasks are accompanied by dynamic applets 
(DA) that allow regulation of the level of mathematical challenge embedded in the 
tasks. The applets are open to allow students to investigate the situation given in the 
task, to support their understanding of the mathematical structure of the task and, if 
needed, to simplify the situation through experimentation. Teaching with Math-Key 
tasks requires changing the classroom culture and requires flexibility and openness 
to ideas of students on the part of the teachers. In what follows, we characterize the 
mathematical challenge embedded in Math-Key tasks, with a focus on its associa-
tion with task openness. Then we turn to the characterization of the dynamic applets 
integrated into Math-Key tasks as a major tool for various mathematical challenges.

6.2  Openness of Math-Key Tasks

One of the well-advertised instructional approaches to teaching and learning math-
ematics is solving open problems. Open mathematical tasks are broadly discussed 
in mathematics education and are accompanied by strong arguments about their 
effectiveness for the development of knowledge and creativity (Pehkonen, 1995; 
Silver, 1995; Leikin, 2018). However, open tasks are seldom used in mathematics 
classrooms and are rarely included in mathematics textbooks. The Math-Key pro-
gram makes open tasks available for systematic use in mathematics classes.

Math-Key tasks are of several types:

• Multiple Solution-Strategies Tasks (MSTs) that explicitly require solving a math-
ematical problem in multiple ways (using multiple strategies). MSTs are open- 
start tasks, the openness  of which is linked to the  possibility of producing 
different individual solution-strategies spaces.

• Multiple Outcomes Tasks (MOTs) are associated with solving problems that 
have multiple solution outcomes independently of the solution-strategy used. 
MOTs are usually ill defined (cf., Krutetskii, 1976). In order to solve the prob-
lems, participants are required to change/ choose/add problem givens. MOTs can 
be either be complete-ended tasks or open-ended tasks.

 – Complete-ended tasks require finding a complete set of solution outcomes. 
The challenge is in examining  the completeness of the set of solution out-
comes of an ill-defined problem.

 – Open-ended tasks allow finding multiple outcomes, without attaining a com-
plete set of solutions.

• Combined open-start and open-ended tasks are both MSTs and MOTs that can be 
solved using different solution strategies and have multiple solution outcomes 
that do not have a complete solution set. Examples of such tasks are problem- 
posing tasks and investigation tasks.

R. Leikin et al.
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6.2.1  Examples of Math-Key Tasks

This section presents examples of Math-Key tasks. The tasks are analyzed accord-
ing to the type of openness, spaces of possible solution strategies, and types of solu-
tion outcomes. The solution outcome spaces can be composed of finite or infinite, 
discreet or continuous sets of outcomes. The solution strategies can differ in repre-
sentations, frequency, conventionality, and insight imbedded in the solution.

6.2.1.1  Task 1: Birthday Party

The task is based on a task presented in Verschaffel et al. (1994). Its solution pre-
sumes students’ understanding that the two groups of friends can have common 
participants. In the term used by Krutetskii (1976) this problem is an ill-defined task 
since there is missing information in the givens, i.e., the number of common friends 
in the two groups is unknown. The complexity of the solution is related to the 
requirement of completing the missing information. Additional complexity is 
related to the unconventionality of the solution outcome, which is a set of numbers 
and not one particular number as is usually attained when solving textbook word 
problems.

6.2.1.2  Task 2: Distance from School

This task is based on a problem presented in Verschaffel et al. (1997). There is a 
missing given about the exact placement of the houses. An infinite number of  cor rect 
solution outcomes is possible as related to the two circles around the school which 
depict loci of the houses’ positions. The solution outcome is an inequality which is 
rarely the format for an answer to a word problem.

Tal and Limor both have a birthday. Tal plans to invite five friends to her birth-
day party. Limor invites seven friends. They decide to celebrate their birth-
days together. How many children will be at the party?

Solution strategies:

1. Venn Diagram;
2. Trying different cases;
3. Insight about min-max-all between;
4. Algebraic: sum of inequalities.

Solution outcomes: {8, 9, 10, 11, 12, 13, 14}

6 Math-Key Program: Opening Mathematical Minds by Means of Open Tasks…
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6.2.1.3  Task 3: Car Speed

In the car speed task, the speed of the car that travels from Haifa to Ashdod is miss-
ing and, thus, the problem is ill defined and requires students to consider different 
conditions as in Tasks 1 and 2. Speed limitation by law, not given in the problem, is 
a constraint that the solvers have to take into account. The task enables solving the 
problem in multiple ways: using numerical or algebraic expressions, and using 
graphs of functions. The solution outcome is an interval of real numbers, the out-
come of which is very rare for school algebra.

6.2.1.4  Task 4: Polygon from Two Squares

This task asks us to find possible polygons constructed of two squares, while the 
sizes and orientation of the two given squares are unknown. A finite number of 

A motorcycle leaves Haifa at 10:00, traveling to Ashdod at 50  km/h. The 
length of the road between Haifa and Ashdod is 150 km. A car leaves Haifa at 
10:30, following the same route as the motorcycle. How fast does the car need 
to be travelling in order to catch up with the motorcycle before reaching 
Ashdod? Solve the problem in multiple ways.

Solution strategies:

1. Numerical.
2. Algebraic.
3. Graphical.

Solution outcomes: 60 < v ≤ 110

Distance from school

Eran’s house is 100 meters from his school, and Alex’s house is 300 meters 
from the school. What is the distance (S) between Eran’s house and 
Alex’s house?

Solution strategies:

1. Numerical.
2. Insight about min-max-all between.
3. Diagram.

Solution outcomes: Real numbers S: 100 ≤ S ≤ 500
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n-corner polygons (with various infinite rotated figures) can solve the task. The task 
can be solved in multiple ways. The complete set of natural numbers {4, 5, 6, 7, 8, 
9, 10, 11, 13, 16} presents the number of corners in the resulting polygons. However, 
this task is open-ended because for the same n in this set there is an infinite number 
of polygons that can be attained.

A class has 24 students. All of the students took a math test. The teacher graded 
the tests and found that the average was 74.5. Below are the grades: 79, 80, 82, 
63, 70, 70, 80, 80, 82, 63, 56, 76, 82, 90, 56, 44, 90, 90, 82, 82, 72, and 70. The 
next day, the teacher discovered that she had forgotten to grade two tests. She 
added the two missing tests to the list and found that the average did not 
change. What could be the grades of the two tests she added? Explain.

(continued)

Polygon from two squares

For which values of n can n-corner polygons be constructed of two squares?

Solution strategies:

1. Using manipulatives
2. Paper and pencil
3. Using dynamic geometry

Solution outcomes: {4, 5, 6, 7, 8, 9, 10, 11, 13, 16} examples of polygons:

= 4 = 5 = 6 = 7

= 8 = 9 = 10 = 11

= 16= 13

= 4 = 5 = 6 = 7

= 8 = 9 = 10 = 11

 

6.2.1.5  Task 5: Average Test Grade

6 Math-Key Program: Opening Mathematical Minds by Means of Open Tasks…
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This task requires solvers to complete the missing test grades to attain the given 
average score. Multiple combinations of pairs of grades constitute solutions of the 
problem. Multiple solution strategies include numerical, algebraic, and graphical 
solutions. The completeness of the solution is determined by the constraints of the 
highest (100) and the lowest (0) school grades.

6.2.1.6  Task 6: Tiles on a Square

The openness of the “tiles on a square” task is linked to the requirement to solve the 
tiles problem in multiple ways. The task is both open-start and open-ended. The task’s 
outcomes are numerical (or algebraic) expressions that reflect the way the problem is 
solved. Moreover, while numerical solutions can be used as generic examples to attain 
generalized solutions, when starting from an algebraic solution, numerical solutions 
can be attained by substitution of concrete numbers in algebraic expressions.

Find different ways to calculate the number of (colored) tiles on the perimeter 
of the square (a) Square 6 × 6 (b) Square n × n

Solution strategies:

1. Numerical (counting)
2. Graphical (coloring)
3. Generalization of numerical expressions for n × n (from (a) to (b))
4. Substitution of numbers in the algebraic expressions (from (b) to (a))

Solution outcomes:

(a) Set of numerical expressions
(for specific n, e.g. n = 6)
4(6 − 1);
2 ∙ 6 + 2(6 − 2);
4 ∙ 6 − 4;
62 − (6 − 2)2;
4 + 4(6 − 2).

(b) Set of algebraic expressions:
4(n − 1); 2n + 2(n − 2);
4n − 4; n2 − (n − 2)2; 4 + 4(n − 2).

Solution strategies:

1. Numerical – Trial and error
2. Algebraic
3. Using Excel

Solution outcomes: 36 (non-ordered) pairs of scores: (100, 49), (99, 50), 
(98, 51), …, (75, 74).

(continued)
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6.2.1.7  Task 7: Expressions of Parabolas

The  expressions of parabolas tasks requires the translation of a set of mutually 
related graphs of quadratic functions into a set of algebraic expressions. The open-
ness from the start is related both to the possibility of solving the problem in mul-
tiple ways and with the need to decide the values of the intercepts of the graphs 
with the x-axis and the min values of the given functions, which are not given in the 
task. Among multiple solution strategies, representation of functions as a product of 
two linear expressions is the most elegant way. Thus, an infinite number of solutions 
is possible and can be generalized using parametric representation of the functions.

Table 6.1 summarizes the task analysis presented above. As described, the openness 
of Math-Key tasks increases the complexity of the tasks. These tasks require a high 
level of cognitive demand, which is linked to the mental flexibility needed to relate 

Expressions of parabolas

Write expressions for the parabolas pictured. Find at least two more possible 
expressions for the parabolas.

Solution strategies:

 1. Paper-pencil solution
 2. Solution using dynamic software

 

Solution outcomes:

 (a)  Mutually related function equations,
e.g.,
f(x) = 2(x + 6)(x + 3);
g(x) = 2x(x + 3);
h(x) = 2x(x − 3);
p(x) = 2(x − 6) (x − 3).

 (b)  Generalized solution: Infinite number of mutually related algebraic 
expressions for functions f(x), g(x), h(x), p(x)
For: a > 0, d > 0:
f(x) = a(x + 2d) (x + d);
g(x) = ax(x + d);
h(x) = ax(x − d);
p(x) = a(x − 2d) (x − d).
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to the multiplicity of solutions and the novelty of mathematical reasoning necessary 
to complete the missing givens of the problems. To make these tasks accessible to 
students at different levels, we design dynamic diagrams (applets).

6.2.2  Solution Spaces and Mathematical Challenges 
Embedded in Math-Key Program Tasks

Solving Math-Key tasks is a fundamentally creativity-directed activity: Using dif-
ferent problem-solving strategies requires and develops mental flexibility and opens 
opportunities for using original strategies. Through task exploration, solvers search 
for data or knowledge they have acquired and build new structures that are matched 
with the task‘s information, learn new mathematical concepts, and develop new 
skills (Cai, 2010; Leikin, 2014; Nohda, 1995; Silver, 1995, 1997; Vale et al., 2018). 
Solving open tasks involves divergent and convergent thinking, decision-making, 
mathematical reasoning and critical reasoning.

Solving Math-Key tasks provides multiple opportunities for the development of 
social skills through cooperative learning and group competition directed at finding 
original solutions. Solving these tasks usually evokes surprises since different stu-
dents can find different solutions. Positive affect is associated with surprise and 
“Aha!” moments when solving Math-Key tasks lead to the development of students’ 
mathematical curiosity and motivation to learn mathematics (Boaler, 2015; NCTM, 
2014). Due to the openness of the tasks, solving Math-Key tasks also leads to the 
development of students’ self-regulated learning skills, self-esteem, and other 
twenty-first century skills (Kim et  al., 2019; Leikin, 2018; Pellegrino & Hilton, 
2012). Moreover, solving open tasks transforms mathematical instruction, and leads 
to enhanced classroom discussions in which students share different approaches and 
ideas as well as difficulties and successes that they have experienced (Peled & 
Leikin, 2017).

Figure 6.1 depicts the main components of the Math-Key program with the 
emphasis on typical goals, activities, conditions, and tools (cf. Leontiev’s (1978) 
Activity Theory). Additionally it draws attention to the construct of solution spaces 
and their transformation that promote students’ intellectual development. There are 
two kinds of solution spaces for Math-Key tasks: Spaces of Solution Strategies and 
Spaces of Solution Outcomes. We distinguish between individual and collective 
solution spaces. Due to the multiplicity of solution strategies and solution outcomes, 
individual solution spaces differ from one another and can be broadened by expo-
sure to collective solution spaces (Leikin, 2007). Through broadening spaces of 
solution strategies, students develop problem-solving skills. Classroom discussion 
focuses on the elegance of the solutions, the level of complexity of the solutions, 
and their originality. Broadening the spaces of solution outcomes leads to either 
complete solution spaces or to the consideration of the quality of solution outcomes 
and their originality.
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Fig. 6.1 Main components of the Math-Key activities

When solving Math-Key tasks, upon finding a suitable strategy or outcome, the 
solvers have to search for a different strategy or outcome that fits the situation of the 
displayed problem (Dorfman et al., 2008; Lin & Lien, 2013). The inhibition process 
requires mental effort on the part of the solvers. Thus, high-level students usually 
display higher creativity capabilities than lower-level students (Kattou et al., 2013; 
Levav-Waynberg & Leikin, 2012). Usually, teachers state that MOTs and ITs are 
more difficult to solve than MSTs since higher cognitive skills are required. In these 
problems, various strategies have to be considered, as well as different outcomes 
(Klein & Leikin, 2020). Moreover, sometimes, during the problem-solving process, 
solvers experience an “Aha!” moment like a missing piece of a puzzle that falls into 
place, and are suddenly inspired to solve the problem (Liljedahl, 2013; Presmeg, 
2018; Vale et al., 2018).

To summarize, Math-Key tasks are inherently challenging (Fig. 6.1). The chal-
lenge is associated with five main characteristics of the problem-solving process. 
The required multiplicity of the solutions induces activation of

 (a) Math-Key tasks requiring broader mathematical knowledge and advanced 
mathematical skills

 (b) Inhibition, which is essential for inhibiting a particular way of thinking which 
led to an already performed solution
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 (c) Mathematical flexibility, which is necessary for finding a different solution 
strategy

 (d) Critical reasoning needed for the evaluation of the significance of differences 
between the strategies used or when examining the completeness of the space 
of solution outcomes

 (e) Novel thinking, which is entailed in the solver’s search for

 – New (for the solver) solution strategies
 – New (still unknown) solution outcomes (when solving open multiple- 

outcomes tasks)
 – Additional solution outcomes when completeness of the solution set is 

required (due to the unconventionality of the completeness criterion).

As mentioned in the introduction, dynamic applets are specially designed to allow 
the regulation of mathematical challenge with respect to students’ mathematical 
potential. The applets allow investigation of the situation given in the task, support 
students’ understanding of the mathematical structure of the tasks, and, if needed, 
simplify the situation through experimentation. In the next section, we characterize 
the dynamic applets that complement the Math-Key tasks and are a major tool for 
varying the mathematical challenge therein.

6.3  Varying Mathematical Challenge with Dynamic Applets

6.3.1  Math-Key Applets

In recent years, different types of technological tools have been developed to sup-
port teaching and learning practices. These tools have a wide variety of applications 
with respect to mathematical focus and didactical functionality. The notion of 
didactical functionality is a compound of a set of characteristics of the tool, a spe-
cific educational goal exploiting these characteristics, and a set of modalities of 
employing the tool in a teaching/learning process referred to the chosen educational 
goal (Cerulli et al., 2005). Dynamic diagrams are among the most popular techno-
logical tools used in teaching and learning mathematics.

Yerushalmi (2005) defined “a dynamic diagram” as a pre-constructed software 
application (often called an applet) built around an example or a problem. She dis-
tinguished between different types of diagrams: Illustrating diagrams usually offer 
a single graphic representation with relatively simple actions, such as viewing an 
animated example. Elaborating diagrams present occurrences relevant to the prob-
lem, to be explored while working on the task. Narrating diagrams are the principal 
delivery channel of the activity’s message.

Barzel et al. (2005) defined the four dimensions for structuring and categorizing 
dynamic diagrams linked to the availability of technological tools in learning and 
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problem solving in mathematics. We apply these dimensions to Math-Key applets 
as follows: Math-key applets are explorative. They allow students to express and 
develop their ideas while exploring the  mathematical relations and structures 
embedded in the applets. They are also Math-Key user driven. A user, not the applet, 
makes decisions about what to do with the applet and how. Math-Key applets are 
open to work with applets in different ways and find multiple solution outcomes. 
These Math-Key applets are specific since they are designed for use with concrete 
Math-Key tasks.

Implementation of Math-Key tasks accompanied by the Math-Key applets is per-
formed according to the following principles suggested by Drijvers et al. (2010): 
The implementation of the Math-Key tasks requires didactic configuration based on 
the choice teachers make to use specific tools in order to create the desired learning 
outcome. Math-Key tasks support an exploitation mode of teaching by choosing 
how the task is presented to the students and the expected solution process needed 
for developing the students’ knowledge. Finally, Math-Key tasks support teachers’ 
didactical performance while expected results are attained by combinations of the 
technological tool, teaching method, and the potential of students.

Math-key applets are designed to help students to discover the structure of prob-
lems. The use of GeoGebra software simulates the situation of a given task and 
helps students explore it. Employing technology during math lessons is considered 
by some of the students as a game and not as study (Kebritchi et al., 2010). This may 
reduce mathematical anxiety, contribute to a positive atmosphere, and increase 
motivation to discover strategies and solutions. Furthermore, the applets enable the 
refinement of concepts and the relationships between them. When looking for solu-
tions, sometimes the applets reveal options that students did not think of. 
Additionally, low-level students can reach solutions more easily using the applets, 
while high-level students can verify their answers. The applets can also be used as a 
summary tool to review the subjects studied. In conclusion, Math-Key applets make 
the problems displayed more approachable for students. Additionally, they make 
teaching more effective because mathematical concepts and structures are discov-
ered by students through exploration of tasks with Math-Key applets.

6.3.2  Examples of Math-Key Applets

In this section we describe applets developed for the Math-Key tasks described 
above. The applets are analyzed from the point of view of applets’ functions: (a) 
technological features used: dragging, measuring, coloring, animation, slider, trans-
lation between representations, counting, writing expressions, value substitution; 
(b) focus of investigation: comparing, analyzing specific cases, observing regular-
ity, searching for generalization. As mentioned above, all the applets are user driven, 
explorative, task directed, and ready to use.
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6.3.2.1  Applet for Task 1: Birthday Party Applet

The birthday party applet (Fig. 6.2a) displays two disjoint groups of icons, repre-
senting the girls at the party, marked in two different colors. Each group is framed 
by a rectangle of a matching color. One of the groups is static (the number of girls 
icon for Tal’s group is constant). The second (Limor’s) group is dynamic, i.e., the 
rectangle can be dragged (Fig.  6.2b), and the number of icons can be changed 
(Fig. 6.2c). By dragging Limor’s rectangle, a solver can change the overall number 
of icons while the icons of different colors overlap. By dragging on the slider 
(1 ≤ n ≤ 10), the number of icons that represent Limor’s friends changes. The applet 
provides a dynamic illustration of the  task’s structure. The dragging enables the 
users to focus on specific cases by creating additional solutions (including a situa-
tion where the number of participants is minimal), and as a result, enables them to 
analyze the outcomes. The applet enables the users to explore the situation and 
investigate the number of the participants at the party. The applet employs a Venn 
diagram with dynamic features that displays the minimal and the maximal numbers 
of party participants as well as all the numbers between. Changes in givens allow 
generalization using parameters for the invited people (Fig. 6.2).

6.3.2.2  Applet for Task 2: Distance from School

This applet enables the students to visualize the task structure by visualizing the 
mutual position of two houses relative to the school. By continuous dragging, the 
students can observe the whole range of solution outcomes. The users can drag two 
points on the circles and understand that there is an infinite number of solutions to 
the problem. The applet has two versions. In one version, it does not display dis-
tances between the school and the houses; in the other version, the numerical values 
are displayed (Fig. 6.3).

Fig. 6.2 Birthday party applet
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Fig. 6.3 Distance from school applet – solution space (including the extremes)

6.3.2.3  Applet for Task 3: Car Speed

The car speed applet includes animations of the motion of the car. Students can 
observe specific cases using the applet. The clock tracks the time that elapses from 
the beginning of the movement and can track the motion of the vehicles. They can 
stop the motion by clicking on the “stop” button in order to estimate the moment the 
vehicles meet. Additionally, two graphs of distance correspond to the speed of the 
vehicles and are displayed simultaneously with the animations. The applet enables 
students to understand the connections between numerical (car’s speed, clock’s 
time), algebraic (graph), and visual (animation) representations (Fig. 6.4).

6.3.2.4  Applet for Task 4: Polygons from Two Squares

The polygon from two squares applet displays as a default two congruent squares. 
The squares can be rotated and dragged. The sliders enable changing the side length 
of each square  to create incongruent squares. The dragging in the applet allows 
changing the positions of the squares. The users can focus on specific cases and 
analyze the outcomes. They can understand that there is an infinite number of poly-
gons that can be created, while the number of vertices varies from four to sixteen 
(Fig. 6.5).

6.3.2.5  Applet for Task 5: Average Grades

The applet of this task makes use of an excel table with students’ grades that enables 
the calculation of the mean score. Students can add and then change grades, to see 
how the average changes. The applet displays the constraints of the task helping 
students to understand the structure of the givens of the task, to focus on specific 
cases, and to analyze the outcomes. Conclusions that are related to the sum of the 
missing grades can be reached as well  conclusions regarding whether or not the 
order of the paired available set of scores is important (Fig. 6.6).
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Fig. 6.4 Car speed applet

Fig. 6.5 Polygon from two squares applet: congruent and incongruent squares

R. Leikin et al.



109

Fig. 6.6 Average grades applet

6.3.2.6  Applet for Task 6: Tiles on a Square

The tiles on a square applet depicts a square with the possibility of painting the tiles 
using different colors. The number of colored tiles can be displayed according to the 
user’s requirements. The default situation displayed is a 6x6 square. Users can 
change the length of the square’s sides (1 ≤ n ≤ 11). Coloring the tiles enables users 
to focus on specific cases and different patterns that reflect different numerical pat-
terns. Changes of the square’s size, for which similar numerical patterns that express 
the number of tiles on the perimeter of the square allow geberalisation (Fig. 6.7).

6.3.2.7  Applet 7: Expressions of Parabolas

The applet for the expressions of parabolas task depicts a set of parabolas in a coordi-
nate system. The scale on the axes is missing. The values and gridlines allow students 
to use specific cases. The applet allows users to write expressions for the functions 
and depicts corresponding graphs of parabolas. The applet allows students to check if 
the functions are correct by visual examination and also by using the checkbox. The 
correct connections between the functions are marked in blue. If there is a mistake, 
the incorrect connection between functions will appear in red (Fig. 6.8).

The users can focus on specific cases, find connections between numerical, alge-
braic, and visual representations, analyze the outcomes, and discover the regularity 
of the expressions. Using the applet, students can think of different solution strate-
gies. For instance, they can start the solution process by focusing on the function 
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Fig. 6.7 Tiles on a square applet

Fig. 6.8 Expressions of parabolas applet (right side)

that looks most familiar, and use it as a building block for the other functions. A 
student who chooses the function h(x) may notice that this is a function of the form 
h(x) = ax(x − d) for each value of d > 0, a > 0, and decide on values for a and d. The 
students may determine whether the algebraic expression they wrote matches the 
graph of the given function. This is done by conducting a visual comparison between 
the parabola appearing in the upper window and the original image of parabolas, 
and by doing calculations. How do they proceed? The students may note that every 
function in the given image meets the following conditions: (i) The graph of each 
function intersects the x-axis at two points; (ii) All of the functions are horizontal 
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translations of the function h(x), respectively: (x) = a(x − 2d)(x − d), g(x) = ax(x + d), 
f(x) = a(x + 2d)(x + d). Students are familiar with the three forms of a parabola 
(standard, vertex, and factored form) with transitions between them, and with the 
significance of the parameters. They may decide which form to use in order to find 
an algebraic representation of the functions: First, they can focus on a specific 
instance with chosen parameters, and then they can try to generalize and to discuss 
the family of functions that fill the conditions given in the task. Some students may 
notice the symmetry between the functions with respect to the y-axis: g(x) = h(−x) 
and f(x) = p(−x).

6.3.3  Math-Key Applets Characteristics

Math-key applets have different goals related to each task, such as focusing on spe-
cific cases, connections between numerical, algebraic, and visual representations, 
discovery of regularity (expression / function), and visualization of the structure of 
task givens, analyzing the outcomes, and sorting (Fig. 6.9).

Additionally, the goals of the applets can be reached by diverse functionalities of 
different types of dragging (continuous or discrete values; measurement; with or 
without change in objects’ size), coloring, animation, writing expressions or numer-
ical values that match constraints. Moreover, each Math-Key applet is user driven – 
in each case, the student decides what strategy to choose.

Table 6.2 summarizes several aspects of the applets of each of the Math-Key 
examples discussed in this paper. These include (a) functionality of changing/trans-
forming (through dragging, sliding, animation, and coloring) and investigations by 
means of measurement, writing, and substitution of values; (b) strategies used in the 

Fig. 6.9 Main components of the Math-Key program
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applets, as part of the students’ mental processing to solve the tasks (via focusing on 
specific cases, visualization, connections between representations, generalization, 
trial and error, and getting feedback from the applet); (c) the structure of the applets 
(user driven, explorative, open, and specific to the displayed problem); (d) the math-
ematical domain that the applet was built for (algebra, geometry, and statistics).

6.4  Summary

In conclusion, technology in mathematics classrooms has great potential to develop 
students’ knowledge. Coping with the challenge of Math-Key tasks using their 
dynamic applets is a key element in providing positive experiences, developing stu-
dent knowledge, and increasing their motivation to learn. The applets provide a 
comfortable environment to discuss different solution strategies, produce different 
outcomes, and connect mathematical concepts and structures through visualization. 
This type of technology provides opportunities both for teachers and students 
through an exciting and enjoyable learning process, and should be further developed.

The variability of solution strategies and outcomes results in significant changes 
in classroom culture. In contrast to common instructional practices, students arriv-
ing at different solutions is acceptable and even desirable. The constructs of collec-
tive solution spaces  – spaces of solution strategies and spaces of solution 
outcomes – are central for monitoring mathematics lessons.
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Chapter 7
Making Mathematics Challenging 
Through Problem Posing in the Classroom

Jinfa Cai and Stephen Hwang

7.1  Introduction

A well-established observation in education is that challenge can provide fertile 
ground for students to learn. In order to understand mathematical concepts deeply, 
students need opportunities to struggle productively with challenging mathematical 
problems (Hiebert & Grouws, 2007). This kind of productive struggle, in which 
students actively grapple with concepts that are within their grasp but that they do 
not yet clearly understand, forms the basis for constructing conceptual understand-
ing. A primary question, then, is how to provide appropriate challenges for students 
so they may engage in productive struggle that leads to deeper understanding of 
mathematics. Instructional tasks that engage students in effortful reasoning and 
problem solving constitute a critical part of the answer to this question (Arbaugh 
et al., 2010).

In this chapter, we begin by discussing instructional tasks and their role in foster-
ing productive struggle through appropriate challenge. We then focus on a particular 
kind of instructional task—mathematical problem posing—that can promote pro-
ductive struggle. In particular, we consider problem posing from both the perspec-
tive of the student, who may be asked to pose problems based on given situations or 
by reformulating existing problems, and the perspective of the teacher, who can 
either pose problems for students to solve or use problem-posing tasks as instruc-
tional tasks with students (Cai & Hwang, 2020). In particular, we argue that 
problem- posing tasks have an inherent benefit in that they are able to provide levels 
of mathematical challenge that scale to the level of understanding of the student. We 
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then consider how problem posing could be implemented effectively in the mathe-
matics classroom, both by providing examples of problem-posing tasks and by out-
lining ideas for professional development that can help teachers use problem posing 
to teaching mathematics. Finally, we discuss some findings from empirical research 
(and future directions for such research) on teaching mathematics through prob-
lem posing.

7.2  Challenging and Worthwhile Instructional Tasks

Instructional tasks, referred to by some researchers as “academic tasks” or “mathe-
matical tasks” (e.g., Doyle, 1983; Hiebert & Wearne, 1993), can be defined broadly 
as activities related to projects, questions, problems, constructions, applications, 
and exercises with which students engage. Instructional tasks provide intellectual 
environments for students’ learning and the development of mathematical thinking. 
Tasks govern not only students’ attention to particular aspects of content but also 
their ways of processing information. Doyle (1988) argued that tasks with different 
cognitive demands are likely to induce different kinds of learning. In particular, 
instructional tasks that are truly challenging have the potential to provide the intel-
lectual contexts for students’ mathematical development. Such tasks can promote 
students’ conceptual understanding, foster their ability to reason and communicate 
mathematically, and capture students’ interests and curiosity (National Council of 
Teachers of Mathematics [NCTM], 1991). Indeed, standards documents have rec-
ommended that, in classrooms, students should be exposed to challenging tasks 
specifically to promote mathematical sense making (NCTM, 1991, 2000).

A number of studies support this connection between the nature of instructional 
tasks and student learning (Cai, 2014; Hiebert & Wearne, 1993; Stein & Lane, 
1996). In the QUASAR project, classrooms using instructional tasks that are cogni-
tively demanding produced the highest gains in students’ conceptual understanding 
(Stein & Lane, 1996). Similarly, in a longitudinal analysis of the effects of the 
Connected Mathematics Project (CMP) middle school mathematics curriculum ver-
sus traditional curricula, CMP students exhibited greater gains in conceptual under-
standing (and comparable gains in procedural skill) than their non-CMP counterparts 
(Cai, 2014). Notably, in classrooms using the CMP curriculum, a significantly 
larger proportion of implemented instructional tasks were at a higher level of cogni-
tive demand than the instructional tasks implemented in the non-CMP classrooms.

Given that high-cognitive-demand instructional tasks are particularly “worth-
while” for creating opportunities for students to solidify and extend what they know 
and stimulate mathematics learning (NCTM, 1991), it would be useful to know 
what makes a task worthwhile. Regardless of the context, worthwhile tasks should 
be intriguing, with a level of challenge that invites speculation and hard work. Most 
importantly, worthwhile mathematical tasks should direct students to investigate 
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important mathematical ideas and ways of thinking toward the learning goals. 
Lappan and Phillips (1998) developed a set of useful criteria to choose worthwhile 
problems for mathematics instruction:

• The problem has important, useful mathematics embedded in it.
• Students can approach the problem in multiple ways using different solution 

strategies.
• The problem has various solutions or allows different decisions or positions to be 

taken and defended.
• The problem encourages student engagement and discourse.
• The problem requires higher-level thinking and problem solving.
• The problem contributes to the conceptual development of students.
• The problem connects to other important mathematical ideas.
• The problem promotes the skillful use of mathematics.
• The problem provides an opportunity to practice important skills.
• The problem creates an opportunity for the teacher to assess what his or her stu-

dents are learning and where they are experiencing difficulty.

The two tasks below exhibit some of these criteria. The first task comes from 
Heid (1995):

Given the two job offers below, determine the better-paying summer job. Justify your answer.

Offer 1:  At Timmy’s Tacos you will earn $4.50 an hour. However, you will be 
required to purchase a uniform for $45.00. You will be expected to work 
20 hours each week.

Offer 2: At Kelly’s Car Wash you will earn $3.50 an hour. No special attire is 
required. You must agree to work 20 hours each week.

In response to this task, students could generate a wide variety of solutions, such 
as the following:

SOLUTION 1:

In a 20 hr. week,

Offer 1 will pay $4.50 × 20 = $90.00.

Offer 2 will pay $3.50 × 20 = $70.00.

Since the difference is $20 per week and the uniform for Offer 1 costs $45.00, it will 
take ($45.00/$20/week =) 2.25 weeks to pay for the uniform and break even. If you 
keep the job for 3 weeks or more, you should take Offer 1.

SOLUTION 2:
At Timmy’s you make $1.00 more for each hour of work. After 45 hours of work, 
you’d make $45 more at Timmy’s than Kelly’s. This extra money would pay for the 
uniform. From that point on, you’d make $1 more an hour at Timmy’s than Kelly’s.

7 Making Mathematics Challenging Through Problem Posing in the Classroom
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SOLUTION 3:
Let x be the number of weeks you intend to work. The total amount for
Offer 1 =90x – 45 and the total amount for Offer 2 =70x.

If 90x – 45 = 70x, then x = 2.25. So if you work less than 3 weeks, you should 
take Offer 2, otherwise take Offer 1.

SOLUTION 4:
Let x be the number of weeks you intend to work, y1 be the total amount for Offer 1 
after working x weeks, and y2 be the total amount for Offer 2 after working x weeks. 
Therefore, y1 = 90x – 45 and y2 = 70x. Using a graphing calculator to graph them, 
you will see they intersect at (2.25, 157.5). From the graph, you will see that if you 
have the job for 3 weeks or more, you take Offer 1.

SOLUTION 5:
Construct a table to show the amount of income for Offers 1 and 2 for 1 week, 2 
weeks, and 3 weeks…, and then compare the information from the table to deter-
mine which offer you will take.

SOLUTION 6:

Let x be the number of weeks you intend to work. The total amount for

Offer 1 =4.5 × 20 x – 45 and the total amount for Offer 2 =3.5 × 20 x.

If (90x – 45) < 70x, then x < 2.25. So if you work less than 3 weeks, you should 
take Offer 2, otherwise take Offer 1.

After students solve a given problem like this, they often think they have accom-
plished their mission and stop further exploration. However, generating alternative 
solutions and then analyzing and discussing them in class can create additional 
learning opportunities for students. Each of the solutions above highlights how the 
total amount of earnings for each offer is related to the payment for each hour and 
the expense required for taking the offer. However, the total amount of earnings for 
each offer is represented differently in these solutions. This first task is not only 
embedded in important and useful mathematics but can also be approached in mul-
tiple ways using different solution strategies. In addition, the problem allows differ-
ent decisions or positions to be taken and defended and contributes to students’ 
conceptual development.

The second task focuses on detecting and correcting errors in the use of the long- 
division algorithm:

John was asked to divide 1308 by 12. His work is shown below.

 

Is John’s work correct? Why or why not?
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Although long division problems are a staple of elementary school mathematics, 
students frequently make computation errors when using this algorithm. For exam-
ple, as in this task, when computing 1308 ÷ 12, many students overlook the zero that 
should be in the tens place of the quotient. This may reflect a careless error or a lack 
of understanding of the reasoning behind the algorithm. By asking students to ana-
lyze work, as in this task, instead of simply applying the algorithm to find the quo-
tient, this task has the potential to provide both the student and the teacher with a 
new perspective. The student, in order to explain why the work is incorrect, may 
draw on (or construct) understanding of the conceptual underpinning of the algo-
rithm. The teacher, then, gains an opportunity to perceive the nature of the student’s 
understanding of long division. Thus, this task not only encourages student engage-
ment and discourse but also contributes to students’ conceptual development.

Keeping these criteria in mind, we turn our attention to one particular type of 
worthwhile instructional task: problem-posing tasks. Problem posing has been dis-
cussed and studied in different ways. Here, we will focus on three aspects. First, we 
examine how teachers can pose problems properly to engage students and provide 
learning opportunities for students. That is, we consider how teachers should pres-
ent mathematical problems so as to create more learning opportunities for students. 
Second, we discuss how students can be provided with opportunities to pose their 
own mathematical problems and how they may better understand mathematics 
through posing and solving their own problems. Third, we consider how teachers 
themselves learn to use problem posing to teach mathematics.

7.3  Posing Problems Properly: From Routine Problem 
Solving to Non-routine Problem Solving

Teachers may engage in problem posing in several ways. We consider teachers’ 
problem posing as consisting of the following specific intellectual activities: (a) 
Teachers themselves pose mathematical problems based on given problem situa-
tions which may include mathematical expressions or diagrams, (b) teachers predict 
the kinds of problems that students can pose based on given problem situations, (c) 
teachers pose problems by changing existing problems, (d) teachers generate math-
ematical problem-posing situations for students to pose problems, and (e) teachers 
pose mathematical problems for students to solve (Cai & Hwang, 2020).

Perhaps the most common way that teachers engage with problem posing is the 
last of these, that is, when teachers pose problems for their students to solve. 
Although this is still in the domain of presenting problems for students to solve, this 
aspect of teachers’ problem posing highlights the importance of the ways teachers 
can present problems so as to increase learning opportunities for students.

In fact, as early as 1980, Butts discussed the value of posing problems properly, 
noting that the way in which a problem is posed has a significant impact on the 
problem solver’s motivation to solve it as well as their understanding of key 
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underlying concepts of the problem. He proposed five types of problems—recogni-
tion, algorithmic, application, open-search, and problem situations—and provided 
suggestions for improving the presentation of each type to maximize the learners’ 
motivation and understanding when solving them.

Recognition problems require the solver to recognize or recall something such as 
a theorem or definition. They often rely on true–false, multiple-choice, and fill-in- 
the-blank formats. An example of this type is: “The line segment joining a vertex of 
a triangle to the midpoint of the opposite side is called a …?” (Butts, 1980, p. 24). 
To encourage the solver to understand the underlying concepts rather than merely 
memorizing, an effective way to pose these problems is the “give an example of” 
format, for example: Give “an example of…a proper fraction greater than 3/4” 
(Butts, 1980, p. 26).

Algorithmic problems require the solver to perform a particular procedure or 
algorithm, for example: “Solve 2x2 − 3x − 5 = 0” (Butts, 1980, p. 24). He notes that 
the challenge with these problems is to make them interesting to the problem solver 
rather than routine. One of the ways to make it more interesting is to present appli-
cation problems. Application problems require the solver to apply an algorithm to a 
problem that is not formulated symbolically, for example: “If the length and width 
of a rectangle are each increased by 20%, by what percent is the area increased?” 
(Butts, 1980, p. 24). He again notes the need to keep these problems interesting and, 
particularly in the case of word problems, realistic.

The less common problem types are open-search problems and problem situa-
tions. According to Butts (1980), “an open-search problem is one that does not 
contain a strategy for solving the problem in its statement” (p. 25), for example: 
“How many different triangles with integer sides can be drawn having a longest side 
(or sides) of length 5 cm? 6 cm? n cm?” (Butts, 1980, p. 25). The key function of 
these problems is to encourage guessing and exploration, which he claims is the 
preliminary step on the path to proof writing. Thus, the best way to pose these prob-
lems is in a way that encourages the solver to make guesses at the solution. One 
example of this is what he refers to as “whimsical problems” which pose superreal-
istic situations that keep the solvers’ interest by using realistic elements but with 
outlandish characteristics. Finally, problem situations are, as their name suggests, 
not explicit problems but rather situations in which the solver has to identify the 
problem in the situation before identifying the solution that will address that prob-
lem. An example of this problem type is:

Design a parking lot. Possible problems to consider could include the following. There are 
many, many others.

 (a) How large should each space be?
 (b) At what angle should each space be placed? (Butts, 1980, p. 25)

It goes without saying that the most important criterion of a worthwhile mathe-
matical problem is that the problem should serve as a means for students to learn 
important mathematics. Such a problem does not have to be complicated with a 
fancy format. As long as a problem can reach the goal of fostering students’ learning 
of important mathematics, it is a worthwhile problem. As Hiebert et al. (1996) have 
noted, a problem as simple as finding the difference in heights between two 
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children, one 62 and the other 37 inches tall, can be a worthwhile problem if teach-
ers use it appropriately for students’ learning of multidigit addition. Teachers must 
decide what mathematical tasks to select or develop according to specific learning 
goals of a lesson. Textbooks can be a useful resource for selecting worthwhile math-
ematical tasks. In fact, teachers can develop worthwhile and interesting mathemati-
cal tasks by simply modifying problems from the textbooks.

7.4  Students and Problems: From Solving to Posing

Typically, when talking about instructional tasks, educators focus on problem- 
solving tasks, just as in Butts’ (1980) analysis above. In that context, the role of 
teachers is to select and develop problem-solving tasks that are likely to foster stu-
dents’ development of understanding and mastery of procedures in a way that also 
promotes their development of abilities to solve problems and reason and commu-
nicate mathematically (NCTM, 1991). Brown and Walter (1983) took this a step 
further, examining instructional tasks in which students pose their own problems 
and then solve them. They described processes for posing new problems from exist-
ing situations or problems, including asking “what-if-not” questions that encourage 
the variation of the conditions and constraints of a mathematical problem or phe-
nomenon (this process echoes the “looking back” phase of Polya’s [1945] approach 
to problem solving). Moreover, Brown and Walter noted that the activity of asking 
questions in mathematics (that is, mathematical problem posing) may be helpful in 
addressing students’ mathematics anxiety because, although some questions may be 
more productive than others, questions are not inherently “right” or “wrong.” 
Indeed, the value of a posed problem is frequently not obvious without delving into 
it and thus thinking more deeply about the underlying mathematics (which is ulti-
mately a positive outcome for an instructional task).

For the purposes of this chapter, when we consider the perspective of students as 
problem posers, we use the term “problem-posing tasks” to mean instructional tasks 
that engage students in generating new problems and questions based on given situ-
ations (including mathematical expressions or diagrams) or changing (i.e., reformu-
lating) existing problems (Cai & Hwang, 2020; Kilpatrick, 1987; Silver, 1994). 
Problem-posing tasks put the students into the role of problem generator instead of 
teacher. Educationally, this switching of roles is theoretically sound based on both 
constructivist and sociocultural aspects of learning, and it can actually increase stu-
dents’ access to mathematical sense making and learning. When students have the 
opportunity to pose their own mathematical problems based on a situation, they 
must make sense of the constraints and parameters that can be mathematized (which 
also happens to be a mathematical modeling competency). They then extend from 
that sense-making activity to build connections between their existing understand-
ing and the new context and its related mathematical ideas.

Although problem-posing activities are cognitively demanding tasks, they are 
adaptable to students’ abilities and thus can increase students’ access such that 
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students with different levels of understanding can still participate and pose poten-
tially productive problems based on their own sense making. Indeed, what is a chal-
lenging problem to one student may be easier for another student and impossible for 
yet another. In our view of problem posing, we consider challenge (conceived as 
mathematical difficulty) as somewhat orthogonal to the capacity to successfully 
pose problems. In fact, prior research has shown that students and teachers without 
problem- posing experience are quite capable of posing mathematically complex 
problems. In this context, challenge is not something that needs to be overcome but, 
instead, is a source of productive struggle. The more students can productively 
struggle while posing problems, the more they can learn. Because problem posing 
is an activity with a high ceiling and low floor (Cai et al., 2015), it offers access to 
all students to opportunities for productive struggle and mathematical sense mak-
ing. The problems different students pose may reflect different levels of complexity 
and challenge, but each student still benefits from making sense of the problem situ-
ation and the mathematical concepts embedded therein.

More generally, we consider that in problem posing, mathematical challenge 
does not simply refer to mathematical difficulty. We see mathematical challenge in 
problem-posing tasks as referring to their capacity to challenge students to be more 
engaged with the mathematics by making it more accessible to them. In this way, 
problem-posing tasks increase the potential for students’ learning. Certainly, 
problem- posing tasks can be cognitively demanding, but they also challenge stu-
dents in this other way.

In addition, problem-posing tasks can foster students’ positive mathematics 
identities by stimulating their creativity (Silver, 1997); sparking their interest and 
curiosity (NCTM, 1991); and positioning them as agents within the problem, that is, 
empowering them with agency as explorers of mathematics (NCTM, 2020). It pro-
vides a way for them to connect mathematics to their interests, something that is 
often not the case with routine problem solving, and allows them to personalize 
their responses. Students can connect to their different experiences and backgrounds 
and pose very different problems, all of which are related to the mathematical con-
text (Cai & Leikin, 2020). They can make sense of and take ownership of the con-
cepts from which they build their problems. Allowing not just teachers and textbooks 
but also students to pose the problems considered by the class creates shared math-
ematical authority and positions students as people who are capable of making 
sense of mathematics. When students then share their posed problems with their 
peers in the classroom and solve each other’s problems, they expand their horizons 
and build a shared understanding (Silver, 1994).

7.5  Problem-Posing Tasks

Just as there are many types of problems and problem-solving tasks, there are sev-
eral types of problem-posing tasks. In this section, we present a number of examples 
of such tasks, discussing the learning opportunities they offer. We begin by 
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describing a categorization scheme for these tasks that is based on the nature of the 
problem situations and on the prompts used to initiate students’ posing activity. 
With respect to prompts, there are many choices, some of which result in more open 
tasks and others of which result in more closed tasks.

We note that other researchers have proposed categorization schemes for prob-
lem posing (e.g., Baumanns & Rott, 2020; Stoyanova & Ellerton, 1996). For exam-
ple, Stoyanova and Ellerton (1996) considered the degree to which a problem-posing 
task constrained the students’ freedom to pose problems, establishing three catego-
ries: free problem posing, semi-structured problem posing, and structured problem 
posing. Free problem posing imposed almost no constraints, even including very 
little in the way of context on which to build a problem. Semi-structured problem 
posing provided more context but allowed students to pose relatively freely based 
on that context. Structured problem posing imposed the most conditions, such as 
providing a problem or an equation on which to base the posed problem. Baumanns 
and Rott (2020) built on this categorization by including consideration of whether a 
situation leads to problem posing or not and whether the initial given problem in a 
structured posing task can be considered routine or non-routine.

We do not intend to present a competing categorization of problem-posing tasks, 
but rather we have chosen to frame our categorization with respect to the consider-
ations that have played a part in our own research on problem posing (e.g., Cai & 
Hwang, 2021). We first discuss problem-posing situations and then discuss the 
prompts that could be used in problem-posing tasks.

7.5.1  Problem Situations in Problem-Posing Tasks

In a problem-posing task, the problem situation is what provides the context and 
data that the students may draw on (in addition to their own life experiences and 
knowledge) to craft problems. Problem-posing tasks can begin from many differ-
ent kinds of problem situations. The context for posing can involve words, pic-
tures, graphs, patterns, tables, and mathematical expressions. We consider 
problem situations that are based on real-world referents and problem situations 
that are purely mathematical or abstract. Within each of these two categories, 
there are several subcategories of problem situations that differ in how the contex-
tual information or data are presented. Figure 7.1 shows the various types of prob-
lem situations in our categorization. Note that, although we highlight real-life 
contexts and purely mathematical contexts as a way to characterize problem situ-
ations, we are not specifically focusing on the interplay between real life and pure 
mathematics. Rather, we aim to illustrate (and provide some systematization for) 
the diversity of contexts that can be used for problem-posing tasks. Fundamentally, 
problem posing in both purely mathematical contexts and real-life situations can 
provide mathematical challenges which non-problem-posing tasks would ordi-
narily not provide.
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Fig. 7.1 Types of problem situations in problem-posing tasks

7.5.1.1  Real-Life Context Examples

Example 7.1 Text Based (Percent)

Some students submitted paintings for a competition. The total number of paintings submit-
ted was 125. Six paintings received first prize, 6% of the total number of paintings received 
second prize, and the number of paintings receiving third prize was 40% more than the 
number of paintings receiving second prize. Pose percent-related problems and then 
solve them.

This task uses mathematics with a real-life context as the problem situation (Cai & 
Xu, 2019). The context and data are communicated through text—a story about a 
painting competition. The teacher tells the students the total number of entries, the 
quantitative relationship of each award, and other information, and asks the students 
to ask and answer questions that can be solved by using percents. The student’s 
activity is not to directly answer an existing mathematical problem but to ask ques-
tions based on this given information and then solve them. Each student may ask 
one or more math problems, and different students may ask different questions, 
leading to potentially useful comparisons across posed problems to highlight spe-
cific concepts related to percents.

Example 7.2 Text Based (Waiter)
Some curriculum materials include the beginnings of support for student problem 
posing. For example, the problem-posing task below comes from Illustrative 
Mathematics (2019a), which includes in its design an instructional routine called 
Co-Craft Questions. When teachers use the Co-Craft Questions routine, they mod-
ify a problem-solving task in the lesson they are teaching into a problem-posing task 
by only showing the students the problem situation (withholding the rest of the 
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problem) and then asking the students to write possible mathematical questions. 
(We will return to this strategy for turning problem-solving tasks into problem- 
posing tasks below.) Drawing on Zwiers et  al. (2017), Illustrative Mathematics 
states that the purpose of this routine is “to allow students to get inside of a context 
before feeling pressure to produce answers” and “to create space for students to 
produce the language of mathematical questions themselves” (Illustrative 
Mathematics, n.d.).

During one waiter’s shift, he delivered 13 appetizers, 17 entrées, and 10 desserts. Before 
students begin work, display the waiter’s situation without revealing the questions. Ask 
students to write down possible mathematical questions that might be asked about the situ-
ation. Invite pairs to compare their questions, and then ask for a few to be shared in a 
whole-class discussion. Reveal the actual questions about the waiter’s situation that stu-
dents will answer. This will help students make sense of the problem before attempting to 
solve it.

The problem situation in this task is again expressed through words. Note that the 
data from the waiter’s shift is simply expressed through a single sentence. Problem 
situations need not be overly complex. There is plenty of context and data in this 
sentence to allow students to generate many kinds of problems.

Example 7.3 Graph Based (Running Graph)
This example of a problem-posing task from the Illustrative Mathematics Grade 8 
curriculum (Illustrative Mathematics, 2019b) uses a graph to present students with 
the context for posing problems about speed. The instructions for the teacher sug-
gest selecting pairs of students to present their problems to the class in order to bring 
out the idea of relationships between distance and time.

Display only the graph and context (i.e., “Kiran was running around the track. The graph 
shows the time, t, he took to run various distances, d.”). Ask pairs of students to write pos-
sible questions that could be answered by the graph. Invite pairs to share their questions 
with the class. Look for questions that ask students to interpret quantities represented in 
the graph.
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Example 7.4 Graph Based (Bar Graph)

The graph below shows the number of orphans whose parents died due to AIDS in 2002 and 
2010 in the entire world, in Africa, and in Asia. Analyze the data in the graph and pose 
mathematical problems based on the data that can be solved using linear equations.

432
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Number of orphans whose parents died due to AIDS

(unit is 10,000 people)

2002 2010  

In this task, the problem situation includes data presented in the form of a bar 
graph (Cai & Xu, 2019). In addition to providing students with the opportunity to 
makes sense of this method of displaying data, the instructions (that is, the prompt) 
for this task focus the students on posing problems that can be solved by using 
linear equations. There are many types of problems that could be posed based on 
these data; this is a key characteristic of many problem-posing tasks. However, in 
order to use the task effectively to achieve particular learning goals, it is some-
times useful to add constraints to the task. We discuss the role of prompts in 
greater detail below.

Example 7.5 Table Based (Animal Speed)

Animal Crawling speed (km/h)

Snail 0.045
Tortoise 0.32
Spider 1.9

Based on the information in the table, about how many times as fast is a spider compared 
to a tortoise? Can you pose other mathematical problems and solve them?

As with the previous two examples, this task presents students with data related to 
a real-world phenomenon (Cai & Xu, 2019). This time, the data are presented in a 
table, which supports a natural tendency to make comparisons across entries in the 
table. The task includes a given problem that makes a multiplicative comparison. 
This may help students think of making multiplicative comparisons in their own 
posed problems rather than relying only on additive comparisons.
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7.5.1.2  Purely Mathematical Context Examples

Example 7.6 Mathematical Expression Based (Writing Stories)
A common instructional task involves asking students to interpret a story and solve 
the so-called “story problem.” Story problems are sometimes application problems 
like those Butts (1980) discussed, although they can also be much more routine and 
algorithmic. Notably, when teachers (or curriculum writers) generate story prob-
lems, they are already setting up the parallel between the mathematical situation and 
common the story context. A much less common task in mathematics classes is to 
ask students to make up their own stories. When students are asked to write stories 
to go with mathematical situations, they must take up the work of setting up the 
connection between the mathematics and their chosen context. To do so, they need 
to understand the meaning of the mathematical concepts or procedures as well as 
the features of the proposed context. For example, writing stories to go with number 
sentences can provide students with the opportunity to focus on the meaning of the 
operations and procedures involved. Consider, for example, these problem-posing 
tasks that ask students to write stories (Ma, 1999):

 (1) Write story problems to show the application of the following computation: 1 
3/4 ÷ 1/2=?

 (2) Make up a word problem that can be solved by using the following expressions:
295 − 43 × 4 and (74 − 52) + (67 − 23).

 (3) Write a story problem that can be answered by finding the value of n in the equation 
−4n = −24.

 (4) Write a story problem that can be answered by finding the value of n in the equation 
x2 + 2x = 20.

Example 7.7 Mathematical Expression Based (Distributive Property over 
Addition)
Problem-posing tasks based on given mathematical expressions can also be used to 
help students understand other kinds of mathematical concepts. The following 
whole-class task uses problem posing to develop students’ understanding of the 
distributive property of multiplication over addition (Chen & Cai, 2020):

Divide the class into 4 groups. Provide the expression “(5+7)×4” to the students in groups 
1 and 2, and provide the expression “5×4+7×4” to the students in groups 3 and 4. (The 
teacher deliberately hides the two formulas to prevent the students in each group from 
knowing the other group’s expression.) Students in groups 1, 2, 3, and 4 know each other’s 
calculations, respectively. Ask students to pose mathematical problems based on daily life 
according to their assigned expression. In the follow-up discussion, let the students guess 
what expression the other group of students based their problems on.

Example 7.8 Mathematical Expression Based (Pythagorean Theorem)

Please help John think of a mathematical problem that can be solved by the Pythagorean 
Theorem.

In this task, the students’ posed problems must be solvable using the Pythagorean 
Theorem. Thus, the information in the problem should, in some way, satisfy that 
theorem. Similar to writing stories based on given expressions, this task begins with 
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a given expression. However, in this case, the expression does not use particular 
numbers. It is a general relationship expressed symbolically. Still, in order to pose 
problems that satisfy the expression, students must make use of their understanding 
of the Pythagorean Theorem and potentially deepen that understanding as they work 
to pose an appropriate problem.

Example 7.9 Graph Based (Linear Function)

Use the graph below to answer the following questions.

 

 a. Write an equation that will produce the above graph when x is greater than or equal 
to zero.

 b. Write a real-life situation that could be represented by this graph. Be specific.

This graph task (Cai et  al., 2013) provides a purely mathematical context—a 
linear graph—but invites the student to provide a real-life situation that could be 
represented by the graph. In one sense, the task is asking the students to transform 
a purely mathematical context into a real-world context. As with Example 7.6, a 
goal of this type of task is to assess students’ understanding of a mathematical con-
cept by examining how the student creates a connection between the concept and 
their chosen real-life context. For example, one might check that the student has 
used their knowledge that a line that points up and to the right represents an increas-
ing relationship by describing an increasing relationship in their word problem. In 
addition, students’ understanding of the meaning of a positive y-intercept could be 
assessed by how they set up their story to reflect this feature of the graph.

Example 7.10 Figure Based (Parallel Line Geometry)
Consider the following geometry task based on a given figure:

In the figure below, AB//CD.

 

Show that the sum of the measures of <A, <E, and <C is 360°.
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This is a very common, if closed, way of presenting this kind of geometry problem 
in regular textbooks (Cai et al., 2015). There are several ways to make the problem 
more open. Instead of prompting the student to show that the sum of the measures 
of the specified angles is 360°, we may instead ask, “What is the sum of the mea-
sures of <A, <E, and <C?” Although the second version of the prompt leaves the 
student in a more open position (in terms of given information), neither of these 
prompts results in a problem-posing task. In addition, we may ask students to make 
a generalization of the problem by asking “What is the sum of the three angle mea-
sures with different locations of point E?” This again opens the problem to a wider 
set of possibilities, but it remains ultimately a problem-solving task. If, instead, we 
change the prompt to, “Please pose as many mathematical problems as you can 
with respect to the relationships in the figure,” the task is now a problem-posing 
task, and it has become even more open, hence increasing the opportunities for stu-
dents’ learning. Some students may indeed generate problems similar to the ones 
presented above. However, others may explore the figure and pose completely dif-
ferent problems.

Example 7.11 Table Based (Pythagorean Theorem)
Consider the following task, adapted from Brown and Walter (1983), that, like 
Example 7.8, focuses on the Pythagorean theorem. This time, however, the problem 
situation proceeds from a table of data:

x y z

3 4 5
5 12 13
7 24 25
8 15 17
9 40 41
12 35 37

The table above shows several triples that satisfy the Pythagorean Theorem x2 + y2 = z2. 
Using this table, what questions can you ask?

In this task, the focus is less on finding a context or problem that satisfies the 
Pythagorean Theorem and more on exploring patterns in the given data. Students 
may make any number of conjectures and pose several kinds of questions based on 
the numbers. For example, students might ask whether z is always odd. Or, they 
might ask whether y is always divisible by 4 or 5.

Example 7.12 Pattern Based (Black and White Dots)
The pattern-based problem-solving task below (Cai & Hwang, 2002) is interesting 
because there is no immediate pathway suggested by the task. It requires students to 
discover underlying mathematical structures.

Look at the figures below.
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(Figure 1) (Figure 2)      (Figure 3)  

 1. Draw the 4th figure.
 2. How many black dots are there in the 6th figure? Explain how you found your answer.
 3. How many white dots are there in the 6th figure? Explain how you found your answer.
 4.  Figure 1 has 8 white dots. Fig. 3 has 16 white dots. If a figure has 44 white dots, which 

figure is this? Explain how you found your answer.

However, we can examine students’ thinking from a different perspective if we 
ask them to generate their own mathematical problems. Research shows that stu-
dents are capable of generating interesting mathematical problems and that there is 
a direct link between students’ problem-solving and problem-posing skills (Cai & 
Hwang, 2002; Silver & Cai, 1996). A more open, problem-posing version of this 
task might look like the following:

Mr. Miller drew the following figures in a pattern, as shown below.

(Figure 1)    (Figure 2) (Figure 3)  

For his student’s homework, he wanted to make up three problems BASED ON THE 
ABOVE SITUATION: an easy problem, a moderate problem, and a difficult problem. These 
problems can be solved using the information in the situation. Help Mr. Miller make up 
problems and write these problems in the space below.
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7.5.2  Prompts in Problem-Posing Tasks

In addition to a problem situation that provides context and data for students to use 
in their posed problems, a problem-posing task must include a prompt that lets stu-
dents know what they are expected to do. Depending on the goal of the task, for the 
same problem-posing situation, there can be many different kinds of prompts. Some 
possible prompts include the following:

• Pose as many mathematical problems as possible
• Pose problems of different levels of difficulty (e.g., “Pose one easy problem, one 

moderately difficult problem, and one difficult problem.”)
• Given a sample problem, pose similar problems (or problems that are structurally 

different)

The choice of prompt can influence both the mathematical focus for the students 
and the level of challenge that the posing task presents. Consider the problem- 
posing task in Example 7.4 above (the bar graph task). Certainly, this context could 
be used to address a variety of content, including interpreting graphs and data or 
understanding linear equations. However, problem-posing tasks are often con-
structed specifically to address the learning goals of a particular lesson. Example 
7.4 came from a lesson related to linear equations. Thus, a constraint (solvable using 
linear equations) was included in the prompt in order to increase the likelihood of 
the task supporting the students’ understanding of linear equations. In this case, the 
prompt constraint does increase the challenge of the task (e.g., by preventing simple 
arithmetic problems) relative to the lesson and its learning goals, but, generally 
speaking, the effect of the prompt is still an open area of research. Does the prompt 
always affect challenge this way? The answer probably depends on the lesson goals. 
For example, if the learning goals had to do with exponential functions, this prompt 
might actually decrease the challenge (in addition to making the task disconnected 
from the goal of the lesson).

Indeed, from a research perspective, it is not yet well understood what prompts 
are best to pair with a given problem situation or what prompts are most suited to 
achieving a desired degree of challenge or to address particular learning goals. That 
is, research has not yet illuminated the connections between different kinds of 
problem- posing prompts and different cognitive processes in problem posers. 
Research on problem-solving tasks has established that different prompts can elicit 
different cognitive processes and impact students’ problem-solving performance 
(Goldin & McClintock, 1984). Thus, it is reasonable to expect that the prompt in a 
problem-posing task also shapes students’ engagement with the task. A few studies 
have investigated how different prompts in problem-posing tasks impact students’ 
or teachers’ problem-posing performance and problem-posing processes (e.g., 
Silber & Cai, 2017). Silber and Cai (2017) compared preservice teachers’ problem 
posing using structured prompts and free prompts, finding that the preservice teach-
ers in the structured-posing condition more closely attended to the mathematical 
concepts in each task. Moreover, the effect of the prompt depends, in part, on the 
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setup of the task. For example, in their review of problem posing in textbooks, Cai 
and Jiang (2017) identified four common types of problem-posing tasks: posing a 
problem that matches the given/specific kinds of arithmetic operations, posing vari-
ations on a question with the same mathematical relationship or structure, posing 
additional questions based on the given information and a sample question, and 
posing questions based on given information. A similar prompt (e.g., “Pose a math-
ematical problem.”) could be used with many of these types of tasks, but its mean-
ing to the student could be different for each type.

Based on practice, it does seem that encouraging students to pose different dif-
ficulty levels of problems has some advantages for eliciting deeper student thinking 
about some kinds of problems (Cai & Hwang, 2002) and for adjusting the level of 
challenge of the task relative to each student. For example, the prompt, “Create a 
problem that would be difficult for you to solve,” can challenge each student to 
stretch toward the edge of their own ability. Although each student may still engage 
the problem-posing task at a level that is appropriate for their existing mathematical 
understanding, such a prompt could result in the overall level of challenge increas-
ing. Ultimately, we believe that the choice of problem-posing prompt has the poten-
tial to make a difference in how students engage with problem-posing tasks. More 
research in this area is needed to explore the effects of problem-posing prompts, 
including identifying what kinds of prompts are most inviting or engaging to stu-
dents, determining how providing example problems may shape students’ posing 
activity (for better or worse with respect to the learning goals), and what the effects 
of other features of prompts (e.g., including conceptual cues, as in Yao et  al., 
2021) may be.

The following tasks provide examples of various ways that prompts can be used 
to engage students in problem posing.

Example 7.13 Number Pattern Task (Odd Numbers)

Look at the pattern of numbers in the arrangement below.

 

1

3 5

7 9 11

13 15 17 19

21 23 25 27 29



The pattern continues. I wanted to make up some problems that used this pattern for a 
group of high school students/college freshmen. Help me by writing as many problems as 
you can in the space below.

In this task (Cai, 2012), there are many possible observations that students might 
make about the pattern. By using a prompt that asks for “as many problems” as the 
student can generate, this task encourages students to explore the pattern in greater 
depth (i.e., beyond the first thing they notice). For example, students might ask 
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mathematical questions like, “What is the sum of the numbers in the nth row?” or 
“What is the sum of the numbers in the first n rows?” or “What is the relationship 
between the first number in each row?”

Other prompts could also be used with this problem situation. For example, by 
using a prompt like, “Help me by writing one problem that would be easy for the 
students to solve and one problem that would be difficult for them to solve,” could 
help illuminate what features of the pattern the students consider to be more or less 
accessible. Moreover, a discussion of posed “easy” and “difficult” problems across 
students could be used to identify characteristics that make problems more or less 
challenging (e.g., number of steps required to solve, degree to which the problem 
generalizes beyond the given information).

One could also provide a sample problem (e.g., “What is the sum of the numbers 
in the 10th row?”) before asking students to pose additional problems. In that case, 
the choice of sample problem could encourage students to look in a particular direc-
tion when posing their own problems, perhaps guiding them toward a particular 
target concept or generalization.

Example 7.14 Plane Geometry Task (Conjectures)

Problem-posing tasks based on pictures and diagrams can enrich students’ experiences with 
plane geometry. Often, problem-solving tasks in geometry require students to prove state-
ments that are either obvious from the diagram (although the proof may not be obvious) or 
statements that are obscure and for which little motivation is provided. By providing a 
geometric diagram without an obvious statement to prove, instead prompting students to 
make conjectures and explore them, problem-posing tasks of the type below can stimulate 
students’ interest, creativity, and initiative in learning. 

In the diagram above, △ABC and △DEF are congruent triangles. 
Please use this diagram to make three conjectures and then prove or 
disprove them. 
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In response to this task, adapted from Brown and Walter (1983), a student 
could, for example, explore the positioning of the two overlapping congruent 
triangles, realizing that the intersection is only sometimes a regular hexagon. 
This might lead the student to wonder what conditions the positions of the 
triangles satisfy in order to make the hexagon GHILMF a regular hexagon (as 
it appears to be in the picture).

Example 7.15 Mirroring a Given Problem (Clothing Combination Task)

Anna has three shirts: one white, one red, and one yellow, and three skirts: one black, one 
green, and one blue. (1) How many different ways are there to pair one shirt with one skirt? 
(2) Pose a new mathematical problem that has the same mathematical structure as the given 
problem (a combination problem), and solve it.

As with Example 7.1 (the painting contest situation), this task provides a real-life 
context in the problem situation, and students are invited to ask mathematical ques-
tions. The difference here is that an example problem is provided for students to 
imitate. This type of prompt is what Cai and Jiang (2017) categorized as posing 
variations on a question with the same mathematical relationship or structure. The 
intention is for students to vary the context, data, or unknown quantities in the prob-
lem situation while keeping the most basic mathematical relationships and struc-
tures (in this case, a combinatorics problem) consistent with the example problem.

Example 7.16 Mirroring a Given Problem (Ages)
A similar type of problem-posing task asks students to take a given problem and 
explicitly change the numbers (without changing the rest of the problem situation) 
to produce analogous problems. For example,

The sum of the ages of Sana and her father is 45. Sana’s age is 2/7 of her father’s. How old 
is Sana? Please pose a similar question by varying the two numbers in the situation.

This task, adapted from Arikan and Unal (2013), relies on students recognizing 
certain practical, real-life constraints on how they may modify the problem. For 
example, Sana’s age is assumed to be less than her father’s age, and one might 
expect her father’s age to be at least 18 years old. A student might also decide that, 
by convention, the age should be a whole number. Moreover, this task could be 
broadened to allow students to add conditions or steps. For example, a student might 
augment the given problem as follows: “The sum of the ages of Sana and her father 
is 54. Sana’s age is one-fifth of her father’s age. In 4 years, how old will Sana’s 
father be?”

7.6  Teachers Learning to Teach Mathematics through 
Problem Posing

If problem-posing tasks have the potential to be a powerful class of instructional 
tasks that are both challenging to a wide range of students and effective at helping 
students learn mathematics deeply, a pressing question is how to integrate problem 
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posing into day-to-day school mathematics instruction. Based on standards docu-
ments, problem posing is already recognized as an important activity for students. 
For example, in NCTM’s (1989) Curriculum and Evaluation Standards for School 
Mathematics, problem posing was advocated for in the hopes that students would 
“have some experience recognizing and formulating their own problems, an activity 
that is at the heart of doing mathematics” (p. 138). Paralleling this recommendation 
for mathematics curriculum was an explicit call for teachers to create problem- 
posing learning opportunities: “Students should be given opportunities to formulate 
problems from given situations and create new problems by modifying the condi-
tions of a given problem” (NCTM, 1991, p. 95). Subsequent updates to NCTM’s 
recommendations placed an even stronger emphasis on student thinking and prob-
lem posing (e.g., NCTM, 2000; 2020). Moreover, the Common Core State Standards 
for Mathematics promote mathematical modeling, a process in which formulating 
the problem is a critical step (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010).

Given the ongoing call for problem posing in standards documents, it would 
seem logical that problem-posing tasks would be built into the curriculum materials 
that teachers use regularly. Unfortunately, this is not the case. For example, widely 
used curriculum materials in the United States fail to incorporate problem posing in 
a substantial and consistent way. Only a very small proportion of problem-posing 
activities are included in popular elementary and middle school mathematics text-
books (Cai & Jiang, 2017; Silver, 2013). In addition to being sparse, the problem- 
posing activities in textbooks can be very unevenly distributed across grade levels 
and content areas. Of the limited number of problem-posing activities, the vast 
majority are related to number and operations. Very few involve algebra, geometry, 
measurement, or data analysis (Cai & Jiang, 2017). The unrepresentative distribu-
tion of problem-posing tasks reflects a haphazard approach to incorporating prob-
lem posing in the intended curriculum.

7.6.1  Changing Beliefs and Increasing Knowledge About 
Teaching Through Problem Posing

A consequence of the lack of problem-posing tasks in curriculum materials is that 
teachers, who are at the heart of implementing changes in instruction, do not have 
consistent support to implement problem posing in their classrooms. Thus, there is 
a critical need to support teachers to integrate problem posing into their instruction 
despite the lack of curricular support. Fundamentally, this means supporting teach-
ers to develop their knowledge and beliefs about teaching through problem posing.

Figure 7.2 shows a teacher professional learning model guiding a large research 
project on teachers’ learning to teach through problem posing (Cai et al., 2020). 
Through teacher learning, teachers increase their knowledge and change their 
beliefs and then change their classroom instruction, aiming to improve students’ 
learning. Indeed, both teachers’ knowledge and teachers’ beliefs are consistently 
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Fig. 7.2 A teacher professional learning model

important factors in teachers’ professional learning and classroom instruction 
(Richardson, 1996; Thompson, 1992), influencing how they interact with curricu-
lum (Handal & Herrington, 2003; Hill & Charalambous, 2012; Lloyd et al., 2017), 
their instructional practices (Stipek et al., 2001; Wilkins, 2008), and how their stu-
dents learn (Hill & Chin, 2018; Peterson et  al., 1989). Thus, attempts to change 
instruction by incorporating problem posing as a teaching method will necessarily 
need to attend to teachers’ knowledge and beliefs about teaching through prob-
lem posing.

Through professional learning opportunities that offer extended experiences 
with problem posing, teachers are able to increase their knowledge about teaching 
with problem posing and develop positive beliefs about it. Indeed, Cai and Hwang 
(2021) have shown that participation in professional development workshops 
focused on problem posing results in teachers gaining expertise at posing problems 
themselves as well as knowledge about the kinds of problems their students might 
pose. Moreover, they exhibit increased confidence about teaching using problem 
posing, and they develop more specific and comprehensive beliefs about the advan-
tages and challenges of teaching with problem posing.

Although there is the potential for teachers to change their instructional practice 
based on developing their knowledge and beliefs about teaching through problem 
posing, it remains important to consider the degree to which teachers (and the sys-
tems within which they operate) buy into the proposed change (Kramer et al., 2015). 
Without buy-in, instructional reforms cannot be sustained. Thus, to gain buy-in 
from teachers, it is critical to consider the impact of changing instruction on teach-
ers’ resources (e.g., time, energy, attention).

7.6.2  Equipping Teachers to Develop Problem-Posing Tasks

When considering how to integrate problem posing more effectively in mathematics 
classrooms, it is important to avoid the change being perceived as a burden or a radi-
cal change in practice that would require too much time to adapt to. Rather, problem 
posing may be more readily accepted if it builds on existing, common practices. 
Ideally, problem posing would be introduced through small, incremental changes 
that would be accessible to teachers and students but that offer the promise of rich 
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returns in student learning (Cai & Hwang, 2021). One natural way to support teach-
ers to work around the limited support for problem posing in published curricula 
would therefore be to support them in reshaping existing problem-solving tasks in 
simple ways that transform lessons to create learning opportunities with problem 
posing. Teachers are already active participants in translating the intended, written 
curriculum into the enacted curriculum, engaging with their curriculum materials in 
a design process (e.g., Cai & Hwang, 2021; Lloyd et al., 2017; Remillard, 2005; 
Stein et al., 2007). Thus, it makes sense to tap into this existing process to empower 
teachers to adapt their curriculum materials to introduce more substantial problem- 
posing tasks and opportunities. This allows teachers to work with familiar tasks that 
they modify in simple ways to serve a new purpose.

In that vein, we describe two strategies for integrating problem posing into the 
school mathematics curriculum. The first strategy is empowering teachers as cur-
riculum redesigners to change problem-solving elements of their curriculum mate-
rials to create learning opportunities for mathematical problem posing. For example, 
teachers could add a follow-up problem-posing prompt such as “Can you pose a 
similar problem that could be solved?” or “Can you pose another problem using this 
information?” at the end of a problem-solving task. As with Polya’s “looking back” 
step, this would encourage students to make use of the mathematical thinking they 
have already been engaging in to generalize a mathematical relationship or to find 
additional connections. Another simple modification would be to change the 
problem- solving prompt into a problem-posing prompt. For example, in a word 
problem, such as “Jenna, Eli, and Angela are driving home from a trip. Angela drove 
150 miles less than Eli. Eli drove twelve times as far as Jenna drove. Jenna drove 50 
miles. How many miles did they drive altogether?” teachers could replace the ques-
tion “How many miles did they drive altogether?” with a request that students pose 
problems based on this situation. Research has shown that students are capable of 
posing linguistically and semantically complex problems based on such situations 
(Silver & Cai, 1996).

The second strategy is to encourage students to pose problems at different levels 
of complexity. As we noted above, prompts that ask students to pose different dif-
ficulty levels of problems may help elicit deeper student thinking. For example, Cai 
and Hwang (2002) used parallel pattern-based tasks to examine the problem solving 
and problem posing of U.S. and Chinese sixth graders, finding that the Chinese 
students’ posed problems reflected their use of abstract problem-solving strategies 
and the kinds of critical thinking involved in solving pattern-based problems. To 
gain insight into students’ mathematical thinking with problem posing requires 
more than a single posed problem. Once teachers and students have had some expe-
rience with posing mathematical problems in the classroom, asking students to pose 
more than one problem for a given problem-posing situation is again an incremental 
change in practice. In addition to providing useful data for the teacher to get a sense 
of the students’ level of understanding of a mathematical situation (Cai & Hwang, 
2002), when students generate a sequence of posed problems of varying difficulty, 
they are again prompted to engage with the mathematics more deeply. Consider the 
black and white dots task in Example 7.12 above. By asking students to provide 
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three problems of varying difficulty for a problem situation, the teacher is poten-
tially increasing the level of cognitive demand of the task, creating an opportunity 
for students to think beyond simple pattern recognition. Silver and Cai (1996) have 
found that when students are asked to pose a sequence of problems, their later prob-
lems tend to be more complex and mathematically sophisticated than their earlier 
ones. Thus, by making this incremental change to a one-shot problem-posing task, 
a teacher can obtain both a different level of access to student thinking and elicit 
different levels of cognitive demand from the students.

7.6.3  Supporting Teachers to Develop Teaching Cases

With respect to understanding how problem posing can be enacted in classrooms, 
there is a need for careful analyses of practice that can be shared with teachers, 
researchers, and professional developers to build a common basis and image of 
effective problem-posing instruction. One mechanism for documenting practice and 
disseminating it is the development of teaching cases (Zhang & Cai, 2021). Teaching 
cases serve as representations of detailed and careful analyses of teaching practice 
(Merseth, 2003; Stein et al., 2009). A teaching case includes major elements of a 
lesson and related analysis, but it is not a transcribed lesson. Teaching cases include 
narratives describing instructional tasks and related instructional moves for the 
tasks. Cases also include information about the underlying thinking of major 
instructional decisions as well as reflections on and discussions of those decisions. 
The development of teaching cases is based on real lessons and typical instructional 
events from the lessons. Research has documented the effectiveness of using case- 
based instruction for professional learning. This approach is effective because it 
situates instruction in meaningful contexts in order to learn to teach (e.g., Hillen & 
Hughes, 2008; Smith et al., 2014).

Often, teaching cases are created by researchers to support teacher learning 
(e.g., Merseth, 2003, 2016; Smith et  al., 2014; Stein et  al., 2009). However, 
although the effectiveness of using the case-based approach for teacher learning 
has been demonstrated (e.g., Smith et al., 2014), we anticipate that engaging teach-
ers in creating and writing teacher cases would also be effective (if not more so) for 
teacher learning. Moreover, we have argued elsewhere that teaching cases could 
potentially serve as physical artifacts for storing and improving professional 
knowledge for teaching (Cai et al., in press). More work is needed to accumulate 
teaching cases in problem posing. With more successfully implemented teaching 
cases using problem posing as a resource, teachers could learn from the cases to 
teach using problem posing even though they lack problem-posing tasks in their 
curriculum materials. In addition, after accumulating more teaching cases, it will 
be possible to explore multiple discourse patterns for handling students’ posed 
problems as well as to identify the most effective discourse patterns in teaching 
mathematics through problem posing.
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7.7  Summary and Looking to the Future

Teaching through problem posing, like teaching through problem solving, holds 
great potential for students’ learning not only because of the mathematically chal-
lenging nature of problem-posing tasks but also because problem posing is a low- 
floor- and-high-ceiling activity that allows for students at all levels to be challenged 
through engaging in problem-posing tasks. In this chapter, we have defined problem- 
posing tasks and examined a variety of examples that vary in the type of problem 
situation and the type of prompt. Note, however, that we have not attempted to 
establish an overall ranking of the level of challenge of problem-posing tasks. This 
is primarily because the appropriateness of a problem-posing task needs to be deter-
mined with respect to the learning goals of a particular lesson. If the challenge of a 
problem-posing task is adaptable to the individual learner, the level of understand-
ing that the learner brings to the task is key to the task’s challenge for that learner. 
Moreover, as we indicated above, it is an open question how to choose and use dif-
ferent prompts with the same situations and how such choices can create different 
learning opportunities for students. Thus, the ranking of challenge is a focus for 
problem posing only insofar as it is oriented toward understanding how problem 
posing can create effective learning opportunities.

Even though there is empirical evidence of using problem posing to effectively 
assess students’ mathematical thinking and learning as well as evidence of the posi-
tive effect of teaching mathematics through problem posing on students’ learning 
(Cai & Hwang, 2021; Cai et  al., 2015), there are a number of areas which need 
further research. To conclude this chapter, we point out three areas of future research 
with respect to problem-posing tasks, teaching through problem posing, and teach-
ers learning to teach through problem posing. We do not claim that these are the 
only areas of research with respect to the mathematically challenging nature of 
problem-posing tasks, but we do believe that these three areas of research would 
help the field capitalize on the mathematically challenging nature of problem- posing 
tasks to maximize students’ learning.

7.7.1  Problem-Posing Tasks

With respect to problem-posing tasks, we have focused on problem situations and 
prompts. Every problem-posing task includes these two features, but it is an open 
question how the different situations and prompts influence students’ problem pos-
ing and their overall mathematical thinking. Given the diversity of problem-posing 
tasks, extensive and detailed study is needed to increase the field’s understanding of 
how best to design a problem-posing task to help students meet a particular learning 
goal. With respect to mathematical challenge, we can, for example, ask what kinds 
of prompts increase (or decrease) the level of challenge for students. What kinds of 
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prompts tend to guide students toward mathematically sound problems that are 
challenging to themselves?

Fundamentally, the cognitive and affective processes involved in problem posing 
are still being mapped out. The implications for how problem-posing tasks may be 
designed to present particular levels of challenge are therefore not yet known. 
However, preliminary research findings have pointed to directions for further work. 
For example, sample problems in a problem-posing task can facilitate students’ 
problem posing and help them overcome some challenges in the problem-posing 
process. Also, when students better understand the problem situation, they are likely 
to be more successful in posing problems. The link between problem-solving think-
ing and problem-posing thinking may suggest that one may help the student with 
challenges they experience in the other (bidirectionally) because these can develop 
in tandem.

Currently, there is preliminary empirical evidence suggesting that asking stu-
dents to pose problems at various difficulty levels may deepen their engagement 
with and exploration of the mathematical concepts in a problem-posing task. Much 
more detailed research is needed to secure the bases of our understanding of the 
impact of problem-posing task characteristics. This is true for both cognitive impacts 
and impacts on non-cognitive aspects of students’ learning such as affect, engage-
ment, and creativity (Cai & Leikin, 2020).

7.7.2  Teaching Through Problem Posing

With respect to teaching through problem posing, it is important to recognize that 
problem-posing tasks do not exist in isolation. Even if they are included in curricu-
lum materials, the implementation of problem-posing tasks in the classroom 
involves many other considerations. Teachers are responsible for choosing worth-
while and challenging instructional tasks to foster their students’ learning. In the 
realm of problem-posing tasks, the field is still just beginning to conceptualize how 
to choose the most appropriate problem-posing tasks for a given set of learning 
goals in a lesson.

Moreover, because problem posing is not a frequent practice in mathematics 
classrooms at present, we do not yet have a robust understanding of effective class-
room routines for using problem-posing tasks to challenge students and teach math-
ematics. Critical issues to be addressed in this area include how teachers can most 
effectively handle and make use of students’ posed problems to further the learning 
goals. What makes one student’s posed problem the right choice to discuss with the 
class? How would a teacher make this choice? Also, what patterns of classroom 
discourse and activity (e.g., social and sociomathematical norms) might need to be 
established in order for teachers to be able to use problem-posing tasks effectively 
to engage all students in the class?
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7.7.3  Supporting Teachers to Learn to Teach Through 
Problem Posing

Finally, there is much work yet to do with respect to supporting teachers to learn to 
teach through problem posing. Although teachers often have experience posing 
problems for their students, many teachers have little experience with students pos-
ing their own problems as a mechanism for teaching mathematics. Teaching through 
problem posing is therefore a challenging task for teachers. As we have discussed 
above, there are many elements of teachers’ knowledge and beliefs that may be 
relevant to helping them overcome the challenge of teaching with problem posing: 
their own conceptual understanding, their own experience with problem posing as 
posers themselves, their knowledge of their students’ problem posing, their beliefs 
about problem posing and teaching with problem posing (e.g., beliefs about the 
advantages and challenges), and their buy-in to teaching with problem posing (and 
the persistence to work on their teaching with problem posing that the buy-in sup-
ports). Because current curriculum materials do not substantively include problem- 
posing opportunities, other kinds of efforts are needed to support teachers to learn 
to teach through problem posing.

For example, teachers need support to develop productive beliefs about teaching 
through problem posing, including beliefs about the advantages and challenges to 
expect. There is early-stage evidence to show that teachers, through professional 
development, are able to both increase their own problem-posing performance and 
develop more positive and detailed beliefs about problem posing and teaching 
mathematics through problem posing (Cai et al., 2020; Cai & Hwang, 2021). This 
helps support them in their efforts to incorporate problem posing into their practice.

Clearly, more systematic research is needed to explore multiple prongs for sup-
porting teachers to learn to teach mathematics through problem posing, whether 
that is during preservice teacher preparation (e.g., Crespo, 2003, 2015), through 
focused in-service professional development experiences (Cai et  al., 2020), or 
through ongoing collaborative work between teachers and researchers. We believe 
one promising avenue that merits further exploration is engaging teachers with 
researchers to develop teaching cases for problem posing. Such teaching cases 
could both serve as a form of professional development for the teachers engaged in 
creating the cases and act as a type of artifact, sharable with other teachers, for 
accumulating and storing professional knowledge about specific implementations 
of problem posing to challenge students and achieve desired mathematical learning 
goals. As the field moves forward with teaching mathematics through problem pos-
ing, we will need longitudinal studies that track the entire process: how teachers 
learn to teach through problem posing, how problem posing is enacted in their class-
rooms, and how well problem posing helps students achieve challenging learning 
goals. Initial studies of this type are currently underway in China (Cai & Hwang, 
2021) and as part of a newly launched design and development project in the 
United States.
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7.7.4  Problem Posing and Mathematical Challenge

Problem posing as an instructional activity holds great promise for improving stu-
dents’ learning opportunities by creating situations in which students may produc-
tively struggle with challenging mathematics. However, the connection between 
problem posing and challenge is somewhat complicated. On the one hand, as we 
noted above, one can consider problem posing (as a cognitive and an instructional 
activity) as somewhat orthogonal to challenge. This is partly because of the inherent 
adaptability of problem-posing tasks to students’ various ability levels and existing 
understanding. That is, students who have a greater understanding of the problem 
situation and associated mathematics may pose both simple problems (from the 
perspective of a knowledgeable observer) and quite challenging problems (in that 
the problem is itself challenging for the solver/student and that the act of posing the 
problem is challenging for the poser). Yet, students who have less robust under-
standing may also be challenged by the same problem-posing task. Although the 
problems they pose may be less challenging (again, from the perspective of a knowl-
edgeable observer), they may yet experience a high degree of mathematical chal-
lenge relative to their level of understanding.

On the other hand, there are aspects of problem posing that are more intrinsically 
related to mathematical challenge. For teachers, as we discussed above, there are 
quite a few potential challenges related to teaching mathematics through problem 
posing. Some of these challenges are external, such as the lack of curricular support. 
Others are internal, including understanding how to use problem posing to create 
learning opportunities and how to make use of students’ posed problems to help 
achieve the learning goals for a lesson. Overcoming these kinds of challenges 
requires the development of teachers’ knowledge and beliefs. For students, the 
degree of challenge they encounter when posing problems may be related to aspects 
of our framework such as the nature of the prompts used in problem-posing tasks. 
For example, as we noted above in the case of constraints, it is possible that some 
kinds of constraints in the problem-posing prompt may increase (or decrease) the 
challenge of the activity for students. However, this is always relative to the students 
or to the learning goals of the lesson. Ultimately, there is much need for research 
that illuminates how the design of problem-posing tasks may best engage students 
in productive struggle with challenging mathematics so as to maximize their learn-
ing opportunities.
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Chapter 8
Challenging Students to Develop 
Mathematical Reasoning

João Pedro da Ponte, Joana Mata-Pereira, and Marisa Quaresma

8.1  Introduction

Mathematics learning includes learning basic facts, terminology, concepts, repre-
sentations, and procedures for solving routine tasks. However, it also includes learn-
ing core reasoning processes, such as formulating mathematical conjectures and 
generalizations and providing justifications. In an exploratory approach, students’ 
development of mathematical reasoning is supported by the work on tasks in which, 
besides using prior knowledge, they develop new ideas, concepts, and representa-
tions and are prompted to establish new conjectures and generalizations and to jus-
tify them (Ponte, 2005). Tasks need to be mathematically fruitful and allow for 
students’ involvement. The students need to have the opportunity to work in interac-
tion with their colleagues and with the teacher’s support. In addition, different stu-
dents’ solutions may be presented and discussed in a whole-class setting, so that all 
students in the class may appropriate the main ideas. In this approach, a task repre-
sents a challenge – a new idea that the student did not master yet, but that may 
emerge from the work to be carried out. Such challenge needs to be well estab-
lished, considering the students’ prior knowledge, dispositions, and diversity 
(NCTM, 2014). In this chapter, we present situations of such work in classes at 
grades 8 and 9 and discuss the features of the tasks and of the learning environment 
that may support students’ development of mathematics reasoning. In particular, we 
aim to know what actions the teachers may use during the moments of launching of 
the work, students’ autonomous work in pairs or small groups, and whole-class 
discussion. We pay special attention to how guiding actions combine with inform-
ing/suggestion actions as well as to the role of challenging actions in which the 
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teacher prompts the students to generalize, extend their thinking, consider new pos-
sibilities, and justify their statements.

8.2  Exploratory Approach and Teacher Actions

The exploratory approach aims for students to play a decisive role in their learning. 
Thus, unlike the usual lesson that has as its starting point the teacher’s explanations, 
in this lesson the starting point is a task in which students are called to work. This 
task should present some challenge for students, requiring them to formulate a solu-
tion strategy, which may involve the application of already known mathematical 
ideas and also the formulation of new ideas that may include representations, con-
cepts, procedures, or mathematical properties. As indicated by Ponte and 
Quaresma (2016),

Challenges may involve the establishment of connections between mathematical concepts 
and properties or between the context and the conditions of the problem or may be related 
to the construction, selection or coordination of representations. Challenges may also be 
related to promoting the reasoning processes of generalizing and justifying (p. 65).

Thus, a challenging task requires the formulation of a new idea, which is always the 
result of connections among previous ideas. If students do not hold these previous 
ideas in an actionable way, the task is much more difficult, if not impossible, for 
them. Therefore, the identification of previous knowledge to solve a task is an 
essential element for the work of the teacher.

This approach arises in several national contexts with different names, often with 
some nuances of meaning, but which basically represent close approaches, such as 
inquiry-based mathematics education (Artigue & Blomhøj, 2013), guided rediscov-
ery (Gravemeijer, 2005), and reform mathematics education (Confrey, 2017).

The exploratory lesson usually unfolds in three phases (Ponte, 2005; Stein et al., 
2008): task launching, students’ autonomous work, and collective discussion. The 
first phase is the task launching, in which the teacher presents the task to the stu-
dents and seeks to create the necessary conditions for students to actively engage in 
working on it (Jackson et al., 2013; Jackson et al., 2012). For this, the meanings of 
the relevant mathematical terms and others that students may be unaware of should 
be discussed, as well as any aspects of the context of the task that may constitute an 
obstacle to student involvement. This discussion of terms that may create problems 
for the students takes place through a process of negotiation of meanings (Bishop & 
Goffree, 1986), where the teacher seeks that students, from their previous ideas, 
develop a meaning for mathematically relevant terms coincident with the conven-
tionally accepted meaning in mathematics.

The second phase of the lesson is the students’ autonomous work. In this phase, 
the students work on the proposed task in pairs, in small groups, or even individu-
ally (Ponte, 2005; Stein et al., 2008). The aim is to provide students an opportunity 
for as much independent work as possible. The teacher moves around the 
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classroom, seeking to observe the students’ work and support them to progress if 
necessary. To do this, the teacher pays special attention to the strategies that students 
are using and to their possible difficulties. However, the teacher should take particu-
lar care not to give the students suggestions that represent a decrease in the cognitive 
level of the task (Stein & Smith, 1998), because the educational value of the work 
depends on the students’ active involvement in their realization. For students who 
can finish early the work on the task, the teacher can propose extensions, involving 
analyzing other cases or exploring possible generalizations and other issues related 
to the initial task (Sullivan et al., 2006).

The third phase of the lesson is the collective discussion, in which the teacher 
puts to the discussion the solutions of some students, carefully selected (Stein et al., 
2008). This discussion should allow students not only to understand the correct 
solution or solutions of the task but also to develop new mathematical ideas and 
become aware of possible mistakes to avoid. In the absence of the possibility of 
presenting the work done by all students, the teacher must select the solutions to 
consider and sequence them appropriately, usually starting with solutions that have 
errors and limitations, then moving to mathematically more correct solutions. 
Students often express correct mathematical ideas in an imperfect language, which 
can lead the teacher to revoicing actions, expressing the same idea in a mathemati-
cally more correct way. This phase creates many dilemmas for the teacher, in striv-
ing to honor the work of the students and to provide the opportunity to develop their 
own mathematical ideas (Sherin, 2002). At this stage, it is particularly important 
that opportunities for argument are created among students, leading them to dis-
agree with each other and to justify why a given statement is mathematically valid 
or invalid (Wood, 1999). This phase of the lesson usually ends with a synthesis, 
highlighting the main ideas underlying the concepts involved in the task and the 
strategies used in solving it.

The rationale for these three phases of the lesson stands on the idea that, instead 
of beginning with an explanation from the teacher, illustrated by a few examples, 
followed by students’ practice on similar examples, the lesson should begin with the 
proposal of a task requiring students’ thinking, followed by students’ autonomous 
work on the task, and ended with a discussion of the possible strategies to solve the 
task and with a summary of the main ideas provided by all this work. This approach 
promotes a much stronger student involvement in the mathematical work, with 
important benefits for student learning of specific concepts and representations as 
well as of transversal processes such as mathematics reasoning.

In all phases of the lesson, the teacher’s actions regarding the students can be 
classified into three major groups (Ponte et al., 2013): (i) guiding; (ii) informing/
suggesting; and (iii) challenging. In guiding actions, the teacher seeks to get the 
students to explain their reasoning or give them a prompt to continue their work. 
These actions are mostly carried out through questions or suggestions to pursue 
what the students are doing. In informing/suggesting actions, the teacher validates a 
statement of a student, introduces new information, or gives him/her suggestions on 
what he/she can do. Both guiding and informing/suggesting actions may raise prob-
lems regarding the maintenance of the cognitive level of the task, but are often 

8 Challenging Students to Develop Mathematical Reasoning



150

necessary, at the risk that students are unable to continue working because they do 
not know indispensable information or run the serious risk of being discouraged, 
quitting the work. Finally, challenging actions, the teacher poses new challenges to 
the students, encouraging them to go further in their reasoning or to foresee new 
possibilities of work. These actions can be identified in any lesson where there is 
interaction between teacher and students. This classification of teacher general 
actions has some affinity with other frameworks, such as those proposed by Fraivillig 
et al. (1999), Cengiz et al. (2011), and Brodie (2010), but it is intended for a very 
wide spectrum of different lessons.

8.3  Mathematics Reasoning

Students’ learning in mathematics, in addition to concepts and procedures, also 
includes the development of transversal capabilities, which NCTM designates as 
process standards. Among these capacities stands out mathematical reasoning, 
which includes generalizing and justifying as central processes (Jeannotte & Kieran, 
2017; Lannin et al., 2011; Mata-Pereira & Ponte, 2017). Formulating a generaliza-
tion is formulating a mathematical statement applicable to an entire class of objects, 
a statement that can be true or false. A conjecture is a statement that is supposed to 
be true, being a generalization in the case when it applies to a class of objects. 
Formulating a justification is providing a reason for the validity of a statement. A 
justification based on just a few examples provides some credibility to a statement 
but is not enough to be mathematically valid. For this to happen, the justification 
must include all objects to which the claim applies, which can be done through the 
logical structure, a generic example, or the use of already known properties and 
claims (Mata-Pereira & Ponte, 2017).

To promote students’ reasoning, it is important that the proposed tasks assume 
certain characteristics, namely, allowing several solution strategies and requesting 
conjectures, generalizations, and justifications (Table 8.1). In the case of explor-
atory lessons, where reasoning processes are intended to occupy a central place, 
specific actions by the teacher can be identified for the various phases of the lesson.

8.4  Methodology

This chapter stands on the work of Project REASON – Mathematical Reasoning 
and Teacher Education. The aim of this project is to study the mathematical and 
didactical knowledge teachers need to carry out a practice that promotes students’ 
mathematical reasoning and study ways to foster its development in prospective and 
practicing teachers. As part of the work of the project, a teacher education course 
was offered with 8 sessions (2.5 hours each). The main focus of attention in the 
course was how to create opportunities for students to get involved in reasoning 
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processes, especially generalizing and justifying. Besides opportunities for discus-
sion and working on mathematical tasks and studying samples of student work, this 
course included two moments of “Taking into practice,” in which teachers were 
encouraged to consider with their students the ideas that were discussed in the ses-
sions. To prepare these lessons the teachers worked in groups, but the lessons were 
conducted individually with their own classes. These experiences in the classroom 
were afterward presented and discussed in the course sessions.

In this chapter, we present what we consider interesting situations from two les-
sons, one carried out at grade 8 and another at grade 9 that refer to the first “Taking 
into practice” moment. These lessons were chosen from the small number of les-
sons concerning this moment that were videotaped. The tasks were selected by the 
teachers themselves, as examples of tasks that could create situations in which stu-
dents could depict and develop their mathematical reasoning. The teachers both 
have less than 5  years of experience and are graduates of the Universidade de 
Lisboa. The grade 8 lesson was carried out in a public school in the Lisbon suburban 
area and the grade 9 lesson in a religious private school in Lisbon. The lessons were 
transcribed. Data analysis was carried out following the categories of mathematical 
reasoning processes (generalizing, justifying) and teacher general actions in the 
classroom (informing/suggesting, guiding, challenging) or specific actions (indi-
cated in Table 8.1). In both lessons, we choose the episodes that best describe situ-
ations in which students formulate reasoning processes and then classify teachers’ 
actions according to our framework. In this chapter, we present some situations 
from these two lessons that illustrate important ideas at different phases of the 
development of the lessons.

8.4.1  Grade 8 Lesson: Edges of Pyramids and Prisms

8.4.1.1  The Task

This task, proposed to a grade 8 class, is clearly oriented toward the realization 
of generalizations and justifications. Question 1 requires a justification on the num-
ber of edges of pyramids. Question 2 begins by asking for a generalization about the 
number of edges of a prism and then asks the student to justify the answer. Question 
3 calls for an additional generalization of the number of edges of a prism. The first 
two questions are oriented, specifying the generalizations or justifications to be 

 1. Do all pyramids have an even number of edges? Justify your answer.
 2. And regarding prisms, will they have an odd or even number of edges? 

Justify your answer.
 3. Can you find another property regarding the total number of edges of a 

prism? What is that property?
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made, while the third question is open, asking for the formulation of a property, 
without specifying which one. The students are seated at double tables and, as it is 
customary in mathematics classes, they work in pairs.

8.4.1.2  Launching and Autonomous Work

In launching this task, the teacher considers it important to ensure that the students 
know the mathematical terms of the statement. Thus, he begins by asking a student 
to read the statement of question 1, which leads to a small discussion about the 
meaning of the term “edge”:

Teacher:   OK, this is the first challenge you’re going to have to think 
about. Is everyone comfortable with what edges are?

Jaime:  No...
Teacher:  Ana, what is an edge?
Ana:  It is this from the pyramid.
Teacher:   “It is this.” Can anyone define what an edge is? Other than that, 

“it is this.” Diogo.
Diogo:  That part of the sides.
Several students:  That’s the sides.
Teacher:  Is the sides of the pyramid? What is it? The faces?
Irina:  The lines that determine the sides.
Teacher:  The lines that determine the sides…
Bernardo:  The segments.
Teacher:   The segments, we already approaching a more correct mathe-

matical language. They are the segments that join any vertices 
of the pyramid. So, when I join one vertex to the other, that line 
is called edge and it is a straight segment... So, think if the num-
ber of edges of a pyramid is always even.

There are students who say they do not know what edges are. Others show that 
they can identify edges, but have difficulty verbally defining the concept. The defini-
tion is constructed in stages, first from the idea of “it is this” and “that part” to “line” 
and then to “segment,” ideas indicated by the students that the teacher formalizes by 
saying that edges are the segments that unite the vertices of a pyramid.

Then, the teacher asks Manuela to read question 2, which raises the need to know 
how to distinguish between pyramids and prisms:

Teacher:  Do you notice the difference between a prism and a pyramid?
Several students:  Yes.
Teacher:  What’s the difference?

(Several students start speaking)
Teacher: Let me hear Berta.
Berta:  The pyramid has a vertex, and the prism has two faces.
Teacher:  Two faces that are...
Several students:  Bases.
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Several students:  Equal.
Teacher:   Equal, isn’t it? Once you have analyzed what’s going on with 

the pyramids, you’re going to have to look at what’s going on 
with the prisms.

It is then established that a pyramid has a base and a vertex opposite that base and 
that a prism has two equal bases, the case that should be analyzed in question 2. In 
the last intervention, the teacher restates the challenge provided by this question.

The teacher moves to question 3, seeking to lead the students to understand the 
meaning of the term “property,” essential for solving the task:

Teacher:   OK? So, first we ask if [the number of edges] is even, at the edges of the 
pyramid, then whether it is even or odd in the prism. Therefore, that is a 
property, if the edges are even or are odd [the number of edges is even 
or odd], this is a property of the number of edges. And, in question 3, 
you are invited to find out if there is another property of the number of 
edges that you can identify. So, you can start with question 1.

Thus, during the launching of the task, the teacher seeks to promote the negotia-
tion of meanings of the concepts necessary for the understanding of the task, both 
those that students should know from previous years (edge, pyramid, prism) and the 
more abstract concept of property. In addition, at various times, the teacher high-
lights what is asked in the statement of each question of the task. Simultaneously 
with this negotiation of meanings and with attention to the statement of the ques-
tions, the teacher seeks to promote the involvement of students in the task, taking 
care not to suggest solution strategies that lead to lower the degree of challenge. In 
the discussion of questions 1 and 2, the teacher does guiding actions, asking ques-
tions that progressively lead students to approach a mathematically acceptable for-
mulation of mathematical concepts. In question 3, with the meaning of the term 
“property,” possibly because it is a more abstract concept and not to prolong for too 
long the launching of the task, the teacher opts instead for directly informing 
students.

During the students’ autonomous work, the teacher circulates around the room, 
observing the students’ work and interacting with them. His interventions have dif-
ferent objectives, depending on what he observes. For example, for students who 
have trouble in formulating a solution strategy, the teacher gives suggestions that 
help them reach a generalization for themselves:

Teacher:  Give examples, give examples to see what happens.

At another moment, in a dialogue with a student regarding question 2, the teacher 
helps this student formulate his generalization more clearly, while recalling the 
need to justify it:

Duarte: It is the triple.
Teacher:  What is the triple?
Duarte: Of the edges…
Teacher:  Of the number…
Duarte:  Of the number of edges of the base.
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Teacher:  Think about it and try to put that phrase there. The idea is already there.
Duarte:  With the formula?
Teacher:  You can write the formula too, but first you must justify it.

In question 3, the teacher seeks to help the students formulate another general-
ization, in this case that can be understood as a property, once again seeking not to 
lower the degree of challenge of the task:

Teacher:   So, what’s going on from each other? [The student says something]. So, 
you got a property.

For the students who quickly solve the task, the teacher proposes extensions. 
Thus, speaking with a pair of students who had already reached a generalization, he 
formulated a new challenge suggesting the students to formulate this generalization 
in a more formal language:

Teacher:  Do we manage to get here an expression . . . An algebraic expression?

Thus, during the students´ autonomous work, the teacher’s actions alternate 
between guiding, when he asks questions that lead students to clarify their state-
ments (“What is triple?”,…) and informing/suggesting, when he points out paths 
that students can follow (“You can write the formula too, but first [you] must jus-
tify”,…). In the case of students who are able to answer the questions proposed in 
the task, the teacher formulates new challenges. As in the launching of the task, also 
in this phase of the work, the teacher seeks not to suggest solution strategies that 
could lead to decrease the degree of challenge of the task.

8.4.1.3  Whole-Class Discussion

The teacher begins the whole-class discussion of question 1 by encouraging the 
students to share their ideas. He requests the participation of a student, Marta, 
whose answer is represented on the board (Fig. 8.1). The student’s justification is 
based on the analysis of two particular cases:

Fig. 8.1 Solution of Marta represented at the board (“arestas” = edges)
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Teacher:   [Let us] start with Marta. So, first, read the question, so we’re all talking 
about the same thing.

Marta:   [Reads the question] Yes, it’s correct, because all the edges added up 
give an even number. Even so, the triangular pyramid has a base with 
three [edges], odd, the total number of edges is always even.

Teacher:  You wrote something else.
Marta:   So, in the triangular pyramid the number of edges is six. At the base, the 

number of edges is three, so, [the total number of edges] is always double.
Teacher:  And you concluded that through an example?
Marta:  No, two.
Teacher:  What was the other example?
Marta:  From the quadrangular pyramid.
Teacher:  How many edges on the base?
Marta:  Four.
Teacher:  And how many in total?
Marta:  Eight.

In this dialogue, the teacher seeks to get Marta to explain her reasoning. The 
generalization presented by the student is correct. She uses two examples to justify 
this generalization, which is mathematically invalid, but the teacher, at this moment, 
decides to accept and value her contribution.

Next, the teacher promotes a reflection on the validity of this justification. He 
asks students to identify valid and invalid mathematical justifications, highlighting 
what validates them:

Teacher:     So, we’re in mathematics, aren’t we? And Marta is saying, I 
have an example here that works, I have another example here 
that works, so, yes, it’s true. In mathematics two examples are 
enough to prove that something is true?

Several students:   No.
Teacher:    It could be two things that work, three, four, five, a thousand . . . 

But [that is not enough for us].

The argument that justifies this answer for all pyramids is the possibility of asso-
ciating, in a biunivocal way, to each edge of the base, a side edge. The teacher does 
not introduce this discussion, possibly taking into account the age level of the stu-
dents. Instead, he promotes the intervention of another student, Berta, who, for the 
general case of a pyramid with a edges at the base, indicates that the total number 
of edges is “a times two.”

For question 2, which refers to prisms, the teacher keeps encouraging the sharing 
of ideas. He begins by asking a student to read the question and then her answer:

Rita:   It can be even or odd. If the [number of] base edges is even, it’s even. If the 
number of base [edges] is odd, it’s odd. Thus, it depends on the number of 
edges of the base.

The student presents a correct generalization. In order to obtain a justification, 
the teacher asks for the explanation of the “why”:
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Teacher:  And how did you get to that conclusion?
Rita: Doing edges times three.
Teacher:  And why times three?
Rita:   Because we have to know, we have to add [the edges of] the base, plus 

the side edges, plus [the edges of] the other base.

Next, the teacher challenges the students to formulate the generalization in a 
more formal language:

Teacher:   We can say here, base 1 and base 2. At base 1 we have… Let us also 
generalize, a letter.

Bernardo:  a.
Teacher:  a. And at the base 2?
Students:  a.
Teacher:  a.
Teacher: And at the sides?
Students:  a.
Teacher:  So, how many [edges] do I have in total?
Students:  3a.

In question 3, the teacher begins the discussion by encouraging students’ sharing 
of ideas. Two students present their answers, indicating generalizations as possible 
properties:

Teacher:   And, in the meantime, here’s already the third property on the board. 
What’s the property?... What did you find out, Eduardo?

Eduardo:  The triple.
Teacher:  The triple, what is the triple?
Eduardo:   The [total] number of edges is equal to three times the number of edges 

of the base.
Teacher:  And that is a property.
Berta:   The total number of edges of the prism s will always be a multiple of 

three. Whether it’s even or odd.
Faced with Berta’s response, the teacher asks the student to justify 
her answer:

Teacher:  Why?
Berta:   Because we’re always going to have to multiply by three. Because it is 

the base plus the base plus the other [side edges].

During the whole-class discussion, the teacher asks students to present their 
solutions, starting with partial or incomplete solutions, which he seeks to value. 
However, he also promotes moments of reflection in order to draw attention to the 
limitations of these responses. His questions highlight generalizations and justifica-
tions. For the most part, they are guiding questions (“And have you concluded this 
through an example?”…), although there are also informing questions (“And that’s 
a property”...). There are also some challenges, particularly when the teacher seeks 
to lead students to formulate their answer in a more formal language or when he 
asks the students to justify their answer (“Why?”). In each question, the teacher 
seeks that the students’ contributions lead to the formulation of a correct answer, 
which he finally synthesizes in a small informing action.
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8.4.2  Grade 9 Lesson: Comparing Areas of Rectangles

8.4.2.1  The Task

This task, proposed to a grade 9 class, calls for a response to a situation (10% 
increase in length and 10% decrease in the width of a rectangle), which may yield a 
generalization if applied to any rectangle. In addition, the task allows generalizing for 
other percentages and justifying the results. The task is interesting because it leads to 
an unintuitive result, since, at first glance, it could be thought that changes in dimen-
sions would compensate for each other. The task is open as it asks, “what can you 
say?” In fact, several things can be said, from simply whether the area is maintained, 
increased or decreased, for all or only for a few rectangles and, in the case of change, 
how it changes. In this lesson, students work in pairs or groups of three.

8.4.2.2  Launching and Autonomous Work

The launching of the task is based on reading the statement of the task after which 
the teacher asks, “Does anyone have questions?” The teacher gives indications for 
the work to be developed, says, “I am now asking you to begin to work, OK?” and 
wishes students success, thus seeking to involve the students in solving the task.

In the phase of autonomous work, the teacher follows the solution of the task by 
the students. To try to understand what a pair of students had already thought, she 
asks them guiding questions, without giving indications that could lower the degree 
of challenge of the task:

Abel:   These 10% first increase and then decrease, the area will continue to be 
larger, even if it is close.

Teacher:   OK. Can you repeat, please, Abel? What do you think is going to happen 
to the area?

Abel:   It will increase, no matter how little it may be. Because 10% here [sheet 
length] is greater than 10% here [sheet width]. So if we increase it 
10% here...

Abel presents a wrong conjecture made apparently from a particular case (a 
paper sheet).

As a way to get students to think more about their answer, the teacher asks them 
to indicate a justification strategy:

Teacher:  And do you have a way to show that?
Abel:  To show? We can try to get there.

The length of a rectangle was enlarged 10% and its width was shortened 10%. 
What can you say about the area of the rectangle when compared with the 
area of the initial rectangle? Show your thinking.
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Tiago:  By drawings.
Teacher:   Any justification? By drawings, OK.  And more, what else can you 

try to do?
Abel:  Give numbers. We can give numbers.
Teacher:   You can give numbers. So try giving numbers there. What else, you were 

going to suggest something else, Tiago?
Tiago: x and y.
Teacher:  So... [The teacher withdraws and the students continue their dialogue]
Abel:  Do we experiment with numbers?

The first question (“And do you have a way of show that?”) is a challenge, which 
is successful because then the students indicate several possible solution strategies. 
The teacher welcomes the students’ first suggestion (“By drawings”) but presses 
them to present other possible strategies. The students then advance other sugges-
tions, such as “giving numbers” (trying a specific case) and using variables, finally 
deciding to try a specific case. It should be noted that most of the teacher’s subse-
quent questions are guiding question (“More, you can try to do what?”,...) although 
there are also informing/suggesting actions (“Drawings, OK”,...). Thus, the initial 
challenge of this dialogue was important to direct the students’ work, but it was sup-
ported in guiding and informing/suggesting actions.

Later, the teacher interacts with another student pair, in which one of the students 
questions what the other student had done. Her first goal is to understand the strat-
egy followed by the students. She finds that the students had explored an example, 
coming to a correct answer, but were having difficulty in interpreting the result. In 
view of this, she seeks that the students resume the statement of the task in order to 
identify what is the aim:

Teacher:  So, read the question again. What can you...
Fernando:   Say about the area of the new rectangle, as it compares with the ini-

tial one.
Teacher:   So, the area of the new rectangle compared to the area of the initial 

rectangle, is what?
Fernando:  It’s smaller.
Teacher:  It’s smaller. And can you tell how much smaller it is?
Fernando:  Yes. No.
Guilherme:  It’s 10%.

With the help of the teacher’s questions, the students recognize that the trans-
formed rectangle will have an area smaller than the original rectangle but are con-
fused about the change that occurs. In view of this, the teacher pressures the students 
to give a more precise response, quantifying the change that occurs:

Teacher:  Is it 10%?
Fernando:  No, it is not 10%.
Teacher:  It is not 10%, Fernando? How can you show me that it is not 10%?
Fernando:  I have to do a rule of three.

[Fernando and Guilherme discuss what values can be or not]
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Teacher:  So, experiment, Fernando.
Guilherme:  I know.
Teacher:  So, do it, Guilherme, do the computation.

