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Abstract. A popular approach to model interactions is to represent
them as a network with nodes being the agents and the interactions
being the edges. Interactions are often timestamped, which leads to hav-
ing timestamped edges. Many real-world temporal networks have a recur-
rent or possibly cyclic behaviour. For example, social network activity
may be heightened during certain hours of day. In this paper, our main
interest is to model recurrent activity in such temporal networks. As a
starting point we use stochastic block model, a popular choice for mod-
elling static networks, where nodes are split into R groups. We extend
this model to temporal networks by modelling the edges with a Pois-
son process. We make the parameters of the process dependent on time
by segmenting the time line into K segments. To enforce the recurring
activity we require that only H < K different set of parameters can be
used, that is, several, not necessarily consecutive, segments must share
their parameters. We prove that the searching for optimal blocks and
segmentation is an NP-hard problem. Consequently, we split the prob-
lem into 3 subproblems where we optimize blocks, model parameters,
and segmentation in turn while keeping the remaining structures fixed.
We propose an iterative algorithm that requires O

(
KHm + Rn + R2H

)

time per iteration, where n and m are the number of nodes and edges in
the network. We demonstrate experimentally that the number of required
iterations is typically low, the algorithm is able to discover the ground
truth from synthetic datasets, and show that certain real-world networks
exhibit recurrent behaviour as the likelihood does not deteriorate when
H is lowered.

1 Introduction

A popular approach to model interactions between set of agents is to represent
them as a network with nodes being the agents and the interactions being the
edges. Naturally, many interactions in real-world datasets have a timestamp, in
which case the edges in networks also have timestamps. Consequently, devel-
oping methodology for temporal networks has gained attention in data mining
literature [17].

Many temporal phenomena have recurrent or possibly cyclic behaviour. For
example, social network activity may be heightened during certain hours of day.
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Our main interest is to model recurrent activity in temporal networks. As a
starting point we use stochastic block model, a popular choice for modelling
static networks. We can immediately extend this model to temporal networks,
for example, by modelling the edges with a Poisson process. Furthermore, Corneli
et al. [6] modelled the network by also segmenting the timeline and modelled
each segment with a separate Poisson process.

To model the recurrent activity we can either model it explicitly, for example,
by modelling explicitly cyclic activity, or we can use more flexible approach where
we look for segmentation but restrict the number of distinct parameters. Such
notion was proposed by Gionis and Mannila [10] in the context of segmenting
sequences of real valued vectors.

In this paper we extend the model proposed by Corneli et al. [6] using the
ideas proposed by Gionis and Mannila [10]. More formally, we consider the fol-
lowing problem: given a temporal graph with n nodes and m edges, we are
looking to partition the nodes into R groups and segment the timeline into K
segments that are grouped into H levels. Note that a single level may contain
non-consecutive segments. An edge e = (u, v) is then modelled with a Poisson
process with a parameter λijh, where i and j are the groups of u and v, and h
is the level of the segment containing e.

To obtain good solutions we rely on an iterative method by splitting the
problem into three subproblems: (i) optimize blocks while keeping the remain-
ing parameters fixed, (ii) optimize model parameters Λ while keeping the blocks
and the segmentation fixed, (iii) optimize the segmentation while keeping the
remaining parameters fixed. We approach the first subproblem by iteratively
optimizing block assignment of each node while maintaining the remaining nodes
fixed. We show that such single round can be done in O

(
m + Rn + R2H + K

)

time, where n is the number of nodes and m is the number of edges. Fortu-
nately, the second subproblem is trivial since there is an analytic solution for
optimal parameters, and we can obtain the solution in O

(
m + R2H + K

)
time.

Finally, we show that we can find the optimal segmentation with a dynamic
program. Using a stock dynamic program leads to a computational complexity
of O

(
m2KH

)
. Fortunately, we show that we can speed up the computation

by using a SMAWK algorithm [2], leading to a computational complexity of
O

(
mKH + HR2

)
.

In summary, we extend a model by Corneli et al. [6] to have recurring seg-
ments. We prove that the main problem is NP-hard as well as several related
optimization problems where we fix a subset of parameters. Navigating around
these NP-hard problems we propose an iterative algorithm where a single iter-
ation requires O

(
KHm + Rn + R2H

)
time, a linear time in edges and nodes.

