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Preface

On behalf of the organizing committee, we welcome you to the 3rd International Work-
shop on Multiscale Multimodal Medical Imaging (MMMI 2022), held in conjunction
with the International Conference onMedical Image Computing and Computer Assisted
Intervention (MICCAI 2022) in Singapore. The workshop was organized through the
combined efforts of the Massachusetts General Hospital and Harvard Medical School,
the University of Southern California, Peking University, Vanderbilt University, and the
University of Sydney.

This series of MMMI workshops aims to develop the state of the art in acquiring
and analyzing medical images at multiple scales and from multiple modalities. Topics
of the workshop include algorithm development, implementation of methodologies, and
experimental studies. The workshop also aims to facilitate more communication and
interchange of ideas between researchers in the fields of clinical study, medical image
analysis, and machine learning.

Since the first edition in 2019 (Shenzhen, China), the MMMI workshop has been
well received by the MICCAI community. This year, the workshop’s theme was novel
methodology development for multi-modal fusion. MMMI 2022 received a total of
18 submissions. All submissions underwent a double-blind peer-review process, each
being reviewed by at least two independent reviewers and one Program Committee (PC)
member. Finally, 12 submissions were accepted for presentation at the workshop, which
are included in this proceedings, based on the PC review scores and comments. The time
and efforts of all thePCmembers and reviewers,which ensured that theMMMIworkshop
would feature high-quality and valuable works in the field, are highly appreciated.

With the increasing application of multi-modal, multi-scale imaging in medical
research studies and clinical practice, we envision that the MMMI workshop will con-
tinue to serve as an international platform for presenting novelworks, discussing essential
challenges, and promoting collaborations within the community. We would like to thank
everyone for the hard work, and see you next year!

September 2022 Xiang Li
Jinglei Lv

Yuankai Huo
Bin Dong

Richard M. Leahy
Quanzheng Li
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M2F: A Multi-modal and Multi-task
Fusion Network for Glioma Diagnosis

and Prognosis

Zilin Lu1,2, Mengkang Lu2, and Yong Xia1,2(B)

1 Ningbo Institute of Northwestern Polytechnical University, Ningbo 315048, China
2 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big

Data Application Technology, School of Computer Science and Engineering,
Northwestern Polytechnical University, Xi’an 710072, China

yxia@nwpu.edu.cn

Abstract. Clinical decision of oncology comes from multi-modal infor-
mation, such as morphological information from histopathology and
molecular profiles from genomics. Most of the existing multi-modal learn-
ing models achieve better performance than single-modal models. How-
ever, these multi-modal models only focus on the interactive informa-
tion between modalities, which ignore the internal relationship between
multiple tasks. Both survival analysis task and tumor grading task can
provide reliable information for pathologists in the diagnosis and prog-
nosis of cancer. In this work, we present a Multi-modal and Multi-task
Fusion (M2F) model to make use of the potential connection between
modalities and tasks. The co-attention module in multi-modal trans-
former extractor can excavate the intrinsic information between modal-
ities more effectively than the original fusion methods. Joint training of
tumor grading branch and survival analysis branch, instead of separating
them, can make full use of the complementary information between tasks
to improve the performance of the model. We validate our M2F model
on glioma datasets from the Cancer Genome Atlas (TCGA). Experiment
results show our M2F model is superior to existing multi-modal models,
which proves the effectiveness of our model.

Keywords: Multi-modal learning · Multi-task · Survival analysis ·
Tumor grading

1 Introduction

Gliomas are the most common primary malignant brain tumors, which account
for 80% of cases [26]. Clinical diagnosis and prognosis of gliomas comes from
multi-modal information, such as pathological images and genomics data [7].
Pathological images contain the structural and morphological information of
tumor cells, and genomics data provide molecular profiles.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Li et al. (Eds.): MMMI 2022, LNCS 13594, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-031-18814-5_1
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ID: TCGA-02-0326

Histology: Glioblastoma

WHO Grade: 4

Survival time: 223 days

ID: TCGA-DU-5870

Histology: Oligodendroglioma

WHO Grade: 2

Survival time: 5546 days

ID: TCGA-DB-A4X9

Histology: Oligoastrocytoma

WHO Grade: 2

Survival time: 1412 days

ID: TCGA-DB-A4XF

Histology: Astrocytoma

WHO Grade: 3

Survival time: 1021 days

Fig. 1. Some representative ROIs with gliomas. Necrosis and the abnormal microvas-
cular structures are common in patients with high-grade gliomas, which are often used
for grading. For patients, high-grade gliomas represent shorter survival.

