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Abstract. We propose visual modalities-based multimodal fusion for
surgical phase recognition to overcome the limitation of the diversity of
information such as the presence of tools. Through the proposed meth-
ods, we extracted a visual kinematics-based index related to the usage
of tools such as movement and the relation between tools in surgery. In
addition, we improved recognition performance using the effective fusion
method which is fusing CNN-based visual feature and visual kinematics-
based index. The visual kinematics-based index is helpful for understand-
ing the surgical procedure as the information related to the interaction
between tools. Furthermore, these indices can be extracted in any envi-
ronment unlike kinematics in robotic surgery. The proposed methodol-
ogy was applied to two multimodal datasets to verify that it can help to
improve recognition performance in clinical environments.

Keywords: Surgical workflow · Surgical phase recognition ·
Multimodal learning · Visual kinematics-based index

1 Introduction

Surgical workflow analysis using a computer-assisted intervention (CAI) system
based on machine learning or deep learning has been extensively studied [1–10].
In particular, surgical phase recognition can help optimize surgery by activat-
ing communication between surgeons and staffs, not only for smooth teamwork,
but also for efficient use of resources throughout the entire surgical procedure
[11]. Moreover, it is valuable for monitoring the patient after surgery and educa-
tional materials through the classification of stereotyped surgical procedures [1].
However, phase recognition is a challenging task that involves many interactions
between the actions of the tools and the organs. In addition, surgical video anal-
ysis has limitations such as video quality (i.e. occlusion and illumination change)
and unclear annotations at event boundaries [2,3].

Many studies that performed surgical workflow analysis have limitations due
to performing analysis using only CNN-based visual features and information
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for the presence of tools in video. In this paper, to overcome this limitation, we
introduce a visual modality-based multimodal fusion method that improves the
performance of phase recognition by using interactions between the recognized
tools. The proposed method extracts indices related to tools used in surgery
and fuses them with visual features extracted from CNN. We demonstrate the
effectiveness of proposed tool-related indices to improve performance by the VR
simulator-based dataset and the collected gastrectomy dataset.

We have the following contributions:

– We propose a method to extract a visual kinematics-based index related to
tools that are helpful in surgical workflow analysis from visual modality such
as semantic segmentation map.

– In addition, it shows that it can be applied in environments where it is difficult
to extract the kinematics of tools in a system unlike robotic surgery.

– We propose a fusion method that improves recognition performance by effec-
tively aggregating the visual kinematics-based index and visual features.

2 Related Works

Phase Recognition. In early machine learning-based research, a statistical
analysis of temporal information using Hidden Markov Models (HMMs) and
Dynamic Time Warping (DTW) was conducted [4]. Since then, as the use of
deep learning has become more active, EndoNet [5] that recognizes tool exis-
tence through CNN-based feature extraction had been studied. MTRCNet-CL
[6], which combines CNN and LSTM to perform multi-tasks, was also performed.
Furthermore, a multi-stage TCN (MS-TCN)-based surgical workflow analysis
study that performs hierarchically processes using temporal convolution was also
performed [10]. Each stage was designed to refine the values predicted by the
previous stage to return more accurate predictions. Previous studies had been
conducted using only video information for analysis or additionally using only
the presence of tools in the video. On the other hand, the proposed method uses
a method of fusing visual features and indices related to tools.

Surgical Workflow Dataset. Datasets published to perform surgical work-
flow recognition include actual surgical videos like Cholec80 [5], toy samples for
action recognition of a simple level such as JIGSAWS [12] and MISAW [13],
and synthetic data generated from VR simulators PETRAW [14]. In the case of
the JIGSAWS and MISAW, kinematic information of the instrument from the
master-slave robotic platform was provided, so that more precise tool movements
could be analyzed. However, in laparoscopic surgery, it was difficult to use kine-
matic information owing to the absence of a surgery robot. There was a limit
to extracting and applying actual kinematic information due to security issues
of the robotic surgery device. To address these problems, we use a method of
generating tool-related indices from visual modality to replace kinematic infor-
mation.
Multimodal Learning. The various modalities (i.e., video, kinematics) cre-
ated in the surgical environment have different information about the surgical
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Fig. 1. Proposed visual modalities-based multimodal fusion method. The
visual kinematics-based index and frame sequence extracted for the input frame
sequence is used as input to the models for each modality. The feature representa-
tions of each modality are used as input to the fusion model for joint training.

workflow. Multimodal learning aims to improve performance by using mutual
information between each modality. However, researches on multimodal learn-
ing in surgical workflow analysis were still insufficient [5,12–15]. In particular,
there was a limitation because of related to data that is difficult to access or
extract such as the kinematics of surgical tools. We propose a method to effec-
tively achieve performance improvement by fusing various information generated
from vision modalities through virtual or real data.