The students continue undecided about the transformation that takes place, with 
contradictory ideas, and continue to show difficulty in interpreting the result that 
they themselves obtained. In view of this, the teacher encourages them to continue 
to explore the situation, quantifying the change that occurs. Although the task 
involves simple percentages, the students consider that they need to use the rule of 
three. The teacher performs mainly guiding actions, although there are also inform-
ing/suggesting actions (“Read the question again”; “do the computations there”).

The teacher resumes the interaction with one of the groups, in order to under-
stand the progress made by the students:

Teacher:   Have you come to a different conclusion or have you been able 
to show?

Fernando:   The area [of the rectangle] is going to be smaller.

The students had explored two specific cases, verifying that the area was reduced. 
The teacher seeks to get students to make a generalization:

Teacher:  So, but is this true for these values 10 and 6 or for all?
Fernando:  For all, for all.
Teacher:  Yes? Show me.
Fernando:  We made two, it’s always!

Faced with the answer from Fernando, the teacher questions the students if the 
justification given is valid, that is, if two examples are sufficient to justify an answer. 
In view of the students’ indecision, the teacher suggests that they use variables to 
verify what happens to any rectangle:

Teacher:  And is [checking] two examples enough to show that it’s always true?
Fernando:  I don’t know.
Teacher:   And what if the dimensions of the rectangle were x and y? You would 

do the same computations that you did for these specific values? Would 
you arrive at the same conclusion? Experiment.

Fernando:  But with x and y? But x and y are any numbers.

Considering the difficulty of students in moving from the use of specific mea-
sures to the use of variables, the teacher asks targeted questions to help the students 
arrive for themselves at a strategy that allows them to calculate the area of the 
transformed rectangle:

Teacher:  If I have 10, if I increase 10%, what value do I get?
Fernando:  11.
Teacher:  So, if I have y? If I increase 10% of y, I get…
Fernando:  More 10% of y.
Teacher:  How do I write?
Guilherme:  You do not write, it is only y.

J. P. da Ponte et al.



161

Teacher:   So, is my original measure. If I’m going to increase 10%. Can I say 
that the y corresponds to what percentage if it is my original number?

Fernando:  100%.
Teacher:   100%, so the corresponding amount I’ll get, it is worth another 10%, is 

it worth what percentage?
Fernando:  110%.
Teacher:  110%. So can I work with that? Look at that. For x and y.
Fernando:  All right, we’ll think about it.

To lead students to consider the general case of a rectangle, which allows for a 
mathematically valid justification, the teacher chooses to guide the students by 
showing them the parallel between the particular cases that they had considered and 
the general case of the rectangle of dimensions x and y. A strong support from the 
teacher was necessary to help the students write the dimensions of the transformed 
rectangle from the initial rectangle of dimensions x and y.

In the interaction with another group, the teacher begins by observing the stu-
dents’ solution. They used variables x and y for the dimensions of the initial rect-
angle and show, through algebraic calculations, that the area of the transformed 
rectangle is 99/100 of the initial rectangle (Fig. 8.2). Considering that the students’ 
answer fully responds to the situation, the teacher proposes an extension of the task, 
involving the exploration of new questions, leading to possible conjectures and 
generalizations:

Teacher:  So, and you weren’t curious to try to figure it out... For example, in this 
case, I changed the length, increased it by 10% and the width decreased 
by 10%. What if instead of 10%, I used 20%? Or 30%? Was anything 
interesting going to happen? Did you experiment?

Telmo:  No.

Fig. 8.2 Students’ algebraic computations to find the area of the transformed rectangle
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Teacher:   Try it. If I took a rectangle and increased, it 20% in length, and in that 
case, how much is it going to decrease in width?

Telmo:   The more it increased and decreased, then, we are going to multi-
ply anyway.

Teacher:  And what do you think it was going to happen in relation to the area?
Telmo:  The difference was going to be larger.
Teacher:  But was it still smaller? Or is there a possibility of increasing?
Bianca:  It was still smaller.
Teacher:  So show me that. Can you show me?
Telmo:  But how much? Increases 20% and decreases 20%?
Teacher:  And so on, what if it was 30 and 40, what would happen?

In this case, the teacher uses guiding actions to get students to explain their rea-
soning. Once the students have correctly solved the proposed task, the teacher chal-
lenges them to try other cases, involving other variations. The students immediately 
start making conjectures, but the teacher tells them that they should systematically 
explore different cases.

The launching of this task was rather straightforward; as the teacher believes that 
the students will have no trouble understanding the statement, so she simply encour-
ages them to start for students who working. During the autonomous work, using 
guiding questions, the teacher seeks to understand what the students are thinking. 
When they have a wrong strategy, she challenges them to justify it. With a group 
that is having trouble in interpreting the results of their computations, she provides 
suggestions so that they can see in detail what they got. For students who could 
solve a specific case but were having great trouble in considering the general case, 
the teacher provided detailed guidance. Finally, with students who solved correctly 
the task, she challenges them with an extension involving different variations.

8.4.2.3  Whole-Class Discussion

The moment of collective discussion begins with the presentation of a group that 
bases the generalization on only two examples:

Teacher:   I asked a group to come forward to explain the first strategy they used 
when they solved the problem . . . Madalena, I want to hear it.

Madalena  [speaking with reference to the solution she put on the board (Fig. 8.3)]: 
So we, for the first rectangle, decided that the width would be 20 and 
the length would be 40. Then we went to calculate the 10% of each 
number so that we could reduce or increase.

Teacher:  So, Guilherme, help Madalena there, what did you do here?
Guilherme:  We calculated 10%.
Teacher:  So, the 10% length is how much? The 40?
Guilherme:  4.
Teacher:  And then the new rectangle has what dimensions?
Guilherme:  18 and 44.
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Fig. 8.3 Solution of Madalena at the board

Teacher:   We get 18 and 44 units of measurement, right? Then, the colleagues 
started by using an example, assigning values to the measure of the 
length of the rectangle and the measure of the width of the rectangle.

Madalena:   Now let’s calculate the area of the first and second rectangle and then 
we will compare the two areas. The initial rectangle gives us 800 units 
of area. And the area of the second gives us 792 units of area. .. So, it’s 
smaller and we wanted to calculate the percentage of how much 
smaller the final rectangle was to the initial rectangle. That’s why we 
made another rule of three. We made, 800 stands for 100%, as 792 
stands for x.

At first the teacher, using mainly guiding actions but also some informing/sug-
gesting actions, seeks to have the group explain to the whole class how the two 
examples were explored, valuing the students’ work. It should be noted that students 
prefer to use the rule of three rather than do the direct calculation of the percentage.

Later, the teacher raises the question of the possibility of justification for any 
rectangle of the result obtained from specific examples. This leads into a presenta-
tion from a group that had explored this possibility:

Teacher:   But the question I asked most of you was: You experimented very well 
with specific values for measurement of length and measurement of 
width. Would it be possible for us to justify that for any measure of 
length and any measure of width? If we increased the length by 10% 
and decreased the width by 10%? Could we generalize this conclusion 
to any length value and any width measure? Is that possible?

Tiago: Yes.
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Fig. 8.4 Computations made by the group of Tiago

Teacher:   So, here to the group of Tiago, Tomé and Manuela, can I ask you to 
come and show how you thought? Start there explaining how you did 
it, what was your first approach?

Tiago:   At the beginning, we decided to find how much was the first rectangle, 
to help us. So, we found it easier to say that the length of the first rect-
angle was x and the width of the first [rectangle] was y. After, the sec-
ond, as we knew the length was 10% longer, we knew that the length 
was x plus 10% of x [writes 10/100]. And the width was y minus 10% 
of y [writes 10/100]. So, we wanted to know the area, because that’s 
what it’s asked for. The area of the first and the area of the second.

Teacher:   Just one thing, does everyone understands why the colleagues 
used 10/100?

Students:  It’s the same thing. [they refer to various representations of 10%]

Finally, the computations done by this group (Fig. 8.4) show that the area of the 
transformed rectangle A2 represents 99% of the xy area of the initial rectangle A1 
of dimensions x and y.

In this whole-class discussion, a group of students presents two examples and the 
teacher guides them to show that the transformed rectangle has an area that is 99% 
of the area of the original rectangle. The teacher asks the question whether, in addi-
tion to the use of specific values, it would not be possible to draw the conclusion for 
the general case of any rectangle. The teacher then invites a group of students to 
present a generalization based on algebraic manipulation by transforming the per-
centages into fractions. Thus, the teacher begins by promoting the presentation of 
incomplete or partial solutions, which she thus values, in order to promote the pre-
sentation of the general case.
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8.5  Conclusion

In both lessons, the teachers chose tasks that required mathematical reasoning. The 
grade 8 task required generalizations and justification in an explicit way, whereas 
the grade 9 task required them indirectly, at the same time allowing for different 
levels of generalization. Both tasks concerned the application of knowledge to situ-
ations that were new for the students rather than the development of new concepts 
or procedures. In fact, creating tasks that sustain the development of new concepts 
is much more complex for teachers, even when they search for ideas on the internet 
or elsewhere.

Both teachers organized their lessons according to the phases of the exploratory 
approach. The grade 8 teacher made an interesting launching, providing a negotia-
tion of meaning of concepts central to the task. The grade 9 teacher did not foresee 
the need for such negotiation of meanings and just provided for the organization of 
the class in pairs or small groups and encouraged the students to begin working on 
the task. In both cases, the teachers took care not to lower the cognitive level of the 
tasks. During students’ autonomous work, the teachers moved around the class to 
observe students’ progress and difficulties and to provide hints concerning repre-
sentations to use, trying out examples in order to formulate conjectures and gener-
alizations, or providing justifications. Teachers’ actions at this phase considered 
each group of students and their standpoint, striving to provide opportunities for all 
students to engage with mathematical challenges. Again, also at this phase of the 
lesson, the teachers strived to not lower the cognitive demand of the tasks. For the 
whole-class discussions, the teachers sequenced the presentation of students’ solu-
tions, from more incomplete or invalid to the most complete ones, striving that the 
main ideas would be appropriated by all students in the class. In both cases, they 
sought to highlight students’ generalizations and justifications, moving from the 
analysis of specific cases to the consideration of the general case. The students had 
more facility in making generalizations, usually from considering a few examples, 
than in providing complete justifications. In the grade 9 class, some students were 
able to use algebraic representations to consider the general case but were far from 
using it in an efficient way.

This chapter provides new knowledge about the general and specific actions that 
teachers may use in lessons aimed at the development of students’ mathematics 
reasoning, extending the work of Fraivillig et al. (1999), Cengiz et al. (2011), and 
Brodie (2010). In these lessons, the teachers used general actions, with much 
emphasis on guiding actions. When the teachers felt necessary, they used informing/
suggesting actions in order to provide students specific information that they need 
or to strengthen their confidence in their approach or line of reasoning. In both les-
sons, the main challenge was provided in the statement of the task, but the teachers 
also used challenging actions during their interaction with students, striving to lead 
them to develop their reasoning or to improve the mathematical formulation of their 
answers. As illustrated in the discussion of the episodes, the teachers also used 
many of the specific actions indicated in Table  8.1, which provides a general 
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orientation toward what teachers may do in seeking to promote students’ general-
izations and justifications.

In summary, these lessons illustrate that developing mathematical reasoning, 
with an emphasis on generalizing and justifying, is achievable in mathematics les-
sons at these grade levels. Such emphasis requires the careful selection of tasks and 
may be achieved by working in an exploratory approach, through three-phase les-
sons. It  is important that teachers carefully plan these lessons in order to foresee 
possible students’ strategies and difficulties and plan ways to deal with them as 
they arise in the classroom. Providing these experiences to students and supporting 
their mathematical growth is part of a mathematical education that honors impor-
tant mathematical ideas and the same time the students’ capabilities for doing 
mathematics.
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Chapter 9
Mathematical Argumentation 
in Small- Group Discussions of Complex 
Mathematical Tasks in Elementary 
Teacher Education Settings

Gwendolyn M. Lloyd and P. Karen Murphy

9.1  Introduction

Mathematical argumentation – a process of developing, presenting, and evaluating 
evidence and reasoning in support of mathematical claims about a question or situ-
ation  – is a central disciplinary practice that is globally considered an essential 
component of school mathematics programs for students at all grade levels. In the 
United States, the Common Core State Standards for Mathematics (NGA Center & 
CCSSO, 2010) include eight Standards for Mathematical Practice for students from 
kindergarten through high school, one of which focuses explicitly on mathematical 
argumentation, “Construct viable arguments and critique the reasoning of others” 
(p.  7), consistent with the earlier “reasoning and proof” process standard of the 
National Council of Teachers of Mathematics (2000). Although standards and cur-
ricular recommendations promote visions of classrooms rich with mathematical 
argumentation, there is a limited body of research about how teachers can promote 
and support students’ engagement in mathematical argumentation in the elementary 
grades (Krummheuer, 2007, 2013; Stylianides, 2007; Yackel, 2002).

Existing research from classrooms across grade levels suggests that, as students 
learn to make and evaluate mathematical arguments (Conner et al., 2014a; Ellis, 
2011; Stephan & Rasmussen, 2002; Weber et al., 2008), teachers play important 
roles in supporting students as they gain proficiency with mathematical argumenta-
tion (Bieda, 2010; Conner et al., 2014b; Conner & Singletary, 2021). Facilitating 
mathematical argumentation in the classroom demands changes in existing dis-
course patterns and other mathematics classroom norms and expectations (Cobb, 
1999; Forman et  al., 1998; Walshaw & Anthony, 2008; Yackel, 2002). Because 
many teachers, including those who teach (or will teach) in elementary schools, 

G. M. Lloyd (*) · P. K. Murphy 
Pennsylvania State University, University Park, PA, USA
e-mail: gml14@psu.edu; pkm15@psu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Leikin (ed.), Mathematical Challenges For All, Research in Mathematics Education, 
https://doi.org/10.1007/978-3-031-18868-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18868-8_9&domain=pdf
mailto:gml14@psu.edu
mailto:pkm15@psu.edu
https://doi.org/10.1007/978-3-031-18868-8_9


170

have not benefitted from personal experiences with and knowledge about mathe-
matical argumentation (e.g., Herbert et al., 2015; Melhuish et al., 2020), this area 
has gained increasing attention in mathematics teacher education in recent years 
(Conner & Singletary, 2021; Rogers & Steele, 2016; Stylianides et al., 2013; Yopp, 
2015; Zambak & Magiera, 2020).

In this chapter, we describe an ongoing project in which we provide prospective 
teachers [PTs] with first-hand experiences with mathematical argumentation 
through a discussion approach known as Quality Talk (Murphy et al., 2018a, b, c). 
In our project, elementary PTs learn about classroom discussions that prioritize 
mathematical argumentation through both explicit instruction and participation in a 
series of small-group discussions about complex mathematical tasks during their 
university methods courses. PTs also plan and facilitate small-group mathematics 
discussions with children in kindergarten through grade 4 in their supervised field 
experiences. Our aim in this chapter is to illustrate how elements of the Quality Talk 
discussion model enhanced our ability to support PTs’ developing understandings 
and use of mathematical argumentation in elementary classrooms.

In the following sections, we describe the foundations of our project by provid-
ing an overview of the core components of mathematical argumentation and pre-
senting key elements of the Quality Talk model. Subsequent sections offer details 
about and examples of our use of Quality Talk to support mathematical argumenta-
tion in different teacher education settings involving elementary PTs: a university 
methods course and field experience classrooms. Guided by the notion that talk is 
an external representation of thought, our central aim is for PTs to learn to facilitate 
mathematics discussions that promote critical-analytic thinking, understood as 
“effortful, cognitive processing through which an individual or group of individuals 
comes to an examined understanding” (p. 563, Murphy et al., 2014). In this way, we 
view discussion-based argumentation as a fundamental tool by which students can 
reach examined understandings of mathematics.

9.2  Mathematical Argumentation

9.2.1  Components of Mathematical Arguments

Our conceptualization of mathematical argumentation is rooted in Toulmin’s (1969) 
model which describes an argument in terms of three core components. A conclu-
sion or claim is a statement being asserted or argued for, the data provide evidence 
in support of the claim, and the warrant connects the data or evidence with the 
claim. The warrant demonstrates that the claim is valid and provides reasoning for 
why the evidence supports the claim. In Toulmin’s model, an argument may include 
additional components, including a modal qualifier (an expression of the degree of 
confidence about the claim), backing (additional support for the warrant), and a 
rebuttal (valid rejection of a warrant). While some researchers have focused on the 
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three core components claim–data (evidence)–warrant (reasoning) to examine stu-
dents’ and teachers’ argumentation activity in mathematics classrooms (e.g., 
Krummheuer, 2007; Yopp, 2015), many have applied Toulmin’s full scheme, or an 
adaptation of it, to characterize mathematical argumentation (e.g., Conner et  al., 
2014a; Forman et  al., 1998; Inglis et  al., 2007; Weber et  al., 2008; Zambak & 
Magiera, 2020).

In our work with students, teachers, and teacher educators, we characterize 
mathematical argumentation as a process of developing, presenting, and evaluating 
evidence and reasoning in support of mathematical claims about a question or situ-
ation. Drawing on Toulmin’s (1969) model, the three primary elements of this con-
ceptualization of mathematical argumentation, as shown in Fig.  9.1, are claims, 
evidence, and reasoning. In response to an authentic question1 about a mathematical 
task or situation, students make claims in order to take a position on some aspect of 
the mathematical situation under consideration. A claim is insufficient on its own as 
a response to an authentic question; evidence and reasoning together provide needed 
support for a claim. A student might use a mathematical representation, such as a 
graph or a data table, as evidence in support of a claim. The student’s reasoning, 
then, demonstrates why the evidence supports the claim through the logical use of 
known mathematical definitions, properties, relationships, and concepts.

1 An authentic question is an open-ended question in which the person asking the question does not 
know the answer or is genuinely interested in knowing how others will answer; in other words, the 
answer is not pre-specified (Nystrand & Gamoran, 1991; Murphy et al., 2018a). See also Table 9.1.

Fig. 9.1 Components of mathematical argumentation
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The strength of a mathematical argument depends upon the quality of the evi-
dence and reasoning and the relationships among the claims, evidence, and reason-
ing, as portrayed in Fig. 9.2. To provide strong support for a claim, evidence needs 
to be both accurate and relevant to the claim being made, and the reasoning must 
clearly and logically link the evidence to the claim. We consider the reasoning 
exemplified in Fig.  9.3, made in relation to a complex mathematical task, to be 
strong because it connects the evidence (namely, the labeled diagram that a student 
sketched, showing a composite shape that is consistent with the constraints of the 
situation) to the claim. The reasoning draws on familiar properties of rectangles to 
demonstrate logically how and why the sketch supports the claim that the composite 
shape is not a square.

When a stated claim is not valid or when the evidence or reasoning is weak, inac-
curate, or unclear, the opportunity for refining or rebutting an argument emerges. In 
accord with Toulmin’s (1969) ancillary argument component of rebuttal, our fram-
ing of mathematical argumentation also includes challenge arguments which coun-
ter another argument or explain why the evidence or reasoning in another argument 
is not valid.

Mathematics education researchers who explicitly frame their analyses of math-
ematical argumentation in terms of Toulmin’s (1969) core components of claims, 
evidence, and reasoning offer similar conceptualizations to our description above. 
Consider, for example, two recent studies about elementary and middle grades PTs’ 
engagement in mathematical argumentation during mathematics courses required in 
their university teacher preparation programs. In a research report about the quality 
and types of claims that elementary PTs make when presented with a false general-
ization and a counterexample, Yopp (2015) uses Toulmin’s core components to 
define a viable argument:

Viable arguments have a claim, data, and a warrant and meet the following 
criteria:

 1. Express a clear, explicit, unambiguous, prudent, and appropriately worded claim;
 2. Express support for that claim that involves acceptable data (or foundations);
 3. Express acceptable warrants (or narrative links) that link the data to the claim; and
 4. Identify the mathematics (definitions and prior results) on which the argument 

relies. (p. 82)

Fig. 9.2 Relationships among claims, evidence, and reasoning
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Fig. 9.3 Example of strong reasoning and evidence in support of a claim

Acceptable forms of data or evidence in a viable argument may include “exam-
ples, diagrams, prior results, definitions, narrative descriptions, stories, etc., pro-
vided that the representation of the data/foundations can be appealed to appropriately 
in the warrant” (p. 82). This characterization by Yopp largely resonates with the 
qualities of a strong argument we described in reference to Figs. 9.2 and 9.3, with 
the exception that we see the possibility for mathematical definitions to provide 
evidence or to serve as part of reasoning.

Reporting about their study of elementary and middle grades PTs’ argumenta-
tion related to solving crypto-arithmetic mathematical tasks, Zambak and Magiera 
(2020) defined claims as “final or intermediate statements a [PT] articulates for the 
solution of a problem,” evidence as “information a [PT] gathered and used to pro-
vide support for the validity of a claim,” and reasons as “rationales a [PT] provided 
to eliminate uncertainties about letter-value assignments and to document that the 
solution is comprehensive and that it addresses all possible cases” (p. 5). In general, 
these definitions coincide with those presented in Fig. 9.1.2 Whereas Zambak and 
Magiera used claims, evidence, and reasoning to examine PTs’ individual written 
arguments, they additionally used refutations and certainty, similar to rebuttal and 
qualifier in Toulmin’s (1969) model, to analyze PTs’ collective classroom 

2 Zambak and Magiera’s study primarily deals with claims that are assertions of solutions to math-
ematical tasks. In contrast, in our conceptualization, a claim is a statement in response to an 
authentic question about the underlying mathematical ideas of a task or its solution; it is possible 
that a claim will not speak directly to the solution to a mathematical task (see Fig. 9.3). We explain 
more about the roles of mathematical tasks and authentic questions in Quality Talk discus-
sions below.

9 Mathematical Argumentation in Small-Group Discussions of Complex…
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arguments. They describe how, when PTs in their study generated arguments 
together in the classroom, “the social nature of argumentation provided [them] with 
the opportunity to engage in refutations or to express the degree of certainty, as they 
listened, evaluated, challenged, and contributed ideas to each other’s arguments” 
(pp.  4–5). This collective mathematical argumentation is the focus of the next 
section.

9.2.2  Collective Mathematical Argumentation 
in the Classroom

Although a mathematical argument can be developed individually, our primary 
focus in this chapter and in our project is on the collective, dialogic argumentation 
that develops in the context of classroom discussions in which students are encour-
aged to work together to make claims in response to questions about a mathematical 
situation (often presented in the form of a mathematical task); support claims with 
convincing evidence and reasoning; and evaluate the quality and validity of shared 
claims, evidence, and reasoning in conjunction with peers. Collective mathematical 
argumentation has multiple purposes in classrooms, including in elementary school 
classrooms (Lannin et al., 2011). When students co-construct mathematical argu-
ments with peers, they gain opportunities to develop mathematical insights and 
understandings that they would be unlikely to reach by working on their own 
(Conner et al., 2014a; Ellis, 2011; Weber et al., 2008; Yackel, 2002) and to begin to 
build early but foundational understandings related to mathematical proof 
(Pedemonte, 2007; Stylianides, 2007). Furthermore, collective mathematical argu-
mentation provides students with first-hand experiences with core disciplinary prac-
tices that stand in contrast to those that continue to dominate many mathematics 
classrooms in the United States (Banilower et al., 2013; Hiebert et al., 2003).

For students to engage in collective mathematical argumentation, changes must 
occur in the kinds of interactions that take place in most classrooms. A large corpus 
of mathematics education research provides insights into the important roles that 
teachers play in shaping learning opportunities for students in classroom discus-
sions through the establishment of sociomathematical norms (e.g., Kazemi & 
Stipek, 2001; Yackel, 2002; Yackel & Cobb, 1996); teachers’ selection of complex, 
cognitively demanding tasks from which to launch discussions (e.g., Gresalfi et al., 
2009; Henningsen & Stein, 1997); and teachers’ use of particular actions and moves 
intended to extend students’ thinking and understanding through discussions (e.g., 
Cengiz et al., 2011; Fraivillig et al., 1999; Hintz & Tyson, 2015; Stein et al., 2008). 
Studies describe the tendency of teachers to ask leading questions (Franke et al., 
2009) or to hesitate at times to provide explicit direction for fear of imposing on 
student thinking (Lobato et al., 2005), highlighting pedagogical tensions faced by 
teachers as they facilitate mathematics discussions with students. Adding to this 
complexity, research studies also show that students’ different academic and social 
identities and relations can influence the nature of their participation in mathematics 
discussions (Esmonde & Langer-Osuna, 2013; Gresalfi et al., 2009).
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In light of the important roles of teachers in students’ opportunities to participate 
in mathematical argumentation through classroom discussions, PTs’ development 
with respect to mathematical argumentation has become the focus of numerous 
research studies in mathematics teacher education (e.g., Conner & Singletary, 2021; 
Rogers & Steele, 2016; Stylianides et al., 2013; Yopp, 2015; Zambak & Magiera, 
2020). For example, Zambak and Magiera’s study, introduced previously, offers 
illustrations of elementary and middle grades PTs’ emergent mathematical argu-
ments during a university mathematics course. These researchers analyzed tran-
scripts of whole-class discussions in which PTs presented and discussed problem 
solutions that they had written prior to the discussions and during which “the 
instructor skillfully [sic] directed PTs’ attention” (p. 22) to important argument ele-
ments, such as “well-developed support for their assertions” (p. 22). In addition to 
scoring the argumentation skills exhibited in the written solutions, the researchers 
traced components of PTs’ arguments during the discussions and marked moments 
when PTs asked questions and “pedagogical moves of the instructor (e.g., prompt-
ing, re-voicing)” (p. 13). Zambak and Magiera found that although PTs initially 
used predominantly inefficient guessing strategies and exhibited inadequate argu-
mentation skills overall, the PTs became increasingly systematic in providing sup-
port for their claims and showed gains in argumentation skills over the course of a 
semester.

Although existing studies indicate that students can effectively co-construct 
mathematical arguments during classroom discussions, our understandings about 
how argumentation develops in the context of discussions remain limited. Few stud-
ies in mathematics education simultaneously examine core components of mathe-
matical argumentation (i.e., claims, evidence, and reasoning) and qualities of 
productive classroom talk as it relates to students’ cognitive processing (e.g., 
critical- analytic thinking). When studies of collective mathematical argumentation 
include analysis of classroom discussions, they tend to do so without the guidance 
of an explicit discourse approach (e.g., Forman et  al., 1998; Stylianides, 2007; 
Weber et al., 2008; Zambak & Magiera, 2020). We propose that intentional instruc-
tion about and analysis of argumentation and discourse together may be particularly 
fruitful in elementary classrooms and elementary teacher education contexts, where 
deeper understandings of discussion-based mathematical argumentation practices 
are needed.

9.3  Classroom Discussions

Dewey (1916) described discussion as “…bringing various beliefs together; shak-
ing one against the other and tearing down their rigidity…it is conversation of 
thoughts; it is dialogue—the mother of dialectic…” (pp. 194–195). It is through a 
conversation of thought that individuals by themselves or as part of some social 
exchange begin to examine their understanding through logical evaluation and 
embrace the power of thinking and interthinking. The centrality of discussion as a 
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pedagogical tool is not new. Both Eastern and Western scholarly traditions date the 
use of discourse-intensive pedagogy to the earliest written records (Palmer, 2001). 
From the preSocratic period into the Modern era, high-quality discussions have 
been praised for their utility in enriching students’ thinking and argumentation.

Paralleling the support for critical, reflective discussions found in philosophical 
writings, an array of psychological theories empirically ground the mechanisms by 
which individuals’ thinking and argumentation are enhanced through discussion. 
Cognitively, discussions promote active engagement in meaning-making from text 
and content (McKeown et al., 2009), elaboration and explanation of understanding 
(Fonseca & Chi, 2011; Inagaki & Hatano, 2013), and evaluation of claims and evi-
dence (Greene et al., 2016). Socioculturally, immense value is placed on language 
as a tool for thinking individually or through co-construction of understanding 
(Vygotsky, 1978). Essentially, Vygotsky held that children develop language to 
express their ideas or thoughts using the tools and signs of their culture. With 
repeated exposure to critical, reflective discussions, children eventually internalize 
the discourse community as the voice of “social others” guiding their thoughts. Like 
Dewey, Vygotsky valued discussion for its ability to foster students’ co- construction 
of knowledge and understandings about content, internalize ways of thinking that 
promote knowledge acquisition and refinement, and to forge habits of mind needed 
for meaningful learning (Cobb, 1999; Wells, 2007).

We also see empirical support for talk as a valued pedagogical tool in the critical- 
thinking literature. Results from the meta-analytic studies of Abrami et al. (2008, 
2015) provide evidence that discussion is one of the most effective pedagogical 
tools for increasing critical-analytic thinking and argumentation. In particular, ped-
agogical approaches that combine a stand-alone discourse model, through which 
students receive explicit instruction and modeling in productive discourse participa-
tion, with content-rich activities that engage students in complex problem solving 
produce stronger effects than either a generic or content-embedded approach. One 
such stand-alone discussion model is Quality Talk (Murphy & Firetto, 2018).

9.3.1  The Quality Talk Model

Quality Talk (QT) is an educator-facilitated approach to small-group discussions 
aimed at increasing learners’ critical-analytic thinking about, around, and with3 text 
and content. As shown in Fig. 9.4, the QT approach encompasses three interrelated 

3 We use about, around, and with to describe the type of cognitive processing students engage in 
during discussion. Learners bring basic understandings about the text or content to the discussion. 
Then, during discussion, they broaden their understandings around and with the text or content by 
asking questions that elicit generalizations, analyses, and connections to other texts, as well as 
personal and shared experiences. In the end, learners reach an examined understanding by weigh-
ing the arguments presented by peers in response to their questions and scrutinizing their under-
standings about, around, and with the text or content during discussion.

G. M. Lloyd and P. K. Murphy



177

Fig. 9.4 Conceptual model of the Quality Talk intervention

dimensions: (a) a professional development model, (b) educator professional vision, 
and (c) a discussion model. These dimensions interact reciprocally to promote indi-
vidual and collective critical-analytic thinking during small-group discussions.

In describing Quality Talk, we use the term “educator” broadly to include prac-
ticing teachers, PTs, and teacher educators who are learning to facilitate productive 
discussions. Similarly, we use the general term “learners” to include those who 
participate in educator-facilitated discussions. A learner might be an elementary 
school student or a PT, depending on the context. In our ongoing project, PTs some-
times hold the role of learner (i.e., when they participate in discussions facilitated 
by teacher educators) and other times serve as educators (i.e., when they facilitate 
discussions with children in their field experience classrooms).

9.3.2  QT Professional Development Model

For many educators, facilitating QT discussions requires a significant change in 
how they conceptualize the role of talk in teaching and learning (Wilkinson et al., 
2007). In making such shifts, educators often must reconceptualize their role and 
learners’ roles in discussions and make corresponding changes in instructional prac-
tices when implementing QT. Research has shown that educators need support in 
enhancing their professional vision, and associated pedagogical content knowledge, 
to effectively implement such learner-centered pedagogy (Murphy, 2018; NRC, 
2012). The QT professional development model was designed to support this peda-
gogical change and is composed of both initial and ongoing professional develop-
ments (detailed in Murphy & Firetto, 2018; Murphy et al., 2017; 2018b).

As displayed in Fig. 9.4, the initial professional development provides educators 
with an overview of QT pedagogy as well as content-based argumentation. 
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Specifically, this initial professional development introduces educators to the prin-
ciples that underlie effective change-making in instructional practice. Educators are 
taught about the four components of the QT model and how to enact these compo-
nents with learners in the classroom in ways that will lead more productive dis-
course. They are also encouraged to construct their own understandings of effective 
discussion facilitation through participation in sample QT discussions and by learn-
ing how to analyze their own and their learners’ discourse. Ongoing professional 
development (Garet et al., 2001; Sztajn et al., 2017) reinforces educators’ under-
standings of the QT model by providing opportunities to reflect on discussions, first 
individually and then collaboratively with a discourse coach, in order to examine 
whether learners are displaying indicators of critical-analytic thinking during dis-
cussion and how their own facilitation practices can promote indicators of such 
cognitive processing in future discussions.

9.3.3  Educator Professional Vision

Professional vision refers to “socially organized ways of seeing and understanding 
events that are answerable to the distinctive interests of a particular social group” 
(Goodwin, 1994, p.  606). Within the QT approach, fostering educators’ profes-
sional vision is seen as essential in supporting them in learning to facilitate produc-
tive discourse. Professional vision enables educators to perceive and codify 
meaningful patterns within classroom discussion, guide and promote richer learner 
exchanges through those identified patterns, and communicate and share the prin-
ciples of argumentation with others. Importantly, educators’ ability to acquire and 
enact professional vision is mediated by their pedagogical content knowledge 
(Shulman, 1986), particularly their discussion-specific pedagogical knowledge 
(Magnusson et al., 1999). Moreover, as educators develop their professional vision, 
we expect to see positive changes in their beliefs about their ability to facilitate 
meaningful discussions with learners (i.e., teacher efficacy; Bandura, 1977; 
Lakshmanan et al., 2011; Lotter et al., 2018). The notion of educator efficacy, rooted 
in Bandura’s (1977) self-efficacy theory, refers to an educator’s “judgment of his or 
her capabilities to bring about desired outcomes of [learner] engagement and learn-
ing, even among those [learners] who may be difficult or unmotivated” (Tschannen- 
Moran & Hoy, 2001, p. 783). Enhanced pedagogical content knowledge and efficacy 
strengthen educators’ ability to promote all learners’ critical-analytic thinking 
through content-rich discourse.

9.3.4  Discussion Model Components

As shown in Fig. 9.5, four components comprise the QT discussion model: an ideal 
instructional frame, discourse elements, a set of educator scaffolding moves, and six 
pedagogical principles (Murphy et al., 2022). The ideal instructional frame places 
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Fig. 9.5 Discussion model elements of the Quality Talk intervention

importance on embracing a critical-analytic stance (i.e., argument-rich querying; 
Wade et al., 1994) toward the text or content supported by moderate levels of the 
expressive (i.e., emotional connection; Jakobson, 1987) and efferent stances (i.e., 
information or knowledge seeking; Rosenblatt, 2004). During the discussion, edu-
cators and learners share control of the discussion with educators choosing compel-
ling content while gradually releasing control of the discussion to learners. Such 
shared control affords learners increased opportunities to govern turn taking and 
enact interpretive authority over problem solving and learning. Learners also 
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participate in several pre-discussion activities designed to prime their relevant 
understandings such as establishing authentic questions that will guide the discus-
sion. Discussions take place in small, heterogeneous groups of six to eight learners.

The second component, discourse elements, refers to the indicators of productive 
talk within learners’ verbal interactions (Murphy & Firetto, 2018; Murphy et al., 
2022). These discourse elements, described in Table 9.1, include types of questions 
and responses that are simultaneously indicators of learners’ critical-analytic think-
ing (Soter et al., 2008) and tools that learners can use to engage in critical-analytic 
thinking during discussions. For example, during productive discussions, learners 
pose different types of authentic questions about, around, and with content that they 
find meaningful. In other words, learners ask questions and respond to each other’s 
questions about the specific text or content being discussed, but they are also encour-
aged to explore related ideas and principles in the domain and to make connections 
between the text or content and their own learning experiences (see, for example, 
transcripts later in this chapter for further clarification).

A productive discussion includes authentic questions that elicit high-level think-
ing (e.g., generalization, analysis, or speculation) or forge affective and intertextual 
connections.4 In QT discussions, learners are also encouraged to ask questions that 
build on what has already been said (i.e., uptake questions) to open and extend the 
discursive floor to new or unexamined ideas. The QT model also emphasizes learn-
ers’ use of argumentation to explain and justify their thinking through elaborated 
explanations while also encouraging them to co-construct knowledge with other 
learners. They can challenge the claims, evidence, and reasoning of their peers (i.e., 
exploratory talk), or they can support and build on other learners’ claims by provid-
ing additional evidence and reasoning (i.e., cumulative talk).

As part of the QT model, educators implement a set of explicit discourse-specific 
lessons designed to augment learners’ discussion skills (e.g., how to ask and respond 
to questions). As suggested by Dewey (1916) and Vygotsky (1978), it is expected 
that over time learners will internalize productive discursive practices about content 
including how to activate relevant content knowledge, justify claims, scrutinize 
sources of evidence, or modify understandings to accommodate examined 
understandings.

Educator scaffolding, the third model component, emphasizes a set of talk moves 
(i.e., modeling, marking, prompting, challenging, and summarizing), described in 
Table 9.2, that educators can use to facilitate productive talk (i.e., discourse ele-
ments) during QT discussions and that have been shown to promote learners’ use of 
discourse elements (Wei et al., 2018). Importantly, these talk moves enable educa-
tors to facilitate productive discussions while allowing learners to maintain interpre-
tive authority.

The final component of the QT model, pedagogical principles, refers to a set of 
guiding principles that provide a foundation for fostering a discursive environment 

4 Note that whereas questions can be initiated by educators or learners, response types (i.e., EE, ET, 
or CT) can only occur within learner-generated turns.
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Table 9.1 Quality Talk discourse elements

Discourse 
Element Description Example

Authentic 
question (AQ)

Has multiple acceptable 
answers; speaker is genuinely 
interested in knowing how 
others will respond; answer is 
not pre-specified

Q: What are some different ways to represent 
the “part” and the “whole” in this situation?

Test question 
(TQ)

Presupposes a particular 
answer. Answer is explicitly 
stated in the text or is generally 
known

Q: What is one-half of 8?

Uptake 
question (UT)

Asks about something that 
another speaker has uttered 
previously

R: We could draw eight ice cream cones and 
circle every other one. The circles would be 
the people who want vanilla
Q: Why would we circle every other ice cream 
cone?

High-level 
thinking 
question 
(HLT)

Elicits analysis or 
generalization; learners engage 
in inductive or deductive 
reasoning

Q: How can the properties of rectangles help 
us reason about this task?

Speculation 
question (SQ)

Elicits consideration of 
alternative possibilities

Q: What are some ways that the green 
rectangle helps us find the missing length of 
the blue rectangle?

Personal 
experience 
question (PE)

Elicits connections between the 
text and feelings or about life 
experiences

Q: What problems have you solved in the past 
that remind you of this task?

Connection 
question (CQ)

Elicits a connection to another 
text (books, movies, TV shows, 
artwork, website) or shared 
knowledge

Q: How can we apply what we have been 
talking about regarding “reasoning with 
shapes” to this task?

Elaborated 
explanation 
(EE)

A statement with a claim 
(position, opinion, or belief) 
that is based on at least two 
independent, conjunctive, or 
causally connected forms of 
support (evidence or reasoning)

R: We could use a multiple of 8 to figure out 
the number of bunnies [claim] because if we 
knew the number of hutches, then we could 
multiply by 8 and add 1 [reasoning]. The 
second sentence of the task says that. Ten 
hutches would make 81 bunnies because 8 
bunnies times 10 hutches plus 1 bunny equals 
81 bunnies [Evidence]

Exploratory 
talk (ET)

Learners build, evaluate, and 
share knowledge over several 
turns; there must be an element 
of challenge

R1: You would have to use area, not perimeter
R2: You could use both!
R3: But area’s faster because you just multiply 
the two and with perimeter, you have to add 
up all the sides

Cumulative 
talk (CT)

Learners build positively, but 
uncritically, on what others 
have said over several turns; 
does not include an element of 
challenge

R1: I think I would start out putting 8 bunnies 
in each hutch
R2: I agree, but I also drew 11 bunnies in a 
hutch each time I put 8 in a hutch. They’re 
separate equations
R3: Yeah, my initial way of solving it was to 
make a system of equations with one for eight 
bunnies per hutch and one for 11 bunnies per 
hutch
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Table 9.2 Quality Talk educator scaffolding talk moves

Educator talk 
move Description Example

Prompting The educator prompts a learner to construct a 
longer response or a response that includes 
evidence or reasoning, thereby supporting more 
sophisticated talk

How do you know that it 
works?

Summarizing The educator tries to slow down the group and 
overview part of the discussion to help build 
coherence

Let’s just pause and have 
someone summarize what 
we heard

Marking The educator reinforces specific aspects of a 
learner’s discourse by explicitly pointing it out

Really nice explanation. 
You used evidence and 
excellent reasoning

Modeling The educator explicitly models use of a discourse 
element for learners. The educator must make the 
intention of modeling clear

I’m going to ask an uptake 
question …

Challenging The educator asks a learner to consider another 
point of view

I’m not sure I agree with 
that. Have you considered 
…

that empowers learners’ perspectives and ideas (Murphy & Firetto, 2018). Among 
these pedagogical principles are (a) embracing talk as a tool for thinking and inter-
thinking, (b) establishing normative discourse expectations which encourage a 
learner-centered talk pattern and further promote productive talk, (c) setting the 
boundaries for learners’ interactions by balancing responsiveness and structure so 
that discussions do not veer too far around and with the text or content in unproduc-
tive ways, (d) ensuring that educators come to the discussion with content clarity, 
and (e) embracing the context and diversity of the setting and those involved in the 
discussion. Together, these four components (i.e., instructional frame, discourse ele-
ments, educator scaffolding, and pedagogical principles) lay the foundation for a 
classroom discussion community in which educators and learners engage in produc-
tive discussions that lead to deep, meaningful cognitive processing, including 
critical- analytic thinking and argumentation.

9.4  Adapting Quality Talk to Develop Mathematical 
Argumentation in Elementary Mathematics Teacher 
Education Settings

Over the past several years, we have been adapting QT for use in mathematics 
teacher education. PTs enrolled in an elementary mathematics methods course are 
also supervised in intensive field experiences in grades K-4 classrooms. PTs partici-
pating in our project receive explicit instruction about the four components of the 
QT discussion model (i.e., instructional frame, discourse elements, educator 
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scaffolding, and pedagogical principles) and are given the opportunity to use their 
developing knowledge of these components as they participate in QT discussions in 
which they attempt to solve a complex mathematical task with peers. In addition to 
participating in QT as learners, PTs learn how QT can be applied in elementary 
(grades K-4) classrooms to promote generative mathematical argumentation among 
children. Stratified enactment of the QT model helps PTs understand how produc-
tive discussions can undergird critical-analytic thinking and meaningful learning. 
PTs experience first-hand how the QT discourse elements can be used as tools that 
support learners’ engagement in mathematical argumentation and also provide indi-
cators of learners’ critical-analytic thinking during discussions (Soter et al., 2008).

In this project, we have adapted selected instructional materials and elements in 
the mathematics methods course to support PTs’ conceptualizations of productive 
discussion centered on mathematical argumentation in elementary classrooms. The 
mathematical tasks selected for PTs’ small-group methods course discussions, 
which are facilitated by teacher educators who engage in initial and ongoing QT 
professional development, have several important characteristics: they are non- 
routine, place a high level of cognitive demand on PTs (Henningsen & Stein, 1997), 
and would be difficult for one PT to solve individually without insights from peers. 
An example of such a task appears in Fig. 9.6. Before engaging in discussion, PTs 
participate in several activities to prime their understandings of the mathematics of 
the selected task, including writing authentic questions for use in the discussion. 
After discussions, PTs also reflect upon their experiences and learning in writing.

As an assignment that builds upon their experiences participating in methods 
course discussions with peers, PTs plan and facilitate small-group discussions with 
students in their grade K-4 field-based classrooms. Paralleling the task-based dis-
cussions facilitated by mathematics teacher educators with the PTs, the discussions 

Fig. 9.6 Task for a Quality Talk discussion with prospective teachers
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with grades K-4 students also center on complex tasks selected from the mathemat-
ics curricular program used in their elementary schools (e.g., see Fig. 9.8). PTs’ 
experiences as both learners and educators in QT discussions allow them to begin to 
develop their own professional vision for facilitating productive collective mathe-
matical argumentation through discussions in elementary classrooms.

9.5  Collective Mathematical Argumentation: Two 
Discussion Excerpts

In this section, we share two exemplar transcripts that illustrate the effectiveness of 
utilizing the QT model as a means to (a) promote PTs’ mathematical argumentation 
and support their facilitation of productive discussions among grades K-4 students 
and (b) characterize the discourse underlying the mathematical arguments being 
developed in different teacher education settings (university elementary mathemat-
ics methods course and elementary classrooms where PTs complete their fieldwork).

9.5.1  A Discussion in a Methods Course

In the first exemplar discussion, PTs are discussing a mathematical task involving 
area, congruence, and properties of rectangles (shown in Fig. 9.6; task adapted from 
Bellos, 2016) that was introduced in their elementary mathematics methods course. 
PTs were presented with this task and given time to write questions about the task, 
and they then participated in a QT discussion facilitated by university-based teacher 
educators who had completed initial professional development and were engaged in 
ongoing professional development through our project.

In alignment with the pedagogical principles introduced previously, learners 
pose the majority of questions and produce the majority of the talk during QT dis-
cussions. That is, we expect to see fewer educator-generated questions and scaffold-
ing moves as responsibility for interpretive authority gradually shifts from educators 
to learners. For example, in the excerpt in Fig. 9.7, PTs are actively engaged in 
asking questions and responding to what others have said, rather than waiting for 
the teacher educator to choose topics for discussion. As a case in point, in Turn 3, 
PT 3 demonstrates interpretive authority by telling a peer that she believes she is on 
the right track. It is important to recognize that, although the teacher educator is not 
overtly vocal in this excerpt, she is actively analyzing the PTs’ talk and listening for 
opportunities to support the PTs’ needs. For example, later in this discussion, the 
teacher educator prompts a PT to elaborate on her claim when the PT does not sup-
port her thinking with sufficient evidence and reasoning. The teacher educator also 
asks an authentic question when the PTs seem to have stalled in their progress 
toward constructing a solution to the task. Thus, increases in PT talk and 
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Fig. 9.7 Transcript from a QT discussion with prospective teachers
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commensurate decreases in teacher educator talk illustrate how this teacher educa-
tor is facilitating this discussion rather than leading it; this is indicative of a produc-
tive QT discussion.

Prospective Teacher-initiated discourse elements further illustrate PTs’ engage-
ment in critical-analytic thinking during the discussion (Soter et al., 2008). More 
specifically, PTs ask authentic questions and respond to those questions with rea-
soned, evidence-based arguments. For example, PTs ask two authentic uptake ques-
tions in which they query peers’ ideas and ask group members to explain their ideas 
more fully. Following these uptake questions, PTs provide responses that are rich in 
indicators of high-level thinking (i.e., analysis and generalization). In response to 
PT 5 suggesting that triangles could be used to reach a solution, PT 1 asks PT 5 to 
explain what made her think of using triangles in the first place (see Turn 1). This 
question also elicits analysis (i.e., high-level thinking) as demonstrated when the 
PTs discuss decomposing the figure into triangles as a potential solution path. 
Similarly, in Turn 9, PT 2 requires PT 5 to explain why triangles might be used, to 
which PT 3 replies with a statement about a general relationship between triangles 
and rectangles (i.e., generalization; see Turn 13). These are not the only turns indic-
ative of high-level thinking, but they also serve as clear examples of how talk can be 
considered the external representation of thought and thus demonstrate PTs’ critical- 
analytic thinking during discussion.

PTs also generate a number of mathematical arguments in response to their 
peers’ authentic questions about, around, and with the area maze task. When 
responding to questions posed by peers, PTs regularly provide support for their 
claims (see Turns 4, 5, 7, and 13). In particular, PTs often contribute full arguments 
in a single turn (i.e., elaborated explanations), supporting their claims with both 
evidence and reasoning. For example, in Turn 5, PT 3 presents an argument support-
ing the use of triangles to help solve the task:

So, I’m going to make a claim. We can use a triangle if that makes it easier for us to work 
with the numbers, but we don’t have to [Claim] because even if we divide this little rect-
angle up into two squares, this side is still going to be the same [Reasoning]. So, the area of 
a rectangle is base times height or length times width. The area of a triangle is one-half base 
times height [Evidence]. So, it’s going to be the same answer to the equation either way.

Importantly, PT 3 is engaged in mathematical argumentation, determining appropri-
ate support for the claim. Although it is not present in this excerpt, we also hope to 
witness explicit episodes of interthinking during productive QT discussions; that is, 
PTs engaged in co-constructed responses in which they challenge parts of each 
other’s elaborated explanations or build toward some level of consensus in response 
to a claim (i.e., exploratory or cumulative talk).

In summary, the excerpt depicted in Fig.  9.7 offers insights into some of the 
kinds of talk that are indicative of productive discussions of a complex mathemati-
cal task, including two authentic question events and several instances of mathemat-
ical argumentation. Notably, the QT discourse elements (authentic questions, 
elaborated explanations, etc.) worked in tandem with PTs’ emergent use of claims, 
evidence, and reasoning in the discussion to support their engagement in high-level 
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thinking about, around, and with the mathematical content of the task. For example, 
in the elaborated explanations responding to the first authentic question in the tran-
script (Turns 4, 5, and 7), PTs demonstrated that they were thinking around and with 
the task by describing how they might use their knowledge of triangles, as opposed 
to the rectangles presented in the figure, to solve the task.

Participating in productive mathematics discussions, such as this one, prepares 
PTs to enact discourse-intensive pedagogy in their own classrooms by deepening 
their mathematical thinking and providing them with a model of productive peda-
gogical practices. In the following section, we share an excerpt from a discussion 
that a PT enacted in her field experience classroom.

9.5.2  A Discussion in an Elementary Classroom

Figure 9.9 presents a transcript of an exemplar discussion that was facilitated by a 
PT with a group of second-grade students in her field experience classroom. The 
discussion centered on the mathematics of a task involving money and cost per unit 
(Fig. 9.8; task adapted from The Math Learning Center, 2017). Consistent with the 
QT model, the PT produced grade-level appropriate instructional materials and 
identified the complex mathematical task in Fig. 9.8 prior to the discussion. She 
then used those instructional materials to introduce her students to authentic ques-
tions and test questions, explored examples of each question type with them, and 
provided support for students as they formulated authentic questions about the task.

Fig. 9.8 Task for a Quality Talk discussion with second-grade students
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Similar to the previous transcript, the transcript with second-grade students 
reflects a learner-centered turn pattern; the PT limits herself to posing one question 
and enacting one discourse control move (i.e., educator moves such as procedural 
moves that likely have an indirect, rather than direct, effect on learners’ critical-
analytic thinking compared; Wei et al., 2018). Notably, in Turn 12, the PT commu-
nicates that the students have interpretive authority of the discussion when she tells 
them, “I don’t know. Discuss it.” In essence, the PT is letting the students know that 
they need to use talk as a tool for thinking and interthinking and determine what 
they believe to be correct together. This encouragement of students’ autonomy of 
thought suggests that the PT has begun to internalize the pedagogical principles that 
undergird the QT approach.

In addition to the PT posing an authentic question in Turn 1, the students them-
selves pose two authentic questions related to the mathematical task they are working 
together to solve. Unlike the previous transcript, neither of these student-initiated 
questions are uptake questions, given that they reflect a shift in the dialogic floor 
toward a topic rather than asking about what someone said previously. The second 
authentic question (see Turn 18) does, however, elicit a co-constructed analysis (i.e., 
HLT) as the students discuss whether or not it is possible to subtract or decompose 
monetary quantities into smaller units. Given that the students participating in this 
discussion are in second grade, it is particularly encouraging to see them demonstrate 
their ability to productively engage in interthinking after one lesson about questioning.

The discourse depicted in Fig. 9.9 also demonstrates the elementary students’ 
use of mathematical argumentation throughout the discussion. Notably, however, 
the mathematical argumentation here differs from that exemplified by the PTs in 
some regards. For instance, while PTs offered full arguments, including a claim, 
evidence, and reasoning, within a single turn (see Fig. 9.7), the second-grade stu-
dents tend to develop parts of arguments together over a series of turns. Further, in 
the elaborated explanation in Turn 4, the student provides multiple pieces of evi-
dence in the form of mathematical calculations but does not offer reasoning to link 
the evidence to the claim. It is worth noting that whereas the PTs received explicit 
instruction on mathematical argumentation, the second-grade students did not. 
Thus, it stands to reason that given additional support, the second-grade students 
would likely be able to construct and pose more sophisticated and connected argu-
ments consisting of a claim, evidence, and reasoning.

Moreover, later in the transcript, Students 1 and 4 question whether money can 
be subtracted, leading to an episode of exploratory talk (see Turn 20) in which one 
student challenges another’s idea and supports her challenge using a real-world situ-
ation in which money is subtracted:

Student 1: Can you subtract money?
Student 3: No, you can’t. I don’t …
Student 2: You can subtract money. It’s a thing. [Claim]
Student 4: Well yeah, but …
Student 2: Like, let’s say I need to pay 25 dollars and I have a 50 dollar bill … 

[Reasoning]
Student 3: You can take 25 away. (Fig. 9.9)
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Fig. 9.9 Transcript from a Quality Talk discussion with second-grade students

In this excerpt, students engage in argumentation around and with mathematical 
concepts of the bean task, leading to deeper understandings of how addition and 
subtraction can meaningfully occur within a monetary system. Ultimately, the stu-
dents reached agreement that money can indeed be subtracted and subsequently 
recognized that subtracting cubes was not a meaningful approach to take, given the 
context of this task. This exchange also provides a powerful example of how 
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misconceptions can be shared and examined during discussions with a learner-cen-
tered talk pattern aimed at critical-analytic thinking and argumentation. QT’s ideal 
instructional frame creates space for misconceptions to surface, and the normative 
discourse expectations foster a productive environment for them to be addressed as 
learners work toward an examined understanding.

9.6  Discussion and Conclusions

In this chapter, we have described our use of the Quality Talk (QT) approach to sup-
port prospective teachers (PTs) in learning to facilitate meaningful small-group dis-
cussions that advance learners’ critical-analytical thinking about, around, and with 
complex mathematical tasks. Through two exemplar discussions, one involving 
elementary PTs (Fig. 9.7) and the other involving second-grade students (Fig. 9.9), 
we have illustrated how mathematical argumentation can emerge as learners jointly 
explore complex mathematical tasks with the support of QT discourse tools and 
educators who are engaged in learning to facilitate productive discussions. These 
exemplar discussions also illustrate how PTs can draw upon understandings and 
experiences developed in their university methods courses (namely, participating 
with peers in QT discussions about mathematical tasks) to plan and facilitate pro-
ductive mathematics discussions with elementary students in their field experience 
classrooms. PTs’ ability to put their methods course learning into classroom prac-
tice is particularly encouraging and important in light of persistent reports in the 
teacher education literature about disconnects between methods coursework and 
field experiences as well as the recent call from Cochran-Smith et al. (2015) for 
research studies that investigate how teacher education experiences influence teach-
ers’ classroom practice and use of specific pedagogical skills and approaches.

Through analyses of coded transcripts, we highlighted connections between 
PTs’ and elementary students’ use of components of mathematical argumentation 
(claims, evidence, and reasoning; Fig. 9.1) and QT discourse elements (e.g., authen-
tic questions, elaborated explanations; Table  9.1) as they made progress toward 
solving complex tasks (e.g., Figs. 9.6 and 9.8). In addition, we discussed, in relation 
to the transcripts, the important role of educators’ judicious use of authentic ques-
tions and scaffolding moves (Table 9.2) as they enact QT pedagogical principles and 
support learners’ mathematical engagement. With this dual attention to mathemati-
cal argumentation and discourse elements, our analyses extend current understand-
ings of how sound arguments can be co-constructed during classroom discussions. 
While identification of mathematical argumentation components can assist research-
ers (and educators) in observing mathematical arguments as they develop during 
classroom discussions, identifying discourse elements can provide additional essen-
tial information about how mathematical arguments develop in the course of discus-
sions. Such insights are needed for noticing and fostering the key discourse actions 
of educators and learners that will support advances in mathematical argumentation 
and critical-analytical thinking through classroom activities.
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Little prior research in mathematics education, particularly in studies involving 
elementary students and teachers, has focused explicitly on both argumentation and 
discourse elements. For example, although Zambak and Magiera (2020) traced ele-
mentary and middle grades PTs’ emergent mathematical argumentation in discus-
sions, the instructor’s role facilitating PTs’ argumentation was not revealed through 
their analysis.5 And while Conner et  al. (2014b) developed an empirically based 
framework that specifies three categories of teacher support for collective mathe-
matical argumentation (making direct contributions to arguments, asking questions 
to elicit student contributions, and other supportive actions), these types of educator 
moves were identified by analyzing discussions of two secondary mathematics 
PTs  – teachers whose mathematical knowledge and classroom experiences are 
likely quite different from those of most elementary teachers.

Our chapter offers specific examples of ways that elementary learners’ and edu-
cators’ use of particular discourse elements during discussions contribute to advanc-
ing the mathematical depth of argumentation and increasing opportunities for 
learning, even among young learners. As we have described, elementary educators’ 
capacity to foster mathematical argumentation can be enhanced by learning about 
and participating in such generative discussions. Our hope is that the exemplar dis-
cussions and conceptual contributions of this chapter may be informative to others 
interested in promoting productive discussion-based argumentation in elementary 
school and teacher education contexts.
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Chapter 10
Commentary to Part I of Mathematical 
Challenges For All: Commentary 
on ‘Challenge’ in Terms of Curriculum 
Materials and Tasks, the Teacher’s Role 
and the Curriculum

Jeremy Hodgen

10.1  Innovations in Textbooks, Curriculum Materials 
and Tasks to Promote the Mathematical Challenge

Four of the chapters in this section discuss curriculum materials and tasks designed 
to increase the challenge in mathematics with respect to textbooks (Christou et al., 
Chap. 5), mathematical modelling (Goos et al., Chap. 4), problem posing (Cai & 
Hwang, Chap. 7) and representing open tasks using dynamic applets (Leikin et al., 
Chap. 6).

Christou et al. (Chap. 5) discuss the theoretical framework underlying the design 
and development of Cyprus Mathematics Textbooks, the Personalised Mathematics 
and Mathematics Inquiry (PMMI) framework. This is an ambitious textbook project 
that aims to promote a challenging approach to the school mathematics curriculum 
across Cyprus. Over the past decade, there has been a growing interest in the design 
of textbooks and how textbooks can be used as instruments to promote change in the 
teaching of mathematics (e.g., Rezat et al., 2021). However, Christou et al.’s (Chap. 
5) is unusual in textbook research in articulating the theory, and design principles, 
underlying a system-wide project at scale from the perspective of the developers, 
thus providing insight into the textbook design at scale.

The PMMI framework draws on two major elements: personalised mathematics, 
and mathematics inquiry. The focus of personalised mathematics is on facilitating 
space for learners to ‘give voice to their own ways of mathematical thinking’ (p. 77) 
in order to build mathematical understanding. This has echoes of Schoenfeld’s 
(2018) Teaching for Robust Understanding (TRU), particularly the dimension of 
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agency, ownership and identity, which focuses on the extent to which learners are 
encouraged to ‘walk the walk and talk the talk’ (p. 493) of mathematics.

The mathematics inquiry element of PMMI draws on Whitehead’s (1929) ideas 
of the ‘rhythm of learning’ to develop three phases of inquiry: romance, precision 
and generalisation. Romance is not a familiar idea in mathematics and is perhaps 
more commonly associated with language and arts subjects in the school curricu-
lum. Hence, the idea is somewhat at odds with much of the practices of traditional 
mathematics classrooms and Rezat et al. (2021) note a paucity of research on the 
impact of textbooks on learners’ attitudes, beliefs and perceptions. I suspect that 
Christou et al. (Chap. 5) use the term, romance, specifically to draw teachers’, and 
learners’, attention to the importance of these affective aspects of mathematics. 
Romance is conceived of as developing learners’ wonder, curiosity and engagement 
with mathematics. But romance is nevertheless rooted in the ‘real world’ and 
Christou et al. illustrate how this is developed through an ‘open-ended’ exploration 
of slope in skateboarding.

Precision and generalisation are more familiar notions in mathematics teaching 
and learning. These are developed through a threefold process of knowledge build-
ing, convergent knowledge expression and divergent knowledge expression (Harris 
& Hofer, 2009), which are used as guides for the design of more focused investiga-
tions. Here, one is reminded of realistic mathematics education and Streefland’s 
(1991) focus on the need for learners to engage in the insightful construction of 
mathematics.

Christou et al. (Chap. 5) illustrate the framework and the design process using 
several exemplars from the textbooks, providing considerable insights into how the 
framework was operationalised in this substantial project. The chapter due to con-
straints of scope and space necessarily concentrates on just the design and develop-
ment of the textbooks. Indeed, the design focus itself is described at a relatively high 
level. However, it is clear from the tasks that research into how students learn math-
ematics informed the design of the tasks. I would like to know more about the prin-
ciples underlying this process.

I now turn to the issue of implementation, which I hope the authors will address 
in further writing and research. As Rezat et al. (2021) observe, whilst textbooks are 
influential, even the best-designed curriculum resources cannot on their own pro-
duce a substantial change in the mathematics curriculum. Christou et al. (Chap. 5) 
devote a (necessarily) brief section outlining the role of the teacher as a co-learner 
and facilitator in the classroom. This changed role is far from straightforward even 
for very committed teachers (see, e.g., Calleja et al., 2021) and, hence, achieving 
such change at scale is ambitious. It would be helpful for the authors to outline how 
this change will be supported through, for example, ‘educative’ features of the text-
books (Davis & Krajcik, 2005) and/or through coaching and other forms of profes-
sional development. Teachers are an important part of the process of change, but, 
without substantial systemic support from advisors and school leaders, the process 
of change, particularly such an ambitious change as conceived in the Cyprus text-
books, is likely to fail (e.g., Cobb & Smith, 2008). On the other hand, Christou 
et  al.’s textbooks do have considerable support from the educational system in 
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Cyprus. It would be valuable for the authors to explicitly consider this systemic sup-
port, ideally including a Theory of Change (Jankvist et al., 2021b) that could inform 
research evaluating the implementation of the Cyprus Mathematics Textbooks.

Goos et  al. (Chap. 4) examine the introduction of mathematical modelling in 
Ireland as a case of curriculum reform in secondary school mathematics in order to 
examine the factors that support or hinder reform. They perceive mathematical 
modelling to be challenging because it involves the mathematisation of the real 
world and argue that this creates challenges for both teachers and learners. In con-
trast to Christou et al. (Chap. 5) they consider that textbooks, at least those com-
monly used by Irish mathematics teachers, to be a hindrance to the use of modelling, 
although I suspect that these textbooks do not present explorations that are deliber-
ately informed by a framework like PMMI that is focused on promoting challenge.

Goos et al. (Chap. 4) draw on Remillard and Heck’s (2014) model of curriculum 
policy, design and enactment to analyse two case studies of reforms that introduce 
mathematical modelling. The first is, like Christou et al. (Chap. 5) a system-wide 
initiative, the reform of the Applied Mathematics syllabus, a pre-university optional 
course in upper secondary that is taken by a relatively small proportion of learners 
(3–4% of the cohort). They examine two documents related to the stakeholder con-
sultation process to highlight tensions around the aims of, and values of, mathemat-
ics and mathematics education (including tension around how teachers ‘traditionally’ 
use textbooks). Of particular note, they highlight very substantive differences 
amongst different stakeholders in how they view modelling and problem-solving, 
with some believing that the introduction of mathematical modelling would reduce, 
rather than increase, the amount and challenge of problem-solving within the syl-
labus. The issue of competing values and belief systems is a perennial issue around 
reform to school mathematics in the UK as well as Ireland and I have argued else-
where that effective reform needs to be sufficiently pluralist to accommodate these 
competing values (Hodgen et al., 2022). But, to actually achieve this, we may be 
well-advised to look beyond our shores to countries like Cyprus and Belgium for 
examples of more consensual reform.

Goos et  al.’s (Chap. 4) second case study is of a smaller-scale initiative, the 
Young Modellers Transition Year project, in which teachers taught a 10-week math-
ematical modelling course supported by professional development and coaching. 
They highlight the well-documented issue of teacher knowledge, beliefs and prac-
tices and argue that providing curriculum resources was an important factor in sup-
porting reform. Crucial, however, appears to have been the decision to locate the 
reform in the Transition Year, an optional school year in Ireland during which teach-
ers are actively encouraged to offer a more rounded and interesting curriculum and 
are not subject to examination pressures. One challenge for this project, which 
involved just 15 schools, is how to scale it up to a wider group of schools. There is 
increasing interest in the issue of implementation and scale-up in mathematics edu-
cation (e.g., see Jankvist et  al., 2021a; Maass et  al., 2019). Prediger’s (2022/
Forthcoming) programme of research in Germany around language and mathemat-
ics suggests that developing a range of different types of evidence may be important 
in scale up.
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Cai and Hwang (Chap. 7) discuss the issue of problem posing by learners from 
the perspective of mathematically challenging tasks. This topic strongly resonates 
with Christou et al.’s (Chap. 5) focus on explorations and Goos et al.’s focus on 
mathematical modelling. Problem posing, like Christou et al’s (Chap. 5) explora-
tions, can support learners’ engagement with mathematics. In addition, as Black 
et al. (2003) found, posing problems can enable learners to understand the ‘game’ 
of mathematics and, thus, can be an important first step in enacting formative assess-
ment and enabling learners to self-regulate (and thus challenge) their mathematics 
learning (Wiliam & Thompson, 2007).

Cai and Hwang (Chap. 7) devote a great deal of attention to exemplifying a 
typology of mathematical contexts and real-life situations to guide the design of 
problem- posing tasks. In doing so, they consider how problem-posing tasks can be 
constructed to increase the challenge and to achieve particular learning goals. There 
are many insights into the design and use of such tasks. Over recent years, there has 
been a great deal of work using variation theory to analyse and support the design 
of problems and tasks (e.g., Watson & Mason, 2006). I wonder whether variation 
theory and Marton’s (1997) dimensions of possible variation and range of permis-
sible change might be productive in terms of further insights into the pedagogical 
role of problem-posing tasks.

Cai and Hwang (Chap. 7) then consider how to support teachers to use problem 
posing tasks in their teaching and discuss the professional learning model, or theory 
of change, used in their current research. They briefly discuss the role of profes-
sional development in supporting teachers, but they note also the need for teacher 
buy-in to the value of problem-posing. This raises two issues. First, there is likely to 
be a role for ‘educative’ curriculum materials (Davis & Krajcik, 2005) to support 
teachers’ enactment of problem-posing tasks. An important role of such materials 
would be to enable teachers to ‘notice’ ways in which problem posing can result in 
productive learning (Choy & Dindyal, 2021). Second, as Goos et al. discuss, there 
are many constraints on a teacher’s capacity to enact changed practices that go 
beyond a teacher’s knowledge, beliefs or pedagogical expertise. ‘Traditional’ math-
ematics classrooms are structured in particular ways (see, e.g., Ruthven, 2009). 
Enacting substantial change, such as integrating problem posing tasks, into every-
day teaching involves a significant change to these structural features and, hence, is 
likely to require the support, and buy-in, of advisors and school principals (Burkhardt 
& Schoenfeld, 2003).

Leikin et  al. (Chap. 6) focus on and how technology can support students to 
engage with challenging open tasks as part of the Math-Key program. They begin 
by considering different ways in which open tasks can be structured (or designed) 
to place the emphasis on multiple solution strategies and/or on multiple outcomes, 
then exemplify this using a number of tasks. In doing so, they provide an explicit 
account of the dimensions of variation that informed the design of the tasks and how 
the approach is intended to alter the emphasis of mathematics classrooms through 
changed goals, activities, conditions and tools (Leontiev, 1978). Finally, they dis-
cuss the design of applets intended to enable learners to engage with different solu-
tion strategies or outcomes.
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Leikin et  al.’s (Chap. 6) applets certainly provide potential opportunities for 
learners to explore different approaches and, thus, to consider mathematics as a 
more open discipline. However, since they are designed in advance, they necessarily 
constrain this exploration to particular approaches or strategies. It may not be imme-
diately obvious to a learner how these particular approaches relate to the learner’s 
own approaches, even where they are similar. Indeed, as Hodgen et al. (2018) found 
in a recent review of mathematics teaching and learning, the role of the teacher is 
crucial in making such connections. I look forward to future work by these authors 
on how they support teachers to do this and on whether the Math-Key approach is 
effective in enabling learners to develop more open mathematical minds.

These four chapters provide significant insights into how textbooks, curriculum 
materials, tasks and technology can be designed to increase mathematical chal-
lenges. In doing so, they raise questions about how to support teachers, and others 
within the system, to implement curricular change that promotes challenges for 
learners.

10.2  The Teacher’s Role in Promoting 
Mathematical Challenge

Two of the chapters in this section address the role of the teacher in facilitating 
mathematical challenges in terms of mathematical reasoning (Ponte et al., Chap. 8) 
and mathematical talk and argumentation (Lloyd & Murphy, Chap. 9).

Ponte et  al. (Chap. 8) focus on the teacher’s role in enacting an exploratory 
approach to teaching mathematics as part of Project REASON: Mathematical 
Reasoning and Teacher Education. The research involves using tasks similar to the 
explorations and investigations contained in the Cyprus Mathematics Textbooks 
and has a focus on challenging learners to engage in mathematical reasoning. To do 
this, they characterise the pedagogic actions that teachers can use to guide, structure 
and challenge learners’ mathematical reasoning during what they see as the three 
phases of an exploratory approach in mathematics lessons: launching the task, 
learners’ autonomous work and whole class discussion. These are illustrated using 
the examples of two contrasting lessons.

Ponte et al.’s (Chap. 8) analysis highlights the complexity of the teacher’s role in 
exploratory work, particularly in balancing the need to provide sufficient guidance 
for learners without reducing the challenge of mathematics. The whole class discus-
sion is perhaps the most challenging aspect for teachers because it requires teachers 
to ‘respond in the moment’ (Mason, 2015) and at times improvise (McIvor, 2022/
Forthcoming). Ponte et al.’s (Chap. 8) analysis shows how teachers can prepare for 
this in the learners’ autonomous work phase of the lesson, but they emphasise that 
this is dependent on ‘careful planning … in order to foresee possible students’ strat-
egies and difficulties and plan ways to deal with them as they arise in the classroom’ 
(p. 166). In order to do this, teachers need support to develop an understanding of  
challenging, but achievable, learning trajectories (Sztajn et al., 2012).
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Ponte et al.’s (Chap. 8) research study involves a professional development pro-
gramme. Unfortunately, due to obvious space constraints, they do not describe the 
design of this programme, aside from noting that the planning for teachers’ explor-
atory lessons was collaborative. As I have argued throughout this commentary, a key 
issue is how to enable and support teachers in enacting challenging mathematics 
such as Ponte et al.’s exploratory approach. It would seem from the empirical exam-
ples presented that the project has had some success in doing this. Hence, I look 
forward to future work from this team examining how they enabled (or facilitated) 
this changed practice.

Lloyd and Murphy (Chap. 9) examine Quality Talk, an intervention designed to 
enable teachers to provide opportunities for, and facilitate, mathematical argumen-
tation in elementary classrooms. Quality Talk is a relatively well-established inter-
vention in science (Murphy et al., 2018a) and literacy classrooms (Murphy et al., 
2018b) that has shown some promise, albeit on a relatively small scale. Over the 
past decade, the theoretical and empirical research on language and mathematics 
has made substantial progress in moving from simply describing classrooms to 
examining how to intervene pedagogically. See, for example, Erath et al.’s (2021) 
paper outlining theoretically and empirically grounded design principles for 
language- enhanced mathematics instruction. Lloyd and Murphy’s (Chap. 9) focus 
on mathematical argumentation in the context of productive mathematical discourse 
is located in a field of research with much potential.

Quality Talk builds on Toulmin’s (1969) model of argumentation. Lloyd and 
Murphy devote a great deal of space to describing the aims and approach of the 
intervention, including eight key discourse elements that teachers can use produc-
tively to scaffold mathematical argument. This is an impressive programme of 
work. The (necessarily brief) empirical examples in Lloyd and Murphy’s chapter 
certainly provide evidence of prospective elementary teachers using the structure of 
claim, reasoning and evidence much more explicitly and of the relationship to the 
scaffolding using the discourse elements when presented with a challenging task. 
However, the eight discourse elements for Quality Talk in mathematics appear to be 
very similar to those described in the Quality Talk intervention targeted at increas-
ing critical engagement with texts in literacy (Murphy et al., 2018b). This is some-
what surprising given their stated aim to develop mathematical argumentation as a 
‘central disciplinary practice’ (p. 169). There is a large body of work examining 
how the argument in mathematics is a distinctive disciplinary practice and that this 
practice is inextricably linked to the content and norms of the discipline. See, for 
example, Lampert’s (1990) use of Lakatos’s (1976) proofs and refutations and 
Polya’s (1954) moral qualities of doing mathematics in facilitating challenging dis-
cussions amongst learners.

Like Ponte et  al., Lloyd and Murphy’s (Chaps. 8 and 9) study highlights the 
complexities faced by teachers in facilitating productive mathematical talk. The 
study provides evidence that Quality Talk has some promise in contexts where the 
teachers have direct contact with the academic developers. It will be interesting to 
see how the intervention develops over time and how the approach can be imple-
mented more widely.

J. Hodgen
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10.3  Understanding What Constitutes an Appropriately 
Challenging Curriculum for Learners

The sixth chapter in this section addresses the curriculum. Verschaffel et al. (Chap. 
3) report on a large-scale longitudinal study aimed at demonstrating the potential for 
a broad and challenging early mathematics curriculum. They argue that the mathe-
matics curriculum offered to the majority of young learners is narrow and unchal-
lenging, focused almost entirely on whole numbers, counting and basic arithmetic. 
Building on a learning trajectories approach (e.g., Clements & Samara, 2014), they 
investigate young children’s development through carefully designed interventions 
in four domains: mathematical patterns and structure; computational estimation; 
proportional reasoning and probabilistic reasoning.

This is an impressive study that provides significant insights into children’s 
development and the potential for, and developmental importance of, children at all 
attainment levels engaging with topics often considered to be too challenging by 
policymakers and (some) educators. They show, for example, that many young chil-
dren can handle problems in all four domains and begin to provide much-needed 
evidence of the kinds of interventions that can support young children’s develop-
ment, an area where recent reviews have indicated that research is much needed 
(e.g., Hodgen et  al., 2020; Simms et  al., 2019). Echoing Lloyd and Murphy’s 
(Chap. 9) focus on the importance of quality talk in mathematics, Verschaffel et al. 
(Chap. 3) show ‘that specific mathematical vocabulary related to early proportional 
reasoning in the first year of elementary school is a unique predictor for propor-
tional reasoning abilities in the second year of elementary school over and above 
age, SES and general vocabulary’ (p. 39). This further suggests that it would be 
productive to combine Lloyd and Murphy’s (Chap. 9) argumentation with a focus 
on the specifics of mathematical vocabulary, in particular, vocabulary focused on 
mathematical relations and structure.

Verschaffel et al. (Chap. 3) conceive of children’s mathematical development in 
terms of competencies, consisting of dispositions alongside cognitive abilities. 
Extending earlier work on numerosity (e.g., Rathé et  al., 2016), dispositions are 
considered in terms of children’s tendencies to attend to and focus on aspects of 
mathematics, such as the spontaneous focusing on patterns (SFOP). This focus on 
the affective in mathematics is welcome and important, although one wonders 
whether the concept of spontaneous focusing captures the entirety of what Kilpatrick 
et al. (2001) term a productive disposition, or the ‘habitual inclination to see math-
ematics as sensible, useful, and worthwhile, coupled with a belief in diligence and 
one’s own efficacy’ (p. 117). It would be interesting to examine the extent to which 
various aspects of spontaneous focusing on mathematics in very young children are 
related to, and predictive of, later dispositions such as valuing mathematics, math-
ematics self-efficacy or resilience in mathematics.

10 Commentary to Part I of Mathematical Challenges For All…
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10.4  Conclusion

The chapters in this section represent a diverse range of research and interests all 
addressing different aspects of challenges in mathematics. They contain many 
insights into the nature of the challenge in mathematics and how to promote it. In 
doing so, they demonstrate the complexity of facilitating challenges in school math-
ematics. This is, of course, a worthy and important endeavour involving change not 
simply to the task that learners engage with but also to the teacher’s role and cru-
cially to the content and structure of the entire mathematics curriculum.

The diversity of approaches itself raises a challenge in how to align, and learn 
from, the many insights and results from the different approaches. This diversity has 
been one of the strengths of mathematics education as it has enabled the research 
community to generate potential strategies and interventions for promoting mathe-
matical challenges for learners. As an increasingly mature academic discipline, it is 
becoming increasingly important to develop greater theoretical coherence amongst 
these diverse approaches (e.g., Bikner-Ahsbahs & Prediger, 2010), particularly in 
evaluating and implementing these approaches.

Finally, as Verschaffel et al., Christou et al., and Leikin et al. (Chaps. 3, 5, and 6) 
all argue, the mathematical challenge involves the affective in addition to the cogni-
tive, encouraging learners to engage with the ‘romance’ of mathematics and to 
develop habits like spontaneous focusing on (and doing) mathematics. As I have 
emphasised throughout this commentary, such a change to mathematics teaching 
and learning will require considerable attention to the problem of implementation. I 
look forward to reading further work from these authors and their studies that 
addresses the problem of challenge in mathematics and, in particular, how to sup-
port teachers and others in facilitating this.
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Chapter 11
Introduction to Part II of Mathematical 
Challenges For All: Many Faces 
of Mathematical Challenge

Rina Zazkis

11.1  What Is a Mathematical Challenge?

What is a mathematical challenge? The first idea that comes to mind when consider-
ing this question is associating a mathematical challenge with problem-solving. It is 
agreed upon in the mathematics education community that what constitutes a prob-
lem, as related to mathematical problem solving, is relative to the solver. That is, 
what is a problem for one learner can be a standard exercise for a teacher or for a 
more advanced learner. The same can be said about a challenging mathematical 
problem. That is, the challenge is in the eye of the beholder. What is challenging for 
some may not be challenging for others, either because they have no knowledge of 
how to proceed or have no interest in engaging with the problem.

I spent my grade-5 year looking for a formula that generates prime numbers. 
This was in the “olden days” – before the internet, before cellphones, before hand- 
held calculators. I challenged myself because my teacher told the class that there 
was no such formula (Of course, she meant no polynomial prime number generator, 
but this I understood only years later). I did not believe her. Yet, the problem of find-
ing prime number generators did not present a challenge to my classmates, as they 
were not motivated to find a solution.

However, mathematical challenge extends beyond mathematical problem- 
solving. As such, rather than focusing exclusively on mathematical problems, I con-
sider mathematical activity as a wide-reaching umbrella. Mathematical activity can 
be defined broadly to include any engagement that involves doing, learning or 
teaching mathematics. For teachers and teacher educators, in addition to 
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problem- solving, engagement with mathematics includes aspects of teaching such 
as preparing lessons, designing tasks, choosing instructional examples, assessing 
student work or addressing student questions. The chapters in this part of 
“Mathematical challenge for all” describe multiple faces of challenging mathemati-
cal activities.

11.2  In the Chapters

The chapters in Part II present readers with a variety of studies. Each chapter brings 
to mind a multitude of related experiences and ideas. In what follows I describe the 
chapters and mention just one of these invoked personal encounters in each case.

Mason considers a mathematical challenge “as an indicator of someone’s state 
within a situation with affective, cognitive, enactive, and other consequences. In 
other words, challenge depends on the current state of the psyche of individuals 
within the current social setting.”

Mason outlines his personal relationship with mathematical challenge, describ-
ing responses to challenge as resisting, accepting and parking. He considers the 
ways in which psycho-social adherence accounts for an individual’s responses to 
challenges. The power of his typology is that anyone engaged with mathematics can 
relate to the description; any reader will recall examples of accepting or resisting 
mathematical challenges, as well as the feeling of joy having faced a challenge 
successfully.

Parking a challenge is what I experienced reading Mason’s chapter, as well as 
many others of his writing. The chapter, having elaborated on aspects of human 
psyche, proceeds with a variety of mathematical examples, where my immediate 
inclination is to stop reading and accept the challenge of seeking a solution. 
However, I find myself parking the challenge and returning to it after the term 
grades are submitted and dinner is ready.

A problem that I have recently parked is from http://www.gogeometry.com/
school- college/5/p1494- parallelogram- midpoints- octagon- area.htm

In particular, Geometry Problem 1494 states: Given a parallelogram ABCD of 
area S with M, N, P, and Q midpoints of AB, BC, CD, and AD. Lines AN, AP, BP, 
BQ, CM, CQ, DM, and DN determine the octagon EFGHIJKL of area S1. Prove 

that. S S1

7

25
= .

Acknowledging that affine transformations preserve the ratios of areas, I can 
embed the octagon in Cartesian coordinates and use “brute force” to prove the ratio 
of the areas. Simply recognizing this option may take the initial challenge away 
from the problem. However, the challenge still remains to find an elegant proof; 
such proof will likely be based on some insight related to the relationship among the 
sub-areas.

Leikin and Guberman focus on the notion of “insight”, which is a sudden realiza-
tion that leads to a solution. They introduce the distinction between insight-allowing 
problems, in which an insight may lead to an elegant or a “smart” solution that 
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Fig. 11.1 Parallelogram and octagon areas

draws on ideas from a different area, and insight-requiring problems in which a 
solution cannot be found without an insight (According to this distinction, the prob-
lem in Fig. 11.1 fits in the former category). The authors present examples of prob-
lems of each type and then hypothesize that solving insight-requiring problems is 
more challenging for students, but allows for demonstrating higher creativity. They 
share research results that support this hypothesis.

When I scroll through problems found in a variety of problem-solving collec-
tions in different outlets, I find a variety of insight-allowing problems, but insight- 
requiring problems are rare. However, a handful of insight-requiring problems is 
found in a collection of so-called “Jewish problems”,1 also referred to as “killer 
problems” or “coffins.” These are problems that were used in the 1970s and 1980s 
in the USSR in oral entry exams at Moscow State University, among others, to fail 
Jewish applicants and restrict their access to higher education (Sriraman & 
Dikman, 2017).

Putting the evil history of these collections aside – if it only were possible – I am 
fascinated with the ingenuity in the design of these problems. The problems do not 
appear over-complicated, but each solution involves some “trick” (for example, a 
particular choice of representation or a particular substitution) which is very differ-
ent from the conventional approaches that come to mind when one solves problems 
in the same domain. Using the trick – or the required insight – the solution appears 
very short and straightforward and can be even argued to be “simple.” But without 
the insight, a solution is beyond reach. As an example, determine which is larger, 
log23 or log35-- without any calculating devices, of course. Or, how many digits are 
there in the number 125100? The reference in the footnote includes solutions 
and hints.

Sinclair and Ferrara describe how first graders engage in the activity of distribut-
ing 12 or 18 candies among six children using TouchCounts, a multi-touch 

1 https://arxiv.org/pdf/1110.1556.pdf
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application on iPads. The mathematical challenge that students face in Sinclair and 
Ferrara’s contribution can be seen as the students’ engagement with a mathematical 
problem whose solution is not familiar to them.

Analysing students’ work, Sinclair and Ferrara reframe the mathematical activity 
of students working with TouchCounts from the inclusive socio-material perspec-
tive. They use this activity to exemplify “the socio-material dimensions of mathe-
matical activity, in line with the inclusive materialist approach of de Freitas and 
Sinclair (2014).” The chapter proposes a reconceptualization of the conditions for a 
task to be considered a mathematical challenge, originally described by Leikin 
(2014), so that they are applicable in cases of digital technology. The reframed con-
ditions are described from the socio-material perspective in which the children- 
problem- solvers and the digital application form a human/non-human socio-material 
system. Sinclair and Ferrara note that their “reframing enables researchers to see 
tasks as being materially and temporally in relation with prior mathematical activ-
ity, rather than isolated problem-solving opportunities.”

While this reframing claim makes perfect sense, it makes me wonder how my 
personal engagement with a challenging (for me) problem, showed to me by a col-
league during a boring conference lecture, can be described from an inclusive mate-
rialism perspective. The problem considered “tridians”, lines connecting a vertex of 
a triangle to a point that marks 1/3 of the opposite side. The task was to prove the 
relationship between the areas of the “big” triangle and a “small triangle in the 
middle” (that is, Area (ΔABC): Area (ΔDEF)) (Fig. 11.2).

The relationship can be easily confirmed with Dynamic Geometry software and 
proved using vector algebra or affine coordinates. But the presented challenge was 
to prove the relationship using only tools of Euclidean geometry. I pursued this 
challenge after having it “parked” for a while, using multiple sketches with Dynamic 
Geometry, filling the trash basket with multiple files, and finding additional ratios 
on the way. However, considering the reframing of mathematical activity suggested 
by Sinclair and Ferrara, I keep wondering: was this mathematical challenge an iso-
lated activity or was I an oblivious participant in some socio-material system?

Applebaum and Zazkis discuss the seemingly simple problem of placing digits 
in a frame □□□×□□ to reach the maximal product. That is, without using a 

Fig. 11.2 Tridians in a 
triangle
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calculator, the task presented to a group of teachers was to use the digits 1,2,3,4 and 
5 (each digit once) in the multiplication of a 3-digit by a 2-digit number to get the 
largest product.

On the one hand, the solution can be effortlessly confirmed by computation. On 
the other hand, most people found the solution counterintuitive, and when the task 
was approached by a “guess and check” method, the solution was not usually found 
on the first guess. This brought up a challenge – for teachers engaged with the task – 
of explaining the unexpected result without simply pointing to it. The authors ana-
lyzed this challenge in terms of the intellectual need for causality (Harel, 2013), that 
is, seeking a reason for the phenomenon.

Discussion with the teachers resulted in further challenges for the authors: first 
to provide a better (or at least an alternative) explanation, and then to generalize the 
results from considering digits 1,2,3,4,5 to considering any 5 digits a < b < c < d < e. 
The chapter by Applebaum and Zazkis highlights a challenge that teachers face, 
which is not just providing explanations, but seeking explanations that help face and 
confront initial, often misleading, intuition. They also provide a visual interpreta-
tion of a related task that may help in confronting misleading intuitions.

In my memory, the most powerful visualization that helps with reframing a mis-
leading intuition is provided in Papert’s Mindstorms. Papert (1980) described the 
problem, classical by now, as follows:

Imagine a string around the circumference of the earth, which for this purpose we shall 
consider to be a perfectly smooth sphere, four thousand miles in radius. Someone makes a 
proposal to place a string on six-foot-high poles. Obviously, this implies that the string will 
have to be longer. A discussion arises about how much longer it would have to be. Most 
people who have been through high school know how to calculate the answer. […]

 
2 2 2� � �R h R h�� � � �

 

But the challenge here is to “intuit an approximate answer rather than to calculate an exact 
one. (p. 146)

Fig. 11.3 A string around a circle vs. a string around a square
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Fig. 11.4 Proof without words

Obviously, the algebraic elaboration is convincing, as is the calculation of the prod-
ucts in the Applebaum and Zazkis chapter. But the convincing power, and thus a 
more powerful sense of causality, is found in a similar problem: considering a rope 
around a square, rather than around a circle (Fig. 11.3).

In a square case, it is obvious that the additional amount of string needed is rather 
small, adjusting only at the corners. This is strongly related to the notion of seeing 
explored by Vale and Barbosa, to which we turn next.

Vale and Barbosa establish a connection between visualization and mathematical 
challenge when engaging prospective teachers with Multiple Solution Tasks (MST). 
They discuss multiple uses for visualization – in investigating, in getting a sense of 
a relationship, in proving – and demonstrate how the challenge of visualization can 
help in giving meaning to analytic approaches. They advocate for a strategy of “see-
ing” – as a strategy of thought that involves the visual perception of mathematical 
objects that is blended with knowledge and past experiences (Vale, Pimentel and 
Barbosa, 2018).

A beautiful collection of problems is found in this chapter, where several prob-
lems are accompanied by multiple solutions presented by prospective teachers. As a 
reader, I am challenged to find yet another solution. Vale and Barbosa express a 
hope that presenting teachers with MST tasks and challenging solvers to find visual 
solutions, among others, will enrich their repertoire and help them use similar strat-
egies in their classrooms.

The notion of seeing discussed in this chapter inspired my recent lesson with 
teachers, in which I present a diagram to students and ask – what do you see?

In fact, the diagram in Fig.  11.4 is a “proof without words” for an infamous 

inequality, x
x

� �
1

2 , which students are invited to find.

Biza and Nardi describe a course – The teaching and learning of mathematics – 
in which they introduce undergraduate mathematics students to mathematics 

R. Zazkis



215

education research via MathTASK, a program explicitly developed for this purpose. 
Tasks in this course present situations that may appear in a mathematics classroom; 
they include either mathematical or logical errors or focus on disagreement among 
interlocutors. In their responses, the participants are expected to analyze the situa-
tions mathematically and describe their hypothetical pedagogical responses to stu-
dents. Furthermore, participants are expected to engage with mathematics education 
literature and use appropriate theory and methodology. Researchers analyzed par-
ticipants’ responses for clarity, coherence, consistency, specificity and the use of 
mathematics education theoretical constructs and terminology.

In my view, the presented tasks can provide a mathematical and pedagogical 
challenge not only to undergraduates, but also to practicing teachers, graduate stu-
dents, and mathematics educators. Biza and Nardi refer to their course as a “boot- 
camp experience for newcomers into RME discourse”. They also claim that their 
activities “welcome mathematics undergraduates into RME in a manner that bal-
ances engagement with mathematics and mathematics education discourses 
productively.”

While not stated explicitly, I infer from the presented excerpts that it is the 
engagement with the mathematics education literature that appeared to be the most 
challenging for undergraduates. But maybe in making this suggestion I am simply 
reflecting on my personal experience. In a related study, inspired by Nardi (2015) 
but much more limited in scope, we asked practicing teachers of mathematics in the 
beginning of their Master’s program to read and reflect on several research reports 
in mathematics education (Rouleau et al., 2019). It was notable that teachers expe-
rienced difficulty discussing features of the presented research and focused on the 
relevance of the readings to their pedagogical practice. It was concluded that “mak-
ing use of their mathematical and pedagogical knowledge could be viewed as an 
appreciation of the challenge that critical consumption of a research article entails.” 
(p. 57).

As such, an early start with undergraduates, as demonstrated by Biza and Nardi, 
appears to be a preferable timing for introducing novices to mathematics education 
research. Biza and Nardi discuss the reification of both mathematical and pedagogi-
cal discourse by the participants in their study. While not mentioned explicitly, I 
detect in the reported data a reification of research discourse, one aspect of the 
beginning of the nuanced transition from a mathematics learner to a mathematics 
education researcher.

Wasserman discusses the challenge that teachers face in connecting advanced 
and secondary mathematics. In a particular example, Wasserman articulates the 
connection between two ideas: a function, a notion familiar from school, and a 
binary operation, a notion usually introduced in an Abstract Algebra course. He sug-
gests that “The mathematical challenge was not necessarily “learning” something 
new; it was in “re-seeing” something familiar from a new perspective.”

Wasserman describes two ways of connecting advanced and secondary mathe-
matics: generalization and instantiation. A generalization connection is when con-
cepts of advanced mathematics generalise concepts of school mathematics. This 
happens, for example, when familiar Cartesian coordinates become an example of a 
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general affine coordinate system. An instantiation connection is when a concept 
from advanced mathematics serves as an example of a concept familiar from sec-
ondary mathematics.

Wasserman frames the discussion of binary operations as an instantiation of the 
function concept, which appears in secondary mathematics curriculum. He describes 
the struggle of teachers when exploring this connection and the ways of facing this 
challenge in pedagogically powerful activity.

However, in order to recognise a binary operation as function, we need first to 
expand the school idea of a function. As such, I would like to offer a different per-
spective on such a connection between binary operation and school function, which 
is neither instantiation nor generalisation. While indeed the concept of a function 
appears in secondary mathematics, we find there a particular view of functions, 
often defined as an expression y = f(x) that specifies a relationship between input (or 
independent variable) and output (dependent variable). In advanced mathematics a 
function is viewed as a set of ordered pairs, specifically, a function f from A to B 
uniquely associates a ∈ A with f(a) ∈ B.

So rather than seeing a binary operation as an instance of a function familiar 
from secondary mathematics, in my view, both school functions and binary opera-
tions become examples of an advanced-function concept. In my experience, it is not 
obvious, and so can present a mathematical challenge, to place previously learned 
disjoint concepts under the same umbrella. For example, in a study related to teach-
ers’ interpretations of exponent (−1) (Zazkis & Kontorovich, 2016) we wondered 
how teachers connect the notion of inverse function (denoted f−1) with that of recip-
rocal (as in 3−1). It was noted that some participants rejected the overarching notion 
of “inverse with respect to some operation” and insisted on differentiating between 
the notions of function inverse and multiplicative inverse.

11.3  Conclusion

The chapters in Part 2 spread across mathematical content and ways of engagement. 
There are descriptions of problem-solving work with young learners using a digital 
application (Sinclair and Ferrara) and a reflection on a career-long personal engage-
ment with challenging mathematics (Mason). There are accounts of work with 
undergraduate students (Biza and Nardi, Leikin and Guberman), with prospective 
teachers (Vale and Barbosa), with practicing teachers (Applebaum and Zazkis) and 
with both prospective and practicing teachers (Wasserman).

I started with the claim of considering mathematical challenges broadly, extend-
ing the focus from mathematical problems to any activity of doing, learning and 
teaching mathematics. These chapters extend these considerations even further. 
This includes connecting advanced and secondary mathematics (Wasserman), seek-
ing explanations for counterintuitive results (Applebaum and Zazkis), seeking 
visual solutions in multiple solutions tasks (Vale and Barbosa) and utilizing research 
in mathematics education in responding to classroom scenarios (Biza and Nardi). 
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This is definitely only a partial list of activities in which a mathematical challenge 
is found, should we decide to embrace it.
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Chapter 12
Probing Beneath the Surface of Resisting 
and Accepting Challenges 
in the Mathematics Classroom

John Mason

12.1  Introduction

What interests me most is the lived experience of thinking, doing, learning, and 
teaching mathematics. In taking up the challenge to write about mathematical chal-
lenge I have interrogated my own experience and used this to probe beneath the 
surface of common reactions to being challenged mathematically.

Ten years after Bill Brookes (1976) suggested that something is a problem only 
when a person experiences it as a problem, Christiansen and Walther (1986), fol-
lowing Vygotsky (1978), distinguished between a task as what students are offered 
or inveigled to undertake, and activity as what happens as they attempt to carry out 
their interpretation of the task. Combining these, some thing or some situation can 
usefully be described as a ‘problem’ only when someone experiences a state of 
problematicity, takes on the task of making sense of the situation, and engages in 
sense-making activity.

The notion of mathematical challenge has an inbuilt ambiguity. On the one hand, 
someone can challenge me to resolve a problem. On the other hand the challenge 
may be taken up and experienced as a challenge, or it may be resisted in some way. 
In this paper, the focus is on the latter so that a mathematical task is considered to 
be a challenge only when someone experiences a state of ‘feeling challenged’ and 
takes action to try to meet that perceived challenge. I shall use the word challenge 
in this sense, not as a description of qualities of any particular stimulus or prompt 
but as an indicator of someone’s state within a situation with affective, cognitive, 
enactive, and other consequences. In other words, challenge depends on the current 
state of the psyche of individuals within the current social setting.
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The notion of challenge in relation to learning, doing, and teaching mathematics 
is of vital importance: if a mathematical task is thought to be too challenging, learn-
ers are likely to resist or even reject it, while if it seems insufficiently challenging, 
learners can become de-motivated and-or complacent, which is itself a form of 
resisting personal investment. Something perceived as a routine exercise rather than 
as a challenge to their powers is likely to reinforce a separation between schooling 
and living. Furthermore, what is a reasonable challenge to some may be routine to 
others, yet out of reach for still others, and this can change with different circum-
stances and at different times.

I am interested in the constellation of conditions in which learners might accept 
and take on a challenge, in which they might (learn to) park a challenge, and in 
which they might resist, defer, or reject a challenge. An important aspect of the 
psyche in this regard is trust, whether in the source of the challenge or in them-
selves, in their self-confidence (literally trust-in-self), which of course may some-
times be inflated or deflated inappropriately.

12.2  Human Psyche

In order to probe beneath the surface of mathematical challenge, I make use of dis-
courses which have to do with both distinctions between and coordination among 
aspects of the human psyche. It is important to note, however, that these discourses 
are partial. They make no claim to completeness, no claim that they are either neces-
sary or universal. They are based on observations which, being made by human 
beings with history and predilections, are necessarily biased. Their potential validity 
resides not in statistical studies but in whether their use is found to inform personal 
action in the future.

12.2.1  Six Aspects of the Human Psyche

Traditional (Western) psychology has focused largely on three aspects of the human 
psyche: enaction, affect and cognition, with only scant recognition of attention, of 
the role of will, and of the presence or absence of an inner witness or monitor. Each 
of these aspects has both an experienced and a description version.

Thus enaction is what is experienced when an action is initiated and continued, 
whereas behaviour is what others describe when reporting observed activity. For 
example, I find myself constructing and then working through an example (action) 
that the observer describes as specialising, even though I am not aware of specialis-
ing as such.

Similarly, affect points to the experience of changes in physiological conditions 
of the individual such as perspiration, change in pulse or breathing, etc. and may be 
distinguished from emotions which are descriptions of imagined states such as 
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anger, fear, excitement, etc. (Mandler, 1989; Barrett, 2017). Notice how affect and 
emotion have significant physiological and cognitive components. For example, I 
find myself disinclined to work at a particular task, which an observer might describe 
as resisting or rejecting the challenge, and might confuse with my observed behav-
iour of not-engaging or working slowly.

Again, cognition can be used to refer to an act of mentation (having ideas pop-
ping into consciousness, such as words to say; changes in the oxygen levels in rel-
evant parts of the brain, …), while intellect can be used to describe the effects of 
such mentation such as thinking, pondering, considering, problem-solving, etc.

Of course, descriptions cross over between these components: someone observed 
staring out a window may be interpreted as thinking, or as resisting activity due to a 
surge in affect (which they interpret as an emotion), perhaps blocking the possibility 
of enacting some action, or obscuring a lack of any available action.

The descriptive terms have the effect of generalising, labelling habitual patterns 
of action, emotion and intellect, attributed to the individual (psychologically) and to 
a group of people (sociologically). Such descriptions become fossilised, obscuring 
subtle differences which could otherwise have had different pedagogical implica-
tions (Mason, 1989).

In addition to the usual trio of aspects, it seems clear that attention, both what is 
attended to and how it is attended to, plays a vital role in mathematical thinking, and 
again there is a difference between what is experienced and how that experience is 
described (Mason, 1989). In chapter XI of his Principles of Psychology, William 
James (1890) proposed that “My experience is what I agree to attend to” (Green 
website). This begs the question of what constitutes the “I” that does the agreeing. 
My own observations suggest that attention is the centre of experience; its scope and 
range, breadth, focus and locus are the “I” that claims to be the subject of the predi-
cates that describe my various states and actions. It is not surprising therefore that it 
is very difficult to observe my own attention. This is the role of the inner witness.

The inner witness is the voice that suddenly asks “Why are we doing this?”, or 
“Isn’t there a better way?”. It observes but does not act. It alone is able to observe 
the locus and focus, range, scope, and intensity of attention, and how attention is 
functioning mathematically (Mason, 2001). It has been referred to as an inner moni-
tor or inner executive (Schoenfeld, 1985), and its recognition as part of the psyche 
has historical roots in a stanza in the Rg Veda (Bennett, 1943):

Two birds, close yoked companions, both clasp the self-same tree;
One eats of the sweet fruit, the other looks on without eating.

The witness is the bird that observes without eating, without being caught up in 
the action.

Human will is another elusive notion. Usually expressed in terms of will-power, 
it is used, for example, to describe someone sustaining activity in the face of opposi-
tion or difficulty, but this is always in relation to an observer’s expectation and has 
an affective component as well. Here it is used to refer to summoning or organising 
of energies, perhaps to persevere, perhaps to change direction, to pause or park 
activity. It is associated with the taking of initiative, of initiating some action. It 
feels like a releasing and channelling of the energy of intention and desire, of 
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precipitated action, of insight, so that attention is sustained and focussed, despite 
distractions.

It is often assumed that actions are initiated by intellect-cognition, although 
sometimes it is acknowledged that they may be triggered through affect, or even 
enaction. Norretranders (1998) summarised neurological studies which suggest that 
the common assumption that conscious cognition is in control of actions is a User 
Illusion. Rather, many if not most actions are actually re-actions based on previ-
ously developed habits, previously coordinated adherences amongst the aspects of 
the psyche making predictions based on past experience (Nave et al., 2020). These 
habits are not simply actions, but repeated patterns of action, affect, thought, pro-
pensity to attend to certain things in certain ways, exercise of will and characteristic 
observations made by the inner witness. Over time these patterns of interactions 
become adherences which manifest themselves as micro- selves, personalities or 
distinctive selves.

12.2.2  Initiating Action

One of the ways in which action is initiated is illustrated by the cliché that, “to a 
child with a hammer, the world looks like nails”. In other words, when a new tool 
becomes available, there is a tendency to use it everywhere. For example, when a 
new word is encountered, it is often used initially rather more broadly than most 
people are accustomed to. Over time, its use settles and, judging from the use, the 
meaning contracts. So too with other tools. Mathematicians do the same: upon 
encountering a fresh way of proving something, they are likely to try using that 
same or similar approach in the near future. The extent to which this happens will 
be influenced by the self-confidence and the vibrancy of whatever psycho-social 
habits are dominant at the time.

Using a recently acquired tool almost indiscriminately is but one instance of 
action which is enacted without reference to cognition. Terms such as ‘habits 
below the level of consciousness’, ‘unformulated action’, ‘theorems-in-action’, 
‘tacit knowing’, and even ‘poetic knowing’ have been used similarly: see Mason 
and Johnston-Wilder (2004, pp. 298–291) for a partial trail. Kahneman and Frederick 
(2002) and Kahneman (2012) drew on the ideas of Wason and Evans (1974) con-
cerning Dual Process Theory. Kahneman’s elaboration was based on experiments 
which suggested that the human psyche has two different ‘systems’: System 1 (S1) 
is immediate, reactive, enacted by the musculature, and often associated with intu-
ition (or is it habit?), while System 2 (S2) involves consideration (literally sitting 
with) by the conscious cognitive apparatus. Norretranders (1998), and others such 
as Mandler (1989) point out, again in alignment with more ancient knowledge of the 
human psyche such as presented in the Upanishads or the Bhagavad Gita, that under 
stress the body reacts first, the emotions second, and cognition a slow third.

Liam Hudson (1968) used the notion of frames of mind to express something 
akin to coordinated adherences, in much the same way as Marvin Minsky (1975) 
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who, being a computer scientist, thought in terms of actions being enacted by 
computer- like programmes which have default parameters to be used in place of 
absent information. As soon as all the parameters have ‘values’, the action is initi-
ated, without requiring contribution, consideration, or permission from cognition, 
which aligns with the notion of the predictive brain (Nave et al., 2020). This pro-
vides one explanation for why human beings so often act without being consciously 
aware of acting and is captured nicely in a traditional teaching story:

A horse suddenly came galloping quickly down the road. It seemed as though the rider had 
somewhere important to go. A bystander shouted out, “Where are you going?” and the rider 
on the horse replied, “I don’t know! Ask the horse!” (Hanh, 1986)

The horses of the human psyche, the emotions, all too readily carry us away! Being 
carried away is sometimes seen as a positive state, associated with letting go of what 
has previously been shackling so as to enable a state of flow (Csikszentmihalyi, 
1997). Certainly, it is relatively easy to be carried away sufficiently so as to lose the 
sense of time and place and to be so caught up that it is difficult to pay attention to 
the focus and nature of one’s own attention, to the powers one is using, or to math-
ematical themes which are being played out. However, sometimes it is possible to 
be aware of, to ‘be present to’ these aspects of mathematical activity, however sub-
consciously or even consciously. So flow has both a ‘carried away’ version and a 
‘being present to’ version.

Although it is clear from self-observation that action is often initiated spontane-
ously, as it were, its origins sometimes lie in emotions which may be triggered 
metonymically through idiosyncratic association, making certain actions available; 
sometimes they lie in the arising of a thought and sometimes they lie in a stimulated 
shift of attention. It is useful therefore to extend the processes idea in line with the 
psychology articulated by, among others, Ouspensky (1950), to include an interme-
diate System 1.5 (affective, later narrated as emotion) and a further System 3 which 
concerns access to deeper or higher energy (Mason & Metz, 2017). System 3 is the 
source of sudden insight which is often described as coming from ‘the muse’, and 
attributed to ‘creativity’. It is closely aligned with the Gestalt notion of form 
(Zwicky, 2019), and is experienced in brief moments, which are almost always 
immediately overlaid by thoughts, emotions and activity. It is accessed through 
periods of relaxation of tensions in the body, emotions and thoughts, in what is 
sometimes referred to as fallow periods, or centredness. Waiting, or gazing, seen as 
one way of attending to something, may be most effectively thought about as coor-
dination of enaction, affect and cognition, with corresponding things to attend to 
and ways of attending, which leave the person open to unexpected possibilities, 
sometimes leading to a momentary experience of S3.

Neville (1989) describes a variety of educational initiatives with psychological 
backing based on the notion that learning is most efficiently undertaken not by con-
sciously focused attention but by peripheral attention. Gattegno (1970, 1987) used 
the same principle to suggest that in order to internalise an action so that it is avail-
able to be enacted, it is best to provoke the action peripherally, as a side-line of some 
other action. He called the process of sensitising oneself to the possibility of an 
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action, that is, recognising contexts in which it might be appropriate, and internalis-
ing that action, as educating awareness. Hence the role of mathematical exploration 
is in order to create conditions in which learners spontaneously rehearse some pro-
cedure so as to make sense of some apparently unrelated phenomenon. This aligns 
with the Eastern teaching method illustrated several times in the movie Karate Kid 
(1984), in which the student is inveigled into rehearsing an action while attending to 
something else entirely.

The four ‘systems’ S1, S1.5, S2 and S3 describe four different ways in which 
action can be initiated and actively pursued, making use of combinations of or coor-
dinated aspects of the psyche. Emotions provide the energy (cf. the etymological 
roots of emotion), but attention is the core of presence.

12.2.3  Psycho-Social-Coordinations

The various aspects or components of the psyche do not operate in isolation. It 
seems that particular emotions become associated with and amplify particular 
thoughts and together these energise certain actions over others. Particular thoughts 
and emotions stress certain behaviours, and the will to continue on any path of 
action, emotion, thought and attention is influenced by perceptions about actual and 
likely success (or failure) which in turn are influenced by current emotions (Skemp, 
1979). Things deemed worthy of attention, and particular ways of attending to them, 
become salient, even to the extent of blocking out other possibilities. The inner 
witness observes the sorts of things it has become accustomed to observing and 
issues alerts which have become part of the adherence.

Co-ordinations can be self-amplifying and self-sustaining, preserving the psy-
chological state, and in turn may be amplified, sustained or ameliorated by the 
social milieu. These stimulate characteristic actions, emotions, dispositions, pat-
terns of thought, foci and functioning of attention, activated willpower and even 
types of observations made by the witness. Over time a repeated coordination ‘takes 
hold’. It becomes an adherence manifested as a habit, hence the notion of psycho- 
social coordinated adherences. They are like micro-identities (Varela, 1999) or mul-
tiple selves (Bennett, 1964; Hudson, 1968; Minsky, 1986; Hanson, 1986; Kahn, 
1983; Davies & Harré, 1990; Eakin, 1999; Lester, 2012). Since many people see 
themselves as trying to locate their ‘true self’ and reject out of hand the notion of 
multiple selves, the language of coordinated adherences seems to be more generally 
acceptable.

Over time, coordinations can become stable, so that characteristic flows of 
energy adhere to each other to form habits not just of behaviour, but of psycho- 
social states. The adjective psycho-social emphasises that coordinations are influ-
enced by perceived social conditions as well as by psychological states, and so 
although adherences are in the psyche, which adherence becomes dominant at any 
particular time, and how it became coordinated in the first place, is influenced by the 
social situation and relationships as perceived and experienced by the psyche.

J. Mason



225

An example of this is a collection of socio-mathematical norms which are 
enacted by teachers and then may be picked up by learners (Yakel & Cobb, 1996). 
Some learners may reject them out of hand, while others may take them up with 
alacrity, and still others may gradually become inured to them. Another example can 
be found in the report of Brown and Coles (2000) in which students picked up the 
practice of considering what is the same and what is different about two or more 
mathematical ‘objects’, and then began to initiate this action for themselves.

I noticed an example recently when a friend showed me an intriguing book con-
sisting of drawings of geometrical configurations, using both solid and dashed lines 
in various places (Akopyan, 2011). Each diagram can be taken as a challenge to 
discern and articulate a property which relates the dashed (construction) lines to the 
solid lines. When I subsequently received my own copy I was initially entranced, 
but then overcome with lethargy and a sense of burden. My witness recognised this 
state as one which I have experienced with other problem collections. The immense 
potential, the scale of commitment implied, and the fear of not being able to work 
them all out combine to stifle action and lead me to reject the challenge, at least for 
a time. A psycho-social adherence is brought to the surface which finds it all too 
much and saps away any initial energy and disposition to engage.

Carol Dweck (2000) is well known for her investigations of how background 
assumptions can establish adherences which have their own narrative (eg. “I resist 
the unfamiliar because I associate it with failure”) but how inner incantations can be 
replaced and the unfamiliar embraced. She reports a lifetime of work developing 
ways to assist people to release themselves from habitual patterns based on perceiv-
ing failure as inbuilt rather than as happenstance (See also Neville, 1989).

12.3  Resisting, Accepting and Parking Challenges

Responses to challenge are many and various. They cover a spectrum from outright 
rejection to enthusiastic take-up. Observing learners respond to challenges set by 
their teachers, it may be useful to think broadly in terms of resistance, which extends 
from outright rejection through to grudging compliance, transmuting into accep-
tance which extends from grudging compliance through to enthusiastic take-up. At 
almost any stage there is the possibility of deflecting or parking the challenge, with 
intentions varying from long-term parking, amounting to rejection, to waiting for 
fresh ideas, further resources, or sufficient time to direct attention to it.