With the rapid development of artificial intelligence technology, more and
more models based on deep learning have been proposed for multi-modal learning
in gliomas diagnosis and prognosis. However, pathological images and genomics
data have great heterogeneity, which are different in dimension and expression.
An effective fusion strategy is the key to effectively utilize heterogeneous multi-
modal data [1,18]. There are different fusion strategies for cancer diagnosis or
prognosis. Morbadersany et al. [17] utilized vector concatenation to combine
pathological images and genomics information for cancer diagnosis. Chen et
al. [4] proposed a multi-modal framework which adopted Kronecker Product
to fuse pathology and genomics for survival analysis or grade classification. Sim-
ilarly, Braman et al. [2] extended the Kronecker product with additionally radi-
ology and clinical data for tumor prognosis.

Besides these operation-based methods, attention-based methods [23] has
shown potential in the filed of multi-modal learning, which have been widely
used in multi-modal learning task. In the field of visual question answering, Kim
et al. [12] proposed bilinear attention networks to learn the richer joint repre-
sentation for multi-modal input. Kim et al. [13] proposed the ViLT, a minimal
vision and language pre-training architecture, to focus on the modality interac-
tions inside the transformer module. In pathology field, Chen et al. [5] proposed
a genomic-guided co-attention module that could learn how genes affect sur-
vival diagnosis. Wang et al. [25] designed an asymmetrical multi-modal attention
mechanism to obtain a more flexible multi-modal information fusion for prog-
nosis. However, the models mentioned above only focus on one task and ignore
the correlation of different tasks.

Traditionally, deep learning networks tackle tasks in isolation, which are
redundant in parameters and ignore the correlation of tasks. Compared with
single-task learning, Multi-task learning (MTL) has the potential to improve
performance by sharing the complementary information between tasks [22]. Sun
et al. [20] integrated semantic segmentation and surface normal prediction tasks
into a multi-task learning framework. Vafaeikia et al. [21] added a genetic alter-
ation classifier as an auxiliary task to improve the accuracy of the segmentation
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results. The diagnosis and prognosis of gliomas can also be integrated into a
multi-task learning paradigm. Both survival analysis task and tumor grading
task can provide reliable information for pathologists. Predicting survival out-
come is a standard method for cancer prognosis, which can be used to predict
treatment response and help pathologists make early decisions [24]. In the sum-
mary of 2021 World Health Organization (WHO) classification of tumors of the
Central Nervous System [15], gliomas can be divided by malignancy into grade
2–4. Tumor grading task is to predict the tumor grade through the malignancy,
which has crucial significance for pathologists to make treatment plan and risk
stratification. Furthermore, there is a correlation between the survival analysis
task and the tumor grading task. Generally, the malignant degree of tumor is
inversely proportional to the survival time of patients as shown in the Fig. 1.

In this paper, we propose a multi-modal and multi-task deep learning model,
called Multi-modal Multi-task Fusion (M2F), to combine pathological and
genomics data for the diagnosis and prognosis of gliomas. The main contributions
of this paper are three-fold:

• We integrate the multi-modal learning and multi-task learning into one frame-
work to simultaneously use the power of multiple modalities and tasks. The
experiments on glioma datasets show effectiveness of our framework.

• We propose a multi-modal co-attention module, which could learn the com-
plementary information to guide different modality learning.

• We train our M2F model for survival analysis task and tumor grading task
jointly, which improves the accuracy of prediction by fully mining the poten-
tial correlation information between tasks.

2 Methods

The overall framework of our M2F model is shown in Fig. 2. M2F is a three-stage
deep learning framework that effectively utilizes the correlation and complemen-
tarity information between multi-modal data and multiple tasks, including (1)
Unimodal Feature Extraction, (2) Multi-modal Transformer Encoder, and (3)
Tasks Mutual-Guided Mechanism. Suppose that X = [x1, x2, . . . , xM ] (M is the
number of modalities) represents the data for a patient diagnosis and prognosis.
In stage 1, a unimodal network accepts xm and generates feature embedding
hm for each modality m. Then our Multi-modal Transformer Encoder learns
joint representations hfusion via measuring the correlation between modalities
in stage 2 and hfusion is finally used for diagnosis and prognosis in stage 3.

