
Poncelet Pascal
Dino Ienco (Eds.)

 123

LN
AI

 1
36

01

25th International Conference, DS 2022
Montpellier, France, October 10–12, 2022
Proceedings

Discovery Science

Lecture Notes in Artificial Intelligence 13601

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Wolfgang Wahlster
DFKI, Berlin, Germany

Zhi-Hua Zhou
Nanjing University, Nanjing, China

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at https://link.springer.com/bookseries/1244

https://springerlink.bibliotecabuap.elogim.com/bookseries/1244

Poncelet Pascal · Dino Ienco (Eds.)

Discovery Science
25th International Conference, DS 2022
Montpellier, France, October 10–12, 2022
Proceedings

Editors
Poncelet Pascal
University of Montpellier
Montpellier, France

Dino Ienco
INRAE
Montpellier, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-18839-8 ISBN 978-3-031-18840-4 (eBook)
https://doi.org/10.1007/978-3-031-18840-4

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8277-3490
https://orcid.org/0000-0002-8736-3132
https://doi.org/10.1007/978-3-031-18840-4

Preface

The Discovery Science conference presents a unique combination of latest advances in
the development and analysis of methods for discovering scientific knowledge, coming
from machine learning, data mining, and intelligent data analysis, with their application
in various scientific domains. The 25th International Conference on Discovery Science
(DS 2022) was held in Montpellier, France, during October 10–12, 2022. This was the
second time the conference was organized as a stand-alone physical event.

For its first 20 editions, DS was co-located with the International Conference on
Algorithmic Learning Theory (ALT). In 2018 it was co-located with the 24th Interna-
tional Symposium on Methodologies for Intelligent Systems (ISMIS 2018). DS 2019
was a stand-alone event, whereas DS 2020 and DS 2021 were online-only events.

DS 2022 received 56 international submissions. Each submission was reviewed by at
least two Program Committee (PC) members in a single-blind manner. The PC decided
to accept 27 regular papers and 12 short papers. This resulted in an acceptance rate of
48% for regular papers.

The conference included three keynote talks. Leman Akoglu (Carnegie Mellon Uni-
versity) contributed a talk titled “Unsupervised Model Selection in Outlier Detection:
The Elephant in the Room”; Luca Maria Aiello (IT University of Copenhagen) gave
a presentation titled “Coloring Social Relationships”; and Stefan Kramer (University
of Mainz) contributed a talk titled “35 Years of ‘Scientific Discovery: Computational
Explorations of the Creative Processes’ – From the Early Days to the State of the Art”.
Abstracts of the invited talks are included in the front matter of these proceedings.
Besides the presentation of regular and short papers in the main program, the conference
offered a session titled “Late Breaking Contributions” featuring poster and spotlight
presentations of very recent research results on topics related to discovery science.

We are grateful to Springer for their continued long-term support. Springer publishes
the conference proceedings, as well as a regular special issue of the Machine Learning
journal on discovery science. The latter offers authors a chance to publish significantly
extended and reworked versions of their DS conference papers in this prestigious journal,
while being open to all submissions on DS conference topics.

This year, Springer (LNCS) supported the best student paper award. ForDS 2022, the
awardees are Annunziata D’Aversa, Stefano Polimena, Gianvito Pio, and Michelangelo
Ceci (for the paper “Leveraging spatio-temporal autocorrelation phenomena to improve
the forecasting of the energy consumption in smart grids”). We would like to thank
Roberto Interdonato who joined the Program Chairs of the conference for the selection
of the best student paper.

On the program side, we would like to thank all the authors of submitted papers
and the PC members for their efforts in evaluating the submitted papers, as well as the
keynote speakers. On the organization side, we would like to thank all the members
of the Organizing Committee, in particular Virginie Feche and Elena Demchenko, for
the smooth preparation and organization of all conference associated activities. We are
also grateful to the people behind EasyChair for developing the conference organization

vi Preface

system that proved to be an essential tool in the paper submission and evaluation process,
as well as in the preparation of the Springer proceedings.

The DS 2022 conference was organized under the auspices of several universities
and research institutes in Montpellier: the University of Montpellier, the University of
Paul Valery, INRAE, Inria, and CIRAD. Significant support, especially through human
resources, was also provided by the University of Montpellier and INRAE. Finally, we
are indebted to all conference participants, who contributed tomaking this exciting event
a worthwhile endeavor for all involved.

October 2022 Poncelet Pascal
Dino Ienco

Sašo Džeroski

Organization

General Chair

Sašo Džeroski Jožef Stefan Institute, Slovenia

Program Committee Chairs

Pascal Poncelet University of Montpellier, France
Dino Ienco INRAE, France

Publicity Chair

Roberto Interdonato CIRAD, France

Local Arrangements Chairs

Virginie Feche University of Montpellier, France
Elena Demchenko University of Montpellier, France

Program Committee

Reza Akbarinia Inria, France
Giuseppina Andresini University of Bari Aldo Moro, Italy
Martin Atzmueller Osnabrück University, Germany
Elena Battaglia University of Turin, Italy
Colin Bellinger National Research Council of Canada, Canada
Robert Bossy INRAE, France
Alberto Cano Virginia Commonwealth University, USA
Michelangelo Ceci University of Bari Aldo Moro, Italy
Mattia Cerrato University of Mainz, Germany
Bruno Cremilleux Universite de Caen Normandie, France
Wouter Duivesteijn Eindhoven University of Technology,

The Netherlands
Sašo Džeroski Jožef Stefan Institute, Slovenia
Johannes Fürnkranz Johannes Kepler University Linz, Austria
Edith Gabriel INRAE, France
Sabrina Gaito University of Milan, Italy
Dragan Gamberger Rudjer Boskovic Institute, Croatia

viii Organization

Francesco Gullo UniCredit, Italy
Nadine Hilgert INRAE, France
Kouichi Hirata Kyushu Institute of Technology, Japan
Jaakko Hollmén Aalto University, Finland
Dino Ienco INRAE, France
Roberto Interdonato CIRAD, France
Stefan Kramer Johannes Gutenberg University Mainz, Germany
Vincent Labatut Université d’Avignon, France
Baptiste Lafabregue Université de Haute-Alsace, France
Anne Laurent University of Montpellier, France
Nada Lavrač Jozef Stefan Institute, Slovenia
Tomislav Lipic Rudjer Boskovic Institute, Croatia
Gjorgji Madjarov Ss. Cyril and Methodius University, Macedonia
Giuseppe Manco ICAR-CNR, Italy
Giuseppe Mangioni University of Catania, Italy
Bruno Martins University of Lisbon, Portugal
Elio Masciari University of Naples Federico II, Italy
Florent Masseglia Inria, France
Anna Monreale University of Pisa, Italy
Nisrine Mouhrim Sidi Mohamed Ben Abdellah University, Morocco
Tsuyoshi Murata Tokyo Institute of Technology, Japan
Claire Nédellec INRAE, France
Pance Panov Jozef Stefan Institute, Slovenia
Ruggero G. Pensa University of Turin, Italy
Bernhard Pfahringer University of Waikato, New Zealand
Pascal Poncelet University of Montpellier, France
Jan Ramon Inria, France
Chedy Raïssi Inria, France
Mathieu Roche CIRAD, France
Arnaud Sallaberry Université Paul-Valéry Montpellier 3, France
Maximilien Servajean Université Paul-Valéry Montpellier 3, France
Tomislav Smuc Rudjer Boskovic Institute, Croatia
Marina Sokolova University of Ottawa and Institute for Big Data

Analytics, Canada
Arnaud Soulet Université de Tours, France
Andrea Tagarelli University of Calabria, Italy
Alberto Tonda INRAE, France
Davide Vega Uppsala University, Sweden
Herna Viktor University of Ottawa, Canada
Matteo Zignani University of Milan, Italy
Albrecht Zimmermann Universite de Caen Normandie, France

Keynote Talks

Unsupervised Model Selection in Outlier Detection: The
Elephant in the Room

Leman Akoglu

Carmegie Mellon University, USA

Outlier mining has a large literature containing numerous detection algorithms, as it
finds high-stakes applications in numerous domains including finance, cybersecurity,
surveillance, to name a few. However, given a new detection task, it is unclear how to
choose an algorithm to use, nor how to set its hyperparameter(s) (HPs) in unsupervised
settings. HP tuning is an ever-growing problem with the arrival of many new deep
learning based outlier detectors. While they have appealing properties such as task-
driven representation learning and end-to-end optimization, deep models come with a
long list of HPs. Surprisingly, the issue of model selection in the outlier mining literature
has been “the elephant in the room”; a significant factor in unlocking the utmost potential
of (deep) models, yet little said or done to systematically tackle the issue.

In this talk, I will first quantitatively demonstrate the HP sensitivity of deep outlier
detectors from various families based on a large-scale evaluation study. Next I will
present a couple of new directionswe have taken to tackle the unsupervised outliermodel
selection problem, including meta-learning based solutions that transfer “experience”
from historical tasks for model selection for a new task, and scalable hyper-ensemble
modeling that fully bypasses/obviates model selection.

Coloring Social Relationships

Luca Maria Aiello

IT University of Copenhagen, Denmark

Social relationships are the key determinant of crucial societal outcomes, including dif-
fusion of innovation, productivity, happiness, and life expectancy. To better attain such
outcomes at scale, it is therefore paramount to have technologies that can effectively
capture the type of social relationships from digital data. NLP researchers have tried to
do so from conversational text but mostly focusing on sentiment or topic mining, tech-
niques that fall short on either conciseness or exhaustiveness. We propose a theoretical
model of 10 dimensions (colors) of social relationships that is backed by decades of
research in social sciences and that captures most of the common relationship types. We
trained a deep-learningmodel to classify text along these ten dimensions, andwe reached
performance up to 0.98 AUC. By applying this tool on large-scale conversational data,
we show that the combination of the predicted dimensions suggests both the types of
relationships people entertain and the types of real-world communities they shape. We
believe that the ability of capturing interpretable social dimensions from language using
AI will help in closing the gap between the oversimplified social constructs that existing
social network analysis methods can measure and the multifaceted understanding of
social dynamics that has been developed by decades of theoretical research.

35 Years of ‘Scientific Discovery: Computational
Explorations of the Creative Processes’ – From the Early

Days to the State of the Art

Stefan Kramer

University of Mainz, Germany

It was 35 years ago, in April 1987, when the first book on computational models of sci-
entific discovery was published: “Scientific Discovery: Computational Explorations of
the Creative Processes” by Pat Langley, Herbert Simon, Gary Bradshaw, and Jan Zytkow
contained a comprehensive account of systems for discovering quantitive empirical laws
as well the discovery of qualitative and structural models, and marked an important
milestone in a new branch of AI. Since then, methods for equation discovery, symbolic
regression and the automation of science have been developed and refined, with many
interesting problems remaining. Currently, deep neural networks (DNNs), representation
learning, explainable AI (XAI), graph neural networks (GNNs), and many other tech-
nical innovations are bringing new elements into the field. At the same time, progress
in the natural and life sciences is increasingly made by (and often requires) methods
from AI and ML to produce models with high predictive and explanatory power. In the
talk, I will review progress in the field, applications from the natural and life sciences as
well as a new test environment, with many options for extensions, that frames machine
discovery as a reinforcement learning problem.

Contents

Regression and Limited Data

Model Optimization in Imbalanced Regression . 3
Aníbal Silva, Rita P. Ribeiro, and Nuno Moniz

Discovery of Differential Equations Using Probabilistic Grammars 22
Boštjan Gec, Nina Omejc, Jure Brence, Sašo Džeroski,
and Ljupčo Todorovski

Hyperparameter Importance of Quantum Neural Networks Across Small
Datasets . 32

Charles Moussa, Jan N. van Rijn, Thomas Bäck, and Vedran Dunjko

ImitAL: Learned Active Learning Strategy on Synthetic Data 47
Julius Gonsior, Maik Thiele, and Wolfgang Lehner

Incremental/Continual Learning

Predicting Potential Real-Time Donations in YouTube Live Streaming
Services via Continuous-Time Dynamic Graph . 59

Ruidong Jin, Xin Liu, and Tsuyoshi Murata

Semi-supervised Change Point Detection Using Active Learning 74
Arne De Brabandere, Zhenxiang Cao, Maarten De Vos,
Alexander Bertrand, and Jesse Davis

Adaptive Neural Networks for Online Domain Incremental Continual
Learning . 89

Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

Incremental Update of Locally Optimal Classification Rules 104
Van Quoc Phuong Huynh, Florian Beck, and Johannes Fürnkranz

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 114
Guilherme Dinis Junior, Sindri Magnússon, and Jaakko Hollmén

Spatial and Temporal Analysis

Spatial Cross-Validation for Globally Distributed Data . 127
Rita Beigaitė, Michael Mechenich, and Indrė Žliobaitė

xvi Contents

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting
of the Energy Consumption in Smart Grids . 141

Annunziata D’Aversa, Stefano Polimena, Gianvito Pio,
and Michelangelo Ceci

Elastic Product Quantization for Time Series . 157
Pieter Robberechts, Wannes Meert, and Jesse Davis

Stress Detection from Wearable Sensor Data Using Gramian Angular
Fields and CNN . 173

Michela Quadrini, Sebastian Daberdaku, Alessandro Blanda,
Antonino Capuccio, Luca Bellanova, and Gianluca Gerard

Multi-attribute Transformers for Sequence Prediction in Business Process
Management . 184

Gonzalo Rivera Lazo and Ricardo Ñanculef

Social Media Analysis

Data-Driven Prediction of Athletes’ Performance Based on Their Social
Media Presence . 197

Frank Dreyer, Jannik Greif, Kolja Günther, Myra Spiliopoulou,
and Uli Niemann

Link Prediction with Text in Online Social Networks: The Role of Textual
Content on High-Resolution Temporal Data . 212

Manuel Dileo, Cheick Tidiane Ba, Matteo Zignani, and Sabrina Gaito

Weakly Supervised Named Entity Recognition for Carbon Storage Using
Deep Neural Networks . 227

René Gómez Londoño, Sylvain Wlodarczyk, Molood Arman,
Francesca Bugiotti, and Nacéra Bennacer Seghouani

Predicting User Dropout from Their Online Learning Behavior 243
Parisa Shayan, Menno van Zaanen, and Martin Atzmueller

Efficient Multivariate Data Fusion for Misinformation Detection During
High Impact Events . 253

Lucas P. Damasceno, Allison Shafer, Nathalie Japkowicz,
Charles C. Cavalcante, and Zois Boukouvalas

Fairness and Outlier Detection

MQ-OFL: Multi-sensitive Queue-based Online Fair Learning 271
Farnaz Sadeghi and Herna Viktor

Contents xvii

Multi-fairness Under Class-Imbalance . 286
Arjun Roy, Vasileios Iosifidis, and Eirini Ntoutsi

When Correlation Clustering Meets Fairness Constraints . 302
Francesco Gullo, Lucio La Cava, Domenico Mandaglio,
and Andrea Tagarelli

Cooperative Deep Unsupervised Anomaly Detection . 318
Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina, and Rosaria Spada

On the Ranking of Variable Length Discords Through a Hybrid Outlier
Detection Approach . 329

Hussein El Khansa, Carmen Gervet, and Audrey Brouillet

Text, Ontologies and Cross-Modal Learning

TextMatcher: Cross-Attentional Neural Network to Compare Image
and Text . 347

Valentina Arrigoni, Luisa Repele, and Dario Marino Saccavino

Can Cross-Domain Term Extraction Benefit from Cross-lingual Transfer? 363
Hanh Thi Hong Tran, Matej Martinc, Antoine Doucet, and Senja Pollak

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 379
Blaž Škrlj, Boshko Koloski, and Senja Pollak

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 394
Houda Akremi, Mouhamed Gaith Ayadi, and Sami Zghal

Optimization and Network Analysis

Optimal Decoding of Hidden Markov Models with Consistency Constraints . . . 407
Alexandre Dubray, Guillaume Derval, Siegfried Nijssen,
and Pierre Schaus

Semi-parametric Approach to Random Forests for High-Dimensional
Bayesian Optimisation . 418

Vladimir Kuzmanovski and Jaakko Hollmén

A Clustering-Inspired Quality Measure for Exceptional Preferences
Mining—Design Choices and Consequences . 429

Ruben Franciscus Adrianus Verhaegh,
Jacco Johannes Egbert Kiezebrink, Frank Nusteling,
Arnaud Wander André Rio, Márton Bendegúz Bendicsek,
Wouter Duivesteijn, and Rianne Margaretha Schouten

xviii Contents

Recurrent Segmentation Meets Block Models in Temporal Networks 445
Chamalee Wickrama Arachchi and Nikolaj Tatti

Community Detection in Edge-Labeled Graphs . 460
Iiro Kumpulainen and Nikolaj Tatti

A Fast Heuristic for Computing Geodesic Closures in Large Networks 476
Florian Seiffarth, Tamás Horváth, and Stefan Wrobel

Explainability and Interpretability

JUICE: JUstIfied Counterfactual Explanations . 493
Alejandro Kuratomi, Ioanna Miliou, Zed Lee, Tony Lindgren,
and Panagiotis Papapetrou

Explaining Siamese Networks in Few-Shot Learning for Audio Data 509
Andrea Fedele, Riccardo Guidotti, and Dino Pedreschi

Interpretable Latent Space to Enable Counterfactual Explanations 525
Francesco Bodria, Riccardo Guidotti, Fosca Giannotti,
and Dino Pedreschi

Shapley Chains: Extending Shapley Values to Classifier Chains 541
Célia Wafa Ayad, Thomas Bonnier, Benjamin Bosch, and Jesse Read

Explaining Crash Predictions on Multivariate Time Series Data 556
Francesco Spinnato, Riccardo Guidotti, Mirco Nanni,
Daniele Maccagnola, Giulia Paciello, and Antonio Bencini Farina

Author Index . 567

Regression and Limited Data

Model Optimization in Imbalanced
Regression

Aníbal Silva1(B), Rita P. Ribeiro1,2, and Nuno Moniz1,2

1 Faculty of Sciences - University of Porto, Porto, Portugal
up201008538@up.pt, rpribeiro@fc.up.pt

2 INESC TEC, Porto, Portugal
nmmoniz@inesctec.pt

Abstract. Imbalanced domain learning aims to produce accurate mod-
els in predicting instances that, though underrepresented, are of utmost
importance for the domain. Research in this field has been mainly focused
on classification tasks. Comparatively, the number of studies carried out
in the context of regression tasks is negligible. One of the main reasons
for this is the lack of loss functions capable of focusing on minimizing
the errors of extreme (rare) values. Recently, an evaluation metric was
introduced: Squared Error Relevance Area (SERA). This metric posits
a bigger emphasis on the errors committed at extreme values while also
accounting for the performance in the overall target variable domain,
thus preventing severe bias. However, its effectiveness as an optimiza-
tion metric is unknown. In this paper, our goal is to study the impacts of
using SERA as an optimization criterion in imbalanced regression tasks.
Using gradient boosting algorithms as proof of concept, we perform an
experimental study with 36 data sets of different domains and sizes.
Results show that models that used SERA as an objective function are
practically better than the models produced by their respective standard
boosting algorithms at the prediction of extreme values. This confirms
that SERA can be embedded as a loss function into optimization-based
learning algorithms for imbalanced regression scenarios.

Keywords: Imbalanced regression · Asymmetric loss functions ·
Model optimization · Boosting

1 Introduction

Supervised learning assumes there is an unknown function mapping a set of
independent to one or more dependent variables. Learning algorithms aim to
approximate such an unknown function through optimization processes. A key
decision rests on choosing which preference criterion, e.g. a loss function, should
be used. Such a decision entails critical definitions and assumptions on what
should be considered a successful approximation. Most importantly, we should
stress that, these decisions are commonly aimed at minimizing the overall error
across the entire domain of the target (dependent) variable of a given data set.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-031-18840-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_1

4 A. Silva et al.

By assuming that all values are equally important, traditional optimization pro-
cesses tend to produce models that have a particular focus on the most common
values of the target variable. This is not the goal of many real-world applications
that configure imbalanced domain learning tasks.

In imbalanced learning, the following holds: i) the target variable has a non-
uniform or skewed distribution; ii) the values across the domain of the target
variable are not equally important; and iii) the focus is on the rare cases, i.e.
values that are poorly represented in the data set. Examples of this type of
predictive task spread from classification to regression. They include multiple
real-world applications in different areas, such as finance, where the user might
be interested in fraud detection, and environmental sciences, to mitigate the
occurrence of natural catastrophes, such as floods and hurricanes.

Focusing on Imbalanced Regression, several challenges impose the non-
triviality of predicting extreme values. From a supervised learning perspective,
these include two main ones: 1) the definition of suitable and non-uniform pref-
erences over a continuous and possibly infinite domain of the target variable; 2)
map such preference regarding the extreme values into an evaluation metric that
would adequately allow model selection and, possibly, optimization. Regarding
the first challenge, a proposal [22,26] exists that suggests a mapping of the tar-
get variable domain into a well-defined space (the relevance space), which gives
information about the relevance of a given instance based on its target value.
As for the second challenge, while there are some proposals for specially tailored
evaluation metrics [8,13,27] in an imbalanced regression scenario, only a very
few works exist on including such metrics in the optimization process. We focus
on this second challenge. In particular, we build on recent work that introduced
the Squared Error Relevance Area (SERA) [22] metric. This metric allows for
errors of equal magnitude to have different impacts depending on the relevance
of the target values. Moreover, while it focuses on errors in cases with extreme
target values, it also accounts for the errors committed across all the rest of
the target values, preventing a severe bias towards the extreme values. However,
despite its demonstrated interest in model selection tasks, it is unclear if it is
possible to use it directly in optimization processes.

In this work, our main contribution is to show that SERA can be used as
an optimization loss function in machine learning algorithms, with the ability
to generalize its predictive power for both average and extreme target value
instances. Our demonstration efforts consist of empirical evaluation using gra-
dient boosting algorithms and a test bed of 36 data sets. Results show us that,
overall, SERA can be used as an optimization loss function. In addition, when
these models optimized with SERA under-perform w.r.t. models optimized via
standard loss functions (e.g. MSE), the former still have the ability to outper-
form on extreme values, opening horizons to a broader set of applications in the
realm of Imbalance Regression (e.g. Deep Learning).

The paper is organized as follows. In Sect. 2, we provide a review of recent
related work regarding imbalanced domain learning. In Sect. 3, we formulate the
problem of Imbalanced Regression, introducing SERA, the loss function that
we will use to optimize our models. In addition, we also provide the details
needed to embed this loss function in gradient boosting models, which will be

Model Optimization in Imbalanced Regression 5

our baselines. In Sect. 4, we demonstrate how SERA can be integrated as a
custom optimization metric. In Sect. 5, we provide the experimental study and
discuss the obtained results. Finally, in Sect. 6 we conclude our work with further
research directions.

2 Related Work

The study of imbalanced learning has been advocated over the years, as it poses
well-known challenges to standard predictive learning tasks [2]. There are three
main strategies to cope with imbalanced domain learning problems: data-level,
algorithm-level and hybrid.

Data-level approaches are the most common ones. They allow for any stan-
dard machine learning to be used, as they act in a pre-processing stage by chang-
ing the data distribution to reduce the imbalance. Generally speaking, we can
group them into under-sampling, over-sampling, generation of synthetic exam-
ples, or their combination. Even though far more data-level methods have been
proposed for classification, few exist for regression (e.g. [3]). An adaptation of
the Synthetic Minority Over-sampling Technique (SMOTE) [4], initially pro-
posed for classification, has been made for regression and named SMOTEr [25].
More recently, in the context of Deep Learning, a method to deal with missing
data in an imbalanced regression domain was proposed in [28]: Deep Imbalanced
Regression (DIR). The specificity of this method lies in the fact that there may
be missing values close to a high (low)-representative neighborhood in the target
variable distribution. The distribution of the target variable is smoothed across
the entire domain, considering a similarity kernel based on statistical properties
of the data to estimate missing values. However, there is a caveat from these
approaches – they add artificial instances that may not represent the reality
with which we are faced or remove common cases that can represent a cru-
cial discriminating aspect for the predictive task. Moreover, the models are not
specifically optimized toward predicting those rare cases. Thus, it is not easy to
assess whether the change made to the data distribution would effectively map
to the intended predictive focus [18].

Regarding algorithm-level approaches, one of the most popular methods is
cost-sensitive learning [10,11,24]. These methods use costs to emphasize/relax
errors committed by predictions at specific target values. An error committed at
a rare or extreme value in imbalanced domains should have a higher cost than a
common value. A problem linked to these methods is that assessing the exact cost
of a given error is highly domain-dependent and not straightforward [10]. Other
methods include the optimization of an asymmetric loss function in standard
learning algorithms [9,21]. In the context of regression, few contributions have
been made regarding optimization techniques. In [9], the authors focused on the
prediction of extreme values by defining a branched asymmetric loss function in
the residual space, using the Gradient Boosting algorithm as a training model.
Here, the loss function branches into a quadratic function - for values around the
mean, so-called normal; and exponential function - for extreme values. However,

6 A. Silva et al.

this loss function has the caveat of a precise definition of normality and thus the
requirement of a pre-defined threshold defined in the residual space.

Recently, an ensemble model that consists of embedding SMOTE in several
variations of the AdaBoost algorithm was proposed, both in classification [5], and
regression tasks [19]. There is, however, a caveat to these models, as mentioned
before - they add artificial instances that may not represent the reality with
which we are faced. This is especially critical when we are tackling ecological or
health domains, where there is no guarantee that the generated instances may
be valid observations.

In standard regression tasks, a given model’s quality or predictive power is
typically assessed by metrics such as the Mean Squared Error (MSE) or the
Mean Absolute Error (MAE). These metrics have one property in common: the
importance attributed to each observation is uniform, which is not adequate if we
are facing a problem of imbalanced regression. Several metrics were proposed for
regression with the same goal of assigning uneven importance to instances. The
Linear Exponential (LINEX) [27] loss function, which, controlled by a parameter,
differentiates over and underestimations. The Relevance-Weighted Root Mean
Squared Error (RW -RMSE) [17], a modified version of RMSE which takes
into the account the relevance of a given observation. This metric has the caveat
of neglecting values which have a low relevance. The utility-based F-measure
Fu

β [26], is a function that depends on variations of both the well-known preci-
sion and recall, implemented in the context of regression. It relies on the values
of relevance and utility assigned to a prediction for a given true value. Never-
theless, both values depend on a given threshold defined in the relevance and
utility space. All the metrics mentioned above share the same limitation: they
are threshold dependent.

In this work, we follow the same principle as in [9], but with another loss
function - Squared Error Relevance Area (SERA), a metric recently presented
in the context of imbalanced regression [22]. Using the definition of relevance
associated with the target variable domain, this metric explicitly gives the notion
of asymmetry regarding the loss in different ranges of the target variable. This
metric is not dependent on any threshold and thus does not face the problems
referred to in the above metrics. Due to such characteristics, it presents the
best option for exploring the possibility of model optimization in imbalanced
regression tasks.

3 Imbalanced Regression

Consider D a training set defined as D = {〈xi, yi〉}N
i=1, where xi is a feature

vector of the feature space X composed by m independent variables and yi an
instance of the feature space Y that depends on the feature space X . In a super-
vised learning setting, our aim is to find the function f that maps the feature
space X onto Y, f : X → Y. Depending on the nature of Y, we can face a classi-
fication (if Y is discrete) or a regression problem (if Y is continuous). To obtain
the best approximation function of f , h, the standard approach in supervised

Model Optimization in Imbalanced Regression 7

learning is to consider a loss function L, responsible for the optimization of a set
of parameters Θ which tune a model to extract predictions that better describes
new instances from the feature space Y.

Here, we will focus on the problem of imbalanced regression, i.e., when the
target variable Y ∈ R presents a skewed distribution and the most important
values for the prediction task are extreme (rare) values. The most commonly
used loss function in regression is the Mean Squared Error (MSE). However,
this metric is not adequate for our prediction task. The constant which minimizes
MSE is the mean of the target variable, ȳ, which is counter intuitive for our
predictive focus: the extreme values. In an imbalanced regression scenario, an
appropriate loss function should search the parameter space Θ such that it
encompasses a good predictive power for both common (around the mean) and
uncommon (extremes) instances of our target domain Y. However, this is not a
trivial task to accomplish.

3.1 Relevance Function

In this study, we define an extreme value based on the notion of relevance intro-
duced by [26]. The authors define a relevance function φ : Y → [0, 1] as a
continuous function that expresses the application-specific bias concerning the
target variable domain Y by mapping it into a [0, 1] scale of relevance, where 0
and 1 represent the minimum and maximum relevance, respectively. With the
assumption that extreme values are the values of interest, authors have also pro-
posed a method that automatically constructs the φ(.) function. It achieves that
by interpolating a set of control points provided by the adjusted boxplot, a non-
parametric modification to Tukey’s boxplot, proposed by [14]. In particular, this
method uses the median and the whiskers as the set of key points to interpolate.
In Fig. 1 we depict the result of the automatic mapping of the adjusted boxplot
to the relevance space, as introduced by [26], for three different scenarios based
on the type of extremes indicated to be of interest: low, high or both (default).

3.2 Squared Error Relevance Area (SERA)

Once we have the domain of the target variable mapped into a relevance space,
we now present the asymmetric loss function SERA. We will use SERA to
improve the predictive power of extreme values in Gradient Boosting algorithms,
emphasizing that any model which relies on optimization in the parameter space
Θ could be used to perform this improvement.

Let D = {〈xi, yi〉}N
i=1 be a data set and φ : Y → {0, 1} a relevance function

defined for the target variable Y . Considering the subset Dt ⊆ D of instances
such that Dt = {〈xi, yi〉 ∈ D |φ(yi) ≥ t}, we can define a Squared Error-
Relevance (SERt) to estimate the error of a given model with respect to a
given cutoff t as

8 A. Silva et al.

Fig. 1. The adjusted boxplot (top) of a target variable y and its automatically inferred
relevance function φ(y) (bottom) for three data sets with different type of extreme
values: low (left), high (middle) and both (right).

SERt =
∑

yi∈Dt

(ŷi − yi)2 (1)

This is the sum of squared errors for all the instances such that the relevance
of the target value is bounded by a given threshold t. Since this metric only
depends on instances such that φ(yi) ≥ t, we will have that, for any given
δ ∈ R

+, s.t. t + δ ≤ 1: SERt+δ ≤ SERt. Finally, its maximum and minimum
value are ascertained when t = 0 and t = 1, respectively.

In the same work, the authors took a step further and integrated this estimate
w.r.t. all possible cutoff values (i.e., between 0 and 1). There, they defined this
area as the Squared Error Relevance Area (SERA), and it is given by

SERA =
∫ 1

0

SERt dt =
∫ 1

0

∑

yi∈Dt

(ŷi − yi)2 dt (2)

This area has some important properties that can help us better understand
the performance of models in an imbalanced regression setting. First, it encom-
passes all the possible relevance thresholds constrained in the definition of SERt,
removing the need to explicitly define a threshold. Secondly, it is a decreasing
and monotonic function. Note that we are integrating along with all possible
relevance values. Since we know by definition that Dt+δ ⊆ Dt, the higher the
relevance threshold is, the lower will be the number of instances considered, but
also more relevant. Thus, on the one hand, values of SERt which have a high rele-
vance will have a greater contribution to this area when compared with instances
where the relevance is small. The squared errors of these latter instances are
accounted less times for SERA, when compared to the high relevance instances.
On the other hand, the area will be smaller at points where the relevance is high
(since we are only considering the observations that have a high relevance). In
this sense, we are explicitly penalizing high relevance errors, which are usually
harder to optimize while keeping the entire data domain. Finally, since this met-
ric is built by integrating SERt over all the relevance domain, which is convex,

Model Optimization in Imbalanced Regression 9

convexity is also preserved. Also, this metric must be differentiable. By the same
token, given that SERt is differentiable, so is SERA.

4 Optimization Loss Function for Imbalanced Regression

We aim to study the possibility and impact of embedding SERA as an optimiza-
tion loss function in supervised learning algorithms. Its use in already imple-
mented learning algorithms only requires the proposal of a custom loss function,
where the only thing we need to provide is the first and second-order derivatives.

The first-order derivative of SERA is obtained by evaluating the first deriva-
tive w.r.t. a given prediction ŷj , as follows

∂SERA

∂ŷj
=

∂

∂ŷj

∫ 1

0

∑

yi∈Dt

(ŷi − yi)2 dt

= 2
∫ 1

0

∑

yi∈Dt

(ŷi − yi) δij dt

(3)

where δij is the Kronecker’s delta, which takes value of 1 if i = j and 0 otherwise.
Since we need to take into the account all the possible relevance values a given
observation is encompassed in, we can write the expression above as

∂SERA

∂ŷj
= 2

∫ 1

0

(ŷj − yj)
∣∣∣∣
yj∈Dt

dt (4)

The second derivative w.r.t. a given prediction ŷj is obtained by

∂2SERA

∂ŷ2
j

= 2
∫ 1

0

1(yj ∈ Dt) dt (5)

where 1(.) is an indicator which takes the value of 1 if the argument holds, and
0 otherwise.

In this paper, we will drive our efforts using Gradient Boosting algorithms,
namely two well-known variants of Gradient Boosting Regression Trees (GBRT)
[12], XGBoost [6] and LGBM [15]. For that, we resort to the implementations
found in R [20] from the packages xgboost [7] and lightgbm [23], respectively.

To approximate the values of the two derivatives, we resort to the trape-
zoidal rule with a uniform grid of T equally spaced intervals between [0, 1]. In
this approximation, we can expand the summations and deduce the following
expressions (see Appendix A for all derivation steps).

∂SERA

∂ŷj
≈ 1

T

(
1 + 2nj + 1

(
yj ∈ DtT

))
(ŷj − yj),

∂2SERA

∂ŷ2
j

≈ 1
T

(
1 + 2nj + 1

(
yj ∈ DtT

))
(6)

10 A. Silva et al.

where nj ∈ [1, T − 1] is the number of times the instance yj contributes to
SERA derivative. From this, we can infer that, for a given prediction, the first
and second-order derivatives will be greater (assuming a greater error for extreme
values) as the relevance increases, as there will be a higher contribution from nj .
These derivatives, in addition with SERA, were implemented in R [20].

From now on, we will designate XGBoost and LGBM models optimized
with SERA as XGBoostSand LGBMS , while models optimized with MSE
XGBoostMand LGBMM , respectively.

Computational Complexity. Another important aspect is the computational
complexity introduced by SERA. The trapezoidal rule has a computational com-
plexity of O(T), where T is the number of steps taken to discretize an integral.
SERt has a computational complexity of O(|Dt|), where |Dt| is the number of
instances with relevance higher or equal to a given threshold t. SERA will con-
sider |Dt0 |+ |Dt1 |+ ...+ |DtT | instances for all the T steps of the Riemann’s sum.
In the worst-case scenario, all the target values have a constant and maximum
relevance equal to 1. In that case, |D| is the number of instances accounted for
all steps. Thus, SERA will have a computational complexity of O(T × |D|).
Regarding the computational complexity introduced in XGBoost and LGBM,
we only need to take into consideration the additional complexity of the first
and second order derivatives. Thus, using the approximation found in Appendix
A, the computational complexity will be again O(T × |D|).

5 Experimental Study

Our goal is to answer the research question (Q) that motivated this work: can
SERA be used as an optimization loss function to reduce errors for both extreme
and common values?

In this section, we take into consideration a group of 36 regression data
sets from several domains with an imbalanced distribution on the target vari-
able. Given these data sets and the models described in Sect. 4, we will start
by describing our experimental setup in Sect. 5.1. Namely, the considered data
sets with an imbalanced domain, and the grid-search procedure for parameter
tuning of models. In Sect. 5.2 we refer to the Bayes Sign Test used to assess the
statistical significance of the results. Given the best parameters for each model,
we present and discuss the obtained results for all data sets in Sect. 5.3.

5.1 Experimental Setup

To study the effects of using SERA as an optimization loss function, a wide
range of data sets from several domains in the context of imbalanced regression
is used. These data sets, with their respective main properties, are presented
in Table 1. From them, we extracted the number of instances |D|, the number
of nominal (Nom) and numerical (Num) variables. In addition, and to give a
notion of the imbalance present in the target variable, we resort to the automatic

Model Optimization in Imbalanced Regression 11

method proposed in [22] that is based on the adjusted boxplot. We calculated
the number of instances such that φ(y) = 1, as representative of the number
of extreme (rare) target value instances (|DR|) and the Imbalance Ratio (IR),
calculated as |DR|/|D| × 100%. Finally, we also include the type of imbalance
for each target variable as follows: if the adjusted boxplot only presents outliers
below or above the respective fence, the type of extremes is low (L) or high (H),
respectively, while if it presents outliers below and above the fences, the type is
both (B).

Table 1. Data sets description: |D| — nr of instances, Nom — nr. of nominal
attributes, Num — nr. of numeric attributes, |DR| — nr. of extreme (rare) instances,
i.e. φ(y) = 1 IR — imbalance ratio and Type — type of extremes.

Id Dataset |D| Nom Num |DR| IR Type

1 diabetes 35 0 3 4 12.90 H
2 triazines 151 0 61 4 2.72 B
3 a7 160 3 9 7 4.58 H
4 autoPrice 165 10 16 3 1.85 L
5 elecLen1 399 0 3 4 1.01 H
6 housingBoston 407 0 14 40 10.90 B
7 forestFires 416 0 13 7 1.71 H
8 wages 429 7 4 1 0.23 B
9 strikes 501 0 7 1 0.20 H
10 mortgage 841 0 16 60 7.68 L
11 treasury 841 0 16 79 10.37 L
12 musicorigin 848 0 118 15 1.80 B
13 airfoild 1203 0 6 11 0.92 H
14 acceleration 1387 3 12 30 2.21 B
15 fuelConsumption 1413 12 26 27 1.95 B
16 availablePower 1443 7 9 75 5.48 B
17 maxTorque 1442 13 20 43 3.07 B
18 debutenizer 1918 0 8 90 4.92 H

Id Data set |D| Nom Num |DR| IR Type

19 space_ga 2487 0 7 21 0.85 B
20 pollen 3080 0 5 32 1.05 B
21 abalone 3343 1 8 374 12.60 B
22 wine 5199 0 12 1022 24.47 H
23 deltaAilerons 5705 0 6 528 10.20 B
24 heat 5922 3 9 39 0.66 B
25 cpuAct 6555 0 22 227 3.59 L
26 kinematics8fh 6556 0 9 50 0.77 B
27 kinematics32fh 6556 0 33 53 0.82 B
28 pumaRobot 6556 0 33 91 1.41 B
29 deltaElevation 7615 0 7 1802 31 H
30 sulfur 8065 0 6 606 8.12 B
31 ailerons 11003 0 41 186 1.72 B
32 elevators 13280 0 18 1598 13.68 B
33 calHousing 16513 0 9 23 0.14 L
34 house8H 18229 0 9 305 1.70 B
35 house16H 18229 0 17 303 1.69 B
36 onlineNewsPopRegr 31716 0 60 2879 9.98 B

To assess the effectiveness of each model, we performed a random partition for
each data set, where 80% will be used to tune the models while the remaining 20%
to make predictions under the best model configuration found in a given data set.
To tune the parameters for each model, we will use a grid-search approach with
a 10-fold stratified cross-validation. We define a workflow of a given algorithm j

as the tuple W (j) = (M j ,Θ
(j)) = {W(j)

q }e
q=1, where e is the number of different

workflows considered for a given tuple, M j denote the algorithm used, Θ(j) the
respective set of parameters, which are described in Table 2.

Table 2. Models parameters considered for grid search.

Model R Package Parameters

XGBoost xgboost [7] nrounds = {250, 500}
LGBM lightgbm [15] max_depth = {3, 5, 7}

η = {10−3, 10−2, 10−1}

12 A. Silva et al.

Given the workflows obtained from the grid-search, we start by providing a
methodology to answer the question that motivated this work, Q. It consists on
the following tasks.

T1: For each data set, and for each model in M , we select the workflow that had
the lowest score according to SERA. This score is calculated by averaging
the results obtained by cross-validation on the 80% partition.

T2: Given the best workflows, we compare them using the Bayes Sign Test [1]
(Sect. 5.2). The designation we give to Gradient Boosting models is WM , in
case they are optimized using a standard loss function (MSE) and WS in
case they are optimized using SERA.

T3: Next, we train our best workflows for each data set with the partitioned
80% and, with the remaining 20%, we assess the quality of their predictions
(Sect. 5.3). This quality will also be evaluated by plotting SERA curves.

5.2 Results on Model Optimization

With the top workflows from each model obtained by T1, we can assess the
performance of our models in task T2. For that, we resort to the Bayes Sign
Test. Briefly, this test compares two models on a multi data set scenario by
measuring their score difference (a prior probability) for all data sets, returning
a probability measure (the posterior) hinting if a model is practically better than
another, or if they are equivalent. This equivalence is measured in a given interval
and is defined as the Region Of Practical Equivalence (ROPE) [16]. The prior
zi, where i indicates a given data set, is determined by averaging the normalized
difference below for all k-folds

zi =
1
10

10∑

k=1

Lk(WS) − Lk(WM)
Lk(WM)

, (7)

and taking L as SERA or MSE. After determining this mean difference
for all data sets, we feed into the Bayes Sign Test the vector z and a ROPE
between [−1%, 1%], returning the posterior probability p(z) that a given model
is practically better or equivalent than the other.

The results from this evaluation are depicted in Fig. 2 and provide us with
two perspectives according to the considered error metrics. Regarding MSE
(left column), the standard models are practically better (with a p(z) of 0.92 for
XGBoostMand a p(z) of 0.7 for LGBMM). Concerning SERA (right column),
results tell us that both algorithms with our optimization are practically better
(with a p(z) of 0.65 for XGBoostSand a p(z) of 0.76 for LGBMS).

Thus, from a statistical points of view and in a model optimization scenario,
there is a clear trade-off between the standard and our models when assessing
their scores with different metrics. This was somewhat expected as these metrics
have a different predictive focus as it was already mentioned above. Nevertheless,
from this test we are able to infer the ability of SERA as a loss function to lower
the errors obtained in a problem of Imbalance Regression. With this, we finish

Model Optimization in Imbalanced Regression 13

Fig. 2. Comparison between our models optimized with SERA, LGBMSand
XGBoostS , against the standard models LGBMMand XGBoostM . Each color denotes
the probability of our implementation (green) or standard (red) being practically bet-
ter or equivalent (blue) to one another according with the Bayes Sign Test with the
ROPE interval [−1%, 1%]. The left and right column denote the results of the Bayes
Sign Test with MSE and SERA, respectively. (Color figure online)

our second task T2 and partially answered our main question Q. Next, we aim
to show that SERA do in fact improve the predictive power for both common
and extreme values in an out-of-sample scenario (i.e., using our test data).

5.3 Results in Out-of-Sample

Using the parameters found in the best workflows obtained for each model and
for each data set in task T1, we train our models and assess their predictions
with the (20%) out-of-sample data. Given these predictions, we calculated SERA
and MSE for all the models in the considered data sets (cf. Tables 3 and 4 in
Appendix B).

From the obtained results, we initially take into consideration a rank evalu-
ation of our models. For that purpose, and for a given data set, the rank of 1
is assigned to the model which provided the lowest score. Figure 3 depicts the
rank distribution for each model over all the considered data sets. In MSE-
based ranking (left column), XGBoostMhad a median rank of 1, followed by
LGBMMwith a rank of 2, and finally XGBoostSand LGBMS , both with a
median rank of 3. In SERA-based ranking (right column), both XGBoostMand
XGBoostS had a median rank of two, followed by LGBMSwith a median rank
of 3, and finally LGBMMwith a rank of 4. From these ranking distributions,
we can take a somewhat expected conclusion: standard models were the top
performers when evaluated under MSE, and an unexpected one: under SERA,
XGBoostMand XGBoostScompete with each other.

Next, we focus on each algorithm independently. While for XGBoost,
XGBoostS had the lowest score in 3 and 18 of the data sets when evaluated
by MSE and SERA, respectively, for LGBM, LGBMShad a better score in 11
and 26 of the data sets when evaluated by MSE and SERA.

Although the standard models had the lowest score in more data sets than
ours, it does not mean that, for a given data set, those errors were the lowest

14 A. Silva et al.

Fig. 3. Rank distribution of models by MSE and SERA results in out-of-sample.

across all the relevance domain. To study this statement, we follow [22] and show
SERA curves for six selected data sets. These curves are built by calculating
the error SERt as the relevance threshold t for φ(y) increases and are shown in
Fig. 4.

In addition to SERA curves, we also define a turning point for each data
set. That point is the minimum relevance value ϕ for which a model optimized
with SERA has a SERA estimate for all the values with a relevance greater or
equal to ϕ, i.e. SERAφ(.)≥ϕ(MS), lower than the SERA estimate obtained by
the standard model in the same conditions, i.e. for all the values with a relevance
greater or equal to ϕ, i.e. SERAφ(.)≥ϕ(MM). More formally, and for a specific
data set, the turning point is then a threshold φt obtained by

φt = min{ϕ ∈ [0, 1] | SERAφ(.)≥ϕ(MS) < SERAφ(.)≥ϕ(MM)}. (8)

In the curves of Fig. 4, the turning points are represented by dashed lines, and
the shadowed regions represent the relevance domain for which the condition
above holds.

The plots from the first row of Fig. 4 show us SERA curves where models
that were optimized with SERA had the lowest score. As depicted, for house8H
data set, XGBoostShad the lowest score in most of the relevance domain (φt =
0.09). For housingBoston data set, although XGBoostShas the lowest SERA,
its turning point occurs at a higher threshold (φt = 0.48). Finally, we show the
curves for musicorigin data set for which LGBMShad the lowest score. Here, the
turning point also occurs at a very low relevance (φt = 0.01).

Regarding the second row of plots of Fig. 4, we show three data sets where
XGBoostMhad the lowest SERA score. From these examples, we see that
although XGBoostMwas the top performer, there are several turning points in
the relevance domain for which our models surpassed XGBoostM (φt = 0.22,
φt = 0.23, φt = 0.78 for deltaElevation, space_ga and strikes data sets, respec-
tively).

Model Optimization in Imbalanced Regression 15

From this analysis we can conclude that SERA can be used as a loss function
to reduce errors in both extreme and common values (first row of Fig. 4). Even
when models optimized with SERA do not provide the best score across the
whole relevance domain, they can still perform better for different relevance
domains (second row from Fig. 4). With this, we conclude our task T3 and
answered the question that motivated this work Q.

Fig. 4. SERA curves for six selected data sets. The first row provides data sets
where our models had the lowest error, while the second row provides data sets where
XGBoostMhad the lowest error. The highlighted region in each graph depicts the turn-
ing point where models optimized with SERA started to have a lower error w.r.t.
standard models.

6 Conclusions

In this work, we addressed the problem of embedding SERA as an optimization
loss function to improve the predictive power for both extreme and normal val-
ues. We used as our baselines two well-known variations of Gradient Boosting
models, XGBoost and LGBM. Results showed that the embedment of SERA as

16 A. Silva et al.

an optimization loss function in our algorithms provided the ability of reducing
errors for both extreme and normal values. In addition, when underperformed by
standard models, our algorithms were able to provide a more accurate prediction
in a high relevance domain. For the sake of reproducibility, all the experiments
are available in github1.

Finally, we highlight that hyper-parameter optimization, due to the construc-
tion of SERA, is not restricted to the considered algorithms, opening the use of
this loss function to several domains of Machine Learning (e.g. Deep Learning)
in the realm of Imbalanced Regression.

Acknowledgements. This work was supported by the CHIST-ERA grant CHIST-
ERA-19-XAI-012, and project CHIST-ERA/0004/2019 funded by FCT.

A SERA numerical approximation

SERA and its derivatives are approximated by the trapezoidal rule with a uni-
form grid of T equally spaced intervals with a step of 0.001, as follows.

SERA =
∫ 1

0

SERt dt

≈ 1
2T

T∑

k=1

(
SERtk−1 + SERtk

)

=
1
2T

(
SERt0 + 2SERt1 + ... + 2SERtT−1 + SERtT

)

=
1
T

(T−1∑

k=1

SERtk +
SERt0 + SERtT

2

)

=
1
T

(
1
2

∑

yi∈Dt0

(ŷi − yi)2 +
∑

yi∈Dt1

(ŷi − yi)2 + ...

+
∑

yi∈DtT−1

(ŷi − yi)2 +
1
2

∑

yi∈DtT

(ŷi − yi)2
)

(9)

1 https://github.com/anibalsilva1/IRModelOptimization.

https://github.com/anibalsilva1/IRModelOptimization

Model Optimization in Imbalanced Regression 17

Similarly, the derivative of SERA w.r.t. a given prediction ŷj is obtained by

∂SERA

∂ŷj
≈ 1

T

∂

∂ŷj

(
1
2

∑

yi∈Dt0

(ŷi − yi)2 +
∑

yi∈Dt1

(ŷi − yi)2 + ...

+
∑

yi∈DtT−1

(ŷi − yi)2 +
1
2

∑

yi∈DtT

(ŷi − yi)2
)

=
1
T

(∑

yi∈Dt0

(ŷi − yi)δij + 2
∑

yi∈Dt1

(ŷi − yi)δij + ...

+
∑

yi∈DtT−1

(ŷi − yi)δij +
1
2

∑

yi∈DtT

(ŷi − yi)δij

)

=
1
T

(
(ŷj − yj)

∣∣∣∣
yj∈Dt0

+ 2(ŷj − yj)
∣∣∣∣
yj∈Dt1

+ ...

+ 2(ŷj − yj)
∣∣∣∣
yj∈DtT−1

+ (ŷj − yj)
∣∣∣∣
yj∈DtT

)

=
1
T

(
(ŷj − yj)

∣∣∣∣
yj∈Dt0

+ 2
T−1∑

k=1

(ŷj − yj)
∣∣∣∣
yj∈Dtk

+ (ŷj − yj)
∣∣∣∣
yj∈DtT

)

=
1
T

(
1

(
yj ∈ Dt0

)
+ 2

T−1∑

k=1

1
(
yj ∈ Dtk

)
+ 1

(
yj ∈ DtT

))
(ŷj − yj)

(10)
Note that any given instance yj will always have at least zero relevance,

i.e. φ(yj) ≥ 0, so the first term of Eq. (10) will always be taken into account.
Nevertheless, not all the summation terms will be considered for cases where
φ(yj) < 1. With this in mind, we define

nj =
Kj∑

k=1

1
(
yj ∈ Dtk

)
(11)

where nj is the number of times the instance yj contributes to SERA derivative,
where Kj ∈ [1, T − 1]. Equation (10) becomes then

∂SERA

∂ŷj
≈ 1

T

(
1 + 2nj + 1

(
yj ∈ DtT

))
(ŷj − yj) (12)

In this context, the second derivative for a given prediction ŷj is obtained by

∂2SERA

∂ŷ2
j

≈ 1
T

(
1 + 2nj + 1

(
yj ∈ DtT

))
(13)

18 A. Silva et al.

We now proceed to a study on the degree of error committed by using the
approximations above (Eqs. (12), (13)) against the use of the trapezoidal rule
directly on Eqs. (4) and (5). For that, we resort to the predictions obtained for
XGBoostS . The rationale is the following: 1) for each data set, we compute the
first and second derivatives using both methods; 2) we calculate the absolute
difference between the results obtained from both methods; 3) we average these
differences over all instances.

The results obtained using this evaluation are depicted in the left box plot
of Fig. 5.

Second

First

0.0 0.5 1.0 1.5 2.0

Error (10−12)

D
er

iv
at

iv
es

Trapezoidal

Ours

0 5 10 15 20
Execution Time (sec)

M
et

ho
d

Fig. 5. Left: Absolute error differences for the first and second derivatives between
our approximations and the trapezoidal rule. Right: Execution time (in seconds) of
the first and second derivative for a given data set, under our approximation and the
trapezoidal rule.

Results show that both first and second derivative approximations have a
minor error (≈ 10−12). Sim On the right box plot of Fig. 5, we also show the
difference in execution time using both methods for each data set. Here, the
execution time is measured as the time taken to evaluate both the first and
second derivatives. As we can see, there is a non-negligible difference between
our approximation and the trapezoidal rule as the size of a data set increases.

B Tables of Results

In this section, we report the MSE and SERA results obtained in out-of-sample
of each data set.

Model Optimization in Imbalanced Regression 19

Table 3. MSE results in out-of-sample, with the best models per data set in bold.
Model (#wins): XGBoostM (27), XGBoostS (2), LGBMM (6), LGBMS (1).

Id XGBoostS XGBoostM LGBMS LGBMM

1 6.41e-01 3.36e-01 5.56e-01 5.15e-01
2 1.00e-02 1.41e-02 1.42e-02 1.55e-02
3 4.60e+01 4.76e+01 4.67e+01 4.56e+01
4 8.64e+07 2.39e+07 6.94e+07 1.60e+07
5 9.81e+05 3.34e+05 9.18e+05 3.75e+05
6 1.44e+01 1.08e+01 2.25e+01 1.84e+01
7 1.68e+04 4.62e+03 1.82e+02 4.29e+02
8 2.30e+01 1.78e+01 2.36e+01 1.69e+01
9 1.23e+06 4.88e+05 1.32e+06 4.80e+05
10 1.98e+00 2.57e-02 6.84e-01 7.49e-01
11 3.42e+00 8.19e-02 1.28e+00 9.15e-01
12 3.46e-01 3.00e-01 3.24e-01 3.10e-01
13 1.20e+01 2.17e+00 7.59e+01 1.65e+02
14 7.72e-01 4.87e-01 2.13e+00 2.14e+00
15 2.37e-01 1.11e-01 8.85e-01 7.62e-01
16 5.27e+01 2.53e+01 2.23e+02 2.53e+02
17 4.21e+01 1.33e+01 7.23e+02 1.02e+03
18 2.24e-02 4.66e-03 2.16e-02 8.45e-03

Id XGBoostS XGBoostM LGBMS LGBMM

19 1.46e-02 9.74e-03 1.59e-02 1.41e-02
20 2.93e+00 2.35e+00 2.72e+00 2.45e+00
21 6.66e+00 4.87e+00 5.96e+00 5.59e+00
22 2.02e+00 3.48e-01 9.53e-01 7.85e-01
23 4.78e-08 2.67e-08 3.36e-08 2.47e-08
24 2.06e+00 6.77e-01 4.43e+01 4.18e+01
25 2.00e+01 4.52e+00 1.25e+02 8.32e+01
26 2.36e-03 2.00e-03 1.01e-02 1.06e-02
27 7.12e-02 6.56e-02 1.00e-01 1.13e-01
28 8.44e-05 6.40e-05 8.02e-05 6.76e-05
29 7.93e-06 2.01e-06 9.01e-06 1.99e-06
30 2.07e-03 1.93e-03 2.64e-03 2.89e-03
31 3.89e+02 2.16e+02 1.37e+03 1.23e+03
32 5.85e-06 4.37e-06 1.65e-05 1.39e-05
33 8.39e+09 3.38e+09 1.19e+10 1.47e+10
34 1.49e+09 1.09e+09 1.38e+09 1.13e+09
35 1.23e+09 8.63e+08 1.12e+09 9.48e+08
36 9.89e+07 1.01e+08 1.07e+08 9.95e+07

Table 4. SERA results in out-of-sample, with the best models per data set in bold.
Model (#wins): XGBoostM (16), XGBoostS (14), LGBMS (5), LGBMM (1).

id XGBoostS XGBoostM LGBMS LGBMM

1 3.86e+00 1.48e+00 3.36e+00 2.13e+00
2 1.47e-01 2.50e-01 2.03e-01 2.66e-01
3 1.70e+03 1.75e+03 1.58e+03 1.61e+03
4 1.18e+09 3.63e+08 9.99e+08 1.87e+08
5 3.50e+07 1.34e+07 3.59e+07 1.76e+07
6 6.39e+02 6.47e+02 9.58e+02 1.15e+03
7 5.82e+05 2.27e+05 4.66e+03 1.41e+04
8 7.06e+02 9.11e+02 9.06e+02 8.94e+02
9 8.70e+07 5.47e+07 8.47e+07 5.48e+07
10 1.90e+02 1.91e+00 4.43e+01 4.86e+01
11 4.22e+02 1.12e+01 1.32e+02 8.08e+01
12 3.03e+01 3.24e+01 2.32e+01 3.57e+01
13 1.07e+03 2.47e+02 1.05e+04 1.59e+04
14 5.11e+01 4.35e+01 2.03e+02 2.34e+02
15 1.63e+01 1.46e+01 9.51e+01 9.17e+01
16 5.77e+03 6.72e+03 4.26e+04 5.02e+04
17 3.52e+03 3.09e+03 1.29e+05 2.12e+05
18 4.71e+00 1.14e+00 4.94e+00 2.59e+00

id XGBoostS XGBoostM LGBMS LGBMM

19 2.38e+00 2.30e+00 2.90e+00 3.58e+00
20 4.84e+02 6.05e+02 5.47e+02 7.81e+02
21 1.92e+03 2.26e+03 2.25e+03 2.86e+03
22 4.30e+01 1.54e+02 1.70e+02 5.50e+02
23 1.14e-05 1.65e-05 1.11e-05 1.62e-05
24 4.05e+02 3.48e+02 2.25e+04 2.63e+04
25 1.01e+04 1.58e+03 5.71e+04 4.39e+04
26 9.31e-01 1.12e+00 4.27e+00 5.02e+00
27 2.90e+01 3.82e+01 5.48e+01 7.93e+01
28 2.24e-02 2.82e-02 3.13e-02 4.05e-02
29 1.78e-03 1.33e-03 2.04e-03 1.47e-03
30 2.68e+00 2.93e+00 3.66e+00 4.61e+00
31 2.77e+05 2.23e+05 1.93e+06 2.21e+06
32 5.84e-03 6.20e-03 1.87e-02 1.98e-02
33 1.21e+13 5.64e+12 1.61e+13 2.36e+13
34 2.82e+12 3.25e+12 3.08e+12 3.85e+12
35 2.24e+12 2.33e+12 2.30e+12 3.07e+12
36 7.57e+11 7.81e+11 7.24e+11 7.46e+11

20 A. Silva et al.

References

1. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial
for comparing multiple classifiers through bayesian analysis. J. Mach. Learn. Res.
18(77), 1–36 (2017)

2. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbal-
anced domains. ACM Comput. Surv. 49(2), 1–50 (2016). https://doi.org/10.1145/
2907070

3. Branco, P., Torgo, L., Ribeiro, R.P.: Pre-processing approaches for imbalanced
distributions in regression. Neurocomputing 343, 76–99 (2019). https://doi.org/
10.1016/j.neucom.2018.11.100

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

5. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving
prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todor-
ovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2016, pp. 785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

7. Chen, T., et al.: XGBoost: Extreme Gradient Boosting (2022). https://CRAN.R-
project.org/package=xgboost

8. Christoffersen, P.F., Diebold, F.X.: Further results on forecasting and model selec-
tion under asymmetric loss. J. Appl. Economet. 11(5), 561–571 (1996)

9. Ehrig, L., Atzberger, D., Hagedorn, B., Klimke, J., Döllner, J.: Customizable asym-
metric loss functions for machine learning-based predictive maintenance. In: 2020
8th International Conference on Condition Monitoring and Diagnosis (CMD), pp.
250–253 (2020). https://doi.org/10.1109/CMD48350.2020.9287246

10. Elkan, C.: The foundations of cost-sensitive learning. In: 17th International Con-
ference on Artificial Intelligence, vol. 1, pp. 973–978 (2001)

11. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: misclassification cost-
sensitive boosting. In: 16th International Conference on Machine Learning, pp.
97–105. ICML 1999. Morgan Kaufmann Publishers Inc. (1999)

12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Statist. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986

13. Granger, C.W.J.: Outline of forecast theory using generalized cost functions.
SpanEconRev 1(2), 161–173 (1999). https://doi.org/10.1007/s101080050007

14. Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Com-
put. Statist. Data Anal. 52, 5186–5201 (2008). https://doi.org/10.1016/j.csda.
2007.11.008

15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: 31st
International Conference on Neural Information Processing Systems, pp. 3149–
3157. NIPS 2017, Curran Associates Inc. (2017)

16. Kruschke, J., Liddell, T.: The Bayesian new statistics: two historical trends con-
verge. SSRN Electron. J. (2015). https://doi.org/10.2139/ssrn.2606016

17. Moniz, N.: Prediction and Ranking of Highly Popular Web Content. Ph.D. thesis,
Faculty of Sciences, University of Porto (2017)

18. Moniz, N., Monteiro, H.: No free lunch in imbalanced learning. Knowl. Based Syst.
227, 107222 (2021). https://doi.org/10.1016/j.knosys.2021.107222

https://doi.org/10.1145/2907070
https://doi.org/10.1145/2907070
https://doi.org/10.1016/j.neucom.2018.11.100
https://doi.org/10.1016/j.neucom.2018.11.100
https://doi.org/10.1007/978-3-540-39804-2_12
https://doi.org/10.1145/2939672.2939785
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1109/CMD48350.2020.9287246
http://www.jstor.org/stable/2699986
https://doi.org/10.1007/s101080050007
https://doi.org/10.1016/j.csda.2007.11.008
https://doi.org/10.1016/j.csda.2007.11.008
https://doi.org/10.2139/ssrn.2606016
https://doi.org/10.1016/j.knosys.2021.107222

Model Optimization in Imbalanced Regression 21

19. Moniz, N., Ribeiro, R., Cerqueira, V., Chawla, N.: SMOTEBoost for regression:
improving the prediction of extreme values. In: IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA), pp. 150–159 (2018). https://
doi.org/10.1109/DSAA.2018.00025

20. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.
org/

21. Rengasamy, D., Rothwell, B., Figueredo, G.P.: Asymmetric loss functions for deep
learning early predictions of remaining useful life in aerospace gas turbine engines.
In: International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2020).
https://doi.org/10.1109/IJCNN48605.2020.9207051

22. Ribeiro, R., Moniz, N.: Imbalanced regression and extreme value prediction. Mach.
Learn. 109, 1–33 (2020). https://doi.org/10.1007/s10994-020-05900-9

23. Shi, Y., et al.: LightGBM: Light Gradient Boosting Machine (2022). https://
CRAN.R-project.org/package=lightgbm

24. Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y.: Cost-sensitive boosting for classi-
fication of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007). https://
doi.org/10.1016/j.patcog.2007.04.009

25. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In:
Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp.
378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-
0_33

26. Torgo, L., Ribeiro, R.: Utility-based regression. In: Kok, J.N., Koronacki, J., Lopez
de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS
(LNAI), vol. 4702, pp. 597–604. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74976-9_63

27. Varian, H.R.: A bayesian approach to real estate assessment. Studies in Bayesian
Econometric and Statistics in Honor of Leonard J. Savage, pp. 195–208 (1975)

28. Yang, Y., Zha, K., Chen, Y., Wang, H., Katabi, D.: Delving into deep imbalanced
regression. CoRR abs/2102.09554 (2021). arXiv:abs/2102.09554

https://doi.org/10.1109/DSAA.2018.00025
https://doi.org/10.1109/DSAA.2018.00025
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/IJCNN48605.2020.9207051
https://doi.org/10.1007/s10994-020-05900-9
https://CRAN.R-project.org/package=lightgbm
https://CRAN.R-project.org/package=lightgbm
https://doi.org/10.1016/j.patcog.2007.04.009
https://doi.org/10.1016/j.patcog.2007.04.009
https://doi.org/10.1007/978-3-642-40669-0_33
https://doi.org/10.1007/978-3-642-40669-0_33
https://doi.org/10.1007/978-3-540-74976-9_63
https://doi.org/10.1007/978-3-540-74976-9_63
http://arxiv.org/2102.09554

Discovery of Differential Equations Using
Probabilistic Grammars

Boštjan Gec1,2(B), Nina Omejc1,2 , Jure Brence1,2 , Sašo Džeroski1,2 ,
and Ljupčo Todorovski1,3

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
bostjan.gec@ijs.si

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
3 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Abstract. Ordinary differential equations (ODEs) are a widely used
formalism for mathematical modeling of dynamical systems, a task
omnipresent in many scientific domains. The paper introduces a novel
method for inferring ODEs from data. It extends ProGED, a method for
equation discovery that employs probabilistic context-free grammars for
constraining the space of candidate equations. The proposed method can
discover ODEs from partial observations of dynamical systems, where
only a subset of state variables can be observed. The new method’s
empirical evaluation shows it can reconstruct the ODEs of the well-
known Van der Pol oscillator from synthetic simulation data. In terms
of reconstruction performance, improved ProGED compares favorably to
state-of-the-art methods for inferring ODEs from data.

Keywords: Partial observability · Dynamical systems · System
identification · Equation discovery · Symbolic regression · Probabilistic
context-free grammars · Ordinary differential equations

1 Introduction

Dynamical systems describe phenomena that evolve through time. The temporal
evolution of the system is commonly modeled by the time derivatives of the
state variables leading to ordinary differential equations (ODEs) of the form
u̇ = f(u,θ), where u is the d-dimensional vector of state variables, u̇ is the
vector of their time derivatives describing the change of their values through
time, f : R

d × R
p → R

d is a function, referred to as model structure, and
θ ∈ R

p are constant model parameters. The solution of the ODEs is obtained
by assuming an initial state u0 = u(t0), i.e., the values of the state variables at
the initial time point t0. ODEs are numerically simulated [5] to obtain the state
trajectory u(t), i.e., the values of the state variables at time points t > t0.

Mathematical modeling of an observed dynamical system is an inverse prob-
lem: given observations of the trajectory u(t), we aim at finding appropriate
model structure f and model parameters θ. The simulated trajectory should
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 22–31, 2022.
https://doi.org/10.1007/978-3-031-18840-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_2&domain=pdf
http://orcid.org/0000-0003-1212-1566
http://orcid.org/0000-0002-1065-9912
http://orcid.org/0000-0003-2363-712X
http://orcid.org/0000-0003-0037-9260
https://doi.org/10.1007/978-3-031-18840-4_2

Discovery of Differential Equations Using Probabilistic Grammars 23

closely match the observed one and simpler model structures are preferred over
more complex ones. Classical approaches to system identification assume that
the model structure f is provided at input. It is often supposed to be linear (i.e.,
the right-hand sides of the ODEs are linear combinations of state variables),
or it is manually inferred from first principles in the domain of the dynamical
system.

Equation discovery (also known as symbolic regression) approaches aim to
infer f and θ from data. While they mostly aim at discovering algebraic equa-
tions, some are also used for learning ODEs. The simplest approach would
numerically calculate the time derivatives of the state variables u̇ and add them
to the set of observed variables. Consequently, ODEs can be discovered as alge-
braic equations with variables corresponding to the time derivatives on the left-
hand side. Lagrange [12] and SINDy [2] follow this framework and use linear
regression variants to learn ODEs that are linear in the model parameters θ.

This simple approach has two limitations. First, calculating derivatives is
numerically unstable [8], leading to high sensitivity to noisy measurements. Sec-
ond, all the state variables have to be observed. More general approaches can
infer ODEs in scenarios with partial observability, where not all state variables
are observed. L-ODEfind [9] and GPoM [7] can induce polynomial ODEs from
partial observations. Pret [10] and ProBMot [3] employ numerical simulation
of ODEs and can learn arbitrary ODEs, not necessarily linear in parameters.
They use knowledge about modeling dynamics to limit the space of candidate
structures.

Recently proposed probabilistic approaches to symbolic regression, e.g.,
Bayesian scientist [4] and ProGED [1] can not learn ODEs from data. In this
paper, we propose two extensions of ProGED for the discovery of ODEs. The
first simply calculates the numerical derivatives of the state variables. The sec-
ond employs methods for numerically simulating ODEs and can be applied to
partially observed systems. We evaluate the proposed extensions by reconstruct-
ing the ODEs of the Van der Pol (VDP) oscillator from simulated, synthetic data
in both full and partial observability scenarios. We compare the performance of
ProGED with the performance of SINDy, L-ODEfind, and GPoM.

Section 2 reviews the related work on inferring ODEs from data. We introduce
the extensions of ProGED for ODE discovery in Sect. 3. Section 4 reports the
results of our comparative analysis of the methods. Section 5 summarizes our
contributions and outlines the directions for further research.

2 Related Work

Several methods, based on fast and simple linear regression, have been developed
for identifying ODEs that are linear in the parameters. They numerically cal-
culate the time derivatives of the state variables. Lagrange [12] then introduces
new higher-order terms with multiplication of the system variables and uses lin-
ear regression to find the constant parameters of the polynomial ODEs involving
these terms. SINDy [2] extends the Lagrange approach by introducing new terms

24 B. Gec et al.

with custom basis functions. Sparse regression techniques, such as Lasso, help
control the complexity of discovered equations and reduce over-fitting.

L-ODEfind [9] is also based on sparse linear regression on terms introduced
by polynomial basis functions. It tackles the partial observability problem by
rewriting a system of n first-order ODEs to a single n-th order ODE, the n −
1 unobserved variables being implicitly included and their values numerically
approximated as higher-order derivatives. Since the inverse transformation to the
first-order ODEs is not uniquely determined, L-ODEfind is useful for predictive
modeling, but ultimately inappropriate as a system identification framework.

GPoM [7], Generalized Polynomial Modeling, is another approach that uses
higher-order derivatives as a proxy for missing variables. GPoM does not express
a model with a single, higher-order ODE like L-ODEfind, but rather uses differ-
ential embedding to construct a system of first-order ODEs. GPoM starts with
a random set of polynomial ODEs within the user-constrained space and then
optimizes the best model’s structure with a genetic algorithm. The algorithm
evaluates the goodness of fit of candidate models to the original data, for which
repetitive, computationally costly numerical simulation is required. The best
model is mutated into neighbours by adding or removing monomials.

3 Methods

ProGED discovers algebraic equations following the generate-and-test paradigm.
In the generate phase, ProGED addresses the task of structure identification, in
which we construct candidate equations. The test phase performs parameter
estimation, in which we fit the values of unknown numeric parameters to data.
Among a large number of tested equations, ProGED chooses the ones with the
lowest error-of-fit. ProGED composes candidate equations from algebraic expres-
sions, sampled from a probabilistic context-free grammar (PCFG).

A context-free grammar (CFG) is defined by the tuple (T ,N ,R, S). When
defining arithmetic expressions, the set of terminal symbols T consists of sym-
bols representing variables (e.g. x, y), operators or functions (e.g. +, ·, sin), and
constant parameters (c). The nonterminal symbols in N do not appear in expres-
sions, but represent higher-level concepts in the language of mathematics, such
as polynomials, monomials or terms. The set R contains production (rewrite)
rules A → α1 . . . αk, where A ∈ N and αi ∈ N ∪T . A production rule specifies
how to replace a particular nonterminal symbol with a string of nonterminal and
terminal symbols. In a probabilistic context-free grammar, each production rule
is assigned a probability, so that the probabilities of all production rules with
the same nonterminal symbol on the left-hand side sum up to 1.

The generation of a random expression from a PCFG begins with the string
(starting symbol) S and proceeds by successively applying production rules to
the string until only terminal symbols remain. Whenever more than one rule
applies, we randomly choose a rule, according to the probabilities. The final result
of one instance of the sampling process is an arithmetic expression, which we
transform to its canonical form using the symbolic mathematics engine SymPy.

Discovery of Differential Equations Using Probabilistic Grammars 25

Besides acting as generators of expressions, grammars are a powerful way of
encoding background knowledge. Note that a PCFG defines a probability distri-
bution over the space of candidate expressions, which allows the user to impose
an inductive bias by manipulating the production probabilities. For example, we
can manipulate the complexity of generated equations through the probabilities
of recursive productions, or express a bias towards trigonometric functions by
raising their respective probabilities. In the absence of background knowledge we
can use a universal grammar for generating an arbitrary expression, composed
of the four basic operations (+, −, *, /), as well arbitrary functions.

After generation, a candidate equation contains constants, the values of which
must be fitted to data. Since the equations are, in general, non-linear in their
parameters, a universal optimization algorithm is used to minimize the error-of-
fit on the data, which can be computationally demanding, but is more flexible
than the approaches based on linear regression. ProGED uses the differential
evolution [11] algorithm for numerical optimization.

3.1 Algebraic Equations and Numeric Differentiation

ODEs can be transformed into algebraic equations by numerically calculating
the derivatives of the state variables and considering them as the left-hand side of
an algebraic equation. In that case, we estimate parameter values by minimizing
the difference L between observed and predicted values of the time derivatives

of the state variables, L =
n∑

i=1

(u̇(ti) − ˆ̇u(ti))2, where u̇(ti) represents the value

of the derivative of variable u at time ti, numerically estimated from observed
data, ˆ̇u represents the corresponding predicted value, obtained by evaluating the
candidate equation, and n is the number of time points.

This simple transformation is common among ODE discovery approaches.
However, its use is problematic if we deal with sparsely sampled measurements
and high levels of noise. Also, this approach is possible only when the measure-
ments of all system variables are readily available.

3.2 Differential Equations and Direct Simulation

To address the limitations of numerical differentiation, we introduce an approach
based on simulating differential equations. During each step of parameter esti-
mation, we must compute the error-of-fit of the candidate equation with a given
set of parameter values. To obtain this, we solve the initial-value problem by
performing a full simulation of the system of ODEs, using the function odeint
from the SciPy library. We define the error-of-fit as the mean-squared-error of the
simulated trajectories, with respect to the true trajectories of observed variables.

In other words, we minimize the error L =
∑

u∈Uobs

n∑

i=1

(u(ti) − û(ti))2, where Uobs

is the set of all observed variables, u(ti) represents the observed value u at time
ti, û(ti) represents the corresponding simulated value (i.e., the value obtained
by simulating the candidate equation), and n is the number of time points.

26 B. Gec et al.

3.3 Parallel Computation

Most existing approaches to equation discovery are difficult to parallelize. In
contrast, ProGED uses a Monte-Carlo algorithm to sample expressions from a
PCFG, so each run of the procedure is completely independent of the results
of any previous runs. This allows for parallelization of parameter estimation,
by far the most computationally demanding step in ProGED, especially when
identifying a partially-observed system of ODEs. Accelerating this step is critical
for managing the computation time of ProGED. The easy parallelization and the
ability to make good use of any available high-performance-computing resources
is therefore an important advantage of our approach.

4 Experimental Evaluation

In this section, we compare the ability of different approaches to identify the Van
der Pol (VDP) oscillator, a non-conservative oscillator with non-linear damping.
It is defined by a second-order ODE or the following system of first-order ODEs:

ẋ = y

ẏ = μ(1 − x2)y − x,

where x and y are the state variables, and μ is the model parameter of the
oscillator, referred to as the damping constant. In the next two subsections,
we introduce the setup for our experiments with this oscillator and present the
results.

4.1 Experimental Setup

Data. We generated the data by numerically simulating the VDP ODEs, using
the solve_ivp function from the SciPy Python library. The damping constant
μ was set to 0.5. We chose the initial values of x(t0) = −0.2 and y(t0) = −0.8
and simulated the system for n−1 = 5000 equidistant time points in the interval
of [0, 50), leading to a time step of 0.01 s. We set the values of the simulation
parameters of relative and absolute tolerance to 10−12. The resulting data set
includes three columns: time and x, y coordinates of the simulated trajectory.

Methods. We evaluated SINDy, L-ODEfind, GPoM and ProGED in fully
observed and partially observed scenarios. For the VDP ODEs, there are two
scenarios for partial observability, depending on whether x or y is observed.
SINDy is the only evaluated method without support for partial observability.
We included it in the comparison as the most widely used equation discovery
method to obtain a baseline for the performance in fully observed scenarios. We
evaluated ProGED in the fully observed scenario twice – using numerical dif-
ferentiation and ODEs simulation. All the methods we tested were downloaded
from their public Github repositories.

Discovery of Differential Equations Using Probabilistic Grammars 27

For SINDy, we used the default polynomial library up to the third-degree
and a SR3 sparse regression algorithm with the sparsity parameter set to 0.25.

To run L-ODEfind, we first had to add the VDP model in its model library.
In the full observability scenario, we set the maximum degree of ODEs to one
and the maximum order of the polynomials to three. In the partial observability
scenario, the maximum degree of ODEs was set to two. L-ODEfind outputs the
best model in a higher dimensional space, which can not be uniquely transformed
back to the first order system of ODEs. However, as we used the known VDP
model that includes the equation ẋ = y, a conversion of the second order equation
to a system of first order ODEs was obvious, so we performed the conversion by
hand, which allowed us to evaluate the method nonetheless.

The GPoM settings besides the ones mentioned in L-ODEfind, required the
specification of the number of dimensions that will be created from each observed
input variable. When both variables were observed, we kept the dimensions at
one, but in partial observability scenarios, we increased the desired dimensions
to two, so that one additional variable was constructed by differentiating the
observed variable. We set the integration method to fourth-order Runge-Kutta,
with 5120 maximum integration steps.

For generating equations in ProGED, we used a probabilistic context-free
grammar for polynomial expressions with the following production rules:

P → P + M [0.4] | M [0.6]
M → M ∗ V [0.4] | c [0.6]
V → x [0.5] | y [0.5]

where the sets of terminal and non-terminal symbols are N = {P,M, V } and
T = {c, x, y,+, ∗} respectively, with P being the start symbol. Rules for P
produce a sum of monomials M that represent products of the system variables
V and a constant parameter c. The probabilities are set so that the majority of
generated polynomials consist of one to three low order terms.

We employed the parallel computation approach described in Sect. 3.3, gener-
ating and testing 1000 systems of ODEs for each experiment. We set the relative
and absolute tolerances of simulation to 10−6. We set the maximum number of
iterations for differential evolution to 1000, population size to 50, the recom-
bination parameter to 0.88 and the mutation parameter to 0.45. We optimized
recombination and mutation parameters using grid search.

Performance Measures. We compare the results of the different methods
through three metrics that quantify the accuracy of the reconstructed models,
as well as the values of its parameters. The first metric is the trajectory error,
calculated for a given state variable using the relative-root-mean-square-error

TEu =

√
n∑

i=1

(û(ti) − u(ti))2/
n∑

i=1

(u − u(ti))2, where u(t), û(t) and u denote the

observed and the simulated values of the state variable u at the time point t
(trajectory) and the average value of observations, respectively.

28 B. Gec et al.

Furthermore, reconstruction error (RE) measures the difference between the
model parameters of the reconstructed ODEs and the parameters of the origi-
nal ones by root-mean-square error. Finally, ΔM is the difference between the
number of terms in the reconstructed ODEs and the original ones. When cal-
culating RE and ΔM, we consider only those terms in the reconstructed ODEs
with constant parameters above 0.01.

Table 1. Comparison of the trajectory error (TE), reconstruction error (RE), the
number of extra parameters in the discovered equations (ΔM) and the time required
for computation (T) for different methods. For each method, its approach is classi-
fied (type) as either numerical differentiation (“num.”) or simulation (“sim.”). Vari-
able observability (obs.) is indicated for each experiment, where “XY” indicates full
observability, “X” and “Y” denote scenarios where only the variable x/y is observed.

Method Type obs. TEx TEy RE ΔM T

SINDy num. XY 4.89 · 10−4 5.61 · 10−4 2.96 · 10−5 0 1.10s

L-ODEfind num. XY 1.90 · 10−3 2.19 · 10−3 5.98 · 10−5 0 1.15 s

X 5.80 · 10−4 6.90 · 10−4 2.88 · 10−4 0 1.11 s

Y 1.016 0.995 0.67 8 0.56 s

GPoM sim. XY 3.55 · 10−3 4.05 · 10−4 2.70 · 10−4 0 30.44 s

X 2.55 · 10−3 2.84 · 10−3 1.76 · 10−4 0 46.75 s

Y 1.196 0.998 0.604 4 38.33 s

ProGED num. XY 1.07 · 10−3 2.23 · 10−4 2.55 · 10−3 0 *11 min

sim. XY 1.45 · 10−4 1.66 · 10−4 9.66 · 10−6 0 *713 h

sim. X 7.96 · 10−2 3.16 0.73 0 *500 h

sim. Y 0.44 3.57 · 10−2 0.32 0 *230 h
∗The timings for ProGED represent an estimation of the total computation
time, if the experiments were performed in a single thread. In practice, we
ran it in parallel, which reduced the real-time computation time by a factor
of 500–1,000.

4.2 Results

Table 1 summarizes the results of the experiments. In the fully observed scenario,
all methods have excellent performance, achieving trajectory errors below 10−2

and recovering ODEs with no extraneous terms. We attribute the good results
in this scenario to the fact that we used noise-free data and a high temporal
resolution, which is ideal for methods that rely on numerical differentiation.

ProGED using simulation of ODEs achieved the best results in the fully
observed scenario according to all metrics except computation time, which is
orders of magnitude worse as compared to the other methods. This difference
arises because ProGED performs parameter estimation for each of the sampled
candidate equations, whereas the methods based on linear regression perform
structure search and parameter estimation in a single step. The difference is even

Discovery of Differential Equations Using Probabilistic Grammars 29

more significant when employing direct numerical simulation, which is performed
at every step of parameter estimation for each candidate equation. Although
GPoM also simulates the models in every iteration, it only has a very constrained
space of model structures to consider and simulate.

When only the variable x is observed, L-ODEfind and GPoM are able to
accurately reconstruct the VDP ODEs. On the other hand, the two methods
fail in the scenario where only y is observed. This behavior can be explained
by the fact that both methods model the unobserved variable as the derivative
of the observed variable. This assumption perfectly matches with VDP ODEs,
when x is observed, i.e., under the assumption of y = ẋ. On the other hand, in
the scenario when only y is observed, the methods assume that x = ẏ, which
prevents them from reconstructing the ODEs.

Fig. 1. Learning curves of ProGED in the full observability scenario (first two graphs)
and the two partial observability scenarios (last two graphs). The full blue lines corre-
spond to the learning curves for the x equation, while the dashed orange lines corre-
spond to the learning curves for the y equation. The estimation of learning curves is
explained in the Appendix, Section a. (Color figure online)

In partially observed scenarios, ProGED is able to reconstruct the ODE of
the observed variable fairly well, while having difficulties in fitting the param-
eters of the equation for the unobserved state variable. The learning curves for
ProGED depicted in Fig. 1 provide an explanation. During system identifica-
tion in a partially-observed scenario, ProGED directly minimizes only the error-
of-fit of the observed variable and the corresponding error falls monotonically.
In contrast, ProGED optimizes the equation for the unobserved variable only
indirectly, resulting in a TE that initially increases, before eventually finding a
minimum an order of magnitude above the error of the observed variable.

Tables 1 and 2 in the Appendix1 report the reconstructed equations. Note
that L-ODEfind in the two partially observed scenarios reconstructs second-order
equations. To compare them with the original VDP ODEs, it is straightforward
to manually convert them back to first order ODEs with the introduction of
the first derivative of the observed state variable as a new (unobserved state)
variable, e.g., ẋ = y or ẏ = x. Table 2 presents the converted first-order ODEs.
Notably, ProGED was always able to identify the correct equation structure.
1 Appendix: http://kt.ijs.si/∼ljupco/ed/ds-2022/appendix.pdf.

http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf
http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf
http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf
http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf
http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf
http://kt.ijs.si/~ljupco/ed/ds-2022/appendix.pdf

30 B. Gec et al.

Fig. 2. Simulated trajectories of the ODEs reconstructed by L-ODEfind, GPoM, and
ProGED (last two graphs, one for each partial observability scenario). Data trajectories
are shown in black, reconstructed trajectories when only one of x or y is observed are
shown in blue and orange, respectively. Green dots denote initial values. (Color figure
online)

Finally, Fig. 2 depicts the simulated trajectories of the reconstructed equa-
tions. The last two graphs show that the ODEs reconstructed by ProGED lead
to simulations that are qualitatively similar to the observations. The differences
are related only to the differences in the amplitude of the oscillations.

5 Conclusion

The two main contributions of the paper are as follows. First, we extend the
scope of ProGED, a probabilistic algorithm for symbolic regression, to the task
of discovering ODEs from data. One of the two extensions also applies to situ-
ations where only some of the state variables of the dynamical system at hand
can be observed. Second, we compare the reconstruction abilities of and compu-
tational resources needed by ProGED and three other state-of-the-art methods
for automated modeling of dynamical systems: SINDy, L-ODEfind, and GPoM.

The comparison shows that using computationally expensive full numeri-
cal simulation of ODEs, ProGED can successfully reconstruct equations for the
observed variables in both full and partial observability scenarios. While numer-
ical simulation requires vast computational resources, ProGED’s parallel imple-
mentation significantly reduces the actual response time of the reconstruction
experiments. Finally, ProGED is considerably more robust to the selection of
the observed state variable. This property is essential in real modeling scenarios
where we cannot choose the observations freely.

This paper opens several directions for further research. First, we would like
to test the robustness of the compared methods to noisy and sparsely sam-
pled observation data. To this end, artificial noise should be added to the syn-
thetic simulation data prepared for the experiments presented in this paper and
additional dynamical systems should be considered. Second, ProGED uses vast
computational resources to simulate the candidate differential equations, since
the general numeric optimization method for estimating the model parameters
requires full simulation for each set of parameter values. One can address this

Discovery of Differential Equations Using Probabilistic Grammars 31

issue by using efficient, surrogate-based optimization methods [6] or more innova-
tive strategies, that combine simulation and numerical differentiation, to address
the issue of partial observability.

Acknowledgements. The authors acknowledge the financial support of the Slovenian
Research Agency via the research core funding No. P2-0103 and project No. N2-0128.

References

1. Brence, J., Todorovski, L., Džeroski, S.: Probabilistic grammars for equation dis-
covery. Knowl.-Based Syst. 224, 107077 (2021)

2. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. In: Proceedings of
the National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937 (2016)

3. Čerepnalkoski, D.: Process-based models of dynamical systems: representation and
induction. Ph.D. thesis, Jožef Stefan International Postgraduate School, Ljubljana,
Slovenia (2013)

4. Guimerà, J., et al.: A Bayesian machine scientist to aid in the solution of challenging
scientific problems. Sci. Adv. 6(5), eaav6971 (2020)

5. Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic
equation solvers. ACM Trans. Math. Softw. (TOMS) 31(3), 363–396 (2005)

6. Lukšič, Ž, Tanevski, J., Džeroski, S., Todorovski, L.: Meta-model framework
for surrogate-based parameter estimation in dynamical systems. IEEE Access 7,
181829–181841 (2019)

7. Mangiarotti, S., Coudret, R., Drapeau, L., Jarlan, L.: Polynomial search and global
modeling: two algorithms for modeling chaos. Phys. Rev. E 86, 046205 (2012)

8. Ramm, A.G., Smirnova, A.B.: On stable numerical differentiation. Math. Comput.
70, 1131–1153 (2001)

9. Somacal, A., et al.: Uncovering differential equations from data with hidden vari-
ables. Phys. Rev. E 105, 054209 (2022)

10. Stolle, Reinhard, Bradley, Elizabeth: Communicable knowledge in automated sys-
tem identification. In: Džeroski, Sašo, Todorovski, Ljupčo (eds.) Computational
Discovery of Scientific Knowledge. LNCS (LNAI), vol. 4660, pp. 17–43. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73920-3 2

11. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

12. Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings
of the 14th International Conference on Machine Learning, pp. 376–384 (1997)

https://doi.org/10.1007/978-3-540-73920-3_2

Hyperparameter Importance of Quantum
Neural Networks Across Small Datasets

Charles Moussa(B) , Jan N. van Rijn , Thomas Bäck ,
and Vedran Dunjko

LIACS, Leiden University, Niels Bohrweg 1, 2333 Leiden, CA, Netherlands

c.moussa@liacs.leidenuniv.nl

Abstract. As restricted quantum computers are slowly becoming a real-
ity, the search for meaningful first applications intensifies. In this domain,
one of the more investigated approaches is the use of a special type of
quantum circuit – a so-called quantum neural network – to serve as a
basis for a machine learning model. Roughly speaking, as the name sug-
gests, a quantum neural network can play a similar role to a neural net-
work. However, specifically for applications in machine learning contexts,
very little is known about suitable circuit architectures, or model hyper-
parameters one should use to achieve good learning performance. In this
work, we apply the functional ANOVA framework to quantum neural
networks to analyze which of the hyperparameters were most influen-
tial for their predictive performance. We analyze one of the most typ-
ically used quantum neural network architectures. We then apply this
to 7 open-source datasets from the OpenML-CC18 classification bench-
mark whose number of features is small enough to fit on quantum hard-
ware with less than 20 qubits. Three main levels of importance were
detected from the ranking of hyperparameters obtained with functional
ANOVA. Our experiment both confirmed expected patterns and revealed
new insights. For instance, setting well the learning rate is deemed the
most critical hyperparameter in terms of marginal contribution on all
datasets, whereas the particular choice of entangling gates used is con-
sidered the least important except on one dataset. This work introduces
new methodologies to study quantum machine learning models and pro-
vides new insights toward quantum model selection.

Keywords: Hyperparameter importance · Quantum neural networks ·
Quantum machine learning

1 Introduction

Quantum computers have the capacity to efficiently solve computational prob-
lems believed to be intractable for classical computers, such as factoring [42] or
simulating quantum systems [12]. However, with the Noisy Intermediate-Scale
Quantum era [33], quantum algorithms are confronted with many limitations

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 32–46, 2022.
https://doi.org/10.1007/978-3-031-18840-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_3&domain=pdf
http://orcid.org/0000-0002-5387-564X
http://orcid.org/0000-0003-2898-2168
http://orcid.org/0000-0001-6768-1478
http://orcid.org/0000-0002-2632-7955
https://doi.org/10.1007/978-3-031-18840-4_3

Hyperparameter Importance of Quantum Neural Networks 33

(e.g., the number of qubits, decoherence, etc.). Consequently, hybrid quantum-
classical algorithms were designed to work around some of these constraints while
targeting practical applications such as chemistry [27], combinatorial optimiza-
tion [10], and machine learning [2]. Quantum models can exhibit clear potential
in special datasets where we have theoretically provable separations with classi-
cal models [18,22,35,46]. More theoretical works also study these models from
a generalization perspective [8]. Quantum circuits with adjustable parameters,
also called quantum neural networks, have been used to tackle regression [25],
classification [14], generative adversarial learning [50], and reinforcement learn-
ing tasks [18,44].

However, the value of quantum machine learning on real-world datasets is
still to be investigated in any larger-scale systematic fashion [13,32]. Currently,
common practices from machine learning, such as large-scale benchmarking,
hyperparameter importance, and analysis have been challenging tools to use
in the quantum community [39]. Given that there exist many ways to design
quantum circuits for machine learning tasks, this gives rise to a hyperparameter
optimization problem. However, there is currently limited intuition as to which
hyperparameters are important to optimize and which are not. Such insights can
lead to much more efficient hyperparameter optimization [5,11,26].

In order to fill this gap, we employ functional ANOVA [16,45], a tool for
assessing hyperparameter importance. This follows the methodology of [34,41],
who employed this across datasets, allowing for more general results. For this, we
selected a subset of several low-dimensional datasets from the OpenML-CC18
benchmark [4], that are matching the current scale of simulations of quantum
hardware. We defined a configuration space consisting of ten hyperparameters
from an aggregation of quantum computing literature and software. We extend
this methodology by an important additional verification step, where we ver-
ify the performance of the internal surrogate models. Finally, we perform an
extensive experiment to verify whether our conclusions hold in practice. While
our main findings are in line with previous intuition on a few hyperparameters
and the verification experiments, we also discovered new insights. For instance,
setting well the learning rate is deemed the most critical hyperparameter in
terms of marginal contribution on all datasets, whereas the particular choice of
entangling gates used is considered the least important except on one dataset.

2 Background

In this section, we introduce the necessary background on functional ANOVA,
quantum computing, and quantum circuits with adjustable parameters for super-
vised learning.

2.1 Functional ANOVA

When applying a new machine learning algorithm, it is unknown which hyper-
parameters to modify in order to get high performances on a task. Several

34 C. Moussa et al.

Fig. 1. Examples of marginals for a quantum neural network with validation accuracy
as performance on the banknote-authentication dataset. The hyperparameters corre-
spond to the learning rate used during training (a), and the number of layers, also
known as depth (b), and their combination (c). The hyperparameter values for learn-
ing rate are on a log scale. When considered individually, we see for instance that depth
and learning rate should not be set too high for better performances. However, when
grouped together, the learning rate seems most influential.

techniques exist that assess hyperparameter importance, such as functional
ANOVA [36]. The latter framework can detect the importance of both individual
hyperparameters and interaction effects between different subsets of hyperpa-
rameters. We first introduce the relevant notation, based on the work by Hutter
et al. [16].

Let A be a machine learning algorithm that has n hyperparameters with
domains Θ1, . . . , Θn and configuration space Θ = Θ1×. . .×Θn. An instantiation
of A is a vector θ = {θ1, . . . , θn} with θi ∈ Θi (this is also called a configuration
of A). A partial instantiation of A is a vector θU = {θi1 , . . . , θik} with a subset
U = {i1, . . . , ik} ⊆ N = [n] = {1, . . . , n} of the hyperparameters fixed, and the
values for other hyperparameters unspecified. Note that θN = θ.

Functional ANOVA is based on the concept of a marginal of a hyperpa-
rameter, i.e., how a given value for a hyperparameter performs, averaged over
all possible combinations of the other hyperparameters’ values. The marginal
performance âU (θU) is described as the average performance of all complete
instantiations θ that have the same values for hyperparameters that are in θU .
As an illustration, Fig. 1 shows marginals for two hyperparameters of a quan-
tum neural network and their union. As the number of terms to consider for
the marginal can be very large, the authors of [16] used tree-based surrogate
regression models to calculate efficiently the average performance. Such a model
yields predictions ŷ for the performance p of arbitrary hyperparameter settings.

Functional ANOVA determines how much each hyperparameter (and each
combination of hyperparameters) contributes to the variance of ŷ across the algo-
rithm’s hyperparameter space Θ, denoted V. Intuitively, if the marginal has high
variance, the hyperparameter is highly important to the performance measure.
Such framework has been used for studying the importance of hyperparameters
of common machine learning models such as support vector machines, random
forests, Adaboost, and residual neural networks [34,41]. We refer to [16] for a

Hyperparameter Importance of Quantum Neural Networks 35

complete description and introduce the quantum supervised models considered
in this study along with the basics of quantum computing.

2.2 Supervised Learning with Parameterized Quantum Circuits

Basics of Quantum Computing. In quantum computing, computations are
carried out by the manipulation of qubits, similarly to classical computing with
bits. A system of n qubits is represented by a 2n-dimensional complex vector
in the Hilbert space H = (C2)⊗n. This vector describes the state of the system
|ψ〉 ∈ H of unit norm 〈ψ|ψ〉 = 1. The bra-ket notation is used to describe
vectors |ψ〉, their conjugate transpose 〈ψ| and inner-products 〈ψ|ψ′〉 in H. Single-
qubit computational basis states are given by |0〉 = (1, 0)T , |1〉 = (0, 1)T , and
their tensor products describe general computational basis states, e.g., |10〉 =
|1〉 ⊗ |0〉 = (0, 0, 1, 0).

The quantum state is modified with unitary operations or gates U acting
on H. This computation can be represented by a quantum circuit (see Fig. 2).
When a gate U acts non-trivially only on a subset S ⊆ [n] of qubits, we denote
such operation U ⊗ 1[n]\S . In this work, we use, the Hadamard gate H, the
single-qubit Pauli gates X,Z, Y and their associated rotations RX , RY , RZ :

H =
1√
2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
, RZ(w) = exp

(
−i

w

2
Z

)
,

Y =
(

0 −i
i 0

)
, RY (w) = exp

(
−i

w

2
Y

)
,X =

(
0 1
1 0

)
, RX(w) = exp

(
−i

w

2
X

)
,

(1)
The rotation angles are denoted w ∈ R and the 2-qubit controlled-Z gate

= diag(1, 1, 1,−1) as well as the
√

iSWAP given by the matrix

1√
2

⎛
⎜⎜⎝

√
2 0 0 0

0 1 i 0
0 i 1 0
0 0 0

√
2

⎞
⎟⎟⎠ . (2)

Measurements are carried out at the end of a quantum circuit to obtain
bitstrings. Such measurement operation is described by a Hermitian operator
O called an observable. Its spectral decomposition O =

∑
m λmPm in terms

of eigenvalues λm and orthogonal projections Pm defines the outcomes of this
measurement, according to the Born rule: a measured state |ψ〉 gives the outcome
λm and gets projected onto the state Pm |ψ〉 /

√
p(m) with probability p(m) =

〈ψ|Pm |ψ〉 = 〈Pm〉ψ. The expectation value of the observable O with respect to
|ψ〉 is Eψ[O] =

∑
m p(m)λm = 〈O〉ψ. We refer to [30] for more basic concepts of

quantum computing, and follow with parameterized quantum circuits.

Parameterized Quantum Circuits. A parameterized quantum circuit (also
called ansatz) can be represented by a quantum circuit with adjustable real-
valued parameters θ. The latter is then defined by a unitary U(θ) that acts

36 C. Moussa et al.

|0〉 RX(x1) • • RY (θ1
1) RZ(θ1

2)

|0〉 RX(x2) • • RY (θ2
1) RZ(θ2

2)

|0〉 RX(x3) • • RY (θ3
1) RZ(θ3

2)

|0〉 RX(x4) • • RY (θ4
1) RZ(θ4

2)

Fig. 2. Parameterized quantum circuit architecture example with 4 qubits and ring
connectivity (qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a ring).
The first layer of RX is the encoding layer Uenc, taking a data instance x ∈ R

4 as
input. It is followed by the entangling part with Ctrl-Z gates. Finally a variational
layer Uvar is applied. Eventually, we do measurements to be converted into predictions
for a supervised task. The dashed part can be repeated many times to increase the
expressive power of the model.

on a fixed n-qubit state (e.g., |0⊗n〉). The ansatz may be constructed using
the formulation of the problem at hand (typically the case in chemistry [27]
or optimization [10]), or with a problem-independent generic construction. The
latter are often designated as hardware-efficient.

For a machine learning task, this unitary encodes an input data instance
x ∈ R

d and is parameterized by a trainable vector θ. Many designs exist
but hardware-efficient parameterized quantum circuits [19] with an alternating-
layered architecture are often considered in quantum machine learning when
no information on the structure of the data is provided. This architecture is
depicted in an example presented in Fig. 2 and essentially consists of an alter-
nation of encoding unitaries Uenc and variational unitaries Uvar. In the example,
Uenc is composed of single-qubit rotations RX , and Uvar of single-qubit rotations
Rz, Ry and entangling Ctrl-Z gates, represented as in Fig. 2, forming the entan-
gling part of the circuit. Such entangling part denoted Uent, can be defined by
connectivity between qubits.

These parameterized quantum circuits are similar to neural networks where
the circuit architecture is fixed and the gate parameters are adjusted by a clas-
sical optimizer such as gradient descent. They have also been named quantum
neural networks. The parameterized layer can be repeated multiple times, which
increases its expressive power like neural networks [43]. The data encoding strat-
egy (such as reusing the encoding layer multiple times in the circuit - a strategy
called data reuploading) also influences the latter [31,40].

Finally, the user can define the observable(s) and the post-processing method
to convert the circuit outputs into a prediction in the case of supervised learning.
Commonly, observables based on the single-qubit Z operator are used. When
applied on m ≤ n qubits, the observable is represented by a 2m − 1 square
diagonal matrix with {−1, 1} values, and is denoted O = Z ⊗ Z ⊗ · · · ⊗ Z.

Having introduced parameterized quantum circuits, we present the hyperpa-
rameters of the models, the configuration space, and the experimental setup for
our functional ANOVA-based hyperparameter importance study.

Hyperparameter Importance of Quantum Neural Networks 37

3 Methods

In this section, we describe the network type and its hyperparameters and define
the methodology that we follow.

3.1 Hyperparameters and Configuration Space

Many designs have been proposed for parameterized quantum circuits depend-
ing on the problem at hand or motivated research questions and contributions.
Such propositions can be aggregated and translated into a set of hyperparam-
eters and configuration space for the importance study. As such, we first did
an extensive literature review on parameterized quantum circuits for machine
learning [2,14,15,17,18,21,23–25,32,38,44,47–50] as well as quantum machine
learning software [1,3,7]. This resulted in a list of 10 hyperparameters, pre-
sented in Table 1. We choose them so we balance between having well-known
hyperparameters that are expected to be important, and less considered ones in
the literature. For instance, many works use Adam [20] as the underlying opti-
mizer, and the learning rate should generally be well chosen. On the contrary,
the entangling gate used in the parameterized quantum circuit is generally a
fixed choice.

From the literature, we expect data encoding strategy/circuit to be impor-
tant. We choose two main forms for Uenc. The first one is the hardware-efficient⊗n

i=1 RX(xi). The second takes the following form from [3,14,17]:

Uenc(x) = Uz(x)H⊗n (3)

Uz(x) = exp

⎛
⎜⎜⎝−iπ

⎡
⎢⎢⎣

n∑
i=1

xiZi +
n∑

j=1,
j>i

xixjZiZj

⎤
⎥⎥⎦

⎞
⎟⎟⎠. (4)

Using data-reuploading [31] results in a more expressive model [40], and
this was also demonstrated numerically [18,31,44]. Finally, pre-processing of
the input is also sometimes used in encoding strategies that directly feed input
features into Pauli rotations. It also influences the expressive power of the
model [40]. In this work, we choose a usual activation function tanh commonly
used in neural networks. We do so as its range is [−1, 1], which is the same as
the data features during training after the normalization step.

The list of hyperparameters we take into account is non-exhaustive. It can
be extended at will, at the cost of more software engineering and budget for
running experiments.

3.2 Assessing Hyperparameter Importance

Once the list of hyperparameters and configuration space are decided, we perform
the hyperparameter importance analysis with the functional ANOVA frame-
work. Assessing the importance of the hyperparameters boils down to four steps.

38 C. Moussa et al.

Table 1. List of hyperparameters considered for hyperparameter importance for quan-
tum neural network, as we named them in our Tensorflow-Quantum code.

Hyperparameter Values Description

Adam learning
rate

[10−4, 0.5] (log) The learning rate with which the quantum
neural network starts training. The range
was taken from the automated machine
learning library Auto-sklearn [11]. We
uniformly sample taking the logarithmic
scale.

batch size 16,32,64 Number of samples in one batch of Adam
used during training

depth {1, 2,· · · , 10} Number of variational layers defining the
circuit

is data encoding
hardware efficient

True, False Whether we use the hardware-efficient
circuit

⊗n
i=1 RX(xi) or an IQP circuit

defined in Eq. 3 to encode the input data.

use reuploading True, False Whether the data encoding layer is used
before each variational layer or not.

have less
rotations

True, False If True, only use layers of RY , RZ gates as
the variational layer. If False, add a layer of
RX gates.

entangler
operation

cz, sqiswap Which entangling gate to use in Uent

map type ring, full, pairs The connectivity used for Uent. The ring
connectivity use an entangling gate between
consecutive indices (i, i + 1), i ∈ {1, . . . , n}
of qubits. The full one uses a gate between
each pair of indices (i, j), i < j. Pairs
connect even consecutive indices first, then
odd consecutive ones.

input activation
function

linear, tanh Whether to input tanh(xi) as rotations or
just xi.

output circuit 2Z, mZ The observable(s) used as output(s) of the
circuit. If 2Z, we use all possible pairs of
qubit indices defining Z ⊗ Z. If mZ, the
tensor product acts on all qubits. Note we
do not use single-qubit Z observables
although they are quite often used in the
literature. Indeed, they are provably not
using the entire circuit when it is shallow.
Hence we decided to use Z ⊗ Z instead.
Also, a single neuron layer with a sigmoid
activation function is used as a final decision
layer similar to [38]

Hyperparameter Importance of Quantum Neural Networks 39

Firstly, the models are applied to various datasets by sampling various configu-
rations in a hyperparameter optimization process. The performances or metrics
of the models are recorded along. The sampled configurations and performances
serve as data for functional ANOVA. As functional ANOVA uses internally tree-
based surrogate models, namely random forests [6], we decided to add an extra
step with reference to [34]. In the second step, we verify the performance of
the internal surrogate models. We cross-evaluate them using regression metrics
commonly used in surrogate benchmarks [9]. Surrogates performing badly at this
step are then discarded from the importance analysis, as they can deteriorate
the quality of the study. Thirdly, the marginal contribution of each hyperparam-
eter over all datasets can be then obtained and used to infer a ranking of their
importance. Finally, a verification step similar to [34] is carried out to confirm
the inferred ranking previously obtained. We explain such a procedure in the
following section.

3.3 Verifying Hyperparameter Importance

br
ea
st
-w ilp
d

ph
on
em

e

bl
oo
d-
tr
an
sf
us
io
n-

se
rv
ic
e-
ce
nt
er

ba
nk
no
te
-

au
th
en
tic
at
io
n

di
ab
et
es

w
ilt

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid
at
io
n
bi
na
ry

ac
cu
ra
cy

Fig. 3. Performances of 1 000 quan-
tum machine learning models defined
by different configurations of hyper-
parameters over each dataset. The
metric of interest in the study is
the 10-fold cross-validation accuracy.
We take the best-achieved metric per
model trained over 100 epochs.

When applying the functional ANOVA
framework, an extra verification step is
added to confirm the output from a more
intuitive notion of hyperparameter impor-
tance [34]. It is based on the assumption
that hyperparameters that perform badly
when fixed to a certain value (while other
hyperparameters are optimized), will be
important to optimize. The authors of [34]
proposed to carry out a costly random
search procedure fixing one hyperparame-
ter at a time. In order to avoid a bias to the
chosen value to which this hyperparameter
is fixed, several values are chosen, and the
optimization procedure is carried out mul-
tiple times. Formally, for each hyperparam-
eter θj we measure y∗

j,f as the result of a
random search for maximizing the metric,
fixing θj to a given value f ∈ Fj , Fj ⊆ Θj .
For categorical θj with domain Θj , Fj =
Θj is used. For numeric θj , the authors
of [34] use a set of 10 values spread uni-
formly over θj ’s range. We then compute
y∗

j = 1
|Fj |

∑
f∈Fj

y∗
j,f , representing the score when not optimizing hyperparam-

eter θj , averaged over fixing θj to various values it can take. Hyperparameters
with lower values for y∗

j are assumed to be more important since the performance
should deteriorate more when set sub-optimally.

In our study, we extend this framework to be used on the scale of quantum
machine learning models. As quantum simulations can be very expensive, we

40 C. Moussa et al.

Table 2. List of datasets used in this study. The number of features is obtained after
a usual preprocessing used in machine learning methods, such as one-hot-encoding.

Dataset OpenML
Task ID

Number of
features

Number of
instances

breast-w 15 9 699

diabetes 37 8 768

phoneme 9952 5 5 404

ilpd 9971 11 583

banknote-authentication 10093 4 1 372

blood-transfusion-service-center 10 101 4 748

wilt 146820 5 4 839

carry out the verification experiment by using the predictions of the surrogate
instead of fitting new quantum models during the verification experiment. The
surrogates yield predictions ŷ for the performance of arbitrary hyperparameter
settings sampled during a random search. Hence, they serve to compute y∗

j,f .
This is also why we assessed the quality of the built-in surrogates as the second
step. Poorly-performing surrogates can deteriorate the quality of the constructed
marginals, and therefore lead to poorly-supported conclusions.

4 Dataset and Inclusion Criteria

To apply our quantum models and study the importance of the previously intro-
duced hyperparameters, we consider classical datasets. Similarly to [34], we use
datasets from the OpenML-CC18 benchmark suite [4]. In our study, we consider
only the case where the number of qubits available is equal to the number of
features, a common setting in the quantum community. As simulating quantum
circuits is a costly task, we limit this study to the case where the number of
features is less than 20 after preprocessing.1 Our first step was to identify which
datasets fit this criterion. We include all datasets from the OpenML-CC18 that
have 20 or fewer features after categorical hyperparameters have been one-hot-
encoded, and constant features are removed. Afterwards, the input variables are
also scaled to unit variance as a normalization step. The scaling constants are
calculated on the training data and applied to the test data.

The final list of datasets is given in Table 2. In total, 7 datasets fitted the
criterion considered in this study. For all of them, we picked the OpenML Task
ID giving the 10-fold cross-validation task. A quantum model is then applied
using the latter procedure, with the aforementioned preprocessing steps.

1 A 10-fold cross-validation run in our experiment takes on average 262 minutes for
100 epochs with Tensorflow Quantum [7].

Hyperparameter Importance of Quantum Neural Networks 41

5 Results

In this section, we present the results obtained using the hyperparameters and
the methodology defined in Sect. 3 with the datasets described in Sect. 4. First,
we show the distribution of performances obtained during a random search where
configurations are independently sampled for each dataset. Then we carry out
the surrogate verification. Finally, we present the functional ANOVA results
in terms of hyperparameter importance with marginal contributions and the
random search verification per hyperparameter.

5.1 Performance Distributions per Dataset

For each dataset, we sampled independently 1 000 hyperparameter configura-
tions and run the quantum models for 100 epochs as budget. As a performance
measure, we recorded the best validation accuracy obtained over 100 epochs.
Figure 3 shows the distribution of the 10-fold cross-validation accuracy obtained
per dataset. We observe the impact of hyperparameter optimization by the dif-
ference between the least performing and the best model configuration. For
instance, on the wilt dataset, the best model gets an accuracy close to 1, and the
least below 0.25. We can also see that some datasets present a smaller spread
of performances. ilpd and blood-transfusion-service-center are in this case. It
seems that hyperparameter optimization does not have a real effect, because
most hyperparameter configurations give the same result. As such, the surro-
gates could not differentiate between various configurations. In general, hyper-
parameter optimization is important for getting high performances per dataset
and detecting datasets where the importance study can be applied.

5.2 Surrogate Verification

Functional ANOVA relies on an internal surrogate model to determine the
marginal contribution per hyperparameter. If this surrogate model is not accu-
rate, this can have a severe limitation on the conclusions drawn from functional
ANOVA. In this experiment, we verify whether the hyperparameters can explain
the performances of the models. Table 3 shows the performance of the internal
surrogate models. We notice low regression scores for the two datasets (less than
0.75 R2 scores). Hence we remove them from the analysis.

5.3 Marginal Contributions

For functional ANOVA, we used 128 trees for the surrogate model. Figure 4(a,b)
shows the marginal contribution of each hyperparameter over the remaining 5
datasets. We distinguish 3 main levels of importance. According to these results,
the learning rate, depth, and the data encoding circuit and reuploading strat-
egy are critical. These results are in line with our expectations. The entangler
gate, connectivity, and whether we use RX gates in the variational layer are the
least important according to functional ANOVA. Hence, our results reveal new
insights into these hyperparameters that are not considered in general.

42 C. Moussa et al.

5.4 Random Search Verification

In line with the work of [34], we perform an additional verification experiment
that verifies whether the outcomes of functional ANOVA are in line with our
expectations. However, the verification procedure involves an expensive, post-hoc
analysis: a random search procedure fixing one hyperparameter at a time. As our
quantum simulations are costly, we used the surrogate models fitted on the cur-

Table 3. Performances of the surrogate models built within functional ANOVA over
a 10-fold cross-validation procedure. We present the average coefficient of determina-
tion (R2), root mean squared error (RMSE), and Spearman’s rank correlation coeffi-
cient (CC). These are common regression metrics for benchmarking surrogate models
on hyperparameters [9]. The surrogates over ilpd and blood-transfusion-service-center
obtain low scores (less than .75 R2), hence we remove them from the study.

Dataset R2 score RMSE CC

breast-w 0.8663 0.0436 0.9299

diabetes 0.7839 0.0155 0.8456

phoneme 0.8649 0.0285 0.9282

ilpd 0.1939 0.0040 0.4530

banknote-authentication 0.8579 0.0507 0.9399

blood-transfusion-service-center 0.6104 0.0056 0.8088

wilt 0.7912 0.0515 0.8015

(a) (b)

Fig. 4. The marginal contributions per dataset are presented as a) the variance contri-
bution and b) the difference between the minimal and maximal value of the marginal
of each hyperparameter. The hyperparameters are sorted from the least to most impor-
tant using the median. We distinguish from the plot 3 main levels of importance.

Hyperparameter Importance of Quantum Neural Networks 43

rent dataset considered over the 1 000 configurations obtained initially to predict
the performances one would obtain when presented with a new configuration.

Figure 5 shows the average rank of each run of random search, labeled with
the hyperparameter whose value was fixed to a default value. A high rank
implies poor performance compared to the other configurations, meaning that
tuning this hyperparameter would have been important. We witness again the
3 levels of importance, with almost the same order obtained. However, the
input activation function is deemed more important while batch size is less.

Fig. 5. Verification experiment of the
importance of the hyperparameters. A
random search procedure up to 500
iterations excluding one parameter at
a time is used. A lower curve means
the hyperparameter is deemed less
important.

More simulations with more datasets
may be required to validate the impor-
tance. However, we retrieve empirically
the importance of well-known hyperpa-
rameters while considering less important
ones. Hence functional ANOVA becomes
an interesting tool for quantum machine
learning in practice.

6 Conclusion

In this work, we study the importance
of hyperparameters related to quantum
neural networks for classification using
the functional ANOVA framework. Our
experiments are carried out over OpenML
datasets that match the current scale
of quantum hardware simulations (i.e.,
datasets that have at most 20 features
after pre-processing operators have been
applied, hence using 20 qubits). We
selected and presented the hyperparameters from an aggregation of quantum
computing literature and software. Firstly, hyperparameter optimization high-
lighted datasets where we observed high differences between configurations. This
underlines the importance of hyperparameter optimization for these datasets.
There were also datasets that showed little difference. These led us to extend the
methodology by adding an additional verification step of the internal surrogate
performances. From our results, we distinguished 3 main levels of importance.
On the one hand, Adam’s learning rate, depth, and the data encoding strat-
egy are deemed very important, as we expected. On the other hand, the less
considered hyperparameters such as the particular choice of the entangling gate
and using 3 rotation types in the variational layer are in the least important
group. Hence, our experiment both confirmed expected patterns and revealed
new insights for quantum model selection.

For future work, we plan to further investigate methods from the field of auto-
mated machine learning to be applied to quantum neural networks [5,11,26].
Indeed, our experiments have shown the importance of hyperparameter opti-
mization, and this should become standard practice and part of the protocols

44 C. Moussa et al.

applied within the community. We further envision functional ANOVA to be
employed in future works related to quantum machine learning and understand-
ing how to apply quantum models in practice. For instance, it would be interest-
ing to consider quantum data, for which quantum machine learning models may
have an advantage. Plus, extending hyperparameter importance to techniques for
scaling to a large number of features with the number of qubits, such as dimen-
sionality reduction or divide-and-conquer techniques, can be left for future work.
Finally, this type of study can also be extended to different noisy hardware and
towards algorithm/model selection and design. If we have access to a cluster
of different quantum computers, then choosing which hardware works best for
machine learning tasks becomes possible. One could also extend our work with
meta-learning [5], where a model configuration is selected based on meta-features
created from dataset features. Such types of studies already exist for parameter-
ized quantum circuits applied to combinatorial optimization [28,29,37].

Acknowledgements. CM and VD acknowledge support from TotalEnergies. This
work was supported by the Dutch Research Council (NWO/OCW), as part of
the Quantum Software Consortium programme (project number 024.003.037). This
research is also supported by the project NEASQC funded from the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 951821).

References

1. ANIS, M.S., et al.: Qiskit: an open-source framework for quantum computing
(2021). https://doi.org/10.5281/zenodo.2573505

2. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits
as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)

3. Bergholm, V., Izaac, J.A., Schuld, M., Gogolin, C., Killoran, N.: Penny-
lane: Automatic differentiation of hybrid quantum-classical computations. CoRR
abs/1811.04968 (2018)

4. Bischl, B., et al.: OpenML benchmarking suites. In: Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks (2021)

5. Brazdil, P., van Rijn, J.N., Soares, C., Vanschoren, J.: Metalearning: Applications
to Automated Machine Learning and Data Mining. Springer, 2nd edn. (2022).
https://doi.org/10.1007/978-3-030-67024-5

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Broughton, M., et al.: TensorFlow quantum: a software framework for quantum

machine learning. arXiv:2003.02989 (2020)
8. Caro, M.C., Gil-Fuster, E., Meyer, J.J., Eisert, J., Sweke, R.: Encoding-dependent

generalization bounds for parametrized quantum circuits. Quantum 5, 582 (2021)
9. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmark-

ing of hyperparameter optimizers via surrogates. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, pp. 1114–1120. AAAI Press
(2015)

10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv:1411.4028 (2014)

11. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-Sklearn
2.0: hands-free automl via meta-learning. arXiv:2007.04074v2 [cs.LG] (2021)

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1007/978-3-030-67024-5
http://arxiv.org/abs/2003.02989
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/2007.04074v2

Hyperparameter Importance of Quantum Neural Networks 45

12. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Review of modern.
Physics 86, 153–185 (2014)

13. Haug, T., Self, C.N., Kim, M.S.: Large-scale quantum machine learning. CoRR
abs/2108.01039 (2021)

14. Havĺıček, V., et al.: Supervised learning with quantum-enhanced feature spaces.
Nature 567(7747), 209–212 (2019)

15. Heimann, D., Hohenfeld, H., Wiebe, F., Kirchner, F.: Quantum deep reinforcement
learning for robot navigation tasks. CoRR abs/2202.12180 (2022)

16. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyper-
parameter importance. In: Proceedings of the 31th International Conference on
Machine Learning, ICML 2014. JMLR Workshop and Conference Proceedings,
vol. 32, pp. 1130–1144 (2014)

17. Jerbi, S., Fiderer, L.J., Nautrup, H.P., Kübler, J.M., Briegel, H.J., Dunjko, V.:
Quantum machine learning beyond kernel methods. CoRR abs/2110.13162 (2021)

18. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Parametrized quan-
tum policies for reinforcement learning. In: Advances in Neural Information Pro-
cessing Systems 34, pp. 28362–28375 (2021)

19. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)
21. Liu, J.G., Wang, L.: Differentiable learning of quantum circuit born machines.

Phys. Rev. A 98, 062324 (2018)
22. Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up

in supervised machine learning. Nat. Phys. 17(9), 1013–1017 (2021)
23. Marshall, S.C., Gyurik, C., Dunjko, V.: High dimensional quantum machine learn-

ing with small quantum computers. CoRR abs/2203.13739 (2022)
24. Mensa, S., Sahin, E., Tacchino, F., Barkoutsos, P.K., Tavernelli, I.: Quantum

machine learning framework for virtual screening in drug discovery: a prospective
quantum advantage. CoRR abs/2204.04017 (2022)

25. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys.
Rev. A 98, 032309 (2018)

26. Mohr, F., van Rijn, J.N.: Learning curves for decision making in supervised machine
learning - a survey. CoRR abs/2201.12150 (2022)

27. Moll, N., et al.: Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018)

28. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards
algorithm selection in near-term quantum optimization. Quantum Sci. Technol.
5(4), 044009 (2020)

29. Moussa, C., Wang, H., Bäck, T., Dunjko, V.: Unsupervised strategies for identi-
fying optimal parameters in quantum approximate optimization algorithm. EPJ
Quantum Technol. 9(1) (2022)

30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary. Cambridge University Press, New York (2011)

31. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-
uploading for a universal quantum classifier. Quantum 4, 226 (2020)

32. Peters, E., et al.: Machine learning of high dimensional data on a noisy quantum
processor. NPJ Quantum Inf. 7(1), 161 (2021)

33. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(2018)

46 C. Moussa et al.

34. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD 2018, pp. 2367–2376. ACM (2018)

35. Sajjan, M., et al.: Quantum computing enhanced machine learning for physico-
chemical applications. CoRR arXiv:2111.00851 (2021)

36. Saltelli, A., Sobol, I.: Sensitivity analysis for nonlinear mathematical models:
numerical experience. Matematicheskoe Modelirovanie 7 (1995)

37. Sauvage, F., Sim, S., Kunitsa, A.A., Simon, W.A., Mauri, M., Perdomo-Ortiz,
A.: Flip: a flexible initializer for arbitrarily-sized parametrized quantum circuits.
CoRR abs/2103.08572 (2021)

38. Schetakis, N., Aghamalyan, D., Boguslavsky, M., Griffin, P.: Binary classifiers for
noisy datasets: a comparative study of existing quantum machine learning frame-
works and some new approaches. CoRR abs/2111.03372 (2021)

39. Schuld, M., Killoran, N.: Is quantum advantage the right goal for quantum machine
learning? Corr abs/2203.01340 (2022)

40. Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power
of variational quantum-machine-learning models. Phys. Rev. A 103, 032430 (2021)

41. Sharma, A., van Rijn, J.N., Hutter, F., Müller, A.: Hyperparameter importance
for image classification by residual neural networks. In: Kralj Novak, P., Šmuc,
T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 112–126. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33778-0 10

42. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)

43. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capabil-
ity of parameterized quantum circuits for hybrid quantum-classical algorithms.
Advanced Quantum Technologies 2(12), 1900070 (2019)

44. Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quan-
tum algorithm for deep q-learning. CoRR abs/2103.15084 (2021)

45. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Exp. 1(4), 407–414 (1993)

46. Sweke, R., Seifert, J., Hangleiter, D., Eisert, J.: On the quantum versus classical
learnability of discrete distributions. Quantum 5, 417 (2021)

47. Wang, H., Gu, J., Ding, Y., Li, Z., Chong, F.T., Pan, D.Z., Han, S.: QuantumNAT:
quantum noise-aware training with noise injection, quantization and normalization.
CoRR abs/2110.11331 (2021)

48. Wang, H., Li, Z., Gu, J., Ding, Y., Pan, D.Z., Han, S.: QOC: quantum on-chip
training with parameter shift and gradient pruning. CoRR abs/2202.13239 (2022)

49. Wossnig, L.: Quantum machine learning for classical data. CoRR abs/2105.03684
(2021)

50. Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for
learning and loading random distributions. NPJ Quantum Inf. 5(1), 103 (2019)

http://arxiv.org/abs/2111.00851
https://doi.org/10.1007/978-3-030-33778-0_10

IMITAL: Learned Active Learning
Strategy on Synthetic Data

Julius Gonsior1(B) , Maik Thiele2 , and Wolfgang Lehner1

1 Technische Universität Dresden, Dresden, Germany
{julius.gonsior,wolfgang.lehner}@tu-dresden.de

2 Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany
maik.thiele@htw-dresden.de

Abstract. Active Learning (AL) is a well-known standard method for
efficiently obtaining annotated data by first labeling the samples that
contain the most information based on a query strategy. In the past, a
large variety of such query strategies has been proposed, with each gener-
ation of new strategies increasing the runtime and adding more complex-
ity. However, to the best of our knowledge, none of these strategies excels
consistently over a large number of datasets from different application
domains. Basically, most of the existing AL strategies are a combina-
tion of the two simple heuristics informativeness and representativeness,
and the big differences lie in the combination of the often conflicting
heuristics. Within this paper, we propose ImitAL, a domain-independent
novel query strategy, which encodes AL as a learning-to-rank problem
and learns an optimal combination between both heuristics. We train
ImitAL on large-scale simulated AL runs on purely synthetic datasets.
To show that ImitAL was successfully trained, we perform an extensive
evaluation comparing our strategy on 13 different datasets, from a wide
range of domains, with 7 other query strategies.

Keywords: Annotation · Active learning · Imitation learning ·
Learning to rank

1 Introduction

Machine Learning (ML) has found applications across a wide range of domains
and impacts (implicitly) nearly every aspect of nowaday’s life. Still, one of the
most limiting factors of successful application of ML is the absence of labels
for a training set. Usually, domain experts that are rare and costly are required
to obtain a labeled dataset. Thus, to improve the manual label task is a prime
object to improve. For example, the average cost for the common label task of
segmenting a single image reliably is 6,40 USD1.

Reducing the amount of necessary human input into the process of generating
labeled training sets is of utmost importance to make ML projects possible and
1 According to scale.ai as of December 2021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 47–56, 2022.
https://doi.org/10.1007/978-3-031-18840-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_4&domain=pdf
https://orcid.org/0000-0002-5985-4348
https://orcid.org/0000-0002-1665-977X
http://orcid.org/0000-0001-8107-2775
https://doi.org/10.1007/978-3-031-18840-4_4

48 J. Gonsior et al.

Fig. 1. General overview on the training procedure of ImitAL

scalable. A standard approach to reduce the number of required labels without
compromising the quality of the trained ML model, is to exploit Active Learning
(AL). The approach consists of an iterative process of selecting exactly those
unlabeled samples for labeling by the domain experts that benefit the to-be
trained model the most. Given a small initial labeled dataset L = {(xi, yi)}n

i

of n samples xi with the respective labels yi and a large unlabeled pool U =
{xi}, xi �∈ L, an ML model called learner θ is trained on the labeled set. A query
strategy then subsequently chooses a batch of b unlabeled samples Q, which will
be labeled by the human experts and added to the set of labeled data L. This
AL cycle repeats τ times until a stopping criterion is met.

The challenge of applying AL is the almost paradoxical problem to be solved:
how to decide, which samples are most beneficial to the ML model, without
knowing the label of the samples, since this is exactly the task to be learned by
the to-be-trained ML model.

During the past years, many different AL query strategies have been pro-
posed, but to our knowledge, none excels consistently over a large number of
datasets and from different application domains. By deliberately focusing on
domain-independent AL strategies we aim to shed some light onto this problem.
Even though various extensive general survey papers [14,15,20] exist, no clearly
superior AL strategy has been identified. The results of the individual evalu-
ations in papers with newly proposed AL strategies suggest that current AL
strategies highly depend on the underlying dataset domain. Even more interest-
ingly, the näıve baseline of randomly selecting samples often achieves surprisingly
competitive results [7,9,11,13].

At its core, the vast majority of AL strategies rely on the same set of two sim-
ple heuristics: informativeness and representativeness. The first favors samples
that foremost improve the classification model, whereas the latter favors samples
that represent the overall sample distribution in the feature vector space. Most
recent AL strategies add more layers of complexity on top of the two heuristics
in their purest form, often resulting in excessive runtimes. This renders many AL
strategies unusable in large-scale and interactively operating labeling projects,
which are exactly those projects that would benefit the most from “optimal”
learning strategies.

ImitAL 49

We are presenting ImitAL, a novel AL strategy, which at its core is a Neural
Network (NN) trained on very large simulated AL episodes with the goal to opti-
mally combine the basic AL heuristics informativeness and representativeness.
As it is not practically feasible to enumerate all possible real-world datasets as
training data in the simulations, we are approximating them by using synthetic
datasets instead. The benefit of synthetic datasets is that we can leverage the
knowledge about all the labels to construct an optimal AL strategy, which then
serves as training basis for ImitAL. Our work falls therefore under the category of
“learning AL strategies”. According to our knowledge, our approach is, in contrast
to similar works [9,11,13], the first one to solely utilize purely synthetical data to
train the strategy. We can present a pre-trained, ready-to-apply AL strategy which
can be applied without any further necessary transfer-learning or fine-tuning in
any domain.

We start in Sect. 2 by presenting our synthetic datasets simulation process,
followed by our Imitation Learning (IL) procedure in Sect. 3. In Sect. 4, we are
comparing ImitAL with 7 common AL strategies on 13 real-world datasets and
conclude in Sect. 5.

2 Simulating AL on Synthetic Training Data

For the IL training procedure of ImitAL we need an expert AL strategy, which
the neural network behind ImitAL can learn to imitate. In order to capture the
characteristics of “all” possible datasets we pursue the idea by generating initially
nearly “infinite” synthetic datasets2 and computing an optimal AL strategy on
them, leveraging the information about the known full labels for the synthetic
datasets.

We construct the nearly-optimal strategy by selecting a batch of those sam-
ples for labeling, which will result in the highest accuracy (in the following called
reward), if they each were added to the set of labeled samples L. As this process
is computationally heavy, we do not consider all possible batches, but perform
a pre-selection based on a heuristic, which selects a promising and diverse set of
the top-k batches. Details of the pre-selection are explained in Sect. 3.

The results of the AL simulation for each AL cycle t for a specific synthetic
dataset is a state-action-reward triple. The state s is represented as a triple
s = (U t,Lt, θt), consisting of the set of unlabeled samples U t, the set of labeled
samples Lt, and the state of the learner model θt trained on Lt. The corre-
sponding actions as is a set of the pre-selected queries x, whereas the respective
rewards rs for each of these actions is a set of rewards r. The optimal choice
Qt

s ∈ as for the AL cycle t can be easily computed from the given accuracies –
the action with the highest future accuracy. This simulation is repeated α-times
using different synthetic datasets. The accumulated state-action-reward pairs,
denoted as the triple (S,A,R), reflect then the input for IL training procedure
2 For generating the synthetic datasets the algorithm by [4], which is a runtime effi-

cient method for creating a diverse range of synthetic datasets of varying shape and
resulting classification hardness, is used.

50 J. Gonsior et al.

of the NN of ImitAL. The whole synthetic data training generation and training
of ImitAL has to be done only once, afterwards it is applicable to real-world
datasets without any further transfer learning or fine-tuning steps.

3 Training a Neural Network by Imitation Learning

The final step of ImitAL is to use the generated state-action-reward triples
(S,A,R) for training an NN as AL query strategy. Therefore, we are deploying
the ML technique IL [12], where demonstrated expert actions are being repli-
cated by the ML model. The training task for ImitAL is to find patterns in the
presented actions.

Subsequently (Sect. 3.1) we will first explain the IL learning process, followed
by the details of the NN input and output encoding (Sect. 3.2), and lastly, the
necessary pre-selection process (Sect. 3.3).

3.1 Imitation Learning

For training ImitAL we use Imitation Learning (IL), where an expert demon-
strates an optimal strategy, which the neural network behind ImitAL learns to
replicate. We use behavioral cloning [12] as a variant of IL, which reduces IL
to a regular regression ML problem. The desired outcome is a trained strategy
returning the optimal action for a given state. We use the state-action-reward
set (S,A,R) to extract an optimal strategy π̂, which we are then demonstrating
to the to-be-trained network π̂(s) = argmaxx∈as,rx∈rs

(rx). For a given state s,
the action set A contains all pre-selected actions as for this state; the reward
set R contains the respective rewards rs. As the optimal strategy only contains
the optimal actions, it can be used to construct the optimal batch by taking the
b-highest actions. In other words: we train a network π̂ predicting for a given
state s and a possible action x ∈ as – which equals labeling the sample repre-
sented by this action – the reward rx ∈ rs. The expected future accuracy is in
our case demonstrated by the true reward ṙ function as ṙ(s, x) = rx.

3.2 Neural Network Input and Output Encoding

Before using the state-action-reward set (S,A,R) to train the network predicting
the future accuracy, we first transform it into a fixed sized vector representation
using feature encoding, and thus making ImitAL dataset agnostic. NNs are
limited by the number of the neurons to either a fixed size input, or when using
recurrent NN to circumvent this limitation, they often suffer from the case of
memory loss where the beginning of the input sequence is forgotten due to
exploding or vanishing gradients [6]. The last problem occurs more frequently
the larger and more length-varying the input is, which is the case for AL. The
raw actions set A may then contain – depending on the number of unlabeled
samples – many possible samples, or just a few, varying again drastically. That

ImitAL 51

Fig. 2. Pre-selection process and action meaning for ImitAL, example for j = 4, k =
6, and b = 3, and encoding of a state-action-triple

underpins the already mentioned pre-selection method, reducing the number of
possible actions to a fixed size.

The transformation of the state-action-reward set into a suitable form for
the network is called input and output encoding. Figure 2 displays the general
procedure of the encoding to the right. We chose a listwise input encoding, where
we enter k possible actions x ∈ as, |as| = k at once into the network, in contrast
to a pointwise encoding, where a single action is entered at a time. This has
the benefit of enabling the network to compare each possible action relatively
to the others, enabling ImitAL to take batch-aware AL query decisions. Batch-
awareness is, as thoroughly explained in [8], a beneficial and desirable property
of AL query strategies, meaning that the joint diversity of all samples of the final
AL batch Q is taken into account. The input of the network is defined by the
vector Is = {E(x, s)|x ∈ as}, with E being the encoding of the action x. The
output O = (r̂1, . . . , r̂k) of the network consists of exactly |rs| output neurons,
one for each of the predicted accuracies r̂x for the respective possible actions
x. The amount of output neurons equals therefore the amount of pre-selected
actions: |rs| = |as| = k. We use a final softmax layer of k output neurons, each
per possible action. The b highest output neurons indicate the samples for the
unlabeled query Q.

A single action represents an unlabeled sample x ∈ U . The input
encoding function E(x, s) defines on what basis the network can make the
AL query strategy decision. We use the state s = (U ,L, θ) to calcu-
late the encoding, which is a 5-tuple consisting of multiple parts, the indi-
vidual functions will be explained in the following paragraphs E(x, s) =
(u1(x, θ), u2(x, θ), u3(x, θ), dl(x,L), du(x,U)). The complete network input vec-
tor I consists then of 5-times k values, an encoded 5-tuple for each unlabeled
sample x out of the set of possible actions a Is = {E(x1, s), . . . , E(xk, s)}, x ∈ as

As mentioned in the beginning, a good AL query strategy takes informativeness
as well as representativeness into account. Informativeness is derived by ui(x, θ),
a function computing the uncertainty of the learner θ for the i-th most proba-
ble class for the sample x ∈ U , given the probability of the learner Pθ(y|x) in
classifying x with the label y:

52 J. Gonsior et al.

ui(x, θ) =

{

Pθ

(

(

argmaxy,i Pθ(y|x)
)

∣

∣

∣ x
)

, if i ≤ C

0, otherwise
(1)

argmax ,i denotes the i-th maximum argument, and C the number of classifi-
cation classes.

For representativeness we compute dl(x,L) and du(x,U), the first denot-
ing the average distance to all labeled samples, the latter the average dis-
tance to all unlabeled samples dl(x,L) = 1

|L|
∑

xl∈L d(x, xl), du(x,U) =
1

|U|
∑

xu∈x d(x, xu), where d(x1, x2) is an arbitrary distance metric between the
points x1 and x2. We use the Euclidean distance for small feature vector spaces,
and recommend using the cosine distance for high-dimensional feature vector
space. Both feature encoding functions represent the most raw, unpreprocessed
forms of informativeness and representativeness, as the neural network should
learn necessary transformations of the feature vector space.

3.3 Pre-selection

Instead of considering all possible actions, we pre-select promising actions, whose
individual samples have the largest diversity and whose individual samples are
the furthest away from each other, similar to [8]. The pre-selection fulfills two
objectives: first and foremost, we can present a fixed amount of actions to the
network, and secondly it keeps the runtime of the simulations within a process-
able range. A positive side effect of the fixed-size input of the network is the low
and static runtime of ImitAL, which is almost independent of the size of the
dataset. The effect is especially apparent with very large datasets.

We start the pre-selection by drawing randomly j possible actions
{ã1, . . . , ãj}, with each ã being a subset of U . After that we use a heuristic
to select the top-k most promising actions a out of the random ones. The pre-
selection process is illustrated in Fig. 2 at the left side.

We are using a heuristic to filter out potentially uninteresting actions. By
calculating the average distance to the already labeled samples of all the samples
in each possible action set ã and select the action set a having the highest average
distance: a = argmaxã

∑

x∈ã dl(x,L), where ã contains k unlabeled samples.
Thus, we are ensuring that we sample evenly distributed from each region in the
sample vector space during the training process. We compute the heuristic for j
random possible batches, instead of all possible subsets of U .

4 Evaluation

The goal of ImitAL is to learn a domain-independent AL strategy from syn-
thetic datasets, which combines the strength of both the basic informativeness
and the representativeness heuristics. For evaluation, we are comparing ImitAL
therefore with 7 AL strategies on 13 real-world datasets from varying domains.

ImitAL 53

4.1 Experiment Details

The datasets are from the UCI ML Repository [1] with varying sample size,
feature size, and application domain, similar to the evaluations of [7,9,13]. As
an additional larger dataset the table classification dataset DWTC [2] was also
included. For the experiments we started with a single random sample of each
class, and ran the AL loop with a batch size b of 5 for 25 cycles, or until all
data was labeled. We repeated this for 1,000 times with varying initial labeled
samples to generate statistically stable results. As learner model θ a simple NN
with 2 hidden layers and 100 neurons each was used. The datasets were split
randomly into a 50 % train and 50 % test evaluation set.

As evaluation metric we used the area-under-the-curve (AUC) of the learning
curve, as has been also done recently in the AL survey by Chan et. al. [20].
This makes it easy to calculate the mean of 1,000 times repeated experiments.
Similarly to [5] we are further normalizing the AUC values by the maximum
possible AUC value – a rectangle of 100% F1-Scores for each time step – to
additionally enable comparisons across datasets.

The training of ImitAL is highly parallelizable, as the generation of the syn-
thetic datasets and the respective AL simulation may run completely in parallel.
For a full training of ImitAL with the best parameters we needed 100,000 com-
putation jobs, resulting in a set of 1,000,000 state-action pairs as training data.
In total, ∼1M CPU-hours were needed for all experiments conducted for this
paper, including testing out different NN and IL configurations, and training
the final version of ImitAL. For the final version of ImitAL we set the param-
eter of the simulated AL cycle τ to 10, the pre-sampling parameter k to 20 and
j to 10 during training, and 2 during application, as this suffices for a trained
ImitAL. The batch size was fixed to a standard value of 5 for the used UCI
datasets.

4.2 Comparison with Other Active Learning Strategies

Our evaluation compares 7 AL strategies against our AL strategy, ImitAL.
The results are shown in Table 1. Each displayed value is the mean of F1-AUC
values for the 1,000 repeated runs. As the percentages are often quite similar,
we additionally included the ranks. The displayed percentages are rounded, but
the ranks are computed on the complete numbers, which can lead to different
ranks for otherwise equally rounded displayed percentages.

We included Least Confidence (LC) and Uncertainty Entropy (Ent) [17],
the two most common and basic variants of the informativeness heuristic, where
greedily the most uncertain samples based on the classification probability of the
learner model are selected for labeling. The Graph Density (GD) strategy [3] was
added as a pure representativeness heuristic-based strategy which solely focuses
on sampling evenly from the vector space. BatchBALD [8] is a popular AL
strategy which works well for computer vision deep neural networks. Querying
Informative and Representative Examples (QUIRE) [7] is a computationally

54 J. Gonsior et al.

Table 1. F1-AUC-scores (%) for different AL query strategies, mean for 1,000 repeated
experiments each, including the ranks and the ranked mean. Empty cells indicate no
calculable results within the maximum runtime window of seven days.

ImitAL LC QBC Ent Rand GD BatchBALD QUIRE

abalone 21.2 (2) 19.3 (5) 19.6 (4) 17.8 (6) 21.3 (1) 15.6 (7) 21.1 (3) 11.2 (8)

adult 54.5 (1) 53.5 (4) 54.1 (2) 53.5 (3) 51.8 (5) 47.9 (7) 51.3 (6)

australian 83.9 (1) 83.8 (2) 83.8 (3) 83.8 (2) 83.0 (5) 83.6 (4) 79.8 (6) 71.5 (7)

BREAST 94.0 (3) 94.4 (1) 94.4 (2) 94.4 (1) 92.8 (4) 91.6 (5) 90.9 (6) 84.6 (7)

DWTC 69.3 (1) 65.3 (5) 65.9 (4) 63.4 (6) 67.8 (2) 52.8 (7) 66.1 (3) 50.1 (8)

fertility 88.2 (2) 87.8 (3) 87.7 (4) 87.8 (3) 87.0 (5) 88.2 (1) 86.8 (6) 86.8 (7)

flags 57.5 (1) 55.5 (6) 55.6 (5) 54.7 (7) 55.8 (4) 56.6 (2) 55.9 (3) 43.7 (8)

german 74.5 (2) 74.2 (4) 74.2 (5) 74.2 (4) 74.3 (3) 75.5 (1) 74.1 (6) 71.5 (7)

glass 68.9 (1) 67.6 (2) 67.4 (3) 66.6 (6) 67.3 (4) 66.3 (7) 67.1 (5) 40.6 (8)

heart 79.0 (1) 78.8 (3) 78.8 (5) 78.8 (3) 78.8 (4) 78.9 (2) 78.3 (6) 71.4 (7)

ionos 88.9 (1) 88.6 (2) 88.5 (3) 88.6 (2) 88.0 (5) 88.2 (4) 82.9 (6) 53.5 (7)

wine 95.2 (1) 94.8 (2) 94.6 (4) 94.6 (3) 94.4 (5) 94.3 (6) 93.5 (7) 84.9 (8)

zoo 93.7 (1) 93.3 (2) 92.9 (6) 93.2 (3) 93.1 (4) 92.8 (7) 93.1 (5) 92.7 (8)

mean % 74.5 (1) 73.6 (3) 73.7 (2) 73.2 (5) 73.5 (4) 71.7 (7) 72.4 (6) 58.7 (8)

mean (r) 1.38 3.15 3.85 3.77 3.92 4.62 5.23 7.54

expensive combination of both heuristics, and Query-bycommittee (QBC) [16] a
combination of the uncertainty of multiple learner models [10]3.

ImitAL learns a combination of the two heuristics informativeness and rep-
resentativeness. For the datasets fertility, flag, german, and heart GD is
much better than LC. This is an indication that on these datasets a pure infor-
mativeness heuristic is challenged the most, whereas for the other strategies LC
still seems to be the safest bet as a general-purpose AL strategy. ImitAL suc-
cessfully learned to combine the best of both strategies, which can be especially
seen by the superior performance on the datasets. QBC achieved quite competi-
tive results, but at the cost of almost twice as high running cost than ImitAL
due to the expensive retraining of multiple learner models instead of a single
one. The good results from the original QUIRE and BatchBALD paper could not
be reproduced by us. Additionally, the runtime of QUIRE was so high that not
even one AL experiment finished within seven days. The pre-selection of ImitAL
with our used parameters means that ImitAL always considers a fixed amount
of 40 unlabeled samples during each AL iteration, making it 10 times faster than
even the second fastest LC strategy, which has to consider all unlabeled samples.

We also performed a significance test to prove that ImitAL is not only by
chance but indeed statistically sound better than the competitors. We used a
Wilcoxon signed-rank test [19] with a confidence interval of 95% to calculate
the proportional win/tie/losses between ImitAL and each competing strategy.

3 We used for all strategies the implementations from the open-source AL framework
ALiPy [18].

ImitAL 55

For each of the 1,000 starting points, we took the F1-values of all the 25 AL
iterations4 of the two strategies to compare. Our null hypothesis is that the mean
of both learning curves is identical. If the null hypothesis holds true we count
this experiment repetition as a tie, and otherwise as a win or loss depending on
which strategy performed according to the better mean. Due to lack of space we
are omitting the table with the results of all datasets, but overall, ImitAL won
at least 35% more often compared to each strategy than lost against them. It
also has to be noticed that the majority of the direct comparisons resulted in a
tie with a total amount of 55%.

5 Conclusion

We presented a novel approach of training a universally applicable AL query
strategy on purely synthetic datasets by encoding AL as a listwise learning-
to-rank problem. For training, we chose IL, as it is cheap to generate a huge
amount of training data when relying on synthetic datasets. Our evaluation
showed that ImitAL successfully learned to combine the two basic AL heuristics
informativeness and representativeness by outperforming both heuristics and
other AL strategies over multiple datasets of varying domains. In the future, we
want to include more requirements of large ML projects into the state-encoding
of ImitAL to make it more applicable.

Acknowledgements. This research and development project is funded by the Ger-
man Federal Ministry of Education and Research (BMBF) and the European Social
Funds (ESF) within the “Innovations for Tomorrow’s Production, Services, and Work”
Program (funding number 02L18B561) and implemented by the Project Management
Agency Karlsruhe (PTKA). The author is responsible for the content of this publica-
tion.

The authors are grateful to the Center for Information Services and High Perfor-
mance Computing [Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)]
at TU Dresden for providing its facilities for high throughput calculations.

References

1. Dua, D., Graff, C.: UCI machine learning repository (2017)
2. Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ahmadov, A., Lehner,

W.: Building the Dresden web table corpus: a classification approach, pp. 41–50,
December 2015

3. Ebert, S., Fritz, M., Schiele, B.: Ralf: A reinforced active learning formulation
for object class recognition. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3626–3633 (2012). https://doi.org/10.1109/CVPR.2012.
6248108

4 As the exact p-values of the Wilcoxon signed-rank test are only computed for a sam-
ple size of up to 25, and for greater values an approximate – in our case not existent
– normal distribution has to be assumed, we decided to stop our AL experiments
after 25 iterations.

https://doi.org/10.1109/CVPR.2012.6248108
https://doi.org/10.1109/CVPR.2012.6248108

56 J. Gonsior et al.

4. Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark.
In: NIPS Workshop on Feature Extraction and Feature Selection, vol. 253 (2003)

5. Guyon, I., Cawley, G., Dror, G., Lemaire, V.: Results of the active learning chal-
lenge. J. Mach. Learn. Res. Proc. Track 16, 19–45 (2011)

6. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001)

7. Huang, S.j., Jin, R., Zhou, Z.H.: Active learning by querying informative and rep-
resentative examples. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23,
pp. 892–900. Curran Associates, Inc. (2010)

8. Kirsch, A., v. Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch
acquisition for deep bayesian active learning. In: NIPS, vol. 32, pp. 7026–7037.
Curran Associates, Inc. (2019)

9. Konyushkova, K., Sznitman, R., Fua, P.: Discovering general-purpose active learn-
ing strategies. arXiv preprint arXiv:1810.04114 (2018)

10. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London
(1994). https://doi.org/10.1007/978-1-4471-2099-5 1

11. Liu, M., Buntine, W., Haffari, G.: Learning how to actively learn: a deep imitation
learning approach. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, Melbourne, Australia (Volume 1: Long Papers), pp.
1874–1883. Association for Computational Linguistics, July 2018. https://doi.org/
10.18653/v1/P18-1174

12. Michie, D., Camacho, R.: Building symbolic representations of intuitive real-time
skills from performance data. In: Machine Intelligence, vol. 13, pp. 385–418. Oxford
University Press (1994)

13. Pang, K., Dong, M., Wu, Y., Hospedales, T.: Meta-learning transferable active
learning policies by deep reinforcement learning. arXiv preprint arXiv:1806.04798
(2018)

14. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR)
54(9), 1–40 (2021)

15. Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648 (2010)

16. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, New York, NY,
USA, pp. 287–294. COLT 1992, Association for Computing Machinery (1992).
https://doi.org/10.1145/130385.130417

17. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

18. Tang, Y.P., Li, G.X., Huang, S.J.: ALiPy: active learning in Python. arXiv preprint
arXiv:1901.03802 (2019)

19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

20. Zhan, X., Liu, H., Li, Q., Chan, A.B.: A comparative survey: benchmarking for
pool-based active learning. In: IJCAI, pp. 4679–4686, August 2021. https://doi.
org/10.24963/ijcai.2021/634, survey Track

http://arxiv.org/abs/1810.04114
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.18653/v1/P18-1174
https://doi.org/10.18653/v1/P18-1174
http://arxiv.org/abs/1806.04798
https://doi.org/10.1145/130385.130417
http://arxiv.org/abs/1901.03802
https://doi.org/10.24963/ijcai.2021/634
https://doi.org/10.24963/ijcai.2021/634

Incremental/Continual Learning

Predicting Potential Real-Time Donations
in YouTube Live Streaming Services
via Continuous-Time Dynamic Graph

Ruidong Jin1,2, Xin Liu2(B), and Tsuyoshi Murata1,2

1 Tokyo Institute of Technology, Tokyo, Japan
ruidong.jin@net.c.titech.ac.jp, murata@c.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

xin.liu@aist.go.jp

Abstract. Online live streaming services (e.g., YouTube Live, Twitch)
are booming in recent years and gaining popularity in people’s cyber
life. Real-time gifts paid by viewers in live streaming bring considerable
profits and fame to streamers, whereas only a few works are interested
in the donation system on live streaming platforms. In this paper, we
focus on the real-time donation ‘Superchat’ on YouTube live platform
and build a continuous-time dynamic graph to model the interactions
among viewers based on real-time chat messages. Live streaming viewers
tend to respond to the superchat immediately, demonstrating the pos-
sibility of predicting the real-time donations by analyzing other active
viewers and chat messages. We design a temporal graph neural network
architecture to dynamically predict the potential viewers who send dona-
tions during live streaming. Also, our model can predict the exact periods
when superchat appears. Extensive experiments on three live streaming
video datasets show our proposed model’s effectiveness and robustness
compared to baseline methods from other fields.

Keywords: Online live streaming · Real-time donation ·
Continuous-time dynamic graph · Dynamic node label prediction

1 Introduction

In recent years, online live streaming services have been booming and growing
on Social Network Sites (SNS). Due to the advancement of the Internet and
wide usage of mobile devices, live streaming services have been considered a
convenient and entertaining way to enjoy real-time media. Many video media
platforms, such as YouTube Live1 and Twitch2, provide live streaming service
content covering broadcast news, sports matches, entertainment, video games,
and so on [24]. Users prefer these services on live streaming services rather than

1 https://www.youtube.com/.
2 https://www.twitch.tv/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 59–73, 2022.
https://doi.org/10.1007/978-3-031-18840-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_5&domain=pdf
https://www.youtube.com/
https://www.twitch.tv/
https://doi.org/10.1007/978-3-031-18840-4_5

60 R. Jin et al.

Fig. 1. Superchat messages on YouTube live streaming.

traditional TV due to convenience, better content, low cost, appointment view-
ing, customized channels, and break-free shows [8,24]. Live streaming service is
bringing massive popularity and profits. According to the investigation report
provided by Fortune Business Insights3, the global video streaming market is
valued at $372.07 billion in 2021. The market is projected to grow from $473.39
billion in 2022 to $1,690.35 billion by 2029. Twitch, one of the biggest live-
streaming platforms, has on average 30 million daily visitors and more than 7
million unique streamers every month. Specifically, the Covid-19 pandemic con-
siderably positively affected the video markets. The increasing adoption of online
learning, work from home, and remote patient monitoring in health services has
rapidly increased the demand for live streaming services.

The appeal point of live streaming is that viewers can send real-time chat
messages to interact with other viewers, and the streamers can also interact with
their audience via chat messages. The chat message interaction system short-
ens the distance between streamers and viewers in cyberspace. Live streaming
makes popular streamers become ‘celebrities’ to their viewers [2]. Also, it makes
3 https://www.fortunebusinessinsights.com/video-streaming-market-103057.

https://www.fortunebusinessinsights.com/video-streaming-market-103057

Predicting Potential Real-Time Donations 61

viewers feel like a part of the community. Some viewers are willing to support
their favorite streamers and donate some money during the real-time live stream-
ing. The donation system is called ‘superchat’ on YouTube Live or ‘subscription’
on Twitch. Figure 1 demonstrates the superchat donation on YouTube live plat-
form. Superchat is a particular chat message accompanied by an amount of
donation. It has a unique effect and will be pinned in the chatbox for a period.
A superchat usually costs from $1 to $500. Donation means profit, popularity,
and motivation to produce more high-quality content. It is a significant part of
streamers’ income, especially those who make a living on live streaming. With
the development of the live streaming market, there is an urgent need for live
streamers to know more about their potential donors and the expected donation
income.

Currently, research on live streaming services is still in an early stage. Some
researchers study live streaming itself. Computer vision methods are interested
in video quality improvement and image recognition in live streaming. Also,
live-streaming platforms can be a rich source for data collection (e.g., chat-data
analysis). Several works focus on highlight detection [1], sentimental analysis [6],
and fraud detection [10]. However, there are few AI-related works on predicting
donations in live streaming services.

With the concerns mentioned above, we study the interactions among view-
ers and real-time chat messages in online live streaming services. Specifically,
We focus on the superchat on the YouTube Live platform. Empirically, chat
messages are always booming when a superchat appears in live streaming. The
streamer would like to appreciate the donation, and other viewers tend to send
chat messages to respond to the superchat. Thus, a superchat message is always
followed by many response chat messages and usually has unique text content.
Based on this fact, we attempt to predict the superchat message by analyzing
its relations with other nearby chat messages and its text content. Specifically,
we propose to use the continuous-time dynamic graph to model the complicated
connections among thousands of viewers and millions of chat messages. Further,
we employ Temporal Graph Network (TGN) [17] to analyze the relation between
superchat messages and nearby chat messages and finally predict the donations.

Our proposed method predicts the real-time donation and the exact period
it appears. We transform the superchat detection problem into a dynamic node
label classification problem in continuous-time dynamic graphs, which is dis-
cussed in a few prior works. Specifically, unlike the traditional node label clas-
sification problem where node labels are static and constant, node labels in this
task are dynamic and changing. Solving the dynamic node label classification
task can predict the exact time when superchat appears. We also conducted mas-
sive experiments to evaluate our proposed approach. The experimental results
demonstrate that our proposed approach achieves a 0.902 AUC score in the
dynamic node label prediction task. The results are significantly superior to
other baselines, including decision tree algorithms, time sequence models, static
graph neural networks, and NLP text classification models.

The main contributions of the paper are summarized as follows:

62 R. Jin et al.

– We research the gift donations and donors in live streaming services and try to
predict the virtual gift donations via dynamic graph neural network models.
As far as we are concerned, we are the first to focus on this innovative and
significant topic of online live streaming donations and donors.

– We represent the live streaming chat messages and interactions among view-
ers in a continuous-time dynamic graph. Furthermore, we design a tempo-
ral graph neural network model to solve the dynamic node label classifica-
tion problem and predict the potential superchat donations on YouTube live
streaming platform.

– We conduct experiments and prove that our proposed approach achieves
excellent performance on the dynamic node label classification task. Our app-
roach outperforms baseline methods by a large margin, including traditional
machine learning algorithms, sequence learning models, and state-of-the-art
dynamic graph neural network methods.

The remainder of the paper is organized as follows. Section 2 summarizes the
recent literature on online live streaming services and dynamic graph learn-
ing. Section 3 introduces the approaches to generating dynamic graphs from live
streaming chat data and predicting potential donations through the temporal
graph neural networks. Section 4 reports the experiment results and evaluations,
and also demonstrates a case study to prove the feasibility of the proposed model.
Finally, Sect. 5 concludes our research.

2 Related Work

We represent the related work from two aspects: online live streaming and
dynamic graph learning.

2.1 Online Live Streaming Service

Online live streaming services have attracted increasing attention due to the
development of high-speed Internet and mobile devices. Live streaming commu-
nities on different platforms are always formed by the various streaming content
genres [3]. For example, many YouTube live streamers like to share their daily
life and experience. Those streamers are also called ‘vloggers’ [7]. Besides, game
streaming channels are much more popular on the twitch platform. Viewers like
to watch others play video games to release tension, kill time, and seek common
topics with friends [19].

Virtual donation in live streaming is a promising topic and has caught the
attention of many researchers. Current research considers the reasons behind
virtual donation as that donation represents viewers’ appreciation and approval
of the streamer, or the recognition and happiness for shared contents [9]. Besides,
the donation information is entirely public on live streaming channels. When
viewers donate the streamer, others will notice it. Other viewers tend to be
affected by such noticeable actions and are likely to follow the groups and send
more donations [13]. Therefore, donations in online streaming services signal a
group interaction and an event for viewers to interact with others.

Predicting Potential Real-Time Donations 63

2.2 Dynamic Graph Learning

Graph learning has produced many successes [27]. The techniques of learning
embedding vectors on graphs have been widely acknowledged for graph-related
downstream tasks such as node classification [20], link prediction [25], and graph
classification [26]. The main challenge in graph learning is finding a proper way to
encode graph structures, including nodes and edges, into low-dimension hidden
embedding vectors. Embedding vectors can be fed to machine learning models
and deep learning structures, such as random-walk-based algorithms [14] and
graph neural networks [20].

Learning on dynamic graphs has been a heated topic recently. In the early
stage, research on dynamic graphs focused on discrete-time dynamic graphs.
Discrete-time dynamic graphs consist of a timed sequence of snapshots of the
graph [11,18]. The existing static graph methods can be directly applied to it.
However, most of the real-life graph-structured data is constantly evolving. The
continuous-time dynamic graph is a more general style of the dynamic graph.
It consists of a timed list of events, including edge creation or deletion, node
creation or deletion, and node or edge status evolution. Only recently, some
studies on continuous-time dynamic graphs have been proposed [12,17,21,23].

3 Methodology

This section proposes a method to identify the potential donors and real-time
donations in live streaming services. Empirically, chat messages are always boom-
ing when a superchat appears in YouTube live streaming. The streamer would
like to appreciate the donation, and other viewers tend to send chat messages
to respond to the superchat. Moreover, the size of superchat messages is always
long, and the words are usually well-organized to attract others’ attention. Thus,
we hypothesize that a superchat message is always followed by many response
chat messages and usually has unique text content. It is therefore possible to
identify the superchat message by analyzing its text content and relations with
other nearby chat messages.

We propose to use the continuous-time dynamic graph to model the compli-
cated relations among thousands of viewers and millions of chat messages. The
nodes represent viewers, and the edges represent the interactions between view-
ers. Further, we employ Temporal Graph Network (TGN) to analyze the relation
between superchat messages and nearby chat messages. TGN is a subclass of neu-
ral networks that operates on dynamic graphs. It learns the continuously evolving
node representations and finally contributes to predicting potential superchats
and donors.

In the following, we first describe the online live streaming dataset used in
the research. Next, we introduce an approach to generate a continuous-time
dynamic graph to represent the live streaming viewers and their chat messages.
Then, we elaborate on how TGN predict the potential live streaming viewers who
may send superchat to streamers and the specific period they sent superchats.

64 R. Jin et al.

Finally, we show the effort of adjusting the model to training on the imbalanced
live streaming dataset.

Table 1. Detailed dataset information

Item Type Description

timestamp string UTC timestamp

body string chat message

membership string membership status

isSuperchat boolean is superchat message

isModerator boolean is channel moderator

isVerified boolean is verified account

amount(only for superchat) number donation amount

currency(only for superchat) string currency symbol

significance(only for superchat) number donation significance

id string anonymized chat id

channelId string anonymized viewer id

originVideoId string streaming video id

originChannelId string streamer channel id

3.1 Dataset

We use a YouTube live streaming dataset VTuber 1B: Large-scale Live Chat and
Moderation Events Dataset4. VTuber 1B is a huge collection of over a billion of
live chat messages, superchats, and moderation events (ban and deletion) across
hundreds of YouTubers’ live streams, especially English streamers and Japanese
Streamers. Our research use the chat message data ranging from Mar. 2021 to
Apr. 2021, including 484 live streaming channels, over 6,000 streaming videos,
over 180 million live chat messages, and over 500,000 superchat messages. The
detailed information is listed in Table 1.

We split the original YouTube live streaming dataset into several live stream-
ing videos according to the streaming video ID and streamer channel ID. Each
video contains thousands of chat messages from hundreds of viewers in times-
tamp order. Then, we use a pre-trained Sentence Transformers [15,16] language
model to encode all the chat message texts into sentence embedding vectors. Sen-
tence embedding vectors will be fed to the temporal graph network structures
later.

3.2 Dynamic Graph Generation

We propose an algorithm to generate continuous-time dynamic graphs to repre-
sent viewers’ chat messages and interactions in live streaming videos. The graph
4 https://www.kaggle.com/datasets/uetchy/vtuber-livechat.

https://www.kaggle.com/datasets/uetchy/vtuber-livechat

Predicting Potential Real-Time Donations 65

Algorithm 1: Generate dynamic graph from a timed sequence of live
streaming chat messages
Data: A timed sequence S of chat message.
Result: A continuous-time dynamic graph G

1 initialization;
2 Separate S into several batches ;
3 for batch ← batches do
4 for msg 1,msg 2 ∈ S[batch] and msg 1 earlier than msg 2 do
5 if SequenceMatcher(msg 1, msg 2) > thrs then delete msg 2// Drop

duplicated chat messages

6 end
7 for msg ← S[batch] do
8 if msg appears for the first time then
9 Create a new node for msg in G

10 else
11 Update node embedding in G by the newest sentence embedding

vector
12 end
13 for active node ← active list do
14 if cosine sim(active node, msg)> thrs then Generate an edge

between Node active node and Node msg in G
15 end
16 msg → active list;

// Keep msg active for a period

17 Delete expired nodes in active list;
// Drop inactive nodes

18 end

19 end

is composed of batches of dynamic graphs along the time. The nodes represent
viewers, and the edges represent the interactions between viewers. Node cre-
ation/deletion arises when the viewer enters or leaves the streaming channels.
Edge changing occurs when the viewer sends new chat messages and interacts
with others. Moreover, each node is associated with a feature vector, which will
dynamically update according to the chat messages posted by the corresponding
viewer.

