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Abstract. Lymphoma is a cancer of the lymphatic system, and it can
affect many organs throughout the body. Positron emission tomogra-
phy (PET)/computed tomography (CT) are primary imaging methods
to assess lymphoma types and monitor their treatment, where PET is
sensitive to identify lymphoma regions while CT preserves anatomical
structures. Combining PET and CT is thus useful for lymphoma seg-
mentation because it helps to identify lymphoma types and evaluate
treatment effects. However, lymphoma segmentation suffers many chal-
lenges, including substantial lymphoma size and shape variance, numer-
ous types, limited PET/CT data for lymphoma, and similar PET signals
with adjacent organs. To address these challenges, we integrate label
guidance, patch sampling, and negative data augmentation to achieve
multi-modal lymphoma segmentation. The training data consist of posi-
tive and negative patch samples. These samples are purposely extracted
from the original scans with the guidance of lymphoma labels. Neg-
ative samples are further supplemented from the PET/CT scans of
non-lymphoma patients to better discriminate lymphoma from adjacent
organs. The proposed method was validated on the PET/CT scans from
28 patients. Experimental results revealed that the Dice coefficient was
improved from 0.11 to 0.43 in comparison with a baseline method the
3D-residual U-Net method. Patch-based strategy is also computational
undemanding. These results suggest that the proposed method could be
an efficient means to segment lymphoma and possibly used for identifying
lymphoma types and assessing their treatment.
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1 Introduction

Lymphoma is a hematopoietic malignancy with numerous types, and it can
affect people of all ages [1]. Lymphoma treatment response is highly dependent
on the measurement of tumor burden, which often requires accurate identifi-
cation of lymphoma regions. Positron emission tomography (PET)/computed
tomography (CT) [2,4,8] are primary imaging methods to assess lymphoma and
monitor treatment response. Figure 1 illustrates an example of PET/CT scans
on lymphoma patient. Organs such as kidney and liver are well depicted, but
lymphoma is difficult to identify in the CT scan (Left Image). In contrast, the
standardized uptake value (SUV) is used to measure fluorodeoxyglucose positron
emission tomography uptake or glucose metabolism of the tumor regions in the
PET scan. For this reason, lymphoma is visually represented as bright regions in
the PET scan (yellow arrows) while organs are hard to delineate. These obser-
vations motivate us to develop a multi-modal lymphoma segmentation method
as it is useful for lymphoma treatment.

Fig. 1. Example of lymphoma distributed on the paired PET-CT scans. Left column:
organs are preserved in the CT scan; Center column: lymphoma is highlighted with
bright regions in the PET scan (yellow arrows), in which it is randomly spread to the
whole body; Right column: PET scan with overlayed lymphoma labels, from which we
can observe that lymphomas are outside organs (a1, a2), inside organs (b1, b2), small
spots (c1, c2). Kidneys (d1, d2) and bladder (e1, e2) could also have bright normal
regions similar to lymphoma. All these challenges are attributed to the difficulty of
lymphoma segmentation.

However, lymphoma segmentation is a challenging task because it can ran-
domly spread throughout the body (Fig. 1). It could be either outside organs
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(a1, a2) or inside organs (b1, b2). Lymphoma also has a wide range of shapes
and sizes, such as tiny spots (c1, c2). High SUV values at kidneys (d1, d2) and
bladder (e1, e2) are also similar to those at lymphoma. All these difficulties hin-
der lymphoma segmentation, and only a limited number of methods have been
developed for lymphoma segmentation. An ensemble model from DeepMedic
was developed for pediatric lymphoma PET/CT scans [11]. DenseX-Net was
also developed to segment lymphoma on the whole-body PET/CT scans [7].
However, the input of these methods is 2D slice, which potentially lose the spa-
tial coherence among slices. Another 3D segmentation method based on the
belief function was used to segment lymphoma [3], which integrated a feature
extraction module and an evidential segmentation (ES) module. Although it
achieved decent segmentation results, it has not considered the multi-scale and
patch-based framework to further extract the useful information from the details
of the PET and CT scans. This paper aims to develop a deep learning-based
approach to segment lymphoma on multimodal PET/CT scans. Our method
combines Label guided Patch sampling for Multi-Modalities, and negative sam-
ple augmentation (LPMM-nsa) to serve the segmentation purpose. The training
data are composed of a set of local image patches, and positive (green boxes,
Fig. 2), and negative patches (red boxes, Fig. 2) are extracted according to the
likelihood of lymphoma regions or non-lymphoma regions. In other words, pos-
itive samples are more likely from the lymphoma regions and negative samples
are from non-lymphoma regions, which could help to create high-quality data
for training. Negative samples are further enhanced from PET/CT scans of non-
lymphoma patients1 to better discriminate the lymphoma from organs. Since
our method is patch based, the proposed method is naturally computationally
undemanding and GPU memory efficient, which is suitable for clinical applica-
tions. A validation dataset with 28 lymphoma patients is also created to evaluate
the segmentation accuracy, in which the lymphoma size changes drastically, and
they are more close to the real clinical practice.

