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Abstract. In last years deep learning approaches to anomaly detection
are becoming very popular. In most of the first methods the paradigm
is to train neural networks initially designed for compression (Auto
Encoders) or data generation (GANs) and to detect anomalies as a col-
lateral result. Recently new architectures have been introduced in which
the expressive power of deep neural networks is associated with objective
functions specifically designed for anomaly detection. One of these meth-
ods is Deep-SVDD which, although created for One-Class classification,
has been successfully applied to the (semi-)supervised anomaly detec-
tion setting. Technically, Deep-SVDD technique forces the deep latent
representation of the input data to be enclosed into an hypersphere and
labels as anomalies data farthest from its center. In this work we intro-
duce Deep-UAD, a neural network approach for unsupervised anomaly
detection where, iteratively, a network similar to that of Deep-SVDD is
alternatively trained with an Auto Encoder and the two networks share
some weights in order for each network to improve its training by exploit-
ing the information coming from the other network. The experiments we
conducted show that the performances obtained by the proposed method
are better than the ones obtained both by deep learning methods and
standard shallow algorithms.

1 Introduction

Anomaly detection is a fundamental data mining task whose aim is to isolate
samples in a dataset that are suspected of being generated by a distribution
different from the rest of the data. The presence of anomalies is due to many
reasons like mechanical faults, fraudulent behavior, human errors, instrument
error or simply through natural deviations in populations.

Depending on the composition of the dataset, anomaly detection settings can
be classified as unsupervised, semi-supervised, and unsupervised [1,14]. In the
supervised setting the training data are labeled as normal and abnormal and
and the goal is to build a classifier. The difference with standard classification
problems is that abnormal data form a rare class. In the semi-supervised setting,
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the training set is composed by both labelled and unlabelled data. A special
case of this setting is the one-class classification when we have a training set
composed only by normal class items. In the unsupervised setting the goal is to
detect outliers in an input dataset by assigning a score or anomaly degree to each
object. Several statistical, data mining and machine learning approaches have
been proposed to detect anomalies, namely, statistical-based [11,15], distance-
based [6,9,10,24], density-based [12,21], reverse nearest neighbor-based [4,5,19,
25], SVM-based [30,33], and many others [1,14].

In last years deep learning-based methods for anomaly detection [13,17,27]
have shown great performances. Auto encoder(AE) based anomaly detection
[3,13,20] consists in training an AE to reconstruct a set of examples and then
to detect as anomalies those data that show a large reconstruction error. Varia-
tional auto encoders (VAE) arise as a variant of standard auto encoders designed
for generative purposes [23]. The key idea of VAEs is to encode each example as
a normal distribution over the latent space and regularize the loss by maximizing
similarity of these distributions with the standard normal one. Due to similari-
ties to standard auto encoders, VAEs have also been used to detect anomalies.
However, it has been noticed that VAEs share with standard AEs the prob-
lem that they generalize so well that they can also well reconstruct anomalies
[3,7,8,13,22,32]. Generative Adversarial Networks (GAN) [18] are another tool
for generative purposes, aiming at learning an unknown distribution by means
of an adversarial process involving a discriminator, that outputs the probability
for an observation to be generated by the unknown distribution, and a genera-
tor, mapping points coming from a standard distribution to points belonging to
the unknown one. GANs have also been employed with success to the anomaly
detection task [2,16,29,31,34].

Some authors [26,28] have recently observed that all the above mentioned
anomaly detection deep learning based methods are not designed to directly
discover anomalies, but their main task is data reconstruction (AE and VAE)
or data generation (GAN) and anomaly detection is a collateral result. They
introduce new methods, called Deep-SVDD and Deep-SAD, that combine the
expressive power of deep neural networks with a loss inspired from SVM-based
methods and specifically designed for anomaly detection. These methods are
used for one-class and (semi-)supervised settings but we argue that they do not
apply very naturally to the unsupervised setting, thus we introduce Deep-UAD,
a new unsupervised method that deeply modifies the architectures in [26,28]. In
particular we build a new training paradigm for the network in [26] that involves
an AE which is trained alternatively with the network and with which the net-
work and exchange the information they obtained during the training. This is
done by modifying the losses of both the network and the AE. The proposed
approach shows sensible improvements in terms of detection performances over
both the standard approach in [26,28] and the baseline shallow methods.

The rest of the paper is organized as follows. Section 2 discusses related work
with particular emphasis on Deep-SVDD and Deep-SAD. Section 3 introduces
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the Deep-UAD unsupervised anomaly detection algorithm. Section 4 illustrates
experimental results. Finally, Sect. 5 concludes the work.