Algorithm 1 demonstrates how to generate a dynamic graph from a timed
sequence of chat messages by exploiting text content, sentence embedding vec-
tors, viewer ID, timestamps, and a label indicating if it is a superchat message.
The details are as follows:

1. Preprocess the raw chat messages in live streaming as a dataset. Separate all
the chat messages into several batches along the time and filter the duplicated,
non-sense, and too short chat messages (lines 1–6).

2. Traverse all the chat messages in the batch. Create a new node for the viewer
who sends the chat message for the first time. The newly-created node feature

66 R. Jin et al.

Fig. 2. Generate dynamic graphs from YouTube chat messages

vectors are initialized by the sentence embedding vectors of their first chat
messages (lines 7–9).

3. Update node features by the newest sentence embedding vectors the viewer
posts (lines 10–12).

4. Compute the cosine similarity between the new node and each node in the
active node list. The cosine similarity is used to evaluate the ‘distance’ of
nodes in the embedding space. Generate directed temporal edges for node
pairs with cosine similarity higher than the threshold (lines 14–16).

5. Add the new node to the active list for a period (line 16). Drop inactive old
nodes from the active node list (line 17). Repeat step 2 to 4 until all the chat
messages are visited.

We associate a binary dynamic node label L(t) ∈ {0, 1} to each node in the
dynamic graph. Label 0 means the node does not send any superchat at time t,
and label 1 means the node has sent a superchat at time t. Specifically, if a node
posts a superchat, the node label will temporarily change from 0 to 1 until the
superchat expires.

Figure 2 is an intuitive description of how to generate a dynamic graph from
chat messages. The input is a timed-sequence of raw chat messages. Four viewers

Predicting Potential Real-Time Donations 67

Fig. 3. Overview of the model structure

post chat messages msg1 ∼ msg4 at timestamp t1 ∼ t4, and the first one is a
superchat. Four chat messages appear in the same batch, and the chat messages
are encoded to sentence embedding vectors emb1 ∼ emb4. Node 1∼4 are created
to represent the corresponding viewers. The node features are initialized by
emb1 ∼ emb4. A dynamic node label is associated to each node to identify
the superchat and normal messages. The blue color represents superchat nodes,
and the green color represents the normal nodes. Then we calculate the cosine
similarity and generate edges for the node pairs in the active node list. Node 2
and node 3 have similar opinions toward node 1, while node 4 has the opposite
one. Therefore, edge e12 from node 1 to node 2, edge e23 from node 2 to node 3,
and edge e13 from node 1 to node 3 are generated. Node 4 responds to node 1
but does not positively correlate to node 2 and node 3. Thus, only an edge e14
from node 1 to node 4 is generated. Edge directions are from old to new nodes
because new chat messages are affected by old ones, and messages propagate
from old nodes to new nodes.

3.3 Temporal Graph Neural Network

We represent the YouTube live streaming data as a dynamic graph G =
(U,E,T). t ∈ T is the timestamp. us(t),ud(t) ∈ U are temporal node fea-
tures at timestamp t. E ⊂ U × U is the edge set. esd(t) ∈ E is the temporal
edge feature between node us(t) and node ud(t) at timestamp t. Temporal edge
features consist of the chat message length and the cosine similarity of two node
embedding vectors. Every node u(t) ∈ U is associated with a temporal node label
lu(t) ∈ {0, 1}. L denotes the dynamic node labels for all the interaction events
in G. During model training, L is split into a training set Ltrain, a validation set
Lval, and a test set Ltest. Therefore, our research target can be mathematically
represented as following: Given a continuous time dynamic graph (G), temporal
node features (U), edge features (E), and a portion of known dynamic node
labels (Ltrain and Lval), how to learn a mapping F : G = (U,E,T) → L to
predict the remaining dynamic node labels (Ltest).

We introduce a temporal graph neural network model TGN to predict
dynamic node labels in the continuous-time dynamic graph obtained in Sect. 3.2.

68 R. Jin et al.

TGN is an extension of Graph Neural Network(GNN) on dynamic graphs. GNN
is a subclass of deep learning techniques that are specifically built to do inference
on graph-based data. The primary goal of TGN is to learn the node embedding
vectors that contain information about the neighbor nodes and continuously
updating node features. TGN contributes to the node label classification by
passing the node information to the neighbor nodes and trying to find a node
with a similar embedding vector. Nodes with similar embedding vectors are
likely to have the same labels. We adjust the TGN structure to make it suitable
for the dynamic node classification task. An overview of the model structure is
demonstrated in Fig. 3.

TGN model contains three phases: Interaction analysis, Neighbor message
aggregator, and Multi-head attention encoder. First, the model splits the time-
sequence temporal edge list E into several batches. Each edge represents an
interaction between a pair of nodes. For example, edges e12(t1) represents the
interaction between node u1(t1) and node u2(t1) that happened at timestamp t1.
Next, the model aggregates temporal node embeddings from neighbor nodes. The
multi-head attention encoder updates the temporal node embeddings u(t + 1).
u(t + 1) will be the input in the next training batch. Finally, node embeddings
are fed to an MLP decoder and the softmax function to output the predicted
dynamic node labels.

3.4 Strategies for Data Imbalance

The superchat donations only account for a small part of all the chat messages in
the live streaming. Thus, the dataset is extremely imbalanced, severely confusing
the model and resulting in poor performance. We take the following strategies
to alleviate the data imbalance:

– We refine the dataset by dropping duplicated and meaningless chat messages.
Also, we filter the chat messages shorter than a particular size. It reduces the
amount of non-superchat samples in the dataset.

– We increase the positive samples by tuning the superchat expiring time and
the cosine similarity threshold in Algorithm 1.

– We employ an under-sampling strategy to alleviate the gap between positive
and negative samples.

– We apply a cost-sensitivity learning method to self-adjust the penalty factor
in loss function during the model training batches.

4 Experiments

We conduct some experiments on the dynamic node label prediction task. We
first explain the experimental settings and baselines. Then we discuss the exper-
imental results and model evaluation. Finally, we show a case study to prove our
model’s feasibility.

Predicting Potential Real-Time Donations 69

Table 2. Statistics of the live streaming dynamic graphs.

Dataset length Short Mid Long

Durations (hrs.) 8.61 47.22 78.49

Node num 6,225 28,582 41,156

Edge num 1,660,813 9,498,600 15,097,110

Positive label num 105,207 258,079 525,964

Positive ratio 6.3% 2.7% 3.4%

4.1 Dataset Description

We prepared three continuous-time dynamic graphs generated from the live
streaming dataset mentioned in Sect. 3.1. The detailed statistics are listed in
Table 2. Three dynamic graphs represent the different lengths of live streaming
videos. ‘Short’ dataset contains chat messages in an 8-h live streaming video.
‘Mid’ dataset contains chat messages in a 47-h video compilation of a week.
And ‘Long’ dataset contains chat messages in a 78-h video compilation of two
weeks. It is noticeable that the ratios of positive labels are extremely small in
all three dynamic graphs. It is reasonable because superchat messages are only
a small part out of all chat messages in a real-world situation. Therefore, the
experiments will be conducted on the imbalanced dataset.

4.2 Experiment Setup

We randomly split the chat messages in the dataset into training, validation, and
test sets. The first 50%/70%/90% of chat messages are counted as the training
set, and the remaining are equally separated into validation and test sets. We
choose Parametric Rectified Linear Unit (PReLU) as the activation function.
The model is trained by the Adam optimizer with a learning rate equal to
0.001. The training runs 20 iterations at most, and an early stopping strategy is
implemented if the validation loss does not decrease for 5 iterations.

4.3 Baselines

We consider traditional decision tree methods, sequence-based models, static
graph representation learning methods, and NLP text classification methods as
baselines. The details are listed below.

1. GBDT: A Gradient Boost Decision Tree (GBDT) classifier from the scikit-
learn toolkit.

2. XGBoost: An ensemble gradient boosting decision tree model from XGBoost
library.

3. LSTM-FCN [5]: A time sequence model combining long short-term memory
(LSTM) networks and fully convolution network (FCN).

70 R. Jin et al.

Table 3. The results for predicting the hospital-region labels by different approaches.

Model Training set Ratio

50% 70% 90%

Short Mid Long Short Mid Long Short Mid Long

GBDT 0.500 0.472 0.500 0.552 0.469 0.515 0.489 0.458 0.472

XGBoost 0.500 0.509 0.500 0.553 0.495 0.518 0.513 0.0462 0.499

LSTM-FCN 0.468 0.505 0.507 0.497 0.499 0.506 0.431 0.499 0.500

ALSTM-FCN 0.485 0.505 0.508 0.499 0.499 0.499 0.500 0.501 0.472

GCN 0.500 0.499 0.499 0.500 0.499 0.499 0.500 0.499 0.499

GAT 0.510 0.510 0.510 0.531 0.531 0.531 0.548 0.548 0.548

BERT 0.630 0.560 0.580 0.570 0.570 0.590 0.620 0.540 0.670

Our model 0.654 0.610 0.784 0.620 0.610 0.795 0.520 0.854 0.902

4. ALSTM-FCN [5]: An alternative LSTM-FCN with attention layers follow-
ing the LSTM cells.

5. GCN [20]: Graph Convolutional Networks (GCN) on static graphs.
6. GAT [22]: Graph Attention Networks (GAT) on static graphs.
7. BERT [4]: Bidirectional Encoder Representations from Transformers(BERT)

is a transformer-based model for NLP pre-training.

GBDT and XGBoost are gradient boosting decision tree models. We replace
the MLP decoder in our model with GBDT and XGBoost to test the perfor-
mance. LSTM-FCN and ALSTM-FCN achieved state-of-the-art performance on
the task of time sequence classification. Every time node features update, the
new node features and existing node hidden embeddings will be fed to the mod-
els and output new node hidden embeddings, then wait for the next update.
GCN and GAT are static graph neural network models. We build a static graph
to represent the interactions among viewer nodes, where the edge weight is the
frequency of node interactions. The temporal node embeddings are used to pre-
dict the dynamic node labels. BERT is a transformer-based machine learning
technique for NLP pre-training. We exploit a Japanese BERT pretrained model
to encode the chat messages of each viewer and integrate them as long sentences.
The BERT for sequence classification model provided by Huggingface is used to
classify the long sentences and predict the viewers.

4.4 Evaluation

Table 3 demonstrates the experimental results of our proposed model and the
baselines. We evaluate the performance in terms of Area under the ROC
Curve(AUC) score to measure the model’s prediction quality, regardless of the
classification threshold and how the datasets are imbalanced. Our proposed
model shows the almost best overall performance. In particular, it achieves the
highest AUC score on all three datasets and all the training set ratios. The only

Predicting Potential Real-Time Donations 71

Fig. 4. A case study of a superchat message and following responses. Time before
messages is the time offset after the post of superchat message.

exception that our model performs poorer than BERT arises on the short video
dataset with a training set ratio equal to 50%. The inferred reason is that the
test samples are fewest over all cases. Thus the standard error and variance may
influence the test result more than in other cases.

Our proposed model apparently outperforms the other baselines by a large
margin. We attribute this to the deliberately designed continuous-time dynamic
graph that considers the changing node interactions and the frequent node
embedding update. As to the baselines, GBDT and XGBoost are substitutes
of the origin MLP decoder. However, the decision tree structure is incompatible
with the neural network structure, resulting in worse training efficiency. LSTM-
FCN and ALSTM-FCN are time sequence models and can deal with continuous
feature updates. However, they cannot fully use the graph structure information,
leading to poor performance. GCN, GAT and BERT are not designed to fit tem-
poral data. They lose much temporal information. Furthermore, GCN and GAT
are good at exploiting the graph structure and node interactions but cannot deal
with the temporal node features. In contrast, BERT analyzes the all-time node
features but lacks graph structure information. Regarding the fact that BERT
performs better than GCN and GAT, we infer that the node feature update has
more influence than the graph structure on the dynamic node label prediction
task. In other words, chat messages in live streaming videos are more significant
than viewers’ interactions.

4.5 Case Study

We demonstrate a case study to validate the feasibility of our proposed model.
We check the superchat messages that are correctly predicted in the result of
the ‘Mid’ dataset with the training set ratio equal to 90%. Figure 4 illustrates a
$5.00 superchat message and some correlated chat messages within a particular
period. The node which posts the superchat message is predicted as positive
by our proposed model. The response chat messages are sent from the neighbor
nodes. The superchat writes ‘Congratulation!!!’ in Japanese, and the following

72 R. Jin et al.

messages respond to the superchat with emojis like ‘Raising hands,’ ‘Clapping
hands’, and text ‘GG!’(abbreviation of ‘Good game’). All these messages are
positively correlated to the superchat message ‘Congratulation’, proving that our
model can accurately identify the superchat message and its correlated messages
within a particular period.

5 Conclusion

This work focuses on the chat messages and viewer interactions on the YouTube
live streaming platform and presents a model to predict real-time donations
in online live streaming services. We design a novel algorithm to generate a
continuous-time dynamic graph representing the viewers and chat messages.
We exploit a temporal graph neural network structure to predict the potential
real-time donations based on the generated dynamic graphs. Our approach has
an excellent performance in terms of AUC score, outperforming the baselines,
including decision tree classifiers, time-sequence models, static graph neural net-
works, and NLP text classification models. We apply a case study to prove our
model’s feasibility by checking the origin chat messages in the prediction results.
To the best of our knowledge, we are the first to combine live streaming ser-
vices and dynamic graph neural network models. Our work contributes to the
research of real-time donations in live streaming services, which is an innovative
and promising topic.

Acknowledgements. This work is partly supported by JST SPRING (grant number
JPMJSP2106), JSPS Grant-in-Aid for Scientific Research (grant number 21K12042,
17H01785), and the New Energy and Industrial Technology Development Organization
(grant number JPNP20006).

References

1. Chu, W.-T., Chou, Y.-C.: On broadcasted game video analysis: event detection,
highlight detection, and highlight forecast. Multimedia Tools Appl. 76(7), 9735–
9758 (2016). https://doi.org/10.1007/s11042-016-3577-x

2. Fietkiewicz, K.J., Dorsch, I., Scheibe, K., Zimmer, F., Stock, W.G.: Dreaming of
stardom and money: micro-celebrities and influencers on live streaming services. In:
Social Computing and Social Media. User Experience and Behavior, pp. 240–253
(2018)

3. Hamilton, W.A., Garretson, O., Kerne, A.: Streaming on twitch: fostering partic-
ipatory communities of play within live mixed media. In: SIGCHI2014, pp. 1315–
1324 (2014)

4. Jacob Devlin, Ming-Wei Chang, K.L.K.T.: Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

5. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks
for time series classification. IEEE Access 6, 1662–1669 (2018)

6. Kavitha, G., Saveen, B., Imtiaz, N.: Discovering public opinions by performing
sentimental analysis on real time Twitter data. In: International Conference on
Management of Data 2018, pp. 1–4 (2018)

https://doi.org/10.1007/s11042-016-3577-x
http://arxiv.org/abs/1810.04805

Predicting Potential Real-Time Donations 73

7. Ladhari, R., Massa, E., Skandrani, H.: Youtube vloggers’ popularity and influence:
the roles of homophily, emotional attachment, and expertise. J. Retail. Consum.
Serv. 54, 102027 (2020)

8. Lee, M., Choi, H., Cho, D., Lee, H.: Cannibalizing or complementing? The impact
of online streaming services on music record sales. Procedia Comput. Sci. 91, 662–
671 (2016)

9. Lee, S.E., Choi, M., Kim, S.: They pay for a reason! the determinants of fan’s
instant sponsorship for content creators. Telematics Inform. 45, 101286 (2019)

10. Li, Z., et al.: Live-streaming fraud detection: a heterogeneous graph neural network
approach. In: KDD2021, pp. 3670–3678 (2021)

11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

12. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion Proceedings of the The Web
Conference 2018, pp. 969–976 (2018)

13. Payne, K., Keith, M.J., Schuetzler, R.M., Giboney, J.S.: Examining the learning
effects of live streaming video game instruction over twitch. Comput. Hum. Behav.
77, 95–109 (2017)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: KDD2014, pp. 701–710 (2014)

15. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

16. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual
using knowledge distillation. arXiv preprint arXiv:2004.09813 (2020)

17. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.:
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020)

18. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural repre-
sentation learning on dynamic graphs via self-attention networks. In: WSDM2020,
pp. 519–527 (2020)

19. Sjöblom, M., Hamari, J.: Why do people watch others play video games? An empir-
ical study on the motivations of twitch users. Comput. Hum. Behav. 75, 985–996
(2017)

20. Thomas N. Kipf, M.W.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907v4 (2017)

21. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations
over dynamic graphs. In: ICLR2019 (2019)

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

23. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

24. Yang, H., Lee, H.: Exploring user acceptance of streaming media devices: an
extended perspective of flow theory. IseB 16(1), 1–27 (2017). https://doi.org/10.
1007/s10257-017-0339-x

25. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In:
NeurIPS2018, pp. 5171–5181. NIPS 2018 (2018)

26. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: AAAI2018, vol. 32, no. 1 (2018)

27. Zhou, J., et al.: Graph neural networks: a review of methods and applications.
arXiv preprint arXiv:1812.08434 (2018)

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2004.09813
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/1609.02907v4
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2002.07962
https://doi.org/10.1007/s10257-017-0339-x
https://doi.org/10.1007/s10257-017-0339-x
http://arxiv.org/abs/1812.08434

Semi-supervised Change Point Detection
Using Active Learning

Arne De Brabandere1(B), Zhenxiang Cao2, Maarten De Vos2,3,
Alexander Bertrand2,4, and Jesse Davis1

1 DTAI, Department of Computer Science, KU Leuven, Belgium
{arne.debrabandere,jesse.davis}@cs.kuleuven.be

2 STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics,
Department of Electrical Engineering, KU Leuven, Belgium

{zhenxiang.cao,maarten.devos,alexander.bertrand}@esat.kuleuven.be
3 Department of Development and Regeneration, KU Leuven, Belgium

4 Leuven.AI - KU Leuven Institute for AI, Leuven, Belgium

Abstract. The goal of change point detection (CPD) is to find abrupt
changes in the underlying state of a time series. Currently, CPD is
typically tackled using fully supervised or completely unsupervised
approaches. Supervised methods exploit labels to find change points that
are as accurate as possible with respect to these labels, but have the
drawback that annotating the data is a time-consuming task. In con-
trast, unsupervised methods avoid the need for labels by making assump-
tions about how changes in the underlying statistics of the data corre-
late with changes in a time series’ state. However, these assumptions
may be incorrect and hence lead to identifying different change points
than a user would annotate. In this paper, we propose an approach in
between these two extremes and present AL-CPD, an algorithm that
combines active and semi-supervised learning to tackle CPD. AL-CPD
asks directed queries to obtain labels from the user and uses them to elim-
inate incorrectly detected change points and to search for new change
points. Using an empirical evaluation on both synthetic and real-world
datasets, we show that our algorithm finds more accurate change points
compared to existing change point detection methods.

Keywords: Change point detection · Active learning ·
Semi-supervised learning

1 Introduction

Time series are time-ordered sequences that report the observed values of a vari-
able of interest at each time step. The observed values depend on the underlying
state of the system, which usually does not remain constant but changes over

A. De Brabandere and Z. Cao—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 74–88, 2022.
https://doi.org/10.1007/978-3-031-18840-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_6

Semi-supervised Change Point Detection Using Active Learning 75

time. For example, when monitoring a person’s physical activity using on-body
accelerometers, the state of the system is the activity that is currently being
performed, which affects the observed values in the acceleration signals. The
problem of change point detection (CPD) is to locate abrupt changes in the
underlying state of a time series [1]. In the example of physical activity mon-
itoring, change points occur when the person transitions from one activity to
another.

Existing CPD algorithms can be categorised into two groups: supervised
and unsupervised approaches. Supervised CPD methods exploit labels to learn
where the change points of a time series are located. These methods treat the
CPD problem as a multi-class [20] or binary [10,11] classification task. Multi-
class methods classify each window of the time series as its corresponding state.
Change points are detected when the predicted state changes between two con-
secutive windows. Binary classification methods learn whether a given location
in the time series is a change point or not. The features used as input to super-
vised methods depend on the application and the type of data that is used. For
example, supervised segmentation for transportation mode detection [20] uses
application-specific features such as the magnitude of the acceleration measured
by an accelerometer, or the speed derived from GPS data. Therefore, these meth-
ods are hard to generalise to other datasets. Moreover, they require a sufficient
amount of labelled data in order to achieve good detection accuracy, and the
resources and time needed for annotating the data may not always be available.

Unsupervised CPD methods can be subdivided into classical model-based
approaches and data-driven model-free approaches. Classical approaches such as
the cumulative sum (CUSUM) [3] and the generalised likelihood ratio (GLR) [2]
use a sliding window approach to estimate the underlying statistical models of
adjacent subsequences of the time series. The parameters in the estimated mod-
els are assumed to be constant if there is no change point in between. Hence, a
change point is detected when the models significantly differ. Some other stud-
ies [14,15] further improved the performance of these approaches by estimating
the density ratio. The assumption of these methods is that the density ratio
of consecutive window pairs remains constant when there is no change point.
Approaches such as FLOSS [12] and ESPRESSO [9] rely on changes in temporal
shape patterns, whereas AutoPlait [16] detects changes in the parameters of a
hidden Markov model learned from the time series. However, all model-based
algorithms face the same problem: their final performance heavily depends on
whether the actual data follows the assumed parametric model. It is often hard
to guarantee this condition in complex real-world datasets. Recently, a variety
of unsupervised data-driven learning algorithms have been proposed, which are
typically based on (deep) neural networks such as convolutional neural networks
(CNN) [17] and graph neural networks (GNN) [22]. However, these methods
also make assumptions about the changes in the underlying statistics of the time
series. For example, the time-invariant representation (TIRE) framework [8] uses
an autoencoder under the assumption that some latent features should remain
constant in the absence of a change point.

76 A. De Brabandere et al.

Despite the wide range of existing algorithms, finding the correct change
points of a time series remains a challenging task because the time series may
have multiple possible definitions of change points. On the one hand, supervi-
sion enables tailoring the method to the problem at hand, but requiring fully
annotated data imposes a huge time burden on a user. On the other hand, unsu-
pervised approaches rely on assumptions which may not correspond to the user’s
intuitions or may not be appropriate for a specific problem. Hence a mismatch
can arise between the change points found by the algorithm and the correct ones.

In order to fill this gap, we propose an active, semi-supervised approach to
change point detection. By employing active learning, we can focus the labelling
effort to specific locations in the time series that will be particularly informative
in order to minimize the manual effort. In summary, our contributions are as
follows:

1. We propose an active learning approach to CPD (AL-CPD) which asks a
small number of directed queries to the user in order to obtain labels. AL-
CPD exploits these labels to (1) eliminate incorrectly detected change points
and (2) detect new change points in a semi-supervised setting.

2. We perform an empirical evaluation on both synthetic and real-world time
series and show that AL-CPD outperforms existing CPD methods.

2 AL-CPD

In change point detection, the goal is to find abrupt transitions in the underlying
state of a time series. More specifically, we define the problem as follows:

Given: A set of n time series x1, . . . , xn

Find: Locations t1i , . . . , t
si
i of the change points of each series xi

The input consists of n sequences x1, . . . , xn where each xi is a numerical time
series that can be univariate or multivariate. Instead of representing the data
as a single long time series, our input format can represent time series collected
over multiple batches. For example, an activity recognition dataset is typically
collected from multiple subjects. Our data format can represent each subject’s
data as a separate sequence. Each sequence xi consists of multiple segments
that each correspond to an underlying state of the time series. The goal is to
find the locations t1i , . . . , t

si
i of the change points, i.e., the transitions between

the segments, for each sequence. Note that CPD can be tackled in an offline or
online setting. Here, we only consider the offline case where all data is collected
before running the algorithm.

Our algorithm approaches the offline CPD task by employing an active learn-
ing strategy that queries a human annotator in order to intelligently acquire
labels that the algorithm can exploit to better identify the relevant change
points. Because each query entails a manual effort from the user, the goal is
to find good change points using a small number of queries. Designing such an
algorithm poses two key challenges. First, given a set of potential change points,

Semi-supervised Change Point Detection Using Active Learning 77

which ones should be queried to the user? Because this focuses on a fixed set
of change points, this step of the algorithm is concerned with increasing the
precision, that is, eliminating false positive change points. Second, how can the
acquired labels be used to improve the algorithm used to detect candidate change
points? This requires moving from an unsupervised change point detection set-
ting to a semi-supervised setting. The effect of this step is to identify new change
points in order to increase the recall, i.e., the fraction of ground truth change
points that are found by the algorithm.

2.1 Algorithm Outline

Algorithm 1 shows the main steps of AL-CPD, our proposed change point detec-
tion algorithm. Initially, the algorithm has no labels and hence operates in an
unsupervised setting. As shown on lines 1–3, we run TIRE [8] on each sequence
to find the initial set of candidate change points C. By automatically learning
features using an autoencoder (AE), TIRE makes no distributional assumptions
about the change points. The AE takes a window of size s as input and learns two
types of features: time-invariant features (f ti) which are used for detecting change
points, and time-variant features (f tv) which are only used to reconstruct the
time series. When no change point is present, the time-invariant features should
remain constant. Therefore, the model minimises the dissimilarity between the
time-invariant features extracted from adjacent windows using a time-invariant
loss function:

Lti =
∑

t

||f tit+1 − f tit ||2.

where f tit and f tit+1 are the time-invariant features at time t and t+1, respectively.
After training, TIRE detects candidate change points by finding peaks in the
dissimilarity between the time-invariant features of consecutive windows.

On lines 4–16, the active learning phase of our algorithm improves the can-
didate change points using two steps: (1) selecting candidates (lines 8–11), and
(2) finding new candidates (lines 12–15). These steps represent our key algo-
rithmic contributions. The active learning phase asks queries one by one until
the number of queries reaches a user-defined query budget b. When this phase
terminates, the algorithm returns all selected candidate change points. In the
following two subsections, we describe each step in detail.

2.2 Selecting Candidate Change Points

The first step employs an active learning strategy to identify and remove incor-
rectly detected candidate change points. For this, we train a random forest clas-
sifier [4] m that classifies each candidate in C as a correct or incorrect change
point and only keep the candidates predicted as correct change points. We use a
model instead of TIRE’s change point score in order to avoid querying the label
for multiple similar candidate change points. While other classification meth-
ods could be relevant, we selected random forests due to their computational
efficiency and their ability to select relevant features.

78 A. De Brabandere et al.

Algorithm 1: AL-CPD

Input: Time series X = {x1, . . . , xn}, window size s, query budget b
Output: Locations of the change points of each time series xi

1 Initialisation
2 C = TIRE(X, s)
3 r = �|C| ∗ 0.1�
4 Active learning
5 Q = ∅
6 m = TrainClassifier(C, Q, s)
7 while |Q| < b do
8 q = LeastCertainCandidate(C, m)
9 a = Query(q)

10 Q = Q ∪ {(q, a)}
11 m = TrainClassifier(C, Q, s)
12 if |Q| mod r = 0 then
13 T = {t ∈ C | pm(t) > 0.9}
14 C = C ∪ Filter(STIRE(X, T, s), C, s)

15 end
16 end
17 return {t ∈ C | pm(t) > 0.5}

In order to train a model, we construct a training set as follows. First, we
extract a feature representation from each candidate change point t in C using
TSFuse [6]. While there exist feature extraction systems that compute a similar
set of features, we employ TSFuse because this feature extraction system has
an efficient implementation. In an active learning system, this is important to
minimise the time that the user has to wait. Using the fast set of transformers
listed in [7], we build a feature vector F1 from the interval [t − s, t] and F2 from
[t, t + s] for each candidate t. We then compute the difference ΔF = F2 − F1

to measure the change in the feature values. Second, because the number of
labelled examples is initially small, we use the local and global consistency label
spreading algorithm [23] to increase the amount of labelled data.1 Third, every
candidate that has a label or for which the propagated label has a certainty
larger than 90% is added to the training set.

We employ an uncertainty sampling active learning strategy to acquire labels.
In each iteration of Algorithm 1, the LeastCertainCandidate(C,m) function com-
putes the certainty of each candidate t in C as |pm(t) − 0.5| where pm(t) is the
probability predicted by the model m. It returns the candidate with the lowest

1 Because the label propagation algorithm performs poorly when given high-
dimensional data, we first reduce the dimensionality of the feature space using a
principal component analysis (PCA) transformation (setting the number of com-
ponents such that the explained variance is at least 0.9) and standardise the PCA
components.

Semi-supervised Change Point Detection Using Active Learning 79

certainty as the query q. The Query(q) function obtains the answer a from the
user, which is true if there is a change point close to queried candidate change
point and false otherwise. We add each query-answer tuple (q, a) to Q.

2.3 Finding New Candidate Change Points

Whereas the first step focuses on improving the precision by selecting change
points, the second step aims to identify new change points in order to improve
the recall. Using the unsupervised TIRE approach to find the initial candidate
change points may result in some of the true change points being missed. There-
fore, we propose a semi-supervised version of TIRE (“STIRE”).

A key challenge to adapting TIRE is its time-invariant loss [8], which pushes
the feature representations of neighbouring windows to be close to each other,
even when labelled data indicates that this should not be the case due to the
presence of a ground-truth change point. Therefore, we modify the time-invariant
loss function such that it only forces the time-invariant features for consecutive
windows to be close to each other in the latent space when the algorithm is
confident that no change point occurs. To this end, we assign labels to all input
time windows corresponding to their underlying state. The labels vary only at
the temporal indices of confident accurate detections, i.e., the candidate change
points for which the random forest model of step 1 predicts a probability larger
than 0.9. We replace the time-invariant loss with the triplet loss [21] which is
defined as follows:

Ltri =
∑

t

max{dp(f tit) − dn(f tit) + γ, 0},

with

dp(f tit) =

{
||f tit+1 − f tit ||22 if pm(t) > 0.9 or aistrue

||f tit − f tit−1||22 otherwise

and
dn(f tit) = ||f tit − f tiN ||22,

where γ represents the pre-defined margin, and pm(t) is the probability that there
is a change point at time t (more specifically a change between time t − 1 and
t) as predicted by the random forest model m. f tit represents the time-invariant
features at time t and f tiN denotes the time-invariant features of a negative time
window sample, i.e., the time-invariant features extracted from a time window
with a different label than the current window at time t. We always select this
negative time window randomly from all the segments that come before the
previous or after the next true positive change point that was selected by the
random forest model of step 1 (pm(t) > 0.9). Similar to the original TIRE model,
we also include the reconstruction loss:

Lrec =
∑

t

||ŵt − wt||22,

80 A. De Brabandere et al.

which encourages the encoded features to contain all information needed for
reconstructing the current input window wt at time t, where ŵt denotes the
reconstructed window. Finally, the reconstruction loss is combined with the
triplet loss via a weighted sum:

L = Lrec + λLtri,

where λ controls the balance between the two losses.
After training STIRE, we filter the change points by removing all duplicates,

i.e., all candidates that were previously identified. We only keep the candidates
for which the time distance to any candidate change point in C is larger than
the window size s. Since training STIRE can be time-consuming, we only run
this step after every r queries, where we set r to 10% of the number of initial
change point candidates: r = �|C| ∗ 0.1�.

3 Experiments

We evaluate our active change point detection algorithm on both synthetic and
real-world time series datasets to answer the following research questions:

Q1: Can AL-CPD detect change points more accurately than existing methods?
Q2: How many labels does AL-CPD need to find accurate change points?
Q3: How much do each of AL-CPD’s two components, (1) using a random forest

to select candidates, and (2) using a semi-supervised TIRE variant to find
new candidates, contribute to its overall performance?

Q4: What is the sensitivity of AL-CPD to its hyperparameter values?

Because we run our experiments on multiple different applications, we are unable
to evaluate application-specific supervised methods. Therefore, we only compare
our approach to unsupervised baselines:

GLR [2] The Generalised Likelihood Ratio method fits an auto-regressive model
on each adjacent window pair of the time series and detects change points by
measuring the dissimilarity of the parameters in the AR model.

RuLSIF [15] The Relative unconstrained Least-Squares Importance Fitting
method detects change points by estimating the density ratio of each pair
of consecutive windows.

KL-CPD [5] The Kernel Learning CPD method optimises a lower bound of test
power using an auxiliary generative model. It learns features using a Seq2Seq
model and measures the dissimilarity between neighbouring windows using
the maximum mean discrepancy.

TIRE [8] The Time-Invariant REpresentation model maps overlapping windows
of the time series onto a feature space using an autoencoder. Change points
are detected based on the dissimilarity between windows in the learned feature
space.

FLOSS [12] The Fast Low-cost Online Semantic Segmentation algorithm uses
the Matrix Profile to find changes in the temporal shape patterns of the time
series. It requires the number of ground truth segments as input.

Semi-supervised Change Point Detection Using Active Learning 81

3.1 Datasets

We run the experiments on seven datasets, of which four are artificially con-
structed and three are based on real-life measurements. Table 1 shows the prop-
erties of each dataset. The synthetic datasets are similar to those introduced
in [8] and [15]. Three of these synthetic datasets are generated based on a 1-
dimensional auto-regressive model:

s(t) = a1s(t − 1) + a2s(t − 2) + εt (1)

in which the error term εt follows a Gaussian distribution εt ∼ N (μt, σ
2
t). In our

experiments, we set the initial state in (1) as: s(1) = s(2) = 0 and the default
values of the parameters are set to the same values as in [8]: a1 = 0.6, a2 = −0.5,
μt = 0, and σt = 1.5 unless explained otherwise. Each of these datasets consists
of 10 randomly generated sequences. In each sequence, 48 change points are
inserted along the temporal axis at each tn = tn−1 + �τn�, with t0 = 0 and
tn ∼ N (100, 10). We introduce 4 types of change points, leading to the following
datasets:

Jumping Mean (JM). The Jumping Mean dataset is generated by changing
the value of μt at each tn.

Scaling Variance (SV). In the Scaling Variance dataset, the value of σt is
changed at each tn.

Changing coefficients (CC). Here, we set a2 = 0 and alternately draw a1 from
two independent uniform distributions every time a change point is crossed.

Gaussian Mixtures (GM). In this dataset, the time samples in the consecu-
tive segments are alternatively sampled from two different Gaussian mixture
distributions.

We include three real-world datasets:

Activity Recognition 1 (AR1). The HASC Challenge 2011 dataset [13] con-
sists of human activity recognition data collected by a triaxial accelerometer.
Similar to [8], we select the data from one person (subject 671) and use the
magnitude of the acceleration as input. Each segment corresponds to one of
the following six activities: staying still, walking, jogging, skipping, ascending
stairs, and descending stairs.

Activity Recognition 2 (AR2). We collected a second activity recognition
dataset from 8 participants. Each participant performed a sequence of activ-
ities consisting of standing, walking, jogging, cycling, ascending stairs, and
descending stairs. Similar to the AR1 dataset, the magnitude of the acceler-
ation is collected by a triaxial accelerometer.

Bee Dance (BD). The bee dance dataset [18] consists of six sequences of a bee
performing a three-stage waggle dance. Each sequence is a three-dimensional
time series representing the location in 2D coordinates and angle differences.

All datasets except AR2 are the same datasets as those used in [8]. We did not
include the well log dataset as the number of change points for this dataset is
too small to evaluate the active learning step of our proposed algorithm.

82 A. De Brabandere et al.

Table 1. Dataset properties: number of sequences, and the length and number of
change points per sequence (min.–max.).

Sequences Length Change points

JM 10 4836–4925 48
SV 10 4834–4918 48
GM 10 4847–4932 48
CC 10 4864–4907 48
AR1 1 39397 36
AR2 8 15003–25103 22
BD 6 602–1124 15–28

3.2 Methodology

Hyperparameter Settings. The two steps of our algorithm rely on a window
size s. For each dataset, we use a window size smaller than the expected interval
between change points, but long enough to capture the statistics of the segments.
We set s to 30 for the synthetic datasets (JM, SV, GM, CC), 300 for the activity
recognition datasets (AR1, AR2), and 15 for the bee dance dataset (BD).

In addition to the window size, our algorithm has several parameters that are
independent of the dataset. For the random forest model, we use the implemen-
tation of scikit-learn [19] with the default hyperparameter settings. For (S)TIRE,
we learn both time-domain and frequency-domain features. Each auto-encoder
learns 3 features: 2 time-invariant features and 1 time-variant feature. In the loss
function, the values of γ and λ are set to 0.1 and 0.001, respectively. We train
the networks for 200 epochs using the Adam optimiser.

Evaluation. We compare the detected change points to the ground truth change
points by computing the precision, recall, and F1 score. These metrics are defined
as follows:

precision =
TP

TP + FP
recall =

TP

TP + FN
F1 score = 2 · precision · recall

precision + recall

The number of true positives (TP) is computed as the number of predicted
change points that are within a distance s from one of the ground truth change
points. Any predicted change point that is further than s from all ground truth
change points is counted as a false positive (FP). The number of false negatives
(FN) is the number of ground truth change points that have a distance larger
than s to any predicted change point.

Typically, evaluating active learning methods involves reporting the perfor-
mance in terms of the number of examples labelled by an annotator. In our
setting, each example corresponds to one of the candidate change points. How-
ever, the number of candidate change points identified by AL-CPD varies as

Semi-supervised Change Point Detection Using Active Learning 83

more labels are acquired. Therefore, we report the performance relative to the
amount of work a human would have to do to fully annotate the data. This
would require partitioning each sequence into non-overlapping windows of size s
and then labelling each window as either containing a change point or not. We
refer to the total labelling effort as the number of potential change points in a
dataset:

P =
n∑

i=1

⌊
Ni

s

⌋

where n ranges over sequences and Ni is the length of the ith sequence. The
number of potential change points P for each dataset is as follows:

JM SV GM CC AR1 AR2 BD

P 1622 1617 1622 1621 131 516 328

When running active learning, AL-CPD receives a true answer if its queried
candidate change point t is within s samples from at least one ground truth
change point. Otherwise, it receives a false answer.

3.3 Q1: Comparison to Existing Change Point Detection Algorithms

Table 2 shows the precision, recall, and F1 score for the baselines and AL-CPD.
We run AL-CPD for three different query budgets that correspond to 5%, 10%
and 20% of all potential change points. In terms of the F1 score, AL-CPD
substantially outperforms the baselines on all datasets after querying 20% of
the potential change point locations. On the four synthetic datasets, querying
only 5% of the potential change points leads to better results compared to the
baselines. Because of the well-defined underlying process, the synthetic datasets
contain many similar change points. Hence, learning the definition of a change
point requires fewer labelled examples (i.e., fewer queries) compared to the more
complex real-world datasets.

GLR, RuLSIF, and KL-CPD achieve a perfect recall on all datasets except
GM and BD for RuLSIF. However, these methods find many false positives,
which results in a low precision. Hence, for the 20% query budget, the improved
performance of AL-CPD over these baselines can be attributed to the better
precision. FLOSS performs worse than all other baselines and AL-CPD in terms
of all evaluation metrics. Compared to TIRE, our algorithm achieves a better
precision on all datasets and a better recall on 5 out of 7 datasets after querying
10% of the potential change point locations.

Note that for the AR1 dataset, AL-CPD scores zero for all metrics for the
5% query budget. This occurs because none of the queried candidate windows
contained a change point. Hence, the learned random forest predicts that no
other windows contain a change point, leading to all candidate change points
being discarded.

84 A. De Brabandere et al.

Table 2. Precision, recall, and F1 score of each baseline and AL-CPD after querying
5%, 10%, and 20% of all possible change point locations. For each dataset, we highlight
the best-performing baseline in bold and annotate each baseline outperformed by AL-
CPD after querying 20%, 10%, and 5% of the change point locations with |, ||, and |||,
respectively.

Precision

Baselines AL-CPD
GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 0.584||| 0.590||| 0.573||| 0.548||| 0.861||| 0.923 0.945 0.990
SV 0.585||| 0.589||| 0.581||| 0.556||| 0.702||| 0.756 0.810 0.908
GM 0.578||| 0.596||| 0.582||| 0.565||| 0.906||| 0.982 1.000 1.000
CC 0.583||| 0.057||| 0.574||| 0.571||| 0.738||| 0.790 0.836 0.954
AR1 0.354|| 0.366|| 0.382|| 0.389|| 0.500|| 0.000 0.889 0.941
AR2 0.485||| 0.532||| 0.523||| 0.415||| 0.630||| 0.826 0.856 0.973
BD 0.670||| 0.679||| 0.682||| 0.474||| 0.741||| 0.809 0.833 0.869
Recall

Baselines AL-CPD
GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 1.000 1.000 1.000 0.548||| 0.944||| 0.962 0.977 0.979
SV 1.000 1.000 1.000 0.556||| 0.852||| 0.919 0.933 0.940
GM 1.000 0.994 1.000 0.565||| 0.987|| 0.985 0.994 0.994
CC 1.000 1.000 1.000 0.571||| 0.783||| 0.831 0.875 0.875
AR1 1.000 1.000 1.000 0.556| 0.861 0.000 0.361 0.611
AR2 1.000 1.000 1.000 0.591|| 0.830 0.551 0.722 0.807
BD 1.000 0.852 1.000 0.453||| 0.717||| 0.764 0.775 0.852
F1 score

Baselines AL-CPD
GLR RuLSIF KL-CPD FLOSS TIRE 5% 10% 20%

JM 0.738||| 0.742||| 0.729||| 0.548||| 0.900||| 0.942 0.961 0.985
SV 0.738||| 0.741||| 0.735||| 0.556||| 0.770||| 0.829 0.867 0.923
GM 0.733||| 0.745||| 0.736||| 0.565||| 0.945||| 0.983 0.997 0.997
CC 0.736||| 0.108||| 0.729||| 0.571||| 0.760||| 0.810 0.855 0.912
AR1 0.523| 0.536| 0.553| 0.458|| 0.633| 0.000 0.514 0.741
AR2 0.649||| 0.692|| 0.684|| 0.486||| 0.709|| 0.650 0.774 0.880
BD 0.799| 0.752||| 0.806| 0.453||| 0.726||| 0.779 0.793 0.857

3.4 Q2: Labelling Effort of AL-CPD

We investigate the effect of the number of acquired labels on AL-CPD’s perfor-
mance. Specifically, we evaluate how many queries are required to obtain an F1

Semi-supervised Change Point Detection Using Active Learning 85

score that is larger than a chosen percentage of the final F1 score achieved when
using an unlimited query budget.

Table 3 shows the percentage of change point locations needed to achieve
an F1 score of at least 80%, 90% and 95% of the final F1 score. Achieving an
F1 score of at least 80% of the final F1 score requires labelling between 0.1%
and 21.4% of all potential change point locations. In other words, the user saves
between 78.6% and 99.9% of the labelling effort compared to manually labelling
each window. Even to achieve an F1-score of 95% of the final one, AL-CPD still
reduces the effort compared to completely labelling the data by at least 68.7%.

Table 3. Percentage of change point locations that the user has to label in order to
obtain an F1 score of at least 80%, 90% and 95% of the final F1 score.

JM SV GM CC AR1 AR2 BD

80% 0.1% 1.9% 0.7% 0.2% 21.4% 7.2% 3.7%
90% 0.1% 10.9% 0.7% 9.3% 30.5% 16.1% 10.7%
95% 5.1% 19.3% 0.9% 15.7% 31.3% 22.9% 25.0%

3.5 Q3: Contribution of Each Component of AL-CPD

Our algorithm has two components: (1) selecting candidates by training a clas-
sifier, and (2) finding new candidates by training TIRE in a semi-supervised
setting. For research question Q3, we analyse the effect of each component on
the algorithm’s performance. To do so, we perform an ablation study that com-
pares the AL-CPD algorithm to two variants:

1. The A variant includes only component 1 of our algorithm,
i.e., the active learning step for selecting candidates.

2. The S variant includes only component 2 of our algorithm,
i.e., the semi-supervised setting of TIRE for finding new candidates.

In order to compare our algorithm to the two variants, we evaluate the area
under the learning curve (ALC) of the precision, recall, and F1 score. The ALC
is defined as follows:

ALC =
1
n

n∑

i=0

e(i)

where n is the total number of queries and e(i) is the evaluation metric (i.e.,
precision, recall, or F1 score) computed after the ith query.

Table 4 shows that the A variant results in a better precision than the S
variant on most datasets. However, because the candidate selection component
of the A variant removes some of the true positive change points, this variant
has the lowest recall. By searching for new candidates, the S variant improves
the recall on all datasets. In terms of the F1-score, the full AL-CPD algorithm
outperforms both A and S on four datasets. For the other three datasets, the S
variant outperforms AL-CPD due to a better recall.

86 A. De Brabandere et al.

Table 4. Area under the learning curve of the precision, recall, and F1 score for each
variant. The performance of the best variant is highlighted in bold.

Precision Recall F1 score

A S AL-CPD A S AL-CPD A S AL-CPD
JM 0.973 0.961 0.968 0.941 0.974 0.972 0.956 0.967 0.970
SV 0.885 0.832 0.895 0.847 0.926 0.927 0.862 0.875 0.909
GM 0.974 0.977 0.974 0.965 0.991 0.971 0.973 0.984 0.976
CC 0.910 0.849 0.914 0.767 0.874 0.857 0.829 0.860 0.883
AR1 0.757 0.759 0.798 0.515 0.868 0.560 0.592 0.802 0.637
AR2 0.923 0.840 0.933 0.700 0.861 0.760 0.782 0.844 0.827
BD 0.864 0.836 0.877 0.701 0.805 0.821 0.769 0.819 0.845

3.6 Q4: Sensitivity Analysis

For research question Q4, we analyse the hyperparameter sensitivity of AL-
CPD. Our algorithm has three main hyperparameters: the window size s and
two hyperparameters specific to STIRE: the balance between the reconstruction
and triplet loss λ and the margin γ.

Figure 1 compares the ALC of the F1 score for three different values of each
hyperparameter. For the window size s, we multiply the default window sizes
by a factor 0.5, 1 and 1.5 and report the average ALC of the F1-score over
all datasets. On average, shorter window sizes decrease the F1 score. This is
expected since capturing the characteristics of a segment requires a sufficiently
long portion of the time series. Longer windows do not further improve the
F1 score, and may even decrease the performance when exceeding the distance
between consecutive change points. The performance of our algorithm is robust
w.r.t. the reconstruction and triplet loss λ and the margin γ, since the ALC of
the F1 score is almost not affected by the values of these hyperparameters.

Fig. 1. ALC of the F1 score for three different values of the window size s, the balance
between the reconstruction and triplet loss, and the margin γ. The ALC is averaged
over all datasets.

Semi-supervised Change Point Detection Using Active Learning 87

4 Conclusion

This paper presented AL-CPD, a change point detection algorithm that com-
bines active and semi-supervised learning. Instead of only relying on assumptions
about the changes in the underlying statistics of the given time series, AL-CPD
asks directed queries to the user in order to obtain labels. Our algorithm exploits
these labels to eliminate incorrectly detected change points and to search for new
change points. In an empirical evaluation, we compared the performance of AL-
CPD to existing unsupervised CPD methods and showed that AL-CPD is able
to find more accurate change points with a query budget of at most 20% of all
potential change points.

Acknowledgements. This work is supported by the Research Foundation Flanders
(FWO) under TBM grant number T004716N, by the Flemish government under the
“Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, and by
VLAIO ICON-AI CONSCIOUS (HBC.2020.2795).

References

1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point
detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

2. Appel, U., Brandt, A.V.: Adaptive sequential segmentation of piecewise stationary
time series. Inf. Sci. 29(1), 27–56 (1983)

3. Basseville, M., Nikiforov, I.V., et al.: Detection of abrupt changes: theory and
application, vol. 104, prentice Hall Englewood Cliffs (1993)

4. Breiman, L.: Random for. Mach. Learn. 45(1), 5–32 (2001)
5. Chang, W.C., Li, C.L., Yang, Y., Póczos, B.: Kernel change-point detection with

auxiliary deep generative models. arXiv preprint arXiv:1901.06077 (2019)
6. De Brabandere, A., Op De Beéck, T., Hendrickx, K., Meert, W., Davis, J.: TSFuse:

Automated feature construction for multiple time series data. Mach. Learn. (2022).
https://doi.org/10.1007/s10994-021-06096-2

7. De Brabandere, A., Robberechts, P., Op De Beéck, T., Davis, J.: Automating
feature construction for multi-view time series data. In: ECMLPKDD Workshop
on Automating Data Science (2019)

8. De Ryck, T., De Vos, M., Bertrand, A.: Change point detection in time series
data using autoencoders with a time-invariant representation. IEEE Trans. Signal
Process. 69, 3513–3524 (2021)

9. Deldari, S., Smith, D.V., Sadri, A., Salim, F.: Espresso: entropy and shape aware
time-series segmentation for processing heterogeneous sensor data. Proc. ACM on
Interact. Mobile, Wearable Ubiquitous Technol. 4(3), 1–24 (2020)

10. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm.
IEEE Trans. Signal Process. 53(8), 2961–2974 (2005)

11. Feuz, K.D., Cook, D.J., Rosasco, C., Robertson, K., Schmitter-Edgecombe, M.:
Automated detection of activity transitions for prompting. IEEE Trans. Human-
Mach. Syst. 45(5), 575–585 (2014)

12. Gharghabi, S., et al.: Domain agnostic online semantic segmentation for multi-
dimensional time series. Data Min. Knowl. Disc. 33(1), 96–130 (2019)

http://arxiv.org/abs/1901.06077
https://doi.org/10.1007/s10994-021-06096-2

88 A. De Brabandere et al.

13. Kawaguchi, N.,et al.: HASC2011corpus: Towards the common ground of human
activity recognition. In: Proceedings of the 13th International Conference on Ubiq-
uitous Computing, pp. 571–572 (2011)

14. Kawahara, Y., Sugiyama, M.: Sequential change-point detection based on direct
density-ratio estimation. Stat. Analysis Data Mining: ASA Data Sci. J. 5(2), 114–
127 (2012)

15. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-
series data by relative density-ratio estimation. Neural Netw. 43, 72–83 (2013)

16. Matsubara, Y., Sakurai, Y., Faloutsos, C.: Autoplait: Automatic mining of co-
evolving time sequences. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of data, pp. 193–204 (2014)

17. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning app-
roach for unsupervised anomaly detection in time series. Ieee Access 7, 1991–2005
(2018)

18. Oh, S.M., Rehg, J.M., Balch, T., Dellaert, F.: Learning and inferring motion pat-
terns using parametric segmental switching linear dynamic systems. Int. J. Com-
put. Vision 77(1), 103–124 (2008)

19. Pedregossa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

20. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile
phones to determine transportation modes. ACM Trans. Sensor Netw. (TOSN)
6(2), 1–27 (2010)

21. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.
2015.7298682

22. Zhang, R., Hao, Y., Yu, D., Chang, W.C., Lai, G., Yang, Y.: Correlation-aware
unsupervised change-point detection via graph neural networks (2020)

23. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and
global consistency. In: Advances in neural information processing systems vol. 16
(2003)

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682

Adaptive Neural Networks for Online
Domain Incremental Continual Learning

Nuwan Gunasekara(B), Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

AI Institute, University of Waikato, Hamilton, New Zealand

ng98@students.waikato.ac.nz

Abstract. Continual Learning (CL) poses a significant challenge to
Neural Network (NN)s, where the data distribution changes from one
task to another. In Online domain incremental continual learning (OD-
ICL), this distribution change happens in the input space without affect-
ing the label distribution. In order to adapt to such changes, the model
being trained risks forgetting previously learned knowledge (stability).
On the other hand, enforcing that the model preserves past knowl-
edge will cause it to fail to learn new concepts (plasticity). We propose
Online Domain Incremental Networks (ODIN), a novel method to allevi-
ate catastrophic forgetting by automatically detecting the end of a task
using concept drift detection. As a consequence, ODIN does not require
the specification of task ids. ODIN maintains a pool of NNs, each trained
on a single task and frozen for further updates. A Task Predictor (TP)
is trained to select the most suitable NN from the frozen pool for pre-
diction. We compare ODIN against popular regularization and replay
methods. It outperforms regularization methods and achieves compara-
ble predictive performance to replay methods.

Keyword: Online domain incremental continual learning

1 Introduction

Though modern Neural Network (NN)s have shown great success in image clas-
sification and natural language processing, they assume training data to be
Independent and Identically Distributed (iid). Due to this assumption, once
confronted with a distribution shift in the input data, the model may undergo
costly retraining to preserve old knowledge while adjusting to the new distribu-
tion. Without retraining, an NN receiving non-iid data forgets its past knowl-
edge when confronted with a distribution shift. This phenomenon is known as
“catastrophic forgetting” in the literature [9,16].

Continual Learning (CL) attempts to minimize this catastrophic forgetting in
NNs via replay and regularization methods [16]. Though current replay methods
outperform regularization methods in terms of performance, they may not be
suitable for situations with memory and privacy constraints on the replay buffer

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 89–103, 2022.
https://doi.org/10.1007/978-3-031-18840-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_7

90 N. Gunasekara et al.

[2,16]. Even though offline CL methods have been proposed, current research
mainly focuses on online methods to solve catastrophic forgetting in NNs. This
allows one to develop continually learning agents which are adaptive but also
resilient to catastrophic forgetting.

Online domain incremental continual learning (ODICL) focuses on online
CL models, which learn from one input distribution to another with minimum
catastrophic forgetting. Here the class distribution remains the same. There
are many practical applications of this scenario in the modern IoT world. For
example, one can use an ODICL approach to avoid costly retraining of an X-ray
image classification model after a distribution shift in the incoming data due to
some hardware changes in the X-ray machine [19]. The same scenario can be
valid for many NN models that rely on hardware sensor inputs. Also, on specific
ODICL settings, replay approaches may be less preferred due to constraints on
having a replay buffer. Mainly these are privacy constraints on the replay buffer
[2,16].

Considering the practical importance of non-replay ODICL, this work pro-
poses an ODICL method that alleviates catastrophic forgetting in NNs. It is
superior to regularization methods and competitive to replay methods. Here a
Convolutional Neural Network (CNN) is trained online. Once confronted with
a concept shift, it freezes a copy of the current CNN. Task Predictor (TP) is
trained to pick the best CNN from the frozen pool for prediction. This approach
is further extended to automatically detect concept shifts in incoming data using
a Task Detector (TD) instead of relying on an external task id signal. Experi-
ment results reveal that both the proposed methods, with and without automatic
TD, surpass the current popular regularization methods and have competitive
performance compared to replay methods.

The main contributions of this paper are the following:

1. Online Domain Incremental Networks (ODIN): we introduce a novel method
to alleviate catastrophic forgetting for Online domain incremental continual
learning without using instance replay. Here, a frozen copy of the training
CNN is saved in a pool at the end of each task. A Task Predictor is trained to
predict the best frozen CNN for evaluation for a given instance. The exper-
iment results reveal that ODIN yields better accuracy than regularization
and competitive performance to replay baselines. Furthermore, an in-depth
investigation is done to better understand the effectiveness of different TPs
on three ODICL datasets.

2. Instead of relying on an external task id signal during training, ODIN uses
an automatic Task Detector mechanism to detect tasks in the incoming data.
ADaptive sliding WINdow (ADWIN) is used to detect drifts in CNN’s loss. An
incremental drift in the loss is determined as the end of a task. Furthermore,
incremental or decremental drifts in CNN’s loss detected by ADWIN allow
ODIN to dynamically increase or decrease the learning rate. To the best of
our knowledge, this automatic Task Detector with Dynamic Learning-Rate
(DL) adjustment for ODICL has not been proposed before.

Adaptive Neural Networks 91

The rest of the paper is organized as follows. The following section presents
the current developments in Online domain incremental continual learning,
including some practical use cases. The next section then presents the pro-
posed ODIN for ODICL. The experiments section explains the experimental
setup where the proposed method is compared against popular ODICL meth-
ods on three datasets. It also provides insights into the effectiveness of different
Task Predictors. The final section provides conclusions and directions for future
research.

2 Related Work

The literature has thoroughly documented that an NN receiving non-iid data
forgets past knowledge when confronted with a concept shift [9,16]. Continual
Learning attempts to continually learn with minimal forgetting of past con-
cepts [9,16]. In ODICL, this learning happens online, and the data stream com-
prises different concepts (distributions) with the same label distribution [16].

CL algorithms use two popular approaches to avoid catastrophic forgetting
in NNs: regularization and replay. Regularization algorithms like Elastic Weight
Consolidation (EWC) [9] and Learning without Forgetting (LwF) [13] adjust
the weights of the network in such a way that it minimizes the overwriting of
the weights for the old concept. EWC uses a quadratic penalty to regularize
updating the network parameters related to the past concept. It uses the Fisher
Information Matrix’s diagonal to approximate the importance of the parame-
ters [9]. EWC has some shortcomings: 1) the Fisher Information Matrix needs
to be stored for each task, 2) it requires an extra pass over each task’s data at
the end of the training [16]. Though different versions of EWC address these con-
cerns [16], [5] seems suitable for online CL by keeping a single Fisher Information
Matrix calculated by a moving average. LwF uses knowledge distillation to pre-
serve knowledge from past tasks. Here, the model related to the old task is kept
separate, and a separate model is trained on the current task. When the LwF
receives data for a new task (Xnew, Ynew), it computes the output (Yold) from
the old model for new data Xnew. During training, assuming that ˆYold and ˆYnew

are predicted values for Xnew from the old model and new model, LwF attempts
to minimize the loss: αLKD(Yold, ˆYold)+LCE(Ynew, ˆYnew)+R [16]. Here LKD is
the distillation loss for the old model, and α is the hyper-parameter controlling
the strength of the old model against the new one. LCE is the cross-entropy loss
for the new task. R is the general regularization term. Due to this strong relation
between old and new tasks, it may perform poorly in situations where there is
a huge difference between old and new task distributions [16].

Replay methods present a mix of instances from the old and current concepts
to the NN based on a given policy while training. This reduces the forgetting as
the training instances from the old concepts avoid complete overwriting of past
concepts’ weights. GDumb [18], Experience Replay (ER) [6], and Maximally
Interfered Retrieval (MIR) [1] are some of the most popular CL replay methods.
GDumb attempts to maintain a class-balanced memory buffer using instances

92 N. Gunasekara et al.

from the stream. At the end of the task, it trains the model using the buffered
instances. ER uses reservoir sampling [20] to sample instances from the stream
to fill the buffer. Reservoir sampling ensures that every instance in the stream
has the same probability of being selected to fill the buffer. ER uses random
sampling to retrieve instances from the memory buffer. Despite its simplicity,
ER has shown competitive performance in ODICL [16]. Five (three buffer and
two non-buffer) tricks have been proposed by [4] to improve the accuracy of
ER in the Online Class Incremental Continual Learning (OCICL) setting. The
buffer tricks are independent buffer augmentation, balanced reservoir sampling,
and loss-aware reservoir sampling. The two non-buffer tricks are bias control and
exponential learning rate decay. Except for bias control which controls the bias
of newly learned classes, these tricks can be used in ODICL to improve the per-
formance of a replay method. MIR uses the same reservoir sampling as ER to fill
the memory buffer. However, when retrieving instances from the buffer, it first
does a virtual parameter update using the incoming min-batch. Then it selects
the top k randomly sampled instances with the most significant loss increases by
the virtual parameter update for training. In the online implementation in [16],
this virtual update is done on a copy of the NN. Replay Using Memory Indexing
(REMIND) [7] takes this approach to another level by storing the internal repre-
sentations of the instances by the initial frozen part of the network and using a
randomly selected set of these internal representations to train the last unfrozen
layers of the network. Here, REMIND can store more instances’ representations
using internal low-dimensional features. In general, these replay approaches are
motivated by how the hippocampus in the brain stores and replays high-level
representations of the memories to the neocortex to learn from them [7]. The
empirical survey by [16] suggests that ER and MIR perform better on ODICL
than other online CL methods.

Recent research has focused on using ODICL methods to avoid costly retrain-
ing in practical situations where the model is confronted with a concept shift.
ODICL has been used in X-ray image classification to avoid costly retraining
on distribution shifts due to unforeseen shifts in hardware’s physical properties
[19]. Also, it has been used to mitigate bias in facial expression and action unit
recognition across different demographic groups [8]. Furthermore, ODICL was
used to counter retraining on concept shifts for multi-variate sequential data of
critical care patient recordings [2]. The authors highlight some replay methods’
infeasibility due to strong privacy requirements in clinical settings. This concern
is further highlighted in the empirical study in [16].

Most current ODICL methods rely on an explicit end-of-task signal during
training. EWC and LwF use this signal to optimize weights, while replay methods
can use it to update their replay buffer. However, GDumb , ER, and MIR do
not rely on this signal for replay buffer updates. Though [16] defines ODICL
as training without the end of the task signal. Implementations such as [8] and
[2] use the end of the task signal to employ CL methods such as EWC and
LwF. However, on the other hand, the implementation in [19] assumes a gradual
distribution shift in the input data distribution where instances from both the
new and old tasks can appear in the stream for a certain period.

Adaptive Neural Networks 93

ODIN comes in two versions. One assumes the presence of an end-of-task sig-
nal at training, whereas the other proposes an automated task detection method.
When a concept shift is detected, the proposed method freezes a copy of the
training NN and adds it into a pool. A predictor is trained to choose the best
network from the frozen pool for a given evaluation instance. As the method
avoids a replay buffer, it is a good candidate for settings with higher privacy
requirements.

3 Online Domain Incremental Networks

Fig. 1. Proposed ODIN: 1) train network p with incoming mini-batch bt for tth task,
2) train TP using extracted features and task id, 3) freeze a copy of p at the end of
task t 4) at prediction, if enabled, TP predicts CNNchosen via extracted x features 5)
predict using CNNchosen or Majority Vote.

In ODICL, the training set is composed of multiple concepts of non-iid data
where each concept has a different input distribution with the same label dis-
tribution [16]. The goal of the learning algorithm is to minimize catastrophic
forgetting of past concepts while performing well on the current concept [7,16].
The initial version of ODIN assumes the availability of the task id at training,
which signals the end of a concept to the learning model. However, this infor-
mation is not available to the model during evaluation. The refined version of
ODIN is extended to detect the end of a concept automatically. So, ODIN can be
applied to situations where the external task id signal is unavailable at training.

We propose an Online Domain Incremental Networks (ODIN), where CNN
p is trained on each concept t with a given Task Predictor (TP). The TPs could
be Naive Bayes (NB), or Hoeffding Tree (HT). The TP is trained on mini-batch
bt using extracted features from a feature extractor. Feature extractors extract
features from high-dimensional data. Hence, it allows one to use simple learning
algorithms on high-dimensional data [10]. Usually, a pre-trained network is used
as a feature extractor [10], and its last layer features are used to train the TP.
At the end of each task’s training, a copy of p is frozen and added to the frozen
pool F . Algorithm 1, along with Fig. 1, further explains this training approach.

In ODIN, there are two vote aggregation methods for prediction: Weighted
Voting (WV) or votes from the best CNN (CNNbest). Weighted Voting uses
the TP’s probabilities for each frozen CNN as weights. In the CNNbest case,

94 N. Gunasekara et al.

Algorithm 1. ODIN training algorithm

Input: p: training CNN, F : pool of frozen CNNs, T : task set, Xt: training set for task
t, TP : Task Predictor

1: Initialize pool F = {}
2: for all task t ∈ T do
3: for all mini-batch bt in training set Xt for task t do
4: Train p with the computed the loss Lbt for mini-batch bt
5: if task predictor TP is Naive Bayes or Hoeffding Tree then
6: z ← extract features from mini-batch bt via feature extractor
7: train TP (z, t)
8: end if
9: end for

10: Append a copy of p to F
11: end for

Algorithm 2. ODIN prediction algorithm

Input: xt: instance of task t, F : pool of frozen CNNs, TP : Task Predictor, useWeight-
edVoting

1: z ← features from instance xt of task t
2: if useWeightedVoting then
3: if TP is Majority Vote then
4: votes ← 1/|F | ∑|F |

f=1 Predictf (xt)
5: else
6: votes ← 1/|F | ∑|F |

f=1 PredictTP (z)f × Predictf (xt)
7: end if
8: else
9: if TP is Random then

10: Select CNNchosen randomly from pool F
11: else
12: CNNchosen ← arg maxf∈F PredictTP (z)
13: end if
14: votes ← PredictCNNchosen(xt)
15: end if
Output: votes

Algorithm 3. Dynamic Learning-Rate

Input: lr0: learning rate at start, d: decay factor(0 < d < 1), n: instances seen since
last drift, upwardDrift: whether the estimated loss going up

1: if upwardDrift then
2: lr ← lr0 ∗ (1 + dn)
3: else
4: lr ← lr0 ∗ (dn)
5: end if
Output: lr

it is either selected randomly from the F pool or the one predicted by TP.
Algorithm 2 further explains this.

Adaptive Neural Networks 95

Generally, NN’s loss distribution changes when the underlying input distri-
bution changes as the network weights need to be readjusted to match the new
distribution. Once a drift in the loss is detected, 1) it would be helpful to learn
following the direction of the loss, where the network learns faster if there is an
upward drift in the loss, and it learns slower if the drift in the loss is decreasing.
Usually, in ODICL, NN’s loss gradually decreases for a given task with non-iid
training instances. Hence, 2) it would be helpful to reduce the magnitude of the
learning for the incoming instances further away from the task’s start so that the
later instances of the same task do not disturb the learned weights too much.

Here we use the drift detector ADWIN [3] to monitor the loss of p. ADWIN
uses exponential histograms for memory efficiency and discards the buffer related
to the previous concept once a drift is detected. It also provides an estimation for
the mean of the current items in the buffer. Once ADWIN detects a drift in the
loss, one can compare the current estimated loss against the previous estimated
loss to identify the direction of the loss. This helps determine whether to increase
or decrease the learning rate (point 1). Also, the number of instances seen after
the drift can be used to decrease the magnitude of the learning rate (point 2).

Algorithm 4. ODIN training algorithm with Dynamic Learning-Rate

Input: p: training CNN, F : pool of frozen CNNs, T : task set, Xt: training set for task
t, TP : Task Predictor, lr0: learning rate at start, d: learning rate decay factor

1: Initialize pool F = {}
2: Initialize n = 0
3: Initialize upwardDrift = true
4: for all task t ∈ T do
5: for all mini-batch bt in training set Xt for task t do
6: Compute the loss Lbt of mini-batch bt for p
7: Update ADWINp with Lbt

8: if ADWINp detects change then
9: n ← 0

10: if change is upward then
11: upwardDrift ← true
12: else
13: upwardDrift ← false
14: end if
15: else
16: n ← n + 1
17: end if
18: if task predictor TP is Naive Bayes or Hoeffding Tree then
19: z ← extract features from mini-batch bt via feature extractor
20: train TP (z, t)
21: end if
22: lr ← Dynamic Learning-Rate(lr0, d, n, upwardDrift)
23: train p with loss Lbt and lr
24: end for
25: Append a copy of p to F
26: end for

96 N. Gunasekara et al.

The easiest way to manage the learning of a NN is to adjust the learning rate.
In order to learn faster for the upward drifts in the loss detected by ADWIN,
ODIN increases the learning rate. For the downwards drifts it decreases the learn-
ing rate to prevent against large changes of presumably already well-adjusted
weights. Also, to decrease the magnitude of the learning in either direction, it
uses a decaying factor dn where d is 0 < d < 1 and n is the number of instances
seen since the last drift. This decaying factor is discussed in [4]. However, they
continually decrease the learning rate from the start of learning in their work.
Hence it forces NN not to learn too much from instances of later tasks. On the
other hand, this Dynamic Learning-Rate (DL) in ODIN allows p to best adjust
to the current task. Algorithm 3 and Algorithm 4 explain ODIN’s Dynamic
Learning-Rate adjustment mechanism.

Algorithm 5. ODIN training algorithm with Dynamic Learning-Rate
and Automatic Task Detector
Input: p: training CNN, F : pool of frozen CNNs, T : task set, Xt: training set for task

t, TP : Task Predictor, lr0: learning rate at start, d: learning rate decay factor
1: Initialize pool F = {}
2: Initialize taskId = 0
3: Initialize n = 0
4: Initialize upwardDrift = true
5: for all task t ∈ T do
6: for all mini-batch bt in training set Xt for task t do
7: Compute the loss Lbt of mini-batch bt for p
8: Update ADWINp with Lbt

9: if ADWINp detects change then
10: n ← 0
11: if change is upward then
12: upwardDrift ← true
13: taskId ← taskId + 1
14: Append a copy of p to F
15: else
16: upwardDrift ← false
17: end if
18: else
19: n ← n + 1
20: end if
21: if task predictor TP is Naive Bayes or Hoeffding Tree then
22: z ← extract features from mini-batch bt via feature extractor
23: train TP (z, taskId)
24: end if
25: lr ← Dynamic Learning-Rate(lr0, d, n, upwardDrift)
26: train p with loss Lbt and lr
27: end for
28: end for

Adaptive Neural Networks 97

Some of the proposed ODICL algorithms rely on an explicit end of the task
signal (task id) to identify the start of a new task. The initial ODIN version
also relies on explicit task ids to distinguish different tasks for training. This
reliance on an explicit task id may preclude one from employing current ODICL
algorithms in real-life settings where it may be challenging to identify such a
signal explicitly.

One can assume the upward drift in p’s loss detected by ADWIN is due to
the distribution shift in the underlying input features. Hence, ODIN determines
the end of the task when an upward drift is detected. Line 12–15 in Algorithm
5 explains this automatic Task Detector (TD) in ODIN. Line 25 of Algorithm
5 further integrates DL with this automatic TD. With automatic TD, if the
new task is similar to the past task, ADWIN might not detect an upward drift
in the loss, as the learning on the new task can improve the prediction of the
previous task due to backward knowledge transfer [16]. Hence, detected task
ids may not align with actual task ids. Therefore in automatic task detection,
the current training network p is included in the F pool only for prediction. In
the experiments, the effectiveness of different versions of ODIN were compared
against popular regularization and replay baselines.

4 Experiments

The experiments attempt to understand the effectiveness of ODIN against
popular online CL baselines. Also, they attempt to identify the effectiveness
of Dynamic Learning-Rate adjustments. Furthermore, experiments attempt to
identify the effectiveness of the Task Predictor. Lastly, they attempt to identify
the effectiveness of ODIN with an automatic Task Detector against online CL
baselines that do not use the external end of task signal.

The experiments were done on three datasets: CORe50 [14], RotatedCI-
FAR10, and RotatedMNIST. With RotatedCIFAR10 and RotatedMNIST, 90◦

rotations (0◦, 90◦, 180◦, -90◦) of the original images from CIFAR10 [11] and
MNIST [12] were considered separate tasks. There were four tasks in each of
those two datasets. With CORe50, 11 distinct sessions (8 indoor and 3 outdoor)
of the same object were considered as separate tasks: tasks 0–2,4–8 indoor, 3,9,
and 10 outdoor. Here the 10 object categories were considered as the class labels.
Though it uses the same dataset as in [14] for ODICL, task separation is more
natural than the random separation in [14]. Also, our CORe50 version had a
separate evaluation set for each task rather than a mixed evaluation set, as in
[14]. This allows one to better understand forgetting in the ODICL setting.

In the Experiments, different versions of ODIN were compared against regu-
larization baselines: LwF, EWC, and replay baselines: ER and MIR. For ER, an
extended buffer version was considered in the experiments. Instead of randomly
replacing an item from the buffer, we replace an instance from the most repre-
sented task’s most represented class. It is referenced as ERTbCb in this paper.
This ERTbCb is a further extension of [4], where we attempt to balance the buffer
with regard to both task and class. This extended ERTbCb was considered so that

98 N. Gunasekara et al.

Table 1. Datasets

Dataset # Instances per # Channels, H, W

tasks train/test task classes

CORe50 11 2000/1000 10 3, 32, 32

RotatedCIFAR10 4 50000/10000 10 3, 32, 32

RotatedMNIST 4 60000/10000 10 1, 28, 28

ODIN without automatic TD can be compared against a good replay method
that utilizes the external end of task signal. All the replay methods used a 1k
instance buffer. Also, all the methods use a simple CNN (33450 parameters)
with four convolution layers. Two types of TPs were used in the experiments for
ODIN: NB1, and HT(see footnote 1) . Quantized ResNet-18 was used as the fea-
ture extractor, and flattened last layer features were used to train the TPs: NB
and HT. ResNet was chosen considering [10], where HT was trained on extracted
features by the ResNet feature extractor for images. Also, three types of vote
aggregation methods were considered in the experiments: Majority Vote (MV),
Weighted Voting (WV), and the use of just CNNbest just by itself. In the exper-
iments, we also considered a hypothetical scenario of ODIN, where the task id is
available at evaluation and is used to determine the correct frozen CNN. This is
presented as the “knowntid” in the results. It indicates achievable performance
if task prediction is perfect. In the results for ODIN, TPWV represents Task
Predictor with Weighted Voting, TPNoWV represents: Task Predictor without
Weighted Voting, TPDL

WV represents: Task Predictor with Weighted Voting and
Dynamic Learning-Rate, TPDL

NoWV represents: Task Predictor without Weighted
Voting and with Dynamic Learning-Rate, TPTD

WV represents: Task Predictor with
Weighted Voting and automatic Task Detector and, TPDLTD

WV represents: Task
Predictor with Weighted Voting, Dynamic Learning-Rate and automatic Task
Detector2. ODIN Dynamic Learning-Rate used the same learning rate decay
factor (0.999995) as in [4]’s continuous learning rate decay.

All experiments were run using the Avalanche [15] CL platform. The online
buffer implementations of ER and MIR were from [16]. Average accuracy and
forgetting defined in [16] were used in the evaluation. All experiments were run
three times, and relevant averages and standard deviations were considered in
the evaluation.

Table 2 contains the average accuracy and forgetting after training on the
last task for each method that uses task ids. Considering the average accuracy
ranks, ODIN NBDL

WV produces the best results. It also has very little forgetting
considering average forgetting ranks. Extended ERTbCb has better average accu-
racy but lags a bit behind ODIN NBDL

WV when considering the average accuracy
ranks. Except for ODIN random, all ODIN versions achieve better accuracy than
the regularization baselines EWC and LwF. Both of the regularization baselines

1 Source code github.com/nuwangunasekara/ODIN uses online NB and HT [17].
2 In the legend of the plots, superscripts and subscripts are in lowercase letters.

https://github.com/nuwangunasekara/ODIN

Adaptive Neural Networks 99

Table 2. Average accuracy and forgetting after training on the last task (use end of
the task signal)

Dataset LwF EWC ERTbCb ODIN

known∗
tid random MV HTWV NBWV NBDL

WV NBNoWV NBDL
NoWV

Accuracy

CORe50 0.44 ± 0.02 0.47 ± 0.03 0.65 ± 0.01 0.69 ± 0.01 0.44 ± 0.00 0.54 ± 0.02 0.63 ± 0.05 0.62 ± 0.01 0.66 ± 0.01 0.62 ± 0.01 0.65 ± 0.01

RotatedCIFAR10 0.44 ± 0.01 0.42 ± 0.01 0.42 ± 0.02 0.49 ± 0.01 0.37 ± 0.02 0.45 ± 0.01 0.45 ± 0.01 0.43 ± 0.02 0.44 ± 0.01 0.40 ± 0.00 0.41 ± 0.00

RotatedMNIST 0.66 ± 0.01 0.52 ± 0.01 0.84 ± 0.01 0.97 ± 0.00 0.48 ± 0.01 0.65 ± 0.02 0.52 ± 0.01 0.79 ± 0.00 0.80 ± 0.00 0.78 ± 0.01 0.78 ± 0.00

Avg 0.51 ± 0.01 0.47 ± 0.02 0.64 ± 0.01 0.72 ± 0.01 0.43 ± 0.01 0.55 ± 0.02 0.53 ± 0.02 0.62 ± 0.01 0.63 ± 0.01 0.60 ± 0.00 0.62 ± 0.00

Avg Rank 6.00 7.67 3.67 10.00 5.00 4.67 4.33 2.33 6.67 4.67

Forgetting

CORe50 0.19 ± 0.04 0.15 ± 0.05 -0.01 ± 0.02 0.00 ± 0.00 -0.01 ± 0.01 -0.03 ± 0.01 0.03 ± 0.04 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.01 0.01 ± 0.00

RotatedCIFAR10 0.01 ± 0.02 0.07 ± 0.02 0.04 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 -0.03 ± 0.01 0.04 ± 0.02 -0.02 ± 0.00 -0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

RotatedMNIST 0.24 ± 0.01 0.60 ± 0.02 0.16 ± 0.01 0.00 ± 0.00 0.20 ± 0.02 0.12 ± 0.02 0.60 ± 0.02 0.12 ± 0.00 0.12 ± 0.01 0.12 ± 0.00 0.13 ± 0.00

Avg 0.14 ± 0.02 0.27 ± 0.03 0.06 ± 0.01 0.00 ± 0.00 0.07 ± 0.01 0.02 ± 0.02 0.22 ± 0.02 0.04 ± 0.01 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

Avg Rank 8.00 9.67 5.67 5.33 1.67 8.67 4.00 2.67 4.33 5.00

!ERTbCb is ER with an extended task-balanced and class-balanced online buffer.
∗knowntid is a hypothetical scenario where task id is known at evaluation.

Table 3. Average accuracy and forgetting after training on the last task (do not use
end of the task signal)

Dataset ODIN ER MIR

NBTD
WV NBDLTD

WV

Accuracy

CORe50 0.47 ± 0.04 0.52 ± 0.03 0.61 ± 0.03 0.62 ± 0.03

RotatedCIFAR10 0.42 ± 0.01 0.44 ± 0.00 0.27 ± 0.01 0.28 ± 0.01

RotatedMNIST 0.71 ± 0.03 0.69 ± 0.04 0.78 ± 0.03 0.77 ± 0.01

Avg 0.53 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.56 ± 0.02

Avg Rank 3.00 2.67 2.33 2.00

Forgetting

CORe50 0.18 ± 0.03 0.17 ± 0.03 -0.09 ± 0.01 -0.10 ± 0.04

RotatedCIFAR10 0.00 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01

RotatedMNIST 0.22 ± 0.04 0.25 ± 0.04 0.06 ± 0.02 0.07 ± 0.02

Avg 0.14 ± 0.03 0.14 ± 0.03 -0.01 ± 0.02 -0.01 ± 0.02

Avg Rank 2.67 3.00 2.33 2.00

have quite a high forgetting rate. ODIN NBWV yields better results than ODIN
NBNoWV with less average forgetting. This shows that Weighted Voting boosts
accuracy. Also, ODIN NBWV yields better accuracy than ODIN HTWV with
less forgetting. This shows that NB is a better Task Predictor compared to
HT. This is further explored in later experiments. Both NBDL

WV and NBDL
NoWV

yields superior accuracy compared to NBWV and NBNoWV. This suggests that
Dynamic Learning-Rate improves the overall accuracy. In general, a good Task
Predictor, Weighted Voting, and Dynamic Learning-Rate improve ODIN accu-
racy. Considering the hypothetical ODIN knowntid scenario, it is evident that
just selecting the correct frozen CNN is sufficient to outperform current baselines
by a considerable margin. ODIN knowntid also has zero average forgetting across
all datasets after training on the last task. This suggests further improvements
to the Task Predictors can result in good accuracy gains.

Table 3 only compares ODICL methods that do not use task ids: ODIN
NBTD

WV, ODIN NBDLTD
WV , ER , and MIR, for a fairer comparison. Here, the ODIN

100 N. Gunasekara et al.

Fig. 2. Evaluation accuracy after training on each task

versions use ADWIN as a Task Detector. Also, ER and MIR can be included in
the same category as they do not rely on an external task id signal. From the
results for this category, it is evident that replay methods slightly outperform
ODIN NBDLTD

WV . Also, replay methods have better forgetting in this category.
However, compared to the ODIN methods, they seem to perform quite badly on
RotatedCIFAR10. Maybe being task aware gives ODIN methods an edge against
replay methods on RotatedCIFAR10. Here also, one can see the positive effect
of DL on ODIN’s accuracy when comparing NBDLTD

WV with NBTD
WV. Considering

the results in Tables 2 and 3, it is evident that ODIN NBDL
WV performs better

than ODIN NBDLTD
WV . This highlights the importance of a good Task Detector.

Furthermore, when comparing the two tables, ERTbCb performs better than ER.
This highlights the importance of ER to be task aware. In general, when one
considers the results of both tables, it is evident that being task aware gives

Adaptive Neural Networks 101

an edge to an ODICL method. Considering the results in both tables, one can
conclude that NBDLTD

WV performs well in all the datasets.
To get a deeper understanding of each method’s predictive performance on

old tasks after training on a new task, Fig. 2a, Fig. 2b, and Fig. 2c plot the accu-
racy of old tasks after training on a new task for selected methods on CORe50,
RotatedCIFAR10, and RotatedMNIST datasets. Here top two ODIN methods
from each category (with and without the end of the task signal): ODIN NBDL

WV,
ODIN NBDLTD

WV were compared against the baselines that use the end of the task
signal: EWC, LwF, ERTbCb, and baselines that do not need the end of the task
signal: ER and MIR. Hypothetical ODIN knowntid is also included in the plots
to better understand the upper bound of ODIN’s Task Predictor. From Fig. 2a,
it is evident that replay methods perform quite well on past tasks. Especially
task-aware ERTbCb. However, their performance has degraded for recent tasks.
On the other hand, ODIN NBDL

WV has relatively stable performance across all
tasks. Hence on average, ODIN NBDL

WV performs well on CORe50. This explains
its good average accuracy on CORe50 in Table 2. Also, ODIN NBDLTD

WV has a
similar accuracy pattern to ODIN NBDL

WV. But with less performance. Regu-
larization baselines are quite poor on this dataset. They also have a very high
variance. However, as per Fig. 2b, LwF performs well as ODIN versions on Rotat-
edCIFAR10. Nevertheless, the replay methods ER and MIR perform poorly on
that dataset except for ERTbCb. It seems that the learning model needs to be
aware of the task identities to perform well on RotatedCIFAR10. As per Fig. 2c,
replay baselines generally perform well on RotatedMNIST. However, except for
ERTbCb, the performance gap between ODIN NBDL

WV and other replay methods
(ER and MIR) seem to narrow for recent tasks. ODIN NBDL

WV performed better
on the last task than ER and MIR on this dataset. This shows ODIN NBDL

WV’s
ability to perform well on current tasks as well as on past tasks. In all three plots,
ODIN with hypothetical TP knowntid never forgets after training on a new task.
However, it does not improve as well. This explains 0.0 average forgetting for
ODIN knowntid in Table 2.

To further understand the TP’s effectiveness, the predicted task id by each
TP was compared against the actual task id in non-auto-TD mode against all
datasets. This comparison was made for all evaluation instances after training
on the last task. Figure 3 shows the ROC curves for the predicted task id and
the relevant AUC scores for each TP on each dataset. According to the figure,
it is clear that NB is a better Task Predictor for all datasets. This further
strengthens the overall strong NB results in Table 2. Figure 3b further explains
the effectiveness of NB as a TP when predicting each task for a given dataset.
From the per-task ROC curves and AUC scores in Figs. 3b and 3d, it is clear
that NB performs similarly on all the tasks for a given dataset. Nevertheless, it
does perform slightly better on certain tasks. This is evident in CORe50, with
NB performing slightly better for tasks 3,4,5,9, and 10. This generally uniform
predictive capability of NB makes it a better Task Predictor than HT.

102 N. Gunasekara et al.

Fig. 3. Effectiveness of TPs: a & c) micro-average ROC curves for predicted task id
and AUC scores, b & d) per-task ROC curves and AUC scores, for TPs NB and HT

5 Conclusion

The proposed ODIN produces competitive results for ODICL in comparison to
regularization-based approaches. ODIN with and without automatic Task Detec-
tor produces competitive results compared to current popular ODICL baselines
without requiring an instance buffer. This makes ODIN a suitable replacement
for regularization methods in the ODICL setting. Better Task Predictors, more
effective Dynamic Learning-Rate mechanisms, and more responsive Task Detec-
tor mechanisms could further improve ODIN’s performance in ODICL.

References

1. Aljundi, R., et al.: Online continual learning with maximally interfered retrieval.
arXiv preprint arXiv:1908.04742 (2019)

2. Armstrong, J., Clifton, D.: Continual learning of longitudinal health records. arXiv
preprint arXiv:2112.11944 (2021)

3. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp.
443–448. SIAM (2007)

4. Buzzega, P., Boschini, M., Porrello, A., Calderara, S.: Rethinking experience replay:
a bag of tricks for continual learning. In: 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 2180–2187. IEEE (2021)

5. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incre-
mental learning: understanding forgetting and intransigence. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532–547 (2018)

http://arxiv.org/abs/1908.04742
http://arxiv.org/abs/2112.11944

Adaptive Neural Networks 103

6. Chaudhry, A., et al.: On tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486 (2019)

7. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural
network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58598-3 28

8. Kara, O., Churamani, N., Gunes, H.: Towards fair affective robotics: continual
learning for mitigating bias in facial expression and action unit recognition. arXiv
preprint arXiv:2103.09233 (2021)

9. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
National Acad. Sci. 114(13), 3521–3526 (2017)

10. Korycki, �L, Krawczyk, B.: Streaming decision trees for lifelong learning. In: Oliver,
N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021.
LNCS (LNAI), vol. 12975, pp. 502–518. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86486-6 31

11. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell. 40(12), 2935–2947 (2017)

14. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous
object recognition. In: Conference on Robot Learning, pp. 17–26. PMLR (2017)

15. Lomonaco, V., et al.: Avalanche: an end-to-end library for continual learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3600–3610 (2021)

16. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual
learning in image classification: an empirical survey. Neurocomputing 469, 28–51
(2022). https://doi.org/10.1016/j.neucom.2021.10.021, https://www.sciencedirect.
com/science/article/pii/S0925231221014995

17. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-Multiflow: a multi-output
streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018). http://jmlr.org/
papers/v19/18-251.html

18. Prabhu, A., Torr, P.H.S., Dokania, P.K.: GDumb: a simple approach that questions
our progress in continual learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm,
J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 524–540. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58536-5 31

19. Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D.: Continual
domain incremental learning for chest X-Ray classification in low-resource clinical
settings. In: Albarqouni, S., et al. (eds.) Domain Adaptation and Representation
Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health,
pp. 226–238. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-87722-4 21

20. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS)
11(1), 37–57 (1985)

http://arxiv.org/abs/1902.10486
https://doi.org/10.1007/978-3-030-58598-3_28
http://arxiv.org/abs/2103.09233
https://doi.org/10.1007/978-3-030-86486-6_31
https://doi.org/10.1007/978-3-030-86486-6_31
https://doi.org/10.1016/j.neucom.2021.10.021
https://www.sciencedirect.com/science/article/pii/S0925231221014995
https://www.sciencedirect.com/science/article/pii/S0925231221014995
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
https://doi.org/10.1007/978-3-030-58536-5_31
https://doi.org/10.1007/978-3-030-87722-4_21
https://doi.org/10.1007/978-3-030-87722-4_21

Incremental Update of Locally Optimal
Classification Rules

Van Quoc Phuong Huynh(B), Florian Beck, and Johannes Fürnkranz

FAW Institute, Johannes Kepler University, Linz, Austria
{vqphuynh,fbeck,juffi}@faw.jku.at

Abstract. Incremental learning is a traditional topic that has particularly gained
importance in the wake of big data and stream mining. Discrete symbolic rep-
resentations do not easily allow for gradual refinements of the learned concept.
While the problem is less severe for incremental induction of decision trees, it
is much harder for incremental rule learning in that there are hardly any incre-
mental rule learning algorithms which are really successful. In this paper, we
introduce iLORD algorithm, an adaptation of a recently proposed rule learning
algorithm LORD, which aims at finding the best rule for each individual exam-
ple, to an incremental learning setting. After being initialized with a first batch
of training examples, iLORD relies on efficient data structures to summarize the
information contained in the training examples, which can be quickly updated
and allows to retrieve the best rule for each incoming example. The behavior of
iLORD is evaluated with different parameterizations, and compared to other best-
known incremental symbolic learning algorithms such as HOEFFDINGTREE and
VFDR.

Keywords: Rule learning · Incremental classification · Stream mining ·
Machine learning · Data mining

1 Introduction

Incremental learning is a traditional topic in machine learning, which has particu-
larly gained importance in the wake of big data and stream mining [1]. While some
algorithms such as neural networks are naturally updated in an incremental or batch-
incremental fashion, algorithms for learning symbolic representations such as decision
trees [11] or rules [6] typically operate in a single-batch setting, where all of the data
are assumed to be present at training time.

The main reason for this is that discrete symbolic representations do not easily allow
for gradual refinements of the learned concept. In the case of incremental learning of
decision trees, the problem is less severe, as the hierarchical structure of the tree guar-
antees that incremental updates in the lower levels of the tree do not affect the upper
levels, which can thus stabilize over time. Thus, even simple algorithms such as ID4
[12], which essentially decide to re-learn a node in a decision tree once it turns out
that an alternative split is better, can eventually converge towards a stable concept, at

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 104–113, 2022.
https://doi.org/10.1007/978-3-031-18840-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_8

Incremental Update of Locally Optimal Classification Rules 105

least in the upper levels of the tree. The best-known incremental tree learning algo-
rithm, HOEFFDINGTREE [4], may be viewed as refinement of this idea, where Hoeffd-
ing bounds are used in order to determine the minimum number of examples necessary
in order to reliably determine the best attribute at each level of the tree.

Incremental rule learning is even harder than incremental induction of decision
trees, because there is no hierarchical structure that can be incrementally refined.
Whereas a decision tree always covers the entire sample space and each example will
always be covered by exactly one path through the tree (which corresponds to a single
rule), rule sets are far more erratic: Generalizing one rule may conflict with other pre-
viously learned rules, or yield them obsolete. Conversely, a specialization of a rule may
leave regions of the instance space uncovered, which have previously been covered by
this rule. In brief, every modification of a single rule may impact all other rules. For
these reasons, not many successful incremental rule learning algorithms can be found
in the literature [6]. The best-known algorithm is VFDR (Very Fast Decision Rules
[10]), which also uses Hoeffding bounds for deciding when to update a rule, i.e., when
the next addition to add to a rule can be clearly determined. Uncovered examples are
checked with the default rule, which can also spawn new rules if necessary. Various
variants of this algorithm have been investigated [10], and, for some time, VFDR is
also available in the MOA stream mining library [1].

However, updating rules with single conditions may be quite slow, as may be the
creation of new rules with single conditions. We strive for a different approach, which,
at its core, aims at efficiently retrieving or re-generating the best rule for every exam-
ple. The resulting algorithm, iLORD, is based on a previously developed rule learning
algorithm LORD [7], which maintains an efficient structure for summarizing the data,
which can be incrementally updated. From this structure, we can greedily approximate
the best rule for a given example. Depending on the available update time, such updates
can be performed after every example, or more efficiently, in mini-batches.

In the remainder of the paper, we briefly mention the basic idea of the LORD

algorithm in Sect. 2, upon which our approach iLORD is based to extend towards an
incremental algorithm in Sect. 3. We then experimentally evaluate iLORD algorithm
in Sect. 4 with different batch sizes for initializing and updating the statistics and rule
set, and subsequently show that iLORD outperforms its main competitors in term of
accuracy, the incremental symbolic learning algorithms HOEFFDINGTREE and VFDR.
Finally, we finish the paper with conclusion and some future work in Sect. 5.

2 The LORD Algorithm

The iLORD algorithm builds upon our prior work on LORD (Locally Optimal Rules Dis-
coverer) [7], our efficient implementation of locally optimal rule discovery. It extends
LORD with the capability for incremental updates that allow it to be used in stream-
ing scenarios. They key idea of LORD is to strive for finding a (locally) optimal rule for
every training example. One of the key obstacles for such an approach is, of course, that
learning a single rule is quite expensive, so that the costs for learning a separate rule
for each individual training example are prohibitive when done naı̈vely. LORD solves
this problem by first summarizing the dataset in efficient data structures, PPC-trees and

106 V. Q. P. Huynh et al.

N-lists [3], which can efficiently summarize the count of examples supporting a con-
junctive expression and thus be used to quickly find a locally optimal rule for a given
example, without further consultation of the dataset. In principle, LORD can use most
common rule learning heuristics for guiding its greedy search, e.g. the m-estimate [2]
which has been shown to perform very well in a broad empirical comparison of various
rule learning heuristics [9]. The large rule set learnt by LORD is indexed via a prefix
tree structure, FPO-trees [8], of rule bodies that speeds up the search for covering rules
of examples. In prior work, we have shown that the approach can be efficiently used
for classification datasets with millions of examples, where other modern rule learning
algorithms come to their limits [7].

3 Incremental LORD

In this section, we discuss how the LORD algorithm mentioned in the previous section
can be adapted to enable incremental learning. The key idea is that the underlying data
structures are updated incrementally. This means that the new example is sorted into
the PPC-tree, and that the statistics of all nodes are updated. If necessary, a new node is
added to the tree, in which case the PPC-codes of nodes must be recalculated and the
N-lists also have to be updated with the newly added nodes. Finally, the current rule
set is maintained, but for every new example it is checked whether a better rule can be
found on the fly. These updates can be performed for every example, or more efficiently,
for a mini-batch of examples.

3.1 Incremental Updates

Incremental updates for the current data structures is shown in Algorithm 1. It takes
a mini-batch of (labeled) examples B, and uses them to update the current PPC-tree,
the corresponding N-lists, and the current rule set R. iLORD starts by retrieving all
selectors that cover the current examples e (typically one selector for each feature value
of e) and sorts them down the ppcTree. If the current path has already been observed in
previous examples, the corresponding counts are incremented (line 8), otherwise a new
node will be inserted into the tree (lines 10–11). To facilitate efficient updates, the N-list
structure of individual selectors consists of pointers to the PPC-Nodes in the PPC-tree.
This avoids traversing the tree to regenerate an N-list for each individual selector when
the tree is updated with new examples. However, traversing the PPC-tree to reassign
PP-codes is still needed if new PPC-nodes are inserted into the tree (lines 16–19). The
references to these new PPC-nodes are then inserted into the corresponding Nlists.

In lines 22–32, true positive (r.tp) and false positive (r.fp) counts of all rules in R
that cover the current example e are updated; and based on that, their heuristic values
are re-calculated in lines 33–35. With the idea of learning from failures, in lines 37–43,
the rule set is updated with new rules learned from examples that have been classified
incorrectly. This focus on misclassifications helps to reduce the running time signifi-
cantly while still highly approximating the classification performance that could have
been achieved when updating the rule set after each new example. For every misclas-
sified example, a locally optimal rule is learned by calling the corresponding function
of LORD (line 38). Newly learned rules are only added if they are better than (have a
higher heuristic value, or equal heuristic value with a larger true positive count) all rules
in the current rule set that cover the example and predict the right class.

Incremental Update of Locally Optimal Classification Rules 107

Algorithm 1. Update PPC-trees, N-lists and rule set
1: function UPDATE(B, R, ppcTree, Nlists)
2: // Update ppcTree and N-lists
3: for each example e ∈ B do
4: Se ← sorted selector set for e
5: N ← root node of ppcTree
6: for each selector s ∈ Se do
7: if ∃N ′ ∈ N.successors with N ′.s = s then
8: N ′.freq ← N ′.freq + 1
9: else

10: add new child node N ′

11: N ′.freq ← 1; N ′.s ← s
12: end if
13: N ← N ′

14: end for
15: end for
16: if new nodes have been added then
17: Update PPC-codes of ppcTree
18: Insert new nodes to the corresponding N-lists
19: end if
20: // Update rule set R
21: S ← ∅
22: for each example e ∈ B do
23: e.CR ← COVERINGRULES(R, e)
24: for each rule r ∈ e.CR do
25: if (r.head = e.class) then
26: r.tp ← r.tp + 1
27: else
28: r.fp ← r.fp + 1
29: end if
30: S ← S ∪ r
31: end for
32: end for
33: for each rule r ∈ S do
34: re-calculate heuristic value h(.) of r
35: end for
36: // Learn rules for misclassified examples
37: for each incorrectly classified example e ∈ B do
38: r ← the best rule learned from e and Nlists
39: FCR ← {r ∈ e.CR : r.head = e.class}
40: if r is better than all rules in FCR then
41: R ← R ∪ r
42: end if
43: end for
44: end function

108 V. Q. P. Huynh et al.

3.2 Overall Algorithm

The above incremental update function, Algorithm 1, is integrated into the overall
iLORD algorithm, an incremental version of LORD. iLORD learns and updates a rule
set, and classifies every example from a data stream. Like LORD, it also requires a
heuristic to evaluate rules, but it needs two more parameters, the size of a starting batch
i and the size of the mini-batch b for the incremental updates.

Algorithm 2. iLORD algorithm
Input: data stream DS, initialization size i, heuristic h(.), batch size b
Output: final rule set R, series of accumulated classification performance P

1: P ← ∅; p ← 0
2: count ← 0; cmajority ← class list[0]
3: // Initialize with first i examples.
4: for each example e from the data stream DS do
5: classify e with cmajority

6: update p; P ← P ∪ p
7: update cmajority with the class of e
8: D0 ← D0 ∪ e; count ← count+ 1
9: if count = i then

10: break
11: end if
12: end for
13: R, ppcTree,Nlists ← LORD(D0, h(.))
14: // Process the stream
15: B ← ∅
16: for each example e from DS do
17: // Classify the current example
18: e.CR ← COVERINGRULES(R, e)
19: classify e with the best rule from e.CR
20: obtain e.class
21: update p; P ← P ∪ p
22: // Update in mini-batches of b examples.
23: B ← B ∪ e
24: if |B| = b then
25: UPDATE(B, R, ppcTree, Nlists)
26: B ← ∅
27: end if
28: end for
29: return R,P

Algorithm 2 shows the execution of iLORD. During its initialization phase (lines 1–
12), iLORD collects an initial batch of i examples. It also dynamically tracks the major-
ity class, and uses this for prediction in this phase. After collecting enough examples,
iLORD calls LORD to initialize the PPC-tree, N-list structures, and to learn a rule set.
In the LORD algorithm, the PPC-tree is no longer used after N-list structures are gener-
ated, so the tree is freed for memory saving. In the iLORD version, the N-list structures

Incremental Update of Locally Optimal Classification Rules 109

need to be incrementally updated w.r.t. new incoming examples, so the PPC-tree struc-
ture is kept and updated with every new example, as discussed in Sect. 3.1. iLORD uses
its current rule set to classify examples in the same way as LORD does (lines 18–19),
and updates classification performance based on the true labels (line 20–21). Finally,
in lines 23–27, the rule set, PPC-tree and N-list structures are updated by the UPDATE

function (Algorithm 1) when a mini-batch with b examples has been collected.

4 Experiments

In this section, we report on the experimental evaluation of the iLORD algorithm. For
evaluation, we selected four datasets from the UCI repository of machine learning
databases [5], as shown in Table 1. As we noticed some order-dependent effects that
equally affected all the studied algorithms, we randomly shuffled the datasets.

Table 1. Datasets used in experiments

Datasets # Exs. # Attr. Attr. types Missing values

1 adult 48,842 14 mix yes

2 airlines 539,395 8 mix yes

3 connect-4 67,557 42 categorical no

4 covertype 581,012 55 mix no

We have compared iLORD with two other symbolic streaming classification algo-
rithms, HOEFFDINGTREE [4], aka very fast decision trees, as well as the very fast deci-
sion rules algorithm VFDR [10]. We used the implementation of HOEFFDINGTREE

available in the MOA framework [1], and the one of VFDR for the WEKA machine-
learning platform, available at https://github.com/oowekyala/vfdr-weka. All three algo-
rithms were implemented in Java. Experiments were run on Intel(R) Core(TM) i3-
10110U CPU @2.10 GHz and less than 1 GB available memory.

Unless reported otherwise, all algorithms were used with their default settings,
which, for iLORD algorithm, we set to be m = 0.1 for the m-estimate heuristic, a batch
size b = 100, and an initial window of size i = 5000 for datasets containing numeric
attributes. For datasets with only categorical attributes, iLORD does not need to dis-
cretize attributes, so that a smaller number of first examples is sufficient to initialize the
rule set. Therefore, in the case of connect-4, we set i = 500.

For each algorithm and dataset, we obtain a series of evaluation values, one for each
example, which reflect the accumulated accuracy over all examples seen up to the point.

https://github.com/oowekyala/vfdr-weka

110 V. Q. P. Huynh et al.

Fig. 1. Classification performance series of the algorithms on four datasets

4.1 Comparison to HOEFFDINGTREE and VFDR

Figure 1 shows classification accuracy series of the three algorithms on the four datasets.
The accuracies are accumulated over all predictions as shown in Algorithm 2 (lines 20–
21), where the number of predictions (in thousands of examples) is shown on the x-
axis. In all tested datasets, the classification accuracy of iLORD is substantially higher
than VFDR, and in three of the four datasets also considerably higher than the one
of HOEFFDINGTREE, while being a close match on the fourth. For adult (Fig. 1a) and
covertype (Fig. 1d), one can also clearly see the initially poor performance of iLORD

is because of its majority-class-based classification for the first i examples. However,
it quickly recovers and soon surpasses the accuracy of the others. For airline (Fig. 1b),
iLORD maintains a clear advantage for the first ca. 150k examples, but then HOEFFD-
INGTREE catches up and both perform approximately the same.

However, the good classification performance of iLORD is achieved at the expense
of a higher run-time than the other algorithms, which can be seen in Table 2. The
running time of VFDR is always between iLORD and HOEFFDINGTREE for all four
datasets. Obviously, the run-time and the accuracy of iLORD also depends on its param-
eter settings that we will analyze in the next section.

Incremental Update of Locally Optimal Classification Rules 111

Table 2. Running time (seconds) of the algorithms

Datasets iLORD HOEFFDINGTREE VFDR

1 adult 7.6 1.3 4.6

2 airlines 297.2 109.6 157.6

3 connect-4 85.4 1.4 6.0

4 covertype 2200.5 24.5 843.6

Table 3. Accuracy vs. running time (seconds) of iLORD on adult dataset for different initial
window sizes i and batch sizes b

Init size i Batch size b Accuracy Run time

500 1 0.8331 40.4

10 0.8333 18.7

100 0.8332 6.1

1000 0.8335 5.0

No update 0.8108 0.5

1000 1 0.8385 53.3

10 0.8384 20.4

100 0.8385 6.6

1000 0.8381 5.4

No update 0.8191 1.1

5000 1 0.8398 104.3

10 0.8400 26.7

100 0.8399 7.6

1000 0.8401 6.6

No update 0.8337 2.1

4.2 Sensitivity to Parameter Settings

We briefly evaluated the influence of the two parameters, the size of the initial window
i and the batch size b. The choice of the learning heuristic, in our case captured in the
parameter m of the m-estimate, also has a strong influence on the result, but this issue
is not pertinent to a stream setting, and has been analyzed in prior work [7].

Table 3 shows the results on the adult dataset, for three different sizes of the
initial window (i = {500, 1000, 5000}), four different versions of the batch size
(b = {1, 10, 100, 1000}), and in the last line the accuracy of the model that is learned
from the initial batch only and never updated. A few things become apparent here: First,
with respect to the initial batch size, the initial model which is never updated is clearly
more accurate for larger sizes of the initialization window. For all initial batch sizes, the
incremental updates continue to improve the model, but less for the model that has been
learned from a larger initial window. Nevertheless, the latter achieves a higher overall
accuracy. Second, with respect to the batch size, the method is not very sensitive with

112 V. Q. P. Huynh et al.

respect to the final accuracy (which is what is shown in the table). However, the run-
time is clearly different in that more frequent updates are clearly more costly, and also
the convergence rate may differ.

The latter point can be seen from Fig. 2, which shows the effects of varying the
batch size (left) or the effects of varying the initial batch size (right) over the course
of the classification process. While different batch sizes perform quite similar (and all
of them clearly better than the version without updates at the bottom), there are clear
differences visible from different choices of the initial window, which are primarily
due to the fact that the algorithm only dynamically adjusts and predicts the majority
class in this initial phase. However, it can also be seen that the largest initial window
size (7000 examples) eventually results in the highest classification. The main reason
for this is presumably that this window is used for computing a discretization of the
numerical attributes, which is never changed through-out the process. The integration
of an on-line discretization method is clearly a subject for future work.

With respect to run-times, there are clear, unsurprising differences between differ-
ent batch sizes: updates after every example (b = 1) are most expensive, but time can be
saved when choosing larger mini-batch sizes. As discussed above, the observed accu-
racy does not differ much in these cases. Similarly, larger initial windows (i = 5000)
generally result in higher accuracy, but also somewhat higher run-times. However, the
run-time increase is particularly observable for smaller mini-batch sizes, whereas the
run-times of the algorithm do not seem to be particularly sensitive to higher mini-batch
sizes (b = {100, 1000}). Note that, the run-time for training the initial model depends
on only the initial window size i and is much smaller than the run-time for updates from
new batches, e.g. in the same experiments shown in Table 3, training the initial models
with i = 500, 1000, 5000 takes 0.3, 0.37, 1.42 s respectively.

Thus, overall, the best configuration for iLORD seems to be to choose an initial
window that should be large enough to increase accuracy, and a typical mini-batch size,
such as b = 100, in order to increase efficiency.

Fig. 2. Influence of parameter settings on adult dataset.

Incremental Update of Locally Optimal Classification Rules 113

5 Conclusion

In this work, we have proposed iLORD, an adaptation of the rule learning algorithm
LORD for incremental learning from a stream of examples. Its key idea is different than
previous work, as it does not aim at incrementally updating a small set of rules, but
it keeps a large pool of locally optimal rules and continues to add new rules that are
locally optimal for misclassified examples.

As a result, iLORD is somewhat slower than its very fast competitors, but it achieves
a higher accuracy. The speed of the algorithm is clearly affected by the cost of the
rule set updates, which are independent of the batch size. An interesting property of
the algorithm is that its run-time can clearly benefit from performing updates in larger
mini-batches similar to other batch-incremental algorithms such as neural networks.

We also observed that a larger initialization window results in a better final perfor-
mance. This is presumably mostly due to the fact that our algorithm computes a fixed
discretization for the numerical attributes from this window, which is never changed in
the remaining process. In this initialization phase we currently always make majority
class predictions. These weakness should be addressed in future work.

References

1. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach.
Learn. Res. 11, 1601–1604 (2010)

2. Cestnik, B.: Estimating probabilities: a crucial task in machine learning. In: Aiello, L. (ed.)
Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-90), Stock-
holm, Sweden, pp. 147–150. Pitman (1990)

3. Deng, Z.H., Lv, S.L.: PrePost+: an efficient N-lists-based algorithm for mining frequent item-
sets via children-parent equivalence pruning. Expert Syst. Appl. 42(13), 5424–5432 (2015)

4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp.
71–80 (2000)

5. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
6. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidel-

berg (2012). https://doi.org/10.1007/978-3-540-75197-7
7. Huynh, V.Q.P., Beck, F., Fürnkranz, J.: Efficient learning of large sets of locally optimal

classification rules. Mach. Learn. (2023). accepted with minor revisions
8. Huynh, V.Q.P., Küng, J.: FPO tree and DP3 algorithm for distributed parallel frequent item-

sets mining. Expert Syst. Appl. 140, 112874 (2020)
9. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach. Learn.

78(3), 343–379 (2010)
10. Kosina, P., Gama, J.: Very fast decision rules for classification in data streams. Data Min.

Knowl. Disc. 29(1), 168–202 (2013). https://doi.org/10.1007/s10618-013-0340-z
11. Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary sur-

vey. Data Min. Knowl. Disc. 2(4), 345–389 (1998)
12. Schlimmer, J.C., Fisher, D.H.: A case study of incremental concept induction. In: Kehler, T.

(ed.) Proceedings of the 5th National Conference on Artificial Intelligence (AAAI), Volume
1: Science, Philadelphia, PA, USA, pp. 496–501. Morgan Kaufmann (1986)

http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1007/s10618-013-0340-z

Policy Evaluation with Delayed,
Aggregated Anonymous Feedback

Guilherme Dinis Junior(B) , Sindri Magnússon , and Jaakko Hollmén

Stockholm University, Stockholm, Sweden
{guilherme,sindri.magnusson,jaakko.hollmen}@dsv.su.se

Abstract. In reinforcement learning, an agent makes decisions to maxi-
mize rewards in an environment. Rewards are an integral part of the rein-
forcement learning as they guide the agent towards its learning objective.
However, having consistent rewards can be infeasible in certain scenarios,
due to either cost, the nature of the problem or other constraints. In this
paper, we investigate the problem of delayed, aggregated, and anony-
mous rewards. We propose and analyze two strategies for conducting
policy evaluation under cumulative periodic rewards, and study them
by making use of simulation environments. Our findings indicate that
both strategies can achieve similar sample efficiency as when we have
consistent rewards.

Keywords: Reinforcement learning · Markov Decision Process
(MDP) · Reward estimation

1 Introduction

The idea behind reinforcement learning (RL) is that an agent learns how to
make decisions that maximize rewards through a policy π, by interacting with
the environment [16]. RL is suitable for sequential decision making problems,
where the choice of an action affects future states and actions, and there is a
wide range of applications for it. For example, within the transportation sector,
RL has been used for optimizing multiple objectives on ride ordering [11,17,18],
and car pooling [7]; in recommender systems, it has been successfully applied to
problems with large discrete item spaces [4,5], and to generate feeds of digital
content [19,20].

The growth in applications of RL compels us to reflect on some of the fun-
damental assumptions and limitations in the theory, in order to broaden its
application. One assumption is that the rewards given at each step transition
are tied to the action taken by the policy in that state. Temporal difference
(TD) learning methods for instance, which are core methods of learning from
logged data, rely on having rewards for every transition step [15]. In practice
though, rewards can be observed with delay and they can also be observed as an
aggregate from multiple actions, i.e. cumulative. In marketing and advertising,
for instance, a person can be exposed to several impressions before they make
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 114–123, 2022.
https://doi.org/10.1007/978-3-031-18840-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_9&domain=pdf
http://orcid.org/0000-0001-8492-761X
http://orcid.org/0000-0002-6617-8683
http://orcid.org/0000-0002-1912-712X
https://doi.org/10.1007/978-3-031-18840-4_9

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 115

purchase. Similarly, we can imagine distributed learning settings with low pow-
ered devices that connect to a network at time intervals to send data - there are
savings in sending a summary of the rewards observed since the last connection
instead of a stream of values corresponding to every action. Problems where
rewards are only observed with delay and, when so, they are aggregated over
the last P actions, have been explored in bandits but are under-explored in RL
literature.

We formulate the problem of learning from delayed, aggregated and anony-
mous feedback (DAAF) as one of delayed credit attribution. Our aim is to explore
ways to conduct policy evaluation under such conditions for MDPs with discrete
state and action spaces. Our research questions are as follows: RQ1 - to what
extent can standard policy evaluation work when feedback is delayed, aggregated
and anonymous? and RQ2 - how can the dynamics of a DAAF trajectory be
leveraged to estimate the value function of a policy?

We investigate policy evaluation under DAAF without any intervention, and
propose two approaches to address policy estimation. In our experiments, we
demonstrate empirically our proposed approaches’ ability to achieve sample effi-
ciency from data compared to having non-delayed and non-aggregated rewards
per action. Our main contributions are (1) an investigation of DAAF with exist-
ing policy evaluation methods; (2) the proposal of two approaches to conduct pol-
icy evaluation under DAAF with reasonable sample efficiency; and (3) a sequence
learning problem, alphabet sequence (ABC), where actions are proportional to
states, designed to for its simplicity and complexity scaling.

To the best our of knowledge, our work is the first to explore this problem
in the RL setting. The rest of this paper is organized as follows: in Sect. 2, we
present work related to the subject matter. Then, in Sects. 3 and 4, we formulate
the problem and present our proposed solutions. Our methodology is described
in Sect. 5, followed by our findings in Sect. 6. In Sect. 7 we discuss the results
along with thoughts on future work, leaving our final remarks to Sect. 8.

2 Related Work

Though we investigate DAAF, we are not the first to research reward dynamics
in RL. We highlight three areas that are relevant to our work: Non-markovian
Rewards, Credit Assignment, and Inverse reinforcement learning (IRL). On the
subject of non-markovian rewards, in [8] the authors explore the problem of
maximizing rewards when an agent can actively choose whether to observe the
reward for an action at a cost. Their proposed solution relies on estimating the
gain of a reward observation, and pay the cost whenever the gain is higher.
While their setting has absent rewards, the distinction here is that in our setting
rewards are delayed, aggregated and anonymous; the agent cannot decide when
to observe a reward; and there is no explicit cost. A more closely related line
of work is that explored in [2] and [6], where rewards are delayed, aggregated,
anonymous. In both cases, there is an adversarial component described as the
reward for every action being split over a time horizon d. In our setting, the

116 G. Dinis Junior et al.

rewards for a state-action pair materialize fully on aggregate, i.e. they are not
split over multiple time steps. The work in [13] has the closest setting to ours, the
only distinction being that, like the other papers presented so far, their focus is
on the multi-armed bandits and learning a policy as opposed to policy evaluation.
We therefore extend the work in [13] to the RL setting, with attention to policy
evaluation instead of control.

Turning to credit assignment, when doing policy evaluation we are given an
existing policy π, and our goal is to estimate the value of using it in an envi-
ronment. The value and state-value functions of a policy π, Vπ(s) and Qπ(s, a)
respectively, can be learned by using credit assignment methods, such as Monte
Carlo and SARSA [15]. These methods learn how to attribute credit for future
outcomes to the states and/or actions in a given trajectory, and much of the
research in this area concerns mechanisms to do accurate credit attribution. For
instance, in [12], the authors propose a counterfactual approach to discerning
credit assignment to actions of a policy using hindsight data, while the authors
in [3] propose learning a credit weighting function based on states. In either case,
the credit assignment methods expect rewards for policy actions, and our study
differs in that we address the task of credit assignment, in the context of policy
evaluation, with DAAF. Our problem is more closely related to the single-step
structural credit assignment problem of multi-agent systems, where given the a
global reward from the environment, we wish to determine the contribution of
each agent to the outcome [1].

Finally, we have the area of inverse reinforcement learning, the subject of
which is deriving a reward function from observations. It is typically employed
to extract knowledge from experts to then design RL agents, a task known
as learning from imitation. In [14], this problem is formulated as a supervised
learning task, where feature maps representing state-action pairs are used to
learn rewards that can maximize the similarity of a learned policy to that of an
expert policy or trajectory. Later works have extended this problem, with either
novel formulations or extensions to new conditions. In [10], the authors generate
a mixture of reward functions for different behavior clusters of policies in order to
extract rules from learned agents. Their reward is defined as a linear combination
of features and feature reward weights. Unlike the traditional IRL setting, we
consider problems where the observation of rewards is limited, instead of fully
absent, and the observed rewards are delayed, aggregated and anonymous. As
such, one could conceptually use IRL techniques to extract a reward function
for our use case. Our approach differs in that we seek to leverage the rewards
available and their structure to constrain the reward function we estimate.

3 Preliminaries

We consider the typical RL setting, where an agent has been trained to maximize
rewards in an unknown environment. The environment is modeled as an MDP
with a set of states S, actions A, transition dynamic T(S,A, S′) and rewards
(S,A) → R. A state St encapsulates information about the environment at time

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 117

step t. An action At is chosen by the agent given the state π(At|St) - which
is a density function indicating the probability of action A given that we are
in state S - upon which the environment transitions into a new state St+1 and
the agent receives a reward Rt. Thus the agent follows the learning trajectory
S1, A1, R1, S2, A2, R2,, ST , AT , RT where T is the length of the episode, which
is finite for episodic tasks and infinite for continuous tasks. The goal of the agent
is to maximize future cumulative rewards, i.e. the sum of rewards from future
states

∑T
t=1 γtRt, where γ ∈ [0, 1] is a discount factor that can be chosen to favor

near-term rewards (γ < 1) or give all rewards equal weight (γ = 1). For this work
we limit our analysis to finite horizon tasks, an assume γ = 1 throughout.

One of the key problems in RL is to estimate the state-value function Vπ(S)
or action-value function Qπ(S,A) for a policy π. The state-value function Vπ(S)
tells us the maximum returns from being in state S and using π to make deci-
sions starting from that state. The action-value function Qπ(S,A) tells us the
maximum returns from being in state S, taking a specific action A, and from
there using the policy π to make decisions. Knowing the state or action value
functions allows us to compare policies, and determine which ones provide better
returns for a given problem.

4 Policy Evaluation with DAAF

In this paper, we study policy evaluation when the reward is observed with some
delay. Additionally, rewards are observed on aggregate, i.e. rewards observed at
time t correspond to the sum of rewards for the last P steps. In our experiments,
we make P a constant, but our solution easily extends to P coming from any
discrete and bounded distribution P ∼ τ(t). Mathematically, with a constant P ,
if we denote by Ro

t the reward signal observed by the agent at time t then we
have:

Ro
t =

{∑P
i=t−P+1 γiRi if (t mod P = 0)

∅ otherwise
(1)

where ∅ is the absence of a reward, and γ is the discount factor. And since
we consider undiscounted episodic tasks (γ = 1) with deterministic rewards,
then whenever the feedback is observed we get: Ro

t =
∑P

i=1 R(s, a)p. One known
method for policy evaluation is SARSA [16], and it uses the update function:
Q(S,A) ← Q(S,A) + α ∗ (R + γ ∗ Q(S′, A′) − Q(S,A)). Without a reward, the
update function of the algorithm cannot be executed. And with non-markovian
rewards, as is the case of DAAF, our value updates can make inaccurate attri-
butions of credit to state-action pairs, which in turn leads to incorrect policy
estimation. To address the problem of misattributed credited, we propose two
solutions: zero impute missing rewards (ZI-M) and linear estimation of stateac-
tion rewards (LEAST). Both of them rely on using existing policy evaluation
algorithms without any direct modifications, and changing only the trajectory
data. We describe them next.

118 G. Dinis Junior et al.

Zero Impute Missing Rewards. as the name suggests, is an approach whereby
we simply make the assumption that an absent reward corresponds to a reward
value of zero. This enables us use standard policy evaluation algorithms such
as SARSA, without any changes. Note that the rewards used for estimating
Qπ(s, a) can still differ from the true rewards. However, this method maintains
the trajectory observed, and the returns observed from a given starting state are
thus closer to the true returns when the discount factor γ = 1.

Linear Estimation of State-Action Rewards. LEAST is our second approach, and
it comprises of estimating the values of the rewards for each state-action pair,
thus replacing both the aggregated anonymous and missing rewards in the trajec-
tory data with their estimate, R̂t. To estimate the true reward for a state-action
pair, we first take note of the structure of the problem. The aggregated anony-
mous rewards are observed at fixed time step intervals, P . We denote by R(s, a)
the average reward from the state-action pair (s, a). Then our goal is to use the
data observed from the aggregated rewards to estimate R(s, a) for all pairs (s, a).
This is naturally formulated as a least-squares problem. Mathematically, we can
denote by the vector of R(s, a) for all pairs (s, a), i.e., x = [R(s, a)](s,a)∈S×A.
We can define a matrix and vector B ∈ R

N×(S∗A) and c ∈ R
N such that our

estimated reward is the solution to the least squares problem minx ||Bx − c||22
[9]. Each row in the matrix B is constructed from a single reward period window
P , and each column corresponds to the number of observations of state-pairs
within that same window. Our factors to be learned, x, are the average rewards
for each state-action pair, and c is the DAAF observed in the window. To illus-
trate this structure, assume we have an MDP with two states and one action,
and a reward of 10 for every action in any state. Assuming our reward period
P = 2, and that over two transitions we observe both states, an entry row for
our regression estimation would be Ai = [1, 1] with each 1 indicating a single
observation for both (s = 0, a = 0) and (s = 1, a = 0); and bi = 20 the undis-
counted DAAF observed. Our formulation is similar to that described by the
authors in [14] for the task of learning a reward function for a policy that mim-
ics given trajectory data through supervised learning. When the approximation
of R(s, a) is accurate, LEAST can provide a more reliable observation of returns
to estimate Qπ(s, a).

5 Methodology

We follow a quantitative approach to answer our research questions. We con-
duct simulations comparing our solutions against a baseline approach, and make
use of multiple runs to generate statistics from the results. To monitor conver-
gence, we first compute a solution to the action-value function using dynamic
programming. We then use the approximated action-value function Qdp(s, a) as
a reference when carrying out policy evaluation with the SARSA algorithm to
compute the error of the estimated Qπ. In our experiments we compare four
different methods: (1) the case of full rewards (FR) - no delays nor aggregation

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 119

(2) skip missing rewards (S-M) - the näıve approach of ignoring value updates
when the reward is missing and taking DAAF as the reward for the current
state-action if available, and our proposed approaches (3) ZI-M and (4) LEAST.

Environments - To establish some generality, we study two MDPs with
different properties: Grid World and ABC. Grid World is a relatively known
maze problem, described in detail in [16]. The agent is placed at the starting
point of a grid sized H × L, and their objective is to reach the exit. There are
many variations of this problem, and we chose the simplest version, where the
goal is to find the exit in as few steps as possible. We get the following MDP: S
is the position of the player on the grid; A one of four options: up, down, left,
right; T (S,A, S′) is the transition function from one state to the next, depending
on the chosen action; and S,A → R is -1 for every transition, -100 for falling
into a cliff, and 0 for reaching the exit. In Fig. 1, we have examples of two Grid
World maps.

S GX

(a) gridworld 01

S GXXXXXX

(b) gridworld 05

Fig. 1. Example Grid World levels used in our experiments - S is the starting position,
G is the goal (exit), and X are cliffs that send that agent back to the starting position.
An agent can go up, down, left or right.

ABC is a problem we propose for its simplicity and complexity scaling. We
have a sequence of states: A,B,C,D...N , and the goal of an agent is to learn to
choose each state in the right order. Given a state in position i, the agent should
choose the next state in i + 1. If they choose correctly, the agent advances and
there is no penalty, and otherwise there is a penalty. It results in the following
MDP: S indicates the current state in the sequence; A a state to choose next;
T (S,A, S′) is the transition function from one state to the next, depending on
the chosen action; and S,A → R is defined by a function D(pπ

a+1, pa)+c - where
pa is the current state and pπ

a+1 is the position of the agent’s chosen next state,
and c is a constant penalty for every action. The distance function D penalizes
actions based on how far they are from the right choice1. ABC is an episodic
task, where a terminal state is reached when the agent selects the final state in
the sequence. We note that, more generally, the ABC problem can be unbounded
or have any arbitrary sequence of states e.g. going from 1 to 10000. The idea
is that the game advances in one direction only, from one state to the next in
sequence. And, equally important, as the sequence length grows, so does the

1 E.g. if N = 5, in state 4 the agent ought to select action 4; selecting 3 yields a
penalty of −(N − 4 + 3) and selecting 5 yields a penalty of −1.

120 G. Dinis Junior et al.

possible number of actions to choose from. The data needed to learn a policy
grows as a function of S ∗ A, and since |S| = |A|, this growth is quadratic.

Data Collection - In all of our experiments, we evaluate a random policy, i.e.
a policy that can chose any action with equal probability, both on the Grid World
and ABC environments. We use the random policies to generate trajectory data
for policy evaluation with the SARSA Algorithm. Both each environment, we use
different configurations - e.g. shorter and longer sequences for ABC, smaller and
larger grids for Grid World - and we experiment with different reward periods,
P . During evaluation, we measure root mean-squared-error (RMSE) against an
action-value function Qdp obtained using dynamic programming. To compute a
measure of variance, we run policy evaluation 100 times for each configuration.

6 Results

We selectively analyse a few results, starting with ABC. In Fig. 2, we have the
RMSE plots for level 16 of ABC across four different reward periods. First, we
can observe what happens when no intervention is made (S-M) under DAAF -
the estimated value gets worse over time, despite an initial improvement. Turning
to our proposed methods, ZI-M and LEAST, both of them converge to a values
relatively close to what one would get with the full rewards. LEAST appears to
obtain slightly more accurate estimates than ZI-M, and these patterns are also
observed in Grid World configurations for levels 1–6 with the exception of level 5
(Fig. 3). We further compared our proposed solutions by measuring Spearman’s
rank correlation of the final Qπ values across configurations against the baseline
Qdp. The S-M method performed worst, overall, on the ABC configurations
compared to Grid World, and it had higher variance. LEAST’s estimated values
more strongly correlated to the baseline Qdp than ZI-M (results are omitted due
to space constraints). Summaries of the results for RMSE of ABC and Grid
World are in Tables 1 and 2, respectively, for select levels2

Fig. 2. ABC, Level = 16 with increasing reward period (P). The y-axis is on a loga-
rithmic scale. Filled area is the standard deviation.

2 Complete results can be found at https://github.com/dsv-data-science/rl-daaf.git.

https://github.com/dsv-data-science/rl-daaf.git

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 121

Fig. 3. Grid World, Map = gridworld 05 with increasing reward period (P). The y-axis
is on a logarithmic scale. Filled area is the standard deviation.

Table 1. RMSE for ABC problem configurations. We report the mean and standard
deviation from 100 runs. The best results are highlighted.

Level/Map P S-M ZI-M LEAST

8 2 185.377± 6.437 6.111±1.704 6.147± 1.638

8 4 3852.374± 47.991 6.494± 1.366 5.854±1.429

8 8 2687.982± 41.446 7.736± 1.761 5.927±1.436

8 16 2498.938± 34.716 9.369± 1.825 5.927±1.301

24 2 3791.951± 30.037 35.215±8.889 35.84± 7.414

24 4 8978.408± 47.414 35.883± 8.86 34.621±9.044

24 8 8685.247± 38.652 38.318± 9.237 33.698±7.316

24 16 8506.618± 30.93 40.295± 9.685 36.907±8.98

Table 2. RMSE for Grid World configurations. We report the mean and standard
deviation from 100 runs. The best results are highlighted.

Level/Map P S-M ZI-M LEAST

01 2 146.72± 30.606 23.908± 7.277 18.358±7.056

01 4 15464.607± 301.918 29.085± 7.457 18.786±7.001

01 8 10844.884± 297.05 34.247± 7.233 18.786±8.061

01 16 4669.388± 237.253 36.61± 9.242 18.107±7.386

05 2 18195.32± 1118.722 779.158±280.31 806.638± 350.586

05 4 255804.832± 3890.733 768.801± 287.025 739.775±272.95

05 8 265567.7± 4103.359 756.606±280.82 826.515± 337.681

05 16 279066.206± 5158.172 759.32±312.452 762.568± 308.587

7 Discussion and Future Work

We conducted policy evaluation using the SARSA algorithm without any alter-
ations to the trajectory data to answer our first research question. In our simu-
lations, the estimated policy diverged from the baseline Qdp. This limitation was
more pronounced in the ABC problem than for Grid World. One possible factor

122 G. Dinis Junior et al.

is the higher variance of rewards per action in the ABC environment compared
to Grid World, where rewards are consistent for any step except when the agent
falls into a cliff. Another factor is the cardinality of actions |A|, since in ABC
|S| = |A|, which increases the chances of misattribution of credit over longer
reward period windows. To answer our second research question, we compared
our proposed solutions, ZI-M and LEAST, and found that while both achieved
comparable results across configurations of both environments, the former had
higher error in the estimate of the Qπ in most cases, except Grid World level 5. In
ABC, as the reward period increased, the error for ZI-M followed. We speculate
that this is due to the bias introduced from using zero or the cumulative reward.
One limitation of LEAST is that it requires some initial observations of every
(s, a) pair before estimating the average reward R(s, a). With a random policy,
and a constrained enough environment, collecting those observations is feasible.
Under more constrained settings, e.g. with little exploration, it can be more
practical to opt for ZI-M until enough data is available to estimate the average
reward. Despite their differences, both proposed solutions converged with sim-
ilar sample efficiency as FR on the tested environments. A natural extension
of the work presented here is the study DAAF in discounted tasks. A second
line of extension is to adapt the solutions proposed to problems with large or
infinite state spaces, where function approximation is employed. And finally, our
reseached as focused on the task of policy evaluation, and this problem framing
and solution can be extended to control tasks.

8 Summary and Conclusions

In this paper, we presented a novel problem of conducting policy evaluation
DAAF that comes at intervals. Through simulations using the well known envi-
ronment of Grid World and a proposed environment called ABC, we demon-
strated the inadequacy of using algorithms such as SARSA with missing rewards
data. We proposed two solutions that alter the trajectory data, both of which
were found to be sample efficient and effective for policy evaluation in undis-
counted episodic tasks. Our findings indicate that estimating a policy is still
feasible with DAAF. Future work will investigate how to expand our proposed
methods to more common settings, e.g. with discounting, to further expand the
applicability of RL in real world settings.

References

1. Agogino, A.K., Tumer, K.: Unifying temporal and structural credit assignment
problems, pp. 980–987. AAMAS 2004. IEEE Computer Society, USA, July 2004

2. Cesa-Bianchi, N., Gentile, C., Mansour, Y.: Nonstochastic bandits with composite
anonymous feedback, pp. 750–773. PMLR, July 2018. ISSN: 2640–3498

3. Chelu, V., Borsa, D., Precup, D., Hasselt, H.P.V.: Selective credit assignment.
arXiv preprint arXiv:2202.09699 (2022)

4. Chen, H., et al.: Large-scale interactive recommendation with tree-structured pol-
icy gradient, vol. 33(1), pp. 3312–3320 (2019)

http://arxiv.org/abs/2202.09699

Policy Evaluation with Delayed, Aggregated Anonymous Feedback 123

5. Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., Chi, E.H.: Top-k off-
policy correction for a REINFORCE recommender system, pp. 456–464. WSDM
2019. Association for Computing Machinery (2019)

6. Garg, S., Akash, A.K.: Stochastic bandits with delayed composite anonymous feed-
back, October 2019. arXiv:1910.01161

7. Jindal, I., Qin, Z.T., Chen, X., Nokleby, M., Ye, J.: Optimizing taxi carpool policies
via reinforcement learning and spatio-temporal mining, pp. 1417–1426 (2018)

8. Krueger, D., Leike, J., Evans, O., Salvatier, J.: Active Reinforcement Learning:
observing Rewards at a Cost, November 2020. arXiv:2011.06709

9. Lawson, C.L., Hanson, R.J.: Least-squares approximation, pp. 963–964. John Wiley
and Sons Ltd., GBR, January 2003

10. Lee, K., Rucker, M., Scherer, W.T., Beling, P.A., Gerber, M.S., Kang, H.: Agent-
based model construction using inverse reinforcement learning, pp. 1–12. WSC
2017. IEEE Press (2017)

11. Li, M., et al.: Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning, pp. 983–994. WWW 2019. Association for Computing
Machinery (2019)

12. Mesnard, T., et al.: Counterfactual credit assignment in model-free reinforcement
learning, pp. 7654–7664. PMLR, ISSN: 2640–3498 (2021)

13. Pike-Burke, C., Agrawal, S., Szepesvari, C., Grunewalder, S.: Bandits with delayed,
aggregated anonymous feedback, June 2018. arXiv:1709.06853

14. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning, pp. 729–
736. ICML 2006. Association for Computing Machinery, New York, NY, USA
(2006)

15. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach.
Lang. 3(1), 9–44 (1988). https://doi.org/10.1007/BF00115009

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. Adaptive
Computation and Machine Learning Series. The MIT Press, Cambridge, Mas-
sachusetts, second edition edn. (2018)

17. Wang, Z., Qin, Z., Tang, X., Ye, J., Zhu, H.: Deep reinforcement learning with
knowledge transfer for online rides order dispatching, pp. 617–626. ISSN: 2374–
8486

18. Xu, Z., et al.: large-scale order dispatch in on-demand ride-hailing platforms: a
learning and planning approach, pp. 905–913. KDD 2018. Association for Com-
puting Machinery (2018)

19. Zhao, Y., Zhou, Y.H., Ou, M., Xu, H., Li, N.: Maximizing cumulative user engage-
ment in sequential recommendation: an online optimization perspective, pp. 2784–
2792. KDD 2020. Association for Computing Machinery, New York, NY, USA,
August 2020

20. Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., Yin, D.: Reinforcement learning
to optimize long-term user engagement in recommender systems, pp. 2810–2818.
KDD 2019. Association for Computing Machinery, New York, NY, USA, July 2019

http://arxiv.org/abs/1910.01161
http://arxiv.org/abs/2011.06709
http://arxiv.org/abs/1709.06853
https://doi.org/10.1007/BF00115009

Spatial and Temporal Analysis

Spatial Cross-Validation for Globally
Distributed Data

Rita Beigaitė1(B), Michael Mechenich1, and Indrė Žliobaitė1,2

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
{rita.beigaite,indre.zliobaite}@helsinki.fi

2 Department of Geosciences and Geography, University of Helsinki, Helsinki,
Finland

Abstract. Increasing amounts of large scale georeferenced data pro-
duced by Earth observation missions present new challenges for train-
ing and testing machine-learned predictive models. Most of this data
is spatially auto-correlated, which violates the classical i.i.d. assump-
tion (identically and independently distributed data) commonly used in
machine learning. One of the largest challenges in relation to spatial
auto-correlation is how to generate testing sets that are sufficiently inde-
pendent of the training data. In the geoscience and ecological literature,
spatially stratified cross-validation is increasingly used as an alternative
to standard random cross-validation. Spatial cross-validation, however,
is not yet widely studied in the machine learning setting, and theoret-
ical and empirical support is largely lacking. Our study aims at for-
mally introducing spatial cross-validation to the machine learning com-
munity. We present experiments on data sets from two different domains
(mammalian ecology and agriculture), which include globally distributed
multi-target data, and show how standard cross-validation may lead to
over-optimistic evaluation. We propose how to use tailored spatial cross-
validation in this context to achieve more realistic assessment of perfor-
mance and prudent model selection.

Keywords: Spatial cross-validation · Geospatial data · Model
evaluation

1 Introduction

Cross-validation is a widely-used procedure for model selection and performance
evaluation. It is expected toyielda reliable choiceofmodelwhenthe training sample
is independent from, and distributed identically to, the validation sample [3].

Earth observation data are often spatially structured, such that observations
geographically near each other are more similar than observations separated
by greater distances [16]. Spatial auto-correlation is often strongly present in
such data [10]. This property of geographic data violates the assumption of
identical and independent distribution (i.i.d.), and leads to potential leakage of
information from training to validation folds in the standard cross-validation
setting.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 127–140, 2022.
https://doi.org/10.1007/978-3-031-18840-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_10

128 R. Beigaitė et al.

Spatial cross-validation is increasingly used as a strategy to make the cross-
validation folds more independent from each other in ecology and geoscience
studies [14,18,19]. This strategy has not been extensively analyzed in computer
science either empirically or theoretically. The lack of theoretical backing has
caused discussion in the ecological literature concerning whether spatial cross-
validation is a proper method for estimating model performance [15,23]. How-
ever, this discussion is more about whether spatial cross-validation is the right
tool to evaluate the accuracy of produced maps, rather than the generalization
ability of machine-learned models. Evaluation of map accuracy is one of the goals
in ecological modelling studies. By contrast, in machine learning the goal is to
build a model which generalizes well over the observed patterns. A notable dif-
ference between machine learning and typical ecological studies that use spatial
cross-validation is the size of data sets. In ecological studies the data is often
small and it is usually concentrated around a specific region or a country, while
the machine learning literature increasingly focuses on very large scale data sets.
While the prevalence of Earth observation data in machine learning is increas-
ing, typically, only the classical random cross-validation is used to evaluate the
ability of the model to predict on unseen data.

In this paper, we introduce and analyze the spatial cross-validation task
setting from the machine learning perspective where the data sets contain large
numbers of observations which are globally distributed. Such data is becoming
increasingly available in machine learning with rapid technological improvements
in Earth observations [13].

Our aim is to introduce spatial cross-validation to the machine learning com-
munity, and empirically show in what ways a standard random cross-validation
can fail to indicate that a model is over-fitting and provide an over-optimistic
estimate of model performance. We present recommendations on how to use spa-
tial k-fold cross-validation. We suggest using spatial cross-validation for globally
distributed and spatially auto-correlated data whenever the size of the data set
allows it.

The rest of the paper is organized as follows. After summarizing related work
on spatial cross-validation in ecological studies in Sect. 2, we formally define spa-
tial cross-validation in Sect. 3. We describe our experimental setup for evaluating
spatial cross-validation in Sect. 4. In Sect. 4.3 we discuss the results, and draw
conclusions in Sect. 5.

2 Related Work

In ecological studies, several strategies have been proposed for spatial cross-
validation [19]. One of these strategies is geographic blocking [1,4,17,19]. In this
approach, the data set is divided spatially into distinct geographic subsets, each
spatially isolated from the others.

Spatial Cross-Validation for Globally Distributed Data 129

The simplest way to divide observations spatially is to overlay rectilinear
blocks of a specified width and height on the mapped data set [22]. These blocks
divide the study area vertically and/or horizontally, and may be used as folds in
spatial cross-validation. Note that this blocking may be done in environmental
space rather than in geographic space, for instance, by clustering observations
based on the environmental conditions represented, then using each cluster as a
fold in cross-validation [19,22]. It is often recommended to use each block as a
separate fold, to allow more data for model training [19].

Another existing strategy for spatially-informed cross-validation is to leave
a margin between the training and validation data, by removing data within a
buffer of a pre-defined radius around each validation point. This can be done
as a spatial leave-one-out (LOO) [14], spatial leave-pair-out [2], or spatial k-fold
[18] cross-validation. One of the challenges of using buffered cross-validation is
selecting the optimal distance for the buffer radius [21]. Often the buffer radius is
decided by measuring spatial auto-correlation using the range of the variogram
for the target variable or model residuals [14,18]. In practice, the choice is most
often empirical.

While studies that implement spatial cross-validation exist, we are not aware
of any analyses showing whether, how, and why spatial cross-validation is
expected to outperform random cross-validation in the machine learning model
evaluation and selection process.

In this article, we investigate a spatial k-fold cross-validation method that
is computationally more efficient than LOO, and which does not require man-
ual spatial or environmental blocking, for which the blocking strategy must be
tailored to the specifics of the given data set.

3 Spatial k-Fold Cross-Validation

Spatial cross-validation may be considered a special case of a modified cross-
validation approach [8] in which the data set is trimmed, and a number of
points are discarded. Conceptually related approaches have been used in ecolog-
ical [2,14,18–20] and remote sensing [12] contexts. In the case of spatial k-fold
cross-validation, training points are removed within a so-called buffer radius of
distance r from validation points. A visual example is provided in Fig. 1.

With Algorithm 1, we formally introduce the procedure of spatial k-fold cross-
validation. First, the data set is randomly split into training and validation sets
as in classical random k-fold cross-validation. Then, in each iteration, all training
points closer than a chosen distance r to validation points are removed from the
training set, and are not used in either training or validation. This is expected
to remove potential data leakage. Finally, the reduced training sets are used in
the same way as in regular random cross-validation.

The distance r can be determined by measuring at what distance spatial
auto-correlation notably weakens. The challenge is that in environmental data,

130 R. Beigaitė et al.

Fig. 1. An example of removing training points (blue colour) close to the validation
point (black colour) within the buffer radius r (Color figure online)

auto-correlation can be present between observations as far as several thousand
kilometers apart1 [11]. If we were to choose a buffer of thousands of kilometers, it
would remove most of the training points. In addition, in a multi-target setting,
each target can have a different strength of spatial auto-correlation. Further-
more, for some variables auto-correlation can decrease with distance and start
to increase again. Therefore, we recommend using a buffering strategy around
validation points, and suggest experimenting with buffers of several radius dis-
tances, selecting the maximum distance which still retains sufficient data points
for training.

In the following section, we compare the performance of the classical random
and the spatial cross-validation that we recommend.

4 Evaluation of Performance

We conduct an empirical evaluation of spatial k-fold cross-validation on two
real-world data sets2 with globally distributed data. We choose a prediction task
setting of multi-target regression where targets are dependent on each other and
require a complex model to capture these relationships.

4.1 Data Sets

The first data set is from the field of mammalian ecology. The modeling task here
is to predict the composition of vegetation from measures of the teeth of large,
herbivorous mammals. The targets are 13 vegetation fractions that come from

1 The distance between two georeferenced points can be calculated using the Harvesine
distance formula, which gives shortest-path spherical distances between two points
from their longitude and latitude coordinates [7].

2 We made the data sets and our code publicly available at https://github.com/
ritabei/Spatial-cross-validation.

https://github.com/ritabei/Spatial-cross-validation
https://github.com/ritabei/Spatial-cross-validation

Spatial Cross-Validation for Globally Distributed Data 131

Algorithm 1. Spatial k-fold cross-validation
Require: data set (d1, d2, . . . dp) ∈ D, where p is the size of the data set
Require: number of folds k
Require: buffer radius r
Require: model M
Ensure: cross-val error e

for i = 1 to k do
Split D into Dtrain

i and Dval
i for the i-th split

for j = 1 to n do � for each instance of the train set Dtrain
i

for l = 1 to m do � for each instance of the validation set Dval
i

if distance(dtrain
j , dval

l) ≤ r then
Dtrain

i ← Dtrain
i \ dtrain

j � removing points too close
n ← n − 1 � decreasing the number of iterations

end if
end for

end for
Train the model M using reduced training set Dtrain

i

Compute the training error ei
end for
e ← 1

k

∑n
i=1 ei � computing the average of errors

the MODIS [6] land cover product (MCD12C1, for the year 2001). The features
are nine different functional dental traits of mammals originating from [9,24].
The size of this data set is 28224 observations. These observations are distributed
over a 50 × 50 km grid with only one (or none) observation per georeferenced
grid cell.

The second data set we derive from the global soil profile data [5]. Here, the
task is to predict the soil texture, i.e., the proportions of salt, silt and sand from
other soil chemical and physical properties (nine features in total). This data
set has 10279 observations. In contrast to the mammalian ecology data set, this
data set is not systematically gridded, and several observations can be recorded
at the same or very close coordinates.

4.2 Experimental Design

Comparison of Testing and Cross-Validation Errors. First, as we expect
each continent to present a unique environmental profile, to which our models
must generalize and for which we require an estimate of model performance, we
subset the data from one continent at a time and treat it as an independent
test set. Then, we build a predictive model and estimate its cross-validation

132 R. Beigaitė et al.

error on all the remaining continents. Finally, we compare the estimated cross-
validation error with the test error of the held-out continent. We repeat this for
each continent for which observations are present, for both of the data sets. For
instance, we take the points from South America as the testing set and conduct
model assessment via cross-validation on the data points from North America,
Europe, Asia, and Africa. An example of the first cross-validation fold when
South America is the testing subset is provided in Fig. 2.

Fig. 2. An example of one cross-validation fold for mammalian ecology data when
South America is a testing set. Note that for better visibility, the amount of validation
points is reduced and their size is increased. An example of one cross-validation fold
for mammalian ecology data when South America is a testing set. Note that for better
visibility, the amount of validation points is reduced and their size is increased

Spatial Cross-Validation for Globally Distributed Data 133

Fig. 2. (continued)

Predictive Models. For each testing iteration we build two neural network
(NN) models: one intentionally over-complex and one relatively simple. The for-
mer model (for both data sets) consists of an input layer, two hidden layers of
100 neurons which are activated by the sigmoid function, and an output layer
activated by the softmax function. The softmax function is used to capture com-
positional dependencies in the data. The simple model has the same structure
apart from the hidden layers. It has only one hidden layer: for the mammalian
ecology data set the hidden layer consists of 10 neurons, and for the soil data set

134 R. Beigaitė et al.

it consists of 8 neurons. We train the neural networks using the Adam optimizer
passing the full training set during each epoch, and we use the mean absolute
error loss function. The complex model is trained for 10000 epochs to ensure
over-fitting. We evaluate the models’ prediction accuracy using mean absolute
error (MAE).

Random Cross-Validation Versus Spatial Cross-Validation. We com-
pare the testing error with the estimate of random 10-fold cross-validation and
spatial 10-fold cross-validation with buffer radius sizes of 50 km, 100 km, and
150 km around the validation points of the random cross-validation. The buffer
increment of 50 km is motivated by the 50×50 km grid of the mammalian ecology
data set. Buffering farther than 150 km distance reduces the data set excessively.
Note that in this comparison random cross-validation has a potential advantage:
the greater number of points used in the training process.

In order to check how results are affected when we deprive random cross-
validation of this advantage, we also conduct random cross-validation with a
decreased set of training examples. We conduct an experiment in which we use
the same number of data points in random cross-validation folds as in reduced
spatial cross-validation folds. That is, we repeat simple cross-validation four
times. Each time the number of points in each training fold is randomly reduced.
This experiment let us see whether the smaller size of the training folds leads to
a more pessimistic estimate of simple random cross-validation error.

4.3 Analysis of Performance

In ecological studies, the empirical variogram is commonly suggested for mea-
suring and visualizing spatial auto-correlation in variables. In a variogram, the
average squared difference between pairs of observations within separation dis-
tance bins are plotted as a function of distance. If, for a given variable, pairs
of observations near each other have small squared differences, the variable is
positively spatially auto-correlated. Pairwise differences generally increase with
distance to a sill, where the trend levels. The distance to the sill is termed the
range; this is the distance over which spatial auto-correlation is detectable.

Variograms of the target variables of each data set are shown in Fig. 3. We can
observe that some of the variables have in general very small variance, while for
some variables variance increases rapidly with distance and can decrease again.
Such plots suggest these variables do not exhibit clear and consistent ranges and
sills, and thus do not provide a means for choosing a buffer distance for these
globally distributed data sets.

Spatial Cross-Validation for Globally Distributed Data 135

Fig. 3. Variance in targets as a function of distance

Fig. 4. Soil data. Comparison of cross-validation (CV) and test errors on each conti-
nent. The dotted diagonal line indicates where cross-validation error would be equal
to the test error

Fig. 5. Mammalian ecology data. Comparison of cross-validation (CV) and test errors
on each continent.The dotted diagonal line indicates where cross-validation error would
be equal to the test error

136 R. Beigaitė et al.

Fig. 6. A link between random cross-validation error and size of the training fold. The
order of bars (from left to right) in the (b) plot corresponds to the order of bars in plot
(a)

Figures 4 and 5 illustrate a comparison between cross-validation (both ran-
dom and spatial) and testing errors for the soil and mammalian ecology data sets,
respectively. In the ideal case we would expect cross-validation error to be equal
to the test error on unseen data and lie on (or very close to) the dotted diago-
nal line of the plot. For the soil data set the random cross-validation estimate
of the complex models is far from this line. It indicates highly over-optimistic
estimation of the models’ performance. The reason could be that the soil data
set includes observations which are very close or at the same coordinates. Thus,
with random cross-validation, examples which are very similar to the validation
set are memorised during the training. When we use spatial cross-validation and
exclude the points close to the validation points, cross-validation estimates get
closer to the dotted line.

In the mammalian ecology data set (Fig. 5) we observe the same tendency
of over-optimistic cross-validation estimates of both random and spatial cross-
validation. However, the spatial cross-validation estimates are closer to the true
testing error. The greater the radius of the spatial cross-validation buffer, the
closer the cross-validation estimate is to the true testing error.

We also observe over-pessimistic estimates of spatial cross-validation for the
soil data with a 150 km radius buffer. This happens due to significantly reduced
training set. In Fig. 6a we can observe that with increasing radius of the buffer,
the training folds of both data sets are reduced considerably. This decrease in
the number of points in the training set leads to higher random cross-validation
errors for the soil data set (Fig. 6b). Nevertheless, despite being over-pessimistic,

Spatial Cross-Validation for Globally Distributed Data 137

Fig. 7. An example of validation and training errors of mammalian ecology data set
when model is over-complex and starts to over-fit

Fig. 8. An example of validation and training errors of mammalian ecology data set
when model is simple

138 R. Beigaitė et al.

the spatial cross-validation estimate for the soil data is still closer to the testing
error than the random cross-validation estimate.

We observe that for the mammalian ecology data set this increase in the
cross-validation error (Fig. 6b) is negligible. One of the reasons could be that
the original number of data points is higher. Therefore, we still have a sufficient
amount of data for training the model.

Examples of the training process of mammalian ecology data in Figs. 7 and 8
demonstrate that random cross-validation does not indicate when the model is
over-fitting. When the validation fold is very similar to the training folds, valida-
tion and training errors are almost equal. Even if the model is over-complex for
the data no indication of over-fitting can be observed (Fig. 7a). With increased
distance of the buffer radius in the spatial cross-validation, we can observe val-
idation error starting to increase (Fig. 7c,d). When spatial cross-validation is
used with the buffer distance of 150 km, the plots clearly indicate over-training.

When we look at the plots of the simple model (Fig. 8), we observe that
the validation error is close to the training error in both random and spatial
cross-validation cases. Without spatial cross-validation, it would seem that the
complex model is an adequate fit and could be trained on even more epochs.
This, in turn, would lead to choice of a model which performs poorly on unseen
data.

5 Conclusions

We empirically examined how spatial cross-validation can help to improve the
model selection process in the presence of spatial auto-correlation. We have car-
ried out experiments on two globally distributed data sets from the fields of
mammalian ecology and agriculture. Our results confirm that random cross-
validation fails to indicate when models start to over-fit complex data, and its
estimation of the error tends to be over-optimistic.

Spatial cross-validation proved to be an adequate modification addressing
these issues. However, such modification has drawbacks. Removal of the points
close to the validation set increases computational complexity and decreases the
size of the training data. Therefore, we recommend using it with caution when
the initial data size is small as it can lead to an over-pessimistic estimate of model
performance. For further research, it is important to investigate the choice of the
buffer distance for global data sets as the auto-correlation can still be present
thousands of kilometers away.

Acknowledgments. We thank Tang Hui for the initial pre-processing of the mam-
malian ecology data set. Research leading to these results was supported by the
Academy of Finland (grants no. 314803 and 341623).

Spatial Cross-Validation for Globally Distributed Data 139

References

1. Adams, M.D., Massey, F., Chastko, K., Cupini, C.: Spatial modelling of particu-
late matter air pollution sensor measurements collected by community scientists
while cycling, land use regression with spatial cross-validation, and applications of
machine learning for data correction. Atmos. Environ. 230, 117479 (2020)

2. Airola, A., et al.: The spatial leave-pair-out cross-validation method for reliable
auc estimation of spatial classifiers. Data Min. Knowl. Disc. 33(3), 730–747 (2019)

3. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection.
Stat. Surv. 4, 40–79 (2010)

4. Bahn, V., McGill, B.J.: Testing the predictive performance of distribution models.
Oikos 122(3), 321–331 (2013)

5. Batjes, N.: Harmonized soil profile data for applications at global and continental
scales: updates to the wise database. Soil Use Manag. 25(2), 124–127 (2009)

6. Channan, S., Collins, K., Emanuel, W.: Global mosaics of the standard modis
land cover type data. University of Maryland and the Pacific Northwest National
Laboratory, College Park, Maryland, USA 30 (2014)

7. Chopde, N.R., Nichat, M.: Landmark based shortest path detection by using a*
and haversine formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302
(2013)

8. Feluch, W., Koronacki, J.: A note on modified cross-validation in density estima-
tion. Comput. Stat. Data Analysis 13(2), 143–151 (1992)

9. Galbrun, E., Tang, H., Fortelius, M., Žliobaitė, I.: Computational biomes: The
ecometrics of large mammal teeth. Palaeontol. Electron. 21(21.1. 3A), 1–31 (2018)

10. Getis, A.: A history of the concept of spatial autocorrelation: a geographer’s per-
spective. Geogr. Anal. 40(3), 297–309 (2008)

11. Hijmans, R.J.: Cross-validation of species distribution models: removing spatial
sorting bias and calibration with a null model. Ecology 93(3), 679–688 (2012)

12. Karasiak, N., Dejoux, J.-F., Monteil, C., Sheeren, D.: Spatial dependence between
training and test sets: another pitfall of classification accuracy assessment in
remote sensing. Mach. Learn. 111 1–26 (2021). https://doi.org/10.1007/s10994-
021-05972-1

13. Lary, D., et al.: Machine learning applications for earth observation. In: Mathieu,
P.-P., Aubrecht, C. (eds.) Earth Observation Open Science and Innovation. ISRS,
vol. 15, pp. 165–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
65633-5 8

14. Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., Bretagnolle, V.: Spatial
leave-one-out cross-validation for variable selection in the presence of spatial auto-
correlation. Glob. Ecol. Biogeogr. 23(7), 811–820 (2014)

15. Meyer, H., Pebesma, E.: Machine learning-based global maps of ecological variables
and the challenge of assessing them. Nat. Commun. 13(1), 1–4 (2022)

16. Miller, H.J.: Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 94(2),
284–289 (2004)

17. Ploton, P., et al.: Spatial validation reveals poor predictive performance of large-
scale ecological mapping models. Nat. Commun. 11(1), 1–11 (2020)

18. Pohjankukka, J., Pahikkala, T., Nevalainen, P., Heikkonen, J.: Estimating the pre-
diction performance of spatial models via spatial k-fold cross validation. Int. J.
Geogr. Inf. Sci. 31(10), 2001–2019 (2017)

19. Roberts, D.R., et al.: Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic structure. Ecography 40(8), 913–929 (2017)

https://doi.org/10.1007/s10994-021-05972-1
https://doi.org/10.1007/s10994-021-05972-1
https://doi.org/10.1007/978-3-319-65633-5_8
https://doi.org/10.1007/978-3-319-65633-5_8

140 R. Beigaitė et al.

20. Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., Brenning, A.: Hyperparameter
tuning and performance assessment of statistical and machine-learning algorithms
using spatial data. Ecol. Model. 406, 109–120 (2019)

21. Trachsel, M., Telford, R.J.: Estimating unbiased transfer-function performances in
spatially structured environments. Climate of the Past 12(5), 1215–1223 (2016)

22. Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G.: blockCV: an R
package for generating spatially or environmentally separated folds for k-fold cross-
validation of species distribution models. Methods Ecol. Evol. 10(2), 225–232
(2019)

23. Wadoux, A.M.C., Heuvelink, G.B., De Bruin, S., Brus, D.J.: Spatial cross-
validation is not the right way to evaluate map accuracy. Ecol. Model. 457, 109692
(2021)

24. Žliobaitė, I., et al.: Herbivore teeth predict climatic limits in kenyan ecosystems.
Proc. Natl. Acad. Sci. 113(45), 12751–12756 (2016)

Leveraging Spatio-Temporal
Autocorrelation to Improve
the Forecasting of the Energy
Consumption in Smart Grids

Annunziata D’Aversa1 , Stefano Polimena1 , Gianvito Pio1,2(B) ,
and Michelangelo Ceci1,2,3

1 Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
{annunziata.daversa,stefano.polimena,gianvito.pio,

michelangelo.ceci}@uniba.it
2 Big Data Lab, CINI Consortium, Rome, Italy

3 Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia

Abstract. Smart grids are networks that distribute electricity by rely-
ing on advanced communication technologies, sensor measurements, and
predictive methods, to quickly adapt the network behavior to differ-
ent possible scenarios. In this context, the adoption of machine learn-
ing approaches to forecast the customer energy consumption is essential
to optimize network planning operations, avoid unnecessary energy pro-
duction, and minimize power shortages. However, classical forecasting
methods are not able to take into account spatial and temporal auto-
correlation phenomena, naturally introduced by the spatial proximity of
consumers, and by the seasonality of the energy consumption trends.
In this paper, we investigate the adoption of several solutions to take
into account spatio-temporal autocorrelation phenomena. Specifically,
we investigate the contribution provided by the explicit representation
of temporal information related to historical measurements using multi-
ple strategies, as well as that of simultaneously predicting multiple future
consumption measurements in a multi-step predictive setting. Finally, we
investigate the effectiveness of injecting descriptive features to make the
learning methods aware of the spatial closeness among the consumers.
The experimental evaluation performed on a real-world electrical net-
work demonstrated the positive contribution of making the models aware
of spatio-temporal autocorrelation phenomena, and proved the overall
superiority of models based on the multi-step predictive setting.

Keywords: Energy forecasting · Multi-step prediction ·
Spatio-temporal autocorrelation

1 Introduction

The infrastructures for the energy distribution are continuously subject to evo-
lutions, mainly because of the generally increasing energy demand, as well as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 141–156, 2022.
https://doi.org/10.1007/978-3-031-18840-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_11&domain=pdf
http://orcid.org/0000-0003-1791-5998
http://orcid.org/0000-0003-2181-5631
http://orcid.org/0000-0003-2520-3616
http://orcid.org/0000-0002-6690-7583
https://doi.org/10.1007/978-3-031-18840-4_11

142 A. D’Aversa et al.

of the introduction of new technologies, such as renewable power plants and
car charging stations. The need of managing complex scenarios led to the def-
inition of the so-called smart grids, that are distribution networks that exploit
sensor measurements, advanced communication technologies and predictive com-
ponents, to quickly adapt the network behavior to multiple possible situations.
In this context, the accurate forecasting of the customer energy consumption is
fundamental, not only to optimize the planning of network maintenance opera-
tions over the long term, but also to properly tune the production of energy from
fossil fuel power stations. Indeed, producing energy from fossil sources generally
leads to high CO2 emissions, and the overproduction may also lead to the need
of additional resources for storage. On the other hand, the underestimation of
the energy consumption may compromise the system reliability, since an exces-
sive demand could easily degenerate into a blackout. For these reasons, it is of
paramount importance to predict the energy consumption in the network.

Machine learning methods can fruitfully be adopted to support this task,
since they are able to exploit historical data, temporal trends and other con-
sumer characteristics to build accurate predictive models. In general, the tempo-
ral dimension plays a central role for this task. Indeed, we can expect to observe
cyclical behaviors, for example, along the months of each year (i.e., a generally
higher consumption during summer and winter, mainly due to heating/cooling
systems, rather than during spring and autumn).

The temporal dimension can generally introduce autocorrelation phenomena,
known as the correlation of a signal with a delayed copy of itself as a function
of delay, or the similarity between observations as a function of the time lag
between them [4]. Analogously, the spatial closeness can influence the measure-
ments: the Tobler’s first law of geography [17] states that “everything is related
to everything else, but near things are more related than distant things”. In this
specific context, spatially close consumers may exhibit a similar behavior, mainly
because they live in similar climatic conditions. Although considering temporal
and spatial autocorrelation phenomena should generally lead to a higher accu-
racy of the learned models [15], they have not yet been fully exploited in the
context of the prediction of the energy consumption. Indeed, in the literature we
can find only few works that investigated their contribution for the forecasting
of the energy consumption, which are based on classical ARIMA models [6,12].
On the other hand, their positive effect on the accuracy of the learned predic-
tive models has been observed in the context of the energy production from
photovoltaic power plants [5]. However, the challenges arising while aiming to
predict the energy production and the energy consumption are different: while
the former task is much more dependent on physical factors, such as weather
conditions, in the latter, the prediction is mainly dependent on the behavior of
consumers. Therefore, it is expected that the temporal dimension is more influ-
ential on the prediction of the energy consumption than for the prediction of the
energy production.

In this paper, we propose a method for the forecasting of the monthly energy
consumption of the consumers of a smart grid on a yearly horizon. The proposed

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 143

approach is able to properly capture and model both temporal and spatial auto-
correlation phenomena. Different strategies are proposed for both the temporal
and the spatial dimensions, each of which is able to properly model specific tem-
poral/spatial characteristics and relationships among different measurements.
Finally, we investigate the possibility to predict the 12 monthly measurements
of the considered yearly horizon simultaneously, in a multi-step predictive set-
ting, that, as we will emphasize in Sect. 2, is able to implicitly model the tem-
poral relationships among the measurements at different time points, for both
descriptive and target variables.