2.1 Unimodal Feature Extraction

Due to unique characteristics of each modality, we design different unimodal
feature extraction networks for each modality.

Pathological Images. Pathological images have been an important tool in
cancer diagnosis and prognosis for a century and pathologists widely use them in
clinical decision [8]. Yet, gigapixel whole slide image (WSI) cannot be processed
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Fig. 2. The framework of M2F. The left part is the overall process and the right there
boxes are specific structure of our modules. M2F train unimodal feature extraction net-
works firstly and then train multi-modal network using unimodal feature extractors.
Multi-modal fusion task is performed by co-attention module to fuse feature embed-
dings from multiple modalities. Finally, fusion features are used for the jointly training
of multiple supervised learning tasks.

directly because of the huge amount of calculation. To reduce the calculation
and focus on informative regions, we used 1024×1024 region-of-interests (ROIs)
at 20× objective magnification from WSIs cropped by [17]. To extract features
from pathological images, we used a VGG-19 [19] as feature extractor which is
pre-trained on the ImageNet and fine-tuned on ROIs. The output of VGG-19
last hidden layer is pathological features hp ∈ R

d×1 which are part of the input
of Multi-modal Transformer Encoder.

Genomics Data. Genomics data such as copy number variation (CNV), gene
mutation status, and RNA sequencing (RNA-Seq) is also an important analyt-
ical tool in cancer diagnosis and prognosis [10]. However, genomics data has
high dimensionality but small sample size for network training, which makes it
easy to overfit during training. We use Self-Normalizing Network (SNN) [14] to
extract genomics features ho ∈ R

d×1, which is also part of input of Multi-modal
Transformer Encoder. SNN can induce variance stabilization to avoid gradients
exploding and vanishing, which can mitigate overfitting.

2.2 Multi-modal Transformer Encoder

In order to capture the joint representation between pathological features and
genomics features, we propose a Multi-modal Transformer Encoder (MTE)
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that fuses embeddings of each modality into joint representation hfusion =
Φ(hp, ho) ∈ R

2d×1, where Φ represents the MTE. The co-attention module uti-
lize the correlation and complementarity between modalities to generate fusion
futures.

Co-attention. Inspired by [16], Co-attention mechanism connect the patholog-
ical and genomics data by calculating the similarity between features. hp and
ho are the input of mechanism and represent the embedding of pathological and
genomics data, respectively. The output of co-attention is computed as follows:

h′
p = αo→p(WV hp) ∈ R

d×1 (1)

h′
o = αp→o(WV ho) ∈ R

d×1 (2)

where αo→p and αp→o are the weight coefficients calculated by multiplying two
vectors:

αo→p = softmax(
WQho(WKhp)T√

d
) ∈ R

d×d (3)

αp→o = softmax(
WQhp(WKho)T√

d
) ∈ R

d×d (4)

where WQ, WK , WV ∈ R
d×d are trainable weight matrices. Thus we obtain the

hidden representations h′
p and h′

o under mutual guidance between modalities.
We concatenate h′

p and h′
o into a matrix h′

fusion ∈ R
2d×1. Then a two-layer

multi-layer perceptron (MLP) is employed to learn a joint representation. Mean-
while, Layernorm (LN) is applied before every block and residual connection [9]
is also applied throughout the process as follows:

hfusion = MLP(LN(h′
fusion)) + h′

fusion (5)

where hfusion ∈ R
2d×1 is the input of downstream network.

2.3 Tasks Mutual-Guided Mechanism

In this section, we use MTL with hard parameter sharing strategy to learn the
correlation between tumor grading task and survival analysis task. As shown in
the Fig. 2, we design two separated heads for each task after a sharing MLP block.
Except the sharing MLP block, we also add interaction between two separeted
heads. When the main task is determined, we concatenate the auxiliary task to
the main task header to improve the results of main task, which called Tasks
Mutual-Guided Mechanism (TMG). TMG can be written as:{

h2
s = Cat(MLP(h1

s),MLP(h1
g)) main task: survival analysis

h2
g = Cat(MLP(h1

g),MLP(h1
s)) main task: tumor grading

(6)

and then h2
s and h2

g are used to predict the results of diagnosis and prognosis.
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The loss function is used in multi-task networks consists of two parts, the
negative log partial likelihood loss for survival analysis and cross entropy loss
for tumor grading. Similar to [11], we compute the loss function as follows:

Lcox =
∑

i:R(ti)=1

⎛
⎝−oi + log

∑
j:tj≥ti

exp (oj)

⎞
⎠ (7)

where oi is the risk prediction value of the network for the i patient, R(ti) value
is 1 means that the i patient has occurred the event of interest (i.e., died), the
value is 0 if the patient is still alive at the last visit, and j represents the set of
survival times less than i. The overall loss is:

L = λcox × Lcox + λce × Lce (8)

where λcox and λce represent the weights of the negative log partial likelihood loss
function and the cross entropy loss function, respectively. As the main task and
auxiliary task are exchanged, the weights of the two losses will also be adjusted
accordingly.

2.4 Implementation and Evaluation

Following [4], the unimodal networks are trained firstly for 50 epochs with low
learning rate and a batch size of 8. After training this unimodal networks, we
train our multi-modal network for 30 epochs with a batch size of 32. The embed-
ding size d of unimodal networks is set to 32.

The concordance index (C-index) is used to evaluate the performance in
survival analysis, and the accuracy (Acc), area under the curve (AUC), and
F1-score are used to evaluate the performance in tumor grading.

3 Datasets

To validate the proposed M2F model, we used two projects from the Cancer
Genome Atlas (TCGA), i.e., TCGA-GBM and TCGA-LGG. TCGA is a public
cancer data consortium that contains paired diagnostic WSIs and genomics data
with ground-truth survival times and histoloigic grade lables. We adopted the
1459 normalized ROIs cropped by [17]. Each subject has at least one WSI and
each WSI had 1–3 ROIs. Hence, there are totally 1019 WSIs for 736 subjects. The
genomics data of each subject consists of 320 features, including one mutation
status, 79 CNV, and 240 RNA-Seq from TCGA and eBioPortal [3]. We conducted
a 15-fold Monte-carlo cross-validation using the patient-level data split provided
in [17].
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4 Results and Discussion

To validate our fusion module effectiveness, we compare our fusion approach to
prior approaches for the fusion of pathology and genomics (Table 1) with using
multi-task learning strategy. And the ablation experiments of multi-task learning
strategy are in Table 2. To ensure the fairness of the experimental setup, we use
the identical train-test split with previous models [4,17]. Pathomic Fusion is
open-sourced and all of this results are reproduced based on open codes and
data.

Table 1. Comparative analysis of unimodal network fusion effects for survival analysis
and tumor grading. The two versions of M2F represent the network with different main
task.

Model Modality C-index Acc AUC F1-score

CNN Pathology 0.7385 0.7537 0.8757 0.7047

SNN Genomics 0.7979 0.6677 0.8567 0.6956

SCNN [17] Pathology 0.741 – – –

GSCNN [17] Multi-modal 0.781 – – –

DOF [2] Multi-modal 0.788 – – –

MMD [6] Multi-modal 0.8053 – – –

MCAT [5] Multi-modal 0.817 – – –

Pathomic Fusion [4] Multi-modal 0.7994 0.7557 0.8906 0.7239

M2F-A (Ours) Multi-modal 0.8266 0.6642 0.8516 0.7086

M2F-B (Ours) Multi-modal 0.7639 0.7613 0.8919 0.7322

As shown in the Table 1, multi-modal networks generally show better per-
formance than unimodal networks in both diagnosis and prognosis. It is worth
noting that we only reproduce Pathomic Fusion because of limited codes and
there have some differences in experimental details. DOF [2] and MMD [6] are

Table 2. Comparative analysis of single-task learning and multi-task learning. The
task font in bold means the main task.

Tasks TMG C-index Acc AUC F1-score

Surv 0.8066 – – –

Grad – 0.7569 0.8891 0.7256

Surv&Grad 0.8188 0.6753 0.8550 0.7097

Surv&Grad 0.7639 0.7613 0.8919 0.7322

Surv&Grad � 0.8266 0.6642 0.8516 0.7086

Surv&Grad � 0.7816 0.7576 0.8930 0.7276
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Fig. 3. The distribution of networks prediction hazard. Patients with long survival time
(blue) represent that they have lower risks in this moment and red means they have
short survival time at higher risk. Compared to unimodal CNN, our M2F is observed
to be able to stratify different patients better. (Color figure online)

both using four modalities with additional radiology and clinical information.
Besides, MCAT [5] uses WSIs for training. Despite this, our M2F outperforms
other previous models in both survival analysis task and tumor grading task,
which has achieved improvement in all evaluation metrics. The results of Table 1
demonstrate that our M2F can interact multi-modal features well and learn the
correlation and complementary information of different modalities.