2 Method

For demonstration of the effectiveness of the proposed methods, we choose to use
the widely validated 3D-residual U-Net as the back-bone structure to develop
our own modules (Fig. 2). It is noted that the proposed methods can be extended
to other more advanced structure in simple plug-in fashion such as [3].

2.1 Notation and Formation

Let us first give some notations and formations to improve readability. Multi-
modal PET/CT dataset {Xi}n

i=1 where Xi is a sample in the dataset, which
channel-wise concatenates the PET and CT modalities. Training and testing
datasets are defined as {Xt

i}k
i=1 and {Xv

i }l
i=1 respectively. Their corresponding

1 https://clinicaltrials.gov/ct2/show/NCT01724749.

https://clinicaltrials.gov/ct2/show/NCT01724749
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Fig. 2. Overview of the proposed lymphoma segmentation method based on 3D-
residual U-Net. Positive patch samples (green boxes) are extracted from the lymphoma
regions guided by their labels, and negative samples (red boxes) are created from non-
lymphoma regions. (Color figure online)

labels are, thus, given as {Yt
i}k

i=1 and {Yv
i }l

i=1. Each element y in Yt
i and

Yv
i belongs to the set {0, 1} denoting lymphoma and non-lymphoma regions,

respectively. Let us denote the 3D residual U-Net as E and the loss function as
L. Then the classic segmentation framework is as follows:

θ∗ = min
θ(E)

k∑

i=1

L(E(Xt
i),Y

t
i) (1)

where θ(E) stands for the trainable parameters of the network and θ∗ is the
optimized parameters of the network.

2.2 Label-Guided Patch Sampling

To further extract the useful information from the details of the PET/CT scans
and decrease the computing resource demanding issue of the huge 3D volumetric
data, we utilize the strategies of label-guided patch sampling. Training samples
are extracted based on the guidance of data label. The sampling function S()
extracts patches non-homogeneously in terms of probability of the presence of
lymphoma guided by the label map Yt

i because lymphoma regions and their
adjacent regions should be highlighted. The sampling process is thus given by:

{X̂t
ij}m

j=1 = S(Xt
i; f ,m,Yt

i) (2)

where the X̂t
ij represents the j-th patch sampled from the scan dataset Xt

i.
m indicates the number of patches. The f Bernoulli distribution to sample the
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images from the lymphoma and non-lymphoma regions according to the Yt
i :

f(y; p) =

{
p if y = 1,

1 − p if y = 0.
(3)

where the probability p is set as 0.6 in this work, and y = 1 if it is a positive
sample and y = 0 if it is a negative sample. Using patch sampling leads (1) to:

θ∗ = min
θ(E)

n,m∑

i=1,j=1

L(E(X̂t
ij), Ŷ

t
ij) (4)

where Ŷt
ij is the patch label of X̂t

ij .

2.3 Negative Sample Augmentation

Negative sample augmentation is another efficient strategy to enhance the train-
ing data. PET/CT scans of the non-lymphoma patients were used for discrimi-
nating organs from lymphoma. Therefore, we denote the extra patch dataset as
({X̂e

ij}s
j=1, {0}s

j=1), where the negative patches {X̂e
ij}s

j=1 are randomly sampled
from the extra negative samples {Xe

i }q
i=1. The symbol 0 means the all 0 label

tensor for the negative sample X̂e
ij . Finally, our framework is expressed as:

θ∗ = min
θ(E)

n,m∑

i=1,j=1

L(E(X̂t
ij), Ŷ

t
ij) +

q,s∑

i=1,j=1

L(E(X̂e
ij),0) (5)

Optimizing (5) yields the trained network E∗. During inference, the prediction
of the patches of a PET/CT scans is given by Ŷ∗

ij = E∗(X̂v
ij). These predicted

patches are stitched based on the aggregation function:

Y∗
i = G(X̂∗

ij ;α) (6)

where the α represents the parameters for the patch aggregation, which includes
patch size, overlap margin, and Y∗

i is the final lymphoma segmentation.
The ADAM optimizer [6] with weight decay is used for training. The learning

rate is set to 10−3. The proposed method is implemented in PyTorch. Both
training and testing are performed on the Nvidia DGX station equipped with a
Tesla A100 graphics card with 40 GB GPU memory.