3 Methods

In this section, we propose an extraction manner of a visual kinematics-based
index and a visual modality-based multimodal feature fusion method. We used
two visual modalities: video and visual kinematics-based index. The visual
kinematics-based index expresses the movement and relationship of surgical tools
extracted from the semantic segmentation mask. To improve the phase recogni-
tion performance, we applied convolutional feature fusion to enhance the interac-
tion of features extracted from visual modalities. The overall learning structure
is shown in Fig. 1.

3.1 Visual Kinematics-based Index

A visual kinematics-based index was defined as an index expressing the rela-
tionship between tools and the movement of tools. These indices helped to
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understand the impact of the action of tools in surgical procedures. Actually,
according to previous studies, surgical instrument index which included kine-
matics extracted from surgical robot or video was used to analyze the skill level
of surgeon who performed surgery for all or part of the operation [15–21]. How-
ever, indices such as kinematics were extracted from the robot system and were
hard to access. To solve this problem, we extracted the visual kinematics-based
index by recognizing the tools from the semantic segmentation mask.
Types of Visual Kinematics-based Index. The visual kinematics-based
index was consist of two types which are movement or relation between tools.
Movement index was measured as {path length, velocity, centroids, speed,
bounding box, economy of area} [21]. Movement index measurement is as follows:

PL =
T∑

t

√
(D(x, t))2 + (D(y, t))2, D(x, t) = xt − xt−1. (1)

s =
PL

T
, v(x) =

xt − xt−Δ

Δ
. (2)

EOA =
bw × bh

W × H
. (3)

where PL is path length in the current time frame t and T is the time range for
computing index. The path length consists of two types which are cumulative
path length and partial path length. D(x, t) measures the difference of x coor-
dinate between the previous and current time frame. x and y mean centroids
of an object in the frame. Centroids are average positional values for X- and
Y-coordinate in the semantic segmentation mask. s is the speed for time range
T , and v is the velocity for the direction of X or Y at time interval Δ. bw and
bh are the width and height of the bounding box, and W and H are the width
and height of the image. Bounding box (BBox) is consist of four values such as
top, left, box width, box height (bx, by, bw, bh).

Relation index was measured as {IoU, gIoU, cIoU, dIoU} [21–23]. gIoU, cIoU,
and dIoU are modified versions of IoU. The index of IoU family is related to
how close two objects are to each other. We considered {λ1, ..., λN} to train
phase recognition model by index combination experiments. λ denotes a visual
kinematics-based index.

3.2 Feature Fusion

The feature representation for each modality has different information regarding
surgical workflow. The representation extracted from the video is related to the
overall action in the scene, and the representation extracted from the visual index
is related to the detailed movement of each tool. We designed a convolution-
based feature fusion module for the interaction of representations to improve
recognition performance. For performance comparison, a simple linear feature
fusion method and a convolution-based feature fusion method were introduced.
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Fig. 2. An illustration of convolution-based feature fusion module. Before
feature fusion, enhancement for feature representation is performed by stop-gradient
strategy. After then, features are aggregated by 1D-convolutional operation.

Linear Feature Fusion. For each feature representation from modality, the
linear fusion module is as follows:

fm
i = η(θm(xm

i )), m ∈ {V, V KI}. (4)

zi = ψ(concat(fV
i , fV KI

i )). (5)

where fm
i is a d-dimensional projected feature for each modality, xm

i is ith input
data of modality m, and θm is a deep neural network based recognition model
for each modality. V and V KI denote video and visual kinematics-based index.
η and ψ are fusion blocks based on Multi-Layer Perceptron (MLP) layers for
generating features of another view and aggregating features, respectively. The
concatenated feature is aggregated to d-dimensional feature zi as the input clas-
sification layer.
Convolution Based Feature Fusion. Linear fusion module is not an effec-
tive approach due to the simple late-fusion method based on a vanilla fully-
connected layer. The proposed convolution-based feature fusion module is effec-
tive in enhancing interaction between features for phase recognition. The pro-
posed method is processed in 2 steps; 1) Stop gradient-based representation
enhancement, 2) Convolutional feature aggregation as shown in Fig. 2.