In order to validate our multi-task strategy, we compare the difference in per-
formance between single-task training and joint training by conducting ablation

Fig. 4. The receiver operating characteristic curve (ROC) of tumor grading task. These
two represent the ROC curves of the single-modal network and the multi-modal net-
work, respectively.
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experiments. For multi-task learning without TMG, we train two MLP heads
in parallel for both tasks and there is no connection between the two heads.
As shown in Table 2, jointly training survival task and grading task utilize the
complementarity between tasks. In the Table 2, the multi-task learning strategy
helps our model improve performance, this results demonstrate the advantages
of multi-task learning over single-task learning. The addition of TMG further
improves model performance at survival analysis task which once more demon-
strates the effectiveness of multi-task learning.

5 Conclusion

In this paper, we present M2F, a efficient framework for novel fusion of modalities
and integrating survival analysis task and tumor grading task for model the cor-
relation between multiple tasks. The co-attention mechanism which is the core
of MTE show the ability to implement modal interaction and our TMG module
demonstrate strong potential in the field of multi-task learning. We validate our
approach on glioma dataset and demonstrate that our MTE and TMG module
can respectively act as a effective tool for multi-modal learning and multi-task
learning. Moreover, our M2F can be applied to any cancers for diagnosis, prog-
nosis, and any other tasks.
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dation of Ningbo City, China, under Grant 2021J052, in part by the National Natural
Science Foundation of China under Grants 62171377, and in part by the Key Research
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Abstract. We propose visual modalities-based multimodal fusion for
surgical phase recognition to overcome the limitation of the diversity of
information such as the presence of tools. Through the proposed meth-
ods, we extracted a visual kinematics-based index related to the usage
of tools such as movement and the relation between tools in surgery. In
addition, we improved recognition performance using the effective fusion
method which is fusing CNN-based visual feature and visual kinematics-
based index. The visual kinematics-based index is helpful for understand-
ing the surgical procedure as the information related to the interaction
between tools. Furthermore, these indices can be extracted in any envi-
ronment unlike kinematics in robotic surgery. The proposed methodol-
ogy was applied to two multimodal datasets to verify that it can help to
improve recognition performance in clinical environments.

Keywords: Surgical workflow · Surgical phase recognition ·
Multimodal learning · Visual kinematics-based index

1 Introduction

Surgical workflow analysis using a computer-assisted intervention (CAI) system
based on machine learning or deep learning has been extensively studied [1–10].
In particular, surgical phase recognition can help optimize surgery by activat-
ing communication between surgeons and staffs, not only for smooth teamwork,
but also for efficient use of resources throughout the entire surgical procedure
[11]. Moreover, it is valuable for monitoring the patient after surgery and educa-
tional materials through the classification of stereotyped surgical procedures [1].
However, phase recognition is a challenging task that involves many interactions
between the actions of the tools and the organs. In addition, surgical video anal-
ysis has limitations such as video quality (i.e. occlusion and illumination change)
and unclear annotations at event boundaries [2,3].

Many studies that performed surgical workflow analysis have limitations due
to performing analysis using only CNN-based visual features and information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Li et al. (Eds.): MMMI 2022, LNCS 13594, pp. 11–23, 2022.
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for the presence of tools in video. In this paper, to overcome this limitation, we
introduce a visual modality-based multimodal fusion method that improves the
performance of phase recognition by using interactions between the recognized
tools. The proposed method extracts indices related to tools used in surgery
and fuses them with visual features extracted from CNN. We demonstrate the
effectiveness of proposed tool-related indices to improve performance by the VR
simulator-based dataset and the collected gastrectomy dataset.

We have the following contributions:

– We propose a method to extract a visual kinematics-based index related to
tools that are helpful in surgical workflow analysis from visual modality such
as semantic segmentation map.

– In addition, it shows that it can be applied in environments where it is difficult
to extract the kinematics of tools in a system unlike robotic surgery.

– We propose a fusion method that improves recognition performance by effec-
tively aggregating the visual kinematics-based index and visual features.

