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Abstract. Multi-instance learning (MIL) is widely used in the computer-aided
interpretation of pathological Whole Slide Images (WSIs) to solve the lack of
pixel-wise or patch-wise annotations. Often, this approach directly applies “nat-
ural image driven” MIL algorithms which overlook the multi-scale (i.e. pyrami-
dal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a
single-scale of WSIs (e.g., 20× magnification), while human pathologists usu-
ally aggregate the global and local patterns in a multi-scale manner (e.g., by
zooming in and out between different magnifications). In this study, we propose
a novel cross-scale attention mechanism to explicitly aggregate inter-scale inter-
actions into a single MIL network for Crohn’s Disease (CD), which is a form
of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a
cross-scale attention mechanism is proposed to aggregate features from different
resolutions with multi-scale interaction; and (2) differential multi-scale attention
visualizations are generated to localize explainable lesion patterns. By training
∼250,000H&E-stained Ascending Colon (AC) patches from 20 CD patient and
30 healthy control samples at different scales, our approach achieved a superior
Area under the Curve (AUC) score of 0.8924 compared with baseline models.
The official implementation is publicly available at https://github.com/hrlblab/
CS-MIL.

Keywords: Multi-instance Learning · Multi-scale · Attention mechanism ·
Pathology

1 Introduction

Digital pathology is relied upon heavily by clinicians to accurately diagnose Crohn’s
Disease (CD) [14,32]. Pathologists carefully examine biopsies at multiple scales
through microscopes to examine morphological patterns [6], which is a laborious task.
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Fig. 1. Multi-scale awareness. Human pathologists typically aggregate the global and local pat-
terns in a multi-scale manner. However, previous work failed to be aware of cross-scale relation-
ship at different resolutions. Our method demonstrates the importance-of-regions with cross-scale
attention maps, and aggregate the multi-scale patterns with differential attention scores for CD
diagnosis.

With the rapid development of whole slide imaging (WSI) and deep learning methods,
computer-assisted CD clinical prediction and exploration [9,18,19,27] are increasingly
promising endeavors. However, annotating images pixel- or patch-wise is computation-
ally expensive for a standard supervised learning system [11,16,23,24]. To achieve
accurate diagnoses from weakly annotated images (e.g., patient-wise diagnosis), multi-
instance Learning (MIL) – a widely used weakly supervised learning paradigm – has
been applied to digital pathology [7,21,22,26,29]. For example, DeepAttnMISL [31]
clustered image patches into different “bags” to model and aggregate diverse local fea-
tures for patient-level diagnosis.

However, most prior efforts, especially the “natural image driven” MIL algorithms,
ignore the multi-scale (i.e., pyramidal) nature of WSIs. For example, a WSI consists of
a hierarchical scales of images (from 40× to 5×), which allows pathologists to exam-
ine both local [2] and global [1] morphological features [5,13,28]. More recent efforts
have mimicked such human pathological assessments by using multi-scale images in a
WSI [15,20]. These methods typically perform independent feature extraction at each
scale and then perform a “late fusion”. In this study, we consider the feasibility of exam-
ining the interaction between different scales at an earlier stage through an attention-
based “early fusion” paradigm.

In this paper, we propose the addition of a novel cross-scale attention mechanism
in an attention-guided MIL scheme to explicitly model inter-scale interactions during
feature extraction (Fig. 1). In summary, the proposed method not only utilizes the mor-
phological features at different scales (with different fields of view), but also learns
their inter-scale interactions as a “early fusion” learning paradigm. Through empirical
validation, our approach achieved the higher Area under the Curve (AUC) scores, Aver-
age Precision (AP) scores, and classification accuracy. The contribution of this paper is
two-fold:

• A novel cross-scale attention mechanism is proposed to integrate the multi-scale
information and the inter-scale relationships.

• Differential cross-scale attention visualizations are generated for lesion pattern guid-
ance and exploration.
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Fig. 2. Cross-scale Attention Guided Multi-instance Learning Pipeline. This figure demon-
strates the pipeline of the proposed method. The local feature-based clustering was deployed on
each WSI to distribute the phenotype patterns in each MIL bag. The cross-scale attention mech-
anism is deployed in each cluster of MIL branch to combine the multi-scale features with differ-
ential attention scores. Multi-scale representations from different clusters were concatenated for
CD classification.

2 Methods

The overall pipeline of the proposed CS-MIL is presented in Fig. 2. Patches at each
location (same center coordinates) at different scales are jointly tiled fromWSIs. Patch-
wise phenotype features are extracted from a self-supervised model. Then, local feature-
based clustering is deployed on each WSI to distribute the phenotype patterns in each
MIL bag. Cross-scale attention-guided MIL is proposed to aggregate features in multi-
scale and multi-clustered settings. A cross-scale attention map is generated for human
visual examination.

2.1 Feature Embedding and Phenotype Clustering

In the MIL community, most histopathological image analysis methods are divided into
two stages [10,25]: (1) the self-supervised feature embedding stage and (2) the weakly
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supervised feature-based learning stage. We follow a similar design that leverages our
dataset to train a contrastive-learning model SimSiam [8] to extract high-level pheno-
type features from patches. All of the patches are then embedded into low-dimensional
feature vectors for the classification in the second stage.