2.4 Data Collection and Validation Methods

Twenty-two lymphoma patients underwent whole body (WB) PET and CT
examinations between 2010–2021 were collected, and Research Consortium for
Medical Image Analysis (RECOMIA) AI tool was used to initially label the lym-
phoma regions. These labeled results were then reviewed and manually corrected
by an experienced radiology residence. Labeled results were eventually confirmed
by a nuclear medicine physician, which generates our lymphoma labels.
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All twenty-two PET/CT scans were resampled to 500 × 500 × 850 pixels
through cropping and padding operations. The intensity is normalized to [0, 1]
using the window range of [−1000, 800] on the CT scan and the SUV window
range of [0, 40] inspired by [10] on PET scan. We empirically set the patch size
as 64 × 64 × 64. For the SUV computation, we use the SUV normalized by the
body weight (SUVbw) [5]2. More specifically, the computation method is listed
as follows:

SUV bw = (PET image P ixels) ∗ (weight in grams)/(injected dose) (7)

PET image pixels and injected dose are decay corrected to the start of scan.
After the conversion, the pet image pixels are in units (g/ml). Three metrics
are used for validation, including Dice score (dsc), average symmetric surface
distance (assd), and sensitivity. Two experiments were conducted in this work.
The first is the comparison between the baseline 3D residual U-Net and the
proposed method with different settings, including the proposed label guided
patch sampling for multi-modal data (LPMM), and its further improved version
with negative sample augmentation (LPMM-nsa). The second is the comparison
among single modality (PET or CT only) and multi-modal (PET/CT).

3 Experiments

The comparison of segmentation results using different methods is reported
in Table 1. It reveals that the combination of label guidance, patch sampling
and negative data augmentation (LPMM-nsa) achieves the highest segmenta-
tion accuracy. It also suggested that the input of multi-modal data is another
key component to improve the segmentation accuracy as the dice-coefficient is
only 0.11 using PET scan only. In contrast, the proposed method can achieve
0.43.

Comparison results in Fig. 3 also supported these findings because the base-
line 3D residual U-Net is prone to over-segmenting lymphoma (second row). In
contrast, over-segmentation is substantially reduced after using label guidance
and patch sampling. However, it could induce the issue of under-segmentation,
which was further improved by the addition of negative sample augmentation.
Figure 4 also proves the importance of multi-modal input. All lymphomas are
missed from the model trained on CT scans only because lymphoma is non-trivial
to identify on CT scans. Some lymphoma were segmented using the model with
PET scans only, and the segmentation results were vastly improved with both
modalities. Since CT and PET concentrate on the different parts of lymphoma
patients, they might contribute to each other to more accurately identify lym-
phoma regions.

To further demonstrate the advantage of our methods, we illustrate several
results from each multi-modal method in details in Fig. 3 from axial.

2 https://qibawiki.rsna.org/index.php/Standardized Uptake Value (SUV).

https://qibawiki.rsna.org/index.php/Standardized_Uptake_Value_(SUV)
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Table 1. Comparison of lymphoma segmentation results using different methods

dsc↑ assd↓ sensitivity↑
Single modality

3D-residual U-Net (Pet only) 0.11 29.8 0.3

Multiple modalities

3D-residual U-Net 0.18 41.4 0.82

LPMM (ours) 0.26 28.95 0.84

LPMM-nsa (ours) 0.43 19.12 0.82

Fig. 3. Comparison of lymphoma segmentation results using different segmentation
models. The three columns show slices from three scans respectively. First row: ground
truth; second row: segmentation results from the baseline 3D-residual U-Net method
where lymphomas are over-segmented; third row: results from the segmentation model
enhanced with label guided patch sampling where over-segmentation is substantially
reduced but with some lymphoma under-segmentated; fourth row: results with the
addition of negative sample augmentation, in which lymphomas are accurately seg-
mented.
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Fig. 4. Comparison of lymphoma segmentation using different image modalities. The
three columns show slices from three scans respectively. First row: ground truth, second
row: segmentation results using CT only, third row: results using PET only, and fourth
row: results using both CT and PET. No lymphomas are segmented on CT scans only,
and some lymphomas are found in the results with PET only. Almost all lymphomas
are segmented using both modalities

4 Conclusion and Future Work

In this paper, we developed a multi-modal lymphoma segmentation method on
PET/CT scans. Three key components were integrated to improve the segmen-
tation accuracy, including label guidance, patch sampling, and negative sample
augmentation. Label guidance helps to create effective training samples that are
more focused on both lymphoma and non-lymphoma regions. Patch samples not
only reduces computational cost, but also avoid over-segmentation from the base-
line 3D residual U-Net (third row, Fig. 3). Negative sample augmentation could
further reduce the issue of under-segmentation raised by path sampling (fourth
row, Fig. 3). Comparing with the segmentation models from single modal, multi-
modal is another important property to the segmentation accuracy (Fig. 4. The
validation results in Table 1 also proved that the proposed method utilized all
effective means to achieve the highest segmentation accuracy.
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In the future, we would like to explore more about the multiple modal-
ity fusion methods, such as graph-based methods [9], multimodal transform-
ers [12], as well as incorporate additional modal of clinical reports to continu-
ously improve segmentation accuracy. Nevertheless, the proposed method shows
the promising results to accurately segment lymphoma on PET/CT scans.
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