
IMITAL: Learned Active Learning
Strategy on Synthetic Data

Julius Gonsior1(B) , Maik Thiele2 , and Wolfgang Lehner1

1 Technische Universität Dresden, Dresden, Germany
{julius.gonsior,wolfgang.lehner}@tu-dresden.de

2 Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany
maik.thiele@htw-dresden.de

Abstract. Active Learning (AL) is a well-known standard method for
efficiently obtaining annotated data by first labeling the samples that
contain the most information based on a query strategy. In the past, a
large variety of such query strategies has been proposed, with each gener-
ation of new strategies increasing the runtime and adding more complex-
ity. However, to the best of our knowledge, none of these strategies excels
consistently over a large number of datasets from different application
domains. Basically, most of the existing AL strategies are a combina-
tion of the two simple heuristics informativeness and representativeness,
and the big differences lie in the combination of the often conflicting
heuristics. Within this paper, we propose ImitAL, a domain-independent
novel query strategy, which encodes AL as a learning-to-rank problem
and learns an optimal combination between both heuristics. We train
ImitAL on large-scale simulated AL runs on purely synthetic datasets.
To show that ImitAL was successfully trained, we perform an extensive
evaluation comparing our strategy on 13 different datasets, from a wide
range of domains, with 7 other query strategies.

Keywords: Annotation · Active learning · Imitation learning ·
Learning to rank

1 Introduction

Machine Learning (ML) has found applications across a wide range of domains
and impacts (implicitly) nearly every aspect of nowaday’s life. Still, one of the
most limiting factors of successful application of ML is the absence of labels
for a training set. Usually, domain experts that are rare and costly are required
to obtain a labeled dataset. Thus, to improve the manual label task is a prime
object to improve. For example, the average cost for the common label task of
segmenting a single image reliably is 6,40 USD1.

Reducing the amount of necessary human input into the process of generating
labeled training sets is of utmost importance to make ML projects possible and
1 According to scale.ai as of December 2021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 47–56, 2022.
https://doi.org/10.1007/978-3-031-18840-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_4&domain=pdf
https://orcid.org/0000-0002-5985-4348
https://orcid.org/0000-0002-1665-977X
http://orcid.org/0000-0001-8107-2775
https://doi.org/10.1007/978-3-031-18840-4_4

48 J. Gonsior et al.

Fig. 1. General overview on the training procedure of ImitAL

scalable. A standard approach to reduce the number of required labels without
compromising the quality of the trained ML model, is to exploit Active Learning
(AL). The approach consists of an iterative process of selecting exactly those
unlabeled samples for labeling by the domain experts that benefit the to-be
trained model the most. Given a small initial labeled dataset L = {(xi, yi)}n

i

of n samples xi with the respective labels yi and a large unlabeled pool U =
{xi}, xi �∈ L, an ML model called learner θ is trained on the labeled set. A query
strategy then subsequently chooses a batch of b unlabeled samples Q, which will
be labeled by the human experts and added to the set of labeled data L. This
AL cycle repeats τ times until a stopping criterion is met.

The challenge of applying AL is the almost paradoxical problem to be solved:
how to decide, which samples are most beneficial to the ML model, without
knowing the label of the samples, since this is exactly the task to be learned by
the to-be-trained ML model.

During the past years, many different AL query strategies have been pro-
posed, but to our knowledge, none excels consistently over a large number of
datasets and from different application domains. By deliberately focusing on
domain-independent AL strategies we aim to shed some light onto this problem.
Even though various extensive general survey papers [14,15,20] exist, no clearly
superior AL strategy has been identified. The results of the individual evalu-
ations in papers with newly proposed AL strategies suggest that current AL
strategies highly depend on the underlying dataset domain. Even more interest-
ingly, the näıve baseline of randomly selecting samples often achieves surprisingly
competitive results [7,9,11,13].

At its core, the vast majority of AL strategies rely on the same set of two sim-
ple heuristics: informativeness and representativeness. The first favors samples
that foremost improve the classification model, whereas the latter favors samples
that represent the overall sample distribution in the feature vector space. Most
recent AL strategies add more layers of complexity on top of the two heuristics
in their purest form, often resulting in excessive runtimes. This renders many AL
strategies unusable in large-scale and interactively operating labeling projects,
which are exactly those projects that would benefit the most from “optimal”
learning strategies.