The rest of the paper is organized as follows. In Sect. 2, we briefly discuss
existing related work. In Sect. 3, we describe the proposed approach for the
forecasting of the energy consumption in smart grids, taking into account both
temporal and spatial autocorrelation phenomena. In Sect. 4 we describe our
experiments on a real-world energy distribution network. Finally, in Sect. 5, we
draw some conclusions and outline possible future work.

2 Related Work

In the literature, we can find several works that propose methods for the predic-
tion of the energy consumption, at different spatial and temporal scales: from
high and very localized geographical resolutions (e.g., hourly measurements of a
single sensor) to coarser temporal resolutions (e.g., days, months, years) and/or
covering a large geographic area (e.g., a region or a country). Existing approaches
can also be categorized as single-step methods, that aim to predict the value of
a target attribute for a single future time step, and multi-step methods, that
aim to predict the value of a target attribute for multiple steps ahead. In [16],
the authors described different strategies that can be adopted to solve the latter
task, including recursive, direct and Multi-Input Multi-Output (MIMO) strate-
gies. The recursive strategy exploits an approach based on self learning, that
iterates a single-step ahead predictive model to obtain the desired forecasts:
after estimating the next value of the sequence, it is fed back as a descriptive
variable for the subsequent prediction. The direct strategy is based on learning
a set of independent predictive models, where the i-th model is able to return a
prediction for the i-th time points in the future. Note that both recursive and
direct strategies are actually single-step approaches that are applied multiple
times to obtain a multi-step ahead prediction. On the other hand, the MIMO
strategy aims to learn one global model that returns a vector of predictions,
also possibly taking into account the existence of dependencies between future
values, that in principle may be beneficial in terms of forecasting accuracy [3].

In [2], the authors proposed a deep learning architecture to forecast the cus-
tomer energy consumption for the next month, using the measurements of the
previous 12 months and other information such as the target month and the cat-
egory of the customer (e.g., residential, business, etc.). Among the considered
deep learning models, LSTM achieved the lowest mean absolute error.

144 A. D’Aversa et al.

In [18] the authors compared the performance of different methods, such
as Linear Regression, Regression Trees and Multivariate Adaptive Regression
Spline (MARS), for the prediction of the next month energy consumption using
climate data and the characteristics of the buildings (e.g., size of living area, num-
ber of rooms, etc.). The authors also aggregated the individual consumptions to
predict the monthly consumption for groups of buildings. Results showed that
MARS was the best model for individual households, while regression trees out-
performed the competitors for the prediction of the consumption of the groups.

In [10], the authors adopted the direct strategy to predict the electric load
10 d ahead using ARIMA and LSTM. The models were evaluated on three elec-
trical networks and the results showed a general superiority of LSTM.

Despite several studies have been proposed for energy consumption forecast-
ing, only a few of them investigated the possible contribution coming from spatial
and temporal autocorrelation phenomena. An attempt in this direction has been
done in [6,12], where the authors considered spatial autocorrelation phenomena
for the forecasting of the regional electricity consumption. In these works, a spa-
tial ARMA model (SAR-ARMA) and a spatial ARIMA model (ARIMA-Sp) were
proposed. However, auto-regressive approaches usually train a model based on
the target variable only, and are not able to take into account additional features
and possible dependencies between them and the target variable.

In [9], the authors proposed a deep neural network, called LSTNet, which
combines convolutional neural networks to capture short-term patterns and
LSTM or GRU for long-term patterns. To overcome the issue caused by the
vanishing gradient, which affects the possibility to properly capture long-term
interdependencies, the authors proposed the introduction of a recurrent-skip
layer or an attention mechanism. Similarly, in [14], the authors proposed TPA-
LSTM, an attention-recurrent neural network that allows the model to learn
interdependencies among multiple variables across all previous time-steps.

The consideration of the spatial and of the temporal dimensions gained a
general interest for other tasks related to time-series forecasting, even if not
specifically focused on the prediction of the energy consumption. In particular,
neural network architectures that simultaneously consider both temporal and
spatial dimensions have been recently proposed. A relevant example is Graph
WaveNet [19], a spatio-temporal graph convolutional network for multi-step fore-
casting, tailored for the prediction of traffic conditions at different locations.
It uses dilated convolution networks to capture temporal dependencies and a
self-adaptive adjacency matrix to capture spatial correlations. Another relevant
example applied in the same domain is GMAN [20], which exploits a graph
multi-attention network, with spatial and temporal attention mechanisms. Since
it can be considered as one of the most recent approaches for multi-step pre-
diction, that also consider spatio-temporal aspects, it will be considered as a
state-of-the-art competitor in our experimental evaluation (see Sect. 4).

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 145

3 The Proposed Method

In this section, we describe our approach to forecast the monthly energy con-
sumption of consumers on a yearly horizon. Therefore, the goal is to predict,
for each consumer, 12 energy consumption values, i.e., one for each month of
the subsequent year. As mentioned in Sect. 1, predicting such values is useful
for planning network maintenance operations, as well as for tuning the energy
production from fossil sources.

In the following subsections, we report the details of the proposed strategies
to take into account the temporal and the spatial autocorrelation phenomena.
After properly representing the temporal and the spatial dimensions, different
standard regression models can be learned on top. At the end of the following
subsection, we also briefly introduce the considered regressors and their extension
to the multi-step predictive setting proposed in this paper.

3.1 Modeling the Temporal Autocorrelation

We propose different strategies to take into account the temporal autocorrela-
tion, exploiting historical data about consumptions. We investigate two forecast-
ing settings, namely, single-step (SS), where the 12 predictions are obtained by
a recursive approach, and multi-step (MS), falling in the MIMO category, which
goal is that of learning a global predictive model that returns the whole vector
of 12 predictions. More formally, considering a time series of length w of energy
consumptions for the consumer c, the SS setting consists in the exploitation of
the historical measurements up to the time-step t-1 to predict the next time-step
yc,t. Through the recursive strategy, the predicted value yc,t is considered as a
real measurement for the forecast of the energy consumption yc,t+1, and so on
up to predict yc,t+11 (see the left part of Fig. 1).

Note that the adopted recursive strategy exhibits both advantages and dis-
advantages with respect to the direct strategy. Among the strong points, we can
mention that the number of training instances increases (roughly by a factor of
w), thanks to the fact that the measurement at a given month is considered mul-
tiple times, in different positions of the w-dimensional training time series (see,
for example, the measurement related to Dec 2018 in the left part of Fig. 1). On
the other hand, this aspect introduces the disadvantage of losing the temporal
semantics of each descriptive feature, namely, each feature does not represent the
same month of the year for all the training instances. This means that the model
learned in this setting cannot easily detect and exploit seasonality phenomena.
Another disadvantage is that, since it relies on a self-training approach, forecast-
ing errors at the initial time-steps may be propagated to subsequent time-steps
[13]. In order to alleviate the first issue, keeping the advantages of the recursive
strategy, we explicitly represent the temporal information through additional
features. In this respect, we propose two alternative settings:

– SS-DT (Described Target time-step), that introduces two additional descrip-
tive features, namely the year jt and the month mt of the target value to
predict yc,t;

146 A. D’Aversa et al.

Fig. 1. A graphical representation of the single-step (SS) and multi-step (MS) learning
settings. In the SS setting, the prediction for the i-th step is added to the descriptive
variables for the prediction of the (i + 1)-th step, while in the MS setting a global
method able to simultaneously predict the value for all the 12 steps is learned.

– SS-DTP (Described Target and Previous time-steps), that introduces the
year jt and the month mt of the target value to predict yc,t, as well as the years
jt−1, jt−2, . . . , jt−w and the months mt−1,mt−2, . . . , mt−w of the considered
w previous observations.

It is noteworthy that, although SS-DT and SS-DTP explicitly represent the
information about the year and the month associated with a given descriptive
feature, the absolute value of a month does not properly represent the temporal
cyclicity. In other words, December (12) 2018 may appear very distant to Jan-
uary (1) 2019, while it is actually temporarily close. To alleviate this issue, we
resort to directional statistics that allow considering the temporal position of the
target month, as well as that of the months historical data refer to (only in the
case of SS-DTP). At this purpose, we use directional statistics that envelope the
probability density function around the circumference of a unit circle represent-
ing the months of the year (see Fig. 2). More specifically, we compute the radial
closeness between two months m1 and m2, represented as integer values in the
interval [1; 12], on the unit circumference as 2π − dr(m1,m2), where:

dr(m1,m2) = min

(
2π

12
· |m1 − m2|, 2π − 2π

12
· |m1 − m2|

)
(1)

is the radial distance between m1 and m2 on the acute angle (see Fig. 2 for an
example of radial distance computed between February and May).

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 147

Fig. 2. Representation of the month of the year on the circumference of a unit circle. In
the example, the radial distance between February and May is computed as d(2, 5) =
min(2π/12 · |2 − 5|, 2π − 2π/12 · |2 − 5|) = min(1.57, 4.71) = 1.57.

In our case, we compute the radial closeness between a given month in the
descriptive attributes and the month of the target time-step to predict. Hence-
forth, the settings that exploit this radial closeness will be distinguished through
a C (cyclical), appended to the name of the setting.

As regards the MS setting, we adopt the MIMO strategy to forecast 12 time-
steps yc,t, . . . , yc,t+11 for the consumer c at the same time. In this setting, we
consider as input features the monthly energy consumption of the previous year
(i.e., of the previous w = 12 months) and the year of the target time-step (see
the right part of Fig. 1). Unlike the SS setting, MS does not need additional fea-
tures to represent temporal relationships. Indeed, it is implicitly able to capture
potential temporal dependencies, since the i-th feature always represents the i-
th month of the year. On the other hand, while the recursive SS setting may be
more suited when the training data is limited, MS preserves the dependencies
also between the predicted values, and avoids the propagation of errors typical
of the recursive SS strategy.

Note that, however, not all the regression methods can be easily extended to
work in this setting. In our system, we adopt three different regressors, namely,
Linear Regression, Regression Trees and Random Forests, also because of their
ability to produce accurate models also when the available training data is poor.

Linear Regression methods aim to identify a linear model with coefficients
q = (q1, q2 . . . , qp), where p corresponds to the number of descriptive features
plus 1 (the intercept), that minimizes the residual sum of squares between the
observed target values in the training set, and the predictions provided by the
linear approximation. For multi-step prediction, in our case, since we need to
predict the consumption for the 12 subsequent months, identifying a predictive
linear model corresponds to finding a matrix of coefficients Q ∈ R

p×12 such that
1
N

∑N
i=1 ||u�

i Q−v�
i ||22 is minimized, where ui ∈ R

p is the vector of the descriptive
features of the i-th training instance concatenated with a 1 (to take into account
the intercept), N is the number of training instances, and vi ∈ R

12 is the vector
of target values for the 12 subsequent months for the training instance ui.

Learning methods for the construction of Regression Trees and ensemble
thereof (e.g., Random Forests) are usually based on top-down induction pro-

148 A. D’Aversa et al.

cedures. Starting from the root node containing all the training instances, at
each iteration, the best split, consisting of a descriptive feature and a threshold,
is identified such that it well discriminates/separates the instances falling in the
resulting children nodes. Leaf nodes of the tree store the actual predictions. The
identification of the best split relies on some heuristics that, for regression tasks,
are usually based on the reduction of the variance.

The extension of these approaches to solve multi-step tasks consists in storing
multiple output values in the leaf nodes (12 in our case), and in a modified
heuristics able to globally consider the contribution of the split towards the
proper prediction of all the target values. Specifically, we adopt the arithmetic
mean of the variance reduction computed over all the target time-steps.

3.2 Modeling the Spatial Autocorrelation

As mentioned in Sect. 1, taking into account the spatial autocorrelation in the
construction of the predictive models may be beneficial in terms of accuracy,
since spatially close consumers could exhibit a similar behavior, mainly due to
similar climatic conditions. We evaluate the contribution coming from the adop-
tion of two different spatial statistics [5]: the Local Indicator of Spatial Associa-
tion (LISA) [1] and the Principal Coordinates of Neighbor Matrices (PCNM) [7].

According to [1], i) a LISA for a given observation must give an indication
of the extent of significant spatial clustering of similar values around that obser-
vation, and ii) the sum of LISAs for all observations must be proportional to a
global indicator of spatial association. In our case, given the set of n consumers,
we first compute a neighborhood matrix A ∈ {0, 1}n×n as:

A[ca, cb] =
{

1 ifdist(ca, cb) < maxDist
0 otherwise

(2)

where ca and cb are the a-th and the b-th consumers (with 1 ≤ a ≤ n and
1 ≤ b ≤ n), dist(ca, cb) is the geodesic distance between consumers, and maxDist
is a user-defined threshold on the maximum distance to consider the spatial
autocorrelation phenomena among consumers as relevant. The matrix A is then
normalized so that the sum of each row equals to 11, as follows:

A′[ca, cb] =
1

max(
∑n

i=1 A[ca, ci], 1)
A[ca, cb] (3)

Using the matrix A′, we can estimate the contribution of the neighborhood on
each descriptive feature. Specifically, we first compute the z-score normalization
for each descriptive feature x of each consumer ca as:

x′
ca =

xca − μx,ca

σx,ca

, (4)

1 Some rows in the normalized matrix can have a sum of 0, when the corresponding
consumer has no other consumers falling in its neighborhood, according to maxDist.

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 149

where μx,ca and σx,ca are the average and the standard deviation of the descrip-
tive variable x for the consumer ca. Using the normalized value x′

ca , we compute
the spatial indicator Ix,ca for the variable x of the consumer ca as:

Ix,ca = x′
ca ·

n∑
i=1

(A′[ca, ci] · x′
ci) (5)

The computed spatial indicators, one for each feature, can finally be added as
additional descriptive features. Therefore, this solution leads to the introduction
of w additional features, that represent the initial descriptive features influenced
by the spatial closeness with other consumers.

A different approach to consider the spatial autocorrelation, as mentioned
before, is represented by the PCNM. It allows us to extract additional, separate,
spatial descriptive attributes, starting from the closeness among consumers. Its
computation consists of the following main steps:

1. Compute a truncated squared distance matrix, as follows:

D∗ =
{

dist(ca, cb)2 ifdist(ca, cb) ≤ maxDist
4 · maxDist otherwise

(6)

where maxDist is a user-defined threshold.

2. Perform the Principal Coordinate Analysis (PCoA) [8] on D∗. This analysis
consists in the diagonalization of Δ, where:

Δ = −1
2

(
I − 1 · 1�

n

)
D∗

(
I − 1 · 1�

n

)
(7)

with I be the identity matrix, and 1 be a vector of 1s. After diagonalization,
the principal coordinates are obtained by scaling each eigenvector of Δ by the
square root of its correspondent eigenvalue. Note that the eigenvalues can be
either positive or negative. Eigenvectors associated with high positive (resp.,
negative) eigenvalues represent a high positive (resp., negative) autocorrelation.
Since we are interested in considering only positive spatial autocorrelation phe-
nomena (i.e., spatially close consumers with similar behaviors, rather than spa-
tially distant consumers with similar behaviors), only eigenvectors corresponding
to positive eigenvalues are kept and used as spatial descriptors.

Henceforth, the settings that exploit the spatial dimension will be distin-
guished through LISA or PCNM, appended to their name. In Fig. 3, a graphi-
cal overview of all the proposed learning setting is provided, where the temporal,
the spatial or both temporal and spatial dimensions are considered.

4 Experiments

In this section, we describe the considered real-world dataset and the experi-
mental setting. Then, we show and discuss the obtained results.

150 A. D’Aversa et al.

Fig. 3. A graphical overview of all the proposed learning setting is provided, where the
temporal, the spatial or both temporal and spatial dimensions are considered.

4.1 Experimental Setting

We considered a dataset of an electrical network of a small city in the South
of Italy consisting of 159 customers. Each customer is associated with the geo-
graphic coordinates (latitude and longitude) of the energy substation he/she is
connected to in the network. The dataset consists of energy consumption data
(in kWh) collected every month for a period of 10 years, i.e., from 2010 to 2019.
Following a cross-validation setting for time-series, we iteratively consider each
year from 2012 to 2019 as target year (see the quantitative information of the
dataset in Table 1), with the goal of predicting the energy consumption for all
the months of the target year, for all the customers of the network.

We performed the experiments with all the settings proposed in Fig. 3, to
properly assess the contribution coming from the specific strategy adopted to
take into account temporal and/or spatial autocorrelation phenomena. For LISA,
we computed 12 indexes, one for each descriptive variable representing previous
consumptions. For PCNM, we extracted 15 eigenvectors, following the experi-
mental results reported in [5]. For both, the threshold maxDist was set to 0.3
km, which is adequate in the context of a small city. As regressors, as introduced

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 151

Table 1. Quantitative information of each fold of the considered dataset.

Fold Training
period

Testing
period

SS training
instances

MS training
instances

1 2010–2011 2012 1,908 159

2 2010–2012 2013 3,816 318

3 2010–2013 2014 5,724 477

4 2010–2014 2015 7,632 636

5 2010–2015 2016 9,540 795

6 2010–2016 2017 11,448 954

7 2010–2017 2018 13,356 1,113

8 2010–2018 2019 15,264 1,272

in Sect. 3.1, we considered Linear Regression (LR), Regression Trees (RT) and
Random Forests (RF), available in scikit-learn. All the regressors were run with
the default values for their parameters, except for the regression trees, for which
we performed a grid search for the pruning parameter ccp alpha ∈ {0.2, 0.5, 1.0}.
In Sect. 4.2, we report the best obtained results (i.e., with ccp alpha = 1.0).

As state-of-the-art competitor, we considered GMAN [20], a recently pro-
posed neural network that is able to capture both spatial and temporal dimen-
sions, through attention mechanisms, and of performing multi-step predictions.
We adapted GMAN so that the temporal embedding encodes the month of each
time-step, instead of the day and the hour, as in its original implementation. We
also optimized its user-defined threshold ε on the spatial closeness, considering
ε = 0.1 (as suggested in [20]) and ε = 0.05. In Sect. 4.2, we report only the best
obtained results (i.e., with ε = 0.05). Note that GMAN also performs a tuning
phase on a validation set. Therefore, for this method, the results on the first fold
are not available, since it requires data of an additional year as validation set.

As evaluation measure, we adopted the Relative Squared Error (RSE), which,
contrary to other common measures like the RMSE, allows us to evaluate the
predictive accuracy with respect to a simple predictor based on the average:
a RSE close to 0.0 (resp. 1.0) means that the model has a perfect predictive
accuracy (resp., equivalent to that of the simple average predictor), while a RSE
over 1.0 means that the model is worse than the simple predictor. Formally, RSE

=
∑

t (r
t−r̃t)2

∑
t(r

t−r)2 , where rt and r̃t are the true and the predicted values, respectively,
for the t-th time-step, and r is the average value in the dataset.

4.2 Results and Discussion

In Table 2, we show the RSE result for each testing fold (target year), obtained by
the considered regressors in the proposed settings, and by the competitor GMAN.
We recall that the results of the first fold (2012) for GMAN are not available
because it requires an additional year of data for its validation phase. Moreover,
we do not report the results obtained in some settings of the LR (i.e., SS-DTP

152 A. D’Aversa et al.

NoSpat, LISA and PCNM), since it was not able to fit a proper model (i.e., RSE
> 10) with the small amount of available training data for the first fold.

Looking at Table 2, we can make several observations. First, for the years 2012
and 2013, the RSE values appear quite high. This is due to the scarce availability
of training data for these folds (see Table 1). An exception is represented by the
results obtained by MS, especially in the settings MS+PCNM and MS+LISA,
that achieved good results also for these years. This may be due to the fact that
the poor availability of historical data has been compensated by the captured
dependencies among different time-steps and by the exploitation of the spatial
information. Note that MS+PCNM appeared to be the setting that provided
the best results overall for most of the years. Focusing on the regressors, the
adoption of RF generally provided the best results in most of the settings, and
when learned from the MS+PCNM setting, it led to the best absolute results.
Note that, as emphasized in Sect. 3.1, learning methods for the induction of
multi-step RTs and RF simultaneously optimize the construction of the model
by considering all the time-steps. The capability of RF to reduce the variance in
the predictions with respect to RT provided further improvements.

Looking at the results obtained by the considered state-of-the-art competi-
tor GMAN, we can notice that, besides not being able to make predictions for
the year 2012, the obtained RSE for the 2013 is very high, and quite close to
the average baseline for the 2014. The RSE values become more acceptable for
the subsequent years, but still higher than those achieved by the approaches
proposed in this paper. These results prove that the approaches proposed in
this paper to capture temporal and spatial autocorrelation phenomena are very
effective with respect to those adopted by GMAN, and confirm the limitation of
deep neural network architectures when the available training data is poor.

Overall, the strongest contribution appears to come from the MS setting.
This observation is also clear from the average results shown in Fig. 4, where we
can easily observe that the charts related to MS generally appear the lowest ones
(i.e., with the lowest RSE), independently on the regressor. This confirms that
the temporal dimension (and, especially, temporal autocorrelation phenomena)
is fundamental for the prediction of the energy consumption in smart grids,
and that capturing dependencies between different target time-steps provides
higher advantages than explicitly representing the temporal information in the
descriptive attributes, as done in the ST-DTP setting, and than adopting the
radial temporal closeness (C). We further stress this aspect by observing the
line charts in Fig. 5, where we plot the average RSE per month obtained by
the best configurations according to Fig. 4 for each pair of setting (MS, SS-
DT, SS-DTP) and regressor. From Fig. 5, we can observe that GMAN generally
achieved an average high RSE, and that the MS setting led to more stable errors
over the months of the year. This is due to its capability of capturing possible
dependencies among the months of the year, and to avoid the propagation of
errors introduced by recursive approaches. An interesting case is observable in
the period April-May, where the highest prediction errors are made by almost all
the approaches, probably due to the abrupt climatic changes that often happen

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 153

Table 2. Results in terms of RSE for each testing fold. The best result for each regressor
(sub-table) and fold (column) is emphasized in bold, while the best result overall for
each fold (column) is emphasized in bold with a gray background.

2012 2013 2014 2015 2016 2017 2018 2019
GMAN - 9.640 0.840 0.650 0.370 0.280 0.270 0.359

L
in
ea

r
R
eg

re
ss
io
n

SS-DT

NoSpat 0.364 0.719 0.263 0.302 0.219 0.245 0.130 0.242
LISA 0.366 0.726 0.264 0.305 0.221 0.251 0.133 0.243

PCNM 0.392 0.757 0.279 0.301 0.225 0.247 0.131 0.252
C 0.363 0.715 0.266 0.298 0.219 0.241 0.130 0.240

LISA+C 0.364 0.720 0.266 0.302 0.221 0.247 0.133 0.241
PCNM+C 0.391 0.752 0.281 0.298 0.224 0.243 0.130 0.249

SS-DTP

NoSpat - 0.712 0.260 0.289 0.214 0.249 0.127 0.235
LISA - 0.718 0.258 0.293 0.214 0.253 0.129 0.236

PCNM - 0.750 0.274 0.288 0.219 0.252 0.128 0.245
C 0.402 0.712 0.261 0.290 0.214 0.250 0.127 0.236

LISA+C 0.359 0.717 0.260 0.292 0.214 0.254 0.129 0.236
PCNM+C 0.382 0.750 0.274 0.289 0.219 0.252 0.128 0.245

MS
NoSpat 0.384 0.792 0.324 0.312 0.205 0.298 0.132 0.276
LISA 0.417 0.862 0.332 0.330 0.235 0.333 0.136 0.284

PCNM 0.394 0.826 0.350 0.319 0.214 0.302 0.134 0.282

R
eg

re
ss
io
n

T
re

es

SS-DT

NoSpat 0.737 0.805 0.464 0.569 0.750 0.672 0.317 0.405
LISA 0.774 1.866 0.540 0.430 0.619 0.915 0.295 0.448

PCNM 0.820 0.885 0.428 0.412 0.432 0.688 0.302 0.374
C 0.462 1.386 0.414 0.456 0.447 0.444 0.341 0.445

LISA+C 0.437 1.429 0.527 0.472 0.469 0.684 0.351 0.390
PCNM+C 0.492 1.634 0.446 0.521 0.380 0.766 0.392 0.366

SS-DTP

NoSpat 0.624 1.361 0.500 0.631 0.480 0.377 0.336 0.475
LISA 0.504 1.273 0.608 0.464 0.901 0.833 0.274 0.413

PCNM 0.998 1.411 0.397 1.577 0.842 0.866 0.440 0.587
C 0.851 1.072 0.556 0.689 0.694 0.562 0.332 0.504

LISA+C 0.880 1.462 0.475 0.571 0.498 0.627 0.391 0.388
PCNM+C 0.794 0.854 0.520 0.779 0.575 0.455 0.295 0.587

MS
NoSpat 0.364 1.026 0.425 0.463 0.349 0.436 0.630 0.448
LISA 0.443 1.096 0.732 0.502 0.307 0.366 0.323 0.435

PCNM 0.460 0.984 0.454 0.390 0.303 0.467 0.337 0.348

R
an

d
om

F
or

es
ts

SS-DT

NoSpat 0.300 0.893 0.336 0.307 0.197 0.572 0.132 0.251
LISA 0.296 0.915 0.345 0.302 0.215 0.570 0.127 0.251

PCNM 0.336 0.855 0.344 0.305 0.188 0.564 0.130 0.256
C 0.320 0.912 0.326 0.310 0.211 0.553 0.135 0.244

LISA+C 0.305 0.902 0.330 0.311 0.226 0.565 0.133 0.249
PCNM+C 0.332 0.889 0.315 0.304 0.200 0.555 0.133 0.244

SS-DTP

NoSpat 0.297 0.882 0.312 0.293 0.197 0.587 0.134 0.248
LISA 0.302 0.876 0.333 0.306 0.217 0.595 0.131 0.251

PCNM 0.331 0.869 0.324 0.297 0.196 0.573 0.133 0.248
C 0.320 0.883 0.316 0.296 0.193 0.588 0.135 0.246

LISA+C 0.303 0.904 0.327 0.294 0.208 0.592 0.128 0.247
PCNM+C 0.325 0.855 0.320 0.298 0.199 0.568 0.132 0.249

MS
NoSpat 0.262 0.578 0.254 0.277 0.195 0.219 0.148 0.234
LISA 0.263 0.520 0.291 0.286 0.200 0.226 0.147 0.229

PCNM 0.259 0.534 0.253 0.270 0.197 0.219 0.148 0.236

154 A. D’Aversa et al.

Fig. 4. Results in terms of average RSE. For readability, the results of LR in the upper
part are graphically truncated to 1.0 (but they are actually around 1.5).

Fig. 5. RSE results averaged over the years for each month, obtained by the best
configurations (see Fig. 4) for each pair of setting (MS, SS-DT, SS-DTP) and regressor.

in the South of Italy during such a period. On the other hand, the settings based
on MS are able to provide accurate predictions also in these cases.

5 Conclusion

In this paper, we proposed different approaches to take into account temporal
and spatial autocorrelation phenomena while learning forecasting models for the
prediction of the energy consumption in smart grids. For the temporal dimen-
sion, we investigated the contribution of the explicit representation of temporal
information related to historical measurements, also through the temporal radial
closeness, and that of predicting the value for multiple future time-steps simulta-
neously. For the spatial dimension, we investigated the contribution coming from
the injection of LISA indexes and eigenvectors computed through the PCNM.

The experiments proved the overall superiority of models learned in the multi-
step predictive setting, and the positive contribution coming from the PCNM,
also when the available training data are scarce. The learned models also signif-
icantly outperformed the considered state-of-the-art competitor GMAN, which
is based on a multi-attention neural network architecture.

Leveraging Spatio-Temporal Autocorrelation to Improve the Forecasting 155

For future work, we will consider the adoption of the proposed strategies
for short-term predictions, in a nowcasting environment, and the integration of
transfer learning techniques [11] to further improve the predictive accuracy when
the available data related to a specific geographic area are poor.

References

1. Anselin, L.: Local indicators of spatial association – LISA. Geogr. Anal. 27(2),
93–115 (1995)

2. Berriel, R.F., Lopes, A.T., Rodrigues, A., Varejao, F.M., Oliveira-Santos, T.:
Monthly energy consumption forecast: a deep learning approach. In: 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 4283–4290. IEEE (2017)

3. Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step-
ahead prediction in local learning. Int. J. Forecast 27(3), 689–699 (2011)

4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis:
Forecasting and control, 5th edn. Wiley (2015)

5. Ceci, M., Corizzo, R., Fumarola, F., Malerba, D., Rashkovska, A.: Predictive mod-
eling of PV energy production: how to set up the learning task for a better predic-
tion? IEEE Trans. Ind. Inf. 13(3), 956–966 (2016)

6. Cabral, D.A., Legey, J., et al.: Electricity consumption forecasting in Brazil: a
spatial econometrics approach. Energy 126, 124–131 (2017)

7. Dray, S., Legendre, P., Peres-Neto, P.R.: Spatial modelling: a comprehensive frame-
work for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model.
196(3–4), 483–493 (2006)

8. Gower, J.C.: Some distance properties of latent root and vector methods used in
multivariate analysis. Biometrika 53(3–4), 325–338 (1966)

9. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal
patterns with deep neural networks. In: The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval, pp. 95–104 (2018)

10. Masum, S., Liu, Y., Chiverton, J.: Multi-step time series forecasting of electric load
using machine learning models. In: Rutkowski, L., Scherer, R., Korytkowski, M.,
Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI),
vol. 10841, pp. 148–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91253-0 15

11. Mignone, P., Pio, G.: Positive unlabeled link prediction via transfer learning for
gene network reconstruction. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos,
G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 13–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01851-1 2

12. Ohtsuka, Y., Oga, T., Kakamu, K.: Forecasting electricity demand in Japan:
a Bayesian spatial autoregressive ARMA approach. Comput. Stat. Data Anal.
54(11), 2721–2735 (2010)

13. Serafino, F., Pio, G., Ceci, M.: Ensemble learning for multi-type classification in
heterogeneous networks. IEEE Trans. Knowl. Data Eng. 30(12), 2326–2339 (2018)

14. Shih, S.-Y., Sun, F.-K., Lee, H.: Temporal pattern attention for multivariate time
series forecasting. Mach. Learn. 108(8), 1421–1441 (2019). https://doi.org/10.
1007/s10994-019-05815-0

15. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network regression with predic-
tive clustering trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis,
M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 333–348. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6 22

https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-030-01851-1_2
https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1007/978-3-642-23808-6_22

156 A. D’Aversa et al.

16. Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of
strategies for multi-step ahead time series forecasting based on the NN5 forecasting
competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

17. Tobler, W.R.: A computer movie simulating urban growth in the detroit region.
Econ. Geogr. 46(sup1), 234–240 (1970)

18. Williams, K.T., Gomez, J.D.: Predicting future monthly residential energy con-
sumption using building characteristics and climate data: a statistical learning
approach. Energy Build. 128, 1–11 (2016)

19. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

20. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for
traffic prediction. In: AAAI 2020, vol. 34 , no. 01, pp. 1234–1241 (2020)

http://arxiv.org/abs/1906.00121

Elastic Product Quantization for Time
Series

Pieter Robberechts(B) , Wannes Meert , and Jesse Davis

Department of Computer Science, Leuven.AI, KU Leuven, B-3000 Leuven, Belgium
{pieter.robberechts,wannes.meert,jesse.davis}@kuleuven.be

Abstract. Analyzing numerous or long time series is difficult in practice
due to the high storage costs and computational requirements. Therefore,
techniques have been proposed to generate compact similarity-preserving
representations of time series, enabling real-time similarity search on
large in-memory data collections. However, the existing techniques are
not ideally suited for assessing similarity when sequences are locally out
of phase. In this paper, we propose the use of product quantization for
efficient similarity-based comparison of time series under time warping.
The idea is to first compress the data by partitioning the time series into
equal length sub-sequences which are represented by a short code. The
distance between two time series can then be efficiently approximated
by pre-computed elastic distances between their codes. The partitioning
into sub-sequences forces unwanted alignments, which we address with a
pre-alignment step using the maximal overlap discrete wavelet transform
(MODWT). To demonstrate the efficiency and accuracy of our method,
we perform an extensive experimental evaluation on benchmark datasets
in nearest neighbors classification and clustering applications. Overall,
the proposed solution emerges as a highly efficient (both in terms of
memory usage and computation time) replacement for elastic measures
in time series applications.

1 Introduction

Data mining applications on large time series collections are constrained by the
computational cost of similarity comparisons between pairs of series and memory
constraints on the processing device. The general approach to overcome these
constraints is to first apply a transformation that produces a compact represen-
tation of the time series that retains it’s main characteristics. Many techniques
have been proposed to generate such representations for time series analysis,
including techniques based on Discrete Fourier Transform (DFT) [6], Discrete
Wavelet Transform (DWT) [3], Singular Value Decomposition (SVD) [2], and
segmentation [9].

Most of these techniques are based on the Euclidean distance as the met-
ric for similarity. However, there are some cases where the Euclidean distance,
and lock-step measures in general, may not be entirely adequate for estimating

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 157–172, 2022.
https://doi.org/10.1007/978-3-031-18840-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_12&domain=pdf
http://orcid.org/0000-0002-3734-0047
http://orcid.org/0000-0001-9560-3872
http://orcid.org/0000-0002-3748-9263
https://doi.org/10.1007/978-3-031-18840-4_12

158 P. Robberechts et al.

similarity [18]. The reason is that the Euclidean distance is sensitive to dis-
tortions along the time axis. To avoid this problem, similarity models should
allow some elastic shifting of the time dimension to detect similar shapes that
are not locally aligned. This is resolved by elastic measures such as Dynamic
Time Warping (DTW) [22]. The ability to accommodate temporal aberrations
comes at a cost however, as the standard dynamic programming approach for
computing the DTW measure has a quadratic computational complexity.

To accommodate efficient approximate nearest neighbor (NN) search in large
datasets under time warping, Zhang et al. [29] proposed to adapt the technique
of product quantization (PQ) [8]. In the standard feature-vector case, PQ is
extremely performant for approximate NN search based on Euclidean distance.
Its core idea is to (1) partition the vectors into disjoint subspaces, (2) cluster
each subspace independently to learn a codebook of centroids, (3) re-represent
each vector by a short code composed of its indices in the codebook, and (4)
efficiently conduct the search over these codes using look-up tables. This has the
dual benefits of greatly shrinking the memory footprint of the training set while
simultaneously dramatically reducing the number of computations needed.

Unfortunately, naively combining the conventional PQ with DTW results in
both missed and unwanted alignments. First, PQ segments a time series and
the optimal alignment can cross segments. Second, applying DTW on a segment
forces an unwanted alignment at the beginning and end of a segment. Zhang
et al. [29] got round these challenges with a filter-and-refine post-processing
step that calculates the exact DTW distances between the best candidate time
series to filter out the erroneous alignments. However, this increases the memory
footprint of NN-DTW (as both the original training set and a compact repre-
sentation have to be retained) and does not solve the problem of false dismissals
due to missed alignments. Instead, we propose a pre-alignment step using the
maximal overlap discrete wavelet transform (MODWT). The resulting method
is an approximate DTW method that is fast in its own right while it can still
benefit from previous advances in speeding-up DTW, such as constraint bands
and pruning strategies.

The contributions of this paper are as follows: (1) We bridge the gap between
PQ and DTW, introducing a pre-alignment step to minimize the effect of seg-
mentation that is part of PQ on DTW; (2) We show how our method is com-
patible with and speeds up tasks such as nearest neighbours and clustering; (3)
We demonstrate empirically the utility of our approach by comparing it to the
most common distance measures on the ubiquitous UCR benchmarks.

2 Background

A large body of literature is available on dynamic time warping and product
quantization. In this section, we restrict our presentation to the notations and
concepts used in the rest of the paper.

Elastic Product Quantization for Time Series 159

2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) computes the distance between two time series
A and B after optimal alignment [22]. The alignment is computed using (1)
dynamic programming with

dtw dist[i, j] = (Ai − Bj)2 + min

⎧
⎪⎨

⎪⎩

dtw dist[i − 1, j − 1]
dtw dist[i, j − 1]
dtw dist[i − 1, j]

where i and j are indices for A and B, and (2) the minimum cost path in the
matrix dtw dist[i, j]. The value DTW (A,B) = dtw dist[length(A), length(B)] is
the distance between series A and B. DTW is particularly useful for comparing
the shapes of time series, as it compensates for subtle variations such as shifts,
compression and expansion.

The standard dynamic programming approach for computing the DTW mea-
sure has a quadratic computational complexity. Four common approaches exist to
enable scaling to large datasets: constraint bands or warping windows [22], lower-
bound pruning [10–12,20,24,27], pruning warping alignments [25], and DTW
approximations [23,26]. While proposed methods across these four approaches
reduce the theoretical complexity of DTW down from quadratic, they incur other
costs. Constraining bands decreases accuracy, especially in domains with large
distortions. Lower-bound pruning is increasingly efficient for larger datasets, but
cannot be applied for tasks such as clustering since it requires the complete pair-
wise distance matrix. Pruning warping alignments is a valuable addition but has
limited impact when many suitable warping paths exist. Approximate methods
introduce an additional complexity that requires more memory and loses the com-
putational simplicity of the original DTW algorithm making it often slow in prac-
tice [28]. In contrast, our proposed approach is fast in its own right while main-
taining compatibility with the aforementioned techniques.

2.2 Product Quantization

Product Quantization (PQ) [8] is a well-known approach for approximate nearest
neighbors search for standard feature-vector data using the Euclidean distance.
It confers two big advantages. One, it can dramatically compress the size of
the training set, which enables storing large datasets in main memory. Two, it
enables quickly computing the approximate Euclidean distance between a test
example and each training example.

PQ compresses the training data by partitioning each feature vector used
to describe a training example into M equal sized groups, termed subspaces. It
then learns a codebook for each subspace. Typically, this is done by running k-
means clustering on each subspace which only considers the features assigned to
that subspace. Then the values of all features in the subspace are replaced by a
single v-bit code representing the id of the cluster centroid ck that the example
is assigned to in the current subspace. Hence, each example is re-represented by
M v-bit code words. This mapping is termed the quantizer.

160 P. Robberechts et al.

At test time, finding a test example’s nearest neighbor using the squared
Euclidean distance can be done efficiently by using table look-ups and addition.
For a test example, a look-up table is constructed for each subspace. This table
stores the squared Euclidean distance to each of the K cluster centroids in that
subspace. Then the approximate distance to each training example is computed
using these look-up tables and the nearest example is returned.

3 Approximate Dynamic Time Warping with Product
Quantization

This section introduces the DTW with Product Quantization (PQDTW) app-
roach [29]. First, we discuss how each component of the original PQ method
can be adapted to a DTW context. This encompasses learning the codebook,
encoding the data and computing approximate distances between codes. Then,
we extend the base method to compensate for the alignment loss caused by par-
titioning the time series. Finally, we explain how PQDTW can be used in NN
search and clustering.

3.1 Training Phase

The training phase comprises the learning of a codebook using DTW Barycenter
Averaging (DBA) k-means [19]. Let us consider a training set of time series
X = [x1, x2, . . . , xN] ∈ R

N×D (i.e., N time series of length D). Each time series
in the dataset is first partitioned in M sub-sequences, each of length D/M .
Subsequently, a sub-codebook for each m ∈ {1, . . . , M} is computed: Cm =
{cmk }Kk=1, with centroids cmk ∈ R

D/M . Each Cm is obtained by running the DBA
k-means clustering over the mth part of the training sequences, where K is the
number of clusters. The K × M centroids obtained by k-means represent the
most commonly occurring patterns in the training time series’ subspaces.

Two other pre-processing steps can be performed during the training phase
to speed-up the encoding of time series and computing the symmetric distances
between codes: the construction of the Keogh envelopes [10] of all centroids and
the computation of a distance look-up table with the DTW distance between each
pair of centroids in a subspace. These steps are explained in the next sections.

The training step has to be performed once to optimize it for a specific type
of data, but can be reused to speed up computations on future examples from
the same domain.

3.2 Encoding Time Series

Using the codebook, we can represent any time series as a short code. The idea is to
(1) partition a time series into sub-sequences (2) independently encode each sub-
sequence to an identifier, and (3) re-represent the time series as a concatenation
of the identifiers. A given time series x ∈ R

D is therefore mapped as:

x → [
q1(x1, . . . xD/M), . . . , qM (xD−D/M+1, . . . , xD)

]
,

Elastic Product Quantization for Time Series 161

where qm : RD/M → {1, . . . , K} is the quantizer associated with the mth sub-
space that maps a sub-sequence

xm =
(
xm×(D/M)), . . . x(m+1)×(D/M)

)

to the identifier of the nearest centroid cmk in the codebook. Formally, this search
is defined as:

qm(xm) = arg mink∈{1,...,K}DTW (xm, cmk) .

Practically, this search is performed by linearly comparing a D/M -
dimensional sub-sequence to K centroids (i.e., a NN-DTW query), which has
a computational complexity of O(K × (D/M)2) with standard DTW. Since the
sub-sequences are quantized separately using M distinct quantizers, the overall
computational complexity of encoding a time series is O(K × D2/M).

The quadratic complexity of the dynamic programming approach to DTW
makes the NN-DTW queries required to encode a time series highly computa-
tionally demanding. In regular NN-DTW, cheap-to-compute lower bounds are
a key strategy to combat this by pruning the expensive DTW computations
of unpromising nearest neighbour candidates [20]. This involves computing an
enclosing envelope around the query (i.e., the sub-sequence to be encoded) which
is reused to compute the actual lower bound between the query and each test
time series. This would be inefficient in our use case, since it would require the
construction of the envelope every time the PQ is used to encode a time series.
Therefore, we reverse the query/data role in the lower bound search [20]. This
enables computing the envelopes only once around the codebook, which can be
done during the training phase.

Many DTW lower bounds have been proposed, including LB Kim [11], LB
Keogh [10], LB Improved [12], LB New [24] and LB Enhanced [27]; as well as
cascading lower bounds that start with a looser (and computationally cheap) one
and progress towards tighter lower bounds [20]. In the experimental evaluation
of this paper, we use a cascading lower bound of LB Kim and the reversed
LB Keogh, which provides an effective trade-off between speed and tightness
for small window sizes (i.e., as we obtain after partitioning the time series) [27].
Nevertheless, other bounds might be more effective depending on the time series’
properties. Given the pre-computed upper and lower envelopes at training time,
the cost of computing these bounds is only O(D/M).

While this encoding is the most costly part of the PQDTW algorithm, it can
be executed offline in many applications. For example, in NN search, the dataset
can be encoded during the training phase and the costs can be amortized over
multiple subsequent queries.

3.3 Computing Distances Between Time Series

Consider two time series x and y ∈ R
D and a trained product quantizer q. The

original PQ paper [8] proposes two methods to estimate the distance between
these two time series: symmetric and asymmetric distance computation.

162 P. Robberechts et al.

Symmetric Distance. This method computes the distance between the PQ-codes
of x and y. Therefore, both time series are first encoded by the product quantizer.
Secondly, a distance score is computed by fetching the centroid distances from
q’s pre-computed distance table. This means that the distances between the
centroids cmi and cmj of x and y in each subspace m need to be aggregated into
one distance d as:

d̂(x, y) = d(q(x), q(y)) =

√
√
√
√

M∑

m=1

d(cmi , cmj)2.

The distances d(cmi , cmj)2 between each pair of centroids in a subspace are pre-
computed during the training phase and stored in a M -by-K-by-K look-up table.
Hence, symmetric distance computation is very efficient, taking only O(M) table
look-ups and additions.

Asymmetric distance. This method encodes only one of the two time series and
estimates the distance between the PQ code of x and the original series y as

d̂(x, y) = d(q(x), y) =

√
√
√
√

M∑

m=1

d(cmi , ym)2.

The distances d(cmi , ym)2 between the M centroids of x and the M subspaces of
y have to be computed on-the-fly. Hence, this method is inefficient to compute
the distances between a single pair of time series. However, when computing the
distances between a query time series y and a database with many time series
X = {xn})Nn=1, it becomes efficient to first construct a distance look-up table for
each pair (ym, cmi) with m ∈ {1, . . . , M} and i ∈ {1, . . . ,K}. The computation
of this look-up table takes O(D×K) DTW computations, and is performed just
once per query. Subsequently, the distance computation itself takes only O(M)
table look-ups and additions.

Whether symmetric or asymmetric is the most appropriate distance measure
depends on the application, the amount of data and the required accuracy.

3.4 Memory Cost

Due to the conversion of time series to short codes, product quantization allows
large time series collections to be processed in memory. Since these codes consist
of M integers ranging from 1 to K, the parameters M and K control the main
memory cost of our approach. Typically, K is set as 256, such that each code
can be represented by 8M bits (i.e., each integer in the code is represented by
8 bits). If a D-dimensional time series is represented in single-precision floating-
point format (i.e., 32×D bits), a PQ-code with K = 256 compresses the original
series by a factor 32D/8M = 4D/M . For example, time series of length 140 can
be represented 80× more efficiently by PQ-codes with 7 subspaces. Larger values

Elastic Product Quantization for Time Series 163

for M lead to faster performance and a higher memory cost, but the effect on
representation error is domain-dependent.

In addition to the data memory cost, our method requires a small amount
of additional memory for storing the codebook (32×D ×K bits), pre-computed
distance look-up table (32×K2 ×M bits) and Keogh envelopes (2×32×D ×K
bits). In total, this corresponds to 32×K × (3×D+K ×M), which is negligible
in relation to the data memory cost. For our previous example, with D = 140,
K = 256 and M = 7, the total cost is limited to 2.3 MB.

3.5 Pre-alignment of Subspaces

When partitioning time-series into equal length sub-sequences, the endpoints of
these sub-sequences might not be aligned well. This problem is illustrated in
Fig. 1. The middle row of the plot shows the subspaces obtained by dividing
two similar time series of the Trace dataset [4] in four equal partitions. Notice
that the distinctive peak near the first split point falls in different subspaces for
both series. Because it is not possible to warp across segments, the effect is that
the location of the split point will tend to contribute disproportionately to the
estimated similarity, resulting in a higher approximate distance. In this section
we introduce a pre-alignment step to deal with this problem.

Fig. 1. Segmentation of two time series of the Trace [4] data set (top) in four subspaces
using fixed-length subspaces (middle) and our own MODWT-based method (bottom).

The idea is to identify local structures in the time series data and segment the
time series at the boundaries of these structures. For this, we use the Maximal
Overlap Discrete Wavelet Transform (MODWT), as proposed by Hong et al. [7].
Via convolution of a raw time series x ∈ R

D and the basis functions (Haar
wavelet) of the MODWT, we obtain the scale coefficients cj,i, where j is the
level of the decomposition ∈ {1, . . . , J} and i ∈ {1, . . . , D}. These coefficients
are proportional to the mean of the raw time series data. The scale coefficients
of the MODWT have a length D that is the same as that of the raw time series.

164 P. Robberechts et al.

Next, time segment points are extracted as the points at which the signs of the
differences between the time series data and scale coefficients change, as shown
in Fig. 2. Since the complexity of MODWT is only O(J × D), this segmentation
step does not increase our method’s overall complexity.

Fig. 2. Illustration of the segmentation procedure based on the pre-alignment of time
series. MODWT-based time segment points are extracted as the points at which the
signs of the differences between the time series data and scale coefficients change. If
the tail of one of the fixed length segment points contains one of these MODWT-based
segment points, the MODWT-based point is used instead.

Since one time series archive typically contains series with different patterns,
partitioning the time series based on local structures implies that the number
of subspaces can vary between sequences. If this happens, the distances between
two such series cannot be approximated by the sum of the distances between
their subspaces. Therefore, a degree of fuzziness is needed to cut the time series
such that each series is split in the same number of segments of similar length
while avoiding splits of distinctive local structures. This is achieved by specifying
a tail, t, measured backwards from each original fixed-length split point l, within
which the cut should be applied; thus the cut will fall between l − t and l. If the
MODWT method identifies split points in this period, the right-most point is
used to split the series; otherwise, the l remains the original split point. Hence,
we obtain subspaces varying in length between l and l + t. This is illustrated in
Fig. 2. Finally, we re-interpolate the obtained segments to have the same length
l + t [15], which is required to be able to pre-compute the Keogh envelopes.

4 Data Mining Applications

Similarity comparisons between pairs of series are a core subroutine in most time
series data mining approaches. In this section, we discuss how PQDTW can be
incorporated in 1-NN and hierarchical clustering.

Elastic Product Quantization for Time Series 165

4.1 NN Search with PQ Approximates

A large body of empirical research has shown that NN-DTW is the method of
choice for most time series classification problems [5,18,27]. However, being a
lazy learner, the main drawback is its time and space complexity. The entire
training set has to be stored and the classification time is a function of the size
of this training set. Therefore, NN-DTW still has severe tractability issues in
some applications. This is especially true for resource-constrained devices such
as wearables.

NN search with PQ is both fast (only the query has to be encoded online and
only M additions are required per distance calculation) and reduces significantly
the memory requirements for storing the training data. It proceeds as follows:
Given a query time series y ∈ R

D and a database of N time series X = {xn}Nn=1

where each xn ∈ R
D. At training time, a PQ is first trained on (a subset of)

the database time series, which are subsequently encoded (Sect. 3.2) using the
trained PQ. At prediction time, the approximate distance is computed between
the query vector y and each encoded database time series. In most cases, one
should use the asymmetric version, which obtains a lower distance distortion.
When the training set is large, the O(D × K) DTW computations required to
compute the asymmetric distance look-up table is relatively small. The only
exceptions are queries in small databases (albeit, techniques other than PQ are
more appropriate in such cases) or applications with many time-critical queries.

The linear scan with PQDTW is fast compared to the state-of-the-art NN-
DTW methods [20], but still slow for a large number of N . To handle million-scale
search, a search system with inverted indexing was developed in the original PQ
paper [8].

4.2 Clustering with PQ Approximates

While all of the conventional clustering approaches rely on similarity compar-
isons in which DTW can be substituted by PQDTW, we focus on the hierarchi-
cal algorithms in this paper. These have great visualization power in time series
clustering and do not require the number of clusters as an additional parame-
ter. However, at the same time, hierarchical clustering does not scale to large
datasets, because it requires the computation of the full pairwise distance matrix.
Therefore, lower-bound pruning cannot be applied.

For constructing a pairwise distance matrix, asymmetric distance computa-
tion is an expensive operation since it involves the computation of the full DTW
distance matrix between the subspaces of each time series in the dataset and
the codebook (i.e., N × K × M DTW computations). This is only acceptable
if the number of time series is a lot bigger than the number of centroids in the
codebooks.

166 P. Robberechts et al.

Fig. 3. Empirical evaluation of the time complexity of PQDTW on a random walks
dataset.

Using symmetric distance computation, two similar time series have a high
likelihood to be mapped to the same centroids, resulting in an approximate dis-
tance of zero. While the resulting errors on the estimated distance are small,
this might be problematic in clustering applications where the ranking of dis-
tances is important. This is solved by partially replacing the estimated dis-
tance when subspaces are encoded to the same code. As an efficient and ele-
gant replacement value, we propose the Keogh lower bound. Given a sub-
quantizer qm and two subspaces xm and ym, the distance value would be
max(lb(xm, qm(ym)), lb(qm(xm), ym)). This bound is guaranteed to be between
0 and the exact distance.

5 Experimental Settings

This section describes the experimental settings for the evaluation of PQDTW.

Platform. We ran all experiments on a set of identical computing servers1 using
a single core per run. In order to reduce the variance in runtime caused by other
processes outside our control and the variance caused by the random selection of
centroids in the DBA k-means step of the PQDTW encoding step, we executed
each method five times with different seeds and report the mean accuracy and
median run time.

Baselines. We compare PQDTW against the most common and state-of-the-
art distance measures for time series: Euclidean distance (ED), dynamic time
warping (DTW) [22], window-constrained dynamic time warping (cDTW) [22],
and shape-based distance (SBD) [17]. For DTW we use the PrunedDTW [25]
technique to prune unpromising alignments. For constrained DTW, we consider
window sizes of 5 and 10%, as well as the window size which leads to the minimal
1NN classification error on the training set. We denote the window size with a
suffix (e.g., cDTW10) and using cDTWX for the optimal one. SBD is a state-
of-the-art shape-based distance measure, achieving similar results to cDTW and
1 Intel Core i7-2600 CPU @ 3.40 GHz; 15 Gb of memory; Ubuntu GNU/Linux 18.04.

Elastic Product Quantization for Time Series 167

DTW while being orders of magnitude faster. In addition, we compare against
SAX [13], which is perhaps the most studied symbolic representation for time
series. We use an alphabet size α = 4, and segments of length l = 0.2 ∗ L (where
L is length of the time series) [16]. Finally, we compare against standard PQ
using the Euclidean distance (i.e., a version of PQDTW without pre-alignment
that uses ED instead of DTW), denoted PQED.

Implementation. We implemented PQDTW, ED, DTW, and SBD under the
same framework, in C(ython) [14], for a consistent evaluation in terms of both
accuracy and efficiency. For repeatability purposes, we make all source code
available.2 For SAX, we use the Cython implementation available in tslearn.3

Parameter Settings. A disadvantage of the PQDTW approach is that we have
many hyper-parameters to tune. We use a default codebook size of 256 (or all
time series in the training set if there are less examples) and symmetric distance
computation. To determine the optimal subspace size, wavelet level, tail and
quantization window, we use the Tree-structured Parzen Estimator algorithm [1]
which we ran for 12 h on each dataset. This hyper-parameter tuning is a one-
time effort. We use 5-fold cross validation on the training set with a test set of
25% and evaluate the 1NN classification error. This results in multiple Pareto
optimal solutions with respect to runtime and accuracy. We report the results
for the most accurate solution on the training set.

Statistical Analysis. We analyze the results of every pairwise comparison of
algorithms over multiple datasets using the Friedman test followed by the post-
hoc Nemenyi test. We report statistical significant results with a 95% confidence
level.

6 Experimental Results

The goal of this evaluation is to demonstrate the efficiency and accuracy of
PQDTW in classification and clustering applications. This evaluation will first
demonstrate the empirical time complexity of PQDTW in comparison to DTW
and evaluate the effect of parameter settings on a synthetically generated random
walk dataset. Second, we benchmark PQDTW for time series classification and
clustering on 48 UCR datasets.4

6.1 Empirical Time Complexity

We begin with an evaluation of the empirical time complexity on a random walk
dataset. Although these random walks are not ideal to evaluate the PQDTW

2 https://github.com/probberechts/PQDTW.
3 We use tslearn v0.5.0.5. See https://tslearn.readthedocs.io.
4 Only the datasets available since 2018 [4] were used to keep the runtime of the

experiments manageable, while achieving a maximal overlap with existing research.

https://github.com/probberechts/PQDTW
https://tslearn.readthedocs.io

168 P. Robberechts et al.

Table 1. Comparison of PQDTW against other distance measures for 1NN and hier-
archical complete linkage clustering. The column “Mean difference” contains the mean
and standard deviation of the relative difference in classification error (1NN) and
rand index (clustering) between PQDTW and the corresponding measure, whereas
“Speedup” indicates the factor by which PQDTW speeds up the runtime.

1NN Clustering

Mean error difference Speedup Mean ARI difference Speedup

ED 0.017(066) ×14.00 0.013(099) ×2.64

DTW −0.014(064)∗ ×25.01 0.004(122) ×225.20

cDTW5 −0.036(044)∗ ×12.91 0.008(097) ×32.83

cDTW10 −0.029(052)∗ ×15.81 −0.002(110) ×59.01

cDTWX −0.037(050)∗ ×14.15 −0.003(106) ×50.45

SBD −0.021(056)∗ ×6.45 −0.011(105) ×47.18

SAX 0.293(199)+ ×190.63 0.043(140) ×884.77

PQED 0.038(071)+ ×0.83 −0.006(057) ×0.75
∗ PQDTW performs worse (p < 0.05); + PQDTW performs better (p < 0.05)

algorithm due to lack of common structures that can be aligned, they allow
us to do reproducible experiments on a large set of time series collections of
varying sizes and time series lengths. The results show a significant speedup of
PQDTW (subspace size = 20%, no pre-alignment) over DTW, which improves
relatively for longer time series (Fig. 3a). For computing the pairwise distance
matrix of 100 time series, PQDTW is between 2.9 times (length 100) and 5.6
times faster (length 3200). Interestingly, due to lower bound pruning, the average
computation time of PQDTW per pair of time series decreases a lot if the number
of time series grows. Therefore, for a collection of 800 time series of length 3200,
PQDTW is already 45.8 times faster.

The parameters that affect the speed of PQDTW most are the subspace size
and codebook size (Fig. 3b). In accordance with the theoretical time complexity
O(K × D2/M), the runtime increases linearly when less subpaces or a larger
codebook is used.

Finally, the pre-alignment step has a minor effect on the runtime (Fig. 3c),
which is mainly determined by the level of the wavelet decomposition. Increasing
the tail length does not have a significant effect.

6.2 1NN Classification

Table 1 reports the classification error and runtime of PQDTW against the state-
of-the-art distance measures. For DTW and cDTW, we use the Keogh lower
bound for early stopping. The statistical test suggests that there is no signifi-
cant difference between PQDTW and ED. PQDTW performs at least as well
in 23 datasets. All other distance measures that operate on the raw data out-
perform PQDTW with statistical significance. However, Fig. 4 shows that the

Elastic Product Quantization for Time Series 169

difference in accuracy between PQDTW and cDTWX (i.e., the best performing
measure) is small in all cases, while PQDTW is 14x faster on average. Addition-
ally, PQDTW compresses the training data by a factor varying between 26.2 and
2622.4, depending on the dataset and PQDTW’s parameter settings. From this
experiment, we can conclude that (1) PQDTW is competitive with ED, but is
much faster and requires far less space; and that (2) PQDTW outperforms SAX
and PQED, the baseline dimensionality reduction techniques based on ED.

6.3 Hierarchical Clustering

We use agglomerative hierarchical clustering with single, average, and complete
linkage criteria. To evaluate the obtained clustering, we compute a threshold that
cuts the produced dendrogram at the minimum height such that k clusters are
formed, with k corresponding to the number of classes in the dataset. Subse-
quently, we compute the Rand Index (RI) [21] over the test set using the class labels
as the ground truth clustering. The major difference in performance among hierar-
chical methods is the linkage criterion and not the distance measure [17]. Since the
complete linkage criterion gave the best results, we only report these in Table 1.
There are no significant differences among all distance measures that we evalu-
ated. Figure 4b shows that the differences in RI between PQDTW and cDTWX
are indeed small. Since the full distance matrix has to be computed to obtain a
hierarchical clustering and lower bound pruning cannot be applied, the gain in
performance is larger compared to 1NN. Our approach is one order of magnitude
faster than cDTW and SBD, and two orders of magnitude faster than DTW.

Fig. 4. Comparison of (a) the 1NN classification error and (b) the rand index for hier-
archical complete linkage clustering with PQDTW and cDTWX over 48 UCR datasets.
Circles in the green area indicate datasets for which PQDTW performs better than
cDTWx. (Color figure online)

170 P. Robberechts et al.

7 Conclusions

This work presented PQDTW, a generalization of the product quantization algo-
rithm for Euclidean distance to DTW. By exploiting prior knowledge about the
data through quantization and compensating for subtle variations along the time
axis through DTW, PQDTW learns a tighter approximation of the original time
series than other piecewise approximation schemes proposed earlier. Overall, the
results suggest that PQDTW is a strong candidate for time series data analysis
applications in online settings and in situations where computation time and
storage demands are an issue.

Acknowledgements. This work was partially supported by iBOF/21/075, the KU
Leuven Research Fund (C14/17/070), VLAIO ICON-AI Conscious, and the Flemish
Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaan-
deren” program.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference Knowledge Discovery and Data Mining
(2019)

2. Chan, F.P., Fu, A.C., Yu, C.: Haar wavelets for efficient similarity search of time-
series: with and without time warping. IEEE Trans. Knowl. Data Eng. 15(3),
686–705 (2003)

3. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceed-
ings 15th International Conference on Data Engineering. ICDE 99, p. 126. IEEE
Computer Society, USA (1999)

4. Dau, H.A., et al.: The UCR time series classification archive (2018). https://www.
cs.ucr.edu/∼eamonn/time series data 2018/

5. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)

6. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data. SIGMOD 94, pp. 419–429. ACM Press, New
York (1994)

7. Hong, J.Y., Park, S.H., Baek, J.G.: SSDTW: shape segment dynamic time warping.
Expert Syst. Appl. 150, 113291 (2020)

8. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

9. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

10. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386 (2005)

11. Kim, S.W., Park, S., Chu, W.W.: An index-based approach for similarity search
supporting time warping in large sequence databases. In: Proceedings 17th Inter-
national Conference on Data Engineering, pp. 607–614. IEEE (2001)

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Elastic Product Quantization for Time Series 171

12. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound.
Pattern Recognit. 42(9), 2169–2180 (2009)

13. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic repre-
sentation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

14. Meert, W., Hendrickx, K., Van Craenendonck, T., Robberechts, P.: DTAIDistance
(2022). https://doi.org/10.5281/zenodo.3981067https://github.com/wannesm/
dtaidistance

15. Mueen, A., Keogh, E.: Extracting optimal performance from dynamic time warp-
ing. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD 2016, pp. 2129–2130. ACM Press,
New York (2016)

16. Nguyen, T.L., Gsponer, S., Ifrim, G.: Time series classification by sequence learning
in all-subsequence space. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). ICDE 1, pp. 947–958(2017)

17. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1855–1870 (2015)

18. Paparrizos, J., Liu, C., Elmore, A.J., Franklin, M.J.: Debunking four long-standing
misconceptions of time-series distance measures. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. SIGMOD 20,
pp. 1887–1905. ACM Press, New York (2020). https://doi.org/10.1145/3318464.
3389760

19. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recognit. 44(3), 678–693
(2011)

20. Rakthanmanon, T., et al.: Searching and mining trillions of time series subse-
quences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 262–270.
ACM Press, New York (2012)

21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971). https://www.jstor.org/stable/2284239

22. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Signal Process. 26(1), 43–49 (1978)

23. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and
space. Intell. Data Anal. 11(5), 561–580 (2007)

24. Shen, Y., Chen, Y., Keogh, E., Jin, H.: Accelerating time series searching with
large uniform scaling. In: Proceedings of the 2018 SIAM International Conference
on Data Mining. SIAM Publications, pp. 234–242 (2018)

25. Silva, D.F., Batista, G.E.A.P.A.: Speeding up all-pairwise dynamic time warping
matrix calculation. In: Proceedings of the 2016 SIAM International Conference on
Data Mining, pp. 837–845. SIAM Publications (2016)

26. Spiegel, S., Jain, B.J., Albayrak, S.: Fast time series classification under lucky time
warping distance. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 71–78 (2014)

27. Tan, C.W., Petitjean, F., Webb, G.I.: Elastic bands across the path: a new frame-
work and method to lower bound DTW. In: Proceedings of the 2019 SIAM Inter-
national Conference on Data Mining, pp. 522–530. SIAM (2019)

28. Wu, R., Keogh, E.J.: FastDTW is approximate and generally slower than the
algorithm it approximates. IEEE Trans. Knowl. Data Eng. (2020)

https://doi.org/10.5281/zenodo.3981067
https://github.com/wannesm/dtaidistance
https://github.com/wannesm/dtaidistance
https://doi.org/10.1145/3318464.3389760
https://doi.org/10.1145/3318464.3389760
https://www.jstor.org/stable/2284239

172 P. Robberechts et al.

29. Zhang, H., Dong, Y., Li, J., Xu, D.: Dynamic time warping under product quan-
tization, with applications to time series data similarity search. IEEE IoT-J, 1
(2021). https://doi.org/10.1109/JIOT.2021.3132017

https://doi.org/10.1109/JIOT.2021.3132017

Stress Detection from Wearable Sensor
Data Using Gramian Angular Fields

and CNN

Michela Quadrini1(B) , Sebastian Daberdaku2 , Alessandro Blanda2,
Antonino Capuccio2, Luca Bellanova2, and Gianluca Gerard2

1 School of Science and Technology, University of Camerino,
Via Madonna Delle Carceri 9, 62032 Camerino, MC, Italy

michela.quadrini@unicam.it
2 Sorint.Tek, Via Zanica 17, 24050 Grassobbio, BG, Italy

{sdaberdaku,ablanda,acapuccio,lbellanova,ggerard}@latek.it

Abstract. Stress is a body reaction that is one of the principal causes
of many physical and mental disorders, including cardiovascular dis-
ease and depression. Developing robust methods for rapid and accurate
stress detection plays an important role in improving people’s life qual-
ity and wellness. Prior research shows that analyzing physiological sig-
nals collected from wearable sensors is a reliable predictor of stress. For
stress detection, methods based on machine learning techniques have been
defined in the literature. However, they require hand-crafted features to
be effective. Deep learning-based approaches overcome these limitations.

In this work, we introduce STREDWES, a method for stress detection
that analyzes biosignals obtained from wearable sensor data. STRED-
WES extracts signal fragments using a sliding windows approach and
converts them into Gramian Angular Fields images. These images are
then classified using a Convolutional Neural Network, a deep learning
algorithm. We apply our method to a publicly available dataset. The
analysis of the performance values shows that our method outperforms
other state-of-the-art competitors.

Keywords: Convolutional neural network · Gramian angular field ·
Biosignal · Stress detection

1 Introduction

Psychological stress is a body reaction, defined as “the non-specific response of
the body to any demand upon it” [1]. Its effects and symptoms impact humans
both physically and emotionally, playing a significant role in overall behavior,
wellbeing, and potentially personal and professional successes [11]. Moreover,
stress is one of the principal causes of many health problems and mental dis-
eases. According to the British Health and Safety Executive, stress accounted for
50% of all work-related ill health cases in 2020/21 and this rate is increased of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 173–183, 2022.
https://doi.org/10.1007/978-3-031-18840-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_13&domain=pdf
http://orcid.org/0000-0003-0539-0290
http://orcid.org/0000-0003-0544-1465
http://orcid.org/0000-0002-3832-0304
https://doi.org/10.1007/978-3-031-18840-4_13

174 M. Quadrini et al.

13% since 2015/16 [5]. Therefore, developing robust methods for the rapid and
accurate detection of stress impacts on quality of life: detecting and managing
stress before it turns into a more severe problem is crucial.

Assessments, like the Perceived Stress Scale (PSS) [8], are the most com-
monly used to detect stress. However, these techniques are time-consuming and
unreliable: questionnaires often contain a set of questions designed by psychol-
ogists and could be psychologically invasive. Therefore, the challenge is to find
a way to detect users’ stress states reliably, automatically, and non-invasively.
Since stress is a physiological response to a stimulus, multiple physiological sig-
nals can be employed to monitor such physiological reactions. Their analysis can
detect the presence of stress as a binary variable (stress/no stress). The recent
increase in usage of wearable devices, such as smartphones and smartwatches,
permits tracking steps and monitoring other physical activities of their users non-
invasively. Plarre et al. [13] and Hovsepian et al. [6] introduced stress detection
systems employing biosignals, such as an electrocardiogram (ECG) and respira-
tion (RESP). In this context, machine learning and deep learning methodologies
achieve promising results. Uddin and Canava proposed an approach based on
a convolutional neural network (CNN) and random forest [20]. In [2], various
physiological signals such as peripheral pulse volume (BVP), ECG, and elec-
tromyography (EMG) are used as input to a multichannel CNN for improving
the classification accuracy of the different affective states.

The analysis of the approaches in the literature and the definition of stress
as a non-specific response of the body suggests that combining several features
would provide better performance in stress detection. To the best of our knowl-
edge, the signal set encoding into a single image has not been investigated yet
for improving stress detection. Nevertheless, the output image formalizes the
temporal correlations among time points of different signals where a measure-
ment is taken. Motivated by the results obtained for the load-carrying weight
and posture classifications in [9], we introduce STREDWES, a method for stress
detection based on the wearable sensors data and a CNN architecture as a data
classifier. The data obtained from different wearable sensors determine a set
of signals that, in our approach, will be converted into a multichannel image
encoding their temporal correlations.

After preprocessing the data (consisting of resampling, outlier removal, and
normalization), the proposed method determines a dataset of samples that are
signal fragments obtained using the sliding window approach converted into
an image corresponding to the Gramian Angular Fields (GAF) [22]. Then, the
images are classified by a CNN architecture in stress, neutral, and amusement.

We applied the described approach to a public dataset, Wearable Stress
and Affect Detection (WESAD) [19]. WESAD is a publicly available dataset
containing data recorded from both a wrist-(Empatica E4) and a chest-worn
(RespiBAN) device. The performances obtained with the proposed approach on
the WESAD are compared with other classical machine learning algorithms [19]
and with the multimodal-multisensory sequential fusion model (MMSF) [10].
The comparison shows that our approach outperforms the competitors.

Stress Detection from Wearable Sensor Data 175

2 Materials and Methods

In this work, we propose a methodology based on CNN that combines a set of
signals to stress detection. We apply our approach on the WESAD dataset.

2.1 Dataset

WESAD is a public multimodal dataset containing laboratory-recorded data
of 15 subjects. The wearable sensors used to record data detected blood vol-
ume pulse (BVP), ECG, electrodermal activity (EDA), electromyogram (EMG),
respiration (RESP), body temperature (TEMP), and three-axis acceleration
(ACC). In particular, the dataset contains high-resolution physiological (ECG,
EDA, EMG, RESP, and TEMP) and motion (ACC) data sampled 700 Hz from
a chest-worn device (RespiBan) and lower resolution data from a wrist-worn
device (Empatica E4). The data consists of 14 time series of about 2 h each,
the total time of the experiment. These time series represent two major stim-
uli: amusement and stressful condition. These two conditions were interchanged
between different subjects to avoid effects of order. Moreover, the experiments
also measured baseline and two meditation periods. Figure 1 summarises the
protocol.

Fig. 1. The two different versions of the study protocol.

2.2 Preprocessing

Resampling. The dataset contains data sampled at 700 Hz and lower reso-
lution data. Therefore, we first standardize the sampling step of all signals to
simplify further processing. The signals sampled 700 Hz were resampled 35 Hz
by downsampling by an integer factor applying a lowpass filter (finite impulse
response of order 5). The Fourier method upsampled the signals at 35 Hz.

Outliers Removal. Some signals show anomalous peaks, probably due to
instrumental error. Therefore, we eliminated those anomalies from each time
series by applying a Hampel filter. The method takes sliding windows of 1 minute
as input. It computes the mean μ and standard deviation σ of values related to
the interval. The observations that exceed the threshold of 3σ from the mean
of the corresponding window are considered outliers (Pearson’s rule) and are
replaced with the closest value in chronological order. This approach allows us
to replace the outliers with values of the dataset without introducing high fre-
quencies.

176 M. Quadrini et al.

2.3 Sample Construction

Representation. To represent the temporal correlations among time points, we
associate an image to signals in a time window by employing the GAF representa-
tion [22]. The matrix represents time series in a polar coordinate system: each ele-
ment is the cosine of the summation of angles. To build the GAF matrix, we first
rescale the observations of the time series. Therefore, let X = {x1, x2, . . . , xn}
be the considered time series with n components. Each of them are rescaled to
the interval [−1, 1] by applying the mean normalization:

x̃j =
(xi − max(X)) + ((xi − min(X))

max(X) − min(X)
. (1)

Hence, the scaled series is represented by X̃ = {x̃1, x̃2, . . . , x̃n}. This is trans-
formed to a polar coordinates system by encoding the value as the angular cosine
and the time stamp as the radius:{

θi = arccos(x̃i), x̃i ∈ X̃

ri = ti
n , with i ∈ {1, . . . , N} (2)

where ti is the time stamp and n is the number of samples used to regularize
the span of the polar coordinate system.

Finally, Gramian summation angular field (GASF) and Gramian difference
angular field can be easily obtained by computing the sum/difference between
the points of the time series

GASF =

⎡
⎢⎣

cos(θ1 + θ1) . . . cos(θ1 + θn)
...

. . .
...

cos(θn + θ1) . . . cos(θn + θn)

⎤
⎥⎦ = X̃T · X̃ −

√
I − X̃2

T

·
√

I − X̃2 , (3)

GADF =

⎡
⎢⎣

sin(θ1 − θ1) . . . sin(θ1 − θn)
...

. . .
...

sin(θn − θ1) . . . sin(θn − θn)

⎤
⎥⎦ =

√
I − X̃2

T

· X̃ − X̃T ·
√

I − X̃2 , (4)

where I is the unit row vector [1, 1, . . . , 1].
Figure 2 shows GADF and GASF images of a signal window from WESAD,

respectively. Note that Eqs. 3 – 4 produce a 1D matrix as an output of the
encoding process. The matrix represents a heatmap whose values range from 0
(blue) to 1 (red). As a next step, we applied the RGB colour map to the image,
thus resulting in a three channel matrix (interested readers can refer to [21,22]).

Dataset Entry. The dataset entries consist of images (corresponding to
Gramian Angular Fields Matrices) determined from multimodal signal frag-
ments. To obtain them, there are several variables to consider, such as the
method to compute the GAF images (summation or difference), the time window

Stress Detection from Wearable Sensor Data 177

Fig. 2. GADF and GASF images of a single signal window in WESAD, respectively.
(Color figure online)

Table 1. Description of the employed hyperparameters.

Hyperparameter Description

Batch size Batch dimension

GAF method Method to compute the GAF images

Image size The dimension of GAF images

Learning rate Learning rate of the optimization algorithm

Optimizer Optimization algorithms

Time step The step of the sliding window

Window size The dimension of the sliding window

length, and the image size. The used hyperparameters with their description are
listed in Table 1.

Precomputing images for all the possible combinations of the parameters is
expensive in terms of computation time and space. Therefore, we define a sam-
ple generator, ImgGenerator, to give as input to the CNN that will generate the
samples online one batch at a time. The offsets of sliding windows are precom-
puted, ensuring that each window does not span over more than one emotional
state. Such offsets are also randomly shuffled at the end of each training epoch.

The sliding windows, and consequently the GAF images, are extracted “on
the fly” when the neural network requests a new batch from the generator.
Moreover, fixed the d size of the GAF image, the samples produced by the
ImgGenerator are matrices of dimensions (d, d, 14), where 14, i.e. the number
of channels of the image, corresponds to the number of time series available for
each subject. Such samples depend on the hyperparameters’ choice. To select
the best performing hyperparameters, we considered the classification accuracy
and sparse categorical cross-entropy of the validation set as the loss function. For
each configuration of hyperparameter values, a neural network was trained on the
samples related to these parameters for a given number of epochs. The obtained
loss function and the accuracy over the generated samples were evaluated.

178 M. Quadrini et al.

2.4 Convolutional Neural Network

CNN is one of the most successful deep learning architectures for its capacity
to analyze spatial information. It has been designed to process multiple data
types, especially two-dimensional images. The basic structure of CNNs consists
of an input layer, convolution layers, non-linear layers, pooling layers, and an
output layer. The input of the CNN is formalized as a tensor characterized
by a shape. After passing through a convolutional layer, the image becomes
abstracted to a feature map. Such feature maps are obtained at each convolution
layer by computing convolutions between local patches and weight vectors called
filters. The filters are applied repeatedly across the entire dataset since identical
patterns can appear regardless of the location in the data. In this way, the
efficiency of the training is improved by reducing the number of parameters to
learn. Then, the non-linear properties of feature maps are increased by non-linear
layers. Moreover, each pooling layer performs maximum or average subsampling
of non-overlapping regions in feature maps. This non-overlapping subsampling
permits the CNNs to aggregate local features to identify more complex ones.

3 Results

3.1 Implementation

Our approach is implemented in Python using the Tensorflow package [4]. The
implementation uses the library Keras [3] for developing both the sample gener-
ator and Convolutional Neural Network. The neural network is composed of two
2D convolutional layers with 32 filters, each followed by a MaxPooling2D layer
(with pool size = (2, 2)) and a layer of Dropout (with 0.25 dropout rate), and
finally from two fully connected layers with a Dropout layer equals to 0.5. The
activation function used is the ReLU for all layers except the last one that uses
the softmax function. Adam is the optimization algorithm with the learning rate
set as a definable parameter during the creation of the network. All experiments
were performed with the Amazon SageMaker Service using one “ml.g4dn.xlarge”
instance. Figure 3 outlines the approach, while the implementation is available
from the corresponding author upon reasonable request.

Fig. 3. General architecture of our approach.

Stress Detection from Wearable Sensor Data 179

3.2 Experiments

The 15 subjects of the dataset were split into two disjoint sets (train and test),
according to the sex of 12 and 3 people, respectively. To train our model,

– batch size, tested integer values from 4 to 512 in logarithmic scale;
– GAF method, tested method: “summation”, “difference”;
– image size, tested integer values from 16 to 128 in logarithmic scale;
– learning rate, tested real value from 1 · e−7 to 1 · e−1 in logarithmic scale;
– optimizer, tested methods: “Adam”, “AMSGrad” and “SGD”;
– time step, tested integer value from 1 to 30 in auto scale1;
– window size, tested integer value from 30 to 300 in logarithmic scale.

For each combination of hyperparameters, the network is trained for up to
50 epochs. To avoid overfitting, the method stops the training by employing the
early stopping method if the loss function on the train set does not improve for
five consecutive epochs. At the end of the training, it selects the net weights cor-
responding to the epoch with the best result on the validation loss. The Bayesian
hyperparameter search is repeated for 100 iterations. The method achieves the
maximum accuracy, 98.79%, for the hyperparameters reported in Table 2.

Table 2. Selected hyperparameters

Hyperparameter Best value

Time step 1

Optimizer AMSGrad

Learning rate 0.0012

Batch size 82

Window size 293

Image size 105

GAF method Difference

Due to the limited data sample we use Cross-validation, a resampling proce-
dure, to evaluate machine learning models. This procedure has a single parame-
ter, called k, which indicates the number of groups into which a given sample of
data must be divided. We randomly split the data into five groups composed of
3 subjects each. In each procedure step, a group forms the test dataset, while the
remaining groups set up a training dataset. Given the results obtained from the
hyperparameter search, we fixed the values of some of them (time step equals
1, GAF method is ’difference’, and the choice optimizer is ’AMSGrad’) and

1 the tuning algorithm chooses the best scale for the hyperparameter exploration
among linear, logarithmic, and reverse logarithmic.

180 M. Quadrini et al.

updated the range of the others. We performed a Bayesian search considering
the following intervals of hyperparameters:

– batch size, integer values from 4 to 82 by using auto scale;
– image size, integer values from 48 to 105 by using auto scale;
– learning rate, real values from 9.884e−4 to 4.235e−3, by using auto scale;
– window size, integer values from 145 to 300 by using auto scale.

As in the previous hyperparameter search, we trained the network for a max-
imum of 50 epochs by considering the Bayesian search. However, the method
stops the training in advance by the early stopping method if the loss function
on the validation set does not improve for five consecutive epochs to avoid over-
fitting. We obtained an average accuracy of the 92.58% and a standard deviation
of 10.09% by considering the hyperparameter values reported in Table 3.

Table 3. Selected hyperparameters with 5-Fold Cross-Validation

Hyperparameter Best value

Batch size 43

Image size 83

Learning rate 0.0016

Window size 294

Moreover, the high variance value indicates that the split train–validation sig-
nificantly affects the performance of the results. This aspect could be a limit of
the model because it could not generalize well when applied to new subjects.
To overcome this limitation, we consider the Leave-One-Subject-Out Cross-
Validation (LOSOCV), i.e., an approach that utilizes each subject as a “test”
set and the remaining 14 as a “training” set. In this way, we train the model
for a maximum of 10 epochs. For each LOSOCV iteration, the hyperparameter
search was performed on the 14 training subjects with the 5-fold CV described
earlier. The model stops the training when the first local minimum of the training
loss is reached and selects the weights at that minimum. We obtain an average
accuracy of the 91.16% and a standard deviation of 0.09%. Finally, we com-
pare the performance of STREDWES with other approaches based on classical
machine learning algorithms [19] and the multimodal-multisensory sequential
fusion model (MMSF) [10] defined in the literature that take as input the set of
physiological signals recorded in WESAD. Table 4 shows the accuracy and F1
score of each approach.

Stress Detection from Wearable Sensor Data 181

Table 4. Accuracy and F1-score of the considered approaches.

Method Accuracy (%) Weighted F1-score (%)

K-nearest 56.14 48.70

Decision Tree 63.56 58.05

Random Forest 74.97 64.08

AdaBoost 79.57 68.85

Linear discriminant analysis 75.80 71.56

MMSF 85.00 86.00

STREDWES 92.97 92.31

4 Conclusions and Future Work

In this work, we have introduced STREDWES, a method for stress detection
based on the wearable sensors data that takes advantage of temporal correlations
of the signal fragments obtained using the sliding windows approach, and CNN
as a classifier. We have applied our method to a public dataset, WESAD, and
we have analyzed the performance and effectiveness of our model against the
competitors. The results show that our method outperforms the competitors.

As a future work, we intend to apply our method to other public datasets,
like SWELL [7]. Moreover, we will investigate the role of the length of the slid-
ing windows by considering other approaches based on entropy, like [14], that
have obtained valuable results in the scenario of the prediction of protein-protein
interaction sites. Another important future direction is to explore how to extract
and represent the correlations that characterize the sliding windows. Possible
representations are images like Markov Transition Field (MTF) [21], simplicial
complexes by investigating the topological interpretation of the temporal rela-
tions as in [12]. Other representations to consider are arc-annotated sequences
for the analysis and comparison of signals exploiting tools like [18] and strings,
which allow applying techniques from formal methods to identify patterns [17].
Motivated by the previous results in [15,16], we also intend to apply deep learn-
ing techniques such as graph convolution networks or recurrent neural networks.

Acknowledgements. MQ is supported by the “GNCS - INdAM”. The authors are
grateful to Simone Cardis @ Sorint.Tek for his helpful insights and to Zerina Koplikaj
@ Sorint.Tek for proofreading the manuscript.

References

1. Bara, C.P., Papakostas, M., Mihalcea, R.: A deep learning approach towards mul-
timodal stress detection. In: AffCon@ AAAI, pp. 67–81 (2020)

2. Chakraborty, S., Aich, S., Joo, M.I., Sain, M., Kim, H.C.: A multichannel convo-
lutional neural network architecture for the detection of the state of mind using
physiological signals from wearable devices. J. Healthc. Eng. 2019, 5397814 (2019)

182 M. Quadrini et al.

3. Chollet, F., et al.: Keras (2015). https://keras.io
4. Girija, S.S.: Tensorflow: large-scale machine learning on heterogeneous distributed

systems. Software available from tensorflow. org 39(9), (2016)
5. Health and Safety Executive: HSE on work-related stress (2021). http://www.hse.

gov.uk/statistics/causdis/-ffstress/index.htm. Accessed 7 Mar 2022
6. Hovsepian, K., Al’Absi, M., Ertin, E., Kamarck, T., Nakajima, M., Kumar, S.:

cStress: towards a gold standard for continuous stress assessment in the mobile
environment. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 493–504 (2015)

7. Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M.A., Kraaij, W.: The swell
knowledge work dataset for stress and user modeling research. In: Proceedings of
the 16th International Conference on Multimodal Interaction, pp. 291–298 (2014)

8. Lee, E.H.: Review of the psychometric evidence of the perceived stress scale. Asian
Nurs. Res. 6(4), 121–127 (2012)

9. Lee, H., Yang, K., Kim, N., Ahn, C.R.: Detecting excessive load-carrying tasks
using a deep learning network with a Gramian angular field. Autom. Constr. 120,
103390 (2020)

10. Lin, J., Pan, S., Lee, C.S., Oviatt, S.: An explainable deep fusion network for
affect recognition using physiological signals. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 2069–
2072 (2019)

11. McEwen, B.S.: Protective and damaging effects of stress mediators. N. Engl. J.
Med. 338(3), 171–179 (1998)

12. Piangerelli, M., Maestri, S., Merelli, E.: Visualising 2-simplex formation in
metabolic reactions. J. Mol. Graph. Model. 97, 107576 (2020)

13. Plarre, K., et al.: Continuous inference of psychological stress from sensory mea-
surements collected in the natural environment. In: Proceedings of the 10th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works, pp. 97–108. IEEE (2011)

14. Quadrini, M., Cavallin, M., Daberdaku, S., Ferrari, C.: ProSPs: protein sites pre-
diction based on sequence fragments. In: International Conference on Machine
Learning, Optimization, and Data Science, pp. 568–580. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-95467-3 41

15. Quadrini, M., Daberdaku, S., Ferrari, C.: Hierarchical representation and graph
convolutional networks for the prediction of protein–protein interaction sites. In:
Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 409–420. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64580-9 34

16. Quadrini, M., Daberdaku, S., Ferrari, C.: Hierarchical representation for PPI sites
prediction. BMC Bioinf. 23(1), 1–34 (2022)

17. Quadrini, M., Merelli, E., Piergallini, R.: Loop grammars to identify RNA struc-
tural patterns. In: BIOINFORMATICS, pp. 302–309 (2019)

18. Quadrini, M., Tesei, L., Merelli, E.: ASPRAlign: a tool for the alignment of RNA
secondary structures with arbitrary pseudoknots. Bioinformatics 36(11), 3578–
3579 (2020)

19. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Intro-
ducing WESAD, a multimodal dataset for wearable stress and affect detection. In:
Proceedings of the 20th ACM International Conference on Multimodal Interaction,
pp. 400–408 (2018)

https://keras.io
http://www.hse.gov.uk/statistics/causdis/-ffstress/index.htm
http://www.hse.gov.uk/statistics/causdis/-ffstress/index.htm
https://doi.org/10.1007/978-3-030-95467-3_41
https://doi.org/10.1007/978-3-030-64580-9_34

Stress Detection from Wearable Sensor Data 183

20. Uddin, M.T., Canavan, S.: Synthesizing physiological and motion data for stress
and meditation detection. In: 2019 8th International Conference on Affective Com-
puting and Intelligent Interaction Workshops and Demos (ACIIW), pp. 244–247.
IEEE (2019)

21. Wang, Z., Oates, T.: Encoding time series as images for visual inspection and clas-
sification using tiled convolutional neural networks. In: Workshops at the Twenty-
Ninth AAAI Conference on Artificial Intelligence (2015)

22. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

Multi-attribute Transformers
for Sequence Prediction in Business

Process Management

Gonzalo Rivera Lazo(B) and Ricardo Ñanculef

Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

gfrivera@alumnos.inf.utfsm.cl, jnancu@inf.utfsm.cl

Abstract. Leveraging event logs to predict the evolution of an ongoing
process is a challenging task in business process management (BPM).
During the last years, sequence prediction models based on recurrent
neural nets have demonstrated promise in this task attracting consider-
able interest from the community. Meanwhile, Transformer-based mod-
els and other architectures substituting recurrence with attention have
become state-of-the-art in other sequence modeling tasks, especially in
natural language processing. This paper investigates models based on
the Transformer to predict operational business processes. In contrast to
recent studies, we propose Multi-attribute Transformers, which exploit
activities, resources, and time stamps for prediction, exploring different
architectures to encode and integrate this information into the model.
We also present multi-task variants of these models, which can predict
the next activity of an ongoing process, when it will occur, and which
resource it will trigger. Finally, we thoroughly evaluated these models in
real datasets. In particular, we found that Multi-attribute Transformers
can outperform Transformers that only use information about previous
activities of the process. Moreover, our methods are competitive or better
than existing multi-attribute recurrent models, allow significantly more
parallelism during training and inference, and lead to more transpar-
ent/accountable predictions through the attention weights matrices.

Keywords: Deep learning · Transformer · Attention ·
Multi-attribute · Next event prediction · Business process management

1 Introduction

Recently, digital transformation has gained popularity in almost all industries
and sectors. An essential resource to bring this transformation into an organi-
sation is an information system that supports internal and external processes.
Events performed by users who interact with this system can be recorded, gen-
erating event logs that represent the actual execution of a business process.

This research has been supported by the Scotiabank-USM alliance to promote the
development and communication of computer science.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 184–194, 2022.
https://doi.org/10.1007/978-3-031-18840-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_14&domain=pdf
http://orcid.org/0000-0002-3483-0710
http://orcid.org/0000-0003-3374-0198
https://doi.org/10.1007/978-3-031-18840-4_14

Multi-attribute Transformers for Sequence Prediction in BPM 185

Many business process mining tools exist to extract relevant information from
these logs, such as identifying bottlenecks and decision points. However, these
techniques typically do not provide operational support, i.e., the capacity to give
users recommendations during the execution of a process. To this end, statistical
and machine learning methods which predict the next activity of an ongoing and
incomplete process have started to be investigated. Still, the task of predicting
the time until the next event and the resources responsible for the running trace
have received little attention.

While deep learning methods like recurrent neural networks have outper-
formed traditional machine learning and statistical methods in ongoing process
monitoring tasks, they also involve a higher computational complexity. Allowing
for significantly more parallelism during training, attention-based architectures
such as Transformers look like a promising way to circumvent this problem.
Unfortunately, current methods to train these models on business process data do
not contemplate attributes other than activities. However, previous research on
predictive process monitoring suggests information such as employed resources
and time stamps are valuable information for prediction and decision making.
On the one hand, predictive models using this context information often per-
form better than those which don’t. On the other hand, giving this information
as part of the model’s predictions strengthens operational support by providing
a more comprehensive picture of the ongoing process. Many other applications,
including time-series forecasting and neural machine translation, have benefited
from context and multiple input sources [5,16].

In this paper, we investigate Transformer based models for operational busi-
ness processes prediction that can exploit activities, resources, and time stamps
to make better and more informed predictions. In addition, we present multi-
task variants of these models which address the task of predicting not just the
next activity but other attributes attached to it, including the resource it could
trigger and its expected timestamp. Finally, we thoroughly compare the pro-
posed and existing models in three real datasets, observing that multi-attribute
Transformers are competitive or better than existing recurrent models.

The remainder of the paper is structured as follows. First, Sect. 2 provides
basic definitions and formalizes the problem. Then, Sect. 3 presents related
work relevant to our proposal. Section 4 details the proposed method. Section 5
describes the experimental setup, a baselines comparison, and discusses the
results. Finally, Sect. 6 summarizes the findings and contributions, concluding
this paper and outlining future work.

2 Definitions and Problem Statement

A business process is a series of coordinated activities carried out at a particular
moment in a technical or organizational context. These operations could employ
one or more organizational resources and involve internal and external entities.

Definitions. We define an event ei as the execution of an activity related
to a business process in the organization. An event can be characterized by

186 G. Rivera Lazo and R. Ñanculef

m attribute values ei = {a(1)i , a
(2)
i , . . . a

(m)
i } such as activity ID, resource,

start timestamp, and completion timestamp. Besides, we define a case cj =
〈ej,1, ej,2, . . . ej,lj 〉 as an entire instance of a business process, that is, a sequence
of lj = l(cj) events sorted chronologically and linked by a unique identifier usu-
ally called Case ID. Finally, we define an event log E = {c1, c2, . . . cp} as a
collection of p cases produced by the execution of different business processes
instances and recorded into an information system.

Problem. Giving an incomplete case c(1:h) representing an ongoing process from
which we known only h activities, we are asked to return the most probable event
following the sequence eh+1, with all its m attribute values. The prefix length
h can vary from case to case from a minimum of h∗ to l(c) − 1 where l(c) is
the (unknown) length of c. To address this task, we are given an event log E
representing the past execution of processes at the organization.

3 Related Work

Traditional statistical methods as Hidden Markov models (HMM) [10], Bayesian
techniques [11] and Annotated transition systems (ATS) [1] have been proposed
to solve predictive process monitoring. Classical machine learning classification
methods such as Support Vector Machines (SVM) and Random Forest have also
been used in process prediction [19]. Unfortunately, these models often have
failures supporting long sequences.

A systematic literature review by Verenich et al. [21], which tested various
models, concluded that Recurrent Neural Networks outperformed other methods
on at least 13 of 16 datasets. Recently, another systematic literature review [15]
has shown that deep models have higher accuracy than traditional machine
learning methods in sequence modeling. This research also stated that attribute
encoding is fundamental when feeding models with multiple attribute types.

In predictive process monitoring, Evermann et al. [6] used an embedding
technique for categorical attributes and a shallow LSTM. The method of Tax
et al. [18] shares a similar architecture but applies directly one-hot encoding.
Camargo et al. [4] also evaluated the benefit of including event attributes (as a
triplet of activities, resources, and timestamps) into the model through differ-
ent concatenation strategies. Lin et al. [13] combined only categorical attributes
with an LSTM encoder-decoder architecture and proposed aggregating a Mod-
ulator layer between them, outperforming the other methods that predict the
next activity. The attention mechanism proposed by Jalayer et al. [8] generates
a context vector by weighting information pieces from the input sequence. Later,
Jalayer et al. [9] expanded this method to accept multiple categorical variables
using a hierarchical attention approach, and Wickramanayake et al. [22] pro-
posed to extract explanations from this model, visualizing the attention weights
corresponding to a given output.

Lastly, the ProcessTransformer presented by Bukhsh et al. (2021) [3] uses
a minimal pre-processing step and encodes only the activity sequence into a

Multi-attribute Transformers for Sequence Prediction in BPM 187

Transformer to perform three tasks separately: predicting the next activity, the
next timestamp, and the remaining time of an incomplete trace. The POP-
ON method proposed in [14] only uses the activity sequence in the Multi-head
Attention layer and concatenates all the other attributes. Besides, it applies an
embedding technique to encode the attributes. The method by Philipp et al.
[17] encodes activity sequences using only sin and cos positional embedding.
Therefore, attention-based models with attributes other than the activities do
have been explored. However, previous works have not presented results on pre-
dicting the resource or the triplet (activity, resource & timestamp) following an
incomplete sequence.

4 Proposed Architectures

We predict the evolution of a business process instance by training a neu-
ral net f that consists of two main parts: an encoder and a decoder. The
encoder maps an incomplete multi-attribute case c(1:h) = 〈e1, e2, e3, ..., eh〉, with
ei = {a(1)i , a

(2)
i , ..., a

(m)
i }, into a continuous representation E(c). The decoder

transforms this representation into m probability distributions ŷ1, . . . , ŷm where
ŷk leads to the most likely values of a(k)h+1, the next event’s k-th attribute.

We present and evaluate different Transformer-based architectures to imple-
ment the encoder and the decoder. The encoder’s architectures differ in the way
to integrate continuous and categorical attributes into the model. The decoder’s
architectures differ in the way to handle the prediction task: as multiple inde-
pendent tasks or as a multi-task prediction problem with shared parameters.

4.1 Encoder Architectures

Baseline. To progressively evaluate the effect of adding attributes, our baseline
model obtains E(c) using a Transformer encoder that represents the events in a
case c(1:h) using activity IDs only. The input to the model is thus a sequence of
h tokens or categorical values 〈a1, a2, . . . ah〉. The encoder starts by processing
this sequence through an embedding layer equipped with positional encoding
[20]. The embedding layer includes a learnable matrix that maps an activity ID
into a continuous feature vector of dimension dk. A sinusoidal encoding vector
of the same dimension is added to the embedding to make the representation
of each activity sensitive to its position in the input case. Then, an attention-
based block that consists of two layers: a trainable multi-head self-attention
mechanism and a trainable position-wise feed-forward net. Each layer includes
residual connections [7] and applies Layer Normalization [2].

One Encoder. Our second approach, “One-Tr”, represents an input case com-
bining different categorical and continuous attributes that describe the events
in the case. Attributes often available in information systems and studied in
previous works include activities, timestamps, and resources.

To combine categorical attributes such as resources and activities, we adopt
an early fusion approach. First, we concatenate the raw token sequences and then

188 G. Rivera Lazo and R. Ñanculef

feed the resulting sequence into an encoder. For instance, if sa = 〈a1, a2, . . . ah〉
denotes the sequence of activity IDs and sr = 〈r1, r2, . . . , rh〉 denotes the
sequence of resource IDs, the input to the encoder is

sc = sa ⊕ sr := 〈a1, a2, . . . ah, r1, r2, . . . , rh〉 . (1)

The encoder has the same architecture as in the Baseline approach. This
time, however, the embedding layer learns continuous representations for all
the categorical attributes. Furthermore, as the attention block on top of the
embedding layer can simultaneously access and combines any subset of positions
of their input sequence, this block can learn relationships between different event
attributes (e.g. activities and resources) in a flexible and data-driven way.

To integrate continuous attributes into the model, such as features derived
from timestamps, we adopt an late fusion approach, i.e. it concatenates the
output of the Transformer encoder—in this case—with the output of a simple
feed-forward net that encodes continuous data. We found this method to be
the simplest and most effective for handling attributes of different data types:
categorical attributes as activity IDs and resources significantly benefit from
deep pre-processing before being combined with continuous data as timestamps.

Multiple Encoders. Our last architecture also explores the late fusion approach
to combine categorical attributes with each other, such as resources and activity
IDs. This method called “Multi-Tr” uses a different Transformer encoder to
embed different token sequences. As in the previous approach, the model can
exploit continuous data as timestamps by concatenating the encoders’ output
with the output of a feed-forward net that pre-processes this data.

In natural business processes, activities and resources are often related to each
other. However, using independent encoders, the Transformer’s self-attention
block cannot combine features corresponding to different attributes. We evaluate
the benefit of using a Modulator layer to circumvent this limitation.

Modulator. A Modulator layer [13] receives a set of representations {r1, . . . , rt}
and expands each ri by computing the outer products ri ◦ rj ,∀j �= i,

r̃i = ri ⊕ ri ◦ r1 ⊕ ri ◦ r2 · · · ⊕ ri ◦ rt . (2)

We evaluate using this layer to allow our models to learn inter-dependencies
between activities and resources after processing them with independent Trans-
former encoders and before concatenating them with continuous attributes.

4.2 Simplified Decoder Architectures

The sequence of tensors produced by the last encoder’s block in the baseline
approach or by the different fusion operations in the proposed architectures can
be transformed into a flat representation E(c) ∈ R

d applying Global Average
Pooling [20]. We explore two ways to use this vector to predict the next activity
and other event attributes, such as resources and expected timestamps.

Multi-attribute Transformers for Sequence Prediction in BPM 189

Specialized Layers. The simplest approach consists in using different sub-nets
to predict different attributes. For simplicity, we use a classic three-layer neural
net with Softmax activation for categorical attributes and linear activation for
continuous attributes. If a(k)h+1 denotes an attribute of interest, each net learns a
conditionally independent probability distribution

p(a(k)h+1|E(c(1:h))) ≈ p(a(k)h+1|c(1:h)) . (3)

Multi-task Approach. Previous art has found that sharing information through
common latent representations may be beneficial for improving the performance
of multiple related tasks. Arguably, E(c) already captures dependencies among
input attributes but not among target attributes. In addition, error signals in
a neural net are back-propagated from the output layers to the input layers in
a process that may suffer attenuation. Thus, we explore the benefit of using a
shared hidden representation immediately before the output layers for each task.

5 Experiments and Discussion

We evaluate the proposed method on three real-life event logs widely used in
predictive process monitoring literature. This section presents the pre-processing
pipelines, datasets, and the evaluation method. At the end of the section, we
discuss our experimental results.

Datasets and Preprocessing. Helpdesk1 is a dataset extracted from an Italian tick-
eting management system between 2010 to 2014. BPIC 2012 2 is a log of online
loan applications in a Dutch financial institute from october 2011 to march 2012.
Finally, BPIC 2017 3 is a dataset provided by the same company in BPIC 2012
but contains more heterogeneous samples. Statistics are presented in Table 1.

For each dataset, we sorted events chronologically and kept the first 80%
of the data for training and the remainder 20% for testing. Also, we added an
end token to each sequence. Then, we augmented the number of samples by
applying a k-prefix generator function, which maps a trace to the list of all its
prefixes starting from length ml = 1 to the maximum individual case length. This
procedure attempts to replicate a real-world monitoring environment in which
we have to predict the evolution of ongoing processes, i.e., incomplete cases.
Finally, the resulting sequences were padded to a fixed length. Each sequence of
length k leads to a prediction task where the input is a sequence of length k − 1
and the target is the last event.

It is worth noting that some authors exclude short sequences from the
datasets. For instance, [13] only retains sequences containing at least 5 steps
of events in BPIC 2017 and BPIC 2012. For Helpdesk, [13] only works with
sequences of length larger than 3. We preferred to preserve the original datasets
to favor a clearer comparison with most previous studies. Following [4], we
1 https://data.4tu.nl/repository/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
2 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
3 https://data.4tu.nl/articles/BPI Challenge 2017/12696884.

https://data.4tu.nl/repository/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/BPI_Challenge_2017/12696884

190 G. Rivera Lazo and R. Ñanculef

Table 1. Statistics of datasets used for evaluation. Case length/duration in days.

Unique
activities

Case length Case duration

Dataset Cases Events Max. Avg. Max. Avg.

Helpdesk 4,580 21,348 14 15 4.6 60 40.69

BPI 2012 13,087 262,200 36 175 20.0 137.5 8.6

BPI 2017 31,509 1,202,267 26 180 38.1 286 21.9

transformed timestamps into three time-related features: time between the pre-
vious and current event, the time between the next-to-last event and the current
event, and the time passed since the case was initiated.

Evaluation Setup. As in previous studies, we use accuracy to evaluate the per-
formance of the different methods in predicting categorical attributes, i.e., next
activity and resource. In contrast, we used MAE (Mean average error) to assess
the ability of the methods to predict continuous (time-related) attributes. In any
case, we report the average of these metrics among all the processed sequences.

As in a few previous works, evaluation imposes a minimum prefix length
ml > 1, i.e., incomplete cases with prefix length k < ml = 1 are not considered for
assessing the performance of the method. In our experiments, we use ml = 1 to
replicate the needs of real-world scenarios. Nevertheless, when we report results
from other works, we also include the minimum prefix length used by the authors.

Neural Net Setup. For training the neural net, we used batch sizes of 16, 32, and
128 in Helpdesk, BPIC 2012 and BPIC 2017 respectively. We used a learning
rate of 0.001 and 10 epochs for all datasets. Further, every model was trained
and tested five times and the average performance was calculated.

Results. Table 2 summarizes the performance of different models trained to pre-
dict the next activity. Results on Helpdesk and BPIC 2012 show that using
Transformer encoders to combine activity and resource attributes outperforms
other approaches if we set a minimum prefix length of ml = 1 for evaluation.
Arguably, the advantage of [9] in BPIC 2017 is due to the use of two more
attributes: transaction life and location. Table 2 shows also that the proposed
methods outperform scores reported for LSTM-based methods in [18], and [8],
even if these studies restrict evaluation to ml = 2. As a minimum prefix length
increases, the input sequences carry more information about the process. There-
fore, we should expect an increase in the model’s performance.

Regarding our methods, results in Table 3 confirm that those that consider
the sequences of activities and resources are the ones that obtain the greater
accuracies. In addition, results show that the use of the Modulator layer did
not significantly enhance prediction, suggesting that the Multi-Attribute Trans-
formers on their own can perform prediction accurately. Furthermore, in these
datasets adding the timestamp as an input increase the model instability, as is
illustrated in Fig. 1.

Multi-attribute Transformers for Sequence Prediction in BPM 191

Table 2. Baselines comparison for the next activity with inputs as Activity (A),
Resource (R), Timestamp (T) and Categorical attributes (C).

Method Input Data split Prefix
(ml)

Accuracy

Helpdesk BPIC2012 BPIC2017

LSTM [4] A, R, T 70/30 1 0.789 0.786 –

ProcessTransformer [3] A 60/20/20 1 0.856 – –

HAM-net bi-LSTM [9] C 80/20 1 0.844 0.868 0.929

One-Tr (this paper) A, R 80/20 1 0.922 0.884 0.823

Multi-Tr (this paper) A, R 80/20 1 0.924 0.892 0.769

LSTM [18] A, T 66/33 2 0.712 – –

Attention bi-LSTM [8] A 80/20 2 0.833 0.816 –

MM-Pred LSTM [13] C 70/20/10 4 0.916 0.974 0.974

Figure 1 also shows the performance of our models as we vary the mini-
mum prefix length ml. Results are mixed. In Helpdesk, we observe the trend we
expected: accuracy increases as ml increases. However, performance remains rel-
atively stable in BPIC 2012 while in BPIC 2017, there is no trend whatsoever.
To understand these results, we must note that increasing ml decreases the total
number of test instances on which models are evaluated because there are fewer
suffixes to predict.

Table 3 shows that the best results we achieve in the task of predicting the
next resource are 88%, 78% and 76% from Helpdesk, BPIC 2012 and BPIC 2017
respectively. To the best of our knowledge, these are the first results demonstrat-
ing the application of artificial intelligence on this task. Results on Helpdesk and
BPIC 2012 also suggest that training the models to predict the next activity
and resource jointly can slightly improve their performance in predicting the next
activity. Furthermore, Multi-Task architectures benefit from timestamps features.

Finally, 3 shows a slight decrease in the accuracies of the two categorical predic-
tion tasks when we jointly train the model for the three tasks. On the other hand,
results suggest that the task of predicting the next timestamp does not benefit
from the shared or specialized hidden representation within a Multi-task model.

Fig. 1. First row: Accuracies on the next activity task by model on each dataset.
Second row: Accuracies on the next activity task by trace length.

192 G. Rivera Lazo and R. Ñanculef

Table 3. Accuracies of our methods according the task or Multi-task on each datasets

Next Activity

Architecture Input
Accuracy

Helpdesk BPIC 2012 BPIC 2017

One-Tr A 90.9 88.0 79.6

One-Tr A, R 92.2 88.4 82.3

Multi-Tr A, R 92.4 89.2 76.9

One-Tr A, R, T 84.9 86.3 76.9

Multi-Tr A, R, T 89.4 86.8 75.3

Tr-Mod A, R 92.2 89.1 80.9

Tr-Mod A, R, T 89.7 87.1 68.6

Next Activity & Resource

Architecture Input
Accuracy|Accuracy

Helpdesk BPIC 2012 BPIC 2017
A R A R A R

One-Tr A, R 91.9 87.9 86.3 76.7 76.9 73.5

One-Tr A, R,T 76.8 74.9 82.9 75.5 71.3 62.8

S One-Tr A, R,T 90.8 87.9 80.6 74.2 64.1 61.6

Multi-Tr A, R 92.3 87.9 88.7 77.2 72.2 75.0

Multi-Tr A, R, T 92.5 87.6 89.4 77.1 57.7 68.6

S Multi-Tr A, R, T 92.4 87.6 88.7 78.6 82.0 76.3

Multi-Tr-Mod A, R 92.5 87.6 88.6 78.2 81.9 75.3

Multi-Tr-Mod A, R, T 91.5 88.1 88.3 77.2 80.9 74.2

Next Activity, Resource & Timestamp

Architecture Input
Accuracy|Accuracy|MAE

Helpdesk BPIC 2012 BPIC 2017
A R T A R T A R T

One-Tr A, R,T 88.4 72.4 86.5 84.7 74.7 6.55 76.9 73.8 7.73

Multi-Tr A, R, T 90.6 82.3 78.0 88.3 76.5 6.68 55.9 55.0 8.02
S Multi-Tr A, R, T 90.7 84.2 75.7 88.6 76.3 6.67 36.5 39.0 7.92

6 Conclusions and Final Remarks

This paper presented a method to approach Multi-task predictions in a pre-
dictive monitoring environment using Multi-attribute Transformers. In contrast
with other methods, we considered as input not only the activity sequences
but the resource and timestamp sequences because they can provide valuable
information to the model. To do so, we first leverage the Transformer attention
method to create continuous representations of the categorical attributes. Then,
we join these representations with continuous features extracted from times-
tamps. Finally, a simplified decoder learns to perform one or multiple prediction
tasks on the multi-attribute representation.

The results revealed that our method outperforms current approaches in
predicting the next activity on two of the three datasets using single-task and
multi-task architectures. We obtained the best performance with the variants
that considered multiple attributes. However, when integrating the timestamps,
we observed more instability in the model’s performance. Lastly, when predicting
the next timestamp our method do not overpass current approaches that use
dedicated architectures for the task.

As part of ongoing work, we are expanding our models following a Seq-to-Seq
approach. Specifically, we are evaluating different ways of combining attention
layers as in Libovick et al. (2018) [12] to exploit the representations obtained
by the Transformer encoders on each attribute. Finally, we plan to evaluate
Multi-attribute Transformers in areas like biology and autonomous navigation.

Multi-attribute Transformers for Sequence Prediction in BPM 193

References

1. Aalst, W.V., Schonenberg, M., Song, M.: Time prediction based on process mining.
Inf. Syst. 36(2), 450–475 (2011)

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 (2016)
3. Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: Processtransformer: predictive business

process monitoring with transformer network. arXiv:2104.00721 (2021)
4. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM mod-

els of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26619-6 19

5. Du, S., Li, T., Horng, S.J.: Time series forecasting using sequence-to-sequence
deep learning framework. In: Proceeding Parallel Architectures Algorithms Pro-
gramming (PAAP), pp. 171–176. IEEE (2018)

6. Evermann, J., Rehse, J.R., Fettke, P.: A deep learning approach for predicting
process behaviour at runtime. In: Business Process Management Workshops, pp.
327–338 (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778. IEEE (2016)

8. Jalayer, A., Kahani, M., Beheshti, A., Pourmasoumi, A., Motahari-Nezhad, H.R.:
Attention mechanism in predictive business process monitoring. In: Enterprise Dis-
tributed Object Computing Conference (EDOC), pp. 181–186. IEEE (2020)

9. Jalayer, A., Kahani, M., Pourmasoumi, A., Beheshti, A.: HAM-Net: predictive
business process monitoring with a hierarchical attention mechanism. KBS 236,
107722 (2022)

10. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A markov
prediction model for data-driven semi-structured business processes. KAIS 42(1),
97–126 (2013)

11. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers
using rules and bayesian analysis: building a better stroke prediction model (2015)

12. Libovický, J., Helcl, J., Mareček, D.: Input combination strategies for multi-source
transformer decoder. In: ACL (2018)

13. Lin, L., Wen, L., Wang, J.: MM-Pred: a deep predictive model for multi-attribute
event sequence, pp. 118–126 (2019)

14. Moon, J., Park, G., Jeong, J.: POP-ON: prediction of process using one-way lan-
guage model based on NLP approach. Appl. Sci. 11(2), 864 (2021)

15. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art
deep learning methods for process prediction. AIR 55(2), 801–827 (2021)

16. Nishimura, Y., Sudoh, K., Neubig, G., Nakamura, S.: Multi-source neural machine
translation with missing data. CoRR, pp. 92–99 (2018)

17. Philipp, P., Jacob, R., Robert, S., Beyerer, J.: Predictive analysis of business pro-
cesses using neural networks with attention mechanism. International Conference
on Artificial Intelligence in Information and Communication (ICAIIC), pp. 225–
230 (2020)

18. Tax, N., Verenich, I., Rosa, M.L., Dumas, M.: Predictive business process monitor-
ing with LSTM neural networks. In: Advanced Information Systems Engineering
(AISE), pp. 477–492 (2017)

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2104.00721
https://doi.org/10.1007/978-3-030-26619-6_19

194 G. Rivera Lazo and R. Ñanculef

19. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business
process monitoring with structured and unstructured data. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45348-4 23

20. Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)
21. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-

benchmark comparison of remaining time prediction methods in business process
monitoring. ACM TIST 10(4), 1–34 (2019)

22. Wickramanayake, B., He, Z., Ouyang, C., Moreira, C., Xu, Y., Sindhgatta, R.:
Building interpretable models for business process prediction using shared and
specialised attention mechanisms. Knowl.-Based Syst. 248, 108773 (2022)

https://doi.org/10.1007/978-3-319-45348-4_23

Social Media Analysis

Data-Driven Prediction of Athletes’
Performance Based on Their Social Media

Presence

Frank Dreyer, Jannik Greif, Kolja Günther, Myra Spiliopoulou,
and Uli Niemann(B)

Faculty of Computer Science, Otto von Guericke University, Magdeburg, Germany
{frank.dreyer,jannik.greif,kolja.guenther}@st.ovgu.de,

{myra,uli.niemann}@ovgu.de

Abstract. It is well known in the sports industry that the performance
of athletes is strongly influenced by physiological and psychological fac-
tors. In recent years, many researchers have analysed whether athlete-
generated social media content can be used as proxies for such perfor-
mance factors, with some promising results. In this study, we investi-
gated whether such proxies are useful features for a machine learning
model to predict athletes’ performance in subsequent competitions. We
extracted millions of tweets that NBA basketball players posted them-
selves or were tagged in and derived features reflecting players’ mood,
social media behaviour, and sleep quality before games. Using these and
other social media-unrelated features, we performed statistical tests to
examine whether the features significantly improve the accuracy of a ran-
dom forest model for predicting players’ BPM scores in upcoming games.
The results show that, in particular, the number of tweets a player is
tagged in prior to a game significantly improves the predictions of the
model. Our findings provide insights for practitioners on the effects of
social media on athlete performance that can be used prospectively for
mental health awareness training and optimisation of pre-game routines.

Keywords: Machine learning · Athletic performance · Social media ·
Twitter · Sentiment analysis · Predictive significance

1 Introduction

With the growing presence of social media in all areas of life, allowing people
from around the world to react to current events in real time, an increasingly
controversial discussion can be noticed: Today more than ever, public figures
are exposed to the reactions of millions of people observing and commenting on
every step in their life that becomes public.

Athletes, who use social media not only to communicate with peers and
fans but also to promote themselves, are no exception to this circumstance. To
date there is plenty of anecdotal evidence that the media has the potential to
affect the performance of athletes to a great extent. In their work, von Ott and
Puymbroeck [17] describe several cases in which athletes’ performance in both
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 197–211, 2022.
https://doi.org/10.1007/978-3-031-18840-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_15

198 F. Dreyer et al.

team and individual sports changed dramatically after being exposed to media
criticism. The authors conclude that there is strong evidence that the media
affects the performance of athletes.

The influence social media can have on an individual’s mood are confirmed by
athletes themselves. In an interview, 8-time NBA all-star Vince Carter explains
how it is like to be constantly exposed to social media criticism [6]: “It’s an
emotional rollercoaster [...]. We as athletes have social media at our fingertips
at any time and of course if you’re playing well, you go look at your mentions. If
you’re not playing well, you go look at your mentions and now you have diehard
opponent fans saying whatever they want and sometimes we tend to get caught
up in what’s being said from these persons [...].”

Such examples give rise to the question if social media content can be used to
predict the performance of athletes in upcoming competitions. In many domains,
social media content has become the new source of intelligence. Accordingly, it
has been successfully used for a wide range of predictive modelling tasks, such
as stock price prediction, election results forecasting and even disease outbreak
prediction [19]. A model predicting athletic competition performance based on
social media posts could also be of great value for various stakeholders in the
sports industry. Consider coaches as an example. Their job is to prepare athletes
for upcoming competitions so that they have the best possible chance of winning.
This preparation is not only a simple matter of improving athletes’ physical
skills through training. Perhaps more importantly, it also involves strengthening
athletes’ belief in their own abilities and their mental resilience. To achieve the
latter, coaches must be aware about all factors that affect athletes’ psychological
functioning. This includes both intrapersonal factors (e.g. self-motivation) as well
as interpersonal factors (e.g. social support) [11]. Social media content could be
a great resource to uncover the satisfaction of such psychological performance
factors. An according performance prediction model could then guide coaches if
athletes need further mental or physical training to excel in the competition.

This paper addresses the following research question: Do features derived
from athlete-related social media posts lead to an improvement in accuracy of a
machine learning model predicting athletes’ performance in subsequent competi-
tions? To answer this research question, we gathered tweets NBA players posted
themselves or were tagged in before games. From these tweets, we distilled vari-
ous features that reflect athlete interaction on social media from different angles.
We considered the quantity of the tweets, their temporal information as well as
their sentiment. These features were then used in combination with other social
media-unrelated features to study their predictive significance on athletic per-
formance. This involved a permutation test that is based on random forests.

The remainder of this paper is organised as follows: In Sect. 2 we summarise
existing research that analysed the relationship between social media and athletic
performance. On this basis we describe our methodology to answer our proposed
research question in Sect. 3. Our findings are presented and discussed in Sect. 4
and 5, respectively. We conclude our paper in Sect. 6.

Data-Driven Prediction of Athletes’ Performance 199

2 Related Work

To date there have been few studies that examined the relationship between
athletes’ social media interaction and their performance. In general researchers
approach the topic in one of two ways. They either consider the content of social
media posts produced by athletes as a proxy for their mood and behaviour and
analyse the effects of this proxy on their performance or they consider social
media activity as something that distracts athletes from focusing on performing
well. In the following we will elaborate on both perspectives.

2.1 Social Media as a Mood and Behaviour Detection Proxy

In the psychology field there is a consensus that an individual’s ability to per-
form a certain task is greatly affected by his or her mood. While a positive mood
is often associated with better concentration, motivation, creativity, and coop-
eration, a negative mood leads to the exact opposite, consuming many attention
resources and recovery efforts [24]. Some researchers make use of this mood-
performance relationship and consider social media posts as a way how athletes
verbalise their feelings. To extract the mood expressed in the posts, sentiment
analysis models are used to capture the polarity of a post in a single number.
This sentiment score is then related to the performance of athletes in upcoming
competitions. For example, Xu and Yu [24] use sentiment analysis to capture
the pre-game mood of NBA players from tweets they posted before games and
show that there is a positive linear relationship between the approximated mood
and the adjusted Plus/Minus game performance metric of the players. Similarly,
Grüttner et al. [8] conduct a statistical test to compare the average first serve
fault of ATP and WTA tennis athletes achieved between matches where they had
a negative vs. a positive pre-match mood. In contrast to Xu and Yu [24] however
they do not find a significant difference between the two groups of interest.

Lim et al. [13] go one step further. Backed by an extensive literature review
they claim that there is a positive inverted U-shaped relationship between humil-
ity and athletic performance. To investigate this hypothesis, they train a linear
regression model to predict NFL players Fantasy Football points in upcoming
games based on how arrogant or humble the players appear before the game.
Similar to the other mentioned researchers before they approximate humility
by the social media content the athletes produce before games. Their results
strongly suggest that there is indeed an inverted U-shaped relationship between
humility and athletic performance.

2.2 Social Media as a Distraction Factor

In the social psychology field, the Distraction-Conflict Theory (DCT) [1] pro-
vides a theoretical attempt to explain the causes of impaired performance levels.
According to DCT the mere presence of others can provoke an attentional con-
flict in an individual performing a certain task which in turn leads to elevated
drive and probably impaired performance executing the task. Many researchers

200 F. Dreyer et al.

use DCT to explain the causes of performance drops among athletes by consid-
ering social media as a distractor for athletes. For example, Hayes et al. [9] apply
DCT by performing semi-structured interviews with elite Australian athletes to
understand the elements of social media athletes perceive to be distracting dur-
ing competitions. The results suggest that there are five distracting elements,
including obligation to respond, susceptibility to unwanted commentary, pres-
sure to build and maintain an athlete brand as well as competitor content and
mood management. Another study by Grüttner et al. [8] use DCT to justify that
high social media usage of athletes before a competition negatively impacts their
performance in both a cognitive and motoric way. The authors give two reasons
why high social media usage represents a distractor for athletes. Firstly, the time
and focus athletes spend on posting messages limit their capacity focusing on
the preparation for the next competition. Secondly, the athletes’ awareness that
other social media users react to their produced content or post messages related
to them may trigger internal distractions. To proof this theory, they conduct a
statistical test to check if the difference in average first serve fault of tennis ath-
letes between matches where they posted a large vs. a small number of tweets
before the match is significant. Here, they assume that the quantity of posts an
athlete generates is a good measure for his social media activity before a compe-
tition. Lim et al. [13] use the same connection between post quantity and social
media activity in their regression analysis in the context of NFL stars. Similarly,
Watkins et al. [22] use the iPhone screen time function to measure the number
of hours college athletes spend on social media apps per week and relate the
corresponding on-screen time to their competition performance after adjusting
for confounding factors. All studies come to the same conclusion, that there is
significant evidence that heavy social media usage hinders athletic performance.

Other researchers link social media activity to poor sleep quality. Watkins et
al. [22] for example assign college athletes to moderate, active, or super active
social media users based on their iPhone screen time and perform an ANCOVA
to compare the difference in sleep quality among the three groups. Their results
show a significant difference between the groups and that sleep quality tends
to decrease with increasing social media activity. Jones et al. [12] consider late-
night tweeting, i.e. tweets posted in the middle of the night, as a proxy for sleep
deprivation. The authors use t-tests to assess how late night tweeting affects
various next-day game statistics of NBA players, including shooting percentage,
points scored and rebounds. According to their findings it appears that late night
tweeting significantly deteriorates NBA players next-day game performance.

3 Methodology

The studies discussed in the previous section show that social media content
can be exploited in various ways to construct features that capture the mindset
and well-being of athletes before competitions. In this study we assessed whether
such features significantly contribute to the accuracy of a machine learning model
predicting athletes’ competition performance.

Data-Driven Prediction of Athletes’ Performance 201

3.1 Data Selection

To answer our research question we focused our analysis on NBA basketball play-
ers. This choice was made since the NBA provides well-established and easily
accessible performance metrics, and basketball players have already been stud-
ied in the context of social media [12,22,24]. Furthermore, we gathered social
media posts from Twitter, a platform that is extensively used by NBA players to
communicate with peers and fans. Figure 1 depicts the inclusion and exclusion
criteria for the NBA dataset and the Twitter dataset.

Fig. 1. Inclusion/exclusion criteria for the NBA dataset and the Twitter dataset.

NBAData: All NBA-related data were collected from basketball-reference.com,
a website providing historical basketball statistics from various US and European
leagues. We only considered NBA players with a Twitter account and gathered var-
ious statistics from games they participated in between the seasons 2016–2019. To
avoid potential bias due to the COVID-19 pandemic, we excluded the more recent
seasons 2019–2021. Additionally, to account for the effects of long-term injuries
we only considered players who obtained playing time in at least 60% of the games
each season. Because performance metrics tend to be unreliable when playing time
is limited, we only included players with at least one quarter (12 min) of playing
time and excluded all games in which the player was on court for less than 5 min.
After applying these constraints we had a total of 108 players and 24,876 games in
which these players actively participated.

Twitter Data: As social media interaction involves both generating and con-
suming content, we considered both tweets posted by the players themselves but
also tweets produced by others in which the players were mentioned. Particu-
larly, for each game we extracted all player-related tweets that were posted within
24 h before tip-off. Since NBA league policies prohibit players and coaches from

https://www.basketball-reference.com

202 F. Dreyer et al.

using social media from 45 min before a game starts until post-game interviews
are completed, we set 45 min before tip-off as an upper limit for tweet extraction
for each game. Furthermore, we only considered tweets in English and excluded
retweets. These constraints resulted in a total of 8,018 tweets players posted by
themselves and 1,920,901 tweets players were tagged in.

3.2 Data Preparation

We preprocessed the textual information of the tweets to bring them into the
desired format for a sentiment analysis model determining the polarity of the
tweets. To this end, we used VADER [10], a lexicon and rule-based sentiment
analysis model developed for social media texts. The polarity scores of the tweets
were then used besides other information from the extracted data to create
features for a final dataset ready for predictive modelling.

Tweet Preprocessing: We substituted all URLs, mentions and hashtags with
placeholders. One thing to note is that VADER only considers empathic upper-
casing (e.g. “AMAZING”) to capture sentiment amplification [10]. As word elon-
gations (e.g. “amaaaaazing”) and gaps between characters (e.g. “D O P E”) also
intensify word sentiments [7] we decided to correct and uppercase such words so
that VADER can correctly identify the shift in sentiment intensity.

Table 1. Example words
added to VADER lexicon.

Word Sentiment
Mean SD

goat 3.8 0.42
dpoy 3.8 0.63
mvp 3.6 0.70
lit 3.0 0.67
dope 2.8 0.92
underrated 2.3 0.67
deserved 1.9 1.37
clutch 1.0 1.49
overrated −2.6 0.70
clown −2.8 1.03
punk −3.0 0.82
garbage −3.5 0.70

Tweet Sentiment Analysis: As the effective-
ness of lexicon-based sentiment analysis models is
highly context-specific and depends on the words
that are present in the lexicon [7] we decided to
extend the VADER sentiment lexicon with terms
that are frequently used in basketball-related
tweets. Therefore, we created a list of words that
appeared in at least 0.05% of the tweets and
excluded words that were already present in the
VADER lexicon. We then manually traversed the
list and excluded all terms that did not carry any
sentiment or were ambiguous in terms of polarity.
For the remaining 101 terms we let 10 annotators
rate their polarity, using the same ordinal scale
from −4 to 4 of the VADER lexicon. To ensure
that participants evaluate each word in a bas-
ketball context, 10 randomly selected tweets were
added to each word in which the word appeared
and presented to the participants. We also familiarised the participants with
the meaning of abbreviations like “MVP” (Most Valuable Player) or “GOAT”
(Greatest Of All Time). We averaged over all participants’ ratings to obtain a
single sentiment score for each word. Table 1 lists example words that were added
to the VADER sentiment lexicon.

Data-Driven Prediction of Athletes’ Performance 203

The VADER sentiment analysis model with its extended lexicon was then
used to determine the polarity of the individual tweets in a range between -1
(very negative sentiment) to 1 (very positive sentiment). The VADER sentiment
scores of some example tweets are displayed in Table 2.

Table 2. VADER sentiment scores of example tweets.

Tweet Sentiment

@RealStevenAdams RESIGN !! −0.456

Thank you, @swish41 you are my hero! @dallasmavs 0.750

@Pacers @yungsmoove21 Congratulations Thad!!! I hope
you’re a Pacer forever we love you!! @yungsmoove21

0.921

Final Dataset: With the extracted tweet sentiments we had all information
needed to create a final dataset ready for predictive modelling. To allow for a
better comparability about the predictive performance of variables we decided to
include both social media-related as well as unrelated predictors to the dataset
and only considered information that is present before a game starts.

With regard to the social media-related variables we mainly referred to the
findings from previous researchers that dealt with the topic (see Sect. 2). Similar
to Xu and Yu [24] and Grüttner et al. [8] we used the average sentiment of
tweets a player posted before tip-off as a proxy for his mood before the game.
Like Grüttner et al. [8] and Lim et al. [13] we used the number of tweets a player
posted before tip-off as a measure for his social media activity. Furthermore,
with regard to “late night tweeting” [12] we considered tweets players posted at
night before the game as a potential indicator for sleep deprivation. To do so
we created a binary variable and flagged all games in which a player posted a
tweet during normal bedtime (11 p.m. to 7 a.m.) [12] within the time zone of
the player’s team.

To our knowledge there has not been any research so far that statistically
analysed the influence of social media posts athletes were tagged in on their
performance. Nevertheless, we believe that there is strong evidence that such
posts may also be of use to predict athletic performance. As Hayes el al. [9]
indicate, athletes are easily distracted by negative posts addressed to them as
such posts give them undesired feelings [9]. For that reason, we included the
proportion of negative tweets players were tagged in as a measure for the severity
of negative feedback to our set of features. Hayes et al. [9] further note that
athletes may also be distracted by the feeling of being compelled to respond to
messages addressed to them and that athletes feel guilty if they cannot reply to
all messages. As this feeling of guilt may become worse the more posts an athlete
is tagged in prior to a competition, we included this variable as a measure for
“obligation to respond” [9].

204 F. Dreyer et al.

Besides social media-related and unrelated predictors we had to decide for
a target that captures the overall performance of an NBA player for a partic-
ular game as accurately as possible, considering both offensive and defensive
effort. We chose Box Plus Minus (BPM), a metric that uses a player’s box score
information, position, and the overall performance of the team to estimate the
player’s contribution in points above league average per 100 possessions played
[15]. Table 3 summarises the variables that formed our final dataset.

Table 3. Variables of the final dataset.

Variable Summary

(I) Social media-related features

1 posted count : Number of tweets player posted
within 24h before tip-off

x̄ : 0.3, s : 1.1

2 posted sentiment : Mean sentiment of tweets player
posted within 24h before tip-off

x̄ : 0.3, s : 0.4, 83% missing

3 late night tweeting : Flag if player posted a tweet
during normal sleeping hours (11pm-7am) in the
night before the game

T:2.6%, F:97.4%

4 tagged count : Number of tweets player was tagged
within 24h before tip-off

x̄ : 77.1, s : 416.9

5 tagged prop negative: Proportion of negative
tweets player was tagged within 24h before tip-off

x̄ : 0.1, s : 0.2

(II) Social media-unrelated features

6 player : Twitter name of player 108 players

7 age: Player age in years x̄ : 27.4, s : 4.0

8 tenure: Years past since player started playing for
his current team

x̄ : 3.3, s : 2.7

9 salary : Salary of player in Million USD x̄ : 11.5, s : 9.0

10 position : Position of player SF:14%, PF:18%, PG:22%,
SG:22%, C:23%

11 team : Team of player 30 teams

12 opponent team : Opponent team 30 teams

13 homegame: Flag if homegame for player’s team home:50.4%, away:49.6%

14 season type: Game in regular season or playoffs regular: 92.5%, playoffs: 7.5%

15 missing games: Number of previous consecutive
games player missed, e.g. due to injuries

x̄ : 0.1, s : 0.8

16 past BPM : Player’s past 10-game exponential mov-
ing average BPM score

x̄ : 0.6, s : 4.2

17 past win percentage: Team’s past 10-game expo-
nential moving average winning percentage

x̄ : 0.5, s : 0.2

(III) Target variable

18 BPM : Player’s Box Plus Minus (BPM) score x̄ : 0.7, s : 8.4

Data-Driven Prediction of Athletes’ Performance 205

3.3 Predictive Significance Analysis

The formed dataset provided all necessary data to assess whether the features
derived from the tweets lead to a significant improvement in accuracy of a model
predicting player’s BPM score in upcoming games. Unlike other researchers
before [13,24] we decided against a linear model in that regard, as its coefficient
estimates are prone to be biased if the functional form is inappropriately chosen.
Instead, we chose a random forest [3], that, in contrast to parametric models like
linear regression, naturally adapts to non-linearities and interactions in the data
without any prior knowledge about the data distribution. Besides this advan-
tage, latest research found statistical properties of random forests that turned
out to be of use for our analysis. As such, Mentch and Hooker [14] demonstrated
that predictions from subsampled random forests can be viewed as incomplete,
infinite-order U-statistics that are asymptotically normal so long as the subsam-
ple size grows slowly relative to the training set size. The authors made further
use of these findings and developed a formal statistical test to assess whether a
feature or a set of features make a significant contribution to the prediction for
at least one test observation. This test, though valid, becomes computationally
prohibitive for test set sizes Nt larger than 20–30 as the test statistic requires
the estimation of an Nt × Nt covariance matrix. Recently, Coleman et al. [5]
developed a permutation-style variant of this test that eliminates the need for
covariance estimation and thus retains the same computational complexity as
the original random forest procedure regardless of the number of test points.
The procedure estimates the predictive significance of a subset of variables X
by training two random forests: One original forest RForig that is trained on
all features and one reduced forest RFred that is trained on all features where
X is randomly permuted to remove any dependence of X to the target vari-
able. The difference in mean squared error (MSE) between the two forests, i.e.
MSE(RFred) − MSE(RForig), is then evaluated on a test set as a measure for
the importance of X for the prediction of RForig. To determine the significance
of this difference, a permutation distribution is created to approximate a null
distribution by repeatedly permuting the predictions between the forests and
recomputing the MSE difference. The p-value is then estimated by evaluating
the relative frequency of permutations that resulted in a difference as extreme
as the observed MSE difference.

We adopted the testing framework by Coleman et al. [5] also in our analysis
setting using a significance level of α = 0.05 and performed two types of tests:
One group test where we assessed the predictive significance of the set of social
media derived features (cf. first category in Table 3) as a whole and one marginal
test where we assessed the predictive significance of each of these features indi-
vidually. For all tests we applied 1000 permutations and used 90% of the data
for training and the remaining part for testing. To perform the marginal test for
posted sentiment we decided to exclude all records where players did not post
any tweet before the corresponding game in order to correctly identify effects
between player’s approximated mood and their BPM score.

206 F. Dreyer et al.

For all tests we used the same hyperparameter configuration to train the
random forests. In doing so, we have chosen a setting that, in the best case, sat-
isfies the constraints imposed by the test procedure and provides unbiased test
results. Consequently, we chose a relatively small subsample size of n0.6, where n
corresponds to the training set size, as this value also provided robust test results
in various experiments conducted by Coleman et al. [5]. By a similar reasoning
we set the ensemble size to 500 trees. Since Strobl et al. [21] demonstrated that
random forests based on CART trees tend to overestimate the importance of
variables the more cut points they offer, we decided to use conditional inference
trees as base learners to obtain unbiased predictive significance estimates. Fur-
thermore, we set the minimal node size to 5, the default for regression problems.
Finally, we tuned mtry, the number of randomly drawn candidate variables for
each split, using 10-fold cross-validation with MSE as evaluation measure. This
resulted in an optimal value of mtry = 6.

3.4 Implementation Details

To collect the tweets, we used academictwitteR [2], an R package that provides an
interface to access the Twitter Academic Research Product Track v2 API end-
point. Preprocessing of the tweets was done using the R package textclean [18].
For efficiency reasons, the random forests needed for the predictive significance
tests were trained with the R package ranger [23].

4 Results

In our tests, the RForig achieved a MSE of approximately 61.7 (RMSE ≈ 7.86,
R2 ≈ 0.13). The results of the group test, displayed in Fig. 2 (a), suggest that
the social media-related features (cf. the first five features in Table 3) make a
significant contribution to the prediction of the random forest (p < 0.001).

By looking more closely at the marginal tests of the individual fea-
tures (see Fig. 2 (b)), only tagged count, i.e. the number of tweets in which
the player was tagged before tip-off, showed a significant MSE difference
between the original and reduced forest (p ≈ 0.002). The other social media-
related features posted count (p ≈ 0.104), tagged prop negative (p ≈ 0.346),
late night tweeting (p ≈ 0.388) as well as posted sentiment (p ≈ 0.537) did not
significantly contribute to the predictions of the random forest.

In terms of social media-unrelated features the aggregated performance of
the player from past games turned out to be the most important feature for
the prediction overall, followed by the salary of the player and his position (all
p < 0.001). Also, homegame significantly contributed to the prediction of the
random forest (p ≈ 0.007).

Figure 3 depicts the bivariate relationships of the significant continuous and
discrete features to the BPM target. It should be noted that tagged count
is represented in logarithmic scale. Interestingly, the relationship between
tagged count and BPM appears to be positive. This contradicts our hypothesis

Data-Driven Prediction of Athletes’ Performance 207

Observed
value

z = 4.08
p < 0.001

-0.20 0.00 0.20 0.34
MSE(RFred) − MSE(RForig)

D
en

si
ty

(a) Group test

n.s.

p < 0.05

season_type
past_win_percentage

team
posted_sentiment

late_night_tweeting
tagged_prop_negative

opponent_team
age

missing_games
posted_count

tenure
player

homegame
tagged_count

position
salary

past_BPM

0 5 10 15 20

z-score
(b) Marginal tests

Fig. 2. Results of the group test (a) and marginal tests (b). Social media-related fea-
tures are highlighted in pink. (Color figure online)

that athletes’ performance deteriorates the more messages they receive because
they are distracted by the guilt of not being able to respond to all messages.

5 Discussion

The results of our study indicate that features derived from social media posts
ultimately lead to a better performing random forest predicting the BPM score
of NBA players in upcoming games. However, by having a closer look on the
predictive significance of the individual features, only the number of tweets a
player was mentioned in before games significantly reduced the MSE of the ran-
dom forest. With our testing procedure we could not replicate the findings from
other studies that support a positive relation between the average sentiment of
tweets athletes posted and performance [24], a negative relation between the
quantity of tweets athletes produced and performance [8,12,13] as well as a neg-
ative relation between night tweeting and performance [12]. Even if athletes’
performance depends on their mood, social media activity as well as their sleep
quality our findings suggest that the effects are either negligible or our approx-
imations from tweets too inaccurate to predict athletic performance effectively.
It should be noted, however, that the random forests in our testing procedure
take into account potential confounding factors such as age, tenure, and past
performance. Other studies, such as that of Grüttner et al. [8], compared only
means using t-tests without adjusting for confounders and thus may have more
easily obtained significant results.

Nevertheless, there may be limitations in our study that could have led to
inaccuracy of such proxies based on tweets. We believe that one source of error
could come from the underlying sentiment analysis model we used to determine
the polarity of the tweets. Like other studies before [8,24] we used a lexicon-based

208 F. Dreyer et al.

Fig. 3. Relationship between each significant feature (x-axis) and BPM (y-axis).

model in that regard. Such approaches have the advantage of being relatively
easy to interpret and efficient to use, but do not consider that words can mean
different things in different contexts. This inflexibility often leads to incorrect
sentiment predictions. To give an example consider the word “killer”. Without
any context, one would naturally associate the word with a negative feeling,
which is also reflected in the VADER sentiment lexicon, which assigns the word
a polarity of −3.3. Now consider the tweet: “@russwest44 should be the most
respected NBA player of all time. This guy’s game mentality is killer”. In this
case the sentiment of the word obviously flips to a positive meaning. However,
due to the context-unspecific nature of lexicon-based approaches VADER assigns
a negative sentiment to the entire tweet of −0.228.

Furthermore, we assumed that each tweet is equally important and free of
bias. In terms of tweets the players posted themselves though, more recent tweets
may better reflect the true mood of athletes before game time. It is also unclear
whether athletes are actually responsible for all of their social media content
as nowadays many celebrities employ agencies that maintain their social media
profile for them. Similarly, it is unreasonable to believe that athletes actually
read all of the up to thousands of tweets in which they are tagged before tip-

Data-Driven Prediction of Athletes’ Performance 209

off. Tweets from teammates, opponent players, family members and friends may
have a higher chance of being actually seen by the athletes.

Another limitation concerns our holdout evaluation, which does not take into
account the sequential nature of basketball data, since information from future
observations is available to influence the predictions of past observations, which
may have resulted in overly optimistic estimates. One solution is to resample
the data so that only past observations are used to predict future observations,
e.g., with leave-one-out cross-validation, blocked cross-validation [20], or leave-
future-out cross-validation [4].

Our study provides many opportunities for future research. Firstly, it may
be reasonable to repeat our analysis with a more sophisticated sentiment anal-
ysis model that is particularly built for basketball-related social media content
and capable of detecting context-specific sentiment shifts. In that regard, future
research could for example use “distant supervision” [7] to automate the senti-
ment annotation of basketball-related tweets by making use of emojis or hashtags
contained in the tweets. Following this, a transformer-based language model pre-
trained on tweets like BERTweet [16] could be fine-tuned on the sentiment clas-
sification task. Secondly, it may also be interesting to investigate if the expressed
emotions in social media text, such as joy, anger, excitement, and fear are useful
predictors for athletic performance. Thirdly, future research could also incorpo-
rate the time-dependent aspect of social media posts into predictive modelling
and train a sequence model to predict athletes’ performance in upcoming compe-
titions. Fourthly, our analysis was conducted for only one performance metric,
BPM. It would also be interesting to investigate whether our analysis results
also apply to other statistics, such as Player Efficiency Rating (PER), Adjusted
Plus Minus (APM) or simply field gold percentage (FG%). Fifthly, given that
only one competition, basketball, was considered, it might also be of interest to
extend the analysis to other competitions. Even within the same competition,
one could examine whether there are gender-specific differences by comparing
analytical results between the corresponding men’s and women’s leagues, such
as the NBA and WNBA. Lastly, considering that the inclusion of the variable
tagged count significantly reduced the MSE of the random forest, it might be
interesting to further investigate the influence of the amount of social media
content in which athletes are tagged on their performance. In this context, one
could also include social media content from other platforms such as Facebook
in the analysis.

6 Conclusion

In this study, we investigated the potential of athlete-related social media posts
to predict athletes’ performance in upcoming competitions. To do this, we
extracted tweets NBA players posted themselves or were tagged by others. From
these, we derived features that reflect athlete mood, social media behaviour,
and sleep quality before games. Using these and other features, we performed
a statistical test to investigate whether the MSE of a random forest predicting

210 F. Dreyer et al.

players’ BPM score in upcoming games significantly decreases when the model
can utilise the features. The results of this test show that, in particular, the
number of tweets NBA players receive before games contributes significantly to
the prediction. Contrary to some previous studies, our results neither support
a relationship between the average sentiment or number of tweets posted by
athletes and their performance nor a relationship between night tweeting and
performance. Further research is needed to rule out the possibility that this is
due to the inaccuracy of the sentiment analysis model or to limiting assumptions
we made about athletes’ social media interaction behaviour (e.g. athletes may
not be responsible for content posted from their account).

References

1. Baron, R.S.: Distraction-conflict theory: progress and problems. Adv. Exp. Soc.
Psychol. 19, 1–40 (1986). https://doi.org/10.1016/S0065-2601(08)60211-7

2. Barrie, C., Chun-ting Ho, J.: academictwitteR: an R package to access the twitter
academic research product track v2 API endpoint. J. Open Source Softw. 6(62),
3272 (2021). https://doi.org/10.21105/joss.03272

3. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.
1023/A:1010933404324

4. Bürkner, P.C., Gabry, J., Vehtari, A.: Approximate leave-future-out cross-
validation for bayesian time series models. J. Stat. Comput. Simul. 90(14), 2499–
2523 (2020). https://doi.org/10.1080/00949655.2020.1783262

5. Coleman, T., Peng, W., Mentch, L.: Scalable and efficient hypothesis testing with
random forests (2019). https://doi.org/10.48550/arXiv.1904.07830

6. ESPN: vince carter addresses the negative effects of social media on athletes (2020).
https://www.youtube.com/watch?v=1cX5 2YadU4. Accessed 03 Mar 2022

7. Giachanou, A., Crestani, F.: Like it or not: a survey of twitter sentiment analysis
methods. ACM Comput. Surv. (CSUR) 49(2), 1–41 (2016). https://doi.org/10.
1145/2938640

8. Grüttner, A., Vitisvorakarn, M., Wambsganss, T., Rietsche, R., Back, A.: The new
window to athletes’ soul-what social media tells us about athletes’ performances.
In: Proceeding of Hawaii International Conference on System Sciences (HICSS),
pp. 2479–2488 (2020). https://doi.org/10.24251/HICSS.2020.303

9. Hayes, M., Filo, K., Geurin, A., Riot, C.: An exploration of the distractions inherent
to social media use among athletes. Sport Manage. Rev. 23(5), 852–868 (2020).
https://doi.org/10.1016/j.smr.2019.12.006

10. Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment
analysis of social media text. In: Proceeding of AAAI Conference on Web and
Social Media, vol. 8, pp. 216–225 (2014). https://www.aaai.org/ocs/index.php/
ICWSM/ICWSM14/paper/view/8109/8122

11. Iso-Ahola, S.E.: Intrapersonal and interpersonal factors in athletic performance.
Scandinavian J. Med. Sci. Sports 5(4), 191–199 (1995). https://doi.org/10.1111/j.
1600-0838.1995.tb00035.x

12. Jones, J.J., Kirschen, G.W., Kancharla, S., Hale, L.: Association between late-night
tweeting and next-day game performance among professional basketball players.
Sleep Health 5(1), 68–71 (2019). https://doi.org/10.1016/j.sleh.2018.09.005

https://doi.org/10.1016/S0065-2601(08)60211-7
https://doi.org/10.21105/joss.03272
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1080/00949655.2020.1783262
https://doi.org/10.48550/arXiv.1904.07830
https://www.youtube.com/watch?v=1cX5_2YadU4
https://doi.org/10.1145/2938640
https://doi.org/10.1145/2938640
https://doi.org/10.24251/HICSS.2020.303
https://doi.org/10.1016/j.smr.2019.12.006
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122
https://doi.org/10.1111/j.1600-0838.1995.tb00035.x
https://doi.org/10.1111/j.1600-0838.1995.tb00035.x
https://doi.org/10.1016/j.sleh.2018.09.005

Data-Driven Prediction of Athletes’ Performance 211

13. Lim, J.H., Donovan, L.A.N., Kaufman, P., Ishida, C.: Professional athletes’ social
media use and player performance: evidence from the national football league. Int.
J. Sport Commun. 14(1), 1–27 (2020). https://doi.org/10.1123/ijsc.2020-0055

14. Mentch, L., Hooker, G.: Quantifying uncertainty in random forests via confidence
intervals and hypothesis tests. J. Mach. Learn. Res. 17(1), 841–881 (2016)

15. Myers, D.: About Box Plus/Minus (BPM) (2020). https://www.basketball-
reference.com/about/bpm2.html. Accessed 12 Mar 2022

16. Nguyen, D.Q., Vu, T., Nguyen, A.T.: BERTweet: a pre-trained language model for
english tweets (2020). https://arxiv.org/abs/2005.10200

17. von Ott, K., Puymbroeck, M.V.: Does the media impact athletic performance.
Sport J. 9(3), (2006)

18. Rinker, T.W.: Textclean: text cleaning tools. Buffalo, New York (2018). https://
github.com/trinker/textclean, version 0.9.3

19. Rousidis, D., Koukaras, P., Tjortjis, C.: Social media prediction: a literature review.
Multimedia Tools Appl. 79(9), 6279–6311 (2020). https://doi.org/10.1007/s11042-
019-08291-9

20. Snijders, T.A.: On cross-validation for predictor evaluation in time series. In: On
Model Uncertainty and its Statistical Implications, pp. 56–69. Springer (1988).
https://doi.org/10.1007/978-3-642-61564-1 4

21. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC Bioinformatics
8(1), 1–21 (2007). https://doi.org/10.1186/1471-2105-8-25

22. Watkins, R.A., Sugimoto, D., Hunt, D.L., Oldham, J.R., Stracciolini, A.: The
impact of social media use on sleep quality and performance among collegiate
athletes. Orthop. J. Sports Med. 9(7 suppl3) (2021). https://doi.org/10.1177/
2325967121S00087

23. Wright, M.N., Ziegler, A.: ranger: a fast implementation of random forests for high
dimensional data in C++ and R. arXiv preprint arXiv:1508.04409 (2015). https://
arxiv.org/abs/1508.04409

24. Xu, C., Yu, Y.: Measuring NBA players’ mood by mining athlete-generated
content. In: Proceeding of Hawaii International Conference on System Sciences
(HICSS), pp. 1706–1713. IEEE (2015). https://doi.org/10.1109/HICSS.2015.205

https://doi.org/10.1123/ijsc.2020-0055
https://www.basketball-reference.com/about/bpm2.html
https://www.basketball-reference.com/about/bpm2.html
https://arxiv.org/abs/2005.10200
https://github.com/trinker/textclean
https://github.com/trinker/textclean
https://doi.org/10.1007/s11042-019-08291-9
https://doi.org/10.1007/s11042-019-08291-9
https://doi.org/10.1007/978-3-642-61564-1_4
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1177/2325967121S00087
https://doi.org/10.1177/2325967121S00087
http://arxiv.org/abs/1508.04409
https://arxiv.org/abs/1508.04409
https://arxiv.org/abs/1508.04409
https://doi.org/10.1109/HICSS.2015.205

Link Prediction with Text in Online
Social Networks: The Role of Textual
Content on High-Resolution Temporal

Data

Manuel Dileo(B), Cheick Tidiane Ba , Matteo Zignani , and Sabrina Gaito

Computer Science Department, Universitá degli Studi di Milano, Milan, Italy
{manuel.dileo,cheick.ba,matteo.zignani,sabrina.gaito}@unimi.it

Abstract. Machine learning-based solutions for link prediction in
Online Social Networks (OSNs) have been the subject of many research
efforts. While most of them are mainly focused on the global and local
properties of the graph structure surrounding links, a few take also into
account additional contextual information, such as the textual content
produced by OSN accounts. In this paper we cope with the latter solu-
tions to i) evaluate the role of textual data in enhancing performances
in the link prediction task on OSN; and ii) identify strengths and weak-
nesses of different machine learning approaches when dealing with prop-
erties extracted from text. We conducted the evaluation of several tools,
from well-established methods such as logistic regression or ensemble
methods to more recent deep learning architectures for graph represen-
tation learning, on a novel dataset gathered from an emerging blockchain
online social network. This dataset represents a valuable playground for
link prediction evaluation since it offers high-resolution temporal data on
link creation and textual data for each account. Our findings show that
the combination of structural and textual features enhances the predic-
tion performance of traditional models. Deep learning architectures out-
perform the traditional ones and they can also benefit from the addition
of textual features. However, some textual attributes can also reduce the
prediction power of some deep architectures. In general, deep learning
models are promising solutions even for the link prediction task with
textual content but may suffer the introduction of structured properties
inferred from the text.

Keywords: Online social network · Link prediction · Graph neural
networks · Temporal dataset

1 Introduction

In network science, link prediction is one of the most powerful tools, success-
fully applied in different settings, such as predicting network evolution in online
social networks, protein-to-protein interactions, or predicting links in knowledge
graphs. The most popular link prediction approaches employ structural infor-
mation, such as node similarity and centrality measures, to yield the prediction;
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 212–226, 2022.
https://doi.org/10.1007/978-3-031-18840-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_16&domain=pdf
http://orcid.org/0000-0002-4035-7464
http://orcid.org/0000-0002-4808-4106
http://orcid.org/0000-0003-3779-2809
https://doi.org/10.1007/978-3-031-18840-4_16

Link Prediction with Text in Online Social Networks 213

while more recent approaches rely on graph embedding and graph neural net-
works to improve prediction performances [10]. When it comes down to link
prediction in online social networks, current works have successfully leveraged
structural features. However, the role of textual information on link formation
remains an open question. This is an important issue to solve as the informa-
tion derived from text may improve prediction and give insight into the mecha-
nisms leading the link formation process. Indeed, text is crucial in online social
networks, being one of the main driving forces of user engagement; and adver-
tisement on content is the main source of revenue for these platforms. Yet, we
still have a limited understanding of the impact of text on link formation. One
of the main reasons is that it is hard to obtain appropriate data for the task:
current research either lacks text information or high-resolution temporal data
on network growth. Also, there is a lack of studies on the proper methodology
to include the additional information so as to enhance performances in network-
specific tasks such as node classification, link prediction, or even community
detection.

To this aim, in this work, we performed link prediction with textual informa-
tion on a temporal attributed network. As a case study, we rely on Steemit,
a blockchain-based online social network, that allows the retrieval of high-
resolution temporal information that we can use to construct an attributed tem-
poral network. Specifically, we focused on and gathered temporal data about
“follow” relationships between users and text content produced by users - posts
and comments. As for the availability of suitable and rich data for tackling
network-specific tasks, blockchain-based platforms - Web3 platforms - are a great
opportunity for researchers in different fields thanks to the huge volume of high-
resolution data stored in the supporting blockchains. Indeed, by the nature of
blockchains, data are publicly available, validated, and affordable by interfacing
with the blockchain’s API. Moreover, each piece of information is timestamped
since each blockchain block has a validation timestamp; and each block reported
multi-faceted interactions and content - social, economic, financial, and textual.
So, these data sources have all the features to face tasks and issues related to
modern techno-social networks and to support detailed and in-depth analysis of
users’ traits. Starting from this kind of temporal and heterogeneous data, in this
work, we define a methodology to include text information to perform link pre-
diction. Indeed, nodes - users - in the graph are characterized by a set of textual
features capturing the statistical properties of their textual content and the top-
ics they treat. Then, we investigate the impact of these text features on the link
prediction task, identifying strengths and weaknesses of different machine learn-
ing approaches when dealing with properties extracted from text. We conducted
the evaluation of several tools, from well-established methods such as logistic
regression or ensemble methods to more recent deep learning architectures for
graph representation learning, such as graph neural networks and graph autoen-
coders. In the evaluation, we have taken into account different settings from a
full knowledge of structural and textual information to structural features only
or subsets of them.

214 M. Dileo et al.

The outcome of the prediction task shows that the combination of struc-
tural and textual features improves prediction performance on traditional mod-
els. Moreover, we also provide insights on the important text characteristics for
link prediction. Through an exhaustive comparison of the models, we show that
GNNs outperform the other models in terms of prediction performance, and how
textual features increase their power. However, some textual attributes can also
reduce the prediction power of some deep architectures. In general, even for the
link prediction task with textual content, deep learning models are promising
solutions but may suffer the introduction of structured properties inferred from
text. Finally, we discuss potential extensions for this work.

The paper is organized as follows. Section 2 provides a brief introduction to
the nature of blockchain-based online social networks and a review of works
related to link prediction with textual data. In Sect. 3 we describe the construc-
tion of the temporal attributed network, the models for predicting links, and how
structural and textual features are extracted. In Sect. 4 we provide a description
of the dataset, while Sects. 5 and 6 report the main findings of link prediction
and a discussion about strengths and weaknesses of the different models and
settings.

2 Background

Link Prediction with Text. Link prediction is meaningful for solving numerous
issues. Its main objective is to estimate network evolution by inferring the like-
lihood that pairs of nodes have to either form links or not in the future. Kumar
et al. [10] reviewed several approaches to link prediction from classical to recent
network embedding and deep learning techniques. Some works, such as [2], per-
form link prediction in dynamic networks. Despite being intensively analyzed,
various questions are still open, and many studies try to adapt the prediction
problem to recent developments for supplying the newest research gaps. Among
the works on link prediction that use text information, [13] relies on text user
attributes to model user profile data, using Latent Dirichlet Allocation - LDA -
to model topics; here, link prediction is only based on the resulting topic distribu-
tions, and not on the network structure. Other works, like [15], have improved
prediction performance by fusing a network generated from users’ posts with
the original “follow” network, but they do not consider content-based features.
Overall, relying on text seems to improve prediction performance: however, these
approaches have been tested only on static networks. Moreover, there is limited
understanding of which text-based features should be used.

Blockchain-Based OSNs. Recently, numerous discussions about the privacy pro-
tection problem and the compliance with the regulation arose due to many
cyber-attack scandals that highlighted the weaknesses and the deficiencies of
the early OSNs centralized structure. In response, several proposals exploiting
decentralized technologies have emerged. Among them, we find blockchain-based
social networks (BOSNs). Essentially, the blockchain provides a cryptocurrency

Link Prediction with Text in Online Social Networks 215

system and a data storage and validation layer. An interesting case study is
Steemit, a notable example of BOSN. Steemit relies on a cryptocurrency-based
reward system, to involve users in the growth of the platform, while also stimu-
lating network activities. Also, the Steem blockchain supports two distinct cryp-
tocurrency exchanges, namely the STEEM and the Steem based Dollar (SBD).
As every action is stored on a blockchain, these platforms provide a detailed
data source of network activity, covering not only the social side, like users’ fol-
lows, comments, and votes, but also the economic sphere, for example, users’
cryptocurrency exchanges. Such characteristics have made BOSNs, especially
Steemit, the subject of several recent studies. The most recent advancements
are illustrated in a recent survey [5]. Another interesting point is that, unlike
in main online social media, due to privacy reasons, Steemit does not allow to
create a profile page where users can store personal information such as bio,
gender, or location. Hence, Steemit lacks user attributes and the extraction of
node features from the textual content is crucial to try to enhance structural
link prediction.

3 Methodology

In online social networks, users post content for other users. Given the high
amount of content, users can follow each other: when user A starts following
another user B, user A starts receiving updates on the B’s posts. This allows
users to not miss other users’ content. Alongside this information, we also have
the user-generated content i.e. posts and comments on posts, so that we can
understand the impact of user content on the formation of “follow” links. Here,
we aim at answering the following research question: what is the impact of textual
features on link prediction tasks? In this section, we describe the link prediction
models used in this work and how to model data from “follow” operations and
user-generated content to generate structural and text-based features used to
perform link prediction.

3.1 Graph Construction and Sequence-Based Framework

The first step is to construct the “follow” graphs by retrieving the “follow” rela-
tionships. Then, the nodes in the “follow” graphs can be enriched with textual
attributes.

“Follow” links and text information can be modeled as an attributed tempo-
ral directed graph G = (V,E, T,X), where V is the set of users, links (u, v, t) ∈ E
denote a directed “follow” link from user u to user v at time t (the time in which
user u starts to follow user v), and X is a |V |×f matrix of node attributes, with
f the dimension of attribute vectors. Given a time interval [t0, t1], the snapshot
graph G[t0,t1] represents the directed graph, where for each link e = (u, v, t) ∈ E,
we have that t ∈ [t0, t1].

Given a graph interval snapshot G[t0,t1], the purpose of link prediction is to
predict which edges will appear at a successive interval snapshot G[t1,t2]. It can

216 M. Dileo et al.

be treated as a binary classification task, where we assign label 1 if the link is
predicted to form in the following time interval, 0 otherwise.

The main idea is to realize a sequence-based framework so that the evaluation
of the link prediction algorithms can be assessed on a successively built dataset.
To this aim, we rely on the experimental setting for temporal link prediction
presented in [11]. Given a time interval [t0, t1], a train set with links in G[t0,t1]

can be created and their status can be predicted in the time interval [t1, t2].
Whereas for test set, links are extracted in G[t0,t2] and their status predicted in
[t2, t3]. Given two graph Gt−1 and Gt, where t − 1 and t are following intervals
(for instance, [t0, t1] and [t1, t2]):

– Gt−1 is used to compute the well-known state-of-the-art structural features,
the textual features, and to retrieve the list of edges and their relative nodes.

– Gt is obtained as an induced sub-graph constrained around the nodes of Gt−1.
This limitation makes it possible to yield an effective understanding of how
a graph and its connections evolve. Then, only the edges closed in t and not
in t − 1 are considered to form the positive set. Simultaneously, starting
from the same seed of nodes, also a set of randomly extracted non-existing
edges are considered to form the negative set. The final dataset results in
the combination of the positive and the negative sets and for each item a
binary label y is added to indicate if that item is an existing edge or not.

Selecting a subset of edges at random from the original complete set is one of
the most common methods to perform test set sampling. Despite this strategy
may conduct to over-optimistic results, there are evaluation measures for which
subsampling negatives from the test set has no negative effects [17].

The length of the time intervals should be chosen to ensure a sufficient num-
ber of snapshots for analysis, a sufficient number of training and test examples
for the algorithms, while ensuring the duration between two successive inter-
vals is not too long. This work considers two intervals of two and one month,
respectively.

3.2 Learning Algorithms for Link Prediction in Temporal OSNs

Link prediction models refer to predictors that can identify pairs of nodes that
will either form a link or not in the future. Two main groups of models were
employed to perform the predictions: traditional (i.e. well-known in literature)
supervised models and graph neural networks. The first ones are feature-based
models (i.e. they can work only with feature vectors extracted for each pair of
nodes), while the latter can work directly on graph-structured data.

The traditional supervised models used in this analysis are Logistic Regres-
sion (LR), Support Vector Classification (SVC), Multilayer Perceptron (MLP),
Random Forest (RF), and Gradient Boosting (GB); their performance evalua-
tion is performed with F1 measure. Below the graph neural networks will be
briefly described.

Link Prediction with Text in Online Social Networks 217

Graph Neural Networks. (GNNs) are a family of neural networks that can
operate naturally on graph-structured data [16]. By extracting and utilizing fea-
tures from the underlying graph, GNNs can make more accurate predictions
about entities in these interactions, as compared to models that consider indi-
vidual entities in isolation.

GNNs learn to map individual nodes to fixed-size real-valued vectors called
embeddings. The learned embeddings summarize the structural information of
the network taking into consideration also the attributes of the nodes. Then,
those vectorial representations can be used to solve different useful problems on
graphs (e.g. link prediction). Different GNN variants are distinguished by how
these representations are computed, but the general idea is to extend convolution
to graphs. To this end, GNNs construct polynomial filters on graphs [4].

