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Abstract. This work proposes a new feature extraction method to anal-
yse patterns of the substantia nigra in Parkinson disease. Recent imaging
techniques such that neuromelanin-sensitive MRI enable us to recognise
the region of the substantia nigra and capture early Parkinson-disease-
related changes. However, automated feature extraction of Parkinson-
disease-related changes and their geometrical interpretation are still
challenging. To tackle these challenges, we introduce a fifth-order ten-
sor expression of multi-sequence MRI data such as T1-weighted, T2-
weighted, and neuromelanin images and its tensor decomposition. Recon-
struction from the selected components of the decomposition visualises
the discriminative patterns of the substantia nigra between normal and
Parkinson-disease patients. We collected multi-sequence MRI data from
155 patients for experiments. Using the collected data, we validate the
proposed method and analyse discriminative patterns in the substantia
nigra. Experimental results show that the geometrical interpretation of
selected features coincides with neuropathological characteristics.

Keywords: Parkinson disease · Substantia nigra · Multi-sequence
data · Tensor decomopsition · Feature extraction · Image analysis

1 Introduction

Parkinson disease is the second most common progressive neurodegenerative
disorder, with approximately 8.5 million people who had been affected world-
wide in 2017 [1]. The characteristic of Parkinson disease is a progressive loss of
dopaminergic neurons in the substantia nigra pars compacta [2]. Currently, the
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Fig. 1. Slices of volumetric images of three-type sequences. (a) T1WI. (b) T2WI. (c)
NMI. (a)–(c) show the same region including substantia nigra of a normal patient.
(d) G.T. for the region of the substantia nigra. By manual normalisation of intensities
shown in (c), an expert neurologist can recognise the regions of the substantia nigra.

diagnosis of Parkinson disease depends on the clinical features acquired from
patient history and neurological examination [3]. A traditional role of MRI for
Parkinson disease is supporting clinical diagnosis by enabling the exclusion of
other disease processes [4]. However, several advanced imaging markers have
emerged as tools for the visualisation of neuro-anatomic and functional processes
in Parkinson disease. As one of them, neuromelanin-sensitive MRI uses high-
spatial-resolution T1-weighted imaging with fast spin-echo sequences at 3-Tesla
MRI [5,6]. This new imaging technique provides a neuromelanin image (NMI)
with neuromelanin-sensitive contrast, and T1 high-signal-intensity areas in the
midbrain represent neuromelanin-rich areas. Since neuromelanin exists only in
dopaminergic neurons of the substantia nigra pars compacta and noradrenergic
neurons of locus coeruleus, NMI is useful for analysing the substantia nigra by
capturing early Parkinson-disease-related changes. Figure 1 shows the examples
of slice images of T1-weighted image (T1WI), T2-weighted image (T2WI), and
NMI with annotation labels of the substantia nigra.

We propose a new feature-extraction method to analyse patterns of substan-
tia nigra in Parkinson disease. For the analysis, we use T1WI, T2WI, and NMI.
Even though only NMI is the valid imaging for recognising the region of the
substantia nigra among these three, T1WI and T2WI help obtain anatomical
information. In addition to anatomical information, a simple division of inten-
sities of T1WI by ones of T2WI yields a new quantitative contrast, T1w/T2w
ratio, with sensitivity to neurodegenerative changes [7]. A combination of differ-
ent imaging sequences can offer more useful information for the analysis. There-
fore, we use these multi sequences for our analysis. In developing a new feature
extraction method, we set a triplet of volumetric images: T1WI, T2WI, and NMI
to be a multi-sequence volumetric image for each patient. As the extension of
a higher-order tensor expression of a set of volumetric images [8], we express a
set of multi-sequence volumetric images by a fifth-order tensor expression shown
in Fig. 2(a). Inspired by tensor-based analytical methods [9–11], we decompose
this fifth-order tensor into a linear combination of fifth-order rank-1 tensors. By
re-ordering the elements of this decomposition result, as shown in Fig. 2(b), we
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Fig. 2. Tensor expression and decomposition of multi-sequence volumetric images.
(a) Fifth-order expression of a set of sampled multi-sequence volumetric images. (b)
Decomposition of multi-sequence volumetric image.

obtain the decomposition of each multi-sequence volume image. This decompo-
sition is a linear combination of fourth-order rank-1 tensors and their weights.
Since this decomposition is based on the identical fourth-order rank-1 tensors, a
set of weights expresses the characteristics of a multi-sequence volumetric image.
Therefore, by selecting discriminative weights as feature vectors for normal and
Parkinson disease, we achieve a feature extraction for analysing patterns of the
substantia nigra between normal- and Parkinson-disease patients.