The rest of the paper is organized as follows. First we introduce preliminary
notation, the model, and the optimization problem in Sect. 2. We then proceed
to describe the iterative algorithm in Sect. 3. We present the related work in
Sect. 4. Finally, we present our experiments in Sect. 5 and conclude the paper
with discussion in Sect. 6. The proofs are provided in Appendix1.

1 The appendix is available at https://arxiv.org/abs/2205.09862.

https://arxiv.org/abs/2205.09862
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2 Preliminary Notation and Problem Definition

Assume a temporal graph G = (V,E), where V is a set of nodes and E is a set of
edges, where each edge is tuple (u, v, t) with u, v ∈ V and t being the timestamp.
We will use n = |V | to denote the number of nodes and m = |E| the number
of edges. For simplicity, we assume that we do not have self-loops, though the
models can be adjusted for such case. We write t(e) to mean the timestamp of
the edge e. We also write N(u) to denote all the edges adjacent to a node u ∈ V .

Perhaps the simplest way to model a graph (with no temporal information)
is with Erdos-Renyi model, where each edge is sampled independently from a
Bernoulli probability parameterized with q. Let us consider two natural exten-
sions of this model. The first extension is a block model, where nodes are divided
into k blocks, and an edge (u, v) are modelled with a Bernoulli probability param-
eterized with qij , where i is the block of u and j is the block of v. Given a graph,
the optimization problem is to cluster nodes into blocks so that the likelihood
of the model is optimized. For the sake of variability we will use the words block
and group interchangeably.

A convenient way of modelling events in temporal data is using Poisson
process: Assume that you have observed c events with timestamps t1, . . . , tc in
a time interval T of length Δ. The log-likelihood of observing these events at
these exact times is equal to c log λ − λΔ, where λ is a model parameter. Note
that the log-likelihood does not depend on the individual timestamps.

If we were to extend the block model to temporal networks, the log-likelihood
of c edges occurring between the nodes u and v in a time interval is equal to
c log λij−λijΔ, where λij is the Poisson process parameter and i is the block of u
and j is the block of v. Note that λij does not depend on the time, so discovering
optimal blocks is very similar to discovering blocks in a static model.

A natural extension of this model, proposed by Corneli et al. [6], is to make
the parameters depend on time. Here, we partition the model into k segments
and assign different set of λs to each segment.

More formally, we define a time interval T to be a continuous interval either
containing the starting point T = [t1, t2] or excluding the starting point T =
(t1, t2]. In both cases, we define the duration as Δ (T ) = t2 − t1.

Given a time interval T , let us define

c (u, v, T ) = |{e = (u, v, t) ∈ E | t ∈ T}|

to be the number of edges between u and v in T .
The log-likelihood of Poisson model for nodes u, v and a time interval T is

� (u, v, T, λ) = c (u, v, T ) log λ − λΔ (T ).

We extend the log-likelihood between the two sets of nodes U and W , by writing

� (U,W, T, λ) =
∑

u,w∈U×W

� (u,w, T, λ),
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where U ×W is a set of all node pairs {u,w} with u ∈ U and w ∈ W and u �= v.
We consider {u,w} and {w, u} the same, so only one of these pairs is visited.

Given a time interval D = [a, b], a K-segmentation T = T1, . . . , TK is
a sequence of K time intervals, such that T1 = [a, t1], T2 = (t1, t2], . . . Ti =
(ti−1, ti], . . ., and TK = (tK−1, b]. For notational simplicity, we require that the
boundaries ti must collide with the timestamps of individual edges. We also
assume that D covers the edges. If D is not specified, then it is set to be the
smallest interval covering the edges.

Given a K-segmentation, a partition of nodes P = P1, . . . , PR into R groups,
and a set of KR(R +1)/2 parameters Λ = {λijk}2, the log-likelihood is equal to

� (P, T , Λ) =
R∑

i=1

R∑

j=i

K∑

k=1

� (Pi, Pj , Tk, λijk).

This leads immediately to the problem considered by Corneli et al. [6].