2 Preliminaries

In this Section we deepen auto encoder and Deep-SVDD which are exploited by
our technique as basic components and suitably modified to our purposes.

Auto Encoder. An auto encoder (AE) is a neural network architecture suc-
cessfully employed for anomaly detection [20]. It aims at providing a reconstruc-
tion of the input by exploiting a dimensionality reduction step (the encoder
φW ) followed by a step mapping back from the compressed space (the latent
space) to the original space (the decoder ψW ′). Its ability in detecting anoma-
lies depends on the observation that regularities should be better compressed
and, hopefully, better reconstructed [20]. The AE loss is E(x) = ‖x− x̂‖22, where
x̂ = ψW ′(φW (x)), and coincides with the standard reconstruction error.

One-class SVM. Before discussing Deep-SVDD some preliminary notions
about One-Class SVM (OC-SVM) [30] are needed. The original OC-SVM
method is designed for the one-class setting and has the objective of finding
the hyperplane in a feature space that best separates the mapped data from the
origin. Given the data {x1, . . . , xn} ⊆ X, it is defined by the following optimiza-
tion problem

min
w,ρ,ξi

1
2
‖w‖2F − ρ +

1
νn

n∑

i=1

ξi

s. t. 〈φ (xi) ,w〉 ≥ ρ − ξi,

ξi ≥ 0, i = 1, . . . , n

where ρ is the distance from the origin to the hyperplane w ∈ F , ξi are slack
variables and ν ∈ (0, 1] is a trade-off hyperparameter. The points in the test set
are labelled as normal if they are mapped inside the hyperplane and anomalous if
they are mapped outside. Related to OC-SVM, Support Vector Data Descriptor
(SVDD) [33] is a method that has the aim of enclosing the input data into a
hypersphere of minimum radius. The relative optimization problem is

min
R,c,ξi

R2 +
1
νn

n∑

i=1

ξi

s. t. ‖φ (xi) − c‖ ≤ R2 + ξi,

ξi ≥ 0, i = 1, . . . , n

where R > 0 and c are the radius and the center of the hypersphere and again
ξi are slack variables and ν ∈ (0, 1] is a trade-off hyperparameter.
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Deep-SVDD. In [26], authors apply the same idea expressed in SVDD of
enclosing the data into an hypersphere performing the mapping into the fea-
ture space with the use of a deep neural network. In particular, let φW : X → F
be a mapping obtained with a neural network with weights W = [W1, . . . , WL]
(Wl are the weights relative to the layer l ∈ {1, . . . , L}) from the input space
X ⊆ R

d to the output space F ⊆ R
k, with k < d. The loss of the network is

given by

L =
1
n

n∑

i=1

‖φW (xi) − c‖22 +
λ

2

L∑

l=1

‖Wl‖2F , (1)

where the first term forces the network representation φW (x) to stay close to the
center c of the hypersphere and the second term is a weight decay regularizer with
hyperparameter λ > 0. This loss is used in a One-Class anomaly detection setting
to map the training set (composed only by normal items) as close as possible
to the center c so that in the testing phase the network is less able to map the
anomalies close to c. Because of this, it is defined as anomaly score of the point x
the distance of its network representation from the center: S(x) = ‖φW (x)−c‖22.

The center c is not a trainable parameter and is fixed before the training
by means of an AE that is composed so that the encoding part has the same
structure as the network φ and shares with it the weights W , the structure of
the decoding part is symmetric to it and thus the latent space coincides with the
space F . The training set is given in input to this AE which is trained with the
standard loss and subsequently the center c is defined as c = 1

n

∑n
i=1 φW (xi),

that is the mean of the latent representations of all the points in the training set.
The same architecture has been applied in [28] for the task of semi-supervised
anomaly detection with the following natural adaptation of the loss

L =
1

n + m

n∑

i=1

‖φW (xi) − c‖2
2 +

η

n + m

m∑

i=1

(‖φW (x̃i) − c‖2
2

)ỹi +
λ

2

L∑

l=1

‖Wl‖2
F , (2)

where x̃i are the m labeled data with the relative labels ỹi and η is an hyperpa-
rameter handling the trade-off between the contributions of labelled and unla-
belled data. Let us observe that data labelled as normal (ỹi = +1) are treated in
the usual way which means that they are forced to be mapped close to c while
for the anomalies (ỹi = −1) the contribution is inverted and they are force to
stay as far as possible from c.