2 Mathematical Preliminary

2.1 Matrix Operations

We introduce two products of matrices since these are necessary for the CP-
decomposition. Setting the Kronecker product of vectors a = (ai) ∈ R

I and
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b = (bj) ∈ R
J as a ⊗ b = [a1b1, a1b2, . . . , a1bJ , . . . , aI−1bJ , aIb1, . . . , aIbJ ]�, we

have Khatori-Rao product between two matrices A ∈ R
I×K and B ∈ R

J×K by

A � B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,aK ⊗ bK ], (1)

where ai and bi are i-th column vectors of A and B, respectively. For the
same-sized matrices A = (aij),B = (bij) ∈ R

I×J , Hadamard product is the
elementwise matrix product

A ∗ B =

⎡
⎢⎢⎢⎣

a11b11 a12b12 . . . a1Jb1j

a21b21 a22b22 . . . a2Jb2j

...
...

. . .
...

aI1bI1 aI2bI2 . . . aIJbIj

⎤
⎥⎥⎥⎦ . (2)

These products are used in Algorithm 1.

2.2 Tensor Expresstion and Operations

We briefly introduce essentials of tensor algebra for the CP-decomposition-based
feature extraction. In tensor algebra, the number of dimensions is refered as
order of a tensor. We set a fifth-order tensor A ∈ R

I1×I2×I3×I4×I5 . An element
(i1, i2, i3, i4, i5) of A is denoted by ai1i2i3i4i5 . The index of a tensor is refered as
mode of a tensor. For examples, i3 is the index for mode 3. A fifth-order tensor
A is a rank one if it can be expressed by the ourter products of five vectors
u(j) ∈ R

Ij , j = 1, 2, 3, 4, 5, that is

A = u(1) ◦ u(2) ◦ u(3) ◦ u(4) ◦ u(5), (3)

where ◦ expresses the outer product of two vectors. Furthermore, a cubical tensor
C ∈ R

I×I×I×I×I is diagonal if ai1i2i3i4i5 �= 0 only if i1 = i2 = i3 = i4 = i5. We
use I to denote the cubical identity tensor with ones of the superdiagonal and
zeros elsewhere.

For two tensors A,B ∈ R
I1×I2×I3×I4×I5 , we have the inner product

〈A,B〉 =
I1∑

i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

I5∑
i5=1

ai1i2i3i4i5bi1i2i3i4i5 , (4)

where ai1i2i3i4i5 and bi1i2i3i4i5 expresses elements of A and B, respectively. This
inner norm derives a norm of tensor

‖A‖ =
√

〈A,A〉 =

√√√√
I1∑

i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

I5∑
i5=1

a2
i1i2i3i4i5

. (5)

Unfolding of a tensor A is reshaping A by fixing one mode α. The α-mode
unfolding gives a matrix A(α) ∈ R

Iα×(IβIγIδIε) for {α, β, γ, δ, ε} = {1, 2, 3, 4, 5}.
For a tensor and its unfoding, we have the bijection F(n) such that

F(n)A = A(n), A = F−1
(n)A(n). (6)
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Algorithm 1: CP decomposition

Input: a fifth-order tensor T , CP rank R, a sufficient small number ε
the maximum number of iteration N

initialise U (n) = [u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
R ] ∈ R

In×R for n = 1, 2, 3, 4, 5
for i = 1, 2, . . . , N

for n = 1, 2, 3, 4, 5
Set {α, β, γ, δ} = {1, 2, 3, 4, 5} \ n with a condtion α < β < γ < δ

V = U (α)�U (α) ∗ U (β)�U (β) ∗ U (γ)�U (γ) ∗ U (δ)�U (δ)

Compute the Moore-Penrose pseudoinverse [15] of V as V †

U (n) = T(n)(U
(δ) � U (γ) � U (β) � U (α))V †

if ‖T −
∑R

r=1 u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ◦ u

(4)
r ◦ u

(5)
r ‖ � ε

break

Output: a set {U (n)}5
n=1 satisfying

T ≈ I ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) ×5 U
(5)

This n-mode unfolding derives n-mode product with a matrix U (n) ∈ R
J×In

A ×n U (n) = F−1
(n)(U

(n)A(n)). (7)

For elements u
(n)
jin

with j = 1, 2, . . . , J and in = 1, 2, . . . , In of U (n), we have

(A ×n U (n))i1...in−1jin+1...i5 =
In∑

in=1

ai1i2...i5u
(n)
jin

. (8)