2 Related Works

Phase Recognition. In early machine learning-based research, a statistical
analysis of temporal information using Hidden Markov Models (HMMs) and
Dynamic Time Warping (DTW) was conducted [4]. Since then, as the use of
deep learning has become more active, EndoNet [5] that recognizes tool exis-
tence through CNN-based feature extraction had been studied. MTRCNet-CL
[6], which combines CNN and LSTM to perform multi-tasks, was also performed.
Furthermore, a multi-stage TCN (MS-TCN)-based surgical workflow analysis
study that performs hierarchically processes using temporal convolution was also
performed [10]. Each stage was designed to refine the values predicted by the
previous stage to return more accurate predictions. Previous studies had been
conducted using only video information for analysis or additionally using only
the presence of tools in the video. On the other hand, the proposed method uses
a method of fusing visual features and indices related to tools.

Surgical Workflow Dataset. Datasets published to perform surgical work-
flow recognition include actual surgical videos like Cholec80 [5], toy samples for
action recognition of a simple level such as JIGSAWS [12] and MISAW [13],
and synthetic data generated from VR simulators PETRAW [14]. In the case of
the JIGSAWS and MISAW, kinematic information of the instrument from the
master-slave robotic platform was provided, so that more precise tool movements
could be analyzed. However, in laparoscopic surgery, it was difficult to use kine-
matic information owing to the absence of a surgery robot. There was a limit
to extracting and applying actual kinematic information due to security issues
of the robotic surgery device. To address these problems, we use a method of
generating tool-related indices from visual modality to replace kinematic infor-
mation.
Multimodal Learning. The various modalities (i.e., video, kinematics) cre-
ated in the surgical environment have different information about the surgical
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Fig. 1. Proposed visual modalities-based multimodal fusion method. The
visual kinematics-based index and frame sequence extracted for the input frame
sequence is used as input to the models for each modality. The feature representa-
tions of each modality are used as input to the fusion model for joint training.

workflow. Multimodal learning aims to improve performance by using mutual
information between each modality. However, researches on multimodal learn-
ing in surgical workflow analysis were still insufficient [5,12–15]. In particular,
there was a limitation because of related to data that is difficult to access or
extract such as the kinematics of surgical tools. We propose a method to effec-
tively achieve performance improvement by fusing various information generated
from vision modalities through virtual or real data.

3 Methods

In this section, we propose an extraction manner of a visual kinematics-based
index and a visual modality-based multimodal feature fusion method. We used
two visual modalities: video and visual kinematics-based index. The visual
kinematics-based index expresses the movement and relationship of surgical tools
extracted from the semantic segmentation mask. To improve the phase recogni-
tion performance, we applied convolutional feature fusion to enhance the interac-
tion of features extracted from visual modalities. The overall learning structure
is shown in Fig. 1.

3.1 Visual Kinematics-based Index

A visual kinematics-based index was defined as an index expressing the rela-
tionship between tools and the movement of tools. These indices helped to
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understand the impact of the action of tools in surgical procedures. Actually,
according to previous studies, surgical instrument index which included kine-
matics extracted from surgical robot or video was used to analyze the skill level
of surgeon who performed surgery for all or part of the operation [15–21]. How-
ever, indices such as kinematics were extracted from the robot system and were
hard to access. To solve this problem, we extracted the visual kinematics-based
index by recognizing the tools from the semantic segmentation mask.
Types of Visual Kinematics-based Index. The visual kinematics-based
index was consist of two types which are movement or relation between tools.
Movement index was measured as {path length, velocity, centroids, speed,
bounding box, economy of area} [21]. Movement index measurement is as follows:

PL =
T∑

t

√
(D(x, t))2 + (D(y, t))2, D(x, t) = xt − xt−1. (1)

s =
PL

T
, v(x) =

xt − xt−Δ

Δ
. (2)

EOA =
bw × bh

W × H
. (3)

where PL is path length in the current time frame t and T is the time range for
computing index. The path length consists of two types which are cumulative
path length and partial path length. D(x, t) measures the difference of x coor-
dinate between the previous and current time frame. x and y mean centroids
of an object in the frame. Centroids are average positional values for X- and
Y-coordinate in the semantic segmentation mask. s is the speed for time range
T , and v is the velocity for the direction of X or Y at time interval Δ. bw and
bh are the width and height of the bounding box, and W and H are the width
and height of the image. Bounding box (BBox) is consist of four values such as
top, left, box width, box height (bx, by, bw, bh).