Problem 1. ((K,R) model). Given a temporal graph G, a time interval D, inte-
gers R and K, find a node partition with R groups, a K-segmentation, and a
set of parameters Λ so that � (P, T , Λ) is maximized.

We should point out that for fixed P and T , the optimal Λ is equal to

λijk =
c (Pi, Pj , Tk)

|Pi × Pj |Δ (Tk)
.

In this paper we consider an extension of (K,R) model. Many temporal
network exhibit cyclic or repeating behaviour. Here, we allow network to have K
segments but we also limit the number of distinct parameters to be at most H ≤
K. In other words, we are forcing that certain segments share their parameters.
We do not know beforehand which segments should share the parameters.

We can express this constraint more formally by introducing a mapping g :
[K] → [H] that maps a segment index to its matching parameters. We can
now define the likelihood as follows: given a K-segmentation, a partition of
nodes P = P1, . . . , PR into R groups, a mapping g : [K] → [H], and a set of
HR(R + 1)/2 parameters Λ = {λijh}, the log-likelihood is equal to

� (P, T , g, Λ) =
R∑

i=1

R∑

j=i

K∑

k=1

�
(
Pi, Pj , Tk, λijg(k)

)
.

We will refer to g as level mapping.
This leads to the following optimization problem.

Problem 2. ((K,H,R) model). Given a temporal graph G, a time interval D,
integers R, H, and K, find a node partition with R groups, a K-segmentation,
a level mapping g : [K] → [H], and parameters Λ maximizing � (P, T , g, Λ).
2 For notational simplicity we will equate λijh and λjih.
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Algorithm 1: Main loop of the algorithm
1 P ← random groups; Λ ← random values;
2 T , g ← FindSegments(P, Λ);
3 Λ ← UpdateLambda(P, T , g);
4 while convergence do
5 P ← FindGroups(P, Λ, T , g);
6 Λ ← UpdateLambda(P, T , g);
7 T , g ← FindSegments(P, Λ);
8 Λ ← UpdateLambda(P, T , g);

3 Fast Algorithm for Obtaining Good Model

In this section we will introduce an iterative, fast approach for obtain-
ing a good model. The computational complexity of one iteration is
O

(
KHm + Rn + R2H

)
, which is linear in both the nodes and edges.

3.1 Iterative Approach

Unfortunately, finding optimal solution for our problem is NP-hard.

Proposition 1. Problem 2 is NP-hard, even for H = K = 1 and R = 2.

Consequently, we resort to a natural heuristic approach, where we optimize cer-
tain parameters while keeping the remaining parameters fixed.

We split the original problem into 3 subproblems as shown in Algorithm 1.
First, we find good groups, then update Λ, and then optimize segmentation,
followed by yet another update of Λ.

When initializing, we select groups P and parameters Λ randomly, then pro-
ceed to find optimal segmentation, followed by optimizing Λ.

Next we will explain each step in details.

3.2 Finding Groups

Our first step is to update groups P while maintaining the remaining parameters
fixed. Unfortunately, finding the optimal solution for this problem is NP-hard.

Proposition 2. Finding optimal partition P for fixed Λ, T and g is NP-hard,
even for H = K = 1 and R = 2.

Due to the previous proposition, we perform a simple greedy optimization
where each node is individually reassigned to the optimal group while maintain-
ing the remaining nodes fixed.

We should point out that there are more sophisticated approaches, for exam-
ple based on SDP relaxations, see a survey by Abbe [1]. However, we resort to
a simple greedy optimization due to its speed.
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Algorithm 2: Algorithm FindGroups(P, Λ) for finding groups for a fixed
segmentation T , g and parameters Λ

1 p(v) ← group index of v;
2 s(e) ← segment index of e;
3 d[h] ←

∑
g(k)=h Δ (Tk);

4 foreach v ∈ V do
5 b ← p(v);
6 c[j, h] ← array cjh as defined in Proposition 3;
7 foreach a = 1, . . . R do

8 x[a] ←
∑H

h=1 λbahd[h] +
∑R

j=1 c[j, h] log λajh − |Pj |λajhd[h] ;

9 p(v) ← arg maxa x[a] (update P also);

10 return P;

A naive implementation of computing the log-likelihood gain for a single
node may require Θ(m) steps, which would lead in Θ(nm) time as we need to
test every node. Luckily, we can speed-up the computation using the following
straightforward proposition.