3 Feature Extraction for Multi-sequence Volumetric Data

We propose a new feature extraction method to analyse the difference of multi-
sequence volumetric images between two categories. Setting Yi,1 ∈ R

I1×I2×I3

for j = 1, 2, . . . , I4 to be volumetric images measured by different I4 sequences
for i-th sample, we have multi-sequence volumetric images as a fourth-order
tensor Xi = [Yi,1,Yi,2, . . . ,Yi,I4 ] ∈ R

I1×I2×I3×I4 . We express multi-sequence
volumetric data of I5 samples by a fifth-order tensor T = [X1,X2, . . . ,XI5 ] ∈
R

I1×I2×I3×I4×I5 as shown in Fig. 2(a) . In this expression, we assume that regions
of interest are extracted with cropping and registration as the same-sized volu-
metric data via preprocessing. For T , we compute CP decomposition [11,12]

T =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r ◦ u(5)
r + E (9)

by minimising the norm ‖E‖ of a reconstruction error E . In Eq. (9), a tensor
is decomposed to R rank-1 tensors. Therefore, R is refered to as a CP rank.
Algorithm 1 summarises the alternative reast square method [13,14] for CP
decomposition.
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From the result of Eq. (9), setting u
(n)
kr is the k-th element of u(n)

r , we have
reconstructed volumetric and multi-sequencel volumetric images by

Y̌ji =
R∑

r=1

u
(4)
jr u

(5)
ir (u(1)

r ◦ u(2)
r ◦ u(3)

r ), (10)

X̌i =
R∑

r=1

u
(5)
ir (u(1)

r ◦ u(2)
r ◦ u(3)

r ◦ u(4)
r ), (11)

respectively. Figure 2(b) illustrates the visual interpretation of Eqs. (10) and (11).
In these equations, rank-1 tensors u(1)

r ◦u(2)
r ◦u(3)

r , r = 1, 2, . . . , R express parts
of patterns among all volumetric images in three-dimensional space. In Eq. (11),
rank-1 tensors (u(1)

r ◦ u
(2)
r ◦ u

(3)
r ◦ u

(4)
r ), r = 1, 2, . . . , R expresses parts of pat-

terns among multi-sequence volumetric images. In Eq. (11), u
(5)
ri indicates the

importance of a part of patterns among multi-sequence data for i-th sample.
Therefore, a set u

(5)
i11, u

(5)
i2 , . . . , u

(5)
iR express features of multi-sequence pattern of

i-th sample.
We select discriminative feature from the results of CP decomposition to

analyse the difference between two categories. Setting C1 and C2 to be sets of
indices of images for two categories, we have the means and variances of u

(5)
ir by

μr = E(u(5)
ir ) and σ2

r = E((u(5)
ir − μr)2), (12)

μ1r = E(u(5)
ir |i ∈ C1) and σ2

1r = E((u(5)
ir − μ1r)2|i ∈ C1), (13)

μ2r = E(u(5)
ir |i ∈ C2) and σ2

2r = E((u(5)
ir − μ2r)2|i ∈ C2), (14)

for all indices of i, C1 and C2, respectively. We set intra-class and inter-class
variance by

σ2
Br =

N1

N
(μ1r − μr)2 +

N2

N
(μ2r − μr)2, (15)

σ2
Wr =

N1

N
σ2
1r +

N2

N
σ2
2r, (16)

respectively. Using Eqs. (15) and (16), we have seperability [16,17] as

sr =
σ2
Br

σ2
Wr

=
σ2
Br

σ2
r − σ2

Br

. (17)

Sorting s1, s2, dots, SR in desending order, we have a sorted index r̃1, r̃2, . . . , r̃R

satisfying sr̃1 ≥ sr̃2 ≥ · · · ≥ sr̃R
and {r̃1, r̃2, . . . , r̃R} = {1, 2, . . . , R}. We select L

elements from u
(5)
r , r = 1, 2, . . . , R as fi = [u(5)

ir̃1
, u

(5)
ir̃2

, . . . , u
(5)
ir̃L

]� ∈ R
L for multi-

sequence volumetric images of i-th sample. Since these L elements have large
seperabilities among R features, these elements indicate discriminative patterns
in multi-sequence volumetric images between two categories.
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4 Experiments

To analyse patterns of the substantia nigra between normal and Parkinson-
disease patients in multi-sequence volumetric images: T1WI, T2WI, and NMI, we
collected 155 multi-sequence volumetric images of 73 normal and 82 Parkinson-
disease patients in a single hospital. In each multi-sequence volumetric image,
T2WI and NMI are manually registered to the coordinate system of T1WI. Fur-
thermore, a board-certified radiologist with ten years of experience specialising
in Neuroradiology annotated regions of substantia nigra in NMIs. Therefore,
each multi-sequence image has a pixel-wise annotation of the substantia nigra.