Focusing on a particular node v and a 1-hop localized convolution, we can
think of this operation as arising of two steps: the aggregation over immediate
neighbor features xu(u ∈ N (v)) and the combination with the node’s own feature
xv. Starting from this idea, different kinds of “aggregation” and “combinations”
steps can be considered to build new types of layers. The GNN layers used in
this work are:

– Graph Convolutional Networks (GCNConv). GCNConv computes the aggre-
gation step between neighbor features by averaging them and the combination
step by summing up the neighbor contribution and the node’s own feature [9];

– Graph Sample and Aggregate (SAGEConv). SAGEConv can be seen as a varia-
tion of GCNConv in which different kinds of aggregations can be computed. For
instance, focusing on a single node v, the dimension-wise maximum between the
embeddings of the neighbors of v can be considered. The combination step is
computed by concatenating the embeddings [7];

– Graph Attention Networks (GATConv). GATConv introduces an attention
mechanism [12] in the computation of the aggregation step. The key benefit
of this introduction is to allow for implicitly specifying different importance
values to different neighbors of a node. This is achieved by multiplying the
embeddings of the neighbors of v by attention weights generated by the atten-
tion mechanism at each convolutional step [14].

A graph neural network can be built by stacking layers one after the other
with non-linearities, much like a standard CNN. Given a pair of nodes (x, y),
the embeddings h(x) and h(y) can be obtained through a GNN and then the
probability p that x and y form a link can be estimated as p = σ(h(x)h(y)) where
σ is a sigmoid function applied to the dot product between the node embeddings.

Figure 1 shows the proposed GNN architecture to solve link prediction tasks.
There is an input layer with a number of neurons equal to the number of features,
two graph convolutional layers that perform the nodes embedding, a dot product
to compute the links embedding and then a sigmoid function to output values
in [0, 1]. The first hidden layer maps points from a space with a number of
dimensions equal to the number of features to a space with a certain number
of dimensions while the second maps points to a space with two dimensions.
In contrast to CNNs, it is typically discouraged to add more than two or three

218 M. Dileo et al.

graph convolutional layers to a GNN because it can cause a problem known as
over-smoothing [3]. For a discussion related to the computational complexity of
GNN models you can refer to [16]. It should be notice that training our GNN
model is not computationally more expensive than training a logistic regression
model.

We have also tested the Graph Autoencoder (GAE) approach. GAE is the
natural extension of auto-encoder in the realm of graph computation. This model
makes use of latent variables and is capable of learning interpretable latent rep-
resentations for undirected graphs. Given the adjacency matrix A of a graph
(with diagonal elements set to one) and the node features matrix X, GAE uses
a two-layer GCN as encoder to calculate the embeddings matrix Z = GCN(X,A)
and then a simple inner product as decoder to reconstruct the adjacency matrix
Â = σ(ZZ

ᵀ
) where σ is a non-linear function. The GAE architecture used in

the experiments is the one presented in [8].
For performance evaluation, since the outputs are the results of the appli-

cation of a sigmoid function on link embeddings, the area under the receiver
operating characteristic curve (AUROC) score will be used to present their per-
formance. Another reason to choose the AUROC score is the robustness of ROC
curves and their associated areas to class imbalance, a problem that affects the
link prediction domain [17].

Fig. 1. The proposed GNN architecture to solve link prediction tasks. Left diagram:
complete architecture overview. We used two graph convolutional layers to obtain node
embeddings and the dot product followed by a sigmoid function to obtain the link
predictions. Right diagram: single graph conv. layer overview. We tested GCN, GAT,
and SAGE as graph conv. operators, leaky ReLu as activation function and dropout.

3.3 Features for Link Prediction

The extracted features can be split into two types: structural and textual fea-
tures. The first ones summarize the key aspects of the user behavior in terms

Link Prediction with Text in Online Social Networks 219

Table 1. Structural features. The first column reports the category of the feature and
the second column details the features belonging to a category.

Type Structural features

Local similarity metrics Common neighbors

Adamic Adar

Resource Allocation

Preferential Attachment

Jaccard’s Coefficient

Centrality-based methods PageRank

Katz Index

Local Random Walk

Neighbors’ degree

In-degree centrality

Out-degree centrality

of connections with the other users and they regard the topological structure of
the social network; the latter is related to the user behavior in terms of pub-
lished content on the social platform. Textual features can be also distinguished
in text-based statistics and user similarity. All these distinctions are useful to
understand which combination of features can give more accurate results when
tackling link prediction.

Structural Features. Given a pair of nodes, we compute some of the most
used similarity metrics [11]. Specifically, we choose some of the so-called “local”
similarity metrics, like Common Neighbors, Jaccard’s coefficient, Adamic/Adar’s
coefficient, Resource Allocation, and Preferential Attachment index. Alongside
them, we rely on some centrality-based methods like Local Random Walk, Katz
centrality, PageRank, average neighbor degree, in-degree centrality and out-
degree centrality, so that for each link we have a pair of measures, one for each
vertex. Table 1 summarizes the structural features used in this work.

Textual Features. For each user, we consider two types of features derived
from text: i) text-based statistics and ii) user similarity. Text-based statistics
are computed on the corpus formed by user’s posts, comments and tags, in the
considered time interval. Specifically, we compute the number of posts and com-
ments, the number of tags, the average and standard deviation of the length
of the content produced. Whereas for user similarity, we describe the similar-
ity between user content, in terms of language and topics of interest. For topic
similarity, we rely on topic modeling with Latent Dirichlet Allocation (LDA), as
in [13]. Therefore, given an author and a document, we compute a topic vector;

220 M. Dileo et al.

Table 2. Textual features. The first column reports the category of the feature and the
second column details the features belonging to a category. In parentheses, the name
of the feature.

Type Textual features

Text-based statistics Number of posts (num post from, num post to)

Number of comments (num comment from, num comment to)

Number of tags (num tag from, num tag to)

Average content length (avg post length from, avg post length to)

Content length standard deviation (std length from, std length to)

User similarity Tag Jaccard’s coefficient

Topic distances (Euclidean, Chebyshev, Cosine, Jaccard)

then, to represent a user interest, we average all of its topic vectors. So, given
two users and their topic vectors, we can compute a series of similarity/distance
measures to capture how close their interests are. We selected cosine similarity,
Euclidean distance and Jaccard distance. On the same note, we consider Jac-
card’s coefficient, to capture language similarity, specifically between the set of
tags used by authors. Table 2 summarizes the textual features used in this work.

4 Dataset

Users on Steemit can perform many different actions, called operations. These
operations track users’ activities with a temporal precision of 3 s. Every operation
can be retrieved with a specific API. Through the API, data from June 3, 2016,
up to January 21, 2021, have been collected. The starting date is the day the
“follow” operation has been made available on Steemit.

Two type of information have been gathered: a) the “follow” relationships,
available in the custom json transactions; and b) posts, comments and their
tags, available in the comment transactions. Dataset was processed according to
the methodology presented in Sect. 3 to generate the attributed graph.

We create the training set with links in G[t0,t1], and predict their status in
the following time interval [t1, t2]. Whereas for the test set, we extract links in
G[t0,t2] and predict their status in the next interval, [t2, t3]. We consider two
intervals: period 1 from June 3, 2016, to August 2, 2016 ([t0, t1]), period 2 from
June 3, 2016, to September 2, 2016 ([t0, t2]); while the time interval [t2, t3] refers
to period from September 3, 2016, to October 2, 2016. We reduce the intervals
by one month after the first period, to have a similar amount of links, as the
network started to grow.

The main properties of the resulting graphs are summarized in Table 3.
Since data refers to the early months of Steemit, there is an explosion of new

links in the next period for the first two months. The periods considered see a rapid

Link Prediction with Text in Online Social Networks 221

Table 3. Main properties of the Steemit “follow” graph G for period 1 [t0, t1] - from
June 3, 2016, to August 2, 2016 - and the following period 2 [t0, t2] - from June 3, 2016,
to September 2, 2016.

G[t0,t1] G[t0,t2]

Number of nodes 7, 400 20, 849

Number of edges 33, 920 323, 228

Density 0.0006 0.007

Min/Max in degree 0/466 0/2, 735

Min/Max out degree 0/643 0/11, 824

Avg degree 9.17 31.01

Std degree 25.90 206.43

Strongly connected components 4, 972 8, 266

Largest SCC 2, 313 12, 505

New links in the next period 74, 228 138, 604

network evolution [1] and this makes them interesting intervals to analyze. Note
that the maximum in-degree is much smaller than the maximum out-degree. This
can be explained by the design of the platform. Following other users is free, does
not require confirmation by the followed user and can bring some visibility returns
while attracting users is hard and requires a lot of effort [6].

As for textual information, overall, we obtain 327, 151 posts, 756, 239 com-
ments, and an average number of tags equal to 1.88. The number of contents
per user is shown in Fig. 2. Both distributions have high variance and show the
heterogeneity of users in terms of the amount of the published content. Some
nodes spend a lot of effort posting content and text-based statistics can identify
them. They might be influencers, gurus, enthusiasts, and bots, all of whom are
typically involved in a lot of relationships with other users.

(a) (b)

Fig. 2. Distribution of the number of contents per user from June 3, 2016, to September
2, 2016. In (a) the number of posts per user, and in (b) the number of comments per
user, respectively.

222 M. Dileo et al.

5 Results

We conducted the experiments using the models described in Sect. 3.2 and per-
forming hyperparameter optimization via grid search. The combinations of struc-
tural, textual, structural and textual features have been considered. Code is
available on a Github repository1.

5.1 Results for Traditional Models

Figure 3 shows the F1-scores of the Logistic Regression with the different combi-
nations of features for the test set. It shows also the results of a Dummy classifier
that generates predictions uniformly at random from {0, 1}. We choose to present
the results of the Logistic Regression as it is the model that has achieved the
best performances among the ones considered in this work.

Fig. 3. F1-scores of Logistic Regression (LReg) and Dummy Classifier (Dummy) mod-
els for link prediction on the test set, using structural features (blue), textual features
(orange), structural and textual features (green). The combination of structural and
textual features leads to an increase in F1-score. (Color figure online)

The combination of structural and textual features leads to an increase in F1-
score. Due to the rapid network evolution that takes place in the two time periods
considered, the best LR configuration uses a strong regularization term and the
LR that use only textual features achieves better results than the structural one.

We show the most important 20 structural or textual features for Logistic
Regression, with their feature importance, in Fig. 4. We can notice that some
textual features are considered more important than the most important struc-
tural features. Among the text features, we can see that Jaccard’s coefficient

1 https://github.com/manuel-dileo/link-prediction-with-text.

https://github.com/manuel-dileo/link-prediction-with-text

Link Prediction with Text in Online Social Networks 223

between the set of tags written by users emerges: this feature is a simple, yet
effective way to capture if two authors talk about the same topics so having a
few interests in common.

Fig. 4. Feature importance of the top 20 structural or textual important features for
Logistic Regression on link prediction task. Importance values are based on the coeffi-
cients of the features in the decision function of the Logistic Regression. We observe a
blend of both types of features. The most important features are at the bottom of the
plot.

5.2 Results for Graph Neural Networks

For GNNs, we conducted the experiments using the architecture proposed in
Sect. 3.2. We have used 200 as the number of epochs and batch learning. The
following combinations of features have been considered:

– Constant. A single constant and equal value for all the nodes as a feature.
It means not using any feature.

– Struct. Structural features. Specifically, PageRank, in and out-degree, and
average neighbor degree have been used. Note that the structure of the graph
is always taken into consideration when GNNs are used, so adding structural
features acts as a feature augmentation technique.

– TextStat. Text-based statistics as node features.
– TextStat+Topics. Combination of text-based statistics and user interest

vector as node features.
– StructText. Combination of structural and textual features.

Table 4 shows the AUROC of GNNs with different combinations of features
on the train, validation, and test set. Overall, the results of Graph Neural Net-
work models on link prediction tasks outperform those obtained using traditional
supervised models. The use of text-based statistics as node features leads to an

224 M. Dileo et al.

Table 4. Area under the receiver operating characteristic curve of GNNs using no
features (Constant), structural features (Struct), text-based statistics features (Text-
Stat), text-statistics and user interest features (TextStat+Topics), structural and text
features (StructText), for link prediction on train, validation and test set. The use of
text features can lead to an increase in AUROC score but the structure of the network
is crucial. Structural feature augmentation makes the performance worse.

Model auroc train auroc val auroc test

Constant 0.937 0.93 0.964

Struct 0.946 0.931 0.766

TextStat 0.94 0.936 0.973

TextStat+Topics 0.943 0.93 0.962

StructText 0.943 0.933 0.902

increase in performance compared to not using features. However, the perfor-
mance gain is low so the structure is crucial to understand the network evolu-
tion. Note also that the addition of user interest vectors as node features does not
enhance the performance; hence, not every addition of textual features leads to
an increase in performance. The best configuration of hyperparameters has two
layers with hidden size of four and two neurons, and Adam as the optimizer, with
learning rate and weight decay respectively equal to 0.025 and 5 · 10−5. Another
interesting point is the addition of manually engineered structural features as
node attributes. Structural feature augmentation makes the performance worse.
This problem arises because the periods considered, as shown in Table 3, see a
rapid network evolution; hence, centrality measures are not able to summarize
in an effective way the structural information.

Table 5 shows the AUROC scores of GAEs with the different combinations
of features on the train, validation, and test set. They describe a behavior very
similar to what is presented for GNNs but with worse performances on the test
set.

Table 5. Area under the receiver operating characteristic curve of GAEs using no
features (Constant), structural features (Struct), text-based statistics features (Text-
Stat), text-statistics and user interest features (TextStat+Topics), structural and text
features (StructText), for link prediction on train, validation and test set. The use of
text-based statistics as node features leads to an increase in AUROC score.

Model auroc train auroc val auroc test

Constant 0.9034 0.904 0.877

Struct 0.925 0.926 0.868

TextStat 0.917 0.918 0.881

TextStat+Topics 0.90 0.90 0.844

StructText 0.895 0.895 0.867

Link Prediction with Text in Online Social Networks 225

6 Discussion

In this work, we investigated the role of text on link formation, an important task
as text could improve prediction and give insight into the link formation process.
To this end, we performed link prediction with text on a temporal attributed net-
work. We relied on Steemit, a blockchain-based online social network, that allows
the retrieval of high-resolution temporal information but lacks user attributes
due to data control and privacy reasons. We have provided a methodology to
use text information alongside traditional structural information and a temporal
framework to train and test the models.

First, we showed that the combination of structural and textual features
improved prediction performance in terms of F1 score on the traditional super-
vised models. Then, we showed that some textual features are considered more
important than the most important structural features. This is important as we
tested on two time intervals where the network changes a lot, hence a domi-
nance of the structural features in terms of importance could have led to poor
performance.

GNNs reach an AUROC score of 0.97 working naturally on graph-structured
data and using textual information as node features. Textual features enhance
the performance of a GNN that works without node features while if the fea-
tures are augmented through structural information, such as centrality indices,
the performance in terms of AUROC score decreases. However, not every addi-
tion of textual features leads to an increase in prediction performance; hence,
understanding which features extract from textual content and performing a
feature selection step, based on the network being studied, is important. In gen-
eral, deep learning models are promising solutions even for the link prediction
task with textual content but may suffer from the introduction of structured
properties inferred from text.

Future works will include an extension of the considered features, more pre-
cisely economical features. We also plan to test more complex GNNs models. We
plan to incorporate several modern deep learning modules into a GNN layer (e.g.
Batch Normalization) as well as the addition of dense layers before the graph
convolutions. Another interesting point is being able to consider edge features.
We want to analyze if graph neural networks only perform prediction, in a black-
box way, or whether they also gives us a better understanding of the network
being studied. Finally, we will focus on the analysis of different temporal snap-
shots, based on network evolution and growth: we will study the performance
when training and testing snapshots are similar and when they show significant
differences.

References

1. Ba, C.T., Zignani, M., Gaito, S.: The role of cryptocurrency in the dynamics of
blockchain-based social networks: the case of steemit. Plos One 17(6), 1–22 (2022).
https://doi.org/10.1371/journal.pone.0267612

https://doi.org/10.1371/journal.pone.0267612

226 M. Dileo et al.

2. Barracchia, E., Pio, G., Bifet, A., Gomes, H.M., Pfahringer, B., Ceci, M.: Lp-robin:
link prediction in dynamic networks exploiting incremental node embedding. Inf.
Sci. 606 (2022). https://doi.org/10.1016/j.ins.2022.05.079

3. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view
(2019). 10.48550/ARXIV.1909.03211, arxiv.org/abs/1909.03211

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. 29, (2016)

5. Guidi, B.: An overview of blockchain online social media from the technical point
of view. Appl. Sci. 11(21), 9880 (2021)

6. Guidi, B., Michienzi, A., Ricci, L.: A graph-based socioeconomic analysis of
steemit. IEEE Trans. Comput. Soc. Syst. 1–12 (2020). https://doi.org/10.1109/
TCSS.2020.3042745

7. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs (2018)

8. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)
9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks (2017)
10. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applica-

tions, and performance: A survey. Physica A-stat. Mech. Appl. 553, 124289 (2020)
11. Liu, Q., et al.: Network growth and link prediction through an empirical lens.

Proceedings of the 2016 Internet Measurement Conference (2016)
12. Niu, Z., Zhong, G., Yu, H.: A review on the attention mechanism of deep learning.

Neurocomputing 452 48–62 (2021). https://doi.org/10.1016/j.neucom.2021.03.091
13. Parimi, R., Caragea, D.: Predicting friendship links in social networks using a topic

modeling approach. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), pp.75–86 (2011)

14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., Bengio, Y.: Graph
attention networks (2018)

15. Wang, Z., Liang, J., Li, R.: Exploiting user-to-user topic inclusion degree for link
prediction in social-information networks. Expert Syst. Appl. 108, 143–158 (2018)

16. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive sur-
vey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2021). https://doi.org/10.1109/tnnls.2020.2978386, https://doi.org/10.1109
%2Ftnnls.2020.2978386

17. Yang, Y., Lichtenwalter, R.N., Chawla, N.V.: Evaluating link prediction methods.
Knowl. Inf. Syst. 45(3), 751–782 (2014). https://doi.org/10.1007/s10115-014-0789-
0, https://doi.org/10.1007%2Fs10115-014-0789-0

https://doi.org/10.1016/j.ins.2022.05.079
http://arxiv.org/1909.03211
https://doi.org/10.1109/TCSS.2020.3042745
https://doi.org/10.1109/TCSS.2020.3042745
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://doi.org/10.1007/s10115-014-0789-0
https://doi.org/10.1007/s10115-014-0789-0
https://doi.org/10.1007%2Fs10115-014-0789-0

Weakly Supervised Named Entity
Recognition for Carbon Storage Using

Deep Neural Networks

René Gómez Londoño1,3, Sylvain Wlodarczyk1 , Molood Arman1,2,3 ,
Francesca Bugiotti2,3(B) , and Nacéra Bennacer Seghouani2,3

1 Services Pétroliers Schlumberger, 34000 Montpellier, France
{swlodarczyk,marman2}@slb.com

2 Paris-Saclay University, CNRS, LISN, 91405 Orsay, France
{francesca.bugiotti,nacera.seghouani}@lri.fr

3 CentraleSupélec, Paris-Saclay University, 91405 Orsay, France
rene.gomez@student-cs.fr

Abstract. Applying Transfer-Learning based on pre-trained language
models has become popular in Natural Language Processing. In this
paper, we present a weakly supervised Named Entity Recognition sys-
tem that uses a pre-trained BERT model and applies two consecutive fine
tuning steps. We aim to reduce the amount of human labour required
for annotating data by proposing a framework which starts by creating a
data set that uses lexicons and pattern recognition on documents. This
first noisy data set is used in the first fine tuning step. Then, we apply a
second fine tuning step on a small manually refined subset of data. We
apply and compare our system with the standard fine tuning BERT app-
roach on large amount of old scanned document. Those documents are
North Sea Oil & Gas reports and the knowledge extraction would be used
to assess the possibility of future carbon sequestration. Furthermore, we
empirically demonstrate the flexibility of our framework showing that it
can be applied to entity-identifications in other domains.

Keywords: Natural language processing · Named entity recognition ·
Deep neural networks · Stratigraphy

1 Introduction

Carbon sequestration in the North Sea is a way to reduce the global warming to
below 1.5 ◦C. Several Northern European countries are currently engaging in solu-
tions to store carbon under the North Sea in old Oil & Gas reservoirs. One of the
difficulty in carbon storage is to entirely reassess the ancient reservoirs by inter-
preting many documents such as end of well reports, or core laboratory reports
written during the long life cycle of the reservoir. Those documents are very het-
erogeneous and many of them are accessible only thanks to OCR techniques that
do not provide clean data. In this case of study, the geologists study the rock strata
and categorize them given the information embedded in those documents. Multi-
ple analyses are performed in the domain of stratigraphy, that is the study of the
physical and temporal relationships between rock layers or strata.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 227–242, 2022.
https://doi.org/10.1007/978-3-031-18840-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_17&domain=pdf
http://orcid.org/0000-0002-7951-4527
http://orcid.org/0000-0002-0843-0879
http://orcid.org/0000-0002-6555-9652
http://orcid.org/0000-0002-7320-0316
https://doi.org/10.1007/978-3-031-18840-4_17

228 R. G. Londoño et al.

For running this analysis, a source of information that is fundamental but
generally underused is the set of geological well reports accumulated and pro-
duced during the whole history of a reservoir. Before the digital transformation
of Oil & Gas industry, these analyses were run on a manually-converted subset of
these documents. Nowadays, thanks to cloud computing and new technologies,
it could be possible to handle a large amount of heterogeneous data and exploit
a valuable source of historical information. Also, from the computational point
of view, the analysis becomes more complex to evaluate, and analysis needs all
useful data to be considered.

Those documents are underused because the geologists and the petrophysicists
need to convert the information manually into structured tables. Usually, from
these structured tables, they can populate the numerical models. These documents
do not follow a given structure, and old documents are often written by typewriters
and are accessible thanks to OCR techniques that do not provide clean data.

Name Entity Recognition (NER) [7] identifies the mentioned entities in
unstructured texts and classifies them into target categories. Extracting the cor-
rect entities in the domain of the stratigraphy is capital information to evaluate
a reservoir. Referring to our context, we can select as classification categories
the period, the age, the era, the formation, etc. In the literature the perfor-
mance of language models based on the Deep Neural Network (DNN) trans-
formers architecture has produced interesting results in information extraction
for many specific domains. The problem, however, is to provide the network with
the necessary amount of labelled data required for the training phase. A recent
state-of-the-art method for NER is to fine-tune a pre-trained BERT model using
a labelled dataset with the corresponding entities we want to identify.

In our approach, we create this labelled dataset with a weakly supervised app-
roach by using lexicons and labelling functions. This labelled dataset can be very
large but also noisy as it comes from scanned documents and weak supervision.
The hyperparameters of this first stage will be adapted to the “noisy” nature of
the dataset. We then manually correct a very small subset of the noisy dataset
and apply a second fine-tuning step with adapted hyperparameters. By com-
paring the results with a one-step fine-tuning approach, including the manually
corrected dataset, we show that this workflow improves the results of precision
by two (2) percentage points and recall by five (5) points. Increasing 5 points in
recall means gaining a huge amount of information as we have massive data to
process. We propose and test three language models with a human-reviewed data
set. We present results for three Name Entity Recognition models, including a
light version and compare with the state-of-the-art fine-tuned BERT model. Our
results show a precision of 90%, recall of 96%, and F1 score of 93%. We finally
provide some recommendations to apply our approach in other domains.

This paper is structured as follows. In Sect. 2 we describe the objectives, and
we identify the main contributions of our approach. In Sect. 3 we introduce the
fundamentals of our research focusing on the concepts related to Name Entity
Recognition. In Sect. 4, we detail our methodology. In Sect. 5 we present the
evaluation of the methodology.

Weakly Supervised Named Entity Recognition 229

In Sect. 6 we discuss related work, and we compare this research to the exist-
ing literature. Finally, in Sect. 7 we draw conclusions and some limitations and
open challenges that remain subject for future work.

2 Overview

The objective of this research is to build a Named Entity Recognition system
using Deep Neural Networks with a weakly supervised training process. To avoid
complex feature engineering or continuous labelling and extraction work from the
domain experts, we use a deep neural network-based approach. In the context of
interest, training data is not available and annotating data is a labour-intensive
task for geologists. To overcome such an obstacle, we decided to rely on a distant
supervision approach to create noisy labels using external resources like regular
expressions and dictionaries. It is a common scenario for a geologist to extract
information from a report using regular expressions. Each regular expression
identifies an entity and defines a sequence of characters that is used as a search
pattern in each report. Multiple chunks of text could match the given search
pattern, even text that is not a valid entity. The geologist might not realize this
mismatch and erroneous entities are commonly identified (False-Positive). Such
matches in NLP tools can produce alignment errors in the labels. As a second
scenario, suppose instead using dictionaries related to the energy domain. The
matching process should be straightforward and precise. Even in this scenario,
False-Positives are commonly produced because of polysemy: words in the entity
dictionary might be used in another context with a different meaning.

These two cases demonstrate that additional effort is required for cleaning
the results by using pure text matching to extract the final entities. This would
drastically hurt the system’s scalability. To solve this problem, we use training
data to build a deep neural network model that produces clean results and helps
us by the generalization capacity of language models to detect unseen entities
based on the contextual representation of their tokens Table 1.

The problem we introduced is studied in our domain but is common to many
domains [14,21]. In Fig. 1 we show an example where NER is presented as a

Table 1. Sequence to Sequence Task Classification.

Tokens BIO BILOU

Diego B-PER B-PER

Armando I-PER I-PER

Maradonna I-PER I-PER

was O O

born O O

in O O

1960 B-DATE U-DATE

Tokens-entities:

Diego Armando Maradona PERSON

was born in 1960 DATE .

230 R. G. Londoño et al.

sequence classification task. Specifically, we treat it as a sequence-to-sequence
problem: given a token sequence (a sentence) as input, we produce the corre-
sponding sequence of labels as output.

The approach is flexible enough to incorporate new target entities without
labour-intense human annotation and sufficiently robust to reduce the necessity
of result post-processing. The methodology is composed of the following steps:

1. The first step is the creation of a noisy training set for Named Entity Recogni-
tion. Given a set of documents, we aim to facilitate the text extraction task to
generate a noisy training set on large data sets using dictionaries and regular
expressions. The goal is to build an approach that can be run on distributed
processing frameworks.

2. Given a noisy training set, we aim to use transfer learning to evaluate differ-
ent DNN models incorporating contextual representations and using training
techniques to avoid learning the noisy labels.

3. Given a set of pre-trained language models we want to evaluate the perfor-
mances using a test set reviewed by human annotators. The evaluation shall
be done having precision, recall and F1 score as metrics adapted for sequence
evaluation.

2.1 Contributions

Given the described challenges, the methodology steps, and the technical con-
straints, our research achieves the following contributions:

1. The definition of a Named Entity Recognition System, establishing a baseline
for future model benchmarking.

2. The implementation of a distributed framework enables data labelling using
NER annotation schemas (like BIO and BILOU).

3. The implementation of a detailed two fine-tuning process of a pre-trained
BERT model using in the first step, a large and noisy dataset created auto-
matically and in the second step a small and clean human reviewed dataset.
The hyperparameters are adapted in each step to fit the specific nature of
each training data.

4. The evaluation of the approach utilizing sequence evaluation criteria from
CoNLL (precision, recall, and F1 score adapted for text sequences) against
human-reviewed data sets.

Furthermore, the same pipeline can be applied to other domains without a
huge effort by changing the dictionaries and regular expressions.

3 Background

The main task of this project is to generate a framework to facilitate noisy data
set creation, model training, and evaluation for a Named Entity Recognition
system. For this purpose in our domain, we focus on a set of entities whose
identification is a recurring challenge, given the nature of the geological reports.

Weakly Supervised Named Entity Recognition 231

Fig. 1. An example of an end of well report scanned and converted to pdf format.
We manually highlighted the various entities we would like to identify such as the
depth interval, the formation, the well id and the age.

An example of a well-report is shown in Fig. 1. The text present in the docu-
ment is very noisy and difficult to interpret, even for a human reader. Documents
of this format are written at the end of the drilling process of each well. The
document contains critical information to assess a reservoir. When the interpre-
tation of the reservoir is performed during the drilling process, the interpretation
of the reported data is handled in real-time by humans. When we need to reassess
reservoirs, for example, for evaluating carbon capture storage capabilities, wells
were drilled decades ago, and the geologist cannot reread them to assign the
information to thousands of wells. That is why we need to create models to
perform the task automatically.

The text annotation pipeline uses external resources, matching lexicons in
dictionaries, and regular expression patterns. The proposed approach avoids
complicated pre/post-processing to provide positive examples for training.

To define the scope of this project, we selected a variant of useful entities to
study similar scenarios like the ones proposed by [23]. In the following part of
the section, we present each entity and the challenges that we commonly find in
its identification process.

Defined Named Entities. An effective analysis must include entities that
are: evident from the model, highly noisy, characterized by a limited number

232 R. G. Londoño et al.

of possible instances and finally, entities that could be easily confused between
them. Thanks to our methodology we expect to have good accuracy in all of
them, but we also aim to detect which are the type of entities that remain
challenging to define the future work in this project. The list of entities we are
focused on in this presentation are:

(1) Well Identifier End of wells reports describe all the studies for one partic-
ular well. For instance, 30/2a-8 is a typical well identifier (well id entity)
in the nomenclature of the north sea region. Regular expressions are flexible
enough to detect those entities, but we will also detect many noisy labels.
For this kind of entity, we want to avoid post-processing operations, improve
the quality of the results and generalise the identification (i.e., the USA uses
different nomenclature for well identification).

(2) Period, age & epoch. The geologic time scale is the “calendar” for
events in Earth’s history. It subdivides all time into named units of abstract
time called eons, eras, periods, epochs, and ages. age and period entities
are almost well-defined dictionaries, we expect high-performance detecting
them. The epoch entity has a specific challenge as it comes from a dictio-
nary containing both unique names and general terms (i.e., early, late,
lower, etc.). We aim that in the sentence the drilling process started
late, the word late will not be identified as an epoch.

(3) Formation. A geological formation consists of a certain amount of rock
strata with comparable geological properties. This formation entity is com-
plex, with names ranging from rivers, areas, parks, towns or regions.

(4) Depth interval and interval. Depth intervals represent the boundaries
of the formations. They usually follow a pattern of number unit to/-/and
number unit measure reference. The unit could be feet or meters, with
their variations (i.e., ft,’,”, mt or m). measure reference is the refer-
ence point or type of the depth (i.e., True Vertical Depth (TVD), Measure
Depth (MD), etc.). We also introduced a more relaxed entity, the interval
that follows a similar pattern to the depth interval but without unit and
measure reference. Since it is a flexible entity, it leads to False Posi-
tives, but it helps the model to identify some depth intervals that would be
lost otherwise.

4 Methodology

In this section we describe our methodology from the labels generation to the
training process of the DNN. Afterwards, we present a more in-depth study for
the DNN’s training process and finally explain how we use pre-trained language
models to accomplish our downstream task.

An overview of the methodology is presented in Fig. 2. It involves multiples
stages, starting with the data set creation and finishing with the model training
and evaluation.

(1) The lack of labelled training data has limited the development of NLP tools.
We use distant supervision resources (dictionaries & regular expressions) to

Weakly Supervised Named Entity Recognition 233

Fig. 2. Implementation pipeline.

create labelled data in a semi-automatic way. This removes the need for
intense manual data labelling. The problem is that we get not only True-
Positive but also False-Positive examples.

(2) Since we are going to use a noisy data set, we clean part of the labels with
an annotation tool to generate a proper evaluation and test set. Notice that
we don’t annotate from scratch but review the semi-automatic generated
labels. We just correct enough examples to control the training process and
evaluate the final results.

(3) We used noisy samples to train the model with most of the default parame-
ters, varying the batch size and learning rate. Each batch contains a random
number of clean and noisy examples.

(4) According to [23] and [1], using the recommended parameters should be
enough. Still, we monitor the training process with a small clean evaluation
set to detect in which case the noisy examples start to be learnt by the
neural network. In theory, we should see fluctuating loss and performance
metrics for the evaluation set.

(5) The output model is selected on the basis of the sequence evaluation perfor-
mance.

4.1 Noisy Data Set Creation

One of the driver elements in our methodology is the data set creation. With-
out labelled data we follow a weak supervision approach using dictionaries and
regular expressions. Our data set creation pipeline is detailed in Fig. 3.

We remove newline characters and normalize the text to avoid rare characters
produced by the OCR system. We then tokenize the text and run a sentence
detector model.

The matcher component finds the corresponding chunks where the dictionary
or regular expressions match the specific sentence. Lexicons were collected from
different internal applications where stratigraphic units are used to describe

234 R. G. Londoño et al.

Fig. 3. Spark NLP implementation pipeline

well logs. However, public information like Wikipedia’s taxonomies or specific
knowledge bases is commonly used as data sources in such applications.

The matches are then converted into token-level labels. When we have over-
lapped labels, we have to keep the longest match. Here it is crucial to keep the
text alignment with the labels, always keeping one label for each token.

Finally, we built an exporter to save BIO/BILOU files.

4.2 Overcoming Noisy Labels Effect

In this section we present our steps to train the DNN avoiding the noise overfit-
ting.

First of all, to reduce some of the negative effects of label errors, we use
language models, which means that not only the entity influences the learning
process but also the context in which it appears. Under this scenario, noisy
examples are harder to be learnt. Not all of them follow one common usually
perfect pattern as clean examples do. As additional bias they occur in similar
contexts: the representation is then not as close as the clean examples. Batch
size and learning rate are fundamental hyperparameters in our context as already
stated by [23,25]. We deeply rely on the straightforward approach explored by
[23]. The authors demonstrated that larger batch sizes are better to overcome
the effect of noisy data labels. The authors argue that the negative impact of
uncorrelated or less correlated noise types is diminishing since updates caused
by noisy samples are overwhelmed by gradient updates from clean samples. [25]
got similar results, observing that DNN trained on noisy labelled datasets with
a high learning rate do not memorise noisy labels.

Two-Step Fine-Tuning. [23] suggests that learning with big batch size is
enough to mitigate the noise effect. We follow this approach using also a clean

Weakly Supervised Named Entity Recognition 235

evaluation set. This enables to monitor the training evolution to ensure the
best hyperparameters configuration for removing noise. Finally, we select the
batch size that presents the most consistent behaviour during training. To avoid
noise overfitting, we might need to use an early stopping of the training process.
We consider this as an adaptation step towards all our domain-specific language
where we learn simple entities and patterns. However, if the model does not learn
noisy labels it might also be having lousy performance in the difficult to learn
patterns, or confusing similar classes like INTERVAL and DEPTH INTERVAL.
In such a case, we plan to run a second fine-tuning stage with regular supervi-
sion. It is, having a small training set with clean examples and using traditional
hyperparameters to refine the details that might be missing during the first fine-
tuning stage. Moreover, we want to evaluate if applying this methodology, we
can change the behaviour in the polysemy problem. We expect to influence the
algorithm and to see some changes in the predictions for words like lower and
late in the EPOCH entity as the primary example. Additionally, since we are in
a transfer learning setting, we use some clean and reliable negative examples to
execute a second fine-tuning stage. We intend to evaluate if this helps the model
improving the details that might be excluded during the first fine-tuning phase.
In this second step we must avoid the forgetting problem [22]. We do this with
following strategy: regardless of the errors, we won’t target any particular entity
but randomly select examples to learn the details. We want to keep the clean
training set small, with a similar size to the validation set. Such training set has
examples from all the previously learned entities. We are not incorporating a
new named-entity or a completely different context. This two-step fine-tuning
strategy works even better in more complicated scenarios, where the original
training data is not available. Hence, we don’t expect any drawback from using
it in this more convenient environment.

5 Evaluation

The architecture of the system is provided in Fig. 2. For the project implemen-
tation, we use PySpark in a Kubernetes cluster deployed on Google Cloud Plat-
form. For the data set creation, we used a cluster with 16 GB in the driver node
and 4 workers with 8 GB RAM each. The training process was done in one single
node with 64 GB RAM without GPU.

Specifically, we use Spark NLP for weak data labelling and train the models
using Transformers (PyTorch version). The number of resources assigned to the
project varied according to the cluster state or the executed task. Our normal
configuration for the cluster was with 32 GB of memory in the driver node and
four executors with 8 GB each.

The output from the lexicons and regular expressions were cleaned and cross-
validated by two engineers using Doccano. Complex examples were verified with
domain experts. The reports are publicly available on the Oil and Gas Authority
website [16]. The pre-processing code and the OCR were performed by Schlum-
berger and are not publicly available. The training process was done using the

236 R. G. Londoño et al.

Table 2. Data sets for training.

Entity Noisy set Clean set Eval set Test set

WELL ID 15754 125 151 345

FORMATION 18424 159 167 381

INTERVAL 9218 93 83 189

EPOCH 19366 166 156 360

AGE 11243 130 118 280

PERIOD 7416 79 87 166

DEPTH INT 4258 40 56 92

TOTAL 85679 792 818 1813

public available HuggingFace Transformers training process with the described
hyperparameters. We track our experiments using Weights&Biases (W&B).

Data sets. We collected examples from one thousand different geological reports
with more than seven million tokens. We executed the automated noisy data
labelling pipeline and we got more than 125,000 sentences with approximately
227,000 entities. However, we did not use the entire data set for our proof of
concept. We randomly selected sentences to create the training and evaluation
sets. For the noisy training, clean training, and test set we selected respectively
50000, 500, and 1000 sentences.

We present the entities and the number of instances in Table 2.

Evaluation Results. Across all the experiments we use seqeval [18], a frame-
work for sequence labelling evaluation following the CoNLL-2000 shared task
data guidelines. Instead of evaluating token by token, the sequence is evalu-
ated based on complete detected named entities. The framework also takes into
account class imbalance, ignoring, for instance, the tokens that are not entities
labelled as O. We focused our experiments in testing several models using dif-
ferent batch sizes and learning rates as described in the methodology section,
evaluating its effect in the fine-tuning steps. For other hyper-parameters, we
used the recommended values suggested in [9], with sequences of maximum 128
tokens. Note that we use BERT-Base-Cased like models because we have a lot
of capitalized names or upper case codes in our documents.

Figure 4 shows the results over three models: BERT [9] and the HuggingFace
distilled version of BERT and RoBERTa [24].

We could see that most of the time, the distilled version of RoBERTa is
outperformed by the BERT and the distilled BERT model in all metrics. Hence
we decided to focus on the BERT and distilled BERT model.

We present the performance of the two selected models in Table 3.
As explained in Sect. 3 the high performance in entities like depth interval

and period were expected, since these entities are consistent with dictionaries

Weakly Supervised Named Entity Recognition 237

Fig. 4. Benchmark of three pre-trained models.

Table 3. Results for test set. DistilBERT and BERT with a BatchSize of 64. First and
second fine-tuning results

Named entity d-BERT-64 St 1 d-BERT-64 St 2 BERT-64 St 1 BERT-64 St 2 Supp

P R F1 P R F1 P R F1 P R F1

DEPTH INT 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.95 0.98 0.96 92

FORMATION 0.90 0.86 0.88 0.84 0.90 0.87 0.92 0.87 0.89 0.85 0.91 0.88 381

WELL ID 0.46 0.48 0.47 0.90 0.96 0.93 0.46 0.48 0.47 0.91 0.96 0.94 345

AGE 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97 280

PERIOD 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 166

INTERVAL 0.92 0.97 0.95 0.93 0.97 0.95 0.93 0.95 0.94 0.92 0.96 0.94 189

EPOCH 0.89 0.98 0.93 0.89 0.97 0.93 0.91 0.99 0.94 0.90 0.98 0.94 360

or well-defined patterns. It helps us to evaluate that we are not degrading the
performance in the well-known consistent cases. Furthermore, with them, we
evaluate the performance in other entities like interval or formation, where
the former is a pattern similar to other non-entities tokens present in the text,
and the latter comes from incomplete dictionaries. The well id is the hardest
entity to learn since they have an inconsistent pattern that matches other tokens
(i.e., section numbers and coordinates, which can also appear without context).

To validate the advantage of using the two-step fine-tuning approach, we
learned a single-step fine-tuning BERT model and the equivalent distilled BERT
model using the combination of the noisy and the clean training set as a unique
training data set. We present the performances of these models in Table 4.

Result Discussion. The two steps training method presents a slightly better
precision (2% points improvement) than the single-step fine-tuning BERT model.
Furthermore, the two steps model training has, as expected, a better recall (up

238 R. G. Londoño et al.

Table 4. Results for test set. BERT with a batch size of 64. BERT Stage 1 and Stage
2 are the two fine-tuned results, whereas stage 2 is the final result. BERT Single-Step
is the single-step fine-tuned BERT model

Bert version Named entity BERT Stage 1 BERT stage 2 BERT single-Step Supp

P R F1 P R F1 P R F1

Distilled Bert DEPTH INT 0.99 0.99 0.99 0.98 0.98 0.98 0.96 0.98 0.97 92

FORMATION 0.9 0.86 0.88 0.84 0.9 0.87 0.90 0.86 0.88 381

WELL ID 0.46 0.48 0.47 0.9 0.96 0.93 0.62 0.64 0.63 345

AGE 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.97 280

PERIOD 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 166

INTERVAL 0.92 0.97 0.95 0.93 0.97 0.95 0.93 0.96 0.94 189

EPOCH 0.89 0.98 0.93 0.89 0.97 0.93 0.91 0.99 0.94 360

Micro avg 0.84 0.86 0.85 0.91 0.96 0.93 0.87 0.89 0.88 1813

Bert DEPTH INT 0.98 0.98 0.98 0.95 0.98 0.96 0.92 0.98 0.95 92

FORMATION 0.92 0.87 0.89 0.85 0.91 0.88 0.90 0.87 0.89 381

WELL ID 0.46 0.48 0.47 0.91 0.96 0.94 0.72 0.74 0.73 345

AGE 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 280

PERIOD 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 166

INTERVAL 0.93 0.95 0.94 0.92 0.96 0.94 0.95 0.96 0.96 189

EPOCH 0.91 0.99 0.94 0.9 0.98 0.94 0.91 0.99 0.94 360

Micro avg 0.85 0.86 0.85 0.91 0.96 0.94 0.89 0.91 0.90 1813

to 5% points) given the fact that the longer training time for the single-step
fine-tuning BERT model reduces its flexibility to identify new entities.

We see that the second fine-tuning step improves the accuracy and precision
of the models. First, as shown in Table 3 the high performance was maintained for
the consistent entities, which was expected since the second training set contains
clean examples for all the entities. In other words, we introduced examples of all
entities avoiding the catastrophic forgetting problem.

Furthermore, the training set in the second step was focused on providing
cleaner examples for the well id and age. Therefore, it makes sense that it
helped the model predict multi-token well id. The second fine-tuning step
catches the full well id with proper boundaries, as shown in Table 5.

In a second round of analysis, we also evaluated the generalization capacity
of the models by testing non-existing ages such as Sylvanian or Renotian. In
the sentence “The late Sylvanian is...”, the token late was identified as an
epoch with a probability of 99% and Sylvanian as an age with a probability
of 70%. Notice that the model never saw Sylvanian as an example before, but it
appears with a similar structure to other age names, and in the same sentence
(context) there is an epoch (the word late), hence the model classified it as
an age. Nevertheless, it is only 70% confident about the prediction (since it has
never been seen before). In the sentence “I was late for class”, the token
late was NOT identified as an epoch by the BERT ST2 model: it is the same
token as a valid epoch, but the context is not valid; therefore it has another

Weakly Supervised Named Entity Recognition 239

Table 5. Example of multi-token WELL ID. The model fails to catch the full multi-
token WELL ID with only the first fine-tuned step but succeeds with the second fine-
tuned step.

Token BERT ST1 BERT ST2

Well B-WELL ID B-WELL ID

13 22a B-WELL ID I-WELL ID

– B-WELL ID I-WELL ID

C29X O I-WELL ID

wellsite O O

Geological O O

meaning. It shows that the second training step has a great potential to improve
the capacity to remove the False Positives introduced by words with multiple
meanings.

6 Related Work

In this section, we illustrate related work starting from introducing the works
that generally studied Named-entity recognition. In the second part of this
section, we will analyze the approaches that treat NER using pre-trained word
representations. Finally, we will analyse the approaches used in Oil & Gas Indus-
try and other domains.

Named-entity recognition systems have been studied and developed for
decades. Nevertheless, the methods using deep neural networks (DNN) have only
been introduced in the last decade [14], with recent special improvements given
the new capabilities with pre-trained models and transfer learning [14]. Models
with pre-trained word representations The widely used approach based on
DNNs for NER was proposed in [6]. This model applies a Convolutional Net-
work Architecture to the token sequence. Posterior works typically change the
encoding part, which ranges from char-based, word-based, and encoding addi-
tional features. Examples include predefined word representation like word2vec,
GloVe, or BERT or the explicit inclusion of suffixes and prefixes. In this con-
text [12] work focused on changing the CNN with a bidirectional LSTM encoder.
They do not perform any pre-processing; they do not take into account morpho-
logical information from characters or words. Instead, all features are learned
by a CNN, achieving SOTA results. Other approaches [17] take advantage of
the usage of a large semantic database and implement distant supervision: the
relation classifier is trained using textual features.

Some models are based on general word embeddings, that are fine-tuned for
NER. The original work, illustrated in [19], presented an F1 score of 92.2 over
the CoNLL 2003 test set. [5] improves this result to 92.6 by using Cross-View
Training (CVT). The semi-supervised learning algorithm improves the represen-
tations of a Bi-LSTM sentence encoder utilising a mix of labelled and unlabelled

240 R. G. Londoño et al.

data. Zalando Research has also made a great effort in providing SOTA mod-
els, getting an F1 score of 92.86 over the same data set [2]. Using the BERT
base model(i.e. using the pre-trained embeddings) gives an F1 score of 91. Fine-
tuning the same model for NER, however, improves this score to 96.4. In 2019
the pooled version of the approach improved this score to 93.18 [2]. Energy
Industry a NER for geosciences trained for the Chinese language has been pro-
posed by [20]. They use a generative model, building a data set from seed terms
without labelled data with good results. Another system from geoscience is the
Portuguese NER [7]. It defines the target entities for the Brazilian sedimentary
basins. They used a conventional approach with three different embeddings con-
figurations tested using a BiLSTM-CRF architecture. Some other approaches
are focused on unsupervised clustering-based technique to match attributes of a
large number of heterogeneous sources as also proposed in [3] to identify entities.

NER inOther Domains. NER is well studied in specific domains like medical data,
neuroscience, or scientific data. Bio-NER for the biomedicine field has named enti-
ties related to RNA, protein, cell type, cell line, and DNA with different shared
tasks. Similarly to the general field, up to 2018 BiLSTM-CRF [13]

Noisy Labels. Label noise has always been an existing problem in machine
learning, due to the potential negative impact it has over classification as also
stated in [10].

Since weakly supervised learning is gaining a huge attraction, dealing with
noise in Deep Neural Networks has become a highly active research field for rep-
resentation learning [8]. Most works focused on generating and aggregating syn-
thetic noise to well-known data sets [23]. [1] identifies three different approaches
to mitigate the effect of noisy labels as widely described in [4,11,15].

7 Conclusion

Named Entity Recognition is the first fundamental step for Information Extrac-
tion and Knowledge Base creation. The main objective of our research was to
build a NER System for the Oil & Gas industry. However, instead of creating one
model for some specific entities in this domain, We aimed to explore a method-
ology/framework that facilitates the creation of a Named Entity Recognition
system based on noisy data labels. The methodology is flexible enough to incor-
porate new target entities without labour-intense human annotation and suffi-
ciently robust to enhance generalization. We create labels using distant super-
vision resources like dictionaries and regular expressions. Distant supervision
introduces noisy labels, translating mainly into False Positives in the training
set. To mitigate the effect of noisy labels, we followed a method with three
key elements: (1) Distributed processing - to enable the labelling of bigger data
sets than the ones we could have obtained with manual annotation. (2) Trans-
fer learning with pre-trained language models - to learn bidirectional context
representations in our domain-specific corpus (3) SOTA training techniques -

Weakly Supervised Named Entity Recognition 241

to avoid over-fitting the noisy examples. Furthermore, we proposed a two-step
fine-tuning approach that showed to be effective in improving the prediction
capacity in hard-to-learn named entities. We apply this model to many domain
documents from the north-sea and create a knowledge graph that would be used
to feed a model.

A similar approach could be applied in other domains where many docu-
ments are available. In such scenarios, distant supervision enables extracting
thousands of sentences with entities. Even with noise, bigger data sets and the
proposed training process will help the model to capture the regular context
where entities occur, helping to remove false positives even in domains with pol-
ysemy challenges. As future work, we would like to explore the effect of the size
of the clean data set on the model performance following our approach. This
will allow us to provide clear recommendations on how much data has to be
cleaned for the second fine-tuning step. Moreover, as an extension of our work,
we can consider replacing the regular expressions and dictionary approach with
labelling and transformation functions like in Snorkel [21].

Acknowledgements. We are grateful to the Oil & Gas Authority that provided
the access to wells reports used in our research (under the Oil and Gas Authority
Licence [16]).

References

1. Abid, A., Zou, J.Y.: Improving training on noisy stuctured labels. CoRR (2020)
2. Akbik, A., Bergmann, T., Vollgraf, R.: Pooled contextualized embeddings for

named entity recognition. In: Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp.
724–728 (2019)

3. Arman, M., Wlodarczyk, S., Bennacer Seghouani, N., Bugiotti, F.: PROCLAIM:
an unsupervised approach to discover domain-specific attribute matchings from
heterogeneous sources. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP,
vol. 386, pp. 14–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58135-0 2

4. Bahri, D., Jiang, H., Gupta, M.R.: Deep k-nn for noisy labels. CoRR (2020)
5. Clark, K., Luong, M.-T., Manning, C.D., Le, Q.V:. Semi-supervised sequence mod-

eling with cross-view training. CoRR (2018)
6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.:

Natural language processing (almost) from scratch. CoRR (2011)
7. Consoli, B., Santos, J., Gomes, D., Cordeiro, F., Vieira, R., Moreira,V.: Embed-

dings for named entity recognition in geoscience Portuguese literature. In: Proceed-
ings of The 12th Language Resources and Evaluation Conference, pp. 4625–4630,
Marseille, France, 2020. European Language Resources Association

8. Deng, Z., Dong, Y., Pang, T., Su, H., Zhu, J.: Adversarial distributional training
for robust deep learning. CoRR (2020)

9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR, abs/1810.04805 (2018)

10. Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

https://doi.org/10.1007/978-3-030-58135-0_2
https://doi.org/10.1007/978-3-030-58135-0_2

242 R. G. Londoño et al.

11. Ghosh, A., Kumar, H., Sastry, P.S.: Robust loss functions under label noise for
deep neural networks. AAAI’17, pp. 1919–1925. AAAI Press (2017)

12. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR (2015)

13. Khan, M.R., Ziyadi, M., Abdelhady, M.: Mt-bioner: Multi-task learning for biomed-
ical named entity recognition using deep bidirectional transformers. CoRR (2020)

14. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recog-
nition. CoRR (2018)

15. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled
data. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5046–5054 (2019)

16. Licence. Oil and Gas Authority Licence (2022) Accessed Jan 2022. https://www.
ogauthority.co.uk/media/5850/oga-open-user-licence 210619v2.pdf/

17. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09, pp.
1003–1011, USA, 2009. Association for Computational Linguistics

18. Nakayama, H.: seqeval: A python framework for sequence labeling evaluation
(2018). https://github.com/chakki-works/seqeval

19. Peters, M.E.,et al.: Deep contextualized word representations, CoRR (2018)
20. Qiu, Q., Xie, Z., Liang, W., Tao, L.: Gner: a generative model for geological named

entity recognition without labeled data using deep learning. Earth Space Sci. 6,
931–946 (2019)

21. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Sen, W., Ré, C.: Snorkel. Proc.
VLDB Endowment 11(3), 269–282 (2017)

22. Robins, A.V.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect.
Sci. 7, 123–146 (1995)

23. Rolnick, D., Veit, A., Belongie, S.J., Shavit, N:. Deep learning is robust to massive
label noise. CoRR (2017)

24. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108 (2019)

25. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework
for learning with noisy labels. CoRR (2018)

https://www.ogauthority.co.uk/media/5850/oga-open-user-licence_210619v2.pdf/
https://www.ogauthority.co.uk/media/5850/oga-open-user-licence_210619v2.pdf/
https://github.com/chakki-works/seqeval

Predicting User Dropout from Their
Online Learning Behavior

Parisa Shayan1(B) , Menno van Zaanen2 , and Martin Atzmueller3,4

1 Tilburg University, Tilburg, The Netherlands
p.shayan@tilburguniversity.edu

2 South African Centre for Digital Language Resources, Potchefstroom, South Africa
menno.vanzaanen@nwu.ac.za

3 Semantic Information Systems Group, Osnabrück University, Osnabrück, Germany
4 German Research Center for Artificial Intelligence (DFKI), Osnabrück, Germany

martin.atzmueller@uni-osnabrueck.de

Abstract. The Covid-19 pandemic, which required more people to work
and learn remotely, emphasized the benefits of online learning. However,
these online learning environments, which are typically used on an indi-
vidual basis, can make it difficult for many to finish courses effectively.
At the same time, online learning allows for the monitoring of users,
which may help to identify learners who are struggling. In this article,
we present the results of a set of experiments focusing on the early pre-
diction of user drop out, based on data from the New Heroes Academy,
a learning center providing online courses.

For measuring the impact of user behavior over time with respect to
user drop out, we build a range of random forest classifiers. Each clas-
sifier uses all features, but the feature values are calculated from the
day a user starts a course up to a particular day. The target describes
whether the user will finish the course or not. Our experimental results
(using 10-fold cross-validation) show that the classifiers provide good
results (over 90% accuracy from day three with somewhat lower results
for the classifiers for day one and two). In particular, the time-based and
action-based features have a major impact on the performance, whereas
the start-based feature is only important early on (i. e., during day one).

Keywords: User modeling · Data mining · Dropout prediction

1 Introduction

The COVID-19 pandemic has led to a shift towards online learning [4,7]. The
key benefit of online learning is related to providing content to the community
through open access platforms which can have economic and educational bene-
fits e. g., reduced market entry time, international partnerships, increased user
engagement and satisfaction, growth in the learning curve of users, plus rich
evaluation and feedback [1,5].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 243–252, 2022.
https://doi.org/10.1007/978-3-031-18840-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_18&domain=pdf
http://orcid.org/0000-0002-2193-2232
http://orcid.org/0000-0003-1841-2444
http://orcid.org/0000-0002-2480-6901
https://doi.org/10.1007/978-3-031-18840-4_18

244 P. Shayan et al.

However, even though online learning may have major benefits, it also comes
with several challenges, e. g., startup budget requirements, organizational and
individual preparation, team effort and development, technical support and cri-
sis management [1]. In addition, one of the main challenges is user participation
[9,14]. Not all users of online learning platforms make it to the end of a course
successfully. Therefore, in this article we aim to identify such users by investi-
gating user behavior in an online learning platform. Here, we utilize a real-world
data set from the New Heroes Academy1, a learning center providing online
courses.

The main purpose of this study is to predict, as quickly as possible, whether a
user will finish a course or not. The earlier we know whether a users will drop out,
the more time there is to implement possible interventions. These interventions
may help to keep users engaged during the course and hence to prevent dropout,
increasing the chance they finish the course.
Therefore, this study leads us to target the following research questions:

1. Which features are most influential when predicting user’s course completion?
2. How do these change over time (for days)?

Our main contributions are summarized as follows:

1. We present research that aims to predict user dropout as quickly as possible.
2. We analyze and demonstrate the impact of behavioral features on user

dropout through a predictive model.

2 Background

In general, prediction of user behavior is a major focus of the research in the
research areas of Learning Analytics and Knowledge (LAK) and Educational
Data Mining (EDM). LAK mostly measures, collects, analyzes, and reports data
on student learning progress, whereas EDM builds and explores learner models,
adapting the learning environment using advanced data mining techniques [12].

[3,10] applied data mining techniques to users’ demographic and behavioral
data. According to their findings, neural networks, Naive Bayes, decision tree,
and random forest classifiers are comparable with logistic regression to predict
user retention. [15] focused on finding a way to increase user retention rates.
For this purpose, they employed Bayesian algorithms, support vector machines
(SVM), and decision trees. Their results indicated that Bayesian analysis was
more accurate in predicting user retention than other algorithms. On a similar
note, [6] examined the weekly dropout classification using SVMs and cumulative
features (e. g., number of interactions, number of views per page of the course).
Here, the SVM approach reached the higher accuracy. Likewise, [13] analyzed
MOOCs using SVM and k-means as classifiers and experimented with different
cases. In their results, k-means always lagged behind SVM. According to their
findings the best results were obtained after the first 100 interactions and the
first seven days after the users’ first interaction with the system.
1 https://www.newheroes.com.

https://www.newheroes.com

Predicting User Dropout from Their Online Learning Behavior 245

3 Methodology

We are interested in discovering the features that describe which users dropout
during a course and how the importance of these features may change over time.
In other words, we measure the impact of different types of features over time for
early prediction of user dropout. To investigate this, we build a range of random
forest classifiers (one for each day) such that the feature values are computed
from the day a user starts a course up to that particular day. In each classifier, we
extract four groups of features (e. g., time-based, action-based, course-based, and
start-based features) to build a model of early prediction for user dropout using
a random forest classifier. The target thus defines whether the user will finish
the course or not. We evaluate on several metrics using 10-fold cross-validation.

Relating this to previous studies, [3,10] focused on prediction user retention.
[15] compared different algorithms to explore the best method to predict user
retention whilst in the current study we intend to predict user dropout (in con-
trast to user retention) as quickly as possible such that we analyze the impact
of different type of features over time. While [13] examined a small number of
time-based and action-based features to predict user dropout, here we extract
a larger range of features. We consider 16 unique action-base features, seven
course-based features as well as time-based and start-based features to create
an early predictive model of user dropout while taking a time aspect (on a daily
basis) into account.

3.1 Data Set

The New Heroes Academy is an online training platform that allows for both
online and blended learning (i. e., a combination of online and classroom). The
focus here is on the online learning aspect. The New Heroes Academy offers their
services to both private and business clients, their common denominator is that
the services are subscription-based. Users will earn a certificate once they finish
a course. The users finish a course when they complete the required elements
(described below) related to that course.

In the current study, we are using a data set that was collected over the
period 2016–2020 from the New Heroes Academy website. It consists of 7086
unique users and 198 courses with 17,323 unique user/course pair (13,555 finished
courses and 3,768 unfinished courses). To decide on which users we consider
not finishing their course, we considered the 90% quantile, which indicates that
most users finish their courses within 400 days. As such, we take 400 days as
a threshold. Those users taking more than 400 days are considered dropouts.
Obviously, the length of a course may have an influence on how long users take
to finish a course. The average course consists of 20.71 elements with a standard
deviation of 29.40. On average, a user needs to perform 48.34 actions to finish a
course. This takes 268.40 days on average with the standard deviation of 620.09.

246 P. Shayan et al.

3.2 Features

In order to describe the interaction of a user with a course, we identify four
different types of features. First, time-based features can be found in Table 1.
These are calculated on a day by day basis. These features are computed over
the number of days from the day the user started the course.

Table 1. List of time-based features.

TotalNumberOfActions Total number of actions a user has performed in
the course thus far

AvgNumberOfActions Average number of actions a user has performed
per day

StdDevNumberOfActions Standard deviation of number of actions a user
has performed per day

Second, we identify action-based features. These features describe the number
of the different types of actions a user has performed up to the time of measure-
ment (i. e., per day). The New Heroes Academy data set identifies 16 different
types of actions that are listed in Table 2. These features describe the (total)
number of actions per type of action the user has performed within the time
period being measured (i. e., number of days under consideration).

Third, we believe that the day a user starts a course may have an influence on
the course completion. To represent this type of information, we use start-based
features. For instance, people starting during school holidays may have allocated
time during that period to work specifically on the course. We experimented
with additional features (e. g., whether they started in a weekend or not). The
preliminary results showed that these features often co-correlated and had no
real impact. Therefore, we only considered the week of the year in which a user
has started a course. This feature is shown in Table 3.

Finally, the setup of a course may have an influence on the course completion.
For instance, extremely long courses may be more difficult to complete as they
require longer attention spans.

We can describe the length of a course by counting the number of course
elements. Course elements are tasks that a user has to do in order to com-
plete a course. The elements are classified in seven groups (i. e., “Open task”,
“Goal”, “Questionnaire”, “Instruction wizard”, “Video task”, “Textual expla-
nation”, and “Video response training (vrt)”). In addition to measuring the
overall course length, we count how many of which type of element are found
in the course as some elements may be more difficult or take more time to com-
plete than others. We call this group of features course-based features and they
are described in Table 4. Note that these properties are not related to any user
properties. They remain constant for each course.

Predicting User Dropout from Their Online Learning Behavior 247

Table 2. List of action-based features.

AudioPaused Total number of clicks on the audio pause button

AudioStarted Total number of clicks on the audio play button

BookmarkCreated Total number of clicks on the bookmark label

BookmarkViewed Total number of clicks on “more information” in the
bookmark overview

ElementDone Total number of learning elements done in the course

ElementOpened Total number of learning elements opened in the course

ElementInProgress Total number of answered learning elements in the
course

JourneyStarted Total number of learning elements started in the course

JourneyVisited Total number of learning elements visited in the course

JourneyAssignedToGoal Total number of learning goals assigned to a coursea

StuckButtonUsed Total number of clicks on the stuck button (to get a
hint)

SupporterInvited Total number of learning support invitations sentb

SupporterLinkOpened Total number of learning support invitation opened by
the user

ToggleTranscript Total number of times a user requested the transcript of
a videoc

VideoPaused Total number of clicks on the pause button of a video

VideoStarted Total number of clicks on the play button of a video
a Before beginning a course, users set learning goals for their personal development.
b Users can invite a supporter for a learning element.
c The user can click a red button below a video to expand the transcript of that
video.

Table 3. List of start-based features.

Week Number of the week in the year when the course was started

Table 4. List of course-based features.

LengthCourse Number of elements in the course

Goal Number of goal elements in the course

InstructionWizard Number of instruction wizards in the course

OpenTask Number of open tasks in the course

Questionnaire Number of questionnaires in the course

TextualExplanation Number of texts in the course

VideoAssignment Number of video assignments in the course

VideoResponseTraining (VRT) Number of video response training in the course

248 P. Shayan et al.

3.3 Pre-processing

To compute the number of actions a user has performed in a course after a par-
ticular number of days (say n days), we add all actions that user has performed
from day 1 (the day the user started the course) to day n. This is the basis for
the time-based, and action-based features. The start-based feature depends on
when the user starts the course and the course-based features are computed per
course. We use this collection of information for all classifiers such that we will
have as many instances as there are user/course combinations in the entire data
set. The binary target indicates whether the user finished the course or not. Note
that the target does not describe whether the user has finished the course after
the n days that form the basis for the information extraction, but it describes
whether the user finished the course at some point (potentially in the future).

3.4 Predictive Model

As we aim to build a model that can accurately predict whether users finish the
course (or not) as soon as possible. This means that the model should provide
high accuracy, but does this using information from the least number of days
allowing for sufficient time for potential interventions.

For this, we build classifiers for a range of days: j = {1, 2, . . . , n} days. We
expect that the performance of the classifiers using information of more days will
have a higher classification performance (as more information is available). At
the same time, we would like to have a model that makes the correct decisions
as early on in the process. We experiment with classifiers using information from
one to twenty days (where day twenty means using the information from day
one up to and including day twenty).

3.5 Evaluation

In order to evaluate the quality of our classification models we provide the results
of experiments using 10-fold cross-validation for all classifiers. In our experimen-
tation, we provide the following measures: accuracy (i. e., the percentage of cor-
rectly classified instances), precision, recall, the F1-score, and AUC (Area Under
the Curve).

Furthermore, we compute the accuracy of a majority class classifier as a
simple baseline for comparison. Also, (in the respective graph visualization) we
provide the standard deviations for the performance metrics to show the varia-
tion of the results between the folds. In addition to the classifier performance,
we provide information on the feature importance of all the features for all the
classifiers. This allows us to investigate which features are most important for
classification purposes and, in particular, we can furthermore see how this feature
importance changes over time.

Predicting User Dropout from Their Online Learning Behavior 249

4 Results

We first show results of the feature importance within the different classifiers. We
focus on the following four different categories of features: time-based, action-
based, course-base, and start-based to see the impact of the above features on
user dropout over time. Next, we present the performance results of the predic-
tive modeling approach.

4.1 Predictive Model

To measure the impact of user behavior over time, we build a range of random
forest classifiers using the above features. Figure 1 shows the feature importance
from the day users start the course (day one to day twenty). As aforementioned,
the feature vector consists of four types of features e. g., time-based features,
action-based, start-based, and course-based features. In general, the weights for
the features are quite stable with only minimal changes over time. Only for
day one the Week feature is important (as very limited other information is
available).

What is striking, is the dominance of action-based features. For instance,
the high rate of total number of learning elements done by users in the course
(ElementDone) is the most important feature for all days. Furthermore, the high
importance of time-based features on user dropout stands out. For example, the
standard deviation of actions users have performed in day (StdDevNumberO-
fActions) one and three have a major influence on user dropout. Furthermore,
the course-based features, in specific, Instruction wizard between day two to day
five have a large influence on the classifiers. Also, the number of elements in the
course (LengthCourse) seems to affect user dropout.

Overall, these results indicate that the ElementDone, Instruction wizard for
all days, the Week and StdDevNumberOfActions between day one and day six
features have a large impact on the prediction performance. Additionally, some
features (LengthCourse as well as TotalNumberOfActions and AvgNumberO-
fActions) have a decent impact and their influence remains stable over time.

4.2 Evaluation

Figure 2 provides a summary of our experimental results on the time-based anal-
ysis. In addition, the respective standard deviations are incorporated into the
graph in order to depict the variation of the folds as well.

According to the graph, the majority class baseline accuracy for all days is
78%. What is striking, is that the accuracy for day one and day two is already
between 87% and 89% and the performance of the classifiers increases (i. e.,
over 90% accuracy), from day three. Furthermore, we computed the AUC which
starts at 81% (for day one) and increases to 86% (for day twenty). What is
also interesting is a consistent value for precision (92%) for almost all days. In
contrast, one can observe an increasing trend for recall and F1-score starting
with 92% at day one and reaching to 95% and 98% at day twenty accordingly.
The accuracy shows a gradual increase over time (after day two).

250 P. Shayan et al.

Fig. 1. Distribution of features in order of importance using 10-fold cross-validation
with Random Forest classifiers (by day). The more important features are represented
by lighter colors whilst the less important features are demonstrated by darker colors.
(Color figure online)

Fig. 2. Plot for majority class baseline, accuracy, precision, recall, F1-score, and AUC
(by day) using 10-fold cross-validation plus standard deviation to show the folds vari-
ation.

Predicting User Dropout from Their Online Learning Behavior 251

5 Discussion

In this study, to measure the influence of users’ behavior on dropout, we con-
structed a range of random forest classifiers using four different feature groups
over time. At the same time, we computed the features’ values from the day
each user starts a specific course up to a specific day. What was striking, was
the feature importance of action-based features (i. e., the total number of learn-
ing elements done by users in the course) and time-based features (i. e., standard
deviation of actions user has performed) on user dropout. The former for all days
and the latter for the first and the third day had a large impact on user dropout.
Furthermore, the course-based features (i. e., Instruction wizard) was important
from day two onward. Also, the number of elements in the course as well as the
average number of elements in the course could affect the user dropout (so there
is a difference between long and short courses). Meanwhile, what was interesting,
the start-based features (the week number of the year in which the user started
the course) was only important during the early period, i. e., day one.

With respect to our evaluation, we provided a majority class baseline which
showed an accuracy of 78%. The random forest results indicated 90% accuracy
from the third day with sightly lower results for the classifiers for the first and
second days which provided high performance for our experimental results. In
addition, the AUC value between 81% and 86% implies that the classifiers from
day one to day twenty perform quite well.

On essentially all metrics, one can see an upward trend. Recall and precision
start from 92% at day one then rose to a high point and peaked into 98% at day
twenty. The high precision means that over 90% of our results in predicting user
dropout are relevant. The recall score refers to the high rate of total relevant
results that classified correctly by our predictive model. The F1-score, defined
as a harmonic mean of recall and precision values, shows high scores i. e., from
91% at day one to a high point of 95% at day twenty.

6 Conclusions

The main goal of the current study was to create an early prediction model of
user dropout. The experimental results proved that the classifiers provide good
results from day three and then the prediction performance remains relatively
stable (with only minor increases). The most obvious findings to emerge from
this study highlight the importance of time-based and action-based features,
whilst the start-based features on day one and the course-based features from
day two onward influence the performance of the classifiers.

Overall, the results show at least three major aspects. First, action-based
and course-based features, e. g., the number of elements and instruction wizard
have been performed by users, had a major influence on user dropout for almost
all days. Second, start-based and time-based features, e. g., the number of week
in the year in which a user has started a course and the number of actions has
been performed from day one to day five, have an effect on the user dropout.

252 P. Shayan et al.

Third, the prediction performance remains relatively stable over time for the rest
of course-based and time-based features, e. g., the number and average length of
elements in the course as well as total and average number of actions user has
performed in the course (per day).

The study contributes to understanding of an early predictive model for
user dropout, however, the results open up several questions in need of further
investigation. A further study could, for example, assess the behavioral features
impact using action-based measurement assuming that users take approximately
the same number of actions to finish a course. In addition, an interesting future
direction could analyze/discover subgroups regarding their dropout behavior,
e. g., [2,8] towards extended user modeling and analysis approaches, c. f., [11].

References

1. Appanna, S.: A review of benefits and limitations of online learning in the context
of the student, the instructor and the tenured faculty. Int. J. E-Learn. 7, 5–22
(2008)

2. Atzmueller, M.: Subgroup discovery. WIREs Data Min. Knowl. Discovery 5(1),
35–49 (2015)

3. Dekker, G., Pechenizkiy, M., Vleeshouwers, J.: Predicting students drop out: a case
study. In: Proceedings of the Educational Data Mining, pp. 41–50 (2009)

4. Heng, K., Sol, K.: Online learning during COVID-19: key challenges and sugges-
tions to enhance effectiveness. Cambodian Education Forum (2020)

5. Kassymova, G., Issaliyeva, S., Aigerim, K.: E-learning and its benefits for students.
Pedagogics and Psychology, pp. 249–255 (2019)

6. Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC dropout over
weeks using machine learning methods. In: Proceedings of the Workshop on Anal-
ysis of Large Scale Social Interaction in MOOCs, pp. 60–65. ACL, Doha, Qatar
(2014)

7. Lemay, D.J., Bazelais, P., Doleck, T.: Transition to online learning during the
COVID-19 pandemic. Comput. Hum. Behav. Reports 4, 100130 (2021)

8. Lemmerich, F., Ifl, M., Puppe, F.: Identifying influence factors on students success
by subgroup discovery. In: Proceedings of Educational Data Mining (2010)

9. Malinen, S.: Understanding user participation in online communities: a systematic
literature review of empirical studies. Comput. Hum. Behav. 46, 228–238 (2015)

10. Pittman, K.L.: Comparison of data mining techniques used to predict student
retention. In: NSUWorks (2008)

11. Shayan, P., Rondinelli, R., Zaanen, M., Atzmueller, M.: Descriptive network model-
ing and analysis for investigating user acceptance in a learning management system
context. In: Proceedings of the ABIS, pp. 7–13. ACM, Boston, MA, USA (2019)

12. Shayan, P., van Zaanen, M.: Predicting student performance from their behavior
in learning management systems. Int. J. Inf. Educ. Technol. 9(5), 337–341 (2019)

13. Vitiello, M., Walk, S., Chang, V., Hernández, R., Helic, D., Gütl, C.: MOOC
dropouts: a multi-system classifier. In: EC-TEL (2017)

14. Williams, B.: Participation in on-line courses - how essential is it? Educational
Technol. Soc. 7, 1–8 (2004)

15. Zhang, Y., Oussena, S., Clark, T., Kim, H.: Use data mining to improve student
retention in higher education - a case study. In: ICEIS (2010)

Efficient Multivariate Data Fusion
for Misinformation Detection During

High Impact Events

Lucas P. Damasceno1(B), Allison Shafer2, Nathalie Japkowicz2,
Charles C. Cavalcante1, and Zois Boukouvalas2

1 Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
lucaspdamasceno@alu.ufc.br, charles@gtel.ufc.br
2 American University, Washington, DC 20016, USA

{as8273a,japkowicz,boukouva}@american.edu

Abstract. With the evolution of social media, cyberspace has become
the de-facto medium for users to communicate during high-impact events
such as natural disasters, terrorist attacks, and periods of political
unrest. However, during such high-impact events, misinformation on
social media can rapidly spread, affecting decision-making and creat-
ing social unrest. Identifying the spread of misinformation during high-
impact events is a significant data challenge, given the variety of data
associated with social media posts. Recent machine learning advances
have shown promise for detecting misinformation, however, there are still
key limitations that make this a significant challenge. These limitations
include the effective and efficient modeling of the underlying non-linear
associations of multi-modal data as well as the explainability of a system
geared at the detection of misinformation. This paper presents a novel
multivariate data fusion framework based on pre-trained deep learning
features and a well-structured and parameter-free joint blind source sep-
aration method named independent vector analysis, that can reliably
respond to this set of limitations. We present the mathematical formula-
tion of the new data fusion algorithm, demonstrate its effectiveness, and
present multiple explainability case studies using a popular multi-modal
dataset that consists of tweets during several high-impact events.

Keywords: Misinformation detection · Data fusion · Independent
vector analysis · Multi-modal learning · Deep learning

1 Introduction

With the evolution of social media technologies, there has been a fundamental
change in how information is accessed, shared, and propagated. Propagation of
information, particularly misinformation, becomes especially important during
high impact events such as pandemics [23,33], natural disasters [1,2], terrorist
attacks, periods of political transition or unrest, and financial instability.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 253–268, 2022.
https://doi.org/10.1007/978-3-031-18840-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_19

254 L. P. Damasceno et al.

Recent machine learning advances have shown promise for detecting misinfor-
mation [32]; however, the problem remains a significant challenge due to several
key limitations [7]. One such limitation is related to the use of multi-modal data,
i.e., information collected about the same phenomenon using different modalities.
Use of multi-modal data has not been fully leveraged in intelligent systems, which
traditionally use a single modality, typically text [28] or images [13]. Machine
learning algorithms must be able to understand content holistically to become
more effective in detecting misinformation. While it is easy to see that multi-
modality has great potential in eliminating ambiguity, this is still a significant
challenge for many machine learning models.

Early fusion methods provide effective solutions for multi-modal learning
since joint representations of input features from different modalities are cre-
ated before attempting to classify the content, enabling enhanced detection of
posts with malicious content [3,6]. However, in most studies, the joint repre-
sentations are obtained by simply concatenating the individual representations
or by implicitly modeling the mutual relationships across the modalities [30].
These techniques are limited since they miss the opportunity to fully exploit the
relationship between the different modalities. What is desirable in multi-modal
learning, is the ability to explicitly learn the mutual relationships among the
modalities by letting multiple sources of information adaptively interact while
generating the joint representations.

Another key limitation in many multi-modal fusion models is explainability,
i.e., ability of the model to summarize the causes of its decisions in an effi-
cient manner, illuminate various connections between high-level features and
low dimensional joint representations [28], and hence gain the trust of its users
[21,26]. Need for explainability becomes even more pronounced in high-impact
events, as it is key for an analyst to understand the significance of predictions and
suggest mitigations. In addition, during such events, explainability is extremely
important in the context of bias and ethical use of artificial intelligence, since
understanding the reasons behind certain predictions will enable users to identify
potential discrimination against certain groups and demographics.

In this work, we present a novel multi-modal data fusion framework geared
at detecting misinformation. Our framework is based on a flexible and com-
putationally efficient multi-modal fusion algorithm named independent vector
analysis by multivariate entropy maximization with kernels, IVA-M-EMK, that
effectively captures complex, non-linear relationships among textual and visual
modalities. Through this work, we make several contributions. First, we present
the mathematical formulation of a new data fusion algorithm for the detection
of misinformation and theoretically justify the importance of explicitly mod-
eling the non-linear relationships across different modalities. Second, by using
a popular multi-modal dataset, we numerically demonstrate how our method
enhances the performance of the detection of misinformation by exploiting the
underlying complementary information contained in text and image pre-trained
deep learning-based features. Finally, through numerical experiments and by
using a popular interpretability method, the local interpretable model-agnostic

Efficient Multivariate Data Fusion 255

explanations (LIME) [31], we discuss essential aspects of explainability associ-
ated with our data fusion method.

2 Materials and Methods

2.1 Dataset

For this study, we use datasets from the MediaEval2016 Image Verification Cor-
pus1 [9], which include separate labeled training and test tweet text and multi-
media datasets. The original data include 15,630 tweet records and 399 multime-
dia records in the training dataset and 2,177 tweet records and 117 multimedia
records in the test dataset. We choose the 2016 vintage datasets over the 2015
vintage datasets because the 2016 training dataset consists of tweets that revolve
around a set of events about that are completely different from the set of events
discussed from the tweets in the test dataset. Each tweet record is labeled as
being “fake” or “real”. Tweets labeled as “fake” include any post that shares
multimedia content that does not faithfully represent the event that it refers
to. This includes content from a past event reposted as being captured for a
currently unfolding similar event, context that has been purposely manipulated,
or multimedia content published with a false claim about the depicted event [9].

From the datasets, for the tweeted text data we use the tweet ID, tweet
text, image ID, and label fields, and create an event field using the data in the
associated image ID field. To accompany the tweet data, we use the provided
multimedia datasets. The training and test multimedia datasets included image
and video data. For the purpose of this work, we exclude the video data and
use only the image data. Each tweet text record includes at least one image
ID. When more than one image ID is associated with a tweet, we choose only
the first image ID listed to represent the image associated with the tweet. We
remove tweet records from the dataset that lack an associated event that cannot
be derived from an image ID or lack an image ID.

To prepare the data for use in feature extraction, we clean the text data
by removing emoji characters, stop words, URLs, Twitter handles, time stamps,
and select punctuation. To normalize the text data we lowercase the text, reduce
multi-spaces to one space, lemmatize the text, and keep only words that are
greater than two characters long. Additionally, we remove tweets that were more
than 512 tokens long after cleaning to prepare for future processes. We then
identify tweets that use English or a similar language using the Langid Python
package, and remove tweet records that are not English or similar in language
to English per the International Organization for Standardization (ISO) code
for languages. Additionally, for the training dataset, we remove records that are
denoted as being retweeted. For the image data, we pre-process each image by
resizing the images to 224 × 224 pixels and normalizing them.

We use the final working training and test datasets for text and image feature
creation, as explained in future sections of this paper. When feature creation

1 https://github.com/MKLab-ITI/image-verification-corpus.

https://github.com/MKLab-ITI/image-verification-corpus

256 L. P. Damasceno et al.

processes result in null records, we remove any null records produced. The final
training dataset after feature creation consists of 9,140 tweet records associated
with 352 different images and representing 15 unique events. Of the training
data tweets, 5,127 are considered fake and 4,013 are considered real. Five of
the 15 events represented in the training dataset include both real and fake
tweets, while ten of the events include only fake tweets. The final test dataset,
after feature creation, consists of 796 tweet records associated with 92 different
images and representing 23 unique events. The events represented in the training
data and testing datasets are disjoint. Of the test data tweets, 467 are considered
fake and 329 are considered real. Seven of the 23 events have both real and fake
tweets associated with them, one event has only real tweets associated with it,
and fifteen of the events only include fake tweets.

2.2 High-Level Feature Extraction

From the final, raw training and test text and image datasets, we extract text
and image features to use in order to classify tweet records as real or fake.
We utilize multiple methods to create the features and evaluate each feature’s
impact on classification accuracy. For the text features, we utilize Word2Vec
[27]2 trained on the Google News corpus3 to generate word embeddings4. We
run the pre-processed image tensors through the pre-trained VGG-16 model to
extract the first fully connected layer with 4,096 hidden units produced by the
VGG-16 model to utilize as the image features.5

We select the Word2Vec embeddings as our text dataset and the VGG-16
fully connected layer features as our image dataset because they yield the best
classification results during model evaluations. We continue our experiments
with the training and test datasets for our text data, which consist of a 300-
dimensional Word2Vec embedding vector for each tweet record where each tweet
is represented by the average word embedding vectors of the words that make up
the tweet. Additionally, separate training and test datasets for our image data
consist of the 4,096-dimensional fully connected layer from the VGG-16 model
for each image associated with an individual tweet record.

2.3 Multi-modal Data Fusion Framework Based on Independent
Vector Analysis

We formulate the problem of joint feature generation for detection of unreliable
posts as a joint blind source separation (JBSS) problem. In particular, let X[k] ∈
R

d×V is the kth observation matrix from kth modality, where d denotes the
number of initial high-level feature vectors in the kth modality and V denotes
the total number of tweets. The noiseless JBSS model is given by
2 We also evaluated features created using Bidirectional Encoder Representations from

Transformers, or BERT [18].
3 https://code.google.com/archive/p/word2vec/.
4 Additionally, we evaluated Word2Vec trained using our own data.
5 We also analyzed using the ’avgpool’ layer from a pre-trained ResNet-18 model.

https://code.google.com/archive/p/word2vec/

Efficient Multivariate Data Fusion 257

X[k] = A[k]S[k], k = 1, ...,K, (1)

where A[k] ∈ R
d×N is the kth mixing matrix, and S[k] ∈ R

N×V are latent vari-
able estimates, i.e., kth set of source estimates, which in our setting, correspond
to the features. The estimates of the features span the joint low dimensional
representation space and will be used to train a machine learning algorithm for
the detection of misinformation. It is worth noting that when K = 1, (1) it
reduces to a simple BSS problem with one modality and the most popular way
to achieve BSS is by using independent component analysis (ICA) [4,15,24,28].

IVA provides a smart connection across multiple datasets through the defi-
nition of a source component vector (SCV), which enables one to take full sta-
tistical information across the multi-modal datasets. Using the random vector
notation (as opposed to the one written using observations in (1)), we write
x[k] = A[k]s[k], k = 1, ...,K, where A[k] ∈ R

N×N , k = 1, ...,K are invertible mix-
ing matrices and s[k] = [s[k]1 , ..., s

[k]
N]� is the vector of features for the kth dataset

and (·)� denotes the transpose of a vector/matrix. In the IVA model, depen-
dence across corresponding components of s[k] is taken into account through the
SCV which is obtained by vertically concatenating the nth source from each of
the K dataset as, sn = [s[1]n , ..., s

[K]
n]�. The goal in IVA is to estimate K demix-

ing matrices to yield source estimates y[k] = W[k]x[k], such that each SCV
is maximally independent of all other SCVs. We note that while we consider
the noiseless JBSS model, in real world applications the effect of noise is taken
into account through dimension reduction, such as principal component analysis
(PCA). Thus, we start with an over-determined problem where d > N and use
PCA to project the data to a lower dimensional space where d = N . This simple
step is critical for multi-modal data fusion since each modality might exhibit
different levels of noise and thus identifying the optimal signal subspace would
help improve generalization abilities of the solution.

The IVA optimization parameter is defined as a set of demixing matrices
W[1], . . . ,W[K], which can be collected into a three dimensional array W ∈
R

N×N×K and can be estimated through the minimization of the IVA objective
function given by

JIVA(W) =
N∑

n=1

H(yn) −
K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣ + C. (2)

Here H(yn) denotes the (differential)6 entropy of the estimated nth SCV that
serves as the term for modeling the complex relationships among the different
modalities. By definition, the term H(yn) can be written as

∑K
k=1 H(yk

n)−I(yn),
where I(yn) denotes the mutual information within the nth SCV.

Therefore, it can be observed that minimization with respect to each demix-
ing matrix W[k] of (2) automatically increases the mutual information within
the components of an SCV, revealing how IVA exploits statistical dependence

6 We consider continuous-valued random variables and in the sequel, refer to differen-
tial entropy as simply entropy for simplicity.

258 L. P. Damasceno et al.

across different modalities. Hence, as observed in (2), the ability to explicitly
learn the mutual relationships among the multiple modalities depends on the
development of flexible and efficient models for differential entropy and their
estimation.

2.4 Effective Density Model for Capturing Multi-modal
Associations

The key factor in the explicit modeling of the non-linear relationships across
different modalities is the estimation of the true underlying probability density
function (PDF) of each estimated SCV. It is clear that minimizing (2) is not a
straightforward task since there is no access to the true underlying PDF of each
estimated SCV. To mathematically demonstrate this, if p̂(yn) denotes the PDF
of the nth estimated SCV then its entropy can be expressed as

H(yn) = −f(p(yn), p̂(yn)) − E{log p̂(yn)}, (3)

where f(p(yn), p̂(yn)) denotes the Kullback-Leibler (relative entropy) distance
between the density of the nth estimated SCV and the true density of yn.
From (3), we can achieve perfect source estimation as long as the assumed
model PDF matches the true latent multivariate density of the nth SCV, i.e.,
f(p(yn), p̂(yn)) = 0. As demonstrated in [11,17], PDF estimators based on the
maximum entropy principle can successfully match multivariate latent sources
from a wide range of distributions. The maximum entropy distribution for each
yn is given by

p̂(yn) = exp

{
−1 +

M∑

m=0

λmrm (yn)

}
, (4)

where the Lagrange multipliers λm are chosen such that the M number of
moment constraints are satisfied.

Thus, the development of flexible and efficient models for entropy, their esti-
mation using the maximum entropy principle, and their effective integration into
(2), requires that we address the following three key issues:
1. Lagrangian multipliers evaluation and choice of constraints: We eval-
uate the Lagrangian multipliers by the Newton iteration scheme using local and
global constraints. The estimation of the Lagrange multipliers highly depends
on the proper selection of the constraints in order to provide information about
the underlying statistical properties of the data. Failing on this will result in
high complexity and poor data characterization.

Following a similar strategy as in [17,20], we jointly use global and local
constraints in order to provide flexible multivariate density estimation while
keeping the complexity low. Therefore, we use 1,yn,y2

n,yn/(1+y2
n) as the global

constraints, since they provide information on the PDF’s overall statistics, such
as the mean, variance, and higher order statistics (HOS). For the local constraint
we use the Gaussian kernel given by,

Efficient Multivariate Data Fusion 259

q(yn) =
1√|Σn|(2π)K

exp (−1
2
(yn − μn)�Σ−1

n (yn − μn)), (5)

where μn denotes the mean vector, Σn denotes the covariance matrix, and | · |
denotes the determinant. The Gaussian kernel provides localized information
about the PDF.

It is important to mention that when we add the Gaussian kernel to the
multidimensional framework, integration becomes challenging due to the fact
that the Gaussian kernel has an infinite support.
2. Multi-dimensional integration during the estimation of the
Lagrange multipliers: Multi-dimensional integration is one of the main chal-
lenges in our estimation problem. To overcome this problem, we use an efficient
multi-dimensional integration technique that is based on Quasi-Monte Carlo
(QMC) methods. QMC have shown to be efficient in terms of their rate of con-
vergence and achieve a convergence rate of order O((log V)K/V) [19]. Following
the steps in [17], we generate a sequence of quasi-random points [29] and using
this sequence we approximate the multi-dimensional integrals in a Monte Carlo
method manner [19].
3. Efficient multivariate density estimation technique based on IVA by
multivariate entropy maximization with kernels (IVA-M-EMK): Once
the Lagrange multipliers have been estimated, and we have a full characterization
of the underlying PDF and, therefore, a full characterization of the entropy for
each estimated SCV, IVA-M-EMK provides estimates of the demixing matrices
by minimizing (2). The gradient of (2) with respect to each row vector w[k]

n of
W[k] is given by

∂JIVA

∂w[k]
n

= E
{

φ[k]
n (yn)x[k]

}
− h[k]

n
(
h[k]

n

)�
w[k]

n

, (6)

where h[k]
n is perpendicular to all row vectors of W[k] except of w[k]

n and
φ
[k]
n (yn) = −∑M

i=0 λi
∂ri(yn)

∂y
[k]
n

. The estimation of W[k] is performed with respect

to each row vector w[k]
n , n = 1, . . . , N independently. This is due to the fact that

in (6), each gradient direction depends directly on the corresponding estimated
source PDF. The sub-optimal gradient directions can lead to slower or sub-
optimal convergence, or, in extreme cases, divergence of the source separation
algorithm. Following the idea in [11], we perform the optimization routine in a
Riemannian manifold rather than a classical Euclidean space since this provides
important convergence advantages. We define the domain of our cost function to
be the unit sphere in R

N and project (6) onto the tangent hyperplane of the unit
sphere at the point w[k]

n . Since the IVA-M-EMK cost function depends on the
number of moment constraints chosen for each SCV, non-monotonic behavior is
expected between two consecutive iterations.

260 L. P. Damasceno et al.

2.5 Classification Procedure

The classification process consists of four stages. As mentioned in Sect. 2.1, our
dataset is separated into training and testing, where each tweet is represented
by text as well as visual content. With this in mind, in the first stage we form
our set of tweets in the following way. We denote with X[1]

train ∈ R
d1×Vtrain and

X[2]
train ∈ R

d2×Vtrain the training observation matrices for each modality where d1
denotes the number of initial high-level feature vectors in the textual modality,
d2 denotes the number of initial high-level feature vectors in the visual modality,
and Vtrain denotes the number of training tweets. Similarly, X[1]

test ∈ R
d1×Vtest and

X[2]
test ∈ R

d2×Vtest denote the corresponding testing observation matrices. In the
second stage, the mean from each dataset is removed so they are centered and
PCA is applied to each X[k]

train, for k = 1, 2. For the PCA step, we use an order
N , which, in our setting, denotes the number of features from each modality.
Then for each k = 1, 2, we obtain X̂[k]

train ∈ R
N×Vtest and by vertically concate-

nating each X̂[k]
train we form a three dimensional array X̂train ∈ R

N×Vtrain×2. In
the third stage, we perform IVA on X̂train, and since we have two modalities,
IVA provides two demixing matrices W[1] ∈ R

N×N and W[2] ∈ R
N×N . Then,

using the estimated demixing matrices we generate Y[1]
train = W[1]

(
X̂[1]

train

)�

and Y[2]
train = W[2]

(
X̂[2]

train

)�
. The training dataset Ytrain is formed by either

concatenating, averaging, or max pooling the estimated SCVs which can be
obtained by concatenating the estimated sources from Y[1]

train and Y[2]
train. Note

that Ytrain contains all the extracted features from the multi-modal data and
it will be used for training the classification model. The testing dataset is gen-
erated by removing the training mean from each multi-modal testing dataset
and using the generated PCA transformations from the training phase. The
demixing matrices from the training phase are used to transform the testing

datasets as follows, Y[1]
test = W[1]

(
X̂[1]

test

)�
and Y[2]

test = W[2]
(
X̂[2]

test

)�
, where

Y[1]
test ∈ R

N×Vtest ,Y[2]
test ∈ R

N×Vtest . Finally, the testing dataset Ytest is formed by
either concatenating, averaging, or max pooling the estimated SCVs which can
be obtained by concatenating the estimated sources from Y[1]

test and Y[2]
test. In the

fourth stage, we train the classification model using (Ytrain)
�. The specific form

of the classification model is unimportant. However, to demonstrate a concrete
example, we use Support Vector Machines (SVMs), which have shown reliable
performance in a variety of applications, especially with smaller size datasets
[16,28]. Once the classification model has been trained, we evaluate its perfor-
mance using the unseen dataset, (Ytest)

�. For all experiments, hyper-parameter
optimization and model training and testing is done using a grid search cross-
validation with five folds scheme. The entire process was repeated five times
(with shuffling before each iteration) to generate well converged statistics.

Efficient Multivariate Data Fusion 261

3 Results and Discussion

3.1 Classification Performance

For all of the experiments, we measure classification performance by employing
the F1-score and reporting its macro averaged version. Moreover, we report the
total CPU time of the training and testing phases and measure it in seconds.

For the first set of our experiments, we compare the classification performance
of three different classification models; one trained using only the high-level tex-
tual features, one trained using the high-level visual features, and one trained
using the high-level textual features and the high-level visual features concate-
nated together. From Table 1(a), we see that if we train a classifier with just
the high-level textual features, we obtain a classification performance of 40.04%,
while if we train by just using the high-level image features, we obtain an F1-score
of 65.78%. If we concatenate the high-level text and image features, we obtain
a classification performance of 77.59%. This result demonstrates that training
a classifier using both modalities yields better classification performance. How-
ever, such an approach comes with significant challenges. As we can observe from
Table 1(a), concatenating the two modalities results in feature vectors of dimen-
sion 4,396, and thus affecting the efficiency of the machine learning algorithm.
In addition, without exploiting the complementary information among multiple
modalities, discovering the features of greatest importance and how they interact
with each other becomes impossible. IVA-M-EMK can address both challenges
since it enables simultaneous study of multiple modalities by explicitly exploiting
alignments of data fragments where there is a common underlying feature space.
This can been seen from Table 1(b), where IVA-M-EMK with N = 100 and aver-
aging the SCVs leads to high classification accuracy and superior improvement
in terms of the CPU execution time. Moreover, Table 1(b) shows two additional
methods to combine the estimated SCVs after IVA-M-EMK has been applied
with N = 100. Due to the fact, that the “Average” method yields the highest
F1-score and lowest CPU execution time, for the rest of our experiments we
adopt the “Average” method in order to combine the estimated SCVs.

Table 1. Classification performance in terms of F1-score for different classification
scenarios. Total CPU execution time is measured in seconds.

Methods F1 CPU time

Concatenate 77.59% 1.7× 104

Text 40.04% 2.7 × 103

Image 65.78% 1.03 × 104

(a) Regular approach

Combination F1 CPU time

Concatenate 73.77% 2.4 × 103

Maximum 73.11% 1.5 × 103

Average 77.45% 1.3× 103

(b) IVA-M-EMK

For the rest of our experiments, we demonstrate how effective modeling of
the underlying multi-modal associations using IVA-M-EMK yields superior clas-
sification performance in an efficient manner. Figure 1, shows the effectiveness of

262 L. P. Damasceno et al.

the IVA-M-EMK algorithm by comparing its performance as a function of the
number of features with three widely used IVA algorithms as well as canonical
correlation analysis (CCA) [22], in terms of the CPU time and of the F1-score. It
is worth mentioning that CCA does not explicitly impose an underlying density
model for the joint features, but it implicitly seeks for a pair of vectors with
maximum correlation coefficient. On the other hand, different IVA algorithms
explicitly model the underlying associations by assuming a probability density for
the underlying SCVs. In particular, IVA-Laplacian (IVA-L) [25] is an algorithm
that takes higher-order statistics (HOS) into account and assumes a Laplacian
distribution for the underlying source component vectors. IVA-Gaussian (IVA-
G) [5] exploits linear dependencies but does not take HOS into account. Finally,
IVA-A-GGD [10] is a more general IVA implementation where both second and
higher-order statistics are taken into account. This algorithm assumes a multi-
variate generalized Gaussian distribution (MGGD) for the underlying sources,
and through the estimation of its parameters, multivariate Gaussian and Lapla-
cian distributions become special cases.

Fig. 1. Performance comparison in terms of F1 score and average CPU time for different
number of features when all training samples are used.

From Fig. 1, we see that as the number of features increase, IVA-M-EMK,
IVA-A-GGD, and IVA-L provide a desirable performance, followed by IVA-G.
Conversely, as the number of features increases, CCA provides the worst per-
formance due to its model simplicity. Overall, IVA-M-EMK performs the best
among the five algorithms due to its ability to successfully match multivariate
latent sources from a wide range of distributions, even for a small number of fea-
tures. More importantly, as the number of features increases, the F1-score shows
stable behavior. In terms of the CPU time, among the IVA algorithms that use
a simple underlying density model, as the number of features increases, IVA-L
and IVA-G provide the best performance. For IVA-G, this is due to the assump-
tion of Gaussian distribution for the underlying sources, which simplifies the
gradient of the IVA objective function and makes the Hessian positive definite,

Efficient Multivariate Data Fusion 263

thus, enabling second-order algorithms to improve the speed of convergence. On
the other hand, as expected, IVA-M-EMK and IVA-A-GGD are more compu-
tationally expensive; however, IVA-M-EMK has the lowest CPU execution time
when the number of features stays low. Note that even if CCA is a much simpler
model than the other IVA algorithms, the model mismatch yields poor conver-
gence performance and significantly increases the number of iterations that the
algorithm needs to converge.

For the last set of experiments, we compare IVA-M-EMK with several IVA
algorithms, CCA, and a fusion approach that is based on PCA in terms of the
F1-score and the CPU execution time as a function of the number of training
samples. For the PCA approach, PCA is applied to each X[k]

train, for k = 1, 2 and
the resulting low dimensional features from both modalities are averaged. Since
the F1-score for IVA-M-EMK is invariant to the increase in features, we select
to use N = 100 features for this experiment. From Fig. 2, we see that all IVA
algorithms except IVA-G and CCA provide a desirable performance revealing the
flexibility of their underlying density models. The fusion approach based on PCA
also provides good performance in terms of F1 score and CPU execution time.
Overall, the high F1-score along with the low and stable CPU execution time as
a function of training tweets, makes IVA-M-EMK an ideal fusion approach for
misinformation detection during high-impact events. Finally, we note that the
classification results of our approach are on par with results obtained in similar
studies such as [8].

Fig. 2. Performance comparison in terms of F1 score and average CPU time for different
number of training samples when N = 100.

3.2 Explainability

An important aspect that needs to be addressed when multi-modal fusion algo-
rithms are developed is explainability. As a reminder, explainability can be

264 L. P. Damasceno et al.

broadly defined as the ability of the model to summarize the causes of its deci-
sions in an efficient manner and thus gain the trust of its users. For our work,
we use three different scenarios and several examples from our testing dataset
to address different explainability aspects for IVA-M-EMK. We also use these
scenarios to discover how different modalities interact with each other and what
their impact in the explainability of the classification model is. To support our
experiments, we use a popular interpretability tool, LIME [31], which produces
local explanations for classifier decisions.

For the first scenario, we examine the impact of W[1] on the explainability
of our system which has been estimated by also taking the visual content into
account. Therefore, the training and testing sets are generated using only textual

features, where Y[1]
train =

(
X̂[1]

train

)�
and Y[1]

test =
(
X̂[1]

test

)�
. In order to take the

visual content into account, we introduce W[1] into the classifier in the following

way Y[1]
train = W[1]

(
X̂[1]

train

)�
and Y[1]

test = W[1]
(
X̂[1]

test

)�
. Figure 3, shows the

impact of the visual content through W[1] on the fake news detector. In the
first column, we have the textual and visual tweet content. The second column
represents the LIME explanation for the fake news classifier without taking the
visual content into account, and the third column takes the visual content into
account. In the first row, we have a fake tweet showing the Eiffel Tower lit up

Fig. 3. Impact of the visual content through W[1] on the classifier.

Efficient Multivariate Data Fusion 265

in the colors of Pakistans national flag7 suggesting to show solidarity during
the Lahore attacks suicide bombing, but in fact, the image emerged to be from
the Rugby World Cup. Without the visual features we would not be able to
detect this type of misinformation. In the second row, we have also a fake tweet
presenting a threat of a nuclear missile attack. The image shows a fake missile
coming out of the water, which makes words like missile and nuclear have their
weights represented on the fake side. On the other hand, without the visual
content showing the fake missile the classifier classifies the tweet as real.

Fig. 4. Similarity between shark and alligator.

For the second scenario, we examine how the classifier behaves when replacing
a critical word for the classification decision with an unseen word similar to the
original one. Figure 4 presents a fake tweet where sharks were supposedly seen
inside a shopping mall after Hurricane Sandy. We can see through the LIME
explanation that even though ’alligators’ is an unseen word, we are able to
accurately classify the tweet, showing the efficiency of our classifier that captures
the similarity between the two words since they are animals that can be found
in the water.

For the third scenario, we examine the weakness of the proposed approach
focusing on the cases where the IVA-based classifier failed to classify a tweet
correctly. Figure 5, presents a similar framework to the first setting, where we
explore the impact of the insertion of the visual content into the classifier. In
the first row, we have a fake tweet showing people united in solidarity with
the victims of the Paris attack. The image contains a lot of black pixels and
visual content that is hard to verify, even for humans. Through visual inspection,
we repeatedly observe that images containing many black pixels yield a mis-
classified case. Conversely, when the classifier takes only the textual content into
account, it correctly classifies the tweet. In the second row, we have a real tweet
7 https://www.independent.co.uk/news/world/asia/lahore-attack-photo-showing-

eiffel-tower-lit-up-in-colours-of-pakistan-flag-is-from-2007-rugby-world-cup-
a6959231.html.

https://www.independent.co.uk/news/world/asia/lahore-attack-photo-showing-eiffel-tower-lit-up-in-colours-of-pakistan-flag-is-from-2007-rugby-world-cup-a6959231.html
https://www.independent.co.uk/news/world/asia/lahore-attack-photo-showing-eiffel-tower-lit-up-in-colours-of-pakistan-flag-is-from-2007-rugby-world-cup-a6959231.html
https://www.independent.co.uk/news/world/asia/lahore-attack-photo-showing-eiffel-tower-lit-up-in-colours-of-pakistan-flag-is-from-2007-rugby-world-cup-a6959231.html

266 L. P. Damasceno et al.

Fig. 5. Weakness cases. Shows the impact of the black pixels on the classifier.

showing military members on a street in Paris after the terrorist attacks. As in
the previous case, the image presents many black pixels; in addition, the lightest
part of the image is the street, which makes the weight of the word ’street’
higher, rendering the classifier unable to identify the correct tweet label.

4 Conclusion

The success of the proposed method raises several interesting questions in terms
of the number of modalities and quantitative ways to measure explainability to
explore in future work. For this proposed approach, we considered a framework
with two modalities represented by the text and visual content. In the future,
we are interested in incorporating additional modalities in our study, since as we
have demonstrated in [12], the multivariate data fusion model provides enhanced
detection performance as the number of modalities increases. Last, as a future
direction in terms of explainability, we propose to create formal settings where
humans can evaluate whether a set of extracted features have human-identifiable
semantic coherence. These quantitative methods have been similarly used for
measuring semantic meaning in inferred topics [14]. By developing human-based
evaluation metrics, we will not only be able to assess the IVA joint representation
space, but more importantly, we will be able to identify potential biases related to
specific characteristics of the collected social media posts, enabling us to correct
our model before it is deployed at scale.

Efficient Multivariate Data Fusion 267

References

1. The Washington Post (2018). https://rebrand.ly/ieeovv
2. Newsweek (2019). https://rebrand.ly/z6t52a
3. Hateful memes challenge and data set for research on harmful multimodal content.

https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set/
4. Adalı, T., Anderson, M., Fu, G.S.: Diversity in Independent Component and Vector

Analyses: Identifiability, algorithms, and applications in medical imaging. IEEE
Sig. Process. Mag. 31(3), 18–33 (2014)

5. Anderson, M., Adalı, T., Li, X.L.: Joint blind source separation with multivariate
gaussian model: algorithms and performance analysis. Sig. Process. IEEE Trans.
60(4), 1672–1683 (2012). https://doi.org/10.1109/TSP.2011.2181836

6. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey
and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

7. BBC: Social media firms fail to act on covid-19 fake news. www.bbc.com/news/
technology-52903680, June 2020

8. Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou,
O., Kompatsiaris, I.: Detection and visualization of misleading content on twitter.
Int. J. Multimedia Inf. Retrieval 7 (2018). https://doi.org/10.1007/s13735-017-
0143-x

9. Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou,
O., Kompatsiaris, Y.: Detection and visualization of misleading content on twit-
ter. Int. J. Multimedia Inf. Retrieval 7(1), 71–86 (2018). https://doi.org/10.1007/
s13735-017-0143-x

10. Boukouvalas, Z., Fu, G.S., Adalı, T.: An efficient multivariate generalized gaussian
distribution estimator: Application to IVA. In: 2015 49th Annual Conference on
Information Sciences and Systems (CISS), pp. 1–4. IEEE (2015)

11. Boukouvalas, Z., Levin-Schwartz, Y., Mowakeaa, R., Fu, G.S., Adalı, T.: Inde-
pendent component analysis using semi-parametric density estimation via entropy
maximization. In: 2018 IEEE Statistical Signal Processing Workshop (SSP), pp.
403–407. IEEE (2018)

12. Boukouvalas, Z., Puerto, M., Elton, D.C., Chung, P.W., Fuge, M.D.: Independent
vector analysis for molecular data fusion: Application to property prediction and
knowledge discovery of energetic materials. In: 2020 28th European Signal Pro-
cessing Conference (EUSIPCO), pp. 1030–1034. IEEE (2021)

13. Cao, J., Qi, P., Sheng, Q., Yang, T., Guo, J., Li, J.: Exploring the role of visual
content in fake news detection. In: Shu, K., Wang, S., Lee, D., Liu, H. (eds.)
Disinformation, Misinformation, and Fake News in Social Media. LNSN, pp. 141–
161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42699-6 8

14. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J.L., Blei, D.M.: Reading tea
leaves: how humans interpret topic models. In: Advances in Neural Information
Processing Systems, pp. 288–296 (2009)

15. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications. Academic Press, Cambridge (2010)

16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995). https://doi.org/10.1023/A:1022627411411

17. Damasceno, L.P., Cavalcante, C.C., Adalı, T., Boukouvalas, Z.: Independent vector
analysis using semi-parametric density estimation via multivariate entropy max-
imization. In: ICASSP 2021–2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3715–3719. IEEE (2021)

https://rebrand.ly/ieeovv
https://rebrand.ly/z6t52a
https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set/
https://doi.org/10.1109/TSP.2011.2181836
www.bbc.com/news/technology-52903680
www.bbc.com/news/technology-52903680
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/s13735-017-0143-x
https://doi.org/10.1007/978-3-030-42699-6_8
https://doi.org/10.1023/A:1022627411411

268 L. P. Damasceno et al.

18. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/1810.04805 (2018).
arxiv.org/abs/1810.04805

19. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-
monte Carlo way. Acta Numerica 22, 133–288 (2013). https://doi.org/10.1017/
S0962492913000044

20. Fu, G., Boukouvalas, Z., Adali, T.: Density estimation by entropy maximization
with kernels. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1896–1900, April 2015. https://doi.org/10.1109/
ICASSP.2015.7178300

21. Hansen, L.K., Rieger, L.: Interpretability in intelligent systems – a new concept?
In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.)
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS
(LNAI), vol. 11700, pp. 41–49. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-28954-6 3

22. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput. 16(12), 2639–2664
(2004)

23. Hiten Patel, M.: Fake news about covid-19 is spreading faster than virus. https://
wexnermedical.osu.edu/blog/fake-news-about-covid-19, April 2020

24. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46.
Wiley, Hoboken (2004)

25. Kim, T., Eltoft, T., Lee, T.-W.: Independent vector analysis: an extension of ICA
to multivariate components. In: Rosca, J., Erdogmus, D., Pŕıncipe, J.C., Haykin,
S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 165–172. Springer, Heidelberg (2006).
https://doi.org/10.1007/11679363 21

26. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of
machine learning interpretability methods. Entropy 23(1), 18 (2020)

27. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space abs/1301.3781

28. Moroney, C., et al.: The case for latent variable vs deep learning methods in mis-
information detection: an application to covid-19. In: Soares, C., Torgo, L. (eds.)
DS 2021. LNCS (LNAI), vol. 12986, pp. 422–432. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88942-5 33

29. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, USA (1992)

30. Ramachandram, D., Taylor, G.W.: Deep multimodal learning: a survey on recent
advances and trends. IEEE Sig. Process. Mag. 34(6), 96–108 (2017)

31. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: Explaining the
predictions of any classifier arxiv.org/abs/1602.04938

32. Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., Liu, Y.: Combating
fake news: a survey on identification and mitigation techniques. ACM Trans. Intell.
Syst. Technol. (TIST) 10(3), 1–42 (2019)

33. Suciu, P.: Covid-19 conspiracy theories continue to spread and thrive on
social media. www.forbes.com/sites/petersuciu/2020/04/24/covid-19-conspiracy-
theories-continue-to-spread-and-thrive-on-social-media/#e1a9e8b10076, April
2020

http://arxiv.org/1810.04805
https://doi.org/10.1017/S0962492913000044
https://doi.org/10.1017/S0962492913000044
https://doi.org/10.1109/ICASSP.2015.7178300
https://doi.org/10.1109/ICASSP.2015.7178300
https://doi.org/10.1007/978-3-030-28954-6_3
https://doi.org/10.1007/978-3-030-28954-6_3
https://wexnermedical.osu.edu/blog/fake-news-about-covid-19
https://wexnermedical.osu.edu/blog/fake-news-about-covid-19
https://doi.org/10.1007/11679363_21
https://doi.org/10.1007/978-3-030-88942-5_33
https://doi.org/10.1007/978-3-030-88942-5_33
http://arxiv.org/1602.04938
www.forbes.com/sites/petersuciu/2020/04/24/covid-19-conspiracy-theories-continue-to-spread-and-thrive-on-social-media/#e1a9e8b10076
www.forbes.com/sites/petersuciu/2020/04/24/covid-19-conspiracy-theories-continue-to-spread-and-thrive-on-social-media/#e1a9e8b10076

Fairness and Outlier Detection

MQ-OFL: Multi-sensitive Queue-based
Online Fair Learning

Farnaz Sadeghi and Herna Viktor(B)

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

{fsade079,hviktor}@uottawa.ca

Abstract. Recently, there has been growing interest in fairness consider-
ations in Artificial Intelligence (AI) and AI-based systems, as the decisions
made by AI applications may negatively impact individuals and commu-
nities with ethical or legal consequences. Indeed, it is crucial to ensure that
decisions based on AI-based systems do not reflect discriminatory behav-
ior toward certain individuals or groups. The development of approaches
to handle these concerns is an active area of research. However, most exist-
ing methods process the data in offline settings and are not directly suit-
able for online learning from evolving data streams. Further, these tech-
niques fail to take the effects of data skew, or so-called class imbalance,
on fairness-aware learning into account. In addition, recent fairness-aware
online learning supervised learning approaches focus on one sensitive
attribute only, which may lead to subgroup discrimination. In a fair classi-
fication, the equality of fairness metrics across multiple overlapping groups
must be considered simultaneously. In this paper, we address the com-
bined problem of fairness-aware online learning from imbalanced evolv-
ing streams, while considering multiple sensitive attributes. We introduce
the Multi-Sensitive Queue-based Online Fair Learning (MQ-OFL) algo-
rithm, an online fairness-aware approach, which maintains valid and fair
models over evolving stream. MQ-OFL changes the training distribution
in an online fashion based on both stream imbalance and discriminatory
behavior of the model evaluated over the historical stream. We compare
our MQ-OFL method with state-of-art studies on real-world data sets, and
present comparative insights on the performance.

Keywords: Fairness-aware classification · Multi sensitive attribute ·
Data stream · Imbalanced data

1 Introduction

AI applications have became a necessity to deliver all sorts of decisions, such as
screening of job applications, loan credit approval, allocation of health resources,
and autonomous driving. However, unconsciously, these automated data-driven
systems may lead to discrimination against particular groups of people sharing
one or more sensitive attributes (e.g., marital status, age, gender or sex, and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 271–285, 2022.
https://doi.org/10.1007/978-3-031-18840-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_20

272 F. Sadeghi and H. Viktor

ethnicity) [16]. As a recent example, Howard et. al. [9] discusses applications of
how bias in the real world can breach into AI systems, such as bias in face recog-
nition applications, voice recognition, and search engines. As a result, a number of
studies have been proposed to address this concern. A common theme amongst all
these prior works is the assumption of fairness as a static problem, which means
the inappropriate discriminate correlations (e.g., marital status or age) is implic-
itly modeled as a constant and static property. Learning from data stream assumes
that new instances arrive continuously and that their properties may change over
time due to a phenomenon known as concept drift [7]. Frequently, in a supervised
learning setting, such streams are subject to data skew, i.e., class imbalanced, with
a disproportion of the number of examples of the different classes [2]. Additionally,
the vast majority of the algorithmic fairness literature focused on the simplest case
where there are only one sensitive attribute [16]. To the best of our knowledge, this
is the first work jointly considers non-stationary imbalanced data distributions
where there are more than one sensitive attribute.

The contribution of this paper is three-fold. First, we define a new problem of
fairness-aware learning in imbalanced data streams with more than one protected
group. Then, we propose a discrimination-aware pre-processing method to handle
the trade-off between fairness and accuracy. Second, we introduce an approach to
pre-process multi-sensitive attributes that satisfies fairness constraints. Thirdly,
our experimental evaluation verify the capability of the proposed model in online
settings and for application-driven fairness-aware learning.

The remainder of the paper is organized as follows. Background knowledge
and related studies regarding fairness-aware learning are reviewed in Sect. 2,
respectively. We introduce our MQ-FOL framework in Sect. 3, followed by an
experimental evaluation in Sect. 4. Section 5 concludes the paper.

2 Background

This section details related work and defines key concepts.

2.1 Related Work

A number of research approaches have been proposed to address the problem
of bias and discrimination in machine learning systems. They may be catego-
rized into three main groups, namely pre-processing approaches, in-processing
approaches and post-processing approaches, based on whether they mitigate bias
at the data level, the algorithm design or the output of model, respectively [16].
The first strategy, works under the assumption that in order to learn a fair classi-
fier, the training data should be discrimination-free [11]. In-processing techniques
modify and change learning algorithms to limit discrimination [16]. The last cat-
egory, consists of either adjusting the decision boundary [6] of a model or directly
changing the prediction labels. Fairness in an online setting requires simulta-
neously take the evolution of underlying data distribution into consideration.
The Fairness-Aware Hoeffding Tree (FAHT) [23], addresses discrimination by

MQ-OFL 273

incorporating discrimination-awareness into the model induction process. This is
accomplished by introducing the fair information gain splitting criterion, which
is able to maintain a moderate predictive performance with low discrimination
scores over the course of the stream. Another work [22], proposed a Fairness-
Enhancing and concept-Adapting Tree (FEAT) with embedded fair-enhancing
splitting criterion. A strength of this approach is the ability of change detection
and concept forgetting to handle discriminated and non-stationary data stream.
However, these two methods do not consider imbalanced data. Specifically, none
of the current online fairness-aware techniques are able to simultaneously handle
more than one sensitive attribute. Our work situates in this highly under-explored
research direction by including multi-protected groups to provide fair online deci-
sion making. Next, we discuss definitions and key concepts in the fairness-aware
domain.

2.2 Fairness Definitions

We assume an attribute S, referred as a sensitive attribute with a special value
s ∈ dom(SA) which is a sensitive value that defines the discriminated group.
Also, we assume that Z is a binary attribute: dom(SA) = {z, z̄}. As an example,
we use Z = “maritalstatus” as the sensitive attribute and z̄ = “single” as the
sensitive value (protected group) with z = “married′′ (non-protected group).
We also consider the class is binary with values {0 as rejected, 1 as granted}.

Fairness definitions fall under different types such as individual, group and
the subgroups [16]. Individual notions of fairness means “similar individuals”
have to be “treated similarly”, while Group notions refers to treating different
groups equally and subgroup fairness focus on the best properties of the group
and individual notions of fairness. It chooses a group fairness notion and finds
whether this metric satisfies a large collection of subgroups [12,13]. Here we
define Statistical Parity (S.P.) which is a group notion for fairness. It measures
whether the probability of having positive outcome is the same for both pro-
tected and non-protected groups. Also, we can refer to it as difference in the
probability of a random individual drawn from non-protected group to be pre-
dicted as granted (positive) and the probability of a random individual drawn
from the protected group to be predicted as granted:

S.P. = P (f(x) = y+ | z̄) − P (f(x) = y+ | z) (1)

Here, z represents the protected group (e.g., female) and z̄ refers to the unpro-
tected group (e.g., male), while y+ denotes positive predictive outcomes (e.g., an
individual was selected for employment). The SP values lie in the [−1, 1] range,
with 0 meaning the decision does not depend on the sensitive value (meaning
fair), 1 meaning that the protected group is discriminated, and −1 that the
non-protected group is discriminated. The next section introduces the concept
of Gerrymandering, where we consider more than one sensitive attribute.

274 F. Sadeghi and H. Viktor

2.3 Gerrymandering

The most straightforward setting in fairness is the independent case, with only
one sensitive attribute, which can take multiple values, e.g., age only. The pres-
ence of multiple sensitive attributes (e.g., ethnicity and age simultaneously) leads
to non-equivalent definitions of group fairness. For example, consider a model
restricted to S.P. between subgroups defined by ethnicity. Simultaneously, the
model can be constrained to S.P. between subgroups defined by gender. We term
fairness in this situation independent group fairness. On the other hand, one
can consider all subgroups defined by intersections of sensitive attributes (e.g.,
ethnicity and gender, ethnicity and age, age and gender, and so on), leading to
intersectional group fairness. A given algorithm can be independently group fair,
e.g., when considering age and gender in isolation, but not intersectionally group
fair, e.g., when considering intersections of age and gender groups. For example,
[3], showed how facial recognition software had a particularly poor performance
for black women. This phenomenon, called fairness gerrymandering, has been
studied by [12], where the authors specifically focus on ethnicity and gender.

As shown in Fig. 1 [12], imagine a setting with two binary features, corre-
sponding to ethnicity (say blue and green) and gender (say men and women),
both of which are distributed independently and uniformly at random in a pop-
ulation. Consider a classifier that labels an example positive if and only if it
corresponds to a blue man, or a green woman. Then the classifier will appear
to be equitable when one considers either protected attribute alone, in the sense
that it labels both men and women as positive 50 percent of the time, and labels
both blue and green individuals as positive 50 percent of the time. However, as
pointed out by [12] if one considers any conjunction of the two attributes (such
as blue women), then it is apparent that the classifier maximally violates the
statistical parity fairness constraint. Similar examples for classification are easily
constructed. We remark that the issue raised by this toy example is not merely
hypothetical. To avoid this issue, we would like to satisfy a fairness constraint
for more than one protected group defined by multiple sensitive attributes.

Fig. 1. Gerrymandering illustration (from [12])

MQ-OFL 275

Next, we turn our attention to fairness-aware learning from evolving, imbal-
anced streams that contains multiple sensitive attributes.

2.4 Imbalanced and Drifted Data Stream

Recall that our study assumes that the underlying stream distribution is non-
stationary, that is, the characteristics of the stream might change with time
leading changes in the joint distribution so that the decision boundary might
change over time for two instances i, j, it might hold that Pi(x, y) �= Pj(x, y),
a phenomenon called concept drift [7]. Numerous algorithms have been devel-
oped in order to detect and handle concept drift [19]. For instance, Hoeffding’s
inequality-based Drift Detection Method (HDDM) proposed by [19] employs
Hoeffding’s inequality [8] to set an upper bound to the level of difference between
error rates. That is, using Hoeffding’s inequality, triggers a warning level to indi-
cate a drift may have occurred. The threshold used to trigger the warning level
is a relaxed condition of the threshold used for the drift level. The data accu-
mulated between the warning level and the drift levels are used as the training
set for updating a learning model. We employ HDDM in our work.

Apart from the occurrence of concept drifts, recall that we also assume that
the stream is imbalanced with the majority class occurring more often than the
minority class, which usually makes the minority class to be overlooked. In two-
class problems the minority (underrepresented) class is usually referred to as the
positive class, whereas the majority class is considered to be the negative one.
There have been several proposals for coping with imbalanced data sets [2] where
the main goal is to correctly classify minority examples. In this paper, we employ
the Online-OMCQ framework [5], which learns from evolving streams using an
incremental, online approach. In Online-OMCQ, we combine batch-based and
instance-based learning, as will be discussed in the next section.

3 MQ-OFL Framework

Our MQ-OFL approach, as shown in Fig. 2, consists of three stages: customized
queue construction, prediction and fair online learning. Our method includes
s class imbalance monitoring and balancing step, that keeps track of the class
ratios over the stream and adjusts the proportion of classes by assigning them
into related class label queues. In addition, the queue-based system is provided to
train customized classifiers based on each sensitive attribute and the subgroups.
Each arriving instance is evaluate both based on the sensitive attributes and the
class label, while testing for concept drift. In the case where we have concept
drift, we employ the previously introduced HDDM algorithm. By employing
a fairness aware post-processing method, the decision boundary is adjusted to
ensure that the classifier does not incur discrimination.

276 F. Sadeghi and H. Viktor

Fig. 2. High-level overview of queue-based fairness aware methodology

3.1 Balanced and Fairness-Aware Pre-processing

In our work, we model each individual (person) as being described by a tuple
((x, x̄), y), where x ∈ X denotes a vector of protected attributes, x̄ ∈ X̄ denotes
a vector of unprotected attributes, and y ∈ 0, 1 denotes a label. We assume that
points (X, y) are drawn i.i.d. from an unknown distribution P . Let D be a binary
classifier where D(X) ∈ 0, 1 denote the (possibly randomized) decision induced
by D on individual (X, y).

Fig. 3. Example of updating sensitive queues and forming batches

Figure 3 illustrates how QueueFair works when we have two sensitive
attributes. Each arriving instance (xt, yt) is evaluated based on belonging to a
group G = {g1, g2, g3} and added to the related queue of equal length qtCk

= L,
where ck is the class label. Together, the queues of same group form a batch.
Each of the training batches will customize a separate classifier.

3.2 Classifier Pool

As shown in Fig. 3, each protected group has its own classifier trained based
on the importance of that sensitive attribute. First, a candidate classifier pool

MQ-OFL 277

is established by training a number of base classifiers with related batches to
achieve better accuracy and fairness. Generally, base classifiers can be generated
on the sample-level, feature-level or algorithm-level, in which classification mod-
els are produced from various sample subsets, feature subsets, or by learning
algorithms, respectively. We used this idea to combine sample- and feature-level
techniques to select samples based on features from the original dataset as a
training subset. Second, the classifier with the highest confidence score for arriv-
ing instance will choose to predict the label. A confidence score is calculated as
an evaluation standard; it shows the probability of the instance being detected
correctly by the classifier and it is given as a percentage. The scores are taken
on the prediction precision of each classifier for each arriving instance.

3.3 Decision Boundary Adjustment

Adjustment of the decision boundary for discrimination elimination has been
investigated in the literature [16]. The authors in [6], proposed an approach to
achieving fairness by shifting the decision boundary (SDB) for the protected
group in the static datasets. They illustrate that SDB may be combined with a
member of the family of learning algorithms that produce a measure of confidence
in its prediction. It follows that, since we are dealing with streaming, we do
not have access to all predictions through the stream to adjust the boundary
accurately. Thus, following [10], we estimate the number of instances nt which
are needed in order to mitigate discrimination at time point t by:

nt = �∑t
i=1 1 · I[xi ∈ z] ·

∑t
i=1 1·I[fi(xi)=y+|xi∈z̄,y+]

∑t
i=1 1·I[xi∈z̄,y+

i]
− ∑t

i=1 1 · I[fi(xi) = y+ | xi ∈ z, y+]� (2)

We consider a window size of M to keep misclassified instances together with
their confidence scores in descending order. In case we have discrimination, the
top nt number in the window will be adapted at the boundary.

Algorithm 1 summarize our methodology. When online learning starts, at
each time step, each instance (xt, yt) arrives at time t then receives the pre-
dicted label from the classifier with the highest confidence score from classifier
pool with label set Y = {0, 1}. When training starts, the queue sizes for all cur-
rent protected and non-protected groups assessed; if there are full queues, the
classifier is able to update the learning model; i.e., the training process utilizes
a balanced set of G and y consisting of the most recent data related to them.
It follows that both the batch size p and the sizes of the individual queues are
highly domain-dependent; these values are set by inspection. Next, the confi-
dence scores and the Classifier pool are updated, and the HDDM drift detection
algorithm is initiated. Finally, we evaluate the discrimination level; if it is higher
than a pre-defined α, we employ boundary adjustment. To this end, we use a
sliding window model of a pre-defined size M . In particular, we maintain a sliding
window of size M for each sensitive attribute to allow for boundary adjustment
for different classifiers based on each discriminated group. Finally, the evaluation
metrics are updated and the learning process continues.

278 F. Sadeghi and H. Viktor

Algorithm 1. MQ-OFL Methodology
Require: A Discriminated Data Stream D,
1: while stream.has more instances() at each time step t do
2: xt

i, y
t
i = get.next instance()

3: yt
i predict = Classifier Highest Confidence Score.Predict(xt

i)
4: for i ∈ G do
5: if xt

i ∈ gi then
6: IncrementCountergi ;

7: Qt
gi =

(t−1)
gi .append(xt

i);
8: else
9: IncrementCounterCother ;

10: Qt
Cother

=
(t−1)
Cother

.append(i);
11: end if
12: if Qgi == L and QCother == L then
13: Training setclassifieri = Qgi + Qci

14: Classifieri.Incremental.Update(Training set)
15: end if
16: end for
17: Update classifier pool and confidence scores
18: if HDDM detects drift then
19: Fill the queues with new data
20: end if
21: if Discrimination level ≥ α then
22: Adjust the boundary
23: end ifreturn G mean, F Measure,Statistical Parity, Model
24: end while

4 Experimental Evaluation

In this section, we conduct experiments to evaluate the accuracy and fairness
of the MQ-OFL framework. To this end, we first investigate the enhanced dis-
crimination reduction capability of the proposed fair reprocessing. We also show
a comprehensive quantitative evaluation to verify the ability of class imbalance
and concept adaption or our method. All experiments were conducted on a
MacBook Pro with a Dual-Core Intel Core i5 processor, CPU @ 3.1 GHz pro-
cessor, 8.0 GB RAM on the Mac Catalina Operating System (OS), and the
Name Withheld Cloud with 10 Core CPUs. Our code was implemented using
the Scikit-Learn [20] and Scikit-Multiflow [17] packages in Python version 3.8.2.
The framework’s implementation and all the code for the experiments will be
made available in GitHub upon publication. The Hoeffding Tree (HT) [4] and
Hoeffding adaptive tree (HAT) [1] classifiers were used as our base classifier in
the model. HTs are incremental decision trees for data stream classification that
use Hoeffding’s bound to commence online learning. HAT is an extension of HT
that adaptively learns from data streams that change over time without needing
a fixed-size sliding window. We evaluate MQ-OFL against two recent state-of-
the-art fairness-aware stream classifiers FAHT [23] and FEAT [22]. Recall that

MQ-OFL 279

FAHT method solves the discrimination problem by introducing a new splitting
criterion, called fair information gain (FIG), that jointly considers the fairness
gain and information gain of the introduction of an attribute split. On the other
hand, FEAT embedded fair-enhancing splitting criterion and includes change
detection and concept forgetting to handle discriminated and non-stationary
data streams.

4.1 Datasets

Our experimental study is based on the datasets used in the recent works in this
research direction [10,16,22]. The following datasets are shown in Table 1: Adult
[14], the COMPAS dataset [15] of criminal recidivism, the Default dataset [21]
and the Bank dataset [18].

There are 48, 843 instances in the Adult dataset and each instance is
described by 14 employment and demographic attributes. Following the state-
of-the-art, we conduct experiments on these datasets by setting “gender” and
“ethnicity” as the sensitive attributes with female and black being the sensitive
value and an annual income of more than 50K as the target class, i.e., the posi-
tive classification. The Bank dataset comprises 41, 188 samples with 20 features
and a binary label, indicating whether clients have subscribed to a term deposit.
For this dataset, ages less than 25 and more than 60 years and marital status
being single/married are considered sensitive. The CreditCardDefault dataset
considers age (same as Bank dataset) and gender as sensitive attributes. We
select a subset of the COMPAS dataset previously used for fairness experi-
ments, which comprises 5, 320 samples with five features (age category, gender,
ethnicity, priors count and charge degree) and a binary label indicating whether
the defendant re-offended within two years.

The reader should notice that all datasets include more than one sensitive
attribute (indicated in the Table 1) which make them useful for evaluating our
MQ-OFL method. It must be noted that the selected features aim to facili-
tate fairness experiments comparable to previous approaches, rather than only
focusing on high predictive accuracy.

Table 1. Characteristics of data streams used in experiments.

Dataset #Instances #Attributes Sen.Attr Imbalanced ratio Class label

Adult Cen 48843 14 Gender/Ethnicity 1 : 3 ≤ 50K or ≥ 50K

Bank 41188 16 Marital Status/Age 1 : 7.5 Subscription (yes/no)

Default 30000 24 Gender/Age 1 : 3.5 Default Payment (yes/no)

COMPAS 13610 4 Gender/Ethnicity 1 : 1.1 Re-offended (yes/no)

280 F. Sadeghi and H. Viktor

4.2 Evaluation Metrics

We evaluate whether a classifier D is satisfying statistical fairness constraint
based on statistical parity (S.P.). This fairness metric is defined with respect to
a set of protected groups G if we have more than one sensitive attribute. Each
g : X → {0, 1} ∈ G has the semantics that g(x) = 1 indicates that an individual
with protected features x is in group g. Definition 3 (S.P. Subgroup Fairness)
[13]; refers to classifier D, distribution P , collection of group indicators G, and
parameter γ ∈ [0, 1]. For each g ∈ G, define:

αSP (g, P) = Prp[g(x) = 1],
βSP (g,D, P) = ‖SP (D) − SP (D, g)‖ (3)

where SP (D) = PrP,D[D(X) = 1] and SP (D, g) = PrP,D[D(X) = 1‖g(x) = 1]
denote the overall acceptance rate of D and the acceptance rate of D on group g
respectively. We conclude that D satisfies γ-statistical parity (SP) Fairness with
respect to P and G if for every g ∈ G:

αSP (g, P).βSP (g,D, P) ≤ γ. (4)

We refer to SP(D) as the S.P. base rate. For S.P. fairness, if the algorithm
D fails to satisfy the γ-fairness condition, then we conclude that D is γ- unfair
with respect to P and G. We call any subgroup g which witnesses this unfairness
an γ-unfair certificate for (D,P).

Our learning procedure is supervised and is known as first-test-then-train or
prequential evaluation [7]. The performance measures we used are the F-measure
and geometric mean (G-mean). The F-measure [2] refers to the harmonic mean
of two metrics, recall and precision. We used a balanced value, which implies
that precision and recall are assumed to carry equal weights in the metric. The
F-measure is macro-averaged over the sum of F1-scores over all classes, which
assigns equal weights to the existing classes. Additionally, we employed the G-
mean [7] value that is the geometric mean of the recall rates of majority and
minority classes in the imbalanced data set. The G-mean value is higher only
when the classification accuracies of the majority sample and the minority sample
are high; therefore, the G-mean value can accurately the classification effect of
unbalanced data sets.

4.3 Experimental Results

First, we investigated the value of S.P. as the indicator of fairness violation and
vary the γ measure over time to show the maximum unfairness for each subgroup
with gerrymandering. Unfortunately, inter-sectional fairness is not statistically
estimable in most cases as most intersections are empty. As a remedy, [12] pro-
pose max-violation fairness constraints over Ggerrymandering, where each group
is weighed by group size, defined by:

maxg∈Ggerrymandering

‖g‖
n

(5)

MQ-OFL 281

Subsequently, following [12], the empty groups are removed, and small groups
have relatively low influence unless there is a very large fairness violation. It
is also of interest to compare the subgroup fairness achieved by the subgroup
customized classifier. We depict the change of γ over the time in Fig. 4.

(a) Adult Dataset (b) Bank Dataset

(c) Compass Dataset (d) Default Dataset

Fig. 4. Maximum γgerrymandering (lower values are better)

By referring to Fig. 4, we notice that the combination of Ethnicity and Gender
has the highest value when we consider the Adult and Compass datasets. That
is, Ethnicity and Gender is the subgroup with the higher fairness violation.
On the other hand, the combination of Marital-Status and Age in the Bank
dataset exhibits the lowest level of unfairness. Further, in the Default stream,
the combination of Marital-Status and Gender in the Default dataset has the
highest fairness violation amongst all subgroups.

Next, we also present the maximum gerrymandering value for all datasets
used in the paper. As shown in Table 2, the value of γBank is between −0.02 and
0.13 indicating the highest variation among subgroups. The Default dataset
reached the lowest value of γ equal to 0.011. We find that Adult is γ0.05-fair, Bank
is γ0.03-fair, COMPAS is γ0.013-fair and Default is γ0.011-fair. The results depicts
that our method is empirically necessary to avoid fairness gerrymandering.

282 F. Sadeghi and H. Viktor

Table 2. Gamma measure in each subgroup G

Data γg1 γg2 γg3

Adult 0.05 0.14 0.16

Bank 0.07 0.131 –0.029

COMPAS 0.013 0.04 0.19

Default 0.011 0.014 0.019

Next, we turn our attention to the second set of experiments, where we inves-
tigate accuracy-driven and fairness-oriented capabilities of MQ-OFL. Kearns
et al. [12], had shown that varying the input α provides an appealing trade-
off between accuracy and fairness. We begin by examining the evolution of the
accuracy and discrimination of the model. Based on experimental results we
determine the best α and accuracy trade-off. For instance, we show the values of
α ranging from 5.0 to 22.5 for Adult and between 0 and 2.5 in the Bank data set.
This implies that the fair customized classifiers aid to control the discrimination
propagation and manages to push the discrimination to a low level while main-
taining a high prediction capability. Note that the trade-off between accuracy
and discrimination can be achieved, by inspection, by adjusting α (Fig. 5).

Fig. 5. Accuracy and discrimination trade-off

MQ-OFL 283

Finally, we present our results when contrasting different fairness approaches.
The HAT and HT classifiers were used as our baseline without considering
class imbalance and discrimination. Specifically, Table 3 presents the results of
our comparative study contrasting the MQ-OFL, FAHT and FEAT algorithms.
Table 3 presents the results of our comparative study when contrasting these
three algorithms. In these results, it is clear that our model is capable of dimin-
ishing the discrimination to a lower level while maintaining comparable accu-
racies across all data sets. In addition, the MQ-OFL algorithm produced the
highest values in terms of G-mean and lowest value for discrimination for data
streams. The same observation holds for the F-measure, where again, MQ-OFL
produced higher results, especially handling class imbalance helps to improve
this measure.

Table 3. Accuracy-vs-discrimination of learning methods.

Adult Bank

Method Discrimination G-mean F-measure Discrimination G-mean F-measure

MQ-OFL 15.12 83.05 80.69 1.34 83.16 85.11

FEAT 16.23 81.83 75.69 1.70 79.50 76.95

FAHT 17.40 79.07 71.66 2.65 77.07 73.48

HT 22.60 83.91 72.90 8.10 80.45 71.65

HAT 22.30 84.07 76.86 7.80 85.06 72.92

COMPAS Default

Method Discrimination G-mean F-measure Discrimination G-mean F-measure

MQ-OFL 13.50 65.74 63.93 1.03 66.10 64.17

FEAT 15.80 61.62 59.92 1.83 62.58 44.90

FAHT 16.31 60.05 59.84 2.04 53.30 40.81

HT 21.30 65.38 62.18 8.34 65.10 58.23

HAT 19.70 66.44 63.03 8.91 66.07 59.08

When assessing the overall accuracy and discrimination level, the reader will
notice that MQ-OFL is able to mitigate unfair outcomes and maintains the high-
est performance in terms of G-mean and F-measure for all datasets, followed
by HAT. In terms of discrimination, MQ-OFL appears fairest when considering
two sensitive attributes, across all datasets, with keeping the least discrimination
score. This is following by FEAT, which was designed for enhanced fairness-aware
learning with add-on concept drift adaptation ability to handle non-stationary
discriminated data streams. In particular, MQ-OFL achieves a discrimination
score of 15.12% and 1.34% at the cost of a slight 1.02% and 2.10% accuracy
reduction on the Adult and Bank dataset, respectively. The results suggest that
our MQ-OFL method that seamlessly integrates the fair data merit into classi-
fiers, results into a model that is both accuracy-driven and fairness-driven. MQ-
OFL achieves the best discrimination reduction while HT and HAT gives the

284 F. Sadeghi and H. Viktor

worst fairness results. This is not surprising; due to the exclusively accuracy-
oriented tree construction and the intrinsic discrimination bias of the historic
data, a lack of fairness tree can be induced during the construction of the HT
and HAT. Therefore, although HAT provides a better prediction performance,
it may lead to an unfair model.

5 Conclusion

Current approaches to confront the lack of fairness in AI decision-making sys-
tems, mostly consider fairness as a static problem. We introduced an approach
for fairness-aware stream classification with the class imbalance and concept
drifts which is able to maintain a moderate predictive performance with low
discrimination scores over the course of the stream. Moreover, our MQ-OFL
method facilitated two or more sensitive attribute by customizing the classifier
for each protected group. Our experimental evaluation showed that our app-
roach outperforms other methods in a variety of datasets w.r.t. both predictive
performance and fairness preservation. Our class-imbalance-oriented approach
effectively learns both sensitive attributes while achieving good predictive per-
formance for both minority and majority classes.

Future studies will include the development of in-processing classifiers. Unfor-
tunately, the number of benchmarking datasets for fairness-aware learning from
evolving streams is quite limited; we plan to extend this repository through the
creation of additional datasets. Other interesting next steps are extending our
work to multi-class classification and evaluating the MQ-OFL method with other
fairness metrics to further explore the behavior of the subgroups over the stream.

References

1. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams,
N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol.
5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03915-7 22

2. Branco, P., Torgo, L., Ribeiro, R.: A survey of predictive modeling on imbalanced
domains. ACM Comput. Surv. (CSUR) 49(2), 1–50 (2016)

3. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in
commercial gender classification. In: Conference on Fairness, Accountability and
Transparency, pp. 77–91. PMLR (2018)

4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 71–80 (2000)

5. Sadeghi, F., Viktor, H.L.: Online-mc-queue: learning from imbalanced multi-class
streams. In: Proceedings of the Third International Workshop on Learning with
Imbalanced Domains: Theory and Applications, pp. 21–34. PMLR (2021)

6. Fish, B., Kun, J., Lelkes, A.: A confidence-based approach for balancing fairness
and accuracy. In: Proceedings of the 2016 SIAM International Conference on Data
Mining, pp. 144–152. Society for Industrial and Applied Mathematics (2016)

https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22

MQ-OFL 285

7. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.: Machine learning for
streaming data: state of the art, challenges, and opportunities. ACM SIGKDD
Explor. Newsl. 21(2), 6–22 (2019)

8. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The collected works of Wassily Hoeffding, Springer,
New York, pp. 409–426 (1994). https://doi.org/10.1007/978-1-4612-0865-5 26

9. Howard, A., Borenstein, J.: The ugly truth about ourselves and our robot creations:
the problem of bias and social inequity. Sci. Eng. Ethics 24(5), 1521–1536 (2018)

10. Iosifidis, V., Ntoutsi, E.: FABBOO - online fairness-aware learning under class
imbalance. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds.)
DS 2020. LNCS (LNAI), vol. 12323, pp. 159–174. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-61527-7 11

11. Iosifidis, V., Tran, T.N.H., Ntoutsi, E.: Fairness-enhancing interventions in stream
classification. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G.,
Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 261–276. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27615-7 20

12. Kearns, M., Neel, S., Roth, A., Wu, Z.: Preventing fairness gerrymandering: audit-
ing and learning for subgroup fairness. In: International Conference on Machine
Learning, pp. 2564–2572. PMLR (2018)

13. Kearns, M., Neel, S., Roth, A., Wu, Z.: An empirical study of rich subgroup fairness
for machine learning. In: Proceedings of the Conference on Fairness, Accountability,
and Transparency, pp. 100–109 (2019)

14. Kohavi, R., Becker, B.: Census income data set (1996). https://archive-beta.ics.
uci.edu/ml/datasets/adult

15. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: Propublica compas risk assessment
data set (2016). https://github.com/propublica/compas-analysis

16. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35
(2021)

17. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output
streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018)

18. Moro, S., Cortez, P., Rita, P.: Bank marketing data set (2014). https://archive.ics.
uci.edu/ml/datasets/bank+marketing

19. Ort́ız Dı́az, A., et al.: Fast adapting ensemble: a new algorithm for mining data
streams with concept drift. Sci. World J. (2015)

20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

21. Yeh, I.C., Lien, C.H.: The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Exp.
Syst. Appl. 36(2), 2473–2480. (2009). https://archive.ics.uci.edu/ml/datasets/
default+of+credit+card+clients

22. Zhang, W., Bifet, A.: Feat: a fairness-enhancing and concept-adapting decision tree
classifier. In: International Conference on Discovery Science, pp. 175–189. Springer,
Cham (2020)

23. Zhang, W., Ntoutsi, E.: Faht: an adaptive fairness-aware decision tree classifier.
arXiv preprint (2019). arXiv:1907.07237

https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-030-61527-7_11
https://doi.org/10.1007/978-3-030-61527-7_11
https://doi.org/10.1007/978-3-030-27615-7_20
https://archive-beta.ics.uci.edu/ml/datasets/adult
https://archive-beta.ics.uci.edu/ml/datasets/adult
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/ datasets/bank+marketing
https://archive.ics.uci.edu/ml/ datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
http://arxiv.org/abs/1907.07237

Multi-fairness Under Class-Imbalance

Arjun Roy1,2(B) , Vasileios Iosifidis2, and Eirini Ntoutsi1,3

1 Institute of Computer Science, Free University of Berlin, Berlin, Germany
arjun.roy@fu-berlin.de

2 L3S Research Center, Leibniz University Hannover, Hanover, Germany
iosifidis@l3s.de

3 Research Institute CODE, University of the Bundeswehr, Munich, Neubiberg,
Germany

eirini.ntoutsi@unibw.de

Abstract. Recent studies showed that datasets used in fairness-aware
machine learning for multiple protected attributes (referred to as multi-
discrimination hereafter) are often imbalanced. The class-imbalance
problem is more severe for the protected group in the critical minor-
ity class (e.g., female +, non-white +, etc.). Still, existing methods focus
only on the overall error-discrimination trade-off, ignoring the imbal-
ance problem, and thus they amplify the prevalent bias in the minor-
ity classes. To solve the combined problem of multi-discrimination and
class-imbalance we introduce a new fairness measure, Multi-Max Mis-
treatment (MMM), which considers both (multi-attribute) protected
group and class membership of instances to measure discrimination. To
solve the combined problem, we propose Multi-Fair Boosting Post Pareto
(MFBPP) a boosting approach that incorporates MMM -costs in the dis-
tribution update and post-training, selects the optimal trade-off among
accurate, class-balanced, and fair solutions. The experimental results
show the superiority of our approach against state-of-the-art methods in
producing the best balanced performance across groups and classes and
the best accuracy for the protected groups in the minority class.

Keywords: Multi-discrimination · Class-imbalance · Boosting

1 Introduction

There are growing concerns about the potential discrimination and unfairness of
Machine Learning (ML) models in areas of high societal impact like recidivism,
job hiring and loan credit. Over the last years a growing body of works has been
proposed to address the problem of fairness and algorithmic discrimination [21].
The vast majority of fairness-aware ML approaches however, assumes that dis-
crimination is due to a single protected attribute e.g., only race or only gender

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 286–301, 2022.
https://doi.org/10.1007/978-3-031-18840-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_21&domain=pdf
http://orcid.org/0000-0002-4279-9442
http://orcid.org/0000-0002-3005-4507
https://doi.org/10.1007/978-3-031-18840-4_21

Multi-fairness Under Class-Imbalance 287

(referred hereafter as mono-discrimination). In reality though, the roots of dis-
crimination can be ascribed to multiple protected attributes (referred hereafter
as multi-discrimination1), e.g., a combination of race, gender and age [17].

The problem of multi-discrimination has attracted attention recently and sev-
eral approaches to multi-fairness have been proposed [1,12,18,24,25]. However,
none of the existing multi-discrimination methods considers class-imbalance
and the problem arising out of it. Studies [9,11,15] showed that many datasets
used in fairness-aware ML research are class-imbalanced, i.e., they contain a dis-
proportionately larger amount of instances from the majority class (typically
called negative “–” class) comparing to the minority class (typically called pos-
itive “+” class). The imbalance is even more pronounced in protected groups
like female (vis-a-vis male), non-white (vis-a-vis white) etc. Table 1 highlights
the problem in three real-world datasets, which are widely used to evaluate fair-
ML algorithms [15]. The Class Imbalance Ratio (CIR) is the (+/–) ratio in the
whole dataset. For the minority ‘+’ class, we also show the Group Imbalance
Ratio (GIR) which is the ratio between the protected and non-protected groups,
for different protected attributes. As seen in Table 1, within the minority ‘+’
class there exist extreme imbalance between the protected and non-protected
group. Thus, within the entire data these protected groups have very less ‘+’
examples. The degree of imbalance varies from attribute to attribute. Thus,
giving an uniform and equal importance to tackle discrimination for all the pro-
tected attributes may not be sufficient. In these circumstances, a classifier can
be highly accurate even by completely ignoring these protected ‘+’ examples.
On the other hand, a fair classifier whose working principle is to minimize the
difference between performance of the two groups, can have high error rate on
both protected and non-protected ‘+’ examples (i.e., predicting them as ‘−’).
Such a situation may result in an acceptable drop in accuracy (in lieu of fair-
ness), however, may lead to heavy under-performance in the positive outcome
of some protected groups.

Table 1. Overview of class imbalance ratio (CIR) and protected:non-protected group
imbalance ratio in the minority “+” class (GIR) for different protected attributes.

Data n Minority (+) class CIR (+:-) GIR (Prot. : Non-prot) in “+” class

Adult 45K >50k 1:3 Race: (1:6), Sex: (1:2)

Bank 40K subscription 1:8.9 Marital (1:3), Age (1:23)

Credit 30K default pay. 1.4:3 Sex (1:1.5), Age (1:6), Marital (1:1.5)

State-of-the-art multi-discrimination methods [1,12,18,19,24,25] focus only
on error-discrimination trade-off, but ignore this precise imbalance problem.

1 Through the paper we use the terms “multi-discrimination” and “multi-fairness”
interchangeably.

288 A. Roy et al.

Also, the evaluation strategy presently used ignores to report on this issue of per-
formance of the worst performing group in the minority class. Thus, we need a
holistic algorithm approach along with a thorough evaluation mechanism to mea-
sure that analyses the performance based on overall error, multi-discrimination,
imbalance, and protected groups in the minority class. In this work, we target
the combined problem of multi-discrimination and class-imbalance. Our main
contributions are as follows:

i) We extend the definition of multi-group [24] fairness to introduce the notion
of Multi-Max Mistreatment (MMM)2 that evaluates discrimination for multiple
protected attributes and across different classes.
ii) We formulate the multi-discrimination under class-imbalance problem as a
multi-faceted problem of finding a MMM -fair classifier that achieves low overall
error, and minimizes performance differences across the classes and groups, to
overcome the problem of underrepresented protected groups in the minority (+)
class.
iii) We propose Multi-Fair Boosting Post Pareto (MFBPP) algorithm, an in-
processing boosting-based approach coupled with a post-processing Pareto Front
selection to solve the multiple problems in-hand.
iv) We demonstrate an all round evaluation based on accuracy, imbalance, multi-
discrimination, and accuracy of protected groups in the positive class to show
the superiority of our MFBPP against various state-of-the art approaches w.r.t.
multi-discrimination under class-imbalance.
v) We offer a flexible alternative of our model to provide solutions per user needs
based on user preferences.

The rest of the paper is organized as follows: Related work is summarized
in Sect. 2. In Sect. 3 we introduce basic notation and our Multi-Max Mistreat-
ment (MMM) fairness measure. Our boosting-based method towards an MMM -
fair classifier is presented in Sect. 3.1 and the experimental evaluation in Sect. 5.
We conclude this work in Sect. 6 where we also point to open directions.

2 Related Work

In the following, we summarize related work referring to multi-discrimination,
and imbalanced learning. Notions built around intersectional discrimination [5,
13] is the most common practice to measure multi-discrimination. However,
such measures suffer from the drawback of clarity in subgroup definition [6] and
scarcity in subgroup distribution [13]. Recently, works [12,24] towards the more
operational multi-discrimination measure concerning disjoint groups defined by
multiple protected attributes came into light. However, they do not take into
account ground truth or class membership which is important to consider in
presence of class-imbalance. Our introduced MMM notion, overcomes the issue
by considering both class and multi-group membership of the instances to mea-
sure multi-discrimination.

2 The term ‘multi ’ here refers to both multiple attributes and multiple classes.

Multi-fairness Under Class-Imbalance 289

A few existing approaches [1,12,18,19,24,25] in supervised learning can han-
dle multi-discrimination. [25] introduces fairness-related convex-concave con-
straints to a logistic regression classifier (FairCons). [1] imposes a set of linear
fairness constraints on an exponentiated-gradient reduction method (FairLearn).
[12] tackles the fairness-accuracy trade-off by minimizing mutual information
between the learning error and the vectorized multiple protected attributes (MI-
Fair). [24] applies a Bayes-optimal group-fair classifier (W-ERM) to identify
the most-dicriminated group. Fairness-aware learning as a mini-max theory
has been already used in the literature [18], searching for a Pareto efficient
solution of a multi-objective problem (MiniMax). Recently it has been shown
that skewed class distributions can affect the discriminatory behaviour of a
model [9–11] in the mono-discrimination set-up. None of the existing multi-
discrimination methods considers class-imbalance. Boosting-based approaches
have shown their effectiveness in tackling class-imbalance [3,23], fairness [8,11],
and multi-class [2] problems. [11] tackles both fairness and class-imbalance but
for a single protected attribute (AdaFair).

Our proposed MFBPP considers both multi-discrimination and class-
imbalance to overcome the limitation of multiple underrepresented groups while
delivering accurate solutions across the classes.

3 Basics and Multi-Max Mistreatment (MMM) Fairness

We assume a dataset D = (u(i), s(i), y(i)) ∼ P of n instances drawn from the
i.i.d distribution P over the domain U × S × Y , where U is the subspace of
non-protected attributes, S is the subspace of protected attributes, and Y is the
class attribute. For simplicity, we assume a binary problem: Y ∈ {+,−} with
‘+’ being the minority (+) class [20]. U and S together define the feature space
X = U × S, so x(i) = (u(i), s(i)).

Let the protected subspace consist of k protected attributes: {S1, S2, · · · , Sk}.
Each protected attribute is considered to be binary: ∀j=1,··· ,kSj ∈ {gj , gj} and
where gj and gj represent the protected group and the non-protected group,
respectively w.r.t. protected attribute Sj . Each group gj (gj) w.r.t. a protected
attribute Sj can be further subdivided based on class information into: protected
positive gj+, protected negative gj−, non-protected positive gj+ and non-protected
negative gj−.

To measure mistreatment in mono-discrimination cases, [25] introduced the
notion of Disparate Mistreatment for a protected feature j as:

DMj = |δFNRj | + |δFPRj | (1)

where δFNRj (δFPRj) is the discrimination w.r.t. Sj in the positive ‘+’ class
(respectively, negative ‘−’ class) defined as:

δFNRj = ER(gj+) − ER(gj+)

δFPRj = ER(gj−) − ER(gj−)

290 A. Roy et al.

3.1 Multi-Max Mistreatment(MMM) Measure

The Disparate Mistreatment measure (c.f., Eq. 1) fails to focus on per-class
discrimination due to the summation operation. To ensure fair treatment
across all classes, for a protected attribute Sj , we measure mistreatment as
max(|δFNRj |, |δFPRj |) where the ‘max’ operator enforces focus on each of the
classes. Moreover, we want to ensure fair treatment across all protected attributes
S = {S1, · · · , Sk}. Our goal is therefore, to focus on the most discriminated group
defined based on a protected attribute and a class. To this end, we introduce a
new multi-discrimination notion, called Multi-Max Mistreatment (MMM), that
measures the maximum discrimination among the protected attributes and for
the different classes.

Definition 1. The Multi-Max Mistreatment(MMMS) due to multiple-protected
attributes S = {S1, · · · , Sk} across all classes Y = {+,−}, is defined as:

MMMS = max
Sj∈S

(
max(|δFNRj |, |δFPRj |)

)
(2)

where δFNRj and δFPRj measure the mistreatment due to Sj in the (+) and
(−) class, respectively.

Definition 2. Given a tolerance threshold μ, a classifier f(·) is MMM-fair iff
the maximum mistreatment w.r.t all the protected attributes Sj ∈ S across all
classes is less than μ i.e., MMMS ≤ μ.

In the ideal case, μ = 0 which signifies no discrimination w.r.t. any protected
attribute and in any class.

4 Multi-Fairness-Aware Learning

Our goal is to learn a MMM -fair classifier: f(·) : X → Y that achieves equal low
error rates for all the groups (gj/gj , j = 1, · · · , k) in both the classes (+/−).
To this end, we first formulate clear objectives (Sect. 4.1) and then, propose a
sequential learner approach to find f(·) (Sect. 4.2).

4.1 Multi-discrimination-Free Learning Under Class-Imbalance

We define three objectives for the MMM -fair classifier f(·): low overall error
(O1), similar (low) error rates across all classes (O2), and mitigation of discrim-
inatory outcomes for all protected attributes (O3).

Objective O1 targets overall error and is defined as minimizing the classifi-
cation loss (0–1 loss):

O1 : L(f) =
1
n

∑

(xi,yi)∈D

|yi − f(xi)| (3)

where f(xi) is the predicted and yi is the true class of xi.

Multi-fairness Under Class-Imbalance 291

Objective O2 explicitly targets class-imbalance by ensuring balanced perfor-
mance across both classes. Motivated by [7], we define a balanced loss function
to minimize the performance differences between the two classes:

O2 : B(f) = | 1
|D+|

∑

(xi,yi)∈D+

|yi − f(xi)| − 1
|D−|

∑

(xi,yi)∈D−

|yi − f(xi)|| (4)

where DY ⊂ D, Y ∈ {+,−} denotes the set of instances belonging to class Y .
O3 is the multi-discrimination objective aiming to mitigate discrimination

due to multiple protected attributes Sj ∈ S and across both classes. We call it
MMMS loss, as on optimization it aims to mitigate MMMS (c.f. Definition 1):

O3 : Φ(f) = max
Sj∈S

(
max

Y ∈{+,−}
(| 1

|gjY |
∑

(xi,yi)∈gjY

|yi − f(xi)| − 1

|gjY |
∑

(xi,yi)∈gjY

|yi − f(xi)| |)) (5)

where |gjY | is the cardinality of group gj in class Y ∈ {+,−}.
The objectives O3 and O2 ensure similar performance across all the

protected/non-protected groups and the (+/−) classes respectively, thus mini-
mizing the performance bias against the underrepresented protected groups in
the minority (+) class, while the objective O1 would help establish low error
rate overall.

4.2 The MMM -Fair Boosting Post Pareto (MFBPP) Algorithm

Our goal is to develop a classifier that takes into consideration the above three
objectives, eventually solving the problem of multi-discrimination under class-
imbalance. Boosting-based [22] approaches have been promising in tackling class-
imbalance [3,23] and discrimination [8,11]. However, they have also been crit-
icised for being vulnerable in the presence of noise or outliers. As outliers are
more likely to be missclassified, boosting may overshoot over the iterations the
weights of those instances [16]. Thus, the ensemble obtained at the end of a
predefined number of boosting rounds may produce inferior outcomes than an
ensemble produced in an earlier round.

Inspired by the literature, we propose a boosting-based learner that in-
training modifies the distribution weights to incorporate our objective goals.
The new weighting puts more attention to the instances from the protected
groups in minority class (as they are frequently missclassified) and might there-
fore, aggravate the weight overshooting problem. To overcome this drawback, we
deploy a post-training step to select the best solution (partial ensemble).

In-training: MMM -Boosted Weight Distribution Update. Let T be the
number of boosting rounds. In each round t (1 ≤ t ≤ T) we train a weak learner
(a decision stump) based on the current instance weight distribution Dt. In the
first round, all instances receive the same weight: D1(xi) = 1

n . In a later round
0 < t + 1 ≤ T − 1, the weight distribution is updated as follows:

Dt+1(xi) =
Dt(xi) exp(−αtsign(yiht(xi)))fct(xi)

Zt
(6)

292 A. Roy et al.

where as in AdaBoost αt = 1
2 ln 1−∑

n Dt(xi)∑
n Dt(xi)

is the weight of the weak learner ht,
sign(yiht(xi)) returns −1 if ht(xi) �= yi and 1 otherwise, and Zt is the normal-
ization factor which ensures that Dt+1 is a probability distribution. The term
fct(xi) is our modification, which corresponds to the multi-discrimination cost
(MMM-cost) for a misclassified instance xi defined as:

fct(xi) =

{
max1≤j≤k(cdc

(t)
ij), if ht(xi) �= yi

1, otherwise
(7)

where cdc
(t)
ij is the discrimination weight of instance xi at round t concerning

protected attribute Sj , which depends on the group membership of xi w.r.t Sj .
It is defined as:

cdc
(t)
ij =

{
1 + |δFNR

1:t
j |, if (δFNR

1:t
j ≥ 0 ∧ xi ∈ gj+) ∨ (δFNR

1:t
j ≤ 0 ∧ xi ∈ gj+);

1 + |δFPR
1:t
j |, if (δFPR

1:t
j ≥ 0 ∧ xi ∈ gj−) ∨ (δFPR

1:t
j ≤ 0 ∧ xi ∈ gj−);

(8)

where δFNR1:t
j and δFPR1:t

j are the cumulative discrimination of the partial
ensemble Ht(xi) =

∑t
l=1 αlhl(xi) for Sj as in [11].

In each boosting round t we evaluate the partial ensemble Ht and collect
the solution vector ft = [o1, o2, o3]t, where oi = Oi(t) is a solution point of Ht

for the respective objective Oi. In total, T solution vectors are collected. The
sequential training stops when the maximum number of iterations T is reached.

Post-training: Selecting Pareto Optimal Solution. Our goal is to find the
optimal round t∗ ≤ T to output the partial-ensemble with the best (O1, O2, O3)
objectives trade-off:

Ht∗ =
t∗

∑

l=1

αlhl

This is achieved in two steps: First, out of all T solutions we select the set
of non-dominating optimal solutions. Next, we find the best trade-off solution
among the shortlisted ones to get the corresponding optimal t∗.

1. Pareto Front Computation: Among all solution vectors ft , t = 1, · · · , T
collected over the boosting rounds, we find the Pareto Front (PF), i.e., the non-
dominated set of Pareto optimal solutions. A solution ft′ is said to be dominated
by a solution ft if 1) Oi(t) ≤ Oi(t′) ∀i ∈ {1, 2, 3}, and 2) ∃i ∈ {1, 2, 3} Oi(t) <
Oi(t′).

2. Pseudo-Weight Calculation and Choice of Best Solution: To choose
the best solution we use the pseudo-weight algorithm [4] that calculates the
relative distance of each solution from the worst (maximum value) solution for
each objective. The pseudo-weight wti for oi ∈ ft is given by:

wti =
(omax

i − oti)/(omax
i − omin

i)
∑3

i=1(o
max
i − oti)/(omax

i − omin
i)

(9)

Multi-fairness Under Class-Imbalance 293

where omax
i (omin

i) is the maximum or worst (minimum or best) objective value
achieved in any of the rounds. This way, for each solution ft = [o1, o2, o3]t we
compute the corresponding pseudo-weight vector wt = [wt1, wt2, wt3]. Next, we
select the solution with the least relative weighted sum as the best trade-off
solution w.r.t all the objectives:

f∗
t = argmint{(1 − wt) · ft} = argmint{

3∑

i=1

(1 − wti)oti} (10)

where (1 − wt) is the required transformation as the pseudo-weights vector by
its nature assigns bigger weight wti to a smaller objective solution value oti.

5 Experiments

We evaluate MFBPP performance against state-of-the-art approaches
(Sect. 5.2). To show the utility of our MMM -cost (Eq. 7) in tackling balanced
error (O2), we plot balanced loss B(f) with varying MMM tolerance thresh-
olds μ (Sect. 5.3). Further, we show the changes in the dataset distribution over
training and the effectiveness of our approach in promoting underrepresented
protected groups (Sect. 5.3). We plot the O1, O2, O3 losses over the rounds to
justify the need for post-training selection. At last, in Sect. 5.4 we show the
flexibility of MFBPP to intake user preferences for post-training selection.