ImitAL 49

We are presenting ImitAL, a novel AL strategy, which at its core is a Neural
Network (NN) trained on very large simulated AL episodes with the goal to opti-
mally combine the basic AL heuristics informativeness and representativeness.
As it is not practically feasible to enumerate all possible real-world datasets as
training data in the simulations, we are approximating them by using synthetic
datasets instead. The benefit of synthetic datasets is that we can leverage the
knowledge about all the labels to construct an optimal AL strategy, which then
serves as training basis for ImitAL. Our work falls therefore under the category of
“learning AL strategies”. According to our knowledge, our approach is, in contrast
to similar works [9,11,13], the first one to solely utilize purely synthetical data to
train the strategy. We can present a pre-trained, ready-to-apply AL strategy which
can be applied without any further necessary transfer-learning or fine-tuning in
any domain.

We start in Sect. 2 by presenting our synthetic datasets simulation process,
followed by our Imitation Learning (IL) procedure in Sect. 3. In Sect. 4, we are
comparing ImitAL with 7 common AL strategies on 13 real-world datasets and
conclude in Sect. 5.

2 Simulating AL on Synthetic Training Data

For the IL training procedure of ImitAL we need an expert AL strategy, which
the neural network behind ImitAL can learn to imitate. In order to capture the
characteristics of “all” possible datasets we pursue the idea by generating initially
nearly “infinite” synthetic datasets2 and computing an optimal AL strategy on
them, leveraging the information about the known full labels for the synthetic
datasets.

We construct the nearly-optimal strategy by selecting a batch of those sam-
ples for labeling, which will result in the highest accuracy (in the following called
reward), if they each were added to the set of labeled samples L. As this process
is computationally heavy, we do not consider all possible batches, but perform
a pre-selection based on a heuristic, which selects a promising and diverse set of
the top-k batches. Details of the pre-selection are explained in Sect. 3.

The results of the AL simulation for each AL cycle t for a specific synthetic
dataset is a state-action-reward triple. The state s is represented as a triple
s = (U t,Lt, θt), consisting of the set of unlabeled samples U t, the set of labeled
samples Lt, and the state of the learner model θt trained on Lt. The corre-
sponding actions as is a set of the pre-selected queries x, whereas the respective
rewards rs for each of these actions is a set of rewards r. The optimal choice
Qt

s ∈ as for the AL cycle t can be easily computed from the given accuracies –
the action with the highest future accuracy. This simulation is repeated α-times
using different synthetic datasets. The accumulated state-action-reward pairs,
denoted as the triple (S,A,R), reflect then the input for IL training procedure
2 For generating the synthetic datasets the algorithm by [4], which is a runtime effi-

cient method for creating a diverse range of synthetic datasets of varying shape and
resulting classification hardness, is used.

50 J. Gonsior et al.

of the NN of ImitAL. The whole synthetic data training generation and training
of ImitAL has to be done only once, afterwards it is applicable to real-world
datasets without any further transfer learning or fine-tuning steps.

3 Training a Neural Network by Imitation Learning

The final step of ImitAL is to use the generated state-action-reward triples
(S,A,R) for training an NN as AL query strategy. Therefore, we are deploying
the ML technique IL [12], where demonstrated expert actions are being repli-
cated by the ML model. The training task for ImitAL is to find patterns in the
presented actions.

Subsequently (Sect. 3.1) we will first explain the IL learning process, followed
by the details of the NN input and output encoding (Sect. 3.2), and lastly, the
necessary pre-selection process (Sect. 3.3).

3.1 Imitation Learning

For training ImitAL we use Imitation Learning (IL), where an expert demon-
strates an optimal strategy, which the neural network behind ImitAL learns to
replicate. We use behavioral cloning [12] as a variant of IL, which reduces IL
to a regular regression ML problem. The desired outcome is a trained strategy
returning the optimal action for a given state. We use the state-action-reward
set (S,A,R) to extract an optimal strategy π̂, which we are then demonstrating
to the to-be-trained network π̂(s) = argmaxx∈as,rx∈rs

(rx). For a given state s,
the action set A contains all pre-selected actions as for this state; the reward
set R contains the respective rewards rs. As the optimal strategy only contains
the optimal actions, it can be used to construct the optimal batch by taking the
b-highest actions. In other words: we train a network π̂ predicting for a given
state s and a possible action x ∈ as – which equals labeling the sample repre-
sented by this action – the reward rx ∈ rs. The expected future accuracy is in
our case demonstrated by the true reward ṙ function as ṙ(s, x) = rx.