Resisting and accepting, deflecting and parking are only superficial descriptions 
by observers of learner behaviour. However, bearing in mind the proposal by 
Maturana (1988) that “everything said, is said by an observer”, even self-report 
involves observation whose quality depends markedly on the presence and inner 
separation or objectivity of the witness. The claim here is that what is being observed 
is likely to be a coordination of various aspects of the learner psyche, and likely to 
contribute to the creation of adherence as the basis of a habit. These in turn activate 
one or other systems, whether S1, S1.5, S2 or S3.
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For example, learners who, on being given a task, wait until the teacher comes 
round so they can ask for specific guidance on ‘what are we supposed to do?’ are in 
danger of developing a habit which will diminish, even stifle opportunities in the 
future. It is ever so easy for an initial resistance to develop into a reluctance, and 
then into a rejection. Their S1 or S1.5 triggers inaction, and rather than shift into S2, 
they remain inactive until someone tells them what to do. Unfortunately, teaching 
assistants are often all too ready to meet this demand. The tension between telling 
and prompting is captured by the notion of the didactic tension (Brousseau, 1984 
p. 110; Mason & Johnston-Wilder, 2004 p. 82) which can be described as

the more clearly and specifically the teacher indicates the behaviour expected from the 
learner, the easier it is for the learner to enact that behaviour without actually generating it 
for and from themselves, and so without the likelihood of internalising that action.

Bob Davis (1984) presented this to students as an ethical dilemma: would they 
rather be told, or be allowed to search for something for themselves?

As another example, there are many learners who, on being set a task, immedi-
ately enact the first action that becomes available. They may in retrospect account 
for it on the grounds of ‘getting it over with as soon as possible’ or as an outcome 
of their eagerness to learn or engage, but in either case, reacting immediately can 
become a habit, coordination of adherences which waist time and sometimes 
obscure access to a more fruitful approach.

12.3.1  Recognising Challenge

The first question is how the psycho-social system recognises challenge (as distinct 
from simply a task). Usually, there are somatic changes in pulse, breathing and per-
spiration, often arising from an increase in adrenalin, triggering emotions such as 
fight-flight or fear-fancy, with concomitant coordinated adherences in the rest of the 
psyche. Unfortunately, these coordinated adherences are often inappropriate and 
over-rated and may block other adherences from coming into play.

Somatic changes need not be interpreted in such drastic ways. Adrenalin flow 
can be perceived as stimulation and excitement, leading to a sharpening of the 
senses. I find that one situation in which I become aware of the mathematical 
challenge is when something disturbs my current adherence of enaction, affect and 
cognition, when something shifts or alters what I am attending to, or how I am 
attending to it, when my will power feels tested, when my inner witness signals that 
something is awry. Often it can be something quite simple but which becomes fod-
der to my propensity to try to generalise, to place a result in a wider context. Only 
then am I aware of feeling challenged. However, that ‘feeling’ is not simply cogni-
tive or affective in nature. It comes from coordination of cross-linked habits between 
the various ‘components’ of my psyche which adhere to, and consequently both 
feed and limit each other.
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For example, encountering the idea of constructing a decimal number by writing 
down the digits sequentially (so 0.1234567891011121314151617…) immediately 
raises the question for me as to how to tell whether it is rational or irrational. What 
constitutes a convincing justification? What about other sequences? And that is only 
a starting point. Suppose only one new decimal place is allocated to each numeral 
so that there are carries to the left which may affect earlier decimal places (e.g. 
0.1234567901234…), or perhaps two or three new decimal places are allocated; 
what if the number of allocated decimal places changes in some systematic fashion? 
What if some other sequence is used, such as triangular numbers or Fibonacci 
numbers?

Having an action become available is essential. For example, the action of pre-
senting such strings in terms of powers of 10, followed by, in some cases, recognis-
ing a geometric series, provides a method of dealing with many of the questions 
posed above, and for many different sequences. I immediately want to start explor-
ing, which is an imprecise way of saying that my attention shifted, actions became 
available and I recognised a desire to find out what is going on. Without any sense 
of exercising will, but rather of the will being dragged along, one of my ‘explorer’ 
adherences took over. This happened not once or twice but several times with the 
same idea on different occasions.

Furthermore, I notice (my inner witness notices and brings to cognition) a reso-
nance with two questions posed by David Fowler (1985a, b):

Guess the length of the period of the square of 0.001 001 001 … . Then and only then, work 
out the answer.
Use a procedure for multiplying decimal numbers to calculate the first significant digit of 
1.2222… × 0.818181…

The associated lesson is that arithmetic with infinite decimals can be tricky! 
Expressing repeating decimals as fractions may be necessary in order to be certain.

Mathematically, I also perceive myself to be challenged when there is some situ-
ation or assertion that I cannot readily explain or justify, yet which appeals to my 
affect by striking me as surprising or unexpected. This often happens with geometri-
cal configurations. A good example for me arose by taking a convex quadrilateral 
and joining each vertex to the midpoint of the next-but-one edge taken clockwise. 
An inner quadrilateral is formed and in dynamic geometry software, it often appears 
to have an area of one-fifth of the area of the original quadrilateral (Mason & Zazkis, 
2019). It turns out that this is due to rounding errors … but what in fact is the case? 
And what happens when midpoints are replaced by some other construction?

A sense of being challenged can also take the form of something which alters the 
way I perceive or attend to something, which again needs explaining or justifying. I 
particularly enjoy situations in which there are dual perceptions to be reconciled, for 
example thinking of chords of functions as made up of families in each of which the 
chords all have a fixed endpoint, or as families each of which consists of chords 
whose midpoints are all vertically aligned; finding tangents to a curve passing 
through a given point P in terms of a tangent at a particular point Q on the curve as 
Q runs along the curve, and as a line through P rotating to positions of tangency; 
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thinking of √17 as known by its properties (positive, square is 17) and as a real 
number with an essentially unknown infinite sequence of decimal digits; thinking of 
a straight line as an instance of a circle of infinite radius with centre at infinity, 
and so on.

12.3.2  Responding to Challenge

Although people are accustomed to believe that they ‘choose’ actions to enact, that 
choice is cognitive, this is a User Illusion (Norretranders, 1998). Close observations 
suggest that more often than not, some habit, some psycho-social adherence of 
coordination between action, affect, cognition, attention, will and even witness is 
what drives behaviour. Brief moments of true choice are glimpses of freedom.

While responses can have positive, negative and neutral influences, let us con-
centrate on positive responses. What lies behind different responses? In my experi-
ence, there is an immediate evaluation of the scope and potential of the task, not as 
a question to be carefully considered, but arising immediately. Does the challenge 
seem recognisable, and is some immediate action available? Does it appear to be 
attainable, or do I have confidence in the person posing it that it will be attainable, 
even if I do not immediately have a suitable mathematical action available? Does it 
appear to align with my current or past interests and successes? This is modified by 
the energy released, ranging from surprise or intrigue, through the desire to make 
sense which in turn is supported by my predisposition to tackle such challenges, to 
attempts to minimise the impact of the situation on my current well-being. So the 
pressure to perform, or in an examination situation, to perform quickly and effi-
ciently, is a different kind of challenge to desire to resolve or comprehend some 
situation.

My immediate reaction then is either to take up the perceived challenge, to resist 
it by investing as little energy as possible in it, or even to reject it altogether. I also 
recognise that sometimes it is necessary to defer or park a challenge and that what 
was once a rejection can turn into parking because later it is actually taken up. This 
confirms Bill Brookes’ observation (earlier) that challenge (having a problem) is 
about psycho-social states experienced by human beings in a particular situation, 
rather than any objective and universal quality. I have upon occasion rejected a 
problem posed by someone in one situation, and then later accepted it when posed 
by someone different in a different situation. A lot depends on my perception of, and 
social relation to, the situation.

Perception of the degree of challenge is necessarily idiosyncratic, depending as 
it does on a person’s history, including the development of particular ways of 
responding to challenge and current state, and on the current situation as perceived, 
including who or what is posing the challenge. It is hardly a matter of cause-and- 
effect, more a matter of a soup of multiple forces, impulses and tendencies which 
play out differently despite only minor changes to the apparent situation 
(Mason, 2016).
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Feedback of pleasure/endorphins arising from success, particularly unantici-
pated or striven-for success, can reinforce the disposition to engage in the future. 
Undertaking a challenge after a period of perceived failure is quite different to 
undertaking it during a period of perceived success: emotions are likely to be differ-
ent, which may channel different flows of energy, thereby directing thoughts arising 
from attending to particular things in different ways. All of these interconnections 
tend, over time, to become habitual. A future stimulus may awaken or evoke 
thoughts, emotions or actions which bring a particular adherence into dominance in 
the way the person functions. An adherence may come to the fore for unexpected 
reasons, and afford access to associated actions with thought and emotion patterns, 
to ways of attending and to what, and to strength of will as to whether to per-
sist, because of coordination of these aspects of the psyche.

12.3.2.1  Accepting

To accept a challenge there must be some sense of hope or possibility, whether 
based on a false sense of personal competence or on intensity of commitment. One 
important feature is trust in the source of the challenge, that the challenge is doable 
but not trivial, and worthwhile (Jackson, 2011; Mason, 2020). Something about the 
task has to appeal to the psyche, whether through emotions (surprise, intrigue), 
intellect (resonance with past experience), enaction (putative actions become avail-
able) or attention (perhaps a sense of generalisability). The appeal has to bring a 
coordinated set of adherence to the surface.

With some possible exceptions, the most alluring and persistent challenges are 
ones which I have set for myself. This even applies to challenges arriving from other 
sources, for it is only when my state is “in challenge” that I can truly be said to have 
taken it up. There is some sort of transformation, not always recognisable as such, 
which takes place so that an externally sourced challenge becomes a ‘challenge for 
me’. The intensity with which it is taken up often waxes and wanes over time 
according not only to current feelings of (partial) success or progress but also 
according to exterior conditions of a psycho-social nature.

For example, in the 1970s the following problem circulated widely (Gardner, 
1979; Klarner, 1981, pp. 285–307):

There are four symmetrically placed (and so indistinguishable) doors in a circular table. 
Behind each door is a tumbler which is either up or down. If all the tumblers are in the same 
state, a bell rings. You may open any two doors and adjust the positions of those two tum-
blers, but the doors then close, and an unknown rotation takes place so you do not know 
which tumblers are beneath the doors you last opened. Can you make the bell ring?

Having eventually resolved it with ad hoc reasoning, I wanted to know what was 
going on structurally, so I posed myself the challenge of d doors, a symmetry group 
G acting on the doors so that which tumblers are behind which doors is not known, 
and allowing myself to use h hands (ie. to open h doors and make adjustments to any 
or all of these in a single move). My explorations revealed the structure of chains of 
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subgroups of G with indices bounded by h in order to be sure to be able to ring 
the bell.

There is a weaker form of accepting challenge which is more apparent than real 
and applies particularly to classrooms. Care must be taken about interpreting activ-
ity as acceptance of challenge: I may simply display the appearance of accepting a 
challenge, when in fact I am resigned or compliant to it out of perceived lack of 
choice. It is a task, not a challenge. Throughout history we are presented with 
examples in which forced acquiescence is mistakenly taken as agreement, only to 
feed resentment and negative disposition generally. Browbeating learners into 
acquiescing rather than engaging wholeheartedly may be one of the reasons why 
so many learners suddenly leave mathematics, even those who undertake under-
graduate studies.

12.3.2.2  Rejecting

Putting a challenge aside immediately may at first be seen as a rejection, an act to 
conserve energy and not be diverted from more pressing tasks. This may arise from 
the inner witness asking questions and alerting both cognition and affect to a need 
to focus attention elsewhere. It may also arise from a habit of rejecting or blocking 
the unfamiliar, established coordination between affect, cognition, and enaction that 
may have become habitual.

There are far too many mathematical challenges to undertake them all. For 
example, although questions about phenomena in the material world often occur to 
me, I also know that my modelling skills are limited, so I usually simply note the 
situation but reject the challenge as such (Fig. 12.1).

Fig. 12.1 Swing scooter 
(copyright free image)
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An instance of this is the swing scooter which my granddaughter uses effort-
lessly, the design of which intrigues me: how did people decide the optimal angle of 
separation, the optimal size of wheels, and the optimal length of the wheel exten-
sions? Similar questions apply to designs of overhead cranes, skip- transporters and 
many other things which I encounter. I wonder how design choices are made so as 
to optimise the functioning of the apparatus.

Often I reject a challenge because I do not see immediately how to get started, 
what action to enact in order to begin. More specifically, it is usually necessary to 
have an action become available within my current threshold of resilience: the 
period of time within which I am likely to persist, which will vary between individu-
als, and for individuals at different times and in different conditions. Even the 
Pólya-based advice to specialise in order to comprehend underlying structural 
relationships may seem to require too much effort, if it even seems possible.

A notable counter-example for me is the problem I posed myself many years ago, 
arising from the following mathematical challenge:

In how many different ways can a circle be cut into four congruent pieces?

The problem is attractive pedagogically because it offers an opportunity to work 
with learners on how the meaning of different changes as examples accumulate, and 
how care is needed to justify conjectures, especially when they become rather too 
optimistically general. I noticed that in the only examples I could construct, at least 
some of the pieces always have the centre of the circle on their boundary, even when 
for 12 and 24 not all the pieces have to have the centre on their boundary.

Out of this came the problem:

Is it possible to divide a disk into congruent pieces so that the centre is not on the boundary 
of any piece?

Here ‘piece’ is taken to be simply connected, acting like a jigsaw piece rather than 
exercising topological concern about boundaries and interiors. I cannot even really 
see how to specialise, as changing the circle to polygons opens up different possi-
bilities altogether with no sense of how these might inform the circle case. I made 
myself a jigsaw featuring twelve congruent pieces as depicted in the central figure 
of Fig. 12.2, which can be assembled so that only some of them have the centre on 
their boundary, but it has not helped me see a way forward. I have returned to this 

Fig. 12.2 Two variations for 12 congruent pieces; the second admits other variations such as 
the third
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challenge several times, but, having tried combinatorial, geometric and function- 
analytic thinking at different times without success, I have been unable to find a way 
to make progress, and have again put it aside. I have not rejected it so much as 
deferred it, resisting for the time being and parking it for another time. So even 
though I have no actions to enact, I have not totally rejected it. This shows up some-
thing about the nature of resilience and persistence, but borders on obsession.

Another example for me is the following problem:

Is it possible to glue congruent regular tetrahedra together so that they form a ring or torus 
(even if they cut through each other in 3-space)?

I posed this when I first struggled with simplicial complexes and chains in topology 
as an undergraduate. I returned to it several times when a fresh idea came to me, and 
eventually, some 7 years later, I managed to prove not only that it is impossible, but 
to extend my method to deal with other similar problems. There was something 
about the challenge that appealed to me, meaning that I persisted (Mason, 1972; see 
Elgersma and Wagon (2016) and Stewart (2019) for further developments). Here it 
was the recognition of a fresh action to try out, or of an action to retry with more 
persistence that kept me from rejecting it altogether.

Sometimes I am already working intensively on another challenge and can mus-
ter neither the energy nor the will to put the current one to one side, to shift my 
attention to the new challenge, especially if I cannot immediately see a way to get 
started. Again the word obsession comes to mind as a possibility, and at the time of 
writing, I am obsessed with a family of problems whose challenge I seem unable to 
put aside.

12.3.2.3  Resisting

In school and as an undergraduate and graduate student, I had to accept challenges 
presented to me in courses and examinations. I trusted the lecturer, aware that I had 
some very bright and accomplished colleagues, so I did not hope to succeed at 
everything. I have a vivid memory of a night spent trying to complete a take-home 
exam in Hilbert spaces in graduate school. As I became stuck on one of the prob-
lems, I would shift to another, returning to each again and again. I remember spend-
ing a good deal of time staring at the line between the wall and the ceiling of my 
study, waiting for inspiration. I trusted that the problems were within my capability, 
and I was desperate to do well in the course. So I persisted. In the end I completed 
them, only to be told by the lecturer when I handed them in that I need not have done 
more than one or two!

As I have become older, and slower, I find myself more able to resist challenges. 
For example, during corona-time conversations on-line we were posed a problem 
that I recognised, but had never really appreciated:

Place four integers at the corners of a square. On the edges, record the differences in the 
adjacent numbers (the absolute values). Treat these as the corners of a square and continue 
the process. What happens?
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Despite a slight resonance with arithmogons which I have exploited pedagogically 
(Mason & Houssart, 2000), I had (and still have) a strong sense that manipulating 
compositions of absolute values is not going to be attractive, and I have a vague 
memory of not enjoying what I found out when I last looked at it. So I resisted. I 
recognised a familiar coordination between affect (heaviness, concern), cognition 
(sense of other commitments, particularly to my current problem), enaction (initi-
ating parking-type behaviour), attention (sustained to current commitments) and 
will (directing attention to current commitments). It turned out not to be a full 
rejection, because as it came close to time to report what we had noticed in the way 
of shifts of attention, I felt it necessary to have something to report. I looked for 
some actions that could be used to reduce the number of cases needing to be con-
sidered: take all the numbers to be non-negative; take at least one of the numbers 
to be 0. The point is that I tried to invest as little energy as possible, cutting down 
the number of examples I was willing to try in order to detect what was possible in 
the long run.

Often it is the case that response to a challenge is half-hearted, or an instance of 
being resigned to a challenge rather than actually taking it up wholeheartedly. This 
can even turn into a habit, summoning up familiar coordination based on a desire to 
invest only as little energy time and effort as possible, in the hope that that will be 
sufficient to get through the lesson. Closely involved of course is the implicit con-
tract (contrat didactique see Brousseau, 1984) in which learners act as though their 
job is simply to attempt the tasks set by the teacher, and that somehow this will be 
sufficient to produce the learning that is expected of them. The teacher’s side of the 
contract is to choose, set, and support work on the tasks so as to achieve this learning.

This form of the contract is of course rather inadequate and essentially vacuous, 
even for very cleverly chosen tasks. “One thing that we do not seem to learn from 
experience is that we do not often learn from experience alone. Something more is 
required” (Mason & Johnston-Wilder, 2004, p. 263). It is vital that learners do actu-
ally learn from their experience (Pólya, 1954 called it ‘looking back’), which means, 
among other things, articulating a personal narrative about the topic. This involves 
recalling, and then imagining re-using actions that were effective, mathematical 
themes which emerged, and personal powers which were exercised. It would also 
include reviewing any relevant personal example space and its associated construc-
tion methods (Watson & Mason, 2005).

Learning mathematics is as much about developing a disposition to try some 
initial actions, if only to specialise in order to uncover underlying structural rela-
tionships, or to clarify what is being asked for and what other ideas or actions might 
possibly be relevant, as it is about mastering specific procedures in order to resolve 
routine questions. Personal narratives or self-explanations (Chi & Bassok, 1989) 
play a key role in learning from experience.
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12.3.2.4  Deferring or Parking: Letting-Go, Hanging-on, and Pausing

While recalling my various experiences of mathematical challenge, I realised that 
one important, natural, and often necessary action worthy of being internalised is to 
park work. For example, the first action that becomes available is not always the 
most helpful, so parking that action before it is automatically enacted can avoid 
wasting time and energy. This applies whether it is a task, a reaction to a task or an 
action within a task. Not that this is easy to do. Often it is only after an initial action 
has been enacted but fails to result in progress, that real thinking takes place. There 
is a parallel with teaching, where it may only be on hearing a students’ reply to my 
question that I realise I have asked a question with a prepared answer I wished to 
hear, placing me in danger of playing ‘guess what is in my mind’.

Considering deeply, and allowing thinking to go on in the background provides 
access to an important part of the human psyche (S3) that may go undetected and 
unused in the constant push to ‘cover topics’ and ‘reach solutions’. The following 
teaching story illustrates the point.

A person was looking closely at the ground under a street lamp. Asked what they were 
doing, the reply was, “looking for my keys”. When asked “Where did you lose them?”, the 
reply was “over there, but it is brighter here”.

Despite the absurdity of the story, most people have experienced persisting at some-
thing using the same available actions over and over (the light from street lamp) 
despite lack of progress. In the absence of any other action it is difficult not to keep 
trying an available action every so often in order to see if perchance it will now 
work, even though the difficulty lies elsewhere.

Any behaviour can become obsessive, which means persisting at carrying out 
available actions, coupled with an emotional state of desire uninformed or uninflu-
enced by cognition. Something in the will becomes stuck. Distinguishing between 
persistence and obsession is never easy, especially in oneself, as there can be a lin-
gering hope that ‘this time things will work out’. It is a state I recognise all too well 
in myself, and as such it is difficult to trap the coordinations between action, affect, 
cognition, attention and will. My witness observes, but is powerless to act! Andrew 
Wiles (2017) in interview observed that:

You need a particular kind of personality that will struggle with things, will focus, won’t 
give up. … we learn how to adapt to that struggle. Mathematicians struggle with mathemat-
ics even more than the general public does … We really struggle. It’s hard. I am always 
quite encouraged when people say something like: ‘You can’t do it that way’.

More importantly, perhaps the real issue of challenge is recognising when progress 
is not being made, and learning to put a problem aside, at least for a time.

When emotional energy drains out and the will to continue begins to ebb, when 
the inner witness keeps asking “why are we doing this; isn’t there something else we 
could be doing?” but without any suitable reply, when attention wanders and fails to 
concentrate, it may be time to let-go, either temporarily by parking, or by abandon-
ing for the foreseeable future. These witness-questions are likely to emerge when no 
fresh actions are available. In the absence of suitable tools, it is wise to defer for a 
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while. Thus an important aspect of challenge is to recognise and acknowledge when 
more tools or more ideas are required, leading to parking the challenge at least until 
conditions change. Wiles (2017) refers to the ‘three B’s’, namely “bus, bath and 
bed”, pointing to the need to let the unconscious (S3) create new associations, 
access forms or ‘senses-of’, and open up new vistas.

Periods of letting-go or parking can afford access to S3, yielding insight and new 
possibilities (Hadamard, 1945). As a friend and colleague reported recently:

… I’m still working on the question in odd moments. It’s interesting how questions like this 
can be like a staircase, with stair-like times where you’re following a direction, discerning 
details, recognising relationships, and then you reach a ‘landing’ where you get a sense of 
a whole, but the next flight of stairs feels too much for the moment. Simon Gregg. (personal 
communication June 2020)

Mathematicians know from experience that even if there is little prospect of picking 
up the challenge later, it is always wise to make a summary of what has been 
achieved, listing conjectures and notes about what evidence there might be for them. 
This is part of a personal narrative, and it makes it so much easier to pick up the 
challenge at a later date than is the case if the only record is a sheaf of scribbles. 
What seems curious is that this is such a good habit to form, such a powerful coor-
dinated adherence to develop for learning from the experience of a challenge in 
order to facilitate actions in the future, that one might expect it to be a core focus in 
mathematics classrooms in every phase, yet this does not seem to be the case.

Another example of the appeal of action before considering it properly (parking 
S1 and activating S2) is the desire to turn to electronic support, whether to perform 
algebra correctly, to generate examples, or to look for invariance in the midst of 
change. The form and nature of thinking on a machine using computer algebra or 
dynamic geometry are quite different from sitting quietly and contemplating, or 
from thinking in the background while doing other things. The greater the intrigue, 
desire, sense of possibility and trust in self and source, the harder it is to resist the 
impulse to enact some mathematical action without further consideration.

12.3.2.5  Giving-Up

It may be a moot point whether a pause, perhaps intended to be brief, turns into 
abandoning altogether, or retains the challenge on a ‘back burner’ for subsequent 
consideration. I myself have a long list of problems that I have worked on for a time 
but have had to put aside for various reasons. Sometimes I am expecting it to be 
temporary, sometimes permanent. I had hoped to return to many during retirement, 
but there always seem to be fresh things to think about!

Giving-up is not always intentional. I have several times wanted to use Isaac 
Newton’s algebra problem of the grazing cows as an example in some writing:

Problem 11. If cattle a should eat up a meadow b in time c, and cattle d an equally fine 
meadow e in time f, and if the grass grows at a uniform rate, how many cattle will eat up a 
similar meadow g in time h? (Newton, 1707, in Whiteside, 1972, p. 147)
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Each time I have puzzled over the modelling assumptions, and finally resorted to 
assuming that the grass grows uniformly over a week, that the cows graze uniformly 
over a week, and that what matters is that at the end of the week the cows have not 
grazed more than the grass has grown. Each time I have then pondered the question 
of how to parametrise the problem so as to guarantee integer solutions. Initial forays 
have not been successful, and in each case my attention has been drawn away to 
some other problem, leaving this one behind.

12.4  An Indication of Pedagogical Issues

How can the notion of four Systems and the notion of psycho-social coordinations 
of adherences contribute to setting and sustaining mathematical challenge in the 
classroom and beyond?

While it is beyond the scope of this paper to develop these ideas, it is worth not-
ing that setting tasks for others which might be taken up as challenges is the first and 
relatively easy step, in which the aspect of trust plays a dominant role. But the real 
pedagogical challenge is how to respond to the ways in which the students respond 
to the tasks set. Learners display various psycho-social coordinations of adherences, 
and the real challenge is pedagogical: how to respond to learners responses; how to 
enable them to resist immediate strong but debilitating emotional reactions so as to 
use that energy positively and productively. The discourse of psycho-social coordi-
nations of adherences applies to the teacher as well, bringing to the surface various 
pedagogically oriented habits. I conjecture that a significant factor in the activating 
of pedagogical actions concerns learner and teacher search for affirmation, from 
colleagues and from respected-others. How these interact with those of learners will 
influence the outcome.

12.5  Final Reflections

I can be challenged by something or some person, and I can feel challenged by 
something or some person, but I can also choose whether or not to accept that 
challenge. Such a choice might even take the form of appearing to accept a challenge 
but in fact resisting or rejecting it by ‘going through the motions’, displaying the 
behaviour I anticipate is being looked for.

Since it seems clear that challenge is not a quality of a mathematical task itself, 
but of the relationship between a person’s current state, the cultural and social 
milieu, and how the task is perceived at the moment, it is important to work at 
increasing sensitivity to the psycho-social coordinations experienced by learners, 
and to help them work against unhelpful adherences. This requires personal work on 
one’s own adherences, particularly in relation to propensities, dispositions, and 
pedagogical habits, in short, to one’s own mathematical being, so that one can be 
mathematical with and in front of learners (Mason, 2008).
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Chapter 13
Mathematical Challenge in Connecting 
Advanced and Secondary Mathematics: 
Recognizing Binary Operations 
as Functions

Nicholas H. Wasserman

13.1  Introduction

Felix Klein was both an important mathematician and an influential mathematics 
educator. Perhaps his largest contributions to mathematics education were in 
describing the ‘double discontinuity’ that secondary teachers faced in their mathe-
matical education and in his approach of studying ‘elementary1 mathematics from 
an advanced standpoint’ (Klein, 1932; Weigand et al., 2019). His observations about 
these discontinuities – which pose mathematical “challenges” to those preparing to 
be secondary mathematics teachers – still ring true today. The first discontinuity is 
that the elementary and secondary mathematics that students learn bears little 
resemblance to the advanced (tertiary) mathematics that is taught at universities. 
The second discontinuity is that the advanced mathematics that prospective second-
ary mathematics teachers learn in university appears unrelated to their future teach-
ing of school mathematics. In both cases, advanced mathematical study at the 
university can seem disconnected from the school mathematics they studied and 
will have to teach. Inherent in Klein’s “solution” to this problem is that secondary 
teachers should understand the fundamentally important elements and connections 
between advanced mathematics and the mathematics they will teach. Yet, as is turns 
out, connecting advanced and secondary mathematics is not simple – it is filled with 
mathematical challenges.

1 ‘Elementary’ in this sense can be understood in relation to the fundamental ‘elements’ of school 
mathematics, both elementary and secondary school levels, and ‘advanced’ can be understood in 
relation to university, or tertiary, level mathematics; his approach was in elaborating the profound 
connections between seemingly disparate domains.
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In this chapter, I explore the mathematical challenges faced by prospective and 
practicing teachers (PPTs) in connecting two ideas – the idea of a binary operation 
from their study in abstract algebra, and the idea of a function in secondary mathe-
matics. The earlier reference to Klein is perhaps doubly important in this context; it 
was one of Klein’s primary aims to put the function concept at the center of math-
ematical learning (e.g., McCallum, 2019). Based on a study with two PPTs, I elabo-
rate on three conceptual shifts they went through as they came to understand a 
binary operation as a function itself. I use this example to ground the discussion of 
the mathematical challenges faced, more broadly, by PPTs as they develop connec-
tions from their advanced mathematics coursework; and to explore further how 
these conceptual shifts might be important for their work teaching secondary 
students.

13.2  Literature

In this section, I elaborate on extant literature that frames the mathematical chal-
lenge of connecting advanced and secondary mathematics. This challenge is math-
ematical in that it is about connecting two mathematical domains – relating how the 
mathematics in one domain is connected to the mathematics in the other. Although 
there will be implications discussed about pedagogy, the primary challenges posed 
are mathematical ones. In reviewing the literature, first, I consider the domains of 
advanced and secondary mathematics and, in particular, how and why they might be 
important for secondary teachers. Then, I consider two different ways there might 
be connections between these domains. Lastly, I consider specifically the mathe-
matical notion of function, as it serves as the basis for our discussion about mathe-
matical challenges.

13.2.1  Connecting Advanced and Secondary Mathematics 
in Secondary Teacher Education

Theories about the professional knowledge base for teaching have increasingly 
drawn on a practice-based lens (e.g., Ball et al., 2008; Shulman, 1986). That is, the 
mathematics teachers should know is intrinsically linked to the kinds of mathemati-
cal knowledge they would use in the act of teaching – including planning for and 
enacting instruction. Although this might seem to suggest that the mathematics that 
a teacher needs to know should only be a sufficiently deep understanding of the 
mathematics they will teach, many, including Klein (1932), have argued for the 
value of advanced mathematics (e.g., CBMS, 2012). Here, I consider advanced 
mathematics in relation to developing mathematical knowledge for teaching, arguing 
that making mathematical connections is an important part of this work.
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Developing Mathematical Knowledge for Teaching Silverman and Thompson 
(2008) laid out a two-step cognitive model for the development of mathematical 
knowledge for teaching. The model posits that, first, a teacher must develop a math-
ematically powerful understanding of some mathematical idea, which was con-
nected to what Simon (2006) described as a key developmental understanding. 
While such mathematical understandings are powerful, they are insufficient for 
developing knowledge for teaching; second, a teacher must develop a pedagogically 
powerful understanding. A mathematically powerful understanding must also have 
pedagogical power for it to become knowledge for teaching.

To summarize this cognitive model, there are two hurdles that PPTs must over-
come for their knowledge to be professionally useful; the first is mathematical and 
the second is pedagogical. Extant literature suggests both of these are challenging 
for PPTs (e.g., Dubinsky et al., 1994; Even, 1993; Wasserman, 2017; Wasserman 
et al., 2018; Zazkis & Leikin, 2010). Indeed, in the realm of advanced mathematics, 
these two hurdles – to some degree – mirror Klein’s (1932) two discontinuities. In 
this chapter, I focus primarily on the mathematical challenges that arise in connect-
ing advanced and secondary mathematics. That is, overcoming these challenges can 
be a mathematically powerful activity. From this study, though, we will also see 
how it can become a pedagogically powerful activity as well.

Nonlocal Mathematical Knowledge for Teaching Wasserman (2018) conceptu-
alized the mathematical landscape relative to the content that a teacher is going to 
teach. The local mathematical neighborhood were aspects relatively close to the 
content being taught, whereas the nonlocal neighborhood were ideas that were 
much farther away. “Close” in this sense entailed both the degree to which mathe-
matical ideas are closely connected, but also temporally close in relation to when 
mathematical ideas are typically developed. For a secondary mathematics teacher, 
at a very broad grain size, one might consider the domain of secondary mathematics 
as being the local neighborhood, and the domain of advanced mathematics as being 
part of the nonlocal neighborhood.

In that paper, I posited three ways that advanced mathematics has been consid-
ered in relation to secondary teacher education. I elaborate briefly on the second two 
here, which are the most pertinent (The first was characterized by a lack of explicit 
emphasis on connections). The second emphasized the mathematical connection 
between the domains of advanced and secondary mathematics; the third – a rela-
tively novel perspective  – emphasized the pedagogical connection between 
advanced mathematics and teaching secondary mathematics. For secondary math-
ematics teachers, it would be important that their mathematical coursework, includ-
ing advanced mathematics, helps deepen their understanding of the school 
mathematics they will teach. That is, making connections between advanced and 
secondary mathematics is vital for practicing and prospective teachers (PPTs). It 
would also be important for secondary mathematics teachers that such new under-
standings become pedagogically powerful for their work in teaching. Both are 
important. We consider both as they arise through the process of overcoming the 
challenge of making mathematical connections.
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Previous Studies Connecting Advanced and Secondary Mathematics Here, 
studies about mathematical development are considered as they relate to connecting 
advanced and secondary mathematics. Much of the literature suggests that it is chal-
lenging to make such connections. Many scholars have documented teachers’ lim-
ited conceptions of the function concept (e.g., Even, 1993; Zazkis & Marmur, 
2018); others have pointed to challenges with inverse functions and their notation 
(e.g., Weber et al., 2020; Zazkis & Kontorovich, 2016); Wasserman et al. (2017a) 
demonstrated difficulties with grasping variance (and, relatedly, standard deviation) 
as an unbiased estimator; Mamolo and Zazkis (2012) pointed out challenges in 
reconciling ideas about derivatives and area formulas. The key point is that it is not 
trivial work to develop a coordinated and coherent sense of mathematics across both 
school and advanced conceptions. One study is elaborated on in more detail to give 
a broader picture of these kinds of difficulties.

Wasserman (2017) explored secondary teachers’ understanding of inverse func-
tions in relation to their learning about groups in abstract algebra. From abstract 
algebra, inverse functions can be understood as inverse elements in the group of 
invertible functions under composition. The study used semi-structured, task-based 
interviews with (n = 7) secondary teachers. Although there were several tasks, the 
primary analysis focused on participants’ concept maps, in which they were asked 
to construct a concept map of all ideas related to inverse functions. The key point 
was whether participants would connect inverse functions (a secondary topic) to 
their group structure (an advanced mathematics topic) in their concept maps, iden-
tifying important pieces such as functional composition as the binary operation, the 
identity function (i(x) = x), etc. In short, very few secondary teachers made such 
connections. Furthermore, the findings suggest that developing mathematically 
powerful understandings of inverse functions was dependent not solely on under-
standing those ideas from advanced mathematics but also on the evocation of those 
secondary concepts being built upon. Namely,

…if the first step toward developing mathematical knowledge for teaching rests in acquir-
ing mathematically powerful understandings of that content (e.g., Silverman & Thompson, 
2008), then this study suggests that there are many layers where difficulties may be encoun-
tered in having ideas from advanced mathematics be mathematically powerful, particularly 
when the study of the advanced mathematics concepts seem dependent upon inducing cer-
tain conceptions of secondary content. (p. 198)

To summarize, making connections between advanced and secondary mathematics 
is filled with challenges not only in understanding the advanced mathematical ideas 
but also in understanding the secondary mathematical ideas that the advanced ideas 
build upon in a sufficiently deep manner. This challenge of making connections 
between advanced and secondary mathematics is of particular interest to teacher 
education because the connections they are having to make are between local and 
nonlocal mathematics, that is, the connections to advanced (nonlocal) mathematics 
are outside the scope of the mathematics they will teach. It is to this notion of making 
mathematical connections between these two domains that I turn next.
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13.2.2  Connections

Connections between advanced and secondary mathematics may be of different 
types. Wasserman and Galarza (2018), for example, distinguished two types of 
connections: a generalization connection, and an instantiation connection. A gener-
alization connection between advanced and secondary mathematics is when 
advanced mathematics is serving as a generalization of secondary mathematics, i.e., 
secondary mathematics is an instance, or example, of a more general idea being 
studied in advanced mathematics. Connecting the notion of inverse functions in 
relation to its group structure (as in the previous study) would be one such example. 
An instantiation connection is when advanced mathematics is serving as an instance 
of, or being framed in terms of, secondary mathematics. For example, a binary 
operation is defined as a function and could be considered an instance of a function 
(a connection I elaborate on in the next section). Now, some may argue that instan-
tiation connections are not possible – that secondary conceptions do not entail such 
abstract examples. For me, however, the crux of the matter is not that what is learned 
in secondary mathematics includes these abstract examples, but that what is learned 
allows for – according to the definition – these abstract examples.

This paper will elaborate on a mathematical connection between secondary and 
advanced mathematics – one I consider to be an instantiation connection. But the 
key point is that the mathematical connection discussed in this paper is character-
ized by being a topic studied in advanced mathematics, and one that would be con-
sidered an example of a mathematical idea that is studied and taught in secondary 
mathematics. That is to say, the advanced topic might add to a teacher’s example 
space (Watson & Mason, 2005) of the mathematical idea studied in secondary 
school. Although the example might not be appropriate for use with secondary stu-
dents, it nonetheless represents an important connection between these two spaces. 
And, I contend, this sort of connection has a different “feel” than one intended to 
demonstrate that ideas in secondary mathematics are examples of more advanced 
and abstract mathematical structures (e.g., groups).

13.2.3  Binary Operations and Functions: 
A Mathematical Connection

In this section, I lay out the mathematical ideas that serve as the backbone of the 
connection discussed in this chapter. Namely, that a binary operation is a function.

Binary operation In abstract algebra, a binary operation is often defined in rela-
tion to a set of objects. That is, a binary operation, ∗, defined on a set of objects, A, 
assigns to each pair of elements in A – the pair being operated upon – a resultant 
element of A. Addition on the set of integers, for example, is a binary operation. 
Every pair of integers is assigned a sum, e.g., 2 + 5 = 7. Inherent in this definition is 
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the notion of closure; the result of the binary operation, in this example the sum of 
7, also belongs to the original set, in this example an integer. More precisely, the 
following definition can be used:

A binary operation, ∗, on a set, A is a function from the Cartesian product A × A to 
A. That is, ∗ : A × A → A.

The Cartesian product of sets A and B is the set of ordered pairs:

 
A B a b a A b B� � � � � �� �, | ,

 

Hence, in the definition, the Cartesian product A × A = {(a, b)| a, b ∈ A}. Thus, a 
binary operation takes an ordered pair – i.e., two elements from A – and assigns to 
that ordered pair a single element of A. In the case of our example of addition on the 
integers, the binary operation of addition assigns the pair (2, 5) to the integer 7. The 
operation is binary because it is defining how two elements combine; for any two 
integers (the inputs), there is a single output (the sum).

Function Although there are many ways in which functions are defined in school 
mathematics, including as a dynamic covariation between quantities, a function is 
often defined as a relation between sets that maps each element from one set to 
exactly one element in another set (McCallum, 2019). Although mostly considered 
in school mathematics as a relation between real numbers, the definition itself 
allows for abstract objects and elements. There are several component pieces here. 
The first is a relation. A relation between two sets A and B is any subset, R, of the 
Cartesian product, A × B. We use (a, b) ∈ R to mean that the ordered pair is in the 
relation, i.e., that a is related to b. So, while a relation R is any subset of the Cartesian 
product, a function f is a particular kind of relation – one which meets two criteria: 
i) total: ∀a ∈ A, ∃ b ∈ B such that (a, b) ∈ f (i.e., each element in A is part of an 
ordered pair); and ii) univalent: if (a, b) ∈ f and (a, c) ∈ f, then b = c (i.e., each ele-
ment in A maps to exactly one element in B). I generally refer to A and B as the 
domain and codomain2 sets. To be explicit:

A function f is a relation between two sets (i.e., a subset of a Cartesian product) that 
is total and univalent.

Although it is clear that a function is a set of ordered pairs, it is interesting that 
there is still some disagreement on what makes two functions the same, or different 
(Mirin et al., 2021). For example, if a function is a Bourbaki triple of (A, B, f), then 
the functions (R, R, (x, ex)| x ∈ R) and (R, R+, (x, ex)| x ∈ R) are different because the 
codomain sets are not the same; notably, though, the graphs of the two functions are 
identical – they contain the same set of ordered pairs. But if a function is just a set 
of ordered pairs, then the question of totality is relatively unimportant because the 

2 I use codomain to refer to the set of values that might come out of a function, and the image, or 
range, to refer to the set of values that do come out of a function.
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domain and codomain sets are not necessarily pre-stipulated (they can be derived 
from the set of ordered pairs), and all sets of ordered pairs are total on the set of 
domain elements present in the collection. (Indeed, some modern definitions of 
function only stipulate univalence (McCallum, 2019).) Regardless, although there 
are some interesting challenges to consider in relation to functions, for the purposes 
of our study, it is sufficient to say that a function is a relation between two sets that 
is total and univalent.

Mathematical connection The notion of a binary operation studied in abstract 
algebra can be connected to the notion of function in school mathematics. 
Specifically, a binary operation is defined as a function – meaning a binary opera-
tion is an instance of the broader mathematical notion of a function. I would call this 
an instantiation connection, because the definition of function introduced in second-
ary mathematics allows for such abstract examples of function, even if such abstract 
examples are not discussed there. Specifically, a binary operation, ∗, on a set, A, is 
a function that maps ordered pairs, (a, b) (with a, b ∈ A), to single elements, c (with 
c ∈ A). Yet, a function was defined as a relation – a set of ordered pairs? To what 
ordered pairs is this referring? In the example of a binary operation, it refers to 
ordered pairs of the form, ((a, b), c) (for a, b, c ∈ A). To make this clear, let’s return 
to our example of addition, +, as a binary operation on the set of integers, ℤ. The 
goal is to understand addition on ℤ as a function – specifically, as a set of ordered 
pairs (a relation) that is total and univalent. In this example, the binary operation of 
addition on ℤ would be the following set:

 
� � � � � � � �� �( , ), , ( , ), , , , ), , .0 0 0 0 1 1 3 8 5 ��

 

From this, for example, (−3,8) is an element of the domain set, and this element 
gets mapped to its sum, 5, which is unique. The mapping is listed as an ordered pair 
of these two elements. Notably, each element in the domain set, which is ℤ × ℤ (a 
set of ordered pairs), is present in the binary operation + (i.e., the relation + is total), 
and each element in the domain set maps to exactly one element in ℤ, the sum (i.e., 
the relation + is univalent).

13.3  Methodology

The findings reported in this paper are part of a larger study – one that explored the 
use of Wasserman et al.’s (2017b, 2019) instructional model of “building up from 
and stepping down to practice” in designing modules for an abstract algebra course 
for practicing and prospective teachers (PPTs). Some aspects of this broader study 
have already been reported in Wasserman and Galarza (2018); this chapter provides 
a different analysis. For the purposes of this paper, I report only on PPTs’ interac-
tions with material from one module, the Functions module – although I also briefly 
give pertinent information from other modules as needed. Each module always 
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began with a teaching situation; in the Functions module, PPTs were asked to con-
sider a secondary teacher’s question (and the ensuing dialogue) about a diagram that 
mapped elements from one set to another, and whether the depicted relationship was 
a function.

Using design research (e.g., Cobb et al., 2003) within a teaching experiment, the 
broader study, including the singular module reported on in this chapter, engaged 
participants with some specific mathematical ideas and secondary teaching situa-
tions. Researcher hypotheses for each module were tested against participants’ 
ways of thinking during the sessions. Two students (PPTs) enrolled in a program in 
secondary mathematics teacher education agreed to participate. One was a pre- 
service teacher (Pam), the other an in-service teacher (Irene) with 5 years of experi-
ence (but not currently teaching). For each module, which was one session, I 
collected and analyzed two sources of data: (i) a (transcribed) video-recording of 
PPTs engagement in the materials; and (ii) an (transcribed) audio-recording of a 
post-teaching experiment, semi-structured interview.

In the analysis, I analyzed what actually transpired during the teaching experi-
ment, comparing it to the hypothesized responses. Here, I report on one activity 
within the Functions module – the Binary Operations task – in which the partici-
pants’ responses differed significantly from what was anticipated; namely, the two 
PPTs faced a mathematical challenge in connecting the advanced and secondary 
mathematics in that activity. The analysis from the transcribed video recording 
focuses on instances where PPTs’ thinking appeared to shift mathematically in 
terms of connecting the two domains. The analysis leveraged a grounded theory 
approach (Strauss & Corbin, 1990) to track PPTs’ thinking, as it sought to capture, 
qualitatively, the theoretically important phases and shifts that were evident in their 
thinking. The analysis was mathematical in the sense that I paid particular attention 
to mathematical aspects of their interactions with the task – especially ideas foun-
dational to the concept of function (e.g., domain and codomain sets, totality, univa-
lence). This analysis led to the identification of conceptual shifts in the PPTs’ 
mathematical thinking – changes that were important in their overcoming the chal-
lenge of viewing the binary operation table through a functional lens. The analysis 
of the post-interview focuses on how PPTs reported that the mathematical challenge 
overcome in this one activity also became pedagogically powerful.

13.3.1  The Binary Operations Task

As one activity within the designed module, PPTs were given the addition modulo 
12 operation table (Fig. 13.1) and asked to: “Consider the binary operation table 
below. Describe the function (i.e., mapping) that this binary operation table repre-
sents. What are some elements in the domain of this function? What are some ele-
ments in the range of this function? Express the function in the most concise way 
you can.”
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Fig. 13.1 Addition modulo 12 operation table

As background information, in a previous module, PPTs had been introduced to 
the definition of a binary operation (and a Cartesian product) – namely, the one(s) 
given in the previous section: “A binary operation, ∗, on a set, A is a function from 
the Cartesian product A × A to A. That is, ∗ : A × A → A.” During that prior module, 
PPTs also discussed that binary operations can be expressed using function nota-
tion. Participants did so in order to discuss function composition as a binary opera-
tion  –  one that could be used to understand composite transformations (since 
transformations are functions). Within the Functions module, and immediately prior 
to the Binary Operations task, PPTs had discussed the definition of a function, first, 
by defining a relation and, second, by providing the definition of a function: “A 
function f mapping set A to set B is a relation between A and B (i.e., f ⊆ A × B) such 
that each x ∈ A (total) is related to exactly one element in B (univalent).” As part of 
this conversation, participants were also reminded of functional notation, such as 
“f : A → B” and “f(a) = b”. Furthermore, relations were described as possibly having 
a one-to-one, many-to-one, or one-to-many correspondence, with the cases of one- 
to- one and many-to-one being functions.

Within the larger context of the study, researchers hypothesized that PPTs would 
navigate the Binary Operations task with relative ease – it was deemed a reasonably 
straightforward application of the definition of a function given that binary opera-
tions had been discussed in great depth in a previous module, and they had been 
explicitly tied to, and talked about as, functions in that module. It was hoped PPTs 
would recognize and express the function mapping: for a, b ∈ A = {0, 1, 2, …11}, 
(a, b) → (a + b)[mod 12]. However, PPTs struggled on this mathematical task. They 
struggled to make the mathematical connection between advanced and secondary 
mathematics, specifically, the connection that a binary operation is an example of a 
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function. Due to the difficulty faced by PPTs (and the later discussion of how over-
coming this difficulty was powerful for their own thinking about secondary mathe-
matics and teaching), I analyzed PPTs thinking during the task. What was identified 
were three conceptual shifts (between four conceptual stages) that occurred in their 
thinking about functions. These stages and shifts were important markers in PPTs’ 
overcoming the mathematical challenge of connecting advanced and secondary 
mathematics. I elaborate on these results below.

13.4  Findings

The primary result discussed in this chapter is the elaboration of four conceptual 
stages – and the three shifts between these stages – that PPTs went through in con-
necting a binary operation from abstract algebra to the notion of function in second-
ary mathematics. That is, these stages represent how the Binary Operations task – a 
challenge to connect advanced and secondary mathematics – became a mathemati-
cally powerful activity for the PPTs. Afterwards, I briefly describe how PPTs 
reported this mathematical challenge as also being a pedagogically powerful 
activity.

13.4.1  Four Conceptual Stages

Equation-view During what is referred to as Stage 1, the PPTs had an equation- 
view of function. When initially given the tasks, PPTs expressed a little confusion, 
despite having previously talked about binary operations. Their initial reactions to 
the task were:

Pam: Can you just explain what’s going on here?
Teacher-researcher: So, this is just a binary operation.
Pam: So, you’re just, like, saying that 0 + 0 = 0?
Teacher-researcher: Mmhm.
Pam: Ok. …
Irene:  So, we just say, like, it’s taking all the integers 0 to 11, and 

then…this is what we’re mapping to?
Pam:  I don’t know, I’m so confused… I’m so confused. I don’t if 

this is the input, or…
Irene: Are both of these inputs?
Pam:  … wouldn’t these be outputs?… Unless it’s like x + y = z. I 

don’t know.
Irene:  Is a binary operation…function…hmm…you notice that it 

starts over…we can only go to 11.
Pam: Yeah. Right. We can’t go…oh, is it like, mod 11.
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Irene: Right, so the domain is just 0 to 11…
Pam: And so is the range.
Irene: I think we’re confused by the fact that it’s both places.

I point out that their initial, admittedly confused, attempts to view this as a func-
tion were by defining equations: 0 + 0 = 0 and x + y = z. That is, their attempt to 
identify the binary operation table as a function was characterized by trying to come 
up with an equation that captured what was happening in the table. Now, these equa-
tions describe individual facts as well as more general truths about the binary opera-
tion table at hand. They are, and can be, helpful in describing the functional 
relationship. However, this equation-view was, ultimately, unproductive. One of the 
reasons it appears to have been unproductive was that participants were unable to 
list actual elements in the mapping. The participants struggled to determine the 
domain and codomain – they cycled back and forth between thinking it was and was 
not “0 to 11.” Difficulty identifying the elements being mapped from and to make 
understanding a function nearly impossible; an equation-view at this stage did not 
help make these two sets explicit.

Mapping-view The first shift, to Stage 2, a mapping-view of function, was facili-
tated by prompts to describe the mapping informally and to determine specific ele-
ments in the domain and range. This took the form of two prompts. The first one 
is below:

Teacher-researcher: Okay, so how would you describe a function?
Irene: Oh, so is it…so is it A × A?
Pam: Uh, I don’t know.
Irene: …So it’s just A, and A is the set 1, 2, 3, 4, all the way up to 11.
Pam:  … Is it [the function]…no [the function] contains A × A, so 

then you’re right. The domain is, oh no, 0 to… oh yeah, 
0 to 11.

Irene:  …I’m still trying to figure out how we do this, cause A × A 
would produce like (0, 0) and (0, 1).

Pam: No, I think it’s just A plus A.

What is evident from this exchange is the introduction of participants trying to 
wrestle with a Cartesian product, which likely stemmed from the definition of func-
tion (still on the board) which referenced relations as a subset of a Cartesian prod-
uct. Although they still appear to be struggling with identifying elements in the 
domain and codomain sets, PPTs introduction of the set
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and the Cartesian product A  ×  A, into the conversation, and the differentiation 
between these two sets, set the stage for a second mapping-view prompt. Notably, 
although the researcher induced this prompt into their conversation, it was also 
already explicitly in the text of the activity.
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Teacher-researcher:  Okay, so what’s the mapping? So if the domain is A, and the 
range is A, you should be able to show me the mapping…it 
doesn’t have to be fancy, a mapping can just be arrows…take 
an element in set A and figure out what it maps to.

Irene: But it maps to a whole bunch of stuff.
Pam: Yeah, that’s what I’m confused about…Cause 0 can map…
Irene:  It takes two of them… So it takes, it takes…if we do A × A, 

we get all the ordered pairs, and then the added pairs get 
added together…like the two pieces of the pairs get added 
together to get that, but I don’t know how we would write that.

Pam: Ohhh.
Teacher-researcher:  So… You don’t have to be technical at this point. Just show 

me… Not just describe it, but show me things that map 
to things…

Pam: 0 + 0 maps to 0, 1 + 0 maps to 1. It…
Irene: Go all the way up to, like, 11 + 1, and 11 + 1 maps to 0.
Teacher-researcher:  So what’re you mapping? So what’s the domain and what’s 

the range?
Pam:  This [e.g., 0 + 0] is our domain right? Cause this is being 

mapped to this [e.g., 0].

Although this may seem a trivial difference, I argue that viewing the binary oper-
ation table as (0 + 0) → 0 and not 0 + 0 = 0 was an important conceptual shift. 
Notably, however, in this current stage, although they are producing a reasonable 
mapping, their discussion of elements in the domain still makes use of the addition 
sign – their domain elements are utilizing the binary operation symbol in a way that 
would not allow them to define the binary operation in terms of its function. 
Essentially, all that has changed from the equation view is the replacement of the 
“=” with a mapping symbol “→”. Yet, this shift fostered their ability to identify, or 
at least get closer to identifying, elements in the domain and the range, because the 
mapping symbol helped solidify what might constitute elements of both sets. 
Notably, while the codomain set is easily recognizable as A, the domain set is not 
quite this set – it is two elements of A.

Multivariable-view The next shift, to Stage 3, a multivariable-view of function, 
was facilitated by another researcher’s prompt. Specifically, in the exchange here:

Teacher-researcher:  Ok. So the ‘+’ [e.g., in Pam’s previous comment “0 + 0 maps 
to 0”] is actually fairly irrelevant. In other words, it could be 
any operation that I’m talking about.

Irene: If we have 0 and 0, we get 0. If we have 1 and 0, we get 1.
Pam: Right…
Irene:  So we can just list the ordered pairs? Ok, so we can list them 

just like this, all the way down to when we had 11, 0 going to 
11, and 11, 1 going to 0.

Pam: Ok…
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Irene: So now our domain is all these ordered pairs.
Pam: Yeah.
Irene: And our range is over here.

What is visible in this exchange is that, by the researcher stating that the opera-
tion symbol is actually unimportant, participants connected the two parts from their 
conversations during the mapping-view: (i) their thinking about the Cartesian prod-
uct A × A; and (ii) their thinking about mapping. These two pieces coming together 
transitioned their sense of the elements being mapped. In other words, this shift 
allowed them to recognize the mapping as (0, 0) → 0, which is more clearly indica-
tive of the multivariable domain input and which removes the “+” from the domain. 
Essentially, the multi-variable view evident in this stage is fundamentally about 
identifying the particular elements of the domain and codomain sets, which are the 
elements being mapped from and to as part of the function.

Expression-view The last shift, to Stage 4, an expression-view of function, was 
facilitated by a participant-researcher interaction, where participants were specifi-
cally asked to consider the last part of the activity prompt – about expressing the 
function in a concise way. This led participants to think about how to express the 
mapping, which furthered their conception of the function being expressed in the 
binary operation table.

Teacher-researcher: Ok. So the general set, the domain is what?…
Irene: So A × A is the domain, and A is the range.
Teacher-researcher:  …You all had written it as x + y = z …you’re saying x and y 

come from here, right, so they both come from that first set…
Irene: Right.
Teacher-researcher:  Right, so z could be something… And so probably the easiest 

way to describe this is as a function is to say our function is 
taking things of the form here, it’s taking two inputs, and it’s 
mapping it to what? So if I have these inputs A and B, it’s 
mapping it to…?

Irene: A + B.

This last shift, guided by the researcher, was important. Notably, it allowed writ-
ing the mapping not as (a, b) → c, where c is just some element that happened to be 
mapped to from the pair (a, b), but rather as (a, b) →  (a + b)[mod 12]. In other 
words, it established the element in the codomain set as being dependent on the 
input variables. That c could, in fact, be expressed in terms of the input; in this case, 
the input being the two values (a, b) in the ordered pair, and c being simply the 
sum (mod 12) of those two input values. Interestingly, the binary operation symbol, 
“+”, makes its way as part of the output, not the input (where it had been previously 
placed); simply put, the binary operation symbol is used as a way to express the 
sum, which is the output of the two inputs. This allowed participants to recognize 
the equation form of the function as f(a, b) = (a + b)[mod 12]. Although writing 
functions as a dependent equation, like I have done, is not always possible (i.e., one 
might just list all input-output pairs to define the function), in instances where it is 
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possible to express this dependence, equations provide a concise way to express all 
pairs of the function.

Secondary Applications These four stages marked significant conceptual shifts 
in PPTs’ thinking on the Binary Operations task, which facilitated their coming to 
a deeper, mathematically powerful understanding of function. Notably, at later 
points in the module, PPTs were able to translate these discussions to other areas 
of secondary mathematics. Later on in the module, participants were asked to con-
sider functional mappings between other abstract sets of objects, and were prompted 
to identify other “interesting examples of functions”  – specifically, “You might 

consider, for example, the distance formula, d x x y y� � � � � �2 1

2

2 1

2� � , as a pos-

sible function, or other topics studied in secondary mathematics.” Conversations 
during this time demonstrated the depth of PPTs’ abstract understanding of func-
tion, especially in relation to the Binary Operations task. They were able to identify 

the distance formula as a function, d x y x y x x y y: 1 1 2 2 2 1

2

2 1

2
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Moreover, they brought up the quadratic formula, x
b b ac

a
�
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2
, as another 

possibly  interesting secondary mathematics example to consider. Initially, Irene 
stated, “So, sometimes we have two answers for whatever we put as the input, the 
a, b, c…the domain…and it’s not a function because it, in some cases, produces 
more than one [output].” That is, they described the quadratic formula as a one-to-
many relation (not a function). Shortly afterwards, though, they realized they could 
modify the output set to be a pair. Doing so allowed them to discuss the quadratic 

formula as the function q a b c b b ac
a

b b ac
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from these examples is the powerful way participants tackled other topics in sec-
ondary mathematics, and identified them as instances of functions as well.

13.4.2  Mathematical Challenge as a Pedagogically 
Powerful Activity

Immediately after having engaged with the module materials, the two PPTs reflected 
on some of their activity on the module tasks and their responses in the semi- 
structured interview with the researcher. One of the things that stood out in their 
reflections was the attribution they made to the mathematical challenge they faced, 
and overcame, during the Binary Operations task. They described the activity as 
being very influential for their thinking about functions – a mathematically power-
ful activity. Moreover, their reflections about teaching exemplified this mathemati-
cal challenge as also being a pedagogically powerful activity for their thinking 
about teaching. During the interview, one of their first reflections was:
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Interviewer:  …So what were the main ideas that you got going through the 
abstract algebra content? …

Irene:  A deeper understanding of the function being something besides 
what I traditionally always thought about a mathematical func-
tion to be…

Pam:  I think that was the one that I had the hardest time—like the binary 
operation…

Irene:  And that one was really hard to think about cause it took us for-
ever…it took us forever for us to figure out what the domain was.

Pam: …it was a good place for us to get stuck.
Irene:  That’s where I feel we, at least for me, I turned the corner about 

thinking about a function outside of just some linear situation… The 
fact that your domain can actually be an ordered pair…

Notably, the two participants described the Binary Operations task as a mathe-
matical challenge  – what might be called ‘productive struggle’ (e.g., Heibert & 
Grouws, 2007). They also described this as helping them develop depth to their 
sense of function, outside of some linear situation with real-number inputs. After 
reflecting back on their initial answers to the teaching situation – in which they sug-
gested they would use pictorial mappings, tables, graphs, etc., of real-valued func-
tions in R × R, to demonstrate the idea of a function, and specifically the univalence 
property – the two PPTs changed course. Specifically, they both agreed that they 
would: “…give [students] other examples of things that are functions besides what 
we traditionally talk about in an algebra classroom.” The reason Irene cited was: “I 
have other examples of things that are functions now that I didn’t have before…And 
maybe some of these are too complicated to show them, but it would cause me to 
maybe stop and think about…maybe there’s another mathematical thing that I could 
show them outside of the traditional y = x + 3… that is a function that’s not normally 
something we would talk about as a function.” In other words, it is clear the math-
ematical challenge they overcame had some pedagogical power as well; namely, 
their ability to abstract the notion of function (to encompass a binary operation table 
as an instance of a function) led them to consider how students might experience the 
notion of function in a more abstract sense as well.

13.5  Discussion

In this discussion section, I elaborate on several primary implications from this 
study. On the whole, this chapter explores the broad topic of the mathematical 
challenge of connecting advanced and secondary mathematics. I have done so in 
particular by looking deeply at one example of a mathematical connection through 
two PPTs’ interactions with a task that asked them to recognize a binary operation 
table as a function. The study’s findings are instructive about mathematical chal-
lenges at both specific and general levels.

13 Mathematical Challenge in Connecting Advanced and Secondary Mathematics…



256

First, the mathematical challenges faced by PPTs in connecting advanced and 
secondary mathematics are a unique form of challenge. In this study, participants 
were faced with content in both the domains of advanced mathematics and second-
ary mathematics. Specifically, a binary operation table from abstract algebra, and 
functions from secondary mathematics. One of the things that is unique about this 
sort of mathematical challenge is that students are not necessarily learning some-
thing new, per se, but rather what they are learning is to make a new connection. 
What I mean is that the participants understood a binary operation table (i.e., they 
could find results of an operation from the table) and they understood a function 
(i.e., they easily provided an appropriate definition, examples, and non-examples). 
What is unique about the mathematical challenge faced in such contexts is that 
PPTs have already been introduced to these two topics – the challenge they confront 
is somewhat unique because making a new mathematical connection recalls all of 
their previous conceptions (and misconceptions) about those topics. As Pam 
reflected: “[The teaching situation] put my brain in function mindset…Like, I just 
was thinking about functions, so everything that I know about functions was in my 
brain.” The mathematical challenge was not necessarily “learning” something new; 
it was in “re-seeing” something familiar from a new perspective. This is a funda-
mentally different sort of challenge – one that might relate to the literature on cogni-
tive notions of transfer, or backward transfer (e.g., Barnett & Ceci, 2002; Hohensee, 
2014). The challenge of connecting advanced and secondary mathematics is also 
unique in that mathematics is a discipline that builds on previous ideas; this means 
that sufficiently deep understandings of secondary mathematics are important for 
making such connections. Indeed, a binary operation (from abstract algebra) was 
defined as a function – advanced mathematics is intentionally trying to build on this 
idea. As such, PPTs’ notion of function is fundamentally important for their ability 
to make a connection; yet, it is the content of advanced mathematics that often 
serves as the basis for expanding (and abstracting) notions of function. This is to 
say, a sufficiently deep understanding of secondary mathematics is unlikely to occur 
without trying to make such connections to advanced mathematics. This demon-
strates the cyclical nature of the mathematical challenge of connecting advanced 
and secondary mathematics. Forming the connection is dependent on a sufficiently 
deep understanding of secondary mathematics topics, but such sufficiently deep 
understandings are unlikely to come without more abstract and advanced examples.

Second, the conceptual shifts evident in PPTs’ mathematical challenge on the 
binary operation task potentially mirror (and inform) the mathematical challenge of 
secondary students in understanding functions. One of the interesting findings from 
the study is that PPTs shifted through four conceptual stages in their coming to 
understand binary operations as a function. The four-stage process they went 
through as part of their own mathematical challenge, in fact, potentially mirrors, and 
elucidates, shifts that secondary students also go through in their own mathematical 
challenge of understanding the concept of function. That is to say, although nonlo-
cal mathematics would not be taught to students, the process of coming to know 
some nonlocal mathematical ideas can potentially mirror, and elucidate, how local 
mathematical ideas might be learned and taught. I elaborate. Functional 
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relationships are regularly introduced through an equation-view with two variables, 
e.g., y = x + 3. Students are often asked to explore these relationships. But the transi-
tion to function, and functional notation (e.g., f(x) = x + 3) is challenging. A first step 
in helping students is to transition to the second stage, a mapping-view; specifically, 
something like x + 3 → y. The next transition (the multivariable stage) was essen-
tially about identifying the objects in the domain and range; i.e., in this case, map-
ping numbers to numbers, e.g., x → y. This step makes clearer the nature of the 
elements of the domain and codomain. The last step is in recognizing the number 
being mapped to, y, as being expressed in terms of the input, x. Specifically, being 
three more than the value x. This provides a more useful characterization of the 
mapping, x → x + 3, and explicitly highlights the dependent nature of the functional 
relationship. It is from this mapping that the more formal and typical equation nota-
tion of a function, f(x) = x + 3, can be understood. Without students having an appre-
ciation for mapping (stage 2), input and output elements (stage 3), and expression 
(stage 4), their ability to interpret functional equations and functional notation such 
as f(x)=, or f(3), will be limited. According to PPTs’ own reports, engaging in this 
process with a more abstract example helped them deepen their sense of function. 
Now, it is not clear that PPTs’ mathematical challenges in connecting advanced and 
secondary mathematics would always mirror students’ mathematical challenges; 
although I would argue that it was certainly so in this case. I would also suggest that 
it is very likely that some of the same challenges faced in coming to a deeper under-
standing of a secondary topic are, in fact, very pertinent for understanding the chal-
lenges of coming to understand that secondary topic in the first place. If this were 
true, it would provide a very natural approach for connecting PPTs’ mathematical 
learning to their teaching (i.e., their pedagogical learning): identify various concep-
tual challenges faced in advanced mathematical learning and map those back to 
simpler examples to better understand the challenges students might face.

Third, connections such as the one discussed in this paper can serve a particular 
purpose in secondary teacher education. One reason for the focus of this paper is 
that, based on my own sense of extant literature, most of the field’s approach to 
making connections between advanced and secondary mathematics highlight how 
advanced mathematics represents the more abstract and general situation, and topics 
in secondary mathematics are an instance of them – what I referred to previously as 
generalization connections. This is sensible; as one progresses in mathematics, the 
topics often become further abstracted. Groups, fields, and rings are general con-
structs; addition and multiplication of real numbers exemplify them. Topological 
spaces are general; the Euclidean plane is one example. The law of cosines is gen-
eral; the Pythagorean theorem is one instance of this rule. So, it is often the case 
that, in the study of advanced mathematics, one would like to demonstrate how this 
new (advanced) construct is more abstract and that previous ideas represent a subset 
of this new idea. Connections like the one discussed in this paper, what I would call 
instantiation connections, are different – they are not populating the example space 
of an advanced mathematics topic, but rather adding to a teacher’s example space of 
a topic discussed in secondary mathematics. Regardless of whether the examples 
might be used with secondary students or not, these sorts of connections force PPTs 
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to more deeply understand, and wrestle with, secondary mathematical ideas. Perhaps 
in complement to Klein’s idea of ‘secondary mathematics from an advanced per-
spective’, through the connection described in this paper, PPTs explored ‘advanced 
mathematics from a secondary perspective’. A binary operation table is an object 
studied in abstract algebra; through the activity, PPTs were asked to view that binary 
operation table through a functional lens, i.e., as a function. After recognizing this 
connection, PPTs’ example space of functions (which previously included things 
such as real-valued functions) was expanded. I regard the kinds of connections dis-
cussed in this paper as particularly valuable to secondary teacher preparation for at 
least two reasons. The first is that expanding PPTs’ example space of secondary 
topics adds diversity to the kinds of examples they might provide. And the diversity 
of examples is inherently beneficial in teaching. By expanding the diversity of func-
tion examples, teachers can give a broader, more varied, more accurate, and more 
complete sense of a concept – in the sense of adding to one’s concept image (i.e., 
Tall & Vinner, 1981). Indeed, variation theory (Marton & Tsui, 2004) suggests that 
it is precisely from examples and the variation of examples, that mathematical 
learning occurs – which underscores the value of teachers having a broader example 
space on which to draw. The second is that such connections, because they derive 
from advanced mathematics topics, frequently add abstractness to the kinds of 
examples they have in their example space. And again, I would argue that such 
abstractness in one’s example space only helps clarify the true nature of the concept. 
By not just having real-valued functions on which to draw, but other, more abstract 
functions (e.g., from 2-space), the power, utility, and potential application of the 
function concept becomes increasingly apparent.

Fourth, there is a potential conflict in terms of pedagogical power from PPTs 
engaging in the mathematical challenge of connecting advanced and secondary 
mathematics. Lastly, I touch on the notion that such mathematically challenging 
situations can be a pedagogically powerful activity. In this study, one of these peda-
gogical aspects was that the two participants reported that they would alter the kinds 
of functions they might use with secondary students to introduce them to the con-
cept. Namely, they discussed including more abstract examples of functions, beyond 
just R × R functions. I found this to be potentially encouraging, and certainly sug-
gestive of pedagogical power in thinking about how to enhance student’s notion of 
function. But I also note here that some of the PPTs’ tendencies also included 
“transporting” (i.e., Wasserman et al., 2018) activities from their own learning to 
use with their students, which would likely be inappropriate. Moreover, their 
intended inclusion of abstract examples also had the consequence of a de-emphasis 
on utilizing multiple representations of functions (i.e., equations, tables, graphs). In 
contrast to real-valued functions, abstract functions have a tendency to only be rep-
resented in a singular manner. And such a lack of different representations might 
diminish (not enhance) the mathematical quality of students’ experiences. So, while 
the mathematical challenge in connecting advanced and secondary mathematics 
provides an opportunity for pedagogical power, I still regard there to be important 
work to be done in this regard. More work would need to occur to help PPTs 
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explicitly address how these ideas might become pedagogically powerful, not just 
for their thoughts about teaching, but for their students’ mathematical learning and 
development.

13.6  Conclusion

Connecting the mathematical domains of advanced and secondary mathematics 
presents formidable, and unique, mathematical challenges, which are especially rel-
evant to prospective and practicing secondary teachers. What we find from this 
study is evidence of this challenge, in the specific context of recognizing a binary 
operation as a function – a mathematical connection. Notably, participants’ work on 
this task demonstrated the unique nature of this sort of mathematical challenge. The 
results also documented four specific conceptual stages that were productive in 
overcoming this challenge – indeed, ones which potentially match conceptual shifts 
that would be important for secondary students in coming to understand more basic 
functions – and provided an opportunity to better understand such connections and 
their potential use in secondary teacher education.
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Chapter 14
Mathematical Challenge of Seeking 
Causality in Unexpected Results

Mark Applebaum and Rina Zazkis

14.1  Introduction

A mathematical challenge is often associated with a difficult mathematical problem. 
However, the notion of difficulty depends on the problem solver. A mathematical 
challenge refers to a difficulty that a problem solver can overcome, that is, there is 
sufficient motivation, ability and availability of resources (Leikin, 2014). Different 
types of challenging mathematical tasks were identified by teachers in Applebaum 
and Leikin’s (2014) study. These included non-conventional problems, problems 
that require integration of knowledge from different areas, problems that require 
knowledge of extra-curricular topics, and problems that require logical reasoning, 
among others.

One of the problem types exemplified in Applebaum and Leikin (2014) attracted 
our attention – it was described as a problem that requires finding a mistake in a 
solution. While a task of “find a mistake” in a solution can be presented to a student, 
and there are various examples of erroneous reasoning or erroneous computation 
that lead to absurd conclusions, finding mistakes in student solutions can present a 
challenging mathematical task to a teacher. This turned our attention to mathemati-
cal challenges in the work of teachers, in particular, to the challenge of explaining.

Explaining mathematical ideas is part of regular teaching work. However, find-
ing an explanation that is convincing and that points to the cause of obtained results 
may present a challenge. When the results are unexpected, the challenge of 
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explaining is stronger. The mathematical challenge of explaining unexpected results 
is our interest in this chapter.

In what follows, we review the notion of intellectual need formulated by Harel 
(2013) and focus on one of the intellectual needs that is predominant in teaching, 
that of causality. We then present the results of a study in which teachers and math-
ematicians engaged in a simple task with unexpected results. We also address a 
self-imposed challenge that was provoked by the participants’ responses.

14.2  Intellectual Need

The general notion of intellectual need often refers to a person’s intrinsic motivation 
to learn something new or to solve a problem. Harel (2008, 2013) elaborated on this 
notion with a particular focus on mathematics, considering the historical and epis-
temological development of the discipline. He considered intellectual need as a 
necessity for constructing a new piece of knowledge, either by a community or by 
an individual. He criticized teaching mathematics for failing to provoke students’ 
intellectual needs.

Harel (2013) described five categories of intellectual needs, noting that these 
categories are not disjoint and may not provide a complete description of intellec-
tual needs.

Briefly,

• The need for certainty is the need to prove, and determine that a claim is true
• The need for causality is the need to explain or determine a cause
• The need for computation is the need to quantify and search for efficient 

computation
• The need for communication includes the need to persuade others and establish 

a common frame of reference
• The need for structure includes the need to organize knowledge and connect its 

various components

We focus in this chapter on the need for causality, in particular, on teachers’ need 
for causality. This is the need to explain the observed phenomenon, to determine its 
cause, in particular when the phenomenon is counterintuitive or unexpected. The 
need for causality is not limited to teachers, but we believe that this need is stronger 
in teachers, in comparison to other individuals working with mathematics. The need 
for causality “does not refer to physical causality in some real-world situation being 
mathematically modeled, but to logical explanation within the mathematics itself” 
(Harel, 2013, pp. 143–144).

We add here that a teacher’s need for causality is not necessarily geared towards 
finding a mathematical explanation that is accessible and convincing for students. It 
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is a need for seeking explanations, at times additional explanations, that result in 
enriched personal ways of understanding a given phenomenon. In the next section, 
we exemplify several attempts to satisfy the need for causality which could be appli-
cable in an instructional situation.

14.3  Seeking Causality: Three Examples

14.3.1  Example 1: Rope around Earth

Recall the classical problem of a rope around the Earth1:

If a rope is wrapped around the equator of a spherical earth, then the needed length of the 
rope is the circumference, the length of the equator. Now imagine that this rope is placed on 
1 m high poles. How much more rope is needed?

Common intuition suggests that the answer is in hundreds of kilometers. This is the 
usual first guess when people encounter the question. The surprising result is that 
what is needed is only about 6 meters: 2π(R + 1) − 2πR = 2π. The surprise is ampli-
fied by the realization that the result is independent of the actual radius of the earth, 
the same amount of additional rope is needed for any size of planet.

We used this problem with many groups of students, and the surprise that stu-
dents face with the counterintuitive conclusion reinforces our desire to find an 
explanation that helps confront a misleading intuition. The search for such an expla-
nation is our intellectual need for causality, while the need for certainty is satisfied 
by a simple computation.

One possible explanation is presented in Papert’s (1980) book. Rather than think-
ing of a circle as a simplified model of equator circumference, imagine it as a square. 
Then, when the rope around this square is raised on a 1  m poles, an additional 
amount of rope is needed only at the corners. It becomes obvious that the additional 
amount of rope is rather small, ≤8m, depending on how it is wrapped around the 
corners.

An additional explanation connects the story of the rope to the rate of change 
(Yan et al., 2022). In fact, the rope length 2πR is a function of the radius R. And 
since the derivative (the rate of change in R) depends on the linear variable R, the 
derivative is constant. As such, it does not matter if the rope is raised around the 
earth or around a basketball. The need for causality is satisfied by connecting the 
story of the rope to introductory calculus.

1 Several versions are available, see for example, Burger (2007) or https://en.wikipedia.org/wiki/
String_girdling_Earth
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14.3.2  Example 2: Horizontal Translation of a Parabola

The fact that the graph of y = (x − 3)2 appears to the right of the canonical y = x2 is 
often initially surprising to learners as the “minus” is associated with the negative 
direction, and the expectation is that the graph will “move left”. When asked to 
explain the unexpected location of y = (x − 3)2, teachers provided a variety of dif-
ferent explanations, which included consideration of the vertex, plotting different 
points, finding the zeroes of the function or simply citing the rules (Zazkis et al., 
2003). However, none of these explanations appeared to the teachers as satisfactory, 
which we interpret to mean that none of the explanations satisfied the intellectual 
need for causality. To satisfy this need, it was suggested (ibid.) to situate the prob-
lem in the context of transformation: first, consider the image of a parabola after a 
horizontal translation of 3 units to the right: T(x, y) = (x + 3, y) and then look for the 
equation of the resulting image.

Without loss of generality, focus on a point (a, b) of the source set that was trans-
lated to the point (c, d) of the image set. According to the specific translation per-
formed, d = b and c = a + 3. We wish to connect c and d in an equation. Relating c 
to d, we obtain the following: d = b and c = a + 3, which implies a = c − 3. However, 
b = a2 as (a, b) is a point on the source parabola. Substitution leads to d = (c − 3)2 . 
Since the above is true for every point of the image set, the image of the translation 
is described by the equation y = (x − 3)2.

The teachers we worked with referred to this explanation as “really convincing”. 
“The participating teachers referred to this view of transformations as “an eye- 
opening clarification” or a “pedagogical AHA!” (Zazkis et al., 2003, p. 450). We 
interpret these reactions as an indication that the teachers’ need for causality was 
satisfied.

14.3.3  Example 3: Division by a Fraction

Division by a fraction is often perceived by learners as a strange rule. There are dif-
ferent explanations and justifications, such as considering division as an inverse of 
multiplication or following some fancy computations, such as
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While we are convinced by the computation, we sought a stronger explanatory 
power. What can provide such an explanatory power is the following:

M. Applebaum and R. Zazkis



265

Multiplying by 4 and then dividing by 5 can be carried out as multiplying by 
4

5
. 

Since the undoing of multiplication is division, and the undoing of division is mul-
tiplication, the undoing of multiplying by 4 and then dividing by 5 is multiplying by

5 and then dividing by 4, that is, multiplying by 5
4

. Notice the switch of order in the

operations. But it is also dividing by 
4

5
. So multiplying by 

4

5
 is undone by dividing

by 
4

5
 which is the same as multiplying by 5

4
.

While this explanation may appear less straightforward than the familiar “rule” 
of “invert and multiply”, we suggest that it satisfies the need for causality, at least 
for those who experience this need.

14.3.4  The Need for Causality as a Challenge

What is common in the presented examples is that (a) the need for certainty is satis-
fied by a presented computation, and (b) the challenge of explanation arises after the 
solution is found. Considering the three examples, we assert that the challenge of 
satisfying the need for causality is a mathematical challenge, as it results in mathe-
matical activity. It is the activity of seeking an applicable piece of mathematical 
knowledge, often not explicitly related to the problem at hand, that can be harnessed 
for the situation.

In example 1 (the case of a rope) it is knowledge of derivatives and rate of change; 
in example 2 (the case of a parabola) it is knowledge of transformations; and in 
example 3 (the case of division of fractions) it is the connection to the general case 
of finding an inverse of a composition of operations, which is mathematically 
expressed as (a ∗ b)−1  = b−1 ∗ a−1, where a−1 is the inverse of a and b−1 is the inverse 
of b with respect to the operation ∗.

The three examples also demonstrate that the need for causality is satisfied by 
utilising mathematical knowledge which is not required for the solution of the prob-
lem. They also demonstrate how (more) advanced mathematics can support com-
prehension of school mathematics.

14.4  Creating Challenge in Simple Tasks

Simple actions can be turned to challenging ones by adding a constraint. For a 
cyclist, a challenge can be added by adding a constraint of cycling without holding 
the handlebars; for a hiker, a challenge is added by wearing heavy gear. A constraint 
can also be in limiting available resources for common actions, such as time or light.

Turning to mathematical examples, a simple problem can be turned to a chal-
lenging one by limiting the allowable resources. For example, given the length of 
the legs of a right-angle triangle, determine the length of a hypotenuse without using 
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the Pythagorean theorem. Or, measure exactly 1 litre of water using only 5 and 3 
litre jugs, or 6 and 4 litre jugs. Interesting mathematical ideas can emerge by adding 
and varying constraints that present varying levels of challenge.

We note that some imposed constraints lead not only to challenging tasks but 
also to exciting mathematical developments. Consider for example geometric con-
structions with straight edge and compass, in particular, the case of trisecting the 
angle. Obviously, trisecting is not the goal, the goal is to address the challenge given 
the constraint of allowable tools. However, attempts to address this challenge stimu-
lated the development of the discipline, where the proof of impossibility came from 
presumably unrelated mathematical content, abstract algebra of field extensions.

14.5  Teachers Responding to the Five-Digits Task

In this section, we describe how secondary school teachers address a presumably 
simple task, where a challenge is presented by a constraint of not allowing the use 
of a calculator. Following the presented solutions, we describe the challenging 
activity of explaining the unexpected result without explicit computations.

14.5.1  The Five-Digits Task

We presented this task to secondary school mathematics teachers (n = 17) who 
participated in a professional development program. To focus on how the teachers 

TASK: Without using a calculator, place the digits 1,2,3,4 and 5 (each digit 
once) in the following multiplication
 

×
 

Indicate your first guess
 

×
 

to get the largest product.

approach the task, we added the following components:
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After recording possible candidates for the largest product, the teachers were 
invited to solve the task, record their solution and indicate to what degree they were 
convinced by the correctness of their solution, by responding to the following 
question:

How convinced are you?
(Circle 25% 50% 90% 100% other__%)

Next, the participants were asked to address the following questions:

How would you convince a colleague, in case of disagreement?
How could you convince a colleague without calculating/computing the 
final result?

Note that the largest product is obtained by 431 × 52, which, as is demonstrated 
below, was an unexpected result for many of the participants. In fact, while there are 5! 
options for placing the 5 digits in the 5 designated spots, an a priori reasoning reduces 
the number of “candidates” for the largest product significantly: the first digit of the two 
factors should be one of the largest digits, 4 and 5 respectively, and each number must 
have digits in a decreasing order. This reasoning results in only 6 possible products:

 531 42 532 41 521 43 431 52 432 51 421 53× × × × × ×, , , , , .  

We refer to these products as relevant cases.
While calculating the possible products may address the need for certainty, the 

request to convince a colleague without referring to the result of the calculation 
addresses the need for causality.

14.5.2  Determining the Largest Product

Table 14.1 summarises the participants’ first guesses, the first three products they 
wished to calculate, the total number of calculated products (as derived from the 
recorded calculations), their final solution and the percentage that indicates the 
degree of certainty.

Calculators are NOT allowed.

BUT, if you were allowed to try 3 products using a calculator, what would 
you try? WHY?

×

×

×

14 Mathematical Challenge of Seeking Causality in Unexpected Results



268

Ta
bl

e 
14

.1
 

Su
m

m
ar

y 
of

 p
ar

tic
ip

an
ts

’ 
re

sp
on

se
s 

to
 th

e 
Fi

ve
-d

ig
its

 T
as

k

3 
pr

od
uc

ts
 to

 tr
y 

af
te

r 
in

di
ca

tin
g 

fir
st

 g
ue

ss

Pa
rt

ic
ip

an
t

Fi
rs

t 
gu

es
s

52
1 

×
 4

3
53

1 
×

 4
2

54
2 

×
 3

1
53

2 
×

 4
1

54
3 

×
 2

1
54

1 
×

 3
2

41
2 

×
 5

3
42

1 
×

 5
3

43
2 

×
 5

1
43

1 
×

 5
2

T
C

T
C

R
Fi

na
l 

re
su

lt
%

P1
42

1 
×

 5
3

✓
✓

✓
4

4
43

1 
×

 5
2

10
0

P2
53

1 
×

 4
2

✓
✓

✓
5

4
43

1 
×

 5
2

99

P3
53

1 
×

 4
2

✓
✓

✓
4

3
52

1 
×

 4
3

90

P4
53

2 
×

 4
1

✓
✓

✓
6

4
52

1 
×

 4
3

10
0

P5
52

1 
×

 4
3

✓
✓

✓
7a

6
52

1 
×

 4
3

10
0

P6
53

1 
×

 4
2

✓
✓

✓
5

5
52

1 
×

 4
3

–

P7
42

1 
×

 5
3

✓
✓

✓
5

2
52

1 
×

 4
3

10
0

P8
53

1 
×

 4
2

✓
✓

✓
4

3
53

1 
×

 4
2

90

P9
53

1 
×

 4
2

✓
✓

✓
5

4
52

1 
×

 4
3

90

P1
0

53
1 

×
 4

2
✓

✓
✓

5
4

53
1 

×
 4

2
90

P1
1

53
1 

×
 4

2
✓

✓
✓

6
4

43
1 

×
 5

2
90

P1
2

53
1 

×
 4

2
✓

✓
✓

7
5

43
1 

×
 5

2
80

P1
3

53
1 

×
 4

2
✓

✓
✓

6
4

43
1 

×
 5

2
90

P1
4

53
1 

×
 4

2
✓

✓
✓

5
5

43
1 

×
 5

2
99

P1
5

53
1 

×
 4

2
✓

✓
✓

5
3

43
1 

×
 5

2
90

P1
6

53
1 

×
 4

2
✓

✓
✓

4
4

52
1 

×
 4

3
90

P1
7

43
2 

×
 5

1
✓

✓
4

4
43

1 
×

 5
2

50

To
ta

l
10

10
4

8
2

7
1

2
2

4

T
C

 T
ot

al
 n

um
be

r 
of

 c
he

ck
ed

 p
ro

du
ct

s,
 T

C
R

 T
ot

al
 n

um
be

r 
of

 c
he

ck
ed

 r
el

ev
an

t p
ro

du
ct

s
a C

om
pu

ta
tio

na
l m

is
ta

ke

M. Applebaum and R. Zazkis



269

By observing Table 14.1 we note the following:

First Guess. Note that as the first step in addressing the task the teachers were 
asked to indicate their first guess. None of the “first guesses” included a cor-
rect answer.

The most popular answer was 531 × 42. It was found in 12 of the 17 answers.
Most teachers used the form 5 _  _  × 4_, that is, 5 was the first digit of the 3-digit 

number. Only 3 of the 17 teachers (P1, P8 and P17) suggested for their first guess a 
product of the form 4 _  _  × 5_, but different from the correct answer; 2 of these 3 
teachers (P1 and P17) found the correct answer in their final result.

Three products to try. After indicating the first guess the teachers were asked to 
suggest 3 candidates for the largest product to be tested. Including the first guess in 
the 3 suggested products was an implicit option. 10 of the 17 teachers included the 
first guess as one of their 3 suggestions.

Of these 50 products2 listed as potential candidates for the largest result, 41 were 
of the form 5 _  _  × 4_. Of these 41, 531 × 42 and 521 × 43 appeared 10 times each. 
Only 9 of the indicated 3 candidates were of the form 4 _  _  × 5_. Of these 9 only 
4 included the correct solution (P1, P12, P14, and P15).

Number of cases checked. Based on the teachers’ worksheets, the number of cal-
culated products varied between 4 and 7. We noted above that there are only 6 
 relevant cases: 531 × 42, 532 × 41, 521 × 43, 431 × 52, and 432 × 51, and 421 × 53. 
While three teachers (P5, P12, P14) calculated 5 or 6 products, only one teacher 
(P5) checked all the 6 relevant cases.

Final Answers. 8 of 17 final answers were correct (431 × 52), 9 were incorrect. 7 
of the 9 incorrect final answers indicated 521 × 43, and 2 indicated 531 × 42.

Certainty. There appears no apparent connection between the number of checked 
cases, correctness of the answer and the indicated percentage for certainty. 100% 
was indicated for 1 correct and 3 incorrect answer, 99% was indicated for 2 correct 
answers; the lowest numbers of 50% and 80% were indicated for two correct 
answers. 90% was the most frequent indicator assigned to 5 incorrect and 3 correct 
answers.

Convincing without calculating. The notion of place value was featured in most 
of the suggested explanations. Some explanations were general, such as “consider 
the place values of the digits”. We exemplify below several of the more explicit 
examples.

Figures 14.1 and 14.2 demonstrate how P1 and P11 would convince a colleague 
without calculating. They indicated that digits 5 and 4 should appear in the highest 
place values and digits 2 and 1 in the lowest. We note that these teachers do not 

2 One of the 17 teachers listed only 2 products, so we have 50 rather than the expected 51 products.
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Fig. 14.3 Explanation of P8 for the obtained incorrect result 521 × 43

Fig. 14.1 Explanation of P1 for the obtained correct answer 431 × 52

Fig. 14.2 Explanation of P11 for the obtained correct answer 431 × 52

actually justify what they determined to be the largest product, but provide guidance 
of what products have to be considered and checked.

Figures 14.3 and 14.4 demonstrate “convincing a colleague” explanations of P8 
and P9, respectively, whose final answer was incorrect 521 × 43. P8’s explanation 
places 5 as the first digit of the 3-digit number, which is multiplied by the largest 
2-digit number composed of the available digits. While this describes the answer, it 
does not explain why this answer is considered the largest. P9’s explanation implic-
itly compares 521 × 43 and 531 × 42. She claimed that 5 “should go in the 3-digit 
number” and then compared (20 + 1) × 3 (“three 20s and 3 ones”) and (30 + 1) × 2 
(“2 thirties and 2 ones”), which led her to conclude that 521  ×  43  > 531  ×  42. 
Focusing only on these two comparisons suggests that other possible products were 
of no importance for the final decision.

It is evident from the first guesses, from the suggested products to be calculated 
and from the final incorrect results, that there was a strong prevalence of placing the 
largest digit in the 3-digit number. For 10 teachers all their first 3 trials were of the 
form 5 _  _  × 4 _ ; 2 of the 17 teachers did not even consider a product in the form 
4  _    _    ×  5_ in any of their subsequent calculations. Furthermore, P5 included 
521 × 43 and 431 × 52 in her column-multiplication calculations, but despite the 
correct calculation she indicated 521 × 43 as her final answer. This careless conclu-
sion is in accord with the preference towards a solution of the form 5 _  _  × 4_.

M. Applebaum and R. Zazkis



271

14.5.3  Follow-Up Activity: The Challenge of Causality

After the work on the task was completed, the participants shared their solutions. 
The result appeared surprising for those who did not indicate the correct solution as 
well as for those who did. The challenging activity, which invoked the need for 
causality, was to compare possible answers without referring to the result. Because 
the results are rather close to each other, the answer cannot be achieved by estimation.

The following 3 products were indicated as “the largest” in the teachers’ answers: 
521 × 43, 531 × 42 and 431 × 52. As such, the discussion focused on these three 
products. It appears rather surprising that an incorrect answer 521 × 43 was given 
with a rather high certainty. Those who chose 521 × 43 also computed 531 × 42 as 
a possible candidate for the largest product. This could have been the reason for the 
perceived certainty.

P16 suggested that one possible way to explain why 521 × 43 was larger than 
531 × 42, without explicit calculation, was to claim that 500 × 40 appears in both 
products, and that 21 × 3 is larger than 31 × 2. This was consistent with what she 
indicated in her worksheet, see Fig. 14.5 (Note the similarity with P9 explanation in 
Fig. 14.4).

This appeared reasonable, as the argument confirms the known result. However, 
the same argument fails if applied to comparing 431 × 52 and 421 × 53, as actually 
431 × 52 > 421 × 53.

Another attempt was to decompose the numbers into the sum of their place val-
ues and subsequently use the distributive property. For example, in comparing 
521 × 43 and 531 × 42, P3 wrote the following:

 
521 43 500 20 1 40 3 500 40 20 40 40 500 3 20 3 3� � � �� �� �� � � � � � � � � � � �

 

 
531 42 500 30 1 40 2 500 40 30 40 40 500 2 30 2 2� � � �� �� �� � � � � � � � � � � �

 

Fig. 14.4 Explanation of P9 for the obtained incorrect result 521 × 43

Fig. 14.5 P16’s attempt at a convincing argument
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Then she suggested to ignore the numbers that were the same in both calcula-
tions (500 × 40) and focus only on the different ones. But the fact that the larger 
components were in different products (that is, 500 × 3 in the first product is larger 
than its corresponding term in the second product, but 30 × 40 in the second product 
is larger than its corresponding term in the first product) did not lead to an argument 
that her classmates found convincing.

Some prompting appeared necessary in order to guide the participants towards a 
different approach. We discussed how the relative size of two objects can be com-
pared, without determining the measure, especially when estimation is of no use. 
From this discussion an idea was developed to look at the difference between the 
two products, without calculating explicitly what the products were. A convincing 
argument was achieved by direct comparison, invoking distributivity in a dif-
ferent way:

 

( ) ( )521× 43 = 531 10 × 42 +1 = 531× 42 420 + 531 10
531× 42 + a positive nu ber= m

− − −

 

It is easy to see that this positive number is 101, but determining the exact differ-
ence is not needed to demonstrate that 521 × 43 is larger than 531 × 42. A slightly 
more complicated calculation was needed to find the difference between 
521 × 43 and 431 × 52.

 
431 52 521 90 43 9� � �� �� �� � �  

 � � � � � � � � �521 43 90 43 521 9 90 9  

 � � � � � � �521 43 90 43 431 9  

 
� �� � � � � � �521 43 430 9 431 9

 

 � � �521 43 a positive number  

Again, it is clear that this positive number is 9, but the task was to determine the 
largest product, not its difference from the second in size.

The class also extrapolated the above calculation to the general case: Given 5 
consecutive digits (n, n + 1, n + 2, n + 3, n + 4) to be used in a product of a 2-digit 
by a 3-digit number, what combination gives the largest product? The teachers com-
pared the two “winning” combinations for n = 1, that is, the choices that result in 
521 × 43 and 431 × 52.

Figure 14.6 is a screenshot of the board where the two products are compared. 
First, both products are presented in the expanded notation. Then, some elements of 
the product on the right are decomposed to match the elements of the product on the 
left. At the next step we note that opening the parentheses on the left will result in 4 
addends, while opening the parentheses on the right will result in 9 addends, 4 of 
which match those on the left. As such, only the 5 different elements are considered. 
With some manipulations, we see that the difference between the two results is 9n, 
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Fig. 14.6 Two compared products in expanded notation

which was previously calculated directly to be 9 in case of n = 1. This result was 
considered by the teachers as satisfying as the observed unexpected phenomenon 
was extended to the general case.

We note that the “general” proof developed in class only determines which prod-
uct from the chosen two is larger. It does not attend to the problem in its generality, 
considering other possible products. While it appealed to the teachers’ need for 
causality, drawing comparison between two cases only was not justified. As a result, 
we pursued a challenge of proving the general case, which satisfied our personal 
intellectual needs.

14.6  Mathematicians Responding to the Five-Digits Task

Having considered the teachers’ approaches, we wondered how individuals with a 
stronger mathematics background would respond to the Five-digits Task. Two math-
ematicians agreed to be interviewed and “think aloud” as they approached the task. 
We present summaries of the two interviews below.

14.6.1  Interview with Ada

As the first step in her approach, Ada determined how many different cases exist in 
this task. She determined that there were 5! = 120 cases, which was too much for a 
trial and error method. She further noted that not all cases were potential 
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“candidates” for the largest product. As such, she reduced the number of cases that 
need to be considered.

I: So what cases will you focus upon?
Ada: It is clear that in the first positions in 3-digit number and 2-digit number needs to be the 

largest digit. I mean that the digits 5 and 4 will take the first places in these numbers:
5 _  _  × 4_ or 4 _  _  × 5_.
Now I’ll care about place for digit 3. If 3 is placed in a 2-digit number, we’ll have two 
next products to consider: 521 × 43 and 421 × 53.

I: Please go on.
Ada: Without calculating the product we can compare as follows:

(a) 521 × 43 = 421 × 43 + 100 × 43
or
(b) 421 × 53 = 421 × 43 + 421 × 10
We can see that product in (a) is larger than the product of the task (b).

I: Ok, what next?
Ada: To continue, if digit 3 is in the second place in the 3-digit number, then we have to check 

4 cases [(c) – (f)]:
(c) 532 × 41 = 531 × 41 + 1 × 41
or
(d) 531 × 42 = 531 × 41 + 1 × 531
In this competition the winner is product (d).
And in the next comparing
(e) 432 × 51 = 431 × 51 + 1 × 51
or
(f) 431 × 52 = 431 × 51 + 1 × 431
the larger product is in the task (f).

I: So what are we left with?
Ada: Now we have only 3 candidates for the largest product:

(a) 521 × 43, (d) 531 × 42 and (f) 431 × 52.
Now I’ll compare
(a) 521 × 43 = 521 × 42 + 521 × 1
and
(d) 531 × 42 = 521 × 42 + 10 × 42.
Obviously, product of (a) is larger than product of (d).
Finally there are only two candidates now: (a) and (f).
(a) 521 × 43 = 520 × 43 + 1 × 43
(f) 431 × 52 = 430 × 52 + 1 × 52
It is easy to see that the product of (f) is the largest.

I: Easy to see?
Ada: Sure, easy now, after all the previous work.
I: Interesting…
Ada: And, it will be interesting to try to generalize this problem:

You have 5 different digits: a1, a2, a3, a4, a5. Put them (each digit one time only) in the 
task: _ _  _  ×  _ _, so that the result will be largest.
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14.6.2  Interview with Ben

I: Ready to start and talk aloud as you are thinking?
Ben: It is clear that on the first positions in 3-digits number and 2-digits number should be the 

bigger digits: 5 and 4 will take the first places in these numbers:
5 _  _  × 4_ or 4 _  _  × 5_.
In each case, we have only 3!  = 6 options for 3 rest digits. Then we have 12 products. But 
actually, we have to check only 6, because in half of cases the digits will not be in 
decreasing order. The cases are:
521 × 43
531 × 42
532 × 41
431 × 52
421 × 53
432 × 51

I: So how will you approach the 6 cases, you do not have a calculator.
Ben: I believe that the first product is the largest, that is how it appears. But let’s see …

Ben chose to calculate the six products.

 1. 521 × 43 = 22403
 2. 531 × 42 = 22302
 3. 532 × 41 = 21812
 4. 431 × 52 = 22412
 5. 421 × 53 = 22313
 6. 432 × 51 = 22032

Having calculated the products, Ben appeared surprised with the result.
Without prompting from the interviewer, he began to analyze what contributed to 

his erroneous prediction.

Ben: My argument was to go with the biggest 2-digit number when the 3-digit number will 
start with digit 5. So I got 521 × 43. In both cases the first one and the fourth we have 
500 × 40 = 50 × 400. What made the difference? Then in first case we have in positions of 
tens: 40 × 20 and in the fourth case: 50 × 30. So we have +700 for the forth case. On the 
other side we have in the first case 500 × 3 and in the fourth case: 400 × 2. Then we have 
−700. It means that we have equality. Then we have another equality: 20 × 3 = 30 × 2. 
And finally 1 × 43 < 1 × 52. That was the reason why we had so close result.

14.6.3  Comments on the Mathematicians’ Approaches

Both Ada and Ben used a very systematic approach: they clearly identified the rel-
evant cases to be considered and articulated why there was no need to consider 
additional cases. In both interviews six products were considered: Ben calculated 
the six products and examined his incorrect prediction. Ada did not multiply any 
numbers; she compared the products in pairs, until the largest product was 
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identified, to which she referred as the ‘winner’. Metaphorically, she treated this 
pairwise comparison as a tournament, where a winner of a game competed in the 
next round.

This systematic approach can be seen as the evidence of the mathematicians’ 
intellectual need for certainty, when the certainty is assured by examining all the 
“candidate” cases. We point out that only one (P5) of the participating teachers 
attended to the relevant six cases in their calculations. Furthermore, the number of 
computed products did not correspond to the claimed certainty.

With respect to the need for causality, we believe that causality is embedded in 
Ada’s comparative method. The need for causality featured differently in Ben’s 
approach: he was interested in the cause of his mistaken prediction, rather than in 
explaining why the product 431 × 52 was the largest among the six. We further 
observe that Ben’s approach in comparing two products was similar to what was 
suggested in class by P3, the approach that she and her classmates did not pursue to 
a satisfactory resolution.

14.7  Proceeding with a Self-Challenge

Our analysis of the work of teachers and mathematicians challenged us both math-
ematically and pedagogically. We describe in this section how we addressed these 
challenges.

At the end of her interview, Ada wondered about a possible generalization: “You 
have 5 different digits: a1, a2, a3, a4, a5. Put them (each digit one time only) in the 
task: _ _  _  ×  _ _, so that the result will be largest.”

We interpreted this generalization as the need for structure and formulated Ada’s 
proposal as the following conjecture: “for all digits a, b, c, d, e such that: 
1 ≤ a < b < c < d < e ≤ 9, the product dca eb×  will get the maximum value”. We 
engaged in this self-challenging task and generated different proofs, starting with 
the case of five consecutive digits and then pursuing the general case. However, 
before attempting to prove, we verified our conjecture by using a computer program.

14.7.1  The Case of Five Consecutive Digits

For given 5 consecutive digits (n, n + 1, n + 2, n + 3, n + 4) that should be used one 
time each in the product of a 2-digit number by a 3-digit number: _ _  _  ×  _ _, what 
combination gives the largest product?

We should compare the next six products:
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 n n n n n� � � � �4 2 1 3, , , ,  

 n n n n n� � � � �4 2 3 1, , , ,  

 n n n n n� � � � �4 1 3 2, , , ,  

 n n n n n� � � � �3 2 1 4, , , ,  

 n n n n n� � � � �3 2 4 1, , , ,  

 n + 3,n +1,n n + 4,n + 2 for each n = 2,3,4,5.,×  

There are only six cases in which all digits in both numbers are in decreas-
ing order.

 1. 
100 4 10 2 1 10 3 1221 7961 126302n n n n n n n�� � � �� � � �� �� �� � �� � � � �

 

 2.
 
100 4 10 2 10 3 1 1221 8061 130202n n n n n n n�� � � �� � �� �� �� � � �� � � � �

 

 3.
 
100 4 10 1 10 3 2 1221 8062 131202n n n n n n n�� � � �� � �� �� �� � � �� � � � �

 

 4. 
100 3 10 2 1 10 4 1221 7971 128402n n n n n n n�� � � �� � � �� �� �� � �� � � � �

 

 5.
 
100 3 10 2 10 4 1 1221 8071 131202n n n n n n n�� � � �� � �� �� �� � � �� � � � �

 

 6. 
100 3 10 1 10 4 2 1221 8072 130202n n n n n n n�� � � �� � �� �� �� � � �� � � � � .

 
We need to compare only between sums of 2 last terms of the 6 algebraic 

expressions.
It is clear that 7961n + 12630 < 8061n + 13020, 8062n + 13120 > 7971n + 12840, 

and 8071n + 13120 > 8072n + 13020 for every n = 2, 3, 4, 5.

Now we need to check if one of 3 algebraic expressions 8061n + 13020,

 8062 13120 8071 13120n n� �,  and  is bigger than others for everry n � 2 3 4 5, , , .  

And it is clear that: 8061n + 13020 < 8062n + 13120 < 8071n + 13120.

Then in all cases n = 2, 3, 4, 5 the product n n n n n� � � � �3 2 4 1, , ,  is the largest.

14.7.2  General Case

Proof A
In the general case, we should show that for all digits a, b, c, d, e such that:

1 ≤ a < b < c < d < e ≤ 9, the product dca eb×  will give the maximum value of all 
products of a 2-digit number by a 3-digit number.
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We should observe and compare the values of next 6 products:

 (1) dca eb×

 (2) dba ec×

 (3) dcb ea×

 (4) eba dc×

 (5) eca db×

 (6) ecb da×

First we compare the products in pairs: (1) and (3), (2) and (4), (5) and (6).

 (1) 10 10 100 10dc a e b dc e dc b ae ab�� �� �� � � � � � �� � �
 (3) 10 10 100 10dc b e a dc e dc a be ab�� �� �� � � � � � �� � �

Let us show that (1) > (3). It is clear that we need to show that

 dc b ae dc a be� � � � � .  

It follows that dc b dc a be ae� � � � � ,
and then

 
dc b a e b a� �� � � �� �,  

and this last inequality is true ( dc e b a> >; ).
Next we compare (2) and (4) in a similar way and get that

 (4) eba dc× > dba ec×  (2)

Comparing the products (5) and (6), we get that:

 (5) eca db×  > ecb da×  (6)

Now we should find the “winner” between next 3 products:

 (1) dca eb×

 (4) eba dc×

 (5) eca db×

Let’s compare the (1) and (5) products

1 100 10 1000 100 10� � �� �� �� � � � � � � �d ca e b de db ca e ca b

(4) 100 10 1000 100 10e ca d b de eb d ca b ca�� �� �� � � � � � � �

Now it is enough to show that

 100 10 100 10db ca e eb d ca� � � � �  
Or
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 10 10db eb d ca ca e� � � � �  

 
10b d e ca d e�� � � � �� �  

10 0b ca d e� � � �� �, b c  

In the same way, we can show that (1) > (5).
Then in the general case where 1 ≤ a < b < c < d < e ≤ 9, the largest product

is dca eb× .

Proof B
We are looking for the largest product of xyz uv× , where 1 ≤ x, y, z, u, v ≤ 9 are 
distinct natural numbers.

In other words, we are looking for the maximum value of the expression:

 
100 10 10 1000 100 10x y z u v xu xv uy yv uz vz� �� �� �� � � � �� � � �� � �  

It is clear that if we want to get the maximal value, we should choose x and u the 
largest digits and z and v the smallest. Then y is the median digit: 1 ≤ v, z < y < x, u ≤ 9.

The terms 1000xu and vz do not depend on the relative positions of x and u or v 
and z. Thus we attend to maximizing the value of 100(xv + uy) + 10(yv + uz) or the 
value of 10(xv + uy) + yv + uz

What positions should our digits have to make the expression 10(xv + uy) + yv + uz 
yield its maximum value? We have to check the next four cases:

 (1) 1 ≤ v < z < y < x < u ≤ 9,
 (2) 1 ≤ z < v < y < x < u ≤ 9,
 (3) 1 ≤ v < z < y < u < x ≤ 9,
 (4) 1 ≤ z < v < y < u < x ≤ 9.

Next we show that case (1) leads to a larger result than case (3):
In case (1) we suppose: x = u − t, t ≥ 1; whereas in case (3) x and u will exchange 

their places. Then we show that the next inequality holds:

 
10 10u t v uy yv uz uv u t y yv u t z�� � �� � � � � � �� �� � � � �� � .

 

Indeed, after simplification we have:

 
10 10 0 10 0ty tz tv t y v z� � � �� � �� � �and then

 

Given that y > v, the last inequality holds for all digits t, y, v, z.
In the same way, we can show that case (2) leads to a larger result than case 

(4). And finally comparing cases (1) and (2) we get that in case (2) we have the larg-
est result.

Therefore, the order of the digits 1 ≤ z < v < y < x < u ≤ 9 will give the maximum 

product, and the largest product is xyz uv× .
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Fig. 14.7 Comparing products by considering areas of rectangles

14.7.3  Detour: On a Simpler but Similar Task

Which product results in a larger value: 128 × 53 or 127 × 54?
This task resembles the Five-digits Task discussed above not only in a search for 

a larger product but also in the fact that most people guess incorrectly, focusing on 
128 vs. 127, that is, on increasing the larger number. In addition to calculating the 
product (6784 vs. 6858), the larger product can be determined by invoking distribu-
tivity, as in the case of the Five-digits Task:

 128 53 = (127+1 54 1) = 127 54 + 54 127 1 127 54× × × ×) ( _ _ _ <  

However, we were challenged to find an alternative explanation, in which the 
conclusion is more intuitive. Such an explanation is provided in Fig. 14.7. We start 
with a rectangle with dimensions 127  ×  53 and then increase one side or the 
other by 1.

The larger product (127 × 54) is evident by considering the resulting rectangles. 
This generic illustration clearly points to a larger product comparing (a + k) × b and 
a × (b + k).

14.8  Discussion

The Five-digits task does not resemble the ‘Rope around the Earth’ problem at all. 
Nevertheless, we acknowledge a significant similarity. The similarity – as we see 
it – is that the results are unexpected and therefore surprising. The unexpected result 
in the ‘Rope around the Earth’ task is well acknowledged in the literature (e.g., 
Arcavi, 2003; Farlow, 2014). While we reported only results from 17 teachers and 2 
mathematicians, we presented this task to various groups of students and in most 
cases, the correct solution did not emerge immediately and was unexpected. As 
such, both tasks present a challenge in provoking the intellectual need for causality, 
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the desire to find an explanation for the phenomenon, rather than to simply indicate 
a solution.

“Mathematicians routinely distinguish proofs that merely demonstrate from 
proofs which explain” (Steiner, 1978, p. 135). Hanna (1990) articulated this differ-
ence further, claiming that proofs that “just” prove establish that the statement is 
true, while the proofs that also explain establish why it is true. While our task does 
not explicitly deal with proofs, we note a similarity. In the case of the Five-digits 
Task, the result of calculating the relevant products can be seen as proof that does 
not explain, whereas the comparison of the relevant products without calculating the 
result provides an explanation to the phenomenon.

Harel (2013) argued for directing students’ attention to the cause of phenomena. 
He suggested that “By repeatedly attending to explanations as well as to proofs, we 
aimed at enculturating students into the habit of seeking to understand cause, not 
only attaining certainty” (2013, p. 127). In the case of secondary school teachers 
and mathematicians, those participating in our study, the desire to find the cause 
arose naturally, which exemplifies the intellectual need for causality. Furthermore, 
the generalization proposed for examination by the mathematician Ada, exemplifies 
her intellectual need for structure, for determining a regularity in which the five 
digits are not limited to the consecutive and smallest. We pursued the proposed 
generalization by proving the general case.

As we claimed above, challenge can be found in rather simple tasks, by adding 
some constraints. The challenge for our participants was to explain the results with-
out any computation. Thus, seeking causality after certainty is achieved is a valu-
able activity for teachers, especially when the result is rather unexpected.

Continuing with the book’s theme of “challenge for all”, we conclude with a 
variation that some readers may find challenging:

What choice of digits results in the smallest product?
Does the knowledge of what product is the largest help in finding the smallest one?
How can the Five-digits task be extended to a Six-digit task?

These questions resemble the “What if not” strategy described by Brown and 
Walter (1983). We invite the readers to challenge themselves and their students by 
varying the task and its constraints, while finding different explanations that satisfy 
both the need for certainty and the need for causality, particularly when obtaining 
unexpected results.
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Chapter 15
Visualization: A Pathway to Mathematical 
Challenging Tasks

Isabel Vale and Ana Barbosa

15.1  Introduction

Mathematics learning is strongly dependent on the teacher and the tasks proposed 
to students (e.g. Doyle, 1988; Stein & Smith, 1998; Sullivan et al., 2013). Thus, the 
teacher must develop students’ mathematical understanding, creating situations to 
ensure that they have the opportunity to engage and be challenged in high-level 
thinking, through the tasks proposed. The teacher’s choices will determine the qual-
ity of students’ learning (e.g. Chapman, 2015; Stein & Smith, 1998). This implies 
the use of tasks that meet different ways of thinking displayed by the students, con-
fronting them with multiple-solution tasks, that challenge them to see outside of the 
box, motivating them to learn and to work with each other. We are interested in 
visualization because it plays an important cognitive role in the teaching and learn-
ing of mathematics, as an aid to thinking, as a means of communicating mathemati-
cal ideas and as a useful tool in problem-solving (Arcavi, 2003). So, pre-service and 
in-service teacher training should promote an insight into the nature of mathematics 
and its teaching, meaning that teachers need to have different teaching and learning 
experiences similar to the ones they are expected to use with their own students 
(Ponte & Chapman, 2008; Vale & Barbosa, 2020).