gm
i = φ(fm

i ) (6)

We apply the stop gradient-based approach proposed in [24] to close the
representations of modality with different views and to speed up the learning
convergence speed. gm

i with the same dimension and different view is generated
through a projector composed of MLP in Eq. 6. [24] used contrastive loss to
learn similarity between representations. According to [24], the contrastive loss
is defined as:

D(ai, bi) = (
d∑

j=1

|ai,j − bi,j |p)1/p (7)
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Lcon(fm1
i , gm2

i ) =
1
2
D(fm1

i , stopgrad(gm2
i )) +

1
2
D(stopgrad(fm1

i ), gm2
i ) (8)

where ai and bi are the feature representations of different views, p is the order of
a norm and m1,m2 are consist with one of {V, V KI}. Unlike [24], the similarity
is calculated using pairwise distance through the experiments. Fused feature
representation zi is forwarded by convolution-based feature fusion as follows:

zi = Θ(concat(gV
i , gV KI

i )) (9)

where Θ is a 1D convolution-based feature fusion block for kernel size k, zi is
used as input of classifier h to predict ŷ. Recognition loss Lcls is computed by
cross-entropy loss and then total loss is defined as Eq. 11.

Lcls = CrossEntropyLoss(ŷ, y), ŷ = h(zi) (10)

Ltotal = Lcon + Lcls (11)

4 Experiment Results

4.1 Base Setting

Dataset. We validated the proposed methods using two different datasets. 1)
PETRAW [14] was released at challenge of MICCAI 2021. PETRAW dataset
consisted of the pair which are video, kinematics of arms, and semantic seg-
mentation mask generated from VR simulator. Training and test data were con-
structed with 90 and 60 pairs, respectively. The PETRAW had four tasks such as
Phase(3), Step(13), Left action(7), and Right action(7); values in parentheses are
the number of classes. 2) The 40 surgical videos for gastrectomy surgery which
is called G40 were collected with da Vinci Si and Xi devices between January
2018 and December 2019. We constructed a 30:10 training and evaluation set
by considering the patient’s demographic data such as {age, gender, pre BMI,
OP time, Blood loss, and length of surgery}. According to [3], G40 dataset was
annotated for ARMES based 27 surgical phases by consensus of 3 surgeons. G40
consisted of video and semantic segmentation mask with 31 classes, including
tools and organs for {harmonic ace, bipolar forceps, cadiere forceps, grasper,
stapler, clip applier, suction irrigation, needle, gauze, specimen bag, drain tube,
liver, stomach, pancreas, spleen, and gallbladder}. Each instrument consisted of
a head, wrist, and body parts1.
Model. To train models for various modalities, we used Slowfast50 [25] with α,
β, and τ for video and Bi-LSTM [26] for kinematics and visual kinematics based
index. The segmentation model was trained to predict semantic segmentation
masks for generating an index. We used UperNet [27] with Swin Transformer
[28] as backbone network.
1 Please refer supplementary material for class definition details and segmentation

results on G40.
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Evaluation Metrics. We used various evaluation metrics which are accuracy
of whole correctly classified samples, the average version of recall, precision, and
F-1 score for classes each task to compare phase recognition results. All metrics
were computed frame-by-frame. In all tables, we selected the best models by the
average F1 score of tasks.

4.2 Performance Analysis

Table 1. Best combination experiments for visual kinematics based index on
PETRAW. {λ1, ..., λN} are indicated in order by cumulative path length(1), partial
path length(2), velocity(3), speed(4), EOA(5), centroids(6), IoU(7), gIoU(8), dIoU(9)
and cIoU(10). The best combination is selected by mF1-score.

N Best combination Phase Step Action(L) Action(R) Avg.