5.1 Experimental Settings

Baselines: We compare against four state-of-the-art fairness-aware methods:
FairCons [25]: Tackles multi-discrimination fairness-related convex-concave con-
straints,
FairLearn [1]: imposes a set of linear fairness constraints on an exponentiated-
gradient reduction method to tackle multi-discrimination,
MiniMax [18]: tackles multi-discrimination as a mini-max game while searching
for a Pareto efficient solution of a multi-objective problem,
W-ERM [24]: applies a Bayes-optimal group-fair classifier to consider algorith-
mic fairness across multiple overlapping groups simultaneously to tackle the
multi-discrimination trade-off,
MI-Fair [12]: minimizes mutual information between the learning error and
the vectorized multiple protected attributes to tackle multi-discrimination, and
AdaFair [11]: uses mono-discrimination based boosting algorithm along with
summed accuracy and class-imbalance loss to tackle mono-discrimination and
class-imbalance.

In order to understand the effect of the post-training part as well as the effect
of the PF selection in the post-training part, we also include in the experiments
two variations of MFBPP:

294 A. Roy et al.

– MFB that completely discards the post-training part and
– MFBP that uses post-training but does not use the Pareto Front PF set for

the final selection but rather selects from all solutions.

Datasets. We report on three imbalanced real-world datasets (c.f., Table 1).
Additionally, we also report on Compas [14] (CIR: 1 : 1.2) to show the usability
of our method also for class-balanced scenarios. The protected attributes and
protected groups studied in the experiments are Sex (gj = “female”), Race (gj =
“non-white”), Marital status/Mari (gj = “married”), Age (gj = “ ≤ 25& ≥ 60”).

Evaluation Measures. For O1, we report on accuracy (Acc), for O2 on geo-
metric mean (G.M) and for O3 we report on the proposed MMM-fairness, as
well as on the DM for each protected attribute. Additionally, we report on
the accuracy of the worst performing protected group in the minority (+) class
(Wg+).

Experimental Setup: We set the number of weak learners to T = 500. We
follow the same evaluation setup as in [11,25] by splitting each dataset randomly
into train (50%) and test (50%) and report on the average of 10 random splits.

5.2 Evaluation Results

The discriminatory and predictive performance evaluation of the different
approaches is shown in Fig. 1 and Table 2, respectively.

Fig. 1. Discrimination performance: For each dataset, the overall MMM score and the
DM scores for each protected attribute are shown (lower values are better).

Multi-fairness Under Class-Imbalance 295

Table 2. Predictive performance evaluation. Wg+ is the accuracy of the worst per-
forming protected group in the minority (+) class

Adult Bank Credit Compas

Acc Wg+ G.M Acc Wg+ G.M Acc Wg+ G.M Acc Wg+ G.M

AdaFair 0.84 0.63 0.76 0.88 0.62 0.76 0.81 0.33 0.57 0.65 0.50 0.64

FairCons 0.85 0.43 0.75 0.91 0.33 0.59 0.81 0.28 0.55 0.67 0.53 0.66

FairLearn 0.83 0.54 0.73 0.88 0.21 0.46 0.79 0.21 0.45 0.65 0.55 0.64

MiniMax 0.86 0.49 0.76 0.90 0.45 0.66 0.82 0.37 0.60 0.68 0.49 0.67

W-ERM 0.85 0.52 0.75 0.90 0.29 0.56 0.81 0.22 0.47 0.66 0.47 0.64

MI-Fair 0.84 0.65 0.72 0.89 0.69 0.82 0.80 0.59 0.68 0.68 0.60 0.68

MFB 0.69 0.64 0.74 0.36 0.28 0.41 0.71 0.68 0.70 0.64 0.63 0.63

MFBP 0.85 0.77 0.84 0.85 0.75 0.85 0.71 0.64 0.69 0.67 0.60 0.65

MFBPP 0.81 0.79 0.81 0.81 0.72 0.80 0.74 0.65 0.70 0.66 0.63 0.66

Multi-discrimination: From Fig. 1 we notice that our MFB outperforms all
the approaches in all the dataset. MFBPP comes second outperforming the base-
line competitors in mitigating multi-discrimination (i.e., objective O3) by pro-
ducing the lower MMM discrimination values in three datasets (Adult: 0.05,
Compas: 0.04, Credit: 0.01), while falling behind FairLearn in one dataset
(Bank: 0.08). However, in Table 2 we notice that MFB severely underperforms
in all the predictive evaluation measures, thus failing to provide a good trade-off
between O1, O2, and O3. The closest competitor to us w.r.t. fairness is FairLearn,
which however achieves low discrimination by consistently ignoring the minority
class (A closer look to Table 2, shows that FairLearn achieves the lowest G.M for
all four datasets). Approaches like FairCons, MiniMax, and W-ERM result in
different levels of discrimination for the different protected attributes and over-
all high MMM values. MI-Fair have mixed outcome with high discrimination in
Adult, but performed at par with MFBPP in Bank and Compas data. AdaFair
trained on one protected attribute (for Adult: sex, for Bank: marital status, for
Credit: sex, for Compas: race) does not mitigate discrimination for other pro-
tected attributes and consequently also results in high MMM values esp. for
Bank and Compas. In case of Adult and Credit datasets, AdaFair, albeit trained
for mono-discrimination it seems to tackle multi-discrimination; the reason is
the strong correlation between the protected attributes as revealed by chi-square
test with ρ-value ≈ 0.

Underrepresented Protected Groups (gj+): In Table 2 we notice that
MFBPP and MFBP both outperform the other approaches on Wg+ by far
([5% − 21% ↑]). Thus, our proposed methods overcome the issue of bias due
to the imbalanced distribution of protected groups (c.f Table 1), ensuring high
predictive accuracy for any gj+. Note that all the other approaches that even
after mitigating multi-discrimination fail on this task. MI-Fair emerges as the
best among the baseline competitor in all the four datasets behind our proposed

296 A. Roy et al.

methods MFBPP, MFBP, and MFB in Adult, Credit, and Compas datasets,
while outperforming only MFB in Bank data.

Balanced Performance: Table 2 shows that our MFPB and MFBP outperform
the baselines in G.M in the range [4%−11%] ↑ for the imbalanced Adult, Bank,
and Credit datasets, while being marginally behind MI-Fair, and Minimax in the
balanced Compas dataset. We can easily notice that our Acc and G.M values
are close to each other for all the datasets with Acc/G.m ≈ 1. This indicates
we achieve B(f) ≈ 0 (O2), in all the datasets. Our closest competitors here
are MI-Fair, AdaFair and MiniMax. AdaFair explicitly targets class-imbalance
for mono-discrimination. MiniMax, and MI-Fair indirectly tackles the problem as
they aims at minimizing error for all groups. For other baselines, Acc/G.m >> 1,
indicating substantial performance differences between the classes.

Overall Accuracy: MFBPP is marginally compromised on the overall Acc in
Adult, Credit, and Bank datasets ([12% − 5%] ↓). MiniMax emerged as the
winner here, accomplishing the best accuracy in Adult, Credit, and Compas
dataset. This is the trade-off we pay to ensure nearly equal performance for all
(protected/non-protected) groups across all the classes.

Fig. 2. Visualization of the Pareto front and the selected trade-off solution in the
complete solution surface.

Summary: MFBPP provides the best holistic outcome in overall trade-off, out-
performs the baselines in mitigating multi-discrimination, produces the best pre-
dictive performance on underrepresented protected groups (∀jgj+) in minority
class, and equal performance across all classes, while maintaining comparable
high accuracy against the baselines. MFB produces the most-fair outcomes but
suffers in predictive performance. It overshoots the weight and increases overall
error to gain fairness. MFBP solves the overshooting problem but gets out-
performed by MFBPP in the fairness task. In Fig. 2 we see that the solution
surface after the training-MFB phase of our algorithm is very wide spread in the
O1, O2, O3 objective space. By computing PF as in MFBPP, we narrow down
the search space. Using the pseudo-weights, we pick a solution each time close to
the origin in the objective space (which is desired). Hence, we are always able to

Multi-fairness Under Class-Imbalance 297

deliver a good trade-off solution without any hyper-parameter tuning. FairLearn
also tackled the multi-discrimination problem consistently well, but by under-
performing in the minority class. MiniMax lacks in multi-discrimination conver-
gence but produces the most overall accurate (O1) predictions. FairCons has dif-
ficulty in finding the optimal parameters leading to its poor multi-discrimination
performance. W-ERM apart from Bank dataset (the most imbalanced), always
delivers comparable trade-offs. However, the method is very slow. MI-Fair can
be argued as the closest competitor in overall trade-off delivering balanced and
accurate performance with low discrimination in three out of the four datasets
under study.

5.3 Internal Analysis

This section aims to analyse MFBPP’s ability to produce state-of-the-art bal-
anced performance while dealing with multi-discrimination. In particular, we try
to find answers for three significant points: i) How MFBPP ensures high accu-
racy for the underrepresented protected groups in the imbalanced minority (+)
class? ii) How the overshooting problem affects and, is the post-processing step
really required? iii) Does the multi-discrimination cost (Eq. 7) also tackle the
balanced loss and, what happens if we relax cost by varying the MMM thresh-
old μ (Definition 2)? Here we focus the study using only the imbalanced data
(Table 1).

Fig. 3. Changes in instance weight distribution. For each dataset and protected
attribute Sj , we depict the initial distribution Sin and the final one Sfin.

Answer to point (i): We analyse the changes in weight distribution of the
various groups from its initial (ini) distribution (actual data representation), to
boosted weight till the finally selected partial ensemble point (fin) in Fig. 3. For
any protected attribute Sj , P and Np refer to the respective protected and non-
protected groups. Thus, P (+) translates as the protected group in the minority
(+) class (gj+). We notice that ini weights of each P (+) in every dataset is
largely underrepresented. But, in the fin weights each P (+) group is boosted
significantly. MFBPP increases the weight of the underrepresented groups, thus

298 A. Roy et al.

Fig. 4. B(f) loss over boosting rounds with varying MMM thresholds µ.

changing the decision boundary to produce highly accurate and unbiased results
for all the groups even in case of high imbalance.
Answer to points (ii): We have already shown the effectiveness of our MMM
cost (Eq. 7) in mitigating multi-discrimination. Now to understand its effect on
balanced loss we monitor B(f) over the boosting rounds (Fig. 4) for different
MMM-tolerance thresholds μ. We see that when μ = 0, the shape of the B(f) loss
curve is parabolic for Adult and Bank datasets. In Credit data, the loss continues
to descent till the final round. The parabolic curve supports our intuition of the
possibility of overshooting the weights due to the possible repeated boosting of
noisy instances, whereas a consistently descending loss curve for Credit data
shows the uncertainty involved in estimating the optimal size of the ensemble.
These results justify the necessity of the post-training selection part.
Answer to points (iii): In Fig. 4 we also show the effect of different
MMM threshold μ values on B(f). By increasing μ we relax the MMM boost i.e.
we have fct(xi) = 1 in Eq. 6 when discrimination (Eq. 7) is ≤ (1+μ). We observe
the immediate effect on the B(f) loss. In each of the datasets, the effectiveness
of MFBPP to tackle class imbalance decreases as the B(f) loss increases while
we increase the threshold μ. Thus, showcases the ability of our MMM cost in
tackling the O2 along with our multi-discrimination objective O3.

5.4 Flexibility of MFBPP

Thus far, we use the pseudo-weight method (Eq. 10) to select the best solution
among the (PF) solutions. If information on user preferences exists, in the form of
a user-preference vector u = [u1, u2, u3]: u1+u2+u3 = 1, it can be used to select
the best solution according to user needs. In this case, we choose the solution
ft∗ whose corresponding pseudo-weight wt∗ is closest according to L1 distance,
to the preference vector u. To evaluate the effect of such an approach, we mimic
four different users and provide their preference vector u as an additional input
to MFBPP. In particular, we assume the following users: i) u = [0.33, 0.33, 0.33]
indicating equal preference to all Oi, ii) u = [0, 0, 1], iii) u = [0, 1, 0], iv) u =
[1, 0, 0], indicating preference only for Oi if ui = 1 (Fig. 5).

As expected, the output changes noticeably with changes with u . For all
datasets the most accurate classifier (for u = [1, 0, 0]) delivers Acc at par if not

Multi-fairness Under Class-Imbalance 299

Fig. 5. Performance evaluation for different user preference vectors u

better than the state of the art, whereas the fairest (for u = [1, 0, 0]) produces
state of the art fair predictions. With preference u = [0.33, 0.33, 0.33] the classi-
fier consistently produces good trade-off solutions, however, the default version
of MFBPP (without u) produces better trade-offs.

6 Conclusions and Outlook

In this work we claimed that multi-discrimination under class-imbalance is
an important multi-faceted problem of finding low overall error, while mini-
mizing performance differences across the classes and groups. Existing multi-
discrimination approaches consider only error-discrimination trade-off, and
ignore class-imbalance. This way, they achieve multi-discrimination by under-
performing in the minority (+) class, especially for the underrepresented pro-
tected groups. To this end, we propose the Multi-Max Mistreatment fairness
measure (MMM) and a MMM -fair boosting post Pareto classifier (MFBPP) to
ensure MMM -fairness. Our experiments show the superiority of our method in
mitigating multi-discrimination, producing best balanced performance across
groups and classes along with best accuracy for underrepresented protected
groups in the minority (+) class, without a significant compromise on overall
accuracy. Further, our method is flexible to user needs as it can select the best
solution trade-off according to user preferences. In future, we want study the
multi-discrimination under class-imbalance problems in the more challenging
multi-class and multi-label set-up, where the complexity is much harder.

Acknowledgements. The work of the first author is supported by the Volkswagen
Foundation under the call “Artificial Intelligence and the Society of the Future” (the
BIAS project). We are sincerely thankful to the invaluable suggestion of Prof. Niloy
Ganguly from L3S Research Center, in shaping up the paper to its current form. Most
of the work was carried out while the last author was affiliated with Freie Universität
Berlin, Germany.

300 A. Roy et al.

References

1. Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., Wallach, H.M.: A reduc-
tions approach to fair classification. In: ICML (2018)

2. Brukhim, N., Hazan, E., Moran, S., Mukherjee, I., Schapire, R.E.: Multiclass boost-
ing and the cost of weak learning. Adv. Neural. Inf. Process. Syst. 34, 3057–3067
(2021)

3. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving
prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todor-
ovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2 12

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16.
Wiley, New York (2001)

5. Foulds, J.R., Islam, R., Keya, K.N., Pan, S.: An intersectional definition of fairness.
In: ICDE, pp. 1918–1921 (2020)

6. Fredman, S.: Intersectional discrimination in EU gender equality and non-
discrimination law. European Commission, Brussels, UK (2016)

7. Garćıa, V., Mollineda, R.A., Sánchez, J.S.: A new performance evaluation method
for two-class imbalanced problems. In: da Vitoria Lobo, N., et al. (eds.) SSPR
/SPR 2008. LNCS, vol. 5342, pp. 917–925. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89689-0 95

8. Hickey, J.M., Di Stefano, P.G., Vasileiou, V.: Fairness by explicability and adver-
sarial SHAP learning. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.)
ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 174–190. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-67664-3 11

9. Hu, T., et al.: FairNN - conjoint learning of fair representations for fair decisions.
In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds.) DS 2020.
LNCS (LNAI), vol. 12323, pp. 581–595. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-61527-7 38

10. Iosifidis, V., Fetahu, B., Ntoutsi, E.: FAE: a fairness-aware ensemble framework.
In: 2019 IEEE Big Data, pp. 1375–1380 (2019)

11. Iosifidis, V., Ntoutsi, E.: AdaFair: cumulative fairness adaptive boosting. In: CIKM
2019, pp. 781–790 (2019)

12. Kang, J., Xie, T., Wu, X., Maciejewski, R., Tong, H.: MultiFair: multi-group fair-
ness in machine learning. arXiv preprint arXiv:2105.11069 (2021)

13. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering:
auditing and learning for subgroup fairness. In: ICML, pp. 2564–2572 (2018)

14. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the compas
recidivism algorithm. ProPublica 9 (2016)

15. Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets
for fairness-aware machine learning. Wiley Interdiscip. Rev. Data Mining Knowl.
Discov., e1452 (2022)

16. Li, A.H., Bradic, J.: Boosting in the presence of outliers: adaptive classification
with nonconvex loss functions. J. Am. Stat. Assoc. 113(522), 660–674 (2018)

17. Makkonen, T.: Multiple, compoud and intersectional discrimination: bringing the
experiences of the most marginalized to the fore (2002)

18. Martinez, N., Bertran, M., Sapiro, G.: Minimax pareto fairness: a multi objective
perspective. In: ICML, pp. 6755–6764. PMLR (2020)

19. Morina, G., Oliinyk, V., Waton, J., Marusic, I., Georgatzis, K.: Auditing and
achieving intersectional fairness in classification problems. arXiv preprint (2019)

https://doi.org/10.1007/978-3-540-39804-2_12
https://doi.org/10.1007/978-3-540-89689-0_95
https://doi.org/10.1007/978-3-540-89689-0_95
https://doi.org/10.1007/978-3-030-67664-3_11
https://doi.org/10.1007/978-3-030-61527-7_38
https://doi.org/10.1007/978-3-030-61527-7_38
http://arxiv.org/abs/2105.11069

Multi-fairness Under Class-Imbalance 301

20. Napierala, K., Stefanowski, J.: Types of minority class examples and their influence
on learning classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3), 563–597
(2016)

21. Ntoutsi, E., et al.: Bias in data-driven artificial intelligence systems an introductory
survey. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 10(3), e1356 (2020)

22. Schapire, R.E.: A brief introduction to boosting. In: Proceedings of the IJCAI
(1999)

23. Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y.: Cost-sensitive boosting for classifi-
cation of imbalanced data. Pattern Recogn. 40(12), 3358–3378 (2007)

24. Yang, F., Cisse, M., Koyejo, O.O.: Fairness with overlapping groups; a probabilistic
perspective. In: Advances in Neural Information Processing Systems 33 (2020)

25. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness con-
straints: a flexible approach for fair classification. JMLR 20, 1–42 (2019)

When Correlation Clustering Meets
Fairness Constraints

Francesco Gullo1, Lucio La Cava2, Domenico Mandaglio2,
and Andrea Tagarelli2(B)

1 UniCredit, Rome, Italy
gullof@acm.org

2 DIMES Department, University of Calabria, Rende, CS, Italy
{lucio.lacava,d.mandaglio,tagarelli}@dimes.unical.it

Abstract. The study of fairness-related aspects in data analysis is an
active field of research, which can be leveraged to understand and con-
trol specific types of bias in decision-making systems. A major problem in
this context is fair clustering, i.e., grouping data objects that are similar
according to a common feature space, while avoiding biasing the clus-
ters against or towards particular types of classes or sensitive features.
In this work, we focus on a correlation-clustering method we recently
introduced, and experimentally assess its performance in a fairness-aware
context. We compare it to state-of-the-art fair-clustering approaches,
both in terms of classic clustering quality measures and fairness-related
aspects. Experimental evidence on public real datasets has shown that
our method yields solutions of higher quality than the competing meth-
ods according to classic clustering-validation criteria, without neglecting
fairness aspects.

1 Introduction

We live in an era where machine learning is increasingly pervasive in our society.
Every day we interact with machine learning systems, even without knowing
it, and these acquire more and more decision-making power in our lives. For
instance, such systems support, or even replace, decision makers in financial [22],
medical [21], or legal [17] domains. Given their delicate role, machine learning
systems should guarantee correct functioning and not discriminate those who
entrust their decisions. In this context, however, a critical aspect emerges: the
data used by such systems are often (intrinsically) biased, resulting from incor-
rect data collection processes. Thus, it is desirable to avoid machine learning
algorithms being affected by, or even amplifying, this bias. For instance, in [16],
this refers to removing disparate impact, according to which no group of individ-
uals should (even indirectly) be discriminated by a decision-making system.

In this respect, and by focusing on an unsupervised machine learning set-
ting, in this work we tackle the problem of fair clustering. This corresponds to
clustering a set of data objects such that: (i) analogously to the classic cluster-
ing scenario, similar objects are assigned to the same cluster, whereas dissimilar
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 302–317, 2022.
https://doi.org/10.1007/978-3-031-18840-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_22

When Correlation Clustering Meets Fairness Constraints 303

objects are assigned to different clusters, and (ii) the clusters are not dominated
by a specific type of sensitive data class (e.g., people having the same sex).

Our key assumption is that the above problem can be addressed under a
correlation clustering framework [7]. Correlation clustering is a well-established
tool for partitioning the set of vertices of an input graph into clusters, so as to
maximize the similarity of the vertices within the same cluster and minimize
the similarity of the vertices in different clusters, according to pairwise vertex
weights expressing positive and negative types of co-association. Specifically,
following our recent work on correlation clustering [20], here we provide insights
into its application to the problem of fair clustering, and we compare it to some
state-of-the-art approaches in such a context. Furthermore, albeit we do not aim
to provide a comprehensive experimental survey on fair clustering, a by-product
of our work is that, to the best of our knowledge, it represents a valuable and
unprecedented experimental comparison between approaches of fair clustering.

Our contributions in this work are as follows:

(i) We provide a comparison between state-of-the-art methods in the context
of fair clustering, belonging to different approaches;

(ii) We show how, by optimizing aspects of fairness, some methods affect their
ability to produce clusters that are qualitatively good according to classic
clustering-validation criteria;

(iii) We shed light on the capabilities of our recently proposed algorithm [20] to
adapt to a fair clustering scenario. We show that it is able to produce better
solutions than the competing methods from a clustering perspective, while
still accounting for fairness-related aspects.

The remainder of the paper is organized as follows. Section 2 provides related
work on fair clustering. Section 3 describes how the fair clustering problem can
be solved through a correlation clustering framework. Section 4 presents our
approach to fair correlation clustering. Section 5 and Sect. 6 present experimental
methodology, while Sect. 7 discusses our main experimental findings. Section 8
concludes the paper, also providing pointers to future work.

2 Related Work

Although of relatively recent definition, the problem of fairness in clustering
has received considerable attention in the literature [13]. With their seminal
work, Chierichetti et al. [14] were among the first to formalize the notions
around fair clustering and the related problem, following the disparate-impact
doctrine [16]. Their main contribution is a general pre-processing step, i.e., fair-
lets decomposition, to enable traditional algorithms (e.g., k-center and k-median)
meeting fairness principles. Following that forerunner work, fairness has become
pervasive in the clustering landscape [8,9,23], leading to a fairness-aware dec-
lination of numerous traditional clustering formulations, such as k-center [18],
k-means [1,24], k-median [6], spectral clustering [19], and hierarchical cluster-
ing [2].

304 F. Gullo et al.

The phenomenon of fairness in clustering has also been extended to alterna-
tive approaches, such as correlation clustering. In this regard, Ahmadian et al. [3]
is the first work to leverage the correlation clustering model for the fair cluster-
ing task. More specifically, it takes a complete and undirected graph as input,
where vertices are assigned a (single) label representing a given protected class
attribute (e.g., sex or ethnicity), and the goal is to provide a fair representation
of each considered label in the resulting clusters. Recently, Mandaglio et al. [20]
proposed to model the fair clustering problem of a relational dataset as a cor-
relation clustering instance. Given a set of objects, defined over a set of fea-
tures, Mandaglio et al. build an associated correlation clustering instance by
considering the similarity between the tuples. Although Ahmadian et al.’s and
Mandaglio et al.’s approaches aim to cluster different types of data (graphs and
tuples, respectively), both approaches reduce the original problem to a correla-
tion clustering instance. However, Mandaglio et al.’s formulation is more general
than Ahmadian et al.’s one, since the former deals with an arbitrary number of
labels (or sensitive attributes), while the latter is limited to a single-label setting.

3 Fairness Constraints in Correlation Clustering

3.1 Background on Correlation Clustering

The correlation clustering problem, originally introduced by Bansal et al. [7],
consists of clustering the set of vertices of a graph whose edges are assigned two
nonnegative weights, named positive-type and negative-type weights, respec-
tively. Such weights express the advantage of putting any two connected vertices
into the same cluster (positive-type weight) or into separate clusters (negative-
type weight). The objective is to partition the vertices so as to either minimize
the sum of the negative-type weights between vertices within the same cluster
plus the sum of the positive-type weights between vertices in separate clusters
(Min-CC), or maximize the sum of the positive-type weights between vertices
within the same cluster plus the sum of the negative-type weights between ver-
tices in separate clusters (Max-CC). Both the formulations are NP-hard [7,25]
and they are equivalent in terms of optimality. However, the available (approx-
imation) algorithms for Max-CC [10,26] are inefficient and poorly usable in
practice since they are not able to output more than a fixed number of clusters
(i.e., six). Conversely, Min-CC admits approximation algorithms [4,11] that
do not suffer from the limitations of the maximization counterpart. For these
reasons, in this work we focus on the minimization formulation of correlation
clustering:

Problem 1 (Min-CC [5]). Given an undirected graph G = (V,E), with vertex
set V and edge set E ⊆ V × V , and weights w+

uv, w−
uv ∈ R+

0 for all edges
(u, v) ∈ E, find a clustering C : V −→ N+ that minimizes:

∑

(u,v)∈E, C(u)=C(v)
w−

uv +
∑

(u,v)∈E, C(u) �=C(v)
w+

uv. (1)

When Correlation Clustering Meets Fairness Constraints 305

Min-CC is APX-hard [11], but admits approximation algorithms [5,7,11,
12,27] with guarantees depending on the type of input graph. On general graphs
and weights, the best known approximation factor is O(log |V |) [11,15], provided
by a linear programming approach. Conversely, constant-factor approximation
algorithms are possible if the graph is complete and edge weights satisfy the
probability constraint, i.e., w+

uv + w−
uv = 1 for all u, v ∈ V . Among these, the one

which provides the best trade-off between efficiency and theoretical guarantees
is the Pivot algorithm [5], which simply picks a random vertex u, builds a cluster
as composed of u and all the vertices v such that an edge with w+

uv > w−
uv exists,

and removes that cluster from the graph. The process is repeated until the graph
has become empty. This algorithm has O(|E|) time complexity and it achieves
a factor-5 expected guarantee for Min-CC under the probability constraint or if
a global weight bound holds on the overall edge weights [20].

Next we discuss how a clustering problem with fairness constraints can be
profitably solved through a Min-CC approach.

3.2 Problem Statement

Let X = {X1, · · · ,Xn} be a set of n objects defined over a set A of attributes.
The latter is assumed to be divided into two sets, AF and A¬F . The AF set
contains fairness-aware, or sensitive, attributes such as those identifying sex,
race, religion, relationship status in a citizen database and any other attribute
over which fairness is to be ensured. A¬F denotes the attributes that are relevant
to the task of interest, and thus can be regarded as non-sensitive. In both cases,
we assume that part of the attributes might be numerical, and the others as
categorical (binary or multi-value). We use subscripts N and C to distinguish
the two types, therefore AF = AF

N ∪ AF
C and A¬F = A¬F

N ∪ A¬F
C .

We consider a clustering task whose goal is to partition the input objects with
a twofold objective: (i) minimize the inter-cluster similarity according to the non-
sensitive attributes A¬F ; (ii) minimize the intra-cluster similarity according to
the sensitive attributes AF . The former objective corresponds to the typical
clustering objective, since dissimilar objects should belong to different clusters.
Pursuing the second objective, instead, would help distribute objects that are
similar in terms of sensitive attributes across different clusters, thus fostering
the formation of clusters that are equally represented in terms of the sensitive
attributes. This is beneficial to ensure that the distribution of groups defined on
sensitive attributes within each cluster approximates the distribution across the
dataset. Formally, the problem we tackle in this work is:

Problem 2 (Fair-CC). Given a set of objects X , two subsets of attributes AF

and A¬F , and an object similarity function simS(·) defined over the subspace S
of the attribute set, find a clustering C∗ to minimize:

∑

u,v∈X , C(u)=C(v)
simAF (u, v) +

∑

u,v∈X , C(u) �=C(v)
simA¬F (u, v) (2)

306 F. Gullo et al.

The objective in Eq. (2) corresponds to solving a complete Min-CC instance
where the set of vertices corresponds to the objects in X and, for each pair of
vertices u and v, the positive-type (resp. negative-type) correlation-clustering
weight corresponds to the similarity score between the two vertices according to
the non-sensitive (resp. sensitive) attributes.

We remark that the Fair-CC problem, as stated above, is introduced here for
the first time, while in our previous study in [20] we tackled a different problem:
given a set of objects defined over sensitive and non-sensitive attributes, find
two attribute subsets that lead to pairwise similarity scores satisfying a certain
global condition on the correlation-clustering edge weights. The focus in [20] was
to show that the global condition can guide the selection of subsets of features
that lead to edge weights expressing the best trade-off between an accurate repre-
sentation of objects vectors (i.e., discarding not too many features), and the way
how the weights facilitate the downstream correlation-clustering algorithm per-
forming well, i.e., by making it achieve approximation guarantees [20]. Instead,
in this work, the set of attributes, over which the similarity scores are computed,
are given as input in the Fair-CC problem, and hence they are not needed to
be discovered. This is also a more realistic scenario for fair clustering, where the
set of sensitive attributes is provided by the specific application scenario.

4 Algorithm

The Fair-CC problem requires a function to measure the similarity between two
objects with respect to a set of attributes. Following [20], we quantify the degree
of similarity between two objects u and v, according to the set of sensitive and
non-sensitive attributes, by means of the following simA¬F (u, v) and simAF (u, v)
measures, respectively:

simA¬F (u, v) := ψ+
(
α¬F

N · simA¬F
N

(u, v) + (1 − α¬F
N) · simA¬F

C
(u, v)

)
, (3)

simAF (u, v) := ψ−
(
αF

N · simAF
N

(u, v) + (1 − αF
N) · simAF

C
(u, v)

)
, (4)

where αF
N = |AF

N |/(|AF
N | + |AF

C |) and α¬F
N = |A¬F

N |/(|A¬F
N | + |A¬F

C |) are coeffi-
cients to weight similarities proportionally to the number of involved attributes,
and ψ+ = exp(|AF |/(|AF |+|A¬F |)−1) and ψ− = exp(|A¬F |/(|AF |+|A¬F |)−1)
are smoothing factors to penalize correlation-clustering weights that are com-
puted on a small number of attributes. The latter is reasonable as, in a fair clus-
tering task, we usually have fewer sensitive attributes, and it should be avoided
that negative-like weights can dominate the positive-like ones. The exponential
function enables a mild smoothing, which is desirable.

As Fair-CC is an instance of Min-CC, it can be solved by Min-CC algo-
rithms. Specifically, although it was originally devised for a slightly different
problem (as previously explained in Sect. 3), here we borrow the algorithm
proposed in [20] and adapt it to solve the Fair-CC problem. This algorithm,

When Correlation Clustering Meets Fairness Constraints 307

Algorithm 1. CCBounds [20]
Require: Set of objects X , sensitive attributes AF , non-sensitive attributes A¬F ,

Min-CC algorithm A
Ensure: Clustering C of X
1: compute simA¬F (u, v), simAF (u, v), ∀u, v ∈ X , as in Eqs. (3)–(4)
2: build the instance I = 〈G = (X ,X × X), {simA¬F (u, v), simAF (u, v)}u,v∈X×X 〉
3: C ← run A on I

dubbed CCBounds1 and presented in Algorithm 1, consists of building a Min-
CC instance with vertices as the input data objects and edge weights as the
similarity scores, and then running a Min-CC algorithm A on such a Min-CC
instance.

Theoretical Remarks. Let TA(X) be the running time of the algorithm A on
the set of data objects X . CCBounds runs in O(|X |2|A|+TA(X)) time complexity
since it needs to compute a similarity score, over A attributes, for each pair of
objects in X , and then solve the resulting Min-CC instance through algorithm
A. Also, the space complexity of CCBounds is O(|X |2) for storing the similarity
scores in memory. The specific Min-CC algorithm A used in CCBounds is the
one proposed in [4], since it provides (under the probability constraint or the
global weight bound stated in [20]) constant-factor approximation guarantee in
expectation. Also, taking linear time in the size of the input graph, to the best
of our knowledge, it is the most efficient algorithm in the Min-CC literature. As
a result of this choice, the time complexity of CCBounds becomes O(|X |2|A|).

Another appealing aspect of the fact that Fair-CC is an instance of Min-CC
is that Fair-CC inherits the following theoretical result:

Theorem 1 ([20]). If the condition
(|X |

2

)−1 ∑
u,v∈X (simA¬F (u, v) +

simAF (u, v)) ≥ maxu,v∈X |simA¬F (u, v) − simAF (u, v)| holds on the similarity
scores and the oracle A is an α-approximation algorithm for Min-CC, CCBounds
is an α-approximation algorithm for Fair-CC.

The above theorem provides approximation guarantee on the Fair-CC objec-
tive (cf. Eq. (2)), which combines the cluster quality measure (first summation)
and the fairness-related objective (second summation). It is not known how this
quality guarantee translates into the single objective, e.g., the fair objective.
This is a challenging open question which we defer to future studies.

5 Fairness Evaluation

In this section, we summarize the most-commonly adopted metrics for the evalu-
ation of fairness aspects in clustering. We focus on algorithm-independent mea-
sures, i.e., able to generalize across multiple methods, following a group-level
approach under the disparate impact doctrine [16].
1 https://github.com/Ralyhu/globalCC.

https://github.com/Ralyhu/globalCC

308 F. Gullo et al.

Balance. It is one of the most adopted evaluation metrics for fairness in cluster-
ing, initially proposed by Chierichetti et al. [14] in a context with one sensitive
attribute with two protected groups. It has been successively generalized to m
protected groups by Bera et al. [8]. According to the latter, the balance of a
clustering solution can formally be defined as follows [13]:

balance(C) = min
C∈C,b∈[m]

min
{

RC,b,
1

RC,b

}
∈ [0, 1], (5)

where RC,b is the ratio between the proportion of the objects belonging to a
given protected group b in the considered dataset and in a given cluster C ∈ C.

In such a formulation, the lower and upper bounds of a cluster indicate the
fully unbalanced and perfectly balanced scenarios, respectively, where the former
indicates the case where all the objects in such a cluster pertain to the same pro-
tected group, whereas the latter denotes an equal number of objects from each of
the protected groups. Therefore, the higher the balance, the better the obtained
solution, in terms of equality. Additionally, the considered generalization allows
us to obtain a comprehensive evaluation of the balance of our clustering solu-
tions, as it looks at the dataset context, i.e., it will return high scores provided
that the balances of the clustering and the input dataset are comparable.

Average Euclidean Fairness. This metric was introduced by Abra-
ham et al. [1] to estimate the unfairness by assessing the deviation between
the representation of groups obtained focusing on the sensitive attributes in
the whole dataset and the given clustering solution. It expresses the cluster-size
weighted average of cluster-level deviations (i.e., Euclidean distances) between
two frequency (sensitive) attribute vectors, namely XA, which is computed over
the entire set of objects, and CA, which is computed for each cluster C ∈ C,
focusing on a sensitive attribute A ∈ AF . Formally, it is defined as:

AEA(C) =
∑

C∈C |C| × ED(CA,XA)∑
C∈C |C| , (6)

where ED represents the Euclidean distance between the frequency attribute
vectors. Since A can be multi-valued, such a formulation is suited to scenarios
where there are multiple protected groups. Also, as this measure is a deviation,
smaller values correspond to better solutions.

6 Experimental Methodology

6.1 Competing Methods

In the following, we briefly overview the competing methods we included in our
experiments. For each of those methods, we used publicly available code, which
we adopted “as-is”, i.e., without making any changes or optimizations.

Fair Clustering Through Fairlets [14]. This method, here dubbed Fairlets,
is one of the pillars of fair clustering. It is based on the notion of fairlets decom-
position, that is a grouping of the input objects into fairlets, i.e., minimal subsets

When Correlation Clustering Meets Fairness Constraints 309

of objects that satisfy a given fairness definition, while preserving the clustering
objective. Given a good fairlets decomposition, this approach requires traditional
clustering algorithms (i.e., k-center or k-median) applied on the centers of the
obtained fairlets, to yield the “fair” solutions. Fairlets supports two types of
fairlets decomposition: an accurate one based on min cost flow (MCF), and a
more efficient one. We hereinafter refer to those decompositions as MCF decom-
position and vanilla decomposition, respectively. A major limitation of Fairlets
is that it can handle a single sensitive binary attribute only. We will discuss the
impact of such limitations in more detail in Sect. 7.

We involve Fairlets in our experimental evaluation by resorting to the
unofficial implementation available online.2

HST-Based Fair Clustering [6]. This approach, here dubbed HST-FC,
focuses on the k-median formulation, and employs a quad-tree decomposition
to embed the objects in a tree metric, called HST. By leveraging such a tree,
HST-FC computes an approximate fairlets decomposition. A fair clustering is
ultimately obtained by running k-median algorithms on the produced fairlets.
Like Fairlets, HST-FC suffers from the limitation that it deals with one binary
sensitive attribute only.

In our experiments, we adopt the official implementation made available by
the authors of HST-FC.3

Fair Correlation Clustering [3]. This method, here dubbed Signed, intro-
duces a fairlet-based reduction for the graph clustering scenario with respect
to the problem of correlation clustering, leading to the concept of correlation
clustering with fairness constraints. Specifically, given a signed graph, i.e., an
undirected graph with edges labeled as positive or negative, the algorithm per-
forms a fairlet decomposition (under different fair settings) over the set of ver-
tices. The produced decomposition is used, together with the original graph,
to build a reduced (complete and unweighted) correlation clustering instance,
where the vertices correspond to the produced fairlets and the sign of the edges
between any two fairlets are built according to the majority sign of the edges
between vertices within those two fairlets. A clustering on this reduced correla-
tion clustering instance is computed through local-search optimization starting
from all singleton clusters, and then expanded into a solution of the original
problem. As a fair setting for the fairlets decomposition, we consider the most
common case of fair decomposition where clusters are required not to have a
sensitive data class. As the Signed method requires a signed graph as input,
we perform the following preprocessing step to make the relational data com-
patible with this format. We derive a complete graph whose vertices are the
original data objects and an edge (u, v) is labeled as positive with probability
p+uv = max{0, simA¬F (u, v)−simAF (u, v)} and as a negative edge with probabil-
ity 1−p+uv, where the similarity functions are the ones defined in Eqs. (3)–(4). We
point out that, although we can adapt the same weighting strategy as CCBounds

2 https://github.com/guptakhil/fair-clustering-fairlets.
3 https://github.com/talwagner/fair clustering.

https://github.com/guptakhil/fair-clustering-fairlets
https://github.com/talwagner/fair_clustering

310 F. Gullo et al.

Table 1. Overview of the datasets involved in our experiments.

#objs. Sensitive attribute Non-sensitive attribute

Adult 48 842 sex age, fnlgwt, education num, capital gain, hours per week

Bank 40 004 marital age, balance, duration

CreditCard 10 127 sex customer age, dependent count, avg utilization ratio, total relationship count

Diabetes 101 763 sex age, time in hospital

Student 649 sex age, study time, absences

to obtain the edge attributes, we discarded this choice as our experiments showed
that it favors the emergence of a degenerated clustering solution (i.e., a single
output cluster), due to the strong predominance of positive weights on the edges.

In our evaluation, we use the official implementation made available by the
authors of Signed.4

6.2 Data

We considered five real-world relational datasets, which have been commonly
used in the fair clustering literature. The main characteristics of these datasets
are summarized in Table 1. As reported in the table, in our evaluation we focused
on a smaller subset of the original attributes; note that this is a common practice,
which is adopted, among others, by the competing methods outlined above.
Adult.5 This dataset reports information about the 1994 US Census. For each
tuple representing an individual, we considered age, fnlwgt, education-num,
capital-gain and hours-per-week as non-sensitive attributes, and sex (i.e., male
or female) as a sensitive attribute.
Bank. (See footnote 5) This provides details on phone calls involving direct mar-
keting campaigns of a Portuguese banking institution to assess whether the bank
term deposit will be subscribed or not. We considered attributes age, balance and
duration as non-sensitive, and marital status (i.e., married or not) as sensitive.
CreditCard.6 This dataset concerns customer credit card services to estimate
customer attrition. We considered attributes customer age, dependent count,
avg utilization ratio and total relation ship count as non-sensitive, and sex as
sensitive.
Diabetes. (See footnote 5) It reports diabetic patient records, for which we consid-
ered age and time in hospital as non-sensitive attributes, and sex as a sensitive
attribute.
Student. (See footnote 5) This dataset contains student performances for Math-
ematics and Portuguese language in secondary education of two Portuguese
schools. We considered age, study time and absences as non-sensitive, and sex
as sensitive.

4 https://github.com/google-research/google-research/tree/master/
correlation clustering.

5 https://archive.ics.uci.edu/ml/datasets/.
6 https://www.kaggle.com/sakshigoyal7/credit-card-customers.

https://github.com/google-research/google-research/tree/master/correlation_clustering
https://github.com/google-research/google-research/tree/master/correlation_clustering
https://archive.ics.uci.edu/ml/datasets/
https://www.kaggle.com/sakshigoyal7/credit-card-customers

When Correlation Clustering Meets Fairness Constraints 311

6.3 Evaluation Goals

Our evaluation objectives concern both fairness and quality aspects of clustering.
In the first case, we use the fairness metrics defined in Sect. 5, which allow us to
have a group-wide overview of how a method behaves in terms of fair principles.
In the second case, we assess the quality of clustering by means of intra- and inter-
clustering similarity, considering both the sensitive and non-sensitive attributes,
as described below. Finally, we evaluate running times.

Intra/Inter-Cluster Similarity. As stated in Sect. 3, we take into account the
intra-cluster, resp. inter-cluster, similarity among objects to properly distribute
them into clusters, either focusing on their sensitive and non-sensitive attributes
(cf. Eqs. (3) and (4)). We define the following aggregated scores to have an
overall measure of goodness of the clusters:

inter(A¬F) =
1

|Θ|
∑

u,v∈Θ

simA¬F (u, v), inter(AF) =
1

|Θ|
∑

u,v∈Θ

simAF (u, v),

(7)

intra(A¬F) =
1

|Ω|
∑

u,v∈Ω

simA¬F (u, v), intra(AF) =
1

|Ω|
∑

u,v∈Ω

simAF (u, v),

(8)
where Ω = {u, v ∈ X | C(u) = C(v)}, and Θ = {u, v ∈ X | C(u) �= C(v)}.
In particular, to obtain fair clusters, we need to maximize (resp. minimize)
the inter(AF), resp. intra(AF), scores, so that objects having the same set
of sensitive attributes will not be clustered together, rather they will be well-
distributed across clusters. Conversely, we require to minimize, resp. maximize,
the inter(A¬F), resp. intra(A¬F), scores, to ensure that objects with the same
set of non-sensitive attributes will be clustered close with each other and not
scattered across different clusters.

Running Times. We measure the running times of CCBounds and the compet-
ing methods while executing them on the Cresco6 cluster.7

6.4 Hyper-parameters and Configurations

Data Sampling and Attribute Selection. To test the selected competing
methods under different conditions, and run even the most computationally
expensive approaches, we adopt the sampling strategy proposed in [14]. Specif-
ically, by sampling (without replacement) we extracted 1k or 10k tuples from
the original full set of tuples, by preserving some desired ratio between the pro-
tected classes. The details of the sampling strategy used in our experiments are
reported in Table 2, where the selected fair attributes and split ratio (i.e., the
fraction of tuples pertaining to different sensitive attribute values) are, when-
ever possible, the same as [14]. Also, both Fairlets and HST-FC require two
integers p and q as input, whose ratio p/q corresponds to the minimum balance
7 https://www.eneagrid.enea.it.

https://www.eneagrid.enea.it

312 F. Gullo et al.

Table 2. Configurations and hyper-parameters used in our evaluations w.r.t. different
experimental setups. kavg is the avg. number of clusters that were obtained over ten
runs of CCBounds, and k corresponds to the parameter value provided to Fairlets
and HST-FC.

p, q Split ratio kavg k

Adult-1k 1,2 650/350 3.12 3

Bank-1k 1,2 650/350 3.48 3

Credit-Card-1k 1,6 800/200 5.6 6

Diabetes-1k 1,2 540/460 5.2 5

Student-1k 1,2 266/383 3.88 4

Adult-10k 1,2 6 500/3 500 2.96 3

Bank-10k 1,2 6 500/3 500 3.28 3

Credit-Card-10k 1,6 4 769/5 358 6.32 6

Diabetes-10k 1,2 5 400/4 600 6.44 6

Adult-Full 2,5 32 650/16 192 3.64 4

Bank-Full 2,5 12 790/27 214 3.64 4

Diabetes-Full 1,2 47 055/54 708 OOM 6

required by each clusters, yielded by these algorithms. The configuration of the
aforementioned parameters, inspired by [8,14], is reported in Table 2.

We highlight that, as described so far, we focus on a single and binary sensi-
tive attribute to match the minimum requirements that embrace all competing
methods. Nonetheless, some approaches (including our CCBounds) can deal with
multiple values assigned to a single sensitive attribute.

Number of Clusters. While Fairlets and HST-FC require a hyper-
parameter k in input, denoting the desired number of output clusters, the same
does not apply with the correlation clustering-based approaches. Thus, to create
a reasonable comparative environment, we use the (rounded) average number of
clusters returned by CCBounds in ten iterations as the k parameter for Fairlets
and HST-FC. Moreover, we inherit the value k from the nearest subset when
the correlation clustering-based approaches run out of memory.

7 Results

Table 3 summarizes the results achieved by CCBounds and the competing meth-
ods. With the exception of very high running times and out of memory errors
(indicated with NA and OOM, respectively), all reported measurements corre-
spond to averages over 10 runs of the tested algorithms. The similarity values
(Eqs. (7)–(8)) were obtained by using Euclidean and Jaccard similarities for
numerical and categorical attributes, respectively. Moreover, as for the Fair-
lets method, as previously discussed in Sect. 6.1, we report results only for the
vanilla fairlets decomposition, since the min-cost-flow (MCF) counterpart has

When Correlation Clustering Meets Fairness Constraints 313

Table 3. Summary of results according to the following criteria (columns from left to
right): number of clusters, balance score, avg. Euclidean fairness, avg. intra-cluster and
inter-cluster similarities according to either the set of selected sensitive attributes or
the set of non-sensitive attributes (cf. Table 1), and running time. For each criterion,
bold values correspond to the best-performing methods (possibly up to the second
decimal point).

#clust. balance ↑ AE ↓ intra(A¬F) ↑ intra(AF) ↓ inter(A¬F) ↓ inter(AF) ↑ time (s) ↓
Adult-1k CCBounds 3.12 0.565 0.007 0.685 0.524 0.415 0.334 <1

Fairlets 3 0.805 0.004 0.585 0.319 0.596 0.335 <1

HST-FC 3 0.971 0.01 0.616 0.335 0.599 0.336 <1

Signed 41 0.66 0.03 0.59 0.32 0.60 0.33 240

Adult-10k CCBounds 2.96 0.52 0.03 0.65 0.43 0.43 0.33 3.86

Fairlets 3 0.82 0.003 0.60 0.32 0.615 0.33 <1

HST-FC 3 0.98 0.006 0.626 0.336 0.618 0.336 3.03

Signed NA NA NA NA NA NA NA >48 h

Adult-Full CCBounds 3.64 0.56 0.003 0.69 0.47 0.42 0.24 75.5

Fairlets 4 0.66 0.02 0.59 0.32 0.62 0.34 6.5

HST-FC 4 0.96 0.008 0.63 0.34 0.62 0.34 72.86

Signed NA NA NA NA NA NA NA >48 h

Bank-1k CCBounds 3.48 0.565 0.006 0.727 0.587 0.441 0.369 <1

Fairlets 3 0.828 0.002 0.606 0.354 0.613 0.364 <1

HST-FC 3 0.968 0.007 0.621 0.365 0.617 0.365 <1

Signed 41 0.7 0.03 0.61 0.35 0.63 0.36 224

Bank-10k CCBounds 3.28 0.52 0.0007 0.78 0.63 0.45 0.36 4.74

Fairlets 3 0.7 0.001 0.59 0.32 0.63 0.36 <1

HST-FC 3 0.969 0.004 0.656 0.365 0.656 0.365 3.07

Signed NA NA NA NA NA NA NA >48 h

Bank-Full CCBounds 3.64 0.55 0.0004 0.72 0.55 0.45 0.37 51.1

Fairlets 4 0.68 0.001 0.62 0.34 0.65 0.36 5.3

HST-FC 4 0.94 0.008 0.66 0.37 0.66 0.37 28

Signed NA NA NA NA NA NA NA >48 h

CreditCard-1k CCBounds 5.6 0.613 0.127 0.6 0.497 0.46 0.362 <1

Fairlets 6 0.4 0.042 0.485 0.355 0.486 0.375 <1

HST-FC 6 0.756 0.026 0.513 0.373 0.481 0.377 <1

Signed 171 0.56 0.1 0.56 0.41 0.49 0.38 173

CreditCard-10k CCBounds 6.32 0.496 0.17 0.6 0.46 0.46 0.32 4.1

Fairlets 6 0.94 0.01 0.497 0.34 0.49 0.337 <1

HST-FC 6 0.955 0.013 0.52 0.337 0.491 0.337 2.52

Signed NA NA NA NA NA NA NA >48 h

Diabetes-1k CCBounds 5.2 0.45 0.33 0.622 0.519 0.512 0.352 <1

Fairlets 5 0.92 0.015 0.537 0.381 0.532 0.385 <1

HST-FC 5 0.872 0.05 0.585 0.386 0.529 0.386 <1

Signed 106 0.85 0.04 0.58 0.36 0.54 0.38 257

Diabetes-10k CCBounds 6.44 0.48 0.22 0.65 0.54 0.5 0.36 4.72

Fairlets 6 0.92 0.01 0.53 0.38 0.53 0.39 <1

HST-FC 6 0.799 0.065 0.59 0.388 0.53 0.386 2.84

Signed NA NA NA NA NA NA NA >48 h

Diabetes-Full CCBounds OOM OOM OOM OOM OOM OOM OOM OOM

Fairlets 6 0.93 0.01 OOM OOM OOM OOM 22.2

HST-FC 6 0.81 0.06 OOM OOM OOM OOM 761.2

Signed OOM OOM OOM OOM OOM OOM OOM OOM

Student-1k CCBounds 3.88 0.51 0.10 0.625 0.463 0.471 0.224 <1

Fairlets 4 0.82 0.013 0.528 0.339 0.543 0.357 <1

HST-FC 4 0.93 0.024 0.563 0.357 0.541 0.358 <1

Signed 55 0.82 0.04 0.57 0.34 0.55 0.36 71

314 F. Gullo et al.

very high running times (more than 7 min on the smallest dataset, i.e., Student-
1k) and produces solutions that are very similar to the vanilla one (results not
shown for the sake of brevity).

As for the balance, we notice that, although CCBounds does not match the
high scores obtained by “fairness-native” methods (i.e., Fairlets and HST-
FC), it is still able to score comparably with its direct competing method,
i.e., Signed. Exceptions arise in the case of Student-1k and Diabetes-1k, where
CCBounds sets up to lower scores, and for some large datasets, where Signed
does not terminate in reasonable time, while our CCBounds still obtains good
results in reasonable time. The paradigm shifts when we consider small yet heav-
ily unbalanced datasets (i.e., CreditCard-1k, with an 80:20 ratio); here, although
several competing methods struggle to obtain high scores, CCBounds achieves
the second-best balance score. Overall, as the balance obtained by CCBounds in
all evaluation scenarios ranges from 0.45 to 0.613, we can conclude that it is able
of guaranteeing satisfactory balance scores.

In the case of avg. Euclidean fairness, CCBounds obtains very good scores
under different scenarios: it is among the best-performer approaches for the
Adult-1k, Adult-Full and Bank-1k datasets, and outperforms all the other meth-
ods by an order of magnitude on Bank-10k and Bank-Full. Conversely, CCBounds
is unable to match the best scores obtained by some of the competing methods
when focusing on the remaining datasets.

Considering the similarity computed on the sensitive attributes, CCBounds
does not achieve the best intra-cluster similarity, meaning that it tends to group
a few more objects with the same sensitive attribute value than the other meth-
ods. Nevertheless, the inter-cluster similarities are comparable with the other
methods, thus indicating that CCBounds is still able to properly separate the
objects into clusters, when accounting for the sensitive attribute. Instead, when
we focus on the similarity computed on the non-sensitive attributes, CCBounds
achieves the best performance in all the considered evaluation scenarios, yielding
very high-quality clusters.

Finally, we also investigated on running times, spotting Fairlets as the best
performer, followed by HST-FC and CCBounds, which both guarantee reason-
able running times. Although CCBounds has quadratic time complexity due to
pairwise similarity calculations (cf. Sect. 4), we managed to perform in parallel
such time-consuming steps. On the contrary, Signed requires excessively long
execution times, often resulting infeasible in practice, along with an abnormal
number of clusters produced, which is particularly large even when considering
the smallest 1k datasets. Overall, it should be noted that, albeit the observed
running times should be taken with grain of salt due to the (lack of) code opti-
mizations, major remarks are consistent with the time complexities of the cor-
responding methods.

Discussion. A number of remarks arise from our experimental evaluation. First,
although native fairness-aware approaches are able to produce clustering solu-
tions that optimize fairness notions, we found out that such a capability comes
with a cost, as the produced clusters are often far from being qualitatively good.

When Correlation Clustering Meets Fairness Constraints 315

On the other hand, CCBounds demonstrated itself to be effective and versatile: it
was recognized as the best-in-case approach among the tested ones when it comes
to find good-quality clusters, while also being able not to excessively penalize
aspects related to fairness.

Second, although we unveiled the weakness in quality shown by the native
fair-clustering approaches, we nonetheless shed light on how the approaches
based on correlation clustering might suffer from computational issues, by being
slower than the other methods, and requiring more memory. This is particularly
evident with Signed, as it is unable to terminate in all datasets having more
than 10k tuples, while it is kept under control in CCBounds, which goes down
only in the case of Diabetes-Full (containing more than 100k tuples, cf. Sect. 6.2),
thanks to the numerous optimization adopted under the hood. However, such a
dataset makes it difficult to calculate similarities even for traditional and more
efficient approaches, despite the computing capabilities at our disposal.

Finally, by wearing the lens of our proposed approach, we can state that
it is able to provide performance in terms of fairness-aware metrics that are
comparable to its direct competitor (i.e., Signed), but, at the same time, it
manages to overcome all the state-of-the-art competing methods considered in
our assessment, when it comes to generating qualitatively good clusters, anyway
preserving aspects of fairness as much as possible.

8 Conclusions

In this paper, we analyzed how a correlation clustering method, called CCBounds,
can profitably be used for the problem of fair clustering. Experimental evidence
on real data has shown the meaningfulness of the clustering solutions produced
by CCBounds, also revealing its ability of yielding clusters of higher quality than
the considered competing methods, according to classic clustering-validation cri-
teria, without discarding aspects of fairness.

In the future, we plan to further evaluate the performance of CCBounds under
other conditions, e.g., multiple protected values. Also, we aim to investigate on
alternative definitions of the similarity functions and push forward the capabili-
ties of CCBounds towards more challenging scenarios, such as embracing multiple
sensitive attributes with many values, allowing us to align with more realistic use
cases, and strengthen the versatility of the correlation clustering under fairness
constraints.

References

1. Abraham, S.S., P, D., Sundaram, S.S.: Fairness in clustering with multiple sensitive
attributes. In: Proceedings of the EDBT Conference, pp. 287–298 (2020)

2. Ahmadian, S., et al.: Fair hierarchical clustering. In: Proceedings of the NIPS
Conference (2020)

3. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering.
In: Proceedings of the AISTATS Conference, pp. 4195–4205 (2020)

316 F. Gullo et al.

4. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. In: Proceedings of the ACM STOC Symposium, pp. 684–693
(2005)

5. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. JACM 55(5), 23:1–23:27 (2008)

6. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable
fair clustering. In: Proceedings of the ICML Conference, pp. 405–413 (2019)

7. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–
113 (2004)

8. Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clus-
tering. In: Proceedings of the NIPS Conference, pp. 4955–4966 (2019)

9. Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of
the APPROX/RANDOM Conference, pp. 18:1–18:22 (2019)

10. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
In: Proceedings of the IEEE FOCS Symposium, pp. 524–533 (2003)

11. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
JCSS 71(3), 360–383 (2005)

12. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP
rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In: Proceedings of the ACM STOC Symposium, pp. 219–228 (2015)

13. Chhabra, A., Masalkovait-, K., Mohapatra, P.: An overview of fairness in clustering.
IEEE Access 9, 130698–130720 (2021)

14. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Proceedings of the NIPS Conference, pp. 5029–5037 (2017)

15. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in
general weighted graphs. TCS 361(2–3), 172–187 (2006)

16. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: Proceedings of the ACM KDD
Conference, pp. 259–268 (2015)

17. Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S.: Human
decisions and machine predictions. Q. J. Econ. 133(1), 237–293 (2017)

18. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data
summarization. In: Proceedings of the ICML Conference, pp. 3448–3457 (2019)

19. Kleindessner, M., Samadi, S., Awasthi, P., Morgenstern, J.: Guarantees for spectral
clustering with fairness constraints. In: Proceedings of the ICML Conference, pp.
3458–3467 (2019)

20. Mandaglio, D., Tagarelli, A., Gullo, F.: Correlation clustering with global weight
bounds. In: Proceedings of the ECML-PKDD Conference, pp. 499–515 (2021)

21. Martorelli, M., Jayatilake, S.M.D.A.C., Ganegoda, G.U.: Involvement of machine
learning tools in healthcare decision making. J. Healthc. Eng. (2021)

22. Mashrur, A., Luo, W., Zaidi, N.A., Robles-Kelly, A.: Machine learning for financial
risk management: a survey. IEEE Access 8, 203203–203223 (2020)

23. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: Pro-
ceedings of the ICALP Colloquim, pp. 96:1–96:14 (2018)

24. Schmidt, M., Schwiegelshohn, C., Sohler, C.: Fair coresets and streaming algo-
rithms for fair k-means. In: Proceedings of the WAOA Workshop, pp. 232–251
(2019)

25. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret.
Appl. Math. 144(1–2), 173–182 (2004)

When Correlation Clustering Meets Fairness Constraints 317

26. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In: Proceedings of the ACM-SIAM SODA Conference, pp. 526–527
(2004)

27. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In: Proceedings of the WAOA Work-
shop, pp. 260–273 (2007)

Cooperative Deep Unsupervised Anomaly
Detection

Fabrizio Angiulli(B) , Fabio Fassetti , Luca Ferragina , and Rosaria Spada

DIMES, University of Calabria, 87036 Rende (CS), Italy
{f.angiulli,f.fassetti,l.ferragina}@dimes.unical.it

Abstract. In last years deep learning approaches to anomaly detection
are becoming very popular. In most of the first methods the paradigm
is to train neural networks initially designed for compression (Auto
Encoders) or data generation (GANs) and to detect anomalies as a col-
lateral result. Recently new architectures have been introduced in which
the expressive power of deep neural networks is associated with objective
functions specifically designed for anomaly detection. One of these meth-
ods is Deep-SVDD which, although created for One-Class classification,
has been successfully applied to the (semi-)supervised anomaly detec-
tion setting. Technically, Deep-SVDD technique forces the deep latent
representation of the input data to be enclosed into an hypersphere and
labels as anomalies data farthest from its center. In this work we intro-
duce Deep-UAD, a neural network approach for unsupervised anomaly
detection where, iteratively, a network similar to that of Deep-SVDD is
alternatively trained with an Auto Encoder and the two networks share
some weights in order for each network to improve its training by exploit-
ing the information coming from the other network. The experiments we
conducted show that the performances obtained by the proposed method
are better than the ones obtained both by deep learning methods and
standard shallow algorithms.

1 Introduction

Anomaly detection is a fundamental data mining task whose aim is to isolate
samples in a dataset that are suspected of being generated by a distribution
different from the rest of the data. The presence of anomalies is due to many
reasons like mechanical faults, fraudulent behavior, human errors, instrument
error or simply through natural deviations in populations.

Depending on the composition of the dataset, anomaly detection settings can
be classified as unsupervised, semi-supervised, and unsupervised [1,14]. In the
supervised setting the training data are labeled as normal and abnormal and
and the goal is to build a classifier. The difference with standard classification
problems is that abnormal data form a rare class. In the semi-supervised setting,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 318–328, 2022.
https://doi.org/10.1007/978-3-031-18840-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_23&domain=pdf
http://orcid.org/0000-0002-9860-7569
http://orcid.org/0000-0002-8416-906X
http://orcid.org/0000-0003-3184-4639
https://doi.org/10.1007/978-3-031-18840-4_23

Cooperative Deep Unsupervised Anomaly Detection 319

the training set is composed by both labelled and unlabelled data. A special
case of this setting is the one-class classification when we have a training set
composed only by normal class items. In the unsupervised setting the goal is to
detect outliers in an input dataset by assigning a score or anomaly degree to each
object. Several statistical, data mining and machine learning approaches have
been proposed to detect anomalies, namely, statistical-based [11,15], distance-
based [6,9,10,24], density-based [12,21], reverse nearest neighbor-based [4,5,19,
25], SVM-based [30,33], and many others [1,14].

In last years deep learning-based methods for anomaly detection [13,17,27]
have shown great performances. Auto encoder(AE) based anomaly detection
[3,13,20] consists in training an AE to reconstruct a set of examples and then
to detect as anomalies those data that show a large reconstruction error. Varia-
tional auto encoders (VAE) arise as a variant of standard auto encoders designed
for generative purposes [23]. The key idea of VAEs is to encode each example as
a normal distribution over the latent space and regularize the loss by maximizing
similarity of these distributions with the standard normal one. Due to similari-
ties to standard auto encoders, VAEs have also been used to detect anomalies.
However, it has been noticed that VAEs share with standard AEs the prob-
lem that they generalize so well that they can also well reconstruct anomalies
[3,7,8,13,22,32]. Generative Adversarial Networks (GAN) [18] are another tool
for generative purposes, aiming at learning an unknown distribution by means
of an adversarial process involving a discriminator, that outputs the probability
for an observation to be generated by the unknown distribution, and a genera-
tor, mapping points coming from a standard distribution to points belonging to
the unknown one. GANs have also been employed with success to the anomaly
detection task [2,16,29,31,34].

Some authors [26,28] have recently observed that all the above mentioned
anomaly detection deep learning based methods are not designed to directly
discover anomalies, but their main task is data reconstruction (AE and VAE)
or data generation (GAN) and anomaly detection is a collateral result. They
introduce new methods, called Deep-SVDD and Deep-SAD, that combine the
expressive power of deep neural networks with a loss inspired from SVM-based
methods and specifically designed for anomaly detection. These methods are
used for one-class and (semi-)supervised settings but we argue that they do not
apply very naturally to the unsupervised setting, thus we introduce Deep-UAD,
a new unsupervised method that deeply modifies the architectures in [26,28]. In
particular we build a new training paradigm for the network in [26] that involves
an AE which is trained alternatively with the network and with which the net-
work and exchange the information they obtained during the training. This is
done by modifying the losses of both the network and the AE. The proposed
approach shows sensible improvements in terms of detection performances over
both the standard approach in [26,28] and the baseline shallow methods.

The rest of the paper is organized as follows. Section 2 discusses related work
with particular emphasis on Deep-SVDD and Deep-SAD. Section 3 introduces

320 F. Angiulli et al.

the Deep-UAD unsupervised anomaly detection algorithm. Section 4 illustrates
experimental results. Finally, Sect. 5 concludes the work.

2 Preliminaries

In this Section we deepen auto encoder and Deep-SVDD which are exploited by
our technique as basic components and suitably modified to our purposes.

Auto Encoder. An auto encoder (AE) is a neural network architecture suc-
cessfully employed for anomaly detection [20]. It aims at providing a reconstruc-
tion of the input by exploiting a dimensionality reduction step (the encoder
φW) followed by a step mapping back from the compressed space (the latent
space) to the original space (the decoder ψW ′). Its ability in detecting anoma-
lies depends on the observation that regularities should be better compressed
and, hopefully, better reconstructed [20]. The AE loss is E(x) = ‖x− x̂‖22, where
x̂ = ψW ′(φW (x)), and coincides with the standard reconstruction error.

One-class SVM. Before discussing Deep-SVDD some preliminary notions
about One-Class SVM (OC-SVM) [30] are needed. The original OC-SVM
method is designed for the one-class setting and has the objective of finding
the hyperplane in a feature space that best separates the mapped data from the
origin. Given the data {x1, . . . , xn} ⊆ X, it is defined by the following optimiza-
tion problem

min
w,ρ,ξi

1
2
‖w‖2F − ρ +

1
νn

n∑

i=1

ξi

s. t. 〈φ (xi) ,w〉 ≥ ρ − ξi,

ξi ≥ 0, i = 1, . . . , n

where ρ is the distance from the origin to the hyperplane w ∈ F , ξi are slack
variables and ν ∈ (0, 1] is a trade-off hyperparameter. The points in the test set
are labelled as normal if they are mapped inside the hyperplane and anomalous if
they are mapped outside. Related to OC-SVM, Support Vector Data Descriptor
(SVDD) [33] is a method that has the aim of enclosing the input data into a
hypersphere of minimum radius. The relative optimization problem is

min
R,c,ξi

R2 +
1
νn

n∑

i=1

ξi

s. t. ‖φ (xi) − c‖ ≤ R2 + ξi,

ξi ≥ 0, i = 1, . . . , n

where R > 0 and c are the radius and the center of the hypersphere and again
ξi are slack variables and ν ∈ (0, 1] is a trade-off hyperparameter.

Cooperative Deep Unsupervised Anomaly Detection 321

Deep-SVDD. In [26], authors apply the same idea expressed in SVDD of
enclosing the data into an hypersphere performing the mapping into the fea-
ture space with the use of a deep neural network. In particular, let φW : X → F
be a mapping obtained with a neural network with weights W = [W1, . . . , WL]
(Wl are the weights relative to the layer l ∈ {1, . . . , L}) from the input space
X ⊆ R

d to the output space F ⊆ R
k, with k < d. The loss of the network is

given by

L =
1
n

n∑

i=1

‖φW (xi) − c‖22 +
λ

2

L∑

l=1

‖Wl‖2F , (1)

where the first term forces the network representation φW (x) to stay close to the
center c of the hypersphere and the second term is a weight decay regularizer with
hyperparameter λ > 0. This loss is used in a One-Class anomaly detection setting
to map the training set (composed only by normal items) as close as possible
to the center c so that in the testing phase the network is less able to map the
anomalies close to c. Because of this, it is defined as anomaly score of the point x
the distance of its network representation from the center: S(x) = ‖φW (x)−c‖22.

The center c is not a trainable parameter and is fixed before the training
by means of an AE that is composed so that the encoding part has the same
structure as the network φ and shares with it the weights W , the structure of
the decoding part is symmetric to it and thus the latent space coincides with the
space F . The training set is given in input to this AE which is trained with the
standard loss and subsequently the center c is defined as c = 1

n

∑n
i=1 φW (xi),

that is the mean of the latent representations of all the points in the training set.
The same architecture has been applied in [28] for the task of semi-supervised
anomaly detection with the following natural adaptation of the loss

L =
1

n + m

n∑

i=1

‖φW (xi) − c‖2
2 +

η

n + m

m∑

i=1

(‖φW (x̃i) − c‖2
2

)ỹi +
λ

2

L∑

l=1

‖Wl‖2
F , (2)

where x̃i are the m labeled data with the relative labels ỹi and η is an hyperpa-
rameter handling the trade-off between the contributions of labelled and unla-
belled data. Let us observe that data labelled as normal (ỹi = +1) are treated in
the usual way which means that they are forced to be mapped close to c while
for the anomalies (ỹi = −1) the contribution is inverted and they are force to
stay as far as possible from c.

It is important to observe that (2) is designed to consider also unlabelled
examples. An extreme case occurs when m = 0, when all the training data are
unlabelled. This scenario is similar to the unsupervised setting but there is a
substantial difference: in one case the objective is to detect anomalies in a test
set, in the other the anomalies have to be detected among the same data used
for the training phase. In this case the losses (2) and (1) coincide, which means
that, even if originally the loss (1) has been designed to deal only with normal
class items, it can be used in settings that involve the use of unlabeled anomalies
in the training phase, thus it can be applicable also to the unsupervised settings.

322 F. Angiulli et al.

3 Method

In this Section the technique Deep-UAD proposed in this paper is discussed.
A one class based technique, like Deep-SVDD, is aimed at building a model

for the normal class exploiting input data by assuming they do not contain
anomalies and classifying data of a test set. In particular, Deep-SVDD tends to
map close to the center all the input data and, then, in the unsupervised setting
this technique may fail in correctly separating normal and anomalous samples.

Deep-UAD tackles this issue by providing information to the network about
the anomaly degree of each sample in order to force the network to approach
normal data to the center and to let anomalies far from the center. This is accom-
plished by exploiting an AE that provides a level of anomaly suspiciousness.
Thus, the proposed architecture consists in two components, a neural network
Deep-UADNET , and an auto encoder Deep-UADAE ; Deep-UADNET has the
same structure of the network of Deep-SVDD, thus can be defined by the same
mapping function φW , and it is forced to map the data badly reconstructed by
Deep-UADAE , namely more suspected to be anomalous, faraway from the center
and, conversely, data suggested as normal by Deep-UADAE close to the center.
Technically, this is done by introducing this novel loss

LNET =
1
n

n∑

i=1

1
E (xi)

‖φW (xi) − c‖22 +
λ

2

L∑

l=1

‖Wl‖2F . (3)

Fig. 1. Diagram of the Deep-UAD cooperative strategy: the network Deep-UADNET

and the auto encoder Deep-UADAE refine their capabilities to find anomalies by sharing
the encoder weights W and passing to each other the information of their own score.

It is inspired by Eq. (1) which is modified by inserting the term 1
E(xi)

, directly
related to the probability for xi to be an anomaly according to the AE, and it
is used as a weight to control how much is important that the network repre-
sentation of xi is mapped close to c. In particular, the smaller is E(xi), namely

Cooperative Deep Unsupervised Anomaly Detection 323

xi is probably not an anomaly according to Deep-UADAE , the more higher is
the weight and thus the network takes more advantage in mapping xi close to
the center; conversely if E (xi) is large, xi is suspected to be an anomaly by the
AE, the weight is small and the network has a small advantage in bringing the
representation of xi close to the center.

The strategy of Deep-UAD consists in a preliminary phase where the AE,
without information by the network Deep-UADNET , is trained with standard
loss, the center of the hypershpere is computed and the reconstruction error E(xi)
is evaluated for each sample. Successively, two phases are iteratively executed,
during the first one, the network Deep-UADNET is trained with the loss (3) for
a certain number of epochs and the score S(xi) is calculated, during the second,
Deep-UADAE is trained for some epochs with the novel loss

LAE =
n∑

i=1

1
S(xi)

‖xi − x̂i‖22. (4)

The purpose of S(xi) is similar to the one of E(xi) in (3), giving a weight to the
contribution of each point xi according to the results obtained by the network.
The idea of Deep-UAD is that the score obtained from one network improves
the training of the other one, the final anomaly score output is S(xi).

4 Experimental Results

In this section we report experiments conducted to study the behavior of the
proposed method. We focus on three main aspects, namely (i) the impact of
the dimension of the output space on the performances, (ii) the analysis of the
cooperative process as the iterations proceed, (iii) the comparison with other
methods with specific emphasis on Deep-SVDD. In our experiments we consider
two standard benchmark datasets composed by grayscale images, MNIST 1 and
Fashion-MNIST 2. They are both composed by 28 × 28 pixels images divided in
10 classes, thus, in order adapt them for anomaly detection, we adopt a one-vs-all
policy, i.e. we consider one class as normal and all the others as anomalous. For
each class, we create a dataset composed by all the examples of the selected class
as normal and s random selected examples from each other class as anomalies.

Sensitivity Analysis on the Dimension K of the Output Space. In this
section, our aim is to determine how the dimension of the output space F impacts
on the behavior of both our method and the original Deep-SVDD algorithm. In
order to do this we consider the MNIST dataset in the one-vs-all setting and,
for each class, we train both models with k varying in the interval [8, 64].

From Fig. 2, in which are reported the results after 5 runs, we can see that
for both Deep-UAD (in red) and Deep-SVDD (in black) the trend is increasing

1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

324 F. Angiulli et al.

Fig. 2. MNIST dataset (s = 10): AUCs of Deep-UAD and Deep-SVDD varying the
dimension of the final space.

which means that a small dimensional space F is not sufficient, in both cases,
to separate the anomalies from the normal examples. Moreover it is important
to point out that the performances achieved by our method are better than the
ones obtained by Deep-SVDD for almost each class and each value of k.

Analysis of the Iterative Process. Deep-UAD is based on an iterative pro-
cess in which the network Deep-UADNET and the auto encoder Deep-UADAE

share information, because of this it is crucial to investigate how the number
of iterations affects the performances of both the architectures. We do this by
considering MNIST and Fashion-MNIST datasets in the one-vs-all setting, per-
forming 5 runs for each class and computing the AUC for each iteration. In each
iteration both the network and the AE are trained for 25 epochs.

Cooperative Deep Unsupervised Anomaly Detection 325

In Fig. 3 are reported the trends of the two architectures. As we can see, they
are always non decreasing, which means that both the architectures are taking
advantage of the cooperative strategy. For what concerns Deep-UADNET , which
is the one that outputs the score of Deep-UAD, the trend becomes substantially
stable and constant, sometimes from the very first iteration (as class 0 of MNIST
and class Sandal of Fashion-MNIST) and other times after a slightly bigger
number of iterations (like classes 2 and 7 of MNIST). This means that the
parameter of the number of iterations is not hard to fix, since a number around
one ten of iterations guarantees always the achievement of a score of Deep-UAD
close to best possible and an improvement over Deep-SVDD.

Fig. 3. MNIST and Fashion-MNIST datasets (s = 10): AUCs of Deep-UAD and AE
varying the iterations of the method.

Moreover, Deep-UADAE improves its performances as the iterations proceed.
This fact is crucial for the behavior of the whole process, indeed it means that
the information provided to Deep-UADNET by Deep-UADAE becomes better at

326 F. Angiulli et al.

Table 1. AUC of Deep-UAD and competitors on MNIST and Fashion-MNIST with
s = 10 on the left and s = 100 on the right.

MNIST

s = 10 s = 100

Class Deep-SVDD Deep-UAD DCAE IF KNN Deep-SVDD Deep-UAD DCAE IF KNN

0 .962 ± .018 .996 ± .001 .953 ± .008 .951 ± .010 .978 ± .010 .901 ± .015 .948 ± .006 .918 ± .005 .868 ± .023 .841 ± .006

1 .991 ± .001 .996 ± .002 .925 ± .013 .994 ± .001 .998 ± .001 .974 ± .004 .989 ± .003 .878 ± .014 .991 ± .001 .996 ± .002

2 .876 ± .036 .951 ± .013 .822 ± .017 .731 ± .024 .891 ± .015 .765 ± .020 .861 ± .026 .746 ± .016 .678 ± .028 .703 ± .014

3 .884 ± .014 .988 ± .006 .805 ± .026 .804 ± .028 .906 ± .011 .794 ± .027 .878 ± .026 .759 ± .027 .762 ± .012 .766 ± .006

4 .924 ± .017 .964 ± .011 .772 ± .019 .869 ± .018 .928 ± .008 .827 ± .016 .918 ± .012 .698 ± .031 .836 ± .008 .831 ± .007

5 .848 ± .025 .843 ± .037 .728 ± .016 .752 ± .019 .917 ± .019 .732 ± .017 .809 ± .021 .650 ± .040 .709 ± .020 .765 ± .007

6 .975 ± .007 .981 ± .005 .887 ± .019 .894 ± .017 .970 ± .006 .920 ± .014 .956 ± .007 .793 ± .018 .848 ± .016 .858 ± .004

7 .927 ± .017 .970 ± .008 .853 ± .015 .909 ± .009 .957 ± .007 .875 ± .014 .946 ± .005 .781 ± .013 .891 ± .009 .893 ± .003

8 .916 ± .018 .944 ± .014 .828 ± .012 .729 ± .021 .857 ± .010 .852 ± .013 .933 ± .010 .728 ± .020 .710 ± .014 .731 ± .009

9 .950 ± .009 .968 ± .014 .798 ± .019 .872 ± .013 .947 ± .009 .908 ± .011 .959 ± .005 .734 ± .012 .858 ± .007 .862 ± .005

Fashion-MNIST

s = 10 s = 100

Class Deep-SVDD Deep-UAD DCAE IF KNN Deep-SVDD Deep-UAD DCAE IF KNN

0 .868 ± .016 .929 ± .021 .793 ± .014 .909 ± .010 .902 ± .010 .770 ± .031 .866 ± .011 .748 ± .012 .886 ± .008 .808 ± .006

1 .975 ± .004 .991 ± .002 .934 ± .014 .977 ± .003 .987 ± .002 .956 ± .003 .985 ± .002 .902 ± .022 .976 ± .002 .967 ± .002

2 .832 ± .016 .911 ± .013 .691 ± .021 .873 ± .015 .882 ± .011 .757 ± .013 .828 ± .029 .581 ± .025 .842 ± .009 .779 ± .006

3 .923 ± .008 .963 ± .009 .898 ± .013 .936 ± .009 .937 ± .011 .867 ± .013 .955 ± .010 .858 ± .008 .936 ± .003 .838 ± .004

4 .894 ± .015 .963 ± .016 .852 ± .019 .911 ± .014 .888 ± .013 .827 ± .029 .918 ± .006 .780 ± .029 .903 ± .005 .807 ± .013

5 .817 ± .025 .966 ± .013 .373 ± .041 .928 ± .008 .846 ± .017 .647 ± .041 .801 ± .038 .235 ± .022 .907 ± .005 .611 ± .011

6 .756 ± .020 .874 ± .022 .619 ± .020 .812 ± .013 .813 ± .012 .691 ± .021 .781 ± .017 .537 ± .031 .778 ± .009 .710 ± .005

7 .978 ± .004 .996 ± .005 .905 ± .007 .980 ± .007 .979 ± .004 .927 ± .014 .984 ± .002 .807 ± .016 .978 ± .002 .915 ± .005

8 .893 ± .015 .920 ± .018 .778 ± .016 .886 ± .017 .817 ± .021 .733 ± .025 .854 ± .017 .644 ± .025 .822 ± .002 .512 ± .007

9 .980 ± .004 .991 ± .005 .970 ± .010 .978 ± .006 .945 ± .013 .917 ± .016 .983 ± .003 .912 ± .014 .968 ± .004 .762 ± .014

every iteration, thus Deep-UAD succeeds in mapping the anomalies away from
the center better than Deep-SVDD, when this information is missing and several
anomalies are not detected being closer to the center than some normal samples
with consequent worsening of the AUC.

Comparison with Competitors. Finally, in this last section, we compare the
results Deep-UAD with competitors on MNIST and Fashion-MNIST. The meth-
ods taken into account are Isolation Forest (IF) and k-Nearest Neighbor as shal-
low algorithms and Deep-SVDD and Deep Convolutional auto encoder (DCAE)
as deep learning methods. To ensure a fair comparison, both Deep-SVDD and
DCAE have the same structure of Deep-UAD and for both of them, as well as
for our method, we fix k = 64 according to the results of the first experiment.

In Table 1 are reported the results for both datasets with s = 10 and s = 100.
We can see that for almost all classes Deep-UAD performs better than all con-
sidered competitors and in certain cases the differences with their performances
are huge. In particular, in the direct comparison with Deep-SVDD, the tech-
nique that inspires our method, Deep-UAD is always winning, meaning that the
cooperative work of the network and the AE succeeds in improving the ability
of isolating anomalies.

5 Conclusions

In this work is presented Deep-UAD, a deep learning approach for unsupervised
anomaly detection. It is based on an alternate and cooperative training of an

Cooperative Deep Unsupervised Anomaly Detection 327

AE and a neural network aiming at mapping the data close to a fixed center
in the output space. Experimental results show that Deep-UAD achieves good
performances and that the strategy of alternate training brings benefits to both
the neural network and the AE improving their capabilities to isolate anomalies.

In the future our main goals are to investigate the application of a cooperative
alternate strategy similar to this one to more complex neural architectures, to
study possible modifications to the discussed method that may help in improving
performances, and to test our algorithm on dataset of different size and nature.

References

1. Aggarwal, C.C.: Outlier Analysis. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-47578-3

2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised
anomaly detection via adversarial training (2018)

3. An, J., Cho, S.: Variational autoencoder based anomaly detection using recon-
struction probability. Technical Report 3, SNU Data Mining Center (2015)

4. Angiulli, F.: Concentration free outlier detection. In: European Conference on
Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia
(2017)

5. Angiulli, F.: CFOF: a concentration free measure for anomaly detection. ACM
Trans. Knowl. Discov. Data (TKDD) 14(1), 4:1-4:53 (2020)

6. Angiulli, F., Basta, S., Pizzuti, C.: Distance-based detection and prediction of
outliers. IEEE Trans. Knowl. Data Eng. 2(18), 145–160 (2006)

7. Angiulli, F., Fassetti, F., Ferragina, L.: Improving deep unsupervised anomaly
detection by exploiting VAE latent space distribution. In: Discovery Science (2020)

8. Angiulli, F., Fassetti, F., Ferragina, L.: LatentOut: an unsupervised deep anomaly
detection approach exploiting latent space distribution. Machine Learning (2022).
https://doi.org/10.1007/s10994-022-06153-4

9. Angiulli, F., Pizzuti, C.: Fast outlier detection in large high-dimensional data sets.
In: Principles of Data Mining and Knowledge Discovery (PKDD) (2002)

10. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
Trans. Knowl. Data Eng. 2(17), 203–215 (2005)

11. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley (1994)
12. Breunig, M.M., Kriegel, H., Ng, R., Sander, J.: LOF: identifying density-based

local outliers. In: Proceedings of the International Conference on Managment of
Data (SIGMOD) (2000)

13. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019)
14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. 41(3), 1–15 (2009)
15. Davies, L., Gather, U.: The identification of multiple outliers. J. Am. Statist. Assoc.

88, 782–792 (1993)
16. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning (2017)
17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge

(2016)
18. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-

mation Processing Systems, vol. 27 (2014)
19. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neigh-

bour graph. In: ICPR, Cambridge, UK (2004)

https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1007/s10994-022-06153-4

328 F. Angiulli et al.

20. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator
neural networks. In: International Conference on Data Warehousing and Knowl-
edge Discovery (DAWAK), pp. 170–180 (2002)

21. Jin, W., Tung, A., Han, J.: Mining top-n local outliers in large databases. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD) (2001)

22. Kawachi, Y., Koizumi, Y., Harada, N.: Complementary set variational autoencoder
for supervised anomaly detection. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2366–2370 (2018)

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
24. Knorr, E., Ng, R., Tucakov, V.: Distance-based outlier: algorithms and applica-

tions. VLDB J. 8(3–4), 237–253 (2000)
25. Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsu-

pervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5),
1369–1382 (2015)

26. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the 35th ICML,
Stockholm, Sweden (2018)

27. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc.
IEEE 109(5), 756–795 (2021)

28. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: 8th ICLR, Addis
Ababa, Ethiopia. OpenReview.net (2020)

29. Schlegl, T., Seeböck, P., Waldstein, S., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN:
fast unsupervised anomaly detection with generative adversarial networks. In: Med-
ical Image Analysis 54 (2019)

30. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

31. Sáinchez-Mart́ın, P., Olmos, P.M., Perez-Cruz, F.: Improved BIGAN training with
marginal likelihood equalization (2020)

32. Sun, J., Wang, X., Xiong, N., Shao, J.: Learning sparse representation with varia-
tional auto-encoder for anomaly detection. IEEE Access 6, 33353–33361 (2018)

33. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54,
45–66 (2004). https://doi.org/10.1023/B:MACH.0000008084.60811.49

34. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient
GAN-based anomaly detection (2019)

https://doi.org/10.1023/B:MACH.0000008084.60811.49

On the Ranking of Variable Length
Discords Through a Hybrid Outlier

Detection Approach

Hussein El Khansa(B) , Carmen Gervet , and Audrey Brouillet

Espace-Dev, Univ. Montpellier, IRD, U.Guyane, U.Reunion, Montpellier, France

hussein.elkhansa@ird.fr

Abstract. In this paper we are interested in identifying insightful
changes in climate observations series, through outlier detection tech-
niques. Discords are outliers that cover a certain length instead of being
a single point in the time series. The choice of the length can be critical,
leading to works on computing variable length discords. This increases
the number of discords, with potential overlapping, subsumption and
reduced insightful results. In this work we introduce a hybrid approach
to rank variable length discords and extract the most prominent ones,
that can yield more impactful results. We propose a ranking function
over extracted variable length discords that accounts for contained point
anomalies. We investigate the combination of pattern wise anomaly
detection, through the Matrix Profile paradigm, with two different point
wise anomaly detectors. We experimented with MAD and PROPHET
algorithms based on different concepts to extract point anomalies. We
tested our approach on climate observations, representing monthly runoff
time series between 1902 and 2005 over the West African region. Exper-
imental results indicate that PROPHET combined with the Matrix Pro-
file method, yields more qualitative rankings, through an extraction of
higher values of extreme events within the variable length discords.

Keywords: Matrix profile · Prominent discord discovery · Point and
patter outlier detection · Time series · Climate data

1 Introduction

With the advance of computer modeling and data collection in many scientific
fields, enormous numbers of data are being generated and collected, to take
benefit of the data analyses algorithms, machine learning and neural network
are used to study and learn from that it. There are two main types of learning,
the fist one is supervised, which utilizes labeled, contrary to the unsupervised
learning that does not utilize labeled data. One issue when using supervised
learning that labeled data is hard to obtain as it needs expert input, with the rate
of data generated and collected it is near impossible to label the data to address

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 329–344, 2022.
https://doi.org/10.1007/978-3-031-18840-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_24&domain=pdf
http://orcid.org/0000-0001-8477-4887
http://orcid.org/0000-0002-8062-2808
http://orcid.org/0000-0001-9466-0197
https://doi.org/10.1007/978-3-031-18840-4_24

330 H. El Khansa et al.

this issue, Many approaches are being developed to label data set including text
data set [19], image data set [24] and time series [25].

Outlier detection is a field of machine learning to analyze data, covering
numerous application domains including fraud detection, insurance [9], medical
[33], internet of things [23], cyber security and hydrology [26]. Overall, an outlier
can be generally defined as an observation that is significantly dissimilar to other
data observation or an observation that does not behave like the expected typical
behavior of the other observations. An outlier detection method can be applied
to multiple data types such as images, transaction data, sequence data including
genomics and time series. There are two main types of anomaly detection, point
wise and pattern also called collective anomalies or discords [3].

Discords denote the most unusual time series sub sequences, and are detected
using similarity measures that compare sub sequences with each other for a
given length. Existing approaches can be either approximate (e.g. HOT-SAX
[11], QUICK MOTIF [15], Rare Rule Anomaly [22]) or exact like the matrix
profile (MP) paradigm [30], used to detect motifs or discord. The choice of
the sub sequence length is critical, set as input parameter and often specified
with experts’ knowledge which clearly influences the outcome. This observation
lead more recently to works on computing variable length discords, over a given
length interval (e.g. GraphAn [2], PanMatrix [17]). The increased usage of these
approaches has also raised their weaknesses. Indeed, the number of extracted
discords is larger, with potential overlapping and subsumption among them,
leading to the question of “how can we select the more relevant or actionable
ones?”. We are not aware of approaches seeking a ranking of variable lengths
discords to this date.

In this work, we address this issue in the field of climate data analysis [12].
Climate impact models provide time series based both on historical data and
projected data generated from complex simulations of physical processes. The
impact models concern many fields, including yields of agricultural crops, biodi-
versity, runoff of water infiltration. Such models are commonly analyzed using
multi-model ensembles means to mitigate uncertainties. With a primary goal of
estimating future trends, the use of outlier detection methods has seen limited
interest in this field to this date, with some works on hydrological impact models
[29,31,31]. Another particularity of these models is the very large scale of the
spatio-temporal data series, covering daily or monthly data over 150 years for
each spatial point in a given region.

Our objective is to investigate a ranking approach over variable length dis-
cords, by integrating two unsupervised anomaly detection frameworks, point
anomaly detectors and pattern based anomaly detection using MP. The intuition
behind our work, is that a discord will dominate another one, if proportionally
to its length, it also contains anomalous points that are greater in numbers and
extreme values within the discord sequence. In our work, we compare two types of
point outlier detectors, model and predictor based and draw conclusions on their
insights to rank variable length discords. We consider respectively the MAD and
PROPHET methods. We also define and specify a ranking function over vari-
able length discords. MAD is a general point anomaly detection method, based

Ranking Variable Length Discords 331

of how far a point is from the median, while PROPHET is more tailored to time
series and detects anomaly points that diverge from the expected values with
respect to the projected seasonality and trends derived in the learning phase of
PROPHET. Our approach is evaluated on total (surface + subsurface) runoff
observations, that reflect the soil water levels.

Our main contributions are: 1) a hybrid approach to rank variable length
discords, through the combination of exact discord method with point detectors
and a ranking function; and 2) the evaluation through an experimental study over
large scale climate impact data, showing the differences among point anomalous
detectors and their added value as an effective means to rank variable discords.

This paper is organized as follows. Section 2 gives a background on the con-
cepts and methods we use, Sect. 3 presents our approach. We conclude in Sect. 4.

2 Background

In this section we review existing concepts and approaches we make use of,
relative to outlier detection in time series, and review the use of point outliers
to extract pattern outliers.

Point outliers over time series can be specified as global outliers when com-
pared to all values in the time series, and local outliers when compared to its
neighboring points. Subsequence or pattern outliers in time series, extract collec-
tive consecutive points that behave unusually compared to other subsequences
of similar length. In such cases a single point in the sequence might or not be
also an anomaly on its own.

Methods for point outlier detection can be classified as model outlier detec-
tors or predictor based outlier detectors. Model or statistical outlier detectors
derive a probabilistic model which captures the distribution of the time series.
If an instance in the time series has a low probability of belonging to the esti-
mated model, it is flagged as an outlier [4]. Examples of model based point outlier
detectors are Median Absolute Deviation (MAD) [10] and Minimum Covariance
Determinant (MCD) [20].

Predictor based outlier detectors proceed differently. They construct a pre-
dictor (like forecast model or a regressor) to learn the normal behavior of the
time series, and then exploits the learned information to predict future values.
Prediction errors which are predictions that significantly deviate from the true
value are labeled as point outliers [14]. Many predictor methods have been devel-
oped including ARIMA [21], and SVM [16] and PROPHET [27].

In this work, we will apply one point outlier from each type to extract point
outliers within computed variable length discords, as a means to rank those
discords. Note that point outliers have also been used to directly segment data
series and thus extract discords. We briefly survey these approaches and their
suitability for our goal.

332 H. El Khansa et al.

2.1 Point Outliers Detectors and Series Segmentation

In [6] the authors proposed IForest-based anomaly detection to detect drift in
streaming data, where a fixed sliding window is applied, and in each window
the IForest detector is applied to generate the anomaly rate by averaging the
instance depth of the forest, if the anomaly rate is smaller than the threshold then
their is a drift. Also, in [5] the authors proposed sliding-window convolutional
variational autoencoder (SWCVAE) an algorithm to detect point anomalies in
robot, by applying sliding windows. Each window is fed to a convolutional vari-
ational autoencoder, a trained artificial neural network(ANN), to detect point
wise anomaly. The ANN will give each instance in the sliding window an anomaly
score, then these scores are averaged to calculate the anomaly score of the dis-
cord. If an anomaly score is above the predefined threshold then it is classified
as a discord. In [32] the author combines both the result of SAX as a pat-
tern outlier detection and combined with point outlier detection second-order-
difference (SOD) and Chebyshev Inequality (CI)-based methods, where discord
that does not contain point anomaly detected by SOD and CI are discarded.
Those approaches contribute both ranking mechanisms of discords through a
common concept, that is the segmentation of the time series and the use of a
point outlier detector on each subsequence to give it an anomaly score.

With respect to our goal of comparing variable length discords over large
time series, these approaches offer scoring mechanisms for subsequences, but are
applied to fixed size windows, and go through the whole data set. This requires
the application of outlier detectors over very large sets of sliding windows, with-
out considering variable length windows.

In our approach, we purposely focus on variable length discords, and separate
the issue of computing variable length discords, through an exact dedicated
approach, with that of exploiting point anomaly detectors for ranking purpose.
Part of our goal is to analyse the contribution and added value of point anomaly
detectors to rank the discords of variable lengths.

2.2 Matrix Profile, MAD and PROPHET

In this subsection we provide the necessary background on the three methods
used in our work, namely the STOMP algorithm to compute Matrix Profiles and
extract discords, and the point anomaly detectors MAD and PROPHET.

Matrix Profile Methods. Matrix Profile is a powerful data structure that stores
the z-normalized Euclidean distances between each subsequence and its clos-
est neighbor sequence. Two main algorithms have been defined to compute the
exact solution of the matrix profile by performing all-pairs-similarity-search on
time series, namely STAMP [30] and STOMP [34]. We adopted STOMP for
its runtime and scalability over large time series. STOMP computes the matrix
profile by calculating the distance profile of every subsequent in time series T
and then selecting the minimum value in each distance profile. It uses a similar-
ity search algorithm to compute the matrix profile faster in time complexity of

Ranking Variable Length Discords 333

O(n2). The produced Matrix can be used to detect discords, where the highest K
subsequences in the Matrix Profile are the top K discords, specifying the highest
distance of these subsequences with its closest neighbor. The concepts used in
this work are recalled here after, relative to discords and the Matrix Profile data
structure.

Definition 1. A time series T is a sequence of real-valued numbers ti : T =
[t1, t2, ..., tn] where n is the length of T .

Definition 2 (Matrix Profile). A matrix profile Pm of time series T and
given length m is a meta series of the Euclidean distances vector between
each subsequence Ti,m of given length m where i varies, and its nearest neigh-
bor (closest match) in time series T , together with the corresponding posi-
tion vector for each closest neighbor associated with min(Di,m). We denote it
Pm = [min(D1,m), ...,min(Dn−m+1,m)], where Di,m(1 ≤ i ≤ n − m + 1) is the
distance profile Di,m of time series T for subsequences of length m.

Definition 3 (Discord). The discord denoted Δj,m is a subsequence Tj,m of
length m starting at the position j, that has the largest distance to its near-
est neighbor. In matrix profile the largest distance corresponds to the maximum
distance value in Pm.

MAD. The Median Absolute Deviation outlier detection method is a point out-
lier detector that uses the Absolute deviation around the median to measure the
distance between a data point and the median [10]. The median is considered
a tendency measurement of the data similar to the mean, but unlike the mean
it is more robust to detect relevant point outliers in the data, being immune to
noise, and to the sample size [13].

Given a time series T = x1, x1, ..., xi, ..., xn such that i is the time unit, MAD
first calculates the median of T , this median is denoted by x̃, and its absolute
deviation, by subtracting x̃ from each x in T :

MAD = median(|xi − x̃|) (1)

For each xi we calculate their modified z-score using the predefined formula [28]:

Mi =
0.6745(xi − x̃)

MAD
(2)

In statistics, the z-score for each xi measures the difference between the value
and the mean how many standard deviations away a value is from the mean
in terms of standard deviation. MAD uses the following formula to calculate a
z-score:

Z − Score =
xi − μ

σ
(3)

where: μ is the mean value of the data set, σ is the standard deviation of the
data set where if the Z-score is 0 then it means the value of xi is equal to the
mean, if z-score is 2 then it is 2 standard deviation (2 ∗ σ) away from the mean.

334 H. El Khansa et al.

If the absolute value of the modified z-core of xi is larger than a threshold
then is considered as an outlier. [10] proposed the value 3.5 as a threshold, also
the default one in MAD.

PROPHET. It is an open source time series forecasting model, that detects out-
liers based on the data learned through the forecasting component. Its purpose
is to forecast future data, and detect outliers, with an uncertainty estimation.
Once PROPHET fits the given time series, it generates a data set containing
the following variables with an estimation of the uncertainty through a confi-
dence interval for each value. Then for each value in the Time series, it calculates
the error and uncertainty based on the confidence interval of each value. If the
error of a value is bigger than its uncertainty it will be flagged as an anomaly.
PROPHET is based on generalized additive model (GAM), which means that
the model is the sum of several components summarized below:

yt = g(t) + s(t) + h(t) + ε(t) (4)

where:

– g(t) denotes the growth function, a piece-wise linear function. The number of
linear growths (straight lines), is determined by the number of change points
in the time series, that can be entered manually or detected automatically by
PROPHET.

g(t) =
(
k + a(t)�δ

)
t +

(
m + a(t)�γ

)
(5)

where k is the growth rate scalar value, m the offset value, a(t) a binary
vector ∈ {1, 0} indicating if there is a growth rate adjustments at time t. δ
is a vector that contains the growth rate value. For instance if there is 10
change point then the vector of δ will have 10 values.

– γ is vector similar too that contains the offset parameter adjustment
– s(t) the seasonality, modeled using Fourier Series as a function of time.
– h(t) holiday seasons parameter, that we will not consider
– ε(t) the error estimation using a maximum a posteriori estimation.

Not all components are mandatory, and in our case since we will be experiment-
ing on climate impact data. h(t) not considered for instance.

3 Our Approach

Our work is first motivated by the insightful ranking of variable length discords,
to extract those that are combined with more eventful changes and potential
impact on forecasted data trends. We do so by combining an exact, robust pat-
tern outlier detection approach, with two different point outlier detectors. The
exact approach ensures reliable extraction of discords, while the point outlier

Ranking Variable Length Discords 335

detectors will contribute to their ranking. We use the Matrix Profile method,
STOMP as an exact approach to extract discords, that also offers the quali-
ties of being parameter-free and that does not utilize a similarity or distance
threshold. This is important since the point outlier detectors do not have these
advantages, and an increase in thresholds tuning would reduce the robustness of
the overall results. With respect to the point outlier detectors, we experimented
with the generic MAD model approach, and the predictor PROPHET method
that also handles trends and seasonality.

Our Algorithm 1 is based on four 4 main phases :

1. (Lines 8–12) Extract variable length discords (Matrix Profile method)
2. (Line 13) Detect point outliers (using PROPHET, MAD) over the time series
3. (Lines 14–20) Score the discords based on the anomalous points they contain
4. (Lines 21–25) Filter and sort the discords with a ranking function

Extract Variable Lengths Discords. We compute the Matrix Profile for variable
window sizes j over T , where 4 < j < length(T)/2. For each window size, we
extract the top discord. The output is a list of top discords, one per length.

Detect Point Outliers in the Time Series. This step seeks point wise outliers
(through PROPHET and MAD), over the whole time series T . The outcome is
a Boolean list denoting for each data in the time series if it is an anomaly.

Scoring the Discords. This step integrates the variable length discords and
Boolean anomaly list for scoring purpose. For each discord we count the anoma-
lous points that are included in each discord Δi,j . Clearly a simple count is not
the only element in the scoring, and the discords’ length needs to be taken into
account. Note that some discords can overlap, thus share anomalous points. To
address this issue we define a scoring function as the ratio of the count over each
length.

Filtering and Sorting. This procedure filters the discords based on their count,
as well as their starting dates, and length. Based on our past work and analysis
[7] of subsumption among variable length discords, it is important to compare
variable length discords with identical starting dates. The filtering stage groups
discords sharing a starting date i and for each group selects the discord with
highest ratio, meaning it subsumes the others. Then the discords (of variable
length) are sorted in descending order of their ratio value.

336 H. El Khansa et al.

Algorithm 1: matrix prophet ensemble
input : Time Series T
output: list <Discords> SortedList

1 initialization
2 int m = length(T)/2
3 list < Δ > top discord list=[] // List to store top discords
4 list < Δ > group list=[] // List to group discords with similar date
5 list < bool > anomaly list=[] // Boolean list of anomaly tag per value
6 list < Δ > sorted list=[] // List of ranked discords
7 list < int > Windows = [4, 5, 6, 7, 8, . . . ,m]; // List of Window sizes
8 foreach j in Windows do
9 Pj ← STOMP (T, j) // Matrix profile for window size j

10 Δi,j ← max(Pj) // Discord of length j
11 top discord list ← top discord list.add(Δi,j)
12 end
13 anomaly list ← PROPHET or MAD(T) // Store output of detector
14 foreach Δi,j in top discord list do
15 start=Δi,j .i // Store the start date of discord
16 end=Δi,j .i + Δi,j .j // Store the end date of the discord
17 length=Δi,j .j //Store the discord length
18 int count← count Anomaly(T,start,end)//Anomaly count per Δi,j

19 Δi,j .ratio ← count/length
20 end
21 group list ← groubBy(top discord list) // Group discord list per similar

starting date
22 foreach group in group list do
23 sorted list ← add(max(group)) // Get discord with highest ratio in

each group
24 end
25 sorted list ← Quicksort(sorted list,Δ.ratio)
26 return sorted list

3.1 Experimental Comparison of MAD and PROPHET

Climate Data. In our experimental study we used observed monthly runoff data
obtained from Global Runoff Reconstruction dataset (GRUN) [8]. In climate
and corresponding impact data science, runoff is an impact variable that can be
used to quantify flood and drought risks at regional and global scales [1]. It is
usually provided in kg/m2/s or in mm/day. The source of the data has a 0.5◦

× 0.5◦ spatial grid resolution with a focus on the Sahel region. This data gives
indicators on the soil water content over the time period between 1902 and 2005
(i.e. 104 years, 1248 months). This is a standard observation period in historical
climate analysis. We spatially average the monthly runoff data over the grid box
[5◦W-25◦E ; 10◦N-18◦N].

Ranking Variable Length Discords 337

Point Anomaly Detectors. A first comparative study between MAD and
PROPHET on the runoff data set is shown in Fig. 1. Those point anomaly
detectors use different methods to extract anomalies, and we can see that some
anomalous points are shared and many differ. Over the whole data series, MAD
extracts a large set of anomalies (green), essentially in the upper part of the
data, thus detecting high water levels. On the other hand, PROPHET extracts
fewer anomalies, some shared with MAD for the highest values of anomalous
water levels, and most importantly detected the drought periods in terms of
anomalous points (purple crosses), in 1900–1910 and 1970–1990. This can be
explained by the fact that PROPHET through the learning phase was able to
identify a normality within seasons, whereas MAD focuses on extremes in the
overall data series.

Fig. 1. Anomaly points extracted by MAD and PROPHET: similarities and differences

If we zoom on the period 1981–1984 where 1983 is recorded as one of the driest
years in the West African region, this aspect is striking. MAD does not extract
any anomalous point, whereas PROPHET detects three anomalies displayed in
Fig. 2. By not accounting for, or detecting, seasonality MAD misses important
point outliers in such time series. On the other hand, PROPHET takes into
account seasonality through the learning phase, and we can see that it extracts
anomalies with respect to months which are learnt to be dry and those that
should not be. We note that the anomalous points do not necessarily reflect
extreme values overall, but anomalous points with respect to the anticipated
values (learnt during the forecasting phase).

338 H. El Khansa et al.

Fig. 2. Anomalous points detected by PROPHET in the subsequence over 1981–1984

We also studied the early period 1902–1905, a period of higher runoff values in
average. We can see that both MAD and PROPHET detect anomalies during this
period, with some common points, showcased in Figs. 3 and 4. Those figures are
interesting as they also how MAD does detect some anomalous points not tagged
as such by PROPHET. This reflects the role played by the median function and
the z-score defined by MAD.

All experiments were run on an Intel(R) Xeon(R) Bronze 3106 CPU processor
at 1.70 GHz with 8 core with 64 GB of RAM. The main computational cost are
the N/2 runs of STOMP to compute the variable length discords, taking around
9 min. MAD is in constant time, and PROPHET took 1.5 min.

3.2 Integrated Approach: Ranking and Outcomes

Having compared the commonalities and differences between two point anomaly
detectors, we saw that even though they are generic, they can have a great
impact on the outliers’ detection. This is related to their models and potentially
the nature of the data. We now present the results of our methodology. Both

Fig. 3. Anomalous points from PROPHET in the subsequence 07/1902–01/1905

Ranking Variable Length Discords 339

Fig. 4. Anomalous points detected by MAD in the subsequence 07/1902–01/1905

detectors are applied and compared as a means to rank the variable lengths
discords produced.

Figure 5 represents respectively for PROPHET and MAD, the top discords
ranking with respect to our ratio function. Note that the discords of variable
lengths are specified by their starting date, window length and the value of the
ratio function. Note that since we are comparing discords of variable lengths, at
this stage we only extract the top discord for each given length m, to reduce
the combinatorics of our approach. Extracting top k discords per length is part
of future work. We recall that the ratio values depend on the length and the
number of anomalous points within each discord. In this figure we picked the
top 20 discords relative to each detector output ranking. The discords highlighted
in yellow, correspond to a filtering, that extracts among those discords the top
ones outside a proximity temporal interval of ± three months. For instance for
the year 1982 we have 3 ranked discords starting from July till September with
overlapping periods. We kept the one with highest ranking to reduce redundant
discord periods. Thus the colored row in the Table 5 represent the top 5 discords
resulting from the filtering procedure.

340 H. El Khansa et al.

PROPHET MAD
date window ratio points date window ratio points

1983-08-01 97 0.12 12 1904-06-01 14 0.29 4
1982-09-01 108 0.12 13 1904-05-01 15 0.27 4
1982-08-01 121 0.11 13 1902-03-01 43 0.26 11
1982-07-01 122 0.11 13 1904-04-01 16 0.25 4
1902-07-01 62 0.1 6 1904-03-01 32 0.25 8
1902-06-01 63 0.1 6 1904-08-01 24 0.25 6
1902-05-01 64 0.09 6 1902-02-01 93 0.25 23
1902-04-01 65 0.09 6 1902-01-01 107 0.23 25
1902-03-01 66 0.09 6 1903-09-01 35 0.23 8
1902-02-01 67 0.09 6 1927-04-01 623 0.22 140
1984-08-01 123 0.09 11 1927-09-01 617 0.22 138
1902-01-01 68 0.09 6 1912-07-01 591 0.22 132
1984-07-01 125 0.09 11 1927-12-01 614 0.22 137
1984-06-01 129 0.09 11 1912-05-01 592 0.22 132
1984-05-01 130 0.08 11 1927-11-01 615 0.22 137
1984-04-01 131 0.08 11 1912-08-01 589 0.22 131
1983-09-01 143 0.08 12 1927-10-01 616 0.22 137
1903-10-01 12 0.08 1 1904-02-01 18 0.22 4
1983-07-01 158 0.08 13 1903-10-01 36 0.22 8

Fig. 5. Ranking table of top 20 discords

Analysis of the Results:

1. Point anomalous detectors do matter. While STOMP produces exact matrix
profiles to derive variable length discords, the rankings differ between
PROPHET and MAD. By detecting the anomalies in the driest period, where
droughts occurred (1982–1984), PROPHET manages to rank top discords in
this period. We can see that the variable length are not negligible ranging
in this period from 97 months to 123 months. MAD detects mainly the peri-
ods with high water levels (1902–1904), yielding high ranking for the corre-
sponding discords. It corresponds to the periods with higher soil water levels
and larger inter-annual variability, that comes before the later continuous
long-term drying trends observed within Sahel [7]. PROPHET extracted and
ranked the 1st, 2nd and 11th discords, that represent the intense droughts that
occurred in Sahel, while the 3rd and 19th discords represent the period where
the high soil water levels and larger inter-annual variability.

2. Rankings are insightful. We can see in the table that the discords vary greatly
in length and also that the number of anomalous points extracted in those are
not proportional to the length. Thus the integration of exact variable length
discords with different anomalous point detectors does bring complementary
information and the scoring function is adequate. This information was able
to extract the prominent discords over the runoff data that reflected both the
driest periods, and periods with highest soil water levels.

Ranking Variable Length Discords 341

3. Climate-related impact insights. Those results are compared to basic statis-
tical analysis of runoff data to demonstrate the thematic insights brought
by combining anomalous point detection and discord methods (Fig. 6). The
first rank of combined PROPHET and discord methods detects an anoma-
lous event/period from August 1983 for 97 months with 12 anomalous points
(Table 5, Fig. 2). Following discords 2, 3 and 4 exhibit larger time windows
but include this first top discord. This is consistent with well known intense
droughts that occurred in Sahel between 1982 and 1987 (Fig. 6a, b), with the
most severe drought ever recorded within the African continent in 1983–1984
(e.g. [18]). Moreover, following ranks of combined PROPHET and discords
emphasize top discords starting in 1902 for at least 60 months (Table 5). The
first ranked of combined MAD and discord methods also detects “anomalies”
in 1904 for 14 months, with following ranked ones including this first top
ranked (Table 5). These results coincide with large positive anomalies both
in annual maximum and annual mean in 1902 and 1903, and with very large
year-to-year variability from 1902 to 1907 (Fig. 6a, c). These early 1900 s s
result also illustrate the well known soil drying trend resulting from a rain-
fall deficit observed between 1900 and 2013 within the region [8]. PROPHET
detects both 1980 s s dry events and 1904 abrupt year-to-year changes, and

(a) Time series of normalized annual runoff

(b) Seasonal cycles (c) Seasonal cycles

Fig. 6. (a) Time series of normalized annual maximum and mean runoff (relative
to their respective mean climatologies over 1902–2005). (b)-(c) Seasonal cycles of
absolute runoff values for each year between 1902 and 2005 (in mm/day).

342 H. El Khansa et al.

it is important to note that MAD does not detect any 1980 s s dry signal in
the first top 20 ranked discords (Table 5).

4 Conclusion and Future Work

In this paper, we proposed a hybrid approach to rank variable length discords
that combine an exact pattern wise outlier approach with anomalous point detec-
tors. Our methodology is generic. We chose the Matrix Profile as the pattern
outlier detector because it is exact and parameter free, generated variable length
discords, and used point wise anomaly detectors to give each discord a score. This
score together with the discord length were used to define a ranking function.

We tested two different point anomaly detectors, a model based detector
(MAD) and predictor based one (PROPHET). We run experiments on large scale
Monthly runoff data of the Sahel region in West Africa from 1902 till 2005. Our
results show that PROPHET is more adequate than MAD, as its top 5 ranked
discords did capture the actual discords. The top 5 discords extracted with MAD
were only able to reflect the periods with highest water level. They also show that
PROPHET is suitable both for detecting specific events (i.e. droughts in 1982,
1983, 1984, etc.) and larger timescale anomalies (i.e. dry decade of 1980 s)s).
MAD is suitable to detect abrupt inter-annual change (i.e. dry 1904/1905 relative
to wet 1902/1903 and 1906 rainy seasons).

In summary, this work contributed a novel approach to exploit variable length
discords and be able to rank them with respect to a complementary data analysis,
point anomalous detectors. The ranking function confirmed pattern outliers for
the climate impact data at hand.

Future work includes running more experimental studies on different impact
climate data and other data sets. We also intend to extend our integration with
alternative point anomaly detectors such as ARIMA, Random Forest and LSTM,
towards a comprehensive approach, given the specificity and impact they have
on the extracted point outliers.

Acknowledgements. The authors would like to thank the Occitanie Region, who
partially funded this research, and the reviewers for their comments and suggestions.

References

1. Arnell, N.W., Lloyd-Hughes, B.: The global-scale impacts of climate change on
water resources and flooding under new climate and socio-economic scenarios. Cli-
matic Change 122(1–2), 127–140 (2014)

2. Boniol, P., Palpanas, T., Meftah, M., Remy, E.: Graphan: graph-based subsequence
anomaly detection. Proceed. VLDB Endow. 13(12), 2941–2944 (2020)

3. Borges, H., Akbarinia, R., Masseglia, F.: Anomaly detection in time series.
In: Hameurlain, A., Tjoa, A.M. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems L. LNCS, vol. 12930, pp. 46–62. Springer, Heidel-
berg (2021). https://doi.org/10.1007/978-3-662-64553-6 3

https://doi.org/10.1007/978-3-662-64553-6_3

Ranking Variable Length Discords 343

4. Chandola, V., Banerjee, A., Kumar, V.: Outlier detection: a survey. ACM Comput.
Surv. 14, 15 (2007)

5. Chen, T., Liu, X., Xia, B., Wang, W., Lai, Y.: Unsupervised anomaly detection
of industrial robots using sliding-window convolutional variational autoencoder.
IEEE Access 8, 47072–47081 (2020)

6. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window. IFAC Proceed. Vol. 46(20), 12–17
(2013)

7. El Khansa, H., Gervet, C., Brouillet, A.: Prominent discord discovery with matrix
profile: application to climate data insights. In: Computer Science & Technology
Trends, Academy and Industry Research Collaboration Center (AIRCC) (2022)

8. Ghiggi, G., Humphrey, V., Seneviratne, S.I., Gudmundsson, L.: GRUN: an
observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst.
Sci. Data 11(4), 1655–1674 (2019)

9. Hansson, A., Cedervall, H.: Insurance fraud detection using unsupervised sequen-
tial anomaly detection (2022)

10. Iglewicz, B., Hoaglin, D.C.: How to detect and handle outliers, vol. 16. ASQ Press
(1993)

11. Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time
series subsequence. In: Fifth IEEE International Conference on Data Mining
(ICDM2005), p. 8. IEEE (2005)

12. Le Gall, P., Favre, A.-C., Naveau, P., Prieur, C.: Improved regional frequency
analysis of rainfall data. Weather Clim. Extremes 36, 100456 (2022)

13. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use
standard deviation around the mean, use absolute deviation around the median.
J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

14. Tianyu, Li., et al.: Anomaly scoring for prediction-based anomaly detection in time
series. In: 2020 IEEE Aerospace Conference, pp. 1–7. IEEE (2020)

15. Yuhong, Li, Leong, H.U., Yiu, M.L., Gong, Z.: Quick-motif: an efficient and scalable
framework for exact motif discovery. In: 2015 IEEE 31st International Conference
on Data Engineering, pp. 579–590. IEEE (2015)

16. Ma, J., Perkins, S.: Time-series novelty detection using one-class support vector
machines. In: Proceedings of the International Joint Conference on Neural Net-
works, 2003, vol. 3, pp. 1741–1745. IEEE (2003)

17. Madrid, F., Imani, S., Mercer, R., Zimmerman, Z., Shakibay, N., Keogh, E.: Matrix
profile xx: finding and visualizing time series motifs of all lengths using the matrix
profile. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp.
175–182. IEEE (2019)

18. Masih, I., Maskey, S., Mussá, F.E.F., Trambauer, P.: A review of droughts on the
African continent: a geospatial and long-term perspective. Hydrol. Earth Syst. Sci.
18(9), 3635–3649 (2014)

19. Miller, B., Linder, F., Mebane, W.R.: Active learning approaches for labeling text:
review and assessment of the performance of active learning approaches. Polit.
Anal. 28(4), 532–551 (2020)

20. Rousseeuw, P.J., Van Driessen, K.: A fast algorithm for the minimum covariance
determinant estimator. Technometrics 41(3), 212–223 (1999)

21. Sanayha, M., Vateekul, P.: Fault detection for circulating water pump using time
series forecasting and outlier detection. In: 2017 9th International Conference on
Knowledge and Smart Technology (KST), pp. 193–198. IEEE (2017)

22. Senin, P., et al.: Time series anomaly discovery with grammar-based compression.
In: EDBT, pp. 481–492 (2015)

344 H. El Khansa et al.

23. Sgueglia, A., Sorbo, A.D., Visaggio, C.A., Canfora, G.: A systematic literature
review of iot time series anomaly detection solutions. Fut. Gener. Comput. Syst.
134, 170–186 (2022)

24. Shao, Z., Yang, K., Zhou, W.: Performance evaluation of single-label and multi-
label remote sensing image retrieval using a dense labeling dataset. Remote Sensing
10(6), 964 (2018)

25. Shi, J., Yu, N., Keogh, E., Chen, H.K., Yamashita, K.: Discovering and labeling
power system events in synchrophasor data with matrix profile. In: 2019 IEEE
Sustainable Power and Energy Conference (iSPEC), pp. 1827–1832. IEEE (2019)

26. Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., Sari-
giannidis, P.: A unified deep learning anomaly detection and classification approach
for smart grid environments. IEEE Trans. Netw. Serv. Manage. 18(2), 1137–1151
(2021)

27. Taylor, S.J., Letham,. B.: Forecasting at scale. Am. Statist. 72(1), 37–45 (2018)
28. Wilcox, R.R.: Fundamentals of modern statistical methods: Substantially improv-

ing power and accuracy, vol. 249, 2nd edn. Springer (2001). https://doi.org/10.
1007/978-1-4419-5525-8

29. Ye, F., Liu, Z., Liu, Q., Wang, Z.: Hydrologic time series anomaly detection based
on flink. Mathematical Problems in Engineering (2020)

30. Yeh, C.-C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
international conference on data mining (ICDM), pp. 1317–1322. IEEE (2016)

31. Yu, Y., Zhu, Y., Li, S., Wan, D.: Time series outlier detection based on sliding
window prediction. Mathematical problems in Engineering (2014)

32. Yue, M.: An integrated anomaly detection method for load forecasting data under
cyberattacks. In: 2017 IEEE Power & Energy Society General Meeting, pp. 1–5.
IEEE (2017)

33. Zhang, H., Guo, W., Zhang, S., Lu, H., Zhao, X.: Unsupervised Deep Anomaly
Detection for Medical Images Using an Improved Adversarial Autoencoder. J.
Digit. Imaging, 35, 153–161 (2021). https://doi.org/10.1007/s10278-021-00558-8

34. Zhu, Y., et al.: Matrix profile II: exploiting a novel algorithm and GPUs to break
the one hundred million barrier for time series motifs and joins. In: 2016 IEEE
16th international conference on data mining (ICDM), pp. 739–748. IEEE (2016)

https://doi.org/10.1007/978-1-4419-5525-8
https://doi.org/10.1007/978-1-4419-5525-8
https://doi.org/10.1007/s10278-021-00558-8

Text, Ontologies and Cross-Modal
Learning

TextMatcher: Cross-Attentional Neural
Network to Compare Image and Text

Valentina Arrigoni(B), Luisa Repele, and Dario Marino Saccavino

UniCredit, Milan, Italy
{valentina.arrigoni,luisa.repele,dariomarino.saccavino}@unicredit.eu

Abstract. We study a multimodal-learning problem where, given an
image containing a single-line (printed or handwritten) text and a candi-
date text transcription, the goal is to assess whether the text represented
in the image corresponds to the candidate text. This problem, which we
dub text matching, is primarily motivated by a real industrial application
scenario of automated cheque processing, whose goal is to automatically
assess whether the information in a bank cheque (e.g., issue date) match
the data that have been entered by the customer while depositing the
cheque to an automated teller machine (ATM). The problem finds more
general application in several other scenarios too, e.g., personal-identity-
document processing in user-registration procedures.

We devise a machine-learning model specifically designed for the text-
matching problem. The proposed model, termed TextMatcher, compares
the two inputs by applying a novel cross-attention mechanism over the
embedding representations of image and text, and it is trained in an end-
to-end fashion on the desired distribution of errors to be detected. We
demonstrate the effectiveness of TextMatcher on the automated-cheque-
processing use case, where TextMatcher is shown to generalize well to
future unseen dates, unlike existing models designed for related problems.
We further assess the performance of TextMatcher on different distribu-
tions of errors on the public IAM dataset. Results attest that, compared
to a naïve model and existing models for related problems, TextMatcher
achieves higher performance on a variety of configurations.

Keywords: Multimodal learning · Text recognition · Text matching ·
Cross attention · Joint embedding learning

1 Introduction

The way we interact with the world concerns stimuli from different senses: im-
ages we see, sounds we hear, words we read. All these examples correspond to
different modalities by which information is presented to us. The same variability
can apply to data presented to a machine, such as images, free text, sounds,
videos. Multimodal learning is an active and challenging research area, whose

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 347–362, 2022.
https://doi.org/10.1007/978-3-031-18840-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_25

348 V. Arrigoni et al.

goal is to build machine-learning models capable of processing and exploiting
information from multiple modalities [3]. It includes numerous (classes of) tasks
– such as multimodal representation learning, modality translation, multimodal
alignment, multimodal fusion, co-learning – and finds application in a wide range
of scenarios – such as audio-visual speech recognition, image/video captioning,
media description, multimedia retrieval.

In this paper, we introduce the following multimodal-learning task, which
we term text matching : given an image representing a single line of (printed or
handwritten) text and a candidate text transcription, assess whether the text
inside the image corresponds to the candidate text.

Applications. The prominent application of the text-matching problem is a
real industrial use case of automated cheque processing, which naturally arises
in the banking domain. In this context, a customer of a bank deposits a bank
cheque to an automated teller machine (ATM). While inserting the cheque into
the ATM, the customer is typically required to also type (through the ATM
keypad) some information that is written on the cheque, such as issue date,
amount, and beneficiary. The match between what is actually written in the
cheque and the data entered by the user is a-posteriori verified by back-office
operators, who would clearly benefit from a decision support system that has at
its core a method to perform this check automatically.

Text matching finds applications in several other real-world scenarios too,
in which an image containing text is assigned the (supposedly) corresponding
text, and particular kinds of mismatching must be avoided. As an example,
softwares for user-registration procedures typically need to collect information
regarding personal identity documents. The user is asked to provide an image
of her document and also to enter data that are written in the document, such
as document identifier, expiration date, and so on. Again, back-office operators
later-on check if there is a match between the document and the entered data,
and, based on the outcome of the match, they accept or reject the registration.

Challenges. An immediate yet naïve method to solve the text-matching task
is to resort to the related well-established problem of text recognition, whose
goal is, given an image that is assumed to contain text, to recognize and output
the text therein [4]. Specifically, the idea would be to use a text-recognition
method to extract the text within the input image and then simply compare the
extracted text with the candidate text. This is a rather simplistic approach, as it
disregards the availability of a candidate text at all. We claim that designing ad-
hoc methodologies for text matching, which properly exploit the information of
the candidate text and are specifically trained on the desired distribution of non-
matching texts, can be more effective. This claim is experimentally confirmed,
see Sect. 5 for more details.

Contributions. We tackle the text-matching problem by devising a machine-
learning model that is specifically designed for it. The proposed model, dubbed
TextMatcher, scans the input image horizontally, searching for characters of the
candidate text. This is performed by projecting the input image and text into

Cross-Attentional Neural Network to Compare Image and Text 349

separate embedding spaces. Then, a novel cross-attention mechanism is employed,
which aims to discover local alignments between the characters of the text and
the vertical slices of the image. The ultimate similarity score produced by the
model is a weighted cosine similarity between features of the characters and
features of the slices of the image, where the weights are the computed attention
scores. Such a score is eventually used to answer the original yes/no matching
question via a thresholding approach.

The model is trained in an end-to-end fashion and, thanks to the cross-
attention mechanism, it produces consistent embedding spaces for both image
and text, and it is able to successfully specialize to specific distributions of errors.
This is desirable because, depending on the application, it can be appropriate
to either correct minor typos or enforce the exact spelling of every word.

Summary and Roadmap. To summarize, our main contributions are:

– We study a multimodal-learning problem termed text matching (Sect. 3),
which finds application in a variety of real scenarios, including an industrial
use case of automated cheque processing, peculiar of the banking domain.

– We devise a machine-learning model, termed TextMatcher, that is specifically
designed for text matching and exploits a novel cross-attention mechanism
(Sect. 4).

– We showcase the proposed TextMatcher in the primary application context
of automated cheque processing, by carrying out experiments on a real-world
(proprietary) dataset of bank cheques provided by UniCredit, a noteworthy
pan-European commercial bank (Sect. 5.1).1

– We further test the performance of TextMatcher on the popular public IAM
dataset [9] (Sect. 5.2). Results on both UniCredit and IAM datasets attest
that TextMatcher achieves high accuracy and is capable of properly handling
specific distributions of errors. It also consistently outperforms a naïve model
and existing text-recognition methods in both those aspects.

Section 2 overviews the related literature. Section 6 concludes the paper.

2 Related Work

The problem we tackle in this work, i.e., text matching, falls into the broad area
of multimodal learning. A comprehensive survey of the main challenges, prob-
lems, and methods in this area is provided by Baltruvsaitis et al. [3]. Referring
to the taxonomy reported in that survey, the category that better complies with
text matching is the (implicit) alignment one, which encompasses multimodal-
learning problems whose goal is to identify relationships between sub-elements
from different modalities, possibly as an intermediate step for another task.

To the best of our knowledge, the text-matching problem has not been specif-
ically studied in the literature: no ad-hoc method has been designed for it so
far. Nevertheless, there exist tasks/methods that share some similarities.In the
remainder of this section, we overview such related works.

1 TextMatcher has been deployed at UniCredit, and it is currently used in production.

350 V. Arrigoni et al.

Text Recognition. Recognizing text in images has been an active research
topic for decades. A plethora of different approaches exist. A prominent state-
of-the-art text-recognition model, which we take as a reference in this work, is
ASTER [15,16], i.e., an end-to-end neural network that is based on an attentional
sequence-to-sequence model to predict a character sequence directly from the
input image. For more approaches and details on text recognition, we refer to
comprehensive Chen et al.’s survey [4].

The main difference between text recognition and our text-matching problem
is that the former extracts text from images without relying on any input candi-
date text. A naïve approach to text matching would be to run a text-recognition
method on the input image, and using the input candidate text only to check the
correspondence with the recognized text. A major limitation of this approach is
that it disregards the candidate text at all, thus resulting intuitively less effective
than approaches that, like the proposed TextMatcher, are specifically designed
for text matching and profitably exploit the candidate text and the given dis-
tribution of errors to be recognized. More specifically, the technical strengths of
the proposed TextMatcher method over a text-recognition-based approach are:

– While the text-recognition model is trained only on the matching data,
TextMatcher is trained with both positive and negative examples, allowing
it to better learn the frontier between the two sets whenever it is relevant,
for instance when a difference of a single character in a specific position is
important for a large portion of data (e.g. “MR Smith” vs. “MS Smith”).

– More importantly, we experimented that the TextMatcher model better gen-
eralises to different distributions at inference time thanks to the training
through negative matching pairs (see Sect. 5.1).

– If the text-recognition model uses an encoder-decoder architecture (like [16]),
the corresponding text-matching model needs only the encoder part, therefore
it tends to be faster during inference.

Word Spotting. Given a collection of images representing single words and
a query text, word spotting aims at ranking all the images of the word-image
collection based on their similarity to the given query [13]. The variant of word
spotting where the query is a text string (and not an image), termed Query-
by-String (QbS), is the one more relevant for our work. Existing approaches to
QbS word spotting aim at learning a map from textual representation to image
representation. A popular choice for text representation in word spotting is the
binary attribute representation referred to as Pyramidal Histogram of Characters
(PHOC) [1]. Recent works use neural networks in order to learn the mapping
from word images to PHOC [6,10,17,18]. For instance, Sudholt and Fink [17]
propose the PHOCNet model, which applies a convolutional neural network
(CNN) to word images in order to estimate a probability distribution over
attributes of the PHOC representation. A more sophisticated approach is pro-
posed by Mhiri et al. [10], which learns a mapping from the word images using
a CNN and from the input text query with a recurrent neural network (RNN)
to a common embedding space, driven by the PHOC representation. On top of

Cross-Attentional Neural Network to Compare Image and Text 351

the learned embeddings, a matching model is trained to refine the response of
the nearest-neighbor queries. Although sharing some similarities with our app-
roach, this method is not trained end-to-end together with the matching model,
and compares image and text only after the embedding vectors are produced, dif-
ferently from our cross-attention mechanism. More importantly, in general, the
word-spotting task is usually designed and evaluated with the assumption that
the vocabulary of words is fixed, which is not true in our case.

Image-text Matching is another (loosely) related task, whose goal is to mea-
sure the semantic similarity between an image and a text [8,11,12,20]. Despite
similar in spirit, image-text matching is different from text matching from a
conceptual point of view. The fundamental difference is that the input images to
image-text matching are general-purpose ones, i.e., they are not constrained to
represent a (single-line) text. For instance, the goal in image-text matching might
be to assess whether an image depicting a dog playing with a ball is well described
by the “A dog is playing with a ball ” text. For this reason, image-text match-
ing considers the semantic content of the image, whereas text matching looks
solely at (the syntax of) the text in the image. As a result, image-text match-
ing is typically employed in applications far away from the ones targeted by text
matching (e.g., generation of text descriptions from images or image search), and
existing approaches to image-text matching cannot (be easily adapted to) work
for our text-matching problem. From a methodological point of view, image-text
matching and text matching share more similarity, as both the problems can
be approached with techniques that involve learning a shared representation for
image and text. However, important technical differences still remain. Among
the prominent models for image-text matching are the ones proposed in [8,11],
which use a cross-attention mechanism to inspect the alignment between image
regions and words in the sentence, and [20], which exploits the correlation of
semantic roles with positions (those of objects in an image or words in a sen-
tence). The proposed TextMatcher uses attention as well, but, unlike [11,20], it
makes a simpler consideration of the horizontal position of a character in the
image. Also, while [8,11,20] use pretrained models to generate feature represen-
tations for the image regions, our TextMatcher is trained end-to-end, thus being
capable of learning the weights of the convolutional layer alongside the attention
layer.

3 Text Matching Problem

We tackle a multimodal-learning problem, which we term text matching and
define as follows: given an image containing a single-line text (printed or hand-
written) written horizontally, together with a candidate text transcription, assess
whether the text inside the image corresponds to the candidate text. This corre-
sponds to a binary supervised-classification task, in which we are given a dataset
of the form {(

(Ii, ti), li
) |i = 1, . . . , n}, where Ii and ti are image and text inputs

of the i-th example, and li is the corresponding binary label. In particular, we
adopt the following convention: an (image, text) pair is assigned the “1” label if

352 V. Arrigoni et al.

image and text correspond, and, in this case, the pair is referred to as a match-
ing pair. Otherwise, the pair is assigned the “0” label, and it is referred to as a
non-matching pair. Similarly, we talk about matching and non-matching texts
for a given image. An illustration of the input to text matching is in Fig. 1.

Fig. 1. Text matching as a binary supervised-classification task.

4 Proposed Approach

We propose a model called TextMatcher which directly compares an input image
and a candidate text, producing a similarity score. The overall architecture is
illustrated in Fig. 2. The image and the text are independently projected as
matrices into separate embedding spaces, through image embedding and text
embedding blocks, respectively. These embeddings are then compared with each
other through a cross-attention mechanism, whose aim is to discover local align-
ments between the characters of the text and the vertical slices of the image
(i.e. rectangular regions obtained by scanning the image along the horizontal
axis), and produces in output a similarity score. A key peculiarity of the cross-
attention component is that it helps the model specialize to the distribution of
specific errors to be recognized. The three blocks in the overall TextMatcher
model (i.e., image embedding, text embedding, and cross-attention mechanism)
are jointly trained in an end-to-end fashion, via a contrastive loss function. In
the following, we describe in detail the various components of TextMatcher.

4.1 Image Embedding

In order to produce the image embedding, the input image is first resized to a
fixed dimension, and then it is processed by some convolutional layers, followed
by recurrent layers in order to also encode contextual information. The output of
this neural network module is the image embedding J of fixed si ×di dimension-
ality, where si denotes the number of receptive fields, or slices, from the input
image, and di is the feature dimension. More precisely, in this work we use the
encoder block of the ASTER model from [16] to extract the image embedding:
the input image is fed into a set of convolutional layers and batch normalization
layers, followed by a bidirectional Long Short-Term Memory (LSTM) module.
All the weights of the convolutional layers, batch normalization layers, and bidi-
rectional LSTM are jointly learned in the final multimodal task.

Cross-Attentional Neural Network to Compare Image and Text 353

Fig. 2. TextMatcher architecture.

4.2 Text Embedding

As for text embedding, we simply use an embedding matrix over the characters
of the alphabet. Let A be the alphabet at hand, which we assume to include
a special character for the padding. The embedding matrix Temb is a learnable
matrix of dimension |A| × dt. Given a text c1c2 . . . cl, we first pad it to a fixed
length st (or truncate it, if l > st). Then each character ci is projected into the
embedding space through the embedding matrix Temb. The final embedding of
the input text is a matrix T of dimensionality st × dt, whose row i is the row of
Temb corresponding to the character ci, for i = 1, . . . , st.

4.3 Cross-Attention Mechanism

The attention mechanism was originally devised by Bahdanau et al. [2] in the
context of encoder-decoder-based machine-translation systems, as a solution to
the renowned issue of RNNs of rapid performance degrading as the length of
the input sentence increases. Later, this mechanism has been widely employed
in other contexts concerning sequential inputs, including natural language pro-
cessing, computer vision, and speech processing.

The TextMatcher cross-attention component takes as input the J and T
embeddings of image and text, and discovers local alignments between them. A
similar idea is exploited in the self-attention mechanism of the well-established
Transformer architecture [19]. In the latter, the self-attention computes a
weighted representation of each token attending to the entire sentence. Con-
versely, in our case a multimodal approach is employed: each character of the
input text attends to the vertical slices of the image. Moreover, in [19], the atten-
tion scores are used to compute a weighted sum of the value vectors of each token
in the sentence, while, in our case, the attention scores are used to compute a
weighted sum of cosine similarities between each character and the slices of the
image, since our goal is to compute a similarity between image and text.

Specifically, the cross-attention mechanism of TextMatcher is as follows. First
of all, in order to inject some positional information, we add independent posi-
tional embeddings to both image and text embeddings. The positional embed-
dings have the same dimension of the corresponding text or image embedding,

354 V. Arrigoni et al.

)b()a(

Fig. 3. (a) Visual representation of the cross-attention mechanism employed in the
proposed TextMatcher model. (b) Computation of the attention matrix.

and, as such, they can be summed up. Inspired by [19], we use sine and cosine
functions of different frequencies, where each dimension of the positional encod-
ing corresponds to a sinusoid. The rationale is that this function would allow the
model to easily learn to attend by relative positions. From now on, with a little
abuse of notation, we will consider T and J as the text and image embeddings
with the addition of the positional embeddings.

Let us consider the perspective of the text: for each character of the text,
we want to compute an attention score with respect to each vertical slice of the
image embedding, in order to pay more attention to the portion of the image that
is expected to contain the corresponding character. The idea of this attention
mechanism is depicted in Fig. 3(a). We compute attention scores between the
embeddings of the characters and those of the vertical slices of the image by
first projecting these vectors into separate embedding spaces of dimension datt,
and then computing normalized dot products between all pairs of characters and
slices of the image. In particular, we compute query vectors of dimension datt

for the text and key vectors of dimension datt for the image. These vectors are
packed together respectively into the query matrix Q = TQt and the key matrix
K = JKi, where Qt and Ki are learnable parameters of dimension dt × datt and
di × datt respectively. The resulting matrices are Q of dimension st × datt and
K of dimension si × datt. We compute the attention matrix of dimension st × si

as the dot product between the query Q and the key K, and then we apply a
softmax function over the columns of the result, as illustrated in Fig. 3(b):

A = softmax(QKt,dim = 1). (1)

where the notation dim = 1 refers to the computation along the columns. In this
way, the i-th row of the attention matrix contains the normalized attention scores
of the i-th character of the input text with respect to each vertical slice of the
image embedding. Then, the value vectors are used to compute a weighted cosine
similarity between characters and vertical slices of the image embedding. First,
normalized value matrices are computed for both image and text embeddings:

Vtext = normalize(TVt,dim = 1), Vimage = normalize(JVi,dim = 1), (2)

with learnable parameters Vt and Vi of dimension dt × datt and di × datt respec-
tively. The resulting matrices Vtext of dimension st×datt and Vimage of dimension

Cross-Attentional Neural Network to Compare Image and Text 355

si × datt are normalized over the columns in order to directly compute cosine
similarities as their dot product. The cosine matrix C = VtextV

t
image has dimen-

sion st ×si: the component (i, j) is the cosine similarity between the character at
position i and the vertical slice of the image embedding at position j. Then, the
cosine matrix is multiplied element-wise with the attention matrix, and a sum
over the columns is performed, in order to compute a weighted cosine similarity
of each character with respect to each vertical slice of the image embedding:

Catt = sum(C � A,dim = 1), (3)

where � stands for the element-wise multiplication. Finally, the similarities not
related to pad characters are summed up, obtaining the final similarity score
between the input image and the candidate text: Stm = sum(Catt[pad = 1]).

The Stm score is exploited to ultimately predict the l̂ binary label via a
thresholding mechanism: given a threshold τ ,

l̂ =

{
1, if Stm ≥ τ

0, if Stm < τ
(4)

4.4 Loss

Overall, the TextMatcher model has the following parameters: Wencoder, Temb,
posi, post, Qt, Ki, Vt, Vi, where Wencoder contains the weights of the image
encoder and post and posi are the positional embeddings, possibly carefully
initialized and then frozen. Given a dataset of matching and non matching pairs
{(
(Ii, ti), li

) |i = 1, . . . , n}, where Ii and ti are image and text inputs of the
i-th example and li is the corresponding binary label, the matching network is
trained with the following contrastive loss, originally introduced in [7] :

L = αl (1 − Stm)2 + (1 − l)max{m − (1 − Stm) , 0}2, (5)

where m is the margin and α balances matching and non-matching pairs.

5 Experiments

In this section, we present experiments to empirically assess the performance
of our TextMatcher model, on both an industrial use case of automated cheque
processing – using a real (proprietary) dataset of bank cheques, and on a more
general context – using a popular public dataset of handwritten text (i.e., IAM).

Competitors. We compare our TextMatcher to (i) a text-recognition model
adapted to work for text matching, and (ii) a naïve model for text matching.

As for the former, the text transcription t̂ produced by a text-recognition
model run on an input image I is compared to the input candidate text t so as
to produce a similarity score. Specifically, such a similarity score is computed as

Str = 1− Lev(t̂,t)
max{|t̂|,|t|} , where Lev (·, ·) denotes the well-known Levenshtein distance

356 V. Arrigoni et al.

between text strings, and |t| is the number of characters in t. The training is
performed with the dataset {(

Ii, ti
) |i = 1, . . . , n}, where Ii is the i-th image

and ti the corresponding (correct) text. As a text-recognition model we use the
well-established state-of-the-art ASTER [16].

As a naïve text-matching model, we consider a model that computes image
and text embeddings separately, and then computes the cosine similarity between
their average vectors. The image embedding J of dimension si × di and the
text embedding T of dimension st × dt are defined in the same way as in
TextMatcher, with the constraint di = dt. Then, the average embeddings
Tavg = mean(T,dim = 0) and Javg = mean(J,dim = 0) are computed, with
the convention that rows related to pad characters are not considered in the
average of the text embedding. Finally, the output of the model is the cosine
similarity between the average image and text Sn = Tt

avg·Javg

‖Tavg‖·‖Javg‖ . The parame-
ters of the convolutional part and the embedding matrix for the text are trained
end-to-end in the final multimodal task, using the loss in Sect. 4.4. We term such
a naïve text-matching model NaïveTextMatcher.

For both competitors, we compute the predicted binary label from the Str

and Sn similarities in the same way as done in TextMatcher (Eq. (4)).

Implementation Details. We resize each grayscale image to 32×256 pixels and
normalize pixel values to [−1.0, 1.0]. The image embedding part is the encoder of
ASTER [16] with a final bidirectional LSTM with 256 hidden dimension, which
produces an image embedding of dimension 64 × 512. The encoder is initialized
with the weights of the pretrained model published together with the source code
of [16]. For the text embedding we use dt = 512. We add positional embeddings to
both image and text embeddings, using the same initialization strategy proposed
in [19], and then we freeze them during training. The attention dimension datt is
set at 512. The text embedding and the other attention parameters are initialized
with the Xavier initialization [5]. The training is performed with Stochastic
Gradient Descent (SGD), with 0.9 momentum, using a learning rate equal to
0.005 and batch size 8. As for the loss, we use margin m = 1 and α = 1 for the
experiments on IAM and α = 0.2 for the real use case. The maximum number
of epochs is 50. NaïveTextMatcher is initialized analogously to TextMatcher.

As for the text-recognition competitor, we use the available source code of
ASTER [16].2 ASTER is initialized with the weights of the publicly available
pretrained model. All hyperparameters are set to the default values, except for
the batch size set to 64, the height of input images set to 32, and the maximum
number of epochs set to 35.

In the automated-cheque-processing use case we use an object-detection
model (specifically, the state-of-the-art YoLo [14]) to first extract the part of
a cheque containing the field of interest.

2 https://github.com/ayumiymk/aster.pytorch.

https://github.com/ayumiymk/aster.pytorch

Cross-Attentional Neural Network to Compare Image and Text 357

5.1 Industrial Use Case of Automated Cheque Processing

A major application of the text-matching problem is in the context of auto-
mated cheque processing. The typical scenario here is that a customer of a bank
who deposits a cheque to an ATM is asked to type some information that is
written on the cheque, e.g., amount, issue date, beneficiary. Later, back-office
operators manually check the correspondence between the information typed
by the customer and what is written on the cheque. The main goal of a text-
matching solution is to automate such a correspondence verification, in order to
help operators perform their manual checks more easily and faster.

We evaluated the proposed TextMatcher in automated cheque processing
by using a (proprietary) real dataset provided by UniCredit, a renowned pan-
European commercial bank. Although we experimented with other fields too (i.e.,
amount, beneficiary), here we focus on the verification of the issue date of a bank
cheque, as it is more challenging and appropriate to showcase the usefulness of
text matching. Specifically, as main challenges, a model for matching the date
field must be sensitive to single-digit differences, and the set of texts available
at training time (built from cheques deposited in the past) is disjoint from the
set of texts that will be used at inference time, as the latter includes dates that
are in the future with respect to the dates observed during training. In order
to handle the future-date issue, we take particular advantage of the proposed
text-matching framework, which offers the chance to inject into the model the
desired behaviour through the non-matching texts. Moreover, the number of non-
matching (i.e., negative) samples in the real dataset is very small, therefore we
keep these examples for testing purposes and use a synthetic matching dataset for
training. In the following, we first describe the strategy for generating synthetic
negative samples, and, then, we present the results of the evaluation.

Non-matching Sample Generation. As for the possible difficulties in distin-
guishing a non-matching text t̃, we observe that: (i) dates t̃ differing from t only
for the year are more likely to receive higher similarities if the year in t̃ is present
in the training set; and (ii) dates with the same digits as t but in different posi-
tions tend to be more challenging, since the position plays an important role.
Motivated by these observations, for every matching pair (I, t) (that is originally
present in the dataset), we generate a new non-matching pair (I, t̂) as follows:

– with probability 0.3, randomly change 1 digit on the day;
– with probability 0.3, randomly change 1 digit on the month;
– with probability 0.15, randomly change 1 digit out of the last 2 on the year;
– with probability 0.15, change the year to a different one, chosen among the

years represented in the training set;
– with probability 0.1, pick a random date.

358 V. Arrigoni et al.

Fig. 4. Examples of images representing issue dates of bank cheques.

Whenever we change one digit in the day or month, with probability 0.5 we
sample the replacement from the set {0, . . . , 9}, and with probability 0.5 we
sample from the set of digits already present in the date.

Dataset Details. We use a real dataset of (matching pairs) of about 50k images,
with dates spanning a period from 2018 to 2021. We use dates from the year
2022 to experiment on future dates. We perform an 80-10-10 splitting in training,
validation and test sets. Sample images are illustrated in Fig. 4. Note that the
available ground truth is in the format dd/mm/yyyy, while the exact wording
inside the cheque might have the year in two digits (e.g., “21” instead of “2021”),
and, in case of day or month lower than 10, the zero can be present or not. For
these reasons, we convert the input text to a normalized format of fixed length
without separator (ddmmyy), where the possible first zero of day and month
is encoded in the “ ∗ ” padding character. For instance the date 02/04/2021 is
encoded as the text ∗2∗421. Therefore, the maximum text length is 6 and the
alphabet is 0123456789∗. To improve the generalization capabilities of the model
in handling future dates, we also enlarge the training dataset with 5k examples
of synthetic dates with year from 2000 to 2030, generated by concatenating digits
from MNIST and adding a background resembling the one of cheques, and with
15k examples of amounts from real cheques with 6 digits and at most 2 zeros.

Results. We report the results of TextMatcher and its competitors on the test
set obtained from the splitting of the real dataset of 50k images (test-50k), as
well as on a real test set of 165k examples of real matching and non-matching
examples from cheques deposited in January and February 2022 (real-2022). This
way, the models are evaluated not only on future unseen dates, but also on real
negative examples. The rate of negative examples in this real test set is 1.5%,
and the handwritten images are 90% of the total. We assess the performance
using the false positive (FP) and false negative (FN) rates. These metrics are
particularly meaningful for the application scenario at hand, in which the main
aim is to have low FP while keeping the FN acceptable (e.g. FP ≤ 2% and
FN ≤ 20%). We report the results separately for handwritten (FPh, FNh) and
printed (FPp, FNp) images using the optimal threshold that minimizes:

10FP + FN, (6)

with the constraint FN ≤ 60% to get reasonable results. The results are sum-
marized in Table 1. On the test set with the same distribution as the training

Cross-Attentional Neural Network to Compare Image and Text 359

Table 1. Results on automated cheque processing: matching the issue date of a bank
cheque. The optimal threshold τ (Eq. (4)) is selected according to Eq. (6) achieved by
every method on the validation set.

Dataset Method τ FPp FNp FPh FNh

test-50k TextMatcher 0.74 0.33 5.96 0.57 8.23

ASTER 0.10 0.08 4.93 0.00 6.76

NaïveTextMatcher 0.18 8.71 56.48 11.38 61.84

real-2022 TextMatcher 0.74 0.90 3.55 0.90 9.59

ASTER 0.10 0.90 49.79 0.00 74.66

NaïveTextMatcher 0.18 8.80 68.33 7.58 77.26

set (test-50k), TextMatcher and ASTER perform comparably. Conversely, in
the real test set (real-2022), ASTER exhibits a considerable false-negative rate,
i.e., 74.66 and 49.79 for the handwritten and printed case, respectively, whereas
our TextMatcher generalizes well to unseen future dates as well as to the real
distribution of non-matching samples, producing error rates comparable to that
obtained on test-50k. These results motivated the adoption of TextMatcher in
production for automated cheque processing at UniCredit.

5.2 General Applicability of Text Matching (IAM Dataset)

Here we present experiments carried out on the well-known real public IAM
handwriting database [9]. This set of experiments aims at investigating the
applicability of TextMatcher to more general settings, where the goal is to han-
dle distributions of errors arising from different application scenarios. Moreover,
these experiments also give the opportunity to highlight the differences between
TextMatcher and the text-recognition models, giving the idea of the kind of
application in which TextMatcher can achieve remarkable results.

Non-matching Sample Generation. We consider four ways of injecting errors
to generate the negative examples:

– random: given a vocabulary V , the text of a non-matching pair is given by
a random word of V (e.g., matching text meeting, non-matching text apple);

– edit1: the non-matching text has Levenshtein distance equal to 1 from the
matching text (e.g., matching text meeting, non-matching text meating);

– edit12: the non-matching text has Levenshtein distance equal to 1 or 2 (with
equal probability) from the matching text;

– mixed: the non-matching text is a random word of V with probability 1
3 , has

Levenshtein distance equal to 1 with probability 1
3 , or Levenshtein distance

equal to 2 with probability 1
3 .

We made 4 datasets containing one non-matching sample for each matching pair.

Dataset Details. The IAM handwriting database [9] consists of 1 539 pages of
scanned text from 657 different writers. The database also provides the isolated
and labeled words that were extracted from the pages of scanned text using an

360 V. Arrigoni et al.

automatic segmentation scheme (and a-posteriori manually verified). We use the
dataset at word level, and consider the available splitting proposed for the Large
Writer Independent Text Line Recognition Task, in which each writer contributed
to one set only. We set the alphabet to abcdefghijklmnopqrstuvwxyz-’∗, and we
filter out words with characters outside the alphabet, or words only composed
of punctuation marks. Finally, we only retain words with at least 5 characters.
The final training, validation and test sets have size 17 550, 4 947, and 4 175,
respectively. The maximum word length is 21.

Results. We evaluate the selected models using the confusion matrix and the
F1-score. We choose the optimal threshold τ (Eq. (4)) for every method on the
validation set, according to the F1-score, and report the performance on the
test set. The results presented in Table 2 show that the proposed TextMatcher
outperforms all the competitors in all the configurations. ASTER was recognized
as the best competitor, as expected. In general, for any method, the best per-
formance is achieved on the random configuration, whereas edit1 and edit12
configurations have the lowest performance, and mixed has intermediate per-
formance. This is expected as the higher the similarity between a non-matching
text and the corresponding matching text, the higher the difficulty for a model
to accomplish the text-matching task, and, hence, the lower the accuracy.

Table 2. Results on the IAM handwriting database, for different configurations of non-
matching-sample generation. The optimal threshold τ (Eq. (4)) is selected according
to the best F1-score achieved by every method on the validation set.

Configuration Method τ TP FP TN FN F1
random TextMatcher 0.46 99.21 1.10 98.90 0.79 99.06

ASTER 0.47 97.39 1.05 98.95 2.61 98.15

NaïveTextMatcher 0.48 90.28 13.49 86.51 9.72 88.61

edit1 TextMatcher 0.48 88.91 18.42 81.58 11.09 85.77

ASTER 0.94 73.63 0.00 100.00 26.37 84.81

NaïveTextMatcher 0.48 90.06 71.02 28.98 9.94 68.99

edit12 TextMatcher 0.50 89.84 14.23 85.77 10.16 88.05

ASTER 0.94 73.63 0.07 99.93 26.37 84.78

NaïveTextMatcher 0.46 95.66 75.04 24.96 4.34 70.67

mixed TextMatcher 0.52 92.93 8.07 91.93 7.07 92.47

ASTER 0.95 73.60 0.05 99.95 26.40 84.77

NaïveTextMatcher 0.48 82.47 35.78 64.22 17.53 75.57

5.3 Discussion

We conclude this section by highlighting some key advantages of our
TextMatcher over its most effective competitor, i.e., the text-recognition ASTER
model.

The results on IAM show that, in general, TextMatcher achieves better F1-
scores than ASTER, in particular for the edit12 and mixed configurations, where

Cross-Attentional Neural Network to Compare Image and Text 361

errors of different complexity need to be recognized together. This is related to
the distribution of similarities produced by the two models. Indeed, TextMatcher
yields a continuous distribution of values, treating different kinds of error simi-
larly. Conversely, ASTER’s distribution of similarities is discontinuous, thereby
needing different optimal thresholds for different kinds of error.

Moreover, our TextMatcher can be trained on a specific distribution of errors,
and even on different distributions at inference time (through the non-matching
texts), as for the case of the issue date of bank cheques. This means that the
model is flexible yet general enough to handle any particular application sce-
nario. Indeed, it can be trained on specific patterns that are known to occur
and are perhaps particularly difficult to detect for the application scenario at
hand (e.g., distinguish “facebook ltd ” from “facebook inc”). Once trained on the
desired negative examples, TextMatcher specializes itself in recognizing these
errors, paying more attention to the part of the text that is more relevant for
those errors. Conversely, a text-recognition model like ASTER treats all kinds
of error in the same way, thus resulting to be less general and versatile.

Finally, our TextMatcher is also more efficient than ASTER at inference time.
We tested the CPU inference time of the two trained models for 1 000 random
examples taken from the IAM mixed configuration: ASTER takes around 0.58
seconds per image on average, whereas TextMatcher takes around 0.07 seconds
per image, which corresponds to a 8.75x speed-up.

6 Conclusions

In this paper, we study the task of text matching, to assess whether an image
containing a single-line text corresponds to a given text transcription, and
devise the TextMatcher machine-learning model for this task. The proposed
TextMatcher projects image and text into separate embedding spaces, employs
a cross-attention mechanism to discover local alignments between those embed-
dings, and is trained end-to-end on the distribution of errors to be recognized.

We experimentally evaluate TextMatcher on real data, including a propri-
etary dataset from a real industrial scenario of automated cheque processing,
and the popular public IAM dataset. Compared to a naïve model and a state-of-
the-art method for the related task of text recognition, TextMatcher proves to
be more effective and better suited for handling different distributions of errors.

References

1. Almazán, J., Gordo, A., Fornés, A., Valveny, E.: Word spotting and recognition
with embedded attributes. IEEE TPAMI 36(12), 2552–2566 (2014)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR (2015)

3. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey
and taxonomy. IEEE TPAMI 41(2), 423–443 (2018)

4. Chen, X., Jin, L., Zhu, Y., Luo, C., Wang, T.: Text recognition in the wild: a
survey. ACM CSUR 54(2), 42:1-42:35 (2021)

362 V. Arrigoni et al.

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, pp. 249–256 (2010)

6. Gómez, L., Rusinol, M., Karatzas, D.: LSDE: levenshtein space deep embedding
for query-by-string word spotting. In: ICDAR, pp. 499–504 (2017)

7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: CVPR, pp. 1735–1742 (2006)

8. Lee, K.H., Chen, X., Hua, G., Hu, H., He, X.: Stacked cross attention for image-text
matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV,
pp. 212–228 (2018)

9. Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline
handwriting recognition. IJDAR 5(1), 39–46 (2002)

10. Mhiri, M., Desrosiers, C., Cheriet, M.: Word spotting and recognition via a joint
deep embedding of image and text. Pattern Recogn. 88, 312–320 (2019)

11. Qi, X., Zhang, Y., Qi, J., Lu, H.: Self-attention guided representation learning for
image-text matching. Neurocomputing 450, 143–155 (2021)

12. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: ICML, pp. 8748–8763 (2021)

13. Rath, T.M., Manmatha, R.: Word spotting for historical documents. IJDAR 9(2),
139–152 (2007)

14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: CVPR, pp. 779–788 (2016)

15. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with
automatic rectification. In: CVPR, pp. 4168–4176 (2016)

16. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional
scene text recognizer with flexible rectification. IEEE TPAMI 41(9), 2035–2048
(2018)

17. Sudholt, S., Fink, G.A.: PHOCNet: a deep convolutional neural network for word
spotting in handwritten documents. In: ICFHR, pp. 277–282 (2016)

18. Sudholt, S., Fink, G.A.: Attribute CNNs for word spotting in handwritten docu-
ments. IJDAR 21(3), 199–218 (2018)

19. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
20. Wang, Y., et al.: Position focused attention network for image-text matching. In:

IJCAI, pp. 3792–3798 (2019)

Can Cross-Domain Term Extraction
Benefit from Cross-lingual Transfer?

Hanh Thi Hong Tran1,2,3(B) , Matej Martinc1 , Antoine Doucet3 ,
and Senja Pollak2

1 Jožef Stefan International Postgraduate School,
Jamova cesta 39, 1000 Ljubljana, Slovenia

hanh.usth@gmail.com
2 Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

3 University of La Rochelle, 23 Av. Albert Einstein, La Rochelle, France

Abstract. Automatic term extraction (ATE) is a natural language pro-
cessing task that eases the effort of manually identifying terms from
domain-specific corpora by providing a list of candidate terms. In this
paper, we experiment with XLM-RoBERTa to evaluate the abilities of
cross-lingual and multilingual versus monolingual learning in the cross-
domain ATE task. The experiments are conducted on the ACTER corpus
covering four domains (Corruption, Wind energy, Equitation, and Heart
failure) and three languages (English, French, and Dutch) and on the
RSDO5 Slovenian corpus, covering four additional domains (Biomechan-
ics, Chemistry, Veterinary, and Linguistics). Regarding the ACTER test
set, the cross-lingual and multilingual models boost the performance in
F1-score by up to 5% if the term extraction task excludes the extraction
of named entity terms (ANN version) and 3% if including them (NES
version) compared to the monolingual setting. By adding an extra Slove-
nian corpus into the training set, the multilingual model demonstrates a
significant improvement in terms of Recall, which, on average, increases
by 18% in the ANN version and 13% in the NES version compared with
the monolingual setting. Furthermore, our methods defeat state-of-the-
art (SOTA) approaches with approximately 2% higher F1-score on aver-
age for the ANN version in English and Dutch, and the NES version in
French. Regarding the RSDO5 test set, our monolingual approach proves
to have consistent performance across all the train-validation-test combi-
nations, achieving an F1-score above 61%. These results are a good indi-
cation of the potential in cross-lingual and multilingual language models
not only for term extraction but also for other downstream tasks. Our
code is publicly available at https://github.com/honghanhh/ate-2022.

Keywords: Term extraction · XLM-RoBERTa · Sequence labeling ·
Cross-lingual · Cross-domain

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 363–378, 2022.
https://doi.org/10.1007/978-3-031-18840-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_26&domain=pdf
http://orcid.org/0000-0002-5993-1630
http://orcid.org/0000-0002-7384-8112
http://orcid.org/0000-0001-6160-3356
http://orcid.org/0000-0002-4380-0863
https://github.com/honghanhh/ate-2022
https://doi.org/10.1007/978-3-031-18840-4_26

364 H. T. H. Tran et al.

1 Introduction

Terms are textual expressions that denote concepts in a specific field of expertise.
They are beneficial for several terminographical tasks performed by linguists
(e.g., construction of specialized term dictionaries [21]). Moreover, terms can also
support and improve several complex downstream natural language processing
(NLP) tasks, such as topic detection [6], information retrieval [22], machine
translation [36], etc. Automatic term extraction (ATE) was born to ease the
time and effort needed to manually identify terms from domain-specific corpora.

The TermEval 2020 shared task on monolingual ATE, organized as part of
the CompuTerm workshop [30], presented one of the first opportunities to sys-
tematically study and compare various ATE systems with the introduction of a
new annotated corpus that covers four domains in three languages: The Anno-
tated Corpora for Term Extraction Research (ACTER) dataset [30,31]. While
the workshop was an important step forward in systematic comparison, the less-
resourced languages (e.g., Slovenian) have not yet been sufficiently explored and
remain a research gap. Furthermore, there is still room for improvement in per-
formance and replicability as the open-sourced code is often not available.

Inspired by the success of Transformer-based models in the TermEval 2020
competition [11] and the rise of cross-lingual learning [19], we propose to explore
the performance of the multilingual XLM-RoBERTa pretrained model [3] in a
multilingual setting, and in a cross-lingual setting, where the model is fine-tuned
on several languages and tested on a new unseen language. We model the ATE
as a sequence-labeling task. Sequence-labeling approaches have been successfully
applied to a range of similar NLP tasks, including Named Entity Recognition
[18,34] and Keyword Extraction [16,25]. The experiments are conducted in the
cross-domain setting on the ACTER dataset containing texts in four domains
(Corruption, Wind energy, Equitation, and Heart failure) with three languages
(English, French, and Dutch) and the RSDO5 corpus1 [12] containing Slovenian
texts from four domains (Biomechanics, Chemistry, Veterinary, and Linguistics).

The main contributions of this paper can be summarized as follows:

– We systematically evaluate the performance of XLM-RoBERTa language
model on the cross-domain term extraction task on two datasets covering
English, French, Dutch, and a less-resourced language, Slovenian.

– We compare the performance of cross- and multilingual toward monolingual
approaches to determine the general applicability of multilingual language
models for sequence labeling in both rich- and less-resourced languages, for
which manually labeled training resources are and are not available.

This paper is organized as follows: Sect. 2 presents the related work. Next, we
introduce the dataset, methodology, experimental details as well as evaluation
metrics in Sect. 3. The results with error analysis are discussed in Sect. 4 and 5
before we conclude and present future works in Sect. 6.

1 https://www.clarin.si/repository/xmlui/handle/11356/1470.

https://www.clarin.si/repository/xmlui/handle/11356/1470

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 365

2 Related Work

The history of ATE has its beginnings during the 1990s s with research done by
Damerau et al. [5], Justeson et al. [14]. ATE systems usually employ the two-step
procedure: (1) extracting a list of candidate terms; and (2) determining which
candidate terms are correct using supervised or unsupervised techniques. We
divide these techniques into the approaches based on (1) term characteristics
and (2) machine learning and deep learning.