Thus, after a theoretical discussion about challenging tasks with multiple solu-
tions (e.g. Leikin, 2016; Stein & Smith, 1998) and visualization (e.g. Arcavi, 2003; 
Duval, 1999; Presmeg, 2014, 2020), we emphasize the use of visual processes in 
teachers’ practices and their potential in the teaching and learning of mathematics. 
This discussion will be illustrated with examples based on studies carried out with 
pre-service teachers of elementary education (6–12 years). This perspective emerges 
from the work we have been developing in teacher training through which we have 
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come to conclude that visualization is not valued in school practices, neither as a 
problem-solving strategy nor as a way to support the understanding of mathematical 
concepts.

15.2  The Mathematics Classroom

15.2.1  The Teacher and the Tasks

All students should have the opportunity to engage in meaningful mathematical 
activity, and it’s the teacher’s role to unlock their potential through the choice of 
adequate tasks and teaching strategies. Although tasks have the power to trigger 
mathematical activity, they may not be sufficient to implicate mathematical chal-
lenges. Teachers must establish a classroom environment that guarantees students’ 
engagement in embracing mathematical challenges. This implies the use of strate-
gies that contemplate the heterogeneity of a classroom, and stimulate students to 
think and interact with each other, leading to rich discussions.

An effective teaching approach implies the orchestration of productive discus-
sions, giving students opportunities to communicate, reason, be creative, think criti-
cally, solve problems, make decisions and understand mathematical ideas (e.g. 
NCTM, 2014; Vale & Barbosa, 2020). This context requires an exploratory 
approach, anchored on inquiry-based learning (Engel et  al., 2013), allowing stu-
dents to learn mathematics by understanding, criticizing, comparing and being 
encouraged to use different approaches to solve non-routine tasks, discussing the 
multiple solutions and processes used. This approach is demanding for teachers and 
is often the reason for continuing to perpetuate the common classroom practice that 
some refer to as the Triple X teaching (exposition, examples, exercises) (Evans & 
Swan, 2014). The option for more traditional approaches is related to teachers’ 
beliefs regarding mathematics teaching and learning, which influence the type of 
tasks and strategies used (Sullivan et al., 2013). Many of the fragilities that students 
have in learning mathematics are due to those options, but also to the gaps in the 
teachers’ mathematical knowledge and in the use of innovative teaching strategies. 
Hence, mathematics learning is strongly dependent upon the teacher and the tasks 
that are proposed (e.g. Doyle, 1988; Smith & Stein, 2013; Stein & Smith, 1998). To 
improve the conceptual understanding of mathematical ideas, teachers must select 
challenging tasks that promote flexible thinking and problem-solving abilities 
(Smith & Stein, 2013; Stein & Smith, 1998).

Therefore, teachers should be able to take advantage of all the potential embed-
ded in a task and, in order to do this, they need opportunities to explore and solve 
tasks in the same way that they are expected to explore with their own students 
(Stein & Smith, 1998; Sullivan et al., 2013). Teacher education programs should 
include experiences that stimulate teachers’ knowledge, using the same principles 
as teaching mathematics to school students, in particular focusing on 
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problem-solving situations that combine mathematical and pedagogical issues (e.g. 
Cooney & Krainer, 1996). The use of challenging tasks in these programs may lead 
to pre-service teachers not only being able to reproduce tasks/solutions/strategies 
presented, but also produce new and original proposals (Guberman & Leikin, 2013).

15.2.2  Challenging Tasks

Mathematical tasks may have different levels of demand, inducing different learn-
ing modes, so teachers should pay special attention to their choice of task. Therefore, 
task design triggers the activity developed by students, allowing teachers to intro-
duce new ideas and procedures and students to have the opportunity to think differ-
ently (e.g. Chapman, 2015; Smith & Stein, 2013). Among the different tasks that we 
use in mathematics classes, we privilege the tasks that can be solved in different 
ways, which is very similar to the idea of multiple solution tasks (MSTs) proposed 
by Leikin (2016), because they develop mathematical knowledge and encourage 
flexibility and creativity in the individual’s mathematical thinking (Leikin, 2016; 
Polya, 1973). Tasks should have an impact on mathematical activity, allowing stu-
dents to assess their mathematical understanding, establishing relationships between 
concepts, and have enough flexibility to use divergent thinking.

Challenge is an important variable in the mathematics classroom because stu-
dents can become demotivated and bored very easily in a “routine” class. Some may 
even have difficulties in learning unless they are challenged (Barbeau & Taylor, 
2009; Holton et al., 2009). A mathematical challenge occurs when the individual is 
not aware of procedural or algorithmic tools that are critical to solve a problem and 
seems to have no standard method of solution. It includes a strong affective call 
involving curiosity, imagination, inventiveness, and creativity and it is placed inten-
tionally to attract students to their solution (Barbeau, 2009). In this sense, for some 
problem-solving authors (e.g. Kadijevich, 2007; Polya, 1973; Schoenfeld, 1985) a 
problem is a mathematical task that challenges learners to solve it.

The expression challenging task is normally used to describe a task that is inter-
esting and perhaps enjoyable, but not always easy to deal with or attain, and should 
actively engage students, developing a diversity of thinking and learning styles. 
Thus, even when it is not easy to deal with or to solve, it is perceived by the solver 
as an interesting and enjoyable problem. The engagement in productive struggle 
allows learners to widen their understanding (NCTM, 2014). Challenging tasks may 
particularly be those that require the learner to relate mathematical concepts or pro-
cedures, by considering, for example, different representations, views or applica-
tions (Kadijevich, 2007). According to Leikin (2014) a mathematical challenge is a 
mathematical difficulty that a person is able and willing to overcome. However 
mathematical challenges are not just difficult problems. The same problem may be 
a challenge for one student and a routine problem for another (Holton et al., 2009).
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As the one who introduces challenges in the classroom, the teacher must be 
aware of some particular circumstances. For instance, appropriate challenges can be 
given to mathematically able students as well as to less qualified ones. The solution 
for the same task may also be scaffolded differently to different students, providing 
challenges at several levels. Our difficult role and goal are to engage students with 
different mathematical backgrounds in different settings so that they can further 
develop their mathematical ideas, reasoning and problem- solving strategies, as well 
as their enjoyment in solving mathematical tasks. According to Leikin (2014), we 
need to develop students’ mathematical potential through an adequate level of 
mathematical challenge. Tasks are considered rich or good because they give stu-
dents the opportunity to learn, choosing from several different areas of mathematics 
and different mathematical and non-mathematical abilities, and using these in an 
integrated, creative and meaningful way. This is in accordance with the use of 
MSTs, suggested by Leikin (2016) as “a didactical and research tool in the majority 
of the studies that focus on the identification, development, and role of creativity in 
the teaching and learning of mathematics to students and teachers” (p.7). The author 
considers the link of MSTs to creativity, expressed in the differences in learners 
with varying levels of excellence in school mathematics (or in teachers with varying 
levels of expertise), whether they use insight-based solutions (related to an aha! 
moment) or, in contrast, learning-based solutions (the standard ones) of the prob-
lems. In this sense, for Leikin (2016), challenging mathematical tasks can “require 
solving insight-based problems, proving, posing new questions and problems, and 
investigating mathematical objects and situations” (p. 1–28). Insight-based prob-
lems are the ones that have a relatively simple solution which is difficult to discover 
until solution-relevant features are recognized (Weisberg, 2015, cited by Leikin, 
2016). These kinds of tasks are “challenging either for novices or expert students 
requiring flexibility when finding additional solutions and raising different conjec-
tures as well as originality when finding new mathematical facts and new mathe-
matical solutions” (Leikin, 2016, p. 10).

We define MSTs as tasks that invite different ways of solving a problem, which 
constitutes a challenge for the solver. This only makes sense in an exploratory teach-
ing where the teacher is the orchestrator (Smith & Stein, 2013), according to effec-
tive teaching of mathematics, that engages students in solving and discussing 
challenging tasks. This environment promotes mathematical reasoning and prob-
lem-solving with multiple and varied solution strategies, including visual ones, pro-
moting creativity (Leikin, 2016; NCTM, 2014; Presmeg, 2014).

15.3  The Potential of Visualization

Throughout the history of mathematics, it is possible to identify moments when 
visualization and arguments of visual nature played a major role in mathematical 
activity, but also periods of time when this way of thinking was avoided. However, 
for the last two decades, we have seen a growing interest in the use of images as a 
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general cultural change. Considering that mathematics requires the frequent use of 
diagrams, figures, tables, spatial arrangements of symbols and/or other types of 
representations, the recognition of the importance of visual processing and external 
representations associated with visualization has been progressively evident. 
Visualization has acquired an important status in mathematics, not only due to its 
illustrative functions but also to its recognized relevance as an important component 
of mathematical reasoning and proof (Arcavi, 2003).

The role of visualization in mathematics learning has been subject of much 
research and discussion as has been the delimitation of its meaning (e.g. Arcavi, 
2003; Dreyfus, 1995; Presmeg, 2006, 2020; Stylianou & Silver, 2004). Many 
authors embrace the definition of visualization proposed by Arcavi (2003), which is 
broad enough to include product and process, visualization as an artifact, as well as 
the meanings constructed by individual learners (Presmeg, 2014):

Visualization is the ability, the process and the product of creation, interpretation, use of 
and reflection upon pictures, images, diagrams, in our minds, on paper or with technologi-
cal tools, with the purpose of depicting and communicating information, thinking about and 
developing previously unknown ideas and advancing understandings. (p. 217)

This definition contemplates different facets of visualization, considering it as a 
bidirectional process between mathematical understanding and the external 
environment.

The discussion about the nature and role of visualization in the teaching and 
learning of mathematics is not simple. Much has been written about the potential of 
this ability in the development of an intuitive perspective and in the understanding 
of concepts associated with different areas of mathematics (Zimmermann & 
Cunningham, 1991). One thing is settled, visualization must not be reduced to the 
mere production or appreciation of figures or drawings, or even to the development 
of knowledge within the scope of geometry, on the contrary, it fosters an intuition 
that contributes to the clarification of mathematical ideas of different nature 
(Dreyfus, 1995).

Adding to the previous ideas, we can also highlight the relevance of visualization 
in problem-solving. This relation is unavoidable because visualization provides the 
use of intuitive and effective strategies that inspire creative findings (Nelson, 1993; 
Presmeg, 2006; Vale et al., 2018; Zimmermann & Cunningham, 1991). Actually, 
several studies have analyzed the advantages of using visualization in problem- 
solving (e.g. Presmeg, 2014, 2020; Stylianou & Silver, 2004; Vale et al., 2018) and 
it is a common idea that visual thinking contributes to the use of powerful strategies, 
different from those applied in more traditional approaches, where formalism and 
symbolism prevail. The use of visual forms of representation, like a drawing or a 
model, are frequently important aids to solve a diversity of problems, geometric or 
not, and can act either as unique strategies that lead to a solution or as a crucial start-
ing point to solve a problem (e.g. Polya, 1973; Schoenfeld, 1985; Stylianou & 
Silver, 2004). In the scope of problem-solving we come across problems of a visual 
nature or which are presented in a visual context and, for that reason, may more 
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easily be solved using a visual approach. Vale et al. (2018) propose the use of an 
additional and specific strategy called seeing. According to these authors:

seeing involves an activity that may be associated with a more traditional range of strategies 
(e.g. draw a picture or diagram, solve a simpler problem, look for a pattern), but it is specifi-
cally considered as a strategy of thought that involves visual perception of mathematical 
objects and is blended with knowledge and past experiences. It includes imagining, which 
is related with having creative insights or Aha! experiences and intuitions; it can also be 
expressed in terms of drawing, which means translating one’s ideas in some visual form. 
(p. 253)

The seeing strategy does not replace any other traditional problem-solving strategy, 
it is rather a way to tackle a problem. In spite of being a very useful strategy, as will 
be seen in the examples further ahead in this chapter, unfortunately, this approach is 
not always encouraged or used by teachers.

Visualization can also have a fundamental role as a complement to analytical 
thinking. For example, Fischbein (1987) comments that a visual image “is an essen-
tial factor for creating the feeling of self-evidence and immediacy” (p. 101) and “not 
only organizes data at hand into meaningful structures, but it is also an important 
factor guiding the analytical development of a solution” (p. 104). Visualization can 
act as a catalyst in understanding the meaning of concepts and in producing induc-
tive reasoning, but it can also be an informal way of understanding deductive rea-
soning, with the algebraic treatment being done later.

Although visual approaches are considered to be a basis for learning in mathe-
matics and also for problem-solving, the literature often mentions that many stu-
dents show reluctance to explore visual support systems (Dreyfus, 1995; Presmeg, 
2006, 2020). This phenomenon can be enhanced by several factors. On one hand, it 
is possible that mathematics, by its nature, favors the non-visual thinker, taking into 
account that the logical-verbal component is considered the sine qua non of math-
ematical abilities, while the visual-spatial component is not considered mandatory 
(Krutetskii, 1976). Another aspect is the relevance attributed to non-visual methods 
in the instruction process, under the conception that visual approaches are harder to 
teach and difficult for students to understand. Based on the ideas of Presmeg (2014) 
and Vale et al. (2018), we consider that visual solutions are understood as the way 
in which mathematical information is presented and/or processed in the initial 
approach or during problem-solving. They include the use of different representa-
tions of visual nature as an essential part of the process of reaching the solution (e.g. 
graphics, charts, figures, drawings). On the contrary, non-visual solutions or analyti-
cal solutions do not depend on visual representations as an essential part of achiev-
ing the solution, using other representations/procedures, such as numerical, 
algebraic and verbal ones (e.g. Presmeg, 2014; Vale et al., 2018).

Despite the fact that mathematical educators apparently recognize the potential 
of visual thinking, frequently this idea is not reflected in their practices, continuing 
to attribute a secondary role to this type of method. This should be faced as a con-
cern since visual abilities are not self-evident or innate, but created, developed and 
learned, through teaching (e.g. Hoffmann, 1998; Whitley, 2004). So, regardless of 
the reasons, if teachers do not include visual approaches in their practices, it is 
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unlikely that students are able to develop the visual-spatial component of their rea-
soning. Consequently, teacher training courses should include this discussion and 
awareness in the respective programs.

Other than this, not all students have the same preferences when it comes to 
learning mathematics. This is noticeable, for example, in the preference for the dif-
ferent themes in the curriculum, in the way they understand these themes and solve 
the respective tasks, privileging words, formulas or figures. Thus, teachers have to 
consider that students may have different learning styles and that they may also have 
different preferences in relation to mathematical communication, which has direct 
influence on the representations used. Emphasizing this perspective, psychologists 
and mathematical educators (e.g. Borromeo Ferri, 2012; Clements, 1982; Krutetskii, 
1976; Presmeg, 2014) propose a typology of problem-solving strategies used by 
students, according to their learning styles: (1) Visualizers or geometric - prefer to 
use visual solution methods (figures, diagrams, pictures) or pictorial-visual schemes, 
even when problems could more easily be solved with analytical tools; (2) 
Verbalizers, non-visual or analytical - prefer to use verbal-logic approaches or non- 
visual solution methods (algebraic, numeric, verbal representations), even with 
problems where it could be simpler to use a visual approach; and (3) Harmonic, 
mixed or integrated - have no specific preference for either logical-verbal or visual- 
pictorial thinking, and tend to combine analytical and visual methods, showing an 
integrated thinking style. These styles of thinking are of great importance and influ-
ence the way that each student processes information. However, it is extremely 
complex to apply this categorization and difficult to distinguish, in absolute terms, 
an individual tendency of a student for a certain type of thinking (Clements, 1982). 
Nonetheless, these issues have strong implications in the classroom practices and, 
in particular, in the teachers’ choices. Whether with the intention of meeting the 
diversity of learning styles, with the purpose of broadening the students’ repertoire 
of strategies, or showing the potential of certain mathematical tools, teachers should 
promote the use of analytical and visual approaches and, if possible, integrate them 
in order to construct rich understandings of mathematical concepts (Zazkis et al., 
1996). Despite the different learning styles, a teacher may find in a classroom, stu-
dents should experience the use of different approaches to the same problem, either 
of visual or non-visual nature. This is fundamental to the development of a more 
flexible reasoning and to make more conscious decisions about the choice of 
strategies.

Taking into account the ideas discussed in this section, it is important to establish 
a connection between visualization and mathematical challenge, clarifying our per-
spective. The use of MSTs that allow the application of either analytical or visual 
methods can be effective instructional resources to promote the abovementioned 
flexibility, but also enhance the level of mathematical challenge.

This connection can be translated into different situations. Challenging tasks are 
thought-provoking mathematical problems that aim to include all students in the 
mathematical activity (Sullivan & Mornane, 2014) and, in this sense, thinking of the 
students’ learning styles and preferences, these tasks generate an opportunity to 
extend their knowledge. A task can become more challenging, for example, when 
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students are required to use specific mathematical knowledge in the solution pro-
cess (e.g. concepts, procedures, representations, rules, or reasoning). For example, 
some may find the generation and use of a diagram in the solution challenging (e.g. 
Diezmann & English, 2001).

Visualization can elicit the development of intuition and the ability to see new 
relationships, producing a cut with mental fixations that enable creative thinking 
(Haylock, 1997), especially with students who are used to apply analytical methods. 
Krutetskii (1976) and Polya (1973) also point out that one of the characteristics of 
mathematically competent students is being able to look for a clear, simple, short, 
and therefore elegant, visual solution to a problem. This endeavour can be seen as a 
challenge. Reinforcing this discussion, we would like to draw attention to the 
importance of developing the students’ mathematical eye or geometrical eye (Fujita 
& Jones, 2002), referring to the use of mathematics as a lens to see and interpret 
things/elements that surround us. It means to see the unseen, interpret things in the 
world as a boundless opportunity, and discover the mathematics involved by seeing 
the world around us with new eyes. For most people, the mathematics that sur-
rounds them often remains “invisible” to their untrained or inattentive eye. That is 
why it’s necessary to educate the mathematical eye so that they can identify contexts 
and elements that can become more competent in tackling rich and challenging 
mathematical tasks (Vale & Barbosa, 2020). Also, certain tasks can be difficult to 
solve with analytical tools either because of their strong visual structure or because 
of the students’ lack of specific knowledge to solve them. In these cases, visualiza-
tion may help face the mathematical challenge, focusing on the visual cues of the 
task or using a dynamic solution to understand key mathematical relations, acting as 
a support for understanding (Duval, 1999; Presmeg, 2020).

Our perspective on the connection between visualization and challenging tasks is 
using MSTs that allow different methods (analytical or non-visual, visual or mixed) 
and invite students to go beyond the conventional knowledge or their personal style 
of thinking and push them towards visual approaches, which are normally out their 
comfort zone.

15.4  Visual Contexts and Challenge in Mathematics

The potential and limitations of visual reasoning are recognized as part of the math-
ematical culture of the classroom (e.g. Arcavi, 2003; Presmeg, 2014), as well as 
being particularly beneficial for all students, especially those with more difficulties 
(e.g. Gates, 2015; Vale et al., 2018). However, visual strategies that use different 
representations are not always fully used to solve a problem. They are usually over-
looked by the routine use of rules and procedures learned without meaning, which 
reduces teaching to a mechanized and monotonous process of numerical, symbolic 
and/or algorithmic manipulation, diminishing the challenge that is intended in a 
task. We agree with Roche and Clarke (2014) when they state that all students 
should experience challenging tasks, but sometimes teachers are reluctant to pose 
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these types of tasks. Often due to lack of knowledge, insecurity, the type of teaching 
and learning they practice, or because they do not have an available repertoire 
of tasks.

In the next sections, we start by presenting two examples of tasks that illustrate 
the importance of visualization and of visual skills. In the first example, we intend 
to highlight the potential of visual solutions in the context of problem-solving and 
in the second one the power of a visual approach in situations involving proof or 
mathematical validation of a statement. The following examples refer to tasks pro-
posed to our students, future elementary education teachers (6–12 years old), during 
their teacher training course. We focus on MSTs with different themes, cognitive 
demands and contexts, privileging visual features, as an alternative to more tradi-
tional approaches. These students were subjected to instruction that highlighted the 
potential of visual solutions, and contacting with different strategies of this nature.

We advocate, in teacher training, the use of MSTs, recurring to visual contexts, 
to show that the same problem can be solved in many different ways and that visu-
alization can be helpful, not only as a strategy per se but also as a means to help give 
meaning to analytical approaches, promoting the establishment of connections 
between different representations. These are thought-provoking mathematical prob-
lems that generate the opportunity for solvers to extend their knowledge, specifi-
cally related to visual representations and this is the challenge.

15.4.1  Example 1: Visual Solutions in Problem-Solving

Some problems may be complicated for individuals who are analytical in the solu-
tions they adopt, or, at least can be more laborious due to the number of calculations 
required. However, after the discovery of the visual relations involved, with some 
intuition or aha! experience to begin the solving process, these problems become 
much simpler, hence accessible to more students (Vale et  al., 2018). They can 
include conventional (i.e. learning-based) and unconventional (not learning-based 
that usually require insight) solutions (Leikin, 2016).

This first example, presented in Fig. 15.1 (Vale et al., 2020), illustrates the idea 
that looking for a visual solution can either be helpful to solve a problem for 

Fig. 15.1 Problem- solving task
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Fig. 15.2 Visual sequence of the steps to achieve the solution

students who don’t have certain concepts internalized or to propose some complex 
problems to more elementary levels.

The traditional way to solve this task is to use the Pythagoras Theorem and the 
formulas of the area of the circle and of the square. However, if we see the smaller 
square in another position, the solution is immediate and free of errors or unknowl-
edgeable formulas. According to Duval (1999), this transformation gives an insight 
into the solution of the problem since it is quickly understood and retained longer, 
than a sequence of words. Fig. 15.2 shows a visual sequence of steps to achieve 

the solution 
1

2
100 50� ��

�
�

�
�
� .

This is a simple, clear and elegant solution, or a dynamic solution (Krutetskii, 
1976; Presmeg, 2014). As Duval (1999) claims we reconfigured the figure, chang-
ing its position, and this kind of transformation does not require a mathematical 
justification because it is immediate and obvious. The insight of the solution mani-
fests itself in breaking with the conventional or established set of knowledge (e.g. 
Haylock, 1997; Presmeg, 2014), such as the use of formulas that can be induced by 
the word area. This is an insight-based problem that has a relatively simple solution 
which is difficult to discover until solution-relevant features are recognized 
(Weisberg, 2015, cited by Leikin, 2016).

We may say that the seeing strategy is not essential because more traditional 
analytical strategies could have been used, like the use of calculation methods/pro-
cedures or formulas (non-visual). However, this strategy simplifies the process of 
solving the problem and, at the same time, allows us to relate other knowledge and 
develop the flexibility that underlies divergent thinking, which is one of the charac-
teristics of creativity. Furthermore, seeing can serve to “unpack” the structure of a 
problem and direct the foundation for its solution (Diezmann & English, 2001).

15.4.2  Example 2: Visual Solutions in Proof

Nelson (1993), in his book Proofs without words, was able to draw attention to the 
importance of the visual approach in mathematical proofs, where he argues that “a 
picture or a diagram helps the solver see why a particular statement may be true, and 
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also see how one might begin to go about proving it true” (p. vi). However, some 
mathematicians consider such visual arguments to be of poor value. On the con-
trary, there are mathematicians who defend the potential of visualization, among 
them Polya, when he says that drawing a figure is a powerful strategy to solve a 
problem, adding to the perspectives of Einstein and Poincaré on the importance of 
using visual intuitions in their work. In the same way, Gardner (1973, cited by 
Nelson, 1993) refers to the power of visualization when faced with a boring test, it 
can often be overcome by a simpler and more pleasant analogue geometric proof 
that allows the truth of the statement to be understood at first glance. Arcavi (2003) 
goes further when he says that visual representations are legitimate elements of 
mathematical proofs.

According to Nelson (1993), figures or diagrams can help to see why a certain 
statement can be true and, at the same time, see how to start proving its veracity. 
Often the use of algebra can help guide this process, but the emphasis is clearly on 
providing visual cues to the observer to stimulate mathematical thinking.

The arguments must be rigorous as they can easily lead to misinterpretations and, 
therefore, lead to wrong inferences. In any case, the importance of visual represen-
tations is recognized as a support in the discovery of new results and in the produc-
tion of more formal tests, and above all for its role in the teaching and learning of 
mathematics (e.g. Presmeg, 2014).

The second example, shown in Fig. 15.3 (Vale, 2017), illustrates that many math-
ematical statements can be simply proved by translating the numeric information of 
the statement into a visual interpretation and discover the relationships and proper-
ties that can be established in that figure.

This is an usual example when working with numerical sequences, in particular 
the sum of geometric progressions. The traditional way to solve this task is to use a 
formula to calculate the sum of n terms of that geometric progression. It is a task 
that involves numerical manipulation and the use of formulas without much mean-
ing for most students. But translating the task into a geometric model, the problem 
acquires another meaning, more challenging, allowing to visualize the infinite sum 
of the sequence. It starts from a square of unitary area (Fig. 15.4) from which we 
successively obtain figures with half the area of the previous figure and so on, until 
physically possible to divide (which allows to have the notion of pattern, generaliza-
tion, infinity, infinite sum, limit, convergence). That is, the total area of the different 
squares and rectangles is the same as the sum of all terms of the progression. Since 
this area is equal to the area of the starting square, the sum of the progression 
terms is 1.

Prove that 1
2�

1
4

1
8

1
116� � �+ + + + =

Fig. 15.3 Proof task

15 Visualization: A Pathway to Mathematical Challenging Tasks



294

Fig. 15.4 Visual proof

This is a problem that is not normally presented to elementary school students 
(6–12 years old) as they do not yet have the necessary knowledge to prove the state-
ment analytically. But the solution presented in Fig.  15.4 allows a visual under-
standing of the underlying meaning in the statement, as they build the figures, based 
on the concept of fraction in its part-whole interpretation and the intuitive notion of 
limit. Furthermore, students with more advanced mathematics knowledge quickly 
and simply understand the meaning of the statement.

15.4.3  Examples in Pre-service Teacher Training

The following examples involve diversified mathematical contexts and, in addition, 
illustrate the use of the strategy seeing. The tasks elicit multiple solutions, promot-
ing some of the dimensions of creativity, apart from mathematical knowledge, and 
have the potential to promote visual strategies and eventually provide an aha! expe-
rience. The pre-service teachers were challenged to solve the tasks in as many dif-
ferent ways as they could, being encouraged to present several solutions.

The visual approach to these tasks was unfamiliar to this public, due to the lack 
of previous experience and visual literacy. In this sense, in spite of frequently gen-
erating simpler and elegant solutions, visual methods are challenging for these stu-
dents, which implies that their training programs contemplate this perspective.
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15.4.4  Symmetries

Geometric transformations, and in particular symmetries, are one of the most 
important applications of mathematics in daily life and nature, allowing the estab-
lishment of rich connections. It enables students to explore/create patterns, solve 
problems and think spatially. However, students generally show a low level of learn-
ing when geometric transformations are concerned. This is a theme where the spa-
tial and visual abilities of the solver are essential to attack specific problems and to 
recognize the different transformations in everyday situations.

Our students, future teachers, were exposed to the teaching of geometric trans-
formations (translations, rotations, reflections and glide reflections), analyzing 
examples of applications in mathematics and other areas.

This is a purely visual task, where the solution results from the drawing of differ-
ent shapes of A, which we propose in Fig. 15.5 (Barbosa & Vale, 2019). It is chal-
lenging for the solver: it allows to identify the students’ knowledge of symmetries 
but also, being a multiple solution tasks, with more than one correct answer, enables 
students’ creativity.

Figure 15.6 illustrates some of the productions presented by the students. The 
solutions to this task are, by nature, visual ones, because the task was proposed in a 
purely visual context. In the first question, the students had no difficulty to reach the 
solution, however, some presented only one possibility.

However, in the second question, when asked to build a figure with rotation sym-
metry, less than a quarter of the students succeeded. Figure 15.7 shows three correct 
solutions (the first three images) and two incorrect solutions (the last two images).

It is important that teachers promote these kind of abilities in students for the 
duration of their compulsory education, mainly for the non-visualizers, because a 
mathematics course for higher levels may not be enough to accomplish these goals.

Present two different solutions for each case. 

Image A has five squares. 

A     B 

Add to image A the four isolated squares, observed in image B, so 
that the resulting figure has: 
1. reflectional symmetry. 
2. rotational symmetry. 

Fig. 15.5 Task involving symmetries
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Fig. 15.6 Some solutions with reflectional symmetry

Fig. 15.7 Some answers for the rotational symmetry question

15.4.5  The Vasarely Rhombus

The Vasarely Rhombus task (Fig. 15.8) has a geometrical nature and the aim is to 
find the area of the shape.

This geometric problem (Vale et al., 2016) confirmed our expectations, that the 
students would present analytical strategies at first. But, as they were asked to solve 
the task using more than one process, other categories of solutions appeared. This 
allowed to identify fluency and flexibility. Figure 15.9 shows examples illustrating 
those categories.

The first solution is the most usual in this type of problem. As you ask for the 
area, students start immediately by writing the formula for the area of the rhombus 
or the triangle. Thus, this solution is purely analytical, that is, a learning-based solu-
tion (Leikin, 2016). The other two following solutions reveal the use of similar 
strategies and are considered mixed solutions. Despite using calculations, they are 
based on reasoning resulting from the properties of the figure and the concept of 
area measurement. These were the most common solutions used by the students. 
The last solution illustrates the application of a simpler and intuitive strategy, result-
ing from seeing the relationships between the different shapes identified in the 
rhombus and the square, getting a dynamic solution (Presmeg, 2014) or a reconfigu-
ration of parts of the figure (Duval, 1999). This was the most original solution. In 
our opinion, this unique solution was original because it differs from the expected 
outcome for this type of task. Anyway, this solution was simpler since, merely by 
observation, we can conclude that the area of the rhombus is 1/3 of the area of 
the square.
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What is the area of the rhombus, if M1, M2, M3, M4 are middle points
M1M3

M2

M4

Of each side of the square and the square has 1 unit of area?
Find out more than one process to get to the solution. 

Fig. 15.8 The Vasarely Rhombus task
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Fig. 15.9 Some solutions to this task

This problem, in addition to enhancing the use of different strategies, allows one 
to approach various contents (e.g. areas, relationships between figures, rational 
numbers, Pythagoras Theorem), promoting the establishment of connections 
between mathematical concepts, which can be further explored by the teacher. The 
cognitive level of the task can increase if we have the same situation without the 
square grid.

15.4.6  Rational Numbers

The following example is a word problem involving rational numbers. With this 
example, we see the adequacy and potential of visual solutions even in non-visual 
contexts. Usually, it is proposed when students are learning concepts and proce-
dures related to this topic, like the different interpretations of fractions or the opera-
tions with fractions (Fig. 15.10).

Traditionally word problems with fractions are solved using analytical 
approaches, but in this example, the whole is an unknown quantity, which normally 
makes this problem more complex. This can sustain the poor results obtained by 
some pre-service teachers who chose to solve the task using numerical tools and 
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computation (CHP, 2011; Vale et al., 2018). However, as these students had previ-
ous instruction about the use of visual strategies, such as the bar model, the majority 
used this approach.

The most common analytical solution was to start by determining the part of 
the whole that remained after taking away the part of the students that use the 

bus,1
1

3

2

3
� � . Calculating the part of the students that go to school by car, we 

have 1

4

2

3

2

12

1

6
� � � . As the part of the students that go by car is 1

4
, or 90 students, 

the whole will be 6 × 90 = 540. We conclude that the school has 540 students. For 
many students, this numerical manipulation is not always understood, even for 
pre- service teachers, as it involves conceptual and procedural knowledge to solve 
the task.

The use of a visual model can be helpful in a first stage of learning and dealing 
with fractions or to make sense of analytical procedures. One approach that fits this 
criterium is the bar/rectangular model. Solving the same task with this strategy, 
some students started by using the bar to represent the unknown quantity, and then 
the needed data can be obtained using successive bars (Fig. 15.11).

In alternative to the previous solution, some students chose to use only one bar, 
concentrating all the needed information in one representation (Fig. 15.12):

Students go to school using different means of transportation. One 
third of the students go by bus. One quarter of the remaining students 
goes by car. The others take a bike or walk to school. Knowing that 
90 students go to school by car, how many students attend this school? 

Fig. 15.10 Task involving rational numbers

Fig. 15.11 Visual solution of the task
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Fig. 15.12 Visual solution of the task

As can be seen by the examples, the bar model may be sufficient to solve the 
problem or to help clarify some misunderstandings in the interpretation of the task. 
The students may use different and complementary representations to make sense 
of the calculations or vice versa. This model is especially valued by underachieving 
or intermediate-level students, but we also must say that it can be helpful in solving 
more complex problems and in the understanding of fractions related concepts.

15.4.7  Paper Folding: The Cube

Spatial visualization is viewed as an essential part of geometric thought described 
as building and manipulating mental representations of two and three-dimensional 
objects and perceiving an object from different perspectives (NCTM, 2014) and 
includes the ability to manipulate the information presented in a visual, diagram-
matic or symbolic form (Diezmann & Watters, 2000). Paper folding is a useful 
teaching tool to enable those skills in students and a way to promote their spatial 
thinking as an impact on the understanding of geometry (Boakes, 2009). It associ-
ates itself very naturally with visualization and geometric reasoning, making it pos-
sible to approach different mathematical themes, as well as a diversity of transversal 
skills (e.g. communication, problem-solving, proof).

The actions of folding applied to the paper allow it to be transformed into differ-
ent shapes, either two or three-dimensional, opening the opportunity to investigate 
and discover relationships of different nature. In this way, paper folding can be a 
dynamic, creative and challenging strategy to approach several concepts in the 
mathematics classroom, facilitating visualization and problem-solving (Vale et al., 
2020). Paper folding involves students cognitively in the challenges it provides and 
physically, because it requires auditory abilities and visual stimuli, and it is through 
these actions that it also involves spatial skills, which promotes the construction and 
discussion of meanings and mathematical ideas.

The example presented in Fig. 15.13 (Vale et al., 2020), refers to a task proposed 
to our students. This task had two main goals, to find the optimal solution and use 
spatial abilities to transform a 2D figure into a 3D figure.

This problem involves geometric and spatial reasoning, since the students have 
to construct a net (a two-dimensional figure that can be folded into a three- 
dimensional object) of a cube. Many nets can be built on a square sheet, but only 
one fits the conditions. It is a problem with some complexity for the elementary 
level. The students mostly began by exploring the most obvious possibilities, in 
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Use a square sheet of paper to draw the net of a cube with the 
maximum volume. Then construct the cube by folding that net. 

Fig. 15.13 Paper folding cube

Fig. 15.14 Some incorrect solutions

which the segments representing the edges in the planning were parallel to the sides 
of the square or took advantage of the diagonal of the square. Despite having made 
different trials to reach a solution, none of them led to the expected outcome, 
because they did not achieve the highest volume (Fig. 15.14).

After many net trials, calculations and group discussions, the students discovered 
the correct answer. Figure 15.15 shows one of the analytical productions where they 
compared the volume of two nets.

The students made the design of the possible traditional nets. In fact, it is neces-
sary to have mathematical knowledge to apply to this situation, and also intuition 
linked to the visualization of the different nets of a cube. In addition, exploration 
required divergent thinking to imagine and admit a completely different net from 
the classical approaches. Another way to approach it was the use of trial and error, 
doing the folds on the square paper and coming up with more positive results. After 
discovering the right net, the bigger challenge was to fold the paper to get the cube, 
without cutting. They did many attempts, but not all of them got the solution by 
themselves (Fig. 15.16).

This is a task with some complexity to use at an elementary level, but students 
were challenged and engaged, and the discussions that emerged at the end allowed 
a better understanding of the importance of the use of different approaches to solve 
a mathematical situation.

15.4.8  The Cup

Consider the following task (Fig. 15.17):
This task (Vale et al., 2016) can motivate several solutions involving the proper-

ties of the observed figures. Students who attempt a solution using formulas applied 
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Fig. 15.15 Analytical solutions to determine the volume

Fig. 15.16 Optimal solution and paper folding cube

to different parts of the figure may find some difficulty to solve it. The students who 
attempted a method using formulas applied to different parts of the figure consid-
ered that this is a difficult problem, especially if the square is not shown. The most 
common numerical solution was in Fig. 15.18.

There are only calculations, looking for the best way to use the formula of the 
area of the circles. We can say that this solution is blind, that is, there is no attempt 
to see any relationship between the upper parts and the lower parts of the figure. Yet, 
there are some solutions that we called mixed (Fig. 15.19) because, although they 
are numerical, students can see beyond the given figure, even adding some geomet-
ric construction.

However, the challenge for the solvers was to get a visual solution, but it did not 
appear. If the students have more visual abilities, they can discover a dynamic visual 
process, seeing transformations of the initial figure (see the arrows), and doing a 
reconfiguration of parts of the figure (Fig. 15.19). We can mentally slide the two 
parts that make up the “foot” of the “cup” to the top, forming a rectangle. It follows 
the trivial conclusion that the “cup” has an area equal to half of the square, i.e., 1/2 
unit area (the first of Fig. 15.19). Another dynamic solution could be the last one 
shown in Fig. 15.19, in which, after drawing the diagonals of the square, we easily 
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Fig. 15.17 The cup task
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Fig. 15.18 The common numerical solution

see that the area of the “cup” corresponds to 2/4 of the square area, i.e., half of the 
square. In each case, the visual elements convey the thinking process (Fig. 15.20).

What makes such a solution creative and also simpler, being a challenge for these 
students, as some authors (Haylock, 1997; Leikin, 2016; Presmeg, 2014) suggest, is 
the fact of being necessary to break the mental set that suggests the use of formulas 
or conventional/learning-based solutions. It is necessary to use divergent thinking in 
looking for other ways to solve the task. This can happen if instruction push learners 
to find new ways to solve some tasks, where thinking by analogy can be a helpful 
strategy to attack new problems (Polya, 1973).

15.5  Concluding Remarks

In this chapter, we intended to discuss and illustrate some ideas concerning the use 
of visualization as a meaningful pathway to pose and solve challenging tasks in 
mathematics education. The choice and use of tasks are nuclear to effective teaching 
and learning of mathematics since they are the driving force that triggers mathemat-
ical activity. The importance of the teachers’ role in this matter is undeniable, but it 
goes far beyond task selection. Students must be motivated and engaged as solvers 
to be successful, being incited to think, discuss, reflect and overall be challenged.

We believe that multiple solution tasks give students the opportunity to apply 
their thinking styles, whatever their nature, and also to come into contact with a 
variety of strategies that will contribute to the expansion of their repertoire. In this 
framework, and according to our own experience with pre-service teachers, we con-
sider that visualization can have great potential, either as the context in which the 
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Fig. 15.19 A mixed solution

Fig. 15.20 Two visual solutions

task is presented or as a vehicle to reach a solution. Visual strategies are not new in 
the literature but usually, they are deprecated over analytical ones. This situation 
does not benefit the students since visual approaches can be an excellent comple-
ment to analytical thinking or can even help generate simpler and more meaningful 
solutions. The visual approach, being transversal, mediated by tasks with multiple 
solutions, contributes not only to a better understanding of mathematics and to the 
development of students’ creativity, but above all to show a new perspective of 
mathematics. This means that students may overcome the idea of seeing mathemat-
ics as an isolated collection of themes, made up of a set of formulas and techniques 
that they have to memorize and master, when, in fact, they can have the opportunity 
to see it as a set of meaningful great ideas and connections.

Some studies and projects that we have been carrying out with pre-service teach-
ers of elementary education have generated results that we consider relevant in the 
context of multiple solutions tasks, with a close connection to visualization. There 
are several aspects that stand out, namely the fact that, through these tasks, we can 
invoke a diversity of mathematical themes; establish connections between visual 
and analytical processes, as well as between representations; allow a more fluent, 
flexible and even original reasoning, which fosters creativity. Our intention in devel-
oping this type of work with pre-service teachers is that they understand the poten-
tial of seeing in order to develop this ability with their future students. We have to 
consider the background of the candidates to this teacher training course: not every-
one has the same solid mathematical knowledge; the majority of them are non- 
visualizers due to the predominance of analytical methods in their previous 

15 Visualization: A Pathway to Mathematical Challenging Tasks



304

experiences, which makes them unaware of the utility and power of visual 
approaches, undermining their visual literacy. Many of the tasks presented in this 
chapter are not necessarily high-level and do not involve complex mathematical 
concepts, but they are challenging from our perspective. The challenge rises from 
the fact that we use multiple solution tasks, chosen with the intent of allowing the 
application of analytical and visual methods, that must be solved in different ways. 
So, our interest was that solvers were challenged by discovering a visual solution.

For the non-visualizers this request may trigger the need to discover a strategy of 
a different nature, making them face the challenge of seeing the visual cues; and the 
same happens with the visualizers that may need to use non visual methods, which 
brings the opportunity to connect mathematical ideas in a rich and meaningful way. 
Subsequently, challenge can be faced as a situation that enhances the learning pro-
cess, experiencing something new and unforeseen and trying to come to grips with 
it. With regard to visualization and visual thinking in particular, being less valued in 
mathematics classes and even in textbooks, it’s pertinent to provoke the use of this 
way of reasoning, enhancing the level of mathematical challenge and flexibility in 
problem-solving.

We consider this didactical approach an asset, given the positive results of previ-
ous research projects and, for this reason, we include it in these pre-service teachers 
training programs, believing that it can contribute to both visualizers and non- 
visualizers to better understand certain mathematical themes and be challenged to 
find solutions out of their comfort zone. To conclude, in this chapter, we chose to 
present examples in different contexts, dealing with a wide range of themes and 
abilities, in detriment of an in-depth discussion of the results obtained, in order to 
focus on the potentialities of the tasks and contribute to broaden the repertoire of 
tasks that may help teachers challenge students through this perspective.
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Chapter 16
Towards a Socio-material Reframing 
of Mathematically Challenging Tasks

Nathalie Sinclair and Francesca Ferrara

16.1  Introduction

Technology-based tasks in open, expressive environments present (at least) two sig-
nificant challenges. The first concerns the relation between these tasks and their 
paper-and-pencil counterparts. The second concerns the fact that these tasks are not 
just mathematical tasks, but digital-mathematical tasks that offer technical as well 
as conceptual challenges—in other words, task solvers must mobilise tool fluency 
as well as mathematical fluency. In both cases, the mathematics at stake finds itself 
being modulated by its imbrication with the digital technology. This will be our 
starting point in addressing the theme of this book. We will explore challenging 
tasks, but pay particular attention to the way in which the digital technology context 
of these tasks opens up new conceptualisations of mathematical challenges. In par-
ticular, we propose shifting the constructivist underpinnings that we find in the cur-
rent conceptualisation of mathematical challenge towards an inclusive materialist 
(de Freitas & Sinclair, 2014) one. Although we will exemplify this shift through a 
multi-touch application geared towards numbers and operations, there will be sev-
eral aspects of the distributed, material context we study that will be relevant to 
other forms of digital technologies.

Indeed, the inclusive materialist approach shifts attention away from the doer 
and focuses on the doing, recognising the role of material agency in the mathemat-
ics classroom. Tools and other non-human entities are seen as partaking in the math-
ematical activity—shaping it and affecting it—and not just passive mediators to the 
intentional, intact subject. Constructivism, in contrast, assumes this intentional, 
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intact subject as the locus of knowledge, who comes to know in an autonomous way 
(Radford, 2008). For inclusive materialism, knowledge is distributed across the sys-
tem of human and non-human (tools, desks, pencils, etc.) entities. Further, the sub-
ject is not autonomous, but emerges (as motivated or knowing) from the system. 
The decentring of human agency means that we will understand challenge to be 
neither a subjective determination of individual ability or knowledge nor a property 
of a given task. Therefore, instead of thinking of challenge in individual terms—dif-
fering from one individual to another—and as independent of activity, we will 
rethink challenge as a social and collective endeavour.

We begin by providing an overview of the recent work on technology-based 
tasks in mathematics education. We then examine how this literature relates to the 
concept of mathematical challenge as articulated in Leikin (2014). This will allow 
us to formulate specific dimensions of challenge that become newly available in 
particular digital technology environments. We will then illustrate these challenging 
tasks by drawing on a grade 1 classroom experiment in Italy involving the use of the 
multi-touch application TouchCounts (Jackiw & Sinclair, 2014). The choice of a 
single digital technology to exemplify our new conceptualisations of challenge 
allows us to pay adequate attention to the particularities of the mathematical con-
cepts at play, as well as to the impact of the digital technology on the teaching and 
learning environment. That said, we will make connections between the examples 
we offer with TouchCounts (TC) to other well-known digital technologies.

16.2  Tasks in Digital Technology Environments

In their edited book, Digital Technologies in Designing Mathematics Education 
Tasks, Leung and Baccaglini-Frank (2017) build on the growing research on task 
design in mathematics education. While none of the chapters refers specifically to 
supporting mathematical challenge, several chapters discuss considerations that are 
relevant to mathematical challenge. For example, Leung (2017) discusses the 
importance of the feedback offered by digital technology, and how it affects the 
learning potential of a task. Feedback is relevant to mathematical challenges because 
it can affect student-task interactions, as well as student-teacher ones, potentially 
changing the difficulty level of the task.

According to Mackrell et al. (2013), there are three distinctive kinds of feedback: 
evaluation feedback is related to the completion of a task or part of a task; strategy 
feedback aims to support or amend student approaches while she is engaged in a 
task; and, direct manipulation feedback, “is the response of the environment to stu-
dent action” (p.  83). In TC, write Sinclair and Zazkis (2017), feedback mainly 
occurs through direct manipulation, which enables learners to observe the conse-
quences of their actions and adjust them in order to solve the given task success-
fully. This means that the teacher is no longer the authority that determines whether 
or not the task has been correctly solved, thereby altering students’ agency.
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Sinclair and Zazkis discuss tasks in TC that involve different kinds of questions 
and forms of interaction than those typically found in non-digital settings. For 
instance, since the direct manipulation feedback comes in both visual, aural and 
tactile forms, students are invited into a multiplicity of forms of reasoning, which is 
typical in many different digital technology environments (Leung, 2017), and this 
alters the way mathematical ideas can be encountered. In TC, placing a finger on the 
screen produces a tactile feedback of the screen on the finger, a visual object, a 
number name spoken aloud (one) and a symbolic numeral (‘1’). This tactile, visual, 
auditory and symbolic multiplicity can make some tasks easier (a 3-year-old child 
can press a finger on the screen without knowing how to count) and some harder 
(connecting the symbol with the visual object). In other words, there are various 
types of challenge involved, not all of which work in the same direction.

Given that our discussion will draw on an episode in which children are engaged 
with the Operating World of TC (which is one of the two worlds, the other being the 
more ordinally focused Enumerating World), we first provide a brief overview of it.1 
In this world, ‘herds’ can be created by placing one or more fingers on the screen 
simultaneously. Herds are cardinal quantities that are labelled with their associated 
numerals (Fig. 16.1a), which are spoken aloud. These herds can be operated on by 
means of specific screen-contact gestures. Pressing a herd ‘highlights’ its circum-
ference in fuchsia. Pinching two herds together (Fig. 16.1b) produces a new herd 
that is the sum of the quantities, whose discs retain the colour of the original herds 
(Fig. 16.1c). By doing the opposite of the pinching gesture, a herd can be partitioned 
into two—the size of the part removed from the initial herd depending on how far 
the fingers separate out from each other on the screen.

We now shift to describe one of the tasks proposed in Sinclair and Zazkis (2017), 
which refers to the use of the Operating World. “Count by 3s” resembles the com-
mon “skip-counting” one found in elementary classrooms where it is usually done 
orally, with children choral chanting the number names. With TC, the task itself 
changes, as do the solution strategies and the opportunity for feedback. There are at 
least three ways of accomplishing this task in the Operating World. A child could 
take an ordinal approach by placing a finger on the screen and holding it there, then 

1 Please see the video on this webpage to consider how TouchCounts works: http://touchcounts.ca/
about.html.

Fig. 16.1 (a) Two herds of 4 and 3; (b) pinching the two herds together; (c) the new herd of 7
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use another finger to tap sequentially until three discs are visible, then let go. This 
would produce a herd of three, with the accompanying audible “three”. In a similar 
way, the child could produce a 6, 9, 12, etc. A child might also use a cardinal 
approach by pressing three fingers simultaneously on the screen, which will make a 
herd of three, along with an audible “three”. Then a child could make a herd of six 
by tapping six fingers simultaneously, along with an audible “six” and so on, pro-
ducing herds of 9, 12, etc.2 Another method would be an additive approach, which 
would begin the same way as the cardinal approach, with the first herd of three, then 
create a second herd of three and join it to the first herd so as to obtain a herd of six; 
then, create another herd of three, join it with the herd of six, so as to obtain a herd 
of nine, and so on. In the cardinal and ordinal approaches, TC would have uttered 
“three, six, nine, twelve, …” and in the additive approach “three, three, six, three, 
nine, three, twelve, …”.

Visually, in the first case, there would be several herds on the screen, of 3, 6, 9 
12, etc., while in the second case, there would be only one herd on the screen. 
Tactilely, the second case would require repeating gestures of three fingers simulta-
neously touching the screen and then pinching, which might highlight skip- counting 
as a constant additive action (Sinclair & Heyd-Metzuyanim, 2014). Of significance 
is the multiple strategies that this task allows, as well as the multiple forms of non- 
evaluative feedback.

There are two important aspects of TC that differentiate it from other environ-
ments in terms of its epistemic and pragmatic values, as defined in Artigue (2002). 
First, it takes care of the computation so that children can attend to the result of their 
successive repeated addition. It is important to note that in doing the calculation, TC 
offers both symbolic and aural results. This distinguishes the task from what could 
be done on a calculator, which would also take care of the computation because the 
calculator does not announce the sums out loud. The second distinguishing feature 
is the gestural interface for performing the action(s). This gesture, which has both 
pragmatic and epistemic functions, draws learners’ attention to the action as an add-
ing operation (while the ‘taking apart’ gesture draws learners’ attention to the sub-
traction operation). Finally, as already noted, the feedback that is offered is 
immediate and is directly related to one’s actions, and so can guide further actions, 
especially if a goal has not been reached.

16.3  Digital Technology-Inflected Mathematical Challenge

Leikin (2014) has provided four conditions for a task to be considered a mathemati-
cal challenge: “First, the person who performs the task has to be motivated to find a 
solution. Second, the person has to have no readily available procedures for finding 

2 Placing more than 10 fingers simultaneously would require the help of another classmate, 
of course.
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a solution. Third, the person has to make an attempt and persist to reach a solution. 
Fourth, the task or a situation has several solving approaches” (p. 62). In the para-
graphs that follow, we will consider each of these conditions, in turn, beginning 
with the last one.

The fourth condition fits well within tasks that make a “strong use of technol-
ogy”, as described above. However, we might ask what accounts for a “different 
solving approach” for tasks that take their meaning from the technology having 
several solving approaches. In the TC example given of Counting by 3s, there are 
certainly different solving approaches, depending on whether one produces the 
skip-counting numbers directly or additively. Additionally, there are also differ-
ences that concern the actions performed, for example, sequential touches, simulta-
neous touches or the use of the pinching gesture. In other words, the condition 
“several solving approaches” will be inflected by the broader body-material context 
of how the multiple potential actions of the students coordinate with the multiple 
structures of the digital technology—as evidenced in the literature on the embodied 
and distributed nature of tool use (Nemirovsky et al., 2013; Sinclair & de Freitas, 
2019; Ferrara & Ferrari, 2020).

The third condition resonates at least in part with the use of digital technology 
environments that offer feedback—particularly strategy or direct manipulation 
feedback, which are forms of feedback that respond to students’ approaches and 
actions and therefore have the potential to lead to changes or adjustments in these 
actions. Here we are particularly interested in the intensification of student agency 
in digital technology environments where the feedback loop is not dependent on a 
teacher or textbook’s authority, and where mistakes can be made without incurring 
teacher judgement (see Herbel-Eisenmann & Wagner, 2010). This third condition 
also concerns the student’s opportunity to “make an attempt”, which we also see as 
being linked to the action-oriented nature of a digital technology, where you can 
often ‘begin the conversation’ by doing something and then receiving a response 
(see Jackiw & Sinclair, 2010). Hence, we will take this third condition to refer spe-
cifically to the technology-inflected mathematical challenge’s performative and 
reactive potential.

The second condition is useful in distinguishing a mathematical challenge from 
an exercise, the latter which usually requires the use of a known procedure. However, 
given both the epistemic and pragmatic values at play in a digital technology envi-
ronment, “finding a solution” may involve engaging both the technical and concep-
tual aspects of the task, which are often closely intertwined.

With respect to the first condition, it seems to us closely related to the third one, 
since it involves affective considerations. If the digital technology in question offers 
new objects on which to act and with which to interact, we see an important affec-
tive dimension that is less about motivating students through new, shiny, animated 
devices, and more about increasing and diversifying the affective relations at play. 
These relations may involve feelings of connectedness (from having made the 
objects with one’s own fingers), togetherness (Sinclair & Ferrara, 2021), belonging 
(Turkle, 2011), power (Jackiw, 2006), and sympathy (de Freitas et al., 2019).
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In the next section, we wish to exemplify our inclusive materialist conceptualisa-
tion of mathematical challenges. This new conceptualisation will not assume that 
students are autonomous and intact cognizing subjects, as per the constructivist 
point of view. It will also not ground mathematical knowledge solely in socio- 
cultural practices. Instead, it seems to reframe Leikin’s conditions of mathematical 
challenge in terms of a distributed, material ontological framing.

16.4  Mathematical Challenging Tasks Using TouchCounts

We have chosen an episode from a teaching experiment that was conducted in a 
Northern Italian grade 1 classroom where the second author (R) has been working 
for many years in collaboration with the classroom teacher. There was also a Masters 
student (MDS) in the classroom who video-recorded the whole experiment, which 
she then analysed as part of her Masters degree thesis. We focus on days 8 and 9 of 
the teaching experiment, which lasted 10 days in total, and was designed to experi-
ment with the use of TC as an environment to develop learners’ ordinal and cardinal 
conceptions of number. We have chosen this episode because it allows us to speak 
relatively succinctly about the four conditions offered in Leikin (2014).

During the fifth to seventh days, the students had worked in the Operating World, 
adding different numbers and reasoning about the result along the way while return-
ing to the original numbers through using addition (pinching herds together) and 
subtraction (separating a herd into two parts). In the second part of the eighth day, 
they began to reason about multiplication (in terms of repeated addition) by produc-
ing multiple herds of the same size and pinching them together. This continued on 
the ninth day and extended to division by integers and the concept of the remainder. 
We now shift attention just to explore and discuss the tasks that emerged during the 
second part of the eighth day, and those involving division on the ninth day.

16.4.1  The Initial Task: Distributing Candies 
Amongst Children

The class was divided into three groups, each consisting of eight children. Each 
group was seated together around a table, with an iPad in the middle. At the end of 
the day 8 activity, the researcher asked each group to create one herd of 12 and one 
herd of 18, using whatever combinations of numbers they wanted. We focus on the 
group composed of Alessandro, Alice, Caterina, Linda, Marco, Matilde, Pietro and 
Sofia, which was video-recorded. Pietro soon proposed to his classmates that half of 
the group make the herd of 12 and that the other half make the herd of 18. The first 
half thus worked together and produced the herd of 12 using herds of 4, 5, 2 and 1. 
Then, the other half of the group produced a herd of 18 using three 5s, 1 and 2 
(Fig. 16.2).
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Fig. 16.2 The two herds of 12 and 18 produced by Alessandro, Alice, Caterina, Linda, Marco, 
Matilde, Pietro and Sofia

Once herds of 12 and 18 were created, the researcher posed the following task:

R:   Suppose that these (pointing to the 12) are 12 pretend candies instead, 
rather than discs and that these (pointing to the 18) are 18 candies. Pretend, 
we are imagining that, pretend that they are 18 candies. There are six chil-
dren3. Can these six children have the same number of candies?

Most of the children responded by saying “no”, but Pietro said “yes”. The 
researcher repeated the question. This time Alice said “no” and Pietro again said 
“yes”. The researcher asked the children to explain why. Pietro proposed that one 
child could start taking one candy, the next child could take the next candy, etc., 
until they were finished, and then they could count the number of candies each child 
had and see whether they were equal. Pietro first stood up to state this, then he got 
close to the iPad and pointed to the herd of 18, so the researcher asked whether the 
children could use TC to test Pietro’s idea.

We pause here to consider the task in relation to mathematical challenge. In 
terms of the first condition, which states that “the person who performs the task has 
to be motivated to find a solution”, it is clear that the condition would have to apply 
to a collective rather than to an individual. Of course, there were individual responses 
given to the researcher’s question, notably by Alice and Pietro, but we suggest that 
the condition under which a solution is sought arises from the collective uncertainty 
expressed. Further, by suggesting that the students test Pietro’s hypothesis on the 
iPad, the condition of finding a solution is distributed across the collective and the 
tool. In other words, any attribution of motivation must include the tool’s agency in 
determining a solution. As alluded to in the previous section, we would therefore 

3 The children had previously worked on a task that involved 6 children, which the researcher 
reminded them of.
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not rely on the individual emotional state (of motivation), as typical in a constructiv-
ist theoretical framing, but turn attention to the motivation arising from the collec-
tive students-tool-mathematics potential for mathematical action. This point of 
view aligns more with a socio-cultural perspective, in which autonomy is an out-
come rather than a pre-requisite for learning. However, we extend the autonomy to 
include the non-human material world too because TC does not simply mediate the 
mathematics—it actually constitutes it. The autonomy does not belong exclusively 
to the learner, nor to the tool, but to the learner-tool in action.

In terms of Leikin’s second condition, which is that the children do not have a 
procedure for solving the task, it is obviously the case. Not only have they not yet 
encountered the relevant concepts, the children actually disagree about the solution. 
However, it is important to note that the children also have access to TC, as well as 
to the researcher, and in this sense, the socio-material does indeed offer readily 
available actions for finding a solution. As with our discussion about the first condi-
tion, we attend to the socio-cultural source of knowledge (in this case, with both the 
teacher and the tool), but we further stress the material agency of the system. In our 
socio-material perspective, the ontological assumption shifts from a socio-cultural 
one, in which knowledge is historically generated, to a processual one, in which 
knowledge is historically and materially generated (Table 16.1).

We continue our analysis of the episode now, which will allow us to address the 
third and fourth conditions of a mathematical challenge. The children began by re- 
enacting Pietro’s idea, with each imagined child taking turns being given a candy by 
Pietro, until the bag is empty. They realise that it works.

Pietro:  How many do you have?
Cc:  Three.
R:  So?
Alice & Pietro:  It works.
R:   Can we see it from there (pointing to the iPad) that six children 

can have each, how many candies?
Pietro:  Yes.
Alice:  No.
MDS:  How many?
Pietro:  Three each.
MDS:  Could you see it there, on the iPad?
Pietro:  No (the children are all moving closer to the iPad; Fig. 16.3a).
R:   Do we find a way to see that six children can have three can-

dies each?
Cc:  Yes (getting closer and closer; Fig. 16.3b).

Table 16.1 Reframing Leikin’s first two conditions

Leikin’s constructivist conditions Reframed socio-material conditions

1. The person who performs the task has 
to be motivated to find a solution

Motivation arises from a human/non-human system 
as a result of finding a solution

2. The person has to have no readily 
available procedures for finding a solution

Procedures for finding the solution are not dictated 
by the socio-material system, but potential within it

N. Sinclair and F. Ferrara



315

Fig. 16.3 (a) Children gathered around the iPad; (b) beginning to act on 18

Fig. 16.4 (a) Taking away a herd of 3; (b) two herds of 15 and 3

Fig. 16.5 (a) Alessandro taking away 3; (b) Matilde taking away 3; (c) resulting herds of 
12, 3 and 3

Pietro explained that they have to start taking three away from the herd of 18 with 
their fingers. While Pietro pressed on the herd of 18, which became fuchsia- 
highlighted, Alessandro helped him to take away three discs (Fig. 16.4a), which 
produced a new herd of three, and left behind a herd of 15 (Fig. 16.4b).

In the meantime, Pietro pressed on the herd of 15, making it fuchsia-highlighted, 
and Matilde brought her right index finger closer to it to repeat Alessandro’s gesture 
(Fig. 16.5a).
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Fig. 16.6 (a) Herds of 3 and 9 from 12; (b) children watching Marco taking away the 6th herd of 
3; (c) six herds of 3 left on the screen

R:  Now, Matilde is taking her three Fig. 16.5b).
Alice:   Release it (Matilde releases her finger and another herd of three is created,  

leaving behind a herd of 12; Fig. 16.5c).

Caterina then took away another herd of 3 from the herd of 12, leaving a herd of 
9 (Fig. 16.6a). Pietro invited Linda to go next. She approached the screen with her 
left index finger to repeat the previous gesture and took away another herd of three, 
leaving a herd of 6. Then it was Marco’s turn, but he only took away a herd of 1, 
which left behind a herd of 5. Pietro recreated the herd of 6, by pinching the herds 
of 5 a 1 together. Marco tried again, while the other children watched closely 
(Fig. 16.6b), and produced a sixth herd of 3 (Fig. 16.6c).

R:  Well, we have been successful.
Pietro:  Yes.
R:  Each of the six children has three candies. She has light green (referring to 

Alice and the colour of the discs of ‘her’ herd), she has light blue (referring 
to Linda and the colour of her herd of 3), he has dark green (referring to 
Alessandro), she has brown (referring to Caterina). And Matilde has blue.

We pause here again to consider the task in relation to the third and fourth condi-
tions of a mathematical challenge. Regarding the third condition, which affirms that 
“the person has to make an attempt and persist to reach a solution”, we see once 
again how the children persist to reach the solution as a collective rather than indi-
vidually. Even though there are individual roles for each child—each of whom is 
‘receiving’ three candies as they take away a herd of three from the total—the solu-
tion can only be reached through collective action, which is something that the task 
itself called for. Success depended on each child taking their part of the candies by 
performing the take away gesture—and the success was only measured at the end, 
by the fact that there were 6 herds of three on the screen, one for each child, distin-
guished from the others by colour. Thus, the condition of persisting to reach a solu-
tion is dispersed within the socio-material system made of the group and TC, and 
the actions emerging out of it. In this case, any attribution of persistence towards a 
solution must be referred to the distributed agency of the children-tool system.

Beyond persistence to reach the solution, we see how the challenge and the activ-
ity grow with no external or a-priori determination, out of the ‘always something to 
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do’ possibilities that the children have when working with TC. For example, the 
children want to take away herds of any size (not necessarily the ‘correct’ size), and 
they can also make new herds or join these herds again, as in the case of Pietro re- 
joining the herds of 1 and 5 obtained by Marco. These actions are all ones they have 
made before, which means they are thinking/acting contiguously with their past 
perceptions, and this can push their actions into an unscripted and contiguous future. 
We see here how the mathematical challenge is itself mobile and full of potentiality, 
open to deformation and indeterminacy (including accidental productions of herds, 
like the herd of 1 seen in Fig. 16.6c that nobody commented upon). The children’s 
actions constantly reconfigure the challenge, whose alteration taps into the past 
(first encounters with subtraction, use of more than one child) and expands to the 
future (a sequence of new, coloured herds). In other words, the mathematical chal-
lenge is no longer static and partakes in the activity.

Concerning the fourth condition, strictly speaking, there are only two and not 
“several” solving approaches. The children could have produced a herd of 18 by 
using repeated addition; each of the six children could have created a herd of 3 and 
then joined it with all the others. This action-oriented performance would have pro-
duced a herd that visibly reflected the creation process, being made of six different 
colours. In the strategy adopted by Pietro and his classmates, however, the children 
equi-partitioned 18 into herds of 3 by repeated subtraction, ending up with 6 herds. 
The task situation itself was open to multiple approaches in that it embedded the 
possibility of working with the number of children seated around the table as a vari-
able to be used in the task. It is in this sense that the task is implicated in, and 
inflected by, the socio-material system going beyond the epistemic actions provided 
by TC. That 18 is a multiple of 6 emerged out of the mathematical challenge as a 
sequence of subtractions in TC, which became herds first, then candies that the 
children wanted to have. In touching the screen, memories of previous touches are 
evoked—colour calls up the past perception of repeated addition. In this way, colour, 
touch, and memory are different dimensions of the mathematical challenge 
(Table 16.2).

We use the remaining part of the episode to come back to the four conditions, 
which we have now characterised according to a socio-material perspective. In par-
ticular, the next part of the episode will allow us to show how the mutual evocation 
of matter and memory mentioned above was an expression of affect, in that the 
children’s actions and gestures are treated as affective states that mobilise new ques-
tions (de Freitas & Ferrara, 2015). We will additionally see how the children were 

Table 16.2 Reframing Leikin’s third and fourth conditions

Leikin’s constructivist conditions Reframed socio-material conditions

3. The person has to make an 
attempt and persist to reach a 
solution

The socio-material system becomes performative and 
reactive as a result of attempting and persisting to reach a 
solution

4. The task or a situation has several 
solving approaches

Solving approaches are inflected by the socio-material 
system, through the mutual evocation of matter and 
memory
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eventually able to compare the herds of 12 and 18 in terms of being multiples of 6. 
It is in fact not simply that the two numbers emerged from the challenge separately 
but that they could be related and, therefore, compared. This will also help us think 
of the mathematical challenge as becoming more and more social instead of more 
and more difficult.

16.4.2  The Follow-Up Task: Comparing 12 and 18 
as Multiples of 6

The researcher asked whether six children could have the same (as each other) num-
ber of candies if there were only 12 of them. Pietro immediately answered affirma-
tively. Alice said nothing, but her right hand was thrust out with two outstretched 
fingers (Fig. 16.7a). Then suddenly, she says, “Yes, it’s possible, it’s possible, it’s 
possible” (almost jumping on her chair; Fig. 16.7b).

R:  And how can we do it?
Alice:   It’s possible. It can be done. You have to give two candies to six children 

(turning towards the iPad).
R:  How did you do it?
Alice:   I’ve done, one child two, another child two (adding two fingers on her right  

hand) and I’m at four (showing four fingers), another child two (Fig. 16.7c).
Pietro:  Six.
Alice:   Six (turns to Pietro), I’m doing it! Another child, eight (Looking at R),  

another child ten.
Pietro:  Ten.
Alice:  Another child twelve.
Pietro:  Twelve.

The researcher asked Alice how she had the idea of giving two candies to each 
child. She shrugged her shoulders and looked at her fingers. Sofia proposed that 
maybe she took the multiplication table of two. When the researcher asked how she 
thought of that, Sofia responded:

Fig. 16.7 (a) Alice’s two fingers jutting out; (b) Alice insisting “it’s possible”; (c) Alice’s hands 
after distributing two candies to 3 children
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Fig. 16.8 (a) Sofia counting two candies; (b) Sofia counting up to four candies; (c) Marco putting 
his fingers out; (d) Sofia looking at Alice

Sofia:   Since I’ve heard that she counted two (marking two fingers on the desk) 
plus two (moving the two fingers on her right along the desk; Fig. 16.8a), 
which makes four, plus other two which makes six (Fig. 16.8b), and plus 
others that makes eight (Marco raises his hand to speak; Fig. 16.8c), then 
plus other two (looking at Alice and getting even closer to Marco; 
Fig. 16.8d), which makes ten, plus other two it makes ten.
Marco intervened to say that this is not the multiplication table of 2.

Alice:   We don’t say one child plus one child up to four children, we say two four  
six, up to… I said in another way. One child, I put two candies, another 
child, up to six children I’ve put two candies.

R:  Ok.
Pietro:   But, how do you do, how do you do to say that those that you have counted  

are twelve?
Alice:   Because I know to count (turns towards Pietro). Two candies are here  

(showing two fingers to him), another two make four, “doesn’t it”? Because 
I count the number of candies. Two.

MDS:  Alice, but why did you think of two?
Alice:  I don’t know (smiling), I made two (looks at her fingers).
MDS:  Why not again 3, for example?
Alice:  (smiling and shaking her shoulders; Fig. 16.9), I don’t know.

We see Alice and then Sofia entering the challenge of considering the herd of 12 
that they previously created as a multiple of 6. The children abandoned the iPad for 
a while, while Alice took the number of children as the variable in the imagined 
actions oriented to the goal of distributing candies uniformly and, in the meantime, 
controlling them by counting (“one child two”, “another child two”). Motivation 
still arose from the students-tool potential for mathematical action, to which the 
number of children as a variable to be used in the activity with TC is related. Indeed, 
using the number of children (associated with the number of candies) as a variable 
is potential in the relationship between the tool and the users, which allows for the 
production of herds-numbers by the multiple finger touches of different children.

The challenge was altered at this point from the introduction of the two fingers, 
in the action of counting, which pushed Sofia to think of an eventual association 
with the multiplication table of 2. The herd of 12 became a counting process on 
Alice’s fingers, which was shared by Pietro, who counted together with her, but at 
the same time, this allowed Sofia to bring in the multiplication table, therefore to 
make the herd of 12 closer to being a multiple of 6 and 2.
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Fig. 16.9 Alice smiling and shrugging her shoulders

Thought and matter, and matter and memory are contiguous here in the ways that 
we can reasonably interpret Alice having recalled the previous reasoning (when 
quickly gazing to the iPad) while referring to the number of children. Similarly, we 
can interpret Sofia as having connected the process of counting by 2 on her fingers 
with the multiplication table of 2.

Both Alice and Sofia moved, in different ways, rendering different but similar 
thinking. Persistence to reach a solution is again dispersed while the mathematical 
concept of multiple is emerging out of the affective bond of the children with the 
past activity, expressed by the children’s movements, which we can therefore see as 
affective states in the way they partake of the becoming of the challenge. The equal 
parts that constitute 12 as a multiple are in this case anticipated by Alice and Sofia, 
and do not need the same performance with TC that was used to show 18 as a mul-
tiple of 6 and 3.

The variables of the number of children and number of candies moved the dis-
cussion towards a new degree of understanding of the challenge, which introduced 
the eventual relationship with the herds of 3 previously used with the question posed 
to Alice about how she was able to think of 2. The performance with TC to create 
the six herds of 2 only served, this time, as a way to control the solution and to relate 
it to the previous situation. How this occurred within the group is offered in the next 
very short extract of the episode, which also invites the children to compare the two 
herds of 18 and 12 as both being multiples of 6.

The researcher asked the other children what they thought about what Alice was 
saying (when she tried to explain her answer of two). Matilde and Linda both 
responded by saying that what Alice had done was right because it worked.

R:  Why? How would you explain it? To my brother?
Linda:   Because, 2 plus 2 makes 4, plus 2 makes 6, plus 2 makes 8, plus 2 makes  

10, plus 2 makes 12.

At this point, the researcher invited the children to compare the two different 
distributions of candies to six children, going back to the six herds of 3, which were 
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Fig. 16.10 (a) Alice producing the first herd of 2; (b) and (c) Pietro and Marco producing the 
second herd of 2

still visible on the screen. With the help of Linda’s explanation, it became clear that 
the two situations could be compared, and that each child could have one more 
candy with a bag of 18 candies, compared to the smaller bag of 12. Then, the 
researcher asked the children to show on the iPad what they have been discussing 
and the children worked on the herd of 12 to get the six smaller herds of 2 
(Fig. 16.10).

We wanted to provide an account of the extended excerpt in order to draw atten-
tion to the choreography of the tasks, which we see as an important feature in mak-
ing them a mathematical challenge. It is possible to describe this excerpt in terms of 
three tasks: (a) Can 6 children get the same number of candies each if there are 18 
candies? (b) Can 6 children get the same number of candies each if there are 12 
candies? (c) Are 18 and 12 both multiples of 6? We have discussed our socio- 
material framing of mathematical challenge with respect to the first of these three 
tasks. We have seen how, in a sense, the same considerations are at play for task (b), 
except for the particular role of memory and matter, since the fact of the candies, or 
the 6 children and of the repeated taking away replays in the second task, carrying 
with it, sediments of the first, and therefore necessarily affecting the motivation of 
the system (our revised condition 1) and the performative nature of the task (related 
to our revised condition 3).

We can shift attention for a moment to the crucial role of the researcher in rela-
tion to task (c). Challenge is not established before or independent of the activity, 
instead it develops and affectively unfolds through and through, with the researcher 
posing questions, asking for explanations, introducing the variables of number of 
children and number of candies as partaking in the material activity of the children 
with TouchCounts and in their imaginative situation in which they all want to have 
candies.

16.5  Conclusion

In this chapter, we have considered Leikin’s concept of a mathematical challenge in 
the context of a teaching and learning environment involving digital technology. We 
were interested in pursuing a reframing of mathematical challenge that would ade-
quately address the distributed, material aspects of mathematics teaching and 
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learning, as per the inclusive materialism perspective. We used a specific episode 
involving a group of eight children using TC in order to illustrate the modifications 
in Leikin’s four conditions. These new conditions are as follows: (1) Motivation 
arises from a human/non-human system as a result of finding a solution. (2) 
Procedures for finding the solution are not dictated by the socio-material system, 
but potential within it. (3) The socio-material system becomes performative and 
reactive as a result of attempting and persisting to reach a solution; (4) Solving 
approaches are inflected by the socio-material system, through the mutual evocation 
of matter and memory.

We propose that our reframing enables researchers to see tasks as being materi-
ally and temporally in relation to prior mathematical activity, rather than isolated 
problem-solving opportunities. It also distributes the agency for task resolution 
across a wider socio-material system, which reduces the necessity to label certain 
students as more or less motivated, and more or less able to persist in their mathe-
matical activity. Finally, it enables a more nuanced understanding of the multiplicity 
of mathematical reasonings, which varies across the epistemic and pragmatic values 
of a given technological environment, as well as across forms of engagement.

These four conditions resonate strongly with the four characteristics of mathe-
matical inventiveness proposed in Sinclair et al. (2013), which emerged from an 
analysis of students’ engagement with two different digital technology environ-
ments (The Geometer’s Sketchpad and the Motion Visualizer DV). For these authors, 
a creative act: brings forth or makes visible what was not present before; it does not 
align with current habits and norms of behaviour; it is without prior determination 
or direct cause; and, its meaning cannot be exhausted by existent meanings. The 
resonance is not surprising given that in both cases, we are concerned with a novel 
production that brings forth new mathematical ideas, which are taken to be insepa-
rable from their socio-material contexts. Like these two digital technologies, TC is 
one in which novel meanings – as well as combinations thereof – are possible, par-
ticularly in relation to new bodily interactions (such as gestures), collective forms of 
expression and mobile mathematical objects. We conjecture that tasks taking advan-
tage of these novelties will be well disposed to offering mathematical challenges.
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Chapter 17
Creativity and Challenge: Task Complexity 
as a Function of Insight and Multiplicity 
of Solutions

Roza Leikin and Raisa Guberman

17.1  Introduction: Problem-Solving

It is a commonly shared position that mathematical problem-solving is fundamental 
to any learning and teaching process in mathematics. English and Sriraman (2010) 
recommend that problem solving should be integral to the development of an under-
standing of any given mathematical concept or process, as do Lesh and Zawojewski 
(2007). Over the past four decades, the importance of problem-solving as one of the 
central tools in mathematical instruction was analyzed in multiple volumes and 
papers in mathematics education (Liljedahl & Cai, 2021; Schoenfeld, 1985; Silver, 
1985; Verschaffel et al., 2020). In summary, problem-solving is an effective didacti-
cal tool that allows pupils to mobilize their existing knowledge, construct new 
mathematical connections between known concepts and properties, and construct 
new knowledge in the process of overcoming challenges embedded in the problems 
(Lampert, 2001; Silver et al., 2005; Thompson, 1985).

Research that examines problem-solving processes and outcomes addresses 
(among other aspects) the following characteristics of problem-solving:

• Problem-solving strategies and the role of heuristic processes in solving non- 
routine problems (Polya, 1973, 1981; Silver, 2013; Schoenfeld, 1985, 1992).

• Mathematical modeling (Kaiser et al., 2011; Lesh, 2003; Lu & Kaiser, 2022);
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• The nature and structure of problem-solving expertise (Davidson & Sternberg, 
2003; Schoenfeld, 1985, 1992; Silver & Marshall, 1990; Elgrably & Leikin, 2021).

• Effective ways of teaching the solving of mathematical problems (Kilpatrick, 
1985; Schoenfeld, 1985; Silver & Marshall, 1990).

• Belief systems regarding problem-solving (Callejo & Vila, 2009; Goldin, 2009; 
Leder et al., 2006).

• Creativity in problem-solving (Silver, 1997; Pehkonen, 1997; Haylock, 1987; 
Leikin et al., 2009; Leikin & Sriraman, 2017, 2022).

One of the central components of creative mathematical problem-solving is 
mathematical insight associated with ‘Aha! moments’ (Weisberg, 2015) in problem- 
solving. This chapter analyzes the mathematical challenge embedded in problem- 
solving tasks from the point of view of the use of multiple solution strategies and 
mathematical insight required for solving the problem.

17.2  Creativity and Mathematical Ability

Mathematicians and mathematics educators have addressed the connection between 
mathematical creativity and mathematical ability. Beginning with Poincare 
(1908/1952), who drew a bridge between mathematical creation in professional 
mathematicians and their special intuition and understanding of mathematics, sev-
eral seminal studies examined the relationships between mathematical abilities and 
mathematical creativity. Hadamard (1945) explored creativity in outstanding math-
ematicians and scientists and identified four main stages of mathematical creation: 
initiation, incubation, illumination, and verification. Based on publications from the 
1950s and 60s, Aiken (1973) stressed that highly gifted scientists and mathemati-
cians are highly creative and suggested that creativity can be seen in novel and useful 
products, divergent and fruitful processes, and in inspired and immanent experi-
ences. He pointed out three major characteristics of mathematical creativity: First, 
creative thinking leads to new knowledge and the production of original and unusual 
solutions to known problems. Second, the creative process involves combining ideas 
and approaches in new ways, analyzing one particular problem in many ways, and 
finding a way to tackle an unfamiliar situation. Third, creative activity integrates “the 
subjective experience known as the (“flash of insight”) …which has been vividly 
described by Poincare (1908/1952), Hadamard (1954)” (Aiken, 1973, p. 409).

The connection between mathematical creativity and high mathematical ability 
or mathematical talent implies that creative production is challenging. Challenge is 
one of the core elements that promote any learning process and mathematics learn-
ing in particular. Through overcoming difficulties people train their minds, expand 
their knowledge and develop proficiency in using various skills. “Challenge is not 
only an important component of the learning process but also a vital skill for life” 
(Taylor, 2006, p. 2). The “developing education” approach (Davydov, 1996) postu-
lates that in order to develop their mental abilities, learners should approach tasks 
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through a meaningful activity that allows them to tackle difficulties embedded in the 
tasks. Based on Polya (1973), Schoenfeld (1985), and Charles and Lester (1982), a 
task is challenging if the solver is motivated to tackle the task, does not have readily 
available procedures for solving the task; and is ready to invest effort in the solution 
process. Consequently, Leikin (2009b) suggested that mathematical challenge be 
defined as an “interesting difficulty” that a person is motivated to overcome (p. 2019) 
and that a mathematically challenging task is appropriate to students’ abilities, nei-
ther too easy nor too difficult. No less important, students have to be motivated to 
complete the task, and thus the task should be directed at the development of stu-
dents’ mathematical curiosity and interest in the subject. One of the effective ways 
to develop students’ motivation and curiosity is by integrating creative activities, 
which are often surprising.

We believe that mathematics teaching should be aimed not only at the advance-
ment of students’ mathematical knowledge and skills and their problem-solving 
proficiency, but, even more importantly, at the advancement of mathematical cre-
ativity. While for many decades creativity in mathematics teaching and learning was 
largely overlooked (Haylock, 1987; Leikin, 2009a), luckily, in the last decade, we 
observed an exponential development of research publications related to creativity 
in mathematics (Leikin & Sriraman, 2022). We see the development of knowledge 
and skills and the development of creativity in a circular manner: more advanced 
knowledge and skills allow better creative processing, while creativity can serve as 
a mechanism for the development of knowledge and skills (Guberman & Leikin, 
2013; Levav-Waynberg & Leikin, 2012; Pitta-Pantazi et al., 2022). Thus, we argue 
that creativity-directed activities are an effective instructional tool.

In this chapter, we examine creativity-directed tasks as inherently challenging 
activities and specifically focus on mathematical insight as an indicator of the illu-
mination stage of the creative process. Like other creative processes, mathematical 
creativity is connected to both divergent and convergent thinking; mathematical 
insight is related to convergent thinking, while a multiplicity of mathematical ideas 
/solutions is considered to be an instance of divergent mathematical thinking. The 
paper presents an analysis of mathematical challenge linked to multiplicity of solu-
tions and mathematical insight in the context of mathematical problem-solving.

17.3  Insightful Problem-Solving

Ervynck (1991) suggested distinguishing between algorithmic, strategic, and 
insight-related problem-solving processing as three levels of mathematical creativ-
ity while considering creativity a major characteristic of professional mathemati-
cians. Insight-based problem solutions are relatively simple to perform but are 
difficult to discover until solution-relevant features are recognized (Metcalfe & 
Wiebe, 1987; Weisberg, 2015). Insight is “an experience of suddenly realizing how 
to solve a problem” (Eysenck & Keane, 2010: p. 463) that requires understanding 
and restructuring and performing a solution that is not rooted in previous experience 
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(Eysenck & Keane, 2010). This position implies that insight-based problems require 
unconventional mathematical thinking. Eysenck and Keane (2010) argued that 
insight-based problem-solving is associated with parallel cognitive processing, in 
contrast to experience-based problem-solving, which is connected to serial process-
ing related to experience (in our case, learning). Moreover, several studies  have 
demonstrated neuro-cognitive distinctions between insight-based problem-solving 
and experience-based problem-solving (Leikin et al., 2016).

Researchers draw strong connections between insight, creativity, and exceptional 
abilities, with exceptional intellectual accomplishments connected to intellectual 
insights (Sternberg, 1985). Insight is viewed as one of the typical characteristics of 
general giftedness (as measured with IQ) since gifted children outperform their 
average-achieving peers in insight-based problem-solving (Davidson & Sternberg, 
2003). According to Davidson and Sternberg, there are several different approaches 
to insight: Gestalt approach, puzzle approach, and great-minds approach, all of 
which are connected to each other. The Gestalt approach considers previously 
learned analogues as one of the sources of insight when a structural organization of 
a familiar situation is used when solving a new problem. The puzzle-problem 
approach connects insight with retrieval and application of prior knowledge in sev-
eral ways, with incubation allowing problem solvers to get rid of fixations that are 
blocking their access to relevant information. The great-minds approach to insight 
presumes large amounts of knowledge within and across domains.

Sriraman (2005) characterized the links between creativity and giftedness using 
the Gestalt Principle, which focuses on insight. In addition, he suggested four addi-
tional principles that connect creativity with giftedness, all of which are associated 
with insightful problem-solving. The Aesthetic Principle connects creativity to the 
beauty of mathematics and elegance of creative processing and products, which are 
usually insightful. The Uncertainty Principle links creative mathematical process-
ing to solving open-ended and ill-defined problems, the solutions to which often 
require insight. The Free Market Principle includes risk-taking connected to solving 
non-conventional and thus insight-based problems. Finally, the Scholarly Principle 
considers creativity to be the main mechanism of extending mathematics as a scien-
tific field, and to be associated with the four stages of the creative process (Wallas, 
1926; Hadamard, 1945) that include incubation which leads to illumination (i.e. 
insight).

According to all the approaches and principles mentioned above, prior knowl-
edge is crucial for solving problems in new, insightful ways and restructuring men-
tal representations when solving non-routine problems. On the other hand, Davidson 
and Sternberg (2003) argued that fixation on previously performed solutions can 
inhibit insightful thinking and the ability to change one’s problem-solving strate-
gies. Based on the literature observed above (Davidson & Sternberg, 2003; Ervynck, 
1991; Metcalfe & Wiebe, 1987; Weisberg, 2015), the following components of the 
thinking process seem to be essential for insightful problem-solving:
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• Overcoming fixation.
• Discovering the structure of a problem and generating a mental schema for a 

problem.
• Filling in gaps between the given elements and the goals of a problem, restruc-

turing information related to a problem’s goal.
• Generating a set of associations.
• Manipulating with (visual) representation.
• Viewing a problem in a new way.

This list is not hierarchical and not complete; however, it reflects the complexity 
of the thinking processes associated with different types of insight-based problems.

Davidson and Sternberg (2003) present several examples of puzzle problems that 
require overcoming fixation when solving the problems, restructuring the givens 
and filling gaps between the givens and the solutions. The following is an example 
of a problem that is used in the study described later in this chapter (Fig. 17.1).

Krutetskii (1968/1976) and his research team explored The psychology of math-
ematical abilities in schoolchildren and described what they termed a mathematical 
cast of mind in students with high mathematical abilities. This study also revealed 
that high mathematical ability is expressed in solving non-routine problems, inde-
pendent mathematical reasoning, and mathematical flexibility. In his examination of 
mathematical abilities, Krutetskii’s team designed 26 batteries of mathematical 
problems for 73 tests. Several batteries clearly included problems that are uncon-
ventional in regular curriculums, the solutions to which require insight. For exam-
ple, ill-defined problems included the following: (a) problems with an unstated 
question, (b) problems with incomplete information, (c) self-restriction problems, 
and (d) unrealistic problems. The unconventionality and creativity-directedness of 
problems of types (a) and (b) is determined by the requirement to pose the problems 
by completing (a) missing questions or (b) missing givens. Self-restriction problems 
(c) require overcoming fixation with respect to the givens, and the unrealistic prob-
lems required overcoming fixation connected to the problem-solving strategies used 
when solving a problem (examples given in Fig. 17.2).

Solving insight-based problems requires high cognitive effort despite the exist-
ing knowledge base required for the solution. Problems presented at mathematical 
Olympiads and contests often presume insight-based solutions (Carreira & Amaral, 
2018; Koichu & Andžāns, 2009; Reznik, 1994). In contrast, due to the exceptional 
cognitive effort required to solve them insight-based problems are rarely included in 
school textbooks and everyday instructional practices.

Problem 1i: Puzzle problem
You have red stockings and green stockings mixed in a dresser drawer 
at a ratio of 4 to 5. How many stockings must you remove in order to 
guarantee that you have a pair that is the same color?
Davidson & Sternberg (2003)

i We invite readers to solve the problems in this section. 

Fig. 17.1 Puzzle problem. (We invite readers to solve the problems in this section)
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Problem 2.2ii Unrealistic problem
The perimeter of a right triangle is equal to 3.72 m. Two of its sides are 1.24 m 
each. Find the third side. (p.132)

Problem 2.3iii Self - restriction problem
Intersect a quadrilateral with one straight-line segment so as to obtain 4 trian-
gles. (p.142)

ii, iii We invite readers to solve the problems in this section. Explanations and 
solutions appear in Appendix 1.

Fig. 17.2 Unrealistic and self-restriction problems (Krutetskii, 1968/1976). (We invite readers 
to solve the problems in this section. Explanations and solutions appear in Appendix 1)

17.4  Divergent Problem-Solving

Haylock (1987) stressed the educational value of mathematical creativity in the 
teaching and learning of mathematics. He described three major ways of developing 
divergent thinking: solving open problems, problem-posing, and redefinition. 
Redefining tasks can be seen as a combination of open problem-solving and prob-
lem posing, since (according to Haylock) they require students to change informa-
tion in the given problems and solve them. He argued that integration of these types 
of problems in mathematical instruction leads to the development of mathematical 
creativity in students. Silver (1997) connected “rich in mathematical problem- 
solving and problem posing” (p. 75) creativity-directed mathematical instruction 
with the theoretical position that creative thinking includes a combination of diver-
gent and convergent thinking as defined by Guilford (1964). Silver (ibid.) connected 
the possibility of developing mathematical creativity with Torrance’s (1974) models 
of creativity, composed of fluency, flexibility, originality, and elaboration. Krutetskii 
(1968/1976) noted that mathematical flexibility is also among the main characteris-
tics of mathematical ability and comprises mathematical creativity, arguing that 
when students “leave the patterned stereotyped means of solving a problem and find 
a few different ways of solving it … this is the real appearance of mathematical 
creativity.” (p. 117). Using this perspective Leikin (2009b) introduced a model for 
the evaluation of mathematical creativity using Multiple Solution Tasks (MSTs), 
which explicitly require participants to solve a problem using multiple solution 
strategies. This model also allows drawing a connection between the problem- 
solving process and the diverse problem-solving strategies used by a participant 
(Leikin & Elgrably, 2022).

The differences and similarities between the solutions in MSTs can be illustrated 
by using: (a) different representations of a mathematical concept, (b) different prop-
erties (definitions or theorems) of mathematical concepts from a particular mathe-
matical topic, or (c) different mathematical tools and theorems from different 
branches of mathematics (Leikin, 2009b). By requiring multiple solutions to a par-
ticular problem, we raise the complexity of the task and the challenge embedded in 
it. In accordance with these views on mathematical challenge and its role in 
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mathematics education in general, and teachers‘ education in particular, we focus 
our attention on MSTs as exemplary tasks that embed mathematical challenge, in 
that they encourage the performance of insightful solutions alongside conventional 
ones and can be considered as “new tasks“when “moved” to a new context. 
Performance of multiple solutions requires and develops mathematical flexibility.

Leikin and Sriraman (2022), in their expansive review of empirical studies on 
creativity in mathematics (education), demonstrated that researchers in mathemat-
ics education have shown significant interest in this topic. Interestingly they demon-
strated that only 5 of the 49 (10%) empirical studies that they reviewed addressed 
mathematical insight when examining mathematical creativity. Use of divergent 
problem-solving was more frequently addressed (in 36 of 49 (73%) studies). This 
difference in the frequency (in publications) of examination of uses of insight versus 
divergent production when examining mathematical creativity can be explained by 
the complexity of solving insight-based problems and the unconscious components 
of mathematical insight (Haavold & Sriraman, 2022), which are difficult to analyze.

Haavold and Sriraman (2022) find that there are two types of mathematical 
insight: insight as the consequence of conscious analytical thinking vs. insight as 
the result of unconscious processes linked to an impasse. They argue that the differ-
ences between these two types of insights cause them to complement each other in 
problem-solving processes and can explain different aspects of the problem-solving 
process in experts and non-experts. Through neurocognitive analysis of learning- 
based and insight-based problem-solving by participants who differed in terms of 
their level of general giftedness and level of mathematical expertise, Leikin et al. 
(2016) hypothesized that mathematical expertise includes an insight component at 
the stage of connecting a problem with an appropriate solution strategy, and general 
creativity increases participants’ success in solving insight-based problems.

17.5  Insight-Requiring or Insight-Allowing Problems

In this paper, we draw a distinction between insight–based problems (those that 
require insight to solve a problem) and problems that allow an insight-based solu-
tion, which is usually the most elegant. We argue that insight-based problems are 
the most complex.

We start with two pairs of problems that illustrate the differences between these 
two types of problems. The first part includes two word problems both of which are 
missing numerical givens that could simplify solving these problems: The Monk 
Problem (Duncker, 1945), which we consider to be an insight-requiring problem, 
and the Half-way – Half-time Problem (Leikin, 2006), which is an example of an 
insight-allowing problem.

The Monk problem (Fig. 17.3) is an ill-defined problem, in which no information 
about the trail is provided. Moreover, the solver is not required to determine the 
exact location or time but should show that this place exists. The problem cannot be 
solved using ordinary algebraic tools. When performing a graphical solution 
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Problem 3: Monk Problem

In the morning, a Buddhist monk walks outside from his house at 6 a.m. to climb up the 

mountain to get to the temple at the peak. He reaches the temple at 6 p.m. A couple days 

later, he departs from the temple at 6 a.m. to climb back down the mountain on the same 

road and reaches his house at 6 p.m. Prove that there is a point on the trail where the monk 

was located at the same time of day when going to the temple and when going down the 

mountain (based on Duncker, 1945)

Solution 3.1: Graphical solution
Diagram 1 demonstrates graphs of func-

tions (distance from house on the trail) 

corresponding to climbing up ( ( )

function) and climbing down ( ( )

function) rotes. The graphs of the func-

tions ( ) and ( ) each connect oppo-

site vertices of a rectangle (see the dia-

gram), thus they intersect. This means 

that there is a point on the trail where the 

monk was at the same time at the two 

days.

Solution 3.2: Verbal imaginary solution
Imagine two monks one of whom climbs up and the other climbs on the same trail, at the 

same day from 6 a.m. till 6 p.m. At some point on the trail they will meet, and thus there 

is a point on the trail where the monk was in the same place at the same time on both days.

Diagram 1

Fig. 17.3 Insight-requiring problem – Monk Problem

(Solution 3.1, Fig. 17.3), insight into the arrangement of the graphs in the coordi-
nate system is required. The verbal imaginary solution (Solution 3.2, Fig.  17.3) 
requires real-life insight – replacing one monk over 2 days with two monks walking 
on the same day.

In contrast, the Half-time Half-way problem (Fig. 17.4) allows an algebraic solu-
tion, which is complex, but relatively standard. The complexity of Solution 4.1 
(Fig. 17.4) is related to the choice and the number of variables required for the solu-
tion. Solutions 4.3 and 4.4 of Problem 4 we consider insight-based solutions. Both 
Problem 3 and Problem 4 lack numerical information. Solution 4.3 is a graphical 
insightful solution, requiring first drawing a graph for Tom’s walk that will deter-
mine S (the length of the walk). Then half S will be defined as the point at which 
Dan changes his walking speed. Solution 4.2. can be considered an illustration of 
Solution 4.4, which is insightful.

In terms of insightful problem-solving activity, the solutions of both problems 
require discovering the structure of a problem and generating a mental schema for a 
problem, filling in gaps between the given elements and the goals of a problem, and 
manipulating with graphical representation (Figs. 17.5 and 17.6).

Problems 5 and 6 are two visual 3D Problems. Problem 5 is an insight-allowing 
problem. Solution 5.1 is based on considering concrete examples and generalizing 
observations. Solutions 5.2 and 5.3 are based on discovering that the number of 
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first half of the time he walks a 

longer distance than during the 

second half of the time. Thus he 

walks at the faster speed v1 a 
longer distance than Tom.

Tom gets to the hotel first

Problem 4: Half-way Half-time problem

Dan and Tom walk from the train station to the hotel. They start out at the 
same time. Dan walks half the time at speed and half the time at speed . 
Tom walks half way at speed and half way at speed . Who gets to the 
hotel first: Dan or Tom?
Leikin (2006)

Solution 4.1: Algebraic solution

Speed Way Time

To
m

Half-
way 2 2

by 
Tom =

2
+
2

=
( + )

2

Half-
way 2 2

by 
Dan T

D
an

Half 
time 2 2

=
2
+

2
=

2

+

Half 
time 2 2

Compare
t and T

( + ) ≥ 4

≥

In solutions 2, 3, 4 without loss of generality we assume >

Solution 4.2: Pictorial solution

Solution 4.3: Graphical solution Solution 4.4: 
Logical (verbal) solution

Dan walks half the time at 
speed and half the time at 

speed .

Assume > , thus during the 

Tom
Dan

Fig. 17.4 Insight-allowing problem – Half-way Half-time

cubes, which varies based on the height of the tower, is an arithmetic series. 
Solutions 5.3.1, 5.3.2 and 5.3.3 are insight-based solutions that are based on visual 
restructuring of the tower. Problem 6 calls for the creation of a three-dimensional 
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Problem 5 - Skeleton Tower

Calculate the number of cubes needed to construct a tower n cubes high ( Ridg-
way, 1998). 

Solution 5.1: Using a table – Indictive solution

Solution 5.2: Sum of arithmetic series

Height N of cubes

5.2.1 = 1 + 5 + 9 + ··· + = 1 + 5 + 9 + ··· + (4( − 1) + 1)

=
( + )

2
=

1 + (4( − 1) + 1)

2
= 2 −

5.2.2 = + 4( − 1) + 4( − 2) + ··· + 4 × 1 = + 4 ×
( )

= 2 −

Solution 3.3: Rearranging cubes
5.3.1
2 ( − 1) + = 2 − .

5.3.2
+ ( − 1)

5.3.3
( + − 1) = 2 −

Calculate the number of cubes needed to construct a tower n cubes high ( Ridg-
way, 1998). 

Solution 5.1: Using a table – InII dictive solutionll

Solution 5.2: Sum of arSS ithmetic series

Height N of cubes

Fig. 17.5 Insight-allowing problem – Skeleton Tower

configuration that satisfies certain conditions. It is described by Polya (1976), and 
Sharygin and Erganzhiyeva (2001) included it in their Visual geometry textbook for 
5th and 6th grade. The problem demands verbal, visual, drawing, and applied skills. 
Yet it requires no knowledge of geometrical theorems or deductive reasoning. 
Familiarity with basic geometrical objects like rectangular parallelepiped or cube, 
sphere, cylinder, cone, and triangular right parallelepiped, and the ability to com-
bine them physically or mentally, is adequate for solving the problem. The task, 
then, requires a high level of visual reasoning, but on the other hand it is regarded as 
one that allows refinement of mathematical reasoning at an elementary-school level 
(Leikin & Kawass, 2005). Insightful solutions of both problems require filling in the 
gaps between the given elements and the goals of a problem and manipulating with 
(visual) representation.

Following the analysis performed above we raised the hypothesis that insight- 
requiring problems are more challenging than insight-allowing problems, however, 
they allow students to exhibit higher creativity. As presented in the next section, we 
asked students to solve two types of tasks to examine our hypothesis.
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Problem 6: Find a plug 

Given a wood plate with three hollows of different shapes: 

a square, a circle, and an isosceles triangle. The side of the 

square is equal to the diameter of the circle and to the altitude and the base of the trian-

gle. Find a plug that satisfies the two following conditions  

(1) It may pass through each one of the three hollows in the wooden plate;  

(2) It may close precisely each one of the hollows in the plate above. 

Leikin and Kawass (2005) 

Solution 6.1:  

Combining three plane figures in the space – 

matching thickness to the holes; adding “a fixed 

square” to a cone 

Solution 6.2:  
Real plugs fitting the three holes. Using manipu-

latives: an apple, cheese, plasticine. Drawing 3D 

body. 

Fig. 17.6 Insight-requiring problem – Find a plug

17.6  Research Experiment

17.6.1  The Tasks

We used 4 problems: Two problems (P1 and P3) were MSTs with at least one 
insightful solution (see Figs. 17.7 and 17.8). P1 and P3 can be solved with direct 
calculations or by viewing the structure of the problem as exemplified in Table 17.2. 
Two other problems (P2 and P4) are insight-based problems that could not be solved 
algorithmically. For P2 concrete numbers are missing for performing calculations. 
The solution to P4 (borrowed from Davidson & Sternberg, 2003). We used a scoring 
scheme to evaluate participants’ creativity when solving the tasks (see Appendix 2).

17.6.2  Findings

Sixty-five college engineering students participated in the study. Table 17.1 depicts 
the number of participants who solved problems in multiple ways (for the evalua-
tion of fluency of the solutions) and in different ways (for the evaluation of their 
flexibility). Table 17.2 demonstrates that solving insight-based problems (P2 and 
P4) is more complex and that these problems allow less fluent and flexible solutions. 
About 50% of participants did not succeed in solving these 2 problems (produced 0 
solutions). Only 5 students from Group 1 succeeded in solving P2 in more than 1 
way and only 1 student from Group 2 produced 2 solutions to P4. In contrast, 14 
students solved P1 in 2 or 3 different ways, and 11 students solved P3 in 2 differ-
ent ways.
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Insight-allowing problem Insight-requiting problem

Try solving the problem in as many different ways as possible.

G
ro

u
p
1

P1: Helen knits a blanket of 

size 120 × 150 . 

She uses 2 colors to knit 

the pattern as shown. 

What is the fraction of the 

blanket knitted in the 

darker shade?

P2: Two painted shapes with 

areas M and E are lo-

cated between parallel 

lines. The distance be-

tween the paral-

lel lines in shapes E and 

M is equal to 1 cm. What is the ratio

between the area of shape M and the 

area of shape E?

G
ro

u
p
 2

P3: In rectangle , 

AD = 12 cm, 

= 9 , 

= 2 and 

= . 

Find the black area.

P4: If you have black socks and brown 

socks in your drawer, mixed in a ratio 

of 4 to 5, how many socks will you 

have to remove to make sure that you 

have a matching pair?

Davidson & Sternberg (2003)

Fig. 17.7 Problems used in the research experiment

Examples of solutions

Standard

Or =0.1 or 1

Insight

Or =10

P1 1.1 Calculating area 1.2  in a small unit

P2 2.1 Proving and using integrals 

(parametrical solution)

2.2 Translation

Ratio = 1 

P3 3.1 Performing calcula-

tions

3.2 The black area (composed 

of triangles) is  of the area 

of rectangle (all the trian-

gles have equal altitudes)

P4 4.1 Drawing different pos-

sibilities and generalizing

4.2 Three socks are sufficient (2 

will always be the same 

color)

Fig. 17.8 Examples of solutions to the 4 problems in the test
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Table 17.2 Difference in problem complexity

P1 P2 P3 P4 P1 vs. P2 P3 vs. P4 P1 vs. P3 P2 vs. P4
Group 1 N = 35 Group 2 N = 30 Within group diff Between group diff
Mean 
(SD)

Mean 
(SD)

Mean 
(SD)

Mean 
(SD)

t-test 
df = 34

t-test 
df = 29

t-test 
df = 63

t-test 
df = 63

Correctness 17.43 
(6.57)

8.43 
(8.64)

16.34 
(5.85)

9.50 
(9.50)

5.99*** 3.2** 0.70 −0.48

Fluency 1.89 
(1.08)

0.74 
(0.70)

1.47 
(0.68)

0.60 
(0.56)

5.92*** 5.28*** 1.84 0.90

Flexibility 14.97 
(8.62)

7.43 
(7.01)

13.74 
(6.22)

6.33 
(5.56)

4.78*** 4.66*** 0.65 0.69

Originality 1.35 
(1.10)

4.86 
(5.10)

1.23 
(2.61)

1.55 
(3.08)

−4.30*** −0.39 0.25 3.13**

Creativity 11.45 
(8.79)

48.57 
(50.10)

11.57 
(26.15)

15.33 
(30.26)

−4.54*** −0.48 −0.03 3.13**

*** p<.001, **p<.01

Table 17.1 Fluency and flexibility when solving the problems

No. 0 1 2 3 4

No. of participants who produced a  
particular number of solutions

P1 3 10 13 6 3
P2 14 16 5
P3 0 18 11 0 1
P4 13 16 1

No. of participants who produced  
a particular number of groups  
of different solutions

P1 3 18 9 5
P2 14 16 5
P3 0 19 10 1
P4 13 16 1

Table 17.2 presents the within-group and between-group differences in correct-
ness, fluency, flexibility, originality, and creativity. The study confirms our hypoth-
esis: it shows that problems P2 and P4 are more difficult than P1 and P3; participants’ 
solutions to P1 and P3 were significantly more likely to be correct and fluent. While 
P1 and P3 are highly correlated, P2 and P4 are less so, with P2 more difficult to 
solve. The high levels of originality and creativity in the solutions to problem P2 
indicate that the problem’s difficulty stems from the fact that it cannot be solved 
without insight. Problems P1 and P3 yielded the lowest scores for originality and 
creativity due to the possibility of performing multiple solutions not necessarily 
based on insight.
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17.7  Summary

In this chapter, we introduced a distinction between insight-allowing and insight- 
requiring problems and demonstrated that tasks of these two types are challenging. 
As hypothesized, insight-requiring problems appear to be more challenging than 
insight-allowing MSTs. Moreover, the participants’ low scores for originality of 
solutions for problems of both types demonstrate that only a small number of par-
ticipants produced insight-based solutions. Based on previous studies (Leikin & 
Lev, 2013; Leikin et al., 2016; Haavold & Sriraman, 2022) we argue that, as insight-
ful problem-solving is an effective tool for the identification and development of 
mathematical abilities, both types of insight problems should be integrated in school 
mathematical instruction. A large-scale longitudinal study could shed further light 
on the effectiveness of insight-based problem-solving as an instructional tool.

Acknowledgments The research on tool development was supported by Eleusis Benefit 
Corporation, PBC.

 Appendix 1

 (i) Puzzle problem (Problem 1 in this chapter).
Davidson and Sternberg (2003) explain that “many people incorrectly 

assume that this is a ratio problem and, therefore, that they must compute the 
answer using the 4:5 information” (p. 157). We present the solution to Problem 
1 in the “Research Experiment” Section.

 (ii) Unrealistic problem (Problem 2 in this chapter).
Solution 1 (focusing on the right triangle – stereotypic and incorrect): In 

any right tringle two equal sides are legs of the triangle, then the hypote-
nuse is 1 24 1 242 2. .+ .

Solution 2 (focusing on the perimeter): the third side is 3.72 − 2 × 1.24 = 1.24. 
The triangle is equilateral and thus cannot be a right triangle.

 (iii) The restriction consists of the examinees’ considering only convex quadrilater-
als and supposing that the triangles ought to lie only “inside” the 
quadrilateral.
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 Appendix 2 Model and Scoring scheme for the evaluation 
of creativity (based on Leikin, 2009b)

Fluency Flexibility Originality Creativity

Scores 
per 
solution

1 Flx1 = 10 for the first 
solution
Flxi = 10 for 
solutions from a 
different group of 
strategies
Flxi = 1 for a similar 
strategy but a 
different 
representation
Flxi = 0.1 for the 
same strategy and the 
same representation

Ori = 10 if p < 15%or for 
insight/ unconventional 
solutions
Ori = 1 if 15 %  ≤ p ≤ 40%or 
for model-based/partly 
unconventional solutions
Ori = 0.1 if p ≥ 40 % or for 
algorithm-based/ learning- 
based conventional solutions

Cri = Flxi × Ori

Total 
score

Flu = n
Flx Flx

i

n

i�
�
�

1

Or Or
i

n

i�
�
�

1

Cr Flx Or
i

n

i i� �
�
�

1

Note: Flu Fluency, Flex Flexibility, Or Originality, Cr Creativity

n is the total number of correct solutions

P = (mi/n) 9100% where mi is the number of students who used strategy j
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Chapter 18
Challenging Undergraduate Students’ 
Mathematical and Pedagogical Discourses 
Through MathTASK Activities

Irene Biza and Elena Nardi

18.1  Welcoming Mathematics Undergraduates 
to Mathematics Education

Some mathematics undergraduate programs include in their syllabi also courses on 
mathematics education. The motivation for such courses is to introduce mathemat-
ics students to the field of mathematics education research or/and to prepare them 
for mathematics teaching. Very often, these courses familiarize students not only 
with the new content of the social science of education but also with the new, to 
them, practices of educational research. Research in mathematics education, how-
ever, is a very different enterprise from research in mathematics (Schoenfeld, 2000). 
For example, in mathematics education, in comparison to mathematics, the perspec-
tive is less absolutist and more contextually bounded. There is less attention to error 
and more focus on the reasons behind the error. Approaches are more relativist on 
what constitutes knowledge (Nardi, 2015) and evidence is not in the form of proof, 
but rather more “cumulative, moving towards conclusions that can be considered to 
be beyond a reasonable doubt” (Schoenfeld, 2000, p. 649). Thus, findings are rarely 
definitive; typically, they are more suggestive.

Such epistemological differences affect the experiences of those who, although 
familiar with mathematics research and practices, are newcomers to mathematics 
education. Boaler et  al. (2003) analyze the challenges of mathematics graduates 
when they embark on postgraduate studies in mathematics education. They describe 
the epistemological shift these students experience in their transition from system-
atic enquiry in mathematics to systematic enquiry in mathematics education. To 
facilitate such transition, Nardi (2015) addresses challenges with such epistemo-
logical shifts in the context of a postgraduate program in mathematics education 
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that enrols mathematics graduates by proposing an “activity set designed to facili-
tate incoming students’ engagement with the mathematics education research litera-
ture” (ibid, p. 135) through gradual familiarization with the key journals in the field 
and through co-engineering with the students steps purposefully designed to develop 
their skills in identifying, reading, summarising and critically reflecting on literature 
in our field.

In this chapter, we draw on studies that observe and address such shifts at a 
postgraduate level (Boaler et al., 2003; Kontorovich & Rouleau, 2018; Nardi, 2015; 
Rouleau et al., 2019) to discuss a course that introduces mathematics education to 
undergraduate mathematics students. Our work contributes to the broader discus-
sion of the challenges that newcomers face as they enter the field of mathematics 
education research (Kontorovich & Liljedahl, 2018). Specifically, we propose 
course activities and an assessment frame for undergraduate engagement with both 
mathematical and mathematics education discourses. Mathematical discourse is 
related to the mathematical content seen at school and first-year university level, 
whereas mathematics education discourse is related to theoretical constructs and 
findings of mathematics education research. The proposed activities aim to chal-
lenge often long-held views about mathematics as well as about its learning and 
teaching (pedagogy).

These activities aim to pose both mathematical and pedagogical challenge (MC 
and PC) to undergraduate students. Mathematical challenge in these tasks resonates 
with (Applebaum & Leikin, 2014; Leikin, 2014) and concerns tackling a piece of 
mathematics – that is familiar from the school mathematics curriculum – in diverse 
and alternative ways. Pedagogical challenge is seen in relation to how respondents 
may tackle the aforementioned mathematical challenge in the context of a specific 
classroom situation.

In what follows, we describe the theoretical foundations of the course design and 
its assessment frame and we exemplify the use of this frame in the context of one 
assessment item. We then describe the course context, objectives, structure, activi-
ties and assessment. Subsequently, we outline – and sample from the findings of – a 
research study of student responses to certain course activities that posed the afore-
mentioned mathematical and pedagogical challenges to the students. We conclude 
with a broader discussion of the potentialities of such activities in undergraduate 
programs that introduce mathematics students to mathematics education research.

18.2  A Mathematics Education Course for Mathematics 
Undergraduates: Theoretical Foundations

The theoretical perspective of this work is discursive and inspired by the 
commognitive framework proposed by Sfard (2008) which sees mathematics and 
mathematics education as distinct discourses. Learning of mathematics and learning 
about mathematics education research (thereafter RME) are then communication 
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acts within these discourses. We are interested in discursive differences  – and 
potential conflicts – between mathematics and RME and we aim toward a balanced 
engagement with both.

Specifically, we explore how mathematics undergraduates transform what they 
know about mathematics from their mathematical studies and about mathematics 
education research (to which they are introduced during the aforementioned courses) 
into discursive objects that can be used to describe the teaching and learning of 
mathematics. This transformation is the productive discursive activity of “reifica-
tion” (Sfard, 2008, p. 118). For example, the reification of the theoretical construct 
sociomathematical norms (Cobb & Yackel, 1996) may be evidenced when the con-
struct is used by an undergraduate to describe a classroom situation in which the 
teacher and the students customarily negotiate different approaches to solving a 
mathematical problem. At a “meta-level” (Sfard, 2008, p. 300), we are also inter-
ested in how an undergraduate may deploy the theoretical construct sociomathemat-
ical norms in the analysis of a classroom situation as an opportunity to reflect on 
whether there is value in seeking diverse and alternative solutions to a mathematical 
problem or whether a lesson must always privilege a single, optimal solution as 
sanctioned by the teacher.