It is important to observe that (2) is designed to consider also unlabelled
examples. An extreme case occurs when m = 0, when all the training data are
unlabelled. This scenario is similar to the unsupervised setting but there is a
substantial difference: in one case the objective is to detect anomalies in a test
set, in the other the anomalies have to be detected among the same data used
for the training phase. In this case the losses (2) and (1) coincide, which means
that, even if originally the loss (1) has been designed to deal only with normal
class items, it can be used in settings that involve the use of unlabeled anomalies
in the training phase, thus it can be applicable also to the unsupervised settings.
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3 Method

In this Section the technique Deep-UAD proposed in this paper is discussed.
A one class based technique, like Deep-SVDD, is aimed at building a model

for the normal class exploiting input data by assuming they do not contain
anomalies and classifying data of a test set. In particular, Deep-SVDD tends to
map close to the center all the input data and, then, in the unsupervised setting
this technique may fail in correctly separating normal and anomalous samples.

Deep-UAD tackles this issue by providing information to the network about
the anomaly degree of each sample in order to force the network to approach
normal data to the center and to let anomalies far from the center. This is accom-
plished by exploiting an AE that provides a level of anomaly suspiciousness.
Thus, the proposed architecture consists in two components, a neural network
Deep-UADNET , and an auto encoder Deep-UADAE ; Deep-UADNET has the
same structure of the network of Deep-SVDD, thus can be defined by the same
mapping function φW , and it is forced to map the data badly reconstructed by
Deep-UADAE , namely more suspected to be anomalous, faraway from the center
and, conversely, data suggested as normal by Deep-UADAE close to the center.
Technically, this is done by introducing this novel loss

LNET =
1
n

n∑

i=1

1
E (xi)

‖φW (xi) − c‖22 +
λ

2

L∑

l=1

‖Wl‖2F . (3)

Fig. 1. Diagram of the Deep-UAD cooperative strategy: the network Deep-UADNET

and the auto encoder Deep-UADAE refine their capabilities to find anomalies by sharing
the encoder weights W and passing to each other the information of their own score.

It is inspired by Eq. (1) which is modified by inserting the term 1
E(xi)

, directly
related to the probability for xi to be an anomaly according to the AE, and it
is used as a weight to control how much is important that the network repre-
sentation of xi is mapped close to c. In particular, the smaller is E(xi), namely
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xi is probably not an anomaly according to Deep-UADAE , the more higher is
the weight and thus the network takes more advantage in mapping xi close to
the center; conversely if E (xi) is large, xi is suspected to be an anomaly by the
AE, the weight is small and the network has a small advantage in bringing the
representation of xi close to the center.

The strategy of Deep-UAD consists in a preliminary phase where the AE,
without information by the network Deep-UADNET , is trained with standard
loss, the center of the hypershpere is computed and the reconstruction error E(xi)
is evaluated for each sample. Successively, two phases are iteratively executed,
during the first one, the network Deep-UADNET is trained with the loss (3) for
a certain number of epochs and the score S(xi) is calculated, during the second,
Deep-UADAE is trained for some epochs with the novel loss

LAE =
n∑

i=1

1
S(xi)

‖xi − x̂i‖22. (4)

The purpose of S(xi) is similar to the one of E(xi) in (3), giving a weight to the
contribution of each point xi according to the results obtained by the network.
The idea of Deep-UAD is that the score obtained from one network improves
the training of the other one, the final anomaly score output is S(xi).

4 Experimental Results

In this section we report experiments conducted to study the behavior of the
proposed method. We focus on three main aspects, namely (i) the impact of
the dimension of the output space on the performances, (ii) the analysis of the
cooperative process as the iterations proceed, (iii) the comparison with other
methods with specific emphasis on Deep-SVDD. In our experiments we consider
two standard benchmark datasets composed by grayscale images, MNIST 1 and
Fashion-MNIST 2. They are both composed by 28 × 28 pixels images divided in
10 classes, thus, in order adapt them for anomaly detection, we adopt a one-vs-all
policy, i.e. we consider one class as normal and all the others as anomalous. For
each class, we create a dataset composed by all the examples of the selected class
as normal and s random selected examples from each other class as anomalies.

Sensitivity Analysis on the Dimension K of the Output Space. In this
section, our aim is to determine how the dimension of the output space F impacts
on the behavior of both our method and the original Deep-SVDD algorithm. In
order to do this we consider the MNIST dataset in the one-vs-all setting and,
for each class, we train both models with k varying in the interval [8, 64].