3.2 Neural Network Input and Output Encoding

Before using the state-action-reward set (S,A,R) to train the network predicting
the future accuracy, we first transform it into a fixed sized vector representation
using feature encoding, and thus making ImitAL dataset agnostic. NNs are
limited by the number of the neurons to either a fixed size input, or when using
recurrent NN to circumvent this limitation, they often suffer from the case of
memory loss where the beginning of the input sequence is forgotten due to
exploding or vanishing gradients [6]. The last problem occurs more frequently
the larger and more length-varying the input is, which is the case for AL. The
raw actions set A may then contain – depending on the number of unlabeled
samples – many possible samples, or just a few, varying again drastically. That

ImitAL 51

Fig. 2. Pre-selection process and action meaning for ImitAL, example for j = 4, k =
6, and b = 3, and encoding of a state-action-triple

underpins the already mentioned pre-selection method, reducing the number of
possible actions to a fixed size.

The transformation of the state-action-reward set into a suitable form for
the network is called input and output encoding. Figure 2 displays the general
procedure of the encoding to the right. We chose a listwise input encoding, where
we enter k possible actions x ∈ as, |as| = k at once into the network, in contrast
to a pointwise encoding, where a single action is entered at a time. This has
the benefit of enabling the network to compare each possible action relatively
to the others, enabling ImitAL to take batch-aware AL query decisions. Batch-
awareness is, as thoroughly explained in [8], a beneficial and desirable property
of AL query strategies, meaning that the joint diversity of all samples of the final
AL batch Q is taken into account. The input of the network is defined by the
vector Is = {E(x, s)|x ∈ as}, with E being the encoding of the action x. The
output O = (r̂1, . . . , r̂k) of the network consists of exactly |rs| output neurons,
one for each of the predicted accuracies r̂x for the respective possible actions
x. The amount of output neurons equals therefore the amount of pre-selected
actions: |rs| = |as| = k. We use a final softmax layer of k output neurons, each
per possible action. The b highest output neurons indicate the samples for the
unlabeled query Q.

A single action represents an unlabeled sample x ∈ U . The input
encoding function E(x, s) defines on what basis the network can make the
AL query strategy decision. We use the state s = (U ,L, θ) to calcu-
late the encoding, which is a 5-tuple consisting of multiple parts, the indi-
vidual functions will be explained in the following paragraphs E(x, s) =
(u1(x, θ), u2(x, θ), u3(x, θ), dl(x,L), du(x,U)). The complete network input vec-
tor I consists then of 5-times k values, an encoded 5-tuple for each unlabeled
sample x out of the set of possible actions a Is = {E(x1, s), . . . , E(xk, s)}, x ∈ as

As mentioned in the beginning, a good AL query strategy takes informativeness
as well as representativeness into account. Informativeness is derived by ui(x, θ),
a function computing the uncertainty of the learner θ for the i-th most proba-
ble class for the sample x ∈ U , given the probability of the learner Pθ(y|x) in
classifying x with the label y:

52 J. Gonsior et al.

ui(x, θ) =

{

Pθ

(

(

argmaxy,i Pθ(y|x)
)

∣

∣

∣ x
)

, if i ≤ C

0, otherwise
(1)

argmax ,i denotes the i-th maximum argument, and C the number of classifi-
cation classes.

For representativeness we compute dl(x,L) and du(x,U), the first denot-
ing the average distance to all labeled samples, the latter the average dis-
tance to all unlabeled samples dl(x,L) = 1

|L|
∑

xl∈L d(x, xl), du(x,U) =
1

|U|
∑

xu∈x d(x, xu), where d(x1, x2) is an arbitrary distance metric between the
points x1 and x2. We use the Euclidean distance for small feature vector spaces,
and recommend using the cosine distance for high-dimensional feature vector
space. Both feature encoding functions represent the most raw, unpreprocessed
forms of informativeness and representativeness, as the neural network should
learn necessary transformations of the feature vector space.

3.3 Pre-selection

Instead of considering all possible actions, we pre-select promising actions, whose
individual samples have the largest diversity and whose individual samples are
the furthest away from each other, similar to [8]. The pre-selection fulfills two
objectives: first and foremost, we can present a fixed amount of actions to the
network, and secondly it keeps the runtime of the simulations within a process-
able range. A positive side effect of the fixed-size input of the network is the low
and static runtime of ImitAL, which is almost independent of the size of the
dataset. The effect is especially apparent with very large datasets.