Our course design is informed by three principles, set out in Nardi (2015), for 
supporting post-graduate students’ (Master’s and doctoral levels) introduction to 
RME: “engaged pedagogy and participation; cultural sensitivity; and, indepen-
dence, creativity and critical thinking” (p. 140) and by her proposed set of activities 
for such introduction. In these activities, students are asked to engage with literature 
from RME and to produce accounts of their readings. In addition, students are asked 
to produce accounts of instances in “their personal and professional experiences 
that can be narrated in the language of the theoretical perspective” (ibid, p. 151) 
featured in those readings. These accounts of students’ experiences are called Data 
Samples. Engagement with literature, together with the production of Data Samples, 
aims to support students with situating readings in their own experiences and their 
engagement with the discourse of mathematics education research. Nardi’s (2015) 
analysis of student interviews and written responses identifies four milestones 
regarding students’ transition from studies in mathematics to studies in mathematics 
education: learning how to identify appropriate mathematics education literature; 
reading increasingly more complex writings in mathematics education; coping with 
the complexity of literate mathematics education discourse; and, working towards a 
contextualized understanding of literate mathematics education discourse (ibid). 
The fourth milestone, contextualization of the mathematics education discourse 
triggered by the Data Samples (Nardi, 2015), is the inspiration for the course activi-
ties that are the focus of this chapter.

Rouleau et al. (2019) also adopt the principles and milestones listed in (Nardi, 
2015) to design activities for novice in-service mathematics teachers who study a 
graduate mathematics education course and “their engagement with scholarly math-
ematics education literature” (p. 43). In their project, teachers engage with scholarly 
mathematics education literature in activities such as reading and critiquing pre-set 
articles; drawing on their own experiences to comment on these articles; using ideas 
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from the articles to design mathematical activities or problems; and, designing a 
follow-up study to the one reported in the articles they read. The study considers 
teachers and mathematics education researchers as “members of distinct yet closely 
related communities” (p. 56) that can mutually benefit from the exchange of experi-
ences and practices. The articles from scholarly mathematics education literature 
have the potential to “act as boundary objects” (p. 56) between the two communi-
ties. Findings highlight the complexity and the challenges of teachers’ engagement 
with this task that invite them to participate in researchers’ practices which are dif-
ferent to those of the teachers: making “sense of the theories and terminology that 
the articles used” (p. 57); acquainting themselves with research methodologies that 
may challenge previously held views and appreciation for certain research designs 
(e.g. experimental); or, expecting (and experiencing disappointment when not find-
ing) prescriptive suggestions for overcoming students’ mistakes in the research lit-
erature. Teachers’ challenges with engagement with research are also rooted in 
conflicts between the role of the teacher who is tempted to intervene and help the 
student and the role of the researcher who observes the learning process from a 
distance (Kontorovich & Rouleau, 2018). Rouleau et al.’s (2019) work exposes the 
challenges that lie in efforts to engage teachers with research literature “ranging 
from choosing a research article with which to engage; to turning it into an object 
that has the potential to transfer praxeologically foreign knowledge; and finally, to 
the development of reading praxes themselves” (p. 58).

Although the studies we review here (Nardi, 2015; Rouleau et al., 2019) are not 
about undergraduate students, their relevance to the design of the course and the 
research study discussed in this chapter is in their focus on engaging newcomers to 
mathematics education research and the potential challenges such engagement may 
involve (see also, Nardi & Biza, 2022).

Another inspiration for the study we report in this chapter comes from our work 
with pre- and in- service mathematics teachers in the MathTASK program in which 
we engage teachers with fictional but realistic classroom situations and ask them to 
reflect on these situations. We call these activities mathtasks (Biza et  al., 2007). 
Mathtasks are presented to teachers as short narratives that comprise a classroom 
situation where a teacher and students deal with a mathematical problem and a 
conundrum that may arise from the different responses to the problem put forward 
by different students (we discuss a mathtask example in Sect. 18.3).

Teachers engage with these tasks through reflecting, responding in writing and 
discussing. At the heart of the MathTASK program is the assumption that theoreti-
cal discussion related to the teaching and learning of mathematics is not productive 
unless it becomes focused on particular elements of mathematics and its teaching 
embedded in classroom situations that are likely to occur in actual practice (Speer, 
2005). The MathTASK design underlies the course activities we sample in this 
chapter and which aims to challenge (mathematically: MC; pedagogically: PC) 
undergraduate students’ long-held narratives about mathematics and its pedagogy.

The mathematical problem, the students’ responses and the teacher’s reactions to 
the mathtask are all inspired by the vast array of issues that typically emerge in the 
complexity of the mathematics classroom and that prior research has highlighted as 
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seminal (Biza et al., 2007). We see the MC in a mathtask as having three compo-
nents. One component concerns how the mathematical problem in a mathtask is 
embedded in school mathematics: the task must be appropriate for students at a 
certain school level, it should motivate students to complete it and it should develop 
their mathematical curiosity and interest (Leikin, 2014).

A further component concerns the mathematical problem together with the 
fictional responses to this problem proposed by the students or/and the teacher in the 
mathtask scenario. These draw on characteristics of a mathematically challenging 
task identified by the teachers in the study of Applebaum and Leikin (2014): (1) a 
problem that requires a combination of different mathematical topics; (2) a problem 
that requires logical reasoning; (3) a problem that has to be solved in different ways; 
(4) an inquiry-based problem; (5) a nonconventional problem; (6) a problem that 
requires generalization of problem results; (7) proving a new mathematics state-
ment; (8) a problem that requires auxiliary constructions; (9) finding mistakes in 
solutions; (10) a paradox; (11) a conventional problem that requires knowledge of 
extracurricular topics; (12) a problem with parameters (p. 399).

A third component concerns the ways in which the mathtask may invite our 
undergraduate students to see beyond the school mathematical content of the task 
when they solve the problem and interpret fictional student/teacher responses in the 
incident and relate its contents to mathematics they may have learned during their 
university studies.

We see the PC components in the mathtask as being about bringing to the fore 
and reflecting upon a classroom situation from the epistemological position of 
mathematics (which our undergraduates typically hold) and from the epistemologi-
cal position of mathematics education (which our undergraduates are starting to 
recognize). Thus, mathtasks aim to challenge narratives about mathematics and its 
pedagogy that are reported in the literature as dominant.

For example, these narratives include:

PC1. Absolutist and decontextualized views of mathematics (Schoenfeld, 2000);
PC2.  Attention to error and less focus on the reasons behind the 

error(Nardi, 2015);
PC3.  Seeking evidence in the form of proof (e.g., experimental studies) in defi- 

nite findings and less attention to research methods that justify valid evi-
dence (Rouleau et al., 2019; Schoenfeld, 2000);

PC4.  Engagement (or lack of) with RME narratives, word use and 
routines(Nardi, 2015);

PC5.  Criticality (or lack of) in the engagement with mathematics education lit- 
erature (Boaler et al., 2003; Nardi, 2015; Rouleau et al., 2019); and,

PC6.  Expectations of pedagogical prescription from mathematics education 
lit- erature (Rouleau et al., 2019).

The undergraduates’ responses to the mathtasks are analyzed (for the purposes of 
course assessment, as we explain in Sect. 18.4, and for the purposes of research, as 
we explain in Sect. 18.5) through a typology of four interrelated characteristics 
(Biza et al., 2018) that emerged from our prior research with mathematics teachers 
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enrolled on a Master’s course in Mathematics Education. That research focused on 
teachers’ engagement with mathematics and RME discourses – particularly in rela-
tion to mathematics education theories they had been introduced to during the course.

Our typology is as follows:

Consistency: how consistent is a response in the way it conveys the link between the 
respondent’s stated pedagogical priorities and their intended practice? For exam-
ple, do respondents who prioritize student participation in class propose a 
response to a classroom situation that involves such participation of students? Or, 
does their proposed response involve only telling students the expected answer 
to a mathematical problem?

Specificity: how contextualized and specific is a response to the teaching situation 
under consideration? For example, do respondents who write generally about 
their valuing the use of vivid, visual imagery in mathematics teaching, propose a 
response to a classroom situation that involves specific examples of such imag-
ery? Or, does the response include only a general or generic statement of their 
preference?

Reification of pedagogical discourse (RPD): how reified is the pedagogical 
discourse, the theories and findings from research into the teaching and learning 
of mathematics  – that respondents have become familiar with through the 
course – in their responses? For example, how productively are terms such as 
“relational understanding” (Skemp, 1976) or “sociomathematical norms” (Cobb 
& Yackel, 1996) used in the responses?

Reification of mathematical discourse (RMD): how reified is the mathematical 
discourse  – that respondents are familiar with through prior mathematical 
studies – in their responses? For example, how productively does prior familiarity 
with natural, integer, rational and real numbers inform a respondent’s discussion 
about fractions in a primary classroom situation? (Biza & Nardi, 2019, p. 46–47).

In the next section, we see the application of the aforementioned theoretical 
foundations in one mathtask.

18.3  A Mathtask: Students Discuss How to Solve 
an Algebraic Inequality

In Fig. 18.1, we present an example of a mathtask. The context of this mathtask is a 
Year 12 lesson in which the teacher asks the students to solve an algebraic inequal-
ity that involves fractions. Three fictional students, Mary, Ann and Georgia, discuss 
solutions to the problem. The classroom incident is inspired by the difficulties stu-
dents face when dealing with algebraic inequalities (e.g., Tsamir & Almog, 2001) 
and the benefits of overt use of erroneous responses to tasks about inequalities in 
classroom discussions (Schreiber & Tsamir, 2012). Mary’s response involves 
reversing the fractions (and the inequality) without distinguishing whether the 
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Fig. 18.1 A mathtask from the course’s portfolio of learning outcomes

numbers are positive or not. As a result, she misses the point that the inequality does 
not have a solution for x ≤ 0. The correct solution to the problem is 0 < x < 2. Ann 
and Georgia challenge Mary’s choice and trigger an inductive explanation with one 
example:
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1

3

1
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� �,

 

Georgia seems convinced by this explanation. Ann however expresses concerns 
about the explanation and its capacity to result in receiving full marks.

The undergraduates are invited to solve the problem (Q1); to think about the 
potential aims of giving such a task to students in the class (Q2); to reflect on poten-
tial issues evidenced in Mary’s, Ann’s and Georgia’s responses (Q3); and, to respond 
to Mary, Ann and Georgia and to the whole class (Q4).

In terms of MC in the mathtask in Fig. 18.1, undergraduates are invited to solve 
the problem (Q1) and to identify issues in students’ responses (Q3). From the 
Applebaum and Leikin (2014) list of (1)–(12), see Sect. 18.2:

• The problem and the interpretation of fictional student responses require a 
combination of different mathematical topics (see (1), ibid., p.  399)  – e.g., 
meaning, properties and graphical representations of inequalities and variables.

• The problem and fictional student responses require logical reasoning (see (2), 
ibid., p. 399) – e.g., why is multiplication with x2 a correct approach? Or, why 
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does inversing the numbers not necessarily imply inversing the inequality? Or, 
does Mary’s trial of numbers constitute acceptable justification?

• The problem can be solved in different ways (see (3), ibid., p.  399)  – e.g. 
graphical solution, distinguishing cases, multiplying by x2.

• Fictional student responses have errors that should be identified, interpreted and 
acted upon (see (9), ibid., p. 399) – e.g., “[i]f you inverse the numbers, the big 
number becomes small”, Mary says.

In terms of PC in the mathtask in Fig.  18.1, from the list of aforementioned 
challenges (PC1–PC6), see Sect. 18.2:

• Fictional student responses should be seen in the context of the classroom 
incident (Year 12 lesson) and the exchanges between Mary, Ann and Georgia 
(see PC1) – e.g., why does Ann say “[t]his sounds too simple to me. I do not feel 
that this explanation is enough to get full marks”?

• Errors in fictional student responses should be identified with attention to the 
reasons behind the error (see PC2) – e.g.: students’ intuitive beliefs about the 
order of inverse numbers are in conflict with formal properties of numbers; or, 
students draw on inappropriate analogies between processes applied to equations 
to processes applied in inequalities; or, students tend to multiply both sides of the 
inequality with x (Schreiber & Tsamir, 2012; Tsamir & Almog, 2001).

• Engagement (or lack of) with RME narratives, word use and routines (see PC4) – 
e.g., we ask undergraduates to use RME theory and terminology introduced in 
the sessions in their responses to Q2–Q4.

• Critical engagement with mathematics education literature is necessary (see 
PC5) – e.g., we ask undergraduates to use the literature in their responses to this 
item (identification of the issues in question Q3 and response to the stu-
dents in Q4).

• Moving beyond prescriptive suggestions from mathematics education literature 
(see PC6) – e.g., we expect undergraduates to provide a response to the students 
(see Q4) with the expectation to transform the findings from the literature to 
pedagogical recommendation and not teaching prescriptions.

We now describe the course context, objectives, structure, activities and 
assessment.

18.4  The Course: Context, Objectives, Structure, Activities 
and Assessment

The mathematics education course entitled The Teaching and Learning of 
Mathematics is offered as optional to final year (Year 3) mathematics undergraduate 
students (BSc in Mathematics) in a research-intensive university in the UK. The aim 
of the course is to introduce undergraduates to the study of the teaching and learning 
of mathematics typically included in the secondary and post-compulsory 
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curriculum (Biza & Nardi, 2020; Nardi & Biza, 2022). The learning objectives of 
the course include the following: to become familiar with learning theories in math-
ematics education; to be able to critically appraise research papers in mathematics 
education; to be able to compose arguments regarding the learning and teaching of 
mathematics by appraising and synthesizing recent literature; to become familiar 
with the requirements of teaching mathematics; to become familiar with key find-
ings in research into the use of technology in the learning and teaching of mathe-
matics; and, to practise reading, writing, problem solving and presentation skills 
with a particular focus on texts of theoretical content, yet embedded in key 
issues in RME.

Teaching activities, led by Biza, include 1 hours per week (two for lectures and 
two for seminars) for a period of 12 weeks. In the lectures, theoretical course con-
tent is introduced. In the seminars, undergraduates present and discuss their work 
that involves preparing presentations of papers they have read, identifying examples 
from their experience (Data Samples, as per Nardi, 2015), solving problems and 
reflecting on their solutions; and, responding to mathtasks (Biza et  al., 2007). 
Undergraduates are encouraged to upload their contributions in a shared folder 
before the session. Discussion during the seminars typically draws on their uploaded 
contributions. In the middle of the course, for the purpose of formative assessment, 
they are asked to produce a response of about 800 words to a mathtask. Summative 
assessment is at the end of the course in the format of a portfolio of learning out-
comes that involve questions on mathematics education theory; reflection on under-
graduates’ own learning experiences in mathematics; solving a mathematical 
problem and reflecting on the solution; and, responding to mathtasks. Opportunities 
for verbal and written feedback are interspersed across the seminars. There is also 
written feedback for formative and summative pieces of writing and a feed-forward 
session for discussing this feedback once summative assessment is complete.

The mathtask in Fig. 18.1 was in the portfolio of learning outcomes (summative 
assessment) at the end of the course in a recent academic year. The undergraduates 
are asked to use mathematics education theory introduced in the course in the prepa-
ration of their responses to the task – and their portfolio entries overall:

In your responses, you are expected to deploy terms that we introduced and used throughout 
the [course] sessions. You are also expected to refer to a small number (one or two) of 
research or professional publications in each part […] in addition to the essential publica-
tions used in the sessions. (Portfolio guidelines)

Marking criteria are presented in Fig. 18.2 (‘arguments and understanding’ section 
adapted from the marking sheet template given to the students). Of those criteria, 
consistency; specificity; use of terms and constructs from mathematics education 
theory; and, use of terms and processes from mathematical theory are the elabora-
tion of the typology of four characteristics (Biza et al., 2018) – consistency, specific-
ity, reification of pedagogical discourse and reification of mathematical 
discourse – we introduced in Sect. 18.2.

Once the undergraduates’ responses to the mathtasks are marked (for the 
purposes of course assessment), the work of those students who have consented to 
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Fig. 18.2 Portfolio of learning outcomes marking criteria

the use of their work for research purposes is analyzed through the aforementioned 
typology of four characteristics (Biza et al., 2018). In what follows, we present find-
ings from this analysis. First, we introduce the participants, the data and the data 
analysis method.

18.5  A Research Study of Student Responses to a Mathtask: 
Participants, Data Collection and Data Analysis Method

Of the cohort of 13 mathematics undergraduates enrolled on the course we described 
above, eight consented to their work being used for research purposes after the 
completion of the course assessment. These eight undergraduates are the partici-
pants of the study and, at the time of data collection, they were in the third year of a 
3-year undergraduate course in Mathematics. For the purposes of this study, we 
analyzed responses to the mathtask in Fig. 18.1.

As this course aimed primarily to introduce undergraduates to the field of RME, 
a particular focus of our analysis is on manifestations of undergraduates’ engage-
ment with reading, writing, reflecting upon and using the constructs of RME (theory 
and findings in our field) by the end of the course (PC) and in connection to the 
mathematical accuracy of their responses (MC). To this purpose, our analysis draws 
on the typology of the four characteristics (Biza et al., 2018) which we introduced 
in Sect. 18.2 and also underpins the marking criteria of the assessment as we 
described in Sect. 18.4. Specifically, we aim to identify evidence of reification of the 
undergraduates’ pedagogical discourse (RPD) in tandem with reification of mathe-
matical discourse (RMD). The analysis we sample in what follows naturally weaves 
in references to the other two characteristics of our typology: specificity and 
consistency.
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18.6  Analysis of Student Responses to a Mathtask

We start the presentation of the analysis of the undergraduates’ responses to the 
mathtask in Fig. 18.1 by discussing first these responses in terms of reification of 
mathematical discourse (RMD) as evidenced in how respondents engage with the 
mathematical challenge (MC) of the problem and the responses of the fictional stu-
dents (Sect. 18.6.1). Then, in the light of the RMD observations, we discuss reifica-
tion of pedagogical discourse (RPD) as evidenced in how respondents engage with 
the pedagogical challenge (PC) posed by the situation in the mathtask. Specifically, 
we explore four themes (Sects. 18.6.2, 18.6.3, 18.6.4, and 18.6.5) that emerged from 
our commognitive analysis of the undergraduates’ responses to this mathtask: 
engaging with the RME routine of referencing relevant literature (explicitly or 
implicitly); endorsing the RME narrative of the importance of considering social 
interactions during mathematical activity; ritualized engagement with RME theory 
and findings; and, RME theory as a descriptor of pedagogical prescription.

18.6.1  RMD in Responses to the Mathematical Challenge 
of the Mathtask

Of the eight participants, Isaac, Shaun and Tim, agreed with Mary that x < 2 is the 
right response to the problem. They justified their choice by multiplying both sides 
of the inequality with 2 and x without noticing that x might be a negative number 
(see Issac’s response in Fig. 18.3).

The remaining five participants spotted the flaw in Mary’s response and solved 
the problem

• By multiplying both sides with x2 > 0 and then solving the inequality x(x−2) < 0 
(Max, Fig. 18.4);

• By distinguishing cases for x < 0, x = 0 and x > 0 and solving the problem in each 
case (Nicole and Lawrence);

Fig. 18.3 Isaac’s response to the problem
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Fig. 18.4 Max’s response to the problem

• By saying that the inequality cannot be true if x is not positive and then solving 
the problem for positive x only (Penny); and,

• By making the graph of the corresponding function and identifying the parts of 
the graph that satisfy the inequality (Harry).

We focus now on undergraduates’ reflections on the incident in the mathtask as 
evidenced in their responses to Q2–Q4 in Fig. 18.1. We focus particularly on evi-
dence in their responses of engagement with the RME discourse (theories and find-
ings) they had been introduced to during the course.

18.6.2  Engaging with the RME Routine of Referencing 
Relevant Literature (Explicitly or Implicitly)

Unsurprisingly, given the portfolio guidelines and our emphasis in the course 
sessions, all undergraduates engage to some extent with RME narratives, word use 
and routines in their responses to the mathtask in Fig.  18.1. Responses draw on 
theoretical constructs and findings discussed in the course as well as in additional 
ones found in publications beyond the course resources (PC4). Such engagement is 
done however at different levels of criticality (PC5).

In some cases, reflections on the incident are well aligned with RME narratives 
and word use. For example, Nicole writes in her response to the students and the 
whole class:

I would also show a graph of y = 1/x on the whiteboard and the area where y>1/2, which 
would reinforce the learning and illustrate the complications of x = 0. Tsamir and Almog 
(2001) found that inequalities were usually solved correctly when graphs were used, with 
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common problems being not rejecting excluded values, and using techniques that apply to 
equations but not inequalities. (Nicole, Q4)

Nicole proposes the use of a graphical approach as a response to the students and 
justifies this choice by drawing on relevant literature.

In other cases, the enacted words and narratives are tangentially relevant to the 
incident under discussion. Harry, for example, in his response to the students, 
acknowledges the benefits of “constructive conversations” with students and wants 
to promote more “structure” in student responses through the techniques of 
problem-solving:

My response to the students would be to first recognise the constructive convers[at]ions 
they were having with one another to come up with a solution. However, I would then point 
out to them that their responses have a lack of direction or structure. To address this issue, 
I would then recommend the students follow Polya’s Problem Solving Process. In his book 
Polya outlines four stages for solving problems. These stages are (Pólya, 1957):

[… Pólya stages follow]

In studies such as that by (Griffin & Jitendra, 2009) it found when techniques like Polya’s 
was used this led to an increase in student’s problem-solving performance. Therefore, by 
giving learners this instruction, over time it will become a sociomathematical norm to fol-
low this method of problem solving ensuring that proofs are constructed better in the 
future.” (Harry, Q4)

Although problem-solving is at the heart of most mathematical activities, Harry’s 
attempt to connect the situation in the mathtask to Pólya’s stages on problem- 
solving is commendable in principle but arguable in its realization. While we see 
value in his attempt to establish a new sociomathematical norm related to a struc-
tured approach to proving and problem-solving in the classroom he has been invited 
to imagine teaching in, his recommendation is related to the specific situation in a 
tangential, generic manner. It seems to us therefore that Harry’s response lacks 
specificity to the situation in the mathtask – this type of response could be given to 
many, almost any, classroom situation that involves students talking to each other 
during problem-solving. We may discern here therefore engagement with the “ritu-
als” (Sfard, 2008, p. 241) of RME discourse: Harry knows he is expected to demon-
strate awareness of RME works and does so in a generic manner to fulfil his 
task-completion obligation. We return to this point in the next sections.

While Nicole and Harry engage explicitly with RME literature through 
referencing specific works – a routine in RME discourse that the undergraduates 
were explicitly encouraged to engage with – other undergraduates did not do so. 
However, even in those cases, the RME terms used in the course do appear in their 
responses to the mathtask. Shaun, for example, writes:

With regards to Mary, it seems that she does have an understanding of how inequalities 
work when combined with fractions. Although this shows a low level of relational under-
standing her explanation of her method lacks formal language showing us that she has not 
yet fully grasped the sociomathematical norms of the class level. She seems to have applied 
an inductive reasoning to her approach, and although true cannot be relied upon as a formal 
proof. (Shaun, Q3, our underlining)
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Shaun does not see the flaw in Mary’s solution and focuses his critique on her justi-
fication and whether such justification (inductive reasoning) is considered accept-
able or not in the classroom (sociomathematical norms).

Similarly, Tim, who also did not spot the flaw in Mary’s solution, proposes a 
discussion in the classroom about different “proofs” of the problem, which will be 
more “deductive” and “convincing”:

I would then ask the other students whether they had any proofs as to why she is right that 
they prefer to Mary, to see if any of the students would have a proof that is more deductive 
in style and then ask the class which proof they found more convincing and why. (Tim, Q4, 
our underlining)

In Shaun’s and Tim’s responses, we see the enactment of terms (from mathematics 
and from RME) used in the course as well integrated into their argument, although 
the relevant literature from which these terms have been drawn is not explicitly 
referenced. We see such word use as implicit engagement with RME discourse, but 
we note that engagement with the routine of explicitly referencing the relevant lit-
erature is not present. Also, returning to the observation that both Shaun and Tim 
have not spotted the error in Mary’s response, we note that their discussion focuses 
on the mode of the argument (e.g., inductive vs deductive) and not on the mathemat-
ical flaw of the argument. We see this as a missed opportunity to bring in RME lit-
erature that proposes potential explanations of the reasons behind such errors and 
ways to address them.

18.6.3  Endorsing the RME Narrative of the Importance 
of Considering Social Interactions During 
Mathematical Activity

In the participants’ responses, we observed evidence where the incident in the 
mathtask was seen beyond its mathematical focus, as an excerpt of student 
interactions in class. Such responses are attentive to students’ learning activity, to 
the interaction between students or to the norms of the fictional class in the task. We 
consider such evidence as an indication of the participants’ “meta-level learning” 
(Sfard, 2008, p.300) about a common RME routine: a thoughtful consideration of 
student contributions in class requires that they are not simply seen as right or wrong 
(PC1 and PC2).

Nicole, for example, mentions that:

[…] in Vygotsky’s (1978) socio-cultural framework the group work enables benefit from 
the Zone of Proximal Development (ZPD, what they can learn with the support of more 
knowledgeable others); and from scaffolding (the support they get from others e.g. students, 
the teacher). (Nicole, Q2)

Later, she returns to this point when she writes “Georgia has understood Mary’s 
response, so has derived some benefit from the ZPD. However she has not noticed 
Mary’s error […]” (Nicole, Q3). Although in Nicole’s response the use of ZPD is 
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not precise – it is worded as an approach that can benefit student learning – we can 
see her attending to the interaction between the students and the potential contribu-
tion of this interaction to students’ learning. She warrants her support for this type 
of interaction with her  – not-so-precise but appropriately selected  – a refer-
ence to ZPD.

Similarly, Isaac comments on the interaction (and scaffolding) between Georgia 
and Mary:

Georgia is hesitant to give her own answer until she hears Mary’s explanation for her 
answer, where she simply agrees. Georgia’s agreement with Mary does imply that her con-
cept is expanding and reveals the working of scaffolding between Georgia and Mary within 
the class. (Isaac, Q3)

Isaac has not spotted the error in Mary’s response and his attention is mostly on the 
justification of why x < 2 is the right response and the communication of this justi-
fication. In particular, he discusses how Mary tries to persuade Georgia and Ann:

With Mary’s response, observations show that she seems confident in her answer, and is 
prepared to give answers for how she solved the question. She has a persuading proof, 
removing doubts the others have (Harel & Sowder, 2007, p. 6). Mary’s justification and 
mathematical reasoning does not meet the expected standard for a year 12 class. It would 
be assumed that in her class, there would be socio-mathematical norms set in which math-
ematically proving and justifying answers. (Isaac, Q3)

Similarly to Isaac, several students aptly – if not always with precise wording – ref-
erence the construct of sociomathematical norms (Cobb & Yackel, 1996) to discuss 
Ann’s concerns whether Mary’s solution is enough to receive full marks. Nicole 
writes in Q3: “Ann appears to have understood Mary’s response, but thinks the 
explanation is too simple. She has considered the sociomathematical norm of ‘what 
counts as an acceptable mathematical explanation’ (Cobb & Yackel, 1996, p.178)”.

Penny also sees the establishment of sociomathematical norms in the aims of 
using such a problem in a Year 12 class when she writes that

[the problem] also aims to tackle a sociomathematical norm explored previously, where 
students may have the idea that longer, more complicated answers are usually worth more 
marks, so this task can produce evidence of problems that conflict with this notion and chal-
lenge it. (Penny, Q2)

Overall, although some of the participant statements are not precise – e.g., “[Georgia] 
has derived some benefit from the ZPD” (Nicole) – we see participants’ attending to 
issues of student interaction and the social/sociomathematical norms of the mathe-
matics classroom as an endorsement of a common RME narrative: social interac-
tions, not only the mathematical content of such interactions, is a significant and 
worthy focus of attention when we consider students’ contributions in class. The 
explicit attending to these social interactions in the participants’ responses evi-
dences part of what we see as their becoming social scientists, in tandem with being 
mathematicians: they are endorsing the priorities, foci and methods of the social 
science of mathematics education while remaining attentive to the mathematical 
focus of the classroom incident under scrutiny.
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18.6.4  Ritualized Engagement with RME Theory and Findings

We have already seen examples in which engagement with RME narratives and 
words is relatively inaccurate (e.g. Nicole’s reference to ZPD) or not so relevant to 
the situation (e.g. Harry’s generic connection to the problem-solving literature). 
Having in mind that these responses were produced in the context of summative 
assessment, we acknowledge the undergraduates’ understandable effort to appear as 
knowledgeable and appreciative users of the RME terms introduced in the course 
(PC4) for the purpose of achieving a higher mark. We detect therefore that they may 
do so in a ritualized way.

Max uses the constructs of “concept image” and “evoked concept image” (Tall & 
Vinner, 1981) to describe students’ exchanges in the incident. He seems to use “con-
cept image” to describe students’ deficiencies:

Mary’s concept image “may cause problems” (Tall & Vinner, 1981) as it does not take into 
account the cases where x is less than 0 […] Georgia does not have a concept image […] 
There is “conflict” (Tall & Vinner, 1981) in Ann’s concept image, most likely leading to her 
confusion” (Max, Q3, his quotation marks).

Max’s reflection develops around the adequacy or not of Mary, Ann and Georgia’s 
concept image and whether they can see that x might be a negative number. In his 
response to Q4, he does not attempt a reconstruction of their contributions or he 
does not address the conflict that may emerge from these contributions. He merely 
proposes a correct solution to the problem instead. Max’s response indicates confi-
dence with the mathematical content (RMD) but also a tendency to focus on what 
he sees as important: the correctness, or otherwise, of the students’ contributions. 
He takes a largely deficit perspective on these contributions and resorts to the RME 
literature through a superfluous reference to “concept image” (possibly because he 
thinks that such a reference may help him gain marks). His alignment with the 
words, routines and narratives of the RME discourse may therefore be seen as 
ritualized.

We saw earlier Nicole proposing a visual approach (graphing functions 1/x and 
1/2 and showing where the former lies above the latter) for her response to the class 
and grounding this choice in the relevant literature. A similar proposition came from 
Penny: she “would have them draw the graph of 1/x to help them visually under-
stand and identify what values x can take in this situation” (Penny, Q4). She justifies 
this proposition as follows:

Using a more visual method could also potentially aid those that would be considered 
Visual Spatial Learners who may struggle to understand problems without a visual repre-
sentation, as detailed by Rapp (2009) in her paper on the subject. (Penny, Q4).

The reference here to the “Visual Spatial Learners” is one that does not resonate 
with the focus and principles of the course that explicitly fostered an avoidance of 
crude characterization of learners (as visual, analytic or kinesthetic, for example) 
and encouraged characterizations of learning (and, even more, of learning in con-
text). We are aware though that such characterizations proliferate amongst 
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practitioners who find them readily helpful when they plan differentiated activities 
in their lessons. It is not unlikely that Penny’s response may be influenced by recall 
of uses of such characterizations by, for example, her teachers when she herself was 
in school.

Yet, Penny’s response continues with at least two references directly from those 
RME works introduced in the course, Ball et  al.’s (2008) Specialized Content 
Knowledge (SCK) and sociomathematical norms (Cobb & Yackel, 1996).

This would also fall within Ball, Thames and Phelps’ Specialized Content knowledge (Ball 
et  al., 2008), as without my own understanding of how the problem may be related to 
graphs, this would not be a viable method. It would also be beneficial to explain that when 
x is taken to be a non-zero positive, Mary’s method would work, but not in all cases, with 
the above example given, so the students could understand from their own work and think-
ing where the issues arise. Solving the issue alongside the students could also potentially 
combat the aforementioned sociomathematical norm that answers must be complicated for 
high marks. (Penny, Q4)

We see in Penny’s response an attempt to bring elements from the literature, some 
of them directly relevant to the incident (sociomathematical norms) and some a lit-
tle less directly so (specialized content knowledge). We note however the reflective 
element in her response when she quotes SCK: for a teacher to be able and willing 
to offer a confident alternative to solutions proposed by their students, her own SCK 
needs to be confident. We see merit in Penny’s efforts to discern teacher-related 
issues in a mathtask incident that at face value seems to be largely about learners.

18.6.5  RME Theory as a Descriptor 
of Pedagogical Prescription

We now return to Nicole’s response that “group work enables benefit from the Zone 
of Proximal Development” and that “Georgia has […] derived some benefit from 
the ZPD”. In this statement, ZPD seems enacted not as a tool to explain Georgia’s 
meaning-making in her interaction with Mary, but as a didactic approach with 
potential benefits for learning. Lawrence’s response to Q4 evidences a tendency we 
discerned in the undergraduates’ responses to deploy RME theoretical constructs 
not as explanatory tools but as recommendations for effective teaching prac-
tice (PC6):

Firstly, I would use the teaching triad which introduce by Barbara Jaworski (1994). 
According to Management of Learning I have to split the classroom into groups and give 
them some examples and tasks to check whether the students are familiar with negative 
numbers and of course negative inequalities. Also, I have to remind them the principle that 
if we inverse the positive numbers of the inequality then the sign of the inequality changes. 
For example, if we have two positive numbers 5 > 4 then 1/5 < 1/4. Also, if we multiply an 
inequality with negative number then the sign of the inequality changed. For instance, let 3 
< 6 then if we multiply by −1 both sides then −3 > −6. In addition, when I would finish with 
these examples, I would encourage the students to participate into a dialogue with the aim 
to realise if they understand these principles (sensitivity to students). Furthermore, I will 
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split the problem into three cases. First case, when x < 0 second case when 0 < x < 2 and 
third when x > 2. Also, I can use a program like desmos1 to sketch graphs and I can sketch 
the graph y = 1/x and y = 1/2 and try to find values where y = 1/x is above y = 1/2. Lastly, I 
would ask the students for any “challenges to engender mathematical thinking and activity” 
(Potari & Jaworski, 2002, p. 352–353) with this task and any questions that they appear 
(Mathematical Challenge).” (Lawrence, Q4)

For Lawrence, Jaworski’s Teaching Triad (1994) is not, as its author intended, a lens 
through which to analyze classroom events; it is instead an alert to three areas of 
concern that a teacher needs to address: how to manage classroom activity; how to 
address student needs with sensitivity; and, how to provide precise mathematical 
support. We discern in this, and other responses of this ilk, a tendency of our new-
comers to see RME as an applied field that is able and willing to provide a peda-
gogical prescription. As such, RME theoretical constructs are often construed by 
our participants not as interpretive instruments but as alerts to what the field pre-
scribes as pedagogically efficient.

18.7  How Facing the MC and PC in Mathtasks Works 
as a Boot-Camp Experience for Newcomers into 
RME Discourse

In this chapter, we present a course that aims to introduce third-year undergraduate 
mathematics students to the field of mathematics education research (RME) by 
deploying certain course activities and their assessment frame. The course activities 
are inspired by studies that have identified the epistemological differences between 
practices in mathematics and mathematics education (Boaler et  al., 2003; 
Kontorovich & Rouleau, 2018; Nardi, 2015; Rouleau et  al., 2019; Schoenfeld, 
2000) and have addressed these differences in the learning of postgraduate students 
(Nardi, 2015; Rouleau et al., 2019). Specifically, in this chapter, we focus on one 
specific type of activity (mathtask) inspired by the principles of the MathTASK 
program (Biza et al., 2007) that contextualizes the use of RME theory and the math-
ematical content in specific learning situations. Mathtasks aim to pose both mathe-
matical and pedagogical challenges (MC and PC) to undergraduate students. 
Undergraduates’ responses to such challenges are analyzed for the purposes of 
course assessment and for the purposes of research through an adaptation of a typol-
ogy of four interrelated characteristics (Biza et al., 2018): consistency; specificity; 
reification of pedagogical discourse; and, reification of mathematical discourse. In 
this chapter, we present findings from the analysis of the evidence of reification of 
mathematical and pedagogical discourses (RMD and RPD, respectively) in the 
responses of eight undergraduates.

1 https://www.desmos.com
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With regard to RMD in response to MC (Applebaum & Leikin, 2014; Leikin, 
2014), three undergraduates erroneously multiply both sides of the inequality with 
x (Schreiber & Tsamir, 2012; Tsamir & Almog, 2001) and conclude with the same 
incorrect solution, x < 2 (as student Mary in the mathtask): they cannot see the error 
in Mary’s response but comment on how Mary warrants her response. The remain-
ing five undergraduates present a range of mathematically valid responses.

With regard to RPD in response to PC (PC1–PC6, see Sect. 18.2), our analysis 
highlights that the undergraduates engage with RME literature either explicitly, 
with the use of theoretical constructs connected to citations of relevant studies, or 
implicitly, with the use of theoretical constructs without the appropriate citations 
(PC4). Sometimes this engagement is at different levels of criticality (PC5). The 
undergraduates do not always realize that an argument in the social science of RME 
needs to be supported by evidence, either of a first-order – namely, data they col-
lected themselves – or of second order – namely, findings published in peer-reviewed 
RME outlets (Nardi, 2015).

The literature that the undergraduates choose to reference varies from specific to 
the topic under discussion to generic and less relevant. We see this as an attempt to 
gain marks in the course assessment and earn the lecturer’s approval: they need to 
appear as knowledgeable and appreciative users of the terminology the lecturer 
introduced in the sessions. We see this as ritualized engagement with RME for the 
purpose of being accepted as a member of the RME community. One of these rituals 
is referencing the work of eminent members of the community. We see such engage-
ment as a productive, albeit imperfect, path in the epistemological shift from math-
ematics to mathematics education. More nuanced enculturation can follow.

Furthermore, we observed how the undergraduates attend to social or institutional 
aspects of the mathematical activity that is contextualized (PC1), goes beyond 
considering the mathematical correctness of the students’ contributions in class and 
pays attention to group work, student interaction and sociomathematical norms 
(PC2). In doing so, the undergraduates sometimes conflate theoretical constructs – 
intended as interpretive tools in the analysis of learning and teaching situations in 
mathematics – with pedagogical prescriptions (PC6). We see this as a natural step 
from the prescriptive and normative position that theory may hold in the natural sci-
ences and mathematics to its more interpretive and reflective role in the social sci-
ences. And, again, we see this as a place from which more nuanced enculturation 
can follow.

RMD is strongly related to RPD. We observed the interface of attending (or not) 
to certain mathematical issues in the classroom situation presented in the mathtask 
with the noticing (or not) of certain details of a pedagogical nature. For example, 
undergraduates who did not spot the mathematical error in the incident tended to 
focus their attention on how the solution is communicated. Although they reflected 
on what an acceptable proof would have been – e.g. differences between deductive 
and inductive proof, persuading others etc. – the opportunity to discuss the mathe-
matics of the problem and to address associated student needs eluded them. This 
observation illustrates the potency of activities that pose both MC and PC. Discussion 
of issues related to mathematics as well as to the learning and teaching of 
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mathematics are better situated when MC and PC are seen in synergy. For those 
who are engaged, or intend to engage with mathematics teaching, mathematical 
content can be better seen in the context of classroom situations – and pedagogy can 
be better supported by relevant mathematical content.

We see the potency of the course activities we present in this chapter to welcome 
mathematics undergraduates into RME in a manner that balances engagement with 
mathematics and mathematics education discourses productively (see also Nardi & 
Biza, 2022). Also, we see how the findings from this study can inform us about how 
undergraduates’ epistemological transition from the sciences to the social sciences 
can be facilitated and how such findings can provide tools for nuanced and targeted 
formative feedback. Finally, we see this work as contributing to the ongoing 
endeavor in our field to support the entry of newcomers with diverse backgrounds 
to mathematics education research (Kontorovich & Liljedahl, 2018).
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Chapter 19
Commentary on Part II of Mathematical 
Challenges For All: Making Mathematics 
Difficult? What Could Make 
a Mathematical Challenge Challenging?

David Pimm

Back in 1972, after my first mathematics undergraduate year at the University of 
Warwick in the UK, I came across a very brief book review by Douglas Quadling in 
The Mathematics Gazette (who had become its editor in 1971), a teacher mathemat-
ics education journal I had been looking at for the previous couple of years. The 
book was called Mathematics Made Difficult (Linderholm, 1971) and Quadling wrote:

Professor Linderholm’s analogy of Parkinson’s law is that “the simpler the things a man 
gets difficulty out of, the better his mathmanship”. […] You will learn far more about num-
ber systems and the like from this book than from many far more solemn tomes several 
times as long. (1972, pp. 255–256)

I got the book from the library and saw that its title was, in part, a reaction to a num-
ber of books at the time related to ‘mathematics made easy’. I read it as much as I 
could (and it amused me appreciably, as well as confounding me in places), not yet 
having engaged with forgetful functors, monoids and categories. As William 
Thurston (1995) subsequently wrote, “as mathematics advances, we incorporate it 
into our thinking” (p. 29), something I shall return to in engagement with Nicholas 
Wasserman’s chapter.

There was a second, more detailed, Carl Linderholm book review that I just came 
across this year, by Geoff Howson (1972). He wrote:

To take this book as the excuse for a sermon on pedagogy would, however, be wrong. It is 
a jeu d’esprit that should be treated as such. True, it contains much involved and deep math-
ematics that demonstrate, in particular, how pure mathematicians now concentrate their 
attention on mappings rather than on the things on which they are defined. Thus a ‘modern’ 
view is that “a group is a category with one object in which every morphism is an isomor-
phism”. (p. 83)
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But 50 years later, while reading all the chapters of Section 2 in this book, memories 
of this old book came back to me, with regard to the notion of ‘challenge’. And 
some questions arose. Is a challenging task one that is not difficult? Is a challenging 
task one that arises out of a sequence of activities or is it a stand-alone? Is it possible 
to speak of a challenging task without including the person being tasked and/or the 
tools at one’s disposition? And, based on Roza Leikin and Raisa Guberman’s chap-
ter, there are also “insight-allowing” and “insight-requiring” challenges.

One aspect that arose is clearly the potential of a reconceptualisation of the 
concept involved. I also deliberately challenged myself mathematically by working 
on all of the tasks on offer in this section. But my response, as a short reflection 
chapter, primarily consists of detailing some personal associations that arose from 
my reading (and doing).

Before that takes place, however, I want to add that, of late, I find myself 
increasingly interested in the etymology of certain core words. In this instance, 
obviously, it is both the transitive verb ‘to challenge’ and the noun ‘a/the challenge’. 
In regard to the verb, it is significant both in terms of who or what is the subject and 
who or what is the direct object. I appreciated John Mason’s final reflection 
comment:

I can be challenged by something or some person, and I can feel challenged by something 
or some person, but I can also choose whether or not to accept that challenge.

Historically, ‘challenge’ is quite a negative term. There is an old French verb cha-
lenger (and related noun chalenge), derived from Latin, which meant “to accuse 
falsely” or “to slander”, and a related middle-English sense of “accuse/accusation”. 
Even now, it commonly means questioning whether something (or someone) is 
right. It also is sometimes used comparatively and competitively between individu-
als engaged in a common activity. According to an etymological online site, the 
“Meaning of ‘difficult task’ is [only] from 1954” (https://www.etymonline.com/
word/challenge).

But, in this section, the challenge is often seen as potentially positive (though for 
whom is, on occasion, in question), although in their chapter Nathalie Sinclair and 
Francesca Ferrara address the notion of mathematical challenge more relationally, 
based on grade-one students and technology, and broaden and distribute the notion 
in multiple ways and into plural dimensions.

As with these early instances, from now on in this concluding piece of this 
section, I shall pick up an item or a mention from some of the earlier chapters and 
connect it with my (increasingly nostalgic, given post-retirement) experience. For 
instance, the very first sentence of Irene Biza and Elena Nardi’s chapter is:

Some institutions offer courses on mathematics education in mathematics undergraduate 
programs with the aim to introduce students to the field of mathematics education research 
or/and to prepare them for the profession of mathematics teaching.

One of the very first instances of this aspect and location of teaching in the UK was 
by David Tall in the mathematics department at the University of Warwick (another 
significant, similar course was taught at the same time by Brian Griffith and Geoff 
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Howson at the University of Southampton) in the early 1970s. I took it in 1972 and, 
among other things, we worked intensively on Zoltán Dienes’ (1960) book Building 
up Mathematics. But there was no overlap with tertiary mathematics: rather, there 
was an expansion of secondary mathematics content in terms of pedagogic 
possibilities.

I felt this was also the case of the inequality task described in Irene Biza and 
Elena Nardi’s chapter, though I misread it as asking to solve −1/x > 1/2, which has 
the solution range −2  <  x  <  0, rather than to solve 1/x  >  1/2, whose solution 
(0 < x < −2) they discussed at length. It raised questions for me about symmetry/
rotation/reflection/… in terms of the answer in relation to the functional diagram.

More broadly, I was unsure how having undertaken a degree in mathematics 
would assist specifically in working on this task. Nevertheless, a mathematician col-
league, who had been relearning some norm aspects of linear algebra for a new 
course he is teaching, said, “Nothing specific from what I have relearnt will be 
taught, but nonetheless I feel a better teacher about it and some elements may 
implicitly turn up”.

One event that came up when Richard Skemp was applying to be the professor 
of education at the University of Warwick in 1973 was in a lecture he gave to the 
mathematics department. It involved an issue of whether examples should be pre-
sented before a formal definition or the other way around. Skemp declared the for-
mer, while Chris Zeeman preferred the reverse, as long as examples were made 
evident immediately afterwards. Interestingly, Trevor Hawkes gave a first-year 
group theory course in 1970 and presented over 20 such varied instances prior to the 
formal definition being provided, which then created the notion of a group, after 
which these all became examples of a group. I think an example is not an example 
until the object of which it is to be an example of surfaces/appears/shows up.

However, the most significant thing for me from David Tall’s course was 
wondering whether the course was at all intended to improve my understanding of 
mathematics. Recalling it also got me re-interested in the need for distinguishing 
‘solution’ and ‘proof’, as well as ‘task’ and ‘activity’, to which John Mason, in his 
chapter, also referred.1 The task frequently is not mine, but the activity always is.

Isabel Vale and Ana Barbosa, in their chapter, indicate both their separation and 
temporal order by writing, “Although tasks have the power to trigger mathematical 
activity, they may not be sufficient to implicate mathematical challenge”. The tem-
poral order also came up in Mark Applebaum and Rina Zazkis’ chapter, both in their 
abstract, “we turn the conversation from a challenging task or problem to a chal-
lenging activity” and in the main text, “the challenge of explanation arises after the 
solution is found”. Nevertheless, according to Jane Austin, “Time alone does not 
determine intimacy”.

I had not come across the Applebaum and Leikin (2014) article detailing aspects 
of a mathematically challenging task before. However, the first characteristic – “a 

1 Christiansen and Walther (1986) provide a significant discussion and distinction between ‘task’ 
and ‘activity’, something that the negation regularly causes issues in mathematics education by its 
blurring (not least in regard to activity theory).
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problem requires combination of different mathematical topics” – brought to mind 
the striking mathematician Thurston’s (1995) article, where he described his profes-
sional work invoking and bringing together a variety of significantly different areas 
in certain proofs. The third characteristic – “a problem that has to be solved in dif-
ferent ways” – evoked for me Euler’s optional multiple different proofs of the same 
theorem. My intention here is to suggest that professional mathematicians engage in 
these characteristics too.

The Nicholas Wasserman chapter triggered significant echoes for me of the ‘New 
Math’ circumstances from the 1960s and 1970s.2 This was, in part, because Nathalie 
Sinclair and I have just been writing a chapter about Canada in that context (Pimm 
& Sinclair, in press). And for a decade and more in many parts of the world in that 
period, there were versions and diverse attempts precisely to interact ‘secondary’ 
and ‘post-secondary mathematics’.3

But the term ‘advanced’ mathematics rather than ‘tertiary’ also brought up for 
me the fact that ‘elementary’ (as opposed to ‘primary’) also has a connotation of 
simplicity (“Elementary, my dear Watson”), as well as early. By evoking Felix 
Klein’s translated title from the 1920s as invoking an ‘advanced standpoint’, it 
misses the common mistranslation of höheren in his title (Elementarmathematik 
vom höheren Standpunkte aus), which actually means “higher” more than 
“advanced”.

Nicholas Wasserman’s footnote 1 also engages with these complex connotations:

‘Elementary’ in this sense can be understood in relation to the fundamental ‘elements’ of 
school mathematics, both elementary and secondary school levels, and ‘advanced’ can be 
understood in relation to university, or tertiary, level mathematics

At ICME 11, Jeremy Kilpatrick presented a significant engagement with Felix 
Klein’s connotations in this regard (and much, much more):

Throughout his career, Klein saw school mathematics as demanding more dynamic teaching 
and consequently university mathematics as needing to help prospective teachers “stand 
above” their subject. […] I suggest why higher is a better translation than advanced is and 
end by noting some problems posed when considering mathematics education from a 
higher standpoint (2008, pp. 26–27).

2 And, relatively recently, there is an engaging article entitled ‘The new new math’ (Brown, 2015), 
that, in part, reviews Cheng’s (2015) book How to bake π: An edible exploration of the mathematics 
of mathematics. In particular, Aaron Brown discusses Eugenia Cheng involving category theory 
rather than set theory (hence his article title). And her book is full of metaphors about mathematics. 
Lastly, Ian Stewart (another of my lecturers at the University of Warwick, coincidentally) 
commented on her book, “From clotted cream to category theory, neither cookery nor math are 
what you thought they were. But deep down they’re remarkably similar. A brilliant gourmet feast 
of what math is really about.”
3 I started secondary school aged 11 in September 1964 and, as we went up through the years, our 
year turned out to be the last of ‘old math’ in that school. In the following year’s class, the new 
students started using Richard Skemp’s series of books entitled Understanding Mathematics: 
11–16. Across desks in school, I subsequently saw scrawled ‘Skemp is hard’, ‘Skemp is mad’ and 
‘Skemp is impossible’ (see Pimm, 2002). Nevertheless, I more than happily worked with Skemp 
for a couple of years 1979–1981.
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My interest was also caught up by Rina Zazkis’ introduction to this section, where 
she provided a challenge of sorts: “However, to recognise a binary operation as a 
function we need first to expand the school idea of a function”. I recalled having 
worked on determinants of matrices (2 × 2 and 3 × 3) at school but was taken aback 
once more in my first-year linear algebra course by David Fowler, when he defined 
the determinant as a function det: Mn(ℝ) → ℝ with the property that det(AB) = det(A)
det(B), where A and B are n × n real matrices in Mn(ℝ). In passing, there is also a 
notational issue in that the determinant notation is identical to the absolute value 
notation, but the former can be positive, negative or zero, while the latter has to be 
non-negative.

In the William Thurston article I mentioned above, he provided seven different 
notions of derivatives and then provided an eighth one he called “number 37”! But 
he made sure we were aware that, “This is a list of different ways of thinking about 
or conceiving of the derivative, rather than a list of different logical definitions” 
(p. 30). It is clear to me that this is about a mathematical concept rather than a math-
ematical definition.

There is an engaging book called What is a mathematical concept? (de Freitas 
et al., 2017) and, when writing its final chapter, I listed 16 brief elements, including, 
“Mathematical concepts are thought-fossils (mostly from extinct species?)”, “What 
is the virtue of the virtual in mathematics?”, “A mathematical concept is not a defi-
nition, but even definitions mutate (mutatis mutandis)” and ‘Mathematical concepts 
are rays” (Pimm, 2017, pp. 276–277).

The issue of addition or multiplication as operations as opposed to functions, in 
part, has to do with the notation and where it is placed. Yes, it could be ‘×(3, 5)’ – in 
English, “Multiplying three by five” or, possibly better, “multiplying three and 
five” – but there could also be ‘(3, 5)×’ (an order known as reverse Polish notation 
in some contexts, especially technology) and I do recall from it occurring in my first 
group-theory course, the notation of functions can be placed after the elements 
rather than before them. So, will Nicholas Wassermann’s proposal that, in school 
notation, operations can/should be framed as functions mean that the entire conven-
tional notation about operations needs to be adjusted?

My final recollection was of Michael Spivak (1967, pp. 257–258) in his calculus 
text, where he makes it clear that there are two distinct (albeit related) sine func-
tions – which he symbolises as sin°(x) and sinr(x) – where x is, as always, simply a 
number, and not a unit (degrees or radians4). Two different functions, not two 
different notations. And while the derivative of sinr(x) is the function cosr(x), the 
derivative of sin°(x) is not cos°(x), even though it is just a multiplicative constant 
away. So, do we again need to change different units into varied functions, this time 
in trigonometry?

In conclusion, I’m still pondering on what it is that makes a mathematical 
challenge challenging.

4 And it is curious there is no actual notation for radians, other than the truncation ‘rad’, as there is 
for degrees. And there would need to be a third set of trigonometric functions if gradians (truncated 
‘grad’) were used (90 degrees are equivalent to 100 gradians), a third arbitrary unit of angles. Yet 
a full rotation is, of course, not arbitrary at all.
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Chapter 20
Introduction to Part III of Mathematical 
Challenges For All: In Search 
of Effectiveness and Meaningfulness

Alexander Karp

This part of the book is devoted to collections of problems, their meaning, role, 
place, and use in the process of problem solving. Today, problem solving is proba-
bly one of the most widely used expressions – the literature about this topic is vast, 
ranging from the works of Polya (1973) or Schoenfeld (1985), which have become 
classics, to such recent publications as Liljedahl et al. (2016), Liljedahl and Santos- 
Trigo (2019), and many others, including ones that will undoubtedly appear in print 
by the time this book is published. Moreover, and indeed, more importantly, each 
schoolteacher today knows about the importance of challenges and problem solving 
in the process of teaching and learning, and no one needs to be persuaded of this 
importance: the difficulties begin when educators begin to discuss what exactly this 
term means, and above all, what concretely is to be done. Without attempting in this 
brief introduction to examine all or even many of the possible interpretations of the 
concept of problem solving and consequently the concrete actions performed under 
this banner in class, we will cite just one real-world example, which the author has 
recently had occasion to encounter.

I received a call from friends whose son, a sixth grader – who, like his class-
mates, is still interested mainly in new episodes of Star Wars and computer games – 
was assigned the following problem:

Find the positive integers a and b such that a > b and

 

1 1 1

3a b a b�
�

�
�
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Not only the child, but his parents as well, did not know what to do. The boy’s 
uncle – more experienced in computer possibilities than my friends – put together a 
table in Excel and came to the conclusion that the unknown numbers were 8 and 4, 
but this approach seemed dubious to the parents and so they turned to me.

I must admit that the equality 
1

12

1

4

1

3
� �

 was one that I simply 
remembered(probably because I spent a lot of time discussing so-called aliquot 
fractions with students, which come up in lectures on ancient Egyptian mathe-
matics). It is not difficult to find the numbers a and b that correspond to these 
fractions: one must solve a system of linear equations, which will indeed give 
the solutions a = 8 and b = 4 This is in fact the only solution.

Indeed, suppose that 
1 1

4a b�
� ; but then 

1 1

5a b�
�  (it cannot be otherwise, 

 since 1 1

3a b�
� ).

But then

 

1 1

3

1 1

3

1

5

2

15a b a b�
� �

�
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It remains to remark that this gives us
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2, fromwhichwesee that and bb � 2 5.

from which in turn it becomes clear that the only pair of positive integers satisfying 
the obtained system of inequalities is

b

a

�
�

�
�
�

1

6
, but thissystem doesnot satisfy the given equality.

It is not difficult to come up with other solutions that in one way or another make 
use of considerations of divisibility, but it is far more interesting to ask: what exactly 
did the teacher have in mind (since solutions such as the one offered above or that 
make use of divisibility can hardly be expected of ordinary sixth-graders)? As might 
have been expected, the next day showed that the teacher was quite satisfied by the 
answer 8 and 4, which was expected to be obtained by trial and error.

At this point, we might lament about the insufficient mathematical preparedness 
of teachers, who do not understand what it means to solve a problem; but it is no less 
important to tell about how the teacher imagined problem solving. It was clearly 
conceived by the teacher as an activity isolated from any prior experience: the stu-
dent approaches the question (the challenge!) creatively, that is, tries to do some-
thing, and as a result of his or her creative activity, comes upon the solution. 
Consequently, the teaching process itself (sometimes not just implicitly, but explic-
itly as well) turns out to consist in making students understand that they should not 
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just sit and do nothing (which is undoubtedly true), but that they should try to plug 
something in somewhere. Creativity is in some measure contrasted with knowledge 
(in certain problems, this harmonizes quite well with the recommendation that these 
problems be solved in a particular way, because this is precisely how they are solved, 
which is something that has to be known) and turns out to be a mysterious process, 
which is not taught at all (by contrast with what goes on in English classes, it must 
be said, in which, despite whatever critical remarks might be made about what stu-
dents are usually invited to do in classes on creative writing, teachers nonetheless 
attempt to teach them certain useful techniques).

It is not difficult to see that the reasoning given above in fact is by no means 
unique. Although the solver did not know the given problem, this was not his first 
encounter with a situation in which he was given the sum of fractions each of which 
sooner or later becomes small (readers might recall examples of such situations for 
themselves – we might mention, for example, the analysis of the equation that is 
formulated when proving that there are only five Platonic solids1). The given prob-
lem was not isolated, but similar to others, which is why it was easy to solve.

The meaning of heuristics offered by Polya in large part consists precisely in 
examining a problem not in isolation, but as part of some set. The classic 
recommendations:

You may be obliged to consider auxiliary problems
Have you seen it before? Or have you seen the same problem in a slightly different form?
Do you know a related problem? Do you know a theorem that could be useful? 

(Polya, 1973)

in fact, encourage students to contextualize a given problem within some set of 
other problems. Meanwhile, Polya’s subsequent recommendations – “Can you use 
the result, or the method, for some other problem?” – encourage them to extend the 
set of problems.

This does not mean, of course, that problem solving is merely the combination 
of several (even many) existing methods: it may turn out that an approach is needed 
that is completely new for the solver, and in general, success is not guaranteed to 
anyone (including all of humanity) by anything. The only claim being made here is 
that the experience of thinking and working with problem sets helps – and that the 
acquisition of such experience is indeed what is called learning. The teacher in the 
instance cited above in no way helped the students, although even help with orga-
nizing trials (if only by proposing a separate problem – filling in a reasonably orga-
nized table in Excel) might have been of some help. But to repeat, the teacher 
believed precisely that he was giving students an opportunity to engage in genuine 
problem solving, which students carry out on their own.

In fact, schoolchildren do not very often encounter isolated problems that they 
must in one way or another extrapolate into a set: usual school practice consists in 
giving schoolchildren what is a set already – a set of problems in class or a set of 
problems in the textbook. The set can be a more or less accidentally gathered 

1 Hyman Bass writes about such problems in his paper in this collection.
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assemblage, in which case each problem indeed must be solved as if in isolation, as 
well as a preconceived system, which makes it possible not only to make the process 
of solving individual problems easier or even to show how the generalization of a 
result or its transference onto other objects is accomplished but also to show the 
unfolding of mathematical thinking, thus giving more than all of the problems 
would have given if they had been considered in isolation from one another.

Moreover, the meaningfulness of mathematical activity becomes clear only 
when we consider it within the framework of some system. The favorite question of 
many schoolchildren – “Why do we need to solve this or that problem?” – can rarely 
be answered without recalling other problems. Naturally, applications of mathemat-
ics to real-world problems make mathematics necessary and useful. The answer that 
one needs to know how to solve some problem because knowing how to do this will 
make it possible, for example, to determine the coordinates of a ship in the ocean or 
the height of a launched rocket after some interval of time, is meaningful and even 
persuasive (although stubborn schoolchildren might point out that no one searches 
for coordinates in the offered way anymore, and that they have no intention of 
launching any rockets). But this is not yet the end of the matter: the meaningfulness 
of mathematical activity is attested to by the fact that, as a result of it, certain exist-
ing problems are solved, or it proves possible to pose and solve certain new prob-
lems, ones that by no means necessarily have any direct practical application. In 
mathematics, people do not solve isolated brainteasers but think about complexes of 
problems. Constructing and solving such complexes is certainly no less exciting 
than moving from one level of a game to another, which is something that millions 
of schoolchildren are thrilled to do without asking how this benefits them or why 
they are playing the game to begin with.

The value of an assertion (problem) becomes clear only in juxtaposition with 
other problems. In a textbook coauthored with others, the outstanding Russian geo-
metrician Alexander Alexandrov asked why the Pythagorean Theorem is considered 
so important (Alexandrov et al., 1992, p. 139). One of the reasons, of course, is the 
enormous number of its direct applications in various problems. But there are also 
more complex connections with other problems. Alexandrov wrote as follows:

The Pythagorean theorem is also remarkable because in itself it is not at all obvious. If you 
look closely, for example, at an isosceles triangle with an added median, then you will be 
able to see directly all of the properties that are formulated in the theorem that deals with it. 
But no matter how long you look at a right triangle, you will never see that its sides stand 
in this simple relation to one another a2 + b2 = c2.

By comparing and contrasting problems and assertions, we not only learn to solve 
them, but also experience a complex combination of aesthetic and emotional sensa-
tions (which absolutely should not be concealed from students). Two other Russian 
mathematicians, Glazman and Lyubich (1969), who wrote what is effectively a 
course in mathematics in the form of a collection of problems, compared their prob-
lem book to music lessons, “each of which is devoted to a specific aspect of musical 
preparation and which together form the foundation for the performance skills of 
the future musician” (p. 7).
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The question of how problem sets are constructed and how they can be con-
structed (and the author of this introduction believes that the ability to construct 
them is, if not the most important, then certainly one of the most important aspects 
of the professional competence of the mathematics teacher) has evidently not been 
sufficiently studied – even though one can point to wonderful examples of such 
constructions, beginning with the famous book by Pólya and Szegő (1998). The 
present part is devoted to these questions.

To repeat once again, problem sets that a schoolchild encounters may be com-
pletely meaningless – as may be the case, to be sure, with all of the work done in 
class (recall the descriptions of a class as a kind of fixed ritual without any content 
given by Schoenfeld (1985) or the recent remarks by Liljedahl (2019) about the 
“non-thinking classroom”). Conversely, a problem set may also be a means to make 
a class meaningful and teaching more effective.

In speaking about problem sets, as has already been noted, we find ourselves at 
the intersection of various topics. It is natural to think about how problem sets might 
be used to solve various pedagogical problems (Karp, 2007) – for example, how to 
arouse students’ interest, or how to lead them toward an understanding of various 
assertions, or how to help them to review what they have learned, and so on. In this 
respect, teachers (or authors of problem books) act as the engineers of mathematics 
education, as it were (to use the felicitous expression of Burkhardt (2006)): they 
give thought to how what is desirable might be realized in practice. Many specific 
questions arise in this connection because children might vary greatly – in terms of 
strength, preparedness, properties of perception, interests, and so on; because differ-
ent forms of problems might be desirable – sometimes oral problems are needed, 
sometimes written ones, and so on; and because the conditions under which these 
problems might be posed also vary (in terms of how much time students have to 
solve an assigned problem, for example, or whether the problems are meant to be 
posed for individual or group solving, and so on).

There is a psychological side, as well. The composition of a classic problem set – 
from the simple to the difficult – immediately runs up against the question of how 
the difficulty of a problem is determined. Naturally, everything is clear enough in 
this respect when one is dealing with growing technical difficulty, understood as an 
increase in the number of operations that must be performed in order to solve a 
problem – it is more difficult to multiply three-digit numbers than two-digit ones. 
As soon as we bring up a different approach, however, measuring the difficulty of 
an assignment (or using another term, its complexity) by how many people com-
plete it (under identical conditions, of course), everything immediately becomes 
more challenging. This effectively is the question about the problems in a set that 
make it easier to solve a difficult problem which Polya urged each solver to look for. 
Another psychological aspect of working with problem sets is familiar to many 
working teachers: after successfully solving the quadratic equation x2 − 4x + 3 = 0, 
a student incorrectly solves a problem about finding the coordinates of the x−inter-
cepts of the parabola y = x2 − 4x + 3. The paper by Karp and Marcantonio (2010) 
examined the question of how differently schoolchildren solve what is in essence 
the same equation with absolute value, depending on what they are asked to do – to 
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guess the solutions, to solve the equation algebraically, or to solve it graphically. 
How students perceive a problem set in which similar problems are formulated 
somewhat differently, what the role of such problem sets is, and how to write them – 
all of this is both useful to working teachers and interesting from the point of view 
of theory.

A theoretical question connected with this is that of the morphology of problem 
sets – the role of each problem within a set, its position in it, and the mental pro-
cesses that take place during the transition from one problem to another (Karp, 
2002). We will confine ourselves to one simple example. The mini-problem set

1. Determine whether the number 1 is a solution of the equation
 x2 − 2021x + 2020 = 0,
2. Solve the equation
 x2 − 2021x + 2020 = 0.

will be solved completely differently than the problem set

1. Solve the equation x2 − 2021x + 2020 = 0,
2. Determine whether the number 1 is a solution of the equation
 x2 − 2021x + 2020 = 0.

In the first case, we might suppose that the student will plug in 1 and ascertain that 
it turns the left-hand side of the equation to zero. And only then, knowing one solu-
tion, will the student look for the other (a bright student will immediately deduce 
that the second root is 2020 since the product of the roots must be 2020) – that is, 
the first problem serves as a hint for the second. In the second mini-set, however, the 
same problem will lead the student either to re-check the solution or simply to 
observe that such a number does in fact exist among the roots that were found (or 
not, if the solver has made a mistake). The functions of the problems turn out to be 
different.

In speaking of the morphology of a problem set, we are deliberately making 
reference to Propp’s (1975) book on the morphology of the folk tale. Analyzing 
Russian folk tales, Propp shows that their episodes, which appear at first glance to 
be varied and dramatic, in fact carry identical functions: the point is not that the hero 
is forced to fetch the Firebird’s feather or to obtain a ring from the finger of the 
Princess Who Would Not Laugh, but that a delay arises in the development of the 
main story. Taking this classic study in some measure as our inspiration, we might 
say that problem sets might be constructed based on their functions – the goal might 
be not to teach quadratic equations, but to teach the ability to re-check what has 
been found, to choose from what has been found, to make use of hints, and so on 
(which, of course, by no means negates the importance of studying quadratic equa-
tions). As has already been said, a problem set conveys more than each of its prob-
lems individually.

In speaking of problem sets, we should also not forget about social aspects, such 
as are vividly manifested, for example, in problem sets on exams. The classic exam 
with 30 multiple-choice problems differs radically from an exam that contains five 
problems for which detailed solutions must be given. One can point to countries and 
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periods in which both types of exams were given (naturally, an enormous variety of 
exam types that lie somewhere between these two extremes exist as well). The form 
of an exam reflects a conception of what should and what should not be tested, and 
this conception in turn reflects an understanding of what it is that educators should 
aspire to make their students learn. Of course, there is no direct mechanism by 
which society or the government determines what exactly a set of exam problems 
should look like, but it can hardly be supposed that social factors do not play a role 
in this respect. Suffice it to mention that relatively recently in Russia the issue of 
multiple-choice problems on exams became practically politicized when such prob-
lems were purported to be a means of destroying Russian traditions and national 
identity (Karp & Shkolnyi, 2021). How various general principles, conceptions, and 
traditions that are widespread and preserved in a country and in society become 
translated into concrete forms and problems in reality is a topic that clearly needs 
further study.

Let us also mention the historical aspect. Thinking in terms of problem sets, and 
even more broadly, caring about solving problems, is a comparatively recent phe-
nomenon. Ancient manuscripts containing problem sets have come down to us, but 
we would search in vain for any special meaning in the arrangement of problems in 
ancient papyri. Usually, what we encounter is a collection of separate problems, 
which are at best grouped together based on their content. The situation changed 
over time, however, above all during the last century and a half. How and why this 
happened is a topic that, once again, deserves study.

The topics and lines of research pertaining to the study of problem sets have 
hardly been exhausted. It is evident, however, that no exhaustive answers to the 
questions raised above can be given in this part of the book. Nonetheless, the papers 
here submitted to the reader’s attention allow us to advance in the investigation of 
the questions raised and to pose new ones.

These papers are devoted to very different questions and examine collections of 
problems from different perspectives (nor do their authors’ views by any means 
always coincide with one another). The mathematician’s perspective is represented 
by Hyman Bass’s paper, which demonstrates the wealth of mathematical ideas 
revealed by various collections of problems, which show the unexpected unity of 
mathematics. Rita Borromeo Ferri, Gabriele Kaiser, and Melanie Paquet discuss 
theoretical and empirical findings that demonstrate that sets of modeling problems 
possess a “self-differentiation potential,” that is, are genuine “challenges for all,” in 
the sense that different schoolchildren can find different things in the same problem 
depending on their own possibilities. The Cognitive Complexity Perspective is 
addressed in the paper by Hui-Yu Hsu, which analyzes sets of problems in geometry 
assigned by Taiwanese teachers. To a certain extent related to this topic is the paper 
by Ilana Waisman, Hui-Yu Hsu, and Roza Leikin, which investigates the Complexity 
of Geometry Problems in connection with parameters associated with problems’ 
diagrams. Another related article is by Roza Leikin and Haim Elgrably – it, too, 
addresses the complexity of geometry problems and investigates the connection 
between certain tasks. The papers by Alexander Karp and Albina Marushina possess 
largely a historical character: the first of them is devoted to the organization of 
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problem sets in American textbooks, while the second addresses differences among 
sets of Russian exam problems. Peter Liljedahl’s paper continues his previous stud-
ies, describing the experience of working with collections of problems in the con-
text of transformations in the teaching process proposed by the author.

To repeat, the orientations and methodologies of the studies submitted to the 
reader’s attention in this part of the book, as well as the general theoretical and 
practical positions of their authors, vary greatly. Collections of problems may and 
should be investigated from different angles. One would like to hope that such 
investigations will be continued in the future.
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Chapter 21
Problem Collections and “The Unity 
of Mathematics”

Hyman Bass

Science is built up of facts, as a house is with stones. But a collection of facts is no more a 
science than a heap of stones is a house. –Henri Poincaré

21.1  Problem Collections: To What End?

Problem-solving is normally framed in terms of solving an individual problem, 
sometimes invoking such heuristics as “looking at simpler versions of the problem,” 
or “thinking of a related problem.”

We consider here the idea of deliberately producing a collection, C, of distinct 
problems, as itself being a significant construct, more than the disjoint union of its 
parts. And as more than a set of practice exercises of an established problem-solving 
technique. What meaning and purpose could C, as a collection, have, and what 
features and relations among the constituents of C could arguably confer that mean-
ing, and support that purpose? There are various productive answers to this ques-
tion. I will discuss the following five types, of which examples will be provided below.

 I. Problematized curriculum development.
 II. Problems that collectively explore diverse aspects, representations, and 

applications of a focal mathematical context/space/phenomenon.
 III. Problems that are “isomorphic,” i.e. structurally the “same” problem, even 

though their contexts, even their mathematical domains, may be quite distinct.
 IV. Mathematically distinct problems that reduce to a common mathematical model.
 V. Mathematical problems with the same answer, unexpectedly, and for deep 

structural reasons.
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I see problem collections as an excellent instrument to give students rich 
opportunities to experience some of the larger-scale coherence and unity of 
mathematics as a discipline. And even to experience some simulations of the 
generation of new knowledge. Design of such problem collections offers perhaps a 
way to disrupt the compartmentalized sense of what mathematics is, a fragmentation 
conveyed by the siloed curricular geography of the school (including undergraduate) 
curriculum.

For each of the above collection types, there is some network of mathematical 
relations that connect the different problems and give the collection some mathe-
matical coherence. And these relations/connections can be of a different nature for 
each type. In type I the relations tend to be somewhat sequential, making the prob-
lems into different stages in a curricular storyline, somewhat analogous to a learning 
trajectory. The students in this case simulate the process of knowledge development. 
In type II, the problems, though diverse, are all probes/explorations of the same 
focal mathematical context, and that common focus intrinsically mediates a net-
work of problem connections. In type III, in contrast, the problem connections 
derive not from the external mathematical contexts, which may well appear to be 
unrelated, but rather from the internal mathematical structure of the problems them-
selves. This is the most subtle of the kinds of connections considered here, and it 
can be the most challenging for students. What does it mean for two seemingly very 
different mathematical problems to be (structurally) the same? And how can this 
sameness be articulated? Work on such problem sets is related to the issue of “trans-
fer” in cognitive psychology. Type IV represents a different kind of relation among 
problems. The idea is that there may be some model (problem) such that a variety 
of genuinely quite different problems are all reducible (after perhaps substantial, 
and different kinds of mathematical work) to the model. This shows the versatility 
of the model, and exposes students to another interesting, and sometimes surprising, 
kind of mathematical connection.

Having the same answer is, by itself, a very weak indicator that two problems are 
significantly mathematically related. It may happen, nonetheless, that a common 
answer is both unexpected, and that it happens for structural reasons, but these rea-
sons themselves are somewhat deep and unexpected. This is the situation of type V 
above. We report on a mathematical example of this below, but it is perhaps too 
advanced mathematically to submit to a reasonably accessible problem collection 
for any but advanced undergraduates.

I now turn to a more detailed discussion of the five types, grounded in some 
concrete example collections.

21.2  Problematized Curriculum Development

This refers to the coherent development of a mathematical theme, or theory, but is 
framed as a sequence of problems for which the students, perhaps collaboratively, 
are made responsible.
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The iconic example of this was the doctoral course in general topology taught by 
R.  L. Moore at the University of Texas (1920-, and earlier at the University of 
Pennsylvania). Students were presented with a list of precise definitions and 
unproved theorem statements and otherwise deprived of access to texts on the sub-
ject. The theorems were the problems for the students to solve/prove. Much more 
flexible versions of this “Moore Method” remain popular to this day, under the 
name, Inquiry Based Learning (IBL). This method, while obviously challenging for 
students, is powerful, not only to experience knowledge generation but also for 
learning to reason from definitions (plus developing intuition). This format may 
seem too advanced for the present discussion, but let me sketch an example that 
could be accessible to secondary or undergraduate mathematics students.

21.2.1  Real Additive Groups

The certification of secondary mathematics teachers commonly requires completion 
of a mathematics major, and that typically includes a course in abstract algebra. 
Recent attention has been given to possible ways to make the ideas of abstract alge-
bra more visibly relevant to the secondary curriculum. Group theory is a natural 
topic to try, and some efforts in this direction, even going back to the “New Math,” 
have been made. But the axiomatic approach is a difficult bridge to cross. And the 
first candidate examples in this approach, beyond dihedral groups (symmetries of 
regular n-gons, n = 3, 4, 6), are permutation groups, with which students have little 
experience (as groups), and in which group composition is notoriously difficult.

What I sketch here is an approach I developed in a capstone course for secondary 
teachers, that begins with the many important groups with which the students are 
already familiar but not by the name “group.” I frame it here as a possible problema-
tized curriculum. A cornerstone of this approach is:

Real Division with Remainder (DwR) Given a, b ∈ ℝ, b > 0, there exist unique 
q ∈ ℤ, and r, 0 ≤ r < b, such that a = qb + r.

 

Note that DwR here is framed in terms of (continuous) linear measure, rather 
than integer arithmetic, consistent with the ideas of V. Davydov (1990). The prob-
lems below are labeled (DAn), 1 ≤ n ≤ 6.
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21.2.2  Discrete Real Additive Groups (DA)

Definitions Let A ⊆ ℝ. Call A a (real) additive group if A contains 0, and is closed 
under addition and subtraction. Call A discrete if, for some e > 0, ∣ a ∣  ≥ e for all 
a ≠ 0 in A. It follows directly then that ∣a – b ∣  ≥ e for all a ≠ b in A.

(DA1) Show that, if A is a discrete real additive group, then any bounded subset of A is finite.
(DA2) (The discrete-dense-dichotomy) Let A be a real additive group. Either

   (a) A is discrete, or
   (b) A is dense in ℝ.

Proof Suppose that A is not discrete. Given x ∈ ℝ and e > 0, we seek some a ∈ A 
with ∣x – a ∣  < e. Since A is not discrete, there is some b ∈ A with 0 < b < e. Using 
DwR, x = qb + r. Then a = qb ∈ A, and ∣x – a ∣  = r < b < e.

(DA3) (Discrete groups are “cyclic”). If A is a discrete real additive group, then A = ℤa for a 
unique a ≥ 0.

Proof If A = {0} take a = 0. Otherwise, choose b > 0 in A. By (DA1), A ∩ (0, b] is 
finite, and so has a least element, a. If c ∈ A then (DwR), c = qa + r with q ∈ ℤ and 
0 ≤ r < a. Then r = c – qa ∈ A ∩ [0, a) = {0}, so c = qa ∈ ℤa.

(DA4) (Commensurability Theorem). For a, b ∈ ℝ, ℤa + ℤb is discrete iff a and b are 
commensurable, i.e. b = 0 or a/b is rational. In this case, ℤa + ℤb = ℤd, ℤa ∩ ℤb = ℤm 
(d, m ≥ 0), and we write d =  gcd (a, b) and m =  lcm (a, b).

Proof If ℤa + ℤb is discrete, then (DA3) ℤa + ℤb = ℤd for some d ≥ 0. Say a = md 
and b = nd, with m, n∈ ℤ. If b ≠ 0, then a/b = m/n ∈ ℚ.

Suppose that a and b are commensurable. If ab = 0, say b = 0, then ℤa + ℤb = ℤa 
is discrete. So, assume that ab ≠ 0, and write a/b = m/n with m, ∈ ℤ. Put d = a/m = b/n. 
Then a = md and b = nd, so, ℤa + ℤb ⊆ ℤd is discrete.

Note that the definition of gcd in (DA4) is independent of prime factorization, 
and more general than the definition for integers. For example, it is immediate that 
d = ua + vb for some u, v ∈ ℤ (Bezout’s Theorem), and a, b ∈ℤ iff ∈ℤ. Further, for c 
∈ ℝ, gcd(ca, cb) =    ∣ c  ∣   ×   gcd  (a, b), and one can choose c ≠ 0 so that ca, cb 
∈ℤ. Moreover, for rational numbers, it can be shown that gcd(a/b, c/d) =  gcd (a, c)
/ lcm (b, d).

(DA5) Let f : ℝ → ℝ. Call p ∈ ℝ a period of f if: f(x + p) = f(x)  for all x. Let Per(f) be the set of 
all periods of f. Show that Per(f) is a real additive group.
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Proof Clearly 0 ∈ Per(f). Say p, q ∈ Per(f). Then, for all x, f(x + p + q) = f(x + p) = f(x), 
and f(x – p) = f(x – p + p) = f(x). Thus,p + q, – p ∈ Per(f).

(DA6) Let f : ℝ → ℝ. be continuous and non-constant. Let p, q be periods of f.
   (a) What can you say about the relation of p and q?
   (b) What can you say about Per(f)?

Answers Note that f takes the constant value f(0) on Per(f). If Per(f) is dense in ℝ 
then, by continuity, f is constant, contrary to assumption. Then, by (DA2) and 
(DA5), Per(f) is discrete. Then ℤp + ℤq ⊆ Per(f) is discrete, so, by (DA4), p and q 
are commensurable.

21.2.3  Extensions

Analogues of these results for multiplicative groups can be developed using the 
monotone inverse group isomorphisms exp. and log, between the additive group ℝ 
and the multiplicative group (0, ∞) of positive real numbers.

Once modular arithmetic has been developed, including the construction of the 
modular rings ℤ/ℤm, there is the analogous agenda of studying the additive group 
(Chinese Remainder Theorem) and multiplicative group of ℤ/ℤm. This is more elab-
orate and complex. (See Bass, 2022, Ch. 5).

21.2.4  Discussion

The material on real additive groups strikes many people as too advanced for 
secondary teachers (and their students). I suspect that this reaction stems in part 
from the fact that, substantively, the material does not, on the surface, resemble 
things in the current secondary curriculum. That, in and of itself, does not make it 
“advanced” or inaccessible. In fact, the approach here offers and exploits the power 
of a linear measure treatment of division with remainder, a fundamental idea. 
Beyond that, the group theory rests on core properties of addition and multiplication, 
and it powerfully exposes the duality, not just distinction, between discreteness and 
continuity, and the natural appearance of commensurability at their boundary. Once 
the few basic concepts are understood, the proofs of several striking results are 
surprisingly short, simple, and intuitive. This treatment can afford a depth of 
understanding at least as robust as assimilation of the much more complex ideas of 
AP Calculus, for example. Indeed, the ideas featured here provide a helpful 
foundation for the understanding of AP calculus.

Further, I remind the reader that this package was framed as a problematized 
curriculum, and so it is intended to be enacted, over time, with students collaborating, 
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and with mediation (including modest scaffolding) by the instructor. I have taught it 
this way to pre-service secondary teachers.

Finally, I note that the study of the additive and multiplicative groups of the basic 
rings of school mathematics (ℤ, ℚ, ℝ, C, ℤ/ℤm) is a powerful unifying theme to con-
nect a wide range of important and diverse mathematics.

21.3  Problems that Collectively Explore Diverse Aspects, 
Representations, and Applications of a Focal 
Mathematical Context/Space/Phenomenon

Here we will discuss the Euclidean Algorithm (EA), and some surprisingly diverse 
problems to which it is intimately related. The problems are labeled (EAn) 1 ≤ n ≤ 7.

As with the preceding example, this is grounded on Real Division with 
Remainder (DwR): Let a ≥ b > 0 be real numbers. Then we can write, (DwR)

 a qb r q r b= + <, , .with and� �Z 0  

 

Moreover, q and r here are unique, so we can write

 
q q a r rb ab� � � � � �and .

 

21.3.1  The (Real) Euclidean Algorithm (EA)

Using (DwR), we can then inductively construct, EAn(a, b)
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If an + 1 > 0, we can continue this process to EAn + 1(a, b). If, on the other hand, 
an + 1 = 0, then we say that EA(a, b) terminates at stage n, and we define the greatest 
common divisor of (a, b) by, an =  gcd (a, b).

Moreover, we then have the system of equations:
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(EA1) Under what conditions on (a, b) does EA(a, b) terminate?
Note that this is assured if a and b are integers, since then (aj) is a strictly decreasing (for 
j ≥ 1) sequence of integers ≥0.

(EA2) If EA(a, b) terminates, in what sense is it reasonable to call an the “greatest common 
divisor” of (a, b)?

Call d a “divisor” of a if a = qd for some integer q. Then, in fact, an is a common 
divisor of ah and ah + 1, for 0 ≤ h < n, and any common divisor of a and b is a divisor 
of an. This can be proved by reverse induction on h < n.

21.3.2  The Euclidean Square-Tiling of an (a × b)-Rectangle

Let a ≥ b > 0 be real numbers, as above. Suppose that we want to tile the (a × b)− 
rectangle ℝ = ℝ(a, b) with square tiles (of variable size). The Euclidean (“greedy”) 
algorithm for square tiling is to first fill as much of ℝ as possible with the largest 
possible (b × b) square tiles.

Writing a = qb + r (DwR), we see that we can fit q (b × b)-tiles, and what remains 
is a rectangle ℝ(b, r). Continuing in the same way with ℝ(b, r), etc., we end up pro-
ducing what we call the Euclidean tiling TE of ℝ(a, b).

This provides a geometric picture of the Euclidean Algorithm (EA(a, b)). TE is a 
finite tiling if and only if EA(a, b) terminates (Fig. 21.1).1
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What about S1(a, b)?

1 It is a classical theorem of Max Dehn (1903, See Bass, 2011) that a rectangle admits a finite 
square tiling if and only if its side lengths are commensurable.

21 Problem Collections and “The Unity of Mathematics”



388

12 12 12 7

5 2

2

1 1

Fig. 21.1 The Euclidean tiling of ℝ(43, 12)

(EA3)

For e = 0, 1, 2, define Se(a, b) = ∑1 ≤ jqj aj
e

(Notation as in the system of equations (Eqs) above.)
(a) Interpret Se(a, b) geometrically (e = 0, 1, 2).
(b) Evaluate Se(a, b) for e = 1, 2.

We claim that, S1(a, b) = ∑1 ≤ jqj aj= the sum of the side-lengths of the tiles in 
TE = a + b −  gcd (a, b) if EA(a, b) terminates.

More generally, for any square tiling T of a rectangle ℝ, we shall write p(T) for 
the sum of the side lengths of the tiles in T, and call this “the perimeter of T.” Thus, 
S1(a, b) = ∑1 ≤ jqj aj = p(TE).

To prove that this equals, a  +  b  –    gcd  (a, b) if EA(a, b) terminates, add the 
equations in the system of equations (Eqs), and simplify.

21.3.3  Fair Distribution

Suppose that we want to distribute c cakes equally among s students (c < s). Then 
each student will receive c/s of a cake. We shall write p(s, c) for the minimum num-
ber of cake pieces needed to make this distribution. For any distribution D, we’ll 
write (D) ( ≥ p(s, c)) for the number of cake pieces in that distribution.

(EA4) The Euclidean distribution, DE, proceeds as follows: First cut a (c/s)-size piece from 
each of the c cakes, and distribute these pieces to c of the students. Then there remain c 
partial cakes, of size (1 – c/s) to be equally shared among (s – c) students. Continue in 
the same manner with this (reduced) distribution, etc. Show that p(DE) = p(TE), where TE 
is the Euclidean tiling of ℝ(s, c).

Suggestion: Imagine that the cakes are (1 × s) rectangles. Stack them in a pile to 
form a (c × s) rectangle ℝ. Then relate the Euclidean distribution to the Euclidean 
square tiling of ℝ.
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2 It is shown in Bass (2011) that p(DL) = p(DE) = s + c –  gcd (s, c) is, in fact, the minimum number, 
p(s, c), of cake pieces for any cake distribution. Further, for any square tiling T  of a  (c  ×  s)-
rectangle, p(T) ≥ p(TE) = p(s, c) = s + c –  gcd (s, c). (“Isoperimetric Theorem”).

(EA5) The linear distribution, DL, proceeds as follows: Imagine that the cakes are thin 
rectangles in shape. Line them up end to end, treat this as one long “mega-cake,” and cut 
it into s equal pieces, which are then the student shares. Show that (DL) = p(DE).2

Choose linear units so that each rectangular cake has a length s. Then, end-to-end 
they have a total length c · s. The cake separations occur at multiples of c, so there 
are s – 1 of these. The student share separations (cuts) are at multiples of s; there are 
c  –  1 of these. The cuts common to these two sets occur at multiples of 
m =  lcm (s, c). We have

 
c s d m d s c· · , gcd ,� � � �,

 

so there are d – 1 common cuts. Hence the total number of cuts is,

 
s c d s c d– – – – – –1 1 1 1� � � � � � � � �� �  

And so, the number of cake pieces is s + c –  gcd (s, c) = S1(s, c) as in (EA3).

21.3.4  The Diagonal of a (c × s)-Rectangle

(EA6) Consider the rectangle ℝ = ℝ(c × s) tiled by s · c unit squares. Let △ be a diagonal of ℝ. 
Show that the number of unit tiles that △ enters is p(DL).

Say ℝ has vertices (0, 0), (0, c), (s, 0) and (s, c), and △ joins (0, 0) to (c, s). Apart 
from the top edge and right edge △ crosses c horizontal grid lines and s vertical 
grid lines. At each of these crossings, △ enters a new unit tile, for altogether c + s 
unit tiles. However, if the crossing occurs at a grid vertex, the intersection of a hori-
zontal and a vertical grid line, then the new unit tile entered is counted twice. Thus, 
the number of unit tiles that △ enters is c + s – d. where d is the number of grid 
vertices other than (s, c) through which △ passes. Let d =   gcd (s, c), and write 
(s, c) = d · (s′, c′), with gcd(s′, c′) = 1. Then the set of grid vertices, other than (s, c), 
through which △ passes is {t(s′, c′) | t = 0, 1, 2, …, d − 1 }. Hence, the number of 
unit tiles through which △ passes is c + s –  gcd (c, s).

This general line of investigation can be interestingly (and accessibly) pursued 
toward a discussion of the continued fraction representation of a/b = a0/a1 in terms 
of (q1, q2, …, qn).

We close this section with a nice puzzle.
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21.3.5  Tony Gardener’s Game of Euclid (Gardiner, 2002)

Each player chooses a positive whole number and records it secretly. The two 
players then toss to decide who should start, before revealing their chosen numbers – 
say a and b. Player I then changes the pair a, b by subtracting any positive multiple 
of the smaller number from the larger to produce a new pair a′, b′. Negative numbers 
are forbidden. Player II can then transform the new pair a′, b′ in the same way, and 
so on. The first player to produce a pair in which one of the two numbers is zero is 
the winner.

(EA7) When can the first player force a win? How then should she play in order to win?

This is a challenging problem to formulate a precise answer, but the idea for 
constructing a suitable strategy is rather simple. At each stage of the game say 
player P is faced with a pair (a, b), with a ≥ b > 0. Then division with remainder 
gives, a = qb + r (0 < q, 0 ≤ r < b) and P must choose a q′, 0 < q′ ≤ q, and replace 
(a, b) by (a′, b), with a′ = a – q′b.

We call this the forced case if q = 1. In that case P must choose q′ = q = 1. If 
q > 1, we call this the control case, and the strategy calls for P to choose

Option 0: q′ = q or
Option 1: q′ = q – 1

The point is to never, if avoidable, cede control to the opposing player P′.
If r = 0, P chooses q′ = q (option 0) and wins. So assume that r > 0. If P chooses 

q′ = q − 1 (option 1) then it presents P′ with a forced case. To see when this is stra-
tegic, let’s examine the (EA) more closely. Recall the system of equations that 
record the successive steps of the Euclidean Algorithm:
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And consider the sequence (q1, q2, …, qn).
When all qj = 1, we call this the “Fibonacci case,” because then

 
0 1 2 1 0, , , , , ,a a a a an n n� � �� �  

is just d times a segment of the Fibonacci sequence, d = an =  gcd (a0, a1). In this 
case, all player moves are forced, and player one, O, wins if n is odd, and player 
two, T, wins if n is even.
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If we are not in the Fibonacci case,
Let t = the least integer ≥ 0 so that qt + 1 > 1.
Then (q1, q2, …, qn) = (1, 1, 1,  qt + 1, qt + 2, …, qn)
After t (forced) moves (q1, q2, …, qn) is reduced to (qt + 1, qt + 2, …, qn) with now O 

is the next player if t is even, and T is the next player if t is odd.

Claim O (resp., T) can force a win if t is even (resp. odd).

In light of the analysis above, it suffices to show that,
O can force a win if q1 > 1.
Suppose that,

 
q q q q q q q qn s s t n1 2 1 2 1111, , , , , , , , , , , ,�� � � � �� �� �  

with qj > 1 for 1 ≤ j ≤ s and j = s + t + 1.
If s = 1, O plays option 0 (q′ = q1) if t is even, and option 1 (q′ = q1 − 1) if t is odd. 

If s > 1, O keeps playing option 1 until arriving, as the first player, at (qs, 1, 1, 
1, qs + t + 1, …, qn), which is the case just considered.

In all cases then, O arrives, as the first player, at (qs + t + 1, …, qn), and the strategy 
continues, inductively, to a win.

This argument is too elaborate to expect students to handle, but there are many 
special cases worthy of student exploration, for example when all qj > 1.

21.4  Problems that Are “Isomorphic,” i.e. Structurally 
the “Same” Problem, Even Though Their Contexts, 
Even Their Mathematical Domains, May Be Quite 
Distinct (See Bass, 2017)

21.4.1  Isomorphic Problems

What does it mean when we say that two things are the same? It generally means 
that the two things share certain features that capture the essence of what we have 
in mind, while ignoring (or treating as irrelevant, or superficial) unrelated features. 
Of course, this is rather vague, especially since “what we have in mind” is often 
tacit, or imprecisely articulated (APA, 2015).

In mathematics, the sameness of two mathematical entities is often denoted by 
some variant of the equal sign, “=.” For example, “4/6 = 6/9” signifies that the frac-
tions 4/6 and 6/9 represent the same rational number. Or, an “algebraic identity” 
like, “a2 – b2 = (a – b)(a + b),” signifies that the relation follows formally from the 
“Rules of Arithmetic” (i.e. the axioms of a commutative ring). Other such relations 
may express congruence, or similarity, of geometric figures. Or isomorphism of 
groups in abstract algebra. More generally, an “isomorphism” of two mathematical 
objects A and B is understood to be an invertible structure-preserving 
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transformation f : A → B. Here A and B are typically sets, on which there is given 
some common specie of mathematical structure (a group, a polyhedron, etc).

What can we mean when we say that two mathematical problems A and B are the 
“same?” This question seems to have first been formally discussed in cognitive 
psychology, which introduced the notion of “problem isomorph,” in connection 
with the theory of transfer of learning. Transfer asks whether knowing how to solve 
problem A transfers to aiding the effort to solve an isomorphic problem B.

But problem isomorphism was rather vaguely specified. From the APA dictionary, 
problem isomorphs are

problems that have the same underlying structure, so that they require essentially the same 
operations to achieve a solution. Such problems may vary enormously in their surface 
structure and in the degree of difficulty experienced by solvers. (Emphasis added.)

Or, from IGI Global,

A single problem can be stated in various ways, and often therefore can be variously 
represented. The particular representation, or problem isomorph, can influence the 
difficulty of solving the problem.

21.4.2  An Example, and a Question

Rather than try to resolve this conceptual imprecision, I will show an example, in our 
context, that illustrates the subtlety in trying to craft a precise definition of the notion 
of problem isomorphism. We are interested in problems that have the “same underly-
ing mathematical structure,” even though their contexts may be (even mathematically) 
quite different. Here we present a case in point (Problems (A), (B), and (C) below).

 (A) Arisha, Brianna, and Carmen run a race. Assuming no ties, what are all possible 
outcomes, 1st, 2nd, 3rd?

 (B) In a 3 × 3 grid square, shade three of the nine (unit) squares in such a way that 
there is exactly one shaded square in each row and in each column. What are 
all ways of doing this?

One of the solutions of (B) is (Fig. 21.2):
A way to map (B) to (A) is to imagine a solution of (B) as a picture of the finish 

of the race, the finish line being at the top, with the columns, left-to-right, being the 
running lanes of Arisha, Brianna, Carmen, respectively, and the shaded squares the 
finishing positions of the runners. This gives a structure-preserving correspondence 
between the solution spaces of (B) and (A), and it is a priori clear that both exhibit 

Fig. 21.2 Shading a 3 × 3 
grid square
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all 6 (=3!) permutations of three objects. On this basis, I would say that Problems 
(A) and (B) have the same underlying mathematical structure. But I further say that 
It does not suffice to say that the solution space to both problems is the set of per-
mutations of three objects. It depends also on the reasoning to construct a corre-
spondence and to show that the latter is an isomorphism.

For example, consider the problem,

 (C) Find all symmetries of an equilateral triangle.

Each symmetry s of the triangle is a self-congruence of the triangle. It permutes 
the three vertices, and that permutation clearly determines s. Thus, we have an 
injection of the solution space of (C) into the set of permutations of three objects 
(the vertices). While this injection is in fact bijective, that fact is not a priori clear 
from the nature of the problem, as is the case in (A) and (B). On this ground, I will 
argue that (C) is not isomorphic to (A) and (B).

To elucidate the significance of this distinction, consider the analogues of these 
problems with n ≥ 4 in place of n = 3. Thus, for n = 4, we have:

(A4) Arisha, Brianna, Carmen, and Diana run a race. …
(B4) Shade four of the unit squares of a 4 × 4 grid square…
(C4) Find all symmetries of a square.

Then the solution spaces of (An) and (Bn) manifestly remain all n! permutations 
of n objects, whereas the solution of (Cn) is the (dihedral) group of 2n symmetries 
of a regular n − gon. (2n = n! only for n = 3.)

21.4.3  Degrees of Sameness; Discernment Tasks

Thus, problems may be significantly related without being isomorphic in the above 
sense. Of course, these connections can have a variety of forms and different levels 
of strength. This is something worth noticing, but may be hard to measure objec-
tively or precisely. The important thing is to identify and give a mathematically 
explicit articulation of the nature of the connection. For example, with problems 
(A), (B), and (C) above, though (C) is structurally distinguished from (A) and (B), 
all three problems can be described as determining some set of permutations of 
three objects, and that itself is a mathematical connection worth noting.

To provide students with opportunities for such discernment I used the following:

The Discernment Format
What I describe here is a template that I have used for presenting students with a list 
of problems and asking them to qualitatively identify, describe, and intuitively mea-
sure the strength of relations among the different problems.

21 Problem Collections and “The Unity of Mathematics”



394

The Problem Discernment Template 

Below is a list of problems, labeled A,B,C,D,E, . . .

1. The first task is to place the letter of each problem in one of the boxes below.   
2. Put letters in the same box if they represent problems that are mathematically 

the “same” problem, apart from superficial differences of context or presenta-
tion.   

3. If problems in different boxes are significantly related mathematically, connect 
their boxes by a line, or by a double line if the connection is very strong. 
(Note, you need not use all of the boxes, and you may reasonably answer this 
question even if you have not completely solved the individual problems.)

4. Work first individually.  Then compare and discuss answers with your 
group/partner.   

5. With or without consensus, explain (to the whole group) your choices, in par-
ticular the nature of the connections. 

Fig. 21.3 The discernment format

The Problem Discernment Template
Below is a list of problems, labeled A,B,C,D,E, …

 1. The first task is to place the letter of each problem in one of the boxes below.
 2. Put letters in the same box if they represent problems that are mathematically 

the “same” problem, apart from superficial differences in context or 
presentation.

 3. If problems in different boxes are significantly related mathematically, 
connect their boxes by a line, or by a double line if the connection is 
very strong.

(Note, you need not use all of the boxes, and you may reasonably 
answer this question even if you have not completely solved the individual 
problems.)

 4. Work first individually. Then compare and discuss answers with your 
group/partner.

 5. With or without consensus, explain (to the whole group) your choices, in 
particular the nature of the connections (Fig. 21.3).
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The student products in this format will be “connection networks,” with 
explanations, and these can be quite variable. The processes of explaining them, 
and the efforts to reconcile differences across different groups can help to develop 
a probing discourse about structural relations among problems.

Following are two discernment problem sets I have used in this way.

Comments In this set, B and E are outliers, not deeply related to the other problems, 
or even to each other, though they both have ten solutions. A structure involved in each 
of A, C, D, F, G, is the set of permutations of three objects (for example, the vertices 
of the triangle in G), and the solution to each of these five problems is in fact the full 
set of six permutations. In A, D, and F this outcome is demonstrably inherent in the 
problem, though this fact is least obvious for F. On the other hand, it can be argued that 
in C and G there is no a priori guarantee that all permutations will be achieved.

In piloting this example, with pre-service secondary teachers, all senior 
mathematics majors, solved all of the individual problems without great difficulty, 
but they did not perceive the mathematical distinction of C and G from A, D, and 
F. To awaken their awareness of this, I asked them to formulate a parallel problem 
set with the number three replaced by four. For example, problem A became:

A′ What are all four-digit numbers that you can make using each of the digits 1, 2, 3, 4, and 
using each digit only once?

They easily constructed a four-based parallel problem set, A′, B′, …, G′, for 
example with G′ about symmetries of a square. I then asked them to repeat the con-
nection network activity with this modified problem set. In this case, A′, D′, and F′ 
still yielded the full set of 4 ! (=24) permutations, whereas G′ led to only 4 × 2 = 8 
of them. Moreover C′ leads to a surprisingly complex problem in combinatorial 
geometry that, suitably interpreted, leads to 4  ×  3  =  12  solutions. They were 

The 3-permutation Discernment Problem Set
 (A) What are all three-digit numbers that you can make using each of the 

digits 1, 2, 3, and using each digit only once?
 (B) In a group of five students, how many ways are there to pick a team of 

three students?
 (C) You are watching Arisha, Brianna, and Carmen on a merry-go-round. At 

each moment you see them in some order – left, middle, right. As the merry-
go-round turns, what are all the different orders in which you see them?

 (D) If Arisha, Brianna, and Carmen have a race, and there are no ties, what 
are all possible outcomes: first, second, third?

 (E) from a bag full of many pennies, nickels, and quarters, I randomly choose 
three coins. What are all possible amounts of money that I might have?

 (F) In a 3 × 3 grid square, color three of the nine (unit) squares blue, in such 
a way that there is exactly one blue square in each row and in each col-
umn. What are all ways of doing this

 (G) What are all the symmetries of an equilateral triangle?
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impressed that the seemingly modest change from three to four made such a pro-
found difference in the nature of the relations among the problems.

Comments Here there is one outlier, (D), with 9 solutions, (8 × 3 + 2n)¢ (0 ≤ n ≤ 8). 
The problem solution space of all of the other problems can be represented by the 
structure consisting of the set of all “binary sequences of length 8, with 3 terms of 
one type.” These are sequences (x1, x2, x3, x4, x5, x6, x7, x8) in which each xj takes one 
of two possible values, say 0 or 1, and exactly three of them take the value 1. In (A), 
the values would be N (north) and E (east). In (B) they would be −1 and +1. In (C) 
they would be H (home) and V (visitors). In (E), xj = 1 if student j is on the team, 
and 0 otherwise. In (F), xj = 0 if you cut at inch j, (1 ≤ j ≤ 8), and 1 otherwise. In 
(G), xj = 1 or x, and the product of the xjs is x3.

21.4.4  A More Subtle Example of Common Structure

Consider the following two problems.
 (A) The wine and tea problem: I have a barrel of red wine, and you have 
a cup of green tea. I put a teaspoon of my wine into your cup of tea. Then you 
take a teaspoon of the mixture in your teacup, and put it back into my 
wine barrel.
ℚuestion: Which is more now: the wine in the teacup or the tea in the 
wine barrel?
 (B) Trapezoid diagonals problem: The two diagonals a trapezoid divide 
the trapezoid into four triangles. What is the relation of the areas of the two 
triangles containing the legs (non-parallel sides) of the trapezoid? (Fig. 21.4)

The 8-Choose-3 Discernment Problem Set
 (A) A taxi wants to drive from one corner to another that is 5 blocks north, 

and 3 blocks east. How many possible efficient routes are there to do this?
 (B) On the number line, starting at 0, you are to take 8 steps, each of which 

is either distance 1 to the right, or distance 1 to the left, and in such a way 
that you end up at −2. How many different such walks are there?

 (C) The home team won a soccer game 5 to 3. How many possible sequences 
of scoring were there as the game progressed?

 (D) You have coins worth 3¢ and 5¢. With 8 such coins, how many different 
values can you obtain?

 (E) From a group of 8 students, you need to select a (5-person) basketball 
team. How many different ways are there to do this?

 (F) You are to cut a 9-inch ribbon into six pieces, each of length a whole 
number of inches. How many ways are there to do this?

 (G) In the expansion of (1 + x)8, what is the coefficient of x3?
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Consider the following two problems. 
(A) The wine and tea problem:  I have a barrel of red wine, and you have a cup of green 

tea.  I put a teaspoon of my wine into your cup of tea.  Then you take a teaspoon of the 
mixture in your teacup, and put it back into my wine barrel. 

  Question:  Which is more now: the wine in the teacup or the tea 
in the wine barrel? 

(E) Trapezoid diagonals problem:  The two diagonals a trapezoid di-
vide the trapezoid into four triangles.  What is the relation of the 
areas of the two triangles containing the legs (non-parallel sides) of the trapezoid? 

Fig. 21.4 Two isomorphic problems

At first sight, most observers see little, if any, mathematical connection between 
these two problems. I learned of (A) from Vladimir Arnold, who described it as a 
problem Russian parents give to very young, pre-mathematics-education children, 
who, according to Arnold, solve it more quickly and simply than mathematicians. I 
found problem (E) when trying to construct a geometric model of (A). Here is a 
solution to (E). Let T denote the trapezoid, and s and S its parallel side-lengths, say 
at a distance h apart. A diagonal d of T divides T into two triangles: t, with base s; 
and T, with base S, and both with height h. The other diagonal d′ similarly divides 
T into triangles t′ and T′, and clearly Area(T) = Area(T′). It follows that

 
Area AreaT T T T T T/ / .�� �� � � �� �� �� � �

 

Notice that T/(T  ∩  T′) and T′/(T  ∩  T′) are the two (colored) triangles above 
containing the legs of T.

Now suppose that Area(T) represents the total volume of wine and tea in problem 
(A), and that t represents the tea in the teacup, and T represents the wine in the wine 
barrel. After the exchange, say t′ represents the mixture in the teacup, and T′ the 
mixture in the wine barrel. This makes sense since t and t′, and T and T′, have equal 
areas, respectively. Then T\(T ∩ T′) represents the wine in the teacup, and T′\(T ∩ T′) 
represents the tea in the wine barrel. So, the amounts are the same.

This analysis reveals a (measurement) structure common to problems (A) and 
(E). Either problem can easily be solved independently, without this observation. 
But this structural connection has a mathematical significance beyond the separate 
solutions. I thus say that these two problems have a common structure.

In fact, (A) and  (E) are two of the following set of five common structure 
problems (Bass, 2017).
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21.4.5  The Measure Exchange Common Structure 
Problem Set

21.5  Mathematically Distinct Problems Reducible 
to a Common Mathematical Model

In 1968 Zalman Usisikin published, in The Mathematics Teacher, a brief paper, “Six 
nontrivial equivalent problems (Usiskin, 1968).” Based in part on conversations 
with Usiskin, I have expanded his list to the thirteen problems displayed below. 
They are organized into four groups, belonging to different mathematics domains: 
arithmetic; rates; geometry; and algebra. They do not all have a common structure 
in the sense of the previous section. Nonetheless, their diversity and dissimilarity 
notwithstanding, they all have a significant mathematical commonality. They can 
all, after some reduction, be modeled by the following Diophantine equation:

 (A) (Wine & Tea) I have a barrel of wine, and you have a cup of green 
tea. I put a teaspoon of my wine into your cup of tea. Then you take a teaspoon 
of the mixture in your teacup, and put it back into my wine barrel. ℚuestion: 
Is there now more wine in the teacup than there is tea in the wine barrel, or is 
it the other way around?
 (B) (Heads Up) I place on the table a collection of pennies. I invite you 
to randomly select a set of these coins, as many as there were heads showing 
in the whole group. Next I ask you to turn over each coin in the set that you 
have chosen. Then I tell you: The number of heads now showing in your group 
is the same as the number of heads in the complementary group. ℚuestion: 
How do I know this?
 (C) (Faces Up) I blindfold you and then place in front of you a standard 
deck of 52 playing cards in a single stack. I have placed exactly 13 of the 
cards face up, wherever I like in the deck. Your challenge, while still blind-
folded, is to arrange the cards into two stacks so that each stack has the same 
number of face-up cards.
 (D) (Triangle Medians) In a triangle, the medians from two vertices form 
two triangles that meet only at the intersection of the medians. How are the 
areas of these two triangles related? More precisely, let ABC be a triangle. Let 
A′ be the mid-point of AC, B′ the mid-point of BC, and D the intersection of 
AB′ and BA′. How are the areas of AA′D and BB′D related?
 (E) (Trapezoid Diagonals) The diagonals a trapezoid divide the trapezoid 
into four triangles. What is the relation of the areas of the two triangles 
containing the legs (non-parallel sides) of the trapezoid?
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Find allpositive integer solutions , of the equationm n
m

� �
�

,

/1 11 1 2/ / .n �  
(21.1)

The reduction of the problems to (21.1) can be found below, where I also discuss 
how this problem set was enacted pedagogically.

21.5.1  The Expanded Usiskin Problem Set

These problems appear to be quite diverse. Usiskin’s original list of six problems is 
Ar1, Ar2, Ar3, Ar4, R1, and G1 (Fig. 21.5). I thank Zal for the discussion of some 
of the other problems as well. Here is a calculus problem that could be added:

 
For which positive integers , ism n x x dxm n� � �� � �� � �2 1

0

1
1 1 ?

 

21.5.2  Presentation to the Students

After distributing the problem set, I asked each student to choose one of the four 
topic themes, and so formed the class into four student groups (arithmetic group, 
rates group, geometry group, and algebra group), each group to work collaboratively 
on its chosen thematic problem set, but the groups worked independently. Student 
choices were based mainly on things like the parts of mathematics they liked best or 
felt most confident with, or on which problems seemed, at first appearance, easiest 
for them to solve. Each group was assigned to solve its problem set and to present its 
solutions to the class the following week. They were free to consult outside resources, 
including myself, but to prepare a presentation that would instruct the rest of the 
class about what they found, and what they found to be difficult.

I deliberately said little about the overall mathematical point of this assignment, 
other than to solve and see relations among, each group’s interesting set of prob-
lems. In particular, there was no suggestion of why these specific problem sets were 
collected together, in particular, that they might all be mathematically related in 
some way.3

3 This design of the instruction was based on a model that Davida Fischman used for a professional 
development session when I gave her this problem set.
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ARITHMETIC 

Ar1. Find all ways to express ½ as the sum of two unit fractions (i.e. fractions of the 
form ,  a positive integer). 

Ar2. Find all rectangles with integer side lengths whose area and perimeter are numeri-
cally equal. 

Ar3. The product of two integers is positive and twice their sum.  What could these 
integers be? 

Ar4. For which integers  does  divide ? 

RATES 
R1. Which pairs of positive integers have harmonic mean equal to 4?

(*) 

 (*) The harmonic mean h of n numbers 1 2 :   
1/h is the average of 

R2. Nan can paint a house in n days, and her Mom can paint it in m days (n and m 
positive integers).  Working together they can paint the house in 2 days.  What are 
the possible values of ?  

R3. A turtle travels up a hill at n miles per hour, and returns down the hill at m miles 
per hour (n ≤ m integers). Its average speed for the round trip is 4 miles per hour. 
What are the possible values of ? 

GEOMETRY
G1. Given a point P in the plane, find all integers n such that a small circular disk 

centered at P can by covered by non-overlapping congruent tiles shaped like regu-
lar n-gons that have P as a common vertex. 

G2. Two vertical poles, N and M, have heights n meters and m meters, respectively, 
with n and m integers.  A wire is stretched from the top of pole N to the base of 
pole M, and another wire is stretched from the top of pole M to the base of pole N.  
These wires cross at a point 2 meters above the ground.  What are the possible 
values of (n, m)? 