Inspired by [31], we implement K-means clustering to cluster patches on the patient
level based on their self-supervised embeddings from the first stage since the high-level
features are more comprehensive than low-resolution thumbnail images in represent-
ing phenotypes [33]. When gathering the patches equally from different clusters, the
bag with the better generalization for the MIL model can be organized with distinc-
tive phenotype patterns sparsely distributed on WSIs. In contrast, patches with similar
high-level features can be aggregated for classification without spatial limitation.

2.2 Cross-Scale Attention Mechanism

We implement the MI-FCN encoder from DeepAttnMISL [31] as the backbone to
encode patch embeddings from corresponding phenotype clusters and aggregate the
instance-wise features to the patient-wise classification, which showed superior perfor-
mance on survival prediction onWSIs. In the MIL community, several attention mecha-
nisms [17,22] have been proposed for instance-relationship between different locations
on WSIs. However, those methods are not aware of modeling multi-scale patterns from
the pyramid-structured WSIs. Some approaches [15,20] have aggregated multi-scale
features into deep learning models from WSIs. Unfortunately, those methods fail to
exploit relationships between multiple resolutions at the same location.

To address this issue, we propose a cross-scale attention mechanism to represent
distinctive awareness at different scales in the backbone. After separately encoding
embedding features at different scales, the cross-scale attention mechanism from those
encoding features is leveraged to consider the importance of each scale when aggregat-
ing multi-scale features at the same location. These attention scores are multiplied by
representations from multiple scales to fuse the cross-scale embedding. The multi-scale
representation F can be calculated by:

F =
S∑

s=1

asfs (1)

where

as =
expWTtanh(VfT

s )
∑S

s=1 expWTtanh(VfT
s )

(2)

W ∈ R
L×1 and V ∈ R

L×M are trainable parameters in the cross-scale attention
layer. L is the size of the MI-FCN output fs, M is the output channel of the hidden
layer in the cross-scale attention layer. Tangent element-wise non-linearity activation
function tanh(.) is implemented both negative and positive values for proper gradient
flow. S is the number of the scales on WSIs. The attention-based instance-level pooling
operator from [31] is then deployed to achieve patient-wise classification with cross-
scale embedding.
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2.3 Cross-Scale Attention Visualisation

The cross-scale attention maps from the cross-scale attention mechanism on WSIs are
presented to show the distinctive contribution of phenotype features at different scales.
The cross-scale attentions are mapped from patch scores of the cross-scale attention
mechanism on WSIs, demonstrating the importance at multiple resolutions. This atten-
tion maps concatenate scale knowledge and location information can expand clinical
clues for disease-guiding and exploration in different contexts.

3 Experiments

3.1 Data

50H&E-stained Ascending Colon (AC) biopsies from [4], which are representative
in CD, were collected from 20 CD patients and 30 healthy controls for training. The
stained tissues were scanned at 20× magnification. For the pathological diagnosis, the
20 slides from CD patients were scored as normal, quiescent, mild, moderate, or severe.
The remaining tissue slides from healthy controls were scored as normal. 116 AC biop-
sies were stained and scanned for testing with the same procedure as the above training
set. The biopsies were acquired from 72 CD patients who have no overlap with the
patients in the training data.

3.2 Experimental Setting

256× 256 pixels patches were tiled at three scales (20×, 10× and 5×). For 20×
patches, each pixel is equal to 0.5 Micron. Three individual models following the offi-
cial SimSiam with a ResNet-50 backbone were trained at three scales, respectively. All
three models were trained in 200 epochs with a batch size of 128 with the official set-
ting. 2048-channel embedding vectors were received for all patches. K-means cluster-
ing with a class number of 8 was implemented to receive phenotype clustering within
the single-scale features at three resolutions, and multi-scale features that include all
resolutions for each patient.

10 data splits were randomly organized following the leave-one-out strategy in the
training dataset, while the testing dataset was separated into 10 splits with a balanced
class distribution. Each bag for MIL models was collected for each patient, equally
selecting from different phenotype clustering classes, marked with a slide-wise label
from clinicians. Negative Log-Likelihood Loss (NLLLoss) [30] was used to compare
the slide-wise prediction for the bag with the weakly label. The validation loss was used
to select the optimal model on each data split, while the mean value of the performance
on 10 data splits was evaluated as the testing results. Receiver Operating Characteristic
(ROC) curves with Area under the Curve (AUC) scores, Precision-Recall (PR) curves
with Average Precision (AP) scores, and classification accuracy were used to estimate
the performance of each model. We followed the previous work [12] to implement the
bootstrapped two-tailed test and the DeLong test to compare the performance between
the different models. The cross-scale attention scores were normalized within every
single scale between 0 to 1.
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Table 1. Classification performance on testing dataset.