Relation index was measured as {IoU, gIoU, cIoU, dIoU} [21–23]. gIoU, cIoU,
and dIoU are modified versions of IoU. The index of IoU family is related to
how close two objects are to each other. We considered {λ1, ..., λN} to train
phase recognition model by index combination experiments. λ denotes a visual
kinematics-based index.

3.2 Feature Fusion

The feature representation for each modality has different information regarding
surgical workflow. The representation extracted from the video is related to the
overall action in the scene, and the representation extracted from the visual index
is related to the detailed movement of each tool. We designed a convolution-
based feature fusion module for the interaction of representations to improve
recognition performance. For performance comparison, a simple linear feature
fusion method and a convolution-based feature fusion method were introduced.
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Fig. 2. An illustration of convolution-based feature fusion module. Before
feature fusion, enhancement for feature representation is performed by stop-gradient
strategy. After then, features are aggregated by 1D-convolutional operation.

Linear Feature Fusion. For each feature representation from modality, the
linear fusion module is as follows:

fm
i = η(θm(xm

i )), m ∈ {V, V KI}. (4)

zi = ψ(concat(fV
i , fV KI

i )). (5)

where fm
i is a d-dimensional projected feature for each modality, xm

i is ith input
data of modality m, and θm is a deep neural network based recognition model
for each modality. V and V KI denote video and visual kinematics-based index.
η and ψ are fusion blocks based on Multi-Layer Perceptron (MLP) layers for
generating features of another view and aggregating features, respectively. The
concatenated feature is aggregated to d-dimensional feature zi as the input clas-
sification layer.
Convolution Based Feature Fusion. Linear fusion module is not an effec-
tive approach due to the simple late-fusion method based on a vanilla fully-
connected layer. The proposed convolution-based feature fusion module is effec-
tive in enhancing interaction between features for phase recognition. The pro-
posed method is processed in 2 steps; 1) Stop gradient-based representation
enhancement, 2) Convolutional feature aggregation as shown in Fig. 2.

gm
i = φ(fm

i ) (6)

We apply the stop gradient-based approach proposed in [24] to close the
representations of modality with different views and to speed up the learning
convergence speed. gm

i with the same dimension and different view is generated
through a projector composed of MLP in Eq. 6. [24] used contrastive loss to
learn similarity between representations. According to [24], the contrastive loss
is defined as:

D(ai, bi) = (
d∑

j=1

|ai,j − bi,j |p)1/p (7)



16 B. Park et al.

Lcon(fm1
i , gm2

i ) =
1
2
D(fm1

i , stopgrad(gm2
i )) +

1
2
D(stopgrad(fm1

i ), gm2
i ) (8)

where ai and bi are the feature representations of different views, p is the order of
a norm and m1,m2 are consist with one of {V, V KI}. Unlike [24], the similarity
is calculated using pairwise distance through the experiments. Fused feature
representation zi is forwarded by convolution-based feature fusion as follows:

zi = Θ(concat(gV
i , gV KI

i )) (9)

where Θ is a 1D convolution-based feature fusion block for kernel size k, zi is
used as input of classifier h to predict ŷ. Recognition loss Lcls is computed by
cross-entropy loss and then total loss is defined as Eq. 11.

Lcls = CrossEntropyLoss(ŷ, y), ŷ = h(zi) (10)

Ltotal = Lcon + Lcls (11)

4 Experiment Results

4.1 Base Setting

Dataset. We validated the proposed methods using two different datasets. 1)
PETRAW [14] was released at challenge of MICCAI 2021. PETRAW dataset
consisted of the pair which are video, kinematics of arms, and semantic seg-
mentation mask generated from VR simulator. Training and test data were con-
structed with 90 and 60 pairs, respectively. The PETRAW had four tasks such as
Phase(3), Step(13), Left action(7), and Right action(7); values in parentheses are
the number of classes. 2) The 40 surgical videos for gastrectomy surgery which
is called G40 were collected with da Vinci Si and Xi devices between January
2018 and December 2019. We constructed a 30:10 training and evaluation set
by considering the patient’s demographic data such as {age, gender, pre BMI,
OP time, Blood loss, and length of surgery}. According to [3], G40 dataset was
annotated for ARMES based 27 surgical phases by consensus of 3 surgeons. G40
consisted of video and semantic segmentation mask with 31 classes, including
tools and organs for {harmonic ace, bipolar forceps, cadiere forceps, grasper,
stapler, clip applier, suction irrigation, needle, gauze, specimen bag, drain tube,
liver, stomach, pancreas, spleen, and gallbladder}. Each instrument consisted of
a head, wrist, and body parts1.
Model. To train models for various modalities, we used Slowfast50 [25] with α,
β, and τ for video and Bi-LSTM [26] for kinematics and visual kinematics based
index. The segmentation model was trained to predict semantic segmentation
masks for generating an index. We used UperNet [27] with Swin Transformer
[28] as backbone network.
1 Please refer supplementary material for class definition details and segmentation