We start the pre-selection by drawing randomly j possible actions
{ã1, . . . , ãj}, with each ã being a subset of U . After that we use a heuristic
to select the top-k most promising actions a out of the random ones. The pre-
selection process is illustrated in Fig. 2 at the left side.

We are using a heuristic to filter out potentially uninteresting actions. By
calculating the average distance to the already labeled samples of all the samples
in each possible action set ã and select the action set a having the highest average
distance: a = argmaxã

∑

x∈ã dl(x,L), where ã contains k unlabeled samples.
Thus, we are ensuring that we sample evenly distributed from each region in the
sample vector space during the training process. We compute the heuristic for j
random possible batches, instead of all possible subsets of U .

4 Evaluation

The goal of ImitAL is to learn a domain-independent AL strategy from syn-
thetic datasets, which combines the strength of both the basic informativeness
and the representativeness heuristics. For evaluation, we are comparing ImitAL
therefore with 7 AL strategies on 13 real-world datasets from varying domains.

ImitAL 53

4.1 Experiment Details

The datasets are from the UCI ML Repository [1] with varying sample size,
feature size, and application domain, similar to the evaluations of [7,9,13]. As
an additional larger dataset the table classification dataset DWTC [2] was also
included. For the experiments we started with a single random sample of each
class, and ran the AL loop with a batch size b of 5 for 25 cycles, or until all
data was labeled. We repeated this for 1,000 times with varying initial labeled
samples to generate statistically stable results. As learner model θ a simple NN
with 2 hidden layers and 100 neurons each was used. The datasets were split
randomly into a 50 % train and 50 % test evaluation set.

As evaluation metric we used the area-under-the-curve (AUC) of the learning
curve, as has been also done recently in the AL survey by Chan et. al. [20].
This makes it easy to calculate the mean of 1,000 times repeated experiments.
Similarly to [5] we are further normalizing the AUC values by the maximum
possible AUC value – a rectangle of 100% F1-Scores for each time step – to
additionally enable comparisons across datasets.

The training of ImitAL is highly parallelizable, as the generation of the syn-
thetic datasets and the respective AL simulation may run completely in parallel.
For a full training of ImitAL with the best parameters we needed 100,000 com-
putation jobs, resulting in a set of 1,000,000 state-action pairs as training data.
In total, ∼1M CPU-hours were needed for all experiments conducted for this
paper, including testing out different NN and IL configurations, and training
the final version of ImitAL. For the final version of ImitAL we set the param-
eter of the simulated AL cycle τ to 10, the pre-sampling parameter k to 20 and
j to 10 during training, and 2 during application, as this suffices for a trained
ImitAL. The batch size was fixed to a standard value of 5 for the used UCI
datasets.

4.2 Comparison with Other Active Learning Strategies

Our evaluation compares 7 AL strategies against our AL strategy, ImitAL.
The results are shown in Table 1. Each displayed value is the mean of F1-AUC
values for the 1,000 repeated runs. As the percentages are often quite similar,
we additionally included the ranks. The displayed percentages are rounded, but
the ranks are computed on the complete numbers, which can lead to different
ranks for otherwise equally rounded displayed percentages.

We included Least Confidence (LC) and Uncertainty Entropy (Ent) [17],
the two most common and basic variants of the informativeness heuristic, where
greedily the most uncertain samples based on the classification probability of the
learner model are selected for labeling. The Graph Density (GD) strategy [3] was
added as a pure representativeness heuristic-based strategy which solely focuses
on sampling evenly from the vector space. BatchBALD [8] is a popular AL
strategy which works well for computer vision deep neural networks. Querying
Informative and Representative Examples (QUIRE) [7] is a computationally

54 J. Gonsior et al.

Table 1. F1-AUC-scores (%) for different AL query strategies, mean for 1,000 repeated
experiments each, including the ranks and the ranked mean. Empty cells indicate no
calculable results within the maximum runtime window of seven days.