1 λ1 88.28 66.68 29.82 29.16 53.48

2 λ1, λ2 90.41 67.57 32.62 32.19 55.70

3 λ1, λ2, λ3 90.87 68.74 33.12 33.36 56.52

4 λ1, λ2, λ4, λ6 90.96 68.85 32.67 33.66 56.53

5 λ1, λ2, λ3, λ4, λ6 91.47 68.85 34.18 34.03 57.13

6 λ1, λ2, λ3, λ5, λ8, λ10 89.30 67.77 31.71 32.80 55.40

7 λ1, λ2, λ3, λ6, λ7, λ8, λ10 89.69 69.02 34.06 33.09 56.47

8 except λ8 and λ10 90.48 68.51 32.74 33.19 56.23

9 except λ10 91.03 68.24 33.04 32.34 56.16

10 ALL 89.90 68.31 33.69 33.31 56.30

Important Feature Selection. We extracted various visual kinematics-based
indices, and then what kinds of index pairs are positively affected by performance
was evaluated on PETRAW in Table 1. λ1 and λ2 were related to performance
improvement in all cases, and λ3 was also significantly affected by performance.
Figure 3 shows cumulative counts of the index for each combination of best
and worst performance. In best combination, {λ1, λ2, λ3, λ6} were mostly used
but, λ6 was also related to achieve worst performance. We used N = 5 due to
achieve the best performance in that combination. The index of the bounding
box was included in all combination experiments because that is influenced by
performance improvement in Table 2. The bounding box can be synergy by using
other indices because it has the positional information (bx, by) and the informa-
tion of object size (bw, bh). All indices with a bounding box obtained better
performance compared to those not used it.

Performance on PETRAW. We used an Adam optimizer with an initial
learning rate of 1e-3, an L2 weight decay of 1e-5, a step scheduler for Bi-LSTM
and convolution-based fusion method, and a cosine annealing scheduler with a
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Fig. 3. The histogram of the visual kinematics-based index for best and
worst performance. (a) Cumulative counts of each index on the combination of
best performance (b) Cumulative counts of each index on the combination of worst
performance.

warmup scheduler during 34 epochs for slowfast and linear fusion method. A
batch size of 128 was used in all experimental environments. The learning rate
decay rate was applied at 0.9 every five epochs for step scheduler. According to
[25], α, β, and τ were set {4, 8, 4} in slowfast. The hidden layer size and output
dimension of Bi-LSTM were set at 256 and 256, respectively. Projected feature
size d set 512 for both fusion modules, and convolution kernel size k was 3. To
address data imbalance, all networks used class-balanced loss [29] and trained
for 50 epochs. We also used train and test datasets which were subsampled by
5 fps. The clip size was 8, and the time range T was the same as the clip size.

Table 3 shows mF1 performances for each modality on PETRAW dataset.
The baselines, including video and kinematics, were compared to the visual
kinematics-based index. Especially, performances of phase and step by visual
kinematics based index were achieved similar performance compared to kine-
matics based performance. It verified that visual kinematics based index can be
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Table 2. Evaluation for impact of bounding box. Each row is the performance
using a single index. The value in parentheses is the improvement in adding the bound-
ing box, and the bold is the most significant improvement.

Index Phase Step Action(L) Action(R) Avg.

BBox only 55.63 27.75 19.57 20.16 30.78

λ1 83.98(+4.30) 61.37(+5.31) 9.99(+19.82) 10.19(+18.97) 41.38(+12.10)

λ2 42.68(+16.84) 14.82(+15.10) 16.32(+9.02) 14.26(+10.74) 22.02(+12.93)

λ3 35.88(+22.95) 13.47(+16.08) 14.78(+8.73) 13.67(+10.07) 19.45(+14.46)

λ4 35.88(+21.61) 8.75(+20.51) 11.87(+10.95) 10.29(+12.30) 16.70(+16.34)

λ5 36.63(+19.91) 15.38(+13.76) 14.32(+7.91) 14.17(+7.56) 20.13(+12.29)

λ6 48.58(+6.77) 20.83(+6.59) 17.80(+2.61) 18.11(+3.33) 26.33(+4.82)

λ7 34.55(+20.75) 7.59(+19.99) 10.16(+10.56) 10.17(+10.54) 15.62(+15.46)

λ8 34.54(+20.58) 7.18(+20.38) 10.01(+11.01) 10.16(+10.92) 15.47(+15.72)

λ9 34.22(+21.39) 6.82(+20.68) 10.18(+9.98) 10.15(+11.83) 15.34(+15.97)

λ10 33.80(+21.14) 7.10(+20.10) 10.06(+12.02) 10.16(+11.59) 15.28(+16.21)

helpful to recognize the actions of tools in Tables 1, 2, and 32. Furthermore, the
proposed fusion technique achieved improved performance compared to baseline.
Our fusion methodology was useful for fusing the representations by enhancing
the interactions between features.