G3. The base b and corresponding height h of a triangle are integers.  A 2 x 2 square is 
inscribed in the triangle with one side on the given base, and other vertices on the 
other two sides.  What are the possible values of the pair (b, h)? 

ALGEBRA
Al1. For which positive numbers s does 2   have integer roots? 
Al2. Let u be a positive real number.  Find all solutions  with n and m positive 

integers, and v > 0, of the equations: 
2

Al3. For which positive integers  is ?

Fig. 21.5 The expanded Usiskin problem set

21.5.3  The Student Presentations: Slowly Raising the Curtain

I had the groups make their presentations in the order of the list, the arithmetic 
group first. Problems Ar1, Ar2, Ar3, Ar4, in order, lead directly to the following 
Diophantine equations (“Diophantine” because one seeks (positive) integer 
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solutions).

 1 1 1 2/ / /n m� �  (21.1)

 
2 n m nm�� � �  

(21.2)

 
nm n m� �� � �2 0

 
(21.3)

 
For which is for some integern n n m m� � � �1 2 2– ?

 
(21.4)

Moreover, it is not difficult to see how Eqs. (21.1)–(21.4), are algebraically 
equivalent. Hence, solving any one of them solves the others. My students generally 
preferred to use (21.3) to express m in terms of n:

 m n n� �2 2/  (21.5)

They then did numerical experiments to find those n for which 2n/(n – 2) is an 
integer. (Some students even graphed m in (21.5) as a function of n > 0, and high-
lighted the integer points on the graph.) The solutions they found were:

 
n m, , , ,� � � � � � � � �4 4 3 6 or 6 3, ,

 
(21.6)

None of the students tried to work directly with (21.1), which is my preferred 
approach. Using the symmetric roles of m and n, we can assume that n ≤ m. Then 
n ≥ 3; otherwise 1/n ≥ 1/2. Also, n ≤ 4; otherwise 1/n + 1/m < 1/2. Thus, either n = 3 
(and so m = 6) or n = 4 (and m = 4).

The rate group gave an excellent survey of problems in which the harmonic mean 
(the concept was new to them) arises. Problem R1 corresponds to the equation.

 
1 4 1 2 1 1 1 1

2/ / / / .� � � �� � � �n m which is multiplied by
 

(21.7)

For Problem R3: If one travels distance d at speed v in time t, then: d = vt and 
t = d/v. Now suppose that one travels a distance d at a speed v1 in time t1, and then 
returns at speed v2 in time t2. What is the average speed for the whole trip? It is

 

V

d t t d d v d v
ave total distance total time� � � � �

� �� � � �
/

/ / / /2 21 2 1 2�� � � �� �2 1 11 2/ / /v v
 

Thus, 1/Vave = 
1
2 1 11 2� � �� �/ / /v v

In other words, Vave is the harmonic mean of v1 and v2. In Problem R2, d would 
be the work of painting the house, and n and m describe the rates at which Nan and 
her Mom do that job. The rate of doing it together (analogous to average speed) is 
the harmonic mean of the two rates. Of course, the rate group sees that its work to 
solve (21.7), and hence each of the rate problems, is the same as the work already 
shown by the arithmetic group.
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The geometry problems were less obviously related, but they too led to the same 
Diophantine equations.

In Problem G1, let α(n) denote the (equal) interior angle(s) of a regular n-gon: 
then it is known that α(n) = [(n – 2)/n] × 180o. For some number, say m, of these 
regular n-gons to fit together to cover the area around a point P, we would need: 

m
n

n
� �
��

�
��
� �

– 2
180 360o o

 
2 2n m n� � �– ,

 
(21.4)

which is the same equation treated by the arithmetic group.
For Problem G2 (also framed as the “crossing ladders problem”), consider the 

diagram (Fig. 21.6):
For G3, consider the diagram (Fig. 21.7):
The algebra group was the most challenged, it seems because the relevant 

algebraic methods were less familiar. In Al 1, they at first tried using the quadratic 
formula, which did not conveniently make available the information that the roots 
are integers.

n

2
a b

m

MN

Using similar triangles, we have: 
( + ) = 2⁄⁄

and ( = ) = 2⁄⁄

Adding these equations, and then 
dividing by ( + ),
gives  1⁄ + 1⁄ =1  

Fig. 21.6 Problem G2 Diagram

The big triangle and the one above the square
are similar (corresponding sides are parallel), 
and so h/ = (h − 2)/2, 
whence, multiplying this by 2 , the equation

2h = (h − 2)
already treated by the arithmetic group.  

Fig. 21.7 Problem G3 Diagram

H. Bass



403

If instead, we formally factor p:

 
p x x sx s x n x m n m� � � � � � �� �2 2� � � �, , .integers

 

We find that n + m = s and nm = 2s whence n and m are positive, since s is, and 
so we have the Eq. (21.2) nm = 2n + m already treated by the arithmetic group.

Students needed the most help with Al2, where the mathematics is mainly 
happening in the exponents:

 
uv u vn m� � � �

2

 

We first get, from (uv)2 = vm, u2 = vm − 2 so v = u2(m − 2)

Then, substituting for v in (uv)2 = un gives: (uu2/(m − 2))2 = un

Equating exponents then gives:

n
m

m m� �
�

�
��

�
��
� �� �2 1

2

2
2 2/  whence, again, Eq. (21.4) 2m = n(m − 2)

In Al3, the conditions on (r, b) are that r + b = rb/2.
Dividing this by rb gives,
1/b + 1/r = 1/2 already treated by the arithmetic group.

Some Student Reflections and Further Connections
Here is a sample of student reflections on this activity.

• The students were all surprised, and intrigued, to see that their diverse problems 
all led to essentially the same (Diophantine) equation: (21.1) 1/n + 1/m = 1/2 and 
its variants.

• Many of them wondered whether there was some way that they could have 
anticipated this commonality, but they saw no simple way they could have 
done this.

• Some of them researched the web to see if they could find some standard 
discussion or identification of this basic equation. The closest thing to this was 
the connection with the harmonic mean, found by the rates group. Making 
worthwhile problems that are “internet proof” is something I regularly seek since 
I like to give take-home exams relieved of restrictive time pressure.

• The above outcome led many of my students to ask me how I found all these 
different problems with the “same” solutions, thinking that I was somehow being 
“sneaky.”

• So, at this stage, the phenomenon seemed more like an intriguing coincidence, or 
uncanny craftiness – that so many different-looking problems could be modeled 
by the same equation (and its variants).

• Apart from that, it did not seem to provide any more general kind of mathematical 
insight beyond the immediate observation that a single equation could 
mathematically model an extraordinary variety of mathematical problems.

• Nonetheless, everyone found the activity to be interesting and worthwhile and 
looked forward to more of this kind of activity.
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21.5.4  Relation to the Classification of Platonic Solids

Partly in response to this student reaction, and to further emphasize mathematical 
connections, I went on to engage the class in a quick discussion of Platonic Solids, 
and to illustrate how their (combinatorial) classification could be reduced to solving 
the following Diophantine equation, that is a slight perturbation of Eq. (21.1) above.

 
1 1 1 1 2 1�� � � � �/ / / /n m E

 

The reduction to (1+) uses Euler’s formula,

V–E+F=2

where V, E, F are the numbers of vertices, edges, and faces of a convex polyhedron, 
and regularity is expressed by the fact that each face is an n-gon, and m faces meet 
at each vertex.

The point of this activity was to further emphasize that such Diophantine 
equations arise usefully in still more diverse contexts.

21.6  Problems Unexpectedly with the Same Answer, for Deep 
Structural Reasons

A mathematical example with a spectacular range of significantly different 
incarnations is the sequence of Catalan numbers, Cat(n). This sequence is the 
answer to a remarkable variety of questions. We provide below (Sects. 21.6.1, 
21.6.2, 21.6.3, and 21.6.4) the statements of some of these questions, but without 
proof that they are answered by the Catalan numbers. These results provide a 
meaningful and accessible illustration of its surprising mathematical connections 
among these questions. Though this is a somewhat specialized combinatorial topic, 
it is technically within reach, with some instructional investment, of secondary 
mathematics. A more detailed discussion can be found in (Bass, 2022). A 
comprehensive treatment can be found in Richard Stanley’s book (Stanley, 2015).

Here are some interesting, mathematically significant, and strikingly different 
incarnations of the Catalan numbers.

21.6.1  Walks on the Positive Half-Line

A sequence x0, x1, . . . , xn of real numbers such that ∣xj – xj − 1 ∣  = 1 for 1 ≤ j ≤ n, is 
called an n-step walk on the number line, from x0 to xn. It is a walk on the positive 
half-line if all xj ≥ 0. Let W(n)= the number of n-step walks on the positive half-line 
from 0 to 0.
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21.6.2  Binary Rooted Trees

A binary rooted tree is a tree T with a specified vertex (the “root”) such that each 
vertex is either terminal (a “leaf”) or has two edges leading away from the root. We 
call T planar if T is embedded in the plane with the root on top, and edge paths from 
the root directed downward. Then the vertices at a given distance from the root have 
a well-defined left-to-right order. Thus, trees in Fig. 21.8 are isomorphic as planar 
rooted trees, but the isomorphism is not order-preserving.

Let BRT(n)=the number of order-preserving isomorphism classes of finite planar 
binary rooted trees with n + 1 leaves.

21.6.3  Associations

Let A be a set with a possibly non-associative binary operation, a∗b. Given a 
sequence a0, a1, . . . , an in A, let As(a0, a1, . . . , an) = the set of ways (using paren-
theses and ∗) to form an order-preserving product a1 ∗ a2 ∗  ∗  ∗ an. For example,

As (a,b,c,d) = {((a ∗ b) ∗c) ∗d, (a ∗(b ∗ c)) ∗d, (a ∗ b) ∗(c ∗ d), a ∗(b ∗(c ∗d)),  
a ∗ ((b ∗c) ∗d)}

Let As(n) =  ∣ As(a1, …, an + 1)∣

21.6.4  Triangulations

Let P be a convex n-gon, n ≥ 3. By a triangulation T of P we mean a decomposition 
of P into n – 2 triangles, using n – 3 non-intersecting diagonals of P. Let Tr(n)= the 
number of triangulations of a convex (n + 2)-gon.

We agree that Tr(0) = 1.

Fig. 21.8 Binary rooted trees
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21.6.5  Multi-Theorem

 (a) W(n) = BTR(n) = As(n) = Tr(n).
Call this common number the Catalan number, denoted Cat(n).

 (b) Cat n
n

n

n

n

n

n

n
� � �

�
�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

1

1

2 2 2

1
–  (Formulas)

 (c) Cat(0) = 1, and, for n > 0,
Cat(n + 1) = ∑0 ≤ j ≤ nCat(j)Cat(n − j) (Recursion)

Of course, this (multi-)theorem could be decomposed as a collection of problems, 
a mix of our types I and II, but they would likely be too ambitious, in both technical 
terms, and the need for inventiveness, for general secondary and tertiary students.

21.7  Concluding Discussion

The problem collections presented here involve a variety of perhaps unfamiliar 
problem types. I have provided solutions in most cases, so as to give the reader a 
measure of both the complexity and the accessibility of the problems. Some of these 
problem collections may be judged (mistakenly, I believe, in some cases) to be too 
advanced, or too difficult, for school students, perhaps because they have no famil-
iar expression in current school curricula.

Consider, for example, Part 1 (on discrete real additive groups) and Part 2 
(variations on the Euclidean Algorithm). These are related in that they both rest on 
the intuitively clear linear measure treatment of division with remainder. But the 
two parts have contrasting pedagogical purposes. Part 1 develops the general theory 
of discrete additive groups, as a coherent body of fundamental theorems. Part 2, on 
the other hand, illustrates the diverse (perhaps surprising) and multi-domain 
interpretations and applications of the Euclidean Algorithm.

As stated in the discussion (1.3) of Part 1:
The group theory rests on the core properties of addition and multiplication, and 

it powerfully exposes the duality, not just distinction, between discreteness and con-
tinuity, and the natural appearance of commensurability at their boundary. Once the 
few basic concepts are understood, the proofs of several striking fundamental results 
are surprisingly short, simple, and intuitive. This treatment can afford a depth of 
understanding at least as robust as assimilation of the much more complex ideas of 
AP Calculus, for example. Indeed, the ideas featured here can provide a helpful 
foundation for the understanding of AP calculus.

So, I feel that this challenges the judgment that the material of Part 1 is “too 
advanced” or “not accessible.” If, on the other hand, this material is judged inap-
propriate because it does not find expression in the current school curriculum, I 
argue, based on what is presented here, that it does, in fact, merit a place in the 
secondary curriculum.
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Also as stated in the introduction, a central theme in these collections is to disrupt 
the fragmentation about the nature of mathematics, induced in the minds of many 
students, by the siloed school curricular geography. This agenda has a built-in 
dilemma, a kind of “catch 22.” In order to discuss connections across different 
mathematical domains, one must adopt a standpoint that is, in some sense “above or 
beyond” these domains, since they are the constituents of the discourse. This, in 
turn, compels the examples to be situated similarly beyond the standard curriculum, 
and so, in turn, they may have no natural home within that curriculum. The reader 
may well have detected this tension. I expose it without apology. My view is that the 
curriculum should be adapted to create a home for such rich mathematical connec-
tions, and the unmet learning opportunities that they afford.
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Chapter 22
Meeting the Challenge of Heterogeneity 
Through the Self-Differentiation Potential 
of Mathematical Modeling Problems

Rita Borromeo Ferri, Gabriele Kaiser, and Melanie Paquet

22.1  Introduction

Mathematical modeling has been established as a mandatory component of 
mathematics curricula from primary school to high school in many countries around 
the world, such as Germany and the United States, in the past few decades. More 
recently, other countries, such as China and South Korea, have started to include 
modeling in their school curricula (Borromeo Ferri, 2021; Schukajlow et al., 2018). 
Mathematical modeling is, briefly, the solution of real-world problems with the help 
of mathematical models (Borromeo Ferri, 2018; Niss & Blum, 2020). The modeling 
process (i.e., the solution steps for the real problem) can be visualized using model-
ing cycles, and different types of modeling cycles can be distinguished and employed 
depending on the learning objectives (for an overview, see Kaiser, 2017). The teach-
ing and learning of mathematical modeling are very challenging for students and 
teachers; however, empirical studies have shown the value of teaching modeling in 
classrooms for all students from a cognitive and an affective perspective (Blum, 
2015; Niss & Blum, 2020). Nevertheless, previous studies have demonstrated cer-
tain obstacles teachers face, such as lack of time, limited access to teaching materi-
als, the difficulty of evaluating modeling problems, and (unfortunately) a lack of 
experience due to inadequate training and further education, make the everyday 
implementation of modeling in classrooms difficult (Schmidt, 2010). Good 
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examples of evaluated learning environments for modeling have been developed in 
the last three decades, for both schools and universities, based on empirical evi-
dence, to which teachers from all institutions can refer (Borromeo Ferri, 2018; 
Doerr & Lesh, 2003; Schukajlow & Blum, 2018). In addition, a wide range of mate-
rials are now available—above all, suitable and effective collections of modeling 
problems for all school levels, such as COMAP’s Mathematical Modeling Handbook 
II (2013)—which teachers can use in their lessons. For teacher education on math-
ematical modeling, Borromeo Ferri and Blum (2010) developed a model for math-
ematical modeling competencies of teachers. This model conceptualizes and 
operationalizes teachers’ modeling competencies according to four dimensions: (1) 
theoretical, (2) task, (3) instruction, and (4) diagnostic dimensions. It is evident that 
teachers need both a theoretical background and practical knowledge about collec-
tions of modeling problems and their many facets, especially for the task dimension 
of the model.

According to Maaß (2007), a good modeling problem is open, authentic, reality- 
based, and solvable through multiple approaches during the phases of the modeling 
cycle. An effective modeling problem also has a self-differentiating problem format 
(Maaß, 2007; Borromeo Ferri, 2018), because such problems allow different levels 
of processing through their problem setting, meaning that teachers do not need to 
create, for example, three different types of problems, but can use one modeling 
problem to cater to the different needs of learners. Knowledge of how modeling 
problems can be used in a self-differentiating way and what advantages this offers 
compared to elaborate preparation of different working materials for learners can 
support quality mathematics teaching in heterogeneous classes.

The daily handling of heterogeneity, studied by the Programme for International 
Student Assessment (PISA) organized by the Organisation for Economic 
Co-operation and Development (OECD) in Germany (OECD, 2010), which con-
cerns the question of finding the best possible differentiation, is not a new problem 
(Krauthausen, 2018). So far, however, it has been challenging due to the lack of 
empirical studies on what kinds of tasks are suitable and whether and how modeling 
problems can actually be used in a self-differentiating way. Furthermore, the criteria 
by which modeling tasks can be defined as self-differentiating and thus can be suc-
cessfully used in heterogeneous classes remain unclear.

Therefore, the aim of this study described in the paper was to develop a theoretical 
model and conduct a qualitative study to meet this challenge and identify criteria 
according to which the self-differentiation potential of modeling problems can be 
evaluated in terms of content and methodology. Overall, this paper aims to contrib-
ute to the collection of modeling problems, which permit self-differentiation. 
Although the process of the creation of this collection of papers as well as the 
empirical validation of the examples are described based on one problem the prin-
ciples are general.

The intention was thus to gain more knowledge about facing the challenge of 
heterogeneity through the self-differentiation potential of mathematical modeling 
problems. First, this chapter presents the theoretical background to mathematical 
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modeling, heterogeneity, and the concept of self-differentiation. It then discusses 
the research questions and the potential for self-differentiation of certain modeling 
examples, focusing on the differentiation of performance. Using a well-known 
example from the literature, a method is developed that allows the self- differentiating 
potential of modeling problems to be analyzed. Based on this theoretical frame-
work, the actual potential of different modeling tasks is examined through a qualita-
tive study of tenth-grade learners. The paper closes with a summary and discussion.

22.2  Theoretical Background

22.2.1  Mathematical Modeling—Modeling Problems 
and Modeling Processes

According to Pollak (2007), mathematical modeling can be described as translation 
processes that move back and forth between reality and mathematics, thus, real 
problems are fundamental to mathematical modeling and are concretized in model-
ing problems. An example of a modeling problem that the authors have often used 
in schools with learners during longer modeling activities from Grade 9 onward is: 
“Which is best: using traffic lights or a roundabout to control traffic flow in a city?” 
(Kaiser & Stender, 2013). Maaß (2008) characterized modeling problems using the 
following criteria: open, complex, realistic, authentic, and possible to solve via a 
modeling process. Modeling problems, therefore, differ from common word prob-
lems or pseudo-realistic problems, where the mathematics to be used is already 
obvious and well-known to students.

The modeling process is best illustrated using a modeling cycle and, as there are 
different types of cycles, Kaiser and Stender’s (2013) cycle is referred to herein, as 
shown in Fig. 22.1 (for an overview see, among others, Kaiser, 2017). This chapter 
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Fig. 22.1 Mathematical modeling cycle (Kaiser & Stender, 2013, p. 279)
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briefly describes the phases of the modeling cycle, since these are fundamental to 
the analysis of the self-differentiating potential of modeling problems.

The starting point for modeling is a real situation, which always constitutes the 
real problem described in the mathematical problem. The real situation is then sim-
plified and idealized with the help of retrieved and/or personal extra-mathematical 
knowledge, and a real model is developed for which learners must make assump-
tions. Subsequently, the mathematization phase follows (i.e. the translation of the 
real situation into the language of mathematics to create a mathematical model of 
the situation). Through the processing of the mathematical model within mathemat-
ics, mathematical results are formulated, which are then interpreted back into reality 
as real-world solutions and finally validated. If the problem’s solution proves not to 
be appropriate, the cycle must be repeated. In general, several iterations are needed 
to obtain different versions of the model, for which mathematical modeling compe-
tence is necessary. According to Blomhøj and Jensen Højgaard (2007), modeling 
competence is the ability to construct and use mathematical models by performing 
appropriate steps (i.e. those mentioned above) and to analyze or compare certain 
models. The performance of the individual steps or phases requires modeling sub- 
competencies as well as global and social competencies (Kaiser, 2007), which must 
be developed through training (Blum, 2015).

Since this empirical study focused on the basic differentiation possibilities of 
modeling, the following sub-competencies were of specific interest: (1) construct-
ing a real model, (2) constructing a mathematical model, (3) developing mathemati-
cal results, (4) interpreting the mathematical results, and (5) validating the real 
results (Kaiser & Brand, 2015). These sub-competencies provided the overall basis 
for developing the instrument for analyzing the self-differentiation potential of a 
modeling problem in the coding manual, which was then concretized in the devel-
oped instrument to analyze problems’ potential for self-differentiation (see Fig. 22.2 
in the next section).

Fig. 22.2 Instrument for analyzing the self-differentiation potential of a modeling problem
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22.2.2  Heterogeneity, Differentiation, and Self-Differentiation

The discussion about dealing with heterogeneity is not new. As early as 1976, the 
renowned German educational scientist Klafki argued that, through various differ-
entiation possibilities, each child in a class can be individually supported (Klafki & 
Stöcker, 1976). In the context of school learning, heterogeneity first denotes, prag-
matically, the inequality of students in a learning group with regard to the basic 
prerequisites and conditions of their learning, rather than being defined in terms of 
individual characteristics (Wischer, 2009). According to the research (Bräu & 
Schwärdt, 2005), heterogeneity comprises many dimensions, but this can result in 
unmanageable lists of characteristics that need to be considered by teachers (e.g., 
performance, age, gender, social status, family background, economic and cultural 
background, etc.). Accordingly, teachers must consider how to carry out 
methodological- didactical differentiation, which can be done in various ways. For 
example, taking heterogeneity of performance as an example; traditional methods 
such as social differentiation (i.e. single work, partner work, group work, etc.), or 
differentiation with media such as textbooks, worksheets, or digital media, are often 
used to enable learners to learn at their individual cognitive levels. Also, quantitative 
differentiation can be used (e.g., giving the same amount of time for different work-
loads/amounts of content). Finally, qualitative differentiation involves objectives 
and problems with different levels of difficulty (Krauthausen, 2018; Winkeler, 
1978). These are important everyday methods of differentiation used by teachers, 
but they require appropriate preparation if the aim is to encourage and challenge 
learners.

So how can differentiation be achieved at the same time as minimizing the heavy 
workload of teachers and still providing quality mathematics instruction for all stu-
dents? Initial approaches in the field of mathematics education have, in this respect, 
emerged strongly from German-language research for primary and secondary 
schools, especially that conducted by Krauthausen and Scherer (2010) and Büchter 
and Leuders (2014). The concept of natural differentiation (Wittmann, 2001) is par-
ticularly noteworthy in this context because, according to the mentioned research-
ers, this concept fills the gaps in traditional (internal) differentiation regarding 
mathematics teaching, and does so by

• Orientating actions of differentiation explicitly towards the specifics of mathematics
• Doing justice to the different areas of responsibility for teachers and for students
• Ensuring degrees of freedom for individual learning processes
• Laying great emphasis on guaranteeing common social learning (Krauthausen, 

2018, p. 330).

According to Krauthausen (2018), the above aspects do not constitute a definition 
but rather a description of natural differentiation, and they are fundamental for the 
characterization of the concept of self-differentiation. Problem setting for a self- 
differentiated problem facilitates different levels of processing and can be under-
stood as a format that is already itself differentiating. Modeling problems in 
particular, due to their openness and potential for multiple solutions on different 
levels (Schukajlow & Krug, 2014), offer rich learning opportunities for all students 
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in a classroom (Vorhölter & Kaiser, 2019); hence, modeling problems are likely to 
contribute to the goal of inclusiveness better than distributing different worksheets, 
with easier problems for weaker students and difficult problems for stronger stu-
dents, since a single modeling problem can be used for all students. A literature 
review found only a few studies that explicitly dealt with the potential for self- 
differentiation of modeling problems on a theoretical level, indicating that theoreti-
cal analysis of modeling problems on an empirical level is lacking (Borromeo Ferri, 
2018; Ostkirchen & Wess, 2019). Accordingly, the following research questions 
were addressed for this chapter:

• Which key aspects should a theoretical analysis method include to characterize 
the self-differentiation potential of modeling problems, and what would such a 
method look like?

• What empirical evidence exists regarding the self-differentiation potential of 
modeling problems with regard to students’ performance?

22.3  Theoretical Analysis of the Self-Differentiation Potential 
of a Modeling Problem

The previously presented detailed steps of the modeling cycle are analyzed below 
regarding their self-differentiation potential. The aim was to develop a general anal-
ysis method, and thus a theoretical model, and apply it to modeling problems. Some 
aspects of differentiation have already been mentioned, but further theoretical 
aspects were actually used in the model, which will be discussed in the following 
section.

Modeling problems are based on certain mathematical topics, providing 
categories for differentiation (Saalfrank, 2008) that were included in the developed 
model, because content can be differentiated either according to different topics or 
according to different foci within the same topic (Klafki & Stöcker, 1976). Different 
foci within a topic can also result from the different levels of difficulty at which a 
problem can be worked on in mathematics lessons. According to Prediger (2008), 
the difficulty-generating characteristics of mathematics problems, such as the type 
of cognitive activities, the degree of formalization of the problem, the technical 
complexity of the execution of the solution plan, or the degree of complexity, are 
suitable for generating different levels of difficulty in mathematics problems. In 
particular, the degree of complexity was included in the analysis method because––
according to Prediger (2008)––the clarity of the situation and thus the obviousness 
of the solution and the number of necessary solution steps can vary when working 
on a problem. This is particularly evident in the case of modeling problems, as 
already explained. With regard to modeling, the focus is on the specific modeling 
activities carried out during the modeling cycle and on the levels of argumentation 
and complexity. These aspects were essential points for the study and observable in 
learners’ interactions. In view of the many ways of differentiating between students, 
the focus was on performance differentiation, which is still of great relevance in 
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school practice today. Figure 22.2 shows an overview of the general analysis cate-
gories. The individual categories of the model were used for the theoretical analysis 
of the modeling task on the one hand, and for the analysis of the students’ modeling 
activities in the qualitative study on the other hand.

Instrument for Analyzing the Self-Differentiation Potential of a Modeling 
Problem: A Theoretical Analysis Method

The following section explains the model in Fig.  22.2 in more detail and 
concretizes it based on the modeling “hot air balloon” problem in Fig. 22.3, which 
was used in the present qualitative study. Based on the above model described and 
this study, the overall goal of the study is also to describe the development of a 
collection of modeling problems which permit self-differentiation.

Actually, the self-differentiation potential of the problem can be identified by 
analyzing this potential at each step of the work with the problem. Therefore below 
we will talk about the self-differentiation potential when building the real model 
self-differentiation potential when setting up the mathematical model, self- 
differentiation potential in mathematical work, self-differentiation potential in 
interpretation and self-differentiation potential in the validation of solutions. 
In detail:

Self-differentiation potential when building the real model: The identification of 
the influencing variables relates to the category of content. Two different types of 
influencing variables can be determined for this problem: on the one hand, influenc-
ing variables concerning the height of the man; on the other hand, variables con-
cerning the balloon itself. Concerning the man, especially for the determination of 
the scale as an auxiliary variable, the real size of the man and the size of the man in 
the picture must be determined. Theoretically, many sizes are conceivable for the 
balloon, which results from the different sizes and shapes into which the balloon can 
be divided for simplification. Figure 22.4 illustrates different ways of building a real 
model. At a low level of complexity, the balloon can be roughly approximated as a 

Fig. 22.3 Hot air balloon (Herget et al., 2009; translation by the first author)

22 Meeting the Challenge of Heterogeneity Through the Self-Differentiation Potential…



416

Fig. 22.4 Different ways of building a real model

cuboid block with a maximum width and maximum height (marked in color). At a 
medium level of complexity, modeling can be based on a ball (using the maximum 
height), with the excess and neglected volume approximately equalizing each other. 
This constitutes good argumentation. However, efficient learners at a high level can 
divide the hot air balloon into two simplified parts according to the principle of 
exhaustion, separated, for example, at the maximum width and individually under-
stood as egg-shaped and funnel-shaped. Of course, other models are possible too.

With regard to the assumptions concerning the form, however, it is probable that 
German tenth-grade learners (aged 16 years) will already be familiar with the terms 
sphere, cone, and similar so that they may use these terms and thus proceed directly 
to the mathematical model. Consequently, it is possible to determine meaningful 
different numbers for the influencing variables. This modeling problem thus (theo-
retically) has self-differentiation potential according to the complexity of the real 
model. The question regarding which of the influencing variables should be consid-
ered more meaningful than others must then be discussed when the key variables 
have been identified: Here, all learners must realize that many fine subdivisions of 
the dimensions, and thus changes in the shape of the balloon, are less important than 
a few meaningful subdivisions, such as the maximum diameter. Stronger learners 
are likely to recognize that more than three different widths would result in an inad-
equate accuracy of the total volume, and they could use more appropriate measure-
ments, such as the average width. These possibilities lead to a theoretical 
self-differentiation potential of content according to complexity.

The degree to which information can be classified as irrelevant is subjective, but 
must always be appropriate to the initial situation. Furthermore, irrelevant informa-
tion should be recognized and excluded from the text describing the problem. The 
text for this problem contains a lot of information that is irrelevant to the solution of 
the problem. Weaker students, for example, have the option of classifying all other 
variables relating to the shape and dimensions of the balloon as irrelevant, apart 
from the maximum diameter and a cuboid outline. Smaller changes in shape, such 
as the flattening of the balloon on the upper side, are not considered further. Stronger 
learners, however, may recognize less influential factors as irrelevant and calculate 
the total volume using the maximum diameter, the approximate maximum height, 
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an egg-shaped upper part, and a conical lower part (Fig. 22.4—real model of a hot 
air balloon at a higher level). Only simple relationships can be established between 
the single variables; that is, the influencing sizes (e.g., the size of the diameter influ-
ences the volume, so the larger the real size of the man, the larger the volume of the 
balloon, etc.).

Self-differentiation potential when setting up the mathematical model: Before 
the actual calculation of the balloon volume, the scale of the drawing must first be 
determined, based on the estimated real and the measured illustrated size of the man 
(1.80 m: 0.007 m on the learners’ worksheet). Using this calculation, the dimen-
sions of the balloon are then converted into reality, but in this step, no alternative 
processes are possible, so there is no self-differentiation potential. As already men-
tioned regarding the real model, it is probable that learners, when simplifying the 
form, will mathematize immediately and determine geometric shapes as substitutes 
for defined parts of the balloon; thus, geometric shapes of varying complexity can 
be used, as shown in Fig. 22.5.

Weaker students (lower level) could mathematize their simpler real model of the 
comprehensive cuboid block as a cuboid, with the length and width corresponding 
to the maximum diameter (marked in red) and the height to the maximum height of 
the balloon (marked in blue). Stronger students could mathematically advance their 
real model with mathematically more ambitious concepts, such as using a sphere or 
separating the balloon into a hemisphere and a circular cone (higher level). A further 
difficulty could arise from the learners’ levels of mathematical knowledge. If learn-
ers only have knowledge of volume calculations for cuboids, but not for spheres and 
cones, this could lead to more complex solution processes; however, this also offers 
a methodical self-differentiation possibility, since the unknown content must be 
researched beforehand (e.g. on the Internet or in formulae collection). Consequently, 
the problem contains content-related self-differentiation potential relating to com-
plexity, since the balloon can be approximated with varying degrees of accuracy and 
complexity, and the formulae for the geometric shapes are differently complicated. 
The calculation of the volume of a cone is technically (i.e. assuming adequate math-
ematical competence) more difficult than that of a cuboid, due to the different math-
ematical possibilities and the degree of familiarity with the means used. Learners 
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can argue why the selected geometric form was chosen, deriving the argumentation 
from the arguments for the real model for simplification.

Self-differentiation potential in mathematical work: Here, too, the mathematical 
procedure can be analogized with the solution process for a similar problem. The 
division into sub-problems may have already taken place for the real model, but can 
also be done later when solving the mathematical model, by first calculating the 
volumes of the individual parts separately and then adding them to obtain the total 
volume. Consequently, the problem has methodical self-differentiation potential 
through the application of heuristic strategies (e.g., Pólya, 2010) to the mathemati-
cal model, and content-related self-differentiation potential according to complexity 
and intricacy, depending on the respective mathematization process. Based on the 
degree of complexity and intricacy used in the mathematization process (e.g., using 
a cube rather than a hemisphere and cone), the mathematical solution can vary in 
complexity as determined by the mathematization. Applied mathematical knowl-
edge, such as estimating, calculating from and with scales, converting centimeters 
to millimeters and cubic centimeters to cubic millimeters, and solving equations, 
will be involved in any adequate modeling.

Potential for self-differentiation in interpretation: The mathematical solutions 
can be interpreted with varying degrees of accuracy in reality, either by translating 
only the final result (e.g., “Approx. 5–12 million liters of air will fit into the hot air 
balloon”) or by also considering the intermediate steps for justification (e.g., “Since 
the balloon has a maximum diameter of ... meters and a height of ... meters, the total 
volume is ... In reality, fewer liters fit into the balloon”). One possible solution based 
on the real and mathematical model at a higher level is about 6 million liters of air 
(see Herget et al., 2009).

As an argument, this more precise justification of the accuracy of the real result 
is conceivable: ‘In reality, fewer liters of air will fit into the balloon, since the 
assumed simplified shape of the balloon as a hemisphere and cone is slightly larger 
than that of the actual balloon.’ However, the exact number of liters cannot be deter-
mined due to the fuzzy image and the estimated reference size for the scale. This 
problem, therefore, through its various complex interpretation and argumentation 
possibilities, affords content-related self-differentiation potential according to com-
plexity. The problem does allow for the generalization of the solution.

Self-differentiation potential in the validation of solutions: The real result can be 
critically reviewed and applied with varying degrees of accuracy. On the one hand, 
it is possible to check intuitively based on one’s inner logic; for example, a huge or 
minuscule number of liters may seem unfeasible to the learners. On the other hand, 
the real result can be checked at a higher level using other solution methods (e.g., by 
mathematization of a sphere, cuboid, etc.). Stronger learners can also validate their 
solutions on an external scale by using comparison values; for example, by research-
ing on the Internet how much air fits into a standard hot air balloon, the size of 
which may vary between 400 and 12,000 m3 (or 4–12 million liters). This search for 
comparative values again offers methodical self-differentiation potential; hence, the 
problem has content-related self-differentiation potential according to complexity, 
and methodical self-differentiation potential according to the search for missing 
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data. Arguably, one could use the following: The comparative values can be included 
to varying degrees to justify the validation. Weaker learners may draw the simpler 
conclusion that their result is correct because their result lies within the researched 
solution range, while stronger learners may argue that their solution is probably cor-
rect because the balloon shown is a rather small model according to the measured 
sizes, and it, therefore, makes sense that their result lies in the lower range of the 
solution range. Thus, the argumentation itself offers content-related self- 
differentiation potential according to the complexity involved. The mathematical 
result can also be validated, as with any modeling problem, by reviewing calcula-
tion errors; recalculating values (for lower levels); calculating and comparing alter-
native solutions; or checking the magnitude of the result using rough calculations, 
estimates, and comparisons with the scale of other mathematical results. If a similar 
order of magnitude is obtained using these approaches, checked in different ways 
and supported by effective argument, this leads to higher-level results.

22.4  Methodology and Design of the Study

Since to the best of our knowledge no systematic research has been conducted on 
the self-differentiating potential of modeling problems, the aim of this study was to 
obtain empirical evidence of the self-differentiation potential of modeling problems 
relative to students’ performance. The sample consisted of 37 Grade 10 students 
attending a high school (a so-called gymnasium) in a neighborhood with high socio-
economic status in the northern part of Hamburg. The mathematics teachers in this 
school were interested in taking part in the study.

For the investigation, three modeling problems—hot air balloon, rainforest 
(Fig. 22.6), and cable drum (Fig. 22.7) problems—were selected because they dif-
fered in their structure and complexity. Furthermore, the tasks provided a good basis 
for a collection of modeling problems that prototypically demonstrate the self- 
differentiation potential and which have been used in many recent empirical studies. 
From the design of the study (Fig. 22.8), it can be seen that the students were ini-
tially and randomly divided into two to four groups according to each modeling 
problem. Each group worked on only one task at a time, and all groups worked at 
the same time and were videotaped. The modeling problems were assigned to the 
students by the project leaders who organized the study so that solutions for each 
task were available and comparisons could be made between the tasks carried out 
by high-performing and low-performing students.

After each modeling problem, the students were given a short feedback sheet to 
indicate their subjective assessment of the difficulty of the modeling problem using 
a five-point rating scale (i.e., very easy, easy, neither difficult nor easy, difficult, very 
difficult).

The participating learners had little experience of modeling problems and did not 
know either the modeling cycle on a meta-level or specific strategies for solving 
modeling problems. To investigate performance differentiation, the learners were 
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Fig. 22.7 Cable drum problem (Förster & Kaiser, 2010)

Fig. 22.6 Rainforest problem (Leiss et al., 2006)

divided into homogeneous groups of four or five students according to their math-
ematical performance.

The teachers provided the study leaders with the learners’ marks in mathematics 
and also advised on the composition of the groups for the study. The reason for 
dividing the students into homogeneous groups was the possibility of analyzing the 
learners’ approaches more effectively, without having to constantly consider 
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Fig. 22.8 Design of the study

whether, for example, stronger learners might be steering or influencing the solution 
process too much. All groups were videotaped in separate rooms and, if questions 
arose, the project leaders answered them. Care was taken to ensure that all groups 
received the same level of assistance so as not to influence the results of the analysis.

The video recordings were transcribed. Based on the theoretical model 
(Fig. 22.2), data were analyzed according to grounded theory principles (Strauss & 
Corbin, 2003). The analysis process was thus guided by the existing categories of 
the theoretical model, meaning that the theoretical model formed the basis for the 
theoretical analysis method. The empirically confirmed self-differentiation poten-
tials, which we describe as results in the following section, are presented in tables 
to illustrate the data analysis procedure.

22.5  Results of the Study

As can be seen from the design of the study, the empirical data were very extensive; 
therefore, prototypical results will be described and discussed of a high- performance 
group of learners with good grades in mathematics and a lower-performance group 
of learners with satisfactory grades in mathematics. Both groups modeled the hot air 
balloon problem. Since the approaches of the two groups were compared based on 
the central aspects in the presented tables, differences will become clear regarding 
their modeling processes. This perspective should offer insights regarding the extent 
to which the theoretical self-differentiation potentials were empirically justified.

22.5.1  Analysis of the Groups

No learner in either group initially chose to work alone and then compare their 
results with the others; by contrast, all learners discussed a mutual approach from 
the beginning. The common solution was then written down by one or more learners 
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and illustrated on a poster at the end of the session; thus, the modeling process could 
not be traced back to individual students but was associated with an overall result 
for the respective group of students and their performance level.

The group processes during the phases of the modeling process and the analyzed 
self-differentiation potentials were very complex; hence, group differences are pre-
sented transparently and succinctly in Tables 22.1, 22.2, 22.3, 22.4, and 22.5. On the 
basis of the categories, the activities are summarized so that, on the one hand, it is 
possible to see whether and how the hot air balloon problem had an empirical self- 
differentiating effect and, on the other hand, to observe differences in the processing 
in terms of performance.

22.5.2  Empirically Confirmed Self-Differentiation Potential 
in Setting Up the Real Models

Table 22.1 Empirically confirmed self-differentiation potentials when building the real models

Categories Stronger group Weaker group

Influencing 
variables

Good ideas for determining the 
size of the man by measuring/
comparing the picture with reality.
Balloon dimensions based on the 
average width of the balloon.
Principle of exhaustion used to 
approximate the shape of the 
balloon.
The group chose to divide the 
balloon into two sections, striving 
for more complexity for later 
mathematization

Good ideas for determining the size of 
the man by measuring/comparing the 
picture with reality.
Balloon dimensions based on the 
maximum width of the balloon.
Principle of exhaustion used to 
approximate the shape of the balloon.
The group chose to divide the balloon 
into three sections and measure 
quantities, striving for less complexity 
for later mathematization.

Identification of 
key variables

Learners were explicitly aware that 
no exact approximation to the 
shape of the balloon was possible.
Learners noted and excluded 
irrelevant information in the text 
for the task.

Learners were explicitly aware that no 
exact approximation to the shape of the 
balloon was possible.
Learners discussed the irrelevant 
information in the text for the task.

Assumptions/
Simplifications

Adequate simplification by 
reducing the balloon width to the 
average width.

Reduced simplification due to the 
three-part balloon.

Relationships 
between variables

Learners established a causal 
relationship between the variables: 
the age of the man and the real 
height of the man.

Learners discussed various 
relationships between variables.

Search for 
information

No further search No further search

Arguments High degree of complexity Average degree of complexity
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22.5.3  Empirically Confirmed Self-Differentiation Potential 
When Building the Mathematical Model

Mathematizations of the Two Groups

Table 22.2 Empirically confirmed self-differentiation potentials when building the 
mathematical model

Categories Stronger group Weaker group

Mathematization A total of eleven mathematizations, 
as follows:
Of different complexity.
Selected mathematization was 
complex and contained two 
solutions.
Decomposition 1: into a truncated 
circular cone and a circular cone.
Decomposition 2: into a spherical 
section and a circular cone.

A total of four mathematizations, as 
follows:
The first three are greatly simplified.
Selected variant was more complex 
and accurate, but was slightly 
inappropriate:
Decomposition of the balloon into a 
main spherical section, a spherical 
layer, and a truncated circular cone

Argumentation High degree of complexity due to 
two mathematizations.
Boy’s utterance: “Because this is 
almost exactly a truncated circle, the 
top becomes blunt and it goes steeply 
upward. That’s exact!” (Fig. 22.9).

Average degree of complexity due to 
the goal of accuracy.
Girl’s utterance: “Yes, and the cone 
section [here, the lower part the 
truncated circular cone is meant], I’d 
really start here under the dark area, 
because that’s really an angular shape, 
there’s hardly any rounding in it” (see 
Fig. 22.9).

Appropriate 
notation

Searched for new mathematical 
formulae and wrote them down 
correctly.
Girl’s utterance: “But now we’ll 
figure out how to calculate it, which 
we haven’t done yet.”

Searched for new mathematical 
formulae and wrote them down 
correctly.
Boy’s utterance: “I’ll check the 
formulae collection for the area of 
one cone.”

Fig. 22.9 Mathematizations of the two groups
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22.5.4  Empirically Confirmed Self-Differentiation Potential 
in Mathematical Work

22.5.5  Empirically Confirmed Self-Differentiation Potential 
When Interpreting the Mathematical Results

Table 22.4 Empirically confirmed self-differentiation potentials when interpreting the 
mathematical results

Categories Stronger group Weaker group

Interpretation Group did not address prior 
intermediate steps in the 
interpretation to evaluate 
accuracy.

Group estimated the accuracy of the result and 
justified this using the reference value for the 
scale (the size of the man), which was only 
estimated.
Boy’s utterance: “We don’t have to make a 
correct equal sign at the end, by the way, but a 
sign for ‘approximately’, because it is actually 
only an approximate value, because we have 
estimated the man.”

Potential Content-related self- 
diferentiation of both 
groups according to 
complexity and 
argumentation.

Solution for 
special 
situations

No generalization. No generalization.

Table 22.3 Empirically confirmed self-differentiation potentials in mathematical work

Categories Stronger group Weaker group

Heuristic 
strategies

Decomposition of the problem into 
sub-problems (by dividing the shape of 
the balloon).

Decomposition of the problem 
into sub-problems (by dividing 
the shape of the balloon).

Applied 
mathematical 
knowledge

Calculation of scale, conversion of units 
(thereby faulty execution), rounding, 
estimating, volume calculation of 
various geometric bodies.
Additional calculation of the mean 
values of the widths of balloons.

Calculation of scale, conversion 
of units (thereby faulty 
execution), rounding, estimating, 
volume calculation of various 
geometric bodies.

Differences in the volume calculations 
resulted from the different 
mathematizations; however, they did not 
differ in the degree of complexity 
between the two groups.

Argumentation Since the mathematical models were 
finalized, no arguments for a higher level 
of modeling were presented

R. Borromeo Ferri et al.
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22.5.6  Empirically Confirmed Self-Differentiation Potential 
in the Validation of the Solutions

22.5.7  Reflection

Regarding the second research question, the analysis of the modeling processes 
showed that, across groups, both the high- and the lower-performing learners were 
able to participate in finding the solutions for all three modeling problems. The self- 
differentiation potential of the problems, which was initially analyzed normatively, 
was also confirmed empirically.

The “hot air balloon” modeling problem, shown as an illustration, therefore 
offered great potential for self-differentiation on different levels, both theoretically 
and empirically, with regard to the promotion of modeling competencies on the one 
hand and personal mathematical competencies on the other hand. Both groups, in 
fact, incorrectly converted sizes; however, the modeling problem enabled the learn-
ers to achieve different degrees of complexity in all phases of the modeling process 
and on the level of argumentation without having to formulate further sub- problems, 
as they would have to do for many textbook problems. The stronger learners were 
able to generate multiple solution paths (Schukajlow & Krug, 2014), and the weaker 
learners found at least one solution path. The real context was also helpful in that all 
learners were able to make a contribution to the discussion, which initially had noth-
ing to do with mathematics performance because it concerned everyday experi-
ences, such as the size of a man or whether anyone had ever seen such a balloon. In 
particular, the weaker learners showed a higher level of mathematical modelling 
competencies when building a mathematical model than the stronger learners, 
because their selected model variation was more complex and adequate.

Table 22.5 Empirically confirmed self-differentiation potentials in the validation of the solutions

Categories Stronger group Weaker group

Critical 
review

More complex, multiple ways of 
validation.
The group validated their mathematical 
result for the volume of the upper part of 
the balloon by comparing the order of 
magnitude of their result with the 
magnitude of the mathematical solution 
for the volume of the lower part.
They justified this by the fact that they 
expect a similar order of magnitude and 
carried out - further validations.

Less complex validation activities.
The group validated their 
mathematical result for the total 
volume; after including the scale to 
calculate the real-world sizes, they 
decided this could not be correct and 
justified this mathematically.
Boy’s utterance: “1.26057778, which 
is not good. It’s gotta be bigger.” 
Re-validation through appraisal.
Girl’s utterance: “6308, no … but 
63,816.75, that fits!”

Forms of 
validation

Estimation and comparison of orders of 
magnitude.

Estimation.

Solutions Several solutions after mathematization. One overall solution after 
mathematization.
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22.6  Summary and Discussion

Teachers deal with different dimensions of heterogeneity daily in schools, and there 
are many opportunities for mathematics teaching to encourage and challenge all 
learners. In particular, this contribution with the collection of modeling problems, 
which support self-differentiation, should clarify, based on the new approach of a 
theoretically derived analysis method and a qualitative study, the criteria that can be 
used to determine the self-differentiation potential of modeling problems in terms 
of content and methods; thus, this chapter should help to clarify the self- 
differentiating potential of modeling problems for facing the challenge of heteroge-
neity. The theoretical analysis and the empirical study answered the research 
questions: (1) whether a theoretical analysis method of the self-differentiation 
potential of modeling problems could be developed and how it should be structured, 
and (2) how the self-differentiation potential of modeling problems relates to the 
performance of learners. Based on the theoretical background regarding differentia-
tion and modeling, it was first possible to develop an analysis method for the self- 
differentiation potential of modeling problems. For this purpose, each phase of the 
modeling process was examined for possible level differences in terms of content 
and method according to complexity, intricacy, argumentation, inquiry techniques, 
and problem-solving strategies.

These differences in level of the content probably resulted from the differentiation 
of performance. The theoretical and theoretical descriptions (Fig.  22.2) were 
specifically applied to the modeling problems in the empirical study (to the “hot air 
balloon” problem). This analysis showed that modeling problems have great self- 
differentiation potential. For all the problems presented to learners in the study, it 
was empirically confirmed that content-related self-differentiation in all phases of 
the modeling cycle was possible.

Since potentials could be reconstructed in the studied modeling problems, which 
were quite different, it can be hypothesized that modeling problems in general pos-
sess these content-related self-differentiation characteristics. A further important 
finding was that the different modeling problems in the study also had different 
self-differentiation potentials, which could partly be attributed to the special charac-
teristics of the individual problems. Based on these results, the first research ques-
tion was answered by developing a theoretical analysis method with corresponding 
categories.

This model could be validated mainly by empirical investigation and was 
prototypically illustrated by application to a high-performance and a lower-
performance group of tenth-grade learners in the empirical study. In particular, the 
analysis highlighted the different degrees of complexity in the learners’ approaches 
according to their performance levels, which led to more mathematization 
approaches and solutions being developed by the stronger learners than the weaker 
learners. Nevertheless, it could be shown (thus answering the second research 
question) that all learners were able to participate in the modeling problems, 
illustrating the power and diverse characteristics of modeling problems.

R. Borromeo Ferri et al.
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The students’ solutions also showed some differentiations in the opposite 
direction, meaning that the supposedly weaker learners achieved a higher level of 
performance in some phases of the modeling cycle, particularly when building the 
real model. This may relate to the fact that some learners may be more proficient in 
some sub-competencies of modeling than in others, although the groups were 
divided according to their overall mathematics performance. There may be further 
opportunity to investigate this finding by classifying learners according to different 
levels of modeling competencies rather than their overall performance in 
mathematics. This result ultimately showed that modeling problems offer weaker 
students new possibilities for engaging with and applying mathematics.

A further future aim is to operationalize the theoretical analysis method with a 
larger sample, which will require new survey instruments. Besides the extension of 
the sample, further studies with learners of other age groups, using different model-
ing problems, would be interesting. Overall, our study could demonstrate that with 
modeling problems, teachers have an effective teaching tool that meets the chal-
lenge of dealing with heterogeneity in a quality, motivating, and work-relieving way.

Previous findings illustrating the challenging power of modeling problems have 
already been incorporated into courses on modeling in teacher training, but more 
activities and collections of problems are needed to unfold the pedagogical potential 
of mathematical modeling problems.
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Chapter 23
Taiwanese Teachers’ Collection 
of Geometry Tasks for Classroom 
Teaching: A Cognitive Complexity 
Perspective

Hui-Yu Hsu

23.1  Introduction

Many researchers have pointed out the crucial role of mathematical instructional 
tasks in student learning outcomes (Boston & Smith, 2009; Henningsen & Stein, 
1997; Silver & Stein, 1996; Stein et al., 1996). Mathematical tasks can direct stu-
dents’ attention to particular aspects of mathematics and structure their ways of 
thinking about mathematics (Doyle, 1983, 1988). The work students do determines 
how they think about a curricular domain and understand the meaning of mathemat-
ics. The types of tasks may also influence instruction, subsequently leading to dif-
ferent opportunities for students to learn mathematics (Doyle, 1988; Stein 
et al., 2000).

Of particular research interest is the relationship between mathematical tasks and 
the levels of cognitive demand, as this dramatically influences student learning out-
comes (Boston & Smith, 2009; Henningsen & Stein, 1997; Silver & Stein, 1996; 
Stein et al., 1996). Leikin (2014) further proposed a more comprehensive concep-
tion of mathematical tasks, namely mathematical challenge, which highlights the 
importance of students thinking of tasks as interesting, thus motivating them to 
engage with mathematically difficult tasks. One key to determining mathematical 
challenge is the cognitive complexity1 that a task entails. During instruction, teachers 

1 Cognitive complexity and cognitive demand share a similar construct that denotes task features 
entailed, which influence the kinds of cognitive processes students may need to perform to solve 
the task (Stein et al., 1996). Cognitive complexity particularly refers to cognitively demanding or 
cognitively complex tasks. It possesses features that appear to require students to engage in high- 
level cognitive processes such as making connections or mathematical reasoning (Magone 
et al., 1994).
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have to maintain or increase the cognitive complexity of tasks to challenge students 
to move to a higher level of thinking (Leikin, 2009; Stein & Lane, 1996).

This study focuses on Taiwan mathematics instruction, as Taiwanese students are 
consistently in the top group in cross-national assessments (e.g., Mullis et al., 2012; 
OECD, 2014). One of the main reasons for these students’ out-performance could be 
the mathematical tasks that Taiwanese mathematics teachers collect for classroom 
teaching. Hsu and Silver (2014) examined the type of geometry tasks used by 
Taiwanese mathematics teachers. They reported several significant findings con-
cerning the collection of tasks and the cognitive complexity those tasks entail. The 
type of geometry task examined by Hsu and Silver was geometric calculation with 
numbers (GCN), which refers to tasks that involve numerical calculations done 
based on geometric properties or formulas in a geometric diagram environment. 
GCN tasks often require cognitive complexity as problem-solving requires high-
level thought and reasoning processes (Magone et al., 1994). Hsu and Silver (2014) 
reported that Taiwanese teachers used tasks not just from textbooks but from other 
sources as well, and GCN tasks from non-textbook sources tended to be more cog-
nitively challenging than those found in textbooks. This finding implies that the 
opportunity to practice tasks from non-textbook sources may be one of the critical 
factors in the superb mathematics achievements of East Asian students. Hsu and 
Silver’s study also anchored a study by Silver et al. (2009) that showed that tasks 
used by teachers for the assessment of mathematical understanding tended to have 
higher cognitive demand characteristics than tasks used to develop mathematical 
understanding.

The study reported here is a follow-up to Hsu and Silver (2014), with an attempt 
to further examining different Taiwanese teachers’ collections of sources of instruc-
tional/curricular materials from a cognitive complexity perspective. In particular, 
we intended to learn if students’ mathematics performance influences teachers’ col-
lection of tasks. The research question for the study was as follows:

What is the cognitive complexity of geometry tasks collected by Taiwanese mathematics 
teachers, and does the cognitive complexity of geometry tasks differ between schools with 
different mathematics performance levels?

23.2  Analytical Framework

Hsu and Silver (2014) extended the construct of cognitive complexity and proposed 
an analytical framework that can examine the cognitive complexity of geometry 
tasks. As shown in Fig. 23.1, the analytical framework includes two dimensions—
diagram complexity and problem-solving complexity—each of which describes the 
kind of cognitive activity involved in geometry problem-solving. Diagram com-
plexity refers to the segments and lines comprising a geometric diagram, which can 
influence cognitive complexity in solving geometry problems. Problem-solving 
complexity identifies four kinds of cognitive activity involved in geometry problem-
solving processes. The details of each category of the dimensions are as follows.

H.-Y. Hsu
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Diagram Complexity

Segments deleted from reference 
diagram

Original vertices influenced be-
cause of the deleted segments

New segments added to reference 
diagram

Original vertices influenced be-
cause of the added segments

New vertices formed because of 
the added segments

Problem-Solving
Complexity

Auxiliary lines

Diagram Transformations 

Solution steps 

Required geometric properties 

Slide Turn Flip

Fig. 23.1 The cognitive-complexity framework (Hsu & Silver, 2014)

23.2.1  Diagram Complexity Dimension

Hsu and Silver (2014) recognized the cognitive complexity that a geometric diagram 
might cause. The psychology literature confirms that the schemas used in problem-
solving processes are strongly tied to diagrams, especially when dealing with high-
level cognitive activities (Carlson et al., 2003; Greeno, 1978; Koedinger & Anderson, 
1990; Larkin & Simon, 1987; Lovett & Anderson, 1994; Mousavi et  al., 1995). 
Here, schemas refer to a “cluster of knowledge that contains information about the 
core concepts, the relations between concepts and knowledge about how and when 
to use these concepts” (Chinnappan, 1998, p. 202). To this end, geometry problem 
solving requires diagram parsing to identify familiar configurations with 
corresponding schemas in the diagram, which can be used to formulate a solution 
plan by reasoning forward and backward between the givens and the goals 
(Koedinger & Anderson, 1990).

Hsu and Silver proposed the construct of reference diagrams to analyze cognitive 
complexity concerning schema searching in geometry diagrams. They used it as the 
basis to analyze diagram complexity in a geometry task. They defined a reference 
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diagram as a geometric diagram shown with a geometric property that is formally 
introduced in a textbook. A reference diagram provides a common point of contact 
through which many geometric concepts and properties are linked.

Hsu and Silver (2014) further explained the reasons for using a reference diagram 
as the basis for examining the cognitive complexity embedded in geometry 
diagrams. First, analyzing a geometry task diagram by comparing it to a reference 
diagram provides information regarding possible visual obstacles that students may 
encounter when identifying the reference diagram and its corresponding geometric 
properties in the given geometry task. Second, a reference diagram is an external 
representation (Laborde, 2005) presented in textbooks, thereby preventing coding 
inconsistencies that can arise when making inferences about the mental images of a 
diagram as processed internally by individuals.

Figure 23.2 shows a reference diagram of an isosceles triangle that is usually 
shown in textbooks. The reference diagram conveys not only the definition (e.g., 
that two of the three sides in the triangle are congruent) but also other related geo-
metric properties (e.g., the sum of the interior angles of the triangle is 180°). A ref-
erence diagram also possesses visual features that can help draw attention to the 
salient geometric properties. For instance, one can easily recognize the congruence 
of the segments in an isosceles triangle. Figure 23.2 presents its reference diagram 
that has the lengths of the two congruent legs standing symmetrically on the two 
sides with the base side on the bottom parallel to the horizontal axis.

The categories of diagram complexity describe how a diagram given in a 
geometry task is altered compared to a reference diagram. Diagram complexity 
includes five categories used to describe the changes in terms of segments and 
vertices in a geometric diagram. Those five categories are the number of segments 
deleted from the reference diagram (category 1), the number of original vertices 
influenced by the deleted segments (category 2), the number of segments added to 
the reference diagram (category 3), the number of original vertices influenced by 
the added segments (category 4), and the number of new vertices created because of 
the added segments (category 5). One can see the details of analyzing diagram 
complexity for a geometry task along with the five categories in 2.3 in the session.

23.2.2  Problem-Solving Complexity Dimension

The problem-solving complexity in the analytical framework includes four 
categories, each of which refers to the cognitive processing that appears to be 
essential in geometry problem-solving. The categories are auxiliary lines, solution 
steps, required geometric properties, and diagram transformations.

Fig. 23.2 Reference 
diagram for an isosceles 
triangle
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The auxiliary lines category concerns cognitive complexity in analyzing 
geometry tasks to determine if drawing auxiliary lines is needed and, if so, where to 
draw the lines such that new subconfigurations and new geometric properties can be 
created and used to generate a solution. Drawing the lines requires recalling prior 
knowledge and previous problem-solving experiences (Pólya, 1945; 2nd edition 
1957). Drawing auxiliary lines on a diagram is often cognitively demanding. It 
forces one to anticipate creating subconfigurations associated with corresponding 
geometric properties that can be used to generate a solution plan.

The solution steps category involves the analysis of the reasoning steps required 
to obtain a solution. A reasoning step is defined as a problem-solving action taken 
based on a geometric property. Hsu and Silver (2014) counted the number of rea-
soning steps required to solve a geometry task, as the number can significantly 
influence cognitive demand. Researchers have indicated that generating a multi-step 
solution is cognitively demanding as it requires students to identify geometric prop-
erties for each reasoning step and chain the reasoning steps into a logic sequence 
(Ayres & Sweller, 1990; Heinze et al., 2005). Thus, the number can be an indicator 
used to describe cognitive complexity in reasoning a geometry task. It is also recog-
nized that a geometry task can be solved in multiple ways, which might lead to 
different numbers of reasoning steps. Hsu and Silver (2014) stipulated that the solu-
tion used to classify the number of steps for a task should require the minimum 
number of reasoning steps to obtain the correct answer. They noted that each rea-
soning step in the solution should be supported by a geometric property that stu-
dents have learned or will learn in the current instructional unit. Thus, classifying 
geometry tasks based on the minimum number of reasoning steps provides informa-
tion regarding what prior geometric knowledge students have to access to success-
fully solve the tasks.

In addition to using the solution steps to describe the cognitive complexity of a 
geometry task, Hsu and Silver (2014) also considered the analysis of the number of 
geometric properties needed for a solution. They included this category because the 
number of geometric properties needed to solve a geometry task may not be the 
same as the number of solution steps. The reason is that different reasoning steps in 
a solution may require using the same geometric property. Analyzing the number of 
geometric properties required in a solution could provide richer information for 
describing the cognitive complexity of a geometry task. Geometric properties are 
those geometric statements or definitions that have been formally introduced in 
textbooks.

The diagram transformation category focuses on analyzing the cognitive 
complexity involved in diagram transformations (e.g., rotating). When solving a 
geometry task, one may need to perform a diagram transformation to map reference 
diagrams onto the task diagram. The performance enables recognizing and retriev-
ing the geometric properties embedded in subconfigurations in the diagram. The 
mapping process requires mentally or physically transforming the reference dia-
grams to check if they resemble a diagram configuration in the geometry task. 
Operations on diagrams cause cognitive challenges for students as the orientation 
and position of a geometry task diagram may influence the identification of the 
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corresponding reference diagrams (Fischbein & Nachlieli, 1998). Hsu and Silver 
(2014) included three types of diagram transformation in this category: slide (trans-
lation), turn (rotation), and flip (reflection).

The analytical framework proposed by Hsu and Silver allows one to systematically 
and scientifically analyze geometry tasks without constraints caused by the diversity 
of students’ prior knowledge and learning experiences. This is because the basis for 
analysis is the geometric properties and diagrams presented in textbooks. As the 
properties and reference diagrams offered in textbooks are the materials used by 
students to learn, analysis based on the proposed framework is still closely tied to 
student cognition.

23.2.3  Analysis Examples of GCN Tasks

To unpack the cognitive complexity embedded in a GCN task, we provide two 
analysis examples based on the analytical framework (see Table 23.1).

Task A is considered as a low cognitive-complexity task, whereas Task B is a 
high cognitive-complexity task. Details of the analysis of Task B can be seen in the 
appendix as an external link to Hsu and Silver (2014). The elaboration of the cogni-
tive complexity of the two tasks begins from the problem-solving dimension. The 
problem-solving processes influence the cognitive complexity related to decompos-
ing and recomposing diagram configurations into subconfigurations in order to 
retrieve the geometric properties for a solution (Gal & Linchevski, 2010; Hsu & 
Silver, 2014).

Analysis Based on the Categories in Problem-Solving Complexity Dimension
Solving Task A does not require the cognitive work of drawing the auxiliary line as 
the given information is enough to generate a solution. However, Task B cannot be 
solved unless an auxiliary line is drawn. Figure 23.3 shows a strategy to draw an 

Table 23.1 Descriptions of two GCN tasks

Task A Task B

The given 
diagram

The written task Given that L1‖L2 and L 
intersects L1 and L2, and 
m ∠ 1 = 66°.
Find m∠5.

In a quadrilateral ABCD, given that 
AD‖BC and AD = 10, BC = 16, AB = 6, 
m ∠ DCB = 48°.
Find m ∠ BAD.
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Fig. 23.3 The drawing of 
auxiliary line AO

auxiliary line AO such that AO is parallel to DC. The drawing of the auxiliary line 
allows one to reason that ABCD is a parallelogram as well as OC = 10 and BO = 6.

Table 23.2 shows the minimum solution steps and the geometric properties 
required as supportive reasons for Task A and Task B. As can be seen, Task A can 
be solved in one reasoning step and with one geometry property. In contrast, Task B 
involves higher cognitive complexity as it requires five reasoning steps and five 
geometric properties to find the answer.

Concerning the analysis of diagram transformation, it has to identify reference 
diagrams corresponding to each geometric property required in the solution (see 
Table 23.3). Identifying individual reference diagrams forms the basis for analyzing 
what transformation actions are needed to map the reference diagrams onto the 
GCN task diagram. After checking the reference diagrams for the geometric proper-
ties required in the solution, diagram transformations are examined. For Task A, as 
its task diagram structure is the same as that of the reference diagram (e.g., a pair of 
parallel lines and a transversal), no diagram transformation action is needed. 
However, Task B necessitates diagram transformations to map the reference dia-
grams onto the GCN task diagram (see Table 23.4). As a result, five diagram trans-
formation actions are required for Task B.

Analysis Based on the Categories in Diagram Complexity Dimension
For Task A, as its task diagram shares the same structure as the reference diagram, 
the analysis of diagram complexity is denoted as 0 because no changes in terms of 
the segments and vertices can be identified. For Task B, one of the reference dia-
grams shown in Table 23.3 is used as the basis for the analysis of its diagram com-
plexity. The reference diagram for the corresponding angles property is determined 
as the basis for the analysis of diagram complexity because the geometric property 
is one of the main contents to be learned in the lessons. Figure 23.4 shows how the 
reference diagram for the corresponding angles property resembles part of the Task 
B diagram. The diagram shown on the left side in Fig. 23.4 is the reference diagram 
for the corresponding angles property. The diagram shown on the right side is how 
the reference diagram resembles the GCN task diagram.

The analysis of diagram complexity along with the five categories is used to 
describe the changes to the reference diagram so that it becomes the Task B dia-
gram. As shown in Table 23.5, the analysis of diagram complexity for Task B based 
on the analytical framework shows ten changes.

Table 23.6 summarizes the analysis results for Task A and Task B based on the 
categories of problem-solving complexity and diagram complexity in the analytical 
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framework. As can be seen, the coding for Task A is denoted as 2, whereas that for 
Task B is 26. The numbers allow one to understand how geometry tasks are made 
cognitively complex based on the requirements with respect to diagram complexity 
and problem-solving complexity. The bigger the coding number, the more cognitive 
complexity the GCN task entails.

23.3  Methodology

23.3.1  Selection of Teachers

To select subjects for this study, we first searched for experienced Taiwanese 
mathematics teachers with more than 5 years of teaching experience who were 
willing to participate in the study. We then checked if those teachers taught eighth-
grade students because a geometry topic designed for those students was the focus 
of the analysis. We then identified students’ overall mathematics performance in the 
schools those teachers taught. In Taiwan, student mathematics performance varies 
between schools, which can be due to factors such as school reputation, the socio-
economic status of the students’ parents, and residential areas (e.g., remote areas) 
(Huang, 2017). In general, overall student mathematics performance in a school 
does not change much over the years. We decided to use overall school mathematics 
performance as an indicator for the students taught by the teachers who participated 
in the study. The first reason was that students in the same school have to be ran-
domly grouped into classes. Thus, overall school mathematics performance can rep-
resent the students in classes due to the random assignment process.

The second reason was that overall school mathematics performance on high 
school entrance examinations could be obtained, which allowed a fair comparison 
among the classes the participating teachers taught. Taiwan’s high school entrance 
examination is a nationwide examination that has to be taken by Taiwanese middle 
school students as they need an examination score to apply to high schools. The 
examination ranks students as level A, B, or C, where A represents a high-perfor-
mance level, and C indicates a low-performance level. According to a report on the 
mathematics subject in the high school entrance examination (Comprehensive 
Assessment Program for Junior High School Students, 2020), 22% of students who 
took the examination were identified as level A, 50% were identified as level B, and 
about 28% were identified as Level C. We considered a school as having high math-
ematics performance if more than 50% of its students achieved level A, middle 
performance if more than 50% of its students achieved level B. Low performance if 
more than 50% of its students identified as level C. In the end, a total of six Taiwanese 
mathematics teachers participated in the study. Two of them represented high math-
ematics performance schools, two middle mathematics performance schools, and 
two low mathematics performance schools.
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As shown in Table 23.7, the highest number of years of teaching was 27, and the 
lowest was 5. The mathematics teachers’ majors were either in mathematics or 
mathematics-related areas (e.g., mathematics education). Teacher Jyu and Teacher 
Ing taught at high math performance schools; Teacher Sheng and Teacher Yao 
taught at middle math performance schools; Teacher May and Teacher Wen taught 
at the same school identified as a low math performance school.

23.3.2  Data Collection

The teaching of a geometric topic—properties related to parallel lines—in eighth-
grade textbooks in Taiwan was the data collection context. The instructional goals 
set up with the geometric topic included helping students become familiar with 
geometric properties related to parallel lines and the concept of geometric proofs. In 
this regard, a high percentage of GCN tasks were included in the textbooks. All 
mathematical tasks situated in sources of instructional/curricular materials collected 
by the six teachers when they taught the geometric topic were the data for the analy-
sis. The six teachers’ teaching of the geometric topic was videotaped and analyzed. 
As a result, four sources of instructional materials were identified, including text-
books, supplementary materials, tests, and tasks created by the teacher during class-
room teaching. The textbooks included both student textbooks and student 
workbooks. Different textbooks published in Taiwan all have to be evaluated based 
on the national mathematics curriculum, but the mathematical tasks included in the 
textbooks can be slightly different. The student textbook contained both instruc-
tional blocks comprised of diverse mathematical activities (e.g., diagram construc-
tion and proving) and exercise blocks. The student workbook included additional 
exercises for students to practice.

Teachers may feel that textbooks and workbooks are not enough for their students 
and decide to include supplementary materials for classroom teaching. 
Supplementary materials are either designed by mathematics teachers themselves 
or are published by textbook companies. No matter whether designed by mathemat-
ics teachers or by textbook publishers, supplementary materials usually have several 
characteristics. First, they are often arranged in the same sequence as textbooks. 
Second, they often include a large number of tasks. Third, they usually summarize 
the main mathematical content (e.g., definitions and geometry properties). Four out 
of the six teachers in our sample used supplementary materials for their teaching. 
However, the underlying reasons for the use of supplementary materials were differ-
ent. Teacher Jyu indicated that she thinks textbooks are too easy to prepare students 
to obtain high scores on examinations. Thus, she decided to include supplementary 
materials in her teaching. Teacher Wen pointed out that she uses supplementary 
materials as they can provide students with extra opportunities to practice tasks and 
learn mathematical concepts. In particular, she indicated that she often chooses 
supplementary materials that include tasks with similar cognitive complexity to 
those included in textbooks.
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Another primary source of curricular/instructional material collected during 
classroom teaching was the tests often used for formative or summative purposes. 
Teachers may use tests to evaluate students’ learning outcomes or assign test sheets 
as homework. All six teachers used tests in their teaching. In addition, they all cre-
ated tasks as they thought those tasks would benefit student learning during class-
room teaching. Table 23.7 shows the number of pages and tasks for each source of 
curricular/instructional materials collected by the six teachers. Table 23.7 also pres-
ents the number of lessons each teacher spent on teaching the geometric topic. In 
Taiwan, a lesson at the middle school level lasts for 45 minutes.

Interviews with the teachers were also implemented to better understand the 
reasons underlying their collection of tasks situated in sources of instructional/
curricular materials.

23.3.3  Data Analysis

The data analysis started by identifying the types of tasks from the different kinds 
of instructional/curricular material collected from the six Taiwanese mathematics 
teachers. Different task types were identified, including exploration activities, geo-
metric proof (GP) tasks, GCN tasks, geometric algebra (GA) tasks, and diagram 
construction tasks. Exploration refers to those activities that aim to help students 
understand geometric concepts through manipulation work. Construction refers to 
the work of drawing a geometric diagram using a compass and straightedge. 
Regarding the similarities and differences among GCN, GA, and GP, Table 23.8 
shows examples of the three kinds of tasks. As can be seen, the three tasks use the 
same diagrams and given information to describe the diagram. The only difference 
among the three tasks is that GCN includes numerical information that can be used 
to reason unknown measures. GA requires applying algebraic skills in order to 
obtain a solution. GP involves finding reasons based on geometric properties that 
can be used to prove that a statement is always true. We counted the number of each 
type of task situated in the sources of instructional/curricular materials, where a task 
was defined as a problem asking for an answer (Charalambous et al., 2010).

After identifying a GCN task from sources of curricular/instructional materials, 
the problem-solving complexity dimension with its four analysis categories (auxil-
iary lines, solution steps, required geometric properties, and rigid transformation) 
was performed. The number of minimum solution steps was determined, which 
consequently became the basis for checking if drawing auxiliary lines was neces-
sary. We also counted the number of geometric properties used to support the rea-
soning steps in the identified solution. In particular, we checked if those geometric 
properties had been formally introduced in the textbooks or had been learned previ-
ously by the students. Any geometric properties that 8th grade students have not 
learned were excluded, even if they could be used to generate a solution to a GCN 
task. The task analysis then focused on identifying diagram transformations with 
sliding, turning, and flipping actions. The diagram transformation analysis required 
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the presence of given diagrams in the GCN tasks. Tasks in which a diagram was not 
provided were excluded. The minimum number of transformation actions necessary 
to map the reference diagrams representing the identified solution’s geometric prop-
erties onto the given GCN task diagram was determined.

The next step was to analyze the diagram complexity of the GCN task. We 
determined the reference diagram as the basis for the examination of diagram 
complexity in a GCN task. As a solution often is generated by more than one 
geometric property, the reference diagram was decided based on two criteria. The 
first was that the reference diagram identified had to correspond to the geometric 
properties needed to obtain the minimum number of solution steps in a GCN task. 
The second was that the identified reference diagram represented one of the to-be-
learned geometric properties in the current teaching topic. Once a reference diagram 
was determined for a GCN task, diagram complexity and its five coding categories 
were analyzed. Finally, we counted the number of changes needed to transform a 
reference diagram into a GCN task diagram and used the number to describe the 
GCN task’s diagram complexity.

The author and a coder were responsible for the data analysis. To ensure the 
consistency of the coding results, tasks that were difficult to classify were selected 
for checking their reliability. Two coders analyzed those complex tasks individually 
and then discussed the coding results together. If an inconsistency occurred, both 
coders discussed the inconsistency until an agreement was reached. Regarding the 
interviews, we used a back-and-forth analysis process. Once we found something 
interesting from the data analysis, we showed those findings to the teachers to learn 
the reasons. It was also possible for the teachers’ responses from the interviews to 
inform how we analyzed the collected data.

23.4  Results

23.4.1  Collections of Types of Mathematical 
Instructional Tasks

Among the multiple sources of instructional/curricular materials collected from the 
six teachers, we first identified the types of tasks and activities. Table 23.9 shows the 
types of tasks and the number that the six teachers collected. As can be seen, the 
types of tasks collected by the teachers included exploration activities, diagram con-
struction activities, GCN tasks, GP tasks, and GA tasks. It is worth noting that 
teachers who taught in high mathematics performance schools collected more tasks 
than those teaching in middle and low mathematics performance schools (Teacher 
Jyu: 371 tasks; Teacher Ing: 214 tasks; Teacher Seng: 110 tasks; Teacher Yao: 110 
tasks; Teacher May: 135 tasks; Teacher Wen: 140 tasks). It is recognized that tasks 
may entail different cognitive complexity and may be used in different ways (e.g., 
worked example vs. exercise) and for different instructional purposes (e.g., 
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understanding the mathematical concept vs. applying the concept to a more com-
plex task context). We found that high mathematics performance school teachers 
were inclined to collect more tasks for their students. Teacher Jyu said the following:

I intended to include a high amount of tasks for my students as they can learn mathematics 
from a variety of tasks….By practicing the tasks, they can correct their misconceptions and 
understand what they did not understand previously….This is a very useful strategy to 
prepare students for the high school entrance examination.” (Transcript of interview data, 
20200302)

Among the types of tasks, GCN tasks occupied the highest percentage of tasks 
collected by the six teachers (Teacher Jyu: 62%; Teacher Ing: 62%; Teacher Sheng: 
76%; Teacher Yao: 69%; Teacher May: 70%; Teacher Wen: 66%). The result made 
it reasonable to compare the cognitive complexity of the tasks collected for class-
room teaching among the teachers. In addition, for the high and middle mathemat-
ics performance schools, the second-highest percentage of tasks collected by the 
teachers was GP tasks (Teacher Jyu: 19%; Teacher Ing: 21%; Teacher Sheng: 9%; 
Teacher: Yao 20%). Interviews with those teachers showed that they think their stu-
dents can learn proofs even though textbooks do not include tasks that require stu-
dents to construct geometric proofs themselves. For the low mathematics 
performance schools, the second-highest percentage of tasks collected for class-
room teaching was GA (14% for both Teacher May and Teacher Wen). High-
performance schools also used many GA tasks for teaching (Teacher Jyu: 16%; 
Teacher Ing: 14%). Only Teacher Wen included exploration tasks in her classroom 
teaching (5%).

23.4.2  Cognitive Complexity of the Tasks Collected by 
Taiwanese Teachers

We further examined the cognitive complexity of the GCN tasks collected by the six 
teachers. Table 23.10 shows the number of GCN tasks analyzed and the average 
diagram complexity, problem-solving complexity, and cognitive complexity for 
each teacher. Only GCN tasks accompanied by diagrams collected by the teachers 
were surveyed. As shown in Table 23.10, the tasks collected by the six teachers 
tended to entail both diagram complexity and problem-solving complexity, no mat-
ter if they taught at high mathematics performance or low mathematics performance 
schools. The average diagram complexity for the GCN tasks collected by all six 
teachers was 6.52, indicating that a GCN task was made about seven changes on 
average. The average problem-solving complexity was 5.39, implying that the GCN 
tasks were inclined to require multiple reasoning steps, multiple geometric proper-
ties for a solution, and the performance of diagram transformation. It is also likely 
that those GCN tasks asked students to draw auxiliary lines to obtain enough geo-
metric properties to generate a solution. The average cognitive complexity for the 
GCN tasks collected by all six teachers was 11.90.
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Of interest is the relationship between school mathematics performance and the 
cognitive complexity of GCN tasks. Table 23.10 shows that the better the mathe-
matics performance of a school, the higher the cognitive complexity of the tasks that 
the teachers tended to collect for their students. The average cognitive complexity 
for Teacher Jyu and Teacher Ing, who taught high mathematics performance stu-
dents, was the highest (13.23). The average cognitive complexity for Teacher May 
and Teacher Wen, who taught lower mathematics performance students, was the 
lowest (10.44). The average cognitive complexity for Teacher Sheng and Teacher 
Yao was in between, at 11.08. This finding shows that Taiwanese mathematics 
teachers consider cognitive complexity when collecting tasks from sources of 
instructional/curricular materials for classroom teaching.

23.4.3  Cognitive Complexity of Tasks Situated in Sources 
of Curricular/Instructional Materials

Four sources of instructional/curricular materials were identified from the six 
Taiwanese teachers, including textbooks, supplementary materials, tests, and tasks 
created by the teachers during classroom teaching. Table 23.11 shows the analysis 
of the cognitive complexity specific to each source of instructional/curricular mate-
rials collected by the six teachers. As can be seen, textbooks collected by the teach-
ers possessed lower cognitive complexity than non-textbook sources. The average 
cognitive complexity of tasks situated in textbooks was 9.15. For the six teachers, 
the cognitive complexity of the tasks situated in the textbooks they used was similar. 
Cognitive complexity was 9.21 for Teacher Jyu, 9.82 for Teacher Ing, 9.12 for 
Teacher Sheng, 9.74 for Teacher Yao, and 9.12 for Teacher May and Teacher Wen.

The average cognitive complexity of the tasks situated in supplementary materials 
was slightly higher than that in textbooks, which was 10.7. Four out of the six 
teachers used supplementary materials in their teaching. An analysis of the supple-
mentary materials showed that the cognitive complexity of the tasks collected by 
Teacher Ing (14.68) was much higher than those managed by Teacher Jyu (9.68), 
Teacher May (11.65), and Teacher Wen (11.65). Of interest is that the cognitive 
complexity of the tasks situated in supplementary materials used by Teacher Jyu, 
who taught high mathematics performance students, was lower than those used by 
Teacher May and Teacher Wen, who taught low mathematics performance students.

The interviews with Teacher Jyu and Teacher Wen revealed the underlying 
reason. Teacher Jyu said

...The supplementary materials used in my classes were designed by my colleagues and 
me….I use it [supplementary materials] for my teaching…but not the textbooks…because 
we have our own ideas on selecting tasks and sequencing them for our students….We use 
the materials to develop students mathematics concepts. (Transcript of interview data, 
20190810)
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Teacher Jyu indicated that she and her school colleagues write supplementary 
materials themselves and use them for classroom teaching. They use supplementary 
materials to scaffold students in building up new mathematical concepts. For the use 
of supplementary materials, Teacher Wen said

….We often use textbooks to teach our students as our students’ mathematics is not very 
good….However, sometimes we select more challenging tasks from supplementary materi-
als and discuss the tasks with our students….Even our students do not perform mathematics 
very well, they can learn from practicing those tasks from the supplementary materials 
(Transcript of interview data, 20190810)

Teacher Wen expressed a different way of using supplementary materials. She 
thinks textbooks are the appropriate instructional materials that fit her students’ 
mathematical competence. Thus, Teacher Wen often teaches students mainly based 
on textbooks. Concerning the supplementary materials, she thinks they can provide 
her students with more opportunities to practice mathematics. In this regard, she 
collects tasks from supplementary materials to challenge her students. Different 
ways of using supplementary materials also influence the design of tasks concern-
ing cognitive complexity. If the materials are used to help students build up mathe-
matical concepts, the tasks included in the materials cannot be too cognitively 
demanding. If the materials are used to create more opportunities to practice math-
ematics, the tasks’ cognitive complexity will increase.

The cognitive complexity of tests and tasks created by the teachers was much 
higher than those in textbooks and supplementary materials (cognitive complexity 
in tests: 15.10; cognitive complexity in tasks created by teachers: 17.69). The data 
shows that teachers intended to collect more cognitively complex tasks for forma-
tive and summative assessment purposes. They were also inclined to use very cog-
nitively demanding tasks created by themselves during classroom teaching. The 
cognitive complexity of the tasks situated in the tests for Teacher Jyu was 15.89, for 
Teacher Ing was 17.45, for Teacher Sheng was 14.43, for Teacher Yao was 14.76, 
and for both Teacher May and Teacher Wen was 12.29. This finding reveals that the 
better the student’s mathematics performance, the higher the cognitive complexity 
of the tasks in tests the teachers collected. Regarding the cognitive complexity of 
tasks created by the teachers, it was also higher than that of tasks in textbooks and 
supplementary materials (19.67 for Teacher Jyu, 42 for Teacher Ing, 16.5 for 
Teacher Sheng, and 16.5 for Teacher May). This finding suggests that the teachers 
tended to create more cognitively complex tasks during their classroom teaching.

23.5  Discussion

As Taiwanese students consistently perform at the top in cross-national mathematics 
assessments, this study investigated how Taiwanese mathematics teachers collect 
mathematical instructional tasks for their students. In particular, we examined if the 
mathematics performance of schools influences teachers in collecting tasks for their 
students. Based on the cognitive-complexity framework developed by Hsu and 
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Silver (2014), we analyzed six Taiwanese mathematics teachers who represented 
schools with different levels of mathematics performance.

The empirical analysis revealed that Taiwanese mathematics teachers tended to 
collect geometry tasks that entailed diagram complexity and problem-solving com-
plexity, no matter the level of mathematics performance at the school where they 
taught. The diagrams accompanying geometry tasks are made complex, so they may 
not look like the reference diagrams accompanying geometric properties. The com-
plex diagrams may consequently cause visual obstacles in identifying geometric 
properties that can be used to generate a solution to a geometry task. The geometry 
tasks collected by Taiwanese mathematics teachers also tended to require multiple 
reasoning steps and multiple geometric properties for a solution. Such tasks may 
also require the cognitive work of performing diagram transformations to identify 
the geometric properties embedded in the task diagrams successfully. The cognitive 
work required of solving various cognitive-complexity and non-routine tasks may 
subsequently equip Taiwanese students with abilities to attack high-level problems 
found in cross-national mathematics assessments (e.g., PISA and TIMSS).

The analysis also showed that the mathematics performance in the schools where 
the teachers taught did influence their collection of geometry tasks. The better the 
mathematics performance of the school, the higher the cognitive complexity of the 
geometry tasks the teacher collected. In addition, the cognitive complexity of tasks 
collected from non-textbook sources was higher than those from textbooks. Tasks 
situated in tests and those created by the teachers possessed the most increased 
cognitive complexity compared to textbooks and supplementary materials. Hsu and 
Silver (2014) reported a case study of a Taiwanese mathematics teacher. They indi-
cated a tendency to include multiple sources of instructional/curricular materials 
with high cognitive-complexity tasks for classroom teaching. This study further 
confirmed this tendency by examining six Taiwanese mathematics teachers who 
taught students with different levels of mathematics performance.

Although the tasks situated in multiple instructional/curricular materials entail 
cognitive complexity, Taiwanese teachers consider students’ mathematics perfor-
mance when collecting tasks for classroom teaching. This finding implies a cultural 
script (Stigler & Hiebert, 1998) for teaching in East Asian countries, as teachers 
tend to increase the cognitive complexity as much as they can through the collection 
of tasks. Meanwhile, they also have to consider students’ mathematics competence 
when collecting the tasks. The finding also brings several follow-up research ques-
tions. For example, researchers have indicated that challenging students by main-
taining or increasing the cognitive complexity of tasks is vital for high-quality 
instruction (Leikin, 2009; Stein & Lane, 1996). In this regard, it is important to 
know how Taiwanese teachers manage to teach with those cognitive complexity 
tasks, especially when teaching in Taiwan is often described as teacher-centered 
(Lin & Tsao, 1999). Researchers from other countries may also expect to know the 
keys to determining the high quality of student learning outcomes. Can it be the case 
that collecting the cognitive complexity of tasks for classroom teaching ensures the 
high quality of student learning outcomes? Those questions require further 
investigations.
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Chapter 24
Problem Sets in School Textbooks: 
Examples from the United States

Alexander Karp

24.1  Introduction

The mathematical challenges that schoolchildren encounter most frequently are 
probably problems from textbooks, if only because it is with them that schoolchil-
dren in most cases have to deal. Some authors of textbooks even include “chal-
lenge” subheadings to show the high level at which they are conducting instruction 
(meanwhile, the really challenging problems might turn out to be not the ones thus 
highlighted). Although textbook authors do usually try to make their textbooks a 
little easier, the word “challenge,” and even more so the words “challenging educa-
tion,” have become in a way commendatory. This, of course, has not always been 
the case. Behind the change in attitude toward the words is the desire (even if often 
it is no more than rhetorical) to make the student an active participant in the process 
of instruction and to teach through problem  solving. Let us repeat: this has not 
always been the case. Problems for students to solve on their own, even when they 
have appeared in textbooks, have played the most varied roles and consequently 
have been organized in different ways. By studying the history of problem sets in 
textbooks, we can better understand both how the process of mathematics teaching 
has developed, including teaching through problems, and how and to what degree 
students have been offered difficult and challenging assignments.

This article in some sense represents a continuation of the article Karp (2015), 
which is devoted to problem sets in old Russian mathematics textbooks. Here, as 
there, the discussion will mainly focus on problem sets from school textbooks. The 
process of problem solving in schools has been studied many times (we might men-
tion, for example, the now classic work by Schoenfeld, 1985, in which not a few 
pages are devoted to what takes place in schools). On the other hand, the study of 
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textbooks is gradually growing into a separate area of research, with its own confer-
ences and published collections of articles (see, for example, Schubring et  al., 
2018). Strange as it may seem, problem sets from textbooks have not been studied 
sufficiently, in our opinion (for example, Donoghue, 2003 or Michailovicz & 
Howard, 2003 write about them, but their main focus is drawn to other aspects; one 
of the few exceptions is the paper by Ponte, 2014, devoted to Portuguese textbooks). 
Meanwhile, the principles on which they are constructed – whether recognized by 
the authors or applied unconsciously – constitute an important characteristic of the 
process of mathematics instruction as it actually exists in practice.

As a rule, in the process of instruction, schoolchildren usually encounter not 
separate problems, but problem sets (although, to be sure, sometimes the principle 
on which such sets are constructed consists precisely in the absence of any strategy). 
Mathematics educators who are concerned with what is being done in schools must 
inevitably think about how problem sets should be constructed and used, and how 
future teachers are taught to do this. As a step in this direction, we believe it is 
important to investigate how problem sets are actually constructed in practice, how 
their construction has changed in history, and what theoretical possibilities for their 
construction exist.

One can talk as long as one likes about the importance of reasoning and proving, 
creative or critical thinking, the ability to generalize and apply, and other fine things, 
but if a student never has to do this in practice, then all of these beautiful pronounce-
ments remain empty and, if anything, merely confuse the working teacher, which is 
in fact what we see happening in some measure with the use of the expression 
“problem solving” – everyone knows that this is something good, but what it is 
exactly is understood in utterly different fashions.

It should be said at once that the author of this article seeks as much as possible 
to eschew an evaluative approach: the article’s purpose is not to say, “Would you 
look at what kind of garbage is being published!” but to show what processes are 
taking place – the article is largely historical in nature (which does not mean, how-
ever, that the author sees anything objectionable in methodological criticism aimed 
specifically at reviewing today’s production and analyzing what works, in the 
reviewer’s opinion, and what doesn’t. Methodological criticism must exist just as 
theatrical or literary criticism exist, helping to understand and to assess what is 
being put before us, which are necessarily more subjective than, say, scholarly stud-
ies in philology or theater – although the borderline here is not always rigid). This 
remark necessitates a methodological discussion, which will be undertaken below.

We should say at once that ideally the analysis of problem sets must be carried 
out with due consideration for context – general social-historical, cultural, and edu-
cational – if only because a textbook may be used in very many different ways. The 
present article must be considered to a certain degree preliminary because the analy-
sis of textbooks in it is accompanied by the analysis of other sources (for example, 
those that shed light on how exactly textbooks were used in schools) only to a very 
limited degree. At the same time, a set of problems already by itself creates a certain 
context – and from this stems the key difference between analyzing an individual 
problem and analyzing a problem set.
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For example, a problem’s level of difficulty, understood not in terms of the number 
of operations that must be performed to solve it or some similar characteristic, but as a 
psychological or statistical characteristic (roughly speaking, how many students can 
solve the problem under given conditions), is practically impossible to determine based 
on a single isolated problem that is substantive to any degree – we simply do not know 
the conditions: it is one thing if the problem is simply given as is, but quite another if it 
was prefaced by the teacher’s explanations or a series of preparatory problems (there-
fore, for example, assessments of the level of difficulty of problems on exams can 
hardly be made without additional sources of information). Discussing problem sets 
from textbooks is in this respect safer: the reader, as well as the researcher, sees, if not 
everything that the student using this textbook sees, then still a great part of it.

Let us repeat one more time that, naturally, there are differences between the 
textbook and what takes place in class. A set of problems in a textbook usually does 
not prescribe the order in which they should be solved rigidly (although there are 
techniques to emphasize it, for example, by regarding problems not in isolation 
from one another, but as items within the same problem). The sequence of the prob-
lems to be solved is usually prescribed by the teacher and different ways of sequenc-
ing can lead to different results. An effectively sequenced set of problems can make 
it easier to solve them by first solving a simple version of the problem and then 
moving on to a more difficult version. The effect achieved by the teacher who has 
effectively sequenced the problems to be solved can, however, be far more powerful 
and complex than that (Karp, 2004; see also the introduction to this section of the 
book). The role of emotions in mathematics education is now often discussed 
(Schukajlow et  al., 2017), but often it somehow turns out that students’ positive 
emotions can be triggered only by nonmathematical details – this, of course, is by 
no means the case. The sequencing of problems can be based on different principles 
and produce different effects – including emotional ones.

Textbook problems can be used in different ways; therefore, let us repeat, their 
analysis here is by definition incomplete. It is important, however, to ask whether 
the textbook offers problems in a sequence that is meaningful, whether such a 
sequence can be constructed on the basis of what is given in the textbook, and 
whether constructing such a sequence is easy.

This article begins with a brief historical note, proceeds to a discussion of 
methodology, goes on to analyze several problem sets from textbooks, and in 
conclusion relates the observations that have been made to one another and to 
certain theoretical and practical problems and theses.

24.2  On Problem Solving in Schools: 
A Historical Observation

Contrary to conventional wisdom, problem solving in schools is a relatively recent 
phenomenon. The frequently cited stories about various tournaments between solv-
ers (the most popular of which seem to be about Fibonacci, who defeated all rivals 
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in front of Emperor Frederick II) have nothing to do with this matter – we are talk-
ing specifically about schools. Students in schools usually solved a few problems, 
and in saying this, we use the word “problems” to mean not only assignments that 
required a nonstandard approach, but all assignments. This was noted explicitly in a 
report by the American subcommission of ICMI:

In the textbooks on algebra 50 years ago much more stress was placed on logical exposition 
than on the solution of problems. The development of arithmetic, as followed in the text-
books of the elementary school, was faithfully imitated in algebra, and various “operations” 
(some, like the square and cube root of polynomials, having no conceivable use, and other 
mere pedantic elaborations of methods that in simpler form were well worthwhile) were 
laboriously discussed and exploited before the use of equations in discussing problems was 
entered upon. (Committee III and IV, 1911, p. 23)

The United States was no exception. For example, many surviving materials dem-
onstrate how mathematics was taught to future Russian tsars and grand dukes (Karp, 
2020) – at the beginning of the nineteenth century, they did solve problems, although 
not very many, but this was clearly seen as a direct continuation or even part of theo-
retical knowledge. Certain assertions in geometry were called theorems; others, 
which required students to do something – usually, to construct something – were 
called problems. In algebra, that which was solved usually served as an example of 
a learned rule or algorithm. A story has survived about Grand Duke Konstantin (the 
son of Nicholas I) taking an exam in mathematics: “The questions, as always, were 
posed by the Sovereign, as tests of ingenuity. In algebra, there were two: one, a first- 
degree equation; the other, a quadratic equation. In geometry, the construction of a 
regular 15-gon on a given line.” (Golovnin, n.d., p. 22). Konstantin (1827–1892) 
was undoubtedly a remarkable individual; nonetheless, there can be no doubt that 
he was not required to invent an algorithm for constructing a regular 15-gon on the 
exam, nor does solving linear and quadratic equations offer very many opportunities 
for displays of ingenuity.

“Good” teaching (that is, teaching in a school of a high level) consisted precisely 
in the “pedantic elaboration” of various propositions (which were, to be sure, not 
always very precise by the standards of today’s higher mathematics).

24.3  Analysis of Problem Sets: Certain 
Methodological Considerations

We mentioned above that sometimes the principle on which a problem set is built is 
precisely the absence of any principle. In reality, this is, of course, a simplification – 
the most superficial arranger of a problem set must make some choices in any event, 
in the first place by determining how many problems should be included. In fact, 
this simple and almost indisputable characteristic of a problem set already carries 
considerable information – in certain textbooks, there are almost no problems – they 
were unnecessary, in the writer’s opinion (naturally, such cases must be distin-
guished from situations in which a textbook is accompanied by a separate problem 
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book). The goal of instruction was seen to consist of something else, and a simply 
determinable number helps us to understand this.

There are certain other characteristics that it is desirable to determine in analyzing 
problem sets; for example, thematic distribution within a problem set: how many of 
the problems given involve the application of a formula directly, and how many of 
them involve applying it in one or another version  – independently of what the 
arranger of the problem set planned to achieve (or of whether anything was planned 
at all), this is an important characteristic of the activity expected of the students.

When talking about modern textbooks, it is natural to consider a breakdown of 
their use of different forms, for example, how many multiple choice tasks, short 
answer tasks, and essay questions they contain (in old textbooks, such diversity was 
practically unknown). Moreover, it is natural to consider the type of activity sug-
gested by a problem. Of course, to make judgements about this on the basis of a 
keyword in a problem – solve, draw, check, prove, compare, etc. – is somewhat of a 
simplification; nonetheless, analyzing problems from this (and even more so, from 
a more detail-oriented) perspective tells us about the conceptions of the learning 
process espoused by the problem set’s arranger (and let us repeat one more time: 
whether these conceptions were conscious or not).

But such data alone are not enough. We are confronted with having to analyze a 
text, and just as in the case of a literary text – in particular, a poetic text – not every-
thing here is expressed in numbers. As we have already noted, in the history of 
mathematics education, as in other historical disciplines, often (and even usually) 
use is made of what is known as the historical-philological method, which is based 
on the attentive reading of texts and their comparison and juxtaposition with one 
another. With one additional feature, however, the analyzed texts can be mathemati-
cal ones (Karp, 2014). In different cases, the historical-philological method may be 
applied in different ways. (Note that proposals to use various elements of the meth-
odology used in the philological disciplines have been made for a long time – see 
Schubring, 1987; Karp, 2004 – just as methodological parallels between pedagogi-
cal studies and art have also been drawn – see Lawrence-Lightfoot, 1997).

We will confine ourselves to citing a researcher whose name is recognized across 
different fields: Vygotsky (1971) analyzed classic Russian works of literature, in the 
vein of the studies of the so-called Formalist School, which was contemporary to 
him. Comparing the content and meaning of a work that are seemingly straightfor-
wardly and openly communicated by its author, on the one hand, and its structure, 
the order in which events in the plot are presented, and the literary techniques it uses 
(first and foremost, verbal peculiarities), on the other, he showed that in reality, the 
author tells us far more than he or she seemingly promised (or sometimes something 
completely different). It is precisely the structure, organization, and language of a 
work of art that make it truly deep and substantive.

Of course, we would hardly seek for hidden depths on every page of every 
problem book – or claim that something will be inevitably revealed to those who 
solve problem No. 23 immediately after solving problem No. 22 – but the sequencing 
of problems and the structure of a problem set can carry a meaning that cannot be 
reduced to the meaning and content of each of the individual problems in it.
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Here, the question arises: how did Vygotsky (and many other researchers before 
and after him) achieve what Schoenfeld (2007) calls trustworthiness, and what is it 
exactly that makes a work scientific? In effect, the practice of these researchers has 
been briefly to paraphrase the text, in a specially organized fashion, with quotations 
and examples, all intended to underscore those distinctive features of the text to 
which the researcher wished to direct the reader’s attention.

Just as any other method, this method can be criticized for a possible lack of 
objectivity – it is easy to select some text, and pick and choose quotes from it, to 
completely distort its meaning if one wishes to do so. Such distortions, however, can 
be disproven with other quotes, and the main thing that must be noted is that the 
described “philological” method, contrary to conceptions formed under the influ-
ence of generally justified respect for quantitative methods, may be every bit as 
fruitful as any “mathematical” (let’s call it that) method, in which some mathemati-
cal model is somehow constructed.1

In what follows, we will describe the content of each analyzed problem set and 
offer examples.

Let us make a few more observations  – in analyzing, one must distinguish 
between identical and nonidentical problems. The decision here depends on the 
reader’s viewpoint. Unquestionably, for a mathematician the equations.

 x x x x2 24 3 0 3 4� � � � �and .  

are identical.
That is not the case for the schoolchild who is just beginning to study quadratic 

equations. We strive to pick up on such differences.
In conclusion, it must be noted that the selection of textbooks which will be 

discussed, and the sections in them that will be analyzed, is quite arbitrary – those 
textbooks were selected which were widely used in the United States, while the 
section chosen – in cases where there were different sections to choose from – was 
always the same, quadratic equations, unquestionably an important section. 
However, there were quite many widely used textbooks, and there were quite many 
important sections of the course as well. It should be pointed out that the author of 

1 Here, the author of this article cannot help recalling a methodological debate that raged in the 
1980s in Russia, when public opinion was drawn to the alleged discovery thirty years earlier of the 
tenth chapter of Pushkin’s “Eugene Onegin”, which had been considered lost. Two respected 
literary critics, deciding to use modern methods, compared the distribution of various indicators in 
the “discovered” manuscript and in the main text, and came to the conclusion that since the 
distributions differed, the manuscript was a fake. The critic Benedikt Sarnov (1987) wrote with not 
a little irony that this had hardly been necessary, since one could see immediately that the poetry 
in the manuscript was absolutely worthless, and that Pushkin could not have written this way. But 
“objective” proofs, which seemingly do not require human involvement, obviating the need to go 
into the substance of an issue, or even to read at all, have their attractiveness. The debate had a 
sequel when in 2006 a certain mathematician presented a new model according to which the text 
of the manuscript did not differ from Pushkin’s (Esipov, 2010). Its worthlessness, however, did not 
disappear. Reading and understanding proved impossible to do without.
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this paper assumes a certain homogeneity both individually within each textbook 
and in general among the totality of textbooks circulating at any one time. Differences 
exist, of course, but radical differences of any kind (some of the textbooks were 
printed in color, the rest in black-and-white, or some of the textbooks contain many 
problems, the rest very few, and so on) seem not very likely, especially if these dif-
ferences were not mentioned in the press or other literature. At the same time, it 
needs to be said that the author does not aspire to any all-encompassing generaliza-
tions: the aim of this paper is not to formulate general assertions concerning all 
textbooks of a certain time, but merely to note what happened at different times; 
whether it happened always, and why it happened, are important questions, which 
the author hopes to answer in other studies.

24.4  Robinson’s Geometry Textbook

Horatio Nelson Robinson (1806–1867) was a prominent writer whose textbooks 
were widely used for a long time. We will focus on a book with the long title – as 
was customary at the time  – Elements of Geometry and Plane and Spherical 
Trigonometry with Numerous Practical Problems (Robinson, 1867). In his preface, 
the author again boasts that his book contains a “full collection of carefully selected 
Practical Problems” “given to exercise the powers and test the proficiency of the 
pupil.” The word “problem” is found several times in the table of contents of the 
geometrical sections – it appears in the title “Book IV: Problems in the construction 
of figures in plane geometry,” as well as in Book V and Book VII. Book IV provides 
solutions to a number of problems (the vast majority of them construction prob-
lems), beginning with constructing a perpendicular bisector and the bisector of an 
angle. The style of exposition here is practically identical to that of the other, “theo-
retical” sections. In the two other cases, judging by their subheadings, readers are 
offered practical problems specifically, just as promised – in Book V, in plane geom-
etry; and in Book VII, in solid geometry. We will focus on the problems in plane 
geometry.

Thirty-nine problems are offered in all. Let us note at once that the word 
“practical” merely means that students will practice, or as the author writes, that 
these problems will “exercise students’ power”: one can detect in them no particular 
connection with real-world questions  – they are ordinary geometrical problems 
about triangles, circles, trapezoids, and so on. From today’s point of view, for all of 
plane geometry, the number of problems is very small, but as has already been said, 
the gist of a subject was not seen to consist in solving problems. From today’s point 
of view, other criticisms can be voiced as well – for example, in problem 16 students 
are asked to find the area of a triangle with a given base and two adjacent angles of 
800 and 700. In the answer, however, the author gives the sides of the constructed 
triangle, further noting that they cannot be determined exactly without using 
trigonometry, and trigonometry has not been covered yet, for which reason it is 
necessary to proceed by approximating – “we must be content with the approximate 
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solutions obtained by the constructions and measurements” (p. 146). What we are 
interested in, however, is not this, but how the given problem set is organized.

The author himself says nothing about this. And he does so, even though certain 
problems are accompanied by solutions (so that it is possible to “exercise students’ 
power” only if the students do not have the textbook) and even methodological com-
ments of sorts, which confirms that the book often functioned not merely as a text-
book, but at least to some extent also as a teacher’s manual. It is not even entirely 
clear how the author envisioned the use of the problems that were offered – as a 
unified text, or one by one, as the corresponding topics were covered. The former 
seems far more likely – as attested to by the remarks with which the author opens 
the section, observing that what has been covered has been covered, and certain 
other topics still lie ahead, but before proceeding further, it is necessary to do some 
problem solving. However, it is still impossible altogether to rule out the possibility 
that students were given certain problems one by one as they progressed through 
the book.

It can be seen that certain problems directly support the course presented in the 
book – for example, in problem 14 students are shown a triangle with three given 
sides and asked to find the lengths of the segments into which the bisector of one of 
the angles will divide the opposite side. So that the reader (teacher?) should have no 
doubt as to how this problem should be solved, it is immediately accompanied by 
the indication, “see Theorem 24, Book II” (p, 145) – and this theorem answers pre-
cisely the question posed, in a general way. Far from all, problems are connected 
with the covered material in such a direct way, however, and conversely, by no 
means every theorem comes accompanied with a numerical example.

We can see several mini-sets in which problems are interconnected, for example, 
by focusing on the same geometrical situation  – thus, problems 4, 5, and 6 are 
devoted to two parallel lines, the distances between them, and related questions. 
However, problem 15, in which three parallel lines are examined, and for which the 
ideas examined in problems 4–6 are useful, stands alone. This is not the only case. 
In problem 2, students are given a right triangle with a 300 angle and a shortest side 
of length 12 and asked to find the length of the hypotenuse. In problem 22, they are 
given a right triangle with a leg whose length is 320 and an adjacent angle of 60°, 
and asked to find the lengths of the remaining two sides (the Pythagorean Theorem 
was used in many problems at the beginning of the set). Practically identical prob-
lems have been placed at different ends.

From a didactic point of view, the problem set, of course, is not diverse. There 
are no problems aimed at reinforcement – the idea that a student who couldn’t do 
something the first time might be able to do it the second or third time around is not 
made use of in any way, and there is no evidence that it occurred to the author. The 
author distinguishes between difficult and easy problems (for the difficult ones, he 
provides solutions), but he does not prepare students for solving the difficult ones in 
any way – there is no movement from the simple to the complicated. The set begins 
with a problem that indicates that the base of an isosceles triangle has a length of 6, 
while the angle opposite the base is equal to 600; students are then asked to find the 
sides’ lengths. The problem is not difficult, although its solution does involve 

A. Karp



467

several steps. But, for example, problem 33, in which students are given an isosceles 
triangle with sides whose lengths are 20, 20 and 12, and asked to find the length of 
the altitude drawn to the base, is followed by problem 34, in which students are 
asked to construct a right triangle, given the length of its hypotenuse and the differ-
ence between the lengths of its legs, that is, something noticeably more difficult and 
not prepared in any way.

We have noted similar things in Russian textbooks also. Thus, Davidov’s 
geometry textbook (1864) contained far more problems, but, for example, problems 
accompanying the section on the areas of polygons began with a problem in which 
students were asked to find the locus of the vertices of all triangles that are equal in 
area and have a common base – a problem that one could hardly expect to be solved 
by a student who did not possess that which Schoenfeld (1985) has referred to as 
“resources.” How were these problems solved, then? We possess a sufficiently large 
amount of information about Russian gymnasium students of that time to be able to 
assert that at least one way was to solve problems at home with a tutor, and then to 
commit the solution to memory (Karp, 2018). From a certain point on, collections 
of solutions to problems from Davidov’s textbooks began to be sold. The social 
background and consequently the habits and demeanor of students who were taught 
using Robinson’s text and students at Russian gymnasia differed; identifying his-
torical evidence indicating how problems were solved in American schools at that 
time appears to us an interesting question for research.

In any case, we can assert that an analysis of Robinson’s text confirms that little 
attention was paid to problem solving at that time, and that problem sets were char-
acterized by their didactic and methodological poverty; at the same time, the book 
contains problems that are grouped on the basis of some connection between them – 
for example, problems that pertain to similar geometrical situations. To what extent 
this was done deliberately, however, is not clear.

24.5  Algebra by Robinson

Both in terms of the history of its formation as a school subject, and in terms of its 
nature, algebra is, of course, different from geometry. Therefore, it is useful to 
examine an algebra textbook from that time as well – we will choose a textbook by 
the same Robinson for this purpose, A Traditional and Practical Treatise on Algebra 
(1848). It contains more problems to solve independently than the geometry text-
book examined above; the textbook is divided into “Sections,” and each of them 
contains problems. We will focus briefly on Chapter 1 of Section IV Quadratic 
equations, which is devoted to quadratic equations in one variable.

Here, we will also confine ourselves to two sets of “Examples for Practice” or 
simply “Examples.” In addition to them, there are several other sets: a set devoted 
not to solving quadratic equations, but to the concept of the perfect square; a set 
devoted to equations of higher powers, which are solved by using quadratic 
equations; a set in which the author advocates solving certain problems with 
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numerical coefficients by replacing them with letter coefficients, which allegedly 
makes calculations easier; and finally, a set that represents a kind of conclusion. 
Although all of this, along with the author’s mathematical inaccuracies, is of interest, 
we will not dwell on it here (although it should be noted that some of these sets are 
evidently preparatory to some extent, while others conversely offer something like 
the application of what will be discussed later on).

The first set we will examine contains 16 problems. All of them are more or less 
of the same type: students are asked to solve a quadratic equation. The first 10 are 
devoted to equations with a leading coefficient of 1, and the last three of these have 
irrational roots. The remaining six problems have different coefficients, which the 
author deliberately emphasizes, and by analyzing problem No. 11, demonstrates 
how to reduce such equations to an equation with a leading coefficient of 1 (it is 
noteworthy that this is done not by means of simple division, but by means of a 
substitution, which the author deliberately thanks a certain professor for pointing 
out – the author avoids fractions). Problem No. 16 is again analyzed since in it the 
second coefficient is odd – students are advised to multiply the equation by two.

The second set contains 17 problems, the first of which is the following equation:

 
x x�� � � �� � �12 12 6

1 2 1 4/ /
.
 

In the preceding theoretical paragraph, the author developed the idea that if one 
exponent is twice as large as another while their bases are equal, then it is possible 
to transform the equation into a quadratic equation. This problem is solved follow-
ing this model, as are the subsequent 11 problems. Probably the most difficult of 
them is problem No. 12, which requires students to solve the equation

 
x x x x2 2 2

2 6 2 5 11� � � �� � � ,
 

in which the technique is slightly disguised. It is noteworthy that No. 13 is far eas-
ier – here, students must solve the equation

 

x x2

361

12

19
32� � � ,

 

The author, however, apparently does not notice that this equation can be solved 
without any special stratagems, without introducing a new variable y = x/19 (or else 
does notice it, but fears computational difficulties). Moreover, he makes the follow-
ing observation: “If much difficulty is found in resolving this 13th example, the pupil 
can observe the 9th example” (p. 167). This ninth equation is as follows:

 x x6 5 3 5 756/ /� � ,  

and how exactly it is supposed to help (apart from increasing students’ experience 
with working with comparatively large numbers) is not entirely clear. In the 
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remaining cases, such observations are not made, but this observation serves as 
proof of the fact that the author recognized the importance of sequencing in solving 
problems. Nos. 14–16 do not resemble the problems that precede them at all; for 
example, in No. 14 students are offered the following equation:

 
81 17

1
992

2
x

x
� � � .

 

The author gives a hint here, pointing out that the first and third terms of this 
expression are squares and referring students to the section on perfect squares. Indeed,
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and using this fact, it is not difficult to solve the equation. But it is difficult to under-
stand why these problems are offered in this set rather than the preceding one. As 
for the last problem, No. 17, this is an equation,

 

4

49

8

21
6
2

3

2x x
� � ,

 

that may be converted into the form:
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but which can also be solved without any special tricks.
Summing up, we would say that in the algebra textbook the connection between 

problems is felt by the author more strongly than in the geometry textbook. But this 
connection usually amounts to the author offering several problems in a row that 
focus on the same rule, even if he makes some attempt to group together problems 
that resemble each other in other ways. Also, the number of problems given is 
clearly too small, if one considers their use from today’s perspective.