Model Patch scale Clustering scale AUC AP Acc

DeepAttnMISL(20×) [31] Single 20× 0.7961 0.6764 0.7156

DeepAttnMISL(10×) [31] Single 10× 0.7992 0.7426 0.6897

DeepAttnMISL(5×) [31] Single 5× 0.8390 0.7481 0.7156

Gated attention [17] Multiple Multiple 0.8479 0.7857 0.7500

DeepAttnMISL [31] Multiple Multiple 0.8340 0.7701 0.7069

MDMIL-CNN [15] Multiple 5× 0.8813 0.8584 0.7759

DSMIL [20] Multiple 5× 0.8759 0.8440 0.7672

CS-MIL(Ours) Multiple 5× 0.8924 0.8724 0.8017

Table 2. The bootstrapped two-tailed test and the DeLong test between different methods.

Model p-value of AUC p-value of AP

DeepAttnMISL(20×) [31] 0.004 0.001

DeepAttnMISL(10×) [31] 0.001 0.002

DeepAttnMISL(5×) [31] 0.048 0.004

Gated attention [17] 0.070 0.031

DeepAttnMISL [31] 0.009 0.002

MDMIL-CNN [15] 0.466 0.457

DSMIL [20] 0.350 0.201

CS-MIL(Ours) Ref. Ref.

4 Results

4.1 Performance on Classification

We implemented multiple DeepAttnMISL [31] models with patches at different scales
with a single-scale setting. At the same time, we trained the Gated Attention (GA)
model [17] and DeepAttnMISL model with multi-scale patches, without differentiating
scale information. Patches from multiple scales are treated as instances when process-
ing phenotype clustering and patch selection for MIL bags. Furthermore, we adopted
a multi-scale feature aggregations, jointly adding embedding features from the same
location at different scales into each MIL bag as [15]. We also concatenated embed-
ding features from the same location at different scales as [20]. We followed above
multi-scale aggregation to input phenotype features into the DeepAttnMISL backbone
to evaluate the baseline multi-scale MIL models as well as our proposed method. All
of the models were trained and validated within the same hyper-parameter setting and
data splits.
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Fig. 3. ROC curves with AUC scores and PR curves with AP scores. This figure shows the
ROC curves and PR curves of baseline models as well as the AUC scores and AP scores. The
proposed model with cross-scale attention mechanism achieved superior performance in two met-
rics.

Table 3. Comparison of different cross-scale attention mechanism designs on testing dataset.

Id Attention layer kernel Activation function AUC AP Mean of scores

1 Non-sharing ReLU 0.8575 0.8559 0.8576

2 Non-sharing Tanh 0.8848 0.8679 0.8763

3* Sharing ReLU 0.8924 0.8724 0.8824

4 Sharing Tanh 0.8838 0.8609 0.8723

Testing Result. Table 1 and Fig. 3 indicates the performance of the performance while
directly applying the models on the testing dataset in the CD classification task, with-
out retraining. In general, single-scale models achieved worse performance compared
to multi-scale models, indicating the benefit of external knowledge from multiple scale
information. The proposed CS-MIL achieved better scores in all evaluation metrics,
showing the benefits of the cross-scale attention which explores the inter-scale relation-
ship at different scales in MIL. Table 2 shows the bootstrapped two-tailed test and the
DeLong test to compare the performance between the different models.

Cross-Scale Attention Visualisation. Figure 4 represents cross-scale attention maps
from the cross-scale attention mechanism on a CDWSI and normal WSI. The proposed
CS-MIL can present distinctive importance-of-regions on WSIs at different scales,
merging multi-scale and multi-region visualization. As a result, the 20× attention map
highlights the chronic inflammatory infiltrates, while the 10× attention map focuses on

Table 4. Comparison of different bag sizes on testing dataset.

Bag size AUC AP Mean of scores

64 0.8507 0.8220 0.8363

16 0.8690 0.8523 0.8606

08* 0.8924 0.8724 0.8824

01 0.8769 0.8261 0.8515
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Fig. 4. Attention Map Visualization. This figure shows the cross-scale attention maps from the
proposed model. The proposed CS-MIL can present importance-of-regions at different scales.

the crypt structures. Those regions of interest interpret the discriminative regions for
CD diagnosis across multiple scales.

4.2 Ablation Studies

Inspired by [31] and [17], we estimated several attention mechanism designs in MIL
with different activation functions. We formed the cross-scale attention learning into
two strategies, differentiated by whether they shared the kernel weights while learning
the embedding features from multiple scales. We also evaluated the performance of
different bag sizes. As a result, as shown in Table 3, sharing the kernel weight for cross-
scale attention learning with ReLU [3] achieved better performances with a higher mean
value of multiple metrics. Table 4 demonstrates that a bag size of 8 is an optimal hyper-
parameter for this study. The * is the proposed design.

5 Conclusion

In this work, we propose the addition of a cross-scale attention mechanism to an
attention-guided MIL to combine multi-scale features with inter-scale knowledge. The
inter-scale relationship provides extra knowledge of tissues-of-interest in lesions for
clinical examination on WSIs to improve the CD diagnosis performance. The cross-
scale attention visualization represents automatic scale-awareness and distinctive con-
tributions to disease diagnosis in MIL when learning the phenotype features at different
scales in different regions, offering an external AI-based clue for multi-scale patholog-
ical image analysis.
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