Performance on G40. As like setting of PETRAW, we used the same setting of
training models. However, the initial learning rate was set 1e-2, weighted cross-
entropy loss was used for slowfast, and a cosine annealing scheduler was used for
all experiments. A batch size of 64 was used in all experimental environments,
and all networks were trained for 50 epochs. The sampling rate was set 1 fps for
train and test datasets. The clip size was 32, and the time range T was the same
as the clip size. It also improved performance by using the visual kinematics-
based index on G40 in Table 4. That is, the visual kinematics-based index was
available to replace the kinematics in actual surgery.

Table 3. Performance change for each modality on PETRAW. {V, K, VKI}
denote video, kinematics and visual kinematics based index.

Model Modality Phase Step Action(L) Action(R) Avg.

Slowfast50 V 98.13 96.15 79.52 78.72 88.13

Bi-LSTM K 96.79 80.52 78.10 77.01 83.11

Bi-LSTM VKI 91.47 68.85 34.18 34.03 57.13

Linear Fusion V+K 98.26 96.13 80.45 81.86 86.14

Conv. Fusion V+K 98.59 96.43 82.57 81.83 89.85

Linear Fusion V+VKI 98.21 96.28 79.93 79.17 85.12

Conv. Fusion V+VKI 98.23 96.38 79.87 78.98 88.36

2 Please refer to supplementary material for additional experimental results of Accu-
racy, mPrecision, mRecall, and mF1 on PETRAW.
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Table 4. Performance change of each modality on G40. mPrecision, mRecall,
and mF1 are measured by the average of results for each class.

Model Modality Accuracy mPrecision mRecall mF1

Slowfast50 V 63.37 55.40 59.10 55.49

Bi-LSTM VKI 50.53 40.32 36.79 34.80

Linear Fusion V+VKI 69.71 56.58 58.83 56.76

Conv. Fusion V+VKI 67.71 56.75 60.19 57.41

4.3 Ablation Study

Visual Kinematics Based Index for Organs. The surgical procedure was
related to the interaction between tools and organs. Therefore, relation indices
of tools and organs can be helped for recognition performance. We evaluated
the performance change by involving a relation index between tools and organs.
We used λ8 and λ10 measured between tools and organs for considering the
relationship. The comparison is shown in Table 5. Those indices were validated
to help recognize the surgical procedure by improved performance.

Table 5. The comparative results for including indices of organs on G40. We
compared by adding the relation index between tools and organs, including the liver,
stomach, pancreas, spleen, and gallbladder.

Model Index Accuracy mPrecision mRecall mF1

Bi-LSTM tools only 52.58 41.40 40.76 39.46

Bi-LSTM add organs 53.72 44.04 41.10 40.67

Change of Semantic Model. We evaluated the change in performance regard-
ing segmentation models. We considered three models, DeeplabV3+ [30], Uper-
Net [27], and OCRNet [31]. UperNet used Swin Transformer [28] as backbone
network and HRNet [32] for OCRNet. We used the basic setting of MMSegmen-
tation [33] to train models during 100 and 300 epochs on PETRAW and G40,
respectively. According to accurate segmentation results, the performance was
improved in Table 6.
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Table 6. Performance change for various segmentation models on PETRAW.
The values in table are mF1-score for each task.

Seg. Model Target Model mIoU Phase Step Action(L) Action(R) Avg.

DeeplabV3+ Bi-LSTM 98.99 89.91 61.83 24.33 22.40 49.62

OCR-HRNet Bi-LSTM 98.98 92.06 68.67 31.71 35.02 56.86

Swin-UperNet Bi-LSTM 98.94 91.47 68.85 34.18 34.03 57.13

Table 7. Performance change for various segmentation models on G40.

Seg. Model Target Model mIoU Accuracy mPrecision mRecall mF1

DeeplabV3+ Bi-LSTM 85.14 50.20 39.96 37.58 36.69

OCR-HRNet Bi-LSTM 86.45 50.40 39.66 40.30 38.39

Swin-UperNet Bi-LSTM 87.64 52.58 41.40 40.76 39.46

5 Conclusion

We proposed a visual modalities-based feature fusion method for recognizing
surgical procedures. We extracted a visual kinematics-based index from a visual
modality such as a semantic segmentation map and trained the model using the
indices and visual features from CNN. We validated that our approach helped
to recognize the surgical procedure in simple simulation (PETRAW) and actual
surgery (G40). In addition, the visual kinematics-based index is expected to be
helpful in non-robotic surgery like laparoscopic surgery due to generating them
from visual modality. For further study, we will consider evaluating by extracting
a visual kinematics-based index from other visual modalities such as the object
detection model.
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