ImitAL LC QBC Ent Rand GD BatchBALD QUIRE

abalone 21.2 (2) 19.3 (5) 19.6 (4) 17.8 (6) 21.3 (1) 15.6 (7) 21.1 (3) 11.2 (8)

adult 54.5 (1) 53.5 (4) 54.1 (2) 53.5 (3) 51.8 (5) 47.9 (7) 51.3 (6)

australian 83.9 (1) 83.8 (2) 83.8 (3) 83.8 (2) 83.0 (5) 83.6 (4) 79.8 (6) 71.5 (7)

BREAST 94.0 (3) 94.4 (1) 94.4 (2) 94.4 (1) 92.8 (4) 91.6 (5) 90.9 (6) 84.6 (7)

DWTC 69.3 (1) 65.3 (5) 65.9 (4) 63.4 (6) 67.8 (2) 52.8 (7) 66.1 (3) 50.1 (8)

fertility 88.2 (2) 87.8 (3) 87.7 (4) 87.8 (3) 87.0 (5) 88.2 (1) 86.8 (6) 86.8 (7)

flags 57.5 (1) 55.5 (6) 55.6 (5) 54.7 (7) 55.8 (4) 56.6 (2) 55.9 (3) 43.7 (8)

german 74.5 (2) 74.2 (4) 74.2 (5) 74.2 (4) 74.3 (3) 75.5 (1) 74.1 (6) 71.5 (7)

glass 68.9 (1) 67.6 (2) 67.4 (3) 66.6 (6) 67.3 (4) 66.3 (7) 67.1 (5) 40.6 (8)

heart 79.0 (1) 78.8 (3) 78.8 (5) 78.8 (3) 78.8 (4) 78.9 (2) 78.3 (6) 71.4 (7)

ionos 88.9 (1) 88.6 (2) 88.5 (3) 88.6 (2) 88.0 (5) 88.2 (4) 82.9 (6) 53.5 (7)

wine 95.2 (1) 94.8 (2) 94.6 (4) 94.6 (3) 94.4 (5) 94.3 (6) 93.5 (7) 84.9 (8)

zoo 93.7 (1) 93.3 (2) 92.9 (6) 93.2 (3) 93.1 (4) 92.8 (7) 93.1 (5) 92.7 (8)

mean % 74.5 (1) 73.6 (3) 73.7 (2) 73.2 (5) 73.5 (4) 71.7 (7) 72.4 (6) 58.7 (8)

mean (r) 1.38 3.15 3.85 3.77 3.92 4.62 5.23 7.54

expensive combination of both heuristics, and Query-bycommittee (QBC) [16] a
combination of the uncertainty of multiple learner models [10]3.

ImitAL learns a combination of the two heuristics informativeness and rep-
resentativeness. For the datasets fertility, flag, german, and heart GD is
much better than LC. This is an indication that on these datasets a pure infor-
mativeness heuristic is challenged the most, whereas for the other strategies LC
still seems to be the safest bet as a general-purpose AL strategy. ImitAL suc-
cessfully learned to combine the best of both strategies, which can be especially
seen by the superior performance on the datasets. QBC achieved quite competi-
tive results, but at the cost of almost twice as high running cost than ImitAL
due to the expensive retraining of multiple learner models instead of a single
one. The good results from the original QUIRE and BatchBALD paper could not
be reproduced by us. Additionally, the runtime of QUIRE was so high that not
even one AL experiment finished within seven days. The pre-selection of ImitAL
with our used parameters means that ImitAL always considers a fixed amount
of 40 unlabeled samples during each AL iteration, making it 10 times faster than
even the second fastest LC strategy, which has to consider all unlabeled samples.

We also performed a significance test to prove that ImitAL is not only by
chance but indeed statistically sound better than the competitors. We used a
Wilcoxon signed-rank test [19] with a confidence interval of 95% to calculate
the proportional win/tie/losses between ImitAL and each competing strategy.

3 We used for all strategies the implementations from the open-source AL framework
ALiPy [18].

ImitAL 55

For each of the 1,000 starting points, we took the F1-values of all the 25 AL
iterations4 of the two strategies to compare. Our null hypothesis is that the mean
of both learning curves is identical. If the null hypothesis holds true we count
this experiment repetition as a tie, and otherwise as a win or loss depending on
which strategy performed according to the better mean. Due to lack of space we
are omitting the table with the results of all datasets, but overall, ImitAL won
at least 35% more often compared to each strategy than lost against them. It
also has to be noticed that the majority of the direct comparisons resulted in a
tie with a total amount of 55%.

5 Conclusion

We presented a novel approach of training a universally applicable AL query
strategy on purely synthetic datasets by encoding AL as a listwise learning-
to-rank problem. For training, we chose IL, as it is cheap to generate a huge
amount of training data when relying on synthetic datasets. Our evaluation
showed that ImitAL successfully learned to combine the two basic AL heuristics
informativeness and representativeness by outperforming both heuristics and
other AL strategies over multiple datasets of varying domains. In the future, we
want to include more requirements of large ML projects into the state-encoding
of ImitAL to make it more applicable.