2.1 Approaches Based on Term Characteristics

Traditional ATE approaches relied on linguistic knowledge and distinctive lin-
guistic aspects of terms to extract possible candidates. Several NLP tools
(e.g., tokenization, lemmatization, stemming, chunking, PoS tagging, etc.) are
employed to obtain linguistic profiles of term candidates. As a heavily language-
dependent approach, the better the quality of the pre-processing tools (e.g.,
FLAIR [1], Stanza [28]), the better the quality of linguistic ATE methods. More
recently, several studies were proposed that preferred the statistical approach
toward ATE. The most common statistical approach relies on the assumption
that a higher candidate term frequency in a domain-specific corpus implies a
higher likelihood that a candidate is an actual term. Some measures relying on
this assumption include termhood [35], unithood [4] or C-value [9]. More popular
statistical approaches take also into account the frequency of the term internal
words compared to the term frequency (e.g., Mutual Information) to identify
rare terms and remove frequent words. Many current systems still apply this
approach’s variation, most commonly in hybrid systems combining linguistic
and statistical information [15,29].

2.2 Approaches Based on Machine Learning and Deep Learning

Recently, advances in embeddings and deep neural networks have also influenced
the field of term extraction. Several embeddings have been investigated for the
task at hand, for example, uni-gram term representations constructed from a
combination of local and global vectors [2], non-contextual [37], contextual [17]
word embeddings, and the combination of both [10]. The first use of language
models for the ATE task is documented in the TermEval 2020 [30] competition
on the ACTER dataset, a collection of four domain-specific corpora in three lan-
guages (English, French, and Dutch). There, the winning approach on the Dutch
corpus used pretrained GloVe word embeddings fed into a BiLSTM-based neural
architecture. Meanwhile, the winning approach on the English corpus [11] relied
on the extraction of all possible n-gram combinations, which are fed into a BERT
binary classifier that determines for each n-gram inside a sentence, whether it
is a term or not. Besides, several variations of Transformer-based models have
also been investigated (e.g., RoBERTa and CamemBERT have also been used
in the TermEval 2020 [11] challenge). Further work inspired by TermEval 2020

366 H. T. H. Tran et al.

includes the HAMLET [32], which proposes a hybrid adaptable machine learn-
ing approach that combines the linguistic and statistical clues to detect terms.
When it comes to more general related work applicable to ATE task, the research
by Kucza et al. [17] was one of the first to propose to model term extraction
as a sequence labeling task. Cross-lingual sequence labeling was, on the other
hand, explored in Conneau et al. [3] and Lang et al. [19], who take advantage
of XLM-RoBERTa, the model we also employ in this work, to compare three
cross-lingual approaches, including a binary sequence classifier, a sequence clas-
sifier, and a token classifier on several sequence-labeling tasks. Finally, Lang et
al. [19] further proposes to use a multilingual encoder-decoder denoising pre-
training model called mBART [23] to generate sequences of comma-separated
terms from the input. The results demonstrate the capability of multilingual
models to outperform monolingual ones in some specific scenarios and the poten-
tial of cross-lingual learning.

2.3 Approaches for Slovenian Term Extraction

When it comes to the ATE for Slovenian, and more generally to less-resourced
languages, the research is still hindered by the lack of gold standard corpora
and limited use of neural methods. The things are nevertheless slowly improv-
ing. For example, in recent years, Slovenian KAS corpus was compiled [7]. The
release was quickly followed by another corpus designed for term extraction, the
RSDO5 corpus that we use in our study [13]. Regarding the employment of ATE
models for Slovenian, one of the first approaches was the statistical approach by
Vintar et al. [35]. The SOTA was proposed by Ljubevsic et al. [24], where they
extract the initial candidate terms using the CollTerm tool [27], a rule-based
system employing a complex language-specific set of term patterns (e.g., POS
tag,...) from the Slovenian SketchEngine module [8], followed by a machine learn-
ing classification approach with features representing statistical term extraction
measures. Another recent approach by Repar et al. [29] focuses on term extrac-
tion and alignment, where the main novelty is in using an evolutionary algorithm
for the alignment of terms. On the other hand, the deep neural approaches have
not been explored for Slovenian yet. Another problem is the open-sourced code is
often not available for most current benchmark systems, hindering their repro-
ducibility (for Slovenian, only the code from Ljubevsic et al.’s method [24] is
available). In our own work [33], we also implemented the Transformers-based
sequence labeling approach that we extend in this study in a cross-lingual and
multilingual evaluation.

3 Methodology

Section 3.1 presents our chosen datasets with a brief description of the structure,
term frequency, and label distribution. We describe the general methodology,
experimental setup, and the implementation details in Sects. 3.2 and 3.3. Finally,
in Sect. 3.4 we describe the chosen evaluation metrics for the ATE task.

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 367

3.1 Dataset

The experiments were conducted on two datasets (ACTER [30] and RSDO5
version 1.1 [12]) containing texts from different languages and domains. The
structures of both datasets are presented in Fig. 1.

Fig. 1. The structure of RSDO5 and ACTER regarding languages and domains.

The ACTER dataset is a collection of 12 corpora covering four domains (Cor-
ruption (corp), Dressage (equi), Wind energy (wind), and Heart failure (htfl)) in
three languages (English (en), French (fr) and Dutch (nl)). The dataset has two
types of gold standard annotations: one including both terms and named entities
(NES), and the other one containing only terms (ANN). Table 1 summarizes the
number of documents and unique terms for each domain. Note the discrepancy
in size between the Heart failure domain and the other three domains, with the
Heart failure domain containing the much more unique terms and documents2.

Table 1. Number of documents and unique terms in the ACTER dataset.

Languages Corruption (corp) Equitation (equi) Wind energy (wind) Heart failure (htfl)

Docs Terms Docs Terms Docs Terms Docs Terms

ANN NES ANN NES ANN NES ANN NES

en 19 927 1,173 34 1,155 1,575 5 1,091 1,534 190 2,361 2,585

fr 19 979 1,207 78 961 1,181 2 773 968 210 2,228 2,374

nl 12 1,047 1,295 65 1,393 1,544 8 940 1,245 174 2,074 2,254

The second dataset is the RSDO5 corpus version 1.1 [12] containing texts in
Slovenian (sl), a less-resourced Slavic language with rich morphology. Compiled
2 The detailed description of ACTER can be found in the TermEval competition [30].

368 H. T. H. Tran et al.

during the course of the RSDO3 national project, the RSDO5 corpus contains
12 documents (including three Ph.D. theses, a scientific book based on a Ph.D.
thesis, four graduate level textbooks, and four journal articles) with altogether
about 250,000 words collected from diverse sources between 2000 to 2019 cov-
ering domains of Biomechanics (bim), Chemistry (kem), Veterinary (vet), and
Linguistics (ling). The numbers of documents, tokens, and unique terms per
domain are reported in Table 2. The documents from the Linguistics and Vet-
erinary domains are longer (i.e., they have more tokens) and also contain more
terms than Biomechanics and Chemistry. Most terms are made of one up to
three words and only a few terms are longer than seven words. An example of a
long term found in the corpus would be “stojo po obračanju v nasprotni smeri
urinega kazalca” (stand after turning counterclockwise) in Biomechanics.

Table 2. Number of documents, tokens, and unique terms in the RSDO5 dataset.

Biomechanics (bim) Chemistry (kem) Veterinary (vet) Linguistics (ling)

Docs Tokens Terms Docs Tokens Terms Docs Tokens Terms Docs Tokens Terms

3 61,344 2,319 3 65,012 2,409 3 75,182 4,748 3 109,050 4,601

Furthermore, both datasets contain several nested terms, i.e., a shorter term
may appear within a larger term and vice versa. For example, in the RSDO5’s
Biomechanics domain, the term “navor” (torque) appears in terms such as
“sunek navora” (torque shock), “zunanji sunek navora” (external torque shock),
and “izokinetični navor” (isokinetic torque); in ACTER’s English Corruption,
term “confiscation” appears also in terms such as “confiscation of corruption
proceeds”, “confiscation of criminal assets”, and “confiscation of the proceeds of
crime”, to mention a few. This makes the labeling harder and the classifier needs
to infer from the context whether a specific term is part of a longer term.

3.2 Methodology

We experiment with XLM-RoBERTa, a Transformer-based model pre-trained
on 2.5 TB of filtered CommonCrawl data containing 100 languages. We consider
ATE as a sequence-labeling task where the model returns a label for each token
in a text sequence using the (B-I-O) labeling regime [19,32]. Here, B stands for
the beginning word in the term, I stands for the word inside the term, and O
stands for the word not part of the term. The terms from a gold standard list
are first mapped to the tokens in the raw text and each word inside the text
sequence is annotated with one of three labels (see examples in Fig. 2).

The model is first trained to predict a label for each token in the input text
sequence (e.g., we model the task as token classification) and then applied to
the unseen text (test data). Finally, from the tokens or token sequences labeled
as terms, the final candidate term list for the test data is composed.
3 https://www.cjvt.si/rsdo/en/project/.

https://www.cjvt.si/rsdo/en/project/

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 369

Fig. 2. A sample of our labels in the RSDO5 corpus for term extraction.

We evaluate the cross-domain performance of the model in a monolingual,
cross-lingual, and multilingual setting. Altogether, 55 different scenarios are
tested. The distinct settings are described below.

1. Monolingual setup. We evaluate how well the model performs when there
is a language-specific training corpus available and there is a match between
the language of the train set and the language of the test set. We fine-tune our
model in a single language, which means we train three monolingual models
for three languages (English, French, Dutch) and test each model in the same
language as well as 12 monolingual models for Slovenian given 12 different
combinations of train-validation-test split regarding the domains. This can
be considered as a baseline to which we compare other settings.

2. Cross-lingual setup. We evaluate the capability of the model to apply the
knowledge learned about ATE in one or more languages for ATE in another
unseen language. Therefore, we fine-tune the ATE model in one or more lan-
guages (e.g., English and Dutch) and test it on another language not appear-
ing in the train set (e.g., French). In this scenario, we, therefore, examine
how well the model performs without the language-specific training corpus
and how good the knowledge transfer between different languages is.

3. Multilingual setup. We fine-tune our model using a.) training datasets
from all languages in the ACTER dataset (English, French, and Dutch) or
using b.) training datasets from all languages in the ACTER dataset plus
the Slovenian training dataset from the RSDO5 corpus, and then apply the
model to the test sets of all languages. By doing so, we examine whether
adding more data from other languages to the train set that matches the
target language improves the predictive performance of the model.

All three settings are applied in a cross-domain evaluation scenario, where
we use two domains for training, another domain for validation, and the rest
for testing except the multilingual setting with additional Slovenian corpus in
the training set where we use two domains from ACTER and all domains from
RSDO5 corpus for the training. This way we want to check the generalization
capabilities of the model, i.e. whether the knowledge the model obtained on
one domain can be applied to the new, unseen domains, which would make the
model applicable to arbitrary domains and therefore much more useful. In the
ACTER dataset, we use Corruption and Wind energy domains as parts of the
training, Equitation domains for validation, and Heart failure domain for testing
in order to allow for a direct comparison with other benchmarks sharing the same
train-validation-test setting [19], using the same dataset and evaluation setting

370 H. T. H. Tran et al.

(predicting on Heart Failure test set) from the related work. Meanwhile, in the
RSDO5 corpus, we explore different train-validation-test combinations.

We divide the dataset into train-validation-test splits. The train split is used
for fine-tuning the models while the validation split is used to prevent over-fitting
during the fine-tuning phase. Finally, the test split is used for evaluation and is
excluded during the model training. The model is fine-tuned on the training set
to predict the probability for each word in a word sequence whether it is a part
of the term (B, I) or not (O). An additional token classification head containing
a feed-forward layer with a softmax activation is added on top of each model.

3.3 Implementation Details

We consider ATE as a sequence-labeling task and the models are trained to
predict the labels from the (B-I-O) annotation scheme. The distribution across
label types and the proportion of (B) and (I) labels in the total number of tokens
per domain and per language are presented in Table 3. In the ACTER dataset,
the proportion of terms in the texts is the largest for English, followed by French
and then Dutch. The proportion of terms increases by from 1% upto 5% when
adding NEs into the gold standards. In both datasets, the number of tokens
annotated as terms (or parts of the term) only represents up to one-fourth (but
usually much less) of the total tokens in the corpus, which means there is a
significant imbalance between (B, I) tokens and tokens labeled as not terms (O).

Table 3. Label distribution and proportion of terms appearing per domain.

(a) The ACTER dataset.

Languages Corruption (corp) Equitation (equi) Wind energy (wind) Heart failure (htfl)

B I O % Term B I O % Term B I O % Term B I O % Term

ANN en 4,558 2,200 44,287 13.24 10,745 1,938 46,215 21.53 5,046 3,323 49,873 14.37 9,819 4,504 41,522 25.65

ANN fr 4,461 2,823 51,918 12.30 8,420 2,373 50,487 17.61 5,928 4,405 43,976 19.03 7,165 4,027 43,976 20.29

ANN nl 4,251 1,517 46,730 10.99 10,243 1,509 45,011 20.70 4,174 826 50,642 8.99 8,529 1,391 45,142 18.02

NES en 6,050 3,226 41,769 18.17 11,340 2,377 45,181 23.29 6,040 4,111 48,091 17.43 10,115 4,855 40,875 26.81

NES fr 6,021 3,996 49,185 16.92 8,699 2,632 49,949 18.49 7,356 4,524 53,868 18.07 7,394 4,172 43,602 20.97

NES nl 5,585 2,308 44,605 15.03 10,416 1,625 44,722 21.21 4,708 1,084 49,850 10.41 8,770 1,627 44,665 18.88

(b) The RSDO5 dataset.

Languages Biomechanics (bim) Chemistry (kem) Veterinary (vet) Linguistics (ling)

B I O % Term B I O % Term B I O % Term B I O % Term

sl 7,070 6,835 47,439 22.67 7,614 4,486 52,912 18.61 10,953 6,261 57,968 22.90 12,348 6,079 90,623 16.89

We employ the XLM-RoBERTa token classification model and its “fast”
XLM-RoBERTa tokenizer from the Huggingface library4. We fine-tune the model
for up to 20 epochs (i.e., we employ the early stopping regime) using the learning
rate of 2e−05, training and evaluation batch size of 32, and sequence length of
512 tokens, since this hyperparameter configuration performed the best on the
validation set. The documents are first split into sentences. Then, the sentences
containing more than 512 tokens are truncated, while the sentences with less than

4 https://huggingface.co/models.

https://huggingface.co/models

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 371

512 tokens are padded with a special <PAD> token at the end. During fine-
tuning, the model is evaluated on the validation set after each training epoch,
and the best-performing model is applied to the test set. The model predicts
each word in a word sequence whether it is a part of a term (B, I) or not (O).
The sequences identified as terms are extracted from the text and put into a
set of all predicted candidate terms. A post-processing step to lowercase all the
candidate terms is applied before we compare our derived candidate list with
the gold standard.

3.4 Evaluation Metrics

We evaluate the performance of the ATE system by comparing the candidate
list extracted on the whole test set level with the manually annotated gold
standard of each domain using strictly matching with Precision (P), Recall (R),
and F1-score (F1). These evaluation metrics have also been used in the related
work, including the TermEval 2020 [11,19,30] and Slovenian benchmark [24].
Therefore, our results are directly comparable to the SOTA methods.

4 Results

In this Section, we determine the predictive power of monolingual, cross-lingual,
and multilingual learning in ACTER and RSDO5 test sets as well as compare
the results from our proposed approaches to the SOTAs from the related work.

4.1 Prediction on the ACTER Test Set

Table 4 demonstrates the performance of XLM-RoBERTa on the cross-domain
sequence-labeling ATE task on the ACTER test set in the monolingual, cross-
lingual, and multilingual setting. We group the results according to the test
language in the ACTER corpora for better comparison among settings. The
results indicate that cross- and multilingual models surpass the performance
of the monolingual ones according to all evaluation metrics except for when it
comes to the Precision obtained by the French monolingual model on the French
test set. Multilingual models tend to outperform cross-lingual ones, except for
the cross-lingual model trained in Dutch and applied to the English test set. This
multilingual model boosts the F1-score performance by up to 2% in ANN and
1% in the NES task when compared to the second-highest-performing model. By
adding the Slovenian corpus with four different domains into the training set,
the multilingual model demonstrates a significant improvement in Recall across
all test languages, which, on average, increases by 18.17% in ANN and 13.54%
in NES test set compared with the monolingual setting.

Table 5 presents a comparison between the best-performing models in this
work in terms of F1-score and the benchmark approaches in the ACTER dataset,
including the solutions from the winning teams in the competition (TALN-LS2N
[11] won on the English and French test set while NLPLab UQAM [20] won on

372 H. T. H. Tran et al.

Table 4. Evaluation on ACTER given Heart failure as test set.

Train language Enlish test set French test set Dutch test set

ANN NES ANN NES ANN NES

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

en 58.08 48.12 52.63 62.07 52.03 56.61 66.69 47.89 55.75 70.63 53.79 61.07 69.23 61.09 64.91 72.95 63.04 67.63

fr 56.94 33.21 41.95 60.01 39.07 47.33 70.51 44.43 54.51 72.41 48.53 58.11 72.12 51.01 59.76 73.63 55.50 63.29

nl 55.64 56.37 56.00 57.60 58.34 57.97 66.49 51.48 58.03 67.60 53.16 59.52 70.25 62.15 65.95 73.29 61.49 66.87

en, fr 57.16 51.21 54.02 60.43 51.45 55.58 63.70 52.38 57.49 68.13 52.78 59.48 72.52 61.72 66.69 73.08 63.49 67.95

en, nl 58.00 48.67 52.93 62.39 51.33 56.32 65.25 44.17 52.68 68.67 52.36 59.42 69.29 60.17 64.41 74.35 61.71 67.44

fr, nl 60.84 46.84 52.93 62.27 50.37 55.69 69.20 48.29 56.88 70.72 49.54 58.26 75.72 56.70 64.84 76.74 59.58 67.08

en, fr, nl 56.83 53.03 54.86 60.76 52.53 56.35 68.01 50.67 58.07 48.30 65.57 55.63 69.92 64.32 67.00 73.66 62.91 67.86

en, fr, nl, sl 45.88 66.29 54.23 48.30 65.57 55.63 58.10 61.62 59.81 59.48 62.51 60.96 62.74 75.51 68.54 63.57 73.69 68.26

the Dutch test set) and other methods proposed in Rigouts et al. [32] and Lang
et al. [19], which are described in Sect. 2. Note that all the approaches from
the related work are cross-domain and use the Heart failure domain as the test
set and the rest of the data for training or validation. For the ANN task in
English and Dutch and the NES task in French, our methods outperform other
approaches in terms of F1-score. Despite not surpassing the SOTA in the French
ANN task and the other two NES tasks, our method still offers competitive
performance being outperformed by the HAMLET approach [32] with a small
margin of 0.39% in ANN French, and by the token classifier [19] with about
0.33% in NES English. In terms of multilingual evaluation, we show that in
contrast to the findings of Lang et al. [19], adding different languages in general
slightly improves the models.

Table 5. F1-score comparison between our results and related work in ACTER.

Methods English French Dutch

ANN NES ANN NES ANN NES

Winning teams [11] 44.99 46.66 45.94 48.15 18.60 18.70

HAMLET [32] 54.20 55.40 60.20 60.80 66.10 66.00

Sequence classifier [19] x 46.00 x 48.10 x 58.00

NMT [19] x 55.30 x 57.60 x 59.60

Token classifier [19] x 58.30 x 57.60 x 69.80

NMF-based approaches [26] 33.50 33.70 30.90 30.70 30.10 30.30

Our best classifiers 56.00 57.97 59.81 61.07 68.54 68.26

4.2 Evaluation on the RSDO5 Test Set

We also apply monolingual and multilingual cross-domain approaches to the
Slovenian RSDO5 dataset. The results grouped by the test domain are pre-
sented in Table 6. The monolingual approach, where we use two domains from
the RSDO5 corpus for training, validate on the third domain, and test on the

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 373

last domain, proves to have relatively consistent performance across all the com-
binations, achieving Precision of more than 62%, Recall of no less than 55%,
and F1-score above 61%. The model performs slightly better for the Linguistics
and Veterinary domains than for Biomechanics and Chemistry. The difference
in the number of terms and length of terms per domain pointed out in Sect. 3.1
might be one of the factors that contribute to this behavior. Moreover, a signif-
icant performance boost can be observed for the Linguistics domain when the
model is trained in the Chemistry and Veterinary domains, and for the Veteri-
nary domain, when the model is trained in Biomechanics and Linguistics. In
these two settings, the model achieves an F1-score of more than 68%.

Table 6. The evaluation of monolingual and multilingual learning in RSDO5.

Validation Testing Monolingual setup Multilingual setup

ANN NES

P R F1 P R F1 P R F1

vet ling 69.55 64.05 66.69 67.68 69.55 68.60 67.19 69.88 68.51

bim ling 69.48 73.66 71.51 69.78 66.16 67.92 67.81 68.53 68.17

kem ling 66.20 72.38 69.15 66.50 71.35 68.84 67.89 69.03 68.46

ling vet 71.06 66.72 68.82 70.96 65.27 68.00 69.22 67.40 68.30

kem vet 72.66 65.59 68.94 69.75 68.83 69.29 70.49 67.75 69.09

bim vet 69.30 68.07 68.68 69.77 68.43 69.09 69.26 64.72 66.91

ling kem 68.67 55.13 61.16 68.26 59.28 63.45 67.54 54.59 60.38

bim kem 70.14 60.27 64.83 69.63 61.19 65.14 69.25 52.72 59.86

vet kem 70.23 59.24 64.27 69.90 58.41 63.64 67.92 59.24 63.28

vet bim 63.51 66.80 65.11 61.14 64.94 62.98 60.94 66.67 63.68

ling bim 62.25 65.20 63.69 60.53 63.82 62.13 62.62 62.27 62.44

kem bim 62.35 63.99 63.16 65.71 59.16 62.26 61.78 67.05 64.31

We also explore the performance of multilingual approaches on the RSDO5
test sets. We train the model using the ANN and NES labels from all domains of
the ACTER dataset and on two domains from the RSDO5 dataset, validate on
the third RSDO5 domain, and test on the last domain. Table 6 demonstrates the
comparative performance of the multilingual and the monolingual approaches,
which is consistent with the results in the prediction of the ACTER test set.

Furthermore, in Table 7, we present the results from the related work for the
RSDO5 dataset [24] in comparison to the proposed monolingual and multilingual
approaches. The results from [24]’s method are taken from Hanh et al. [33]. In
general, our approach outperforms the approach proposed in Ljubevsic et al.
[24] by a large margin on all domains and according to all evaluation metrics,
especially when it comes to Recall. Overall, we achieve results roughly twice as
high as the approach proposed by Ljubevsic et al. [24] in terms of F1-score for
all test domains regarding both monolingual and multilingual learning. We show

374 H. T. H. Tran et al.

Table 7. Comparison between our performance and SOTA in RSDO5 dataset.

Methods Linguistics Veterinary Chemistry Biomechanics

P R F1 P R F1 P R F1 P R F1

Monolingual 69.48 73.66 71.51 72.66 65.59 68.94 70.14 60.27 64.83 63.51 66.80 65.11

Multilingual 66.50 71.35 68.84 69.75 68.83 69.29 69.63 61.19 65.14 61.78 67.05 64.31

SOTA [24] 52.20 25.40 34.10 66.90 19.30 29.90 47.80 31.40 37.80 53.80 24.80 33.90

that the multilingual experiments do in several cases improve our monolingual
results [33], but this is not systematic.

5 Error Analysis

In order to determine whether the term length affects the models’ performance,
we calculate Precision and Recall separately for terms of length k = {1,2,3,4,
≥5}. The number of predicted candidate terms (Preds), ground truth (GT),
correct predictions (TPs), Precision, and Recall regarding different term lengths
k and test domains are presented in Table 8. The results for ACTER’s dataset
(Table 8a) were obtained by employing the best performing model for a spe-
cific language in terms of F1-score on the Heart failure test set. The results for
the RSDO5 dataset (Table 8b) were obtained by employing the best-performing
model for a specific test domain in F1-score.

Table 8. Performance per term length per domain in each test set.

(a) ACTER test set.

k Enlish French Dutch

Preds GTs TPs P R Preds GTs TPs P R Preds GTs TPs P R

1 1,009 1,170 639 63.33 54.62 1,153 1,309 829 71.90 63.33 2,005 1,687 1,292 64.44 76.59

2 985 801 501 50.86 62.55 490 620 320 65.31 51.61 661 391 303 45.84 77.49

3 553 377 256 46.29 67.90 163 266 100 61.35 37.59 108 108 55 50.93 50.93

4 163 142 86 52.76 60.56 47 91 24 51.06 26.37 19 35 10 52.63 28.57

≥5 53 95 26 49.06 27.37 13 88 4 30.77 4.55 1 33 1 100.00 3.03

(b) RSDO5 Linguistics test set.

k Linguistics Veterinary Chemistry Biomechanics

Preds GTs TPs P R Preds GTs TPs P R Preds GTs TPs P R Preds GTs TPs P R

1 2,078 1,728 1,300 62.56 75.23 2,159 2,067 1,472 68.18 71.21 943 890 580 61.51 65.17 1,079 718 22 48.38 72.70

2 2,631 2,404 1,858 70.62 77.29 2,062 2,103 1,448 70.22 68.85 1,073 1,202 768 71.58 63.89 1,153 1,172 822 71.29 70.14

3 322 360 7,191 59.32 53.06 314 446 182 57.96 40.81 164 260 93 56.71 35.77 223 286 124 55.61 43.36

4 57 80 31 54.39 38.75 28 77 10 35.71 12.99 26 46 11 42.31 23.91 26 59 11 42.31 18.64

≥5 12 29 79 75.00 31.03 3 55 2 66.67 3.64 3 11 0 0.00 0.00 11 84 5 45.45 5.95

The models proved to be good at predicting terms containing up to four
words for English and Dutch and up to three words for French. The results on the
RSDO5 dataset are similar, showing that the models are good at predicting short
terms containing up to three words for all four domains of the RSDO5 corpus.
The best model applied to the Linguistics test domain also shows relatively good
performance when it comes to the prediction of longer terms, achieving 75.00%

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 375

Precision and a decent 31.03% Recall for terms with at least five words. Despite
the relatively high Precision for prediction of long terms in the Veterinary and
Biomechanics test domains, the Recall is pretty low, most likely due to the small
amount of longer terms in the dataset on which the models are trained. When
it comes to predictions in the Chemistry domain, there are no correct term
predictions that consist of more than five words.

6 Conclusion

In summary, we investigated the possibilities of cross- and multilingual learning
compared to the monolingual setting in the cross-domain sequence-labeling term
extraction given the experiments conducted on multi-domain corpora, namely
the ACTER and RSDO5 datasets. We also evaluated the impact of cross- and
multilingual models on the ACTER corpora only and by further adding the
texts from the Slovenian RSDO5 corpus in the training set. In addition, we
examined the cross-lingual effect of rich-resourced training language on less-
resourced testing one such as Slovenian. The results demonstrate a promising
impact of multilingual and cross-lingual cross-domain learning that outperforms
the related works in both datasets, which proves their potential when transferring
from the rich- to the less-resourced languages.

However, we believe that there remains room for improvement in the field
of supervised term extraction. In the future, we suggest the integration of
active learning into our current approach to improve the output of the auto-
mated method by dynamical adaptation after human feedback. By learning
with humans in the loop, we aim at getting the most information with the
least amount of term labels. We will also evaluate the contribution of active
learning in reducing the annotation effort and determine the robustness of the
incremental active learning framework across different languages and domains.

Acknowledgements. The work was partially supported by the Slovenian Research
Agency (ARRS) core research programme Knowledge Technologies (P2-0103), as well
as the Ministry of Culture of Republic of Slovenia through project Development of
Slovene in Digital Environment (RSDO). The first author was partly funded by Region
Nouvelle Acquitaine. This work has also been supported by the TERMITRAD (2020-
2019-8510010) project funded by the Nouvelle-Aquitaine Region, France.

References

1. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: Flair:
an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pp. 54–59 (2019)

2. Amjadian, E., Inkpen, D., Paribakht, T., Faez, F.: Local-global vectors to improve
unigram terminology extraction. In: Proceedings of the 5th International Workshop
on Computational Terminology (Computerm2016), pp. 2–11 (2016)

376 H. T. H. Tran et al.

3. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In:
ACL (2020)

4. Daille, B., Gaussier, É., Langé, J.M.: Towards automatic extraction of monolingual
and bilingual terminology. In: COLING 1994 Volume 1: The 15th International
Conference on Computational Linguistics (1994)

5. Damerau, F.J.: Evaluating computer-generated domain-oriented vocabularies. Inf.
Process. Manag. 26(6), 791–801 (1990)

6. ElKishky, A., Song, Y., Wangx, C., Voss, C.R., Han, J.: Scalable topical phrase
mining from text corpora. Proc. VLDB Endow. 8(3), 305–316 (2014)

7. Erjavec, T., Fǐser, D., Ljubešić, N.: The KAS corpus of Slovenian academic writing.
Lang. Resour. Eval. 55(2), 551–583 (2021)

8. Fǐser, D., Suchomel, V., Jakub́ıcek, M.: Terminology extraction for academic
Slovene using sketch engine. In: Tenth Workshop on Recent Advances in Slavonic
Natural Language Processing, RASLAN 2016, pp. 135–141 (2016)

9. Frantzi, K.T., Ananiadou, S., Tsujii, J.: The C-value/NC-value method of auto-
matic recognition for multi-word terms. In: Nikolaou, C., Stephanidis, C. (eds.)
ECDL 1998. LNCS, vol. 1513, pp. 585–604. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-49653-X 35

10. Gao, Y., Yuan, Yu.: Feature-less end-to-end nested term extraction. In: Tang, J.,
Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol.
11839, pp. 607–616. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32236-6 55

11. Hazem, A., Bouhandi, M., Boudin, F., Daille, B.: TermEval 2020: TALN-LS2N
system for automatic term extraction. In: Proceedings of the 6th International
Workshop on Computational Terminology, pp. 95–100 (2020)

12. Jemec Tomazin, M., Trojar, M., Ateľsek, S., Fajfar, T., Erjavec, T., Žagar Karer,
M.: Corpus of term-annotated texts RSDO5 1.1 (2021). https://hdl.handle.net/
11356/1470, Slovenian language resource repository CLARIN.SI

13. Jemec Tomazin, M., Trojar, M., Žagar, M., Ateľsek, S., Fajfar, T., Erjavec, T.:
Corpus of term-annotated texts rsdo5 1.0 (2021)

14. Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and
an algorithm for identification in text. Nat. Lang. Eng. 1(1), 9–27 (1995)

15. Kessler, R., Béchet, N., Berio, G.: Extraction of terminology in the field of construc-
tion. In: 2019 First International Conference on Digital Data Processing (DDP),
pp. 22–26. IEEE (2019)

16. Koloski, B., Pollak, S., Škrlj, B., Martinc, M.: Out of thin air: is zero-
shot cross-lingual keyword detection better than unsupervised? arXiv preprint
arXiv:2202.06650 (2022)

17. Kucza, M., Niehues, J., Zenkel, T., Waibel, A., Stüker, S.: Term extraction via
neural sequence labeling a comparative evaluation of strategies using recurrent
neural networks. In: INTERSPEECH, pp. 2072–2076 (2018)

18. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 260–270 (2016)

19. Lang, C., Wachowiak, L., Heinisch, B., Gromann, D.: Transforming term extrac-
tion: transformer-based approaches to multilingual term extraction across domains.
In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 3607–3620 (2021)

20. Le, N.T., Sadat, F.: Multilingual automatic term extraction in low-resource
domains. In: The International FLAIRS Conference Proceedings, vol. 34 (2021)

https://doi.org/10.1007/3-540-49653-X_35
https://doi.org/10.1007/3-540-49653-X_35
https://doi.org/10.1007/978-3-030-32236-6_55
https://doi.org/10.1007/978-3-030-32236-6_55
https://hdl.handle.net/11356/1470
https://hdl.handle.net/11356/1470
http://arxiv.org/abs/2202.06650

Can Cross-domain Term Extraction Benefit from Cross-lingual Transfer? 377

21. Le Serrec, A., L’Homme, M.C., Drouin, P., Kraif, O.: Automating the compila-
tion of specialized dictionaries: use and analysis of term extraction and lexical
alignment. Terminology. Int. J. Theor. Appl. Issues Spec. Commun. 16(1), 77–106
(2010)

22. Lingpeng, Y., Donghong, J., Guodong, Z., Yu, N.: Improving retrieval effectiveness
by using key terms in top retrieved documents. In: Losada, D.E., Fernández-Luna,
J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 169–184. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 13

23. Liu, Y., et al.: Multilingual denoising pre-training for neural machine translation.
Trans. Assoc. Comput. Linguist. 8, 726–742 (2020)

24. Ljubešić, N., Fǐser, D., Erjavec, T.: KAS-term: extracting slovene terms from doc-
toral theses via supervised machine learning. In: Ekštein, K. (ed.) TSD 2019. LNCS
(LNAI), vol. 11697, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-27947-9 10

25. Martinc, M., Škrlj, B., Pollak, S.: TNT-Kid: transformer-based neural tagger for
keyword identification. Nat. Lang. Eng. 1–40 (2021). https://doi.org/10.1017/
S1351324921000127

26. Nugumanova, A., Akhmed-Zaki, D., Mansurova, M., Baiburin, Y., Maulit, A.:
NMF-based approach to automatic term extraction. Expert Syst. Appl. 199,
117179 (2022)

27. Pinnis, M., et al.: Extracting data from comparable corpora. In: Skadina, I.,
Gaizauskas, R., Babych, B., Ljubešić, N., Tufiş, D., Vasiljevs, A. (eds.) Using Com-
parable Corpora for Under-Resourced Areas of Machine Translation. TANLP, pp.
89–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99004-0 4

28. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a Python
natural language processing toolkit for many human languages. arXiv preprint
arXiv:2003.07082 (2020)

29. Repar, A., Podpečan, V., Vavpetič, A., Lavrač, N., Pollak, S.: TermEnsembler: an
ensemble learning approach to bilingual term extraction and alignment. Terminol-
ogy. Int. J. Theor. Appl. Issues Spec. Commun. 25(1), 93–120 (2019)

30. Rigouts Terryn, A., Hoste, V., Drouin, P., Lefever, E.: TermEval 2020: shared
task on automatic term extraction using the annotated corpora for term extrac-
tion research (ACTER) dataset. In: 6th International Workshop on Computational
Terminology (COMPUTERM 2020), pp. 85–94. European Language Resources
Association (ELRA) (2020)

31. Rigouts Terryn, A., Hoste, V., Lefever, E.: In no uncertain terms: a dataset for
monolingual and multilingual automatic term extraction from comparable corpora.
Lang. Resour. Eval. 54(2), 385–418 (2020)

32. Rigouts Terryn, A., Hoste, V., Lefever, E.: HAMLET: hybrid adaptable machine
learning approach to extract terminology. Terminology (2021)

33. Tran, H.T.H., Martinc, M., Doucet, A., Pollak, S.: A transformer-based sequence-
labeling approach to the Slovenian cross-domain automatic term extraction. In:
Submitted to Slovenian Conference on Language Technologies and Digital Human-
ities (2022, under review)

34. Hanh, T.T.H., Doucet, A., Sidere, N., Moreno, J.G., Pollak, S.: Named entity recog-
nition architecture combining contextual and global features. In: Ke, H.-R., Lee,
C.S., Sugiyama, K. (eds.) ICADL 2021. LNCS, vol. 13133, pp. 264–276. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-91669-5 21

35. Vintar, S.: Bilingual term recognition revisited: the bag-of-equivalents term align-
ment approach and its evaluation. terminology. Int. J. Theor. Appl. Issues Spec.
Commun. 16(2), 141–158 (2010)

https://doi.org/10.1007/978-3-540-31865-1_13
https://doi.org/10.1007/978-3-030-27947-9_10
https://doi.org/10.1007/978-3-030-27947-9_10
https://doi.org/10.1017/S1351324921000127
https://doi.org/10.1017/S1351324921000127
https://doi.org/10.1007/978-3-319-99004-0_4
http://arxiv.org/abs/2003.07082
https://doi.org/10.1007/978-3-030-91669-5_21

378 H. T. H. Tran et al.

36. Wolf, P., Bernardi, U., Federmann, C., Hunsicker, S.: From statistical term extrac-
tion to hybrid machine translation. In: Proceedings of the 15th Annual Conference
of the European Association for Machine Translation (2011)

37. Zhang, Z., Gao, J., Ciravegna, F.: SEMRE-Rank: improving automatic term
extraction by incorporating semantic relatedness with personalised pagerank. ACM
Trans. Knowl. Discov. Data (TKDD) 12(5), 1–41 (2018)

Retrieval-Efficiency Trade-Off
of Unsupervised Keyword Extraction

Blaž Škrlj(B), Boshko Koloski, and Senja Pollak

Jožef Stefan Institute, Ljubljana, Slovenia

blaz.skrlj@ijs.si

Abstract. Efficiently identifying keyphrases that represent a given doc-
ument is a challenging task. In the last years, plethora of keyword detec-
tion approaches were proposed. These approaches can be based on sta-
tistical (frequency-based) properties of e.g., tokens, specialized neural
language models, or a graph-based structure derived from a given doc-
ument. The graph-based methods can be computationally amongst the
most efficient ones, while maintaining the retrieval performance. One of
the main properties, common to graph-based methods, is their immedi-
ate conversion of token space into graphs, followed by subsequent pro-
cessing. In this paper, we explore a novel unsupervised approach which
merges parts of a document in sequential form, prior to construction of
the token graph. Further, by leveraging personalized PageRank, which
considers frequencies of such sub-phrases alongside token lengths dur-
ing node ranking, we demonstrate state-of-the-art retrieval capabilities
while being up to two orders of magnitude faster than current state-
of-the-art unsupervised detectors such as YAKE and MultiPartiteRank.
The proposed method’s scalability was also demonstrated by computing
keyphrases for a biomedical corpus comprised of 14 million documents
in less than a minute.

Keywords: Keyphrase detection · Natural language processing · Text
mining

1 Introduction

With the increasing amounts of freely available text-based data sets, methods for
efficient keyphrase detection are becoming of high relevance [13]. These meth-
ods, given a single or multiple documents, output a ranked list of short phrases
(or single tokens), which represents key aspects of the input text. In the recent
years, plethora of keyphrase extraction methods were presented; broadly, they
can be divided into unsupervised and supervised ones. This paper focuses on
unsupervised keyphrase extraction, i.e. the process where no training set of doc-
ument is needed to learn to estimate keyphrases – they are estimated solely
based on statistical/topological properties of a given document. The unsuper-
vised methods can be further divided to the ones which construct a graph based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 379–393, 2022.
https://doi.org/10.1007/978-3-031-18840-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_27&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_27

380 B. Škrlj et al.

on token co-occurrences and the ones which leverage statistical properties of n-
grams [26]. Recently, neural language model-based keyphrase extraction was also
proposed [12]. With the abundance of methods, optimization of a single metric
becomes less relevant – methods which maximize e.g., F1@k are common. This
paper aims to inform the reader that a realm of highly relevant properties beyond
simple retrieval performance can be meaningful in practice, and should be the
focus of any novel method proposed (including the adaptation of an existing one
presented in this paper). The contributions of this paper are multifold (Fig. 1):

0 1 2 3 4 5
Computation time per document (s)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F1
@
15

Algorithm
KeyBERT-(1,1)
KeyBERT-(1,2)
MultiPartiteRank
RaKUn 2.0
SingleRank
TextRank
TopicalPageRank
YAKE
term-frequency

Fig. 1. Performance trade-off (time vs. performance) of keyphrase detection methods
averaged across fifteen data sets.

1. We present RaKUn 2.0, a graph-based keyphrase extractor optimized for
retrieval-efficiency optimality when considering both retrieval capabilities and
performance.

2. A polygon-based visualization suitable for studying and comparing multiple
criteria for multiple keyphrase detection algorithms.

3. An extensive benchmark of RaKUn 2.0 against strong baselines (including
e.g., the recently introduced KeyBERT).

4. Friedman-Nemenyi-based analysis of average ranks of the algorithms (and
their similarity).

2 Selected Related Work

This section contains an overview of the existing keyphrase detection methods,
key underlying ideas and possible caveats of different paradigms. This paper

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 381

focuses exclusively on unsupervised keyphrase extraction – the process of trans-
forming an input document D in to a ranked collection of keyphrases, i.e. K =
{(p, s)k}; sk+1 ≤ sk, where k represents the top k hits (detected keyphrases), p a
given keyphrase and s a given keyphrase’s score. The first branch of approaches are
based on text-to-graph transformations, followed by subsequent processing of the
obtained graphs. Such methods are able to exploit multilevel structure of a docu-
ment [6] (MultiPartiteRank), hierarchical structure [29] (SingleRank). An exam-
ple token graph is shown in Fig. 2. One of the first graph-based methods was Tex-
tRank [23], which demonstrated the robustness of graph-based keyphrase detec-
tion (and was one of the first to do so). More involved approaches, capable of incor-
porating topic-level information were also proposed [7] (TopicalPageRank). One
of the key issues with graph-based representations is that of node denoising – the
process of identifying the relevant space of nodes which are commonly subject to
ranking. The graph-based methods are highly dependant on the graph construc-
tion approach (based on co-occurrence, syntactic, semantic and similarity informa-
tion) and node ranking algorithm (e.g. degree, closeness, Page Rank, selectivity,
etc.) [3]. A detailed overview of graph-based methods for keyword extraction and
various node-ranking measures is provided in [3].

Fig. 2. An example token graph.

Alongside graph-based methods, statistical methods are also actively devel-
oped. One of the most recent examples includes YAKE! [8], an approach which
considers large amounts of n-gram patterns and scores them so that they repre-
sent relevant keyphrases. It operates by extracting statistical features from single
documents to select the most important keywords of a text. Keyphrase detection
was also considered as a task solvable by considering neural language models [12].
An example of this family of models is AttentionRank [10], which exploits the
transformer-based neural language model to extract relevant keywords. A more
detailed overview of general keyword detection methods is given in [17].

The discussed approaches seldom focus on metrics beyond retrieval capa-
bilities (e.g., Precision, Recall and F1). One of the purposes of this paper is a

382 B. Škrlj et al.

comprehensive evaluation of the discussed algorithms with regards to multiple
criteria, including computation time and duplication rates (how frequent is a
token amongst the space of detected keyphrases).

3 Proposed Algorithm

The proposed approach sources the core idea from the recent paper on meta
vertex-based keyphrase detection RaKUn [28]. The considered extension, pro-
posed in this paper is optimized specifically to push the boundary of the retrieval-
efficiency front between retrieval performance and retrieval time. We begin with
a general overview of the algorithm, followed by theoretical analysis of its com-
plexity (space and time). We refer to the proposed approach as RaKUn 2.0. A
high-level overview is shown as Algorithm 1. The main steps include tokenization,
token merging, document graph construction and node ranking. Instead of first
constructing (larger) graphs which are subject to node merging into meta ver-
tices, RaKUn 2.0 conducts the merging step at the sequence level, making it more
efficient. This step was considered based on an observation that pre-merging
tokens in close proximity already offers sufficient results – by considering only
tokens close to one another, no specialized metric for string comparison (possi-
bly expensive) was needed, which substantially sped up the detection process.
The second idea which substantially sped up the process is related to bi-gram
hashing. It refers to constructing a mapping between each bi-gram and its count
in the document, enabling fast lookup of this information as follows. for each
subsequent token pair (ti, tj) term counts are retrieved (they are pre-computed
during tokenization). We next compute a merge threshold score as:

MScore =
|#ti − #bij | + |#tj − #bij |

#ti + #tj

where ti and tj are two subsequent tokens, and bij is the bi-gram comprised of the
two tokens. If MScore is lower than a user-specified threshold (hyperparameter),
the merged token is added as a new token to the token space, and term counts of
the two individual tokens are diminished by MScore as #ti = MScore ∗#ti, i.e.,
multiplied with the computed score. Values of MScore, lower than one, imply

Algorithm 1: RaKUn 2.0
Data: Input document D, merge factor τ

1 tokens ← tokenizeDocument(D) ‡ Tokenization.

2 tokens ← mergeTokens(D) ‡ Merging.

3 G ← documentGraph(tokens) ‡ Weighted graph.

4 f ← tokenFrequencies(tokens)
5 tokenRanks ← personalizedPR(G,f) ‡ Ranking.

6 K ← sort(N(G), tokenRanks) ‡ Sorting.

7 return K;

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 383

more emphasis of multi-term keyphrases (individual terms are not as empha-
sized), and values larger than one imply more individual token keyphrases.
Hence, the MScore serves as an intermediary step which emphasizes specific
tokens during the ranking step.

The token graph G is constructed from the modified list of tokens by con-
sidering subsequent, lower-cased tokens as edges. The edge weights are incre-
mented every time a given bi-gram repeats – the transitions between tokens
which commonly co-occur are emphasized. The next step is node ranking. Here,
a real-valued score is assigned to each (pre-merged) token. We consider person-
alized PageRank algorithm [25], where the personalization vector is constructed
based on term counts. This step results in real-valued scores (between 0 and 1)
for each token. The final set of scores is obtained by computing an element-wise
product between the PageRank scores and token lengths. This step emphasizes
longer keyphrases. We traverse the space of scored tokens and remove case-level
duplicates (e.g., ‘City’ and ‘city’).

The described algorithm for keyphrase detection was conceived with sim-
plicity in mind. This property also resonates with its computational complexity.
Let T represent the number of tokens after the merge step (cardinality differ-
ence is negligible with regards to the runtime). Both graph construction and
merging need one pass across the token sequence (O(|T |). The computationally
most expensive part is computation of personalized PageRank. In theory, PageR-
ank’s complexity is O(|T | + l), where l is the number of links in the constructed
token graph. In practice, the obtained graphs are very sparse – only selected
bi-grams co-occur. The opposite case, where dense, clique-like graphs would be
produced would imply appearance of tokens in highly diverse contexts, which is
highly unlikely. The final step requires sorting of tokens based their scores. This
yields the final complexity of O(|T | log |T | · l). Assuming very sparse graphs (as
observed during the experiments), the complexity remains linear with regards
to the number of tokens in the token set after the merge step.

4 Evaluation

We next discuss the evaluation procedures used to estimate the performance
of individual algorithms, followed by a discussion regarding their comparison.
We evaluate each algorithm with regards to three main aspects; retrieval per-
formance, keyword duplication rate and computation time. The retrieval perfor-
mance was measured as done in the previous work [8]. Precision@k is defined
as |Gold∩k-predicted|

k . Recall@k is defined as |Gold∩k-predicted|
|Gold| . Precision represents

the number of keyphrases retrieved with regards to top k predicted ones, while
recall represents the overall retrieval capability. We also computed (macro) F1,
which is the harmonic mean of precision and recall, averaged across documents.

The second score is the duplication rate. We compute this score as follows;
for each detected keyphrase, we first split it to separate tokens (if multi-token
keyphrase is considered). For each part, we traverse the space of detected tokens.
If there is a match, we increment a duplicate counter, otherwise, we increment

384 B. Škrlj et al.

Table 1. Summary of the considered data sets.

Dataset #Docs #KW Mean KW tokens Mean doc len

wiki20 [22] 20 35.5 2.0 7728.0

fao30 [21] 30 32.2 1.6 4710.3

theses100 [19] 100 6.7 2.0 4813.9

citeulike180 [20] 183 17.4 1.3 4517.9

Nguyen2007 [24] 209 12.0 2.1 4425.6

SemEval2010 [15] 243 15.6 2.2 7093.3

SemEval2017 [2] 493 17.3 2.9 168.3

500N-KPCrowd-v1.1 [18] 500 49.2 1.4 393.9

PubMed [1] 500 14.2 1.9 3880.2

kdd [11] 755 4.1 2.0 74.1

fao780 [21] 779 8.0 1.6 4685.0

Schutz2008 [27] 1231 45.3 1.5 2362.6

www [11] 1330 4.8 1.9 82.0

Inspec [14] 2000 14.1 2.2 112.5

Krapivin2009 [16] 2304 5.3 2.1 7094.1

the non duplicate counter. The final score is computed as #duplicates
#non duplicates+1 , and

was observed to be in the interval [0, 1]. The computation time was measured in
seconds (for each document). For visualization of retrieval-efficiency tradeoffs
with regards to the mentioned scores it makes sense to have uniform meaning of
large and small values. Hence, we introduce the following adapted scores which
reflect this idea. The retrieval capability already corresponds to e.g., F1 score,
meaning that higher values are preferred. We additionally normalize F1 scores
to range between 0 and 1 based on the worst-best performing algorithms (on
average). This way, an algorithm scored with 0 is the worst-performing one,
while the top performing is scored with 1 (see Fig. 8). Similar adaptations were
considered for time performance (normalized inverse times) and duplication rates
(normalized inverse duplication rates). One of the main results of this paper is a
visualization which jointly considers all three aspects. The considered collection
of data sets is summarized in Table 1.

The considered baselines are discussed next. The graph-based baselines
include MultiPartiteRank [6], SingleRank [29], TextRank [23] and TopicalPageR-
ank [7]. The statistical baseline considered was YAKE [8]. The language model-
based baseline is the recent KeyBERT [12]. For all approaches, we considered
the default hyperparameter configurations, as we were interested in out-of-the-
box performance. We computed, however, two variants of KeyBERT, one which
emits single tokens (KeyBERT-(1,1)) and one which permits two term tokens
(KeyBERT-(1,2)). Default configuration of KeyBERT variants performed worse

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 385

than term frequency-based extraction1, and offered (1,1) adequate performance
only when we set the ‘maxsum‘ and ‘mmr‘ flags to ‘true‘. The stopwords used
were the same for all approaches (NLTK’s default English stopwords [4]). Other
algorithms’ implementations were based on the PKE library [5].

5 Results

A summary of algorithm run times (relative to one another) is shown in Fig. 3.
As expected, the simplest baseline (term frequency) is up to three orders of mag-
nitude faster than e.g., BERT-based model. The second approach that performs
substantially better, while remaining up to two orders of magnitude faster is the
proposed RaKUn 2.0. It is closely followed by SingleRank and TopicalPageRank.
The duplication levels are shown in Fig. 4. The duplication ablation indicates the
highest duplication levels were observed for YAKE, TopicalPageRank and Tex-
tRank. MultiPartiteRank and SingleRank had notably lower duplication levels
(KeyBERT-(1,1) as well the term frequency (unigram) baseline. The proposed
RaKUn 2.0 is at the lower end of the approaches with regards to this score,
albeit not being optimal.

Fig. 3. Pairwise time comparison of average algorithm run times (log10(
A
B

).

1 We considered unigrams. Inverse document frequencies were not computed as they
require the whole corpus, making them not directly comparable to purely unsuper-
vised methods.

386 B. Škrlj et al.

We continue the discussion by presenting the retrieval performance. A sys-
tematic investigation of algorithm performance is shown in Fig. 5. The results
indicate that on average, MultiPartiteRank is the leading algorithm in the low k
scenarios. RaKUn 2.0, however, performs very similarly for up to ten keyphrases,
which is one of the most common usecases of such algorithms. A more detailed
overview of the scores on the per-data set level is given in Tables 1, 2, 3, 4 and
5. The color codes represent top three performers for each data set (gold = first,
silver = second, bronze = third). We additionally conducted rank-based differ-
ence significance evaluation [9], where the average algorithm ranks are compared
across all data sets. If the algorithms are linked with a red line, they perform
very similarly (p < 0.05). The diagrams are shown as Figs. 6 and 7. The tests
indicate that the difference between the top-performing approaches (MultiPar-
titeRank, YAKE and RaKUn 2.0) is insignificant. Similar observations can be
made based on tabular summaries. Overall, however, we can observe a marginal
dominance of RaKUn 2.0 w.r.t. precision. Similar retrieval performance ampli-
fies the purpose of this paper, which transcends the retrieval-only evaluation and
incorporates also other properties of either the algorithms or the retrieved space.

In Fig. 8, the selected approaches are compared across the three main evalu-
ation criteria – retrieval performance, duplication performance (inverse of dupli-
cation rate) and time performance (inverse of normalized times across all algo-
rithms). Larger values are better for each criterion. It can be observed that
MultiPartiteRank outperforms the others at the front considering duplication
and retrieval performance, however, RaKUn 2.0 outperforms the others when
considering retrieval capabilities and computation time.

Table 2. F1@10 (gold = first, silver = second, bronze= third, per row)

Algorithm KeyBERT-(1,1) KeyBERT-(1,2) MultiPartiteRank RaKUn 2.0 SingleRank TextRank TopicalPageRank YAKE TFreq

Dataset

500N-KPCrowd-v1.1 0.012 0.012 0.171 0.138 0.164 0.057 0.094 0.127 0.106

Inspec 0.0 0.0 0.22 0.143 0.207 0.126 0.24 0.195 0.041

Krapivin2009 0.051 0.057 0.109 0.097 0.094 0.007 0.02 0.118 0.011

Nguyen2007 0.099 0.058 0.168 0.141 0.152 0.025 0.053 0.188 0.035

PubMed 0.1 0.021 0.087 0.083 0.072 0.002 0.004 0.087 0.036

Schutz2008 0.088 0.023 0.23 0.194 0.219 0.015 0.031 0.15 0.075

SemEval2010 0.071 0.053 0.152 0.139 0.133 0.01 0.023 0.155 0.023

SemEval2017 0.0 0.0 0.216 0.132 0.203 0.122 0.224 0.175 0.056

citeulike180 0.205 0.03 0.172 0.225 0.14 0.004 0.013 0.185 0.097

fao30 0.16 0.027 0.176 0.233 0.161 0.008 0.011 0.15 0.072

fao780 0.116 0.013 0.141 0.138 0.118 0.004 0.009 0.138 0.064

kdd 0.0 0.001 0.107 0.144 0.094 0.058 0.109 0.144 0.056

theses100 0.099 0.017 0.149 0.103 0.128 0.004 0.006 0.093 0.042

wiki20 0.222 0.013 0.186 0.226 0.163 0.0 0.0 0.135 0.021

www 0.0 0.001 0.11 0.113 0.099 0.065 0.109 0.129 0.062

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 387

Table 3. Precision@10 (gold = first, silver = second, bronze = third, per row)

Algorithm KeyBERT-(1,1) KeyBERT-(1,2) MultiPartiteRank RaKUn 2.0 SingleRank TextRank TopicalPageRank YAKE TFreq

Dataset

500N-KPCrowd-v1.1 0.046 0.037 0.38 0.323 0.36 0.129 0.173 0.262 0.192

Inspec 0.0 0.0 0.174 0.112 0.165 0.101 0.189 0.152 0.032

Krapivin2009 0.037 0.04 0.079 0.069 0.068 0.005 0.014 0.084 0.008

Nguyen2007 0.09 0.05 0.151 0.124 0.138 0.022 0.048 0.166 0.032

PubMed 0.065 0.013 0.057 0.055 0.047 0.001 0.003 0.057 0.023

Schutz2008 0.193 0.047 0.504 0.433 0.48 0.029 0.065 0.329 0.163

SemEval2010 0.075 0.055 0.159 0.146 0.14 0.011 0.024 0.162 0.023

SemEval2017 0.0 0.001 0.293 0.184 0.278 0.169 0.3 0.235 0.077

citeulike180 0.208 0.03 0.172 0.228 0.14 0.003 0.012 0.183 0.097

fao30 0.183 0.033 0.21 0.28 0.19 0.01 0.013 0.18 0.087

fao780 0.075 0.008 0.092 0.09 0.077 0.002 0.006 0.089 0.041

kdd 0.0 0.001 0.064 0.087 0.056 0.036 0.065 0.085 0.034

theses100 0.064 0.011 0.098 0.068 0.084 0.002 0.004 0.06 0.027

wiki20 0.19 0.01 0.155 0.19 0.135 0.0 0.0 0.12 0.02

www 0.0 0.001 0.066 0.068 0.06 0.04 0.065 0.076 0.037

Table 4. Recall@10 (gold = first, silver = second, bronze= third, per row)

Algorithm KeyBERT-(1,1) KeyBERT-(1,2) MultiPartiteRank RaKUn 2.0 SingleRank TextRank TopicalPageRank YAKE TFreq

Dataset

500N-KPCrowd-v1.1 0.007 0.007 0.144 0.119 0.139 0.041 0.087 0.129 0.113

Inspec 0.0 0.0 0.356 0.233 0.331 0.194 0.388 0.326 0.07

Krapivin2009 0.097 0.119 0.212 0.187 0.182 0.014 0.041 0.236 0.021

Nguyen2007 0.135 0.087 0.23 0.216 0.205 0.036 0.078 0.279 0.05

PubMed 0.27 0.065 0.223 0.209 0.181 0.009 0.013 0.239 0.096

Schutz2008 0.063 0.017 0.161 0.133 0.153 0.011 0.022 0.104 0.053

SemEval2010 0.071 0.054 0.152 0.139 0.133 0.01 0.024 0.156 0.023

SemEval2017 0.0 0.0 0.183 0.11 0.17 0.101 0.189 0.15 0.046

citeulike180 0.221 0.034 0.187 0.242 0.151 0.005 0.016 0.205 0.104

fao30 0.149 0.023 0.159 0.21 0.147 0.007 0.01 0.134 0.065

fao780 0.335 0.036 0.396 0.39 0.321 0.01 0.025 0.39 0.193

kdd 0.0 0.003 0.384 0.514 0.346 0.188 0.398 0.562 0.194

theses100 0.266 0.045 0.389 0.262 0.326 0.019 0.02 0.254 0.116

wiki20 0.294 0.017 0.251 0.297 0.221 0.0 0.0 0.166 0.023

www 0.0 0.004 0.393 0.412 0.352 0.221 0.394 0.502 0.237

Table 5. Retrieval time (s). (gold = first, silver = second, bronze= third, per row)

Algorithm KeyBERT-(1,1) KeyBERT-(1,2) MultiPartiteRank RaKUn 2.0 SingleRank TextRank TopicalPageRank YAKE TFreq

Dataset

500N-KPCrowd-v1.1 0.422 0.763 0.477 0.009 0.454 0.417 1.552 0.699 0.0

Inspec 0.202 0.337 0.399 0.006 0.4 0.394 1.554 0.74 0.0

Krapivin2009 1.561 11.282 6.144 0.08 4.332 1.111 2.852 1.423 0.007

Nguyen2007 1.333 6.318 3.528 0.05 2.45 0.87 2.505 1.304 0.005

PubMed 1.237 4.865 2.823 0.046 1.945 0.766 2.312 1.249 0.004

Schutz2008 1.58 6.926 3.993 0.038 2.675 0.772 2.428 1.236 0.004

SemEval2010 1.675 12.479 6.135 0.076 4.213 1.117 2.707 1.378 0.008

SemEval2017 0.213 0.431 0.403 0.007 0.395 0.389 1.596 0.947 0.0

citeulike180 1.556 8.006 3.937 0.051 2.411 0.812 2.446 1.322 0.005

fao30 1.528 7.599 4.665 0.056 2.793 0.877 2.47 1.573 0.005

fao780 1.531 7.806 5.284 0.056 3.111 0.838 2.53 1.479 0.005

kdd 0.153 0.268 0.394 0.006 0.394 0.383 1.371 0.549 0.0

theses100 1.52 7.069 4.05 0.053 2.603 0.811 2.293 1.644 0.004

wiki20 1.598 10.453 5.674 0.066 3.8 0.952 2.586 1.429 0.006

www 0.152 0.269 0.39 0.006 0.396 0.396 1.283 0.552 0.0

388 B. Škrlj et al.

Fig. 4. Duplication levels for different algorithms.

5.1 Scaling to 14M Documents

A direct way of testing the complexity bounds stated in the methods section
was to attempt and run RaKUn 2.0 directly on the collection of approximately
14 million biomedical articles – the MeDAL corpus [30]2. The corpus was parsed
into a list of documents and fed into the default configuration of RaKUn 2.0.
The computation took approximately forty seconds (including text reading) on a
virtual machine with 12 cores and 32GB of RAM. The list of top ten keyphrases
is shown as Table 6.

The top keyphrases correspond to rather general biological terms, which are
some of the main topics related to the considered documents. The results were
obtained by maintaining the merge threshold hyperparameter set to one – single
term keyphrases can be obtained if this threshold is lowered. For example, if set
to 0.5, the top three keyphrases are ‘activity’, ‘concentration’ and ‘enzyme’.

2 https://www.reddit.com/r/MachineLearning/comments/jx63fd/r a 14m articles
dataset for medical nlp/.

https://www.reddit.com/r/MachineLearning/comments/jx63fd/r_a_14m_articles_dataset_for_medical_nlp/
https://www.reddit.com/r/MachineLearning/comments/jx63fd/r_a_14m_articles_dataset_for_medical_nlp/

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 389

Fig. 5. F1 score for different top k keyphrases, averaged across all data sets.

Table 6. 14M articles summarized as top ten keyphrases.

Keyphrase Score

presence 0.02041868080426608

molecular weights 0.01313742352650019

glutamine synthetase 0.01081927396059080

growth hormone 0.01081481738381907

arterial blood 0.00973761662559790

investigated 0.00926714499542069

rate constant 0.00904369510973679

blood flow 0.00899499866920862

molecular weight 0.00865807865159297

sodium dodecyl 0.00865611530561878

1 2 3 4 5 6 7 8 9

MultiPartiteRank
YAKE
RaKUn 2.0
SingleRank

TextRank
KeyBERT-(1,2)
term-frequency

TopicalPageRank
KeyBERT-(1,1)

critical distance: 2.7109

Fig. 6. Critical difference diagram - F1@15. RaKUn 2.0’s performance is (statistically)
comparable to the recent state-of-the-art approaches.

390 B. Škrlj et al.

1 2 3 4 5 6 7 8 9

KeyBERT-(1,2)
MultiPartiteRank
TopicalPageRank
SingleRank

term-frequency
RaKUn 2.0
TextRank

KeyBERT-(1,1)
YAKE

critical distance: 2.7109

Fig. 7. CD diagrams – time per document. Higher ranks indicate faster compute time.
RaKUn 2.0 is significantly faster when compared to other state-of-the-art methods.

Fig. 8. A visualization comparing best and worst-performing approaches with regards
to three different criteria relevant in practice. Note that the scores are relative with
regards to the considered methods’ performances.

6 Discussion and Conclusions

In this paper we presented an approach to unsupervised keyphrase detection,
aimed specifically at pushing the limits of computation time and retrieval per-
formance. The main contributions of this paper are an algorithm for keyphrase
detection that performs substantially (significantly) faster than current state-
of-the-art methods, while maintaining the retrieval performance. The algorith-
mic novelties introduced touch upon the transformation of token sequences into
graphs, and re-address the question of meta vertices by constructing them at
the sequence level, which is substantially faster. Further, by exploiting per-
sonalized PageRank, global token information is incorporated into keyphrase
ranking alongside token lengths. By conducting an extensive benchmark against
established baselines, this paper presents an evaluation which incorporates both
retrieval capabilities, but further details into computation time and duplication
rates amongst the retrieved keyphrases.

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 391

Analysis of keyphrase detection algorithms with regards to multiple evalua-
tion criteria is becoming of higher relevance, as many low-latency applications
cannot afford expensive detection phase. To our knowledge, this paper is sim-
ilarly one of the first to evaluate the performance based on critical difference
diagrams, exactly assessing the significance of observed differences (in time and
retrieval performance).

Further work includes exploration of lower-level implementations of top-
performing approaches, alongside their parts that could be subject to parallelism.
A potentially interesting endeavor would also include background knowledge (as
graphs), possibly enabling detection of keywords beyond the ones found in a
given document, while remaining unsupervised.

7 Replicability

The RaKUN 2.0 algorithm is available as a simple-to-use Python library available
at https://github.com/SkBlaz/rakun2.

Acknowledgements. The work was supported by the Slovenian Research Agency
(ARRS) core research programme Knowledge Technologies (P2-0103), and projects
Computer-assisted multilingual news discourse analysis with contextual embeddings
(J6-2581) and Quantitative and qualitative analysis of the unregulated corporate finan-
cial reporting (J5-2554). The work was also supported by the Ministry of Culture of
Republic of Slovenia through project Development of Slovene in Digital Environment
(RSDO).

References

1. Aronson, A.R., et al.: The NLM indexing initiative. In: Proceedings of the AMIA
Symposium, p. 17. American Medical Informatics Association (2000)

2. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017
task 10: ScienceIE - extracting keyphrases and relations from scientific publica-
tions. In: Proceedings of the 11th International Workshop on Semantic Evaluation
(SemEval-2017), pp. 546–555. Association for Computational Linguistics, Vancou-
ver (2017). https://doi.org/10.18653/v1/S17-2091, https://aclanthology.org/S17-
2091

3. Beliga, S., Meštrović, A., Martincic-Ipsic, S.: An overview of graph-based keyword
extraction methods and approaches. J. Inf. Organ. Sci. 39, 1–20 (2015)

4. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media, Inc., Sebastopol (2009)

5. Boudin, F.: PKE: an open source python-based keyphrase extraction toolkit. In:
Proceedings of COLING 2016, the 26th International Conference on Computa-
tional Linguistics: System Demonstrations, Osaka, Japan, pp. 69–73, December
2016. https://aclweb.org/anthology/C16-2015

6. Boudin, F.: Unsupervised keyphrase extraction with multipartite graphs. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers), pp. 667–672. Association for Computational Linguistics, New

https://github.com/SkBlaz/rakun2
https://doi.org/10.18653/v1/S17-2091
https://aclanthology.org/S17-2091
https://aclanthology.org/S17-2091
https://aclweb.org/anthology/C16-2015

392 B. Škrlj et al.

Orleans (2018). https://doi.org/10.18653/v1/N18-2105, https://aclanthology.org/
N18-2105

7. Bougouin, A., Boudin, F., Daille, B.: TopicRank: graph-based topic ranking for
keyphrase extraction. In: Proceedings of the Sixth International Joint Conference
on Natural Language Processing, pp. 543–551. Asian Federation of Natural Lan-
guage Processing, Nagoya (2013). https://aclanthology.org/I13-1062

8. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.: Yake!
keyword extraction from single documents using multiple local features. Inf. Sci.
509, 257–289 (2020). https://doi.org/10.1016/j.ins.2019.09.013

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(1), 1–30 (2006). https://jmlr.org/papers/v7/demsar06a.html

10. Ding, H., Luo, X.: AttentionRank: unsupervised keyphrase extraction using self and
cross attentions. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 1919–1928. Association for Computational Lin-
guistics, Online and Punta Cana, Dominican Republic, November 2021. https://
doi.org/10.18653/v1/2021.emnlp-main.146, https://aclanthology.org/2021.emnlp-
main.146

11. Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using
citation networks. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 27–31 July 2014, Québec City,
Québec, Canada, pp. 1629–1635. AAAI Press (2014). https://www.aaai.org/ocs/
index.php/AAAI/AAAI14/paper/view/8662

12. Grootendorst, M.: KeyBERT: minimal keyword extraction with BERT (2020).
https://doi.org/10.5281/zenodo.4461265

13. Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the
art. In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1262–1273. Association for Com-
putational Linguistics, Baltimore (2014). https://doi.org/10.3115/v1/P14-1119,
https://aclanthology.org/P14-1119

14. Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, pp. 216–223 (2003). https://aclanthology.org/W03-1028

15. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: SemEval-2010 task 5: automatic
keyphrase extraction from scientific articles. In: Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, pp. 21–26. Association for Computa-
tional Linguistics, Uppsala (2010). https://aclanthology.org/S10-1004

16. Krapivin, M., Autaeu, A., Marchese, M.: Large dataset for keyphrases extraction
(2009)

17. Kumar, T., Mahrishi, M., Meena, G.: A comprehensive review of recent automatic
speech summarization and keyword identification techniques. Artif. Intell. Ind.
Appl. 111–126 (2022)

18. Marujo, L., Viveiros, M., da Silva Neto, J.P.: Keyphrase cloud generation of broad-
cast news (2013)

19. Medelyan, O.: Human-competitive automatic topic indexing. Ph.D. thesis, The
University of Waikato (2009)

20. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using auto-
matic keyphrase extraction. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pp. 1318–1327. Association for Compu-
tational Linguistics, Singapore (2009). https://aclanthology.org/D09-1137

https://doi.org/10.18653/v1/N18-2105
https://aclanthology.org/N18-2105
https://aclanthology.org/N18-2105
https://aclanthology.org/I13-1062
https://doi.org/10.1016/j.ins.2019.09.013
https://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.18653/v1/2021.emnlp-main.146
https://doi.org/10.18653/v1/2021.emnlp-main.146
https://aclanthology.org/2021.emnlp-main.146
https://aclanthology.org/2021.emnlp-main.146
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8662
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8662
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.3115/v1/P14-1119
https://aclanthology.org/P14-1119
https://aclanthology.org/W03-1028
https://aclanthology.org/S10-1004
https://aclanthology.org/D09-1137

Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction 393

21. Medelyan, O., Witten, I.H.: Domain-independent automatic keyphrase indexing
with small training sets. arXiv preprint abs/10.1002 (2010). https://arxiv.org/
abs/10.1002

22. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with Wikipedia. In: Pro-
ceedings of the AAAI WikiAI Workshop, vol. 1, pp. 19–24 (2008)

23. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of
the 2004 Conference on Empirical Methods in Natural Language Processing, pp.
404–411. Association for Computational Linguistics, Barcelona (2004). https://
aclanthology.org/W04-3252

24. Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh,
D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS,
vol. 4822, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77094-7 41

25. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report 1999-66, Stanford InfoLab (1999).
https://ilpubs.stanford.edu:8090/422/, previous number = SIDL-WP-1999-0120

26. Papagiannopoulou, E., Tsoumakas, G.: A review of keyphrase extraction. Wiley
Interdisc. Rev. Data Min. Knowl. Discov. 10(2), e1339 (2020)

27. Schutz, A.T., et al.: Keyphrase extraction from single documents in the open
domain exploiting linguistic and statistical methods. M. App. Sc thesis (2008)

28. Škrlj, B., Repar, A., Pollak, S.: RaKUn: Rank-based K eyword extraction via
Unsupervised learning and meta vertex aggregation. In: Mart́ın-Vide, C., Purver,
M., Pollak, S. (eds.) SLSP 2019. LNCS (LNAI), vol. 11816, pp. 311–323. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31372-2 26

29. Wan, X., Xiao, J.: CollabRank: towards a collaborative approach to single-
document keyphrase extraction. In: Proceedings of the 22nd International Con-
ference on Computational Linguistics (COLING 2008), pp. 969–976. COLING
2008 Organizing Committee, Manchester, UK (2008). https://aclanthology.org/
C08-1122

30. Wen, Z., Lu, X.H., Reddy, S.: MeDAL: medical abbreviation disambiguation
dataset for natural language understanding pretraining. In: Proceedings of the
3rd Clinical Natural Language Processing Workshop, pp. 130–135. Association
for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.
clinicalnlp-1.15, https://aclanthology.org/2020.clinicalnlp-1.15

https://arxiv.org/abs/10.1002
https://arxiv.org/abs/10.1002
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.1007/978-3-540-77094-7_41
https://doi.org/10.1007/978-3-540-77094-7_41
https://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/978-3-030-31372-2_26
https://aclanthology.org/C08-1122
https://aclanthology.org/C08-1122
https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
https://doi.org/10.18653/v1/2020.clinicalnlp-1.15
https://aclanthology.org/2020.clinicalnlp-1.15

A Fuzzy OWL Ontologies Embedding
for Complex Ontology Alignments

Houda Akremi1(B), Mouhamed Gaith Ayadi2, and Sami Zghal1,3

1 Faculty of Sciences of Tunis, LIPAH -LR11ES14, University of Tunis El Manar,
Tunis 2092, Tunisia

houda.akremi@fst.utm.tn
2 ISG, BESTMOD-LR99ES04, University of Tunis, Bardo 2000, Tunisia

mouhamed.gaith.ayadi@gmail.com
3 Faculté des Sciences Juridiques, Économiques et de Gestion de Jendouba,

Université de Jendouba, Campus Universitaire, Jendouba 8189, Tunisia
sami.zghal@fsjegj.rnu.tn

Abstract. The semantic heterogeneity concern in the information inte-
gration can be handled by applying ontology alignment. The purpose of
the ontology alignment procedure is to locate concepts that are semanti-
cally identical in two ontologies. But, one of these alignments’ downsides
is the lack of expressiveness and uncertainties, which can be accounted
by using fuzzy complex alignments. To address this issue, the use of an
effective strategy, consisting of two parts, is applied. We proceeded by
establishing of a fuzzification approach that enables a semantic represen-
tation of both crisp and fuzzy data. The next step was to model fuzzy
OWL 2 ontologies in vector space by a semantic embedding-based ontol-
ogy matching technique and compute their similarity scores to deter-
mine the correlation levels. Then, it is reinforced by a stable marriage-
based alignment extraction algorithm to establish a high-quality match-
ing. Our proposed alignment scheme has been validated and reviewed on
the benchmark tracks supplied by the Ontology Alignment Evaluation
Initiative (OAEI). Experimental findings demonstrated the effectiveness
of our matching method.

Keywords: Ontology · Ontology fuzzification · Complex alignment ·
Ontology embedding

1 Introduction

On the Semantic Web, the issue of managing heterogeneity among multiple infor-
mation resources is becoming increasingly challenging. Ontology alignment (also
known by Ontology matching) is a critical task for managing semantic hetero-
geneity. The majority of the provided ontology matching approaches are conven-
tional [12], which seek correspondences between related entities in various ontolo-
gies. This discipline is structured by two ’ paradigms: simple and complex match-
ing. Simple methods [34] are restricted to matching single entities and they are
insufficiently expressive to surmount ontological conceptual heterogeneity [33].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 394–404, 2022.
https://doi.org/10.1007/978-3-031-18840-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_28

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 395

However, complex ontology alignment methods enable the mapping of a concept
from the first ontology to numerous concepts from the second ontology [28]. These
approaches can provide correlations that better express the links between enti-
ties in various ontologies. To deal with that, experts have investigated numer-
ous ontology alignment methodologies and created a variety of semi-automatic
and automated ontology matching systems [30–32]. Yet, present complex ontol-
ogy matching techniques have lot of limitations, such as the matcher’s inadequate
ontology similarity computation and ontology mapping findings, etc. Moreover,
ontologies are still significantly constrained in terms of expressing information and
knowledge in the real world. So, ontologies fuzzification could be a technique for
modeling incorrect knowledge. In particular, fuzzy ontological representations can
more accurately describe practical knowledge in reference to a specific topic. Fuzzy
knowledge tends to boost the decision-making process’ clarity and effectiveness. To
overcome these shortcomings, we established a fuzzification approach that allows
the semantic representation of both crisp and fuzzy data. Then, a new complex
alignment approach of ontologies is provided. In this regard, we suggest putting
in place a framework to generate semantic embeddings for OWL 2 ontologies. The
plan is tomap entities in vector space and to compute their similarity values later to
ensure the matching task. Furthermore, a stable marriage-based ontology extrac-
tion approach is provided to increase alignment quality. The output alignment
attempts to entirely encompass the two ontologies’ shared topic.

The remainder of the paper is organized as follows. Section 2 outlines the
related work. Section 3 focuses on the proposed approach. Section 4 overviews
an evaluation of our approach. Finally, Sect. 5 provides the major conclusions
and discusses its perspectives.

2 Related Work

In this section, we first go over the fundamentals of complex ontology align-
ments and related applications (2.1), and then we go over for the fuzzification
of the ontological representation (2.2). Finally, we go over for various ontology
embedding approaches (2.3).

2.1 Complex Alignments

The procedure of establishing an alignment A for a pair of ontologies O1 and
O2 is referred as ontology matching [33]. A is directional which means to find
an alignment between a source ontology O1 and a target ontology O2, denoted
AO1−→O2 . So, an alignment is a set of correspondences among entities belonging
to the matched ontologies with various cardinalities: 1 : 1 (one-to-one), 1 : m
(one-to-many), n : 1 (many-to-one) or n : m (manyto-many). A correspondence
is a triple (e1, e2, r):

– e1 and e2 are entities, e.g., classes and properties of the first and the second
ontology, respectively;

396 H. Akremi et al.

– r is a relation, e.g., equivalence (=), more general (�), disjointness (⊥), hold-
ing between e1 and e2.

The correspondence (e1, e2, r) claims that the relation r holds among the
ontology entities e1 and e2. According to that, we explore two sorts of corre-
spondences: simple and complex. In fact, a complex alignment includes at least
one complex correspondence. Complex alignment creation seems to be more chal-
lenging than simple alignment creation. Certainly, the alignment space, which
reflects the set of all possible correspondences across ontologies, is wider in
complex matching generation compared to simple matching generation. Sim-
ple alignments are not as expressive as complex alignments. Works employing
such complex alignments have been suggested for a variety of tasks including
ontology evolution [11], data translation [4] and ontology merging [5]. As a
start, the AROA system (Association Rule-based Ontology Alignment) [24] pro-
vides a collection of matching conditions for detecting matching patterns. Then,
KAOM (Knowledge-Aware Ontology Matching) [13] uses several matching meth-
ods used to identify transformation function correspondences and logical relation
correspondences. Likewise, the CANARD framework [27] is concerned with lin-
ear Competency Questions for Alignment. Finally, The AML (AgreementMak-
erLight) [7] is a mechanism applying lexical matching methods for correlating
ontologies. With this variety of proposed models, researchers frequently ought
to employ several methodologies to raise the efficiency of the matching task. It
is clear that it is possible to compute semantic similarity via OWL 2 ontologies
embeddings which increases the matcher’s accuracy.

2.2 Ontologies Fuzzification

Fuzzy logic is currently experiencing an alternate challenge, which is affecting the
Semantic Web viewpoint. A fuzzy ontology enables for the appropriate knowl-
edge to be mapped out in an unambiguous ontology. According to Li et al. [17],
on the principle of fuzzy representation, the following ontological concepts are
homogeneous to regular recognition:

– Fuzzy concept: refer to concepts with no sufficient certainty;
– Fuzzy roles: explain the fuzzy connection between concept instances;
– Fuzzy data types: allow for improper perceptions of attribute values

throughout the fuzzification process.

Zhai et al. [15] sought to clarify the fuzzification of the ontological representation
in a fuzzy ontological scheme. Then, Bouaziz et al. [2] conducted a nearly iden-
tical pilot investigation, focusing on the variation between these fuzzy aspects.
Zekri et al. [36] provided a particular fuzzy ontological description of Alzheimer’s
disease, known as AlzFuzzyOnto. El-Sappagh et al. [6] report the advancement
of diabetes detection research through “CBRDiabOnto”. Gomez-Romero et al.
[8] proposed an adaptive fuzzy analysis-related expansion integrating semantic
BIMs (building information models) that provide support for imperfect knowl-
edge categorization. A procedural methodology known as FODM was introduced

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 397

by Li et al. [17] for fuzzy ontological structure. The fact that neither of the
present fuzzy ontological methodological structures addresses the negative effects
of utilizing the current crisp structural features throughout the determination
process also has to be brought up. In light of that, this study presents a sketch
of a fuzzy ontological structure characterized by two specific details: (i) utilizing
the existing crisp ontological representation and (ii) recognizing fuzzy ontological
features. Therefore, the use of a knowledge ontological structure is the first step
in our fuzzification technique. The next steps are the acquisition of the detection
of the components of a fuzzy ontological structure and their explanation.

2.3 Ontology Embedding

There are several methods in the literature that conduct (RDF) knowledge
graphs embeddings, which mainly concentrate on the data instances embed-
ding [20,23,29]. But, embeddings benefit from data instances, and the ontology’s
knowledge is often neglected. In perspective of concept embeddings, significant
attempts have been made to utilize word embeddings to correlate the lexical
information with a vector representation. This method has typically been used
for ontology matching assignments [16,21] . The basic drawback of this method is
the neglect of the rich semantics of the ontologies especially with domain-specific
terminology. Onto2Vec [25] and OPA2Vec [26] are special systems for ontology
embedding. Starting from these methods limitations, the framework OWL2Vec∗

[3] is implemented to arrange: (i) the generation of significant vectors for small-
medium ontologies, (ii) the embeddings noise due to OWL constructs, (iii) the
generation of similar embeddings using Word2Vec. This method is followed and
exploited in our work to develop an ontology embedding matching system rein-
forced by a stable marriage-based ontology extraction algorithm, which we will
detail later.

3 The Fuzzy Complex Ontology Alignment Framework

This study expands a fuzzy ontology matcher that computes the similarity values
of two fuzzy entities based on a semantic OWL embedding model. This frame-
work is made up of four major components: Parsing component, Fuzzifica-
tion component, Embedding component, and Alignment component.

3.1 Parsing Component

The parsing (or pretreatment) process is vital for complex alignment ontologies.
It is carried out with the help of the OWL API1. This phase turns the studied
ontologies into a format suitable for the remaining treatments. The aim is to treat
all of the available information in both loaded OWL files, whose each entity
is defined by all of its properties. A linguistic pretreatment process precedes

1 http://owlapi.sourceforge.net/.

http://owlapi.sourceforge.net/

398 H. Akremi et al.

this procedure, including cleaning empty words, removing special characters,
and lemmatizing. This process gets the ontologies ready for the fuzzification
procedure.

3.2 Fuzzification Component

In this part, we clearly outline each step of the fuzzification methodology to
indicate ambiguous ontological entities, by injecting fuzzy aspects. It is defined
by three phases. : crisp ontology analysis, ontology fuzzification and consistency
checking.

Crisp Ontology Analysis. The purpose of this phase is to pinpoint and to
gather the imprecise ontological entities (concepts, relations, axioms, etc.) in the
crisp domain ontology that can be fuzzified according to a linguistic variable’s
particular value. Linguistic variables are the terminology applied to describe a
scenario, a phenomena, or a procedure, like as temperature, age, etc. We took
advantage of the lexical database WordNet2 to form the fuzzy entities.

Ontology Fuzzification. This step is about the fuzzification of the crisp
domain ontology. We consider adopting the Fuzzy OWL2 language to enable
the description of fuzzy data-types, fuzzy modified concepts, weighted concepts,
weighted sum concepts, fuzzy nominals, fuzzy modifiers, fuzzy modified roles,
data-types, and fuzzy axioms. In the ontology, these components are expressed
as classes, relations, and individuals, accordingly.The latter has seven sub-steps,
which are as follows:

– Crisp ontology annotation: Both logics of Zadeh [35] and that of
Lukasiewicz [18] are commonly employed for the annotation.

– Concepts fuzzification: The fuzzy linguistic values are used to assess the
fuzzy concepts via a fuzzy OWL2 annotation.A degree of truth among 0 and
1 can be used to characterize the fuzzy concept.

– Object properties fuzzification: Object properties (roles) can really be
turned into fuzzy abstract roles depending on a set of requirements including
someValuesFrom, allValuesFrom, minCardinality and maxCardinality [37]. A
new role is adapted to accommodate the fuzzy object attributes.

– Data-types fuzzification: A data-type attribute specified as an OWL class
instance connects individuals to data values.To enhance imprecision, a basic
OWL2 datatype can be translated into fuzzy data-types via a fuzzy member-
ship functions.

– Fuzzy modifiers and fuzzy modified data-types: A fuzzy data-type is
one that connects individuals to data values with the respect of its features
and constraints [37]. Fuzzy modifiers can be used to adjust the membership
degree of fuzzy data-types.

2 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 399

– Fuzzy modified data-type properties: The attributes of fuzzy modified
data-type are expressed as fuzzy modified data-type.

– Axioms fuzzification: The links among individuals, concepts, properties
and relations are specified by the fuzzy axioms. Information about the fuzzy
ontology structure is described using the fuzzy axioms [37].

Consistency Checking. The syntactic-level assessment is characterized by
consistency checking via FuzzyDL reasoner to determine whether the fuzzy ontol-
ogy is coherent and free of errors. It is a DL reasoning engine that supports fuzzy
logic reasoning to examine the fuzzy domain ontology.This process gets the fuzzy
ontologies ready for the embedding procedure.

3.3 Embedding Component

The purpose of this assignment is to determine semantic embeddings. Funda-
mentally, this method begins with the projection of the ontology into a graph.
Then, multiple techniques are employed to walk the ontology graph. After that, a
corpus of sentences is produced depending on walking patterns. Finally, concept
embeddings will be generated from that corpus. To recap, the actual embedding
structure is comprised of three major modules:

– Ontology projection. To project the ontology into a RDF graph, a sim-
plified model applied by Agibetov et al. [1] is employed and followed. By
analogy, the graph nodes indicate the ontology concepts and the edges are
labeled with potential correlations between those concepts.

– Walk strategy. A set of mechanisms to walk the ontology graph were pro-
vided, based on an inspired versions of RDF2Vec [23] and node2vec [9] which
consist in the ontology projection as an input and the weighted edges integra-
tion for the walks. This new strategy permitted the generation of sentences
containing the concept URI and/or concept labels. This solution operates well
with massive ontologies and offers semantic similarity even for structures that
are identical.

– Concept embeddings. The walk techniques are adaptable, allowing the pro-
duction of several sorts of sentences corpora that result to concept embeddings
with various characteristics based on Word2Vec [19] and FastText [14].

3.4 Alignment Component

After the semantic embedding procedure, each entity is expressed in the form
of a vector in the vector space. All classes and properties in both ontologies are
covered and then, we computed the similarity values using two types of metrics
(cosine and linguistic similarity), which it has a great impact on the outcomes
of the ontology matching. As previously stated, the cosine similarity metric, as
specified below, has been used to compute the similarity of the two entities.

Cosine Similarity(Vw1, Vw2) =
Vw1.Vw2

Vw1.Vw2
(1)

400 H. Akremi et al.

where Vw1 and Vw2 are, respectively, the vectors of two words w1 and w2 and
Vw1 and Vw2, respectively, denote their norms. The more similar they are, the
closer the outcome is to 1.

The two metrics generate two similarity matrices, and an aggregation app-
roach is required to combine the two matrices into one matrix. The higher of two
similarity values is considered as the final similarity value, which serves to verify
the alignment’s accuracy. To improve mapping outcomes, a stable marriage-
based ontology extraction technique [10,22] with a thresholding method is
adapted. It enables for the selection of suitable mappings. The process is ended
when all values in the similarity matrix are less than or equal to the threshold
(0.5). So, a similarity of less than 0.5 is considered unreliable. These steps enable
the creation of stable mappings.

4 Evaluation

In this section, the effectiveness of our approach is evaluated through a series of
tests applying the benchmark track released by the Ontology Alignment Evalu-
ation Initiative (OAEI). The OAEI provided an innovative ontology alignment
evaluation report track regarding Complex alignments3. We employed a real-
world dataset as a potential complex alignment benchmark from the GeoLink
project, supported by the U.S. National Science Foundation’s EarthCube pro-
gram. It consists of two ontologies: the GeoLink Base Ontology (GBO) and the
GeoLink Modular Ontology (GMO). The matching of the two ontologies was cre-
ated in collaboration with domain experts from a number of geoscience research
institutions. Table 1 exposes the number of classes and properties in both ontolo-
gies. Additional details are available in [38]. We have computed to adopt it for
our ontology matching method.

Table 1. The number of classes, object properties, and data properties in both GeoLink
ontologies.

Ontology Classes Object properties Data properties

GeoLink base ontology 40 149 49

GeoLink modular ontology 156 124 46

The following are the usual definitions of ontology alignment metrics for
evaluating the quality of ontology matching findings:

Recall =
Correct found correspondences

All possible correspondences
(2)

Precision =
Correct found correspondences

All found correspondences
(3)

3 http://oaei.ontologymatching.org/2018/complex/index.html.

http://oaei.ontologymatching.org/2018/complex/index.html

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 401

Fig. 1. Performance Comparison with state-of-the-art methods

Table 2. Performance Comparison on GeoLink Benchmark

Evaluation metrics Our model AML AROA CANARD

Precision 97.00% 52.00% 87.00% 89.00%

Recall 80.00% 23.00% 46.00% 39.00%

F-measure 87.68% 32.00% 60.00% 54.00%

F measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(4)

where precision and recall reflect the accuracy and sufficiency of the match-
ing findings, respectively, and F-measure allows to adjust them with balance.
Figure 1 depicts the precision, recall, and F-measure computed for various state-
of-the-art complex alignment methods compared with our model.

It is presented also in Table 2. In fact, our alignment model provides encour-
agement results. Our model achieves 80.52% F-measure for the simple (1 : 1)
correspondences. Moreover, it provides 87.68% F-measure for complex (1 : n)
correspondences. According to the performance comparison, only our model and
the CANARD system can create almost perfect complex matching. To summa-
rize, the proposed method’s success is demonstrated by comparison with other
matchers.

5 Conclusion

In this paper, we have proposed a new ontology complex alignment method. To
that purpose, this study initially uses an innovative fuzzification methodology
that performs in three steps to convert crisp domain ontology into a fuzzy one.
Then, this study uses ontologies semantic embedding to model entities in vector
space. It computes the similarity values through using cosine similarity metric

402 H. Akremi et al.

and the linguistic similarity. Finally, to establish a high-quality matching, a
stable marriage-based alignment extraction algorithm is applied. Studies have
revealed that our alignment approach provides significant results. Experimental
findings show that our method produces better matching outcomes than state-
of-the-art ontology matchers. Future work includes the exploration of a more
improved ontology complex alignment model using machine learning paradigm
to improve the matching quality.

References

1. Asan, A., et al.: Supporting shared hypothesis testing in the biomedical domain.
J Biomed. Seman. 9(1), 9 (2018)

2. Bouaziz, R., Ghorbel, H., Bahri, A.: Fuzzy ontologies model for semantic web. In:
The Second International Conference on Information and Knowledge Management,
eKNow, Maorten, Netherlands Antilles (2010)

3. Chen, J., Hu, P., Jiménez-Ruiz, E., Holter, O., Antonyrajah, D., Horrocks, I.:
Owl2vec*: embedding of owl ontologies. Mach. Learn. 110, 1813–1845 (2021)

4. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API
4.0. Semant. Web 2(1), 3–10 (2011)

5. Dou, D., Qin, H., Lependu, P.: Ontograte: towards automatic integration for rela-
tional databases and the semantic web through an ontology-based framework. Int.
J. Semant. Comput. 4(1), 123–151 (2010)

6. El-Sappagh, S., Elmogy, M., Riad, A.: A fuzzy-ontology-oriented case-based reason-
ing framework for semantic diabetes diagnosis. Artif. Intell. Med. 65(3), 179–208
(2015)

7. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Agreement maker
light results for OAEI 2013. In: Proceedings of the 8th International Conference on
Ontology Matching, vol. 1111, pp. 101–108. CEUR-WS.org, Aachen, DEU (2013)

8. Gomez-Romero, J., Bobillo, F., Ros, M., Molina-Solana, M., Ruiz, M., Mart́ın-
Bautista, M.: A fuzzy extension of the semantic building information model.
Autom. Constr. 57, 202–212 (2015)

9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. CoRR
(2016)

10. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. Foundations of Computing (2013)

11. Hartung, M., Groß, A., Rahm, E.: Conto-diff: generation of complex evolution
mappings for life science ontologies. J. Biomed. Inform. 46(1), 15–32 (2013)

12. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for
linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp.
402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-
0 26

13. Jiang, S., Lowd, D., Kafle, S., Dou, D.: Ontology matching with knowledge rules.
In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds.) Transactions on Large-
Scale Data- and Knowledge-Centered Systems XXVIII. LNCS, vol. 9940, pp. 75–95.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53455-7 4

14. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: Compressing text classification models. CoRR (2016)

https://doi.org/10.1007/978-3-642-17746-0_26
https://doi.org/10.1007/978-3-642-17746-0_26
https://doi.org/10.1007/978-3-662-53455-7_4

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments 403

15. Jun, Z., Yiduo, L., Jiatao, J., Yi, Y.: Fuzzy Ontology Models Based on Fuzzy Lin-
guistic Variable for Knowledge Management and Information Retrieval. In: Pro-
ceedings of Intelligent Information Processing, pp. 58–67. Beijing, China (2008)

16. Kolyvakis, P., Kalousis, A., Kiritsis, D.: DeepAlignment: Unsupervised ontology
matching with refined word vectors. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1), pp. 787–798. Association for Computational
Linguistics, New Orleans, Louisiana (2018)

17. Li, G., Yan, L., Ma, Z.: An approach for approximate subgraph matching in fuzzy
RDF graph. Fuzzy Sets Syst. 376, (2019)

18. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. CoRR (2013)

20. Moon, C., Jones, P., Samatova, N.F.: Learning entity type embeddings for knowl-
edge graph completion. In: Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, pp. 2215–2218. Association for Computing
Machinery, New York (2017)

21. Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K.-Y., Heaven, R.: Ontology align-
ment based on word embedding and random forest classification. In: Berlingerio,
M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS
(LNAI), vol. 11051, pp. 557–572. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-10925-7 34

22. Ouali, I., Ghozzi, F., Taktak, R., Hadj Sassi, M.S.: Ontology alignment using stable
matching. Procedia Comput. Sci. 159, 746–755 (2019), knowledge-Based and Intel-
ligent Information & Engineering Systems: Proceedings of the 23rd International
Conference KES2019

23. Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D., Paulheim, H.: Rdf2vec: RDF
graph embeddings and their applications. Semant. Web 10, 721–752 (2019)

24. Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.: A pattern-based
ontology matching approach for detecting complex correspondences, vol. 551, pp.
25–36 (2009)

25. Smaili, F.Z., Gao, X., Hoehndorf, R.: Onto2Vec: joint vector-based representation
of biological entities and their ontology-based annotations. Bioinformatics 34(13),
i52–i60 (2018)

26. Smaili, F.Z., Gao, X., Hoehndorf, R.: OPA2Vec: combining formal and informal
content of biomedical ontologies to improve similarity-based prediction. Bioinfor-
matics 35(12), 2133–2140 (2018)

27. Thiéblin, E., Haemmerlé, O., Trojahn dos Santos, C.: Complex matching based on
competency questions for alignment: a first sketch. In: 13th International Work-
shop on Ontology Matching co-located with the 17th International Semantic Web
Conference (OM@ISWC 2018), Monterey, United States, pp. 66–70 (2018)

28. Todorov, K., Hudelot, C., Popescu, A., Geibel, P.: Fuzzy ontology alignment using
background knowledge. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22(1),
75–112 (2014)

29. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

30. Xue, X., Wang, H., Zhang, J., Zhang, J., Chen, D.: An automatic biomedical
ontology meta-matching technique. J. Netw. Intell. 4(3), 109–113 (2019)

https://doi.org/10.1007/978-3-030-10925-7_34
https://doi.org/10.1007/978-3-030-10925-7_34

404 H. Akremi et al.

31. Xue, X., Wang, Y.: Optimizing ontology alignments through a memetic algorithm
using both matchfmeasure and unanimous improvement ratio. Artif. Intell. 223,
65–81 (2015)

32. Xue, X., Wang, Y.: Using memetic algorithm for instance coreference resolution.
IEEE Trans. Knowl. Data Eng. 28(2), 580–591 (2016)

33. Xue, X., Yao, X.: Interactive ontology matching based on partial reference align-
ment. Appl. Soft Comput. 72, 355–370 (2018)

34. Xue, X., Zhang, J.: Matching large-scale biomedical ontologies with central concept
based partitioning algorithm and adaptive compact evolutionary algorithm. Appl.
Soft Comput. 106, 107343 (2021)

35. Zadeh., L.A.: A fuzzy-algorithmic approach to the definition of complex or impre-
cise concepts. Intl. J. Man Mach. Stud. 8(3), 249–291 (1976)

36. Zekri, F., Turki, E., Bouaziz, R.: Alzfuzzyonto : Une ontologie floue pour l’aide à
la décision dans le domaine de la maladie d’alzheimer. In: Actes du 18ème Congrès
INFORSID, pp. 83–98. Biarritz, France (2015)

37. Zhang, F., Cheng, J., Ma, Z.: A survey on fuzzy ontologies for the semantic web.
Knowl. Eng. Rev. 31(3), 278–321 (2016)

38. Zhou, L., Cheatham, M., Krisnadhi, A., Hitzler, P.: A complex alignment bench-
mark: geolink dataset. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol.
11137, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00668-6 17

https://doi.org/10.1007/978-3-030-00668-6_17
https://doi.org/10.1007/978-3-030-00668-6_17

Optimization and Network Analysis

Optimal Decoding of Hidden Markov
Models with Consistency Constraints

Alexandre Dubray1(B) , Guillaume Derval2, Siegfried Nijssen1,
and Pierre Schaus1

1 Institute of Information and Communication Technologies, Electronics and Applied
Mathematics (ICTEAM), Uclouvain, Louvain-la-Neuve, Belgium

{alexandre.dubray,siegfried.nijssen,pierre.schaus}@uclouvain.be
2 Department of Electrical Engineering and Computer Science,

ULiège, Liège, Belgium
gderval@uliege.be

Abstract. Hidden Markov Models (HMM) are interpretable statistical
models that specify distributions over sequences of symbols by assum-
ing these symbols are generated from hidden states. Once learned, these
models can be used to determine the most likely sequence of hidden
states for unseen observable sequences. This is done in practice by solv-
ing the shortest path problem in a layered directed acyclic graph using
dynamic programming. In some applications, although the hidden states
are unknown, we argue that it is known that some observable elements
must be generated from the same hidden state. Finding the most likely
hidden state in this contrained setting is however a hard problem. We
propose a number of alternative approaches for this problem: an Integer
Programming (IP), Dynamic Programming (DP), a Branch and Bound
(B&B) and a Cost Function Network (CFN) approach. Our experiments
show that the DP approach does not scale well; B&B scales better for
a small number of constraints imposed on many elements and CFNs are
the most robust approach when many smaller constraints are imposed.
Finally, we show that the addition of consistency constraints indeed
allows to better recover the correct hidden states.

Keywords: Hidden markov model · Constrained viterbi · Branch and
bound · Cost function networks

1 Introduction

Hidden Markov Models (HMM) are a class of probabilistic models in which it
is assumed that symbols in sequences are generated independently from each
other, from hidden states. For a sequence of observed data, it is assumed that
there is a sequence of hidden states that generated it with a given probabil-
ity; determining the hidden states that generated the symbols is here useful in
understanding the data. HMMs have been used in various real-world applications
such as protein structure prediction [15], trajectory mining [16], speech recogni-
tion [10] or human activity recognition [6,9]. The decoding problem in HMMs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 407–417, 2022.
https://doi.org/10.1007/978-3-031-18840-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_29&domain=pdf
http://orcid.org/0000-0002-3302-870X
https://doi.org/10.1007/978-3-031-18840-4_29

408 A. Dubray et al.

is to find the most likely sequence of hidden states, for an observed sequence,
and is usually solved by the Viterbi algorithm [19], which has a polynomial run
time. The decoding problem in HMMs can be reduced to solving the shortest
path problem in a layered directed acyclic graph (DAG). Since in such graphs
the shortest and longest path problems are equivalent, and the applications in
Sect. 5 are concerned with HMMs, we will refer to this problem as the most likely
path problem in the rest of this paper. However the presented methods also work
for layered DAGs not associated with HMMs.

In this work we argue that in many applications, a better decoding can
be found by exploiting background knowledge stating that symbols in a given
sequence must have been generated from the same hidden state. Such connections
between sequences are not taken into account in classical HMM decoding, in
which multiple sequences are decoded independently. However, in practice such
background knowledge exists. For example, in part-of-speech tagging, it is likely
that within one sentence, multiple occurrences of the same uncommon word must
be given the same tag. Another application can be found in the analysis of traffic
data, where we consider a truck state assignment problem as an example. In this
task, constraints are imposed stating that trucks in the same area at the same
time must be labeled identically. Finally, in human activity recognition problems,
natural consistency constraints also arise when activities are registered near to
each other (e.g., same room, same sensor). To take into account the background
knowledge that symbols in the sequence must originate from the same state, the
Viterbi algorithm cannot be used anymore.

The rest of this paper is organized as follows. The decoding problem under
constraints is presented in Sect. 3. Then, three of the four approaches for solving
the problem are presented in more detail: Dynamic Programming, a Branch and
Bound and a Cost Function Network approach. These methods are compared in
Sect. 5 as well as the benefit of the consistency constraints. We conclude in Sect. 6.

2 Related Work

As we will see, the decoding problem can be seen as a problem of finding the
most likely path in a DAG under logical constraints between nodes or groups
of nodes. This problem has been studied in multiple contexts. In the case of
HMMs, and more generally conditional random fields, Roth et al. solved the
decoding problem using Integer Programming and proposed constraints useful
for the semantic role labeling problem [11]. With a focus on the alignment of
biological sequences, Christiansen et al. proposed a constrained version of HMMs
[3]. They implemented various constraints in the PRISM language [13], but no
consistency constraint between sequence elements.

We will show in this work that finding the most likely sequence of hidden
states can be expressed as a weighted constraint satisfaction problem, also known
as a Cost Function Network (CFN). In a CFN, the goal is to find an assignment to
discrete decision variables such that a sum of functions defined on these variables
is optimized while respecting defined constraints. In this work we will rely on
dedicated solvers for CFNs, such as Toulbar2 [4,8].

Optimal Decoding of Hidden Markov Models with Consistency Constraints 409

In [17], for finding longest paths in a general DAG, the logical constraints
are represented in a Binary Decision Diagram (BDD) and a dynamic program,
taking into account the BDD nodes, is designed to find the optimal solution.
In [20], consistency constraints are imposed between words to improve logical
reasoning from sentences in natural language. They use Dual Decomposition [12]
to solve the problem, which solves a Lagrangian relaxation of the problem; in
contrast to our approach, however, this approach does not guarantee finding the
optimal solution.

3 Problem Definition

In this section we formalize the problem of finding the most likely path in a
layered DAG under consistency constraints. Solving this problem allows to also
solve the HMM decoding problem. We first introduce the notation as well as the
notions of layer and consistency constraints in a DAG, then express the problem
of finding the most likely path in it.

3.1 Most Likely Path in a Layered DAG with Consistency
Constraints

We define the HMM decoding problem over labeled Directed Acyclic Graphs
(DAGs). Let G = (V,E) be a graph with V the set of nodes and E the set of
edges. Each node v ∈ V has a label, from a set L, denoted lv and V is divided
into T layers L1, . . . , LT such that V =

⋃
j=1,...,T Lj and Li ∩ Lj = ∅ ∀i �= j.

In each layer, no two nodes have the same label. Thus, when clear from the
context, a node can be identified by its label. We denote by e = (l, l′, t) ∈ E
an edge from the node with label l at layer Lt to the node with label l′ at
layer Lt+1 (1 ≤ t < T) with weight we, where weights can be both positive and
negative. In the HMM decoding problem, each layer has the same number of
nodes representing the hidden states. An example of such a graph is shown in
Fig. 1.

A path in G from L1 to LT selects one node per layer and can be identified by
the sequence of node labels on the path. More formally, let P = 〈P1, . . . , PT 〉 ∈
LT be a path from L1 to LT such that Pi ∈ Li. The cost of P , is the sum of the
weights of the arcs in the path:

∑T−1
t=1 w(Pt,Pt+1,t).

A consistency constraint is specified in our work by identifying a set of layers
for which the same label must be selected in each layer of the path. More for-
mally, C = {C1, . . . , Ck} are k consistency constraints with Ci = {ci

1, . . . , c
i
ki

} ⊆
{1, . . . , T} and Ci ∩Cj = ∅ for i �= j. The set of all constrained layers is denoted
LC =

⋃k
i=1 Ci. We also define a vector c ∈ {0, . . . , k}T that gives for each layer

the index of its constraint or 0 if the layer is unconstrained. For example, in
Fig. 1 we have c = 〈0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0〉. A path P is said to be consistent

410 A. Dubray et al.

Fig. 1. Example of a layered DAG for the decoding problem in a HMM with three
hidden states and two consistency constraints. The edges in the DAG are oriented
from left to right and the labels on the nodes represent the hidden states. In this
example, the constraint C1 has node 2 assigned to it, hence the other nodes are faded.

if all the consistency constraints are respected. The problem of finding the most
likely consistent path is thus formalized as follows:

P � = arg max
P∈LT

T−1∑

t=1

w(Pt,Pt+1,t) (1)

s.t. Pci1
= . . . = Pciki

∀Ci ∈ C (2)

The importance of this problem to HMM decoding is that an instance of this
problem, including the DAG and its weights, can be constructed for a specific
HMM decoding problem on a sequence of symbols. Note that the problem defined
by Eq. (1)–(2) is NP-hard, as we showed in a technical report [5].

4 Solving the Problem

In this section, three of the four approaches to solve the problem defined by
Eqs. (1)–(2) are explained. We omit the IP formulation as it is very similar
to the one presented in [11] but with equality constraints. First a Dynamic
Programming approach (DP) is introduced, followed by a Branch and Bound
(B&B) method and finally a model based on cost-function networks (CFN) is
presented.

4.1 Dynamic Programming

For solving the unconstrained problem, the Viterbi algorithm [19] is the classical
dynamic programming approach. The recurrence relation computes the value of
the most likely path from L1 to a node i ∈ Lt from layer Lt−1 and stores it in a
T × |L| table. The entries of the table are computed as follows:

V [t, i] =
{

0 if t = 1
maxj∈Lt−1 V [t − 1, j] + w(j,i,t−1) otherwise (3)

and the value of the most likely path is given by maxi∈LT
V [T, i].

Optimal Decoding of Hidden Markov Models with Consistency Constraints 411

This equation uses the fact that the graph is organized into layers and a path
ending at layer Lt always comes from layer Lt−1. Thus, the most likely path to
a node i ∈ Lt is one of the most likely paths to a node in Lt−1 plus the edge
to i. However, when adding consistency constraints, this equation does not work
anymore because it does not take into account consistency. We resolve this by
adding assignments of labels to consistency constraints in the DP; by assigning a
label to a constraint we assign the same label to all layers in the constraint. Let
PC = 〈PC1 , . . . , PCk

〉 ∈ (L ∪ {⊥})k be an assignment of labels to the consistency
constraints with PCi

= ⊥ if no label is assigned to Ci. Then if PCi
�= ⊥, the

path from L1 to LT must pass through PCi
for every layer Lt with t ∈ Ci. We

define the assignment operator PC |j,l which assigns l to PCj
. The values of the

most likely paths can now be stored in a T ×|L|×k|L| table, taking into account
the possible assignments of labels to the constraints. The entries in the table are
computed as follows:

V [t, i, PC] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if t = 1
max

l∈Lt−1
V [t − 1, l, PC] + w(l,i,t−1) if Lt−1 /∈ LC

V [t − 1, PCc[t] , PC] + w(PCc[t] ,i,t−1) if Lt−1 ∈ LC ∧ PCc[t] �= ⊥
max

l∈Lt−1
V [t − 1, l, PC |c[t],l] + w(l,i,t−1) if Lt−1 ∈ LC ∧ PCc[t] = ⊥

(4)
The first two cases of Eq. (4) are the same as Eq. (3) because there are no

constraints to consider. However when the layer Lt−1 is constrained, there are
two situations. If there is a choice for this constraint in PC , then in order to be
consistent with PC , the path must pass by it. In that case there is no need to
consider the other nodes in the layer. However, when there is not yet a node
assigned to this constraint, then every node j ∈ Lt−1 must be considered to
compute the most likely path. In this case, the PC vector is updated to reflect
the choice made.

4.2 Branch and Bound

Let PC ∈ (L ∪ {⊥})k be, as for the DP, a vector of node assignments for the
consistency constraint. The search starts from the vector 〈⊥, ...,⊥〉. The idea of
this method is to branch on the PCi

values and to compute the most likely path
from L1 to LT while being consistent with PC . Initially some PCi

are unassigned;
as long as the constraint is unassigned, we ignore the constraint and the cost is
an upper bound on the optimal solution in the branch. An example is shown on
Fig. 1 where there are two consistency constraints and PC = 〈2,⊥〉. The most
likely path from L1 to L11 can be seen as the most likely path from L1 to L3, then
L3 to L9 and finally from L9 to L11. As long as PC2 = ⊥, we ignore constraint
C2 and an upper bound on the most likely path is obtained.

In practice, a T ×|L| array, denoted V , is used to store the values of the most
likely paths from the layers in Lc to the other layers. At the root of the search
tree, the V array is filled with Eq. (3) since there are no consistency constraints
imposed. When a value PCi

is assigned, the whole table does not need to be

412 A. Dubray et al.

recomputed. Let us look at Fig. 1 as an example. When the search assigns PC1 =
2, the layers constrained by C1 act as new source layers. The computed values,
in V , for layers L1 to L3 still represent the values a recursive equation computes
for the most likely path from L1 to L3 and thus, need not be recomputed. Let us
assume now that the search assigns PC2 = 1. The values in V for L1 to L5 and
L9 to L11 are still valid, and only the values from L6 to L8 need to be updated.

Notice that when all the edges have a negative weight, as for the HMM
decoding problem, then the values in the V array can be computed between
consistency constraints, even if not assigned. In the example in Fig. 1, the conse-
quence is that when PC1 is set to 2, the values from L3 are only computed until
L5 and not L9. Since the edges only have negative weights, this gives a less tight
upper bound on the optimal solution, but is faster to compute.

4.3 Cost Function Networks

In Cost Function Networks (CFNs) [4], a set of functions is defined, each of
which maps a subset of the assignment in Pc to a cost. The goal is to find an
assignment of PC such that the sum of the function’s cost (evaluated on the
assignment) is minimal. We model our problem in CFNs by dividing the graph
into segments between successive constrained layers; a function is defined on each
of these segments. These functions map the choice for the constrained layers at
the start and end of the segment (i.e., a partial assignment of PC) to the value of
the most likely path on the segment, consistent with PC . For a full assignment
of PC , the sum of the most likely path on the segments gives the value of the
most likely path in the full graph.

More formally, let Lt, Lt′ such that c[t] �= c[t′] and � t′′ : t < t′′ < t′ ∧ c[t] �=
c[t′′] be two successive constrained layers of different consistency constraints.
A function ft,t′ : L × L �→ R is defined on the segment between Lt and Lt′ ,
mapping each choice of c[t] and c[t′] to the value of the most likely path from Lt

to Lt′ consistent with the choices. For every node u ∈ Lt and v ∈ Lt′ , a simple
dynamic program finds the value of the most likely path between u and v and
stores it in a L × L table. Since the table fully defines the function, ft,t′ is used
to refer to the function as well as its table of values and ft,t′(PC) refers to the
value associated with the choices for Lt and Lt′ in PC .

Let Lt1 , . . . , Ltm be all the constrained layers. Without loss of generality, we
assume that they are sorted in chronological order so that t1 < t2, t2 < t3, . . . Let
F = {fstart, fend, ft1,t2 , . . . , ftm−1,tm} be the functions, as defined above, for each
segment of the graph and two additional special functions. The fstart : L �→ R
function maps, for each choice for c[t1], the value of the most likely path from
L1 to Lt1 . The function fend is defined in the same way for the layer Ltm to LT .
The value of a path PC , which we wish to optimize, is then given by

fstart(PC) + fend(PC) +
m−1∑

i=1

fti,ti+1(PC). (5)

Optimal Decoding of Hidden Markov Models with Consistency Constraints 413

Table 1. Execution time in seconds of the methods in function of the proportion of
constraints in the model on the truck state assignment problem. The entries for the
CFN method represent the time needed to compute the functions plus the optimization
time by Toulbar2.

Proportion of constraints 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

DP 6.00 360.10 324.40 299.30 278.60 255.70 232.70 211.90 192.20 173.90 157.80

IP 588.20 841.67 911.33 926.60 927.20 1007.20 1001.25 1169.67 1061.67 1141.00 1047.00

B&B 2.63 3.59 3.59 3.55 3.43 3.42 3.34 3.31 3.27 3.21 2.93

CFN – 35.94 34.28 32.43 30.92 28.80 26.85 25.15 23.00 20.80 18.93

Dedicated solvers for CFN are designed to find the assignment to PC such that
the value of Eq. (5) is minimal. From this optimal assignment we can easily
recover the solution using a dynamic program.

5 Experimental Results

In this section we analyze the run time of the methods presented in Sect. 4
on two different HMM applications with different characteristics in terms of
sequence lengths and number of consistency constraints. We finish this section by
analyzing, on a third application, the impact of the consistency constraints on the
output of the decoding problem. The IP is solved with the Gurobi solver [7] and
for the B&B we use the variation of the algorithm that supports only negative
weights, as we experiment only with HMMs and it gives, in our experiments, the
best results.1. For the CFN method the Toulbar2 solver [14] is used.

Truck Trajectory Mining. HMMs have been used to identify activity stops
in truck trajectories [16]. Four hidden states represent if the truck is driving, in
a traffic jam, resting or doing work-related actions. In this context, it is natural
to assume that trucks located in similar geographical areas do the same activity.
Four consistency constraints are created based on the type of point (stop or
driving) in some geographical areas (e.g., rest areas, highways).

We experiment on a data set of trajectories of trucks described in [1], which
contains roughly 6 million data points (and thus as many layers in the graph).
We successively kept a given percentage of each constraint in order to evaluate
the impact of the constraints size on the run time.

Table 1 shows the run time of the methods with different proportions of
states included in constraints, where constraints are larger if they involve more
states. The run time of the DP and IP methods both increases with the size of
the constraints. For the DP method, more choices must be propagated through
the recursion while in the IP model there are more linear constraints. The run
time of the B&B method is stable with the constraint size. The size of the
constraints only impacts the computation of the V array in each node of the
search tree. As the whole array still needs to be computed in order to have
1 The source code and the data sets can be found at https://github.com/Alexandre
Dubray/consistent-viterbi.

https://github.com/AlexandreDubray/consistent-viterbi
https://github.com/AlexandreDubray/consistent-viterbi

414 A. Dubray et al.

Table 2. Run time in seconds of the methods in function of the number of consistency
constraints for the POS tagging problem. Timeout has been set to 1 h and is indicated
by T.O. while out of memory errors are indicated by O.O.M.

Dataset conll2000 treebank brown

Number of constraints 25 9104 100 676 1 161 192

Number of layers 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

DP 153.2 128.7 O.O.M O.O.M O.O.M 56.0 1132.0 O.O.M O.O.M O.O.M 1047.4 O.O.M O.O.M O.O.M O.O.M

IP 97.6 137.6 86.0 128.1 130.6 34.6 33.4 32.1 32.2 47.6 485.3 480.9 790.1 O.O.M O.O.M

B&B 19.6 30.75 290.25 T.O. T.O. 14.95 66.94 116.93 777.78 T.O 81.66 1054.34 T.O. T.O. T.O.

CFN 52.33 72.56 72.22 72.59 71.88 7.64 29.58 31.2 29.8 29.93 294.71 301.91 293.4 294.31 297.66

a feasible solution, the impact is limited. Finally, the run time of the CFN
method decreases with the size of the constraints. In that case, the run time
is dominated by the computation of the local functions F . Once computed,
Toulbar2 is able to find the optimal solutions in a few milliseconds. With more
constraints, the segments are shorter and thus faster to compute, which makes
the overall approach faster.

Overall the B&B method is the fastest on this data set because there are few
constraints and few choices per constraint. Thus even if the CFN approach is
much better than the DP and IP, the time needed to compute the local functions
F makes it slower than B&B.

Part of Speech Tagging. The goal of this application is to assign to each
word of a sentence, or text, a part of speech (POS) tag. The NLTK Python
package [2] provides data sets of sentences with annotated POS. We experiment
on three data sets with the 12 universal POS tags and consistency constraints
are imposed on layers with the same POS tag.

Table 2 shows the run time of the methods in function of the number of
consistency constraints. First, let us note that only the CFN method is able to
solve the problem for all numbers of constraints on all data sets. The B&B and
DP methods both time-out or reach a memory limit quickly as the number of
constraints increases. For the DP method, with more constraints, the number of
constraint choices to propagate increases exponentially. For the B&B the search
space becomes too large and the upper bound is not strong enough to prune large
part of the search space to make the approach tractable. The IP methods can
handle more constraints but, on the brown data set, which is larger, the amount
of memory needed to model the problem is too large. For these three methods,
the run time increases with the number of constraints which is expected.

On the contrary, the run time of the CFN is stable with the number of
constraints and the method is the most efficient for these data sets. Adding new
constraints has little impact on the time needed to compute F since it is done by
computing the values between successive constrained layers (i.e., all layers of the
graph are processed |L|2 times). In addition to that, Toulbar2 is very efficient
at finding the optimal solution, in few milliseconds. Hence the total run time of
the CFN method is stable with the number of constraints.

Optimal Decoding of Hidden Markov Models with Consistency Constraints 415

Fig. 2. F1-Measure in function of the proportion of constraints for each activity

Human Activity Recognition. Finally, in this section we analyze the impact
of the consistency constraints on the output of the decoding problem, using a
real-world data set for Human Activity Recognition (HAR). In HAR the goal is
to find which activities a person is doing based on inputs from sensors which can
be placed on the person (e.g., a smartwatch) or in their environment (e.g., light
sensors in the house). We use the annotated data sets as described in [18] for
this experiment. These data sets provide the activities (based on the activation
of sensors in their house) made by three persons for multiple days.

The F1-Measure per activity is shown in Fig. 2 for one of the houses (the
results are similar for the other houses). The F1-Measure was computed, for a
proportion of the constraints, following the same methodology as in [9]. It can
be seen that the activities are better recovered as the proportion of constraints
increases. The biggest impact is on the activities that are not well recovered
using a classical decoding algorithm (e.g. “Go to bed”, “Prepare dinner”). The
activities that have a high F1 measure when there are no constraints also benefit
from the constraints, but in a less marked way.

6 Conclusions and Future Work

In many applications using Hidden Markov Models, consistency constraints
between sequences can be found but are not used in the classical decoding algo-
rithm. In this work, we formalized this problem as finding the most likely path
in a layered directed acyclic graph with consistency constraints on the layers
of the graph. We proposed an Integer Programming (IP), a Dynamic Program,
a Branch and Bound (B&B) and a Cost Function Network method to solve
the problem. We showed that Branch and Bound scales better for a few large
constraints, while the CFN is better for many smaller constraints. Finally, our
experiments on a real-world human activity recognition data set showed the
benefit of consistency constraints.

In this work we focused on consistency constraints, imposing that the same
node is selected between different layers. However in some applications, it might
be acceptable to have sets of nodes that can appear together in the layers of a

416 A. Dubray et al.

consistency constraint (e.g., a non-activity stops and a rest stop, in the Truck
Trajectory Mining problem). The impact of additional logical constraints on the
Branch and Bound method could also be investigated.

References

1. Adam, A., Finance, O., Thomas, I.: Monitoring trucks to reveal belgian geograph-
ical structures and dynamics: From GPS traces to spatial interactions. J. Transp.
Geogr. 91, 102977 (2021)

2. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media, Inc. (2009)

3. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Inference with constrained
hidden markov models in prism. Theory Pract. Logic Program. 10, (2010)

4. Cooper, M.C., De Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., Werner, T.:
Soft arc consistency revisited. Artif. Intell. 174, 449-478 (2010)

5. Dubray, A., Derval, G., Nijssen, S., Schaus, P.: On the complexity of the short-
est path problem in a layered directed acyclic graph with consistency constraints
(2022). 2078.1/264677

6. Fallmann, S., Kropf, J.: Human activity recognition of continuous data using hid-
den markov models and the aspect of including discrete data. In: UIC, pp.121–126
(2016)

7. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

8. Hurley, B., et al.: Multi-language evaluation of exact solvers in graphical model
discrete optimization. Constraints 21(3), 413–434 (2016). https://doi.org/10.1007/
s10601-016-9245-y

9. Kabir, M.H., Hoque, M.R., Thapa, K., Yang, S.H.: Two-layer hidden markov model
for human activity recognition in home environments. Int. J. Distrib. Sens. Netw.
IJDSN. 2016, 1–12 (2016)

10. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. In: Proceedings of the IEEE (1989)

11. Roth, D., Yih, W.T.: Integer linear programming inference for conditional random
fields. In: ICML (2005)

12. Rush, A.M., Sontag, D., Collins, M., Jaakkola, T.: On dual decomposition and
linear programming relaxations for natural language processing (2010)

13. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In:
IJCAI (1997)

14. Schiex, T., de Givry, S., Sanchez, M.: Toulbar2-an open source weighted constraint
satisfaction solver (2006). https://toulbar2.github.io/toulbar2

15. Sonnhammer, E.L., et al.: A hidden markov model for predicting transmembrane
helices in protein sequences. In: ISMB (1998)

16. Taghavi, M., Irannezhad, E., Prato, C.G.: Identifying truck stops from a large
stream of GPS data via a hidden markov chain model. In: ITCS (2019)

17. Takeuchi, F., Nishino, M., Yasuda, N., Akiba, T., Minato, S.I., Nagata, M.: BDD-
constrained a* search: a fast method for solving constrained shortest-path prob-
lems. IEICE Trans. Inform. Syst. 10(12), 2945–2952 (2017)

18. Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recog-
nition in a home setting. In: UbiComp, pp. 1-9,(2008)

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s10601-016-9245-y
https://doi.org/10.1007/s10601-016-9245-y
https://toulbar2.github.io/toulbar2

Optimal Decoding of Hidden Markov Models with Consistency Constraints 417

19. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inform. Theo. 13(2), 260–269 (1967)

20. Yoshikawa, M., Mineshima, K., Noji, H., Bekki, D.: Consistent CCG parsing over
multiple sentences for improved logical reasoning. arXiv preprint (2018)

Semi-parametric Approach to Random
Forests for High-Dimensional Bayesian

Optimisation

Vladimir Kuzmanovski1,3,4(B) and Jaakko Hollmén1,2

1 Department of Computer Science, Aalto University, Espoo, Finland
vladimir.kuzmanovski@aalto.fi

2 Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

jaakko.hollmen@dsv.su.se
3 Smart City Center of Excellence, Tallinn University of Technology, Tallin, Estonia
4 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

Abstract. Calibration of simulation models and hyperparameter optimi-
sation of machine learning and deep learning methods are computationally
demanding optimisation problems, for which many state-of-the-art opti-
misation methods are adopted and applied in various studies. However,
their performances come to a test when the parameter optimisation prob-
lems exhibit high-dimensional spaces and expensive evaluation of models’
or methods’ settings. Population-based (evolutionary) methods work well
for the former but not suitable for expensive evaluation functions. On the
opposite, Bayesian optimisation eliminates the necessity of frequent sim-
ulations to find the global optima. However, the computational demand
rises significantly as the number of parameters increases. Bayesian optimi-
sation with random forests has overcome issues of its state-of-the-art coun-
terparts. Still, due to the non-parametric output, it fails to utilise the capa-
bilities of available acquisition functions. We propose a semi-parametric
approach to overcome such limitations to random forests by identifying a
mixture of parametric components in their outcomes. The proposed app-
roach is evaluated empirically on four optimisation benchmark functions
with varying dimensionality, confirming the improvement in guiding the
search process. Finally, in terms of running time, it scales linearly with
respect to the dimensionality of the search space.

1 Introduction

Models or algorithms built for generalising observed processes or phenomena
require a specific configuration level when adapting to a new problem. Among the
most widely known such issues are calibration of simulation models and hyperpa-
rameter optimisation (HPO) for machine learning (ML) and deep learning (DL)
methods [16,19,37]. In both cases, the accuracy of the outcome is highly depen-
dent on (hyper)parameter settings, a selection of which may pose a hard com-
putational (optimisation) problem and its automation pose a great optimisation
challenge [10]. The problem features high-dimensional and complex configuration

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 418–428, 2022.
https://doi.org/10.1007/978-3-031-18840-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_30&domain=pdf
http://orcid.org/0000-0001-7355-1581
http://orcid.org/0000-0002-1912-712X
https://doi.org/10.1007/978-3-031-18840-4_30

Semi-parametric Approach to Random Forests 419

(search) spaces with an intractable likelihood (unavailable gradient) of underlying
loss functions, and expensive model evaluations [12]. Such settings require meth-
ods that have consistent performance, effectively use of parallel resources, and are
characterised by scalability, robustness and flexibility [11].

Constrained by the limiting factors, various state-of-the-art optimisation
methods, including primarily black-box gradient-free meta-heuristics, like Grid
and Random search [12] and population-based methods [15,26,27], are becom-
ing inefficient. On the opposite, the Bayesian optimisation (BO) eliminates the
necessity to simulate a large sample set for finding the global optima by sequen-
tial sampling design. Hence, it is a valuable method for the HPO and calibration
processes [12,18,30].

The BO [31] is an optimisation method that seeks the global optima through
sequential sampling design and approximation of underlying likelihood function
with a surrogate model over a surrogate (response) surface. The surrogate sur-
face is defined by a parameter space and discrepancy between observed and sim-
ulated (predicted) outputs. The sequential sampling design follows an iterative
approach, through which new samples (parameters’ values) that maximise the
expected (acquisition) utility are acquired. State-of-the-art performances of the
BO are achieved using Gaussian processes (GPs) regression prior [31], as applied
in various domains, such as population genetics [18], spreading of pathogens [22],
atomic structure of materials [36,38], as well as cosmology [21].

However, the GP prior, and hence the BO, have limited applicability in set-
tings of high-dimensional data, constituting a bottleneck for their broader adop-
tion in settings of complex parameter spaces [11,28], as well as their adapted
counterparts using dimensionality reduction [5], or synthetic parametric likeli-
hoods introduced [1,28,32] that don’t circumvent the obstacle of the evaluation
cost. Therefore, replacing the GP prior with more robust regression surrogate is
considered in previous studies, leading to improved performances [12,37]. Widely
adopted alternatives are random forests (RF) regression [6,16,28] and Bayesian
neural networks [33,34], with the latter being computationally more expensive.

The RF is limited to a non-probabilistic output and previous study adopted
it by empirical (mean and variance) [16] or quantile statistics over predictions of
base models [28]. As such, these adoptions cannot detect multi-modal posteriors,
which are highly probable in predictions by RF base models, because the RF
tends to increase the variance between the base models.

This study aims to examine the potential of the semi-parametric approach
to RF regression for overcoming its limitation in the context of BO. We propose
a semi-parametric approach to the RF outputs by modeling the base predictions
as a mixture of Gaussian components. Each component is then evaluated with
the acquisition function, where the obtained utilities are linearly combined using
weights from the mixture model.

The performance of the proposed approach are empirically examined over a
set of benchmark functions for high-dimensional optimisation: Levy [20], Schwe-
fel [29], Ackley [3] and Griewank [23] function. The achieved performances are
compared with the random search and the state-of-the-art BO methods, with
GP (where applicable) and empirical RF.

420 V. Kuzmanovski and J. Hollmén

The novelty of our work represents an extension to the BO with RF non-
parametric surrogate model, enabling a semi-parametric output. The semi-
parametric output improves the applicability of the RF as a surrogate model
in the context of the BO by estimating the outputs’ uncertainty over homoge-
neous clustered sub-spaces derived from the divide-and-conquer approach of the
RF regression. In addition to the novelty, our work contributes to:

– formalising and implementing a BO framework, using R programming lan-
guage, with ability for new surrogate models and benchmark functions;

– evaluating performances of the state-of-the-art BO methods with GP and RF
surrogate models, over benchmark problems with varying dimensionality.

The rest of the manuscript is organised as follows. In Sect. 2, we present the
background of the BO and our contributions to the proposed approach. In Sect. 3,
the experimental design is presented, followed by results. Finally, summary and
conclusions are presented in Sect. 5.

2 Materials and Methods

Simulation models and ML (DL) methods represent generative processes that
generate a hypothesis, trying to fit the given observed data of the modelled phe-
nomenon. The generative process is driven by selecting (hyper)parameter values
of the underlying models [14]. Formally, the parameter selection corresponds
to statistical inference of a finite number of parameters θ ∈ R

d of a model or
method from a set of observations Yo:

p(θ|Yo) =
p(Yo|θ) · p(θ)

p(Yo)
, (1)

where p(θ) encodes our prior beliefs on the distribution of parameter values and
p(Yo|θ) represents the likelihood of the observations, derived from the known
function L(θ). Since the analytical form of L(θ) is unknown in the underlying
challenge, we use the notation L(θ) that need to be approximated over a set
of N samples - L̃N (θ). The notation is simplified if the marginal distribution
p(Yo) is omitted because it does not depend on θ, p(θ|Yo) ∝ L(θ) · p(θ). The
L(θ) is approximated over finite sample set (L̃N (θ)) and it is reconstructed as
the number of samples increases, i.e., limN→∞ L̃N (θ) = L(θ).

The approximation (L̃N (θ)) of the likelihood function (L(θ)) can be per-
formed in parametric or non-parametric manner [14,31]. We focus on the latter,
with utilisation of a surrogate regression using random forests.

Sequential sampling design feature an acquisition function A(θ), whereby
s ∈ R generated samples are credited with an utility. The BO enriches the
evidence with evaluated k ≤ s samples that maximise the utility. A wide range
of acquisition function are developed [17], but for the purpose of this study, we
adopt the expected improvement (EI) [25]:

EI(θ|μ, σ, f∗) = σ(θ)[zΦ(z) + φ(z)]; z =
f∗ − μ(θ)

σ(θ)
, (2)

Semi-parametric Approach to Random Forests 421

where σ(θ) and μ(θ) are statistics of the inferred posterior distribution (under GP
posterior distribution they represent functions), f∗ is the most optimal output,
i.e., active optima discovered, and Φ and φ are probability density and cumula-
tive distribution function in terms of the standard normal distribution, respec-
tively. The expected improvement EI(θ) = 0 if σ(θ) = 0. The analogy behind
(2) reveals the exploration-exploitation trade-off that favours larger uncertainty
proximal to the known optimal region(s).

Random forests (RF) [6], the adopted surrogate, is an ensemble method com-
posed of C regression trees. Each regression tree is built over a subspace of the
parameter space, designed by random subsets of both the features (dimensions)
and bootstrap samples. Therefore, given a dataset, each regression tree predicts
the target for a specific region in the defined space. The prediction of the ensem-
ble, on the other hand, is an aggregation (average) of the outcomes of all C tree
base predictors:

RF(θ|Θ, Y) =
1
C

C∑

i=1

τi; τi = Ti(θ|Θi, Yi), (3)

where Θi and Yi are training dataset of i-th regression tree Ti that provide a
prediction τi, while Θ and Y global training dataset.

The RF method has small number of hyper-parameters that can significantly
influence the outcome and has shown excellent robustness over high-dimensional
data, which limits the bias of the overall predictions by maximising the variance
between base predictors [13]. However, in the context of the BO, RF models lack:
(i) uncertainties quantification of predictions (non-probabilistic output); and (ii)
predicting a value outside of the observed range. Thus, as a standalone surrogate
model, the RF greatly affects the efficiency of a probabilistic acquisition function
A(θ) (e.g., EI) in acquiring new promising samples.

We propose an extension to the previous works with the RF as a surrogate by
a semi-parametric estimates of the prediction uncertainties. The semi-parametric
approach constructs a mixture of parametric components, i.e., Gaussian Mix-
ture model [8,35] and estimates the uncertainty of the predictions over homoge-
neously clustered sub-spaces (base predictors) that reduce the variance within
the identified components.

Gaussian Mixture Model (GMM) [8,35] is a semi-parametric density function
composed of weighted sum of M parametric components, where each component
mi follows Gaussian distribution with a mean μi and standard deviation σi:

p(x) =
M∑

i=1

wi N (x|μi, σi);
M∑

i=1

wi = 1, wi > 0. (4)

where x ∈ R and in the context of this study, corresponds to a base prediction
(τj) of a decision tree (Tj) in a RF .

The proposed extension to RF named as random forests with semi-parametric
output (RFw/SPO) estimates the acquisition utility from a sample, i.e., parame-
ter values θ, as a linear combination of component-wise acquisition utilities from

422 V. Kuzmanovski and J. Hollmén

a mixture of Gaussian components (ηi), over base prediction (τj) of a RF model:

ẼI(θ|μ1..M , σ1..M , f∗) =
M∑

i=1

wi EI(θ|μi, σi, f
∗). (5)

The rationale behind the proposed extension to the RF is based on the ideas
from [6], where the sampling variance of an RF is shown to be governed by the
variance v of the base predictors and their correlation ρ, leading to the ensemble
variance being v ∗ ρ. In settings of high-dimensional and sparsely sampled func-
tions, the correlation between base predictors is hardly observable. It may even
lead to sparse space divisions during the divide-and-conquer approach. When
aggregated over the whole set of base predictors, predictions of such sparse sub-
spaces might heavily underestimate the ensemble variance. Therefore, by identi-
fying distant homogeneous components that concentrate around their expected
values with reduced within-component variance, the probabilistic acquisition
function will have more detailed estimates of the prediction uncertainties during
the derivation of samples’ utility. This approach allows for the identification of
potential gaps by estimating a multi-modal density function, unlike the empirical
uncertainty estimation used in [16].

The proposed method and BO with GP and RF as a surrogate are imple-
mented in a custom framework, using R programming language1. The GMM
models are fitted using expectation-maximization (EM) algorithm [9] for maxi-
mum likelihood estimation. The implementation expects a specification of three
hyperparameters for managing the optimisation process. Namely, it requires set-
ting up a sample size at the initial (ni) and iteration sampling (nt), as well as
the maximum number of iterations (maxt).

3 Experimental Design

To examine the proposed method’s properties, we investigate its perfor-
mance over four benchmark optimisation functions: Levy, Schwefel, Ackley and
Griewank (Fig. 1); and compare them against random search (RS) [4], and BO
with GP (BO-GP) [31] and RF (BO-RF) surrogates [16]. All benchmark func-
tions are continuous with varying intrinsic dimensionality.

Ackley function [3] is a non-convex function, with multi-modal surface
(Fig. 1(a)) defined on n-dimensional space:

f(x) = −a exp

⎛

⎝−b

√√√√ 1
n

n∑

i=1

x2
i

⎞

⎠ − exp

(
1
n

n∑

i=1

cos(cxi)

)
+ a + e, (6)

where the a, b and c are constants, with default values being a = 20, b = 0.2
and c = 2π. Common input domain is xi ∈ [−32, 32]. The function surface has
many local optima and a single global optimum f(x̂) = 0 at x̂ = (0, 0, . . . , 0).
1 Code: https://tinyurl.com/2xtsaaut.

https://tinyurl.com/2xtsaaut

Semi-parametric Approach to Random Forests 423

Griewank function [23] is a non-convex function (Fig. 1(b)) defined on
n-dimensional space:

f(x) = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(
xi√

i

)
. (7)

This function has many local optima, equidistantly spread across all dimen-
sions, and a single global optimum f(x̂) = 0 at x̂ = (0, 0, . . . , 0). Frequently used
input domain is xi ∈ [−600, 600].

Levy function [20] is a non-convex function, with multi-modal surface
(Fig. 1(c)) defined on n-dimensional space:

f(x) = sin2(πw1) +
n∑

i=1

−1(wi − 1)2(1 + 10sin2(πwi + 1))

+ (wn − 1)2(1 + sin2(2πwn)); wi = 1 +
xi − 1

4
, i = 1, . . . , n. (8)

This function has a single optimum (minimum) f(x̂) = 0 at x̂ = (1, 1, . . . , 1),
and it is usually evaluated over input domain of xi ∈ [−10, 10].

Schwefel function [29] is a non-convex and multi-modal function (Fig. 1(d))
that can be defined on space with arbitrary (n) dimensions:

f(x) = 418.9829d −
n∑

i=1

xisin
(√

|xi|
)
. (9)

This function has a single global optimum f(x̂) = 0 at the edge of the space,
i.e., x̂ = (420.9687, . . . , 420.9687), where the input domain is xi ∈ [−500, 500].

The methods’ performances are empirically evaluated by a set of optimisa-
tion tasks that are repeatedly performed for each benchmark function across
four dimensions (10, 50, 100, and 500). Each task is set to terminate after 100
iterations and is repeated ten times, across which performances are summarised.

The BO is configured with the same set of hyperparameters for the defined
optimisation tasks. Initial sample size (ni) is set to 50 and iteration sample

(a) (b) (c) (d)

Fig. 1. Visualisation of 2-D benchmark optimisation functions: (a) Ackley, (b)
Griewank, (c) Levy, and (d) Schwefel.

424 V. Kuzmanovski and J. Hollmén

size (nt) to 200. Surrogate models are mainly used with the default parameter
settings, except for the number of trees in an RF ensemble, set to 500 for lower
dimensions (10 and 50) and 1000 for the 50- and 100-dimensional problems.

4 Results and Discussion

We evaluate the performances of the applied method(s) with regards to their
optimisation curve, resulted global optimum, and running time.

Overall, the proposed method BO-RFw/SPO tends to outperform the BO-
RF while lagging behind the BO-GP method. The former is observed across
most of the benchmark problems with higher dimensionalities, except for the
Schwefel function, where no significant difference is observed. The lag of BO-
RFw/SPO behind the BO-GP is observed across multiple functions and lower
dimensionality. RS is performing worst in all cases (Fig. 2).

The performances of our method show closer behaviour to the BO-GP than
to BO-RF, among problems with the lowest dimension. This is explained by uni-
modal distributions of the RF predicted values (due to the low dimensionality)
and the property of the SPO to avoid possible outliers by maximising the like-
lihood of a Gaussian component and identifying the modes. Thus, with a single
component, it closely resembles the GP outcome.

Another observation is that the BO-RFw/SPO iteratively improves by gath-
ering new samples that guide the search process, unlike the BO-RF, which fre-
quently has a good start, but lack improvement during the later iterations. This
is explained by the fact that the acquired samples from SPO are more informative
for the region of interest and thus learns more accurate surrogate models through
the iterations. This is observed in settings with higher dimensions, mainly due
to the increased modality of the density function of the base predictions.

Regarding the global optima, on average, BO-RFw/SPO get closer to the
known optimum when compared to the BO-RF, in particular in high-dimensional
problems (Fig. 3 (right)). Worth noting is the case of the Schwefel function, where

Fig. 2. Optimisation curves given per benchmark function and dimensionality of the
problem, summarised over all repetitions.

Semi-parametric Approach to Random Forests 425

none of the methods can make a significant step toward the global optimum
(Fig. 3 (right)). It is the case due to the location of the global optimum at the
edge of the function surface and the sampling method used.

The observed running time confirms the expected behaviours, primarily due
to the fixed stopping criteria (100 iterations) of the implemented algorithms.
Figure 3 (left) summarises the running time, from where we can confirm that the
RF surrogate model is the fastest, followed by the proposed SPO approach, which
has added complexity of maximising the likelihood of identified mixture of Gaus-
sian components. Finally, for lower-dimensional problems, the BO-RFw/SPO is
comparable to the BO-GP.

5 Summary and Conclusions

We have introduced a semi-parametric approach to the random forests surro-
gate model with Gaussian mixture models as an extension to Bayesian optimi-
sation for high-dimensional problems. This extends previous work, which has
been based on regression with Gaussian processes as a surrogate model.

In our study, we test the performance of our proposed approach and other
established methods in four different benchmark optimisation problems. We vary
the dimension of the problem to investigate the feasibility and performance of the
methods. We note that the Gaussian process-based method is computationally
demanding in higher dimensions, while our proposed method works well across
all dimensions in presented scenarios. Furthermore, the quality of the solutions
of the semi-parametric approach resembles the one from the Gaussian process as
a surrogate model. It outperforms both the random search and random forests
surrogate model that uses an empirical estimation of the model variance.

The performances of the proposed approach are achieved without compromis-
ing the computational complexity and scalability of the method across higher-
dimensional problems. On average, the running time of the semi-parametric app-
roach is higher than the running time of random forests by a constant factor.

Fig. 3. Performance summary in terms of running time (in log-seconds) (left) and
resulting global optima per function (right) shown across different dimensions.

426 V. Kuzmanovski and J. Hollmén

Therefore, it is confirmed that our approach that transforms a non-
parametric surrogate model (random forests) into semi-parametric output is
advantageous for Bayesian optimisation in high-dimensional problems.

In further work, we intend to examine the effects of the random forests’ hyper-
parameters over the search pace through the function space and other approaches
to generating new samples at each iteration of the Bayesian optimisation.

Acknowledgments. This work is supported by the European Commission through
the H2020 project Finest Twins (grant No. 856602).

References

1. An, Z., Nott, D.J., Drovandi, C.: Robust Bayesian synthetic likelihood via a semi-
parametric approach. Stat. Comput. 30(3), 543–557 (2020)

2. Aushev, A., Pesonen, H., Heinonen, M., Corander, J., Kaski, S.: Likelihood-free
inference with deep Gaussian processes. arXiv preprint arXiv:2006.10571 (2020)

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, USA
(1996)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2), 281–305 (2012)

5. Blum, M., Nunes, M., Prangle, D., et al.: Comparative review of dimension reduc-
tion methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208
(2013)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Chen, B., Castro, R., Krause, A.: Joint optimization and variable selection of high-

dimensional Gaussian processes. arXiv preprint arXiv:1206.6396 (2012)
8. Day, N.: Estimating the components of a mixture of normal components.

Biometrika 56(3), 463–474 (1969)
9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38
(1977)

10. Eggensperger, K., et al.: Towards an empirical foundation for assessing Bayesian
optimization of hyperparameters. In: NIPS Workshop on BO in Theory and Prac-
tice (2013)

11. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning, pp. 1437–
1446 (2018)

12. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L.,
Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 1

13. Friedman, J.H., Hall, P.: On bagging and nonlinear estimation. J. Stat. Plann.
Infer. 137(3), 669–683 (2007)

14. Gutmann, M.U., Corander, J.: Bayesian optimization for likelihood-free inference
of simulator-based statistical models. J. Mach. Learn. Res. 17(1), 1–47 (2016)

15. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv:1604.00772 (2016)
16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

http://arxiv.org/abs/2006.10571
http://arxiv.org/abs/1206.6396
https://doi.org/10.1007/978-3-030-05318-5_1
http://arxiv.org/abs/1604.00772
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

Semi-parametric Approach to Random Forests 427

17. Järvenpää, M., Gutmann, M.U., Pleska, A., Vehtari, A., Marttinen, P., et al.:
Efficient acquisition rules for model-based approximate Bayesian computation.
Bayesian Anal. 14(2), 595–622 (2019)

18. Järvenpää, M., Gutmann, M.U., Vehtari, A., Marttinen, P., et al.: Gaussian pro-
cess modelling in approximate Bayesian computation to estimate horizontal gene
transfer in bacteria. Ann. Appl. Stat. 12(4), 2228–2251 (2018)

19. Kuzmanovski, V., Hollmén, J.: Composite surrogate for likelihood-free bayesian
optimisation in high-dimensional settings of activity-based transportation models.
In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds.) IDA 2021. LNCS,
vol. 12695, pp. 171–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-74251-5 14

20. Laguna, M., Marti, R.: Experimental testing of advanced scatter search designs
for global optimization of multimodal functions. J. Glob. Optim. 33(2), 235–255
(2005)

21. Leclercq, F.: Bayesian optimization for likelihood-free cosmological inference. Phy.
Rev. D 98(6) (2018)

22. Lintusaari, J., Gutmann, M., Dutta, R., Kaski, S., Corander, J.: Fundamentals
and recent developments in approximate Bayesian computation. Syst. Biol. 66,
e66–e82 (2017)

23. Locatelli, M. A Note on the Griewank Test Function. J. Glob. Optim. 25, 160–174
(2003). https://doi.org/10.1023/A:1021956306041

24. Meinshausen, N.: Quantile regression forests. JMLR 7, 983–999 (2006)
25. Mockus, J.: On Bayesian Methods for Seeking the Extremum. In: Marchuk, G.I.

(eds.) Optimization Techniques IFIP Technical Conference. LNCS. Springer, Hei-
delberg (1975). https://doi.org/10.1007/978-3-662-38527-2 55

26. Oh, S., Seshadri, R., Azevedo, C., Ben-Akiva, M.E.: Demand calibration of multi-
modal microscopic traffic simulation using weighted discrete SPSA. Transp. Res.
Rec. 2673(5), 503–514 (2019)

27. Petrik, O., Adnan, M., Basak, K., Ben-Akiva, M.: Uncertainty analysis of an
activity-based microsimulation model for Singapore. Future. Gener. Comput. Sys.
110, 350–363 (2018)

28. Raynal, L., Marin, J., Pudlo, P., Ribatet, M., Robert, C., Estoup, A.: ABC random
forests for Bayesian parameter inference. Bioinformatics 35(10), 1720–1728 (2019)

29. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley (1981)
30. Sha, D., Ozbay, K., Ding, Y.: Applying Bayesian optimization for calibration

of transportation simulation models. Transp. Res. Rec. 2674, 036119812093625
(2020)

31. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the
human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1),
148–175 (2015)

32. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Com-
putation. CRC Press (2018)

33. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary,
M., Prabhat, M., Adams, R.: Scalable Bayesian optimization using deep neural
networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

34. Springenberg, J.T., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with
robust Bayesian neural networks. In: Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, pp. 4141–4149 (2016)

35. Titterington, D., Smith, A., Makov, U.: Statistical Analysis of Finite Mixture Dis-
tributions. Series in Probability and Mathematical Statistics. Wiley (1985)

https://doi.org/10.1007/978-3-030-74251-5_14
https://doi.org/10.1007/978-3-030-74251-5_14
https://doi.org/10.1023/A:1021956306041
https://doi.org/10.1007/978-3-662-38527-2_55

428 V. Kuzmanovski and J. Hollmén

36. Todorović, M., Gutmann, M., Corander, J., Rinke, P.: Bayesian inference of atom-
istic structure in functional materials. NPJ Comput. Mater. 5(1), 35 (2019)

37. Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and appli-
cations. arXiv preprint arXiv:2003.05689 (2020)

38. Zhang, Y., Apley, D.W., Chen, W.: Bayesian optimization for materials design
with mixed quantitative and qualitative variables. Sci. Rep. 10(1), 4924 (2020)

http://arxiv.org/abs/2003.05689

A Clustering-Inspired Quality Measure
for Exceptional Preferences
Mining—Design Choices

and Consequences

Ruben Franciscus Adrianus Verhaegh, Jacco Johannes Egbert Kiezebrink,
Frank Nusteling, Arnaud Wander André Rio, Márton Bendegúz Bendicsek,

Wouter Duivesteijn(B), and Rianne Margaretha Schouten(B)

Eindhoven University of Technology, Eindhoven, the Netherlands
{r.f.a.verhaegh,j.j.e.kiezebrink,f.nusteling,a.w.a.rio,

m.b.bendicsek}@student.tue.nl, {w.duivesteijn,r.m.schouten}@tue.nl

Abstract. Exceptional Preferences Mining (EPM) combines the
research fields of Preference Learning and Exceptional Model Mining.
It is a local pattern mining task, where we try to find coherent sub-
groups of the dataset featuring unusual preferences between a fixed set
of labels. We introduce a new quality measure for Exceptional Prefer-
ences Mining, inspired by concepts from Clustering. On top of that, we
draw conclusions on two design choices that must necessarily be made
whenever one defines a quality measure for any version of Exceptional
Model Mining: on the one hand, exceptional behavior is easily (spuri-
ously) found in tiny subgroups, so what is the best way to compensate
for that; on the other hand, when gauging exceptionality of a subgroup’s
behavior, what does one use as reference for the normal behavior? We
find that the choice of correction factor not only influences the subgroup
size but it also effects the presumed exceptionality of found subgroups.
The entropy function allows for detecting exceptional subgroups of a
meaningful size, both when a candidate subgroup is evaluated against
its complement and against the entire dataset.

Keywords: Exceptional preferences mining · Label ranking ·
Exceptional model mining · Preference learning · Pattern mining

1 Introduction

Exceptional Preferences Mining (EPM) [15,16] combines the two research fields
of Preference Learning (PL) [5] and Exceptional Model Mining (EMM) [4,12].
In PL, rather than predicting the relevance of individual labels for records of the
dataset, the focus lies on learning whether a record of the dataset prefers a label
over another. Hence, PL is mostly concerned with analyzing how labels relate
to each other, rather than the individual expression of a single label. A subfield

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 429–444, 2022.
https://doi.org/10.1007/978-3-031-18840-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_31&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_31

430 R. F. A. Verhaegh et al.

of PL is Label Ranking (LR) [2,17], where one tries to learn a preference order
(ranking) on a set of labels. This is the part of PL that is of specific concern
to EPM. The other research field, EMM, seeks interesting subgroups of the
dataset. A subgroup is interesting if it satisfies two properties. On the one hand,
subgroups must be interpretable: we must be able to define them in terms of
few conditions on attributes of the dataset, so that we can understand and build
real-life policies on them. On the other hand, subgroups must be exceptional : a
few columns of the dataset are split off to form the target space, over which we
build a model, and subgroups are interesting if their behavior in this target space
is unusual. For instance, when analyzing sequential data in target space, Markov
chains can capture behavior in a subgroup, and one could assess exceptionality
of Markov model parameters to gauge the quality of a subgroup [18]. Within
EPM, the exceptionality of a label ranking becomes the target concept of an
EMM run: we find subgroups displaying unusual rankings of a set of labels.

Existing EPM quality measures [15,16] gauge exceptionality of the label rank-
ing within a subgroup on three separate levels of granularity (discussed in more
detail in Sect. 3), but they all share one trait: they only assess whether records of
the subgroup behave exceptionally, but not whether there is consistency behind
the measured exceptionalities. These measures neglect that exceptionality of
behavior might be achieved by lumping together disparate, heterogeneous kinds
of behavior (cf. [1] for a similar argument in Subgroup Discovery, correcting
for dispersion). In this paper, we propose a quality measure for EPM that not
only captures exceptional behavior, but additionally encourages subgroups to
have homogeneous target distributions. More specifically, we propose a quality
measure for EPM based on the principles of clustering, where one optimizes
for low within-cluster and high between-cluster distance. Comparably, our pro-
posed quality measure assigns a high quality value to subgroups with preference
relations that are dissimilar compared to records outside the subgroup but simul-
taneously very similar across records inside the subgroup.

When developing a quality measure for EMM (and hence also for EPM), two
design choices must be made. On the one hand, exceptional behavior is easily
(spuriously) found in tiny subgroups, so one must incorporate a component in
the quality measure to promote non-tiny subgroups. Typical solutions are using
the entropy of the subgroup/complement split, the size of the subgroup, or the
square root thereof. On the other hand, exceptional behavior cannot exist in a
vacuum: behavior can only be exceptional w.r.t. a reference behavior. Typical
choices are using the behavior on the entire dataset as normal behavior, or using
the behavior on the subgroup’s complement as reference. Crucially, for both these
design choices, very little evidence exists on what the right choice would be. In
this paper, we show that the choice of correction factor not only influences the
subgroup size but it also effects the presumed exceptionality of found subgroups,
and we further demonstrate differences in outcomes under different reference
behaviors in the context of EPM.

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 431

1.1 Main Contributions

The main contributions of this paper are:

1. a new quality measure for EPM that allows for the finding of exceptional and
coherent subgroups in both descriptive and target space;

2. an exploration of the effect of subgroup size correction functions on the excep-
tionality of the found subgroups;

3. a demonstration of how outcomes differ depending on whether a subgroup is
evaluated against the global model or against its complement.

2 Preliminaries

Exceptional Preferences Mining (EPM) [15,16] is a mix of Preference Learning
(PL) [5] on the one hand and Exceptional Model Mining (EMM) [4,12] on the
other hand. It combines the task of “learning to rank” [5, p. 3] with the task of
identifying subgroups in a dataset that behave exceptionally. Specifically, EPM
focuses on Label Ranking (LR) [2,17], a type of problem in PL that aims to map
instances to rankings over a predefined set of labels, or classes. One can consider
LR to be a variant of the conventional classification problem, but instead of
assigning a case to a specific class, LR aims to assign a complete order of labels.

Assume a dataset Ω, which is a bag of N records r ∈ Ω of the form

r = (a1, . . . , ak, t1, . . . , t�)

where k and � are positive integers. Target attributes t1, . . . , t� contain values
associated with � unique labels or classes from the set L = {λ1, . . . , λ�}. Thus,
t1 contains values associated with label λ1, t2 contains values associated with
label λ2, etcetera. The exact meaning of the values depends on the application
domain. For instance, in a classification problem, tv can be the probability that
a record r belongs to class λv ∈ L. Alternatively, in Sect. 6 of this paper, we
analyze the Dutch parliament elections in 2021 and consider record r ∈ Ω to
be a municipality; attributes t1, . . . , t� contain the number of votes for � distinct
political parties.

2.1 Order Relations

We are interested in the ordering of the political parties by the number of votes.
The idea is to construct an ordering of the associated labels such that label λv

precedes λw when tv > tw, v �= w and 1 ≤ v, w ≤ �. Here, we consider total
order relations � on L, which means that label λv cannot have the same position
as λw. In other words, the ordering is a ranking and λv � λw not only means
that λv precedes λw but also that it is preferred over λw. Depending on the
application, the user can decide what total order should be assigned to labels
with equal values. In the case of Dutch elections, political parties with an equal
number of votes will be ranked based on their position on the voting list.

Formally, a total order � is a permutation π of the set {1, 2, . . . , �} such that
π(v) is the position of label λv in the order. For instance, if we consider the total
order λ4 � λ1 � λ3 � λ2 for � = 4, π = (2, 4, 3, 1).

432 R. F. A. Verhaegh et al.

Table 1. Example toy datasets: the shared descriptor space, and separate target spaces
for SD, EMM, and EPM.

Attribute name a1 a2 a3 a4 . . . ak

Meaning Name Legs Swims? Flies? . . . Fluffy?

r1 Cat 4 no no . . . a bit

r2 Fish 0 yes no . . . no

r3 Owl 2 no yes . . . no

r4 Sheep 4 no no . . . very yes

r5 Snail 0 no no . . . no

(a) Descriptor space

t1

Friendly

no

yes

no

yes

yes

(b) SD

t1 t2 . . . tm

Length Weight . . . Life span

46 4 500 . . . 15

10 227 . . . 12

41 1 585 . . . 8

1 500 95 000 . . . 11

2 6 . . . 6

(c) EMM

π(1) π(2) π(3)

Grass rank Bread rank Meat rank

2 3 1

2 1 3

2 3 1

1 2 3

1 2 3

(d) EPM (� = 3)

2.2 Local Pattern Mining Methods: SD, EMM, and EPM

In the setting of both LR and EPM, preferences on L are associated with par-
ticular (groups of) dataset records through a set of features or attributes. In
EMM and EPM terms, these features are descriptive attributes, or descriptors.
Attributes a1, . . . , ak are these descriptors. The task of Local Pattern Mining
methods [7,13] is to find subgroups of the dataset, defined as a conjunction of
conditions on a few descriptors. Subgroup Discovery (SD) [8,10,20] seeks sub-
groups displaying an unusual distribution of a single target attribute, Excep-
tional Model Mining (EMM) [4,12] seeks subgroups displaying an unusual inter-
action between multiple target attributes, and Exceptional Preferences Mining
(EPM) [15,16] seeks subgroups where this interaction is exceptional preference
relations. Hence, EMM can be seen as the multitarget generalization of SD, and
EPM can be seen as a specific instantiation of the generic EMM framework.

Table 1 displays a toy dataset of some animals in a zoo. SD, EMM, and EPM
all share the descriptor space of Table 1a; any target space from Tables 1b, c,
and d can be appended. Combining Tables 1a and b, SD would find that the
subgroup “flies? = no” has a 75% share of “friendly = yes”, while this share
is 60% in the overall population. Combining Tables 1a and c, EMM would find
subgroups with an unusual interaction between the m targets (for example,
exceptional regression coefficients of length and weight while predicting life span,
when using the EMM model class from [3]). Combining Tables 1a and d, EPM
would find that the subgroup “Legs ≤ 1” always ranks meat last.

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 433

2.3 Definitions

The task of EPM is to identify subgroups in the dataset with exceptional pref-
erences. The subgroups are defined by a description over the collective domain
of descriptive attributes. Formally, a description is a function D : A �→ {0, 1},
and a record ri is covered by description D if and only if D(ai

1, ..., a
i
k) = 1.

Definition 1. The subgroup corresponding to a description D is the bag of
records SD ∈ Ω that D covers: SD = {ri ∈ Ω | D(ai

1, . . . , a
i
k) = 1}.

We denote the number of records in a subgroup S with n. Every subgroup has
a complement SC = Ω \ S which contains all nC = N − n records not in
S. Whether a subgroup has exceptional preferences is evaluated with a quality
measure (QM):

Definition 2. Given a description language D governing which subgroups can
be formulated on a given dataset, a quality measure is a function ϕ : D �→ R.

The goal is to find the top-q subgroups with the highest quality value. It is
practically impossible to investigate all candidate subgroups exhaustively since
the number of candidates scales exponentially with the number of descriptive
attributes. Therefore, we perform a heuristically guided search called beam
search. We will further discuss beam search in Sect. 4.1 while discussing the
time complexity of our approach.

3 Related Work

Local pattern mining methods have been used to understand preference relations.
For instance, the Olympic ranking of countries has been studied [14] with SD.
Casting German federal Bundestag election vote shares (and vote share changes
between subsequent elections) within regions as preference relations, a tradi-
tional SD analysis can be performed by averaging across the � parties [6]. Instead,
we are interested in finding subgroups with an unusual interaction between � tar-
get attributes (and therefore consider our approach to be EMM).

Existing EPM QMs [15,16] are based on preference matrices (PM). A PM
∈ {−1, 0, 1}�×� is a square matrix that for each pair of labels λv, λw in a
ranking π evaluates whether they precede (1) or succeed (−1) each other
(∀v, w ∈ {1, . . . , �}). PMs of individual records can be averaged, which allows for
the comparison of matrix MD, the PM for the entire dataset, with MS , the PM
for the subgroup. Denoting the difference between matrices MD and MS with
LS , [15,16] propose three quality measures, for exceptionality on three distinct
levels of behavioral granularity:

434 R. F. A. Verhaegh et al.

ϕnorm =
√

n/N ·
√√√√

�∑

v=1

�∑

w=1

LS(v, w)2 (1)

ϕlabelwise =
√

n/N · max
v=1,...,�

1
(� − 1)

�∑

w=1

LS(v, w) (2)

ϕpairwise =
√

n/N · max
v,w=1,...,�

LS(v, w) (3)

The first QM, ϕnorm, takes the Frobenius norm of LS to search for preference
deviations that occur spread out across the entire difference matrix. Zooming
in, ϕlabelwise evaluates whether there is one particular label λv that ranks sub-
stantially different in the subgroup, ignoring interactions between other labels.
Zooming in even further, ϕpairwise studies pairwise preferences [9], evaluating
whether any pair of labels interacts unusually in the subgroup. All three QMs
compare the PM of the subgroup with the PM of the entire dataset, and share
the choice for subgroup size correction factor:

ξsqrt =
√

n/N. (4)

In developing our quality measure we will borrow principles from clustering.
EMM is a local pattern mining technique whereas clustering is a global analysis
task, partitioning all records into homogeneous clusters. In EMM, subgroups
have an interpretable description, and records may be assigned to any number
of subgroups. Methods on the crossroads of local and global pattern mining
have been proposed, such as Predictive Clustering Rules (PCR) [21], SD with a
classification rule learning algorithm (CN2-SD) [11], Cluster Grouping (CG) [22]
and Multi-Response Subgroup Discovery (MR-SD) [19]. Although our quality
measure is inspired by principles in clustering, our method is a purely local one.