Proposition 3. Let P be the partition of nodes, Λ set of parameters, and T
and g the segmentation and the level mapping. Let Sh = {Tk ∈ T | h = g(k)} be
the segments using the hth level.

Let u be a node, and let Pb be the set such that u ∈ Pb. Select Pa, and let P ′

be the partition where u has been moved from Pb to Pa. Then

� (P ′, T , g, Λ) − � (P, T , g, Λ) = Z +
H∑

h=1

λbahth +
R∑

j=1

cjh log λajh − |Pj |λajhth,

where Z is a constant, not depending on a, th = Δ (Sh) is the total duration of
the segments using the hth level and cjh = c (u, Pj ,Sh), is the number of edges
between u and Pj in the segments using the hth level.

The proposition leads to the pseudo-code given in Algorithm 2. The algorithm
computes an array c and then uses Proposition 3 to compute the gain for each
swap, and consequently to find the optimal gain.

Computing the array requires iterating over the adjacent edges, leading to
O (|N(v)|) time, and computing the gains requires O

(
R2H

)
time. Consequently,

the computational complexity for FindGroups is O
(
m + R2Hn + K

)
.

The running time can be further optimized by modifying Line 8. There are
at most 2m non-zero c[i, j] entries (across all v ∈ V ), consequently we can speed
up the computation of a second term by ignoring the zero entries in c[i, j]. In
addition, for each a, the remaining terms

H∑

h=1

λbahd[h] +
R∑

j=1

|Pj |λajhd[h]
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can be precomputed in O (RH) time and maintained in O (1) time. This leads
to a running time of O

(
m + Rn + R2H + K

)
.

3.3 Updating Poisson Process Parameters

Our next step is to update Λ while maintaining the rest of the parameters
fixed. This refers to UpdateLambda in Algorithm 1. Fortunately, this step is
straightforward as the optimal parameters are equal to

λijh =
c (Pi, Pj ,Sh)

|Pi × Pj |Δ (Sh)
,

where Sh = {Tk ∈ T | h = g(k)} are the segments using the hth level. Updating
the parameters requires O

(
m + R2H + K

)
time.

In practice, we would like to avoid having λ = 0 as this forbids any edges
occurring in the segment, and we may get stuck in a local maximum. We app-
roach this by shifting λ slightly by using

λijh =
c (Pi, Pj ,Sh) + θ

|Pi × Pj |Δ (Sh) + η
,

where θ and η are user parameters.

3.4 Finding Segmentation

Our final step is to update the segmentation T and the level mapping g, while
keeping Λ and P fixed. Luckily, we can solve this subproblem in linear time.

Note that we need to keep Λ fixed, as otherwise the problem is NP-hard.

Proposition 4. Finding optimal Λ, T and g for fixed P is NP-hard.

On the other hand, if we fix Λ, then we can solve the optimization problem
with a dynamic program. To be more specific, assume that the edges in E are
ordered, and write o[e, k] to be the log-likelihood of k-segmentation covering the
edges prior and including e. Given two edges s, e ∈ E, let y(s, e;h) be the log-
likelihood of a segment (t(s), t(e)] using the hth level of parameters, λ··h. If s
occurs after e we set y to be −∞. Then the identity

o[e, k] = max
h

max
s

y(s, e;h) + o[s, k − 1]

leads to a dynamic program.
Using an off-the-shelf approach by Bellman [5] leads to a computational com-

plexity of O
(
m2KH

)
, assuming that we can evaluate y(s, e;h) in constant time.

However, we can speed-up the dynamic program by using the SMAWK algo-
rithm [2]. Given a function x(i, j), where i, j = 1, . . . , m, SMAWK computes
z(j) = arg maxi x(i, j) in O (m) time, under two assumptions. The first assump-
tion is that we can evaluate x in constant time. The second assumption is that
x is totally monotone. We say that x is totally monotone, if x(i2, j1) > x(i1, j1),
then x(i2, j2) ≥ x(i1, j2) for any i1 < i2 and j1 < j2.