From Fig. 2, in which are reported the results after 5 runs, we can see that
for both Deep-UAD (in red) and Deep-SVDD (in black) the trend is increasing

1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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Fig. 2. MNIST dataset (s = 10): AUCs of Deep-UAD and Deep-SVDD varying the
dimension of the final space.

which means that a small dimensional space F is not sufficient, in both cases,
to separate the anomalies from the normal examples. Moreover it is important
to point out that the performances achieved by our method are better than the
ones obtained by Deep-SVDD for almost each class and each value of k.

Analysis of the Iterative Process. Deep-UAD is based on an iterative pro-
cess in which the network Deep-UADNET and the auto encoder Deep-UADAE

share information, because of this it is crucial to investigate how the number
of iterations affects the performances of both the architectures. We do this by
considering MNIST and Fashion-MNIST datasets in the one-vs-all setting, per-
forming 5 runs for each class and computing the AUC for each iteration. In each
iteration both the network and the AE are trained for 25 epochs.
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In Fig. 3 are reported the trends of the two architectures. As we can see, they
are always non decreasing, which means that both the architectures are taking
advantage of the cooperative strategy. For what concerns Deep-UADNET , which
is the one that outputs the score of Deep-UAD, the trend becomes substantially
stable and constant, sometimes from the very first iteration (as class 0 of MNIST
and class Sandal of Fashion-MNIST) and other times after a slightly bigger
number of iterations (like classes 2 and 7 of MNIST). This means that the
parameter of the number of iterations is not hard to fix, since a number around
one ten of iterations guarantees always the achievement of a score of Deep-UAD
close to best possible and an improvement over Deep-SVDD.

Fig. 3. MNIST and Fashion-MNIST datasets (s = 10): AUCs of Deep-UAD and AE
varying the iterations of the method.

Moreover, Deep-UADAE improves its performances as the iterations proceed.
This fact is crucial for the behavior of the whole process, indeed it means that
the information provided to Deep-UADNET by Deep-UADAE becomes better at
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Table 1. AUC of Deep-UAD and competitors on MNIST and Fashion-MNIST with
s = 10 on the left and s = 100 on the right.

MNIST

s = 10 s = 100

Class Deep-SVDD Deep-UAD DCAE IF KNN Deep-SVDD Deep-UAD DCAE IF KNN

0 .962 ± .018 .996 ± .001 .953 ± .008 .951 ± .010 .978 ± .010 .901 ± .015 .948 ± .006 .918 ± .005 .868 ± .023 .841 ± .006

1 .991 ± .001 .996 ± .002 .925 ± .013 .994 ± .001 .998 ± .001 .974 ± .004 .989 ± .003 .878 ± .014 .991 ± .001 .996 ± .002

2 .876 ± .036 .951 ± .013 .822 ± .017 .731 ± .024 .891 ± .015 .765 ± .020 .861 ± .026 .746 ± .016 .678 ± .028 .703 ± .014

3 .884 ± .014 .988 ± .006 .805 ± .026 .804 ± .028 .906 ± .011 .794 ± .027 .878 ± .026 .759 ± .027 .762 ± .012 .766 ± .006

4 .924 ± .017 .964 ± .011 .772 ± .019 .869 ± .018 .928 ± .008 .827 ± .016 .918 ± .012 .698 ± .031 .836 ± .008 .831 ± .007

5 .848 ± .025 .843 ± .037 .728 ± .016 .752 ± .019 .917 ± .019 .732 ± .017 .809 ± .021 .650 ± .040 .709 ± .020 .765 ± .007

6 .975 ± .007 .981 ± .005 .887 ± .019 .894 ± .017 .970 ± .006 .920 ± .014 .956 ± .007 .793 ± .018 .848 ± .016 .858 ± .004

7 .927 ± .017 .970 ± .008 .853 ± .015 .909 ± .009 .957 ± .007 .875 ± .014 .946 ± .005 .781 ± .013 .891 ± .009 .893 ± .003

8 .916 ± .018 .944 ± .014 .828 ± .012 .729 ± .021 .857 ± .010 .852 ± .013 .933 ± .010 .728 ± .020 .710 ± .014 .731 ± .009

9 .950 ± .009 .968 ± .014 .798 ± .019 .872 ± .013 .947 ± .009 .908 ± .011 .959 ± .005 .734 ± .012 .858 ± .007 .862 ± .005

Fashion-MNIST

s = 10 s = 100

Class Deep-SVDD Deep-UAD DCAE IF KNN Deep-SVDD Deep-UAD DCAE IF KNN

0 .868 ± .016 .929 ± .021 .793 ± .014 .909 ± .010 .902 ± .010 .770 ± .031 .866 ± .011 .748 ± .012 .886 ± .008 .808 ± .006