24.6  Textbook by William Hart

Let us examine a more recent textbook by Hart (1934). This is a textbook in algebra 
that is radically different from the one examined above in terms of the number of 
problems in it – there are very many of them. As the author himself explains in his 
introduction, “The practice examples conform to the principle that learners profit 
more from doing successfully many easy examples than from relatively futile efforts 
to solve complicated examples. Each topic is accompanied by an unusually large 
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number of easy examples” (p. V). We will confine ourselves to one section, XIV 
Quadratics. This section includes theoretical subsections 263 through 281 (which 
contain many examples), numerous exercises, on which we will focus, as well as 
sections entitled “Chapter Mastery Test” and “Written Review,” which also offer 
problem sets. It is important to note at once that both in the theoretical subsections 
and in the problems, the author uses the signs X and Y to distinguish certain sections, 
with the recommendation that “the study of such material be required only of the 
abler pupils” (p. V).

The material is organized as follows. The author begins with the theoretical 
subsections, which present quadratic equations and incomplete quadratic equations, 
followed by subsection 265, “Solving an incomplete quadratic equation,” which 
provides examples of solving such equations, and as a conclusion, he formulates a 
rule about what needs to be done to solve such an equation. This is followed by 
Exercise 201, a set of problems devoted precisely to these equations. It contains 48 
problems. Only the first 18 may be considered repetitions of what was required in 
the previously examined examples (and even this is a stretch – problem 2 already 
asks students to solve the equation

 y2 4 21� � ,  

which is not actually an incomplete quadratic equation, but one that can be brought 
into the standard form). In problems 19 through 32, students must convert equations 
to incomplete quadratic equations in more and more intricate and technically com-
plicated ways (this should not be taken to mean that each successive problem is 
invariably more difficult than the preceding one in this respect, but the tendency is 
obvious – problem 19 asks students to solve the equation

 5 125 3 272 2a a� � � ,  

while problem 32 asks them to solve the equation
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which is obviously more technically complicated, if only in terms of the number of 
operations that must be carried out).

This is followed by problems 33–41, in which students are asked to solve 
equations with letter coefficients, for example, No. 41:

 

ax

b

c

b

2

1� � .
 

Lastly, problems 42–48 are equations with letter coefficients that represent 
relationships with which the students are familiar, for example, No. 43:
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 A r� � 2 .  

The next subsection is devoted to the Pythagorean Theorem. It is followed by 
Exercise 202, which contains 10 problems – the first five are purely algebraic. For 
example, No. 5:

Solve the formula [a2 + b2 = c2] for c in terms of a and b.

The geometric problems that follow are more or less of the same type, for 
example, problem No. 10, the last and most difficult of them because magnitudes 
are given in letter form: “If the equal sides of an isosceles triangle are each m in 
long, and the base is 2n in long, find the length of the altitude.”

Then follows a subsection about solving “a complete quadratic graphically,” 
which introduces the parabola (constructed based on points), and then in Exercise 
203 offers 12 problems that in effect repeat the example analyzed in the theoretical 
subsection, but in which different parabolas must be constructed.

The next subsection is entitled “Solution by completing the square” (in the case 
of an equation with a leading coefficient equal to 1). Here, we find preparatory exer-
cises that help to elucidate the idea, after which a numerical example is employed to 
show how to solve an equation by using the explained method. Exercise 204 is a set 
of 30 problems, the first 19 of which are equations with integer roots, with No. 11 
being practically fully solved in the text of the textbook. Problems No. 20–30 con-
tain equations with irrational roots which must be found approximately. Problem 
No. 20 is again fully solved.

Then the text examines the case of a quadratic equation with a leading coefficient 
not equal to 1, and the set Exercise 205 follows, which repeats the structure of the 
set Exercise 204, but now for such equations. The theoretical subsection here is 
marked with an X – indicating heightened difficulty – while the set of exercises is 
not marked with such a sign. Finally, the formula for the roots of a quadratic equa-
tion is derived, about which the students are told: “take three minutes now and 
memorize this formula” (p.  345); and then follow two sets, Exercise 206 and 
Exercise 207 (both they and the corresponding theoretical paragraphs are marked 
with an X), in which students are required to solve equations using the formula and 
by factoring, if possible. It is easy to distinguish groups of problems: those in stan-
dard form and easily solvable by factoring; those with expressions on both sides of 
the equation; those with fractions; those with irrational roots, which must be solved 
approximately; those with quite complicated expressions that must be transformed 
in order to convert them into standard form. For example, these exercises are con-
cluded by No. 34:
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Exercise 208 is devoted to word problems. The first three problems repeat almost 
verbatim the example analyzed in the theoretical part. Then come certain 
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changes – in the theoretical part, a problem was analyzed in which students were 
asked to find two consecutive integers whose product was equal to 20. No. 1 is the 
same problem, but the product is equal to 72; No. 3 is about the sum of the squares 
of two consecutive integers; No. 8 gives the sum and product. Problems Nos. 10–14 
have a geometrical content – for example, students are given the perimeter and area 
of a rectangle and asked to find its dimensions. Then come various problems both 
about numbers and geometrical questions, which are slightly more difficult than the 
ones previously analyzed. Exercise 209 is once again devoted to word problems, but 
now students are advised in certain cases to “draw a figure,” and most importantly 
the whole set is marked with an X. And indeed, the problems here are somewhat 
more difficult – they also come in groups. A typical problem from the first group is 
No. 5: “A picture is 10 inches long and 5 inches wide. The area of the picture and its 
frame is 84 square inches. How wide is the frame?” Then come problems about 
motion – for example, No. 14: “An airplane flew 90 miles and returned in a total 

time of 
2 1

8  h. The rate of the wind was 5 miles per hour. At what rate in calm air 
was the airplane flying?”

This section continues, and various other exercises are given, but we will stop 
our description here.

The difference from the previously analyzed textbooks consists not only in the 
quantity of problems but also in the clear understanding of the role of grouping and 
sequencing problems. The classic phrase that a problem can be reduced to the previ-
ous problem speaks specifically of the previous problem, not of one given 20 prob-
lems ago. The author proceeds in small and carefully thought out steps. Furthermore, 
the problems in Hart’s textbooks are in general easier than many of those in 
Robinson’s textbook – or more precisely, would have been easier if they had to be 
solved in isolation, but the problems in Robinson’s textbook are not solved in isola-
tion – the idea is presented in the theoretical section, and then in effect must be 
memorized by rote by being applied several times in a row. Hart’s textbook contains 
relatively complicated problems, which students come to solve on their own by 
solving problems that precede them, and not simply by applying what was done in 
the theoretical section to a problem with different numerical values. But usually, the 
increase in the level of difficulty is technical – first, we apply the formula directly; 
next, we perform some algebraic operation, arrive at the standard form, and then 
apply the formula; and after that, we perform five algebraic operations, some of 
which are themselves not simple, and only at the very end apply the formula.

One can ask what spurred the authors of textbooks to organize problem sets 
better – and one can try to understand to what extent they were acting consciously, 
and to what extent they were, for example, copying other textbooks. It appears 
natural to think that a large role was played by the increase in the number of those 
taught and those teaching. It was precisely during the years when Hart’s textbooks 
were being used, and those preceding them, that rapid growth in these numbers 
occurred – the textbook that won in competition with other textbooks was the one 
that taught students quadratic equations in a way that was more simple and effective, 
and hence it came about that more attention began to be paid to didactic principles.
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The Progressive Era brought not only an increase in the number of high schools, 
but also a change in the understanding of the purposes and goals of mathematics 
education, including an increase in attention paid to the practical applications of 
mathematics, developing social efficacy, and so forth (Kilpatrick, 2009). In those 
parts of Hart’s textbook which were analyzed above, the demand to make the course 
more practically oriented is difficult to discern – the word problems examined above 
were clearly formulated with other aims in mind. This does not mean, of course, that 
demands for a practical orientation exerted no influence on the teaching of mathe-
matics in schools – they exerted such an influence if only because many students 
were left without a course in algebra – but even with all the will in the world (which 
was, of course, by no means necessarily shared by all authors of textbooks at that 
time), putting the exhortation to increase the practical orientation of the course into 
practice was far more difficult than merely formulating it.

On the other hand, what is clearly on display in the textbook is an individualization 
of the approach, which was also in line with the demand for social efficacy  – 
teaching every intricacy to those who were “incapable” seemed unnecessary, and 
among other things, it was recommended not to insist that everyone learn to solve 
quadratic equations using the formula or to solve word problems of any degree of 
difficulty, which were undoubtedly identified and separated out by the experienced 
teacher.

The section from Hart’s textbook analyzed above unquestionably contains more 
graphical and geometrical content than Robinson’s algebra, but also not a great deal. 
In general, despite the quantity of problems, one does not see very much diversity 
among them: as we have seen, the absolute majority of them are “solve the equa-
tion” problems. Problems that require students to prove something, to verify some-
thing, to compare something, to invent something, and so on, are completely absent.

24.7  Textbook by Larson et al.

Let us look at problem sets about quadratic equations from a more modern textbook. 
The textbook by Larson et al. (2001) contains a chapter with the title “Quadratic 
Equations and Functions,” which will be discussed below. Its first section is titled 
“Solving quadratic equations by finding square roots.” This section provides the 
definitions of a root and of a quadratic equation and demonstrates how to solve the 
simplest quadratic equations. The authors provide an example that offers an algo-
rithm for solving the following equation:

 3 48 02x � � .  

Numerous other examples are followed by a section with the title “Guided Practice,” 
which practically repeats the definitions given previously and lists the basic prob-
lems that students must know how to solve (like the equation formulated above). 

24 Problem Sets in School Textbooks: Examples from the United States



474

Then finally comes a section entitled “Practice and application,” which we will 
discuss in greater detail.

This section contains groups of problems unified under headings. The first four 
of these groups are devoted to square roots and expressions with them (each group 
contains eight or nine problems that are similar to one another). The next group is 
titled simply “Quadratic Equations”: there are 15 of them. There are differences 
among them: the equations involve different variables, they sometimes do and 
sometimes do not have a solution, sometimes they are given in standard form, some-
times certain operations are required in order to convert them to standard form. The 
group begins with the equation

 x2 36= ,  

and ends with the equation

 7 63 02x � � .  

The next group contains nine problems and requires the use of a calculator for 
finding solutions to the nearest hundredths. The final equation is as follows:

 5 10 202a � � .  

The next group has the title “Critical Thinking” and contains three problems: write 
an equation of the form x2 = d so that it has one solution, two solutions, and no 
solutions.

Finally, the next seven headings (from one to six problems below each of them) 
are devoted to applying what has been learned – the authors give a quadratic for-
mula that describes some real-world process and pose questions about this process 
(one of them has the subheading: “Challenge”; another: “Critical Thinking”). For 
example, already in the theoretical sections, the authors presented the so-called fail-
ing object model, according to which the height h of an object falling from height s 
at time t is equal to:

 h t s� � �16 2 .  

Subsequently, in both the examples analyzed and in the problems for independent 
work, the following question, for example, is discussed: when is the height h = 0, 
given that a value for s is specified?

The sections that follow are devoted to radicals, the graph of a quadratic function, 
and solving quadratic equations by graphing. We will skip over them and proceed to 
section 9.5, “Solving quadratic equations by the quadratic formula.” This section 
gives the formula and offers examples of how it may be used to solve equations. The 
section “Practice and Applications” is organized in the same way as the section 
examined above. It begins with a subsection in which, in nine given equations, 
students must find the discriminant (this word, however, is introduced only in the 
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next section  – here, students are simply given the formula). There are certain 
technical differences among the problems – in some, the coefficients are fractions; 
in others, they are negative. The next set gives 12 quadratic equations in standard 
form – they must be solved using the formula. The differences among the problems 
again come from what kinds of coefficients they have. In the next set, which has 
nine problems, students must first convert equations into standard form and then 
solve them using the formula (all of them are polynomials, so all that is required is 
to move all terms over to the same side). The next group is devoted to finding 
“x-intercepts of the graph of the equation,” that is, again solving a quadratic equation 
(it is not stipulated, however, that this must be done using the formula). In the 
problems of the next group, students are given a choice between solving simply “by 
square roots” or by “using the quadratic formula” (unfortunately, the question of 
whether it is possible to use the quadratic formula in those cases where solutions 
can be found by square roots is not raised). Next, students are given several more 
problems oriented around applications, that is, problems in which students are asked 
to solve quadratic equations using given quadratic functions that model various 
real-world processes. The last problem (which appears under the heading 
“Challenge”) is of interest. It contains two parts – in the first, entitled “Visual think-
ing,” students are asked to use a graph to find the equation for the axis of symmetry 
of a quadratic function and notice that it is “halfway between the two x-intercepts.” 
In the second part, entitled “Writing,” students are asked to make sure that their 
answer to the preceding part is correct, using the formula for the roots of a quadratic 
equation.

24.8  Discussion

An obvious distinction of the newer textbook consists in the fact that students are 
offered problems that are far more simple technically than those in Hart’s textbook, 
let alone Robinson’s textbook. The authors see no need for technical intricacy. Hart 
clearly believed that it was pointless to make students memorize several types of 
difficult problems, which it would have been impossible to teach them to solve in a 
meaningful and independent way in any case (let us recall his words about the “rela-
tively futile efforts to solve complicated examples”). But his textbook retained 
many-step problems, which even students who were not considered very capable 
could, in Hart’s opinion, be led up to solving. In the newer textbook, everything is 
simpler.

At the same time, connections between problems are undoubtedly acknowledged – 
the textbook includes material for reinforcing what has been learned, and as we 
have noted, there are certain differentiations within each group. On the other hand – 
without going into a discussion of how much technically difficult algebraic problems 
are needed in our computer age – we should note that what is disappearing (or at 
least noticeably decreasing) along with such problems is the incremental or many-
step aspect of learning and reasoning in general. Broadly speaking, Robinson’s 
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textbooks (this is particularly evident in his geometry) taught students problems 
each time as a kind of isolated phenomenon. With Hart, we see a certain movement, 
even if it is limited to increasing technical difficulty. Hart clearly gave some thought 
to these matters – in his introduction, he writes about the “spiral organization” of his 
book, in which problems go back to ideas that had already come up, but now on a 
new level. The content is thus richer than simply the sum of the separate problems – 
there is, additionally, movement from problem to problem (or at least the possibility 
of achieving such movement in class or in teaching practice). In the newer textbook, 
the technical simplification of the problems as a whole has led to a simplification of 
the whole structure of the set as well.

Here, however, there are certain exceptions. We noted above that the textbook 
includes a group of problems, following the solution of a quadratic equation, that 
require students to find the x-intercept of a quadratic trinomial. Before us is the 
development of the examined problem, yet not in the direction of increasing techni-
cal difficulty, but in the direction of a kind of translation or transfer to a different 
object. The same thing, but in a different way – about different concepts. We have 
not come across such problems in other textbooks. In general, the role of graphs has 
noticeably increased, and therefore a space has been opened up for interactions 
between the purely formula-based and the graphical.

Let us also note the appearance in the newer textbook of several assignments in 
which students are asked not only to solve something, but also to provide examples, 
draw a conclusion based on a figure, and even engage in reasoning. This is another 
way in which this textbook differs from the older ones – although, to be sure, very 
few such problems are given, and in a number of cases they are given under the 
heading “Challenge,” which hints that these problems must be assigned only in 
exceptional cases – and they are indeed difficult to prepare for by using the textbook.

Another obvious distinction of the textbook by Larson et al. (2001), which its 
authors themselves point out, is that it contains a large number of problems with 
content taken from the real world. These problems are, of course, altogether differ-
ent from the classic ones about motion, areas, or finding numbers, which we men-
tioned when discussing the textbook by Hart. At the same time, they appear rather 
to advertise the importance of mathematics in the real world than to demonstrate 
this mathematics itself (in other places in the textbook, too, the authors never tire of 
repeating that mathematics is very necessary for people in various professions, with 
which, of course, one can only agree). The problems state that one or another math-
ematical model is being made use of, but the various models are discussed only later 
in a special section – in real life, the logic of reasoning is reversed. Although there 
are relatively many problems and they are devoted to a variety of objects, they are 
relatively unvarying in character.

Finally, let us touch on another aspect: Robinson did not worry about the 
individual approach in his textbooks  – very few people used these textbooks in 
school, and the author clearly believed that if some of them failed to learn what they 
were taught, this was not anything to worry about. For Hart, differences in perception 
are important, and he methodically offers material for differentiation, emphasizing 
that he identifies the minimum necessary for everyone, and provides additional 
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material for the gifted. For the more modern textbook, such an approach is 
unacceptable  – if only due to the danger that the proclaimed minimum might 
become the maximum of what is possible for certain underserved groups of 
population. As a result, differentiation is provided for only by rare problems under 
the heading “Challenge,” plus recommendations to consult a website or some other 
source for additional problems.

24.9  Conclusion

As we stated at the very beginning, this article is preliminary in character: the 
examination of a greater number of American textbooks from different periods will 
help better to understand what was taking place in the country. The processes taking 
place in the country were connected with what was happening in the world, and 
therefore an analysis of textbooks from other countries from the same point of view 
would also be useful. In general, analyzing problem sets in textbooks is no less use-
ful and informative than analyzing what might be called their presentation of theory. 
As has already been remarked, it is desirable to supplement the direct analysis of 
textbooks from this point of view with the analysis and collection of evidence indi-
cating how problems from textbooks were solved in practice – in school, at home, 
with a private teacher, and so on. An understanding of the methodological changes 
taking place in the teaching of mathematics as part of broader social changes is 
precisely what we regard as the objective to be achieved, and it can be achieved only 
by combining the analysis of mathematical and methodological-mathematical texts 
with the analysis of all sorts of historical documents pertaining to everyday life.

The most recent of the textbooks examined by us above was published 20 years 
ago, that is, it, too, belongs to history. In the time that has passed since then, many 
textbooks have been published, and the textbook of these authors itself has gone 
through many changes, including changes touching on aspects that were discussed 
above. We should repeat that the present article is consciously historical. It would be 
interesting to juxtapose problem sets in textbooks published during the last decade. 
But historical analysis in itself compels us to think about the present period.

In the article Karp (2015), we reached the conclusion that approximately during 
the years 1880–1900, something like a methodological revolution took place in 
Russia – the system for and practice of working with problem sets in textbooks 
underwent a significant change. Among its causes, one might point to the growing 
scale of education, to foreign influences, and to the development of pedagogical 
thinking in general – further studies are unquestionably needed here. The present 
article confirms that such a methodological revolution occurred in the United States 
as well, even though no attempt is made here to assign to it a precise date.

A.R.  Maizelis, an outstanding St. Petersburg teacher of mathematics, once 
jokingly told the author of this article that children somehow recognize the problems 
that were not in the famous problem book by Nikolay Rybkin (1861–1919) and 
reject them. A very high methodological art for working with problems was indeed 
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attained at different periods in different countries, which made it possible to move 
very gradually and smoothly from problem to problem, increasing the technical as 
well as, sometimes, the conceptual level of difficulty and the substantive heft of 
each problem, while remaining accessible and comprehensible to children – devel-
oping them and coming up to the very limits of what is possible for them at each 
stage, but nonetheless staying within these limits.

It may be argued that we are living in a period of a new methodological revolution, 
or at least, a period when such a revolution is needed. The sensible and dynamic 
character of old textbooks is disappearing before our eyes, if only because many 
problems in today’s computerized world are losing their value, just as many techni-
cal skills are losing theirs. However, intellectual skills, including the ability to move 
from one problem to another, are not going anywhere. This is what gives rise to the 
need to develop these skills under new conditions in schools and textbooks for the 
general population.

It may be said, based among other things on what has been said above about the 
types of problems found in the relatively new textbook, that today it is relatively 
widely recognized that school mathematics does not amount to simply “solve,” 
“compute,” and even “prove,” but much else besides. This recognition must find 
expression in the problem sets in textbooks.

Simplicity in a textbook, which is worth striving for, does not preclude complexity 
in the organization of problem sets that are gripping to work on, in which each new 
success brings with it new feelings, giving meaning to new lines of reasoning. The 
experience of working with such sets will also help to develop teachers who will 
themselves take delight in mathematics, who will not treat it as medicine – useful, 
but unpleasant – and who will be able to transmit their feelings to students in class.
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Chapter 25
Exams in Russia as an Example of Problem 
Set Organization

Albina Marushina

25.1  Introduction

Probably historically the oldest denotation of the word “challenge” is “invitation to 
a contest or duel.” When this word is used today, what is usually meant is neither 
bloody combat nor even peaceful competition: what is usually meant is a competi-
tion against oneself, during which one must gather one’s strength and do what one 
has not had to do previously. It is quite correct to speak of challenges that a student 
might encounter (or not encounter) during an ordinary lesson. Yet it is still natural 
to devote special thought to situations in which students encounter a challenge in the 
original sense of the word when they are officially invited to overcome officially 
prescribed difficulties – to take exams. What is at stake here is not the actual diffi-
culty of the problems that are given on exams, but the special role that these prob-
lems play, and not individually, but in their totality, as a whole set. In view of the 
fact that in many countries exams in mathematics are in one way or another taken 
practically by all students, it would be no mistake to say that today sets of exam 
problems are precisely “challenges for all,” although of course historically this has 
not always been the case and exams were for various reasons taken by far from all 
students. How and why specifically these challenges – exam problem sets – have 
been written in the past and are written now is an interesting and unstudied question.

The present article will address problem sets given on examinations in Russia at 
different times. It is evident that an exam is conceived of as a specific construction: 
it is impossible to give simply an arbitrary set of problems on some topic or topics 
on an exam. An exam must test to what extent what was required has been learned, 
and this automatically defines some structure for the set of problems on it. On the 
other hand, the understanding of what should be tested and how exactly it should be 
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tested has varied at different times, in different countries, and under different cir-
cumstances. Consequently, exam problem sets are constructed in different ways.

It should be noted at once that literature about exams and exam problem sets is 
quite limited. The author knows only one book devoted to exit examinations in dif-
ferent countries (Britton & Raizen, 1996). Large-scale exams and various kinds of 
tests are often and extensively talked about as a kind of political and social phenom-
enon, for example, when discussing their objectivity or conversely their unobjectiv-
ity, in the sense that various categories of students find themselves in a worse 
position on exams than others (for example, Dyrvold et al., 2015; Levin & Shohamy, 
2008). Less is said about problems and problem sets. Meanwhile, as may be argued, 
the analysis of concrete exams helps to elucidate the social significance of what is 
happening as well.

Suurtamm et al. (2016) rightly note that “Assessment should reflect the mathe-
matics that is important to learn and the mathematics that is valued. This means that 
both large-scale and classroom assessment should take into account not only con-
tent but also mathematical practices, processes, proficiencies, or competencies” 
(p. 5). Exams are undoubtedly connected with the practices of schools, reflecting 
these practices, and sometimes dictating them. This interconnection, however, is far 
from fully studied.

It is noteworthy that the survey of the literature on the assessment by Suurtamm 
et al. (2016) confines itself to an exposition of Design Principles in Large-Scale 
Assessments, without going into (in part, of course, due to lack of space) the prob-
lematics of how these principles are embodied in practice under different condi-
tions. The article by Swan & Burkhardt (2012) cited in that publication goes further, 
effectively formulating certain principles specifically for composing exams, rather 
than separate problems. For example, among the principles of the assessment of 
high quality, the first one listed is the following: “Reflect the curriculum in a bal-
anced way. – Assessment should be based on a balanced set of tasks that, together, 
provide students with opportunities to show all types of performance that the cur-
riculum goals set out or imply.”

Moreover, Swan and Burkhardt (2012) discuss the following crucial contradic-
tion. Noting that curricular documents in different countries “typically emphasise 
the societal, personal and intrinsic value of studying mathematics, describe the fun-
damental processes (or practices) that need to be developed and list the content 
domains that should be covered,” they remark that “These aspirations are rarely 
reflected, however, in high-stakes assessments, which almost universally focus on 
assessing specific concepts and technical skills in isolation from each other and 
their use in ‘doing mathematics.’”

The author of the present article believes that it would be more accurate to say 
that these aspirations are typically reflected in a very specific way in high-stakes 
assessments. Exam requirements, sometimes following traditions, sometimes inno-
vatively going against them, have in any event arisen in connection with general 
societal, personal and intrinsic values, which with the passage of time might be no 
longer perceived.

Nabokov (1964) wrote in one of his books:
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There was mysterious sweetness in the fact that a long number, arrived at with difficulty, 
would at the decisive moment, after numerous adventures, be divided by nineteen without 
any remainder. (p. 17)

It can be said with confidence that the mathematics educators who wrote and gave 
such problems saw in them a foundation for the formation of a human being capable 
of carefully following instructions, and who moreover would relish the triumph of 
order and organization over chaos: they had far more in mind that merely the narrow 
technical problem of inculcating various computational skills. On the other hand, it 
is true that the point of view of today’s educator would most likely be different: in 
life, nothing is usually divisible by 19 without a remainder, and to inculcate the 
expectation that such divisibility exists is harmful, for which reason such a problem 
(from this point of view) has no connection with the lofty goals described in the 
curriculum.

To trace behind this “very specific,” or more precisely, historically determined 
way in which general requirements become transformed into concrete exam require-
ments would be ideally the ambition of the author of this article. Understanding how 
general societal, political, philosophical, and other requirements and conceptions 
were and are embodied in one or another concrete examination method and concrete 
exams is a difficult problem, and the present article does not in any way claim to 
present a complete solution. Nonetheless, thoughts about this topic seem useful, if 
only because they will help to see different principles of problem set organization 
and the general principles of mathematics education that underlie them.

Below, various Russian exit exams will be discussed, and sometimes entrance 
exams as well. This article is above all historical in character, and as is customary in 
historical studies, it will rely on the analysis of documents – readers are invited to 
read them carefully, attempting to establish their general and particular traits. The 
special characteristic of this analysis is that the documents in question are sets of 
mathematical problems. Their analysis will be carried out against the background of 
an analysis of relevant literature, which is more traditional for historical studies. 
Note that the present article to a large extent relies on studies by Karp (1998, 2003, 
2007) and to a certain extent continues them.

25.2  Certain General Considerations

Before discussing historical evidence, we will relate certain general considerations 
pertaining to the composition of exams. Swan and Burkhardt (2012) are, of course, 
correct: the set of problems on an exam must be balanced from different angles. If 
the course in which the exam is given includes, say, basic trigonometry, exponential 
and logarithmic functions, and elementary calculus, as was the case at a certain 
stage on exit exams in the USSR, then it is natural to expect that an exam would 
contain problems in each of these sections. At this point, however, the question of 
the number of problems devoted to each topic immediately arises. Moreover, within 
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each topic there are always numerous subtopics – we might note, for example, that 
the Soviet school textbook at a certain stage taught how to solve six types of expo-
nential equations (Alimov et al., 1996). Their solutions were explained in the text of 
the textbook (under the heading “Examples”), and then reinforced through accom-
panying exercises, which were accordingly organized in groups. One might pose the 
question of whether it is sufficient to test the ability to solve one type of equation 
(for example, by giving the equation 25x − 6 ∙ 5x + 5 = 0) or whether it is necessary 
to test the ability to solve all six, including, for example, the following: 3x = 7x.

The issue, of course, is not about which approach is correct: it is easy to provide 
examples of exams whose writers took the first approach, and examples that take the 
second approach. This, however, is not a minor detail: it reveals ideas both about 
how a child learns and about what we would like to teach at a given stage. The 
already repeatedly quoted survey by Suurtamm et al. (2016) mentions the influence 
of the psychometric tradition and, citing Osterlind (1998), formulates the corre-
sponding requirement as follows: “Unidimensionality: Each test item should focus 
on assessing a single objective or ability.” (p.  8). “Objective or ability” is here 
understood as something basic, as far as possible, and not splittable. Another 
approach conversely understands what is being tested as a certain relatively broad 
field, presupposing (even if not explicitly) the existence of a kind of transference – if 
a student can solve one equation, then this student can also solve another equation.

The school curriculum cannot be reduced to a list of topics. It is easy to identify 
oppositions that are present in the course (at least, from a certain point of view): the 
computational vs. the logical or that which requires reasoning; the algebraic vs. the 
graphic; and algorithmic vs. that which requires an independent and innovative 
solution; and so forth. Ideally, an exam should achieve a balance from this point of 
view as well (providing “students with opportunities to show all types of perfor-
mance that the curriculum goals set out or imply,” as Swan and Burkhardt wrote). In 
other words, it would be undesirable for an exam to consist entirely of problems that 
require only a good technical ability to carry out algebraic transformations or only 
good skills at working with graphs.

Connected with the question of balancing problems that represent different parts 
of the curriculum is the question of balancing problems in terms of their difficulty. 
This notion in itself requires a clarification. One can speak about a certain objective 
characteristic of a problem – for example, the number of steps (elementary opera-
tions) involved in solving it. But what people usually have in mind is something 
different: the proportion of students, out of a standard group, for the situation being 
examined, who are capable of solving the problem (Stolyar, 1974). This proportion 
is usually determined either experimentally or by “eyeballing” it, relying on experi-
ence. A problem’s difficulty thus turns out to be connected with social and educa-
tional factors: generally speaking, when looking at an exam from another country, 
it is impossible to say whether the problems on it are difficult or not, since we do not 
know what the students have solved as part of their preparation. Stolyar (1974) even 
proposed a formula: the real difficulty of a problem is equal to the difference 
between its objective difficulty and the objective difficulty of all of the component 
problems of this problem that have been solved by the students. Without agreeing 
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with this formula (it was not grounded experimentally in any way, for example), we 
acknowledge the difficulty of the very concept of difficulty, and therefore also of its 
balancing.

One can readily imagine a set of problems that test altogether elementary skills 
that are generally identical in terms of their difficulty (defined, for example, as the 
number of operations needed to solve a problem – all of them require one opera-
tion). But usually, it is precisely the social functions of exams that allow for the 
possibility of a stratification among the results – some students manage to solve the 
difficult problems, others do not.

Let us repeat that easiness and difficulty depend on the conditions in which those 
taking the exam are taught. The inequality
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which was given in 2005 on the entrance exam to the St. Petersburg University 
International Relations Faculty, is easy only for those who have gone through spe-
cial preparation. But nonetheless, it was clearly conceived of as easy by those who 
wrote the exam, against the background, for example, of the following problem 
from the same exam, which contained five problems in all:

For which values of the coefficient а do the polynomials P(x) = −x2 + ax + 3 and Q(x) = 3x2 
+ (4− 5a)x + 1 have a common root? (Semenov, 2006, p. 7)

While in the first case students were merely required carefully to apply certain tech-
niques for solving logarithmic inequalities (even if in a situation that was much 
more technically cumbersome than in problems from the textbook, and therefore 
requiring additional preparation), in the second case technical proficiency is not suf-
ficient and students must invent a special line of reasoning (or else to study com-
pletely outside the textbook and to learn in advance how to construct such lines of 
reasoning).

Among the important principles and foundations of exam composition, we can-
not omit to mention technical conditions. Writing about the traditions of mathemati-
cal testing in Russia, Saul and Fomin (2010) recall even Dostoevsky and others who 
suffered for attempting to acquire a printing or copying apparatus. Indeed, in the 
USSR and in pre-revolutionary Russia, copying a text in any other way than by 
rewriting it was difficult. This automatically had an impact on the exam form: an 
exam could not have several pages. An exam had to be short enough to be written 
down on a blackboard. One can discuss to what extent this restriction influenced the 
rejection in the USSR, for example, of sets of problems with multiple-choice 
answers – this rejection was connected with other reasons as well, but the fact that 
external technical restrictions influenced the composition of exam problem sets is 
evident.
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25.3  Russian Exit Exams in Algebra Before 1917

Consider the following exam from 1910 (Karp, 1998, p. 5):

Divide the number m into two parts such that the ratio of their product to the sum of their 

squares is equal to the ratio of the sum of the roots of the equation x
x

� �
27

2 3  to 

the number n, where m is defined by the equality lg(m) = 2 lg 2 +  lg 3 +  lg 5 and n is equal 
to double the coefficient of the fifth term of the expansion of (x + a)6.

This exam was given in Voronezh, but similar exams were given across the whole 
country at the time. As we can see, the exam consists of a single problem, but this 
one problem consists of several, extremely artificially interconnected ones. If we 
were to rewrite this problem in a form that is familiar to us, we would obtain the 
following:

 1. Find the number m from the equality lg(m) = 2 lg 2 +  lg 3 +  lg 5
 2. Find the number n equal to double the coefficient of the fifth term of the expan-

sion of (x + a)6.

 3. Solve the equation x
x

� �
27

2 3 and find the sum of its roots, the number a.

 4. Find the numbers p and q such that

p + q = m and 
pq

p q

a

n2 2�
�

.
However, the exam obtained in this way is absolutely not equivalent to the original: 
perhaps the most difficult part of the problem – its “untangling,” the determination 
of the order in which its component problems must be solved – has disappeared. 
There is also another significant distinction: a student who has failed to solve one of 
the four problems of the exam we have constructed can nonetheless receive credit 
for two or even three others. That is not the case in the original exam: here, any 
mistake becomes fatal.

The principle behind the construction of this exam is directly opposed to the 
psychometric principle mentioned earlier: what is being assessed is by no means a 
single objective or ability, but the ability to work with a difficult text. The student’s 
mental development, which was, judging by the surviving documents and articles in 
the periodical press, the examiners’ primary concern, was expected to be tested 
precisely on the basis of the student’s ability to work with this text, as well as on the 
basis of the mathematical composition produced by the student – the written form 
of the solution (Karp, 1998). Actual equation solving or knowledge of the binomial 
theorem were also important, of course: there was no flexibility, which might have 
taken into account the fact that the student knew one thing even if he did not know 
another, but the exam was in a certain sense a humanities-style exam, as indeed the 
gymnasium was first and foremost a humanities-oriented educational institution. A 
graduate in 1910 could, of course, also go on to study to become an engineer, to 
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which end he would usually spend a long time preparing for entrance exams in 
mathematics (Karp, 2022), but it was far more natural for him to enroll at the uni-
versity, obtain an education in law, and become a civil servant analyzing tangled 
official correspondence. One might say that students were being prepared for this in 
mathematics classes as well. The humanities-style character of the exam was like-
wise underscored by the attention paid to the language of the solutions, including 
spelling and the choice of expressions – for example, exam-checkers’ reports identi-
fied and discussed such students’ expressions as “solve the binomial,” instead of, 
say, “find the required coefficients of the expansion of the binomial” (Karp, 1998).

It is natural to connect the structure of exams of that time, and indeed the system 
of gymnasium education in general, with the theories of mental discipline (Stanic, 
1986), which were, however, already somewhat losing their popularity. In the every-
day use of this theory, the brain was compared with muscles, which must be devel-
oped through exercise. Consequently, just as few people in gym class thought about 
whether pushups were something necessary in real life, it was not always necessary 
to think about connections with life in mathematics classes either. However, the 
artificiality of the resulting composite problems, as they were called, was becoming 
increasingly more recognized. Calls for a new structure for exams were becoming 
increasingly louder. After the revolution of 1917, this change took place.

25.4  Soviet Exit Exams in Algebra

It should be noted that the new structure of the algebra exam did not instantly tri-
umph. Immediately after the revolution of 1917, exit exams – and any other exams, 
for that matter – ceased to be conducted. They were seen as a throwback to the 
former regime, which had oppressed students and even subjected their health to 
danger through exams (Karp, 1998). When it was understood that exams could not 
be dispensed with, however, composite problems again appeared for a brief moment, 
simply because they were familiar to many teachers; but soon a new type of exam 
evolved, which remained largely unchanged from the 1930s to the 1980s. More 
precisely, the problems changed: over time, problems involving the binomial theo-
rem disappeared, being considered obsolete; word problems shifted from exit exams 
to exams conducted earlier, and calculus problems appeared at a certain stage. The 
number of problems changed as well: there were sometimes three problems, some-
times four, and then there were five. But the principle behind the formation of the 
problem set remained the same: problems were given to test how well the main top-
ics of the course had been assimilated, indeed, usually one problem represented a 
large topic without attempting to test everything that had been studied in connection 
with this topic. There was no flexibility whatsoever in the matter of assessment: 
students were offered no choice; in order to obtain the highest grade, everything had 
to be solved, without mistakes and with no more than two demerits (Chudovsky 
et al., 1986, p. 5) – the definition of a “demerit” being quite amorphous.
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It should be noted here that the impeccable execution of an assignment included 
a flawless mathematical composition, which contained not only a detailed exposi-
tion of all the steps leading to the solution but the justification for these steps as 
well. The type of problem given was thus not simply an “essay task,” as problems 
requiring students to provide a full solution are often called, being contrasted with 
“short answer tasks” or “multiple choice tasks,” but an elaborate composition.

For example, the “governing article” (Gurvits & Filichev, 1947), as it was then 
said, recommended that the answer to the solution of the inequality 4x2 + 16x + 7 > 0 is 
given as follows (and it should be emphasized that the authors were talking only 
about the answer here—it was supposed to be preceded by a detailed solution):

Given the expression 4x2 + 16x + 7 > 0, if we replace x with any number lesser than −
7

2

(for example, –4, –5, etc.) or any number greater than −
1

2
 (for example, 1 4

1

3
, ,− ,  

etc.),we will obtain positive values. (p. 46) (cited in Karp, 2007)

Still, the cited article came under a certain criticism; but something similar, even if 
in a somewhat softer form, prevailed on the whole for a long time, which explains, 
for example, what a student had to work on during an exam that lasted many hours 
(three, and later four), and which contained, for example, the following problems 
(1977 exam, Chudovsky et al., 1986, pp. 97–98):

 1. Prove the equality
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 2. Find the function F(x), given that F′(x) = 4x3 − 1.
 3. Solve the inequality 2x − x2 − 5 ≤ 0.

 4. Solve the system
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 5. The base of the pyramid MABCD is a rectangle, whose perimeter is equal to 
12 m. The edge MB  is perpendicular to the plane ABC. The angle between the 
planes (MAD) and (BAD) is equal to 45°. What must be the height of the pyramid 
in order for the volume of the pyramid to be as large as possible?

The exam fully conforms to the principles that Chudovsky et al. (1986) formulate 
earlier:
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Of these five problems, one is connected with trigonometry: simplify a trigonometric 
expression, or prove an equality, or solve an equation, or solve an inequality. Another prob-
lem is connected with the antiderivative or the integral: find an antiderivative of the given 
function, or determine the integral, or determine the area of a figure bounded by the given 
lines. And another problem involves finding the greatest or least value of a function. The 
content of two other problems may be a problem from the curriculum mainly of grades nine 
and ten.1 The fourth and fifth problems on the exam are somewhat more difficult than the 
first three. (p. 5)

In this way, the exam was rather rigidly determined. Of course, the fifth problem 
(that is, the most difficult) could theoretically turn out to be a trigonometry problem, 
rather than a problem to find the greatest value, but in those years this never hap-
pened. Note that the cited exam maintains another balance: there is an inequality, a 
proof (which involves an algebraic transformation), and equations (a system). A 
different exam could have been different from the one cited, of course, for example, 
it could include an exponential inequality, a trigonometric equation, and the trans-
formation of a logarithmic expression.

Practically all of the problems on exams were more than one-step problems: even 
the first problem in the exam reproduced above required certain logical skills – the 
ability to construct the logical chain in the proof correctly – as well as the skill of 
carrying out algebraic transformations, as well as the knowledge of formulas – both 
algebraic and trigonometric ones. At the same time, the problems corresponded to 
what had been studied, at least in the sense that problems similar to the ones given 
could be found in the textbooks of the time (It is noteworthy that the cited handbook 
by Chudovsky et al. (1986) contains advanced problems, which are explicitly stated 
to be taken from the materials of entrance exams, while as the authors explain, such 
problems are rarely encountered in classes in school. In other words, it was openly 
stated that, for entrance exams, correspondence to what was studied in school was 
not necessary).

Despite the requirements that students had to meet in providing explanations and 
formulating solutions, which were put forth in the cited article by Gurvits and 
Filichev (1947) and others similar to it as testing students’ understanding of what 
they had learned, their ability to reason, and so forth, the exams possess a certain 
technocratic character: there is a limited set of problems, which students are taught 
to solve in school, and the assimilation of those which are most important in the 
opinion of the examining agency – the Ministry of Education – is what is tested. It 
is noteworthy that during a discussion of exit exam requirements in 1947, Yakov 
Dubnov, a Moscow mathematician, put the question directly: what kind of person 
do we want our educational system to produce—someone who carries out instruc-
tions to the letter or someone capable of critically making sense of the work assigned 
to him? (O trebovaniyakh.., 1947, quoted in Karp, 2007). Attempts to determine the 
social significance of what was taking place thus existed at that time as well.

Let us say a few words about problem sets given on entrance exams (recall that 
two systems of exams existed in parallel). Usually, the written exam (there were 

1 Schools had ten grades at that time. Thus, this refers to the final two years of schooling.
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also oral ones) during the last decades of the Soviet Union consisted of five prob-
lems also, but these included a geometry problem (or sometimes two – in plane 
geometry and in solid geometry). Since the problem of selection was more impor-
tant in these exams than in exit exams, usually stratification into levels of difficulty 
was more noticeable in them, and in general, as has already been said, the problems 
were more difficult. There existed (in parallel with the school system) a kind of 
industry of preparation for entrance exams, a part of which was the publication of 
problem books for applicants (for example, the famous problem book by Skanavi, 
1969). The problems in them were grouped into sections (say, “algebraic transfor-
mations” or “exponential and logarithmic equations”), and entrance exam problems 
were sometimes taken directly from such problem books and arranged into sets in a 
special manner.

25.5  The Age of Changes and Experiments

The process of Perestroika and the liberalization of the Soviet Union, initiated in 
1985 by Mikhail Gorbachev, led to changes in education as well, including changes 
in the composition of exit exams. This sphere was by no means independent of the 
social and political atmosphere. The process of changes in it was slow, and this sec-
tion will focus mainly on what happened already after the collapse of the USSR 
in 1991.

25.5.1  Changes in Ministry of Education Exams

Gradually, it became universally recognized that people are different and that con-
sequently requiring the exact same thing of everyone was not right (Karp, 2020). 
The uniformity of Soviet exams had in fact already been shaken by that time, since 
along with ordinary exit exams, special exams had long since begun to be offered – 
for students of schools and classes with an advanced course of study in mathemat-
ics. But now a certain flexibility began to be permitted even within the bounds of the 
same exam. Consider the following exam from a general education school in 1994 
(Zvavich, & Shlyapochnik, 1994, p. 13):

 1. Solve the equation 10 4� � �x x .
 2. Solve the inequality 3log8(3x + 2) < 2.
 3. Indicate all roots of the equation sin sin2 2 0x x� �  that lie within the seg-

ment [−3π/2,  3π/2].
 4. Write down the equation for the tangent to the graph of the function y = 4x + 2x + 1 

at the point where it attains its minimum value.
 5. Find the area of the figure bounded by the lines y − x2 = 0 and y2 − x = 0.
 6. For which values of the parameter a а does the equation x2 − (3a − 1)|x| + 2a2 − a = 0 

have 4 different solutions?
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The exam has six problems, while in order to obtain the highest grade, it is neces-
sary to solve five. It may be noted that the revolutionary Perestroika, as was said at 
the time, was not all that radical when it came to exams. It may likewise be noted 
that the sixth problem was noticeably more difficult than the others, although for-
mally it belonged to the curriculum not of the two oldest grades, but the earlier 
grades. In this way, the students were given a relatively standard exam (even so, 
however, one that seems to us more difficult than the exam from 1977, reproduced 
above), but those who were able to solve the difficult last problem received the high-
est grade, even if they had made a mistake somewhere else before it.

In reality, the step thus taken was significant. First, in this way truly difficult 
problems could appear on the exam – this immediately expanded the horizon both 
of the students and, above all, of the teachers. Second, the psychology of grading 
was changing: previously, whoever made no mistake was a hero; now, mistakes 
became permissible, as long as sufficiently many problems were solved without any 
mistake. Grading was now based on achievements, rather than on failures.

In exams prepared by the Ministry of Education, the difference between the total 
number of problems and the number necessary to obtain the highest grade was not 
large. The liberalism of that time, however, allowed exams to be prepared not only 
in one central location, but locally as well (on the condition that they would further 
be approved in Moscow). The exams prepared at the time in St. Petersburg went 
much farther (Karp, 2003).

25.5.2  St. Petersburg Exams

An exam for a general education school prepared at the time in St. Petersburg con-
tained four blocks of problems, with each block containing four tasks. The student 
selected one of the two last blocks, obtaining in this way a set of three blocks and 
twelve problems, and to obtain the highest grade, it was sufficient to solve ten of 
them. Consequently, students could to a certain extent select topics with which they 
had greater affinity – one of the last blocks was usually devoted to elementary cal-
culus, while the second dealt with irrational functions and equations. On the other 
hand, the possibility of mistakes was also permitted.

Another distinctive characteristic of these exams was the already mentioned 
organization of problems into blocks, and in such a way that the problems became 
interconnected, making it possible to some extent to check one against the other or 
to use one in some other way in solving another. Consider one block from the exam 
from 1994, in which these interconnections are sufficiently simple:

Given the function f(x) = (x + 1)2(x − 2)

 (a) Solve the equation f(x) = (x − 2).
 (b) Construct the graph of the function f.
 (c) Find the greatest and least values of the function f on the segment [−2, 1.5].
 (d)  Find the area of the figure located in the third quadrant of the coordinate plane and bounded 

by the graph of the function f and the straight line y = x − 2.
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It is easy to note that the solution of problem a is used in problem d; and that the 
solution of problem b is used in problems c and d. Such connections among prob-
lems help the solver: sometimes, one of the problems constitutes a step in the solv-
ing of another problem; sometimes, using a later problem, it is possible to a certain 
extent to check the preceding one (for example, an incorrect solution of problem a 
might be identified in solving problem d). But what is even more important is that 
such problems, as we would argue, orient the student toward searching for such con-
nections, and the ability to see them may be no less important than the ability to 
solve separate problems.

25.5.3  Centralized Testing

There were completely different experiments as well. One trajectory found expres-
sion not in official exit exams, but in so-called centralized testing, which was con-
ducted by the Ministry of Education, and whose results were permitted to be counted 
in lieu of the results of both exit and entrance exams.

These exams (Tsentr testirovaniya, 2001) could, for example, consist of 12 
multiple- choice problems and 10 short-answer problems – formats to which Russian 
schoolchildren were unaccustomed. It is not difficult to conclude that such exams 
did not develop without the influence of foreign – first and foremost, American – 
methodologies. Nor do the authors of the collection to which we have referred con-
ceal that they wish to do everything properly, writing as follows:

A properly written text consists of a unified whole of mutually balanced test problems. The 
number of problems on the test that pertain to different topics must be such as to proportion-
ally reflect the basic content of the subject. Combinations of test problems of different lev-
els of difficulty must provide for the same level of difficulty in different versions of the test. 
The differentiating powers of the test problems, in their turn, must provide for differentia-
tion among the levels of preparedness of different students. (p. 3)

How this balancing was achieved, however, is not explained. Meanwhile, it can be 
noted that, for example, the number of problems in geometry was only 4 out of 22 
(the test covered the entire course in mathematics), which can in no way be consid-
ered to be a proportional reflection of the content of the Russian school course in 
mathematics. Let us note, too, that the “American” form of the test was conjoined 
with problems that would not usually be encountered on American tests. Consider 
just one example:

The product of the roots of the equation (x2 + x + 1)(x2 + x − 1) = 3 is equal to

 1. 10
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 2. −2
 3. 8
 4. −8
 5. 10 (Tsentr testirovaniya, 2001, p. 5).

In the future, such testing was discontinued, giving way to the Uniform State Exam, 
which will be discussed below.

25.5.4  Collection of Problems

In the late 1990s, exit exams started to be conducted using so-called open exams. 
Special collections were published, which were bought by students in advance. 
Problems from these collections were solved and analyzed both at home and in 
class. On the day of the exam, it was announced which specific problems would be 
officially given as the problems on the exam. This idea, by this time, had long 
become a reality in ninth-grade exams, which marked the completion of lower sec-
ondary education. On exit exams, however, it was used in a somewhat new manner.

While collections for the ninth grade simply contained problems, the new collec-
tion (Dorofeev et  al., 1999) provided not only separate problems but also whole 
problem sets. The result was as follows: 10 problems were given in all; the first five 
belonged to one of the numerous problem sets contained in the book; three more, 
according to a description by the collection’s authors, were traditional exit exam 
problems (p. 5); and finally, two more problems were more difficult and were, again 
according to the authors’ characterization, similar to those given on entrance exams. 
It was proposed that the highest grade be given to those who solved nine problems.

In order to demonstrate differences among the levels of difficulty, we will repro-
duce one problem from each of the three parts, with all three problems being devoted 
to trigonometric equations (each part contained problems from different sections of 
the course).

Problem from the first set: Find the roots of the equation 2 3 3 0cos x � �  (p. 18).
Problem from the second set (for ## 6–8): cos2x + 6 sin x − 6 = 0
Problem from the third set (for ## 9–10): sinx −    sin 2x +   sin 5x +   sin 8x = 0 

(p. 148).

It is clear that, in reality, there could not have been three problems in trigonom-
etry out of ten problems on the exam. The authors, not of the collection, but of the 
actual exam, had to keep track of this. The procedure through which the exam was 
composed was by no means automatic, but nonetheless, a certain step in this direc-
tion had been made: the composition of the exam consisted mainly in assembling it 
out of certain components, rather than in selecting problems.
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25.6  The Uniform State Exam

Beginning in 2009, the only form of the exit exam in Russia became the so-called 
Uniform State Exam. This exam is uniform for the whole country. Until 2015, it was 
both an exit and an entrance exam. Starting in 2015, the exam began to be conducted 
on two levels, basic and specialized. The specialized exam is counted as an entrance 
exam, also. Experiments with its organization began long before this, and its form 
has repeatedly changed (Karp, 2020). In a certain sense, centralized testing, which 
was discussed above, was also its forerunner. The literature pertaining to this exam 
is vast, although a large share of it consists of what may be described as opinion 
journalism rather than scholarly studies. Let us mention the study by Marushina 
(2012), which analyzes a specific variant of this exam.

We will examine one specialized exam in greater detail, using an officially given 
variant, the so-called demonstration exam (https://4ege.ru/matematika/60059- 
demoversii- ege- 2021- po- matematike.html). The exam consists of two parts. The 
first contains eight short-answer problems. They are considered basic-level prob-
lems. In the second part, which contains 11 more problems, ## 9–17 are considered 
intermediate-level problems, and problems ## 18–19, are advanced-level problems. 
Problems 9–12 are also short-answer problems. The topics of the first 12 problems, 
and their types as well, are known in advance. For example, in the third problem, 
students are given a figure on graph paper and asked to find its area, while in prob-
lem 12, they must find the maximum or minimum of a given function using differ-
ential calculus. In problem 5, however, the choice is somewhat broader – it may 
involve an exponential equation or a logarithmic or irrational one.

The last seven problems require complete and well-grounded solutions. What a 
“well-grounded” solution means can be interpreted in various ways. The demon-
stration exam contains the following explanation:

General requirements for completing problems with a detailed answer: the solution must be 
mathematically literate, complete; all possible cases must be considered. The methods used 
to arrive at a solution, the form in which the solution is written down, and the form in which 
the answer is written down may vary. A solution that arrives at the correct answer in a well- 
grounded manner will receive the maximum number of points. A right answer without the 
text of the solution will be given 0 points. Experts check only the mathematical content of 
the presented solution, without taking into account the particular characteristics of the way 
in which it is written.

The topics of the problems ## 13–19 are also known in advance (at list in some 
sense). The thirteenth problem is in trigonometry, the fourteenth is in solid geome-
try, and so on. Also known in advance are the points given for each problem. The 
first 12 problems receive one point each, problems ##13–15 receive two points 
each, problems ## 16–17 receive three points each, and problems ## 18–19 receive 
four points each.

Consider as an example problems 13 and 18, included in the demonstration exam 
cited here:

13. Solve the equation 2 3 2 3sin / cos cosx x x�� � � ��
.
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18. Find all positive values of a for each of which the system
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hasa uniquesolution.

 

It remains to note that a pool of exam problems has been created and continues to 
be replenished, which may in some measure become known before an exam. For 
example, the article by Marushina (2012) analyzes the following problem, which 
was recommended for the exam at the time:

Find all values of the parameter a for each of which the system of equations
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hasa uniquesolution.

 

Of course, familiarity with this problem does not make the solution to problem 18 
cited above easy, as it contains very many substantive differences, but probably no 
one would disagree that it makes it easier.

25.7  Discussion and Conclusion

Most likely, already at the beginning of this article, when we cited problems from a 
variant of the entrance exam to the Faculty of International Relations, the contem-
porary Western reader wondered about the usefulness of such problems for select-
ing future students for this faculty (even if it was for the department of applied 
computer science for the humanities, for which students were selected using the 
exam discussed above). Not having any evidence indicating the intentions of those 
who authored the exam, we can only surmise the following train of thought on their 
part: the Faculty is a highly prestigious one; the number of applicants is substan-
tially higher than the number of available spots; it would be good for many appli-
cants to be eliminated precisely through mathematics since a person’s knowledge of 
mathematics indicates that person’s level of intellectual development; therefore, let 
us see how well the applicants have assimilated school-level techniques, how pre-
cise they are in applying them, and how capable they are of problem solving, that is, 
how capable they are of thinking in an unfamiliar situation.

It may be said that this is another version of the old theory about mental disci-
pline, which in this case is supported by the relative technical ease of eliminating 
applicants specifically through mathematics exams. Whatever our attitude toward 
such a philosophy, it is unlikely easy to say precisely which mathematics problems 
and problem sets should be used for selecting future employees of diplomatic mis-
sions. Cumbersome and technically intricate problems may seem strange, if only 
because no one solves them in real life, but to find problems for exams that specific 
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applicants – rather than mankind in general – have happened or will happen to solve 
in real life is not easy in general. In any event, in this article, we are not interested 
so much in separate problems (although these inevitably yet have to be addressed) 
as in the construction of the whole set.

But the principles of construction have gone through multiple changes and very 
substantial ones. The study of the history of exams appears to us to be useful not 
least because it immediately disproves the opinion that exams are always conducted 
in more or less the same way. Different times have different exams. One can identify 
opposite possibilities in the trajectories of change in the composition of exams.

One of these oppositions is rigidness vs. flexibility in assessment, or – which is 
not, however, the same thing – grades based on positives vs. grades based on nega-
tives. In the pre-Revolution exam discussed above, there was no flexibility at all: 
students had to complete everything (even if with “demerits”). Gradually, the situa-
tion changed: in Soviet times, students could pass an exam without solving several 
problems. Later still, students could not solve several problems and still get the 
highest score. The Uniform State Exam is also a competitive entrance exam – stu-
dents receive higher scores for solving a greater number of problems (taking the 
“value” of each problem into account) – but as an exit exam, it is very flexible: 
students might do almost nothing and still receive a score sufficient for their school.

Evidently, the number of problems on the exam has increased, and this has 
occurred not only during the transition from composite problems to separate ones. 
“Open” exams (exams based on problem books) contained three problems, which 
were equivalent, in the authors’ opinion, to “traditional” problems, that is, to prob-
lems on exams during Soviet times. Five problems on the open exam evidently 
involved no less work than the two remaining problems on the Soviet exam. But the 
open exam also had two “difficult” problems. As for the USE exams, there is no 
need to point out how enormous they are by Soviet standards.

What are these changes connected with? One possible explanation points to the 
reduction in requirements pertaining to the writing of the solution. It became pos-
sible to give even multiple-choice problems (admittedly, in the USE, on which such 
problems were also given at one time, they did not last long: it was found that they 
do not conform to Russian traditions and are in general harmful, see Karp, 2020). 
As for short-answer problems, these have been fully legitimized, while regarding 
problems that require full answers, we are told that the answer can be given in vari-
ous different ways, and exam-checkers are clearly exhorted to be tolerant.

One can, however, connect the increase in the number of problems with the 
change in orientation that has occurred: in the Soviet exam, it was important that no 
one (or almost no one) fail. Later, the focus of concern shifted to comparatively 
strong students – on the USE, which serves as an entrance exam, this is particularly 
noticeable. A large number of failing grades on exit exams, which might lead to 
social problems, was something that no one wanted, naturally. But it turned out to 
be possible to control the number of failing students, by establishing a different 
passing score each year, and later also by creating a special version of the exam (in 
2015) for those who do not intend to enroll at a higher educational institution 
(Karp, 2020).
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Two more opposed tendencies, partly associated with changes in the style of 
presenting the solution, involve that which is algorithmic vs. that which requires 
reasoning. Verbose “humanities-style” arguments used to be considered, as has 
already been said, the basis of a reasoning mindset and a culture of reasoning: this 
is clearly disappearing, but at the same time the absence of reasoning altogether – 
only short answers – also turns out to be unacceptable. The ability to reason is tested 
on the USE only by problems that are declared in advance to be the most difficult, 
hence this turns out to be important only for the strongest students. And here again, 
a question arises about the meaning of what is taking place.

Schoenfeld (2013), contemplating the connection between problem solving and 
mathematical modeling, unified them by characterizing both as examples of “sense 
making.” “Sense” and “meaningfulness” are defined not so much by the problem 
itself, as by the context in which it appears. Solving a logarithmic inequality can be 
a “sense making activity” in class, for example, because it figures in the solution of 
some general physical problem, say, or because it comes up in the course of discuss-
ing and comparing the solutions of other inequalities and so forth (of course, it is not 
in every class and not in every teacher’s classroom that solving such inequalities 
becomes a “meaningful and sense making activity”). On exams, the problem is usu-
ally torn out of its context, as a result of which its meaningfulness unquestionably 
diminishes.

Schoenfeld (2013) rightly cites the formula, “What You Test Is What You Get.” 
Exams not only test what is studied: but they also determine it. The appearance at 
one time of problems with parameters on exams at ordinary schools, discussed 
above, even if it was expected that they would be solved only by the strongest stu-
dents, nonetheless was very important, at the very least because it broadened teach-
ers’ horizons. In our view, the appearance on exams of problems that create a kind 
of environment or situation, which is studied from different sides, so that the ques-
tions turn out to be interconnected and meaningful, likewise exerts and would exert 
an influence on what goes on in schools. In a number of countries, educators are 
working on including real-world problems, which make it possible to increase 
meaningfulness on exams and tests; but it is feasible within the framework of tradi-
tional school mathematics as well. In this respect, the exams in St. Petersburg, 
which were discussed above, merit attention. In general, the inclusion of problems 
that require thinking and reasoning, and which at the same time are addressed not 
only to the strongest students, is hardly feasible, in our view, without changing the 
structure of the problem set. Note that the creation of a kind of context, a system of 
interconnections, in the problem set on an exam stands in opposition to the mechan-
ical inclusion of multiple separate problems in the set, which check separate skills 
and the assimilation of algorithms for solving separate types of problems.

Another opposition observed by the historian of exams is the opposition between 
the predictable and the new. The new may turn out to be too arduous, but to give 
students the same thing over and over again is also hardly appropriate. Students are 
given various substitutes: “the problem is not at all the same as last year – last year’s 
problem had log base 2, this one has log base 3.” Another approach is to introduce 

25 Exams in Russia as an Example of Problem Set Organization



498

open exams, open problem pools, and so forth. In this case, nothing completely new 
is permitted at all; but on the other hand, there is a significant increase in variety.

The author, of course, does not claim to know how ideally to resolve all of the 
noted oppositions and contradictions. The objective of this article is far more mod-
est: to describe the changes that have taken place, to attempt to identify the main 
tendencies of what is taking place, and also as far as possible to connect them with 
what has taken place in the country and in education. The seeming or actual mean-
inglessness of one or another problem for the educational process does not at all 
mean that there would be no sense in or reason for its appearance on an exam. It 
should be noted in conclusion that it would be interesting to compare the changes 
that have taken place in constructing exams in Russia with analogous processes in 
other countries.
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Chapter 26
Complexity of Geometry Problems 
as a Function of Field-Dependency 
and Asymmetry of a Diagram

Ilana Waisman, Hui-Yu Hsu, and Roza Leikin

26.1  Introduction

In this chapter, we discuss the complexity of geometry problems with different types 
of diagrams. First, we draw a distinction between field-independent (FID) diagrams 
that involve elements essential to the problem givens only, and field- dependent 
(FD) diagrams that include surplus information (in terms of Krutetskii, 1976). Field-
dependent (FD)  diagrams require the solvers to extract the information which is 
essential for answering the question. Second, we distinguish between symmetric and 
asymmetric diagrams. The comparison of the complexity of geometry problems 
with different types of diagrams is based on the phenomena described in the psycho-
logical literature: field dependency and asymmetry of geometric diagrams increase 
the complexity of visual comprehension (e.g., Adams & McLeod, 1979; Bornstein 
& Stiles-Davis, 1984; Evans et al., 2012; McLeod & Briggs, 1980). Connections 
between these conditions and the complexity of mathematical problems are often 
overlooked in mathematics education research. Examining Israeli geometry text-
books, one sees that during the secondary school grades, field independent situations 
mostly disappear from geometry textbooks. The 4 geometrical problems in Fig. 26.1 
illustrate these characteristics of diagrams in geometry problems.

P1 and P3 are equivalent problems requiring proof based on the midline–in– 

triangle property: EF AC GH AC EF GH� � � �
1

2

1

2
, . P2 and P4 are also 
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Diagram type Field independent Field dependent 

 Given P1 and P3 
Triangles ABC and ADC 
 with a common base 

P2 and P4 
EH is the midline in the trapezoid 
ABDC. 

Prove:  The midlines EF and GH in the trian-
gles ABC and ADC are equal.  

The parts of the midline in the trape-
zoid between lateral sides and the di-
agonals are equal 

A
sy

m
et

ric
  P1:  Fig. 1.1 P2: Fig 1.2 

Sy
m

et
ric

 d
ia

gr
am

 Added 
given  

P3:  Triangles are congruent.  
Fig. 1.3 

P4: Trapezoid ABDC is equlateral. 
Fig. 1.4 

Fig. 26.1 Illustration of field (in)dependent and (a) symmetrical conditions in the given problems

equivalent problems that can be solved in the same way as P1 and P3 but that require 
“extracting” the triangles from the trapezoid. This distinction between the problems 
exemplifies the contrast between the field-dependent structure of figures 1.2 and 
1.4  in problems P4 and P2 and the field-independent structure of figures 1.1 and 
1.3 in problems P1 and P3. Symmetrical diagrams have one of the types of sym-
metry. P3 and P4 include symmetrical diagrams, in which an additional solution by 
mental reflection can be used – arguing that the segments are equal because of sym-
metry. This solution is not applicable to P1 and P2.

Problem P5 (Fig. 26.2) helps us to illustrate the role of field dependency and 
symmetry in solving geometry problems in different ways by “extracting” different 
elements of the given figure. Figure 26.2 outlines five proofs of P5 that are based on 
different elements of the given figure. Figure 26.3 illustrates P6 which is a sym-
metrical version of P5 accompanied by 2 additional proofs for P6 that are specific 
to symmetrical conditions. Due to symmetrical conditions, P6 also allows for per-
forming a calculation instead of a proof.

The complexity of solving geometry problems is broadly discussed in the 
educational literature (Battista, 2007; Weber, 2001). It is of a multidimensional 
nature, linked to visual abilities (Clements & Battista, 1992; Gal & Linchevski, 
2010), auxiliary constructions required for solutions (Herbst & Brach, 2006; 
Palatnik & Dreyfus, 2019) and computational and proof skills (Mariotti, 2006; 
Hanna & DeVillers, 2012). Problem-solving competencies in geometry require 
from solvers a deep and robust knowledge of geometry concepts and their properties, 
i.e., definitions, axioms, and theorems (Herbst, 2002).

The psychological literature points out that both field dependency (Evans et al., 
2013) and symmetry (Wagemans, 1997; Huang et  al., 2018) determine the 
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P5 

Given:   is a rhombus with vertices on the sides of the tri-

angle  as shown. 

Prove:   is a right triangle.

Proofs:  

The common observation for proofs 5.1, 5.2, 5.3 and 5.4 

 as opposite sides of the rombus, and 

 the quadrilaterals and are 

parallelograms. In other words: the diagonals of the rombus are 
parallel to the sides of the triangle.  

Proof 5.1:  This proof requires knowledge of the theorem -- If two lines in plane are parallel to 

perpendicular lines then they are perpendicular. 

Thus BA is perpendicular to CA. 

Proof 5.2:  FAGC is a rectangle  Proof 5.3:  is a right triangle that 

can be translated* to 

The common observations for proofs 5.4 and 5.5 

∠ ∠  (FD||=GH).  

Translate* . ∠  as a 

corresponding to ∠  formed by parallel lines DG 

and BA. 

Fi . 2. 2 

Fi g. 2. 1 

Fi g. 2. 3 Fig.  2. 4 

Fig. 2.5 

Proof 5.4:  ∠  as a corresponding to 

∠  near parallel lines FH and BA 

(Fig. 2.6). 

Proof 5.5  Translate* ∆BFH along 

. ∠
(Fig 2.7) 

*Translation can be replaced by proof of congruence 

Fig.  2. 6 Fig.  2. 7 

Fig. 26.2 Illustration of field dependency elements in proving

complexity of cognitive processing related to visual stimuli. Based on this literature, 
we raised two hypotheses:

H1:   Field dependency affects the complexity of solving geometry 
problems:field-dependent (FD) diagrams  are more complex than field- 
independent (FID) ones when solving equivalent problems (those that have 
identical solutions).

H2:   Symmetry of geometric figures given in the problem influences problem- 
solving success: Problems that include symmetrical diagrams are less 
complex than equivalent problems that include asymmetrical diagrams.

26 Complexity of Geometry Problems as a Function of Field-Dependency…
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P6 

Given:   is a square with vertices on the sides of the triangle 

 as shown. BD

Prove:   is a right triangle.

Proofs (additional to proofs of P5 on Figure 2):  

Observation specific to P6 

, ,  

 and perpendicular to 

Thus triangles  and  are equlateral and right 

triangles (with acute angles of 45o) 

Proof 6.1: 

If one of the parallel lines is perpendicular to 

the third line then the second parallel line is 

perpendicular to the third line. 

Proof 6.2 

Auxilary construction: AM perpendicular to 

BC. By similarity of right equilateral triangles 

Fig.  3. 1 

Fig.  3. 2 Fig.  3. 3 

Fig. 26.3 Illustration of symmetrical diagrams in proof problems

In what follows we review related literature and introduce the design of the 
newly developed Geometry Field-Dependence-Symmetry (GFDS) test instrument 
that integrates both FID theory and Symmetry in psychology and in mathematics. 
We present findings that examine our hypotheses and suggest some recommenda-
tions for the task design principles in geometry.

26.2  Background

26.2.1  Field-Independence-Dependency (FID)

In the 60’s and 70’s, Witkin and his colleagues proposed a construct of Field- 
Independence- Dependence (FID) and used it to describe one’s cognitive styles and 
behaviors. According to Witkin and his colleagues, FID generally refers to the 
extent to which one can perceive part of a field from the whole field (Witkin et al., 
1977). The field-independent person is capable of breaking up the total field into 
parts, attending to the relevant parts while withholding attention from the irrelevant 
parts. In this regard, field-independent individuals are more likely to rely on internal 
frames of reference, whereas field-dependent individuals are more inclined to rely 
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on external frames of reference (Davis & Frank, 1979). Thus, looking at individuals, 
field-independent persons are more capable of breaking up a complex diagram as 
they can mentally or physically decompose and recompose the diagram in order to 
recognize sub-configurations embedded in the given diagram. At the same time, 
when we consider geometry problems, FID diagrams are often simple and do not 
involve much complex surplus information, which allows individuals to easily iden-
tify subconfigurations and retrieve geometric properties.

Researchers in psychology have indicated that children at early ages are more 
oriented to global perception, and cannot articulate the differences among objects 
and activities (e.g., Witkin et al., 1979). When individuals’ cognition develops, they 
become capable of differentiating one from the other. This is a common psychologi-
cal phenomenon in human cognitive development (e.g., perceiving, thinking, learn-
ing) (Bloomberg, 1967). Davis and Frank (1979) argued that differentiation involves 
cognitive restructuring, which includes three separate but related operations. The 
first operation is to break up the organization of a stimulus complex so that its ele-
ments can be operated upon separately or in new combinations. The second opera-
tion is to provide structure for an ambiguous stimulus complex, and the third is to 
provide a structure different from that implied by the inherent structure of the stimu-
lus complex.

Based on the construct of FID, Witkin and his colleagues developed several 
instruments to examine the ability of field-independent thinking that one possesses. 
These instruments allow researchers to understand how individuals perceive units of 
the field as discrete across different situations. One main type of test requires sub-
jects to dis-embed and locate a previously seen figure within a complex figure 
designed to hide it, such as the Embedded Figures Test (EFT), the Group Embedded 
Figures Test (GEFT), and the Hidden Figures Test (HFT). Linn and Petersen (1985) 
identified HFT as a spatial visualization test with respect to gestalt rules.

Researchers have investigated FID in different ways. One is to explore the 
essence of FID as a general cognitive style or cognitive ability, and examine it in 
different groups or among individuals with different backgrounds (Coates et  al., 
1975; Goodenough & Witkin, 1977; Sternberg, 1997; Witkin, 1965; Witkin et al., 
1977; Zhang, 2004). For example, Sternberg (1997) concluded that FID is a kind of 
spatial ability. Those studies nurture the development of FID theory and enable the 
revision of instruments in accordance with different examination purposes.

Adams and McLeod (1979) examined the interactions between FID and 
instructional treatments, concluding that there is no interaction between the two 
variables on the post-test; however, significant interaction with crystallized ability 
on the retention test was found. McLeod and Briggs (1980) examined prospective 
elementary school teachers and confirmed that those with a field-independent 
cognitive style can learn about numeration systems significantly better when 
provided with minimum guidance and maximum opportunities for discovery 
through the use of manipulative materials. On the other hand, field-dependent 
individuals learned better with maximum guidance and symbolic treatment. Tartre 
(1990) found that FID influences students’ understanding of mathematical problems.

26 Complexity of Geometry Problems as a Function of Field-Dependency…
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26.2.2  The Need to Develop a New FID Instrument Specific 
to Geometry

Different researchers have achieved different conclusions with respect to the 
relationship between FID and mathematics. On the one hand, some researchers (i.e., 
Dubois & Cohen, 1970; Tinajero & Páramo, 1997) stated a strong relationship 
between FID and various measures of academic achievement. On the other hand, 
others (i.e., Nappo et al., 2019; Zhang, 2004) asserted FID is not related to overall 
achievement in mathematics but only to achievement in geometry specifically. The 
inconsistency in the research findings indicates the need to develop a new FID 
instrument specific to geometry which enables the articulation of the influence 
that FID has on students’ geometry learning. Our newly developed FID instrument 
particularly focuses on the students ability to tackle geometry problems with field- 
dependent and asymmetrical diagrams in a complex mathematics situation. This is 
in line with the Embedded Figures Tests (EFT), the Group Embedded Figures Tests 
(GEFT), and the Hidden Figures Test (HFT).

Figure 26.4 shows the HFT test items, which provide a number of referent shapes 
(on the top in Fig. 26.4) and require solvers to identify the referent shapes in com-
plex figure environments. The cognitive work needed is to differentiate the complex 
figure environments by embedding and disembedding, and to perceive the referent 
shapes in the environments. Two characteristics can be noticed in the HFT items. 
First is that the referent shapes (top of Fig. 26.4) can be viewed as simple ones when 
compared to those figures shown on the bottom. However, those referent shapes are 
not simple and common as seen from a mathematics perspective. Taking the refer-
ent shape labeled by letter A shown on the top left in Fig. 26.4 as an example, it is 
not a commonly-seen hexagon such as a regular hexagon or convex hexagon. A 
complex and not-commonly-seen shape requires one to observe the characteristics 
of the shape (e.g., pointy angle) or to decompose and recompose the shape into 
familiar ones. For example, one may see the referent shape labeled by letter A as a 

Fig. 26.4 Example of referent shapes (top) and complex figures (Bottom) included in the Hidden 
Figures Test (HFT) (Ekstrom et al., 1976)
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combination of a home-plate shape and a triangle shape. Another may view it as a 
parallelogram with a trapezoid. Those cognitive activities may increase the demand 
on students in perceiving the referent shapes in the test. Second, the figures (see 
bottom in Fig.  26.4) are cognitively complex as they include a number of sub- 
configurations with different shapes, lengths and orientations. The complexity in the 
figure’s environment increases the cognitive demand for decomposing and recom-
posing (Gal & Linchevski, 2010) and prevents one from easily perceiving the refer-
ent shapes in it.

To better understand how FID may influence geometry problem solving, the 
following two geometry problems, along with an analysis from (Hsu, 2010), can 
elaborate the cognitive complexity caused due to the changes of geometry diagrams.

As can be seen in Fig. 26.5, Problem 1 and Problem 2 have the same written 
information (e.g., BD=BC) and goal, which is to prove that ∠ABD = 2 ∠ BDC. The 
only difference between the two problems is in the given diagrams. The one accom-
panying Problem 1 involves less complexity as the diagram more resembles images 
with respect to the external angle property. The diagram in Problem 2 involves 
much more complexity in terms of the segments and vertices so that different sub- 
configurations other than the one in association with the external angle property can 
be identified. Figure 26.6 illustrates some of the sub-configurations with corre-
sponding geometric properties embedded in the Problem 2 diagram. When a geom-
etry diagram is made complex, it not only changes the look of the diagram but may 
also increase cognitive complexity in terms of identifying sub-configurations and 
their corresponding geometric properties. For example, in the Problem 2 diagram, 
three different sub-configurations can be found even in association with the same 
geometric property, the external angle property. Each sub-configuration requires 
students to extract certain diagram elements – angles and segments – and to reas-
semble them according to the mental images of the external angle property that they 
may have in mind. Researchers have found that identifying sub-configurations in a 

Given diagrams Given information

Problem 1 In , = ,  is

collinear. Prove ∠ = 2∠ .

Problem 2 In , = , and , , are

collinear. Prove ∠ = 2∠

Fig. 26.5 Complexity in geometric problems linked to the given diagrams
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The linear pair property Angle sum of quadrilateral Properties related to triangle 

(e.g., angle sum property)

The exterior angles property

Fig. 26.6 List of sub-configurations and corresponding geometric properties

geometry diagram with a corresponding geometric property can be highly cogni-
tively demanding (Kabanova-Meller, 1970; Kantowsk, 1975) (Fig. 26.6).

Based on a sample of 502 8th-grade students and 413 9th-grade students, Hsu 
showed that 8th-grade and 9th-grade students all performed significantly better on 
Problem 1 than Problem 2 (mean difference = 0.263, p = 0.000 for 8th grade; mean 
difference = 0.136, p = 0.006 for 9th grade). The effect sizes for the comparisons of 
the two problems for 8th grade (Cohen’s d  =  0.19) and for 9th grade (Cohen’s 
d = 0.1) were below a small effect, indicating that the difference in performance for 
students in both grades between the two problems was not large. The analysis 
revealed that diagram complexity can be a factor in determining cognitive complex-
ity. The analysis also draws attention to a well-designed study that can carefully 
examine the extent to which diagram complexity influences student problem- 
solving performance.

The analysis result shown above confirms the possibility that FID influences the 
cognitive complexity of geometry problem solving, and indicates the need to closely 
examine the systematic variations of geometry diagrams and their influence on 
geometry problem-solving.

26.2.3  Symmetry

Symmetry is a component of the natural world around us. It is an essential element 
of mathematical and scientific thinking and constitutes a fundamental aspect of spa-
tial reasoning (e.g., Hargittai, 1986; Livio, 2006; Weyl, 1952). Symmetry makes it 
possible to observe, conceive, and sometimes even prove specific laws (Weyl, 
1952). Moreover, symmetry is strongly linked to art and design (Arnheim, 1974; 
Ramachandran & Hirstein, 1999). The significance of symmetry is emphasized in 
painting, sculpture, architecture, literature, and music (Hodgson, 2011; Weyl, 1952). 
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For example, in fine art, symmetry is manifested in proportions, perspective, and 
harmony of an object’s proportion and color (Arnheim, 1974). Various definitions of 
symmetry are available in the literature (e.g. Weyl, 1952). According to Leikin, 
Berman, and Zaslavsky (2000), symmetry is a triad of transformation, object and, 
property, such that the property of the figure is immune to the transformation. This 
definition covers different symmetry types, such as geometric symmetry (Weyl, 
1952) and role symmetry in algebra and in proofs.

Research in mathematics education attaches importance to the study of symmetry 
in the classroom. For example, NCTM standards (1989) encourage students to 
“apply transformations and use symmetry to analyze mathematical situations.” The 
incorporation of symmetry in mathematical classes makes it possible to develop 
mathematical thinking and spatial ability in learners, and promotes a scientific 
understanding of the physical world (Clements & Battista, 1992; Lowrey, 1989). 
Therefore, symmetry affects both comprehension processes and knowledge devel-
opment processes (Lowrey, 1989). Using symmetry is enjoyable for students of all 
ages and abilities. Symmetry makes it possible to link mathematics with art, thus 
developing an assessment of mathematics’ aesthetic aspects (Stylianou & 
Grzegorczyk, 2005; Dreyfus & Eisenberg, 1998). Students can observe and dis-
cover different geometric features of symmetric shapes or use symmetry as a basis 
for learning high-level mathematical topics (Geddes & Fortunato, 1992). Moreover, 
learning mathematics through symmetry invites exploration and discovery in math-
ematics lessons, integrates collaborative learning, promotes active learning for stu-
dents, and as a result, allows students to believe in their ability to learn mathematics 
(Clements et al., 2001; Ng & Sinclair, 2015).

Symmetry also makes it possible to connect mathematics and other subjects, 
geometry and other mathematical fields (Bennett, 1989; Weyl, 1952; Leikin et al., 
2000). Symmetry has an essential role in problem-solving, as it connects various 
branches of mathematics (Applebaum & Leikin, 2010) and can provide a more 
elegant solution (Dreyfus & Eisenberg, 1998; Leikin et  al., 2000; Schoenfeld, 
1985). For example, some optimization problems can be easily solved using line 
symmetry and not calculus methods (e.g., Leikin et al., 2000; Polya, 1981). However, 
despite the elegance of solutions using symmetry, students usually avoided using it 
(Vinner & Kopelman, 1998). For example, there is still insufficient use of symmetry 
in classifying geometric objects and proving specific properties (De Villiers, 2011; 
Sinclair et al., 2016).

Cognitive research focusing on the perception of symmetrical objects has mostly 
focused on its effect on perception and memory (Boswell, 1976; Pashler, 1990) or 
developing symmetry concepts through childhood (Hu & Zhang, 2019). Symmetric 
figures and objects are recognized faster and more accurately (Bornstein & Stiles- 
Davis, 1984; Evans et  al., 2012; Wagemans, 1997) and often remembered better 
than asymmetrical ones, mainly when the axis of reflection is vertical (Howe & 
Jung, 1986; Rossi-Arnaud et al., 2006). For example, habituation is faster in sym-
metrical polygons than in asymmetrical ones (Bornstein et  al., 1981). However, 
studies on distinctions between different types of symmetry found that children and 
adults more easily recognize and remember reflectional symmetry than rotational or 
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Is the graph of functions symmetrical?

x

y

 
x

y

 
x

y

x

y

 

The percentage of correct responses 

87% 58% 87% 67% 

Fig. 26.7 Students’ performance on identifying symmetrical graphs

translational (Dillon et al., 2013; Rossi-Arnaud et al., 2006; Wagemans, 1997). A 
possible explanation of such findings is that vertical reflectional symmetry demands 
less working memory (WM) resources, especially visuospatial and executive 
resources, compared to other types of symmetry (Wagemans, 1997). In addition, 
several studies have shown that participants tend to concentrate on ‘visually-salient’ 
features of objects, such as center points or diagonals, in performing reflection 
(Leikin et al., 2000; Edwards & Zazkis, 1993).

Leikin (1997) provided empirical evidence that the identification of symmetrical 
graphs of functions depends on the placement of the graphs with respect to the axes 
(see Fig. 26.7).

So far, most studies have concentrated on the recognition of various objects 
based on symmetry or manipulations such as reflecting, dragging or folding. There 
has been limited research concerning the effect of symmetry of the figures given in 
problems on the complexity of the problems. The current study was designed to 
examine the effect of a symmetry property of a geometric figure on performance in 
the verification of a geometric statement.

26.3  Development of Geometry Field-Dependency- Symmetry 
(GFDS) Instrument

When developing the GFDS instrument, we considered both FID construct and 
symmetry property. In GFDS, symmetry problems were created using the definition 
proposed by Leikin, Berman, and Zaslavsky (2000), that is, symmetry as a transfor-
mation of an object without any alteration of its features. The design of symmetry 
problems stems from the hypothesis that students’ responses to geometric problems 
could be affected by perceptual features of the problems that interfere with logical 
reasoning (Stavy & Tirosh, 2000). For example, the perceptual effect of the length 
of the angle arms was reported to interfere with comparisons in different situations, 
such as vertical angles (Galili et al., 2020; Foxman & Ruddock, 1984). This study 
employs symmetric and asymmetric situations to reveal the reasoning processes 
associated with the relationship between symmetry and geometric properties. The 
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symmetric items created for the GFDS test had reflectional or rotational symmetry, 
while the asymmetric figures kept the shape and size of the figure but violated the 
symmetry configuration. Symmetry-asymmetry can therefore be considered a 
“visually-salient” feature that interferes with reasoning about the relationships 
between the sides of the shape, probably due to attentional resources (Galili et al., 
2020; Edwards & Zazkis, 1993).

The GFDS test includes four types of geometry problems: Symmetrical-field- 
independent (Sym-FID), Symmetry-field-dependent (Sym-FD), Asymmetry-field- 
independent (Asym-FID), and Asymmetry-field-dependent (Asym-FD). The 
difference between FID and FD is that FD involves cognitive complexity in terms of 
identifying the target diagrams from a complex one. Thus, an FID problem accom-
panies a simple geometry diagram whereas FD items include a more complex one, 
which requires extra cognitive work in the identification of the target diagrams. The 
difference between symmetry and asymmetry is in the diagram presentation. A 
symmetry diagram possesses reflectional or rotational symmetry properties whereas 
an asymmetry one does not.

The first examples with respect to the four types of geometry problems included 
in the GFDS test (see Fig. 26.8) are used to illustrate the differences between FID 
and FD as well as symmetry and asymmetry in the design of the GFDS test. The 
geometric problems shown in Fig.  26.8 are to determine the relationship of the 
lengths in the given diagrams. The difference between the FID problem and the FD 
problem is that the FID item involves a quadrilateral, whereas the FD accompanies 
a diagram of the same quadrilateral that is circumscribed by a circle. Because of the 
differences in the accompanying diagrams, the cognitive work of parsing the given 
diagram into sub-configurations with corresponding schemas can be quite different. 
For example, the FID problem requires parsing the given diagram into two triangles. 
FD requires this form of diagram parsing as well, and in addition, needs one to 
identify sub-configurations such as different circle arcs in the given diagram.

With respect to the statement encoding stage, because FD requires higher demand 
in diagram parsing, it also requires greater effort from students when it comes to 
statement encoding. As FID only requires the diagram parsing from a quadrilateral 
into two triangles, its statement encoding is tied to the properties related to the quad-
rilateral (e.g., the angle sum of a polygon) and the triangles (e.g., the Pythagorean 
Theorem).

For FD, other than the statement encoding with respect to the quadrilateral and 
triangles, it also requires statement encoding with respect to the circle. For example, 
the diagonal of the quadrilateral is also the diameter of the circle. The statement 
encoding in a complex diagram often requires the encoding of a diagram subject 
using different perspectives.

Krutetskii (1976) highlighted the key to experimental studies, that is, to 
systematically design experimental problems in accordance with the set-up 
hypotheses. The design of experimental problems can be complicated as it involves 
an evolution during the trial experiments by selecting and abandoning problems due 
to the consideration of the sufficiency of the problems in examining the identified 
cognitive characteristics. In this regard, designing a system that well considers 
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Condi-

tions

Symmetrical Asymmetrical 

Field-Independent Field-Dependent Field-Independent Field-Dependent

Sym-FID Sym-FD Asym-FID Asym-FD

1 Given: , , , denote the lengths of the triangle segments

Is this true? ( + ) = ( + ) ( + ) < ( + )

2 Given: is the midpoint of 

Is this true? SB = SD SB > SD

3
Given: ⊥BC

Is this true? ( − ) = ( − ) ( − ) > ( − )

4 Given: is the diameter of the circle

Is this true? > =

5 Given: , , are triangle segments

Is this true? < + = +

Fig. 26.8 Examples of tasks of four types of problems included in the GFDS instrument

variations of experimental problems becomes crucial. The GFDS instrument focuses 
on information gathering in terms of how geometry diagrams are represented and 
how the presentations consequently influence students’ perception and interpretation. 
Figure 26.8 shows five sets of problems included in the GFDS instrument, which 
demonstrate the systematic variations of geometry diagrams in terms of the shapes 
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(e.g., triangle, quadrilateral, circle), the surplus information, and the geometric 
properties. The systematic variations enable us to examine the effects of FID and 
symmetry on students’ problem-solving.

The GFDS instrument includes 21 sets of geometry problems, each including 
Sym-FID, Sym-FD, Asym-FID, and Asym-FD diagrams. Each set was developed 
based on the same geometry property, with identical givens and an identical goal. 
Each individual geometry problem requires students to verify the correctness of two 
statements, one of which is true and the other, false. All the geometric problems 
included in the test instrument are specific to the comparison of segments as shown 
in Fig. 26.8. As a result, the GFDS test contains 21 sets and 84 geometry problems.

26.4  Examining the GFDS Instruments 
and the Research Hypotheses

26.4.1  Subjects, Setting, and Data Analysis

Forty-five undergraduate and graduate students (Mean age  =  22.37; Std. of 
age = 2.08) from a Taiwan national university participated in the study. Those stu-
dents are majoring either in social science (e.g., education) or in other fields that are 
not related to mathematics (e.g., landscape architecture).

We used E-prime software ((Schneider et al., 2002) to implement the test with 
students. In each one of the  four conditions (Sym-FID, Sym-FD, Asym-FID and 
Asym-FD), 21 trials (tasks) depicted a true statement, while the other 21 trials 
depicted a false statement for the task given. Therefore, each subject had to com-
plete the GFDS test with 168 tasks in the E-prime environment. Before working 
with the geometry problems, subjects had to practice with two extra simple geom-
etry problems in order to become familiar with the tool.

Problem-solving in the E-prime environment starts with a 500 ms fixation and 
then presents the given and the diagram of a geometry problem for a time period of 
2000 ms. After a 1000 ms time break, the goal of the problem along with the dia-
gram is presented for 3500 ms. After another 1000 ms time break, a statement along 
with the diagram that requires students to evaluate is presented. There is no time 
limit for evaluating the statement. Once a student presses the bottom for an answer, 
another 1000 ms break was designed for the student to rest. All 168 trials were ran-
domly presented in the E-prime environment in order to prevent learning transfer 
among the four types of geometry problems. Figure 26.9 depicts the sequence of 
events for each problem (item).

We analyzed subjects’ responses to each trial in terms of accuracy of responses 
(Acc) and reaction time for correct responses (RTc). Acc was determined by stu-
dents’ percentage of correct responses to the 42 trials in each type of geometry 
problems. RTc associated with each type of geometry problems was calculated as 
the mean time spent for verification of an answer on stage 3 (S3) in all correctly 
solved trials.
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Fig. 26.9 Testing model for GFDS designed in E-prime software

Table 26.1 Cronbach’s alpha for the four types of items in the research tool

FID FD

Sym 0.849 0.845
Asym 0.735 0.822

It has been frequently assumed that the mental effort involved in cognitive 
processes is manifested through certain behavioral measures, such as a subject’s RT 
and response accuracy (Pachella, 1974). Moreover, RT and response accuracy can 
indicate problems‘complexity (e.g., Goldhammer et  al., 2014; Allaire-Duquette 
et  al., 2019). It should be mentioned that most RT problems have an important 
working memory (WM) component, namely, the need to hold in mind newly 
instructed relations between stimuli and responses (Wilhelm & Oberauer, 2006). 
Using the findings showing that longer RTs and lower Acc indicate a more complex 
mental process, we examined whether asymmetrical or field-dependent diagrams 
affect the degree of complexity and, if so, in which way.

Internal validity of the instrument was assessed using Cronbach alpha for 
accuracy of the responses to the report. Table  26.1 presents Cronbach’s alpha 
coefficients for the four types of items (Sym-FID, Sym-FD, Asym-FID, and 
Asym-FD). Cronbach’s alpha was found to be high enough for the implementation 
of the test.

We analyzed differences in Acc and RTc using repeated measures ANOVAs 
taking Sym (symmetric vs. asymmetric) and FD (field-dependent vs. field- 
independent) as within-subject factors. Following a significant interaction, pairwise 
comparisons were performed.

26.4.2  Findings

Hypothesis 1 was confirmed by the research experiment: problems with field- 
dependent (FD) diagrams are more complex as compared to problems that include 
field-independent  (FID) diagrams. Reaction time for correct responses only 
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Table 26.2 Acc and RTc associated with S and FID factors

Measure Mean (SD) FID factor
F (1,44)Sym Asym Overall

Acc (%) FID 94.0(8.8) 92.5(7.4) 93.3(7.7) 0.003
FD 94.0(8.7) 92.6(8.9) 93.3(8.4)
Overall 94.0(8.5) 92.6(7.9)
Sym factor
F (1,44)

4.998*, ��
2  = 0.102

RTc (ms) FID 2865.3
(1865.9)

4172.0
(4013.5)

3518.6
(2878.0)

6.437*, ��
2  = 0.128

FD 3611.8
(3341.3)

4154.5
(3316.5)

3883.2
(3208.8)

Overall 3238.6
(2542.2)

4163.3
(3.613.6)

Sym factor
F (1,44)

13.685***, ��
2  = 0.237 Interaction S × FID

3.683+, ��
2  = 0.077

Acc accuracy, RTc reaction time for correct responses
*p ≤ 0.05, ** p ≤ 0.01, ***p ≤ 0.001, +p = 0.061

supported this hypothesis. Participants responded significantly quicker on problems 
with FID diagrams as compared to the tasks with FD diagrams [F(1,44) =6.437, 
p < 0.05, ��

2  = 0.128] (Table 26.2).
Hypothesis 2 also was confirmed by the research experiment: problems with 

asymmetric diagrams are significantly more complex as compared to problems that 
include symmetric diagrams. The complexity of the tasks is reflected both in the 
accuracy of responses and in the reaction time for correct responses. We found a 
significant effect of the Symmetry factor on Acc and on RTc (Table 26.2). Acc on 
the problems with symmetric diagrams was significantly higher as compared to the 
Acc associated with problems that included asymmetric diagrams [F(1,44) = 4.998, 
p < 0.05, ��

2  = 0.102]. Correspondingly, RTc related to solving the problems with 
symmetric diagrams was significantly lower as compared to RTc associated with 
solving problems that included asymmetric diagrams [F(1,44) = 13.685, p < 0.001, 
��

2  = 0.237].
A marginally significant interaction of symmetry factor with FID factor on RTc 

was found: field-dependency significantly influenced solving problems with sym-
metric diagrams, while symmetry significantly affected solving problems with 
field-independent diagrams. Participants solved Sym-FID problems significantly 
more quickly compared to Sym-FD tasks [F(1,44) = 7.288, p < 0.01, ��

2  = 0.142], 
and demonstrated similar RTc on the Asym-FID and on the Asym-FD problems. 
Additionally, participants exhibited significantly lower RTc on the Sym-FID 
problems as compared to RTc on the Asym-FID [F(1,44) = 12.704, p < 0.001, ��

2  = 
0.224], while there was no significant difference in RTc when solving Sym-FD and 
Asym-FD problems (Fig. 26.10).

26 Complexity of Geometry Problems as a Function of Field-Dependency…



516

92.5

93.0

93.5

94.0

Sym Asym

Ac
c (

%
)

FID FD

2800.0

3300.0

3800.0

4300.0

Sym Asym

RT
c (

m
s)

FID FD

Fig. 26.10 Acc and RTc with Sym and FID factors

26.5  Discussion

Solving and proving geometry problems often involves cognitive complexity as it 
requires various kinds of cognitive work. As the proof problem shown in Fig. 26.2 
illustrates, it asks for performing different cognitive processes such as identifying 
sub-configurations and their corresponding geometric properties (e.g., theorems, 
axiom, definition), drawing auxiliary lines, making rigid transformations and chang-
ing diagrams from asymmetric to symmetric. The complexity in geometry problem- 
solving calls for investigations that can examine each individual cognitive aspect in 
depth, as well as its relation to student learning of geometry.

In recognition of the significance of FID and symmetry in mathematics and other 
fields, we designed a new instrument, the Geometry-Field-Independence-Symmetry 
(GFDS) test, to systematically investigate how the variations of geometry problems 
influence students’ problem-solving.

The empirical data collected from 45 undergraduate and graduate students 
confirmed that both FID and symmetry significantly influence students in solving 
geometry problems. The FID factor significantly influences students’ reaction time 
to geometry problems, whereas the symmetry factor determines both the accuracy 
of students’ responses and their reaction time. An interaction between the two fac-
tors was also found. Students responded significantly faster on Sym-FID problems 
than on Sym-FD problems. The data analyses based on undergraduate and graduate 
students indicate that cognitive complexity is associated with FID and symmetry 
factors. With respect to FID, the significant difference in reaction time and insignifi-
cant difference in accuracy between FID and FD show that FID does influence stu-
dents in answering geometry problems. However, students still can figure out the 
correct answer if provided with enough time. Regarding symmetry, the significant 
difference in both reaction time and accuracy suggests that students are likely not 
able to figure out an answer to asymmetry problems even when provided with suf-
ficient time.

The newly developed test instrument can be used to systematically compare FID 
and symmetry ability within a group of subjects and across different groups of sub-
jects. The FID instruments developed previously in psychology have limitations in 
interpretation as they only can identify field independence and field dependence in 
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a “more or less” way within a group of subjects (Evans et al., 2013). Those FID 
instruments do not allow for comparisons among groups of subjects, especially 
when those subjects may have different learning experiences. The empirical results 
based on 45 undergraduate and graduate students also raise questions with respect 
to the extent to which FID and symmetry influence students’ geometry problem- 
solving. In particular, as we consider FID and symmetry to be cognitive and math-
ematical abilities, it is of interest to know if FID and symmetry are innate or whether 
it involves cognitive development over time and learning. The relationship between 
FID and symmetry and geometry competencies requires further investigation.

Another crucial issue is the question of how task designers consider FID and 
symmetry in the design of geometry problems integrated in instructional materials. 
The design of geometry tasks consequently influences how teachers provide oppor-
tunities for students to develop FID ability and to use symmetry as an efficient tool 
in geometry problem-solving. The principles for designing geometry problems that 
take FID and symmetry into account also need further investigation. For example, 
might it be a principle of task design that the complexity of geometry problems can 
be altered by increasing or deleting segments or angles in a given diagram?

Researchers associated with the fields of psychology and mathematics education 
have devoted themselves to understanding the cognitive mechanisms that are the 
keys to triggering the learning of mathematics. They also have worked on building 
theories and principles of students’ cognitive development specific to mathematics 
learning. The process of establishing these theories and principles requires bridging 
the arguments in both fields. For example, the cognitive classification of conscious 
representation framework proposed by Duval (1995) considers the theory of percep-
tion, characteristics of mathematics, and its coordination. Another example is the 
cognitive development theory of geometry proposed by van Hiele (Fuys et  al., 
1988), which coordinates the cognitive theory from Piaget in general and geometry 
as a rigorous and abstract system in specific. Effort has been made in this chapter to 
coordinate the constructs of FID in psychology and symmetry in mathematics in 
order to better explain challenges in learning geometry.

Acknowledgments The authors acknowledge the support in the development of this study by 
Taiwan Ministry of Science and Technology (Grant MOST 107-2511-H-007-001-MY3), the Yin 
Shu-Tien Educational Foundation at the National Tsing Hua University, Israel Science Foundation 
(ISF research fund # 887/18), and the University of Haifa. The opinions expressed in this study are 
solely the opinions of the authors and do not necessarily reflect the views of the institutions in 
Taiwan and Israel.

References

Adams, V. M., & McLeod, D. B. (1979). The interaction of field dependence/independence and the 
level of guidance of mathematics instruction. Journal for Research in Mathematics Education, 
10(5), 347–355. https://doi.org/10.2307/748446

Allaire-Duquette, G., Babai, R., & Stavy, R. (2019). Interventions aimed at overcoming intuitive 
interference: Insights from brain-imaging and behavioral studies. Cognitive Processing, 
20(1), 1–9.

26 Complexity of Geometry Problems as a Function of Field-Dependency…

https://doi.org/10.2307/748446


518

Applebaum, M., & Leikin, R. (2010). Translations toward connected mathematics. The 
Mathematics Teacher, 103(8), 562–569.

Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. University of 
California Press.

Battista, M.  T. (2007). The development of geometric and spatial thinking. In F.  Lester (Ed.), 
Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 843–908). 
Information Age Publishing.

Bennett, D.  M. (1989). An extension of Rellich’s inequality. Proceedings of the American 
Mathematical Society, 106(4), 987–993.

Bloomberg, M. (1967). An inquiry into the relationship between field independence-dependence 
and creativity. Journal of Psychology, 67(1), 127.

Bornstein, M. H., & Stiles-Davis, J. (1984). Discrimination and memory for symmetry in young 
children. Developmental Psychology, 20(4), 637.

Bornstein, M. H., Ferdinandsen, K., & Gross, C. G. (1981). Perception of symmetry in infancy. 
Developmental Psychology, 17(1), 82.

Boswell, S.  L. (1976). Young children’s processing of asymmetrical and symmetrical patterns. 
Journal of Experimental Child Psychology, 22(2), 309–318.

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (pp. 420–464). Macmillan.

Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. Journal for research in 
mathematics education. Monograph, 10, i-177.

Coates, S., Lord, M., & Jakabovics, E. (1975). Field dependence—Independence, social—Non- 
social play and sex differences in preschool children. Perceptual and Motor Skills, 40(1), 
195–202. https://doi.org/10.2466/pms.1975.40.1.195

Davis, J.  K., & Frank, B.  M. (1979). Learning and memory of field independent- 
dependent individuals. Journal of Research in Personality, 13(4), 469–479. https://doi.
org/10.1016/0092- 6566(79)90009- 6

De Villiers, M. (2011). Simply symmetric. Learning and Teaching Mathematics, 11, 22–26.
Dillon, M.  R., Huang, Y., & Spelke, E.  S. (2013). Core foundations of abstract geometry. 

Proceedings of the National Academy of Sciences, 110(35), 14191–14195.
Dreyfus, T., & Eisenberg, T. (1998). On symmetry in school mathematics. Symmetry: Culture and 

Science, 9(2–4), 189–197.
Dubois, T. E., & Cohen, W. (1970). Relationship between measures of psychological differentiation 

and intellectual ability. Perceptual and Motor Skills, 31(2), 411–416. https://doi.org/10.2466/
pms.1970.31.2.411

Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In 
R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics 
education (pp. 142–157). Springer.

Edwards, L., & Zazkis, R. (1993). Transformation geometry: Naïve ideas and formalembodiments. 
Journal of Computers in Mathematics and Science Teaching, 12(2), 121–145.

Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Hidden figures test: CF-1, 
revised kit of referenced tests for cognitive factors. Princeton.

Evans, D. W., Orr, P. T., Lazar, S. M., Breton, D., Gerard, J., et al. (2012). Human preferences for 
symmetry: Subjective experience, cognitive conflict and cortical brain activity. PLoS ONE, 
7, e38966.

Evans, C., Richardson, J. T. E., & Waring, M. (2013). Field independence: Reviewing the evidence. 
British Journal of Educational Psychology, 83(2), 210–224. https://doi.org/10.1111/bjep.12015

Foxman, D., & Ruddock, G. (1984). Assessing mathematics: 3. Concepts and skills: Line symmetry 
and angle. Mathematics in School, 13(2), 9–13.

Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in geometry among 
adolescents (Vol. 3). NCTM.

Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the 
perspective of visual perception. Educational Studies in Mathematics, 74, 163–183. https://doi.
org/10.1007/s10649- 010- 9232- y

I. Waisman et al.

https://doi.org/10.2466/pms.1975.40.1.195
https://doi.org/10.1016/0092-6566(79)90009-6
https://doi.org/10.1016/0092-6566(79)90009-6
https://doi.org/10.2466/pms.1970.31.2.411
https://doi.org/10.2466/pms.1970.31.2.411
https://doi.org/10.1111/bjep.12015
https://doi.org/10.1007/s10649-010-9232-y
https://doi.org/10.1007/s10649-010-9232-y


519

Galili, H., Babai, R., & Stavy, R. (2020). Intuitive interference in geometry: An eye-tracking study. 
Mind, Brain, and Education, 14(2), 155–166.

Geddes, D., & Fortunato, I. (1992). Geometry: Research and classroom activities. In D. T. Owens 
(Ed.), Research ideas for the classroom: Middle grades mathematics. Reston, VA.

Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H., & Klieme, E. (2014). The time on 
task effect in reading and problem solving is moderated by task difficulty and skill: Insights from 
a computer-based large-scale assessment. Journal of Educational Psychology, 106(3), 608.

Goodenough, D. R., & Witkin, H. A. (1977). Origins of the field-dependent and field- independent 
cognitive styles. ETS Research Bulletin Series, 1977(1), i-80. https://doi.org/10.1002/
j.2333- 8504.1977.tb01134.x

Hanna, G., & DeVillers, M. (2012). Proofs and proving. ICMI study-19 volume. Springer.
Hargittai, I. (Ed.). (1986). Symmetry: Unifying human understanding. Pergamon.
Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution 

of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 
49(3), 283–312.

Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is 
it that is going on for students? Cognition and Instruction, 24(1), 73–122.

Hodgson, D. (2011). The first appearance of symmetry in the human lineage: Where perception 
meets art. Symmetry, 3, 37–53.

Howe, E., & Jung, K. (1986). Immediate memory span for two-dimensional spatial arrays: Effects 
of pattern symmetry and goodness. Acta Psychologica, 61(1), 37–51.

Hsu, H.-Y. (2010). The study of Taiwanese students’ experiences with geometric calculation with 
number (GCN) and their performance on GCN and geometric proof (GP). (Doctor). University 
of Michigan.

Hu, Q., & Zhang, M. (2019). The development of symmetry concept in preschool children. 
Cognition, 189, 131–140.

Huang, Y., Xue, X., Spelke, E., Huang, L., Zheng, W., & Peng, K. (2018). The aesthetic preference 
for symmetry dissociates from early-emerging attention to symmetry. Scientific Reports, 
8(1), 1–8.

Kabanova-Meller, E. N. (1970). The role of the diagram in the application of geometric theorems. 
In J. Kilpatrick & I. Wirszup (Eds.), Soviet studies in the psychology of learning and teaching 
mathematics (Vol. 4, pp. 46–51). University of Chicago.

Kantowsk, M.  G. I. (1975). Experimental investigations of analysis as a method of searching 
for a solution-the effects of analysis in solving geometry problems: Analysis and synthesis as 
problem-solving methods (Vol. XI). University of Chicago.

Krutetskii, V.  A. (1976). The psychology of mathematical abilities in schoolchildren. The 
University of Chicago Press.

Leikin, R. (1997). Symmetry as a way of thought  – a tool for professional development pf 
mathematics teachers. Unpublished Doctoral Dissertation, Technion, Israel.

Leikin, R., Berman, A., & Zaslavsky, O. (2000). Applications of symmetry to problem solving. 
International Journal of Mathematical Education in Science and Technology, 31(6), 799–809.

Linn, M.  C., & Petersen, A.  C. (1985). Emergence and characterization of sex differences 
in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. https://doi.
org/10.2307/1130467

Livio, M. (2006). The equation that couldn’t be solved: How mathematical genius discovered the 
language of symmetry. Simon & Schuster.

Lowrey, A.  H. (1989). Mind’s eye. Computers & Mathematics with Applications, 17(4–6), 
485–503.

Mariotti, M. A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero 
(Eds.), Handbook of research on the psychology of mathematics education: Past, present and 
future (pp. 173–204). Sense.

McLeod, D. B., & Briggs, J. T. (1980). Interactions of field independence and general reasoning 
with inductive instruction in mathematics. Journal for Research in Mathematics Education, 
11(2), 94–103. https://doi.org/10.2307/748902

26 Complexity of Geometry Problems as a Function of Field-Dependency…

https://doi.org/10.1002/j.2333-8504.1977.tb01134.x
https://doi.org/10.1002/j.2333-8504.1977.tb01134.x
https://doi.org/10.2307/1130467
https://doi.org/10.2307/1130467
https://doi.org/10.2307/748902


520

Nappo, R., Romani, C., De Angelis, G., & Galati, G. (2019). Cognitive style modulates semantic 
interference effects: Evidence from field dependency. Experimental Brain Research, 237(3), 
755–768. https://doi.org/10.1007/s00221- 018- 5457- 2

National Council of Teachers of Mathematics. (1989). Principles and standards for school 
mathematics. Author.

Ng, O. L., & Sinclair, N. (2015). Young children reasoning about symmetry in a dynamic geometry 
environment. ZDM, 47(3), 421–434.

Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In 
B. H. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition 
(pp. 41–82). Erlbaum.

Palatnik, A., & Dreyfus, T. (2019). Students’ reasons for introducing auxiliary lines in proving 
situations. The Journal of Mathematical Behavior, 55, 100679.

Pashler, H. (1990). Coordinate frame for symmetry detection and object recognition. Journal of 
Experimental Psychology: Human Perception and Performance, 16(1), 150.

Polya, G. (1981). Mathematical discovery. Wiley.
Ramachandran, V. S., & Hirstein, W. (1999). The science of art: A neurological theory of aesthetic 

experience. Journal of Consciousness Studies, 6(6–7), 15–51.
Rossi-Arnaud, C., Pieroni, L., & Baddeley, A. (2006). Symmetry and binding in visuo-spatial 

working memory. Neuroscience, 139(1), 393–400.
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime reference guide. Psychology 

Software Tools.
Schoenfeld, A. H. (1985). Mathematical problem solving. Academic.
Sinclair, N., Bussi, M. G. B., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, 

K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 
48(5), 691–719.

Stavy, R., & Tirosh, D. (2000). How students (mis-)understand science and mathematics. Teachers 
College Press.

Sternberg, R. J. (1997). Thinking styles. Cambridge University Press.
Stylianou, D. A., & Grzegorczyk, I. (2005). Symmetry in mathematics and art: An exploration of 

an art venue for mathematics learning. Primus, 15(1), 30–44.
Tartre, L.  A. (1990). Spatial orientation skill and mathematics problem solving. Journal for 

Research in Mathematics Education, 21(3), 216–229.
Tinajero, C., & Páramo, M. F. (1997). Field dependence-independence and academic achievement: 

A re-examination of their relationship. British Journal of Educational Psychology, 67(2), 
199–212. https://doi.org/10.1111/j.2044- 8279.1997.tb01237.x

Vinner, S., & Kopelman, E. (1998). Is symmetry an intuitive basis for proof in Euclidean Geometry? 
Focus on Learning Problems in Mathematics, 20, 14–26.

Wagemans, J. (1997). Characteristics and models of human symmetry detection. Trends in 
Cognitive Sciences, 1(9), 346–352.

Weyl, H. (1952). Symmetry. Princeton Univ.
Wilhelm, O., & Oberauer, K. (2006). Why are reasoning ability and working memory capacity 

related to mental speed? An investigation of stimulus–response compatibility in choice reaction 
time tasks. European Journal of Cognitive Psychology, 18(1), 18–50.

Witkin, H. A. (1965). Psychological differentiation and forms of pathology. Journal of Abnormal 
Psychology, 70(5), 317–336. https://doi.org/10.1037/h0022498

Witkin, H. A., Moore, C. A., Goodenough, D., & Cox, P. W. (1977). Field-dependent and field- 
independent cognitive styles and their educational implications. Review of Educational 
Research, 47(1), 1–64. https://doi.org/10.3102/00346543047001001

Witkin, H. A., Goodenough, D. R., & Oltman, P. K. (1979). Psychological differentiation: Current 
status. Journal of Personality and Social Psychology, 37(7), 1127–1145. https://doi.org/10.103
7/0022- 3514.37.7.1127

Zhang, L.-F. (2004). Field-dependence/independence: Cognitive style or perceptual ability?––
Validating against thinking styles and academic achievement. Personality and Individual 
Differences, 37(6), 1295–1311. https://doi.org/10.1016/j.paid.2003.12.015

I. Waisman et al.

https://doi.org/10.1007/s00221-018-5457-2
https://doi.org/10.1111/j.2044-8279.1997.tb01237.x
https://doi.org/10.1037/h0022498
https://doi.org/10.3102/00346543047001001
https://doi.org/10.1037/0022-3514.37.7.1127
https://doi.org/10.1037/0022-3514.37.7.1127
https://doi.org/10.1016/j.paid.2003.12.015


521

Chapter 27
Structuring Complexity of Mathematical 
Problems: Drawing Connections Between 
Stepped Tasks and Problem Posing 
Through Investigations

Roza Leikin and Haim Elgrably

27.1  Introduction

We consider the ability to engage with open questions and a deep understanding of 
mathematical structure to be two core elements of mathematical activity at an 
advanced level (Pehkonen, 1995; Silver, 1995). Openness and structuring of math-
ematical tasks are two sides of one coin in the construction of mathematical knowl-
edge and skills: open tasks are associated with creative mathematical processing, 
and structuring, with the advancement of strategic mathematical reasoning (Leikin, 
2019). We discuss engagement with open tasks using the example of a Problem 
Posing through Investigation (PPI) Task, and engagement with mathematical struc-
turing using examples of Stepped Tasks designed based on the outcomes of 
PPI Tasks.

Before you continue reading the paper, we suggest solving Task 1 presented in 
Fig. 27.1.

27.2  Problem Posing Through Investigations

27.2.1  Characterization of PPI

Mathematical investigations and proofs are central to the work of professional 
mathematicians whose activity is devoted to mathematical discovery (Usiskin, 
2000; Leikin, 2015), searching for questions that remain open and proving as yet 
unproved mathematical facts. Based on Usiskin’s (2000) taxonomy of mathematical 
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Task 1: Pose problems through investigations

Given: Segments  and  are tangent to the circle with diam-
eter  and center 

Pose as many problems as possible related to the given figure based
on investigation in DGE.  