4 Proposed Method: A Clustering-Based Quality
Measure

We propose to perform EPM using the following clustering-based quality mea-
sure. Given a subgroup S and its complement SC , let πi denote the ranking of
labels in the ith record of S, and let πj denote the ranking in the jth record
of SC , where 1 ≤ i ≤ n and 1 ≤ j ≤ nC . We seek subgroups of records with
exceptional label preferences. Those subgroups should have rankings dissimilar
from the rankings in its complement. We define this notion of inter-subgroup
distance as

αcompl =
1

n · nC
·

n∑

i=1

nC
∑

j=1

d(πi, πj), (5)

where d(·, ·) is some distance metric between the two rankings.
In addition, we want the cases in the subgroup to have similar rankings

(i.e. to have small distance to one another), because coherent and homogeneous

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 435

subgroups are 1) easier to interpret and 2) more practically relevant than het-
erogeneous subgroups. We define this notion of intra-subgroup distance as

β =
1

n · (n − 1)
·

n∑

h=1

n∑

i=1

d(πh, πi). (6)

Next, we divide the inter-subgroup distance α by the intra-subgroup distance β,
which results in the following quality measure,

ϕclus =
α

β + 1
· ξ, (7)

where ξ is a function that corrects for the subgroup size. We add 1 to the
denominator to account for perfect homogeneous subgroups (where β = 0).

Quality measure ϕclus is expected to give a high value when the subgroup is
homogeneous (β small), when the subgroup’s rankings are different from those in
its complement (α large) or, ideally, both. Hence, our proposed quality measure
is generic. Simultaneously, the distance function d(·, ·) can be specified by the
user, which allows for searching subgroups with specific ranking deviations.

If one is interested in comparing a subgroup with the average ranking in the
entire dataset, Eq. (5) can easily be adapted as follows,

αaverage =
1
n

n∑

i=1

d(πi, πD), (8)

where πD is the label ranking when all N data records are taken into account.
In this scenario, β does not change: we still aim to find coherent subgroups with
exceptional label rankings; only the reference behavior has changed.

4.1 Time Complexity

To traverse the space of candidate subgroups, we apply beam search, a commonly
used algorithm that is flexible in handling descriptive attributes of binary, cat-
egorical, and/or numerical type [4]. The algorithm performs a level-wise search
of d levels, where the first level evaluates candidate subgroups with descriptions
based on 1 descriptor and each subsequent level refines the descriptions of the
top-w subgroups. The time complexity of beam search for EMM [4] is given by

O(dwkE(c + M(N, �) + log(wq))), (9)

where E is the worst-case number of categories (binary and numerical attributes
are refined faster), c refers to the complexity of comparing the model in the
subgroup against another model, M(N, �) is the cost of learning a model on
N records and � targets and d, w, k, and q are as described before (cf. [4,
Section 4.2.1] for more details).

To evaluate the exceptionality of a candidate subgroup with quality measure
ϕclus, αcompl requires n · nC comparisons, αaverage requires n comparisons and β

436 R. F. A. Verhaegh et al.

requires n ·(n−1) comparisons. The time complexity of one comparison depends
on the number of target attributes �. That means that the time complexity of
calculating ϕclus scales quadratically: O(�(n · (n−1)+n ·nC)) = O(N2 · �) (since
n and nC are both O(N)). The effect of c is already incorporated here.

The original EPM QMs [15,16] have a different time complexity. Calculating
a PM costs O(�2) per record; an average PM over n records then has a complexity
of O(n�2). In Sect. 5, we will further analyze these run times with synthetic
data. Section 6 evaluates the performance of our proposed quality measure on
real-world data.

4.2 Qualitative Differences Between ϕclus and Existing QMs

The added value of the quality measure is that it finds interesting results based
on the distance between the sum of the permutations of the subgroup and the
complement of the subgroup. Therefore, this quality measure should excel in
finding those subgroups where the general ranking of the target variables differs
greatly. Where previous work uses a general mean norm quality measure to find
subgroups for label ranking [6], ϕclus seems intuitively very similar to a norm-
based quality measure. It is different in that it tries to find subgroups based on
the deviation from the overall mean of the permutations of the labels.

Existing work introduces different approaches in order to find subgroups for
label ranking. Within EPM, preference matrices [16] are used; beyond pattern
mining, a meta learning technique to reduce label ranking to binary classifica-
tion was proposed [2]. Both these papers rely on preference matrices: label ranks
are transformed to an interval [0, 1] by averaging preferences of label pairs, thus
accumulating them to matrices, one representing the dataset (MD) and another
representing the subgroup (MS) [16]. Our algorithm, on the other hand, calcu-
lates the average distance of a label in the subgroup compared to those within
the subgroup S (β) and to those in the complement subgroup SC (α). The
quality measures presented in the studied literature all have clear use cases as
mentioned in Sect. 3, while our measure aims to be more generic.

The approach of the quality measure created in this paper is different from all
above-mentioned ones, thus could yield different interesting results. Besides this,
ϕclus should be robust with respect to variations in dataset metacharacteristics
that theoretically ought not to negatively affect the outcome of an Exceptional
Preferences Mining run. More specifically, the number of rows in the dataset
will likely not influence the quality measure as the similarities are normalized.
An increase in the number of target variables will likely make finding subgroups
more stable: more target variables will reduce the opportunity for sudden peaks
in the distance function. The number of descriptive attributes in a dataset almost
always affects local pattern mining techniques such as EPM: an increase in the
number of descriptors exponentially inflates the search space, making interesting
subgroups harder to find. The expectation is that this will be no different for
this quality measure.

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 437

5 Synthetic Data Experiment

We generate data with N ∈ {100, 500, 1000} records. Each of these records can be
described by k ∈ {2, 8, 32} binary descriptors, which are independently sampled
from a binomial distribution ah ∼ Bin(N, p) with p = 0.5 for all 1 ≤ h ≤ k. For
the sake of simplicity and consistency, we let the true subgroup cover records
where a1 = 1 ∧ a2 = 1, resulting in subgroups with size n = 1

4N .
Each record has a ranking based on � ∈ {2, 8, 32} target attributes. Since we

want our synthetic data to resemble a real-world scenario as much as possible, we
first analyze the average ranking of the � = 37 political parties in the real-world
dataset (see Sect. 6). There, a party with rank v+1 has about 0.7 times as many
votes as the party with rank v, for all 1 ≤ v ≤ �. The variance of the number
of votes over the records had an average ratio with the number of votes of 0.03.
For the synthetic dataset, we therefore draw � target attributes from a normal
distribution tv ∼ N (μv, σ2

v) with mean μv = 0.7(v−1) and variance σ2
v = 0.03μv.

Given the number of votes per party, a ranking π per record is obtained as per
Sect. 2. Because of random sampling, π(v) may or may not have value v, but on
average the ranking in the entire dataset will be πD = (1, 2, . . . , �).

We experiment with three types of subgroups (N.B.: every dataset contains
one true subgroup, whose type is a simulation parameter):

reversed: we invert the values of the target attributes; the values of t1 are
swapped with the values of t�, the values of t2 are swapped with t�−1, etc.
On average, this will result in πrev = (�, � − 1, . . . , 2, 1).

pairwise-swapped: we swap each consecutive pair of attributes; the values of
t1 are swapped with the values of t2, the values of t3 are swapped with t4,
etc. This will result in πpair = (2, 1, 4, 3, . . . , �, � − 1) for even values of �.

last-to-first: here, no matter the values of attribute t�, we put λ� at rank 1,
resulting in πltf = (2, 3, . . . , � − 1, �, 1).

Note that because we generate the entire dataset first, and then replace the target
values of the records covered by the true subgroup definition, πSGC

= πD.
We evaluate the performance of ϕclus with α = αcompl, and experiment with

three types of subgroup size corrections: ξsqrt as given in Eq. (4), the entropy
function as proposed for EMM by [12],

ξentropy = − n

N
log

n

N
− nC

N
log

nC

N
, (10)

and no correction: ξnone = 1. The three ways of correction are chosen such that
they have opposite objectives: ξsqrt prefers larger subgroups, ξentropy prefers a
50/50 split of the dataset and ξnone guides the search towards small subgroups.
We run beam search with w = 20, d = 3 and evaluate whether or not the true
subgroup is present in the top-q subgroups with q = 10. For every combination
of parameters, we run the experiment nreps = 5 times and report the proportion
of true subgroups not appearing in the top-q result list, the average rank of the
true subgroups in that result list and the average run time. See https://github.
com/bendicsekb/data mining election for all source code and results.

https://github.com/bendicsekb/data_mining_election
https://github.com/bendicsekb/data_mining_election

438 R. F. A. Verhaegh et al.

0

100

200

300

none entropy sqrtnN norm labelwise pairwise
Quality measure

R
un

 ti
m

e
in

 s
ec

on
ds

ntargets

2

8

32

nrows
●

●

●

100

500

1000

Fig. 1. Run time in seconds of the beam search algorithm for six quality measures,
varying dataset size and varying number of target attributes. (Color figure online)

5.1 Results

For the reversed subgroup type and the last-to-first subgroup type, all six QMs
(ϕnorm, ϕlabelwise, ϕpairwise, and ϕclus with three variants of ξ) find the ground
truth subgroup in 100% of the cases at the first position in the result list. Quality
measure ϕclus finds the pairwise-swapped subgroup type under all simulation
conditions when ξ = ξnone (when no subgroup size correction is applied). For
ξentropy and ξsqrt, the true subgroup cannot be found when both k and � are 32.
Like ϕclus with ξnone, quality measures ϕnorm and ϕlabelwise find the pairwise-
swapped subgroup under all simulation conditions. When N = 100, ϕlabelwise has
difficulty when the number of descriptors k is too large relative to the number
of targets � (8 vs. 2, 32 vs. 8 and 32 vs. 32). The problem disappears when N
increases to 500 or 1000.

Figure 1 presents the run times in seconds for all six quality measures for the
reversed subgroup type. Conclusions are similar for the pairwise-swapped and
last-to-first subgroup type. As discussed in Sect. 4.1, we see that ϕclus scales with
the number of rows N while the EPM QMs scale with the number of targets �.

6 Real-World Data Experiment

We analyze data from the 2021 Dutch general election, publicly available
at https://www.verkiezingsuitslagen.nl/verkiezingen/detail/TK20210317. The
dataset contains the number of votes for � = 37 political parties in N = 351
municipalities. We add information about socio-economic characteristics of the
municipalities such as the number of citizens, gender balance, age distribution,
migration background, number of companies, how many ducks go for slaughter
(proxy for rurality), total road length, and much more. That dataset is made
available by Statistics Netherlands (https://opendata.cbs.nl/statline/portal.
html? la=nl& catalog=CBS&tableId=70072ned& theme=237). Consequently,
we have k = 83 numerical descriptors.

https://www.verkiezingsuitslagen.nl/verkiezingen/detail/TK20210317
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=70072ned&_theme=237
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=70072ned&_theme=237

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 439

correction: none correction: entropy correction: sqrtnN

com
parison: com

pl
com

parison: com
pl

com
parison: average

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637

5

10

15

20

5

10

15

20

5

10

15

20

Labels

S
ub

gr
ou

p

C
om

pl
em

en
t

 S
ub

gr
ou

p

−10 −5 0 5 10

Fig. 2. Difference in rank between a group and the average dataset ranking πD,
obtained with quality measure ϕclus (red: higher rank in group, blue: lower rank in
group, white: no difference). (Color figure online)

The goal is to find coherent subgroups of municipalities with an exceptional
ranking of political parties. We evaluate the performance of ϕclus in six scenarios,
combining the two comparisons with reference models αcompl and αaverage with
three types of subgroup size correction ξnone, ξentropy, and ξsqrt. As distance
function d(·, ·) within ϕclus we employ the Euclidean norm. The beam search is
run with parameters w = 30, d = 3, and q = 20, and minimum subgroup size
constraint of csize = 10%.

Figure 2 presents results. Each of the 9 panels shows the difference in label
ranking between a subgroup and the average dataset ranking πD (q = 20 by
� = 37). Here, red indicates that a political party has a higher rank in the
subgroup (more votes, moved to the left), blue represents a lower rank in the
subgroup (fewer votes, moved to the right) and white means that there is no
difference. The three columns in Fig. 2 correspond to the three types of subgroup
size correction. The three rows correspond to reference models αcompl (row 1 and

440 R. F. A. Verhaegh et al.

2, Sect. 6.1) and αaverage (row 3, Sect. 6.2). The panels in the first two rows use
the same beam search results, but the top row gives the difference in ranking
for the discovered subgroups whereas the second row shows the results for the
complements of the discovered subgroups.

6.1 Comparing Against the Complement

When no subgroup size correction is applied, comparing candidate subgroups
with their complements results in subgroups with quite some exceptional pref-
erences (top left panel in Fig. 2). For instance, in the second subgroup, label λ5

and λ6 have moved to the right, while label λ7 and λ8 have moved to the left
(the first subgroup is an all-white subgroup). These labels correspond to three
relatively left-leaning parties (SP, PvdA, GroenLinks). Label λ8 corresponds to
FvD, a very right-leaning party. The subgroup covers municipalities with Green
pressure ≥ 37.2% ∧ Surinam migration background ≥ 0.8% ∧ Any-non western
migration background ≥ 9.6%. Here, green pressure refers to the ratio between
the number of people aged 0 to 20 and the number of people aged 20 to 65.
Municipalities with a high green pressure skew younger. Our results indicate
that younger citizens, or their parents, vote more extremely on the electoral
spectrum than older citizens.

In the center left panel, we see that the complement of this subgroup has a
label ranking that is similar to the average dataset ranking πD, except for labels
λ30 and λ31. For all subgroups (except for the first) found with ϕclus using ξnone
and αcompl, the subgroups have exceptional preferences while their complements
have average preferences.

We see an opposite effect when using ξsqrt to correct for subgroup size (top
right panel). Here, all q = 20 subgroups do not deviate from the average dataset
ranking. However, the complements of these subgroups show very exceptional
preferences relations (center right panel). For some of these complements, a
Christian party (CU) has obtained fewer votes (see blue color for λ10). That
happens for instance in the complement of subgroup 4, which is described by
Dutch background ≤ 92%. Apparently, in municipalities where the percentage of
citizens with a Dutch background is > 92% (the complement), people tend to
vote less for this particular Christian party.

Finding contrasting results for two opposite types of subgroup size correction
gives us more insight in the performance of ϕclus specifically and quality measures
in EMM in general. Remember that ϕclus is designed to generate exceptional and
homogeneous subgroups. Then, when the algorithm divides the dataset into two
groups and compares one group with the other (e.g., the complement), it rewards
the more homogeneous group and chooses that to be the subgroup.

Using ξsqrt as a correction factor and giving preference to larger subgroups,
the algorithm will select subgroups with records that are close to the dataset
norm; it is likely that there are more records with average ranking behavior
than there are records with similar non-average behavior. Using ξnone, we find
exceptional subgroups. Unfortunately, the consequence is that the subgroups are
very small and have a size just larger than the minimum constraint.

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 441

12
124
133

2
26
28

4
58
60
63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Labels

R
ec

or
d

0

10

20

30

40
rank

Fig. 3. Label ranking of 10 random records in the best-scoring subgroup found with
ϕclus when comparing with the average dataset ranking and using no correction factor.
(Color figure online)

The entropy function gives results that are in-between (see center top panel
in Fig. 2). Although ϕclus still tends to select homogeneous subgroups, the prefer-
ence for subgroups that contain half the number of records generates subgroups
that do deviate from the norm, albeit for only a few labels. The complements of
these subgroups have more exceptional preferences.

6.2 Comparing Against the Average Dataset Ranking

The bottom row of Fig. 2 presents results for ϕclus using αaverage instead of
αcompl. A clear effect of that can be seen when we use ξnone. Then, the subgroups
have label rankings that deviate much more from the average ranking than when
we evaluate a candidate subgroup against its complement (compare left top panel
with left bottom panel). In this scenario, the inter-subgroup distance as given by
αaverage is larger than αcompl. At the same time, the subgroups are coherent in
target space and have small β, as can be seen for subgroup 1 in Fig. 3 where we
present the label ranking of 10 random records in the subgroup. Although some
fluctuations and differences between records exist, in general the records have
similar rankings. Unfortunately, these results do not carry over to the scenario
where we prefer larger subgroups (ξsqrt). Then, even though the subgroups have
average ranking behavior, the intra-subgroup distance β dominates the quality
value (bottom right panel in Fig. 2).

Like before, ξentropy finds an in-between solution and presents subgroups with
exceptional preferences while making sure that the subgroups have a meaningful
size (bottom center panel). Interestingly, the results are similar to those in the
center panel, where we evaluate the complements of subgroups that are found
under αcompl. Apparently, when using ξentropy in ϕclus, the reference group does
not matter as much and similar exceptional subgroups are found. The difference
is that these exceptional subgroups are not selected when we evaluate them
against their complements, because the latter are more homogeneous and will
therefore have a higher quality value.

442 R. F. A. Verhaegh et al.

7 Conclusions

We propose a new quality measure for Exceptional Preferences Mining (EPM)
that identifies homogeneous subgroups in a dataset with unusual rankings of
a set of labels. Inspired by principles from clustering, where one optimizes for
low within-cluster distance or high between-cluster distance, we aim to identify
subgroups with preference relations that are dissimilar compared to the rest of
the dataset but very similar compared to records inside the subgroup.

As synthetic data experiments show (cf. Fig. 1), the time complexity of our
quality measure scales with the number of dataset records, as opposed to exist-
ing quality measures for EPM that scale with the number of labels. Runtimes
are roughly equivalent when the number of targets is 2 or 8, but our QM is
substantially faster when this number is 32.

When developing a quality measure for EMM (and hence also for EPM),
a correction for subgroup size should be included in order to steer the search
away from tiny subgroups. Furthermore, one has to choose the reference behav-
ior: is a candidate subgroup compared with its complement or with the average
behavior? We investigate these scenarios for a real-world dataset with informa-
tion about the voting behavior of municipalities in the Netherlands (cf. Fig. 2).
If we compare candidate subgroups S with their complements SC , we find that
a size correction that prefers larger subgroups results in a search where the
intra-subgroup distance dominates. Interestingly, exceptional ranking behavior
is happening in this result set, but on the complements of the subgroups that
EPM reports, which themselves display consistent but unexceptional behavior.
In contrast, when we do not apply a correction for subgroup size, EPM reports
subgroups are exceptional and homogeneous, but they only barely pass the min-
imum support constraint. To find subgroups of substantial size that also display
exceptional behavior themselves, the entropy function gives the best results.

Comparing candidate subgroups with the average dataset Ω delivers sub-
groups with very exceptional preferences, especially when there is no correction
for subgroup size. Then, the inter-subgroup distance will increase while excep-
tional subgroups are still coherent and homogeneous. When the entropy function
is used, we again find subgroups with exceptional preferences of meaningful size.
Comparing with Ω instead of SC leads to comparable results, but the excep-
tional behavior is more often encompassed by the subgroups resulted by EPM
instead of hidden away in their complements.

References

1. Boley, M., Goldsmith, B.R., Ghiringhelli, L.M., Vreeken, J.: Identifying consistent
statements about numerical data with dispersion-corrected subgroup discovery.
Data Min. Knowl. Discov. 31(5), 1391–1418 (2017)

2. Cheng, W., Henzgen, S., Hüllermeier, E.: Labelwise versus pairwise decomposition
in label ranking. In: Proceedings of the 15th LWA Workshops: KDML, IR and
FGWM, pp. 129–136 (2013)

A Clustering-Inspired Quality Measure for Exceptional Preferences Mining 443

3. Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks:
mining for exceptional regression models with Cook’s distance. In: Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2012), pp. 868–876 (2012)

4. Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining – super-
vised descriptive local pattern mining with complex target concepts. Data Min.
Knowl. Disc. 30(1), 47–98 (2016)

5. Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz,
J., Hüllermeier, E. (eds.) Preference Learning, pp. 1–17. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14125-6 1

6. Grosskreutz, H., Boley, M., Krause-Traudes, M.: Subgroup discovery for election
analysis: a case study in descriptive data mining. In: Proceedings of the 13th Inter-
national Conference on Discovery Science (DS 2010), pp. 57–71 (2010)

7. Hand, D.J., Adams, N.M., Bolton, R.J. (eds.): Pattern Detection and Discovery.
LNCS (LNAI), vol. 2447. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45728-3

8. Herrera, F., Carmona, C.J., González, P., Del Jesus, M.J.: An overview on subgroup
discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011)

9. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artif. Intell. 172(16–17), 1897–1916 (2008)

10. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

11. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-
SD. J. Mach. Learn. Res. 5, 153–188 (2004)

12. Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Proceedings
of the Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (ECMLPKDD 2008), pp. 1–16 (2008)

13. Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS
(LNAI), vol. 3539. Springer, Heidelberg (2005). https://doi.org/10.1007/b137601

14. Pieters, B.F., Knobbe, A., Džeroski, S.: Subgroup discovery in ranked data, with
an application to gene set enrichment. In: Proceedings of the Preference Learning
Workshop at Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECMLPKDD 2010), pp. 1–18 (2010)

15. de Sá, C.R., Duivesteijn, W., Azevedo, P.J., Jorge, A.M., Soares, C., Knobbe,
A.J.: Discovering a taste for the unusual: exceptional models for preference mining.
Mach. Learn. 107(11), 1775–1807 (2018)

16. de Sá, C.R., Duivesteijn, W., Soares, C., Knobbe, A.: Exceptional preferences
mining. In: Proceedings of the 19th International Conference on Discovery Science
(DS 2016), pp. 3–18 (2016)

17. de Sá, C.R., Soares, C., Knobbe, A.: Entropy-based discretization methods for
ranking data. Inf. Sci. 329, 921–936 (2016)

18. Schouten, R.M., Bueno, M.L., Duivesteijn, W., Pechenizkiy, M.: Mining sequences
with exceptional transition behaviour of varying order using quality measures based
on information-theoretic scoring functions. Data Min. Knowl. Disc. 36, 379–413
(2022)

19. Umek, L., Zupan, B.: Subgroup discovery in data sets with multi-dimensional
responses. Intell. Data Anal. 15(4), 533–549 (2011)

20. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Proceed-
ings of PKDD, pp. 78–87 (1997)

https://doi.org/10.1007/978-3-642-14125-6_1
https://doi.org/10.1007/3-540-45728-3
https://doi.org/10.1007/3-540-45728-3
https://doi.org/10.1007/b137601

444 R. F. A. Verhaegh et al.

21. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Pro-
ceedings of the International Workshop on Knowledge Discovery in Inductive
Databases, pp. 234–250 (2005)

22. Zimmermann, A., De Raedt, L.: Cluster-grouping: from subgroup discovery to
clustering. Mach. Learn. 77(1), 125–159 (2009)

Recurrent Segmentation Meets Block
Models in Temporal Networks

Chamalee Wickrama Arachchi(B) and Nikolaj Tatti

HIIT, University of Helsinki, Helsinki, Finland
{chamalee.wickramaarachch,nikolaj.tatti}@helsinki.fi

Abstract. A popular approach to model interactions is to represent
them as a network with nodes being the agents and the interactions
being the edges. Interactions are often timestamped, which leads to hav-
ing timestamped edges. Many real-world temporal networks have a recur-
rent or possibly cyclic behaviour. For example, social network activity
may be heightened during certain hours of day. In this paper, our main
interest is to model recurrent activity in such temporal networks. As a
starting point we use stochastic block model, a popular choice for mod-
elling static networks, where nodes are split into R groups. We extend
this model to temporal networks by modelling the edges with a Pois-
son process. We make the parameters of the process dependent on time
by segmenting the time line into K segments. To enforce the recurring
activity we require that only H < K different set of parameters can be
used, that is, several, not necessarily consecutive, segments must share
their parameters. We prove that the searching for optimal blocks and
segmentation is an NP-hard problem. Consequently, we split the prob-
lem into 3 subproblems where we optimize blocks, model parameters,
and segmentation in turn while keeping the remaining structures fixed.
We propose an iterative algorithm that requires O (

KHm + Rn + R2H
)

time per iteration, where n and m are the number of nodes and edges in
the network. We demonstrate experimentally that the number of required
iterations is typically low, the algorithm is able to discover the ground
truth from synthetic datasets, and show that certain real-world networks
exhibit recurrent behaviour as the likelihood does not deteriorate when
H is lowered.

1 Introduction

A popular approach to model interactions between set of agents is to represent
them as a network with nodes being the agents and the interactions being the
edges. Naturally, many interactions in real-world datasets have a timestamp, in
which case the edges in networks also have timestamps. Consequently, devel-
oping methodology for temporal networks has gained attention in data mining
literature [17].

Many temporal phenomena have recurrent or possibly cyclic behaviour. For
example, social network activity may be heightened during certain hours of day.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 445–459, 2022.
https://doi.org/10.1007/978-3-031-18840-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_32&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_32

446 C. W. Arachchi and N. Tatti

Our main interest is to model recurrent activity in temporal networks. As a
starting point we use stochastic block model, a popular choice for modelling
static networks. We can immediately extend this model to temporal networks,
for example, by modelling the edges with a Poisson process. Furthermore, Corneli
et al. [6] modelled the network by also segmenting the timeline and modelled
each segment with a separate Poisson process.

To model the recurrent activity we can either model it explicitly, for example,
by modelling explicitly cyclic activity, or we can use more flexible approach where
we look for segmentation but restrict the number of distinct parameters. Such
notion was proposed by Gionis and Mannila [10] in the context of segmenting
sequences of real valued vectors.

In this paper we extend the model proposed by Corneli et al. [6] using the
ideas proposed by Gionis and Mannila [10]. More formally, we consider the fol-
lowing problem: given a temporal graph with n nodes and m edges, we are
looking to partition the nodes into R groups and segment the timeline into K
segments that are grouped into H levels. Note that a single level may contain
non-consecutive segments. An edge e = (u, v) is then modelled with a Poisson
process with a parameter λijh, where i and j are the groups of u and v, and h
is the level of the segment containing e.

To obtain good solutions we rely on an iterative method by splitting the
problem into three subproblems: (i) optimize blocks while keeping the remain-
ing parameters fixed, (ii) optimize model parameters Λ while keeping the blocks
and the segmentation fixed, (iii) optimize the segmentation while keeping the
remaining parameters fixed. We approach the first subproblem by iteratively
optimizing block assignment of each node while maintaining the remaining nodes
fixed. We show that such single round can be done in O

(
m + Rn + R2H + K

)

time, where n is the number of nodes and m is the number of edges. Fortu-
nately, the second subproblem is trivial since there is an analytic solution for
optimal parameters, and we can obtain the solution in O

(
m + R2H + K

)
time.

Finally, we show that we can find the optimal segmentation with a dynamic
program. Using a stock dynamic program leads to a computational complexity
of O

(
m2KH

)
. Fortunately, we show that we can speed up the computation

by using a SMAWK algorithm [2], leading to a computational complexity of
O

(
mKH + HR2

)
.

In summary, we extend a model by Corneli et al. [6] to have recurring seg-
ments. We prove that the main problem is NP-hard as well as several related
optimization problems where we fix a subset of parameters. Navigating around
these NP-hard problems we propose an iterative algorithm where a single iter-
ation requires O

(
KHm + Rn + R2H

)
time, a linear time in edges and nodes.

The rest of the paper is organized as follows. First we introduce preliminary
notation, the model, and the optimization problem in Sect. 2. We then proceed
to describe the iterative algorithm in Sect. 3. We present the related work in
Sect. 4. Finally, we present our experiments in Sect. 5 and conclude the paper
with discussion in Sect. 6. The proofs are provided in Appendix1.

1 The appendix is available at https://arxiv.org/abs/2205.09862.

https://arxiv.org/abs/2205.09862

Recurrent Segmentation Meets Block Models in Temporal Networks 447

2 Preliminary Notation and Problem Definition

Assume a temporal graph G = (V,E), where V is a set of nodes and E is a set of
edges, where each edge is tuple (u, v, t) with u, v ∈ V and t being the timestamp.
We will use n = |V | to denote the number of nodes and m = |E| the number
of edges. For simplicity, we assume that we do not have self-loops, though the
models can be adjusted for such case. We write t(e) to mean the timestamp of
the edge e. We also write N(u) to denote all the edges adjacent to a node u ∈ V .

Perhaps the simplest way to model a graph (with no temporal information)
is with Erdos-Renyi model, where each edge is sampled independently from a
Bernoulli probability parameterized with q. Let us consider two natural exten-
sions of this model. The first extension is a block model, where nodes are divided
into k blocks, and an edge (u, v) are modelled with a Bernoulli probability param-
eterized with qij , where i is the block of u and j is the block of v. Given a graph,
the optimization problem is to cluster nodes into blocks so that the likelihood
of the model is optimized. For the sake of variability we will use the words block
and group interchangeably.

A convenient way of modelling events in temporal data is using Poisson
process: Assume that you have observed c events with timestamps t1, . . . , tc in
a time interval T of length Δ. The log-likelihood of observing these events at
these exact times is equal to c log λ − λΔ, where λ is a model parameter. Note
that the log-likelihood does not depend on the individual timestamps.

If we were to extend the block model to temporal networks, the log-likelihood
of c edges occurring between the nodes u and v in a time interval is equal to
c log λij−λijΔ, where λij is the Poisson process parameter and i is the block of u
and j is the block of v. Note that λij does not depend on the time, so discovering
optimal blocks is very similar to discovering blocks in a static model.

A natural extension of this model, proposed by Corneli et al. [6], is to make
the parameters depend on time. Here, we partition the model into k segments
and assign different set of λs to each segment.

More formally, we define a time interval T to be a continuous interval either
containing the starting point T = [t1, t2] or excluding the starting point T =
(t1, t2]. In both cases, we define the duration as Δ (T) = t2 − t1.

Given a time interval T , let us define

c (u, v, T) = |{e = (u, v, t) ∈ E | t ∈ T}|

to be the number of edges between u and v in T .
The log-likelihood of Poisson model for nodes u, v and a time interval T is

� (u, v, T, λ) = c (u, v, T) log λ − λΔ (T).

We extend the log-likelihood between the two sets of nodes U and W , by writing

� (U,W, T, λ) =
∑

u,w∈U×W

� (u,w, T, λ),

448 C. W. Arachchi and N. Tatti

where U ×W is a set of all node pairs {u,w} with u ∈ U and w ∈ W and u �= v.
We consider {u,w} and {w, u} the same, so only one of these pairs is visited.

Given a time interval D = [a, b], a K-segmentation T = T1, . . . , TK is
a sequence of K time intervals, such that T1 = [a, t1], T2 = (t1, t2], . . . Ti =
(ti−1, ti], . . ., and TK = (tK−1, b]. For notational simplicity, we require that the
boundaries ti must collide with the timestamps of individual edges. We also
assume that D covers the edges. If D is not specified, then it is set to be the
smallest interval covering the edges.

Given a K-segmentation, a partition of nodes P = P1, . . . , PR into R groups,
and a set of KR(R +1)/2 parameters Λ = {λijk}2, the log-likelihood is equal to

� (P, T , Λ) =
R∑

i=1

R∑

j=i

K∑

k=1

� (Pi, Pj , Tk, λijk).

This leads immediately to the problem considered by Corneli et al. [6].

Problem 1. ((K,R) model). Given a temporal graph G, a time interval D, inte-
gers R and K, find a node partition with R groups, a K-segmentation, and a
set of parameters Λ so that � (P, T , Λ) is maximized.

We should point out that for fixed P and T , the optimal Λ is equal to

λijk =
c (Pi, Pj , Tk)

|Pi × Pj |Δ (Tk)
.

In this paper we consider an extension of (K,R) model. Many temporal
network exhibit cyclic or repeating behaviour. Here, we allow network to have K
segments but we also limit the number of distinct parameters to be at most H ≤
K. In other words, we are forcing that certain segments share their parameters.
We do not know beforehand which segments should share the parameters.

We can express this constraint more formally by introducing a mapping g :
[K] → [H] that maps a segment index to its matching parameters. We can
now define the likelihood as follows: given a K-segmentation, a partition of
nodes P = P1, . . . , PR into R groups, a mapping g : [K] → [H], and a set of
HR(R + 1)/2 parameters Λ = {λijh}, the log-likelihood is equal to

� (P, T , g, Λ) =
R∑

i=1

R∑

j=i

K∑

k=1

�
(
Pi, Pj , Tk, λijg(k)

)
.

We will refer to g as level mapping.
This leads to the following optimization problem.

Problem 2. ((K,H,R) model). Given a temporal graph G, a time interval D,
integers R, H, and K, find a node partition with R groups, a K-segmentation,
a level mapping g : [K] → [H], and parameters Λ maximizing � (P, T , g, Λ).
2 For notational simplicity we will equate λijh and λjih.

Recurrent Segmentation Meets Block Models in Temporal Networks 449

Algorithm 1: Main loop of the algorithm
1 P ← random groups; Λ ← random values;
2 T , g ← FindSegments(P, Λ);
3 Λ ← UpdateLambda(P, T , g);
4 while convergence do
5 P ← FindGroups(P, Λ, T , g);
6 Λ ← UpdateLambda(P, T , g);
7 T , g ← FindSegments(P, Λ);
8 Λ ← UpdateLambda(P, T , g);

3 Fast Algorithm for Obtaining Good Model

In this section we will introduce an iterative, fast approach for obtain-
ing a good model. The computational complexity of one iteration is
O

(
KHm + Rn + R2H

)
, which is linear in both the nodes and edges.

3.1 Iterative Approach

Unfortunately, finding optimal solution for our problem is NP-hard.

Proposition 1. Problem 2 is NP-hard, even for H = K = 1 and R = 2.

Consequently, we resort to a natural heuristic approach, where we optimize cer-
tain parameters while keeping the remaining parameters fixed.

We split the original problem into 3 subproblems as shown in Algorithm 1.
First, we find good groups, then update Λ, and then optimize segmentation,
followed by yet another update of Λ.

When initializing, we select groups P and parameters Λ randomly, then pro-
ceed to find optimal segmentation, followed by optimizing Λ.

Next we will explain each step in details.

3.2 Finding Groups

Our first step is to update groups P while maintaining the remaining parameters
fixed. Unfortunately, finding the optimal solution for this problem is NP-hard.

Proposition 2. Finding optimal partition P for fixed Λ, T and g is NP-hard,
even for H = K = 1 and R = 2.

Due to the previous proposition, we perform a simple greedy optimization
where each node is individually reassigned to the optimal group while maintain-
ing the remaining nodes fixed.

We should point out that there are more sophisticated approaches, for exam-
ple based on SDP relaxations, see a survey by Abbe [1]. However, we resort to
a simple greedy optimization due to its speed.

450 C. W. Arachchi and N. Tatti

Algorithm 2: Algorithm FindGroups(P, Λ) for finding groups for a fixed
segmentation T , g and parameters Λ

1 p(v) ← group index of v;
2 s(e) ← segment index of e;
3 d[h] ← ∑

g(k)=h Δ (Tk);

4 foreach v ∈ V do
5 b ← p(v);
6 c[j, h] ← array cjh as defined in Proposition 3;
7 foreach a = 1, . . . R do

8 x[a] ← ∑H
h=1 λbahd[h] +

∑R
j=1 c[j, h] log λajh − |Pj |λajhd[h] ;

9 p(v) ← arg maxa x[a] (update P also);

10 return P;

A naive implementation of computing the log-likelihood gain for a single
node may require Θ(m) steps, which would lead in Θ(nm) time as we need to
test every node. Luckily, we can speed-up the computation using the following
straightforward proposition.

Proposition 3. Let P be the partition of nodes, Λ set of parameters, and T
and g the segmentation and the level mapping. Let Sh = {Tk ∈ T | h = g(k)} be
the segments using the hth level.

Let u be a node, and let Pb be the set such that u ∈ Pb. Select Pa, and let P ′

be the partition where u has been moved from Pb to Pa. Then

� (P ′, T , g, Λ) − � (P, T , g, Λ) = Z +
H∑

h=1

λbahth +
R∑

j=1

cjh log λajh − |Pj |λajhth,

where Z is a constant, not depending on a, th = Δ (Sh) is the total duration of
the segments using the hth level and cjh = c (u, Pj ,Sh), is the number of edges
between u and Pj in the segments using the hth level.

The proposition leads to the pseudo-code given in Algorithm 2. The algorithm
computes an array c and then uses Proposition 3 to compute the gain for each
swap, and consequently to find the optimal gain.

Computing the array requires iterating over the adjacent edges, leading to
O (|N(v)|) time, and computing the gains requires O

(
R2H

)
time. Consequently,

the computational complexity for FindGroups is O
(
m + R2Hn + K

)
.

The running time can be further optimized by modifying Line 8. There are
at most 2m non-zero c[i, j] entries (across all v ∈ V), consequently we can speed
up the computation of a second term by ignoring the zero entries in c[i, j]. In
addition, for each a, the remaining terms

H∑

h=1

λbahd[h] +
R∑

j=1

|Pj |λajhd[h]

Recurrent Segmentation Meets Block Models in Temporal Networks 451

can be precomputed in O (RH) time and maintained in O (1) time. This leads
to a running time of O

(
m + Rn + R2H + K

)
.

3.3 Updating Poisson Process Parameters

Our next step is to update Λ while maintaining the rest of the parameters
fixed. This refers to UpdateLambda in Algorithm 1. Fortunately, this step is
straightforward as the optimal parameters are equal to

λijh =
c (Pi, Pj ,Sh)

|Pi × Pj |Δ (Sh)
,

where Sh = {Tk ∈ T | h = g(k)} are the segments using the hth level. Updating
the parameters requires O

(
m + R2H + K

)
time.

In practice, we would like to avoid having λ = 0 as this forbids any edges
occurring in the segment, and we may get stuck in a local maximum. We app-
roach this by shifting λ slightly by using

λijh =
c (Pi, Pj ,Sh) + θ

|Pi × Pj |Δ (Sh) + η
,

where θ and η are user parameters.

3.4 Finding Segmentation

Our final step is to update the segmentation T and the level mapping g, while
keeping Λ and P fixed. Luckily, we can solve this subproblem in linear time.

Note that we need to keep Λ fixed, as otherwise the problem is NP-hard.

Proposition 4. Finding optimal Λ, T and g for fixed P is NP-hard.

On the other hand, if we fix Λ, then we can solve the optimization problem
with a dynamic program. To be more specific, assume that the edges in E are
ordered, and write o[e, k] to be the log-likelihood of k-segmentation covering the
edges prior and including e. Given two edges s, e ∈ E, let y(s, e;h) be the log-
likelihood of a segment (t(s), t(e)] using the hth level of parameters, λ··h. If s
occurs after e we set y to be −∞. Then the identity

o[e, k] = max
h

max
s

y(s, e;h) + o[s, k − 1]

leads to a dynamic program.
Using an off-the-shelf approach by Bellman [5] leads to a computational com-

plexity of O
(
m2KH

)
, assuming that we can evaluate y(s, e;h) in constant time.

However, we can speed-up the dynamic program by using the SMAWK algo-
rithm [2]. Given a function x(i, j), where i, j = 1, . . . , m, SMAWK computes
z(j) = arg maxi x(i, j) in O (m) time, under two assumptions. The first assump-
tion is that we can evaluate x in constant time. The second assumption is that
x is totally monotone. We say that x is totally monotone, if x(i2, j1) > x(i1, j1),
then x(i2, j2) ≥ x(i1, j2) for any i1 < i2 and j1 < j2.

We have the immediate proposition.

452 C. W. Arachchi and N. Tatti

Proposition 5. Fix h. Then the function x(s, e) = y(s, e;h) + o[s, k − 1] is
totally monotone.

Our last step is to compute x in constant time. This can be done by first
precomputing f [e, h], the log-likelihood of a segment starting from the epoch
and ending at t(e) using the hth level. The log-likelihood of a segment is then
y(s, e;h) = f [e, h] − f [s, h], which we can compute in constant time.

Algorithm 3: Algorithm FindSegments(P, Λ) for finding optimal seg-
mentation for fixed groups P and parameters Λ

1 tmin ← min {t | (u, v, t) ∈ E};
2 f [e, h] ← log-likelihood of a segment [tmin , t(e)] using parameters λ··h;
3 foreach e ∈ E do o[e, 1] ← maxh f [e, h]
4 foreach k = 2, . . . , K do
5 x(s, e; h) ← o[s, k − 1] + f [e, h] − f [s, h];
6 foreach h = 1, . . . , H do
7 z[e, h] ← arg maxs x(s, e; h) for each e ∈ E (use SMAWK);

8 o[e, k] ← maxh x(z[e, h], e; h) for each e ∈ E;
9 r[e, k] ← arg maxh x(z[e, h], e; h);

10 q[e, k] ← z[e, r[e, k]];

11 Use r and q to recover the optimal segmentation (T1, . . . , TK) and the level
mapping g ;

12 return (T1, . . . , TK), g;

The pseudo-code for finding the segmentation is given in Algorithm 3. A
more detailed version of the pseudo-code is given in Appendix. Here, we first
precompute f [e, h]. We then solve segmentation with a dynamic program by
maintaining 3 arrays: o[e, k] is the log-likelihood of k-segmentation covering the
edges up to e, q[e, k] is the starting point of the last segment responsible for
o[e, k], and r[e, k] is the level of the last segment responsible for o[e, k].

In the inner loop we use SMAWK to find optimal starting points. Note that
we have to do this for each h, and only then select the optimal h for each segment.
Note that we do define x on Line 5 but we do not compute its values. Instead
this function is given to SMAWK and is evaluated in a lazy fashion.

Once we have constructed the arrays, we can recursively recover the optimal
segmentation and the level mapping from q and r, respectively.

FindSegments runs in O
(
mKH + HR2

)
time since we need to call

SMAWK O (HK) times.
We were able to use SMAWK because the optimization criterion turned out

to be totally monotone. This was possibly only because we fixed Λ. The notion of
using SMAWK to speed up a dynamic program with totally monotone scores was
proposed by Galil and Park [9]. Fleischer et al. [7], Hassin and Tamir [14] used
this approach to solve dynamic program segmenting monotonic one-dimensional
sequences with L1 cost.

Recurrent Segmentation Meets Block Models in Temporal Networks 453

We fixed Λ because Proposition 4 states that the optimization problem for
H < K cannot be solved in polynomial time if we optimize T , g, and Λ at the
same time. Proposition 4 is the main reason why we cannot use directly the ideas
proposed by Corneli et al. [6] as the authors use the dynamic program to find T
and Λ at the same time.

However, if K = H, then the problem is solvable with a dynamic program
but requires O

(
Km2R2

)
time. However, if we consider the optimization problem

as a minimization problem and shift the cost with a constant so that it is always
positive, then using algorithms by Guha et al. [26], Tatti [11] we can obtain
(1 + ε)-approximation with O

(
K3 log K log m + K3ε−2 log m

)
number of cost

evaluations. Finding the optimal parameters and computing the cost of a single
segment can be done in O

(
R2

)
time with O

(
R2 + m

)
time for precomputing.

This leads to a total time of O
(
R2(K3 log K log m + K3ε−2 log m) + m

)
for the

special case of K = H.

4 Related Work

The closest related work is the paper by Corneli et al. [6] which can be viewed
as a special case of our approach by requiring K = H, in other words, while the
Poisson process may depend on time they do not take into account any recur-
rent behaviour. Having K = H simplifies the optimization problem somewhat.
While the general problem still remains difficult, we can now solve the segmen-
tation T and the parameters Λ simultaneously using a dynamic program as was
done by Corneli et al. [6]. In our problem we are forced to fix Λ while solving
the segmentation problem. Interestingly enough, this gives us an advantage in
computational time: we only need O

(
KHm + HR2

)
time to find the optimal

segmentation while the optimizing T and Λ simultaneously requires O
(
R2Km2

)

time. On the other hand, by fixing Λ we may have a higher chance of getting
stuck in a local maximum.

The other closely related work is by Gionis and Mannila [10], where the
authors propose a segmentation with shared centroids. Here, the input is a
sequence of real valued vectors and the segmentation cost is either L2 or L1

distance. Note that there is no notion of groups P, the authors are only inter-
ested in finding a segmentation with recurrent sources. The authors propose
several approximation algorithms as well as an iterative method. The approx-
imation algorithms rely specifically on the underlying cost, in this case L1 or
L2 distance, and cannot be used in our case. Interestingly enough, the proposed
iterative method did not use SMAWK optimization, so it is possible to use the
optimization described in Sect. 3 to speed up the iterative method proposed by
Gionis and Mannila [10].

In this paper, we used stochastic block model (see [3,16], for example) as a
starting point and extend it to temporal networks with recurrent sources. Several
past works have extended stochastic block models to temporal networks: Matias
and Miele [29], Yang et al. [21] proposed an approach where the nodes can change
block memberships over time. In a similar fashion, Xu and Hero [27] proposed

454 C. W. Arachchi and N. Tatti

a model where the adjacency matrix snapshots are generated with a logistic
function whose latent parameters evolve over time. The main difference with our
approach is that in these models the group memberships of nodes are changing
while in our case we keep the memberships constant and update the probabilities
of the nodes. Moreover, these methods are based on graph snapshots while we
work with temporal edges. In another related work, Matias et al. [22] modelled
interactions using Poisson processes conditioned by stochastic block model. Their
approach was to estimate the intensities non-parametrically through histograms
or kernels while we model intensities with recurring segments. For a survey on
stochastic block models, including extensions to temporal settings, we refer the
reader to a survey by Lee and Wilkinson [19].

Stochastic block models group similar nodes together; here similarity means
that nodes in the same group have the similar probabilities connecting to nodes
from other group. A similar notion but a different optimization criterion was
proposed by Arockiasamy et al. [4]. Moreover, Henderson et al. [15] proposed a
method where nodes with similar neighborhoods are discovered.

In this paper we modelled the recurrency by forcing the segments to share
their parameters. An alternative approach to discover recurrency is to look
explicitly for recurrent patterns [8,12,13,20,23,28]. We should point out that
these works are not design to work with graphs; instead they work with event
sequences. We leave adapting this methodology for temporal networks as an
interesting future line of work.

Using segmentation to find evolving structures in networks have been pro-
posed in the past: Kostakis et al. [18] introduced a method where a temporal
network is segmented into k segments with h < k summaries. A summary is
a graph, and the cost of an individual segment is the difference between the
summary and the snapshots in the segment. Moreover, Rozenshtein et al. [25]
proposed discovering dense subgraphs in individual segments.

5 Experimental Evaluation

The goal in this section is to experimentally evaluate our algorithm. Towards
that end, we first test how well the algorithm discovers the ground truth using
synthetic datasets. Next we study the performance of the algorithm on real-
world temporal datasets in terms of running time and likelihood. We compare
our results to the following baselines: the running times are compared to a naive
implementation where we do not utilize SMAWK algorithm, and the likelihoods
are compared to the likelihoods of the (R,K) model.

We implemented the algorithm in Python3 and performed the experiments
using a 2.4 GHz Intel Core i5 processor and 16 GB RAM.

Synthetic Datasets: To test our algorithm, we generated 5 temporal networks
with known groups and known parameters Λ which we use as a ground truth.
To generate data, we first chose a set of nodes V , number of groups R, number

3 The source code is available at https://version.helsinki.fi/dacs/.

https://version.helsinki.fi/dacs/

Recurrent Segmentation Meets Block Models in Temporal Networks 455

Table 1. Dataset characteristics and results from the experiments. Here, n is the
number of nodes, m is the number of edges, R is the number of groups, K is the number
of segments, H is the number of levels, LL1 is the normalized log-likelihood for the
ground truth, G is the Rand index, LL2 is the discovered normalized log-likelihood, I
is the number of iterations, and CT is the computational time in seconds.

Dataset n m L K H LL1 R LL2 I CT

Synthetic-1 50 76 332 2 2 2 0.95 1 0.94 2 2.81 s

Synthetic-2 30 95 889 3 3 3 0.95 1 0.94 3 5.36 s

Synthetic-3 20 65 056 3 3 3 0.97 1 0.97 3 3.91 s

Synthetic-4 60 537 501 3 4 3 0.94 1 0.93 3 23.13 s

Synthetic-5 10 33 475 2 10 5 0.91 1 0.91 4 10.27 s

Email-Eu-1 309 61 046 3 10 7 0.89 12 188 s

Email-Eu-2 162 46 772 4 8 7 0.87 9 177 s

MathOverflow 21 688 107 581 2 3 2 0.91 20 263 s

CollegeMsg 1 899 59 835 3 8 5 0.87 19 662 s

MOOC 7 047 411 749 2 3 2 0.81 6 208 s

Bitcoin 3 783 24 186 3 10 10 0.91 7 115 s

Santander 735 33 116 3 7 5 0.94 20 60 s

of segments K, and number of levels H. Next we assumed that each node has
an equal probability of being chosen for any group. Based on this assumption,
the group memberships were selected at random.

We then randomly generated Λ from a uniform distribution. More specifically,
we generated H distinct values for each pair of groups and map them to each
segment. Note that, we need to ensure that each distinct level is assigned to at
least one segment. To guarantee this, we first deterministically assigned the set
of H levels to first H segments and the remaining (K −H) segments are mapped
by randomly selecting (K − H) elements from H level set.

Given the group memberships and their related Λ, we then generated a
sequence of timestamps with a Poisson process for each pair of nodes. The sizes
of all synthetic datasets are given in Table 1.

Real-World Datasets: We used 7 publicly available temporal datasets. Email-
Eu-1 and Email-Eu-2 are collaboration networks between researchers in a Euro-
pean research institution.4 Math Overflow contains user interactions in Math
Overflow web site while answering to the questions.4 CollegeMsg is an online
message network at the University of California, Irvine.4 MOOC contains actions
by users of a popular MOOC platform.4 Bitcoin contains member rating interac-
tions in a bitcoin trading platform.4 Santander contains station-to-station links

4 http://snap.stanford.edu.

http://snap.stanford.edu

456 C. W. Arachchi and N. Tatti

0 200 400 600 800
0.3

0.4

0.5

0.6

time

λ
1
1
(t
)

0 200 400 600 800
0

0.2

0.4

0.6

time

λ
1
2
(t
)

Fig. 1. Discovered parameters λ11(t), λ12(t) for the Synthetic-4 dataset. Parameter
λ12(t) implies the Poisson process parameter between group 1 and group 2 as a function
of time.

that occurred on Sep 9, 2015 from the Santander bikes hires in London.5 The
sizes of these networks are given in Table 1.

Results for Synthetic Datasets: To evaluate the accuracy of our algorithm,
we compare the set of discovered groups with the ground truth groups. Here,
our algorithm found the ground truth: in Table 1 we can see that Rand index
Rand [24] (column G) is equal to 1,

Next we compare the log-likelihood values from true models against the log-
likelihoods of discovered models. To evaluate the log-likelihoods, we normal-
ize the log-likelihood, that is we computed � (P, T , g, Λ)/� (P ′, T ′, g′, Λ′), where
P ′, T ′, g′, Λ′ is a model with a single group and a single segment. Since all our log-
likelihood values were negative, the normalized log-likelihood values were between
0 and 1, and smaller values are better.

As demonstrated in column LL1 and column LL2 of Table 1, we obtained
similar normalized log-likelihood values when compared to the normalized log-
likelihood of the ground truth. The obtained normalized log-likelihood values
were all slightly better than the log-likelihoods of the generated models, that is,
our solution is as good as the ground truth.

An example of the discovered parameters, λ11 and λ12, for Synthetic-4
dataset are shown in Fig. 1. The discovered parameters matched closely to
the generated parameters with the biggest absolute difference being 0.002 for
Synthetic-4. The figures for other values and other synthetic datasets are simi-
lar.

Computational Time: Next we consider the computational time of our algo-
rithm. We varied the parameters R, K, and H for each dataset. The model
parameters and computational times are given in Table 1. From the last column
CT , we see that the running times are reasonable despite using inefficient Python
libraries: for example we were able to compute the model for MOOC dataset,
with over 400 000 edges, under four minutes. This implies that the algorithm
scales well for large networks. This is further supported by a low number of
iterations, column I in Table 1.

Next we study the computational time as a function of m, number of edges.

5 https://cycling.data.tfl.gov.uk.

https://cycling.data.tfl.gov.uk

Recurrent Segmentation Meets Block Models in Temporal Networks 457

1 2 3 4
·104

1
2
3
4
5

|E|

ti
m
e
(s
)

(a)
1 2 3 4

·104
10
20
30
40

|E|

ti
m
e
(s
)

(b)
1 2 3 4

·104
0

100
200
300

|E|

ti
m
e
(s
)

(c)
1 2 3 4

·104

2

4

|E|

ti
m
e
(h
)

(d)

Fig. 2. Computational time as a function of number of temporal edges (|E|) for
Synthetic-large (a, c) and Santander-large (b, d). This experiment was done with
R = 3, K = 5, and H = 3 using SMAWK algorithm (a–b) and naive dynamic pro-
gramming (c–d). The times are in seconds in (a–c) and in hours in (d).

0 5 10 15 20
.94
.95
.96
.97
.98

H

N
or
m
.
llh

.

(a)
0 5 10 15 20

.91

.92

.93

.94

H(b)
0 5 10 15 20

.94

.95

.96

.97

.98

H(c)
0 5 10 15 20

.91

.92

.93

.94

.95

H(d)

Fig. 3. Normalized log-likelihood as a function of number of levels (H) for the San-
tander dataset (a), bitcoin dataset (b), Synthetic-5 dataset (c), and Email-Eu-1 dataset
(d). This experiment is done for R = 2, K = 20, and H = 1, . . . , 20.

We first prepared 4 datasets with different number of edges from a real-world
dataset; Santander-large. To vary the number of edges, we uniformly sampled
edges without replacement. We sampled like a .4, .6, .8, and 1 fraction of edges.

Next we created 4 different Synthetic-large dataset with 30 nodes, 3 segments
with unique λ values but with different number of edges. To do that, we gradually
increase the number of Poisson samples we generated for each segment.

From the results in Fig. 2 we see that generally computational time increases
as |E| increases. For instance, a set of 17 072 edges accounts for 18.46s whereas a
set of 34 143 edges accounts for 36.36s w.r.t Santander-large. Thus a linear trend
w.r.t |E| is evident via this experiment.

To emphasize the importance of SMAWK, we replaced it with a stock solver
of the dynamic program, and repeat the experiment. We observe in Fig. 2 that
computational time has increased drastically when stock dynamic program algo-
rithm is used. For example, a set of 34 143 edges required 3.7h for Santander-large
dataset but only 36.36s when SMAWK is used.

Likelihood vs Number of Levels: Our next experiment is to study how
normalized log-likelihood behaves upon the choices of H. We conducted this
experiment for K = 20 and vary the number of levels (H) from H = 1 to H = 20.
The results for the Santander, Bitcoin, Synthetic-5, and Email-Eu-1 dataset are
shown in Fig. 3. From the results we see that generally normalized log-likelihood
decreases as H increases. That is due to the fact that higher the H levels, there
exists a higher degree of freedom in terms of optimizing the likelihood. Note that

458 C. W. Arachchi and N. Tatti

if H = K, then our model corresponds to the model studied by Corneli et al. [6].
Interestingly enough, the log-likelihood values plateau for values of H � K
suggesting that existence of recurring segments in the displayed datasets.

6 Concluding Remarks

In this paper we introduced a problem of finding recurrent sources in temporal
network: we introduced stochastic block model with recurrent segments.

We showed that finding optimal blocks and recurrent segmentation was an
NP-hard problem. Therefore, to find good solutions we introduced an itera-
tive algorithm by considering 3 subproblems, where we optimize blocks, model
parameters, and segmentation in turn while keeping the remaining structures
fixed. We demonstrate how each subproblem can be optimized in O (m) time.
Here, the key step is to use SMAWK algorithm for solving the segmentation.
This leads to a computational complexity of O

(
KHm + Rn + R2H

)
for a sin-

gle iteration. We show experimentally that the number of iterations is low, and
that the algorithm can find the ground truth using synthetic datasets.

The paper introduces several interesting directions: Gionis and Mannila [10]
considered several approximation algorithms but they cannot be applied directly
for our problem because our optimization function is different. Adopting these
algorithms in order to obtain an approximation guarantee is an interesting chal-
lenge. We used a simple heuristic to optimize the groups. We chose this approach
due to its computational complexity. Experimenting with more sophisticated but
slower methods for discovering block models, such as methods discussed in [1],
provides a fruitful line of future work.

Acknowledgements. This research is supported by the Academy of Finland projects
MALSOME (343045).

References

1. Abbe, E.: Community detection and stochastic block models: recent developments.
JMLR 18(1), 6446–6531 (2017)

2. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilber, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2(1–4), 195–208 (1987)

3. Anderson, C.J., Wasserman, S., Faust, K.: Building stochastic blockmodels. Soc.
Netw. 14(1), 137–161 (1992)

4. Arockiasamy, A., Gionis, A., Tatti, N.: A combinatorial approach to role discovery.
In: ICDM, pp. 787–792 (2016)

5. Bellman, R.: On the approximation of curves by line segments using dynamic
programming. Commun. ACM 4(6), 284–284 (1961)

6. Corneli, M., Latouche, P., Rossi, F.: Multiple change points detection and cluster-
ing in dynamic networks. Stat. Comput. 28(5), 989–1007 (2018)

7. Fleischer, R., Golin, M.J., Zhang, Y.: Online maintenance of k-medians and k-
covers on a line. Algorithmica 45(4), 549–567 (2006)

Recurrent Segmentation Meets Block Models in Temporal Networks 459

8. Galbrun, E., Cellier, P., Tatti, N., Termier, A., Crémilleux, B.: Mining periodic
patterns with a MDL criterion. In: ECML PKDD, pp. 535–551 (2019)

9. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. IPL 33(6), 309–311 (1990)

10. Gionis, A., Mannila, H.: Finding recurrent sources in sequences. In: RECOMB, pp.
123–130 (2003)

11. Guha, S., Koudas, N., Shim, K.: Approximation and streaming algorithms for
histogram construction problems. TODS 31(1), 396–438 (2006)

12. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: ICDE, pp. 106–115 (1999)

13. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related
databases. In: KDD (1998)

14. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Oper. Res. Lett. 10(7), 395–402 (1991)

15. Henderson, K., et al.: RolX: structural role extraction & mining in large graphs.
In: KDD, pp. 1231–1239 (2012)

16. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps.
Soc. Netw. 5(2), 109–137 (1983)

17. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
18. Kostakis, O., Tatti, N., Gionis, A.: Discovering recurring activity in temporal net-

works. DMKD 31(6), 1840–1871 (2017)
19. Lee, C., Wilkinson, D.J.: A review of stochastic block models and extensions for

graph clustering. Appl. Netw. Sci. 4(122), 1–50 (2019)
20. Ma, S., Hellerstein, J.: Mining partially periodic event patterns with unknown

periods. In: ICDE, pp. 205–214 (2001)
21. Matias, C., Miele, V.: Statistical clustering of temporal networks through a

dynamic stochastic block model. J. Roy. Stat. Soc. Seri. B (Stat. Methodol.) 79(4),
1119–1141 (2017)

22. Matias, C., Rebafka, T., Villers, F.: Estimation and clustering in a semiparamet-
ric poisson process stochastic block model for longitudinal networks. Biometrika
105(3), 665–680 (2018)

23. Ozden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE,
pp. 412–421 (1998)

24. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)

25. Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., Tatti, N.: Finding events in
temporal networks: segmentation meets densest subgraph discovery. KAIS 62(4),
1611–1639 (2020)

26. Tatti, N.: Strongly polynomial efficient approximation scheme for segmentation.
Inf. Process. Lett. 142, 1–8 (2019)

27. Xu, K.S., Hero, A.O.: Dynamic stochastic blockmodels for time-evolving social
networks. JSTSP 8(4), 552–562 (2014)

28. Yang, J., Wang, W., Yu, P.: Mining asynchronous periodic patterns in time series
data. TKDE 15(3), 613–628 (2003)

29. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their
evolutions in dynamic social networks–a Bayesian approach. Mach. Learn. 82,
157–189 (2011)

Community Detection in Edge-Labeled
Graphs

Iiro Kumpulainen(B) and Nikolaj Tatti

HIIT, University of Helsinki, Helsinki, Finland
{iiro.kumpulainen,nikolaj.tatti}@helsinki.fi

Abstract. Finding dense communities in networks is a widely-used tool
for analysis in graph mining. A popular choice for finding such commu-
nities is to find subgraphs with a high average degree. While useful,
interpreting such subgraphs may be difficult. On the other hand, many
real-world networks have additional information, and we are specifically
interested in networks that have labels on edges. In this paper, we study
finding dense subgraphs that can be explained with the labels on edges.
More specifically, we are looking for a set of labels so that the induced
subgraph has a high average degree. There are many ways to induce a
subgraph from a set of labels, and we study two cases: First, we study
conjunctive-induced dense subgraphs, where the subgraph edges need to
have all labels. Secondly, we study disjunctive-induced dense subgraphs,
where the subgraph edges need to have at least one label. We show
that both problems are NP-hard. Because of the hardness, we resort to
greedy heuristics. We show that we can implement the greedy search effi-
ciently: the respective running times for finding conjunctive-induced and
disjunctive-induced dense subgraphs are in O (p log k) and O (

p log2 k
)
,

where p is the number of edge-label pairs and k is the number of labels.
Our experimental evaluation demonstrates that we can find the ground
truth in synthetic graphs and that we can find interpretable subgraphs
from real-world networks.

1 Introduction

Finding dense communities in networks is a common tool for analyzing networks
with potential applications in diverse domains, such as bioinformatics [9,13],
finance [8], social media [2], or web graph analysis [9].

While useful on their own, analyzing dense structures without any addi-
tional explanation may be difficult and may limit its impact. Consequently, sev-
eral works have been proposed for searching dense subgraphs that also can be
explained using available additional information [10,17]. Here the authors were
looking for communities that are both dense and that can be explained using
labels on nodes, see Sect. 5 for a more detailed discussion.

In this paper, we consider finding dense subgraphs in networks with labeled
edges. More formally, we are looking for a label set that induces a dense sub-
graph. As a measure of density, a subgraph (W,F) will use |F |/|W |, the ratio of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 460–475, 2022.
https://doi.org/10.1007/978-3-031-18840-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_33&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_33

Community Detection in Edge-Labeled Graphs 461

edges over the nodes, a popular choice for measuring the density of a subgraph.
Note that optimizing this measure is equivalent to optimizing the average degree
of nodes in W . Finding the densest subgraph—with no label constraints—can
be done in polynomial time [11] and can be 2-approximated in linear time [7].
Unfortunately, additional requirements on the labels will make solving the opti-
mization problem exactly computationally intractable.

We consider two cases: conjunctive-induced and disjunctive-induced dense
subgraphs. In the former, the induced subgraph consists of all the edges that
have the given label set. In the latter, the induced subgraph consists of all the
edges that have at least one label common with the label set.

We show that both problems are NP-hard, which forces us to resort to
heuristics. We propose a greedy algorithm for both problems: we start with
an empty label and keep adding the best possible label until no additions are
possible. We then return the best observed induced subgraph.

The computational bottleneck of the greedy method is selecting a new label.
If done naively, evaluating a single label candidate requires enumerating over all
the edges. Since this needs to be done for every candidate during every addition,
the running time is O (p|L|), where |L| is the number of labels and p is the
number of edge-label pairs. By keeping certain counters we can speed up the
running time. We show that conjunctive-induced graphs can be discovered in
O (p log |L|) time using a balanced search tree, and that disjunctive-induced
graphs can be discovered in O (

p log2 |L|) time with the aid of an algorithm
originally used to maintain convex hulls.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
the notation and formalize the optimization problem. In Sects. 3–4 we present
our algorithms. Section 5 is devoted to the related work. Finally, we present the
experimental evaluation in Sect. 6 and conclude with a discussion in Sect. 7.

2 Preliminary Notation and Problem Definition

In this section, we first describe the common notation and then introduce the
formal definition of our problem.

Assume that we are given an edge-labeled graph, that is, a tuple G =
(V,E, lab), where V is the set of vertices, E ⊆ {(x, y) | (x, y) ∈ V 2, x �= y}
is the set of undirected edges, and lab : E → 2L is a function that maps each
edge e ∈ E to the set of labels lab(e). Here L is the set of all possible labels.

Given a label � ∈ L, let us write E(�) to be the edges having the label �. In
addition, let us write V (�) to be the nodes adjacent to E(�).

Our goal is to search for dense regions of graphs that can be explained using
the labels. In other words, we are looking for a set of labels that induce a dense
graph. More formally, we define an inducing function to be a function f that
maps two sets of labels to a binary number. An example of such a function could
be f(A;B) = [B ⊆ A] which returns 1 if and only if B is a subset of A.

462 I. Kumpulainen and N. Tatti

Given a set of labels B ⊆ L, an inducing function f , and a graph G, we
define the label-induced subgraph H = G(f,B) as (V (B), E(B), lab), where

E(B) = {e ∈ E | f(lab(e);B) = 1}
is the subset of edges that satisfy f , and V (B) is the set of vertices that are
adjacent to E(B).

Given a graph G with vertices V and edges E, we measure the density of the
graph d(G) as the number of edges divided by the number of vertices: d(G) = |E|

|V | .
We are now ready to state our generic problem.

Problem 1. (LD). Let G = (V,E, lab) be an edge-labeled graph over a set of
labels L with multiple labels being possible for each edge. Assume an inducing
function f . Find a set of labels L∗ such that the density d(H) of the label-induced
subgraph H = G(f, L∗) is maximized.

We consider two special cases of LD. Firstly, let us define fAND (A;B) =
[B ⊆ A], that is, the induced edges need to contain every label in B. We will
denote the problem LD paired with fAND () as LDand. Secondly, we define
fOR (A;B) = [B ∩ A �= ∅], that is, the induced edges need to have one common
label with B. Then, we denote the corresponding problem as LDor.

3 Finding Dense Conjunctive-Induced Graphs

In this section, we focus on LDand, that is, finding conjunctive-induced graphs
that are dense. We will first prove that LDand is NP-hard.

Theorem 1. LDand is NP-hard.

Proof. We will prove the claim by reducing 3ExactCover to the densest sub-
graph problem. In 3ExactCover we are given a set X and a family C of subsets
of size 3 over X and asked if there is a disjoint subset of C whose union is X.

Assume that we are given a set X and a family C = {C1, . . . , CN} of N
subsets. We set labels to be L = {1, . . . , N}. The vertices V contain N vertices
y1, . . . , yN , and an additional vertex z. We connect each yi to z, labeled with
L \ {i}. For each overlapping Ci and Cj , we introduce 4N additional vertices
and 2N edges, each edge connecting two unique nodes, and labeled as L \ {i, j}.

We claim that for |X| ≥ 5, 3ExactCover has a solution if and only if there
is an induced graph H with d(H) ≥ |X|/(|X| + 3).

Assume that we are given a set of labels A ⊂ L. Let B = L \ A. Let k be the
number of set pairs in B that are overlapping, that is,

k = |{{i, j} | i, j ∈ B,Ci ∩ Cj �= ∅}|.
Then the density of the corresponding graph H = G(fAND (), A) is equal to

d(H) =
|B| + 2Nk

|B| + 1 + 4Nk
.

Community Detection in Edge-Labeled Graphs 463

Assume that k > 0. Since |B| ≤ N , we can bound the density with

d(H) =
|B| + 2Nk

|B| + 1 + 4Nk
≤ N + 2Nk

N + 1 + 4Nk
<

N + 2Nk

N + 4Nk
≤ 3

5
.

Assume that k = 0. Then the density is equal to |B|/(|B| + 1). Let U =
{Ci | i ∈ B}. Since U is disjoint, 3|B| ≤ |X| and the equality holds if and only
if U covers X.

Assume that there is a subgraph H = G(fAND (), A) with d(H) ≥ |X|/(|X|+
3). Since we assume that |X| ≥ 5, we have d(H) ≥ 5/8 > 3/5, and the preceding
discussion shows that the sets corresponding to A form an exact cover of X.

On the other hand, if there is an exact cover in C, then d(G(fAND (), A)) =
|X|/(|X| + 3), where A is the set of labels corresponding to the cover. This
shows that maximizing the density of the label-induced subgraph is an NP-
hard problem. ��

The NP-hardness forces us to resort to heuristics. Here, we use the algorithm
for 2-approximating dense subgraphs [7] as a starting point. The algorithm iter-
atively removes a node with the smallest degree, and returns the best solution
among the observed subgraphs. We propose a similar greedy algorithm, where
we greedily add the best possible label, and repeat until the induced subgraph
is empty. We then select the best observed labels as the output.

To avoid enumerating over the edges every time we look for a new label, we
maintain several counters. Let A be the current set of labels. For each label, we
maintain the number of nodes nk and edges mk of the candidate graph, that
is, nk = |V (A ∪ {k})| and mk = |E(A ∪ {k})|. We store the densities mk/nk

in a balanced search tree (for example, a red-black tree), which allows us to
obtain the largest element quickly. Once we update set A, we also update the
counters and update the search tree. Maintaining the node counts nk requires us
to maintain the counters rv,k, number of edges labeled as k adjacent to v: once
the counter reduces to 0, we reduce nk by 1. The pseudo-code of the algorithm
is given in Algorithm 1.

We conclude with an analysis of the computational complexity of
GreedyAnd.

Theorem 2. GreedyAnd runs in O (p log |L| + |V | + |E|) time, where p is the
number of edge-label pairs p = |{(e, k) | e ∈ E, k ∈ lab(e)}|.
Proof. Initializing counters in GreedyAnd can be done in O (|V | + |E| + |L|)
time while initializing the tree can be done in O (|L| log |L|) time.

Let us consider the inner for-loop. Since an edge is deleted once it is processed,
the inner for-loop is executed at most p times during the search. Since this is the
only way the counters get updated, the tree T is updated p times, each update
requiring O (log |L|) time.

The outer loop is executed at most |L| times. During each round, selecting
and removing the label requires O (log |L|) time.

464 I. Kumpulainen and N. Tatti

Algorithm 1: GreedyAnd, greedy search for the conjunctive-induced
dense subgraphs
1 n� ← |V (�)|, for each label � ∈ L;
2 m� ← |E(�)|, for each label � ∈ L;
3 rv,� ← |{e ∈ E(�) | e is adjacent to v}|, for each vertex v and label �;
4 T ← labels sorted by the density values mk

nk
(e.g., in a red-black tree);

5 A0 ← ∅ and i ← 0;
6 while there are labels do
7 pick and remove label k that has the maximum density in T ;
8 Ai+1 ← Ai ∪ {k};
9 for each edge e without label k do

10 for each label � of edge e = (u, v) do
11 m� ← m� − 1;
12 rv,� ← rv,� − 1; ru,� ← ru,� − 1;
13 if rv,� = 0 then n� ← n� − 1 if ru,� = 0 then n� ← n� − 1

14 remove edge e;

15 update T for all labels � with changed values of m� or n�;
16 i ← i + 1;

17 return the set of labels Ai that yields the highest density;

In summary, the algorithm requires

O (|V | + |E| + |L| + |L| log |L| + p log |L|) ⊆ O (|V | + |E| + p log |L|)

time, completing the proof. ��

4 Finding Dense Disjunctive-Induced Graphs

In this section, we focus on LDor, that is, finding disjunctive-induced graphs
that are dense. We will first prove that LDor is NP-hard.

Theorem 3. LDor is NP-hard.

Proof. We will prove the claim by reducing 3ExactCover to the densest sub-
graph problem. In 3ExactCover we are given a set X and a family C of subsets
of size 3 over X and asked if there is a disjoint subset of C whose union is X.

Assume that we are given a set X and a family C = {C1, . . . , CN} of N
subsets. The vertices V consists of the set X, N additional vertices y1, . . . , yN ,
and 2 more vertices Z = z1, z2. We have N labels, L = {1, . . . , N}.

Next, we define the edges E. Connect each x ∈ X to Z, and label the edges
with labels {i | x ∈ Ci}. Then for each Ci, we connect z1 to yi, labeled with i.

We claim that 3ExactCover has a solution if and only if the optimal label-
induced graph has the density of 7|X|/(6 + 4|X|).

Community Detection in Edge-Labeled Graphs 465

Given a non-empty set of labels A ⊆ L, the density of the corresponding
graph H is equal to g(k, |A|), where g(s, t) = 2s+t

2+s+t , and k is the size of the
union of sets in C corresponding to A.

Note that since k ≥ 3, we have 2k > 2 + k. Thus, ∂ log g/∂t = 1/(2k + t) −
1/(2 + k + t) < 0, and consequently g(k, t) > g(k, t′) when t < t′.

Since each set in C is of size 3, we have |A| ≥ k/3. Thus,

g(k, |A|) ≤ g(k, k/3) =
7k

6 + 4k
≤ 7|X|

6 + 4|X| ,

where the equalities hold if and only if k = |X| and 3|A| = k, that is, A corre-
sponds to an exact cover of X. ��

Similar to LDand, we resort to a greedy search to find good subgraphs: We
start with an empty label set, and iteratively add the best possible label. Once
done, we return the best observed label set.

However, we maintain a different set of counters as compared to
GreedyAnd. The reason for having different counters is to avoid a significantly
higher number of updates: the inner loop would need to go over the edge-label
pairs that are not present in the graph. More formally, we maintain values n
and m representing the number of nodes and edges in the subgraph induced by
the current set of labels, say A. We also maintain nk and mk, the number of
additional nodes and edges if k is added to A. At each iteration, we select the
label optimizing m+mk

n+nk
. We will discuss the selection process later. Once the

label is selected, we update the counters mk and nk. To maintain nk properly,
we keep track of what nodes are already in V (A), using an indicator rv with
rv = 1 if v ∈ V (A). The pseudo-code for the algorithm is given in Algorithm 2.

During each iteration, we need to select the label maximizing m+mk

n+nk
. We

cannot use priority queues any longer since n and m change every iteration.
However, we can speed up the selection using a convex hull, a classic concept
from computational geometry, see for example, [14]. First, let us formally define
a lower-right convex hull.

Definition 1. Given a set of points X = {(xi, yi)} in a plane, we define a lower-
right convex hull H = hull (H) to be a subset of X such that q = (xq, yq) ∈ X
is not in X if and only if there is a point r = (xr, yr) ∈ H such that xq ≤ xr

and yq ≥ yr, or if there are two points p, r ∈ H such that q is above or at the
segment joining q and r.

If we were to plot X on a plane, then hull (X) is the lower-right portion of
the complete convex hull, that is, a set of points in X that form a convex polygon
containing X. For notational simplicity, we will refer to hull (X) as the convex
hull. Note that if we order the points in hull (X) by their x-coordinates, then the
y-coordinates and the slopes of the intermediate segments are also increasing.

We will first argue that we only need to search the convex hull when looking
for the optimal label.

466 I. Kumpulainen and N. Tatti

Algorithm 2:GreedyOr, greedy search for the disjunctive-induced dense
subgraphs
1 n ← 0; m ← 0;
2 n� ← |V (�)|, for each label � ∈ L;
3 m� ← |E(�)|, for each label � ∈ L;
4 Sv ← {� ∈ L | there is an edge with label � adjacent to v};
5 rv ← 0, for each vertex v;
6 A0 ← ∅ and i ← 0;
7 while there are labels do

8 pick and remove label k that yields the maximum density m+mk
n+nk

;

9 Ai+1 ← Ai ∪ {k};
10 for each edge e = (u, v) with label k do
11 for each label � of edge e = (u, v) do m� ← m� − 1 m ← m + 1;
12 if rv = 0 then
13 for each label � in Sv do n� ← n� − 1 n ← n + 1;

14 if ru = 0 then
15 for each label � in Su do n� ← n� − 1 n ← n + 1;

16 rv ← 1; ru ← 1;
17 remove edge e;

18 i ← i + 1;

19 return the set of labels Ai that yields the highest density;

Theorem 4. Let X be a set of positive points (mi, ni), and let H = hull (X) be
the convex hull. Select m,n ≥ 0. Then maxp∈X

m+mi

n+ni
= maxp∈H

m+mi

n+ni
.

Proof. Let k = (mk, nk) be the optimal point in X. Assume that k /∈ H. Assume
that there is a point q = (mq, nq) in H such that mq ≥ mk and nq ≤ nk. Then
m+mk

n+nk
≤ m+mq

n+nq
, so the point q is also optimal.

Assume there is no such point q. Then, the x-coordinate of point k falls
between two consecutive points p and q in H, that is, mp < mk < mq. Then
k must be above the segment between p and q as otherwise, k would also be a
part H. Therefore, the slope for the segment between p and k must be greater
than the slope of the segment between p and q, and the slope for the segment
between k and q must be smaller,

nq − nk

mq − mk
≤ nq − np

mq − mp
≤ nk − np

mk − mp
. (1)

Furthermore, since k /∈ H, we must have nk > np. By assumption, we also
have nk < nq. In summary, we have np < nk < nq and mp < mk < mq, which
means that the slopes in Eq. 1 are all positive. By taking the reciprocals this
then gives,

mq − mk

nq − nk
≥ mq − mp

nq − np
≥ mk − mp

nk − np
. (2)

Community Detection in Edge-Labeled Graphs 467

Denote then the objective value at point k by c = m+mk

n+nk
. Let x1 = c(n +

np) − m. Then, the optimality of k implies m+x1
n+np

= c ≥ m+mp

n+np
, which means

x1 ≥ mp. The definition of c leads to m = c(n + nk) − mk, which in turns leads
to x1 = c(np − nk) + mk. Solving for c we get c = mk−x1

nk−np
. Substituting x1 ≥ mp

yields c ≤ mk−mp

nk−np
, using Eq. 2 then yields c ≤ mq−mk

nq−nk
.

Next, let x2 = c(nq − nk) + mk which means that c = x2−mk

nq−nk
. Now since

c ≤ mq−mk

nq−nk
we must have x2 ≤ mq. Since mk = c(n + nk) − m, we also have

x2 = c(nq + n) − m, yielding c = m+x2
n+nq

≤ m+mq

n+nq
, thus q is also optimal. ��

Theorem 4 states that we need to only consider the convex hull H of the
set {(mi, ni)} when searching for the optimal new label. Note that H does not
depend on n or m. Moreover, we can use the algorithm by Overmars and Van
Leeuwen [16] to maintain H as nk and mk are updated in O (

log2 |L|) time
per update. We will see that the number of needed updates is bounded by the
number of edge-label pairs.

However, the convex hull can be as large as the original set, so our goal is
to avoid enumerating over the whole set. To this end, we design a binary search
strategy over the hull. We will first introduce two quantities used in our search.

Definition 2. Given two points p, q ∈ hull (X), we define the inverse slope as
s(p, q) = mq−mp

nq−np
and the bias term as b(p, q) = mqnp−mpnq

nq−np
.

First, let us prove that both s and b are monotonically decreasing.

Lemma 1. Let p, q, and r be three consecutive points in hull (X). Then we have
n × s(q, r) + b(q, r) ≤ n × s(p, q) + b(p, q), for any n ≥ 0.

Proof. The slope for the segment between p and q is less than or equal to the
slope for the segment between q and r. Inversing the slopes leads to

s(q, r) =
mr − mq

nr − nq
≤ mq − mp

nq − np
= s(p, q).

By cross-multiplying, adding mqnq − mqnp − mqnr + mqnpnr

nq
to both sides,

multiplying by nq

(nr−nq)(nq−np)
, and simplifying, we get

b(q, r) =
mrnq − mqnr

nr − nq
≤ mqnp − mpnq

nq − np
= b(p, q).

Combining the two equations proves the claim. ��
Next, we show the key necessary condition for the optimal point.

Lemma 2. Let p, q, and r be 3 consecutive points in hull (X). Select n,m ≥ 0.
If q optimizes mq+m

nq+n , then n × s(q, r) + b(q, r) ≤ m ≤ n × s(p, q) + b(p, q).

468 I. Kumpulainen and N. Tatti

Proof. Since q is optimal, we have m+mp

n+np
≤ m+mq

n+nq
. Solving for m gives us m ≤

n
mq−mp

nq−np
+mqnp−mpnq

nq−np
= n×s(p, q)+b(p, q). Similarly, due to optimality, m+mr

n+nr
≤

m+mq

n+nq
, and solving for m leads to m ≥ n × s(p, q) + b(p, q), proving the claim. ��

The two lemmas allow us to use binary search as follows. Given two consec-
utive points p and q we test whether m ≤ n × s(p, q) + b(p, q). If true, then the
optimal label is q or to the right of q, if false, the optimal point is to the left of
q. To perform the binary search, we can use directly the structure maintained
by the algorithm by Overmars and Van Leeuwen [16] since it stores the current
convex hull in a balanced search tree. Moreover, the algorithm allows evaluating
any function based on the neighboring points. Specifically, we can maintain s
and b. In summary, we can find the optimal label in O (log |L|) time.

Our next result formalizes the above discussion.

Theorem 5. GreedyOr runs in O (
p log2 |L| + |V | + |E|) time, where p is the

number of edge-label pairs p = |{(e, k) | e ∈ E, k ∈ lab(e)}|.
Proof. The proof is similar to the proof of Theorem 2, except we have replaced
a search tree with the convex hull structure by Overmars and Van Leeuwen [16].
The inner for-loops are evaluated at most O (p) times since an edge or a node is
visited only once, and

∑
v |Sv| ∈ O (p). Maintaining the hull requires O (

log2 |L|)
time, and there are at most O (p) such updates. Searching for an optimal label
requires O (log |L|) time, and there are at most |L| such searches. ��

We should point out that a faster algorithm by Brodal and Jacob [5] main-
tains the convex hull in O (log |L|) time. However, this algorithm does not provide
a search tree structure that we can use to search for the optimal addition.

5 Related Work

A closely related work to our method is an approach proposed by Galbrun
et al. [10]. Here the authors search for multiple dense subgraphs that can be
explained by conjunction on (or the majority of) the node labels. The authors
propose a greedy algorithm for finding such communities. Interestingly enough,
the authors do not show that the underlying problem is NP-hard—although we
conjecture that this is indeed the case—instead, they show that the subproblem
arising from the greedy approach is an NP-hard problem.

Another closely related work is an approach proposed by Pool et al. [17],
where the authors search for dense subgraphs that can be explained by queries
on the nodes. The quality of the subgraphs is a ratio S/C, where S measures
the goodness of a subgraph using the edges within the subgraph as well as the
cross-edges, and C measures the complexity of the query.

The major difference between our work and the aforementioned work is that
our method uses labels on the edges. While conceptually a small difference, this

Community Detection in Edge-Labeled Graphs 469

distinction leads to different algorithms and different analyses of those algo-
rithms. Moreover, we cannot apply directly the previously discussed methods to
networks that only have labels on edges.

An appealing property of finding subgraphs that maximize |E(W)|/|W |, or
equivalently an average degree, is that we can find the optimal solution in poly-
nomial time [11]. Furthermore, we can 2-approximate the graph with a simple
linear algorithm [7]. The algorithm iteratively removes the node with the small-
est degree and then selects the best available graph. This algorithm is essentially
the same as the algorithm used to discover k-cores, subgraphs that have the min-
imum degree of at least k. The connection between the k-cores and dense sub-
graphs is further explored by Tatti [20], where the dense subgraphs are extended
to create an increasingly dense structure. A variant of a quality measure was
proposed by Tsourakakis [21], where the quality of the subgraph is the ratio
of triangles over the vertices. In another variant by Bonchi et al. [4], the edges
were replaced with paths of at most length k. Finding such structures in labeled
graphs poses an interesting line of future work.

While finding dense subgraphs is polynomial, finding cliques is an NP-hard
problem with a very strong inapproximability bound [12]. Finding cliques may
be impractical as they do not allow any absent edges. To relax the require-
ment, Abello et al. [1] and Uno [22] proposed searching for quasi-cliques, that
is subgraphs with a high proportion of edges, |E(W)|/(|W |

2

)
. Another relaxation

of cliques is k-plex where k absent edges are allowed for a vertex [18]. Find-
ing k-plexes remain an NP-hard problem [3]. Alternatively, we can relax the
definition by considering n-cliques, where vertices must be connected with an n-
path [6], or n-clans where we also require that the diameter of the graph is n [15].
Since 1-clique (and 1-clan) is a clique, these problems remain computationally
intractable.

6 Experimental Evaluation

In this section, we describe our experimental evaluation of the GreedyAnd
and GreedyOr algorithms. First, we observe how the algorithms behave on
synthetic data with increasing randomness. Then we apply the algorithms to
real-world datasets and analyze the results.

We implement our algorithms in Python and the source code is available
online1. Since the number of labels in our experiments was not exceedingly large,
we did not use the speed up using convex hulls when implementing disjunctive-
induced graphs. Instead, we search for the optimal label from scratch leading to
a running time of O

(
|L|2 + p

)
.

Experiments with Synthetic Data: We evaluate the greedy algorithms on
synthetic graphs of 200 vertices and 50 labels. We select 5 of the labels as target
labels and construct graphs for the conjunctive and disjunctive cases such that
selecting the subgraph induced by these 5 labels gives the best density. We then
1 https://version.helsinki.fi/dacs.

https://version.helsinki.fi/dacs

470 I. Kumpulainen and N. Tatti

add random noise to the network by introducing a noise parameter ε, which
controls the probability of randomly adding and removing edges as well as adding
new labels to the edges.

For the conjunctive case, we create five disjoint cliques of 10 vertices such that
all edges on the kth clique have all except the kth of the target labels. Finally,
we add one more 20 vertex clique that has all of the target labels. Since each of
the smaller cliques is missing one of the target labels, selecting the conjunction
of all of them yields the densest subgraph as the clique of 20 vertices.

Given the noise parameter ε, we then add noise by having each of the edges in
the cliques removed with probability ε, as well as having any other edges added
between any pair of vertices with probability ε. Finally, for each of the edges in
the cliques we add any of the other labels with probability ε each, except for
adding the remaining target labels to edges in the cliques.

For the disjunctive case, we have created one clique with 40 vertices. The
edges in the clique are split into five sets, such that each set of edges gets one of
the target labels. Now, selecting the disjunction of the five target labels induces
the clique as the subgraph and results in the highest density.

We then add noise by adding removing edges from the clique and adding
new edges between any other pair of vertices with probability ε. In addition,
each edge gains any of the other labels also with probability ε.

Fig. 1. Density of the subgraph induced by the target labels and the subgraph induced
by the labels chosen by the greedy algorithms as a function of noise ε in the network.
The results for GreedyAnd algorithm are on the left and for GreedyOr on the right.

We repeat the experiments with increasing values of ε and compare the den-
sity of the subgraph induced by the target labels to the density of the subgraph
induced by the labels of the greedy algorithms. The results are shown in Fig. 1.

In both cases, the greedy algorithms correctly find the target labels for small
values of ε. After ε > 0.25 for GreedyAnd and after ε > 0.35 for GreedyOr,
the algorithms start to find other sets of labels, which yield higher densities than
the target labels as many of the edges in the target clique have been removed
and other edges have been added. However, at ε = 0.30, the GreedyOr returns
a suboptimal solution that yields a slightly lower density than the target labels.

Community Detection in Edge-Labeled Graphs 471

Experiments with Real-World Datasets: We test the greedy algorithms by
running experiments on four real-world datasets. The first dataset is the Enron
Email Dataset2, which consists of publicly available emails from employees of a
former company called Enron Corporation. We collect the emails in sent mail
folders and construct a graph where new edges are added between the sender
and the recipients of each email. Each edge has labels consisting of the stemmed
words in the email’s title, with stop words and words including numbers removed.

The second dataset consists of high energy physics theory publications (HEP-
TH) from the years 1992 to 2003. The data was originally released in KDD Cup3

but we use a preprocessed version of the data available in GitHub4 We create
the network by adding authors as vertices, and edges between any two authors
are added if they share at least two publications. The edges between authors
are then given labels which consist of the preprocessed words in the titles of the
shared articles between the two authors.

The third dataset consists of publications from the DBLP5 dataset [19]. From
this dataset, we chose publications from ECMLPKDD, ICDM, KDD, NIPS,
SDM, and WWW conferences. The network is constructed in the same way as
for the HEP-TH data, with authors as vertices, two or more shared publications
as edges, and preprocessed and filtered words from the titles as labels.

The fourth and final dataset consists of the latest 10000 tweets collected
from Twitter API6 with the hashtag #metoo by the 27th of May, 23:59 UTC.
We create the network by having users as vertices with an edge between a pair
of users if one of them has retweeted or responded to one of the other’s tweets.
The labels on the edge are then any hashtags in the retweets or response tweets
between the two users.

We construct the networks by filtering out labels that appear in less than
0.1% of the edges in the Enron and Twitter datasets, or labels that occur in less
than 0.5% of the papers in the case of the HEP-TH and DBLP datasets. The
sizes, label counts, and densities of the resulting graphs are shown in Table 1.

We run the greedy algorithms on each of these graphs, and compare the
results against the densest subgraph ignoring the labels (Dense). We report the
statistics for the label-induced subgraphs and the densest subgraphs in Table 2.

For each of the datasets, both algorithms find label-induced subgraphs with
higher densities than in the original graphs. In most cases, the restriction of
constructing label-induced subgraphs results in clearly lower densities compared
to the densest label-ignorant subgraphs. Interestingly, for the DBLP dataset
GreedyAnd finds a label-induced subgraph with a very high density that is
close to the density of the densest subgraph ignoring the labels. The running
times are practical: the algorithm processes networks with 100 000 edge label
pairs in seconds.

2 https://www.cs.cmu.edu/∼./enron/.
3 https://www.cs.cornell.edu/projects/kddcup/datasets.html.
4 https://github.com/chriskal96/physics-theory-citation-network.
5 https://www.aminer.org/citation.
6 https://developer.twitter.com/en/docs/twitter-api.

https://www.cs.cmu.edu/~./enron/
https://www.cs.cornell.edu/projects/kddcup/datasets.html
https://github.com/chriskal96/physics-theory-citation-network
https://www.aminer.org/citation
https://developer.twitter.com/en/docs/twitter-api

472 I. Kumpulainen and N. Tatti

For Enron and HEP-TH datasets, the GreedyOr returns large sets of labels
resulting in large subgraphs, whereas the GreedyAnd algorithm selects only a
few labels with smaller induced subgraphs in each case. For the Twitter dataset,
both greedy algorithms select only one label, which induces a small subgraph
with a notably higher density than the original graph.

Table 1. Basic characteristics of the networks: number or vertices |V |, number or edges
|E|, number of labels |L|, number of edge-label pairs p, and the density d = |E|/|V |.

Dataset |V | |E| |L| p d

Enron 11 024 18 072 2 604 361 000 1.64

HEP-TH 4 738 7 767 240 78 078 1.64

DBLP 10 550 16 811 268 16 0850 1.60

Twitter 7 973 9 314 248 19 849 1.17

Table 2. Statistics for the resulting subgraphs for the greedy algorithms and the
label-ignorant densest subgraph algorithm. For the label-induced subgraphs, we have
the number of vertices n, the number of edges m, the size of the best set of labels
|A|, density d, and running time t in seconds. For the densest subgraph, we show the
number of vertices n and density d.

Dataset GreedyAnd GreedyOr Dense

n m |A| d t n m |A| d t n d

Enron 18 31 2 1.72 10.43 1 233 2 711 193 2.2 25.02 85 11.35

HEP-TH 7 14 4 2 1.96 3 284 5 588 40 1.7 5.74 58 3.81

DBLP 25 300 3 12 4.06 243 538 1 2.21 1.74 44 12.52

Twitter 12 31 1 2.58 0.77 12 31 1 2.58 1.89 19 3.37

Case Study: We analyze the communities for the Twitter and DBLP datasets
by repeatedly running the GreedyAnd algorithm for these graphs. After run-
ning the algorithm, we exclude the edges from the output edge-induced subgraph,
and run the algorithm again on the remaining graph. The first 8 resulting sets
of labels, as well as densities and sizes for the induced subgraphs, are shown in
Table 3.

For the DBLP graph, the algorithm finds a group of 25 authors that have
each written at least two papers together with a shared topic, as well as other
relatively large groups of authors whose edges form almost perfect cliques. The
labels representing stemmed words can be used to interpret the topics of publi-
cations for these groups of authors having tight collaboration.

Community Detection in Edge-Labeled Graphs 473

For the Twitter data of #metoo tweets, the densest label-induced subgraphs
are formed by mostly looking at individual hashtags. This detects groups of
people tweeting about #MeTooASE referring to the French Me Too movement
for foster children, as well as groups closely discussing other topics in the context
of the Me Too movement such as live streaming or the recent trial between
Johnny Depp and Amber Heard.

Table 3. Label sets with corresponding subgraph densities and sizes were selected by
running the GreedyAnd algorithm ten times on the graphs for DBLP and Twitter
datasets. The labels are stemmed words from publication titles for DBLP, and tweet
hashtags for Twitter data. The densities are not monotonically decreasing as the greedy
algorithm does not always find the optimal solution.

DBLP

d labels n m

12.0 novel, rate, techniqu 25 300

10.74 identif, combin, process 23 247

6.2 forecast, experi, use 15 93

6.0 heterogen, manag, stream, use 13 78

2.0 heterogen, segment 5 10

3.13 heterogen, manag, use, dynam 8 25

2.5 heterogen, sourc, toward 6 15

2.5 heterogen, construct, dimension, network 6 15

Twitter

d labels n m

2.58 metooase 12 31

1.88 streamer 16 30

1.75 anubhavmohanty 16 28

1.71 victimservices 7 12

1.83 causette, lfi 6 11

1.63 istandwithjohnny 8 13

1.43 rupertmurdock 7 10

1.25 marilynmanson 8 10

7 Concluding Remarks

In this paper, we considered the problem of finding dense subgraphs that are
induced by labels on the edges. More specifically, we considered two cases:
conjunctive-induced dense subgraphs, where the edges need to contain the given
label set, and disjunctive-induced dense subgraphs, where the edges need to have
only one label in common. As a measure of quality, we used the average degree
of a subgraph. We showed that both problems are NP-hard, and we proposed
a greedy heuristic to find dense induced subgraphs. By maintaining suitable
counters we were able to find subgraphs in quasi-linear time: O (p log |L|) for
conjunctive-induced graphs and O (

p log2 |L|) for disjunctive-induced graphs. We
then demonstrated that the algorithms are practical, they can find ground truth
in synthetic datasets, and find interpretable results from real-world networks.

While this paper focused on the conjunctive and disjunctive cases, future
work could explore other ways to induce graphs from a label set and design
efficient algorithms for such tasks. Another direction for future work is to relax
the requirement that every edge/node must be induced from labels. Instead, we
can allow some deviation from this requirement but then penalize the deviations
appropriately when assessing the quality of the subgraph.

474 I. Kumpulainen and N. Tatti

Acknowledgements. This research is supported by the Academy of Finland projects
MALSOME (343045).

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajs-
baum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45995-2 51

2. Angel, A., Koudas, N., Sarkas, N., Srivastava, D., Svendsen, M., Tirthapura, S.:
Dense subgraph maintenance under streaming edge weight updates for real-time
story identification. VLDB J. 23(2), 175–199 (2014)

3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

4. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core decomposition. In:
SIGMOD, pp. 1006–1023 (2019)

5. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: FOCS, pp. 617–626 (2002)
6. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.

Commun. ACM 16(9), 575–577 (1973)
7. Charikar, M.: Greedy approximation algorithms for finding dense components in

a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X 10

8. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr, J.H.: Migration motif: a spatial-
temporal pattern mining approach for financial markets. In: KDD, pp. 1135–1144
(2009)

9. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory
motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157
(2006)

10. Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled
graphs. DMKD 28(5), 1586–1610 (2014)

11. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley Technical report (1984)

12. H̊astad, J.: Clique is hard to approximate within n1−ε. In: FOCS, pp. 627–636
(1996)

13. Langston, M.A., et al.: A combinatorial approach to the analysis of differential
gene expression data. In: Shoemaker, J.S., Lin, S.M. (eds.) Methods of Microarray
Data Analysis, pp. 223–238. Springer, Boston (2005). https://doi.org/10.1007/0-
387-23077-7 17

14. Li, F., Klette, R.: Convex hulls in the plane. In: Li, F., Klette, R. (eds.) Euclidean
Shortest Paths: Exact or Approximate Algorithms, pp. 93–125. Springer, London
(2011). https://doi.org/10.1007/978-1-4471-2256-2 4

15. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
16. Overmars, M.H., Van Leeuwen, J.: Maintenance of configurations in the plane. J.

Comput. Syst. Sci. 23(2), 166–204 (1981)
17. Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection.

TIST 5(2), 1–28 (2014)
18. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287

(1983)
19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and

mining of academic social networks. In: KDD, pp. 990–998 (2008)

https://doi.org/10.1007/3-540-45995-2_51
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.1007/0-387-23077-7_17
https://doi.org/10.1007/0-387-23077-7_17
https://doi.org/10.1007/978-1-4471-2256-2_4

Community Detection in Edge-Labeled Graphs 475

20. Tatti, N.: Density-friendly graph decomposition. TKDD 13(5), 1–29 (2019)
21. Tsourakakis, C.E.: The k-clique densest subgraph problem. In: WWW, pp. 1122–

1132 (2015)
22. Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem.

Algorithmica 56(1), 3–16 (2010)

A Fast Heuristic for Computing Geodesic
Closures in Large Networks

Florian Seiffarth1(B), Tamás Horváth1,2,3, and Stefan Wrobel1,2,3

1 Department of Computer Science, University of Bonn, Bonn, Germany
{seiffarth,horvath,wrobel}@cs.uni-bonn.de

2 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
3 Fraunhofer Center for Machine Learning, Sankt Augustin, Germany

Abstract. Motivated by the increasing interest in applications of graph
geodesic convexity in machine learning and data mining, we present a
heuristic for approximating the geodesic convex hull of node sets in large
networks. It generates a small set of (almost) maximal outerplanar span-
ning subgraphs for the input graph, computes the geodesic closure in each
of these graphs, and regards a node as an element of the convex hull if it
belongs to the closed sets for at least a user specified number of outerpla-
nar graphs. Our heuristic algorithm runs in time linear in the number of
edges of the input graph, i.e., it is faster with one order of magnitude than
the standard algorithm computing the closure exactly. Its performance is
evaluated empirically by approximating convexity based core-periphery
decomposition of networks. Our experimental results with large real-
world networks show that for most networks, the proposed heuristic was
able to produce close approximations significantly faster than the stan-
dard algorithm computing the exact convex hulls. For example, while
our algorithm calculated an approximate core-periphery decomposition
in 5 h or less for networks with more than 20 million edges, the standard
algorithm did not terminate within 50 days.

Keywords: Geodesic closure · Outerplanar graphs · Convex cores

1 Introduction

In recent years, there has been a growing interest in applications of geodesic
convexity in graphs (see, e.g., [14]). Besides other fields of computer science
(e.g., genome rearrangement problems [6]), this concept has been utilized suc-
cessfully also in machine learning and data mining. Examples include exact
cluster recovery with queries [4], vertex classification in batch [2,15,17] and
active learning [18], or mining complex networks [19,20]. Regarding this latter
application, a new type of network decomposition [3] based on geodesic con-
vexity has been proposed in [19]. More precisely, a broad class of real-world
networks can be decomposed into a dense convex core, “surrounded” by a sparse

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 476–490, 2022.
https://doi.org/10.1007/978-3-031-18840-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_34&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_34

A Fast Heuristic for Computing Geodesic Closures 477

(a) Entire Network (b) (Geodesic) Core (c) Periphery

Fig. 1. (a) CA-GrQc network [12], (b) its (geodesic) core, (c) its periphery.

non-convex periphery1 (see Fig. 1 for a relatively small example). The results
in [19–21] clearly demonstrate that such a core-periphery decomposition pro-
vides new useful insights into the network’s structure. For example, mainly the
nodes in the core govern the degree distribution of the entire network or they
have higher clustering coefficients and smaller geodesic distances to each other
than the periphery nodes. A further nice property of core-periphery decomposi-
tion is that it is not characteristic to all network types, enabling a distinction
between different types of networks.

This and other applications of geodesic convexity rely on computing the
geodesic convex hull, also referred to as the closure of a set of vertices. Given a
graph G and a set X of vertices of G, the closure of X is the smallest set C of
vertices of G which contains X as well as all vertices of all shortest paths with
both endpoints in C. Such a smallest set always exists, it is unique, and can be
computed in O (nm) time with a standard algorithm (cf. [14]), where n (resp.
m) denotes the number of vertices (resp. edges) of G. Since m = O

(
n2

)
in the

worst case, all approaches relying on computing geodesic convex hulls become
practically infeasible for large networks.

To overcome this problem, we give up the demand for correctness and propose
a novel approach to calculate only an approximation of the closure of X. More pre-
cisely, our heuristic is based on the following main steps: Generate a set of span-
ning subgraphs of G independently at random, compute the closure of X in these
subgraphs separately, and regard a vertex of G as an element of the convex hull
of X iff it belongs to the closure of X in at least a user specified percentage of the
number of spanning subgraphs. The main question for this scheme is the choice of
the class of the spanning subgraphs. Regarding forests, a closer look at the problem
as well as our empirical results reveal that already for graphs that are structurally
very close to forests, a poor approximation performance can be obtained in this
way. This is because spanning forests may drastically distort shortest paths.
1 The concepts of convex and non-convex node sets are used in an opposite way in

[19,20], by speaking about non-convex cores and convex peripheries. This is because
of a slightly different definition of convexity: While the authors in [19,20] look at
the geodesic closure of induced subgraphs, we consider the whole structure.

478 F. Seiffarth et al.

We therefore consider the class of outerplanar graphs [5] for spanning sub-
graphs because it has several nice algorithmic properties. Although it is only
slightly beyond the class of forests in the structural hierarchy, our empirical
results with large real-world networks show that a close approximation of the
geodesic convex hull can be obtained with outerplanar spanning subgraphs.
Regarding the first step of the proposed heuristic, a maximal outerplanar span-
ning subgraph can be generated in O (m) time [8]. For the second step we present
an algorithm computing the (geodesic) convex hull in an outerplanar graph G.
This can be done in time O (nf), where f , the face number of G, is the maximum
number of interior faces over the biconnected components of G. Our algorithm
is linear in n in practice because f is typically negligible w.r.t. n. For example,
in case of outerplanar spanning subgraphs of Erdős-Rényi random graphs with
around 1,000,000 edges, the average face number was consistently less than 80.

We report experimental results with large real-world networks. They clearly
show that their cores can be approximated closely (with a Jaccard similarity
between 82 and 99%) with this scheme in feasible time, using only 100 span-
ning outerplanar subgraphs. Since we are not aware of any other approach
approximating geodesic convex hulls in graphs, we compared the runtime results
obtained by our heuristic with those of the standard algorithm mentioned above.
In particular, in case of networks with more than 20 million (and up to 117 mil-
lion) edges, the approximate decomposition could be computed in 5 h or less with
our algorithm. In contrast, the computation of the exact core-periphery decom-
position with the standard algorithm had to be aborted after 50 days. Because
of the close approximation, the approximate cores inherit several properties of
the exact ones. For example, their degree distributions were consistently close
to those of the exact ones.

The rest of the paper is organized as follows. In Sect. 2 we collect the nec-
essary notions and fix the notation. Section 3 contains the description of the
algorithm computing the closure of a set of vertices in outerplanar graphs. In
Sect. 4 we empirically evaluate our approach. Finally, in Sect. 5 we formulate
some questions for further research. For space limitations, proofs are omitted in
this short version. They can be found in the technical report [16].

2 Notions and Notation

For basic notions in graph theory, we refer to some standard textbook (see,
e.g., [7]). The set V of vertices (resp. E of edges) of a graph G = (V,E) is
denoted by V (G) (resp. E(G)). By graphs we always mean finite undirected
and unweighted graphs without loops and parallel edges that are connected and
denote |V (G)| and |E(G)| by n and m, respectively.

Given a graph G, the function I : V × V → 2V , called the geodesic interval,
maps (u, v) to the union of the sets of vertices on all shortest paths between u
and v. A set X ⊆ V (G) is (geodesically) convex or closed if I(u, v) ⊆ X for all
u, v ∈ X. For all X ⊆ V (G), there exists a unique smallest closed set X ′ ⊇ X,
called the convex hull or closure of X. Furthermore, the function ρG mapping

A Fast Heuristic for Computing Geodesic Closures 479

the subsets of V (G) to their convex hulls is a closure operator, that is, it is
extensive (i.e., X ⊆ ρG(X)), monotone (i.e., X ⊆ Y implies ρG(X) ⊆ ρG(Y)),
and idempotent (i.e., ρG(ρG(X)) = ρG(X)) for all X,Y ⊆ V (G). We omit G
from ρG if it is clear from the context. For a graph G and X ⊆ V (G), ρ(X) can
be computed with the standard algorithm relying on the single-source shortest
path (SSSP) problem (see, e.g., [14]). That is, iterate over all elements u ∈ ρ(X),
starting with an arbitrary element of X, as follows: Let X ′ ⊇ X be the set of
elements in ρ(X) that have already been generated before we process the next
element u. Then add Y =

⋃
v∈X′ I(u, v) to X ′, where Y can be calculated by

solving the SSSP problem (for unweighted graphs) from u to all elements of X ′.
After all elements in X ′ have been processed, we have X ′ = ρ(X). It is a folklore
result that the SSSP problem can be solved with breadth-first search (BFS) in
O (n + m) time, implying that ρ(X) can be computed in O (nm) time.

A graph G is outerplanar [5] if it can be embedded in R
2 in a way that no

two edges cross each other (except possibly in their endpoints) and there exists
a point P ∈ R

2 such that each vertex of G can be reached from P by a simple
curve that does not cross any of the edges. Removing all points and curves from
the plane corresponding to the vertices and edges of G, respectively, we obtain a
set of connected “pieces” of the plane, called faces. Since G is finite, all faces are
bounded except for one, the outer face. The bounded faces are called interior
faces. The face number of a biconnected outerplanar graph is the number of its
interior faces; the face number of an outerplanar graph G, denoted Φ(G), is the
maximum of the face numbers over its biconnected components.

Let G be an outerplanar graph. All biconnected components, called blocks
of G consist of a unique Hamiltonian cycle and a possibly empty set of (non-
crossing) diagonals. Edges not belonging to blocks are called bridges. The block
and bridge tree (BB-tree) G̃ of G is defined as follows [10]: For each block B
of G, (i) introduce a new vertex, called block vertex vB, (ii) remove all edges
belonging to B, and (iii) for every vertex v of B, connect v with vB by an edge
if v is adjacent to a bridge or to another biconnected component of G; otherwise
remove v. It holds that G̃ is a (free) tree and can be computed in O (n) time.

While ρ(X) can be computed in O (nm) time for arbitrary graphs, Theorem 1
gives rise to a faster algorithm for outerplanar graphs

Theorem 1 ([1]). Let G be an outerplanar graph. Then for all X ⊆ V (G),
ρ(X) =

⋃
u,v∈X I(u, v).

Thus, in case of outerplanar graphs, it suffices to perform a BFS only from the
elements of X, resulting in the following corollary, by noting that m = O (n) in
case of outerplanar graphs:

Corollary 1. Let G and X be as in Theorem 1. Then ρ(X) can be solved in
time O (m|X|) = O (n|X|).

3 The Heuristic

As mentioned earlier, our heuristic for approximating the closure of a set X ⊆
V (G) for an arbitrary graph G consists of the following main steps:

480 F. Seiffarth et al.

(i) Generate s (inclusion) maximal outerplanar spanning subgraphs G1,Gs

of G independently at random, for some s > 0 integer. Each outerplanar
spanning subgraph can be generated in O (m) time, where m = |E(G)| [8].2

The number s of spanning subgraphs can be regarded as a constant (e.g.,
it was set to 100 in our experiments, independently of the networks’ size).
Thus, the total time of this step is linear in m in practice.

(ii) For all outerplanar graphs Gi generated in step (i), calculate the closure
ρGi

(X). Corollary 1 implies that ρGi
(X) can be computed in O (n|X|) time.

Below we give a more sophisticated algorithm. Its complexity is O (nf),
where f is the face number of Gi. Thus, its complexity is independent of the
cardinality of X, which makes our algorithm superior to the standard one in
terms of runtime. Since f = O (n), it does not improve the theoretical worst-
case complexity of the standard algorithm. Still, it has two important advan-
tages over the standard algorithm. The first one is practical : Our experiments
with various graphs clearly show that the face number of spanning outerpla-
nar graphs is negligible, compared to their size (i.e., number of vertices). The
second one is of theoretical interest: Allowing only at most c faces per bicon-
nected components in the spanning outerplanar graphs for some constant c,
our algorithm runs in guaranteed linear time. The importance of this prop-
erty is that already a few number of diagonals in the biconnected components
result in a substantial improvement of the approximation performance, as
demonstrated experimentally in the next section.

(iii) Finally, a vertex u ∈ V (G) is regarded as an element of ρG(X) iff there is
a set S ⊆ {G1, . . . , Gs} with |S| ≥ t for some 0 < t ≤ s integer such that
u ∈ ρG′(X) for all G′ ∈ S.

The rest of this section is devoted to step (ii) above. More precisely, we deal
with the following problem for outerplanar graphs:

Problem 1. Given a graph G and X ⊆ V (G), compute ρ(X).

The algorithm solving Problem 1 for outerplanar graphs is given in Algo-
rithm 1 (see, also, Figs. 2, 3, 4 for a running example). We assume that G is
connected, by noting that all results can easily be generalized to disconnected
outerplanar graphs as well. Algorithm 1 first calculates the BB-tree G̃ for the
input outerplanar graph G and then stores the input vertex set X and the set of
block nodes of G̃ in the variables X0 and Y , respectively (lines 1–3). In line 4,
it computes the set C1 of block nodes representing the blocks of G that have at
least one vertex in X0. In a similar way, C2 contains the set of nodes of G̃ that
belong to X0 (cf. line 5) (see Fig. 2 for an example).

The closure of C1 ∪ C2 in G̃ is calculated in C (line 6) and the union of X0

and the set of vertices in C that belong to V (G) is stored in X1 (line 7) (see

2 To the best of our knowledge, there exists no (simple) algorithmic realization of this
result stated in [8] (see, also, the discussion in Sect. 3.5 in [11]). In [16] we present
a fast and easy to implement algorithm computing an almost inclusion maximal
outerplanar spanning subgraph in O (m) time.

A Fast Heuristic for Computing Geodesic Closures 481

Algorithm 1: Outerplanar Graphs: Closure

Input: outerplanar graph G and X ⊆ V (G)
Output: ρ(X)

1 construct the BB-tree ˜G for G;
2 X0 ← X ;

3 Y ← set of block nodes of ˜G;
4 C1 = {vB ∈ Y : V (B) ∩ X0 �= ∅};

5 C2 ← V (˜G) ∩ X0 ;

6 C ← τ(˜G, C1 ∪ C2), ;
7 X1 ← X0 ∪ (C ∩ V (G)), i ← 1;
8 foreach vB ∈ Y ∩ C do
9 if |V (B) ∩ Xi| > 1 then

10 Xi+1 ← Xi ∪ β(B, V (B) ∩ Xi);
11 i ← i + 1;

12 return Xi;

x1

x2
x3

x4

x5
x6

x7

x3

x6 x7
vB

Fig. 2. Left: Outerplanar graph G and input set X = X0 = {x1, . . . , x7} ⊆ V (G) in
blue, Right: BB-tree G̃ constructed from G (for the biconnected outerplanar component
on the left hand side, see dotted circle, a new node vB is added). The sets C1 = {vB}
and C2 = {x3, x6, x7} are marked in blue (Lines 1–5 of Algorithm 1).

Fig. 3 for an example). Note that at this point of the algorithm we have v ∈
X1 ⊆ ρG(X) for all v ∈ ρG(X) that do not belong to a biconnected component
of G. Furthermore, for all v ∈ ρG(X) \ X1, v is on a shortest path in one of the
blocks and with both endpoints in X. Accordingly, in loop 8–11, the algorithm
takes all block nodes vB of G̃ that belong to the closed set C, computes the
closure of the set of vertices of the corresponding block B over B that are known
to be closed (i.e., belong to Xi), updates the set of already known closed vertices
in Xi+1, and increments the loop variable i. At the end, it returns the set Xi.

It remains to discuss the functions τ and β (cf. lines 6 and 10). Regarding τ
(see Algorithm 2), it computes the closure of a set of nodes of a tree. It iteratively
removes all leaves of T that are not in X and returns the set of all nodes of T
at the end that have not been deleted (see Fig. 2 (right) and Fig. 3 (left)). The
proof of the following lemma is straightforward:

Lemma 1. For any tree T with n nodes and for any X ⊆ V (T), Algorithm 2
returns ρT (X) in O (n) time.

482 F. Seiffarth et al.

x1

x2
x3

x4

x5

x3

x6 x7
vB

Fig. 3. Left: Output of Algorithm 2 applied to the BB-tree G̃ from Fig. 2 (nodes in
X1 \ X0 are marked in red). Right: Biconnected outerplanar graph B corresponding to
vB , nodes in X1 ∩ V (B) which are not in X0 are marked in red. (Color figure online)

Algorithm 2: Function τ

Input: tree T and X ⊆ V (T)
Output: ρT (X)

1 while ∃v ∈ V (T) \ X with d(v) ≤ 1 do
2 remove v from T ;
3 return V (T);

Regarding β (see Algorithm 4 and Fig. 4), which computes the closure over
biconnected outerplanar graphs, we first show that for any biconnected outer-
planar graph B with f = Φ(B) and for any X ⊆ V (B), there is a set GX ⊆ X
of cardinality linear in f such that ρB(GX) = ρB(X). Furthermore, GX can be
constructed in linear time as follows (see, also, Algorithm 3): Initialize GX with
∅ (cf. line 1) and process all interior faces F of B one by one in an arbitrary order
as follows: If F has no vertex from X then disregard F ; o/w choose an arbitrary
vertex w from X ′ = V (F) ∩ X. For that w, calculate the furthest vertex u ∈ X ′

and the furthest vertex v ∈ (X ′ \ρF ({u,w}))∪{w}, and add u and v to GX (cf.
lines 6 and 7 of Algorithm 3). Note that ρF ({u,w})) = V (F) if d(u,w) = �/2,
where � is the (cycle) length of F ; o/w it is the set of vertices of the (unique)
shortest path between u and w. If w does not lie on a shortest path between u
and v (cf. line 8), then add w to GX as well. Note that u and v can be equal to
w. Hence, we add at least one and at most three vertices of X ′ to GX for F .

To illustrate the above steps in our running example, consider the biconnected
outerplanar graph B and the set X ⊆ V (B) marked with color blue in Fig. 4. A
generator set GX computed for the input set marked with blue in Fig. 4 (left) is
given in Fig. 4 (middle). It contains four vertices marked with black. In case of
the largest face of G, suppose we first select w ∈ X. For w, we first add u and
then v to GX by Algorithm 3 (see Fig. 4 (left) for u, v, and w); w is not added
because it is on a shortest path between u and v. The closure ρ(X) = ρ(GX) is
given in Fig. 4 (right).

We have the following result about Algorithm 3:

Lemma 2. Let B be a biconnected outerplanar graph with f = Φ(B). Then for
all X ⊆ V (B), Algorithm 3 computes a set GX ⊆ X in O (n) time such that
ρB(GX) = ρB(X) and |GX | = O (f).

A Fast Heuristic for Computing Geodesic Closures 483

Algorithm 3: Function GeneratorSet

Input: biconnected outerplanar graph B, X ⊆ V (B)
Output: GX ⊆ X such that ρB(GX) = ρB(X)

1 GX ← ∅ // GX ⊆ X: generator set for ρB(X) ;
2 forall the interior faces F of B do
3 X ′ ← V (F) ∩ X;
4 if |X ′| > 0 then
5 select an arbitrary vertex w from X ′;
6 add u = arg max

x∈X′
d(x, w) to GX ;

7 add v = arg max
x∈(X′\ρF ({u,w}))∪{w}

d(x, w) to GX ;

8 if w /∈ ρF ({u, v}) then
9 add w to GX ;

10 return GX ;

w v

u

Fig. 4. Left: Biconnected outerplanar graph B with X ⊆ V (B) in blue (cf. Fig. 3
(right)), Middle: generator set GX ⊆ X in black, Right: ρ(X) = ρ(GX), newly added
nodes in red. (Color figure online)

We are ready to present Algorithm 4 computing the closure of a set of vertices
over a biconnected outerplanar graph (see line 10 in Algorithm 1). The input
of Algorithm 4 consists of a biconnected outerplanar graph B and a set X ⊆
V (B). Using Algorithm 3, it first computes a generator set GX for B and X
and, utilizing the results in Corollary 1, computes ρB(X) = ρB(GX) in time
O (|V (B)| · |GX |).
Lemma 3. Let B, f , and X be as in Lemma 2. Then Algorithm 4 computes
ρB(X) correctly and in O (|V (B)|f) time.

Using Lemmas 1–3, one can show the following result:

Theorem 2. Algorithm 1 solves Problem 1 for outerplanar graphs correctly and
in O (nf) time, where f = Φ(G).

4 Experimental Results

Our experiments presented in this section are concerned with some basic proper-
ties of the proposed heuristic. First, we compare the runtime of our outerplanar
closure algorithm (Algorithm 1) to that of the näıve algorithm for outerplanar
graphs (see Sect. 2). Second, using large real-world networks [12], we empirically

484 F. Seiffarth et al.

Algorithm 4: Function β

Input: biconnected outerplanar graph B, X ⊆ V (B)
Output: ρB(X)

1 GX ← GeneratorSet(B, X);
2 return ρB(GX);

evaluate the approximation performance of our heuristic on the core-periphery
decomposition [19] problem. For the implementation3 we used the C++-library
Snap 6.0 [13]. All experiments were conducted on a machine with AMD Ryzen
9 3900X and 64 GB RAM.

4.1 Datasets

The following synthetic and real world data sets are used in our experiments:

Erdős-Rényi. This dataset contains Erdős-Rényi connected random graphs [9]
with 10 different sizes from n = 1,000 to n = 10,000, with a step size of 1,000 and
with edge probabilities ranging from p = 0.006 to p = 0.02, with step size 0.002.
Below p = 0.006, the graphs were too sparse for our purpose. For n = 10,000
and p = 0.02, the graphs contain around 1,000,000 edges. For all configurations
of (n, p), 100 connected Erdős-Rényi random graphs have been generated.

Large Real-World Networks. This dataset contains 15 real-world net-
works from [12] (see Table 2). In case of disconnected graphs, only their largest
connected components were considered.

4.2 Computing Closures in Outerplanar Graphs

In this section we empirically evaluate Algorithm 1 on synthetically generated
data. More precisely, we first generate an outerplanar spanning subgraph G at
random for each graph in the Erdős-Rényi dataset. To compare our algorithm
with the standard one based on SSSP, for each outerplanar graph G we construct
a graph G′ with the same number of nodes and edges, but with the difference
that G′ is not necessarily outerplanar. That is, for each G we first generate
a random spanning tree T of G and construct then a possibly non-outerplanar
graph G′ via adding m−n+1 random edges to T . Thus, G and G′ have the same
number of vertices and edges. Fig. 5 (left) shows the average runtime needed to
calculate the closures on G and G′ for a random subset of 1% of the vertices.
(C1) is the näıve closure algorithm for the outerplanar graphs G using the result
of Corollary 1 (i.e., it calculates the shortest paths between all pairs of input
vertices). (C2) is our Algorithm 1 and (CGraph) is the näıve closure algorithm
for the arbitrary graphs G′. Recall that the complexity of (CGraph) is O (nm),
where m = O (n) by construction, it is O (n|X|) for (C1), where |X| = n/100,

3 The code is available at https://github.com/fseiffarth/GCoreApproximation.

https://github.com/fseiffarth/GCoreApproximation

A Fast Heuristic for Computing Geodesic Closures 485

0 0.5 1
0

10

20

#Edges (in 104)

T
im

e
pe

r
C
lo
su
re

[s
]

C1 C2 CGraph

0 0.5 1
0

0.1

0.2

0.3

#Edges (in 104)

T
im

e
pe

r
C
lo
su
re

[s
]

Fig. 5. (left) Closure runtimes for outerplanar graphs with the näıve alg. (C1) and
with Algorithm 1 (C2) and for arbitrary graphs (CGraph), with the same number of
nodes and edges. The generator set is a random subset of 1% of the vertices. (right)
Runtime scaled down for (C1) and (C2).

Table 1. Average order and face number of the spanning outerplanar subgraphs of the
Erdős-Rényi random graphs with fixed size of n = 104. The properties are averaged
over 100 samples.

Edge Prob. #Edges Avg. #Output Edges Avg. Face Number

0.008 399,960 11,077.61 (± 19.76) 76.11 (± 25.38)

0.012 599,940 11,342.36 (± 23.01) 70.52 (± 16.36)

0.016 799,920 11,561.69 (± 25.60) 71.77 (± 19.26)

0.020 999,900 11,755.85 (± 27.71) 65.95 (± 14.14)

and O (nf) for our algorithm (C2), which is independent of |X|. The results are
in accordance with these complexities. In particular, the closure computation on
the arbitrary graphs G′ is slower by a factor up to 300 than on the outerplanar
graphs G with (C1) and (C2) (see left of Fig. 5). The right part of Fig. 5 is scaled
down for (C1) and (C2). It clearly shows that (C2) (i.e., Algorithm 1) is much
faster in practice than the näıve algorithm (C1). In particular, (C2) seems to be
the only out of the three algorithms which scales linearly with the number of
edges. This indicates that the face number f in the time complexity O (nf) is
negligible in practice.

This observation is supported by Table 1. It reports the average face number
of the generated spanning outerplanar subgraphs for the graphs with n = 104

vertices in the Erdős-Rényi dataset. Somewhat surprisingly, the average face
number does not increase with the density. Figure 6 shows the average face num-
ber as a function of the number of vertices (left) and the number of edges of the
input graphs (right), where the colors represent different edge probabilities. The
results indicate that in practice, the face number seems to be sublinear in the
graph size for fixed density (in our experiments, it was always less than 80),

486 F. Seiffarth et al.

Fig. 6. Face numbers for spanning outerplanar subgraphs generated for the Erdős-
Rényi dataset. (left) Average face number against the graph size. (right) Average face
number against input edge number (different colors depict different edge probabilities).

justifying the better runtime of our closure computation algorithm (see Fig. 5
(right)).

4.3 Core Approximation in Real-World Networks

Finally, applying the heuristic described above, we present experiments concern-
ing the approximation of cores in large real-world networks. Similar to [19], the
core C of a graph G is defined by

⋂i
j=1 Cj , where i is the smallest integer satisfy-

ing
⋂i

j=1 Cj =
⋂i+1

j=1 Cj and Cj = ρ(Xj) is the closure of Xj ⊆ V (G) containing
l > 0 vertices selected independently and uniformly at random. Note that this
definition is not deterministic, but our experiments and those in [19] show that if
a core exists, then it is stable. That is, the choice of Xj and especially l does not
affect the core if l is sufficiently large. In particular, as a compromise between
runtime and stability w.r.t. random effects, we choose l = 10. For each of the
networks in Table 2, the fixed point was reached after i = 3 iterations.

We used 15 networks from [12] in our experiments. The size (n) and order
(m) of some of them are more than 1,000 times larger than those in [19]. Table 2
contains the size of the exact cores and the runtime of computing them. While
the exact core of the 3 largest networks could not be computed within 50 days
with the standard algorithm sketched in Sect. 2, our algorithm produced the
approximate cores in 5h for these large networks; in less than 40min for all other
graphs.

For the approximation, for each large network we generated s = 100 spanning
outerplanar subgraphs and calculated the closure of l randomly chosen vertices
on each of these outerplanar graphs with Algorithm 1. Given the 100 closed
sets in the outerplanar subgraphs obtained in this way, a vertex v ∈ G was
regarded as closed iff it was contained in at least t out of the s = 100 closed
sets. The approximate core C̃ was then calculated in the same iterative way as
the exact one, but with the approximate closed sets. We compared exact and
approximate cores with each other using Jaccard similarity. The first value in

A Fast Heuristic for Computing Geodesic Closures 487

T
a
b
le

2
.

L
a
rg

e
re

a
l-
w

o
rl

d
n
et

w
o
rk

s
fr

o
m

[1
2
]
w

it
h

n
u
m

b
er

o
f
v
er

ti
ce

s
(n

),
n
u
m

b
er

o
f
ed

g
es

(m
),

d
en

si
ty

,
n
u
m

b
er

o
f
v
er

ti
ce

s
a
n
d

ed
g
es

in
th

e
co

re
,

ti
m

e
to

ca
lc

u
la

te
th

e
ex

a
ct

co
re

in
se

co
n
d
s

(o
r

n
.a

.
if

it
w

a
s

n
o
t

p
o
ss

ib
le

w
it

h
in

5
0

d
ay

s)
,

si
ze

o
f

th
e

a
p
p
ro

x
im

a
te

d
co

re
,

ti
m

e
to

ca
lc

u
la

te
th

e
a
p
p
ro

x
im

a
te

d
co

re
,
a
n
d

th
e

J
a
cc

a
rd

si
m

il
a
ri

ti
es

o
f
th

e
ex

a
ct

a
n
d

a
p
p
ro

x
im

a
te

d
co

re
s

o
b
ta

in
ed

b
y

g
ri

d
se

a
rc

h
ov

er
l

(n
u
m

b
er

o
f

ra
n
d
o
m

n
o
d
es

in
th

e
g
en

er
a
to

r
se

t)
a
n
d

t
(a

b
so

lu
te

fr
eq

u
en

cy
th

re
sh

o
ld

fo
r

co
n
si

d
er

in
g

a
n
o
d
e

to
b
e

a
n

el
em

en
t

o
f

th
e

a
p
p
ro

x
im

a
te

co
re

),
a
n
d

fo
r

l
=

5
,t

=
1

in
b
ra

ck
et

s
(v

a
lu

es
o
f
a
t

le
a
st

0
.9

in
b
o
ld

).
T

h
e

n
et

w
o
rk

s
a
re

so
rt

ed
b
y

n
m

.

G
ra

p
h

S
iz

e
#

E
d
g
es

D
en

si
ty

S
iz

e
#

E
d
g
es

T
im

e
[s

]
A

p
p
ro

x
T

im
e

[s
]

J
a
cc

a
rd

si
m

n
m

C
o
re

C
o
re

E
x
a
ct

C
o
re

A
p
p
ro

x
b
es

t
(l

=
5
,
t
=

1
)

co
m

-O
rk

u
t

3
,0

7
2
,4

4
1

1
1
7
,1

8
5
,0

8
3

2
.5

e−
0
5

n
.a

n
.a

n
.a

2
,9

1
5
,4

2
0

1
.8

e+
0
4

n
.a

so
c-

L
iv

eJ
o
u
rn

a
l1

4
,8

4
3
,9

5
3

4
3
,3

6
2
,7

5
0

3
.7

e−
0
6

n
.a

n
.a

n
.a

3
,0

1
8
,1

4
9

8
.7

e+
0
3

n
.a

so
c-

p
o
k
ec

-r
el

a
ti

o
n
sh

ip
s

1
,6

3
2
,8

0
3

2
2
,3

0
1
,9

6
4

1
.7

e−
0
5

n
.a

n
.a

n
.a

1
,3

9
0
,2

9
7

6
.5

e+
0
3

n
.a

co
m

-y
o
u
tu

b
e.

u
n
g
ra

p
h

1
,1

3
4
,8

9
0

2
,9

8
7
,6

2
4

4
.6

e−
0
6

3
9
0
,8

2
5

2
,1

6
9
,1

5
8

8
.9

e+
0
5

3
3
8
,6

5
4

2
.2

e+
0
3

0
.8

2
(0

.7
3
)

co
m

-d
b
lp

.u
n
g
ra

p
h

3
1
7
,0

8
0

1
,0

4
9
,8

6
6

2
.1

e−
0
5

9
0
,0

7
7

4
3
8
,2

6
5

7
.0

e+
0
4

9
2
,8

3
3

5
.3

e+
0
2

0
.9
2

(0
.8

7
)

co
m

-a
m

a
zo

n
.u

n
g
ra

p
h

3
3
4
,8

6
3

9
2
5
,8

7
2

1
.7

e−
0
5

2
1
6
,1

0
9

6
4
3
,0

7
5

2
.2

e+
0
5

2
3
1
,6

1
8

5
.2

e+
0
2

0
.8

8
(0

.8
7
)

S
la

sh
d
o
t0

9
0
2

8
2
,1

6
8

5
8
2
,5

3
3

1
.7

e−
0
4

4
8
,7

1
8

5
1
4
,3

3
8

1
.4

e+
0
4

4
5
,5

5
8

1
.6

e+
0
2

0
.9
2

(0
.6

8
)

C
it

-H
ep

P
h

3
4
,4

0
1

4
2
0
,8

2
8

7
.1

e−
0
4

3
2
,1

1
1

4
1
7
,0

5
0

6
.1

e+
0
3

3
2
,3

0
9

9
.6

e+
0
1

0
.9
9

(0
.9
7
)

C
it

-H
ep

T
h

2
7
,4

0
0

3
5
2
,0

5
9

9
.4

e−
0
4

2
4
,8

3
2

3
4
7
,9

1
8

3
.5

e+
0
3

2
5
,0

4
9

7
.7

e+
0
1

0
.9
8

(0
.9
8
)

C
A

-A
st

ro
P

h
1
7
,9

0
3

1
9
7
,0

3
1

1
.2

e−
0
3

9
,4

8
7

1
4
2
,9

4
3

6
.4

e+
0
2

9
,5

2
2

3
.0

e+
0
1

0
.9
5

(0
.9
3
)

C
A

-C
o
n
d
M

a
t

2
1
,3

6
3

9
1
,3

4
2

4
.0

e−
0
4

8
,6

0
3

4
9
,6

8
2

4
.0

e+
0
2

8
,7

6
1

3
.5

e+
0
1

0
.9
4

(0
.9
0
)

C
A

-H
ep

P
h

1
1
,2

0
4

1
1
7
,6

4
9

1
.9

e−
0
3

4
,8

2
5

6
3
,5

4
8

1
.8

e+
0
2

4
,8

0
4

1
.8

e+
0
1

0
.9
3

(0
.9
1
)

W
ik

i-
V

o
te

7
,0

6
6

1
0
0
,7

3
6

4
.0

e−
0
3

4
,5

7
9

9
8
,0

2
6

1
.3

e+
0
2

4
,4

5
2

1
.5

e+
0
1

0
.9
7

(0
.7

8
)

C
A

-H
ep

T
h

8
,6

3
8

2
4
,8

2
7

6
.7

e−
0
4

3
,6

0
5

1
4
,1

6
1

4
.6

e+
0
1

3
,6

6
9

1
.2

e+
0
1

0
.9
6

(0
.9

3
)

C
A

-G
rQ

c
4
,1

5
8

1
3
,4

2
8

1
.6

e−
0
3

1
,3

3
6

5
,0

3
6

7
.0

e+
0
0

1
,3

8
0

6
.0

e+
0
0

0
.9
2

(0
.8

8
)

488 F. Seiffarth et al.

(a) (b)

25 50
0

200

400

600

(c)

(d) (e)

25 50
0

200

400

600

(f)

Fig. 7. CA-HepTh network, its exact (a) core, (b) periphery, (c) degree distribution
of the core and its approximated (d) core, (e) periphery, (f) degree distribution of the
approx. core.

the last column of Table 2 denotes the best Jaccard similarity achieved via grid
search over l ∈ {5, . . . , 2000} and t ∈ {1, . . . , 10}. We stress that using higher
values of l has no impact on the time complexity of our algorithm, as it depends
on n and the face number only (cf. Sect. 3). The second value (in brackets)
denotes the Jaccard similarity for the approximate core obtained for l = 5 and
t = 1.

For 12 out of the 15 graphs, we obtained a Jaccard similarity of around 0.8 or
more; for 9 even at least 0.9. As an example, in Fig. 7 we show the exact core and
periphery of the CA-HepTh network (see (a) and (b)) and their approximations
(see (d) and (e)) for l = 5 and t = 1 (see, also, Table 2). We also plot the degree
distribution of the exact core (see (c)) and that of the approximate one (see
(f)) obtained for these values. One can see that the two distributions are fairly
similar to each other, by noting that the Jaccard similarity obtained for l = 5
and t = 1 was 0.93 (see Table 2). A similar behavior could be observed for the
other networks as well.

5 Concluding Remarks

Our experimental results clearly demonstrate that the presence of cyclic edges
in the spanning subgraphs is essential for a close approximation of the geodesic

A Fast Heuristic for Computing Geodesic Closures 489

convex hull. Thus, it is natural to ask whether further graph classes beyond
forests can also be considered for spanning subgraphs. Such a graph class should
fulfill at least two properties: (i) A (potentially maximal) spanning subgraph
from this class could be generated in time linear in the order of the input graph
and (ii) for the graphs in this class, the preclosure of any set of vertices should
be its closure at the same time (cf. Theorem 1 in Sect. 2). This second condi-
tion indicates that the graphs in the class should be K2,3-free (w.r.t. forbidden
minor). A somewhat related question is if we can find an alternative simple algo-
rithmic realization of the result stated in [8] for the problem of finding a maximal
spanning outerplanar graph, preserving at the same time the linear runtime (in
the number of edges).4

Although our primary focus in this work was on an effective approxima-
tion of geodesic convex hulls in large graphs, the results of Sect. 4.3 raise some
interesting questions towards large real-world networks. For example, we are
investigating whether it is possible to approximate the set of nodes with the
highest betweenness centrality in large networks by that in their approximate
cores? Furthermore, we are going to study if it is possible to estimate the qual-
ity of our approximation without knowing the exact core in advance by looking
at the variance in the outputs of several approximation runs.

Our empirical results concerning core approximation in large real-world net-
works have been obtained for relatively small sets of generator elements (param-
eter l) and for low frequency thresholds (parameter t). The choice of these two
parameters seem crucial for a close approximation (see Table 2). The related
question is how to choose them, especially in case of large networks? Sampling
seems a natural way, the question is whether it is possible to utilize the structure
of the network at hand during sampling? Last but not least, it would be inter-
esting to systematically study further types of random as well as large real-world
networks for their core-periphery decomposition.

Acknowledgements. This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany and the state of North-Rhine Westphalia as part of
the Lamarr-Institute for Machine Learning and Artificial Intelligence, LAMARR22C.
The authors gratefully acknowledge this support.

References

1. Allgeier, B.: Structure and properties of maximal outerplanar graphs. Ph.D. thesis
(2009)

2. de Araújo, P.H.M., Campêlo, M.B., Corrêa, R.C., Labbé, M.: The geodesic clas-
sification problem on graphs. In: Proceedings of the 10th Latin and American
Algorithms, Graphs and Optimization Symposium, LAGOS. Electronic Notes in
Theoretical Computer Science, vol. 346, pp. 65–76. Elsevier (2019)

4 In the long version of this paper we present a linear time algorithm for generating an
almost maximal spanning outerplanar graph that is easy to implement. Our empirical
results show that only at most 0.03% of the edges were missing for maximality.

490 F. Seiffarth et al.

3. Borgatti, S., Everett, M.: Models of core/periphery structures. Soc. Netw. 21,
375–395 (1999)

4. Bressan, M., Cesa-Bianchi, N., Lattanzi, S., Paudice, A.: Exact recovery of clusters
in finite metric spaces using oracle queries. In: COLT 2021. Proceedings of Machine
Learning Research, vol. 134, pp. 775–803. PMLR (2021)

5. Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’I.H.P. Prob-
abilités et statistiques 3(4), 433–438 (1967)

6. Cunha, L., Protti, F.: Closure of genomic sets: applications of graph convexity
to genome rearrangement problems. Electron. Notes Discrete Math. 69, 285–292
(2018)

7. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

8. Djidjev, H.N.: A linear algorithm for the maximal planar subgraph problem. In:
Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955,
pp. 369–380. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60220-
8 77

9. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297
(1959)

10. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar
graphs. Data Min. Knowl. Discov. 21(3), 472–508 (2010)

11. Leipert, S.: Level planarity testing and embedding in linear time. Ph.D. thesis
(1998)

12. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

13. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining
library. ACM TIST 8(1), 1 (2016)

14. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-8699-2

15. Seiffarth, F., Horváth, T., Wrobel, S.: Maximal closed set and half-space separa-
tions in finite closure systems. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A.,
Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906,
pp. 21–37. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8 2

16. Seiffarth, F., Horváth, T., Wrobel, S.: A fast heuristic for computing geodesic cores
in large networks (2022). arXiv:2206.07350

17. Stadtländer, E., Horváth, T., Wrobel, S.: Learning weakly convex sets in met-
ric spaces. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 200–216. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86520-7 13

18. Thiessen, M., Gärtner, T.: Active learning of convex halfspaces on graphs. In:
Advances in Neural Information Processing Systems (2021)

19. Tilen, M., Šubelj, L.: Convexity in complex networks. Netw. Sci. 6(2), 176–203
(2018)

20. Šubelj, L., Fiala, D., Ciglaric, T., Kronegger, L.: Convexity in scientific collabora-
tion networks. J. Informet. 13(1), 10–31 (2019)

21. Šubelj, L.: Convex skeletons of complex networks. J. R. Soc. Interface 15(145),
20180422 (2018)

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/3-540-60220-8_77
https://doi.org/10.1007/3-540-60220-8_77
http://snap.stanford.edu/data
https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-3-030-46150-8_2
http://arxiv.org/abs/2206.07350
https://doi.org/10.1007/978-3-030-86520-7_13

Explainability and Interpretability

JUICE: JUstIfied Counterfactual
Explanations

Alejandro Kuratomi(B), Ioanna Miliou, Zed Lee, Tony Lindgren,
and Panagiotis Papapetrou

Department of Computer and Systems Sciences, Stockholm University,
Borgarfjordsgatan 12, 16455 Kista, Sweden

{alejandro.kuratomi,ioanna.miliou,zed.lee,tony,panagiotis}@dsv.su.se

Abstract. Complex, highly accurate machine learning algorithms sup-
port decision-making processes with large and intricate datasets. How-
ever, these models have low explainability. Counterfactual explanation
is a technique that tries to find a set of feature changes on a given
instance to modify the models prediction output from an undesired to
a desired class. To obtain better explanations, it is crucial to generate
faithful counterfactuals, supported by and connected to observations and
the knowledge constructed on them. In this study, we propose a novel
counterfactual generation algorithm that provides faithfulness by justifi-
cation, which may increase developers and users trust in the explanations
by supporting the counterfactuals with a known observation. The pro-
posed algorithm guarantees justification for mixed-features spaces and
we show it performs similarly with respect to state-of-the-art algorithms
across other metrics such as proximity, sparsity, and feasibility. Finally,
we introduce the first model-agnostic algorithm to verify counterfactual
justification in mixed-features spaces.

Keywords: Machine learning · Interpretability · Counterfactuals ·
Faithfulness · Justification · Mixed-features space

1 Introduction

Highly accurate, complex machine learning (ML) models are becoming
increasingly ubiquitous in different applications, including high-stakes decisions
(medical diagnoses [7], loan applications [2], recidivism prediction [5]). As their
utilization increases, so are the interpretability requirements to enable user
understanding and trust [13,21]. Consider, for example, a complex ML model
built on a large medical dataset that accurately predicts the risk of future severe
disease occurrence. The most valuable knowledge for doctors, given a patient
with a predicted high risk of severe disease development, would be the reasons
for this undesired outcome and how to prevent it [7,13].

One way to convey such knowledge is to define a counterfactual (CF) explana-
tion, which aims to explain the output of a complex ML model on an instance of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 493–508, 2022.
https://doi.org/10.1007/978-3-031-18840-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_35&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_35

494 A. Kuratomi et al.

interest in a model-agnostic manner [10,13,21]. CF explanations are paramount
because they provide feature relevance and potential actions to achieve a desired
class [10,21]. Given a classifier f , an instance x with predicted class label c,
defined over a set of variables v , the aim of a CF explanation is to answer a
fundamental question: How should the variables v of x change to obtain class
label c’ instead of c? [1]. A CF explanation x’ is structured in the following
manner: Outcome c occurs because variables v in x have values v0. If x is
instead altered to x’ with values v = v1, then outcome c’ occurs.

The CF may be obtained through different algorithms which optimize diverse
metrics, but there is currently no consensus on the best metric to optimize for
better explanation quality [13,18]. This study focuses on generating CFs that
satisfy desiderata such as proximity, sparsity, feasibility, and, most importantly,
faithfulness through their connection to observations.

Intuitively, a desired CF metric is proximity, referring to the distance between
the CF and the instance of interest. The shortest path is preferred in terms of
actionability, (the shortest way to move from x to x’) [11,19,21]. While CF
proximity is optimized by prioritizing distance, it may ignore other relevant CF
desiderata, such as sparsity [13]. Minimizing distance may change several fea-
tures. In a medical scenario, doctors and patients would prefer sparse explana-
tions [3,12,21], i.e., the smallest number of feature changes to prevent a disease
diagnosis. A sparse CF may prove a more actionable target [12,21].

Additionally, proximity or sparsity do not guarantee feasibility [21]. If CF val-
ues are not physically possible, the derived CF explanation loses credibility. Fur-
thermore, immutable features like gender or ethnicity, should remain unchanged,
while others could change, but only in one direction, like age. Feasibility consid-
ers feature plausibility (physically possible values), mutability (whether values
may change), and directionality (the possible direction of the changes).

Lastly, CF faithfulness [8,10,16,18,21], indicates whether the generated CF
is supported by observations. This metric has not been prioritized in traditional
CF generation and has recently gained attention to facilitate user trust in the
models [8,16]. A faithful CF is connected to and supported by observations
and the knowledge constructed on them, i.e., in a medical scenario, the doctors
may have a guarantee that the CF is not a spurious example, and that the
recommended treatments are justified by the data and may be trusted [10,16,21].

One way to attain CF faithfulness is through likelihood [4,8,16]. Pawelczyk
et al. find likely CFs with respect to the observations as part of an autoencoder
cost function [16]. CF faithfulness may also be achieved by guaranteeing jus-
tification. As proposed by Laugel et al. [10], justification is a property shown
by CFs that are connected to a correctly classified CF observation through a
path where no decision boundary is met. Thus, a more complete CF explana-
tion x’ can be defined: Outcome c occurs because variables v in x have values
v0. If x is instead altered to x’ with values v = v1, then outcome c’ occurs,
which is justified by the observation e. An example is shown in Fig. 1 [10], where,
although point b is the closest CF to x, a further CF may be preferred (point a)
if it preserves a connection to an observation (point e). Alas, to the best of our

JUICE: JUstIfied Counterfactual Explanations 495

Fig. 1. x is the instance of interest, b is a close CF, but it is not justified by observed
data as a is through observation e (highlighted in green outline).

knowledge, there is no algorithm that generates justified CFs while preserving
other CF desiderata such as proximity, sparsity, and feasibility in mixed-features
spaces [20]. Most importantly, justification has been previously approximated
through ε-justification (a DBSCAN process that verifies the connection between
synthetic points in a ball of radius ε) on continuous feature spaces [10,16], which
cannot be applied directly in a mixed-features scenario, i.e., the CF justification
verification in spaces with binary, categorical, ordinal, and continuous features,
to the best of our knowledge, has not yet been established [20].

Therefore, we hereby present two algorithmic solutions for the problems
described above: (1) the JUstIfied Counterfactual Explanations (JUICE) gener-
ation algorithm, and (2) the mixed-features justification verification algorithm.
The main contributions of this paper are described below:

1. JUICE: a novel algorithm that generates justified CFs by using an exhaus-
tive feature search in a mixed-features space, where feature value plausibil-
ity, mutability, and directionality are considered. JUICE attains competitive
performance against state-of-the-art CF generation algorithms in terms of
proximity and sparsity, providing complete CF explanations (see Sect. 3.1).

2. Mixed-features justification verification: a novel algorithm that empiri-
cally verifies whether any CF is justified or not by a CF observation traversing
paths among any type of features (see Sect. 3.2).

3. Empirical evaluation and benchmark: JUICE generates justified CFs
while providing as-good performance with respect to proximity, sparsity, fea-
sibility, and run time when compared to other state-of-the-art CF algorithms.
The CF justification of the latter algorithms is evaluated using the mixed-
features verification algorithm (see Sect. 4).

2 The CF Justification Problem

Justification has been defined on continuous feature spaces by Laugel et al. [10],
requiring a connection in space between the CF and a correctly classified observa-
tion. A connection is a path in space that connects two same-labeled instances,

496 A. Kuratomi et al.

according to a classifier f , by applying feature operations, where no decision
boundary of f is met, i.e., the two connected instances lie in the same classifi-
cation region. All feature values of one instance are transformed to the feature
values of the other by traversing the feature space. This definition of justifica-
tion [10] cannot be applied directly in a mixed-features scenario, given that the
connection in continuous feature spaces may not be feasible for other types of
features. Hence, the connections among binary (categorical features are one-hot
encoded), ordinal, and continuous features require additional considerations.

For binary features, a binary connection B is shown in Fig. 2a. Each green
arrow represents an operation in the binary space to connect point x’ = (0, 0)
to point e = (1, 1). These operations are called binary feature flips. The binary
path BB = [1, 2] is followed, meaning that first feature 1 is flipped, followed by
feature 2, and points x’ , (1, 0), and e belong to class 1. Therefore, this binary
path guarantees a binary connection B(x’, e) between x’ and e, by converting
all binary features. Meanwhile, the red path BA does not guarantee a binary
connection, because f((0, 1)) = 0 �= f(e).

Fig. 2. Examples of different paths connecting CF x’ and observation e in different
spaces. Figure 2a: Binary paths in a binary space. Figure 2b: Ordinal paths in an ordinal
space. Figure 2c: Continuous paths in a continuous space.

For ordinal features, an ordinal connection O is shown in Fig. 2b. Each green
arrow represents an operation in the ordinal feature space to connect point
x’ = (0, 0) to point e = (1, 1). These operations are called ordinal jumps, which
only visit plausible adjacent values following the feature values order. The ordinal
path OC = [1, 2, 1, 2, 1, 2, 1] is followed, meaning that first feature 1 is changed,
then feature 2, then feature 1, and so on, always in the direction x’ → e and
each point along this path belongs to class 1. Therefore, this ordinal path guar-
antees ordinal connection O(x’, e) between x’ and e, by converting all ordinal
features. Similarly, the ordinal path OD = [1, 1, 1, 1, 2, 2, 2] also guarantees ordi-
nal connection. Meanwhile, none of the red paths OA and OB guarantee ordinal
connections because f((0, 1)) = 0 �= f(e) and f((14 , 2

3)) = 0 �= f(e).
For continuous features, a continuous connection C is shown in Fig. 2c. Each

green arrow represents an operation in the continuous space to connect points

JUICE: JUstIfied Counterfactual Explanations 497

x’ = (14 , 1
4) and e = (34 , 3

4). These operations are called continuous jumps, which
traverse the continuous space. Each of the points along path CB belongs to class
1, therefore, it guarantees continuous connection C(x’, e) between x’ and e.
Meanwhile, the red path CA does not, for at least a point v, f(v) = 0 �= f(e).

Let X be a data space, X ∈ X be a set of N labeled data examples, and Y
the set of their corresponding class labels, such that xi ∈ X is of class yi ∈ Y,
∀i ∈ {1, . . . , N}. Hence, the general justification problem is (based on [10]):

Problem 1. (General Justification). Given a classifier f : X → Y trained on a
mixed-features dataset X, a counterfactual example x’ ∈ X is generally justified
by an observation e ∈ X, if f(x’) = f(e), and if there exists a binary, an ordinal
and a continuous connection B , O , C , whenever these types of features exist,
between x’ and e such that no decision boundary of f is met.

There is no algorithm that generates justified counterfactuals for mixed-
features spaces. We define the problem of Justified Counterfactual Generation:

Problem 2. (Justified Counterfactual Generation). Given a classifier f : X → Y
trained on a mixed-features dataset X, a cost function L(·), and all the possible
counterfactuals z, a justified counterfactual example x’ ∈ X can be found by
solving the following problem:

x’ = arg min
z

{L(x, z)|f(x) �= f(z) ∧ ∃ e ∈ X : B(z, e) ∧ O(z, e) ∧ C(z, e)}, (1)

where L(·) can be the L2-norm or the L0-norm (see Sec. 3.1).

3 Proposed Algorithms

We hereby present the JUICE algorithm, which tackles Problem 2, and the
mixed-features justification verification algorithm, which solves Problem 1.
These algorithms may be found at the GitHub repo1.

3.1 JUstIfied Counterfactual Explanations (JUICE)

We define the label of the CF instance as CFlabel = f(x′). JUICE first finds a
correctly classified CF observation, then navigates from it towards the instance
of interest in this order: binary features, then ordinal features, and finally con-
tinuous features, improving proximity and sparsity. For each point v along the
paths, it verifies f(v) = CFlabel and returns the closest point v to the instance
of interest.

JUICE is presented in Algorithm 1. Lines 2 and 3 find the nearest neighbor
CF and calculate the gradient in the CFNN → x direction. Then, lines 4–6 find
the binary, ordinal, and continuous feature indices where the instance of interest
and the CFNN differ. Lines 7–9 store the possible permutations (or paths) for

1 https://github.com/alku7660/JUICE.

https://github.com/alku7660/JUICE

498 A. Kuratomi et al.

each of these three sets of indices. Lines 10–12 try to navigate through these
paths in the binary subspace, from the CFNN towards the instance of interest.
This navigation stops only when either: (1) a path led to the exact same values as
the instance of interest with all points along the path having the CF label, or (2)
all binary paths were checked. Lines 13–15 and 16–18 do the same with ordinal
and continuous features, respectively. The TryNavigationThrough() function
generates changes from the CFJUICE to the instance of interest based on the
binary, ordinal, or continuous paths, verifying f(v) = CFlabel for every admissi-
ble and changed v example along the paths, guaranteeing justification.

Algorithm 1: JUstified Counterfactual Explanations Pseudoalgorithm
input : x: instance of interest, xlabel: x label, f : model, type: feature type, T :

Train subset, priority: proximity or sparsity
output: CFJUICE : JUICE CF, justifier justifier example

1 CFNN ← NN(x, T, xlabel)

2 CFJUICE ← CFNN

3 gradient ← x − CFNN

4 binaryIndices ← where(gradient �= 0 ∧ type = binary)
5 ordinalIndices ← where(gradient �= 0 ∧ type = ordinal)
6 continuousIndices ← where(gradient �= 0 ∧ type = continuous)
7 binaryIndicesPermutations ← permute(binaryIndices)
8 ordinalIndicesPermutations ← permute(ordinalIndices)
9 continuousIndicesPermutations ← permute(continuousIndices)

10 for binaryPath ∈ binaryIndicesPermutations do
11 if TryNavigationThrough(CFJUICE , binaryPath, f, priority) then
12 Update(CFJUICE)

13 for ordinalPath ∈ ordinalIndicesPermutations do
14 if TryNavigationThrough(CFJUICE , ordinalPath, f, priority) then
15 Update(CFJUICE)

16 for continuousPath ∈ continuousIndicesPermutations do
17 if TryNavigationThrough(CFJUICE , continuousPath, f, priority) then
18 Update(CFJUICE)

19 return CFJUICE , CFNN

The priority parameter is either proximity or sparsity. The proximity version
of JUICE (JUICEP) minimizes the L-2 norm and the sparsity version (JUICES)
minimizes the L-0 norm. JUICES finds the closest CF that has one single feature
change (CFJUICES). If JUICES fails, it ignores the single-feature restriction and
optimizes for proximity to try to find the closest connected CF (CFJUICEP)
to the instance of interest which is connected to CFNN . In binary features,
flips in the binary paths always lead to binary values. In the case of one-hot
encoded categorical variables, the sum of their values for every flip should equal
1. In ordinal features, changes are done in plausible values following the order

JUICE: JUstIfied Counterfactual Explanations 499

described by the ordinal path. In the continuous features, the jumps are done
using 1-percentual changes of the gradient value.

3.2 Mixed-features Justification Verification Algorithm

We propose the mixed-features justification verification algorithm. To the best
of our knowledge, this is the first model-agnostic algorithm for CF justification
evaluation in mixed-features spaces. Given a CF, the mixed-features justifica-
tion verification algorithm finds the nearest correctly classified CF observation,
TNN . It then tries to find connections between the CF and TNN through the
different feature types, whenever applicable, since some datasets may not have
all types of features. In the presence of binary, ordinal and continuous features,
it first attempts a binary connection between the given CF and TNN . If success-
ful, it tries to find an ordinal connection. Finally, if successful, it performs an
ε-justification search process [10] in the continuous-feature subspace, to find a
continuous connection to any observation having the same binary and ordinal
feature values as those of the TNN . This works because, if the binary and ordinal
connections with the TNN are verified, then any other observation with the same
binary and ordinal feature values as those in the TNN also has a binary and ordi-
nal connection to the CF. Hence, any observation with these values (not only the
TNN) may be continuously connected and verifies the CF general justification.
If a feature type is missing, the algorithm skips to the next type.

The Mixed-Features justification verification is presented in Alg. 2. Line 2
finds the TNN . If TNN is the same as the given CF, then the CF is justified
by itself and returns it. Otherwise it proceeds in lines 6 and 7 to calculate
the gradient and perform the binary connection search. If there is a binary
connection, the ordinal connection is searched in line 9, and if it exists, the
continuous connection is searched. For the binary and ordinal connections, the
search process (lines 7 and 9) stops whenever: (1) the values of the CF binary and
ordinal features are equal to those of TNN and the CFlabel is preserved, or (2)
the list of paths is fully checked and no successful binary or ordinal connections
between TNN and the CF were found, in which case, the CF is not justified.
If the continuous connection search is executed, then the ε-justification search
process is carried, as in [10,16]. A set of synthetic instances of size n is generated,
for which the binary and ordinal features have the same values as the TNN ,
and the continuous features are randomly and evenly spaced in the continuous
subspace. Then, these instances are mixed with the observations, creating a
dense continuous subspace. Finally, using a ball of radius r (ballr), the algorithm
jumps between examples vballr inside the ballr, verifying f(vballr) = CFlabel.
Each evaluated example is then used as the center of the ballr to search for
other instances until a CF observation is reached. If a CF observation lies in any
ballr, then the CF is ε-justified by it or continuously connected to it, and this
observation is the justifier example.

500 A. Kuratomi et al.

3.3 Complexity

JUICE and the mixed-feature justification verification algorithms are possible
solutions to the justified CF search and the justification verification problems.
The computationally expensive solution in the original features space should
join the binary, ordinal and continuous features and generate all permutations.
This would allow the creation of paths, such as OB and OC in Fig. 2b, which
are currently unchecked. The complexity of such solution would be O((b + c +
o + k)! · (b + c +

∑o
i=1 mi + kp)), where b, c, o, and k are the number of binary,

categorical, ordinal, and continuous features respectively. Additionally, p is the
number of possible values of continuous features (in this case, p = 100) and mi

is the number of possible values of the ordinal feature i,∀i ∈ o. In comparison
JUICE has a lower complexity of O(b! · b + c! · c + o! · ∑o

i=1 mi + k! · kp).

Algorithm 2: Mixed-Features Justification Pseudoalgorithm
input : CF , CFlabel, T : train subset, f : model, n: examples to generate, r:

continuous subspace search radius.
output: justifier: justifier example.

1 justifier ← ∅
2 TNN ← NN(CF, T,CFlabel)

3 if TNN = CF then
4 justifier ← CF

5 else
6 grad ← TNN − CF
7 binConnect ← binaryConnect(CF, TNN , grad, f, CFlabel)

8 if binConnect then
9 ordConnect ← ordinalConnect(CF, TNN , grad, f, CFlabel)

10 if ordConnect then
11 conConnect, justifier ← contConnect(CF, TNN , grad, f, CFlabel, n, r)

12 return justifier

4 Empirical Evaluation

We present here the datasets used, the CF algorithms, the performance metrics
used to evaluate JUICE and the baseline methods and the results obtained.

4.1 Datasets

8 binary classification datasets are used for the evaluation of JUICE and the
other CF methods. Two datasets (1 and 2) are synthetic with a mixed-features
space. Datasets 3, 5, 6, 7, and 8 can be found at the UCI Machine Learning web-
site. For every feature, the properties of mutability, directionality, and plausible

JUICE: JUstIfied Counterfactual Explanations 501

values are manually set. The processing pipeline implemented for publicly avail-
able datasets follows the preprocessing guidelines of state-of-the-art research, as
shown in [6]. The details of the generation of datasets 1 and 2, the features of
all datasets, and the dataset pipelines are included in the GitHub repo.

1. Disease: A synthetic dataset with the task of predicting whether a person
will have a severe disease or not, with 7 features.

2. Athlete: A synthetic dataset with the task of predicting whether an Olympic
athlete will win a medal or not, with 6 features.

3. Ionosphere: The ionosphere dataset that originally contains 34 continuous
features. Only 8 are selected based on feature importance from an RF model.

4. Compass: The Propublica dataset aimed at predicting criminal recidivism
based on past personal records. Available at the Propublica website2.

5. Credit: The prediction of credit card clients dataset, with 24 features.
6. Adult: The adult income prediction dataset, with 14 features.
7. German: The Statlog german credit dataset that classifies clients as good or

bad credit risks, with 20 features.
8. Heart: The heart disease dataset, with 75 features.

4.2 CF Generation Methods

A total of 9 state-of-the-art CF generation methods are implemented and briefly
described below. For the GS, DiCE, FACE, and CCHVAE algorithms, the
CARLA framework, a python framework for different CF generation algorithms
presented by Pawelczyk et al. [15], is adapted for the respective datasets:

1. Nearest Neighbor Tweaking (NN): Selects the closest training observa-
tion carrying the CF label as the CF [11].

2. Actionable Feature Tweaking (FT): Selects the feature value changes
based on tree-ensembles value thresholds for majority vote class flips [19].

3. Random Forest Similarity Tweaking (RT): Combines the FT and NN
methodology to provide a training justified CF in tree-ensembles. It trains
a random forest and lists the training example frequencies in the leaf nodes
where the instance of interest lies. The most frequent example is the CF [11].

4. Minimum Observable (MO): Searches the dataset for the closest CF [22].
5. Growing Spheres (GS): Grows spheres around the instance of interest until

they reach the closest decision boundary to find a nearby CF [9].
6. Diverse Counterfactual Explanations (DiCE): Outputs a set of diverse

CFs for user selection, based on the idea that, for a given user, a single CF
may not work because the user may not be able to implement the changes
suggested by it. Therefore, DiCE provides diverse actionable CFs [14].

7. Feasible and Actionable Counterfactual Explanations (FACE): Out-
puts a CF that considers the plausibility of the actions to reach it, where
higher density paths in the dataset are more likely and plausible [17].

2 https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-
and-analysis.

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

502 A. Kuratomi et al.

8. Model-Agnostic Counterfactual Explanations (MACE): A multi-
objective algorithm that uses Satisfiability Modulo Theories (SMT) to achieve
sparsity, proximity, and feasibility through logical formulae [6].

9. Counterfactual Conditional Heterogeneous Autoencoder (CCH-
VAE): uses a variational autoencoder to generate CFs in the latent space in
likely data regions, according to the dataset distribution. It uses ε-justification
to measure justification in the continuous latent space [16].

4.3 Performance Metrics

Five CF performance metrics are used to evaluate JUICE CFs and benchmark
them against the state-of-the-art CF generation algorithms:

1. Justification: True - if the CF is connected to a correctly classified CF obser-
vation through the mixed-features justification verification, False - otherwise.

2. Feasibility: The intersection of mutability, directionality, and plausibility:

FCF = (mutableCF = 1) ∧ (directionCF = 1) ∧ (plausibleCF = 1), (2)

FCF outputs 1 if the obtained CF satisfies simultaneously all three conditions,
otherwise it outputs 0.

3. Sparsity: 1 minus the ratio of changed features nchanged:

SCF =

{
1 − nchanged/n ifnchanged > 1
1 ifnchanged = 1

4. Proximity: the euclidean distance between the CF and the instance of inter-
est.

5. Time: Run time in seconds of the CF generation method.

4.4 Results and Discussion

This section presents the results of the empirical evaluation. First, the black-box
models used for each dataset and their F1 score performance is shown. Then,
the main results of the CF evaluation metrics are presented and discussed.

Black-box models and available test samples. We considered Decision Tree,
Support Vector Machines, Random Forest (RF), and Multi-Layer Perceptron
(MLP) as the black-box models. A grid search was performed to select the best-
performing model. For the datasets used in this study, RF and MLP yielded the
best performance and are used as the predictor f . Table 1 shows the selected
models for each dataset with their F1 score. Some of the CF generation methods
require a specific ML classifier, i.e., the RT and the FT algorithms require an
RF. In these cases, an additional model was trained, achieving a similar clas-
sification performance. Finally, the number of instances of interest per dataset
was obtained after balancing the datasets and considering only instances with
undesired predicted classes. The number of instances of interest per dataset is
reported in the last row of Table 1. Further details are found in the GitHub repo.