1 .975 ± .004 .991 ± .002 .934 ± .014 .977 ± .003 .987 ± .002 .956 ± .003 .985 ± .002 .902 ± .022 .976 ± .002 .967 ± .002

2 .832 ± .016 .911 ± .013 .691 ± .021 .873 ± .015 .882 ± .011 .757 ± .013 .828 ± .029 .581 ± .025 .842 ± .009 .779 ± .006

3 .923 ± .008 .963 ± .009 .898 ± .013 .936 ± .009 .937 ± .011 .867 ± .013 .955 ± .010 .858 ± .008 .936 ± .003 .838 ± .004

4 .894 ± .015 .963 ± .016 .852 ± .019 .911 ± .014 .888 ± .013 .827 ± .029 .918 ± .006 .780 ± .029 .903 ± .005 .807 ± .013

5 .817 ± .025 .966 ± .013 .373 ± .041 .928 ± .008 .846 ± .017 .647 ± .041 .801 ± .038 .235 ± .022 .907 ± .005 .611 ± .011

6 .756 ± .020 .874 ± .022 .619 ± .020 .812 ± .013 .813 ± .012 .691 ± .021 .781 ± .017 .537 ± .031 .778 ± .009 .710 ± .005

7 .978 ± .004 .996 ± .005 .905 ± .007 .980 ± .007 .979 ± .004 .927 ± .014 .984 ± .002 .807 ± .016 .978 ± .002 .915 ± .005

8 .893 ± .015 .920 ± .018 .778 ± .016 .886 ± .017 .817 ± .021 .733 ± .025 .854 ± .017 .644 ± .025 .822 ± .002 .512 ± .007

9 .980 ± .004 .991 ± .005 .970 ± .010 .978 ± .006 .945 ± .013 .917 ± .016 .983 ± .003 .912 ± .014 .968 ± .004 .762 ± .014

every iteration, thus Deep-UAD succeeds in mapping the anomalies away from
the center better than Deep-SVDD, when this information is missing and several
anomalies are not detected being closer to the center than some normal samples
with consequent worsening of the AUC.

Comparison with Competitors. Finally, in this last section, we compare the
results Deep-UAD with competitors on MNIST and Fashion-MNIST. The meth-
ods taken into account are Isolation Forest (IF) and k-Nearest Neighbor as shal-
low algorithms and Deep-SVDD and Deep Convolutional auto encoder (DCAE)
as deep learning methods. To ensure a fair comparison, both Deep-SVDD and
DCAE have the same structure of Deep-UAD and for both of them, as well as
for our method, we fix k = 64 according to the results of the first experiment.

In Table 1 are reported the results for both datasets with s = 10 and s = 100.
We can see that for almost all classes Deep-UAD performs better than all con-
sidered competitors and in certain cases the differences with their performances
are huge. In particular, in the direct comparison with Deep-SVDD, the tech-
nique that inspires our method, Deep-UAD is always winning, meaning that the
cooperative work of the network and the AE succeeds in improving the ability
of isolating anomalies.

5 Conclusions

In this work is presented Deep-UAD, a deep learning approach for unsupervised
anomaly detection. It is based on an alternate and cooperative training of an
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AE and a neural network aiming at mapping the data close to a fixed center
in the output space. Experimental results show that Deep-UAD achieves good
performances and that the strategy of alternate training brings benefits to both
the neural network and the AE improving their capabilities to isolate anomalies.

In the future our main goals are to investigate the application of a cooperative
alternate strategy similar to this one to more complex neural architectures, to
study possible modifications to the discussed method that may help in improving
performances, and to test our algorithm on dataset of different size and nature.
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19. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neigh-

bour graph. In: ICPR, Cambridge, UK (2004)

https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/s10994-022-06153-4


328 F. Angiulli et al.

20. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator
neural networks. In: International Conference on Data Warehousing and Knowl-
edge Discovery (DAWAK), pp. 170–180 (2002)

21. Jin, W., Tung, A., Han, J.: Mining top-n local outliers in large databases. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD) (2001)

22. Kawachi, Y., Koizumi, Y., Harada, N.: Complementary set variational autoencoder
for supervised anomaly detection. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2366–2370 (2018)

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
24. Knorr, E., Ng, R., Tucakov, V.: Distance-based outlier: algorithms and applica-

tions. VLDB J. 8(3–4), 237–253 (2000)
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