We have the immediate proposition.
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Proposition 5. Fix h. Then the function x(s, e) = y(s, e;h) + o[s, k − 1] is
totally monotone.

Our last step is to compute x in constant time. This can be done by first
precomputing f [e, h], the log-likelihood of a segment starting from the epoch
and ending at t(e) using the hth level. The log-likelihood of a segment is then
y(s, e;h) = f [e, h] − f [s, h], which we can compute in constant time.

Algorithm 3: Algorithm FindSegments(P, Λ) for finding optimal seg-
mentation for fixed groups P and parameters Λ

1 tmin ← min {t | (u, v, t) ∈ E};
2 f [e, h] ← log-likelihood of a segment [tmin , t(e)] using parameters λ··h;
3 foreach e ∈ E do o[e, 1] ← maxh f [e, h]
4 foreach k = 2, . . . , K do
5 x(s, e; h) ← o[s, k − 1] + f [e, h] − f [s, h];
6 foreach h = 1, . . . , H do
7 z[e, h] ← arg maxs x(s, e; h) for each e ∈ E (use SMAWK);

8 o[e, k] ← maxh x(z[e, h], e; h) for each e ∈ E;
9 r[e, k] ← arg maxh x(z[e, h], e; h);

10 q[e, k] ← z[e, r[e, k]];

11 Use r and q to recover the optimal segmentation (T1, . . . , TK) and the level
mapping g ;

12 return (T1, . . . , TK), g;

The pseudo-code for finding the segmentation is given in Algorithm 3. A
more detailed version of the pseudo-code is given in Appendix. Here, we first
precompute f [e, h]. We then solve segmentation with a dynamic program by
maintaining 3 arrays: o[e, k] is the log-likelihood of k-segmentation covering the
edges up to e, q[e, k] is the starting point of the last segment responsible for
o[e, k], and r[e, k] is the level of the last segment responsible for o[e, k].

In the inner loop we use SMAWK to find optimal starting points. Note that
we have to do this for each h, and only then select the optimal h for each segment.
Note that we do define x on Line 5 but we do not compute its values. Instead
this function is given to SMAWK and is evaluated in a lazy fashion.

Once we have constructed the arrays, we can recursively recover the optimal
segmentation and the level mapping from q and r, respectively.

FindSegments runs in O
(
mKH + HR2

)
time since we need to call

SMAWK O (HK) times.
We were able to use SMAWK because the optimization criterion turned out

to be totally monotone. This was possibly only because we fixed Λ. The notion of
using SMAWK to speed up a dynamic program with totally monotone scores was
proposed by Galil and Park [9]. Fleischer et al. [7], Hassin and Tamir [14] used
this approach to solve dynamic program segmenting monotonic one-dimensional
sequences with L1 cost.
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We fixed Λ because Proposition 4 states that the optimization problem for
H < K cannot be solved in polynomial time if we optimize T , g, and Λ at the
same time. Proposition 4 is the main reason why we cannot use directly the ideas
proposed by Corneli et al. [6] as the authors use the dynamic program to find T
and Λ at the same time.

However, if K = H, then the problem is solvable with a dynamic program
but requires O

(
Km2R2

)
time. However, if we consider the optimization problem

as a minimization problem and shift the cost with a constant so that it is always
positive, then using algorithms by Guha et al. [26], Tatti [11] we can obtain
(1 + ε)-approximation with O

(
K3 log K log m + K3ε−2 log m

)
number of cost

evaluations. Finding the optimal parameters and computing the cost of a single
segment can be done in O

(
R2

)
time with O

(
R2 + m

)
time for precomputing.

This leads to a total time of O
(
R2(K3 log K log m + K3ε−2 log m) + m

)
for the

special case of K = H.