JUICE: JUstIfied Counterfactual Explanations 503

Table 1. Black-box models performance and available test samples.

Dataset Disease Compass Adult Heart German Credit Ionosphere Athlete

Model RF RF RF RF MLP MLP MLP MLP

F1 0.74 0.65 0.83 0.83 0.70 0.72 0.96 0.75

Instances 41 49 39 23 30 46 27 42

CF generation methods. The 5 metrics results are shown in Fig. 3, aggregated for
all available instances of interest specified in Table 1. The proposed methods are
the light and dark green bars, JUICEP (proximity version) and JUICES (sparsity
version), respectively. Note that lower is better for Proximity and Time.

Regarding justification, JUICE always provides justified CFs, matched by
NN and RT. This was expected since the latter select observations as CFs (jus-
tified by themselves). Notice that the justification property strongly depends on
the dataset. Additionally, JUICES and JUICEP provide the highest feasibility,
together with NN and MO. RT CFs are not always feasible because they may
not comply with mutability or directionality.

In terms of sparsity and proximity, MACE is the best algorithm. Neverthe-
less, JUICES and JUICEP provide good performance, occupying the third and
fifth places in sparsity and the fourth and fifth in proximity. This is close to the
performance of DiCE (second) in sparsity and GS and RT (second and third)
in proximity. DiCE is outstanding in sparsity because the CFs have a diverse,
smaller number of changes. However, DiCE, as well as CCHVAE, do not per-
form well in terms of proximity because they prioritize likelihood as a proxy
for faithfulness. Likely CFs imply a nearby CF closer to the center of the data
distribution, which may increase the distances to the instance of interest [16].

The MACE optimization process takes the longest time for all datasets, in
some cases being 1 or 2 orders of magnitude higher than the next best performing
method. The JUICE algorithms ranks eighth and ninth in run time, a result
which was expected due to the complexity that was previously discussed in
Sect. 3.3. However, this is a good trade-off for guaranteeing justified CFs and
attaining competitive performance in terms of the other explanation metrics.

To make the comparison easier, the Nemenyi test is run, and the CD plots are
shown in Fig. 4. In terms of justification, even though NN, RT, and JUICE meth-
ods provide 100% justification, they are not statistically different from CCHVAE,
but they are with respect to MACE, which performed best in proximity and spar-
sity. However, JUICE methods performed as good as MACE in both of these
metrics. In terms of feasibility, NN, MO, MACE, and JUICE methods are the
best, always providing feasible CFs, making them statistically better than CCH-
VAE and FACE, which are methods focused on the likelihood or path-adherent
CFs. Regarding run time, MACE is by far the least favored (last place) but not
statistically different from FT, JUICE methods, FACE, and CCHVAE.

These results indicate that JUICE derived methods are as good as the best
performing methods in traditional CF metrics, such as proximity and sparsity,

504 A. Kuratomi et al.

Fig. 3. Results for all the performance metrics, datasets, and methods. Rows of figures
correspond to different datasets, while columns to different metrics. Each bar in the
plots corresponds to one method. Note that the Time (s) plot (right column of bar
plots) has a logarithmic scale in the y-axis (the lower the better, as in the proximity
metric).

JUICE: JUstIfied Counterfactual Explanations 505

Fig. 4. Different CD plots (Nemenyi tests) for the 5 performance metrics.

are the best in feasibility and justification, and performed slightly worse in rela-
tion to others in the run time metric, which is for CFs not as critical as proximity
or faithfulness. Additional datasets may be included to strengthen the tests.

5 Related Work

There are a few intuitive approaches for faithful CFs, such as NN and RT [11].
Since the obtained CFs belong to the observed dataset, they are justified. How-
ever, they have two main problems: (1) proximity and sparsity are restricted to
the closest observations (closer or sparser CFs may exist), and (2) there could
be a mismatch between the model-predicted label and ground-truth label. Addi-
tionally, RT (as well as FT) only work in tree-ensemble models.

Likelihood also leads to faithfulness [8]. Dandl et al. [4] propose MOC to
obtain likely CFs by analyzing the k-nearest observations without considering
justification. Moreover, CCHVAE, introduced by Pawelczyk et al. [16], attempts
to improve ε-connectedness in the continuous latent space. However, there is no
guarantee of justification (even with high levels of CF likelihood). The method
also suggests a trade-off between faithfulness and CF actionability difficulty,
which is related to the CF proximity.

506 A. Kuratomi et al.

The GS algorithm introduced in Laugel et al. [9] is similar to the justifica-
tion verification algorithm hereby proposed, but it does not take into account
either the existence of multiple paths from one classification region to another
(it only applies a greedy selection of the features to be changed one at a time)
or the mixed-features scenario. Additionally, Mothilal et al. [14] propose DiCE
that preserves the distance measures used in the original space to allow easier
interpretation. However, both GS and DiCE may obtain unfaithful CFs, since
neither considers CF likelihood or CF justification.

Furthermore, Poyiadzi et al. [17] propose the FACE algorithm, which takes
actionability a step further and considers the problem of possible paths to reach
a desired CF. Finally, Karimi et al. [6] propose MACE, which provides optimality
in sparsity, proximity, and feasibility. However, these models do not necessarily
guarantee justification.

6 Conclusions and Future Work

In this study, we proposed two novel algorithms that aim towards generating
and verifying justified CFs. Firstly, we introduced JUICE, which guarantees
the justification property on CFs in accordance with a trained model f on a
mixed-features dataset. The empirical evaluation showed that JUICE achieves
comparative performance with respect to state-of-the-art algorithms in other
desiderata, such as proximity, sparsity, and feasibility. We presented two versions
of JUICE, namely, JUICEP and JUICES, that prioritize proximity or sparsity
based on the focus of the user. Additionally, we introduced the first model-
agnostic justification verification algorithm to evaluate the justification of any
CF obtained with respect to a given trained model f in a mixed-features scenario.

Future work should consider scalability and multi-connection to clusters of
observations and their distance to the CF, combining both justification and
likelihood as a stronger measure of CF faithfulness. Moreover, additional met-
rics, such as diversity, robustness, and fairness, should be considered, which are
becoming increasingly important when providing actionable plans for end users.
Finally, a natural extension is to adapt JUICE to image and temporal datasets
to increase the utility of the algorithm and the power of the statistical tests.

References

1. Bobek, S., Nalepa, G.J.: Explainability in knowledge discovery from data streams.
In: 2019 First International Conference on Societal Automation (SA), pp. 1–4.
IEEE (2019)

2. Boer, N., Deutch, D., Frost, N., Milo, T.: Just in time: personal temporal insights
for altering model decisions. In: 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 1988–1991. IEEE (2019)

3. Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence
from human reasoning. In: IJCAI, pp. 6276–6282 (2019)

JUICE: JUstIfied Counterfactual Explanations 507

4. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual expla-
nations. In: Bäck, T. (ed.) PPSN 2020. LNCS, vol. 12269, pp. 448–469. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 31

5. Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C.: Explaining models:
an empirical study of how explanations impact fairness judgment. In: Proceedings
of the 24th International Conference on Intelligent User Interfaces, pp. 275–285
(2019)

6. Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual expla-
nations for consequential decisions. In: International Conference on Artificial Intel-
ligence and Statistics, pp. 895–905. PMLR (2020)

7. Kyrimi, E., Neves, M.R., McLachlan, S., Neil, M., Marsh, W., Fenton, N.: Medical
idioms for clinical Bayesian network development. J. Biomed. Inform. 108, 103495
(2020)

8. Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc coun-
terfactual explanations: a discussion. arXiv preprint arXiv:1906.04774 (2019)

9. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classi-
fication for comparison-based interpretability in machine learning. arXiv preprint
arXiv:1712.08443 (2017)

10. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Unjustified clas-
sification regions and counterfactual explanations in machine learning. In: Brefeld,
U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML
PKDD 2019. LNCS (LNAI), vol. 11907, pp. 37–54. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-46147-8 3

11. Lindgren, T., Papapetrou, P., Samsten, I., Asker, L.: Example-based feature tweak-
ing using random forests. In: 2019 IEEE 20th International Conference on Infor-
mation Reuse and Integration for Data Science (IRI), pp. 53–60. IEEE (2019)

12. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

13. Molnar, C.: Interpretable machine learning: a guide for making black-box mod-
els explainable (2021). https://christophm.github.io/interpretable-ml-book/limo.
html

14. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

15. Pawelczyk, M., Bielawski, S., Heuvel, J.v.d., Richter, T., Kasneci, G.: CARLA: a
python library to benchmark algorithmic recourse and counterfactual explanation
algorithms. arXiv preprint arXiv:2108.00783 (2021)

16. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfac-
tual explanations for tabular data. In: Proceedings of The Web Conference 2020,
pp. 3126–3132 (2020)

17. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible
and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pp. 344–350 (2020)

18. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

19. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-
based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
465–474 (2017)

https://doi.org/10.1007/978-3-030-58112-1_31
http://arxiv.org/abs/1906.04774
http://arxiv.org/abs/1712.08443
https://doi.org/10.1007/978-3-030-46147-8_3
https://doi.org/10.1007/978-3-030-46147-8_3
https://christophm.github.io/interpretable-ml-book/limo.html
https://christophm.github.io/interpretable-ml-book/limo.html
http://arxiv.org/abs/2108.00783

508 A. Kuratomi et al.

20. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learn-
ing: a review. arXiv:2010.10596 (2020)

21. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31,
841 (2017)

22. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.:
The what-if tool: interactive probing of machine learning models. IEEE Trans. Vis.
Comput. Graph. 26(1), 56–65 (2019)

http://arxiv.org/abs/2010.10596

Explaining Siamese Networks in Few-Shot
Learning for Audio Data

Andrea Fedele, Riccardo Guidotti(B), and Dino Pedreschi

University of Pisa, Pisa, Italy
a.fedele7@studenti.unipi.it, {riccardo.guidotti,dino.pedreschi}@unipi.it

Abstract. Machine learning models are not able to generalize correctly
when queried on samples belonging to class distributions that were never
seen during training. This is a critical issue, since real world applications
might need to quickly adapt without the necessity of re-training. To over-
come these limitations, few-shot learning frameworks have been proposed
and their applicability has been studied widely for computer vision tasks.
Siamese Networks learn pairs similarity in form of a metric that can be
easily extended on new unseen classes. Unfortunately, the downside of
such systems is the lack of explainability. We propose a method to explain
the outcomes of Siamese Networks in the context of few-shot learning
for audio data. This objective is pursued through a local perturbation-
based approach that evaluates segments-weighted-average contributions
to the final outcome considering the interplay between different areas of
the audio spectrogram. Qualitative and quantitative results demonstrate
that our method is able to show common intra-class characteristics and
erroneous reliance on silent sections.

Keywords: Explainable AI · Siamese Networks · Audio Data

1 Introduction

In recent years, Artificial Intelligence (AI) significantly sped up its pace thanks to
the availability of large datasets, the emergence of powerful computing devices,
and the development of sophisticated algorithms [10]. Machine Learning (ML)
models have been widely employed, achieving significant results in different fields
such as computer vision and audio signal processing. Despite their thriving
achievements, traditional ML systems rely on learning from big and large-scale
datasets, while real-world applications typically involve constraints that might
lead to a limited fuel of samples. More importantly, current techniques fail when
asked to generalize rapidly from few samples only. On the contrary, humans are
capable of learning by quickly generalizing on their prior knowledge. For exam-
ple, if a child is presented with a few pictures of a person he has never seen
before, he will still be able to match and identify the right individual among a
reasonable number of pictures portraying different subjects.

To overcome these limitations, recent studies proposed few-shot learning
(FSL) frameworks where a ML model must learn to classify unseen classes given
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 509–524, 2022.
https://doi.org/10.1007/978-3-031-18840-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_36&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_36

510 A. Fedele et al.

only few samples per class [23]. FSL methods typically consider a C-way k-shot
classification task where C represents the number of classes the model is asked to
classify from, while k is the number of labeled samples per each of these classes.
Such parameters define the support set dimension, which is an auxiliary set of
data the classifier is provided with to be guided in its verdict. One-shot learning
is a special case of FSL where exactly one instance of the target class is present
in the training set, while zero-shot learning aims to predict the correct class
of a given instance without being previously exposed to such class. Different
algorithms have been proposed to tackle few-shot metric-learning [13,19,20,22].
Siamese Networks (SNs) [13] make use of two identical sub-networks that map
the inputs into an embedding space where a distance function is later employed
to calculate the distance between such embedded representations. Based on such
distance, a similarity score is finally computed for the given inputs. The capabil-
ity of SNs intrigued scientists to verify their robustness on audio inputs. In [12],
the authors demonstrate that SNs work well on audio inputs, producing good
results when asked to generalize on unseen classes.

A big issue of SNs is the lack of explainability. Understanding the reason why
a model takes a specific decision is hugely important to developers, organizations,
and end-users. In recent years, researchers examined the eXplainable Artificial
Intelligence (XAI) topic from various perspectives [3,9]. A possible characteri-
zation of XAI techniques distinguishes between gradient-based and perturbation-
based approaches [3,9]. While both aim to understand the contribution that
each input feature has on a specific outcome, they solve the problem differently.
Gradient-based approaches estimate feature contribution by means of forward
and backward propagation passes throughout the network. On the other hand,
perturbation-based methods perturb the input and measure the output changes
with respect to the original input. Different XAI methods have found very good
feedbacks in the research community, but few techniques have been presented to
interpret and explain SNs. Moreover, to the best of our knowledge, none of the
available techniques has ever been tested on audio inputs processed by SNs in
the context of C-way one-shot learning.

In this paper, we propose a local perturbation-based method to explain
Siamese Networks in the context of C-way one-shot learning on audio input
data. Our SIamese Networks EXplainer (sinex) seeks to expose the discrimina-
tive features for a ML model that is asked to quickly learn and generalize like
humans do. We want our explainers to answer questions such as: What is the
model listening to when it correctly matches the class of two audio it has never
heard before? Why is a given recording more similar to a specific audio than it
is to others? Why is the model miss-classifying a given audio? sinex uses a per-
turbation approach evaluating segment-weighted-average contribution values to
the final outcome. A coalation-based variant of sinex (sinexc) is also presented.
sinexc uses a similar approach that also considers the interplay between differ-
ent areas of the input as a whole. The contribution values can then be visualized
as heatmaps to have a intuitive and user-friendly idea of the SN behavior. We
employ sinex to explain SNs reaching state-of-the-art performance on both 1-

Explaining Siamese Networks 511

second and 5-seconds long recordings in the context of 5-way one-shot learning.
Our results illustrate that class-homogeneous datasets seem to lead to robust
networks, while class-heterogeneous ones result in more inaccurate classification
behaviors. sinex also brings to light an erroneous reliance on silenced areas that,
in some cases, is the cause of miss-classification errors.

The paper is organized as follows. Related works are reviewed in Sect. 2. In
Sect. 3 we formalize the problem we face, while in Sect. 4 we illustrate our pro-
posals. Section 5 reports the experimental results and our main findings. Finally,
Sect. 6 summarizes our contributions and open research directions.

2 Related Works

In this section we illustrate the few existing works to explain SNs. In [26], SNs
are employed in a query-by-vocal-imitation retrieval system. The last section
of [26] focuses on visualizing and sonifying the input patterns that maximize
the activation of certain neurons, using the activation maximization approach.
By visualizing the patterns that maximize the activation of random neurons from
each layer, the authors suggest that it is possible to have a glimpse of what the
network believes is important. Unfortunately, the fact that only random neurons
are considered might cause an isolated effect w.r.t. the overall job of the SN. Also,
it is not possible to comprehend whether the returned features have a positive or
negative impact on the outcomes. A similar approach is described in [1], where
the system is developed in the context of one-shot learning to identify bird
species. The authors visualize how audio spectrograms [7] are decomposed by
each layer and consider the last one as the explanation layer. They conclude that
the most distinctive feature is the distribution of the signal’s energy in species-
dependent frequency bands. Both in [26] and [1], the explanation is derived only
from the convolutional encoders, bypassing the SN core similarity scoring layer.

In [21], similarly to [8,14], a special auto-encoder is used as core to the expla-
nation algorithm. First, the encoder is trained to reconstruct the input instances
of the training set starting from the embedded representation given by the SN’s
built-in embedder. Then, the decoder is trained to reconstruct the original input
given the hidden representation. Once the auto-encoder is trained, a pair of
inputs to explain is given as input both to the SN and the auto-encoder. The
vectors resulting from the SN’s encoders get perturbed on what the authors
refer to as important features. Such features are chosen considering the small-
est distance if the two inputs are semantically close, while the biggest distance
is considered otherwise. The resulting perturbed vectors are submitted to the
decoder, which maps them back to the original input space. The embedded vec-
tors get randomly perturbed, and the mean contribution value of each feature
is measured as the difference between its value in the reconstructed input after
perturbation and its value in the reconstructed input without perturbation. Lim-
itations of this approach are the large number of tuning parameters, including
the choice of the number of important features, and the need for a large number
of data to train the auto-encoder. Moreover, this algorithm requires to train an

512 A. Fedele et al.

Fig. 1. Log-mel spectrogram of an audio containing a person laugh. Darker areas rep-
resents lower dBs, i.e., silence, lighter pixels represent sounds audible by human hear.

additional ML model that needs access to the training set. In [5], another post-
hoc explanation approach for SNs is proposed. The authors argue that unseen
instances in the support set might make existing perturbation-based XAI meth-
ods over-sensitive to irrelevant perturbations. To control such possible superflu-
ous variations, the authors find global invariant salient features for individual
objects using self-supervision. Then, they formulate an optimization problem to
adapt the global salient features to explain a SN prediction for an input pair.
Results on tabular and graph data show that their explanations robustly respects
the self-learned invariance. Unfortunately, also these approaches [5,21] do not
account for the similarity scoring layer but only operate on the data embedded
representation. Lastly, we mention a different approach explored in [24], where
a class-to-class SN (C2C-SN) is trained to learn patterns of both similarity
and difference between classes. The authors demonstrate the use of C2C-SNs
for explanation purposes by means of prototypical case finding and contrastive
cases. Differently from our work, [24] does not explore C-way k-shot learning
tasks, and it does not query the model on unseen classes.

The explanation approach we propose differs from the ones employed
in [1,5,26] since they use gradient-based methods that tend to focus on the
encoder part of the SNs alone. These works limit their exploration to the last
convolutional layer of the network, not considering the SN architecture as a
whole. Also, differently from [21], we do not train any additional model. More-
over, our explanation method does not need access to the training data, and
it can be deployed directly at prediction time. The main goal of our project is
to explain SNs in their entirety, focusing on the layer responsible for the final
similarity score. Moreover, our proposal addresses the problem of explaining SNs
in the context of C-way one-shot learning which is not tackled by any work in
the literature.

3 Problem Formulation

An audio dataset D = 〈X, y〉 in the FSL setting is composed by a set of n tracks
X = {x1, . . . , xn} such that it is always possible to represent each track xi as
a matrix in R

p×q where each xi is the spectrogram [1,7] of the ith track in the

Explaining Siamese Networks 513

dataset, q is the length of the track and p the number of frequencies observed.
Thus, xi,j,k indicates the intensity value at time j of the kth frequency for the ith

track. The intensity is typically expressed in terms of decibel (dB). An example
of spectrogram is shown in Fig. 1. The vector y = {y1, . . . , yn} indicates the class
yi associated to xi with yi ∈ [0, . . . , L − 1] and L is the total number of classes.
Typically, L is a high number if compared to traditional multi-class problems.
L is greater or equal than 50 in our experiments. In the context of C-way one-
shot learning where we pose our analysis, the support set S is composed by C
different tracks where each belongs to a different class and only appears once in
S. We highlight that typically C � L. We refer the interested reader to [13,23]
for further details on how SNs are trained.

In such learning framework, a SN is a deep learning model f that takes as
input a support (or reference) set S = 〈{s1, . . . , sC}, {y1, . . . , yC}〉 containing
tracks si ∈ R

p×q and their corresponding class labels yi, a query instance x for
which the associated class label is unknown, and predicts the class label yi for
x by comparing x with each si ∈ S with respect to a learned similarity function
sim [13] to finally select the highest of the obtained scores, i.e.,

yi = f(x, S) = arg max
∀si,yi∈S

sim(x, si)

The problem we aim to address in this paper is defined as follows. Given a
pretrained SN f , our objective is to define a post-hoc local explanation method g
such that, taken as input f , S and a query instance x, g returns an explanation E
that unveil what f listened to in order to assign the class yi to x. More formally,
our objective is to define a function g such that E = g(f, x, S). We formalize the
explanation E as a set of heatmaps for each track in S, i.e., E = {h1, . . . , hC}
where hi is the heatmap of the track si, yi ∈ S, and the value hi,j,k indicates the
importance/saliency at time j of the kth frequency for the ith support track.

4 Siamese Network Explainer

In this section, we present our local post-hoc SIamese Networks EXplainer sinex.
sinex implements the explanation function g w.r.t. the problem formulation
above. The architecture of the SNs used for audio spectrograms comprehends
two main parts: two identical convolution-based encoding sub-networks, and the
final layer computing the distance between the encoded vectors to generate their
similarity score. Employing a gradient-based explanation technique on the iso-
lated sub-networks would only highlight how they work when reducing inputs
in different convolution stages, but it would bypass the final layer’s impact on
the similarity score prediction. Differently from the existing proposal in the lit-
erature (see Sect. 2), we propose to explain the SN outcome by generating an
explanation based on the layers contributing to the final similarity score. Hence,
we decided to follow a perturbation-based approach measuring the outcome sim-
ilarity prediction after different input perturbations.

514 A. Fedele et al.

Fig. 2. Perturbation procedure overview. From left to right: support set sample spec-
trogram, segmentation on 12 regions, perturbation on the 3rd and 5th segment.

The first aspect to consider is how to perturb a spectrogram. As a first
attempt, we inspected a window-occlusion-based approach [25]. The main limi-
tation of occluding with a fixed size shape is that the features contribution values
might vary significantly for different window sizes. Preliminary experiments with
scrolling windows of shapes from 1 × 1 to 50 × 50 showed that both smaller and
bigger window dimensions tend to result in contribution values equally important
across the whole spectrum, without being able to discriminate between different
portions of it. Defining the right window size might become a hard task since the
same window might have various results even on different instances of the same
class label. Even worst, using fixed-length segments to divide the input w.r.t.
the time or the frequency axes individually would imply a direct bond between
specific class instances and their segmentation. Thus, relying deeply on time seg-
mentation alone would mean assuming that every sound event starts and end at
the same moment in time in a given recording. In real-world applications, it is
unimaginable to assume that the actual sound event occurs at the exact same
time under different recording takes.

A spectrogram can be intended as an image due to its matrix structure, but
it should not be confused as one. In fact, it is crucial to expand it by means
of an additional channel dimension so that the spectrogram can be used as
“image-like” input data with common convolution-based architectures. There-
fore, we propose to segment audio data by means of techniques typically used
for image inputs. Examples are the Felzenszwalb approach [6] which computes
the Felsenszwalb’s graph-based image segmentation using a minimum spanning
tree-based clustering on the image grid, and SLIC [2] which, instead, segments
images using k-Means clustering. Unfortunately, the single-fake-channeled nature
of audio inputs deriving from such augmentation procedure precludes the pos-
sibility of experimenting with other segmentation algorithms. For this reason,
Felzenszwalb and SLIC are the algorithms we decide to test since they can oper-
ate on grey-scale images.

Considering the C-way one-shot setting, we have to specify what we want
to perturb between the query instance x and the instances in the support set
S to get the explanation. Since x is classified w.r.t. the instances in S, we decided
to segment and perturb the instances si ∈ S and analyze how the estimation of
the similarity between x and si changes when parts of si are hidden to the SN.

Explaining Siamese Networks 515

Algorithm 1: sinex(f, x, S)
Input : f - Siamese Network, x - instance to explain, S - support set
Param : seg - segmentation algorithm, γ min nbr. segments
Output: E - explanation

1 E ← ∅; // init. explanation
2 for si ∈ S do // for each support sample
3 v ← sim(x, si); // calculate similarity
4 R ← seg(si, γ); // apply segmentation

5 hi ← 0p×q ; // init. sample contribution
6 for rj ∈ R do // for each segment
7 zi ← (si[¬rj] ← 0); // perturb sample
8 u ← sim(x, zi); // calculate similarity
9 δ ← v − u; // compute segment similarity delta

10 hij ← δ/|ri|; // weight and update contribution

11 E ← E ∪ {hi}; // add heatmap to explanation

12 return E;

We leave as a future study the analysis of our method in the opposite setting
where the segmentation and perturbation are applied on the query instance x.

Algorithm 1, illustrates sinex as our proposal for implementing the function g
to explain a SN f w.r.t. a query instance x and a support set S. For every sample
of the support set (lines 2–11), sinex measures the SN similarity v between the
query input x and the support sample si before perturbation (line 3). Then, it
segments the support set sample using the segmentation algorithm seg (line 4),
and obtains a set of segments R containing at least γ segments. For each segment
rj its contribution is computed as follows and stored in the saliency map hi that
models the importance of the various areas of support sample si. Saliency maps
are initialized with a null contribution, i.e., with a matrix with value 0 and having
the same dimensionality of the support sample spectrogram (line 5). First, the
support set sample si is perturbed (line 7) by obscuring/silencing everything
except the region rj . With the notation si[¬rj] ← 0 we are indicating the fact
that, the support sample si is taking the value 0 in all regions except rj . The
value 0 in Algorithm 1 line 7 symbolizes a default value. Since in our setting we
are dealing with audio inputs, obscuring a segment means setting its value to
−80, as this is the smallest value in the dB scale. After that, the new similarity
outcome u is computed, pairing the query sample x with the perturbed version
of the support set spectrogram zi (line 8). The difference δ between the starting
similarity score v and the one resulting after-perturbation v is finally computed
(line 9). Such difference is then weighted w.r.t. the current segment size |rj |
and updated in the corresponding saliency map hi (line 10). Examples of the
perturbation procedure on a sample instance are shown in Fig. 2.

This version of sinex can suffer from some known problems of perturbation-
based methods. First of all, when we perturb instances, we might generate
out-of-distribution (OOD) data point. Since well-trained ML models general-
ize correctly on new samples as long as they belong to a known distribution, we
have no guarantee on the significance of the similarity measures w.r.t. implau-
sible instances. A solution to this problem is to re-train the model on a dataset
that includes the perturbed data points, accepting the compromise of the addi-

516 A. Fedele et al.

Algorithm 2: sinexc(f, x, S)
Input : f - Siamese Network, x - instance to explain, S - support set
Param : seg - segmentation algorithm, γ min nbr. segments, α - per-segment coalitions, β

- per-coalition active segments
Output: E - explanation

1 E ← ∅; // init. explanation
2 for si ∈ S do // for each support sample
3 v ← sim(x, si); // calculate similarity
4 R ← seg(si, γ); // apply segmentation

5 hi ← 0p×q ; // init. sample contribution
6 for rj ∈ R do // for each segment
7 Π ← perturb(si, α, β); // make α coalition with β active segments
8 ū ← 0; // sums of segment similarities
9 for πk ∈ Π do // for each coalition

10 zi ← (si[¬rj ∧ ¬πk] ← 0); // perturb sample
11 ū ← ū + sim(x, zi); // calculate similarity

12 δ ← v − ū/|Π|; // compute segment similarity delta
13 hij ← δ/|ri|; // weight and update contribution

14 E ← E ∪ {hi}; // add heatmap to explanation

15 return E;

tional time resources needed. Secondly, we have to consider the isolated effect
such techniques might lead to. Measuring the prediction changes of singular seg-
ment perturbations might help us understand how that segment is contributing
to the final outcome, but it will disregard it completely from the interplay it has
with the remaining input areas. We take into account both problems as follows.
Considering the FSL context and the fact that we evaluate the model on new
classes, we assume SNs robustness to OODs since unseen sample might be con-
sidered OOD themselves. Despite this benefit, the nature of audio inputs might
still play an important role when a spectrogram from an unknown distribution
is compared with a perturbed sample belonging to that same distribution. Our
proposal to mitigate these downsides is to consider how a specific segment con-
tributes to the final outcome by considering its average prediction value. Inspired
by SHAP [15], we want such value to consider the interplay between the segment
in analysis and the remaining others. However, differently from SHAP, our con-
text does not allow us to compute “baseline values” w.r.t. the training set data.
Since our goal is to design an explanation method that is independent from its
training data, we extend sinex as described in Algorithm 2 that reports the
sinexc version, i.e., sinex with coalitions.

In sinexc, to measure the interplay between each segment and the remaining
areas of the spectrogram, we introduce the parameter α to control the number
of per-segment coalitions to generate, and the parameter β to control the overall
number of segments that must remain active in each coalition. Through this
approach, we take into account not only how a specific segment influences the
outcome but also how its interplay with other areas of the spectrogram impacts
the final similarity score. For each coalition (lines 9–11, Alg. 2), we store the sum
of the similarity scores obtained querying the model in ū. Then we compute the
segment contribution δ (line 12, Alg. 2) as the difference between the original
similarity score v and the mean similarity value ū/|Π| obtained w.r.t. the |Π|

Explaining Siamese Networks 517

coalitions. Finally, the segment-average prediction value is weighted according
to the segment size (line 13, Alg. 2). This process is iterated over each pair
of a C-way one-shot batch keeping fixed the query sample and applying such
coalition-based methodology to each si element of the support set S.

As a result of the run of sinex and sinexc, the explanation E contains the
saliency maps {h1, . . . , hC} for each support set sample {s1, . . . , sC} indicating
the contribution values per each segment within its own spectrogram segmenta-
tion. Each saliency map can be visualized as a heatmap having the same size as
the input spectrogram. Therefore, we can visualize such heatmaps showing how
each segment is influencing - either positively or negatively - the final similarity
score outcome. Finally, to completely target the problem of explaining the C-way
one-shot classification task as a whole, for visualization purposes, we employ a
common representation scale where the contribution values are considered in
terms of their absolute values and normalized in the scale [−T,+T] where T is
the maximum absolute value among all the contributions in E.

5 Experiments

We report here the experiments carried out to validate sinex and sinexc. We
implemented sinex and its coalition variation sinexc in Python1. After some
preliminary tests using Felzenszwalb and SLIC segmentation algorithms2, we
decided to select the Felzenszwalb approach for the experiments reported in the
following using with the setting: scale = 50 and sigma = 1.5. The minimum
number of segments γ parameter has been analyzed in the ranges [50, 1000] and
[100, 1000] with a step of 50 and 100 for sinex and sinexc, respectively. sinexc
additional parameters setting was set as α = 200 and β = 0.153.

Datasets and Siamese Networks Models. We experimented with two data-
sets4: AudioMNIST and ESC-50. AudioMNIST is composed of 30k recordings
of spoken digits (0–9) in English. Each digit is repeated 50 times for each
of the 60 different speakers, which are divided into 12 females and 48 males.
Due to the high number of available speakers, we used this dataset to pur-
sue a speaker recognition task creating three disjoint sets: the training set was
composed of 50 classes, while the remaining 10 were divided equally between
validation and test set. The ESC-50 dataset is a collection of 2k annotated 5-
second audio clips divided into 50 different classes and 40 repetitions per class.
In this case, we decided to pursue an environmental audio classification task. We
split the dataset to have 40 training class, 5 validating and 5 testing ones. We
pre-processed both datasets with librosa to extract their log-mel spectrogram
representation5 which is commonly used for audio classification tasks [11,17].
1

Code available at https://github.com/andreafedele/SINEX.
2

https://scikit-image.org/.
3

Higher α increases the execution time without revealing variation in the segment contribution
values. Higher β tends to consider all segment as equally important the more β is closer to 0.5.

4
https://github.com/soerenab/AudioMNIST, https://github.com/karolpiczak/ESC-50.

5
librosa: https://librosa.org/. AudioMNIST tracks were down-sampled to 41kHz and zero-padded
to have vectors of equal length. Then, each track was converted using an FFT window size of

https://github.com/andreafedele/SINEX
https://scikit-image.org/
https://github.com/soerenab/AudioMNIST
https://github.com/karolpiczak/ESC-50
https://librosa.org/

518 A. Fedele et al.

Table 1. 5-way one-shot mean test accuracy scores.

AudioMNIST ESC-50

Class 04 56 55 27 46 Avg Glass Breaking Church Bells Frog Laughing Door Wood Creaks Avg

Accuracy .93 .91 .88 .82 .78 .86 .99 .93 .91 .82 .71 .87

In line with [1,12,13,26], we adopted the following structure for the archi-
tecture of the SNs for both datasets. The overall architecture is formed by two
convolution-based encoders, followed by a distance layer and a final output scor-
ing layer. The two encoders share the same architecture and weights, which are
updated simultaneously during training so to result in identical embedding sub-
networks. Each convolution-based encoder is composed of three 2D-convolution
blocks with 64, 32, 12 filters, and kernel size 5×5, 5×5, 3×3, respectively. Each
convolution layer is followed by a max-pooling layer. Finally, a fully connected
layer of 4096 units takes the input back to a 1-dimension form. The square dis-
tance operates as a distance layer between the two encoded inputs, and a final
fully connected layer composed of only 1 unit calculates the similarity score by
means of a sigmoid activation function. Both SNs were trained using a binary
cross-entropy loss function. The maximum number of training epochs was set
to 5000, with the model performance being evaluated every 100 epochs on 300
random 5-way 1-shot tasks. For both datasets, the training procedure stopped
because no 5-way 1-shot mean accuracy improvement was recorded after 10 con-
secutive evaluation runs. The SN working on AudioMNIST reached its best mean
5-way one-shot accuracy after 900 training epochs with a value of 0.83, while
the SN using the ESC-50 dataset needed 1900 epochs to obtain a score of 0.86.
Further details on the SNs architecture and the training procedure are accessible
in the technical report available in the repository.

We highlight that the SNs for both datasets are validated and tested on sets
composed of unseen classes6. We report in Table 1 the mean 5-way one-shot
accuracy for each class of both datasets. Results show that the SN on ESC-50
reaches accuracy higher than 90% on 3 out of 5 classes, but the Door Wood
Creaks class lowers the overall result with a mean accuracy of 71%. Such value
is smaller than the smallest result in AudioMNIST, which scores accuracy values
that seems to be better distributed among the 5 classes. We highlight that these
performance are better than state-of-the-art SNs for the ESC-50 dataset [12].

Qualitative Evaluation. Fig. 3 and 5 show examples of explanation returned
by sinexc for AudioMNIST and ESC-50, respectively. The visualization color of
our explanations is affected by a diverging light blue to pink colormap inspired
by [15]. Light blue areas represent segments of negative influence on the SNs

4096, hop length of 197 samples, and 224 mel-bands. Such a process leads to spectrograms of
sizes equal to 224 × 224. For ESC-50, the sampling rate was 44.1kHz, and no down-sampling was
applied. We converted tracks of ESC-50 using a FFT window size of 2048, hop length of 512
samples, and 128 mel-bands. The dimensions of the resulting spectrogram is 128 × 431.

6
Not even one sample of the test classes was ever seen during training, leading to a situation which
is commonly referred as zero-shot learning. Despite this, in this paper, we use the term C-way
one-shot learning to indicate that the additional support set is composed of a singular sample for
each of the C classes. We are therefore asking the model to zero-shot the right classification of an
unseen query class by providing exactly one other sample of that same class in the support set.

Explaining Siamese Networks 519

Fig. 3. SINEXC explanation with Felzenszwalb and γ = 900 of a correct 5-way one-
shot classification on speaker 56 (female) for AudioMNIST. From left to right, the top
line shows the query sample x spectrogram followed by the heatmaps hi ∈ E related to
their si ∈ S spectrograms. Each si is shown in the bottom line right below its heatmap.

Fig. 4. grad-cam heatmaps highlighting important pixels for the SNs encoders. Dark-
violet areas indicate non influential pixels, red colors indicate influential ones.

similarity outcome, while pink portions indicate segments that positively affect
the similarity score. White areas are instead neutral to the SNs classification pro-
cess. In Fig. 5 we only show heatmaps for the two support set samples scoring the
highest similarity scores to respect writing space constraints. The same AudioM-
NIST query sample x and support set S data used to generate the sinexc expla-
nation in Fig. 3, were also inspected with the Gradient-weighted Class Activation
(grad-cam) technique [18] in Fig. 4. We remind the reader that grad-cam only
focuses on the encoder part of the SNs architecture, limiting its exploration to
the last convolutional layer of the encoder itself.

sinexc explanations on AudioMNIST illustrate that the correct classifica-
tion of female speaker recordings is mainly due to medium-high frequency seg-
ments, while their miss-classification depends primarily on segments that reside
at the very bottom of the frequency range. A symmetrical behavior is observed
for male speakers’ audios: a correct classification is usually based on lower fre-
quency values, while incorrect classifications are generally due to segments higher
in the frequency spectrum. Reliance on silent-areas is also exposed by sinexc on
AudioMNIST. Experiments with grad-cam show that encoders typically focus
on the same frequency areas between different samples of a given class. Gener-
ally, heatmaps are located in spoken areas of the spectrogram, and they rarely
show up in silent areas. Differently from sinex and sinexc, for grad-cam we
observe few important pixels which span vertically across the whole spectrum,
highlighting the fundamental frequencies and their harmonics as verified in [4].

520 A. Fedele et al.

Fig. 5. Excerpt of sinex explanation with Felzenszwalb and γ = 900 of a correct 5-way
one-shot classification on frog class for ESC-50. From left to right, the top line shows
the query sample x spectrogram followed by the heatmaps h1, h2 ∈ E related to their
s1, s2 ∈ S spectrograms. Each spectrogram is in the bottom line below its heatmap.

Fig. 6. Mean iAUC and dAAC on AudioMNIST varying min number of segments γ.

The application of sinexc on ESC-50 extracts different insights. Analyzing
correct and incorrect classifications for Laughing and Door Wood Creaks classes,
we explored the SN inability to discriminate on medium-high frequencies between
these classes. Experiments also led us to think that the decay between sound
events plays a big role, especially if such events are repeated frequently in the
overall recording. Correct classification of the Frog label happens when the frog
croaks are well separated, while correct Church Bells classification happens if a
delay is present and clear between the distinct sound events.

The applications of sinexc unveil a strong dependence on the recordings
domain. AudioMNIST is a class-homogeneous dataset, while ESC-50 presents
a much higher class-heterogeneousness due to the different sources and record-
ing environments. Such collection brings to spectrograms of very different mor-
phology, despite them being labeled as belonging to the same class. These
insights were possible thanks to the explanations performed through sinexc,
while grad-cam does not allow to perform such reasoning.

Quantitative Evaluation. To assess the qualitative significance of the expla-
nations found by sinex and sinexc, we followed the methodology described
in [16] computing the insertion/deletion scores by increasingly inserting/deleting
the most influential pixels returned by our explainers from an empty/full spec-
trogram, respectively. In particular, we expect the insertion curve to rapidly
increase after only a small percentage of pixels are inserted, resulting in a large
insertion-area-under-curve iAUC. In a dual manner, we expect the deletion curve
to decrease rapidly after only a few pixels removal operations, therefore, resulting

Explaining Siamese Networks 521

Fig. 7. iAUC and dAAC curves for sinex (1st row), sinexc (2nd row), and grad-cam
(3rd row) vary the percentage of pixels inserted/deleted.

in a large deletion-area-above-curve dAAC. For both measures, the closer to one,
the better the result. Values close to one would imply that an explainer is capa-
ble of finding important pixels for the classification process [16]. We conducted
this experiment on AudioMNIST due to execution time reasons7. However, pre-
liminary results on ESC-50 show the same results presented in the following.

For sinex and sinexc, we carried out 500 experiments, dividing them into
20 different iAUC and dAAC evaluations per each of the Felzenszwal tested
values γ ∈ [100, 1000] with a step of 100. For each γ, we run 25 experiments
dividing them into 5 per each of the test classes, measuring the overall iAUC
and dAAC mean values. Figure 6 shows the resulting iAUC and dAAC mean
values. Recalling that we want such values to be simultaneously as closer to one
as possible, these experiments show that the best configuration is γ = 150 for
sinex and γ = 900 for sinexc. On such configurations, sinex results in values
of iAUC = 0.54 and dAAC = 0.52, while sinexc reaches scores of iAUC = 0.62
and dAAC = 0.75. With these settings, sinex requires on average 0.02 minutes
to return an explanation, while sinexc needs about 0.70 minutes.

We used the same evaluation measures to objectively and quantitatively com-
pare sinex and sinexc against grad-cam. For sinex and sinexc we adopted
the best parameters configuration described above. Figure 7 show the average
iAUC and dAAC trends for the three explanation methods. sinexc curves, with
iAUC = 0.62 and dAAC = 0.75, (2nd row) show that by removing the smallest
amount of 0.1 of important pixels, the SN similarity score decrease rapidly from
1.0 to 0.4. Similarly, the addition of 0.4 of important pixels brings the similarity
score outcomes to values close to 0.8. To reach the same results, sinex (1st row)

7
Generally, experiments on ESC-50 require double the time needed by AudioMNIST. Traditional
window occlusion-based method requires 15 times the time needed by sinexc on AudioMNIST.

522 A. Fedele et al.

needs instead to add/remove the 0.7 of important pixels. Additionally, sinex
dAAC curve unveils an intriguing behavior: the similarity mean outcome pre-
diction results values close to 0 when approximately 0.8 of important pixels are
removed. From that point on, further removals cause peaks of the curve back to
0.8 similarity score. Such behavior might be exposing the SN inability to discrim-
inate when it is presented with an empty spectrogram that is composed of very
few and very small pixels (γ = 150). Finally, analyzing the iAUC and dAAC
trend for grad-cam (3rd row), we can observe increasing and decreasing trends
which are much slower than the previous two. In this case, similarly to sinex, we
find final peaks that bring the similarity prediction scores back to 0.8− 1.0 after
a dramatic drop in both curves that usually occurs after inserting/deleting 0.7
pixels. Such experimental results lead us to select sinexc as the best explainer
considering the trade-off between its ability to find important pixels and the
time needed to calculate them.

6 Conclusion

We have presented sinex, an explanation method for Siamese Networks that
process audio inputs in the context of C-way k-shot learning. By using a local
perturbation-based approach on the spectrogram morphology, sinex is able to
highlight important areas for the SN classification process, both towards large
and small similarity scores. Experiments proved the utility of sinex and its
coalition variation sinexc, as well as their superiority with respect to exist-
ing approaches employed to fulfill the same task. Future research directions are
related to refining the explanations, both on the front-end visualization and to
the method itself. Concerning the front-end visualization, our idea is to combine
the visual communicative effect with the soundification of the most important
audio segments. Through soundification, our approach would be able to play
to human users the parts SNs focus on to derive a certain similarity measure.
We did not apply soundification at this stage due to the concise duration of the
tracks of the datasets analyzed. Furthermore, we aim to investigate deeper which
are the samples to perturb among those in the support set. Also, we would like
to experiment with sinex on other data types. The approach as it is, is appli-
cable on single-channel images and it can be extended on RGB-images after
minor adaptation of the segmentation algorithm. This opens for experiments in
any domain that utilizes images. Finally, we plan to conduct an extrinsic inter-
pretability evaluation of sinex explanation through a human decision-making
task driven by its explanations. In this way, we could objectively evaluate the
goodness of these explanations.

Acknowledgment. This work has been partially supported by the European Com-
munity Horizon 2020 programme under the funding schemes: H2020-INFRAIA-2019–1:
Research Infrastructure G.A. 871042 SoBigData++, G.A. 952026 HumanE-AI Net,
ERC-2018-ADG G.A. 834756 XAI: Science and technology for the eXplanation of AI
decision making, G.A. 952215 TAILOR, CHIST-ERA grant CHIST-ERA-19-XAI-010.

Explaining Siamese Networks 523

References

1. Acconcjaioco, M., et al.: One-shot learning for acoustic identification of bird species
in non-stationary environments. In: International Conference on Pattern Recogni-
tion (ICPR), pp. 755–762. IEEE (2020)

2. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel meth-
ods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

3. Adadi, A., et al.: Peeking inside the black-box: a survey on explainable artificial
intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

4. Becker, S., et al.: Interpreting and explaining deep neural networks for classification
of audio signals. CoRR arXiv:abs/1807.03418 (2018)

5. Chen, C., et al.: Self-learn to explain siamese networks robustly. In: International
Conference on Data Mining (ICDM), pp. 1018–1023. IEEE (2021)

6. Felzenszwalb, P.F., et al.: Efficient graph-based image segmentation. Int. J. Com-
put. Vis. 59(2), 167–181 (2004)

7. Flanagan, J.L.: Speech Analysis Synthesis and Perception, vol. 3. Springer Science
& Business Media (2013)

8. Guidotti, R., Monreale, A., Matwin, S., Pedreschi, D.: Black box explanation by
learning image exemplars in the latent feature space. In: Brefeld, U., Fromont, E.,
Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019.
LNCS (LNAI), vol. 11906, pp. 189–205. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-46150-8 12

9. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM
Comput. Surv. 51(5), 93:1-93:42 (2019)

10. Haenlein, M., et al.: A brief history of artificial intelligence: on the past, present,
and future of artificial intelligence. Cal. Manag. Rev. 61(4), 5–14 (2019)

11. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
131–135. IEEE (2017)

12. Honka, T.: One-shot learning with siamese networks for environmental audio (2019)
13. Koch, G., et al.: Siamese neural networks for one-shot image recognition. In: ICML

Deep Learning Workshop, vol. 2. Lille (2015)
14. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by

prototypes. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 650–665. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86520-7 40

15. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. In:
NIPS, pp. 4765–4774 (2017)

16. Petsiuk, V., et al.: RISE: randomized input sampling for explanation of black-box
models. In: BMVC, p. 151. BMVA Press (2018)

17. Piczak, K.J.: Environmental sound classification with convolutional neural net-
works. In: Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2015)

18. Selvaraju, R.R., et al.: Grad-CAM: visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2020)

19. Snell, J., et al.: Prototypical networks for few-shot learning. In: Adv. Neural. Inf.
Process. Syst. 30, (2017)

20. Sung, F., et al.: Learning to compare: relation network for few-shot learning. In:
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1199–1208.
Computer Vision Foundation (2018)

http://arxiv.org/1807.03418
https://doi.org/10.1007/978-3-030-46150-8_12
https://doi.org/10.1007/978-3-030-46150-8_12
https://doi.org/10.1007/978-3-030-86520-7_40

524 A. Fedele et al.

21. Utkin, L.V., et al.: Explanation of siamese neural networks for weakly supervised
learning. Comput. Informat. 39(6), 1172–1202 (2020)

22. Vinyals, O., et al.: Matching networks for one shot learning. In: Advances in Neural
Information Processing Systems 29 (2016)

23. Wang, Y., et al.: Generalizing from a few examples: a survey on few-shot learning.
ACM Comput. Surv. 53(3), 63:1-63:34 (2020)

24. Ye, X., Leake, D., Huibregtse, W., Dalkilic, M.: Applying class-to-class siamese
networks to explain classifications with supportive and contrastive cases. In: Wat-
son, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 245–260.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2 16

25. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

26. Zhang, Y., et al.: Siamese style convolutional neural networks for sound search
by vocal imitation. IEEE ACM Trans. Audio Speech Lang. Proc. 27(2), 429–441
(2019)

https://doi.org/10.1007/978-3-030-58342-2_16
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Interpretable Latent Space to Enable
Counterfactual Explanations

Francesco Bodria1, Riccardo Guidotti2(B), Fosca Giannotti1,
and Dino Pedreschi2

1 Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, Italy
{francesco.bodria,fosca.giannotti}@sns.it

2 University of Pisa, Largo Bruno Pontecorvo, 3, Pisa, Italy
{riccardo.guidotti,dino.pedreschi}@unipi.it

Abstract. Many dimensionality reduction methods have been intro-
duced to map a data space into one with fewer features and enhance
machine learning models’ capabilities. This reduced space, called latent
space, holds properties that allow researchers to understand the data
better and produce better models. This work proposes an interpretable
latent space that preserves the similarity of data points and supports
a new way of learning a classification model that allows prediction
and explanation through counterfactual examples. We demonstrate with
extensive experiments the effectiveness of the latent space with respect
to different metrics in comparison with several competitors, as well as
the quality of the achieved counterfactual explanations.

1 Introduction

The booming research in eXplainable AI (XAI) of recent years has focused
mainly on post-hoc explanation [12,30], or how to add a transparency layer
on top of an opaque machine learning model [16]. Post-hoc explanation meth-
ods have several shortcomings, including robustness and trustworthiness of the
explanations [8,13]. An emerging, more ambitious objective is to define novel
Machine Learning (ML) methodologies to construct models that are transparent-
by-design, i.e., models that natively deliver accurate classifications together with
trustworthy explanations [31].

In this paper we propose a new approach to perform classification, named
ILS for Interpretable Latent Space. ILS foresees the simultaneous construction of
an Interpretable Latent Space and of a classifier trained on such latent space in
the training phase. The latent space is built to obtain classification and retrieve
explanations simultaneously. ILS uses a similarity loss to transform data from
the real space to the latent space using a linear model. Then, from this latent
space, a counterfactual explanation is extracted. We show how this approach
enables a new use of the learned model such that, when applied to an instance
x, besides the prediction, it also returns a counterfactual example, i.e., another
instance x′ with minimal changes to the features of x that is classified differently.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 525–540, 2022.
https://doi.org/10.1007/978-3-031-18840-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_37&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_37

526 F. Bodria et al.

For example, consider a ML model for credit approval and an application x
classified as “declined”. Our proposal also returns a counterfactual instance [11]
illustrating the minimal changes to x needed to obtain credit approval, e.g.,
(Hours Per Week → 53.5, occupation → Prof Specialty).

Thus, the main contribution of this paper is twofold. First, an interpretable
latent space is defined based on a linear encoding of the original data space.
Second, we show how the newly defined interpretable latent space properties
allow us to find a counterfactual example. We extensively evaluate our proposal
with various tabular and image datasets. First, we observe that the interpretable
latent space actually preserves similarities better than other approaches in the
literature [3,29]. Second, we assess qualitatively and quantitatively the counter-
factuals provided by our method compared to others.

The rest of the paper is organized as follows. In Sect. 2, we analyze the
existing works about latent space creation. After that, Sect. 3 illustrate the pro-
posed methodology. Then, Sect. 4 reports the experimental results comparing
our proposal against state-of-the-art methods. Conclusions and future research
directions are discussed in Sect. 5.

2 Related Works

Latent Space Models. When it comes to compressing high dimensional data into
a lower dimensional space, several options are available: dimensionality reduction
methods that create features with linear combinations of original ones, and gen-
erative models that incorporate non-linear relationships. Principle Component
Analysis (PCA) [3] is the most famous dimensionality reduction technique. It is
defined as an orthogonal linear transformation that maps the data into a new coor-
dinate system, reducing variance. Uniform Manifold Approximation and Projec-
tion (UMAP) [23] uses graph layout algorithms to arrange data in low-dimensional
space and preserve the local structure of the data. TriMap [5] tries to balance the
importance of the local and the global structure of points in the created latent
space using triplet constraints of the kind: “point i is closer to point j than point
k.” Generative models are the most recent approaches to the problem of latent
space creation. The most common architecture is called AutoEncoder [26], and
it is composed of: an encoder that encodes the data into a reduced represen-
tation called latent space and a decoder that decodes the data from the latent
space back to its original space. Both the encoder and the decoder are Neural
Networks, and the training is performed by minimizing the reconstruction loss
between the original data and the one generated by the decoder. Several varia-
tions have been proposed for years to improve data representation in the latent
space. Variational Auto-Encoders (VAE) [29] improve the representation in the
latent space by adding a constraint on the encoding network that forces it to gen-
erate latent vectors that follow a Gaussian unit distribution. The problem with
autoencoders is the amount of parameters not trivial to select during training.

Latent Space Applications. Latent spaces are largely used in several domains
ranging from healthcare [1,24,32], social network analysis [10,15] and anomaly

Interpretable Latent Space to Enable Counterfactual Explanations 527

Algorithm 1: ILS(x,X, Y,K, f)
Input : x - instance to classify and explain X - training data, Y - labels, K - list of latent

space dimensions, f - classifier training function
Output: y - classification, x′ - counterfactual explanation

Train(X,Y, f,K):
1 M ← LearnBestLatentSpace(X, f,K); //find best latent space
2 Z ← M(X); //turn training data into latent space
3 b ← f(Z, Y); //train classifier on the latent space
4 return b,M;

Predict and Explain(x, b, Z,M):
5 z ← M(x); //get latent representation
6 ŷ ← b(z); //apply prediction

7 x′ ← GetCounterfactual(z, b, Z,M) //get counterfactual explanation

8 return ŷ, x′;

detection [6,28]. Several studies have demonstrated that the model’s latent space
can hold better clustering performances than the original feature space [25,27,
39]. Other works have shown that classifiers benefit from latent spaces [40,41].

Interpretation of the Latent Space. The latent space is always created using a
generative model, and post-hoc analysis is performed to give insights into the
dimension created. The most popular technique is to apply vector transformation
in the latent space in order to control the generation of the data [2,33,38]. Style
transfer is another way to use the latent space, the idea is to transfer the style of
a data to another one with minimal changes [14]. Recent approaches have tried
to explore the possibility of building a transparent latent space. The exploration
is done by moving into the latent space and using the transparent proprieties to
analyze the reconstructed data [17,37].

3 Methodology

We introduce here the Interpretable Latent Space (ILS) method, and we show
how it is able to return an explanation in the form of counterfactual instances
besides the classification outcome. The idea of ILS is to create an interpretable
latent space in which the position of a point can be explained exactly in terms
of input characteristics. We claim that our space is interpretable since the linear
mapping of the input features can be represented in the latent space in the form
of vectors (Fig. 1 (left)). Transparency can be exploited to obtain the counter-
factual explanation of a classifier trained in such a space. Like most classification
methods, ILS has a train phase and a predict phase. A novelty is that the latter
is indeed a predict & explain phase.

The whole procedure, illustrated in Algorithm 1, starts by learning the latent
space model M from the training set X, and with reference to a varying number
of latent dimensions k chosen among the list of dimensions K (line 1). With M,
we indicate a model able to turn the input dataset X ∈ Rn into a latent version
Z ∈ Rk. Details about the latent space learning are discussed and formalized
in Sect. 3.1. Then, M is applied to X to obtain the latent representation of
the dataset Z ∈ Rk (line 2). Finally, a classifier b is trained on Z through

528 F. Bodria et al.

Algorithm 2: LearnBestLatentSpace(X,K, f)
Input : X - training data, K - list of latent space dimensions, f - classifier training function
Output: M - Trained model

1 M ← ∅; //empty best transformation model
2 s ← 0; //init. best model score
3 for k ∈ K do
4 M′ ← LearnLatentSpace(X, k); //learn latent space with k dimensions

5 Z ← M′(X); //get latent representation
6 b ← f(Z, Y) //train classifier on Z

7 s′ ← evaluate(b(Z), Y); //evaluate classification performance

8 if s < s′ then
9 M ← M′; //take best transformer w.r.t classifier performance

10 return M;

the training function f (line 3). After the latent space training, the predict
& explain procedure works as follows. Given an instance x, x is turned into
its latent representation z, and the classifier is applied to obtain its prediction
(lines 4–5). Then, the prediction ŷ is explained by exploiting the interpretability
of the learned space, returning a counterfactual instance x′. Details on how the
counterfactual is constructed are given in Sect. 3.2.

3.1 Interpretable Latent Space Learning

ILS is based on a linear transformation that enables the transparent mapping
between the input and latent features. The idea is to create/learn a latent space
by combining a similarity loss analogous to the one utilized in t-SNE [22] with
the mapping reasoning of PCA: the data are mapped into the space based on
the similarity between them. In addition to PCA and t-SNE, latent space is also
created using black-box predictions, augmenting data information. Our objective
is that similar instances in the original input space should be close also in the
latent space that we are trying to build. Linear models have been proven in recent
years [21] to be the best methodology to produce explanations, in the sense
that it is possible to isolate the contribution of each feature to the prediction.
In line with these insights, we propose a procedure to build an interpretable
latent space using a linear mapping M that transforms the input space X of
dimension n into a latent space of dimension k, i.e., Z = M(X) such that
zj = w0x0+w1x1+ · · ·+wixi+ · · ·+wnxn, where w are the weights of the model
M, x is an instance belonging to the input space Rn, z its transformation to
the latent space Rk, and k is the number of latent dimensions. In the literature,
the k parameter is challenging to select and is usually provided heuristically.
Hence, the objective of LearnLatentSpace, described by Algorithm 3, is to find
the “best” weights w for the linear model M, given a specific dimension k.

LearnLatentSpace starts by initializing the model M with random weights
(line 3) and fitting it to the data X. Thus, we use gradient optimization [18] to
minimize an unsupervised loss that encourages similarity between near points.
We adopt the similarity probability loss introduced in [22], with a different pur-
pose: instead of using the similarity loss for visualizing a space in two dimensions,
we use it to create a new data space that enjoys the requested similarity property.

Interpretable Latent Space to Enable Counterfactual Explanations 529

Algorithm 3: LearnLatentSpace(X, k)
Input : X - training data, k - latent space dimension
Output: M - trained transformation model

1 i ← 0; //init. iteration index
2 Li ← ∞; //initialize loss
3 M ← init(); //initialize model weights
4 SX ← PairwiseSimilarity(X); //original similarity matrix
5 while Li−1 > Li do //until the loss decreases
6 Z ← M(X) //get latent representation
7 SZ ← PairwiseSimilarity(Z); //latent similarity matrix
8 Li ← KLD(SX , SZ); //compute Kullback-Leibler Divergence loss
9 M ← update(M, Li); //Update the model using backpropagation

10 i ← i + 1

11 return M;

More in detail, the similarity of a point xj to a point xi is the probability
that xi would pick xj as its neighbor if neighbors were picked in proportion to
their probability density under a Gaussian distribution centered at xi. Formally,
the probability is given by

PairwiseSimilarity =
exp (−||xi − xj ||2/2σ2

i)∑
k �=i exp (−||xi − xk||2/2σ2

i)

where xi and xj are the two points, and σ is the variance of the Gaussian. Algo-
rithm 3 computes the similarity probability of any two points xi and xj in the
input space (lines 4 and 7). The more two points are similar, the higher this
value. From a computational point of view, the issue with using this similarity
loss is that it requires calculating the similarity between every pair of instances.
However, since the fit is performed by gradient optimization, it is possible to
divide the data into fixed-sized batches and compute the similarity matrix sep-
arately for any small batch of points. This operation can be done only once for
the input data, but it needs to be repeated every time for the latent space since
the position of the point in Z changes after every iteration. The two matrices
must have similar distributions to enjoy the previously described similarity prop-
erty. Therefore, the final loss function that we minimize is the Kullback-Leibler
divergence [19] (line 8) between the matrices SX and SZ :

L(SX , SZ) = KL(SX‖SZ)

where SX and SZ are the similarity matrices computed respectively on the input
space X and the latent space Z. This loss is back-propagated to update the
weights wi of the model M until convergence (line 9)1.

The function LearnBestLatentSpace described by Algorithm 2 is designed to
select the best space by varying the dimension of the latent space k. After ini-
tializing an empty model and setting its score to zero (lines 1–2), the following
procedure is repeated for each dimension k (cycle for 3–10). Given k, it learns
M′, mapping the input space to a k-dimensional latent space (line 4). Next, X

1 For the convergence problem, we used the early stopping technique.

530 F. Bodria et al.

Fig. 1. Scheme of the vector model used for creating explanations. Left: representation
of the input features in the latent space. Right: we illustrate a step in the ILS algorithm
to modify the input features based on the position of the latent space, as explained in
Sect. 3.2. The best update found by ILS is (X̄2), p is the projector to the different class
center, p′ is the new projector for the next step.

is mapped into its latent representation Z according to M ′, and a classifier b is
trained on Z (line 6). The performance of the classifier is used to assess the good-
ness of M′ (line 8). Finally, the latent space with the smallest size returning the
highest classification performance is returned by LearnBestLatentSpace (lines 8–
9). The LearnBestLatentSpace procedure is costly because it trains the classifier
for every latent space dimension. We highlight that k is a crucial parameter, as
its value can determine the goodness of the latent space.

3.2 Counterfactual Explanations

This section describes the methodology employed by ILS to extract counterfac-
tual explanations exploiting the interpretability of the latent space. We refer here
to binary classification, but the approach easily extends to multi-class classifiers.

Let x = {x1, x2, . . . , xn} be an input data point for which we want to provide
a prediction and its explanation. The first step of GetCounterfactual, illustrated
in Algorithm 4 and used by ILS in line 7 of Algorithm 1, is to find the best
counterfactual explanation by choosing the direction in the latent space. Given
z as the latent representation of x (line 1), GetCounterfactual computes the
position of the nearest centroid of the points in the latent space with opposite
predictions of z’s (line 2). This is realized using a clustering algorithm on those
points in the latent space with opposite predictions with respect to z and by
taking the centroid c of the cluster nearest to z (line 3). Taking the nearest sample
is insufficient since we could move towards a single sample that could be wrongly
classified. The direction to move in the latent space to change the outcome for
z is expressed in line 7 by the projector p = c − z. The goal is to find the
best feature xi such that its new value x̄′

i moves the candidate counterfactual x̄
towards the desired prediction. In particular, each input feature xi is responsible
for a direction of movement in the latent space as shown in the example in Fig. 1

Interpretable Latent Space to Enable Counterfactual Explanations 531

Algorithm 4: GetCounterfactual(x, b, Z,M)
Input : x - instance to classify and explain, b - classifier, Z - latent training

set, M - latent transformation model,
Output: x′ - counterfactual explanation

1 z ← M(x); // get latent representation

2 C ← Clustering(z′|z′ ∈ Z �=); // centroids with different prediction

3 i ← arg min
i

d(Ci, z) // find the centroid

4 c ← Ci

5 x̄ ← x; // init. counterfactual

6 while b(M(x)) = b(M(x̄)) do
7 p ← c − z // Find the vector projecting in the centroid direction

8 u ← ∅; // possible updates

9 for i ∈ [1, n] do
10 x′

i ← Equation2 (x̄, i, p,M) //calculate update for feature i

11 ui ← x′
i; //store update

12 i ← arg min
i∈[1,n]

{deuclidean(ui, c)} // find best update

13 x̄i ← x′
i // apply the best update

14 return x̄;

(left)). This is repeated (lines 6–15) until the prediction for x̄, the counterfactual
candidate, is different from the prediction of the instance under analysis, i.e.,
until b(M(x)) �= b(M(x̄)).

The goal of ILS is to find the new value of xi such that the projection p′ of
the instance point x′ is perpendicular to the feature direction (Fig. 1 (right)).
More formally, this translate in p′ · (Wix

′
i) = 0 (Equation (1)), where p′ = c− z′,

z′ is the position in the latent space by modifying the input feature i, and Wi is
the vector of the ith weight of the model M with dimension k.

0 = p′(Wix
′
i) = x′

i

(
k∑

j=1

p′
jwji

)
= x′

i

k∑
j=1

(
cj − z′

j

)
wji =

k∑
j=1

(
cj −

n∑
l=1

x′
lwjl

)
wji

(1)

→ x′
i =

∑k
j=1 cjwji − ∑k

j=1

(∑n
l �=i xlwjl

)
wji

∑
j w2

ji

(2)

By substituting the value of p′, we obtain Equation (1). This equality would be
valid only if the scalar product of p′ and Wi part would be 0. Then, ILS substi-
tutes the value of z′ and extracts the x′

i value from the summation corresponding
to the modification needed. The rest of the steps retrieves x′

i.
Going back to Algorithm 4, by applying the formula of Equation (2), ILS

finds all the possible modifications of the ith feature of x (line 10). Then, it
selects the update x′

i that, if applied to x̄ brings it to be more similar to c than
the other possible updates analyzed (line 11). At this stage, the update is applied

532 F. Bodria et al.

Table 1. Datasets statistics.

Dataset Credit Adult Cover Clean1 Clean2 Isolet Madelon Sonar Soybean Anneal Mnist Fashion

Instances 1,000 48,842 581,012 476 6,598 7,797 2,600 208 683 898 70,000 70,000

Features 59 7 54 166 166 617 500 60 35 38 784 784

Class values 2 2 7 2 2 26 2 2 19 6 10 10

to the ith feature (line 11). The procedure is iterated until a different prediction
is obtained for x̄. We underline that it is not said that the features to update are
different in every iteration. Indeed, the best feature i to be updated may be the
same that was already modified some iteration ago. This is due to the fact that
the position in the latent space is changing at every iteration, and it is necessary
for some refinement of the modification done before.

4 Experiments

We conducted two types of experiments. The first type of experiment is aimed
to verify the goodness of the latent space created and compare it with other
literature approaches. The second type of experiment is aimed at validating the
counterfactual explanations produced.

Datasets. We ran experiments on a selection of twelve small and medium-sized
datasets widely referenced for classification tasks and publicly available. Table 1
shows summary statistics on the datasets2.

4.1 Latent Space Evaluation

First, we evaluate the quality of the latent space created by ILS. In line with [36],
we used different methods, datasets, and metrics described in the following.

Competitors. We compared ILS against two categories of algorithms: autoen-
coders and dimensionality reduction methods. Since ILS is a hybrid approach
of these two categories, we decided to include both in the experiments. The
methods tested are PCA [3], UMAP [23], TMAP [5], and VAE [29], described
in Sect. 2. For ILS, we used the Adam optimizer [18] with a learning rate of
1e-3 and a batch size of 4096. For the VAE, we trained it using early stopping
of 5 for a maximum of 1000 epochs using the Adam optimizer, a learning rate
of 1e-4, and a batch size of 4096. We decided to use three hidden layers with
dimensions equal to the number of input features divided by 2. For PCA, UMAP
and TRIMAP, we used the standard parameters. We highlight that we did not
compare against t-SNE as its main goal is to define a 2d space for visualization
purposes rather than a latent space to perform further mining. Also, t-SNE is
rarely employed for latent dimensions higher than 3.
2 ILS code; UCI and pytorch datasets; PCA, UMAP, and TMAP methods links.

https://archive.ics.uci.edu/ml/index.php
https://pytorch.org/vision/0.8/datasets.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/lmcinnes/umap
https://github.com/eamid/trimap

Interpretable Latent Space to Enable Counterfactual Explanations 533

Table 2. Space quality metrics. The best scores are in bold.

Random triplet accuracy Outlier preservation

Name ILS VAE PCA UMAP TMAP ILS VAE PCA UMAP TMAP

Credit .9525 .6731 .9525 .6958 .6803 .0000 .0000 .0000 .0000 .0109

Adult .9560 .7218 .9309 .7318 .6093 .0309 .0946 .0394 .0031 .0111

Cover .9838 .7191 .9740 .7369 .6863 .0013 .0018 .0026 .0643 .1905

Clean1 .9862 .7730 .9868 .8069 .8132 .0220 .0063 .0031 .0000 .0145

Clean2 .9861 .8371 .9895 .6949 .7761 .0079 .0007 .0052 .0622 .1207

Isolet .9669 .7972 .9572 .7498 .7912 .0021 .0013 .0002 .0153 .0510

Madelon .7738 .5197 .7052 .5977 .6246 .0115 .0011 .0000 .0000 .4038

Sonar .9511 .7928 .9885 .7813 .7180 .0000 .0000 .0000 .0000 .0153

Soybean .9654 .7807 .9479 .7685 .7733 .0306 .0284 .0197 .0349 .0243

Anneal .9927 .7348 .9880 .7441 .7537 .0033 .0000 .0017 .0216 .1464

Mnist .9425 .7375 .9130 .6278 .5993 .0012 .0010 .0011 .0044 .0195

Fashion .9734 .7888 .9598 .7365 .7772 .0020 .0031 .0016 .0074 .0343

Wins 9 0 4 0 0 3 5 6 5 0

Fig. 2. Accuracy of classifiers on adult varying the number of latent dimensions k.

Metrics. We considered two types of evaluation metrics: space quality metrics
and accuracy metrics. Space quality metrics verify different desired proprieties of
the space, while accuracy metrics measure the performance of classification mod-
els trained on the latent space. To measure the relative positioning of neighbor-
hoods, we sample observations and compute the Random Triplet Accuracy [36],
which is the percentage of triplets whose relative distance order is preserved in
the high and low-dimensional spaces; the closer to 1, the better. Also, we mea-
sure the outliers preservation: we want an outlier in the input space to remain
an outlier in the latent space. We used the Local Outlier Algorithm (LOF) [9]
to measure which points are labeled outlier or inlier in space. We ran the algo-
rithm in both spaces to check for changes. The percentage of the changes gives
the final score. We called this metric Outlier Preservation: the lower, the better.
The classification quality of the latent space is measured using three classifica-
tion models. A K-Nearest Neighbours (KNN) [35] classifier, a SVM [35] and a
Neural Network (NN). For each method, we partition the embedding into five
folds, each time using four folds as the training data and the remaining fold to
evaluate accuracy. The metric is denoted as accuracy: the closer to 1, the better.

Results. We trained every algorithm on different latent space dimensions
and evaluated the metrics for every dimension. We tested the following latent
dimensions K = {2, 3, 4, 5, 7, 10, 15, 20, 25, 30} to covert most of the possible

534 F. Bodria et al.

Table 3. Accuracy metrics. The best scores are in bold. Uncertainty is on the third
decimal.

KNN accuracy SVM accuracy NN accuracy

Name ILS VAE PCA UMAP TMAP ILS VAE PCA UMAP TMAP ILS VAE PCA UMAP TMAP

Credit .749 .704 .745 .715 .701 .743 .710 .742 .710 .704 .742 .736 .706 .713 .699

Sdult .840 .784 .837 .825 .775 .840 .830 .832 .831 .830 .844 .815 .835 .827 .828

Cover .719 .605 .722 .671 .536 .930 .921 .938 .897 .891 .836 .772 .877 .801 .776

Clean1 .878 .610 .877 .770 .830 .843 .793 .840 .840 .833 .905 .588 .880 .685 .799

Clean2 .934 .857 .955 .924 .883 .965 .961 .962 .955 .949 .972 .899 .988 .933 .929

Isolet .803 .579 .826 .850 .748 .879 .515 .875 .864 .853 .936 .651 .928 .834 .853

Madelon .722 .537 .795 .614 .581 .847 .542 .884 .605 .676 .753 .521 .870 .579 .668

Sonar .826 .663 .813 .791 .791 .878 .791 .842 .871 .806 .835 .748 .813 .769 .756

Soybean .888 .536 .873 .884 .873 .897 .827 .886 .902 .899 .891 .580 .895 .847 .884

Anneal .963 .769 .958 .917 .910 .985 .938 .977 .953 .948 .987 .769 .978 .889 .907

Mnist .977 .953 .928 .969 .743 .973 .973 .974 .972 .975 .973 .972 .973 .969 .976

Fashion .813 .830 .822 .811 .612 .851 .841 .855 .827 .828 .867 .866 .860 .815 .840

Wins 7 1 3 1 0 7 0 3 1 1 7 0 4 0 1

dimensions while not exaggerate on computational times. For ILS, we chose the
variance in the similarity loss σ = 1, since our data are normalized in the range
[−1, 1]; different normalization may require a different value of σ. In Table 2 we
report the best latent space dimension results according to space evaluation met-
rics. Table 2 (left) shows that ILS is the best to preserve distances, with PCA
as the second best. The other approaches largely fail in preserving the original
distances. This is probably due to the fact that the preservation of the distance is
not explicitly minimized. Table 2 (right), shows the results of the outlier preser-
vation metric. We do not have a clear winner with respect to this score. TMAP
is significantly the worst approach3.

In Fig. 2 we report the scores of the classification models with varying latent
dimension k for the adult dataset. Other datasets have similar behavior. Overall,
increasing the latent dimensions leads to better results, although there is a sort
of “magic” dimension for every dataset at which the improvement is saturated.
This supports the approaches taken by most papers in literature where a fixed
latent dimension is used for all the experiments. Still, it is unclear how to find this
dimension without trying them all, and ILS is not an exception. Table 3 shows
KNN, SVM, and NN accuracy. For KNN, ILS produces a better latent space for
most of the datasets. For SVM accuracy, we observe similar results. We notice that
VAE does not perform well for tabular data, but it recovers on images. UMAP is
generally better than TMAP, while PCA is the second best approach.

4.2 Explanations Evaluation

In this section, we discuss the creation of counterfactual explanations through
the interpretable latent space. As a classifier, we use KNN, but the same process
can be directly applied to any classifier.

3 TMAP crashed for k > 10 due to the exponential computational cost.

Interpretable Latent Space to Enable Counterfactual Explanations 535

Fig. 3. Histogram of the percentage of changes in the features among the three meth-
ods. GD and GSG algorithms focus more on the first two features that are the contin-
uous one for the adult dataset.

Table 4. Example of counterfactuals produced by ILS, Gradient, and GSG for adult.

Age Hours Education Married Occupation Gender Country

y1 = 0 x1 –0.315 0.000 3 1 0 1 1

ŷ1 = 0 ILS –0.315 0.000 3 0 1 1 1

GD 0.051 0.463 2 1 1 1 1

GSG –0.231 –0.106 3 0 0 1 1

y3 = 1 x2 –0.123 0.000 3 0 3 1 1

ŷ3 = 0 ILS –0.123 0.000 3 0 1 1 1

GD –0.168 –0.044 3 0 3 1 1

GSG –0.121 0.001 3 0 3 1 1

y4 = 0 x3 –0.315 0.000 1 0 2 1 1

ŷ4 = 1 ILS –0.315 0.000 1 1 2 1 1

GD –0.634 –0.363 1 0 2 1 1

GSG –0.321 0.006 1 0 2 1 1

Competitors. We compare our proposal against two model-agnostic methods
that return counterfactual explanations differently. We selected these algorithms
because, similarly to ILS, they are among the few model and data agnostic
approaches. As a first comparison method, we search for a counterfactual of a
sample x by minimizing the distance between the sample x and the centroid c
of the opposite class, following the gradient descent (GD). After every gradient
iteration, we modify the instance and check the prediction. We stop iterating
as soon as the prediction changes. The other method is called Growing Spheres
Generation [20] (GSG). The GSG procedure relies on a generative approach,
growing a sphere of synthetic instances around x to find the closest counterfac-
tual x′. Given x, GSG ignores the direction of the closest classification boundary.
Indeed, GSG generates candidate counterfactuals randomly in all directions of
the feature space until the decision boundary of the classifier is crossed and the
closest counterfactual to x is retrieved. We selected these two approaches among
the many available ones [7,34] since they are two popular agnostic approaches
to search for counterfactual explanations regardless of model and data type.

Qualitative Evaluation. We report in Tables 4 and Fig. 4 the counterfactual
explanations returned by ILS, GD and GSG for the adult and mnist dataset,
respectively. We highlight that, for adult, the features age and hoursPerWeek
are continuous, while the others are discrete. In datasets with mixed continuous

536 F. Bodria et al.

Fig. 4. Example of counterfactuals produced by ILS, GD, and GSG for the mnist

dataset. The counterfactual classes target are 8, 9, and 8 from left to right.

Table 5. Counterfactual explanations evaluation in terms of distance and plausibility.
ILS returns counterfactuals with minimal changing of input features while retaining a
good result also in the distance metrics.

ddist dcount impl % Success Run time

ILS GD GSG ILS GD GSG ILS GD GSG ILS GD GSG ILS GD GSG

Adult 2.74 1.15 0.54 0.43 0.50 0.60 0.14 0.32 0.42 1.00 1.00 0.99 0.01 0.10 1.92

Credit 2.94 2.86 1.40 0.11 0.99 0.39 2.62 1.84 1.40 1.00 1.00 0.98 0.03 0.20 1.75

Clean1 4.16 4.09 1.16 0.09 1.00 0.19 3.99 4.01 1.16 1.00 1.00 0.72 0.04 0.26 1.33

Clean2 4.09 3.32 0.45 0.06 1.00 0.18 3.73 3.31 0.45 1.00 1.00 0.11 0.21 0.51 14.2

Madelon 1.96 1.02 - 0.004 1.00 - 1.95 1.02 - 1.00 1.00 0.00 0.08 0.07 -

Mnist 4.65 3.11 8.13 0.03 1.00 0.17 4.65 3.11 5.30 1.00 1.00 1.00 0.18 0.24 12.6

and discrete values, we observe that GD and GSG methods tend to focus more
on the continuous features to change the prediction. For example, for x1 of
Table 4, ILS produces a counterfactual by modifying the marital status and the
occupation of the person, while GD and GSG also modify the age and the hours
per week. Another example that highlights this behavior is given by x3, where
ILS produces a counterfactual by only modifying the marital status while GD
and GSG change the first two continuous features again. To further highlight
this, we generated counterfactuals for the whole data in the adult dataset and
checked which features were modified by the method.

In Fig. 3 is reported for the percentage of modifications of each input feature.
We observe that GSG and GD change the first two features (age and hoursPer-
Week) considerably more times than ILS because it is easier in the real space to
modify continuous variables than categorical ones to obtain the desired effect.
For image datasets, such as the mnist examples illustrated in Fig. 4, all meth-
ods resemble adversarial attacks [4] where only a few pixels are modified, and
the counterfactuals found are very far from real samples in the dataset. The
counterfactuals found by GD are very confused, and the modifications from the
original image look like random background noise. On the other hand, ILS and
GSG capture a small set of pixels that modify the attributed class.

Metrics. The quality of the found counterfactuals is evaluated with different
metrics. We have chosen datasets with binary classification and a dataset on
images for comparison with different data types. For mnist, since it is a multi-

Interpretable Latent Space to Enable Counterfactual Explanations 537

class dataset, we follow the approach proposed in [20] and search counterfactuals
for a selected class. In two different fashions, we decided to measure the proximity
between x and its counterfactual x̄. The first one, named disdist, is the average
Euclidean distance between x and the counterfactual x̄. The second measure
computed, discount, quantifies the average number of features changed between
a counterfactual x̄ and x.

disdist =
1

|X|
∑

x∈X

d(x, x̄) discount =
1

|X|m
∑

x∈X

m∑

i=1

1x̄i �=xi

where 1 returns 1 if cond is true, 0 otherwise, and m is the number of features.
Also, we measured the implausibility of the generated counterfactuals in terms
of how close a counterfactual x̄ is to the reference population X. It is the average
distance of x̄ from the closest instance in the X. The lower, the better.

impl =
1

|X|
∑

x∈X

min
x̂∈X

d(x̄, x̂)

We used the test set as reference population X. Finally, we computed the success
rate of the algorithm to produce a counterfactual instance.

Results . The results are presented in Table 5. By modifying the instance in
the latent space, our ILS method searches for counterfactuals focusing on fewer
features than other methods. The counterfactuals found by ILS are more human
understandable since human reasoning often involves modifying only one feature
at a time. ILS as GD has a success rate of producing a counterfactual of 100%
in contrast to GSG, which is not always successful. In particular, for the dataset
clean2 the success rate of GSG is lower than 10% and for madelon GSG com-
pletely fails. ILS is the faster method among the three to return counterfactuals.
Since ILS can select the right feature to modify to change the prediction, it is
faster than GSG, which has to generate many points and call the classifier for
each of them to obtain a prediction. All three approaches fail to find plausible
counterfactuals for images, but ILS modifies the fewest number of pixels.

5 Conclusion

In this paper, we introduce ILS, a new way of performing classification that
foresees the construction of an Interpretable Latent Space for simultaneously
classifying and explaining. We have compared our methods against several
approaches producing similar types of latent space, demonstrating that our pro-
posal improves with respect to the state-of-the-art because, besides interpretabil-
ity, we have observed superior performance on different metrics assessing the
quality of the latent space and the accuracy of classification models built on it.
Also, the transparent nature of the transformation enables the interpretation of
the point’s position in the latent space in terms of vectors facilitating the expla-
nations of any classifier methods built on it. We have shown how a counterfactual

538 F. Bodria et al.

explanation can be produced using linear transformations and its effectiveness
compared to state-of-the-art explainers.

Future directions involve studying the k parameter and experimenting with
neuroevolution or other types of AutoML. Other future research directions
include studying more sophisticated counterfactual explanations that may be
enabled by the properties of the vector space, including intentional representa-
tions and interactive, visual exploration of the counterfactual explanations by
the user beyond the first one. Moreover, by leveraging the fact that the trained
ILS model is linear, it is possible to extract the saliency values for a given sample
or the whole model from the weights. Additionally, the possibility of using the
dataset labels to produce a better latent space should be explored.

Acknowledgment. This work has been partially supported by the European Com-
munity Horizon 2020 program under the funding schemes: H2020-INFRAIA-2019–1:
Research Infrastructure GA 871042 SoBigData++, G.A. 952026 HumanE-AI Net,
ERC-2018-ADG GA 834756 XAI: Science and technology for the eXplanation of AI
decision making, G.A. 952215 TAILOR.

References

1. Abati, D., et al.: Latent space autoregression for novelty detection. In: Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 481–490. Computer
Vision Foundation/IEEE (2019)

2. Abdal, R., et al.: Image2stylegan: how to embed images into the stylegan latent
space. In: International Conference on Computer Vision (ICCV), pp. 4431–4440.
IEEE (2019)

3. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Com-
put. Stat. 2(4), 433–459 (2010)

4. Akhtar, N., et al.: Threat of adversarial attacks on deep learning in computer
vision: survey II. CoRR arXiv:2108.00401 (2021)

5. Amid, E., Warmuth, M.K.: Trimap: large-scale dimensionality reduction using
triplets. CoRR arXiv:1910.00204 (2019)

6. Angiulli, F., Fassetti, F., Ferragina, L.: Improving deep unsupervised anomaly
detection by exploiting VAE latent space distribution. In: Appice, A., Tsoumakas,
G., Manolopoulos, Y., Matwin, S. (eds.) DS 2020. LNCS (LNAI), vol. 12323, pp.
596–611. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61527-7 39

7. Artelt, A., Hammer, B.: On the computation of counterfactual explanations - a
survey. CoRR arXiv:1911.07749 (2019)

8. Bodria, F., et al.: Benchmarking and survey of explanation methods for black box
models. CoRR arXiv:2102.13076 (2021)

9. Breunig, M.M., et al.: LOF: identifying density-based local outliers. In: SIGMOD
Conference, pp. 93–104. ACM (2000)

10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In:
Knowledge Discovery and Data Mining (KDD), pp. 855–864. ACM (2016)

11. Guidotti, R.: Counterfactual explanations and how to find them: literature review
and benchmarking. In: Data Mining and Knowledge Discovery (DAMI), pp. 1–55
(2022)

http://arxiv.org/abs/2108.00401
http://arxiv.org/abs/1910.00204
https://doi.org/10.1007/978-3-030-61527-7_39
http://arxiv.org/abs/1911.07749
http://arxiv.org/abs/2102.13076

Interpretable Latent Space to Enable Counterfactual Explanations 539

12. Guidotti, R., et al.: Factual and counterfactual explanations for black box decision
making. IEEE Intell. Syst. 34(6), 14–23 (2019)

13. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM
Comput. Surv. 51(5), 93:1–93:42 (2019)

14. Guo, W., Diab, M.T.: Modeling sentences in the latent space. In: Association
for Computational Linguistics (ACL), vol. 1, pp. 864–872. The Association for
Computer Linguistics (2012)

15. Hoff, P.D., et al.: Latent space approaches to social network analysis. J. Am. Stat.
Assoc. 97(460), 1090–1098 (2002)

16. Kim, B., et al.: Examples are not enough, learn to criticize! criticism for inter-
pretability. In: Neural Information Processing Systems (NIPS), pp. 2280–2288
(2016)

17. Kim, J., Cho, S.: Explainable prediction of electric energy demand using a deep
autoencoder with interpretable latent space. Expert Syst. Appl. 186, 115842 (2021)

18. Kingma, D.P., et al.: Adam: a method for stochastic optimization. In: ICLR (2015)
19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),

79–86 (1951)
20. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-

based inverse classification for interpretability in machine learning. In: Medina,
J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91473-2 9

21. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. In:
Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017)

22. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(11) (2008)

23. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection
for dimension reduction. CoRR arXiv:1802.03426 (2018)

24. Medrano-Gracia, P., et al.: Atlas-based anatomical modeling and analysis of heart
disease. Drug Discov. Today Dis. Model. 14, 33–39 (2014)

25. Mukherjee, S., et al.: Clustergan: latent space clustering in generative adversarial
networks. In: AAAI, pp. 4610–4617. AAAI Press (2019)

26. Ng, A., et al.: Sparse autoencoder. CS294A Lect. Notes 72(2011), 1–19 (2011)
27. Peng, X., et al.: Structured autoencoders for subspace clustering. IEEE Trans.

Image Process. 27(10), 5076–5086 (2018)
28. Pol, A.A., et al.: Anomaly detection with conditional variational autoencoders.

CoRR arXiv:2010.05531 (2020)
29. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and

captions. Adv. Neural Inf. process. Syst. 29 (2016)
30. Ribeiro, M.T., et al.: “why should I trust you”: explaining the predictions of any

classifier. In: Knowledge Discovery and Data Mining (KDD). ACM (2016)
31. Rudin, C.: Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

32. Schreyer, M., et al.: Detection of accounting anomalies in the latent space using
adversarial autoencoder neural networks. CoRR arXiv:1908.00734 (2019)

33. Spinner, T., et al.: Towards an interpretable latent space: an intuitive comparison
of autoencoders with variational autoencoders. In: IEEE (2018)

34. Stepin, I., et al.: A survey of contrastive and counterfactual explanation generation
methods for explainable artificial intelligence. IEEE Access 9, 11974–12001 (2021)

35. Tan, P., et al.: Introduction to Data Mining, 2nd edn. Pearson, Boston (2019)

https://doi.org/10.1007/978-3-319-91473-2_9
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/2010.05531
http://arxiv.org/abs/1908.00734

540 F. Bodria et al.

36. Wang, Y., et al.: Understanding how dimension reduction tools work: an empirical
approach to deciphering t-sne, umap, trimap, and pacmap for data visualization.
J. Mach. Learn. Res. 22, 201:1–201:73 (2021)

37. Winant, D., Schreurs, J., Suykens, J.A.K.: Latent space exploration using genera-
tive kernel PCA. In: Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot,
B., Lenaerts, T., Louppe, G. (eds.) BNAIC/BENELEARN -2019. CCIS, vol. 1196,
pp. 70–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65154-1 5

38. Wu, J., et al.: Learning a probabilistic latent space of object shapes via
3D generative-adversarial modeling. In: Neural Information Processing Systems
(NIPS), pp. 82–90 (2016)

39. Yang, B., et al.: Towards k-means-friendly spaces: simultaneous deep learning and
clustering. In: International Conference on Machine Learning (ICML), vol. 70, pp.
3861–3870. PMLR (2017)

40. Yeh, C., et al.: Learning deep latent space for multi-label classification. In: AAAI.
AAAI Press (2017)

41. Zhang, L., et al.: LSDT: latent sparse domain transfer learning for visual adapta-
tion. IEEE Trans. Image Process. 25(3) 1177–1191 (2016)

https://doi.org/10.1007/978-3-030-65154-1_5

Shapley Chains: Extending Shapley
Values to Classifier Chains

Célia Wafa Ayad1,2(B), Thomas Bonnier2, Benjamin Bosch2, and Jesse Read1

1 LIX, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
wafa.ayad@polytechnique.edu
2 Société Générale, Paris, France

Abstract. In spite of increased attention on explainable machine learn-
ing models, explaining multi-output predictions has not yet been exten-
sively addressed. Methods that use Shapley values to attribute fea-
ture contributions to the decision making are one of the most popular
approaches to explain local individual and global predictions. By consid-
ering each output separately in multi-output tasks, these methods fail
to provide complete feature explanations. We propose Shapley Chains
to overcome this issue by including label interdependencies in the expla-
nation design process. Shapley Chains assigns Shapley values as feature
importance scores in multi-output classification using classifier chains,
by separating the direct and indirect influence of these feature scores.
Compared to existing methods, this approach allows to attribute a more
complete feature contribution to the predictions of multi-output classi-
fication tasks. We provide a mechanism to distribute the hidden contri-
butions of the outputs with respect to a given chaining order of these
outputs. Moreover, we show how our approach can reveal indirect fea-
ture contributions missed by existing approaches. Shapley Chains helps
to emphasize the real learning factors in multi-output applications and
allows a better understanding of the flow of information through output
interdependencies in synthetic and real-world datasets.

Keywords: Machine learning explainability · Classifier chains ·
Multi-output classification · Shapley values

1 Introduction

A multi-output model predicts several outputs from one input. This is an impor-
tant learning problem for decision-making involving multiple factors and com-
plex criteria in the real-world scenarios, such as in healthcare, the prediction
of multiple diseases for individual patients. Classifier chains [8] is one such app-
roach for multi-output classification, taking output dependencies into account by
connecting individual base classifiers, one for each output. The order of output
nodes and the choice of the base classifiers are two parameters yielding different
predictions thus different explanations for the given classifier chain.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 541–555, 2022.
https://doi.org/10.1007/978-3-031-18840-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_38&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_38

542 C. W. Ayad et al.

To address the lack of transparency in existing machine learning models, solu-
tions such as SHAP [5], LIME [9], DEEPLIFT [11] and Integrated Gradients [12]
have been proposed. Using Shapley values [10] is one approach to attribute fea-
ture importance in machine learning. The framework SHAP [5] provides Shapely
values used to explain model predictions, by computing feature marginal con-
tributions to all subsets of features. This theoretically well founded approach
provides instance-level explanations and a global interpretation of model predic-
tions by combining these local (instance-level) explanations.

However, these methods are not suitable for multi-output configurations,
especially when these outputs are interdependent. In addition, the SHAP frame-
work provides separate feature importance scores only for independent multi-
output classifiers. By assuming the independence of outputs, one ignores the
indirect connections between features and outputs, which leads to assigning
incomplete feature contributions, thus an inaccurate explanation of the predic-
tions.

Figure 1 is a graphical representation of a classifier chain: patients with two
conditions, obesity (YOB) and psoriasis (YPSO), given four features: genetic com-
ponents (XGC), environmental factors (XEF), physical activity (XPA) and eating
habits (XEH). From a clinical point of view, all factors X are associated with
both conditions Y , obesity and psoriasis. However, since obesity is a strong fea-
ture for predicting psoriasis [4] (indeed, a motivating factor for using such a
model is that predictive accuracy can be improved by incorporating outputs as
features), it may mask the effects of other features. Namely, XPA and XEH will
be found by methods as SHAP applied to each output separately to have zero
contribution towards predicting YPSO, and one might interpret that psoriasis is
mainly affected by factors which cannot be modified by the patient (environment
and genetics). The indirect effects (physical activity and eating habits) will not
be detected or explained.

We propose Shapley Chains to address this limitation of incomplete attri-
bution of feature importance in multi-output classification tasks by taking into
account the relationships between outputs and distributing their importance
among the features with respect to a given order of these outputs. Calculating
the Shapley values of outputs helps to better understand the importance of the
chaining that connects these outputs and to visualize this relationship impact on
the prediction of subsequent outputs in the chain. For these subsequent outputs,
the computation of the Shapley values of the associated outputs shows the indi-
rect influence of some features through the chain, which is generally not intuitive
and missed by existing work. Our method will successfully explain these indirect
effects. By attributing importance to the features XPA and XEH, Shapley Chains
will help doctors to emphasize the importance of eating healthy and practic-
ing physical activities in order to prevent and better cure psoriasis instead of
blaming only genetics and exterior environmental factors.

This paper addresses the problem of attributing feature contributions in
multi-output classification tasks with classifier chains when outputs are inter-
dependent. Our contribution in this paper is resumed to:

Shapley Chains: Extending Shapley Values to Classifier Chains 543

XPA

YOB YP SO

XEF XEHXGC

Fig. 1. An example of a multi-output task: predicting Y -outputs from X-features. A
classifier chain uses the first output YOB as an additional feature to predict the second
output YPSO.

– We propose Shapley Chains, a novel post-hoc model agnostic explainability
method designed for multi-output classification task using classifier chains.

– Shapley Chains attribute feature importance to all features that directly or
indirectly contribute to the prediction of a given output, by tracking all the
related outputs in the given chain order.

– Compared to existing methods, we show a more complete distribution of
feature importance scores in multi-output synthetic and real-world datasets.

We devote Sect. 2 to a background and related work. In Sect. 3, we detail our
proposed method Shapley Chains. Finally in Sect. 4, we run experiments on a
synthetic and real-world datasets. The results of our method compared to SHAP
values applied to independent classifiers are then discussed.

2 Background and Related Work

In this section we review multi-output classification, output dependencies, clas-
sifier chains and Shapley values to serve as a background for the rest of this
paper. The notation we used is summarized in the next table (Table 1).

Table 1. Notation.

Notation Meaning

x A given instance vector

y A given output vector

xi The ith feature of instance x

yj The jth output

X The feature space of xi

Y The output space of yj

n The number of features for each instance x

m The number of outputs

544 C. W. Ayad et al.

2.1 Multi-output Classification and Output Dependencies

A multi-output classifier H is a mapping function that for a given instance
x= {x1, x2, ..., xn}, such that x ∈ X, it learns a vector of base classifiers
H(x) = h1(x), h2(x), ..., hm(x) and returns a vector of predicted values y =
{y1, y2, ..., ym}, with yj ∈ {0, 1} and y ∈ Y .

In real-world applications, outputs can be dependent or independent. Design-
ing classifiers that incorporate these output dependencies makes it possible
to better represent the relationships in the data (between outputs, therefore
between features and outputs). There are two types of output dependencies wrt
subsequent outputs; namely marginal independencies, P (y) =

∏m
j=1 P (yj), and

conditional output dependencies:

P (y|x) =
m∏

j=1

P (yj |X, y1, ..., yj−1) (1)

In this article, we focus on output conditional dependencies. The nature of the
relationship between features and outputs and between outputs is not restricted
to causality. Therefore, no prior knowledge of the causal graph is necessary. This
specific subject is partially covered in Shapley Flow [13], which is designed for
single-output tasks.

2.2 Classifier Chains

A classifier chain is one multi-output method that learns m classifiers (one clas-
sifier for each output, also referred as base classifier). All the classifiers are linked
in a chain. The chaining method passes output information between classifiers,
allowing this method to take into account output dependencies [7] when learning
a given output in the chaining.

This method is exactly an expression of Eq. 1, if expressed according to the
chain rule of probability (i.e., Fig. 2 as a probabilistic graphical model repre-
sentation). That is one reason why conditional dependencies are interesting in
this context. However, a classifier chain is not faithful to a ‘proper’ inference
procedure, and rather takes a greedy approach to inference, plugging in pre-
dictions as observations; and proceeds much as a forward pass across a neural
network. This creates some ambiguity between how much effect is gained from
probabilistic dependence (as a probabilistic graphical model would) and feature
effect (as one encounters via the latent layers of deep learning). Although discus-
sion has been ongoing e.g., [7,8], there is not yet a consistent understanding in
practice of what role a prediction plays as a feature to another label. By propa-
gating output contributions among the features, Shapley Chains helps to clarify
these prediction roles, and confirm which outputs are interdependent using the
Shapley value described in the next section.

Shapley Chains: Extending Shapley Values to Classifier Chains 545

X

y1 y2 y3 y4

Fig. 2. One example of a classifier chain structure.

2.3 Shapley Values

The Shapley value expresses the contribution of feature xi, to predict output yj
as a weighted sum:

φyj
xi =

∑

S⊆X\{i}

|S|! (|X| − |S| − 1)!
|X|! [fx (S ∪ {i}) − fx (S)] (2)

where S ⊆ X, and fx is the value function that defines each feature’s contribu-
tion to each subset S. It computes each feature’s average added value to each
combination of features when making a prediction for instance x.

Additivity is one axiom of a fair attribution mechanism that is satisfied by
the Shapley value. It finds a good interpretation in multi-output classification.
Consider two prediction tasks (X, f), (X, g) composed of the same set of fea-
tures. We create a coalition prediction task (X, f +g) by adding the two previous
prediction tasks in the following way: (f + g)(S) = f(S) + g(S) for all S ⊆ X.
The additivity axiom states that the allocation of the prediction (X, f + g) will
be equal to the sum of the allocations of the two original prediction tasks. One
should note that in this definition, we assume that the two prediction tasks are
completely independent meaning that feature contributions to one prediction has
no effect on the second one, which is not always the case because in real-world
applications tasks are more often interdependent. One approach we propose is to
use classifier chains because it permits to represent these relationships by intro-
ducing different chaining orders of these outputs. The overall feature Shapley
values for a classifier chain can be calculated by marginalizing over all possible
output chain structures. ∀c ∈ C, the Shapley value of xi in Eq. 2 can be written
as follows:

φyjxi
=

1
|C|

∑

c⊆C

φyc
j
xi (3)

with φyc
j

being the contribution of feature xi to the prediction of yj with respect
to the given chaining order c. For the matter of simplicity, we use φyj

to refer
to φyc

j
in the rest of this paper. We report feature contribution for each chain

structure independently to show the impact of different chaining orders and the
marginalization over these orders in Sect. 4.1.

546 C. W. Ayad et al.

2.4 Related Work

The explainability of machine learning is an active research topic in the recent
years. Several contributions have been made to explain single-output models
and predictions. Inspecting feature importance scores of existing models is an
intuitive approach that has served for many studies. These feature importance
scores are either derived directly from feature weights in a linear regression
for instance, or learned from feature permutations based on the decrease in
model performance. Other more complex methods like LIME [9] learn a surrogate
model locally (around a given instance) in order to explain the predictions of the
initial model with simple and interpretable models like decision trees. On the
other hand, DeepLift [11], Integrated gradient [12] and LRP [6] are some neural
network specific methods proposed to explain deep neural networks.

The SHAP framework is one popular method attributing Shapley values
as feature contributions. It provides a wide range of model-specific and model-
agnostic explainers. Researchers have also proposed other Shapley value inspired
methods incorporating feature interactions in the explanation process. For exam-
ple, asymmetric Shapley values [3] incorporates causal knowledge into model
explanations. This method attributes importance scores to features that do not
directly participate in the prediction process (confounders), but fails to capture
all direct feature contribution. On the other hand, on manifold Shapley val-
ues [2] focus on better representing the out of coalition feature values but pro-
vides misleading interpretation of feature contributions. Wang et al. [13] have
proposed Shapley Flow, providing both direct and indirect feature contributions
when a causal graph is provided. Resuming feature interactions to causality
and assuming the causal graph is provided and accurate are two downsides of
this method. These methods significantly contributed to advancing the explain-
ability of machine learning models but none of them have tackled multi-output
problems, more specifically when outputs are interdependent. Shapley Chains
addresses this limitation.

3 Proposed Method: Shapley Chains

In this section, we introduce our approach to compute direct and indirect feature
Shapley values for a classifier chain model. Note that our proposed method is
model-agnostic, meaning that our computations do not depend directly on the
chosen base learner used by the classifier chain.

We want to compute feature contributions to the prediction of each output
yj ∈ Y for each instance x. For example, Fig. 3 shows the direct and indirect
contributions of xi to predict output y4 given in Fig. 2. In the next two sections,
we detail the computations of the Shapley value of each feature to predict each
output. We refer to these Shapley values as direct and indirect feature contribu-
tions.

Shapley Chains: Extending Shapley Values to Classifier Chains 547

Fig. 3. Representation of direct and indirect contributions for a dataset with 4 outputs
(y1, y2, y3 and y4). For example: the 4th output y4 has 7 indirect Shapley values (7
paths ending with square leave) and one direct Shapley value (one path ending with a
circle leaf).

Direct Contributions. The direct contributions are computed for features
and outputs as in Eq. 2. Consider again the example of patients with the two
conditions: psoriasis and obesity. For both YOB and YPSO, we use the framework
SHAP in order to compute the Shapley value of each feature: XGC, XEF, XPA

and XEH. This will attribute non zero Shapley values to XGC and XEF to predict
YOB and YPSO separately. On the other hand, XEF and XPA will have non-zero
Shapley values to predict YOB and zero values for the prediction of YPSO. The
classifier chain method will add YOB to the feature set to predict YPSO. By running
the SHAP framework on this new set, YOB will have a non zero Shapley value
because it is dependent to YPSO. This Shapley value will be attributed to the
features that are correlated to YOB. The attribution mechanism of direct feature
(and output) contributions can be generalized to the classifier H with m base
classifiers as shown in Algorithm 1.

For the first output y1, we calculate the Shapley value of each feature accord-
ing to Eq. 2, as done in the SHAP framework. This marginal value of all possible
subsets to which the feature can be associated to is the feature’s contribution
to predict the first output y1. For the second output y2, we append the pre-
dictions y1 made by the first classifier h1 to the features set, and we train a
second classifier h2 to learn the second output y2. We again use the SHAP
framework to assign Shapley values to features and the first output y1. Here,
the feature set includes the first prediction. We perform the same steps for each

548 C. W. Ayad et al.

Algorithm 1. Computing direct feature contributions
1: procedure diContribution(X, Y, H) � features, outputs, classifier chain model
2: i = j = 0
3: Φ=[]
4: while j < len(Y) do
5: while i < len(X) do
6: Φyjxi ← SHAP (X, yj , H) � Shapley values of inputs wrt each output
7: append yj to X
8: append Φyjxi to Φ

9: return Φ � Φ contains features and outputs Shapley values

remaining output. At each step, we calculate the Shapley values for features
and previous predicted outputs that are linked via the chaining to the current
output. At the final step, the feature set will contain n features and m outputs:
X = {x1, x2, ..., xn, y1, y2, ..., ym}.

Indirect Contributions. The indirect contribution Φindirectyj(xi) of xi to
predict yj is the weighted sum of the direct contributions of all yk ∈ Y that are
chained to yj . Φindirectyj(xi) is computed according to the Eq. 4.

Φindirectyj(xi) =
j−1∑

k=1

Φyj(yk) · Zk(xi) (4)

where j > 1 and the function Zk(xi) computes the weight vector for all paths
from output yk down to xi. For k > 1 and Z1(xi) = W (y1, xi), Zk(xi) is recur-
sively computed as follows:

Zk(xi) =
k−1∑

l=1

W (yk, yk−l) · Zk−l(xi) + W (yk, xi) (5)

where W (yk, yk−l) is the corresponding weight of yk−l to predict the next output
yk (the direct contribution of yk−l to predict yk. And, W (yk, xi) is the weight
of xi to predict yk (the direct contribution of xi to predict yk). The weights
W (yk, yk−l) and W (yk, xi) are calculated according to:

W (yk, .) =
|Φyk(.)|(∑n

q=1 |Φyk(xq)| +
∑

p<k |Φyk(yp)|
) (6)

where Φyk(xq) is the direct contribution, as in Eq. 2; of each feature xq to predict
yk). p < k means the output p is chained to the output j forming a directed
acyclic graph illustrated in Fig. 2.

For instance, in order to have a complete fair distribution of feature impor-
tance for the prediction of YPSO, we compute the indirect Shapley values of the
features XPA and XEH. We do so by distributing the direct Shapley value of

Shapley Chains: Extending Shapley Values to Classifier Chains 549

YOB computed previously to the four features. By the distribution operation, we
mean the multiplication of the direct Shapley value of each feature by the direct
Shapley value of YOB, divided by the sum of the shapley values of all features to
predict the same output (here YOB).

We generalize this mechanism in Algorithm 2 of calculating indirect Shapley
values to the chain structure in Fig. 2.3. The first output y1 has always zero
indirect Shapley values because there is no output that precedes it in the chain-
ing. Thus, for the rest of this section, we compute feature indirect contributions
for yj ∈ {y2, y3, ..., ym}. For each output yj , there exists one direct path to the
features thus one direct feature contributions and 2j − 1 indirect paths for each
feature.

Algorithm 2. Computing feature indirect contributions
1: procedure inContribution(X, Y, Φ) � inputs, outputs, Shapley values of

features and outputs
2: i = j = 0
3: while j < len(Y) do
4: while i < len(X) do
5: compute W (yk, yk−l) and W (yk, xi) in Eq. 6
6: compute Zk(xi) in Eq. 5

7: return Φindirectyj(xi) in Eq. 4 � returning indirect feature contributions.

One should notice that for the matter of the simplicity of understanding,
we take the absolute value in Eq. 6. Thus, all the contributions will be positive.
These absolute values can be replaced by the raw Shapley values in order to keep
the positive or negative sign of feature contributions. Keeping the sign helps to
understand if the feature penalizes or is in favor of the prediction.

4 Experiments

In order to assess the importance of the features that is attributed by our pro-
posed framework1 to explain their contributions to predict multiple outputs with
a classifier chain, we run experiments on both synthetic and real-world datasets:
a xor data that we describe next, and the Adult Income dataset from the UCI
repository [1]. Here, we rely on human explanation to validate our results.

4.1 Synthetic Data

To demonstrate our work, we first run experiments on a multi-output synthetic
dataset containing two features (x1 and x2) and three outputs (and, or and xor)
corresponding to the logical operations of the same names performed on x1 and
x2. We split this dataset to 80% for the training and 20% for the test of our
classifier.

Next, we construct a classifier chain with the chaining order illustrated in
Fig. 4. We use a logistic regression as the base learner. Our method is model
1 https://github.com/cwayad/shapleychains.

https://github.com/cwayad/shapleychains

550 C. W. Ayad et al.

X and or xor

Fig. 4. The classifier chain structure for xor data. X is the set of features x1 and x2.
and, or and xor are the outputs for which we want to compute direct and indirect
Shapley values.

agnostic meaning that it can be applied to a classifier chain with any other base
learners. The use of the logistic regression as the base learner to predict xor is
justified by the accuracy that this model achieves compared to other classifiers
like decision trees. The classifier chain is trained on the train set using x1 and x2

to predict and and or separately. Then, we append these two predicted outputs
to the features set in order to predict xor. Here, the order in which we predict
and and or does not change our method’s behavior.

Fig. 5. A comparison of SHAP applied on independent classifiers and Shapley Chains.
From the left to the right. (a) and (b) Normalized direct and indirect feature contri-
butions made by Shapley Chains to predict and, or and xor for chain orders [and, or,
xor] and [or, and, xor]. (∗) SHAP assigns contributions to x1 and x2 only to predict
and and or outputs and completely misses their contributions to predict xor. Absent
colors refer to null Shapley values.

Shapley Chains: Extending Shapley Values to Classifier Chains 551

To explain the influence of x1 and x2 on the prediction of xor, we compared
the application of the framework SHAP on each classifier independently and
Shapley Chains on the trained classifier chain. We report our analysis on the
test data. The results of the comparison shown in Fig. 5 indicate that the output
chaining propagates the contributions of x1 and x2 to predict xor via and and
or. Specifically, Fig. 5(a) and Fig. 5(b) illustrate that our method detects the
indirect contributions of x1 and x2 (indirect xor) to predict xor thanks to the
chaining of and and or to xor implemented with the classifier chain model,
which tracks down all feature contributions through the chaining of outputs.
Furthermore, Fig. 5(a) and Fig. 5(b) confirm that predicting or before and or
vice versa does not affect the feature contributions attribution, which confirms
the chain structure for this data. On the other hand, these contributions of
x1 and x2 are completely neglected by the SHAP framework on independent
classifiers (Fig. 5(∗)).

Impact of the Chaining Order on the Classifier Chain Explainability.
In order to measure the impact of the chaining order on the explainability of our
classifier chain model with Shapley Chains, we performed analysis on the 3 ! = 6
possible output chaining orders in the synthetic dataset (scenarios (a) and (b)
in Fig. 5 and scenarios (c), (d), (e) and (f) in Fig. 6).

The information known to the classifier chain when training each output
changes depending on the order of these outputs. For instance, in scenarios a
and b (Fig. 5), we first learn the two outputs and and or using x1 and x2 features.
xor is then predicted using and and or. Here, in both scenarios, both features x1

and x2 contribute indirectly (through and and or) to predict xor. Meanwhile in
the scenario c (or d), the model relies on and(or or), x1 and x2 to predict xor.
We observe that x1 and x2 have direct and indirect contributions, meaning that
the classifier chain relies partially on these two features to predict xor (direct
contributions of x1 and x2), and on and (indirect contributions of x1 and x2 via
and). The last two scenarios e and f show no contribution of x1 and x2 to predict
xor, which is explained by the fact that using only these two features, the model
can not predict xor without having the information about the dependencies of
xor to and and or.

These results show that the chain order of and, or and xor outputs has
an important role in the explainability of the classifier chain, because feeding
different inputs to the classifier chain yields different predictions, thus different
Shapley values are attributed to the features. x1 and x2 importance scores can
either be derived from a direct inference of xor output only if there is additional
information on output dependencies (for example and is linked to xor) or by
extracting it from the chain that links and and or to xor. In the absence of
all output dependencies of and or or to xor, the model completely ignores the
importance of features x1 and x2 in the prediction of xor.

552 C. W. Ayad et al.

Fig. 6. Possible output chaining orders for xor data. Normalized total feature contri-
butions (direct and indirect Shapley values) for c, d, e and f .

4.2 Explaining Adult Income with Shapley Chains

We run Shapley Chains on the UCI Adult Income dataset. This dataset contains
over 32500 instances with 15 features. We first discretize workclass, marital
status and relationship characteristics. We remove race, education and native
country and normalize the dataset with the min/max normalizer. Next, we split
it into two subsets, using 80% for the training and the remaining 20% for testing.
We evaluated the hamming loss of a classifier chain with different base learners
and we kept the best base classifier, the logistic regression in this case.

In order to explain feature contributions to the predictions of the three out-
puts sex, occupation and income, we compared the results of Shapley Chains
against classic Shapley values applied on separate logistic regression classifiers
for different chain orders. Figure 7 shows graphical representation of normal-
ized and stacked feature contributions when applying Shapley Chains on our
dataset (Fig. 7(a)), and stacked feature contributions from independent logis-
tic regression classifiers (Fig. 7(b)). In both cases, the magnitude of the feature

Shapley Chains: Extending Shapley Values to Classifier Chains 553

contributions is greater in Shapley Chains compared to independent Shapley
values, which confirms our initial hypothesis of some contributions are missed
by SHAP framework, and these contributions can be detected when we take
into account output dependencies. For example, the number of hours worked
in a week (hours.per.week) has a more important indirect contribution to pre-
dict individual’s occupation than a direct contribution. This is explained by
the fact that sex is related to occupation, and this relationship is propagated
to the features by Shapley Chains. relationship is another example of Shapley
Chains detecting indirect feature contributions to predict occupation. Further-
more, feature rankings are different in Shapley Chains. For example, the rank-
ing of capital.gain comes in the fourth position (before workclass) using SHAP
applied to independent classifiers. In our method, this feature’s ranking is always
less important (according to different chaining orders) than workclass to predict
sex, occupation and income which makes more sens to us.

(a) Shapley Chains (b) SHAP on independent classifiers

Fig. 7. (a) Direct and indirect Shapley values on Adult Income data: we normalize
and stack each feature’s direct and indirect contributions to each output. sex has only
direct contributions because it is the first output we predict in this chain order. (b)
Stacked Shapley values of independent classifiers on Adult Income data.

We also tested the impact of different chain orders of these three outputs on
the feature importance attribution. Figure 8 illustrates three different chaining
orders. Each different order allows each classifier to use different prior knowl-
edge to learn these outputs. For example in Fig. 8(b), we first predict income and
sex and we use this information to predict occupation. Intuitively, occupation is
correlated to individual’s sex and income. The classifier chain uses this informa-
tion provided to the third classifier to predict occupation. Here, Shapley Chains
attribute more importance to the factors that predict both income and sex, when
predicting occupation. Shapley Chains preserves the order of feature importance
scores across all the chaining orders in general, but the magnitude of each fea-
ture’s importance differs from one chain to another. This is due to the prior
knowledge that is fed into the classifier when learning each output. In addition,
these feature importance scores are always more important in Shapley Chains
compared to Shapley values of independent classifiers for all chain orders.

554 C. W. Ayad et al.

(a) (b) (c)

Fig. 8. Stacked direct and indirect feature contributions for 3 different chain structures
over Adult Income data.

5 Conclusions and Perspectives

In this paper, we presented Shapley Chains, a novel method for calculating
feature importance scores based on Shapley values for multi-output classifica-
tion with a classifier chain. We defined direct and indirect contribution and
demonstrated on synthetic and real-world data how the attribution of indirect
feature contribution to the prediction is more complete with Shapley Chains.
Our method helps practitioners to better understand hidden influence of the
features on the outputs by detecting indirect feature contributions hidden in out-
put dependencies. Although the rankings of feature importance are not always
different from independent feature importance scores, the magnitude of these
scores is always important in Shapley Chains, which is more important to look
at in applications that are sensitive to the magnitude of these importance scores
rather than their rankings. By extending the Shapley value to feature impor-
tance attribution for classifier chains, we make use of output interdependencies
that is implemented in classifier chains in order to represent the real learning
factors of a multi-output classification task.

To extend this work, Shapley Chains could be evaluated on multi-output
regression tasks. Exploring the relationship’s type between the outputs, and
studying whether Shapley Chains preserves all these relationships when attribut-
ing feature contributions is another open question of our work.

References

1. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

2. Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M., Feige, I.: Shapley
explainability on the data manifold (2021)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Shapley Chains: Extending Shapley Values to Classifier Chains 555

3. Frye, C., Rowat, C., Feige, I.: Asymmetric shapley values: incorporating causal
knowledge into model-agnostic explainability (2021)

4. Jensen, P., Skov, L.: Psoriasis and obesity. Dermatology 232(6), 633–639 (2016)
5. Lundberg, S., Lee, S.I.: A Unified Approach to Interpreting Model Predictions

(2017)
6. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise

relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A.,
Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28954-6 10

7. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)

8. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains: a review and
perspectives. J. Artif. Intell. Res. 70, 683–718 (2021)

9. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: Explaining
the Predictions of Any Classifier (2016)

10. Rozemberczki, B., Sarkar, R.: The Shapley Value of Classifiers in Ensemble Games
(2021)

11. Shrikumar, A., Greenside, P., Kundaje, A.: Learning Important Features Through
Propagating Activation Differences (2019)

12. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep Networks
(2017)

13. Wang, J., Wiens, J., Lundberg, S.: Shapley flow: a graph-based approach to inter-
preting model predictions. In: Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, pp. 721–729. PMLR (2021)

https://doi.org/10.1007/978-3-030-28954-6_10

Explaining Crash Predictions
on Multivariate Time Series Data

Francesco Spinnato1, Riccardo Guidotti2(B), Mirco Nanni3,
Daniele Maccagnola4, Giulia Paciello4, and Antonio Bencini Farina4

1 Scuola Normale Superiore, Pisa, Italy
francesco.spinnato@sns.it

2 University of Pisa, Pisa, Italy
riccardo.guidotti@unipi.it

3 ISTI-CNR, Pisa, Italy
mirco.nanni@isti.cnr.it

4 Generali Italia, Mogliano Veneto, Italy
{daniele.maccagnola,giulia.paciello,antonio.bencini}@generali.com

Abstract. In Assicurazioni Generali, an automatic decision-making
model is used to check real-time multivariate time series and alert if
a car crash happened. In such a way, a Generali operator can call the
customer to provide first assistance. The high sensitivity of the model
used, combined with the fact that the model is not interpretable, might
cause the operator to call customers even though a car crash did not hap-
pen but only due to a harsh deviation or the fact that the road is bumpy.
Our goal is to tackle the problem of interpretability for car crash predic-
tion and propose an eXplainable Artificial Intelligence (XAI) workflow
that allows gaining insights regarding the logic behind the deep learning
predictive model adopted by Generali. We reach our goal by building an
interpretable alternative to the current obscure model that also reduces
the training data usage and the prediction time.

Keywords: Multivariate time series · Crash prediction ·
Explainability · Interpretable machine learning · Car insurance · Case
study

1 Introduction

Crash Data Recorders (CDR) have been increasingly used inside cars to monitor
safety measures and record impact speeds [23]. Through machine learning mod-
els, these data sources that can be exploited by insurance companies to monitor
and improve customer service quality [22]. We collaborate with Assicurazioni
Generali to detect car crashes, relying on their multivariate time series data
and their Artificial Intelligence (AI) system, based on a deep learning model.
Generali is one of the largest global insurance companies and is developing an
automatic AI-based decision-making system to provide first assistance to its cus-
tomers. Generali records speed and acceleration as multivariate time series from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pascal and D. Ienco (Eds.): DS 2022, LNAI 13601, pp. 556–566, 2022.
https://doi.org/10.1007/978-3-031-18840-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18840-4_39&domain=pdf
https://doi.org/10.1007/978-3-031-18840-4_39

Explaining Crash Predictions on Multivariate Time Series Data 557

each insured customer’s car. Such data is used to train a deep Convolutional
Neural Network (cnn) that enables Generali to warn human operators of possi-
ble car crashes. In turn, the operator will physically call the customer to check
if something bad happened and to know which kind of assistance is required.

Two weaknesses are currently present. First, the high sensitivity of the AI sys-
tem might cause unnecessary and harassing calls. Second, the AI system is based
on a deep learning model that is inherently not interpretable. An interpretabil-
ity layer is helpful for numerous reasons, and eXplainable Artificial Intelligence
(XAI) can help build user trust toward more transparent AI decisions. XAI is
a branch of AI that focuses on allowing humans to comprehend the decisions of
complex black-box models used by AI systems [3]. Thus, the objective of this
work is to tackle the problem of interpretability for car crash prediction, propos-
ing a pipeline that allows to gain insights regarding the logic behind the cnn and
build a more transparent predictive model on a multivariate time series dataset.
We highlight that XAI for multivariate time series is still an underexplored topic.

The literature on crash prediction studies car accidents from various perspec-
tives. We mainly distinguish between real-time and long-term crash prediction.
Long-term crash prediction is a relatively little explored area, with a few works
based on movement statistics and mining models [4,13,20]. A large part of the
literature focuses on real-time crash prediction by analyzing areas and condi-
tion of collision [15,19] through internal and external sensor recording mobility
features [5,12] or physiological parameters [1]. The interested reader can find
in [9] a survey analyzing the key problems. We believe our analysis is more
closely related to real-time crash prediction. However, in our scenario, the deci-
sion system is used after the crash, unlike all the works mentioned above, where
classifiers are used prior to the crash. Also, a limitation of all the models used
in the aforementioned approaches is that they are not interpretable.

Since we aim to explain a neural network, our interest is focused on post-hoc
model-specific XAI methods [3]. Many approaches are based on Grad-CAM [16]
and can analyze the gradients of cnns to understand the most important fea-
tures in the time series. However, to the best of our knowledge, none of them
was tested on large multivariate time series with signals of different lengths.
Furthermore, they can only be applied on cnns, which would limit the pro-
posed framework’s expandability. For these reasons, we make use of Gradient-
Explainer [10] which can deal with any deep learning model and with signals of
different lengths, ensuring fast feature-based explanations. We use GradientEx-
plainer to distinguish the areas of attention in the time series. Then, we reduce
the dataset dimensionality and train subsequence-based surrogate trees to imi-
tate the prediction of the cnn in a more interpretable way. Finally, we train
the best performing surrogate as a possible interpretable predictor to be used
as a replacement of the cnn. Preliminary results show that the proposed XAI
workflow is promising (i) in terms of efficiency, as it reduces the data usage and
cuts the prediction time, and (ii) in terms of effectiveness, providing an inter-
pretability layer that helps operators better understand the prediction of the AI
system.

558 F. Spinnato et al.

2 Problem Description and Explanation Methodologies

Generali collects high-dimensional time series data through CDR. This data
is transferred in real-time to insurance company servers, and it is processed
through an automatic AI decision-making system. If the AI system signals the
presence of a possible crash, the operator calls the customers to check if there is
a need for first assistance. Generali aims at solving two criticalities in the current
approach. First, reduce false positives by increasing the model precision in order
to avoid unnecessary calls. Second, increase the interpretability of the automatic
decision-making system to help the operator choose the right course of action.

In the following, we present the background necessary to comprehend each
step. Formally, we define a multivariate time series as follows:

Definition 1 (Multivariate Time Series). A multivariate time series X =
{x1,1, . . . xj,k, . . . , xm,d} ∈ R

m×d is an ordered set of m real-valued observations,
each having d > 1 dimensions (or signals/channels).

A Time Series Classification (TSC) dataset is defined as follows:

Definition 2 (TSC Dataset). A time series classification dataset D = (X ,y)
is a set of n time series, X = {x1,1,1, . . . xi,j,k, . . . , xn,m,d} ∈ R

n×m×d, with a
vector of assigned labels (or classes), y = {y1, y2, . . . , yn} ∈ {0, 1}n.

Observation (i, j, k) of a dataset is denoted by xi,j,k: i denotes the ith multivariate
time series in the dataset, j denotes the jth time-step, k denotes the kth signal
of the time series. Hence, we define Time Series Classification (TSC) as:

Definition 3 (TSC). Given a TSC dataset D, Time Series Classification is the
task of training a function f from the space of possible inputs X to a probability
distribution over the class variable values in y.

Dataset. The car crash dataset (D) provided by Generali contains n = 81, 173
instances. Each instance is a multivariate time series composed of four signals
(d = 4), namely the acceleration of the car for the x, y, z axes, and the speed
of the car. The acceleration signals of the car contain m1 = 2, 490 observations
for each axis, and they are, in turn, a concatenation of two signals sampled at
different frequencies. The speed signal is a recording containing m2 = 41 time-
steps. Each multivariate time series Xi is labelled either as yi = 1 when it is a
crash or as yi = 0 when it is a no-crash. Crashes are rarer than no-crashes and
represent only about the 6% of the dataset. From a classification perspective,
the main critical issues in dealing with this dataset are the presence of signals
with a big difference in length, i.e., speed and acceleration, and the heavy label
unbalance. An example of a no-crash instance is depicted in Fig. 1. The dataset
is split by Generali into 50% training set, 25% validation set, and 25% test set.

Predictive Model. Generali implements the predictive model with a Convo-
lutional Neural Network (cnn) [6]1. On the test set, the cnn has an accuracy
1 Details can not be disclosed due to company policies.

Explaining Crash Predictions on Multivariate Time Series Data 559

Fig. 1. Multivariate time series sample of a no-crash instance: left - acceleration times
series for the three axes, right - speed time series.

of 0.961 and a precision of 0.701. Precision is paramount in this setting because
every false positive causes unnecessary calls by human operators. Also, due to
the cnn architecture, the predictive model is a black-box [3]. Thus, the chal-
lenges raised by Generali are (i) gaining insights regarding the logic behind the
prediction of the provided cnn, without making any modification to the data
or the model, to understand which parts of the data and which patterns of the
multivariate time series are more important for the classification, (ii) building
an efficient and effective, interpretable alternative for the cnn model, possibly
reducing false positives and optimizing data usage. Also, Generali requires high
efficiency at test time, to minimize response time when dealing with unseen
instances.

Explanation Methodologies and Workflow. We meet these challenges
through a set of XAI methodologies organized as the following workflow:

1. Analyze the attention of the cnn, inspecting its gradients, discovering the
parts of the time series more relevant for the prediction (Sect. 3);

2. Build interpretable subsequence-based surrogates of the cnn to imi-
tate its output, focusing on the parts previously highlighted (Sect. 4);

3. Train an interpretable subsequence-based model on the real labels, as
a replacement of the cnn, still focusing only on the parts highlighted in the
first step while also leveraging the results of the second step (Sect. 5).

3 Gradient-Based Explainer

To inspect the cnn we use GradientExplainer, a gradient-based interpretability
approach [17]. GradientExplainer returns an explanation in the form of a saliency
map, highlighting the contribution of each time-step for the classification [3].

Definition 4 (Saliency Map). Given a time series X, a saliency map Φ = {φj,k |
∀j ∈ [1,m], k ∈ [1, d]} contains a score φj,k for every observation xj,k of X.

This saliency map is returned in terms of approximated SHAP values [10],
obtained by computing the expectations of gradients, sampling reference val-
ues from a background dataset. To compute the SHAP values, X is perturbed
using a matrix Z ′ ∈ {0, 1}m×d to decide which values to keep and which values
to replace in X. Each input observation receives a positive or negative SHAP
value, depending on its contribution to the model output. Formally:

560 F. Spinnato et al.

Definition 5 (Additive Feature Attribution). An additive feature attribution
method g has an explanation model that is a linear function of binary variables,
g(Z ′) = φ0 +

∑m
j=1

∑d
k=1 φj,kz

′
j,k, where z′

j,k ∈ {0, 1} and φj,k ∈ R.

In other words, given a time series X, the explanation model g tries to transpar-
ently approximate the prediction of a black-box classifier f in the local neigh-
borhood of X, i.e., g(Z ′) ≈ f(X). In our binary classification setting, for each
time-step j and each signal k, a φj,k SHAP value close to 0 indicates that the
point xj,k is almost irrelevant for the classification; a positive value indicates a
contribution towards the class crash, while a negative value indicates a contribu-
tion towards the class no-crash. φ0 is the base value, i.e., the default classification
output for an “empty” time series. This kind of explanation is local, meaning
that it can be used to shed light on the decision of the cnn for single time series.
However, by retrieving such explanations for each instance of the dataset and
aggregating the SHAP values at different granularity, we can gain an overview
of the global behavior of the model. Despite being simple operations, to the best
of our knowledge, the SHAP values aggregations for multivariate time series
classification detailed in the following is a novel contribution in XAI.

Signal Importance. The signal-wise aggregation for each multivariate time
series is obtained by summing the SHAP values of each signal. Thus, for every
prediction, we can understand the impact of the different dimensions for every
instance in the dataset. These sums are collected in Φsignal ∈ R

n×d such that
Φsignal
i,k is defined as: Φsignal

i,k =
∑m

j=1 φi,j,k with i ∈ [1, n], k ∈ [1, d]. In our
setting, Φsignal is a matrix with n rows and d = 4 columns, corresponding to
the sums of the SHAP values of all time-steps for each time series in X for each
signal, i.e., the accelerations on the x, y, z axes and the speed. These sums, not
reported due to space limits, tell us that the most relevant dimension is the
acceleration on the x-axis, for which the SHAP values deviate the most from
0. This suggests a higher degree of contribution both for crash and no-crash
time series. The acceleration on the y and z-axis and the speed seem to be less
impactful. However, their contributions are not irrelevant, even if smaller w.r.t.
the x-axis.

Time-Step Importance. A more fine-grained insight can be obtained by aver-
aging the SHAP values by time-step. Similarly to the previous point, we col-
lected these averages in a matrix Φpoint ∈ R

m×d such that Φpoint
j,k is defined as:

Φpoint
j,k = 1

n

∑n
i=1 φi,j,k with j ∈ [1,m], k ∈ [1, d]. In this case, for each time-step

of each signal, we can see its average contribution. In the barplot in Fig. 2, we
present such averages, stacking the accelerations on the left-hand side plots for
better readability. We notice that, the main area of attention for acceleration is
around the 500th time-step, independently of the class. Moreover, regarding no-
crash instances, there is also a minor contribution around the 100th time step,
with a high peak of positive SHAP values, corresponding to the concatenation
of signals with different frequencies. This concatenation seems to nudge the cnn
towards the class crash, even in no-crash instances. This event signals a possible
defect of the cnn provided by Generali. The second part of the time series seems

Explaining Crash Predictions on Multivariate Time Series Data 561

Fig. 2. Mean of SHAP values aggregated pointwise. left - speed and acceleration for
no-crash instances. right - speed and acceleration for crash instances. Red and blue
colors highlight positive and negative SHAP values. (Color figure online)

more relevant for the speed signal, especially for the class crash. These insights
are extremely important as they suggest that only a very small part of the data
is relevant for the classification. In the following, we use this information to
optimize data usage, while we will continue to consider the four dimensions.

4 Subsequence-Based Surrogates

Subsequences are one of the most common ways to build interpretable models
in the time series domain. Formally:

Definition 6 (Subsequence). Given a single signal x = {x1, . . . , xm} of the
multivariate time series X, a subsequence s = {xj , . . . , xj+l−1} of length l is an
ordered sequence of values such that 1 ≤ j ≤ m − l + 1.

Subsequences can be real-valued, like shapelets [21], or can be symbolic, like
SAX-based subsequences [7]. Subsequence extraction is computationally expen-
sive, and therefore, using the insights previously gained, we trim the x, y, z
acceleration signals taking only the observations between the 400th and 800th

time-step. In this way, the issue earlier raised regarding the concatenation of the
two signals sampled at different frequencies, is also avoided. On the other hand,
we leave the speed signal as it is. We denote this filtered version of X with X ′.

Shapelet-Based Subsequences. We run the Shapelet Transform [8] with the
Learning-Shapelets (LTS) algorithm [2]. Once the most discriminative shapelets
are found, the dataset is transformed into a simplified representation.

Definition 7 (Shapelet Transform). Given a time series dataset X and a set S
containing h shapelets, the Shapelet Transform, σ, converts X ∈ R

n×m×d into
a real-valued matrix T ∈ R

n×h, obtained by taking the minimum Euclidean
distance between each time series in X , and each shapelet in S, via a sliding-
window.

SAX-Based Subsequences. Symbolic Aggregate approXimation (SAX) [7]
transforms time series into strings. We perform subsequences extraction with
MR-SEQL [14], which greedily selects the most discriminative symbolic subse-
quences. Thus, the dataset is transformed into an interpretable representation
having as features the extracted subsequences and as values 0 or 1 depending
on the absence or presence of subsequences. Formally:

562 F. Spinnato et al.

Table 1. Surrogates performance (higher is better, best values in bold).

SAX SAX SAX SAX SAX SHP SHP SHP SHP SHP

DT RF XGB LGB CAT DT RF XGB LGB CAT

Accuracy 0.954 0.966 0.975 0.974 0.976 0.950 0.950 0.951 0.951 0.951

Precision 0.621 0.912 0.862 0.855 0.862 0.639 0.641 0.624 0.623 0.623

Recall 0.567 0.475 0.681 0.678 0.697 0.360 0.361 0.435 0.438 0.437

Fscore 0.593 0.625 0.761 0.756 0.771 0.460 0.462 0.513 0.514 0.514

Definition 8 (Symbolic Subsequence Transform). Given a dataset X and a set
S containing h symbolic subsequences, the Symbolic Subsequence Transform, σ,
converts X ∈ R

n×m×d into a binary-valued matrix T ∈ {0, 1}n×h, obtained by
checking if each subsequence in S is contained or not in each time series in X .

Tree-Based Global Surrogates. Regardless of the way subsequences are
extracted, the tabular representation T ′ = σ(X ′) can be paired with any classifi-
cation model, with the advantage of an interpretable input [8]. We independently
extract the subsequences from each signal of the multivariate time series2, and
we concatenate the resulting transformed datasets column-wise. As classifica-
tion models, we adopt tree-based classifiers [18] because they simultaneously
offer good performance and provide partial interpretability by granting the pos-
sibility to access the feature importance. We train the following five models3: a
standard Decision Tree (dt) as baseline, Random Forest (rf), XGBoost (xgb),
LightGBM (lgb) and CatBoost (cat). We highlight that we train these classi-
fiers as global surrogates, i.e., not on the original dataset labels y, but on the
prediction of the cnn, ycnn = cnn(X). To guarantee a high level of general-
ization, the surrogate models are trained on the prediction of the cnn on the
validation set.

We measure the performance on the test set and report the results in Table 1.
All the metrics are computed w.r.t. the prediction of the cnn, i.e., given a model
m: metric = eval(ycnn,ym) with ym = m(σ(X ′)). In general, all SAX-based
methods outperform their shapelet-based counterpart. They are quite successful
in imitating the output of the cnn, using a fraction of the input data. Specifically,
sax-lgb, sax-xgb, sax-cat and sax-rf perform better than sax-dt. sax-rf
achieves the highest precision; however, it falls behind in all other performance
metrics. From these results, it is clear that overall the best model is sax-cat.

2 The subsequence extraction is performed using the default implementation param-
eters for MR-SEQL and the heuristic proposed in [2] for LTS.

3 All the models are trained using the default library implementation parameters:
Scikit-learn for dt, rf, XGBoost for xgb, LightGBM for lgb, CatBoost for cat.

Explaining Crash Predictions on Multivariate Time Series Data 563

5 Subsequence-Based Classifier

The surrogates trained in the previous section are interpretable complements of
the black-box, explaining its prediction using subsequences. Depending on the
goal of the analysis, these models can also be used as interpretable replacements
of the black-box. For this purpose, sax-cat is chosen as a candidate replacement
of the cnn. As for the surrogates, sax-cat is trained on the transformed version
of the trimmed set, T ′ = σ(X ′), which only contains around 17% of the initial
observations. sax-cat is trained on the original training set labels y.

Table 2. Models performance.

Accuracy Precision Recall Fscore roc-auc Runtime

cnn 0.961 0.701 0.660 0.680 0.924 784± 69.5

sax-cat 0.958 0.760 0.471 0.582 0.911 218± 23.9

In Table 2 we benchmark sax-cat and cnn on the test set, comparing ycnn

and ysax-cat with y. Results show a comparable performance in terms of accu-
racy, with a substantial improvement in precision. Besides, there is a degrada-
tion terms of recall and f-score. However, the main purpose of Generali was to
reduce the number of false positives, giving less weight to false negatives. On
training time, the most expensive computation for sax-cat is the extraction
of discriminative subsequences, which takes about 7 h. However, this search has
to be performed only once. On the other hand, the training of the cnn takes
less than an hour. On test time, the average runtimes to classify and explain an
unseen test instance are 784 ms ± 69.5 ms for the cnn and 218 ms ± 23.9 ms
for sax-cat. The runtime of sax-cat includes the subsequence transform, the
classification and explanation in terms of features importance, which is attached
to the SAX-based features. The most significant advantage of using tree-based
approaches is that their predictions can be efficiently interpreted using SHAP’s
TreeExplainer [11]. The local explanations can be aggregated to have a general
global overview of the logic behind the model, i.e., in our setting, we can under-
stand which subsequences are more relevant for classifying crash and no-crash
instances.

The global explanation plot is presented in Fig. 3 (top). This summary global
plot depicts the SHAP values for all the instances and subsequences in the
dataset and sorts them by the overall impact on the model prediction. Specifi-
cally, on the y-axis are presented the top-10 subsequences, sorted from the most
influential (top) to the least influential (bottom). Each point on each row in
the plot corresponds to one multivariate time series. Points colored in orange
indicate that the corresponding subsequence is contained in the multivariate
time series, while points colored in green represent a not-contained subsequence.
The SHAP values are plotted on the x-axis, showing the contribution of fea-
ture values toward the classification. In general, this plot helps visualize if the

564 F. Spinnato et al.

Fig. 3. SHAP values summary plot (top); sample of relevant subsequences (bottom).

presence/absence of subsequences contributes to the no-crash (negative SHAP
values) or crash (positive SHAP values) class at a global level. In our case, the
most influential subsequence is S-6645, belonging to the speed signal, which rep-
resents a decrement of car speed followed by a stop. As expected, the presence
of S-6645 contributes to the class crash, while its absence is an indicator of the
class no-crash.

Three example subsequences are presented in Fig. 3 (bottom). Given that
they are symbolic subsequences, they can assume slightly different shapes in the
dataset; therefore, a representative subsequence is presented in orange, while
the other subsequences are presented in a faded gray. The representative is com-
puted as a medoid. Given their higher frequency, subsequences belonging to the
acceleration axes are inherently harder to interpret. However, they could still be
of interest to domain experts. In fact, the importance of these subsequences for
the model output suggests that the car’s jerk (or jolt), i.e., the rate at which
the car’s acceleration changes w.r.t. time, is probably relevant to the classifica-
tion. For example, the most important subsequence for the y-axis is S-3627, and
presents a decrement in acceleration, contributing to the class crash. S-1136 is
instead most relevant for the x-axis and presents a decrement followed by an
increment in acceleration, also contributing to the class crash.

Fig. 4. SHAP values explanation for sample in Fig. 1 obtained from sax-cat.

Explaining Crash Predictions on Multivariate Time Series Data 565

In Fig. 4 we report the local explanation for the instance depicted in Fig. 1.
Features contributing to the class crash are in red, while features contributing
to the class no-crash are in blue. This plot, combined with the knowledge of
the shape of the subsequences, can help domain experts to understand the logic
behind the prediction of the tree-based approach. In this case, the presence of S-
6641 and S-6699 pushes the prediction toward the class crash, while the presence
of S-1641 and the absence of S-6645 contribute towards no-crash. As expected,
contributions towards no-crash are greater in magnitude w.r.t. contributions
towards crash, given that the instance is a no-crash.

6 Conclusion

We have presented a workflow to tackle explainability in the domain of crash
prediction and multivariate time series. We have observed that, with respect
to the cnn adopted by Generali, the predictive performance of the proposed
sax-cat is comparable in terms of accuracy, and achieves higher precision while
being interpretable, which were the goals of this work. In addition, sax-cat is
three times faster than the cnn in making the prediction and uses only 17%
of the original data. In future research directions, we would like to improve the
performance of sax-cat, increasing the crash recall by further fine-tuning the
subsequence-based models and improving the interpretability of the framework
through prototypical and counterfactual instances.

Acknowledgment. This work has been partially supported by the European Commu-
nity Horizon 2020 programme under the funding schemes: G.A. 871042 SoBigData++,
G.A. 952026 HumanE AI Net, and G.A. 834756 XAI.

References

1. Ba, Y., et al.: Crash prediction with behavioral and physiological features for
advanced vehicle collision avoidance system. TR C 74, 22–33 (2017)

2. Grabocka, J., et al.: Learning time-series shapelets. In: KDD. ACM (2014)
3. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM

Comput. Surv. 51(5), 1–42 (2019)
4. Guidotti, R., et al.: Crash prediction and risk assessment with individual mobility

networks. In: MDM. IEEE (2020)
5. Kweon, Y.J., et al.: Development of crash prediction models with individual vehic-

ular data. TR C 19(6), 1353–1363 (2011)
6. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.

IEEE 86(11), 2278–2324 (1998)
7. Lin, J., et al.: Experiencing SAX: a novel symbolic representation of time series.

Data Min. Knowl. Discov. 15, 107–144 (2007)
8. Lines, J., et al.: A shapelet transform for time series classification. In: KDD, KDD

2012, pp. 289–297. ACM, New York (2012)
9. Lord, D., et al.: The statistical analysis of crash-frequency data: a review and

assessment of methodological alternatives. TR A 44(5), 291–305 (2010)

566 F. Spinnato et al.

10. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. In:
NIPS, pp. 4768–4777 (2017)

11. Lundberg, S.M., et al.: From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020)

12. Mannering, F.L., et al.: Analytic methods in accident research: methodological
frontier and future directions. Anal. Methods Accid. Res. 1, 1–22 (2014)

13. Nanni, M., et al.: City indicators for geographical transfer learning: an application
to crash prediction. GeoInformatica 1–32 (2022)

14. Nguyen, T.L., et al.: Interpretable time series classification using linear models and
multi-resolution symbolic representations. DAMI 33(4), 1183–1222 (2019)

15. Salim, F.D., et al.: Collision pattern modeling and real-time collision detection at
road intersections. In: ITSC, pp. 161–166. IEEE (2007)

16. Selvaraju, R.R., et al.: Grad-CAM: visual explanations from deep networks via
gradient-based localization. In: ICCV, pp. 618–626 (2017)

17. Sundararajan, M., et al.: Axiomatic attribution for deep networks. In: ICML. Pro-
ceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017)

18. Tan, P.N.: Introduction to Data Mining. Pearson Education India (2018)
19. Wang, J., et al.: Real-time driving danger level prediction (2010)
20. Wang, Y., et al.: ML methods for driving risk. In: EM-GIS. ACM (2017)
21. Ye, L., et al.: Time series shapelets: a new primitive for data mining (2009)
22. Zantalis, F., et al.: A review of machine learning and IoT in smart transportation.

Future Internet 11(4), 94 (2019)
23. Ziebinski, A., et al.: Review of advanced driver assistance systems (ADAS) (2017)

Author Index

Akremi, Houda 394
Angiulli, Fabrizio 318
Arachchi, Chamalee Wickrama 445
Arman, Molood 227
Arrigoni, Valentina 347
Atzmueller, Martin 243
Ayad, Célia Wafa 541
Ayadi, Mouhamed Gaith 394

Ba, Cheick Tidiane 212
Bäck, Thomas 32
Beck, Florian 104
Beigaitė, Rita 127
Bellanova, Luca 173
Bendicsek, Márton Bendegúz 429
Bertrand, Alexander 74
Bifet, Albert 89
Blanda, Alessandro 173
Bodria, Francesco 525
Bonnier, Thomas 541
Bosch, Benjamin 541
Boukouvalas, Zois 253
Brence, Jure 22
Brouillet, Audrey 329
Bugiotti, Francesca 227

Cao, Zhenxiang 74
Capuccio, Antonino 173
Cavalcante, Charles C. 253
Ceci, Michelangelo 141

D’Aversa, Annunziata 141
Daberdaku, Sebastian 173
Damasceno, Lucas P. 253
Davis, Jesse 74, 157
De Brabandere, Arne 74
De Vos, Maarten 74
Derval, Guillaume 407
Dileo, Manuel 212
Dinis Junior, Guilherme 114
Doucet, Antoine 363
Dreyer, Frank 197
Dubray, Alexandre 407

Duivesteijn, Wouter 429
Dunjko, Vedran 32
Džeroski, Sašo 22

Farina, Antonio Bencini 556
Fassetti, Fabio 318
Fedele, Andrea 509
Ferragina, Luca 318
Fürnkranz, Johannes 104

Gaito, Sabrina 212
Gec, Boštjan 22
Gerard, Gianluca 173
Gervet, Carmen 329
Giannotti, Fosca 525
Gomes, Heitor 89
Gonsior, Julius 47
Greif, Jannik 197
Guidotti, Riccardo 509, 525, 556
Gullo, Francesco 302
Gunasekara, Nuwan 89
Günther, Kolja 197

Hollmén, Jaakko 114, 418
Horváth, Tamás 476
Huynh, Van Quoc Phuong 104

Iosifidis, Vasileios 286

Japkowicz, Nathalie 253
Jin, Ruidong 59

Khansa, Hussein El 329
Kiezebrink, Jacco Johannes Egbert 429
Koloski, Boshko 379
Kumpulainen, Iiro 460
Kuratomi, Alejandro 493
Kuzmanovski, Vladimir 418

La Cava, Lucio 302
Lee, Zed 493
Lehner, Wolfgang 47
Lindgren, Tony 493

568 Author Index

Liu, Xin 59
Londoño, René Gómez 227

Maccagnola, Daniele 556
Magnússon, Sindri 114
Mandaglio, Domenico 302
Martinc, Matej 363
Mechenich, Michael 127
Meert, Wannes 157
Miliou, Ioanna 493
Moniz, Nuno 3
Moussa, Charles 32
Murata, Tsuyoshi 59
Ñanculef, Ricardo 184

Nanni, Mirco 556
Niemann, Uli 197
Nijssen, Siegfried 407
Ntoutsi, Eirini 286
Nusteling, Frank 429

Omejc, Nina 22

Paciello, Giulia 556
Papapetrou, Panagiotis 493
Pedreschi, Dino 509, 525
Pfahringer, Bernhard 89
Pio, Gianvito 141
Polimena, Stefano 141
Pollak, Senja 363, 379

Quadrini, Michela 173

Read, Jesse 541
Repele, Luisa 347
Ribeiro, Rita P. 3

Rio, Arnaud Wander André 429
Rivera Lazo, Gonzalo 184
Robberechts, Pieter 157
Roy, Arjun 286

Saccavino, Dario Marino 347
Sadeghi, Farnaz 271
Schaus, Pierre 407
Schouten, Rianne Margaretha 429
Seghouani, Nacéra Bennacer 227
Seiffarth, Florian 476
Shafer, Allison 253
Shayan, Parisa 243
Silva, Aníbal 3
Škrlj, Blaž 379
Spada, Rosaria 318
Spiliopoulou, Myra 197
Spinnato, Francesco 556

Tagarelli, Andrea 302
Tatti, Nikolaj 445, 460
Thiele, Maik 47
Todorovski, Ljupčo 22
Tran, Hanh Thi Hong 363
van Rijn, Jan N. 32
van Zaanen, Menno 243

Verhaegh, Ruben Franciscus Adrianus 429
Viktor, Herna 271

Wlodarczyk, Sylvain 227
Wrobel, Stefan 476

Zghal, Sami 394
Zignani, Matteo 212
Žliobaitė, Indrė 127

	 Preface
	 Organization
	Keynote Talks
	 Unsupervised Model Selection in Outlier Detection: The Elephant in the Room
	 Coloring Social Relationships
	 35 Years of ‘Scientific Discovery: Computational Explorations of the Creative Processes’ – From the Early Days to the State of the Art
	 Contents

	Regression and Limited Data
	Model Optimization in Imbalanced Regression
	1 Introduction
	2 Related Work
	3 Imbalanced Regression
	3.1 Relevance Function
	3.2 Squared Error Relevance Area (SERA)

	4 Optimization Loss Function for Imbalanced Regression
	5 Experimental Study
	5.1 Experimental Setup
	5.2 Results on Model Optimization
	5.3 Results in Out-of-Sample

	6 Conclusions
	A SERA numerical approximation
	B Tables of Results
	References

	Discovery of Differential Equations Using Probabilistic Grammars
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Algebraic Equations and Numeric Differentiation
	3.2 Differential Equations and Direct Simulation
	3.3 Parallel Computation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Hyperparameter Importance of Quantum Neural Networks Across Small Datasets
	1 Introduction
	2 Background
	2.1 Functional ANOVA
	2.2 Supervised Learning with Parameterized Quantum Circuits

	3 Methods
	3.1 Hyperparameters and Configuration Space
	3.2 Assessing Hyperparameter Importance
	3.3 Verifying Hyperparameter Importance

	4 Dataset and Inclusion Criteria
	5 Results
	5.1 Performance Distributions per Dataset
	5.2 Surrogate Verification
	5.3 Marginal Contributions
	5.4 Random Search Verification

	6 Conclusion
	References

	ImitAL: Learned Active Learning Strategy on Synthetic Data
	1 Introduction
	2 Simulating AL on Synthetic Training Data
	3 Training a Neural Network by Imitation Learning
	3.1 Imitation Learning
	3.2 Neural Network Input and Output Encoding
	3.3 Pre-selection

	4 Evaluation
	4.1 Experiment Details
	4.2 Comparison with Other Active Learning Strategies

	5 Conclusion
	References

	Incremental/Continual Learning
	Predicting Potential Real-Time Donations in YouTube Live Streaming Services via Continuous-Time Dynamic Graph
	1 Introduction
	2 Related Work
	2.1 Online Live Streaming Service
	2.2 Dynamic Graph Learning

	3 Methodology
	3.1 Dataset
	3.2 Dynamic Graph Generation
	3.3 Temporal Graph Neural Network
	3.4 Strategies for Data Imbalance

	4 Experiments
	4.1 Dataset Description
	4.2 Experiment Setup
	4.3 Baselines
	4.4 Evaluation
	4.5 Case Study

	5 Conclusion
	References

	Semi-supervised Change Point Detection Using Active Learning
	1 Introduction
	2 AL-CPD
	2.1 Algorithm Outline
	2.2 Selecting Candidate Change Points
	2.3 Finding New Candidate Change Points

	3 Experiments
	3.1 Datasets
	3.2 Methodology
	3.3 Q1: Comparison to Existing Change Point Detection Algorithms
	3.4 Q2: Labelling Effort of AL-CPD
	3.5 Q3: Contribution of Each Component of AL-CPD
	3.6 Q4: Sensitivity Analysis

	4 Conclusion
	References

	Adaptive Neural Networks for Online Domain Incremental Continual Learning
	1 Introduction
	2 Related Work
	3 Online Domain Incremental Networks
	4 Experiments
	5 Conclusion
	References

	Incremental Update of Locally Optimal Classification Rules
	1 Introduction
	2 The Lord Algorithm
	3 Incremental Lord
	3.1 Incremental Updates
	3.2 Overall Algorithm

	4 Experiments
	4.1 Comparison to HoeffdingTree and VFDR
	4.2 Sensitivity to Parameter Settings

	5 Conclusion
	References

	Policy Evaluation with Delayed, Aggregated Anonymous Feedback
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Policy Evaluation with DAAF
	5 Methodology
	6 Results
	7 Discussion and Future Work
	8 Summary and Conclusions
	References

	Spatial and Temporal Analysis
	Spatial Cross-Validation for Globally Distributed Data
	1 Introduction
	2 Related Work
	3 Spatial k-Fold Cross-Validation
	4 Evaluation of Performance
	4.1 Data Sets
	4.2 Experimental Design
	4.3 Analysis of Performance

	5 Conclusions
	References

	.26em plus .1em minus .1emLeveraging Spatio-Temporal Autocorrelation to Improve the Forecasting of the Energy Consumption in Smart Grids
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Modeling the Temporal Autocorrelation
	3.2 Modeling the Spatial Autocorrelation

	4 Experiments
	4.1 Experimental Setting
	4.2 Results and Discussion

	5 Conclusion
	References

	Elastic Product Quantization for Time Series
	1 Introduction
	2 Background
	2.1 Dynamic Time Warping
	2.2 Product Quantization

	3 Approximate Dynamic Time Warping with Product Quantization
	3.1 Training Phase
	3.2 Encoding Time Series
	3.3 Computing Distances Between Time Series
	3.4 Memory Cost
	3.5 Pre-alignment of Subspaces

	4 Data Mining Applications
	4.1 NN Search with PQ Approximates
	4.2 Clustering with PQ Approximates

	5 Experimental Settings
	6 Experimental Results
	6.1 Empirical Time Complexity
	6.2 1NN Classification
	6.3 Hierarchical Clustering

	7 Conclusions
	References

	Stress Detection from Wearable Sensor Data Using Gramian Angular Fields and CNN
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Preprocessing
	2.3 Sample Construction
	2.4 Convolutional Neural Network

	3 Results
	3.1 Implementation
	3.2 Experiments

	4 Conclusions and Future Work
	References

	Multi-attribute Transformers for Sequence Prediction in Business Process Management
	1 Introduction
	2 Definitions and Problem Statement
	3 Related Work
	4 Proposed Architectures
	4.1 Encoder Architectures
	4.2 Simplified Decoder Architectures

	5 Experiments and Discussion
	6 Conclusions and Final Remarks
	References

	Social Media Analysis
	Data-Driven Prediction of Athletes' Performance Based on Their Social Media Presence
	1 Introduction
	2 Related Work
	2.1 Social Media as a Mood and Behaviour Detection Proxy
	2.2 Social Media as a Distraction Factor

	3 Methodology
	3.1 Data Selection
	3.2 Data Preparation
	3.3 Predictive Significance Analysis
	3.4 Implementation Details

	4 Results
	5 Discussion
	6 Conclusion
	References

	Link Prediction with Text in Online Social Networks: The Role of Textual Content on High-Resolution Temporal Data
	1 Introduction
	2 Background
	3 Methodology
	3.1 Graph Construction and Sequence-Based Framework
	3.2 Learning Algorithms for Link Prediction in Temporal OSNs
	3.3 Features for Link Prediction

	4 Dataset
	5 Results
	5.1 Results for Traditional Models
	5.2 Results for Graph Neural Networks

	6 Discussion
	References

	Weakly Supervised Named Entity Recognition for Carbon Storage Using Deep Neural Networks
	1 Introduction
	2 Overview
	2.1 Contributions

	3 Background
	4 Methodology
	4.1 Noisy Data Set Creation
	4.2 Overcoming Noisy Labels Effect

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Predicting User Dropout from Their Online Learning Behavior
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Set
	3.2 Features
	3.3 Pre-processing
	3.4 Predictive Model
	3.5 Evaluation

	4 Results
	4.1 Predictive Model
	4.2 Evaluation

	5 Discussion
	6 Conclusions
	References

	Efficient Multivariate Data Fusion for Misinformation Detection During High Impact Events
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 High-Level Feature Extraction
	2.3 Multi-modal Data Fusion Framework Based on Independent Vector Analysis
	2.4 Effective Density Model for Capturing Multi-modal Associations
	2.5 Classification Procedure

	3 Results and Discussion
	3.1 Classification Performance
	3.2 Explainability

	4 Conclusion
	References

	Fairness and Outlier Detection
	MQ-OFL: Multi-sensitive Queue-based Online Fair Learning
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Fairness Definitions
	2.3 Gerrymandering
	2.4 Imbalanced and Drifted Data Stream

	3 MQ-OFL Framework
	3.1 Balanced and Fairness-Aware Pre-processing
	3.2 Classifier Pool
	3.3 Decision Boundary Adjustment

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experimental Results

	5 Conclusion
	References

	Multi-fairness Under Class-Imbalance
	1 Introduction
	2 Related Work
	3 Basics and Multi-Max Mistreatment (MMM) Fairness
	3.1 Multi-Max Mistreatment(MMM) Measure

	4 Multi-Fairness-Aware Learning
	4.1 Multi-discrimination-Free Learning Under Class-Imbalance
	4.2 The MMM-Fair Boosting Post Pareto (MFBPP) Algorithm

	5 Experiments
	5.1 Experimental Settings
	5.2 Evaluation Results
	5.3 Internal Analysis
	5.4 Flexibility of MFBPP

	6 Conclusions and Outlook
	References

	When Correlation Clustering Meets Fairness Constraints
	1 Introduction
	2 Related Work
	3 Fairness Constraints in Correlation Clustering
	3.1 Background on Correlation Clustering
	3.2 Problem Statement

	4 Algorithm
	5 Fairness Evaluation
	6 Experimental Methodology
	6.1 Competing Methods
	6.2 Data
	6.3 Evaluation Goals
	6.4 Hyper-parameters and Configurations

	7 Results
	8 Conclusions
	References

	Cooperative Deep Unsupervised Anomaly Detection
	1 Introduction
	2 Preliminaries
	3 Method
	4 Experimental Results
	5 Conclusions
	References

	On the Ranking of Variable Length Discords Through a Hybrid Outlier Detection Approach
	1 Introduction
	2 Background
	2.1 Point Outliers Detectors and Series Segmentation
	2.2 Matrix Profile, MAD and PROPHET

	3 Our Approach
	3.1 Experimental Comparison of MAD and PROPHET
	3.2 Integrated Approach: Ranking and Outcomes

	4 Conclusion and Future Work
	References

	Text, Ontologies and Cross-Modal Learning
	TextMatcher: Cross-Attentional Neural Network to Compare Image and Text
	1 Introduction
	2 Related Work
	3 Text Matching Problem
	4 Proposed Approach
	4.1 Image Embedding
	4.2 Text Embedding
	4.3 Cross-Attention Mechanism
	4.4 Loss

	5 Experiments
	5.1 Industrial Use Case of Automated Cheque Processing
	5.2 General Applicability of Text Matching (IAM Dataset)
	5.3 Discussion

	6 Conclusions
	References

	Can Cross-Domain Term Extraction Benefit from Cross-lingual Transfer?
	1 Introduction
	2 Related Work
	2.1 Approaches Based on Term Characteristics
	2.2 Approaches Based on Machine Learning and Deep Learning
	2.3 Approaches for Slovenian Term Extraction

	3 Methodology
	3.1 Dataset
	3.2 Methodology
	3.3 Implementation Details
	3.4 Evaluation Metrics

	4 Results
	4.1 Prediction on the ACTER Test Set
	4.2 Evaluation on the RSDO5 Test Set

	5 Error Analysis
	6 Conclusion
	References

	Retrieval-Efficiency Trade-Off of Unsupervised Keyword Extraction
	1 Introduction
	2 Selected Related Work
	3 Proposed Algorithm
	4 Evaluation
	5 Results
	5.1 Scaling to 14M Documents

	6 Discussion and Conclusions
	7 Replicability
	References

	A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments
	1 Introduction
	2 Related Work
	2.1 Complex Alignments
	2.2 Ontologies Fuzzification
	2.3 Ontology Embedding

	3 The Fuzzy Complex Ontology Alignment Framework
	3.1 Parsing Component
	3.2 Fuzzification Component
	3.3 Embedding Component
	3.4 Alignment Component

	4 Evaluation
	5 Conclusion
	References

	Optimization and Network Analysis
	Optimal Decoding of Hidden Markov Models with Consistency Constraints
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Most Likely Path in a Layered DAG with Consistency Constraints

	4 Solving the Problem
	4.1 Dynamic Programming
	4.2 Branch and Bound
	4.3 Cost Function Networks

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Semi-parametric Approach to Random Forests for High-Dimensional Bayesian Optimisation
	1 Introduction
	2 Materials and Methods
	3 Experimental Design
	4 Results and Discussion
	5 Summary and Conclusions
	References

	A Clustering-Inspired Quality Measure for Exceptional Preferences Mining—Design Choices and Consequences
	1 Introduction
	1.1 Main Contributions

	2 Preliminaries
	2.1 Order Relations
	2.2 Local Pattern Mining Methods: SD, EMM, and EPM
	2.3 Definitions

	3 Related Work
	4 Proposed Method: A Clustering-Based Quality Measure
	4.1 Time Complexity
	4.2 Qualitative Differences Between clus and Existing QMs

	5 Synthetic Data Experiment
	5.1 Results

	6 Real-World Data Experiment
	6.1 Comparing Against the Complement
	6.2 Comparing Against the Average Dataset Ranking

	7 Conclusions
	References

	Recurrent Segmentation Meets Block Models in Temporal Networks
	1 Introduction
	2 Preliminary Notation and Problem Definition
	3 Fast Algorithm for Obtaining Good Model
	3.1 Iterative Approach
	3.2 Finding Groups
	3.3 Updating Poisson Process Parameters
	3.4 Finding Segmentation

	4 Related Work
	5 Experimental Evaluation
	6 Concluding Remarks
	References

	Community Detection in Edge-Labeled Graphs
	1 Introduction
	2 Preliminary Notation and Problem Definition
	3 Finding Dense Conjunctive-Induced Graphs
	4 Finding Dense Disjunctive-Induced Graphs
	5 Related Work
	6 Experimental Evaluation
	7 Concluding Remarks
	References

	A Fast Heuristic for Computing Geodesic Closures in Large Networks
	1 Introduction
	2 Notions and Notation
	3 The Heuristic
	4 Experimental Results
	4.1 Datasets
	4.2 Computing Closures in Outerplanar Graphs
	4.3 Core Approximation in Real-World Networks

	5 Concluding Remarks
	References

	Explainability and Interpretability
	JUICE: JUstIfied Counterfactual Explanations
	1 Introduction
	2 The CF Justification Problem
	3 Proposed Algorithms
	3.1 JUstIfied Counterfactual Explanations (JUICE)
	3.2 Mixed-features Justification Verification Algorithm
	3.3 Complexity

	4 Empirical Evaluation
	4.1 Datasets
	4.2 CF Generation Methods
	4.3 Performance Metrics
	4.4 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Explaining Siamese Networks in Few-Shot Learning for Audio Data
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Siamese Network Explainer
	5 Experiments
	6 Conclusion
	References

	Interpretable Latent Space to Enable Counterfactual Explanations
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Interpretable Latent Space Learning
	3.2 Counterfactual Explanations

	4 Experiments
	4.1 Latent Space Evaluation
	4.2 Explanations Evaluation

	5 Conclusion
	References

	Shapley Chains: Extending Shapley Values to Classifier Chains
	1 Introduction
	2 Background and Related Work
	2.1 Multi-output Classification and Output Dependencies
	2.2 Classifier Chains
	2.3 Shapley Values
	2.4 Related Work

	3 Proposed Method: Shapley Chains
	4 Experiments
	4.1 Synthetic Data
	4.2 Explaining Adult Income with Shapley Chains

	5 Conclusions and Perspectives
	References

	Explaining Crash Predictions on Multivariate Time Series Data
	1 Introduction
	2 Problem Description and Explanation Methodologies
	3 Gradient-Based Explainer
	4 Subsequence-Based Surrogates
	5 Subsequence-Based Classifier
	6 Conclusion
	References

	Author Index