As the preprocessing of feature extraction, we cropped the regions of interest
(ROI) of the substantia nigra from T1WI, T2WI, and NMI by using the anno-
tations. The size of T1WI and T2WI is 224 × 300 × 320 voxels of the resolution
of 0.8mm × 0.8mm × 0.8mm. The size of NMI is 512 × 512 × 14 voxels of the
resolution of 0.43mm × 0.43mm × 3.00mm. We registered NMI to the space of
T1WI for the cropping of ROIs. Setting the centre of an ROI to be the centre
of gravity in a substantia nigra’s region, we expressed an ROI of each sequence
as third-order tensors of 64 × 64 × 64.

In each third-order tensor, after setting elements of the outer region of sub-
stantia nigra to be zero, we normalised all the elements of a third-order tensor
in the range of [0, 1].

We expressed these third-order tensors of three sequences for 155 patients
by a fifth-order tensor T ∈ R

64×64×64×3×155 and decomposed it by Algorithm
1 for R = 64, 155, 300, 1000, 2000, 4000, 6000. For the computation, we used
Python with CPU of Intel Xeon Gold 6134 3.20 GHz and main memory 192 GB.
Figure 3(a) shows the computational time of the decompositions. Figure 3(b)
shows the mean reconstruction error E

[
‖Yij − Y̌ij‖/‖Yij‖

]
for each sequence.

Figure 4 summarises examples of the reconstructed volumetric images. From
each of the seven decomposition results, we extracted 100-dimensional feature
vectors.

We checked each distributions of feature vectors for the seven sets of the
extracted features. In feature extraction, we set C1 and C2 to be sets of indices for
normal and Parkinson-disease categories, respectively. For the checking, setting
(·, ·) and ‖ · ‖2 to be the inner product of vectors and L2 norm, we computed
a cosine similarity (f ,µ)/(‖f‖2‖µ‖2) between a feature vector f ∈ {fi}155i=1

and the mean vector µ = E(fi|i ∈ C1). The left column of Fig. 5 shows the
distributions of the consine similarities. Furthermore, we mapped feature vectors
from 100-dimensional space onto two-dimensional space by t-SNE [18], which
approximately preserves the local topology among feature vectors in the original
space. The right column of Fig. 5 shows the mapped feature vectors in a two-
dimensional space.

Finally, we explored the geometrical interpretation of selected features. As
shown in Fig. 6, some selected features have large magnitudes. We thought these
large-magnitude features express important patterns for an image. Therefore,
we multiplied these large magnitudes (approximately 10 to 20 of 100 features)
by 0.7 as feature suppression and reconstructed images for CP decomposition of
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Fig. 3. Computational time and reconstruction error in CP decomposition. (a) Compu-
tational time against a CP rank. (b) Mean reconstruction errors of volumetric images
against a CP rank. The mean reconstruction errors are computed for sequences: T1WI,
T2WI, and NMI.

T1WI

T2WI

NMI

Original
R = 64 R = 300 R = 1000 R = 2000 R = 4000 R = 6000

Reconstruction

Fig. 4. Example slices of reconstructed and original multi-sequence volumetric images.
The images express axial slices of reconstructed images for T1WI, T2WI, and NMI. R
expresses a CP rank used in a CP decomposition.

R = 6000. By comparing these reconstructed multi-sequence volumetric images,
we can observe important patterns corresponding to the suppressed features
as not-reconstructed patterns. Figure 7 compares reconstructed multi-sequence
volumetric images before and after the suppression of selected features.
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Fig. 5. Distribution of extracted feature vectors. Left column: Distribution of cosine
similarities between a feature vector f ∈ {fi}155

i=1 and the mean vector µ = E(fi|i ∈ C1).
Right column: Visualisation of distribution of feature vectors. We map 100-dimensional
feature vectors onto a two-dimensional space. In the top, middle, and bottom rows, we
extracted 100-dimensional feature vectors from CP decompositions of R = 1000, 4000,
and 6000, respectively.