4 Related Work

The closest related work is the paper by Corneli et al. [6] which can be viewed
as a special case of our approach by requiring K = H, in other words, while the
Poisson process may depend on time they do not take into account any recur-
rent behaviour. Having K = H simplifies the optimization problem somewhat.
While the general problem still remains difficult, we can now solve the segmen-
tation T and the parameters Λ simultaneously using a dynamic program as was
done by Corneli et al. [6]. In our problem we are forced to fix Λ while solving
the segmentation problem. Interestingly enough, this gives us an advantage in
computational time: we only need O

(
KHm + HR2

)
time to find the optimal

segmentation while the optimizing T and Λ simultaneously requires O
(
R2Km2

)

time. On the other hand, by fixing Λ we may have a higher chance of getting
stuck in a local maximum.

The other closely related work is by Gionis and Mannila [10], where the
authors propose a segmentation with shared centroids. Here, the input is a
sequence of real valued vectors and the segmentation cost is either L2 or L1

distance. Note that there is no notion of groups P, the authors are only inter-
ested in finding a segmentation with recurrent sources. The authors propose
several approximation algorithms as well as an iterative method. The approx-
imation algorithms rely specifically on the underlying cost, in this case L1 or
L2 distance, and cannot be used in our case. Interestingly enough, the proposed
iterative method did not use SMAWK optimization, so it is possible to use the
optimization described in Sect. 3 to speed up the iterative method proposed by
Gionis and Mannila [10].

In this paper, we used stochastic block model (see [3,16], for example) as a
starting point and extend it to temporal networks with recurrent sources. Several
past works have extended stochastic block models to temporal networks: Matias
and Miele [29], Yang et al. [21] proposed an approach where the nodes can change
block memberships over time. In a similar fashion, Xu and Hero [27] proposed
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a model where the adjacency matrix snapshots are generated with a logistic
function whose latent parameters evolve over time. The main difference with our
approach is that in these models the group memberships of nodes are changing
while in our case we keep the memberships constant and update the probabilities
of the nodes. Moreover, these methods are based on graph snapshots while we
work with temporal edges. In another related work, Matias et al. [22] modelled
interactions using Poisson processes conditioned by stochastic block model. Their
approach was to estimate the intensities non-parametrically through histograms
or kernels while we model intensities with recurring segments. For a survey on
stochastic block models, including extensions to temporal settings, we refer the
reader to a survey by Lee and Wilkinson [19].

Stochastic block models group similar nodes together; here similarity means
that nodes in the same group have the similar probabilities connecting to nodes
from other group. A similar notion but a different optimization criterion was
proposed by Arockiasamy et al. [4]. Moreover, Henderson et al. [15] proposed a
method where nodes with similar neighborhoods are discovered.

In this paper we modelled the recurrency by forcing the segments to share
their parameters. An alternative approach to discover recurrency is to look
explicitly for recurrent patterns [8,12,13,20,23,28]. We should point out that
these works are not design to work with graphs; instead they work with event
sequences. We leave adapting this methodology for temporal networks as an
interesting future line of work.

Using segmentation to find evolving structures in networks have been pro-
posed in the past: Kostakis et al. [18] introduced a method where a temporal
network is segmented into k segments with h < k summaries. A summary is
a graph, and the cost of an individual segment is the difference between the
summary and the snapshots in the segment. Moreover, Rozenshtein et al. [25]
proposed discovering dense subgraphs in individual segments.

5 Experimental Evaluation

The goal in this section is to experimentally evaluate our algorithm. Towards
that end, we first test how well the algorithm discovers the ground truth using
synthetic datasets. Next we study the performance of the algorithm on real-
world temporal datasets in terms of running time and likelihood. We compare
our results to the following baselines: the running times are compared to a naive
implementation where we do not utilize SMAWK algorithm, and the likelihoods
are compared to the likelihoods of the (R,K) model.

We implemented the algorithm in Python3 and performed the experiments
using a 2.4 GHz Intel Core i5 processor and 16 GB RAM.

Synthetic Datasets: To test our algorithm, we generated 5 temporal networks
with known groups and known parameters Λ which we use as a ground truth.
To generate data, we first chose a set of nodes V , number of groups R, number

3 The source code is available at https://version.helsinki.fi/dacs/.

https://version.helsinki.fi/dacs/
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Table 1. Dataset characteristics and results from the experiments. Here, n is the
number of nodes, m is the number of edges, R is the number of groups, K is the number
of segments, H is the number of levels, LL1 is the normalized log-likelihood for the
ground truth, G is the Rand index, LL2 is the discovered normalized log-likelihood, I
is the number of iterations, and CT is the computational time in seconds.