Acknowledgements. This research and development project is funded by the Ger-
man Federal Ministry of Education and Research (BMBF) and the European Social
Funds (ESF) within the “Innovations for Tomorrow’s Production, Services, and Work”
Program (funding number 02L18B561) and implemented by the Project Management
Agency Karlsruhe (PTKA). The author is responsible for the content of this publica-
tion.

The authors are grateful to the Center for Information Services and High Perfor-
mance Computing [Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)]
at TU Dresden for providing its facilities for high throughput calculations.

References

1. Dua, D., Graff, C.: UCI machine learning repository (2017)
2. Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ahmadov, A., Lehner,

W.: Building the Dresden web table corpus: a classification approach, pp. 41–50,
December 2015

3. Ebert, S., Fritz, M., Schiele, B.: Ralf: A reinforced active learning formulation
for object class recognition. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3626–3633 (2012). https://doi.org/10.1109/CVPR.2012.
6248108

4 As the exact p-values of the Wilcoxon signed-rank test are only computed for a sam-
ple size of up to 25, and for greater values an approximate – in our case not existent
– normal distribution has to be assumed, we decided to stop our AL experiments
after 25 iterations.

https://doi.org/10.1109/CVPR.2012.6248108
https://doi.org/10.1109/CVPR.2012.6248108

56 J. Gonsior et al.

4. Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark.
In: NIPS Workshop on Feature Extraction and Feature Selection, vol. 253 (2003)

5. Guyon, I., Cawley, G., Dror, G., Lemaire, V.: Results of the active learning chal-
lenge. J. Mach. Learn. Res. Proc. Track 16, 19–45 (2011)

6. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001)

7. Huang, S.j., Jin, R., Zhou, Z.H.: Active learning by querying informative and rep-
resentative examples. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23,
pp. 892–900. Curran Associates, Inc. (2010)

8. Kirsch, A., v. Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch
acquisition for deep bayesian active learning. In: NIPS, vol. 32, pp. 7026–7037.
Curran Associates, Inc. (2019)

9. Konyushkova, K., Sznitman, R., Fua, P.: Discovering general-purpose active learn-
ing strategies. arXiv preprint arXiv:1810.04114 (2018)

10. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London
(1994). https://doi.org/10.1007/978-1-4471-2099-5 1

11. Liu, M., Buntine, W., Haffari, G.: Learning how to actively learn: a deep imitation
learning approach. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, Melbourne, Australia (Volume 1: Long Papers), pp.
1874–1883. Association for Computational Linguistics, July 2018. https://doi.org/
10.18653/v1/P18-1174

12. Michie, D., Camacho, R.: Building symbolic representations of intuitive real-time
skills from performance data. In: Machine Intelligence, vol. 13, pp. 385–418. Oxford
University Press (1994)

13. Pang, K., Dong, M., Wu, Y., Hospedales, T.: Meta-learning transferable active
learning policies by deep reinforcement learning. arXiv preprint arXiv:1806.04798
(2018)

14. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR)
54(9), 1–40 (2021)

15. Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648 (2010)

16. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, New York, NY,
USA, pp. 287–294. COLT 1992, Association for Computing Machinery (1992).
https://doi.org/10.1145/130385.130417

17. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

18. Tang, Y.P., Li, G.X., Huang, S.J.: ALiPy: active learning in Python. arXiv preprint
arXiv:1901.03802 (2019)

19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

20. Zhan, X., Liu, H., Li, Q., Chan, A.B.: A comparative survey: benchmarking for
pool-based active learning. In: IJCAI, pp. 4679–4686, August 2021. https://doi.
org/10.24963/ijcai.2021/634, survey Track

http://arxiv.org/abs/1810.04114
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.18653/v1/P18-1174
https://doi.org/10.18653/v1/P18-1174
http://arxiv.org/abs/1806.04798
https://doi.org/10.1145/130385.130417
http://arxiv.org/abs/1901.03802
https://doi.org/10.24963/ijcai.2021/634
https://doi.org/10.24963/ijcai.2021/634

	ImitAL: Learned Active Learning Strategy on Synthetic Data
	1 Introduction
	2 Simulating AL on Synthetic Training Data
	3 Training a Neural Network by Imitation Learning
	3.1 Imitation Learning
	3.2 Neural Network Input and Output Encoding
	3.3 Pre-selection

	4 Evaluation
	4.1 Experiment Details
	4.2 Comparison with Other Active Learning Strategies

	5 Conclusion
	References