5 Disucussion

In Fig. 3(b), the curves of mean reconstruction errors for T1WI and NMI are
almost coincident, whilst the one of T2WI is different from these two. These
results imply that intensity distributions on the substantia nigra between T1WI
and NMI have similar structures. Even though the intensity distribution of T2WI
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Fig. 6. Examples of extracted features. (a) Extracted 100-dimensional feature vec-

tor [u
(5)
ir̃1

, u
(5)
ir̃2

, . . . , u
(5)
ir̃100

]�. (b)–(d) Scaled extracted feature vectors [u
(4)
j1 u

(5)
ir̃1

, u
(4)
j2 u

(5)
ir̃2

,

. . . , u
(4)
j100u

(5)
ir̃100

]�, where we set j = 1, 2, 3 for T1WI, T2WI, and NMI, respectively.
In (a)–(d), horizontal and vertical axes express an index of an element and value of
element, respectively.

has the common structure for T1WI and NMI, T2WI has different characteris-
tics from these two. These characteristics are visualised in Fig. 4. Three images
express shapes of substantia nigra, but the intensity distribution of T2WI are
different from T1WI and NMI. Furthermore, Fig. 6(b)–(d) also indicate the same
characteristics. In Fig. 6(b) and (d), the selected features for T1WI and NMI have
similar distributions of elements, even though the one of T2WI has a different
distribution.

In Fig. 4, the reconstruction of detail intensity distributions of multi-sequence
volumetric images needs large R, while the blurred shape of the substantia nigra
is captured even in small R such as 64, 300 and 1000. Since Algorithm 1 searches
for rank-1 tensors to minimise reconstruction error by solving the least squares
problems for each mode, the CP decomposition firstly captures common patterns
among sequences and patients with a small number of rank-1 tensors. To obtain
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Original

Reconstruction

Reconstruction

w/o selection

with selection

T1WI T2WI NMI

Normal Normal NormalPD PD PD

Fig. 7. Reconstruction with and without selected features. The top row shows the
axial slices of the original multi-sequence volumetric images. In the top row, red dashed
circles indicate the discriminative regions in multi-sequence volumetric images between
normal and Parkinson disease. The middle row shows the axial slice of the reconstructed
images from a CP decomposition of R = 6000. The bottom row shows the axial slices
of reconstructed images for a CP decomposition of R = 6000, where we multiply the
large feature values in selected 100 features by 0.7. (Color figure online)

rank-1 tensors expressing non-common patterns among the images, we have to
increase the number of rank-1 tensors in the CP decomposition.

In Fig. 5(a), for normal and Parkinson disease, two distributions of cosine
similarities almost overlap. This result shows that the selected features from
the CP decomposition of R = 1000 are indiscriminative for two categories. As
R increases in Fig. 5 (c) and (e), the overlap of the distributions between the
two categories decreases. Figure 5(b), (d), and (f) also show the same charac-
teristics as Fig. 5(a), (c), and (e). These results and the results in Fig. 4 imply
that discriminative features between the two categories exist in non-common
patterns with detailed local intensity distributions among multi-sequence volu-
metric images.

Figure 7 depicts the reconstructed images’ missing regions after the suppres-
sion of selected features. Comparing the middle and bottom rows of Fig. 7, we
observed the missing regions in specific parts of the substantia nigra. In the
top row of Fig. 7, missing regions are marked on the original images by a red
dashed circle. The marked regions include the regions of severe loss of neurons
in Parkinson disease. The pars compacta of the substantia nigra is divided into
ventral and dorsal tiers, and each tier is further subdivided into medial to lat-
eral regions. In Parkinson disease, the ventrolateral tier of substantia nigra loses
first, and then the ventromedial tier also loses. Typically the cells of 70–90% in
the ventrolateral tier have been lost by the time a Parkinson-disease patient dies
[19]. Since the missing regions include the ventrolateral tiers, we coluded that
the proposed method achieved neuropathologically correct feature extraction.
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6 Conclusions

We proposed a new feature extraction method to analyse patterns of the sub-
stantia nigra in Parkinson disease. For the feature extraction, we expressed
multi-sequence volumetric images as a fifth-order tensor and decomposed it.
The proposed method selects discriminative features from the tensor decompo-
sition result. A series of experiments show the validity of the proposed method
and important patterns in multi-sequence volumetric images for discrimination
of Parkinson disease. Especially, our geometrical interpretation of the selected
features in the visualisation clarified the discriminative region of the substantial
nigra between normal and Parkinson-disease patients. Based on the suggested
tensor-based pattern expression, we will explore an optimal feature-extraction
method as a topic for future work.
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