Dataset n m L K H LL1 R LL2 I CT

Synthetic-1 50 76 332 2 2 2 0.95 1 0.94 2 2.81 s

Synthetic-2 30 95 889 3 3 3 0.95 1 0.94 3 5.36 s

Synthetic-3 20 65 056 3 3 3 0.97 1 0.97 3 3.91 s

Synthetic-4 60 537 501 3 4 3 0.94 1 0.93 3 23.13 s

Synthetic-5 10 33 475 2 10 5 0.91 1 0.91 4 10.27 s

Email-Eu-1 309 61 046 3 10 7 0.89 12 188 s

Email-Eu-2 162 46 772 4 8 7 0.87 9 177 s

MathOverflow 21 688 107 581 2 3 2 0.91 20 263 s

CollegeMsg 1 899 59 835 3 8 5 0.87 19 662 s

MOOC 7 047 411 749 2 3 2 0.81 6 208 s

Bitcoin 3 783 24 186 3 10 10 0.91 7 115 s

Santander 735 33 116 3 7 5 0.94 20 60 s

of segments K, and number of levels H. Next we assumed that each node has
an equal probability of being chosen for any group. Based on this assumption,
the group memberships were selected at random.

We then randomly generated Λ from a uniform distribution. More specifically,
we generated H distinct values for each pair of groups and map them to each
segment. Note that, we need to ensure that each distinct level is assigned to at
least one segment. To guarantee this, we first deterministically assigned the set
of H levels to first H segments and the remaining (K −H) segments are mapped
by randomly selecting (K − H) elements from H level set.

Given the group memberships and their related Λ, we then generated a
sequence of timestamps with a Poisson process for each pair of nodes. The sizes
of all synthetic datasets are given in Table 1.

Real-World Datasets: We used 7 publicly available temporal datasets. Email-
Eu-1 and Email-Eu-2 are collaboration networks between researchers in a Euro-
pean research institution.4 Math Overflow contains user interactions in Math
Overflow web site while answering to the questions.4 CollegeMsg is an online
message network at the University of California, Irvine.4 MOOC contains actions
by users of a popular MOOC platform.4 Bitcoin contains member rating interac-
tions in a bitcoin trading platform.4 Santander contains station-to-station links

4 http://snap.stanford.edu.

http://snap.stanford.edu
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Fig. 1. Discovered parameters λ11(t), λ12(t) for the Synthetic-4 dataset. Parameter
λ12(t) implies the Poisson process parameter between group 1 and group 2 as a function
of time.

that occurred on Sep 9, 2015 from the Santander bikes hires in London.5 The
sizes of these networks are given in Table 1.

Results for Synthetic Datasets: To evaluate the accuracy of our algorithm,
we compare the set of discovered groups with the ground truth groups. Here,
our algorithm found the ground truth: in Table 1 we can see that Rand index
Rand [24] (column G) is equal to 1,

Next we compare the log-likelihood values from true models against the log-
likelihoods of discovered models. To evaluate the log-likelihoods, we normal-
ize the log-likelihood, that is we computed � (P, T , g, Λ)/� (P ′, T ′, g′, Λ′), where
P ′, T ′, g′, Λ′ is a model with a single group and a single segment. Since all our log-
likelihood values were negative, the normalized log-likelihood values were between
0 and 1, and smaller values are better.

As demonstrated in column LL1 and column LL2 of Table 1, we obtained
similar normalized log-likelihood values when compared to the normalized log-
likelihood of the ground truth. The obtained normalized log-likelihood values
were all slightly better than the log-likelihoods of the generated models, that is,
our solution is as good as the ground truth.

An example of the discovered parameters, λ11 and λ12, for Synthetic-4
dataset are shown in Fig. 1. The discovered parameters matched closely to
the generated parameters with the biggest absolute difference being 0.002 for
Synthetic-4. The figures for other values and other synthetic datasets are simi-
lar.