* The Task was also used in Leikin & Elgrably (2015) and Leikin (2019).
C

D

B

O

A

E

Fig. 27.1 Task 1

giftedness, Sriraman (2005) analyzed distinctions between the levels from the point 
of view of mathematical creativity and argued that creativity implies mathematical 
talent. Mathematical investigations are open since they are aimed at discovering 
what is yet unknown, and once the discovery ensues, proving comes in turn. The 
search (investigation) for mathematical discovery, and proving it, is based on natu-
ral curiosity, courage and enjoyment in one’s accomplishments (Goldin, 2009).

We believe that feelings associated with mathematical investigations and 
discoveries in research mathematicians should become familiar to teachers and 
students and that creativity should be developed along with the advancement of 
mathematical knowledge and skills. Thus, mathematical investigations must become 
a common instructional practice directed at the development of mathematical 
knowledge, skills and creativity in both mathematics students and teachers (Da 
Ponte, 2007; Da Ponte & Henriques, 2013; Leikin, 2015).

This chapter is one in a series of papers that characterize Problem Posing through 
Investigation (PPI) as a research and didactical tool (Leikin, 2015; Leikin & 
Elgrably, 2015, 2020, 2022). As we previously demonstrated, PPI is a fundamen-
tally challenging creative activity that requires participants to pose geometry prob-
lems through the investigation of a given geometric figure in a Dynamic Geometry 
Environment (DGE) (Leikin, 2015). Solving (proving) the posed problems is an 
integral requirement for PPI. PPI Task 1 (Fig. 27.1) helps us to exemplify the main 
ideas presented in this chapter. In terms of openness of mathematical problems: PPI 
tasks are open-start problems, since solvers are required to perform investigations 
in multiple directions, and open-end problems since participants are asked to pose 
several new mathematical problems, which are the products of investigation in DGE 
(Chap. 6  in this book, Leikin & Elgrably, 2022). If a PPI is performed successfully, 
the participant poses two new problems and performs at least two proofs. This 
determines both the complexity and the power of PPIs in terms of the development 
of mathematical expertise associated with proving skills as well as of creativ-
ity skills.

The level of mathematical challenge embedded in a PPI task is associated with 
multiple mathematical actions that participants are encouraged to perform, includ-
ing auxiliary constructions related to the given figure, search for new properties that 
are immune to dragging through observing, and measuring. These properties serve 
as a basis for the discovered problems, which (as required by the task) have to be 
new for the participants. This means that PPI tasks require solvers to avoid 
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discovering already learned properties and formulating theorems that solvers are 
required to know. For example, students in high school or preservice teachers are 
expected not to report discovering the Pythagorean Theorem or the ratio (1:2) of 
segments determined by the point of intersection of the medians in a triangle. For 
example, the discovery ∡AEB = 90° in Task 1 is trivial.

In previous publications, we demonstrated that PPI is an effective didactical and 
professional development tool. In Leikin and Elgrably (2020) we demonstrated that 
integrating PPI activities in courses for prospective high school mathematics teach-
ers significantly improves their problem-solving proficiency and creativity. Elgrably 
and Leikin (2021) found that different types of problem-solving expertise (prepara-
tion for or participation in IMO or excellence in university mathematics courses) 
lead to different levels of creativity as well as to different levels of complexity of the 
posed problems. Furthermore, focusing on IMO problem-solving experts, we dem-
onstrated differences between product (outcome) – related creativity and process 
(strategy) – related creativity (Leikin & Elgrably, 2022). For the purpose of these 
investigations, we developed a model for the evaluation of proof-related skills and 
creativity components associated with PPI. Here we describe characteristics related 
to the complexity of the posed problems.

27.2.2  Example of the Space of Posed Problems

Task 1 was presented to a group of prospective mathematics teachers and was also 
investigated using thought experiment methodology by the second author of this 
paper, who is an expert in mathematical problem-solving. In Leikin and Elgrably 
(2015) we compared problems posed by prospective mathematics teachers with 
problems posed by an expert. In this chapter, we analyze the collective space of the 
29 posed problems. The criteria for evaluation of the complexity of the posed prob-
lems and PPI strategies suggested in Leikin and Elgrably (2015) were further devel-
oped and validated. Here we present simplified criteria for the evaluation of these 
components of PPI process and product.

In the context of this study, the suggested construct of spaces of discovered 
properties is equivalent to spaces of newly posed problems and is analogous to the 
notions of example spaces (Watson & Mason, 2006) and solution spaces (Leikin, 
2007). As per this analogy, we suggest distinguishing between individual spaces of 
discovered properties, which are collections of properties discovered by an indi-
vidual based on a particular problem, and collective spaces of discovered properties, 
which are a combination of the properties discovered by a group of individuals.

Figure 27.2, below, presents the collective space of the posed problems. The 
problems are presented in the order in which they were posed by the expert. For 
each posed problem we depict a figure that includes auxiliary constructions, proof 
outline and the discovery strategy, corresponding use of DGE and the evaluation of 
the complexity of the PPI processes and products. The processes are characterized 
by the PPI strategies used by the participants and the complexity of auxiliary 
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Fig. 27.2 The set of the posed problems for Task 1
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constrictions performed. The complexity of the PPI outcomes is evaluated based on 
the complexity of the proofs of the posed problems. The figure is followed by a 
detailed analysis of the complexity of the PPI process and products and of the con-
nections between PPI strategies, the use of DGE and PPI complexity.

27.2.3  Complexity of PPI Processes and Outcomes

The complexity of the PPI processes and outcomes differ meaningfully depending 
on the problem-solving expertise of the participants (Elgrably & Leikin, 2021; 
Leikin & Elgrably, 2015) and within groups of participants with a similar level of 
expertise (Leikin & Elgrably, 2020). We evaluate the complexity of the posed prob-
lems with respect to (a) auxiliary constructions preceding the discovery and (b) the 
complexity of the proof required for the discovered property. Additionally, we ana-
lyze PPI strategies and the ways dynamic geometry is used in order to discover 
properties. We illustrate the analysis of complexity using a collection of properties 
discovered for Task 1 (Fig. 27.2).

The complexity of the auxiliary constructions performed in the course of the 
investigation preceding the discovery of the property was determined by the number 

Fig. 27.2 (continued)
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Fig. 27.3 Frequencies of the levels of complexity of the auxiliary constructions and of the posed 
problems

Table 27.1 Criteria for the evaluation of complexity of PPI

Complexity High Medium Low

Complexity of auxiliary constructions Nci ≥ 3 or
Nco ≥ 2

Nci = 2  or
Nco = 1

Nci ≤ 1

CAC 3 2 1
Complexity of a posed problem Nps ≥ 7 and

Ntc ≥ 5
4 ≤ Nps ≤ 6 and
Ntc = 3 or 4

Nps = 1 or 2 or 3 and
Ntc = 1 or 2

CPP 3 2 1

Nci no of constructions within the shape, Nco of constructions outside the shape, Nps no of proof 
stages, Ntc no of required theorems and/or concepts

and the location of the auxiliary constructions. A property can be discovered with-
out any auxiliary construction or using different numbers of constructions. The 
number of auxiliary constructions preceding the formulation of a posed problem 
determines the level of complexity of the auxiliary construction for the problem. 
Additionally, we distinguish between auxiliary construction “within the given fig-
ure” and auxiliary construction “outside the given figure”, with constructions “out-
side” the figure considered more complex than those “within” the figure. 
Constructions “within/in the given figure” include (but are not restricted to): mark-
ing points on the border or in the interior part of the figure, construction of segments 
within the figure by connecting existing points or new points that belong to the fig-
ure, construction of special lines (medians, bisectors, altitudes, inscribed circles). 
The complexity of the posed problem was determined by its conceptual density, 
which comprises the number of concepts and properties essential for solving the 
problem (Silver & Zawodjewsky, 1997) combined with the length of the required 
proof. Table 27.1 depicts the levels of complexity of the auxiliary construction and 
the level of complexity of the posed problems.

Figure 27.3 summarizes the frequencies of the levels of complexity of the 
auxiliary constructions and of the posed problems for the 29 problems in the PPI 
space (Fig. 27.2). Interestingly, for 21 of 29 (72%) PPs the level of complexity of 
the posed problems equals the level of complexity of the auxiliary constructions. 
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For the other 8 PPs, auxiliary constructions at a high level led to low (in 2 PPs) and 
medium (6 PPs) levels of PP complexity. All 15 PPs of a high level of complexity 
involved auxiliary constructions at a high level.

27.2.4  Investigation Strategies

The experts discover properties using discovery strategies. A previous study (Leikin 
& Elgrably, 2015; Leikin & Elgrably, 2022) identified eight different types of such 
strategies. This study adds one additional strategy, which was created by motivating 
the participant to find an investigation task for his fellow students. We identified the 
following 8 types of investigation strategies.

Trial and Error strategy includes discovering a property that results from auxiliary 
constructions (if performed), checking values and ratios or identification of a 
special geometric figure by observation and measurement. In most of these cases 
dragging was used to verify the measurement. Seven posed problems (PPs) [1.3, 
1.6, 1.7, 1.9, 1.14, 1.17 and 1.27 – Fig. 27.2] were discovered using the trial and 
error strategy.

Using a Theorem strategy involves discovering a property that can be inferred 
directly from a theorem or using construction to fit the theorem. The theorems 
could be curricula-based (ex. Ratio of segments based on the theorem about the 
intersection of median lines in a triangle) or be extracurricular (e.g. Ceva’s 
Theorem). Six PPs [1.1, 1.2, 1.11, 1.18, 1.19, 1.25] were formulated all based on 
curricular theorems.

Building Logical Inference strategy refers to discovering a property through 
inference from a previous discovered property(s) or by applying several geometry 
theorems. In this study, 6 PPs [1.5, 1.8, 1.10, 1.13, 1.24, 1.26] were inferred from 
previously discovered properties.

Searching for a proof strategy includes discovering a property while searching for a 
proof for a different discovery, or during one of the stages of proving a different 
discovery. In this research, PP14 was difficult to prove and 4 PPs – 1.15, 1.16, 
1.20 and 1.21 – were found in the attempt to prove PP14 using DGE.

Making an association to a theorem or a familiar problem involves discovering a 
property through analogy to a previously solved problem, or through association 
with a theorem proof. 3 PPs-1.4, 1.12, 1.23- were formulated in this way.

Using Symmetry Considerations refers to discovering a property based on symmetry 
of the image, or a symmetric auxiliary construction. PPs 1.22, 1.28 include 
properties discovered using symmetrical considerations.

Searching for a hard problem refers to discovering a property while aiming to 
formulate a challenging problem (for example for fellow math experts). Leikin 
and Elgrably (2022).
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Fig. 27.4 Complexity of auxiliary constrictions (CAC) and the complexity of the posed problems 
(CPP) using different PPI strategies

Intuitive conjecturing is associated with conjecturing intuitively about a property 
and then tested using measurement and dragging. Only PP 1.29 was posed 
intuitively.

Different PPI strategies were associated with different levels of auxiliary 
constructions and led to PP of different levels of complexity. As depicted in 
Fig. 27.4, searching for proof, symmetrical considerations, and intuitive conclusions 
involve a high level of complexity of both the constructions and the problems. The 
other strategies lead to varying levels of complexity of auxiliary constructions and 
different numbers of posed problems.

27.2.5  Using DGE for Investigation and Discovery

When performing PPI tasks in DGE the participants, as usual, perform auxiliary 
constructions. The process of searching for a new property could be performed with 
or without the use of DGE. We identified 3 main ways of using the DGE in the 
investigation process: observing, verifying with dragging, and measuring. Thirteen 
of 29 PPs were formulated without using the DGE to discover the property. This 
was mainly when the new property was described using a theorem or through logi-
cal inference from one of the previous discoveries. These strategies are similar to 
‘proving as a source for discovery’ while “a deductive argument can provide addi-
tional insight, and some form of novel discovery” (De Villiers, 2012, p. 1133).
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Dragging is a critical feature of DGEs which makes investigation possible. The 
two main functions of dragging are testing and searching (Hölzl, 2001). Problem 
posing through investigation is usually associated with dragging and construction in 
a DGE. In line with Hölzl (1996, 2001), we identified 3 main ways of using DGE in 
the investigation process: observing, verifying with dragging, and measuring. By 
observing a figure after performing auxiliary construction a participant could 
hypothesize that a particular figure is of a specific type (e.g. PPs 1.8, 1.11), or draw 
a conclusion regarding mutual relations between elements of the figure (e.g.. the 
lines are parallel (PP 1.22) or the three points are on one line (PP 1.14)). Verifying 
with dragging followed intuitive discoveries (PP #29), discoveries based on sym-
metrical considerations (PP #28) or discoveries made while searching for a proof. 
Measuring was used mainly when using the trial and error strategy; this included 
construction and measuring the lengths of newly created segments.

Figure 27.5 depicts the distribution of different methods of DGE use among 
different PPI strategies and the frequencies of the PPI strategies. It clearly shows 
that logically developed PPs formulated using logical inference or using a theorem 
were based on auxiliary constructions without additional use of DGE.  Trial and 
error included mainly measuring and verifying with dragging, and searching for 
proof included observing and verifying with dragging.

27.2.6  On the Structure of the Set of Posed Problems

As mentioned above, the complexity of a posed problem was determined by its 
conceptual density, which comprises the number of concepts and properties essen-
tial for solving the problem (Silver & Zawodjewsky, 1997) combined with the 
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Fig. 27.6 Logical sequences of the posed problems

length of the required proof. According to this definition, since proof of PP1.24 
(Fig.  27.6) can be performed using properties in problems PP1.16, and PP1.25, 
PP1.24 is more complex than PP1.16 and PP1.25. Similarly, PP1.21 follows from 
PP1.24 and thus PP1.21 is more complex than P1.24. The logical relationships in 
the set of the posed problems and the hierarchy of the conceptual density of the 
tasks do not correspond to the order in which the problems were posed. Thus we 
argue that the set of the posed problems is semi-structured. This structure creates an 
opportunity for the activity of structuring the set of tasks with the participants in the 
PPI activity. We consider sets of PPs to be a powerful source for constructing 
Stepped Tasks, which are described in the next section of this chapter.

27.3  Stepped Tasks

We suggest that readers solve the two following problems, Problems 1 and 2, which 
are used later in this chapter to illustrate Stepped Tasks (Fig. 27.7).

Leron (1983) contrasted between the linear (bottom-up) method of proving and 
the structural method of proving. The structural method of proving is based on 
“arranging the proof in levels, processing from the top down while the levels them-
selves consist of short autonomous “modules”, each embodying one major idea of 
the proof” (p. 174). In this sense, in the problem chain in Fig. 27.6, problems 1.16 
and 1.25 are modules in the proof of problem 1.24. Such structuring can be per-
formed either in a bottom- up or top-down manner. We go one step further when 
structuring complex problem- solving using Stepped Tasks. We demonstrate that 
sets of problems created using PPI activity can be used in designing Stepped Tasks. 
In what follows, Stepped Tasks 1 and 2 illustrate Stepped Tasks constructed using 
the set of posed problems presented in Fig. 27.2.
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Problem 1 (PP 1.26 in Figure 2)
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Problem 2 (based on PP1.13 in Figure 2)

Given   (I) see in Problem 1
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Fig. 27.7 Problems 1 and 2

27.3.1  Characterization of Stepped Tasks

A Stepped Task first asks students to solve a complex mathematical problem called 
a “target problem”. The target problem is followed by a top-down structured set of 
problems organized in steps of decreasing levels of complexity. (Leikin, 2019; 
Leikin & Ovodenko, 2021). The variations in the problem’s complexity are based 
on (a) the conceptual density of the problem, as determined by the number of con-
cepts and theorems required for solving, (2) the length of the solution/proof chain 
and (c) the level of advanced mathematical knowledge required to solve the problem.

Stepped Tasks are intended to advance students’ conceptual understanding, 
conceptual connections, strategical reasoning and self-regulated learning. Stepped 
Tasks provide multiple opportunities to match the challenge embedded in a task to 
students’ mathematical knowledge and skills. Students are allowed to solve this 
target problem with or without using a number of steps that include other – less 
challenging  – problems, the solutions to which can lead to solving the target 
problem.

Stepped Task 1
Construction of Stepped Tasks is not simple. In Leikin and Ovodenko (2021) we 

demonstrate the construction of Stepped Tasks through variation of the level of 
mathematical challenge by decreasing the level of conceptual density of the target 
problem. In this chapter we describe how a collection of posed problems can be 
used to construct Stepped Tasks by developing logical chains of Posed Problems. A 
teacher can lead the construction of Stepped Tasks with students following PPI 
activity.
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Stepped Task 2
A Stepped Task starts with a target problem P. If P is too difficult for the students, 

they are provided with an opportunity to solve problems at Step-1, each of which is 
less complex than P. The problems at Step-1 are not necessarily sub-problems of 
P. However, solving problems at Step-1 evokes the use of concepts and tools rele-
vant to P. After solving problems at Step-1, students are presumed to be able to 
solve the target problem. If the problems at Step-1are still too difficult, students can 
solve problems at Step-2 and then solve either the target problem or Step-1 problems.

Figures 27.8 and 27.10 depict Stepped Tasks designed for Problems 1 and 2 
using the collection of posed problems depicted in Fig. 27.2. Figures 27.9 and 27.11 

Solve  target problem  P1  

P1 (PP-1.26)
Given  (I) Segments , and are tangent to the circle with 

diameter and center .
is the tangent point of with the circle .
=

(II)     and    

(III) =  , ||

= , =

Prove:( ) = , ( ) =

If proof is completed, find an additional proof
or  If needed go to Step 1

Step 1 – Solve problem P1-1.1 and P1-1.2 and then P1

 

P1-1.1 (PP-1.14)
Given:  see givens (I and II) in P1

(III) = , =

Prove:  

P1-1.2 (PP-1.24)
 Given: see givens (I and II) in P1

Prove:  and  are parallelograms

When proof is completed return to target problem P1 
or  If needed go to Step 2

Step 2 - Solve problems P1-2 and then P1 or go to Step 1

P1-2 (PP-1.25)
Given: see givens I and II in P1

 =   

  ,   
  , || , 

Prove:  ( ) || , ( ) =   

When proof is completed return to problem P1  
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Fig. 27.8 Stepped Task 1
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PP1.16 & PP1.25  PP1.24         PP1.16 & PP1.24  PP1.26 

Fig. 27.9 Logical chain of the posed problems constituting the basis of Stepped Task 1

Target problem: Solve P2

P2 
Given (I) Segments , and are tangent to the cir-

cle with diameter and center .
is the tangent point of with the circle .

Circle with diameter ,

Circle with diameter ,
(II) is tangent to cicles ,

Prove: (a)  parallel to

(b)  ( ) = 4 ∙ ( )

If proof is completed, find an additional proof
or If needed go to Step 1

fig X.a

Step 1 – Solve problem P2-1 and then P2

P2-1: 
Given: see givens I in P2

(II) = , =

Prove: is tangent to circles and 

Return to target problem P1
or If needed go to Step 2

Step 2 - Solve problems P2-2.1, P2-2. 2 and then P2

P2-2:
Given: P2-1

Prove: (a) is on the Circle , is on the Circle 
(b) || ||

Return to the target problem P2
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Fig. 27.10 Stepped Task 2

PP1.10 & PP1.12  PP1.13         PP1.13 & PP1.10  PP1.20 

Fig. 27.11 Logical chain of the posed problems constituting the basis of Stepped Task 2
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demonstrate logical changes to the posed problems which are at the base of the 
Stepped Tasks.

27.4  Concluding Notes

Stepped Tasks are connected to Schwarz and Skurnik’s (2003) argument that 
“people are more likely to rely on their preexisting knowledge structures and 
routines, which have served them well in the past when things go smoothly and they 
do not face any hurdles ” (p. 264). Successful (positive) problem solving is linked 
to top- down processing, whereas when experiencing difficulty, bottom-up 
processing is used, by paying increased attention to the problems (Schwarz & 
Skurnik, 2003; Wegner & Vallacher, 1986). The major difference between bottom-up 
and top-down strategies is that top-down processing is linked to use of knowledge-
driven strategies while bottom-up processing is associated with data-driven 
strategies of information processing (e.g., Bless & Schwarz, 1999). Leron (1983) 
argued that a structured approach to proof and proving can be more effective than a 
linear - bottom- up - approach, which is used more often. The steps in Stepped Tasks 
are aimed at the development of learners’ feeling of mathematical structure, in order 
to develop the skills needed for structured proving.

From a didactical point of view, Stepped Tasks are directed at the promotion of 
self-regulated learning and evaluation as well as the advancement of strategical rea-
soning. We describe how spaces of problems posed through PPI activity can serve 
as a basis for designing Stepped Tasks (see the next section of this chapter). The 
top-down approach to problem-solving implemented in Stepped Tasks is considered 
a goal-oriented one since the goal of the problem-solving process is explicitly pre-
sented to the participants at the beginning. Students can be engaged with the Stepped 
Tasks individually and decide on the problem-solving path appropriate to them. 
Alternatively, students can work with Stepped Tasks in a collaborative learning set-
ting in which a group of students makes a joint decision about moving among the 
steps. In collaborative learning settings, the Stepped Task can be used by more 
knowledgeable students who can provide their own scaffolding for students who are 
struggling. Additionally, Stepped Tasks allow bottom-up implementation if teachers 
prefer to use this mode of implementation.

Top-down and bottom-up approaches are directed at similar goals but are 
different in terms of the ways in which they achieve them. Top-down teaching starts 
with the target task, which is the main goal of the mathematical activity. The solver 
has to uncover the necessary problem-solving strategies and mathematical concepts, 
which are not presented explicitly, and find the meaning of the problem by applying 
his/her own knowledge and skills. That is why the top-down approach is mostly 
student-regulated. Bottom-up teaching is more teacher-directed and focuses on 
ways of decoding and simplifying each component of a problem. The bottom-up 
teaching approach lacks an emphasis on learning the complete picture. An analogy 
can be made to a situation in which a person putting together a puzzle has to 
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complete a picture that is known to him by searching independently for pieces of the 
picture. This is in contrast to completing a puzzle with guidance from a parent or a 
friend who knows the picture, with the picture appearing as if by magic at the hand 
of a more experienced individual.
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Chapter 28
Flow and Variation Theory: Powerful 
Allies in Creating and Maintaining 
Thinking in the Classroom

Peter Liljedahl

28.1  Introduction

I think that we can all agree that engagement is important to the process of learning 
mathematics. Likewise, I think we can all agree that thinking is also important to the 
process of learning mathematics. But what, exactly, is it that we mean when say that 
we want our students to be engaged and that we want our students to be thinking and 
what role do they play in the teaching and learning of mathematics? In this chapter, 
I take a closer look at both of these constructs and explore what happens when stu-
dents encounter mathematics curriculum in classrooms specifically designed to fos-
ter and sustain engagement and thinking. Given the focus of the book, I begin by 
offering the reader two tasks to try to solve.

28.1.1  Diamonds

Take a deck of cards and pull out all the diamonds. Now, arrange the first four cards 
of this suit as in Fig. 28.1 and hold them in your hand.

Now take the top card—ace of diamonds—and place it face up on a table. Take 
the next card—three of diamonds—and move it to the back of the stack of cards in 
your hand. Take the top card—which is now the two of diamonds—and place it face 
up on the table on top of the ace of diamonds. Place the next card at the back of the 
cards in your hand. Continue this process of alternating between placing a card on 
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Fig. 28.1 Starting configuration of cards

Fig. 28.2 Finished configuration of cards

the table and placing a card at the back of the cards in your hand until all the cards 
are on the table. When you are done you will have the cards arranged in rank order 
from ace to four (see Fig. 28.2).

This alternating process of placing a card on the table and placing a card at the 
back of the cards in your hand has transformed the seemingly random arrangement 
of cards in Figure 28.1 into the orderly sequence in Figure 28.2. Now try it with five 
cards. What does the order of the cards need to be to begin with such that after you 
have completed the aforementioned alternating process the cards on the table will 
be ordered ace through five? Take a moment and see if you can do it. When you can 
do five cards, try six, then seven, and so on until you can do all 13 cards. What did 
you notice about your experience as you worked on this task?

28.1.2  Answers

Now let’s try a different task. Below is a list of five answers (see Fig. 28.3). These 
are the answers to five arithmetic expressions each consisting of two numbers and 
an operation (Fig. 28.3).
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Fig. 28.3 Five answers

Using each of the numbers from 1 to 10 exactly once, and each of the operations 
(+ −  × ÷) at least once take a moment to find what the five expressions are such that 
the answers are 17, 2, 21, 3, 2.

When you have found these expressions, try it for the five answers 10, 14, 1, 20, 
16. When you have solved that one, try it for the following sequences of answers:

3, 3, 3, 3, 24
2, 2, 2, 2, 9
2, 3, 7, 7, 7
1, 2, 3, 4, 5

What did you notice about your experience as you worked on this task?

28.2  Engagement and the Optimal Experience

In the 1970’s Mihály Csíkszentmihályi, a Hungarian born psychologist working at 
the University of Chicago became very interested in trying to understand a specific 
form of engagement that he referred to as the optimal experience (Csíkszentmihályi, 
1990, 1996, 1998).

a state in which people are so involved in an activity that nothing else seems to matter; the 
experience is so enjoyable that people will continue to do it even at great cost, for the sheer 
sake of doing it. (Csíkszentmihályi, 1990, p.4)

If you worked to solve either, or both, of the aforementioned sequences of tasks 
it is likely that you just had an optimal experience. Wanting to better understand 
this rare and powerful phenomenon, Csíkszentmihályi gathered cases from people 
he thought were most likely to have optimal experiences—musicians, artists, ath-
letes, scientists, and mathematicians. Over time he gathered enough cases that he 
could begin to analyze them (Csíkszentmihályi, 1990). What emerged was a set of 
nine characteristics that accompanied the optimal experience, the first six of 
which were:
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 1. Action and awareness are merged
 2. Distractions are excluded from consciousness
 3. There is no worry of failure
 4. Self-consciousness disappears
 5. The sense of time becomes distorted
 6. The activity was autotelic – a reward unto itself

That is, he noticed that whenever someone had an optimal experience, they lost 
track of time and much more time passed than the person realized (5). He noticed 
that when someone was having an optimal experience, they were un-distractible and 
unaware of things in their environment that would otherwise interfere with their 
focus (2). He noticed that their actions became a seamless and efficient extension of 
their will (1). And he noticed that they became less self-conscious (4), stopped wor-
rying about failure (3), and that they were doing the activity for the sake of doing it 
and not for the sake of getting it done (6).

These six characteristics are all internal to the doer—they are how someone 
experienced the phenomenon of an optimal experience. If you engaged in the two 
tasks above you may have experienced some or all of these characteristics. If you 
did not yet try the tasks, I suggest you go back and do them now and make note of 
your experience vis-à-vis Csíkszentmihályi’s six internal characteristics.

Csíkszentmihályi also noticed that whenever there was an optimal experience 
there were three additional characteristics that were external to the doer and present 
in the environment in which the optimal experience was taking place.

 7. Clear goals every step of the way
 8. Immediate feedback on one’s actions
 9. A balance between the ability of the doer and the challenge of the task

The two aforementioned tasks were designed specifically to have these three 
characteristics. They each have a clear goal. For the card task, the goal is to find the 
initial starting sequence for N cards such that when you follow the alternating pro-
cedure described above the cards will end in rank order from ace to N. For the 
answers task, the goal is to figure out how to organize the ten numbers (1–10) and 
the four operations (+ −  × ÷) into five expressions such that they produce the five 
intended answers.

These two tasks also provide immediate feedback on your actions. You will 
notice that I did not provide any solutions for these tasks—the solutions are unnec-
essary. You will know immediately if you have solved the task correctly or not. In 
the case of the cards, you can run the process and see if it results in a rank order. For 
the answers, you can perform the arithmetic and see if you arrive at the five intended 
answers and you can count to see that each number (1–10) is used exactly once and 
each operation (+ −  × ÷) is used at least once. The tasks, themselves, tell you if you 
are right or wrong—the tasks provide immediate feedback.

And both of the tasks maintained a perfect balance between your ability, as the 
doer, and the challenge of the task—something that comes into sharper focus when 
we consider the states that, I am guessing, you were not in when solving the two 
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Fig. 28.4 Balance and imbalance between ability and challenge

tasks at the beginning of the chapter. For example, had the challenge of the activity 
far exceeded your ability, then you would have experienced a feeling of frustration 
(see Fig. 28.4). Conversely, if your ability far exceeds the challenge of the task, then 
you would have experienced boredom (see Fig. 28.4). If you were neither frustrated 
nor bored then it means that there existed a balance between your ability and the 
challenge of the task and you would have been in a state of, what Csíkszentmihályi 
refers to as flow (see Fig. 28.4). Flow is where the deep engagement of the optimal 
experience occurs.

28.3  Maintaining Flow

But flow is not just a collection of static ordered pairs within a well-defined region 
on the ability-challenge graph. Flow is a dynamic space wherein the balance 
between ability and challenge is not only created but also maintained. That is, as a 
person’s ability increases, so too must the challenge of the task (Liljedahl, 2018, 
2020). For example, solving the card task for five cards is not that challenging. But 
in doing so you learn something that is necessary, but not sufficient, to solve the task 
for six cards. Hence, six cards are more challenging than five cards. And seven cards 
are more challenging than six. And so on. As your ability increases with each stage 
of the task, the challenge of the task evolves to maintain the state of flow (see 
Fig. 28.5).

The same is true for the answers task. The first set of answers (17, 2, 21, 3, 2) has 
some obvious arithmetic expressions associated with them. For example, 17 must 
be added (8 + 9 or 7 + 10) and 21 must be multiplied (3 × 7). Given that you can 
only use each number once, this then means that 17 must be 8 + 9. You have learned 
something about how to reason your way through these tasks. And what you have 
learned will be necessary, but not sufficient, for the next set of five answers—as 
your ability increases the challenge of the task, likewise, increases (see Fig. 28.5).
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Fig. 28.5 Increases in challenge as ability increases

Fig. 28.6 Too big an increase in challenge

The consequences of not maintaining this balance are that the doer could be 
pushed into a state of frustration (see Fig. 28.6). For example, if you solved the card 
problem for five cards and six cards and thought that you were now ready to jump 
to 13 cards, this increase in the challenge would likely have been too great for the 
abilities you would have developed thus far. An imbalance would have been created 
that could put you into a state of frustration.

Should this occur, the relationship between ability and challenge can be re- 
balanced, and the state of frustration can be mitigated, if the doer were to receive a 
hint (Liljedahl, 2018, 2020). However, there are two types of hints (see Fig. 28.7)—
hints that decrease challenge and hints that increase ability (Liljedahl, 2018, 2020). 
The first of these is quicker to give and can be achieved by shifting the doer to a 
simpler task or providing a partial answer. So, for example, if you were frustrated that 
you could not solve the card task for 13 cards may tell you that the eight, nine, and 
ten of diamonds will need to be in the fourth, eighth, and twelfth positions, respectively.

The second type of hint—increase ability—takes longer to give and requires the 
doer to either be reminded of a strategy or to receive a strategy. So, for example, I 
may remind you that placing the first seven cards into every second position to begin 
with—which I am sure you have already figured out—is actually a strategy of 
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Fig. 28.7 Giving a hint to mitigate frustration

Fig. 28.8 Too big an increase in ability

placing approximately half of the cards you have yet to place into every second of 
the available positions. Other than how long it takes to give these hints, the main 
difference is that hints that decrease challenge are only useful in that moment 
whereas a hint that increases ability continues to be useful even as they move on to 
the next task in the sequence.

A state of imbalance between the doer’s ability and the challenge of the task could 
also result in the doer being pushed into a state of boredom (see Fig. 28.8). For exam-
ple, if for the answers task I had provided you with a different progression of answers 
wherein after you had solved the first set (17, 2, 21, 3, 2), I asked you to solve (56, 17, 
7, 3, 4) and (90, 15, 30, 2, 2)—both of which are built on the exact same principles as 
the first set of answers—you would likely have become bored. Your ability would 
have increased without a commensurate increase in challenge (Fig. 28.8).

This too can be mitigated through two different strategies—increasing the challenge 
of the task (Fig. 28.9) and shifting the mode of engagement of the task (Fig. 28.10). 
Increasing the challenge is a simple matter of giving a more difficult task to solve. 
However, depending on how bored the doer is, or for how long they have been bored, 
giving the next task in the sequence may not increase the challenge enough (Fig. 28.9). 
For example, if after having solved the sequence up to (10, 14, 1, 20, 16), I sensed that 
you were getting bored, I may jump you up to the task (2, 3, 7, 7, 7) to reengage you.
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Fig. 28.9 Increasing the challenge to mitigate boredom

Fig. 28.10 Shifts in mode of engagement

Alternatively, I may increase the challenge by shifting your mode of engagement 
with the task (Liljedahl, 2020) (see Fig. 28.10). For example, when you are solving 
a task, your mode of engagement is doing—you are doing the task. This is the least 
challenging way to engage with a task. If I ask you if you think the solution you 
have found for (10, 14, 1, 20, 16) is unique, I just shifted your mode of engagement 
from doing to justifying. Justifying is more challenging and involves you trying to 
convince yourself that you are correct. When you are convinced that the solution is 
unique, I may ask you to explain to me how you know that the solution is unique. 
Explaining is more challenging than justifying as it requires the articulation of 
thought for an audience outside of yourself. When you are done explaining to me 
how you know that (10, 14, 1, 20, 16) is unique, I may direct you to someone who 
is struggling with knowing if their solution is unique or not and ask you to teach 
them something that could help. If we subscribe to the notion that teaching is differ-
ent from telling or explaining, then this is another increase in challenge. Once you 
have finished teaching this person, I may finally ask you to create the next set of 
answers for that person to engage in—a set of answers that is more challenging than 
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the one they have just finished. Creating is the most challenging mode of engage-
ment as it requires you to not only see the didactics of the situation, but also the 
pedagogical needs and affordances of the next task in the sequence.

Taken together, maintaining flow, then, becomes a series of actions in and around 
how we manage hints and extensions to increase or decrease challenge and increase 
ability (see Figs. 28.7 and 28.9).

Flow is where the optimal experience happens and, as such, flow is where deep 
engagement happens. More than this, however, flow is where thinking happens. 
This is not to say that this is the only place that thinking happens, but it is a state in 
which we know thinking takes place—and, as such, flow is a central part of the 
Building Thinking Classroom framework (Liljedahl, 2018, 2020).

28.4  Building Thinking Classrooms

Building Thinking Classrooms (Liljedahl, 2020) is a teaching framework that was 
developed in response to the realization that much of what happens during a math-
ematics lesson is not thinking. In fact, the baseline data showed that in a typical 
lesson about 20% of students spend approximately 20% of the time thinking—8–12 
minutes per hour—while the other 80% of students spend no time thinking 
(Liljedahl, 2020). This is a problem. If studetns are not thinking, they are not learn-
ing (Lucariello et al., 2017; Seel, 2012).

Research has shown that the normative practices present in many classrooms are 
promoting, in both explicit and implicit ways, non-thinking behaviors such as mim-
icking among students (Liljedahl & Allan, 2013a, b). These normative structures 
permeate classrooms around the world and are so entrenched that they transcend the 
idea of classroom norms (Cobb et al., 1991; Yackel & Cobb, 1996) and can only be 
described as institutional norms (Liu & Liljedahl, 2012)—norms that have extended 
beyond the classroom, even the school building, and have become ensconced in the 
very institution of school and fabric of what it means to teach

Much of how classrooms look and much of what happens in them today is guided 
by these institutional norms—norms which have not changed since the inception of 
an industrial-age model of public education. Yes, desks look different now, and we 
have gone from blackboards to greenboards to whiteboards to smartboards, but stu-
dents are still sitting, and teachers are still standing. Although there have been many 
innovations in assessment, technology, and pedagogy, much of the foundational 
structure of school remains the same. If we want to promote and sustain thinking in 
the classroom, these norms are going to have to change (Liljedahl, 2020).

Over the course of 15 years, and through the conducting of thousands of micro- 
experiments with over 400 practicing teachers, a series of 14 practices emerged that 
break away from the aforementioned institutional normative ways of teaching and 
have been proven to get more students thinking and thinking for longer (Liljedahl, 
2020). Each of these 14 practices is a response to one of the following 14 questions:
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 1. What are the types of tasks used?
 2. How are collaborative groups formed?
 3. Where do students work?
 4. How is the furniture arranged?
 5. How are questions answered?
 6. When, where, and how are tasks given?
 7. What does homework look like?
 8. How is student autonomy fostered?
 9. How are hints and extensions used?
 10. How is a lesson consolidated?
 11. How do students take notes?
 12. What is chosen to evaluate?
 13. How is formative assessment used?
 14. How is grading done?

Although each of these 14 practices, on their own and in concert, have been 
empirically shown to increase student thinking in the classroom (Liljedahl, 2020) 
the visually defining qualities of a thinking classroom is that (1) students solve 
thinking tasks (2) in visibly random groups (3) on vertical non-permanent surfaces 
and that hints and extensions (9) are used to maintain high levels of thinking and 
engagement by maintaining flow.

28.4.1  Thinking Tasks

If we want our students to think, we need to give them something to think about—
something that will not only require thinking but will also encourage thinking. In 
mathematics, this comes in the form of a problem-solving task, and having the right 
task is important. The research (Liljedahl, 2020) revealed that when first starting to 
build a thinking classroom it is important that these tasks are highly engaging non- 
curricular problem solving tasks—such as the two tasks offered at the beginning of 
this chapter. As the culture of thinking begins to develop, there needs to be a transi-
tion to using curriculum tasks. The goal of thinking classrooms is not to get students 
to engaging with non-curricular problem solving tasks day in and day out—that 
turned out to be rather easy (Liljedahl, 2020). Rather, the goal is to get more stu-
dents thinking, and thinking for longer periods of time, within the context of 
curriculum.

28.4.2  Visibly Random Groups (VRG)

Once we have the thinking task students need someone to think with. We know from 
research that student collaboration is an important aspect of classroom practice 
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because when it functions as intended, it has a powerful impact on learning (Edwards 
& Jones, 2003; Hattie, 2009; Slavin, 1996). How groups have traditionally been 
formed, however, makes it very difficult to achieve the powerful learning we know 
is possible. Whether students are grouped strategically (Dweck & Leggett, 1988; 
Hatano, 1988; Jansen, 2006) or students are allowed to form their own groups 
(Urdan & Maehr, 1995), 80% of students enter these groups with the mindset that, 
within this group, their job is not to think (Liljedahl, 2020). However, when frequent 
and visibly random groupings were formed, within 6 weeks, 100% of students 
entered their group with the mindset that they were not only going to think but that 
they were going to contribute. In addition, frequent and visible random groupings 
were shown to break down social barriers within the room, increase knowledge 
mobility, reduce stress, and increase enthusiasm for mathematics (Liljedahl, 2014).

28.4.3  Vertical Non-permanent Surfaces (VNPS)

Once students have a thinking task and collaborators to think with, they need some-
where to do their thinking. One of the most enduring institutional norms that exist in 
mathematics classrooms is students sitting at their desks—or tables—and writing in 
their notebooks. This turned out to be the workspace least conducive to thinking. 
What emerged as optimal from this research (Liljedahl, 2019, 2020) was to have the 
students standing and working on vertical non-permanent surfaces such as white-
boards, blackboards, or windows. It did not matter what the surface was, as long as it 
was vertical and erasable (non-permanent). The fact that it was non-permanent pro-
moted more risk-taking and the fact that it was vertical prevented students from dis-
engaging. Taken together, having students work, in their random groups, on VNPS 
had a massive impact on transforming previously passive learning spaces into active 
thinking spaces where students think, and keep thinking, for upwards of 60 minutes.

28.4.4  Using Hints and Extensions to Maintain Flow

As mentioned, getting students to think was not the challenge. An engaging non- 
curricular task is easy to find (Liljedahl, 2020)—take the two tasks at the beginning 
of this chapter, for example. The challenge is to not only get them to think about 
curricular tasks but also to maintain that thinking for extended periods of time. 
Using ideas from Csíkszentmihályi’s theory of flow and the optimal experience 
(Csíkszentmihályi, 1998, 1996, 1990), coupled with the research on maintaining 
flow (Liljedahl, 2018, 2020), offered a path forward. The key, it turned out, was to 
use hints and extensions to manage flow as students worked through a sequence of 
curricular tasks that gradually increased in challenge. For example, consider the 
following sequence of tasks on the curricular topic of factoring quadratics:

28 Flow and Variation Theory: Powerful Allies in Creating and Maintaining Thinking…



550

 1. x2 + 8x + 7
 2. x2 + 5x + 6
 3. x2 + 7x + 12
 4. x2 + 14x + 24
 5. x2 + 10x – 24
 6. x2 + 4x – 12
 7. x2 – x – 12
 8. x2 – 2x – 12
 9. …

This sequence gets progressively more challenging with each task. The first task 
is simple in that there are only two factors of 7 that students need to consider. The 
second task has more factors to consider, the third task has more, and the fourth task 
has even more. The fourth task requires students to now think about both the posi-
tive and negative factors of −24, and so on.

In addition to a consideration for progressive increase in challenge, this sequence 
was created using the two main principles of variation theory (Marton & Tsui, 
2004). The first principle is that we can only see variation against a backdrop of 
non-variation. That is, before something changes, it has to stay the same. We see this 
in the transition from task 4 to 5. Prior to making the third coefficient negative, it has 
been positive for four tasks. The second principle is that only one thing is varied at 
a time. So, although the last task is very different from the first, at every stage only 
one thing was varied. First, we varied the number of factors that the third coefficient 
could provide. Then we made the third coefficient negative, then the second coeffi-
cient became negative. And so on.

28.5  Research Questions and Methodology

The goal of the Building Thinking Classrooms research has been to increase the 
number of students who were thinking and increase the percentage of time that they 
spent thinking. In this chapter, I present some of the results of this research vis-à-vis 
the specific practice of using hints and extension to manage flow as students work 
through sequences of curricular tasks. I exemplify these results through the presen-
tation of three cases:

Case I:  grade 10 students (ages 15–16) working through the aforementioned 
sequence of factoring quadratic tasks.

Case II:  grade 5 students (ages 10–11) working through a sequence of one and 
two- step algebra tasks.

Case III:  grade 11 students (ages 16–17) as they work through a sequence of radi-
cal expression tasks.

When conducting the thinking classroom research, I would, as much as possible, 
try to isolate a practice and study whether it increased the number of students think-
ing as well as the number of minutes they were thinking for (Liljedahl, 2020). For 
practices such as thinking tasks (1), visibly random groups (2), and vertical 
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non- permanent surfaces (3) this worked quite well and revealed how each practice, 
on their own or in concert with each other or other thinking practices, produced 
drastic improvements in student thinking (Liljedahl, 2014, 2018, 2020). For the 
research into the use of hints and extensions to manage flow, however, this research 
was always done with thinking tasks, VRG, and VNPS having already been estab-
lished within the classrooms. This created noise in the data as did the fact that many 
of the non-curricular thinking tasks used to introduce VRG and VNPS—including 
the two presented at the beginning of this chapter—were already designed with flow 
in mind. As such, in each of the aforementioned cases, students already had some 
experiences working within settings that were designed to increase thinking in gen-
eral, as well as to induce and maintain flow in particular. Having said that, in cases 
I and II, the students had had no experience working in such an environment on 
sequences of curricular tasks and in all three cases, the students were seeing a new 
curricular topic for the first time.

Taken together, the research questions that I was able to answer, and that I report 
on for each case, are:

 1. How much thinking, as measured in minutes per student, was visible for 
each case?

 2. How far does each group get into the sequence of curricular tasks for each case?

Thinking is an internal and largely invisible process—I cannot see what a student 
is thinking or even if they are thinking. The deep engagement that occurs during 
flow, although manifesting through internal experiential components, is also an 
embodied experience that manifests itself in a physical display—through the look in 
a student’s eyes, the way they lean into a task, the way they speak and gesture. That 
is, engagement is easily seen. And given that thinking is happening during flow, we 
can use the embodied physical display of engagement to code for thinking. This is 
how thinking was accounted for. This is not to say that they could not be thinking 
when not exhibiting engagement. But this is more difficult to deduce and, as such, I 
only coded for the thinking that happened in the company of engagement.

So, to gather data for the first research question, I simply ran a constant inventory 
of every student in the classroom and recorded on a map of the classroom whether 
a particular student, in a particular place, was engaged or not. If they were engaged, 
as demonstrated through their embodied behaviors, I assumed they were thinking.

Data for the second research question were likewise collected through the same 
constant inventory by noting on the map which task in the sequence each group was 
working on and at what time that observation was made. Although this did not 
always capture the exact time when they began or finished a task in the sequence, it 
did give an approximate time stamp and an approximate length of time they spent 
on each task. Taken together, the constantly running inventory for the two types of 
data allowed me to capture data for each student and each group every 3–5 minutes 
depending on the number of students and the number of groups.

In all cases, there were brief follow-up interviews with 3–5 students and a length-
ier interview with the teacher. The students were interviewed immediately after the 
activity finished, which sometimes occurred in the dying minutes of the lesson and 
sometimes in the first few moments after the lesson had ended. The teacher was 
interviewed either at lunch or after school depending on what time of the day the 
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lesson occurred. The goal for these interviews was twofold—first to triangulate 
some of the observations I had made during the constantly running inventory while 
at the same time probing deeper to find out their experiences and thoughts behind 
what I was observing.

In what follows I first present the results and analysis for each case followed by 
a discussion of some themes that emerged across the three cases.

28.6  Case I: Factoring Quadratics

As mentioned, the data from this case comes from a grade 10 classroom (ages 
15–16). The class had 29 students (17 females, 12 males) and was situated in a 
school in a working-class neighborhood. The course was called Foundations of 
Mathematics and Precalculus 10 (FMPC 10) which is designed for students on a 
pathway towards some form of post-secondary education (university, college, tech-
nical or vocational school). FMPC 10 is one of two grade 10 math courses available 
to students—the other being called Applications and Workplace 10 (A&W 10), 
which is designed for students going into trades. All grade 10 students must take one 
of these two grade 10 mathematics courses to eventually graduate high school. In 
the school wherein the study was taking place there were approximately 300 grade 
10 students, with 80% enrolled in FMPC 10. This is all to say that the data was 
gathered in a typical school in a typical grade 10 mathematics classroom with the 
full diversity that comes with such settings.

As mentioned, the sequence of tasks they were worked through was on the topic 
of factoring quadratics and was, in essence, an extension of the sequence presented 
above. In keeping with practice 6 of the Building Thinking Classroom framework, 
the teacher presented the task right at the beginning of the lesson and with the stu-
dents gathered around him at a vertical whiteboard.

Teacher  Let’s start with a bit of review.
How would I distribute (x + 2)(x + 5)?
[Teacher writes on the board (x + 2)(x + 5)=]

Students x2 + 7x + 10.
[Teacher writes on the board (x + 2)(x + 5) = x2 + 7x + 10]

Teacher Ok. So what if my answer was x2 + 8x + 7? What would the question be?
[Teacher writes on the board ( )( ) = x2 + 8x + 7]

The teacher then put the students into random groups of three and sent them to 
their VNPS stations. Over the course of the next 55 minutes the teacher then gave 
extensions to groups when they were done a task, gradually working through the 
following sequence of factoring quadratic tasks:
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 1. (x + 2)(x + 3) = x2 + 8x + 7
 2. (   )(   ) = x2 + 5x + 6
 3. (   )(   ) = x2 + 7x + 12
 4. (   )(   ) = x2 + 14x + 24
 5. (   )(   ) = x2 + 10x − 24
 6. (   )(   ) = x2 + 4x − 12
 7. (   )(   ) = x2 − x − 12
 8. (   )(   ) = x2 − 2x − 24
 9. (   )(   ) = x2 − 6x − 16
 10. (   )(   ) = x2 − 0x − 16
 11. (   )(   ) = x2 − 25
 12. (   )(   ) = x2 − 49
 13. (   )(   ) = x2 − 10x + 24
 14. (   )(   ) = x2 − 13x + 12
 15. (   )(   ) = 5x2 + 36x + 7
 16. (   )(   ) = 3x2 + 8x + 5
 17. (   )(   ) = 6x2 + 9x + 3
 18. (   )(   ) = 8x2 + 28x + 24
 19. (   )(   ) = 6x2 + 7x − 3
 20. (   )(   ) = 15x2 − 4x − 4
 21. (   )(   ) = 6x2 − 26x + 8
 22. (   )(   ) = 9x2 − 25
 23. (   )(   ) = 4x2 + 14xy + 12y2

 24. …

This sequence of tasks adheres to the three environmental characteristics neces-
sary to for the optimal experience to occur. There is a clear goal—find the binomials 
that, when distributed, produces the specified trinomials. There is immediate feed-
back on action—when the binomials are found they can be multiplied to see if it 
produces the correct trinomial.

And, as discussed previously, this sequence was designed on the principles of varia-
tion theory to allow flow to be maintained through a gradual increase in challenge as the 
ability increases. The first task is very simple in that the constant term, 7, has only one 
pair of factors for the students to consider. The second task has two pairs of factors, the 
third task has three pairs, and the fourth task has four pairs of factors for the students to 
consider. The fifth task introduces the notion of a negative constant term. Although this 
amplifies the number of pairs of factors to consider, notice that the pair that is relevant 
for this task (±2, ±12) is the same pair that was used in the previous task (2, 12). This is 
in keeping with the principle of variation theory that only one thing is varied at a time.

From here, students move through tasks that have the second and third term as a 
negative (tasks 7–9), has the second term as a zero (task 10), is absent the second 
term (tasks 11–12, and has only the second term as negative (tasks 13–14), before 
introducing a leading coefficient greater than one (tasks 15–23). Each of these tran-
sitions marks an increase in challenge for the students to take on as their ability 
grows. Even this last set of tasks (tasks 15–23) have within it a progression with 
tasks 15 and 16 being bookended by prime numbers, before introducing a leading 
coefficient that is not prime (task 17), and so on.
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28.6.1  Thinking

During the 55 minutes that the students worked on this sequence of tasks, I was able 
to capture 13–15 data points1 per student and 15 data points per group. These data 
revealed that 22 of the students were thinking for 48–55 minutes (13–15 out 15 data 
points), 5 students were thinking for 37–40 minutes, and 2 students were thinking 
for 22–26 minutes (see Fig. 28.11). No student was thinking for less than 30 minutes.

This is significantly higher than the baseline data wherein 20% of the students 
spent 20% of the time thinking and 80% spent no time thinking.

28.6.2  Tasks

Within the 55 minutes that the class worked on the aforementioned sequence of 
tasks all 10 groups got through the first 14 tasks. In fact, two groups got through the 
sequence in less than 20 minutes, six groups got through it in less than 30 minutes, 
and two groups got through it in less than 40 minutes.

All of the groups got to at least task 19 with five groups going beyond task 24 and 
were working on tasks that involved factoring cubics. What is remarkable about this 
is that the students were not taught how to factor quadratics either in this lesson or 
a previous lesson. They were simply asked to think about these tasks as distribution 
in reverse. Even more remarkable, the curriculum and textbook for the FMPC 10 
course indicate that 5–8 lessons be dedicated to this topic. Yet, the vast majority of 
groups and students demonstrated mastery of 80–100% of the curriculum outcomes 

1 The number of data points varied because students would sometime leave the room to go to the 
bathroom.

0

10

20

30

40

50

60

Fig. 28.11 Number of minutes of thinking per student

P. Liljedahl



555

in less than 55 minutes. Within the experience of a sequence of tasks delivered and 
managed through the use of hints and extensions to maintain flow, these students 
moved through a tremendous amount of content in a very short period of time.

I want to emphasize how remarkable this is. This class of students moved through 
5–8 hours of content in 55 minutes. This was not an enriched or accelerated class. 
This was a mainstream class in a typical school in a working-class neighborhood. 
This is remarkable.

This is not to say that 100% of students achieved success. When I say that a 
group got to a certain task, for seven of the groups this meant that every member of 
the group got this task and there was clear evidence that every member of the group 
was not only following along but also contributing ideas and taking turns writing on 
the VNPS. For three of the groups, however, there was one member of the group 
who eventually stopped contributing—two of whom eventually started to disengage.

28.7  Case II: Solving One and Two-Step Equations

The data for this case came from a grade 5 class (ages 10–11) in a school also situ-
ated in a working-class neighborhood. There were 22 students (12 males and 10 
females). At the grade 5 level all students take the same math course. That is to say 
that, like with Case I, the data were gathered in a typical school within a typical 
grade 5 classroom with all the diversity that this entails. And like with Case I, the 
initial task was introduced right at the beginning of class, and with the students 
gathered around the teacher at a VNPS.

Teacher   We are going to play a game of guess what’s in my head. I’m going to 
think of a number, and you are going to guess what it is. To help you 
make the guess I will give you exactly one clue.

Teacher  Ok—I have my number. Here is your clue—if I add three to my number 
the answer is 12. Thumbs up if you know my number.

Students [Students put up their thumbs.]
Teacher  [When enough are up the teacher calls on them.] Ok—what is 

my number?
Students  9.
Teacher  Great. Ok—I have a new number. Here is your clue—if I double it and 

add three my answer is 15. Thumbs up if you know my number.
Students [Students put up their thumbs.]
Teacher  [When enough are up the teacher calls on them.] Ok—what is 

my number?
Students  6.
Teacher  Ok. Before I give you the next one, we have to learn how to write what I 

just said. [Teacher writes on the board: □ × 2 + 3 = 15.]
Teacher And before I give you the next one there are three rules to this task.
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You can use a calculator.
 If you use a calculator, you must write down on the whiteboard what you 
type into the calculator.
 You have to check your answer by putting it back into the calculator.

Teacher Here is your next one: [Teacher writes on the board □ + 3.014 = 7.22]

The teacher than put students into random groups of three and sent them to their 
VNPS stations. When a group was done a task and they had checked their answer 
they were given an extension—gradually working their way through the following 
sequence of tasks.

 1. □ + 3.014 = 7.22
 2. □ − 15.1 = 7.88
 3. □ × 4.25 = 24.8
 4. □ ÷ 1.356 = 4.02
 5. □ × 2.5 + 3.67 = 18.3
 6. …

This sequence of tasks, like the one in Case I, has the three environmental char-
acteristics necessary for the optimal experience to occur. There is a clear goal—find 
the number such that when the clue is applied it gives the correct answer. There is 
immediate feedback on action—check your answer to see if it works.

And the sequence was built on the principles of variation theory to maintain flow. 
The first task focused on addition, the next one on subtraction, then they saw multi-
plication and division. In task 5 they saw a combination of addition and multiplica-
tion, and so on. Each of these marks, not only variation of a single element at one 
time, but also a gradual increase in challenge.

The choice to use decimal numbers for this task was made in order to force the 
inverse operations to be considered by the students. When they were given the clue 
that if I add three to my number the answer is 12, students did not necessarily do 
subtraction to calculate my number. As evidenced by what was written on their 
VNPS, this was not the case for □ + 3.014 = 7.22. For this task each group found 
the answer by computing 7.22 − 3.014. This is why rules number one and two 
existed. I wanted the focus on the inverse operation, and not on performing manual 
calculations. Hence, they were afforded the use of a calculator (rule 1). However, I 
did not want the inverse operation to be lost in a jumble of button pushing. Hence, 
they had to write down what they entered into the calculator (rule 2).

28.7.1  Thinking

This activity ran for 35 minutes. In that time, I was able to collect 12 data points on 
every student and every group. These data showed that all 22 students were thinking 
for the full 35 minutes. That is, every single student I looked at was showing indica-
tors of being fully engaged every time I looked at them. This is way above the 
baseline data.
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28.7.2  Tasks

In the 35 minutes that the activity ran for every group got through at least 8 tasks. 
Six groups got through at least 12 tasks with one getting through 16 tasks. This 
means that every group solved at a minimum four tasks of the form □ ÷ 
7.33 + 3.1 = 23.005. That is, every group was solving one and two-step algebraic 
equations. This is significant for two reasons.

First, like with Case I, the students were not taught how to solve one and two- 
step equations. They were simply asked to think about a way to figure out what the 
secret number was given a specific clue. This thinking was then supported through 
hints and extensions as well as the affordances of a calculator to get feedback on 
their answers. Second, solving one and two-step equations is not part of the grade 5 
curriculum. In the jurisdiction in which this activity took place, this is a grade 8 
(ages 13–14) topic. And within the curriculum documents and resources it is sug-
gested that teachers spend 3–5 weeks on this topic. These grade 5 students covered 
all of the outcomes in 35 minutes. Remarkable!

28.8  Case III: Radical Expressions

The data for this case was collected in a Pre-Calculus 11 class (ages 16–17). This 
course, like the FMPC 10, is on a pathway for students who intend to continue their 
education at some form of a post-secondary institution. The school in which the 
class was situated was in a working-class neighborhood and had approximately 200 
grade 11 students—75% of whom were enrolled in Pre-Calculus 11. There were 27 
students (15 males and 12 females). In short, it was a typical classroom in a typi-
cal school.

Like with Case I and Case II, this case deals with the students’ first exposure to 
a new topic—radical expressions—and, again following a specific script for intro-
duction with the students gathered around the teacher at a VNPS right at the begin-
ning of the lesson.

Teacher [Without speaking, writes on the board: 50 � �_ _ ]
Students 5 × 10, 25 × 2.
Teacher [Without speaking, writes on the board: 50 25 2 25 2� � � � � _ ]
Students 5 × 2 .
Teacher [Without speaking, writes on the board: 50 25 2 25 2 5 2� � � � � ]
Teacher [Without speaking, writes on the board: 18 = _ ]

The teacher then put students into random groups of three and sent them to their 
VNPS stations. As groups finished a specific task they were given extensions, grad-
ually working their way through the following sequence of tasks:
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 1. 18 = _

 2. 75 = _
 3. 20 = _

 4. 800 = _

 5. 98 16� � _

 6. 72 2x  = _2

 7. 16 3a = _

 8. 8 5 2a b = _ 2

 9. 
x y4 5

4
= _

 10. 5 27 = _

 11. 6 72 98� � _

 12. 6 72 7 98 50� � � _

 13. 3 363x x� � _

 14. 3
4

a � �
a

_

 15. 
1

98
= _

 16. 543 = _
 17. …

This sequence, like the other sequences that we have seen, was designed on the 
principles of variation theory to maintain flow by maintaining a balance between the 
ability of the doer and the challenge of the activity. The first three tasks are similar 
in nature to the one that was demonstrated during the introduction to the activity. 
The fourth task is not, however. This task asks students to simplify 800 . Although 
this could follow the same pattern of breaking the 800 into 400 × 2, this is not what 
we anticipated students would do. And, as anticipated, this is not what they did. 
Instead, they broke 800 into 100 × 8, which resulted in an answer of 10 8 . When 
the teacher drew to their attention that they were not done they immediately saw that 

8  could be further simplified to 2 2.  This was an important task for the students 
to grapple with as it set them up for the next five tasks (tasks 5–9) where they may 
need to think about simplification as a multistep process. In addition, task 9 gives 
the students their first look at a fraction inside the radical.

From here, the sequence of tasks introduces them to the idea of a pre-existing 
coefficient (task 10), which is a concept they will need to use for the next four tasks 
(tasks 11–14). In addition, task 11 presents the first situation where to radical 

2 For the purposes of this lesson, the teacher allowed students to believe that x x2 =  or b b2 = .  
In the next lesson the teacher had the students graph y x= 2  so they could see that their original 
assumption was only true for x ≥ 0. They then simplified several radical expressions wherein the 
exponent under the radical was an odd multiple of 2.
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expressions are added (or subtracted), which behaves very differently from the mul-
tiplicative reasoning they have been doing thus far. Task 15 puts the radical only in 
the denominator forcing the students to confront the question as to whether or not 
this is fundamentally different than the fractional radical in task 14. Incidentally, the 
students were not being asked to rationalize the denominator in task 15. Eventually, 
the students are introduced to radicals other than square root and a sequence of tasks 
using the ideas from tasks 1–15 is explored with these non-square root radicals.

As with the other sequences, this sequence of tasks presents students with a clear 
goal. However, unlike the tasks in Case I and Case II, this sequence of tasks do not 
provide feedback on the action—the students cannot easily check their answer. As 
such, they were provided with a sheet of answers that were not in order and not 
numbered. But they were told that for every task there was a unique answer and that 
the correct answer was somewhere on the answer sheet. This feedback, plus the 
feedback they were able to glean from within their own group (as well as other 
groups), coupled with the clear goal and balance between challenge and ability were 
enough to provide the environmental conditions necessary for an optimal experi-
ence to occur.

28.8.1  Thinking

The students worked in their groups on this sequence of tasks for 45 minutes during 
which time I was able to gather 10–12 data points on each student and each group. 
Based on these data it was clear that all but four students were fully engaged, and 
thinking, for the entirety of the 45 minutes. That is, 23 students showed they were 
engaged every time I looked at them. Of the four students who were not fully 
engaged for the entire time of the activity, two were fully engaged for the first 
30 minutes before falling out of flow—one because the challenge began to exceed 
their ability and one because they “just ran out of energy”. The remaining two stu-
dents showed a clear lack of engagement, and lack of thinking, from the very begin-
ning of the activity, yet stayed in their groups and pretended to be participating so 
as not to “get any hassle from the teacher“. Again, this is well above the base-
line data.

28.8.2  Tasks

Every one of the 10 groups got through the first 18 tasks in the 45 minutes with eight 
of the groups getting as far as solving equations of the type: 4 93x x x x� � . 
Again, given the fact that the students had had no prior teaching of simplifying and 
solving radical expressions, this is a remarkable achievement. In 45 minutes even 
the slowest groups showed competency with the majority of curricular content out-
comes for this unit of study, with eight of the ten groups showing competency on all 
of the outcomes.
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28.9  Cross Case Analysis

Looking across all three cases a few common themes emerged. Obvious common-
alities are the amount of think students exhibited in comparison to the baseline data 
as well as how effective groups were at moving through the sequences of tasks. 
These will be discussed in response to the research questions in the Conclusions. 
However, other common themes also emerged—two of which are discussed here.

28.9.1  Brevity of Introduction

In all three cases, the introduction to the sequence of tasks was extremely brief—all 
taking less than 5 minutes. In fact, for Cases I and II the introduction was less than 
2 minutes. And although coincidental, this aligns with the thinking classroom 
research which showed that students are much more likely to engage in a task if it is 
given in the first 5 minutes of a lesson. This, we learned, is because the longer stu-
dents spend sitting and listening to the teacher, the more passive they become and 
the more difficult it becomes to move them into an active state of thinking.

It is also worth noting that only in Case III did the introduction include 
what can be considered content instruction. When the teacher wrote 
50 25 2 25 2 5 2� � � � �  they were providing direct instruction about 

mathematical conventions—something the students could not have discovered on 
their own (Hewitt, 1999). But even these were very brief in comparison to the 
30–45 minute lectures I have observed on this topic in more conventional class-
rooms. It could also be argued that there was some direct instruction in Case II with 
respect to the notation for writing out the clues. I argue that this was a form of direct 
instruction. But I would also argue that instructions about how to write something is 
substantively different from instructions on how to solve something.

28.9.2  Maintaining Flow

Although not coded for during the continuous inventory of student thinking and 
progress through the sequences of tasks, it was clear from being in these rooms that 
the teachers were maintaining flow in all of the ways described in Sect. 28.3. What 
did come through in the inventory, however, was that even more so than the teach-
ers, the groups were maintaining their own flow. When they were done a task, rather 
than wait for the teacher to give them a new one, they just stole a task from a group 
nearby. When they were stuck they would either passively look for hints around 
them or actively discuss with groups in close proximity. This was so prevalent in 
Case II that it was noted by another observer in the room that in many cases, the 
teacher only gave a particular task in the sequence to one or two groups. The rest of 
the groups simply stole the tasks.
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Fig. 28.12 Perseverance and patience

These behaviors align with observations in other thinking classrooms (Liljedahl, 
2018) where it was concluded there are buffers on either side of flow—perseverance 
and patience (see Fig. 28.12)—that slows the transition from flow to either frustration 
or boredom. Perseverance is the willingness of a group to continue working on a task 
wherein the challenge of the task exceeds the ability of the group. Likewise, patience 
is the willingness of a group to continue to work on a task for which their ability 
exceeds the challenge of the task. These buffers can be very thin for inexperienced 
problem solvers but build up over time and exposure to problem-solving wherein 
there are temporary imbalances between their ability and the challenge of the task.

The fact that groups were self-maintaining their flow contributed to another 
interesting observation. Although the teachers also were very active in managing 
flow, it was interesting to note that increasing challenge through shifts in the mode 
of engagement (see Fig. 28.10) only happened later into the sequence, when “every-
thing settles down” or “when the groups can take care of themselves”. This, it turns 
out, is because shifting the mode of engagement requires a higher level of attention 
to what is happening in a group at the time and, as such, takes more time. Increasing 
challenge by moving a group to the next task in the sequence was seen as easier and 
faster by all three teachers.

Another feature of maintaining flow that was common across the three cases was 
that each of the teachers had a parallel set of tasks to the ones presented above. They 
used these tasks in cases where a group, although able to solve a specific task, 
struggled to do so. The idea behind this is that, although the ability has increased, it 
has not increased enough to warrant an increase in challenge—the ability still 
needed to increase more (see Fig. 28.13).

28.10  Conclusion

The goals of the research presented here were twofold. First, I was interested in see-
ing the degree to which a focus on creating and maintaining flow coupled with the 
use of sequences of curricular tasks designed on the principles of variation theory 
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Fig. 28.13 Continuing to increase the ability

increased thinking in the classroom—were more students thinking and were they 
thinking for longer? The baseline data that was gathered in conventional mathemat-
ics classrooms showed that in a typical classroom, over the course of a typical les-
son, 20% of students spend 20% of the time thinking while 80% spend zero time 
thinking. The students in all three case studies eclipsed these baseline data. In Case 
I, 76% of the students spent 87% of the time thinking and no student spent less than 
40% of the time thinking. In Case II, 100% of students spent 100% of the time 
thinking. And in Case III, 85% of the students spent 100% of the time thinking.

In a way, this is not surprising. All the research into building thinking classrooms 
was vectored towards achieving these ends. The thinking practices that were in 
force in all of these classrooms (thinking tasks, VRG, and VNPS), among others, 
have been shown to be particularly effective at creating and sustaining a culture of 
thinking (Liljedahl, 2014, 2018, 2019, 2020). These practices, coupled with creat-
ing and maintaining flow on carefully designed sequences of tasks create an envi-
ronment where thinking is not only encouraged, but also enabled.

Second, I was interested in seeing the degree to which this increase in thinking 
allowed students to move through curricular content. In this regard, the data showed 
that groups in all three cases covered huge amounts of content in very short amounts 
of time. In many cases, groups covered an entire unit of study in a single sequence 
of tasks—units of study that would normally take 6–15 lessons to cover using more 
conventional teaching methods. Again, this is not surprising. Thinking is a neces-
sary precursor to learning. If students are not thinking they are not learning and 
everything is difficult and takes time to teach. When students are thinking, on the 
other hand, students take on new content as tasks to think about and learning speeds 
up. The research presented here shows that when that thinking is embedded within 
a structure designed to create and maintain flow coupled with carefully designed 
sequences of tasks, powerful things happen.
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Chapter 29
Commentary on Part III of Mathematical 
Challenges For All: On Problems, 
Problem-Solving, and Thinking 
Mathematically

Alan H. Schoenfeld

Eugene Wigner’s (1960) essay “The Unreasonable Effectiveness of Mathematics in 
the Natural Sciences” begins with part of a quote from Bertrand Russell’s (1917) 
essay “The study of mathematics,” which I provide here in slightly extended form:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty – a beauty cold 
and austere, like that of sculpture, without appeal to any part of our weaker nature, without 
the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern 
perfection such as only the greatest art can show. The true spirit of delight, the exaltation, 
the sense of being more than Man, which is the touchstone of highest excellence, is to be 
found in mathematics as surely as in poetry. What is best in mathematics deserves not 
merely to be learnt as a task, but to be assimilated as a part of daily thought, and brought 
again and again before the mind with ever-renewed encouragement.

It’s hard to think of a better introduction to this set of chapters. Indeed, as I faced 
them, I had the feeling of being like a child in a candy shop – there are so many 
sweet confections on offer! The chapters suggest the breadth and depth of mathe-
matics; its coherence and connections; in modeling, a bit of its unreasonable effec-
tiveness; and the psychological pleasures of deep engagement. And yet, there 
is more.

This year I am once again teaching my problem-solving course. In addition to the 
normal variations – the course is always different because we become a mathemati-
cal community, and the people in it are different – I find that the course itself has 
evolved. For a number of reasons, I am less focused on problem-solving strategies 
per se than I once was, although heuristic strategies (and Pólya) still receive signifi-
cant attention. I also cover less, because I want my students to uncover/discover 
more. For reasons elaborated below, I focus more on the generative nature of 
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mathematics and what it means to see mathematics as a field that is rich, deeply 
connected, and coherent.

In what follows I revisit some of the key ideas that have shaped my problem- 
solving courses through the years. I then discuss the specifics of how my students 
and I worked through some problems this year, and why. Ultimately, problems are 
the raw materials for mathematical construction; if they are rich in potential, then 
like fine wood, metal or gems, many different things can be made of them. The 
question is what might be made – and how, and why.

By way of preface, I note that all of my work on problem-solving has involved 
an ongoing dialectic between research and development. When I have had ideas 
regarding ways to help students become more effective mathematical thinkers, 
those ideas have been tested (whether formally or informally) in my problem- 
solving courses. In turn, my attempts to teach problem-solving have often caused 
me to re-think the implementation of those ideas, or to notice hitherto unnoticed 
aspects of mathematical thinking and problem-solving. There has, thus, been a natu-
ral evolution of focus in my problem-solving courses – at first, as I fleshed out a 
framework characterizing what matters in success in problem-solving, and later as I 
considered the goals of mathematics instruction more broadly.

29.1  Framing a Major Point of This Chapter

A slight historical detour by way of commentary: Pólya’s written work on problem- 
solving strategies began with How to Solve it (1945) and continued with the two 
(1954) volumes of Mathematics and plausible reasoning and the two (1962, 
1965/1981) volumes of Mathematical Discovery. Before producing these volumes, 
all of which emphasized strategy and, in the latter volumes, pedagogy (Pólya devel-
oped Mathematical Discovery for sessions for teachers), Pólya produced collections 
of problems that, in some ways, echo the problem collections in this section of this 
volume. The best-known versions date all the way back to 1925: Volumes I and II of 
Aufgaben und Lehrsätze aus der Analysis (Pólya & Szegö, 1925a, b) consist of 
extraordinarily rich sets of problems in calculus, the theory of functions, number 
theory, geometry, and more. The idea behind such thematically organized collec-
tions is that any student who works through those problems will develop a deep 
understanding of the content. Other notable mathematicians have done the same, 
e.g., Halmos (1991).

This historical fact introduces a major theme of this chapter. Pólya’s earlier prob-
lem collections, and Halmos’s volume, had as their primary purpose the teaching of 
content. If you manage to work the problems contained in them you will have 
learned a substantial amount of mathematics. While it is the case that the mathemat-
ical content of Mathematics and Plausible Reasoning and Mathematical Discovery 
was extremely rich, Pólya’s use of the problems in those volumes was different. In 
those volumes, the problems were organized in such a way as to highlight aspects of 
mathematical thinking and problem-solving. This points to the fact that collections 

A. H. Schoenfeld



567

of problems can have different purposes. They may be used to teach mathematical 
content, to teach heuristic strategies, to focus on mathematical thinking more 
broadly, to support the development of mathematical practices, and to help students 
develop a sense of mathematical initiative and agency as part of their mathematical 
identities. Hence what matters is both the richness of the problems and the uses to 
which they are put. In this context, it is essential to consider pedagogical issues.

What follows is a chronological narrative, with the following leitmotif: What I 
emphasize is a function of what is known about mathematical thinking, and what 
seems to be missing.

29.2  Learning to Implement Heuristic Strategies

I began researching problem-solving in the mid-1970s. Pólya’s ideas about problem- 
solving strategies felt right to me, although I had never been explicitly taught them. 
They also felt right to many mathematicians; there was no question that we used the 
heuristic strategies Pólya described. Yet, despite a fair amount of effort, students had 
not been successfully taught to do so. My early research focused on making heuris-
tic strategies implementable.

That research consisted of a mix of experimental and observational studies aimed 
at understanding how to implement heuristic strategies successfully. Those first 
studies, motivated by contemporary work in artificial intelligence, revealed that the 
strategies Pólya described, such as “examining special cases” and “establishing sub-
goals,” were far more complex than they appeared to be. Specifically, each of these 
strategies encompassed numerous sub-strategies. For example, as described in 
Chapter 3 of Schoenfeld (1985), a close analysis of problem-solving attempts 
showed that the general description “examining special cases” applied to situations 
such as the following:

• The presence of a tacit or explicit integer parameter, even in a problem as simple 
as “what is the sum of the first 97 odd numbers?”, (where “97,” tacitly, is an “n”) 
may suggest trying values of n = 1, 2, 3, 4, …, looking for a pattern, and verify-
ing the pattern by induction or some other means.

• It may be possible to gain insight into the nature of problems that ask about spe-
cific features of classes of algebraic functions by focusing on examples that are 
easy to work with. For example, if asked about the roots of polynomials in gen-
eral, one might examine easily factored polynomials  - or even sets of “pre- 
factored” polynomials such as (x), (x)(x −  1), (x)(x −  1)(x −  2), and so on. 
Doing so allows you to focus on the roots, and not get lost in algebraic 
manipulations.

• In computations that call for finding the limit of iterated or recursively defined 
terms, it may be useful to choose initial values for the terms such as 0 or 1 (if that 
can be done without significant loss of generality). Manipulating numbers rather 
than symbols may make it easier to find the underlying pattern.
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• In problems that involve geometric figures, it may be useful to see if “nice” fig-
ures help – as long as one isn’t seduced into believing results that aren’t general. 
Given a problem with quadrilaterals, why not look at squares, rectangles, paral-
lelograms, and trapezoids first? Given problems in various orientations, why not 
orient them conveniently?

• … and many more.

Essentially all of the heuristic strategies described in Pólya’s (1945) How to 
Solve It turned out to be characterizable in this way. The top-level name of the strat-
egy, be it “establish subgoals, “draw a diagram,” or “work backwards,” was accu-
rate, and mathematicians would typically recognize a strategy when they used it. 
But how the mathematicians learned to use “the strategy” was something else. What 
had happened, most likely, is that over time they had learned many of the relevant 
(unnamed) substrategies, including the contextual cues that might suggest each sub-
strategy’s use – an explicit or tacit integer parameter for the first example given 
above, the wish to obtain roots of carefully chosen polynomials in the second exam-
ple, and so on. Most of this happened without explicit labeling, as the result of 
repeated experiences (To paraphrase Pólya, a device used twice becomes a method). 
And, once one has such methods at one’s disposal, the name of the strategy 
makes sense.

My primary goal for instruction at that time was to provide students with the 
experiences that would allow them to do the same – to learn the substrategies and, 
cumulatively, the strategy. Thus, the initial collections of problems I gave students 
included sets of tasks that could be worked by the same substrategy. On the first 
task, I might need to tell them about the strategy, or (more typically) revoice or 
reframe a productive move a student had made, identifying the strategy as being 
important. When we discussed the second task, I might ask if they’d worked a prob-
lem using a method that had helped; in debriefing a solution once they had it, I 
would mention not only the strategy but some of the task features that might lead 
them to see commonalities between the two problems (despite some obvious differ-
ences in surface features). Over the first few weeks of encountering any substrategy 
the students would build up their skills both in recognizing when it might be used 
and in using it. In subsequent weeks I would decrease the use of problems for which 
that particular substrategy was useful until such tasks appeared only rarely. The idea 
was for students to be able to identify the relevance of the substrategy when they 
encountered relevant problems at random, not simply when they were practicing the 
substrategy itself.

I won’t go into detail here (See Schoenfeld, 1985), but there is clear evidence that 
students learned to use the substrategies, and thus the strategies themselves. 
Students’ problem-solving performance improved significantly on three classes of 
problems: problems that resembled ones we’d practiced in class, problems I knew 
could be solved by similar methods but that did not (on the surface) resemble prob-
lems we’d worked in class, and problems chosen from collections that did not “line 
up” with Pólya-like methods in any obvious ways.
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Another caveat before I proceed. I emphasize the introductory phrase two para-
graphs above: teaching heuristic strategies was my primary goal for instruction at 
the time. I was looking for an existence proof, clear evidence that students could 
learn heuristic strategies. At the same time, I must emphasize that my course was 
not taught in a laboratory; it was taught in a classroom. As a result, everything I 
knew as a teacher and as a mathematician came into play during instruction. In 
particular, I chose problems that I thought led to interesting mathematics; I induced 
my students to explore and to generate new problems, and so on. But a primary 
focus was on showing that students could learn to implement problem-solving 
strategies.

29.3  Metacognition: Monitoring and Self-Regulation

My early problem-solving courses were largely prescriptive in nature: I identified 
the problem-solving methods employed by proficient problem solvers and taught 
students to use them. The techniques I used to uncover such moves were largely 
drawn from artificial intelligence research, in that I looked for systematicity in the 
actions of people engaged problem-solving. Beyond skill at the level of implement-
ing heuristics, there was the question of which strategies to try, and when – issues 
that I called “managerial” or “executive” strategies. A one-line encapsulation of the 
idea is, that one should try relatively simple (but relevant) methods before spending 
time on more complex methods. I had built and taught an executive strategy of this 
kind for techniques of integration (e.g., one should look for simple substitutions 
before trying integration by parts or partial fractions, and try those before using 
complex trigonometric substitutions), and it had proven effective. So, I built a com-
parable executive strategy for using heuristics. The truth is that it never felt right; it 
was too mechanistic. Although I showed it to my students, I never emphasized it; in 
discussing our work in general, what I emphasized was in line with the one-line 
summary given above.

A grant from the National Science Foundation in the late 1970s provided me 
with videotape equipment. I brought students into my office space to videotape 
problem-solving sessions before and after my problem-solving course, to see what 
differences I might find. In studying the “before” tapes, it became clear that the 
wrong choice of direction for a solution, unreversed, could doom students to failure. 
This kind of event  – an inappropriate choice of initial direction that was never 
reconsidered – happened with astonishing regularity.

Simply put, knowledge doesn’t do you any good if you don’t think to use it. In 
Schoenfeld (1987) I describe a wide range of techniques I’ve used in my problem- 
solving courses to help students become more effective at monitoring and self- 
regulation. But here I want to focus on a sample problem and the way my use of it 
evolved.
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Perhaps as early as the first iteration of my problem-solving course, I have given 
students a slightly modified version of “a problem of construction” from Pólya’s 
How to Solve It:

You are given the triangle on the left in Fig. 29.1, below. A friend of mine claims that she 
can inscribe a square in the triangle – that is, that she can find a construction, using straight-
edge and compass, that results in a square, all four of whose corners lie on the sides of the 
triangle. Is there such a construction – or might it be impossible? Do you know for certain 
there’s an inscribed square? Do you know for certain there’s a construction that will 

produce it?
Is there anything special about the triangle you were given? That is, suppose you did 

find a construction. Will it work for all triangles or only some?

Pólya uses this problem to demonstrate the use of the following strategy: “If you 
cannot solve the given problem, try to solve first some related problem.” In this case, 
a key goal for the desired square is that all four of its vertices lie on the triangle. 
Asking for less – for three vertices to lie on the triangle – might be doable; in fact, 
it is easy to find more than one solution (Fig. 29.2).

There are, in fact, infinitely many solutions; and one of them must pass through 
the 3rd side of the triangle. See Fig. 29.3.

For Pólya, this is an introductory problem, to demonstrate how the technique of 
using an easier related problem can help solve the original, more challenging prob-
lem. “If the student is able to guess that the locus of the fourth corner is a straight 
line, he has got it” (How to Solve it, p. 25).

For me (and, I suspect for Pólya, when he actually taught with the problem) the 
problem serves multiple functions. Here are a few of the mathematical ideas 
that arise.

Pólya’s solution focuses on a particular way of finding an easier related problem, 
by relaxing the condition requiring that all four corners of the square lie on the tri-
angle. That approach already narrows the solution path quite a bit. When I ask stu-
dents if they can think of an easier related problem, their first response is usually to 
think about altering the given figure. Might it be easier to inscribe a square in an 
equilateral triangle? A right triangle? An isosceles triangle? Or, what about inscrib-
ing a circle in the given triangle? Occasionally, a student will suggest turning the 
problem inside–out – starting with a square and putting a triangle around it.

All of these suggestions raise interesting issues, among them: do you think you 
can solve the easier problem? If so, how might your solution lead to a solution to the 
original problem? And, since there are a fair number of possible approaches to take, 

Fig. 29.1 Pólya’s “problem of construction”
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Fig. 29.2 There is more than 1 solution to the easier related problem

Fig. 29.3 Envisioning the solution to the original problem

how do you decide which one to try? This is our introduction to issues of 
metacognition.

I often let the problem “sit” until our next class meeting – has anyone made prog-
ress? Are there other ideas? If so, we pursue them. If not, I mention the generic 
version of Polya’s suggestion: Consider the conditions of the problem and relax one 
of those conditions (that is, replace it with a condition that is easier to satisfy). The 
desired solution will be a square with four corners on the triangle. You can relax the 
condition of squareness to ask for a rectangle – and there are many, see Fig. 29.4 – 
or you can ask for fewer corners of the square to be on the triangle. Both approaches 
lead to existence proofs. In Fig. 29.4, one can start with short-and-wide rectangles 
and wind up with tall-and-thin rectangles; thus the progression must pass through a 
square. In Fig. 29.5, the squares with three corners on the triangle start growing 
inside the triangle and wind up outside it, so one of them must hit the opposite side 
of the triangle. In both cases, we know such a square exists. But, is there a construc-
tion that produces it? Which path should we pursue – one of these or one of the 
others? This makes the metacognitive challenge even more complex.

We’ve never managed to solve the problem for “special” triangles in a way that 
could be generalized; nor have we found a way to exploit the well-known method 
for inscribing a circle in a given triangle. And, we have yet to find a way to convert 
the existence proof in Fig. 29.4 into constructive proof. But, there is a lovely solu-
tion to the construction problem (first produced by my students, I hadn’t known it) 
based on the idea of building a triangle around a square. In the tradition of classical 
exposition, the solution is left to the reader.

It is also worth noting that there are two very different solutions to this problem, 
the one in Fig. 29.5 (Pólya’s solution) and the one that can be obtained by construct-
ing a triangle similar to the original around a square. The purpose and value of 
problems with multiple solutions will be elaborated below.
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Fig. 29.4 Solutions to a 
different “easier related 
problem” lead to an 
existence proof

Fig. 29.5 The approach in Fig. 29.3 also leads to an existence proof

29.4  Problems as a Mechanism for Countering Unproductive 
Student Beliefs

Early in my problem-solving work (See Schoenfeld, 1985) I found that many stu-
dents, believing that the purpose of proofs in mathematics is to confirm in formal 
terms what is already understood to be true, ignored results that they had proved and 
made conjectures that contradicted those results. For that reason, I added a collec-
tion of (sometimes explicitly, sometimes tacitly) proof-related problems to the 
problem course. One year I began with a simple question: “Can anyone tell me how 
to bisect an angle, using a straightedge and compass?” A student quickly responded 
with the standard construction: (1) draw an arc from the vertex V that crosses both 
sides of the angle, at points P and Q; and (2) draw intersecting arcs of equal length 
from P and Q. Call that point of intersection R. The line from V to R bisects angle 
PVQ. See Fig. 29.6.

I then asked why the construction worked. There was silence at first, and then 
they got to work. A minute or two later, a student announced that if you drew in the 
line segments PR and QR, you could argue the following: PV and QV are equal 
because they are radii of the circle with V at the center; the compass had been kept 
at the same setting when creating the arcs with centers at P and Q, so PR = QR; and 
VR equals itself. Thus triangle PVR is congruent to triangle QVR. As correspond-
ing parts of congruent triangles, angle PVR equals angle QVR. See Fig. 29.7.

I next asked if the students knew how to inscribe a circle in a triangle. Here too, 
someone remembered that the center of the desired circle lay at the intersection of 
the three angle bisectors. I asked why that construction worked. It took a bit longer, 
but before long a student produced a proof that the altitudes of the triangles drawn 
from the point of intersection of the three angle bisectors (the points of tangency of 
the inscribed circle) were all equal. At that point, a student asked, “Are you trying 
to tell us that proof is actually good for something?”

I said “yes, but telling you isn’t enough. You have to experience it.” At that point, 
we began to work the construction problems in Chapter 1 of Pólya’s (1962/65) 
Mathematical Discovery. Once the students found, repeatedly, that deriving an 
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Fig. 29.6 The standard 
construction for bisecting 
an angle

Fig. 29.7 A proof that the construction in Fig. 29.6 bisects angle V

intermediary result helped them solve a construction problem, they came to see 
proof as a generative tool.

The literature is replete with descriptions of counterproductive student beliefs. 
As Lampert wrote,

Commonly, mathematics is associated with certainty; knowing it, with being able to get the 
right answer, quickly. These cultural assumptions are shaped by school experience, in 
which doing mathematics means following the rules laid down by the teacher; knowing 
mathematics means remembering and applying the correct rule when the teacher asks a 
question; and mathematical truth is determined when the answer is ratified by the teacher. 
Beliefs about how to do mathematics and what it means to know it in school are acquired 
through years of watching, listening, and practicing. (Lampert, 1990, p. 31)

As in the case of proving described above, my problem sets and my pedagogy are 
aimed explicitly at countering such beliefs. They do so first by providing students 
with enough lived experiences to provide the underpinnings of belief change. 
(Beliefs develop over time, as a function of experience; they must be modified in the 
same way.) In addition, I make my intentions and reflections explicit, because the 
lessons learned from experience are more likely to take hold if they are made explicit 
and reflected upon. Here are some sample beliefs and the problems/actions I take to 
address them:

• “All problems can be solved in 5 min or less.” We work on problems for days 
and weeks.
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“Mathematics is about learning to solve problems by using methods you have just been 
taught.” We work on problems in a variety of ways – and we generate new problems. The 
goal is for the students to experience mathematics as a generative activity. (See the two sec-
tions that follow.)

• “Compelling patterns are enough to be convincing; the proof is just a game math-
ematicians play.” We build up the habit of looking for patterns as a heuristic 
activity (à la Pólya, “let us teach guessing”) … but then I throw them a curve. 
After a bunch of problems for which the (provable) answer is 2n, I give them this 
problem:

Suppose you pick 21 points on the boundary of a circle. You then draw all of the line seg-
ments that connect pairs of those points. If the points have been chosen so that no three of 
the segments intersect at the same point (that is, the circle is divided into the maximum 
possible number of regions), how many regions is the circle divided?

Additional examples are given in the following sections. The point is that, above 
and beyond “problem solving,” the problems, their discussions, and the norms we 
cultivate in the classroom are all in the service of thinking mathematically.

29.5  Problems that Invite Multiple Solutions, an Antidote 
to “Answer Getting”

One of the problems I offer for discussion early in the course is this:

Take any three-digit number and write it down twice, to make a six-digit number. (For 
example, the three-digit number 789 gives us the six-digit number 789,789.) I’ll bet you 
$1.00 that the six-digit number you've just written down can be divided by 7, without leav-
ing a remainder.

OK, so I was lucky. Here’s a chance to make your money back, and then some. Take the 
quotient that resulted from the division you just performed. I'll bet you $5.00 that quotient 
can be divided by 11, without leaving a remainder.

OK, OK, so I was very lucky. Now you can clean up. I’ll bet you $25.00 that the quotient 
of the division by 11 can be divided by 13, without leaving a remainder.

Well, you can’t win ‘em all. But, you don’t have to pay me if you can explain why 
this works.

One way to approach the problem is to note that dividing sequentially by 7, 11, and 
13 is equivalent to dividing by their product – and

 7 11 13 1001� � � .  

If you multiply the 3-digit number abc by 1001, you get abc, abc. Working 
backwards,

 abc abc abc, / 1001 = .  
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An alternative route is to notice that the final quotient, after dividing by 7, 11, and 
13,is the original number, 789. So,

 789 789 789 789 789 789 1001, / ; , /x x= = = .  

Another way is to say the number out loud:

 

sevenhundredeighty nine thousandandsevenhundredeighty nine� �
� 7789 1000 789 789 1000 1� � � � �� �.

 

A fourth is to ask what the number abc, abc actually means. When students are 
reminded to think about what base 10 notation stands for, they write out the 
expression

 abc abc a b c a b c, , ,� � � � � �100 000 10 000 1000 100 10 ,  

which they can factor as 1001(100a + 10b + c) = 1001(abc).
Each of these methods can be abstracted as a heuristic strategy. We discuss work-

ing forward, working backward, exploring representations, looking for patterns, and 
so on as various solutions emerge. In that sense, this problem fits my heuristic 
agenda. My favorite solution to the problem came from a graduating senior. An 
English major, she told me at the beginning of the course she told me that she had 
never liked or done well at math, and she was “giving it one last chance.” After the 
class had generated the solutions discussed above, she raised her hand and said “I 
found a different solution.” When I asked her, she went to the board and said,

I didn’t know what to do when I first looked at the problem, but I remembered a strategy 
we’d used on some other problems – if you don’t know what to do, try some simple num-
bers and look for a pattern. The simplest 3-digit number is 001, and when I wrote 001,001 and 
did the divisions I saw that

 001 001 7 11 13, .� � � Then  

 002 002 2 7 11 13, ,� � � � and  

 003 003 3 7 11 13, ,� � � � soIgot the pattern.  

She was proud of herself, even more so when I told her that I’d never seen that par-
ticular approach to the problem. She was energized and did well in the course.

Why work this problem so many ways? Because the goal is not to get an answer 
or solve a particular problem, but to perceive mathematical structure, and to make 
connections. Insights into the underlying structures might help develop deeper 
understanding of other mathematical situations. Moreover, one never knows which 
of the many approaches that unlock a particular problem may turn out to be useful 
in other situations (Problems we work on later in the semester use some of the mul-
tiple methods developed when solving earlier problems).
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29.6  Transfer of Authority: Who Determines What’s True?

In most mathematics courses the teacher is the sole arbiter of mathematical correct-
ness. As Hugh Burkhardt summarizes it, “the students propose; the teacher dis-
poses.” At some point in the development of a mathematical career that has to 
change. Budding mathematicians come to internalize the standards of the discipline, 
learning to judge the correctness of arguments before they submit them for publica-
tion (A mathematician who submitted manuscripts in the hope that reviewers would 
determine their correctness wouldn’t last very long!). Thus, the pedagogy of learn-
ing to think mathematically includes helping students come to understand that they 
themselves can, most of the time, determine whether or not their arguments are 
correct. That means helping students learn the sequence described by Mason et al. 
(1982) as “convince yourself, convince a friend, convince a skeptic.” The problems 
do make a difference, however. Mathematically rich problems offer many pathways 
toward solutions and many ways to go astray.

Early in my problem-solving courses students will come to the board to present 
their work on a problem and look directly at me for affirmation. I deflect them, say-
ing that it’s the class’s responsibility to question what they’ve done. After some 
time, this becomes a ritual: after finishing up at the board a student will turn to the 
class and say “OK, do you buy it?” With some training, the class becomes pretty 
good at determining whether an argument holds water. (I’m always there to do extra 
problematizing if need be.)

My favorite example, described in Schoenfeld (2012), is the concrete wheel 
problem:

You are sitting in a room at ground level, facing a floor-to-ceiling window which is twenty 
feet square. A solid concrete wheel, 100 miles in diameter, is rolling down the street and is 
about to pass right in front of the window, from left to right. The center of the wheel is mov-
ing right at 100 miles per hour. What does the view look like from inside the room as the 
wheel passes by?

I will leave the solution to the reader – it’s too good a problem to spoil. One of the 
things that’s nice about the problem is that intuitions about what one would see 
under these circumstances vary. The wheel is moving really fast. Will the room 
darken almost instantaneously? Or, will it darken slowly? How long will it stay 
dark? What will the darkening look like – will it be like a curtain being pulled down, 
or will the darkness proceed from the upper left corner to the lower right corner, 
followed by lightness from the lower left to the upper right?

One year one group of students argued for a particular conjecture, while another 
group argued for a different conjecture. The argument got somewhat heated, with 
the rest of the class actively following the discussion. When one group prevailed, I 
moved to tie things up: “OK, shall I try to pull things together?” A student said 
“Don’t bother. We got it.” This was, I think, an important sign of the students’ devel-
oping mathematical authority.
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29.7  Problems that Are Generative: And a Bonus, 
for Developing a Sense of Mathematical Initiative

One of my first-day problems asks students to fill in a 3 × 3 magic square – a task 
that can be done by trial and error in five minutes or so. This “easy on-ramp” is one 
of the reasons I like the problem – all students experience success. I typically ask for 
a volunteer to present a solution. After they do, I ask if we’re done. The class always 
says “yes.” I respond, “No, we’re not. We’ve only found one solution.” We work 
through various approaches. Considering subgoals, for example, what number goes 
in the middle square? Or, what might the sum of each row, column, and diagonal, 
which we call the “magic number,” be? We find solutions by working backwards (a 
method that allows you to find the magic number, which turns out to be 15), work-
ing forwards (listing all combinations that add up to 15), and exploiting symmetry. 
At that point, we have a fair number of different solutions. We’ve shown that there 
is no need for guesswork and that, save for symmetry, there is only one solution. At 
that point, I ask if we’re done. Once again, the class says “yes.” My answer, once 
again, is “No, we’re not. To this point, you’ve only solved the problem I gave you to 
solve. If that’s all mathematicians did, the field would never progress. The question 
now is, can we do something new and interesting grounded in what we’ve done? 
What kinds of questions can we ask?

In years gone by I’ve seeded the conversation by asking, “what about a magic 
square with the numbers 2 through 10? Or 2, 4, 6, 8, …, 18?” The class has noted 
that adding any constant to each cell of the 3 × 3 magic square leads to a magic 
square, as does multiplying each cell by a constant. So, if M is the original 3 × 3 
magic square (considered as a matrix), then aM + b is also a magic square. That 
leads to the question, is every 3 × 3 magic square of the form aM+b (modulo sym-
metry)? When we first pondered that question, we were no longer “problem solv-
ing” or “problem posing”; we were simply doing mathematics.

Indeed, students come to recognize this as a design feature of the course. A few 
weeks into the course one year, I once again asked “are we done” after we had 
solved a problem. In mock dismay, a student threw his hands up in the air and cried 
“we’re never done!” Some weeks later he asked in all seriousness why I wasn’t ask-
ing “Are we done?” anymore. I answered that I didn’t need to. The norms of inquiry 
had been established, and we were acting as a mathematical community.

29.8  This Year and the Years to Come

Through the years my problem-solving course has evolved as a function of who the 
students are and my perceptions of what would serve them best. As has been clear 
from this narrative, those perceptions evolve as my understandings of mathematical 
thinking and of the understandings that my students bring to the course grow 
and change.
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Recent events have caused me, once again, to reflect on the goals of mathematics 
instruction. These thoughts are still in the formulation; I have been able to act on 
some of them, and some ideas are still prospective. The issue for me at the moment 
is, in what ways should people be able to use their mathematical understandings? In 
the context of my problem-solving courses, what are the implications for problems, 
problem-solving, and my pedagogy? I understand that these questions do not have 
unique answers, given students’ varied desires and needs. I do think, however, that 
what follows applies to all students.

Both in my life as a private citizen and in my capacity as a member of a commit-
tee setting COVID-related safety policies for a residential program (see Schoenfeld, 
2020, 2021), I have found myself wrestling with consequential “real world” prob-
lems. What policies with regard to masking, vaccination, social distancing and 
travel seem appropriate for our resident population? In another more personal set of 
issues, as someone with adult onset diabetes, I have been keeping track of my blood 
sugar levels for more than 20 years. Different foods affect one’s blood sugar levels 
in different ways; the goal is to have a regimen of medicines, diet, and exercise that 
keeps blood sugar levels within safe bounds.

Without going into detail, I’ll note that there was a practical need to take on the 
challenge of making COVID policy decisions. The policy climate in the US was 
such that government recommendations were not necessarily trustworthy or consis-
tent (there were examples of federal policy changes within a few weeks’ time when 
no new data had emerged to warrant a policy shift) and the residential program fell 
into a regulatory gap. We were on our own.

One might ask what positions me to be making COVID policy (as part of a team 
that includes a physician)? I’m not biologically savvy, so I certainly can’t be work-
ing at a level of biological mechanism. But I can build simple mathematical models. 
And, while policy recommendations from federal agencies may be questionable at 
times, those recommendations cite the papers from which the recommendations 
were developed. Thus I can get information for those models without knowing the 
details of the biology. To give you one concrete example, here is a question I posed 
as I was trying to understand the aerosol dispersion of COVID particles.

Recently, I found my nose irritated by the cigarette smoke produced by a smoker who was 
across the street. If that aerosol irritant could bother me at a distance of 30 feet, why is 6 feet 
of physical distancing considered safe for COVID?

You can find my resolution of the dilemma in Schoenfeld (2021). The resolution 
depends on determining two things: particle size and the density of particles expelled 
into the air. Once you have this information for cigarette smoke and COVID-infected 
molecules, the rest follows. Similarly, the same considerations explain the efficacy 
of masking. Vaccination data are compelling; you don’t need to know the underly-
ing science to draw conclusions about their efficacy.

Similarly, dietitians’ recommendations with regard to food intake tend to be cat-
egorical (“avoid or limit rice and pasta intake”) while one’s reactions to white or 
brown rice, or different pasta dishes, can differ substantially. More consequentially, 
different medications for diabetes treatments have limited dosage options (10 or 
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25 mg in one case, multiples of 10 mg in another) and there are no impact data (that 
is, what dosages are likely to produce what reductions in blood sugar levels). So, 
when doctors and patients begin a new dietary regimen, they have to proceed empir-
ically. At a coarse-grained level, doctors rely on a test called Hb1Ac (glycated 
hemoglobin) which, in rough terms, indicates a person’s average blood sugar level 
over the past month – it’s the average levels that turn out to be problematic. HbA1c 
results are supplemented by daily blood sugar readings, which indicate immediate 
sugar levels and point to possible problems. When I was diagnosed with diabetes I 
started simple logs of my daily sugar levels. I quickly learned to distinguish the 
impacts of different rice and pasta dishes (more detail than dietitians’ generic infor-
mation could provide), and following the data allowed me to select foods that 
enabled me to eat happily and well. I won a bet with my doctor, with the data show-
ing that moderate wine consumption was good for my blood sugar levels. She won 
a return challenge, which showed this reluctant exerciser that a daily walk improved 
his blood sugar levels. I now enjoy my daily walk up the Berkeley hills, my wine 
with dinner, and the knowledge that they’re both good for me. And, my doctor and 
I navigated the change of medicines smoothly, learning in the process that the 
impact of one medicine was not proportional to dosage (see Schoenfeld, 2021 for 
more detail).

What positioned me to do these things? Not my scientific knowledge; I relied on 
my ability to search the web and triangulate results to find the information I needed. 
Not my mathematical knowledge, beyond the basics that any high school graduate 
would have. What made the difference was my sense of initiative – the sense of 
personal agency that enabled me to say “let me see if I can build a simple mathemat-
ical model of the situation.” Where the vast majority of people would defer to exter-
nal expertise (if it existed) and its limitations, I felt personally empowered enough 
to look into these issues on my own, using only the web and some simple mathemat-
ical tools.

Why is it that the vast majority of people would not step outside the bounds of 
their school knowledge to address such consequential matters? I would argue that 
this happens because of a particular form of learned helplessness  – one that is 
learned in school. In traditional schooling, students are taught content and methods 
that are organized to solve classes of problems. The unspoken didactical contract 
between teacher and students is that the tasks students will be asked to work on will 
closely resemble the tasks students have been taught to deal with and that when the 
students perform adequately on those tasks, they will be declared proficient. This is, 
for all intents and purposes, an inward-looking and essentially closed system. The 
lesson students learn from it is that their knowledge is limited to what they have 
been taught.

My problem-solving courses have always tried to address this issue, at least in 
part. The very idea of heuristic strategies is that they help one approach problems 
that one has not been taught to solve. More broadly, as I have outlined in this chap-
ter, my goal has consistently been to provide my students with opportunities to do 
mathematics and to develop productive mathematical habits of mind. The very 
notion that “we’re never done” is deeply embedded into the pedagogy of my 
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problem-solving courses. But my concern goes beyond this, in that the goal is to 
have students feel that it is natural to be asking questions, and to be pursuing math-
ematical leads that seem interesting – whether or not those leads pan out in the end. 
Those thoughts have been in my mind, and they did make their way into this year’s 
instruction.

The immediate context is that I have been teaching my graduate course on math-
ematical thinking and problem-solving this semester. The students all have solid 
mathematical backgrounds, although their interests vary: some intend to be mathe-
matics education researchers, some science educators, and some specializing in 
policy and measurement. On average the class spends an hour or so each week 
working on problems. The rest of the time is spent reading, discussing the literature, 
and working on course projects.

I am about to describe a somewhat meandering classroom conversation that 
occurred a few weeks into the class.

As in previous years, the class and I worked through the problem of the 3 × 3 
magic square. But, mindful of the need to be more exploratory, I looked for oppor-
tunities to highlight and support opportunities for branching out. At the beginning 
of the class following the class in which we had obtained a number of solutions to 
the problem, I provided a recap to lay the groundwork for our continued discus-
sions. The recap described the highlights of the previous discussion, including the 
fact that the “magic number,” the sum of each row, column, and diagonal, must be 
divisible by 3 (This was part of our derivation of the magic number for the original 
magic square, which is (1/3)(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 15). This was fol-
lowed by an open invitation: “So now the question is, what do we do that’s mathe-
matically interesting? There’s the question of generativity. What kinds of interesting 
questions can we ask at this point?” The conversation described below lasted about 
a half hour.

Two suggestions were offered. One was that we might explore 4 × 4, 5 × 5, or 
n × n magic squares. A second was “Can we use different numbers? Maybe higher 
numbers, or even numbers, or something?” I suggested we look at 2 through 10, 
after which one student said “the sum has to be divisible by 3, right?” I check that 
the sum from 2 through 10 is 54, which is divisible by 3. At that point, I say, “But 
suppose we wanted to cheat, what’s the easiest way to use the digits 2 through 10?” 
A student responds, “Oh yeah, you can add … oh you can add a constant to the 
whole thing and it works.” I elaborate, noting that if you add C to each cell in the 
original 3 x 3 magic square, the sum of each row, column, and diagonal is 15 + 3C.

A student then asks, “Is this kind of a proof that the sum of 9 consecutive num-
bers is divisible by 3?” I point out that that’s a separate conjecture, and write this on 
the board:

Is the sum of 9 consecutive numbers divisible by 3?

One student says “I think the sum of every 3 consecutive integers is divisible by 3, 
so the sum of 9 numbers would actually be divisible by 3.” I move to unpack the 
argument: The straightforward way to do the sum of 3 numbers is to write them as 
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a, (a + 1),and (a + 2); the sum is 3a + 3, which has a factor of 3. What’s the clever 
way?” The same student responds, “a − 1, a, a + 1 = 3a. ”

I elaborate: if you “start with the number in the middle being called a, then you 
get the three numbers are a − 1, a, and a + 1, and when you add them together you 
get the 3a directly. Now that’s just a little bit of tweaking that makes a difference in 
terms of representation that makes where you want to go a little bit more easy.” A 
student completes the argument by noting that each triad of the 9 consecutive inte-
gers is thus divisible by 3, so the sum is. As usual (the class is accustomed to doing 
things algebraically), I proceed by noting that we could write the nine numbers as a 
through a + 8, whose sum is 9a + 36. I continue, “Or, you get sneaky, and you don’t 
have to figure out the sum from 1 to 8, because if you call the middle one a, the 
numbers go from [at this point there is some choral support from the class] a − 4 to 
a + 4. Those all balance out… and you get 9a.”

The student who originally conjectured divisibility by 3 notes that if the number 
of consecutive terms is divisible by 3, then the sum will be – each set of 3 terms is 
divisible by 3. I then noted, “OK, but you’re moving towards another generalization. 
The sum of 3 consecutive numbers turned out to be divisible by 3. The sum of 9 
consecutive numbers turned out to be divisible not just by 3 but by 9. Hmmm…”.

A slightly jumbled exchange ensued. The student who had conjectured divisibil-
ity by 3 earlier said, “Whenever you have any consecutive sum, where it’s divided 
like that (pointing to the symmetric distribution on the board) then everything will 
cancel out, so if the number of summands has a factor divisible by 3 then the whole 
thing will always be divisible by 3.” I say, “By 3?” and the student says “By N.” I 
start writing on the board as I say,

Yeah, say you’ve got 5 consecutive integers, just call the middle one x, then they 
balance out, there’s an x − 1 and an x − 2, and an x + 1 and an x + 2… (see Fig. 29.8)

And that (I point to the x − 2 and x + 2) gives you 2x; that (I point to the x − 1 
and x + 1) gives you 2x; that (I point to the x in the middle) gives you an x, so it’s 5x.

A second student says, “Does it always work for odd numbers?”
I respond, “Well, that’s what we have so far. The sum of N consecutive integers, 

where N is an odd number, is always divisible by N. But what does that say about 
even numbers?”

A number of students start to respond, but they wind up stopping half-way 
through what they were saying when they realize there is no “middle number” from 
which to make the same symmetry argument they were able to make when there 
was an odd number of summands.

I editorialize, “Have you noticed, by the way, that we’ve shifted to doing math-
ematics? You’re no longer doing the problem that I gave you but we’re doing exactly 
what we’re supposed to do, which is that interesting thoughts lead to interesting 

Fig. 29.8 Any five 
consecutive integers are 
“balanced” around the 
number in the middle
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thoughts lead to… doing real mathematics. We’re off in the space of conjecture, that 
builds off the thing that we started with.”

Another student says, “I’m starting to think about even numbers. Would it be 
divisible by n + 1 if n is even?” I ask, “What do we do in the case of a conjecture 
like that?” and she responds, “Try a few cases.”

We look at 1 + 2 = 3, which is divisible by 3. But 2 + 3 = 5, which is not. So the 
student’s is not true. Another student says, “but it will always be odd.”

After a long pause, I say, “well, a straightforward formula works for odd, but not 
for even… This sounds like something to leave for next week.” The students laugh.

The following week I recapped what I described above and invited the students 
to jump back into exploring. I noted that if N was odd, the sum of N consecutive 
numbers was divisible by N, but that the same did not hold when n was even; in fact, 
the sum of two consecutive integers was always odd. One student mused that we 
might not be able to get any even numbers as a sum; we certainly couldn’t get 2, and 
4 didn’t work. That was quickly put to the empirical test, and it failed:

 1 2 3 6 1 2 3 4 10� � � � � � �,and  

But we were unable to obtain 8; the conjecture was modified to, “no power of 2 can 
be obtained as a sum of 2 or more consecutive integers.” That begged to be proven 
but was also incomplete. We were able to get 6 = 2 × 3 and 10 = 2 × 5; what could 
we get? With this set of questions, the class was off and running. Someone conjec-
tured that we could get every integer that was twice an odd number. I called a break, 
but the students worked right through the break. We turned to something else, but 
the class’s e-conversation between in-person meetings was especially animated, and 
the class continued on its own initiative until we had a complete solution to the 
problem, “which integers and be expressed as the sum of two or more consecutive 
integers, and in how many ways can they be expressed as such a sum?”

That was a long and meandering example because our conversations were long 
and meandering. Let me take stock and bring things to a close.

The “consecutive sums” problem is well known. In fact, it’s one of the problems 
I planned to assign the students later in the semester. It’s fair to ask, “why to spend 
all that time wandering in the mathematical wilderness when you could have simply 
posed the problem, and perhaps even led students directly to a solution?” My 
response has to do with the issues of students taking mathematical initiative. There 
is no question that I helped to steer the conversations into mathematically produc-
tive directions, but I did so with an exceptionally light touch. Students made conjec-
tures; they tested them; they built on what they did; they engaged in the messiness 
of mathematical creation, with all of the false starts that bedevil professional math-
ematicians when they engage in mathematics. And, they cared. They persevered 
because they cared, and they owned the mathematics that they produced. Moreover, 
they learned that they can think outside the curricular box. They learned that when 
issues are of interest to them, they can pursue those issues using what they know, 
even if they haven’t been taught how to address them.

A. H. Schoenfeld
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29.9  Concluding Thoughts

Let me return to the metaphor of problems as raw materials. Good problems and 
good problem collections are rare and wonderful things. I spent a year in the 
Berkeley library reading problem books before I taught the first version of my 
problem- solving course in the late 1970s. Of the tens of thousands of problems I 
examined, I found perhaps 100 that I thought merited students’ attention. (By that I 
mean problems that are really worth working on and that students can learn valuable 
things from. My “problem aesthetic” is described in Schoenfeld, 2020). So, I value 
good problems immensely.

At the same time, problems can be used or abused, just as a piece of music can 
be played beautifully or badly. Wonderful raw materials can be put to good use, or 
they can be poorly used. What matters is how students engage in the problems. 
That’s where pedagogy – more broadly, the creation of a learning environment in 
which students engage in powerful ways with mathematics – really matters.

As I hope this chapter makes clear, my thoughts on what makes for productive 
learning environments are very much a work in progress. In general terms, I have 
described the attributes of such learning environments in the Teaching for Robust 
Understanding (TRU) framework (see, e.g., Schoenfeld & the Teaching for Robust 
Understanding Project, 2016, and https://truframework.org/. In “real time,” my 
problem-solving courses evolve as my understanding of what it means to think pro-
ductively with mathematics evolves. Through the years the goals of the course have 
expanded to include various aspects of mathematical thinking such as heuristic 
strategies, metacognition, the development of productive mathematical belief sys-
tems, and powerful mathematical practices and habits of mind. They include stu-
dents’ development of a sense of mathematical initiative and agency and more 
generally powerful mathematical identities. I will, in the coming years, be grappling 
with questions of how to make such competencies more outward-facing, so that 
students will have the predilections and understandings that will enable them to use 
what they know more readily in contexts that matter in their personal lives.
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