Computational Time: Next we consider the computational time of our algo-
rithm. We varied the parameters R, K, and H for each dataset. The model
parameters and computational times are given in Table 1. From the last column
CT , we see that the running times are reasonable despite using inefficient Python
libraries: for example we were able to compute the model for MOOC dataset,
with over 400 000 edges, under four minutes. This implies that the algorithm
scales well for large networks. This is further supported by a low number of
iterations, column I in Table 1.

Next we study the computational time as a function of m, number of edges.

5 https://cycling.data.tfl.gov.uk.

https://cycling.data.tfl.gov.uk
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Fig. 2. Computational time as a function of number of temporal edges (|E|) for
Synthetic-large (a, c) and Santander-large (b, d). This experiment was done with
R = 3, K = 5, and H = 3 using SMAWK algorithm (a–b) and naive dynamic pro-
gramming (c–d). The times are in seconds in (a–c) and in hours in (d).
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Fig. 3. Normalized log-likelihood as a function of number of levels (H) for the San-
tander dataset (a), bitcoin dataset (b), Synthetic-5 dataset (c), and Email-Eu-1 dataset
(d). This experiment is done for R = 2, K = 20, and H = 1, . . . , 20.

We first prepared 4 datasets with different number of edges from a real-world
dataset; Santander-large. To vary the number of edges, we uniformly sampled
edges without replacement. We sampled like a .4, .6, .8, and 1 fraction of edges.

Next we created 4 different Synthetic-large dataset with 30 nodes, 3 segments
with unique λ values but with different number of edges. To do that, we gradually
increase the number of Poisson samples we generated for each segment.

From the results in Fig. 2 we see that generally computational time increases
as |E| increases. For instance, a set of 17 072 edges accounts for 18.46s whereas a
set of 34 143 edges accounts for 36.36s w.r.t Santander-large. Thus a linear trend
w.r.t |E| is evident via this experiment.

To emphasize the importance of SMAWK, we replaced it with a stock solver
of the dynamic program, and repeat the experiment. We observe in Fig. 2 that
computational time has increased drastically when stock dynamic program algo-
rithm is used. For example, a set of 34 143 edges required 3.7h for Santander-large
dataset but only 36.36s when SMAWK is used.

Likelihood vs Number of Levels: Our next experiment is to study how
normalized log-likelihood behaves upon the choices of H. We conducted this
experiment for K = 20 and vary the number of levels (H) from H = 1 to H = 20.
The results for the Santander, Bitcoin, Synthetic-5, and Email-Eu-1 dataset are
shown in Fig. 3. From the results we see that generally normalized log-likelihood
decreases as H increases. That is due to the fact that higher the H levels, there
exists a higher degree of freedom in terms of optimizing the likelihood. Note that
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if H = K, then our model corresponds to the model studied by Corneli et al. [6].
Interestingly enough, the log-likelihood values plateau for values of H � K
suggesting that existence of recurring segments in the displayed datasets.

6 Concluding Remarks

In this paper we introduced a problem of finding recurrent sources in temporal
network: we introduced stochastic block model with recurrent segments.

We showed that finding optimal blocks and recurrent segmentation was an
NP-hard problem. Therefore, to find good solutions we introduced an itera-
tive algorithm by considering 3 subproblems, where we optimize blocks, model
parameters, and segmentation in turn while keeping the remaining structures
fixed. We demonstrate how each subproblem can be optimized in O (m) time.
Here, the key step is to use SMAWK algorithm for solving the segmentation.
This leads to a computational complexity of O

(
KHm + Rn + R2H

)
for a sin-

gle iteration. We show experimentally that the number of iterations is low, and
that the algorithm can find the ground truth using synthetic datasets.

The paper introduces several interesting directions: Gionis and Mannila [10]
considered several approximation algorithms but they cannot be applied directly
for our problem because our optimization function is different. Adopting these
algorithms in order to obtain an approximation guarantee is an interesting chal-
lenge. We used a simple heuristic to optimize the groups. We chose this approach
due to its computational complexity. Experimenting with more sophisticated but
slower methods for discovering block models, such as methods discussed in [1],
provides a fruitful line of future work.
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