results on G40.
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Evaluation Metrics. We used various evaluation metrics which are accuracy
of whole correctly classified samples, the average version of recall, precision, and
F-1 score for classes each task to compare phase recognition results. All metrics
were computed frame-by-frame. In all tables, we selected the best models by the
average F1 score of tasks.

4.2 Performance Analysis

Table 1. Best combination experiments for visual kinematics based index on
PETRAW. {λ1, ..., λN} are indicated in order by cumulative path length(1), partial
path length(2), velocity(3), speed(4), EOA(5), centroids(6), IoU(7), gIoU(8), dIoU(9)
and cIoU(10). The best combination is selected by mF1-score.

N Best combination Phase Step Action(L) Action(R) Avg.

1 λ1 88.28 66.68 29.82 29.16 53.48

2 λ1, λ2 90.41 67.57 32.62 32.19 55.70

3 λ1, λ2, λ3 90.87 68.74 33.12 33.36 56.52

4 λ1, λ2, λ4, λ6 90.96 68.85 32.67 33.66 56.53

5 λ1, λ2, λ3, λ4, λ6 91.47 68.85 34.18 34.03 57.13

6 λ1, λ2, λ3, λ5, λ8, λ10 89.30 67.77 31.71 32.80 55.40

7 λ1, λ2, λ3, λ6, λ7, λ8, λ10 89.69 69.02 34.06 33.09 56.47

8 except λ8 and λ10 90.48 68.51 32.74 33.19 56.23

9 except λ10 91.03 68.24 33.04 32.34 56.16

10 ALL 89.90 68.31 33.69 33.31 56.30

Important Feature Selection. We extracted various visual kinematics-based
indices, and then what kinds of index pairs are positively affected by performance
was evaluated on PETRAW in Table 1. λ1 and λ2 were related to performance
improvement in all cases, and λ3 was also significantly affected by performance.
Figure 3 shows cumulative counts of the index for each combination of best
and worst performance. In best combination, {λ1, λ2, λ3, λ6} were mostly used
but, λ6 was also related to achieve worst performance. We used N = 5 due to
achieve the best performance in that combination. The index of the bounding
box was included in all combination experiments because that is influenced by
performance improvement in Table 2. The bounding box can be synergy by using
other indices because it has the positional information (bx, by) and the informa-
tion of object size (bw, bh). All indices with a bounding box obtained better
performance compared to those not used it.

Performance on PETRAW. We used an Adam optimizer with an initial
learning rate of 1e-3, an L2 weight decay of 1e-5, a step scheduler for Bi-LSTM
and convolution-based fusion method, and a cosine annealing scheduler with a



18 B. Park et al.

Fig. 3. The histogram of the visual kinematics-based index for best and
worst performance. (a) Cumulative counts of each index on the combination of
best performance (b) Cumulative counts of each index on the combination of worst
performance.

warmup scheduler during 34 epochs for slowfast and linear fusion method. A
batch size of 128 was used in all experimental environments. The learning rate
decay rate was applied at 0.9 every five epochs for step scheduler. According to
[25], α, β, and τ were set {4, 8, 4} in slowfast. The hidden layer size and output
dimension of Bi-LSTM were set at 256 and 256, respectively. Projected feature
size d set 512 for both fusion modules, and convolution kernel size k was 3. To
address data imbalance, all networks used class-balanced loss [29] and trained
for 50 epochs. We also used train and test datasets which were subsampled by
5 fps. The clip size was 8, and the time range T was the same as the clip size.

Table 3 shows mF1 performances for each modality on PETRAW dataset.
The baselines, including video and kinematics, were compared to the visual
kinematics-based index. Especially, performances of phase and step by visual
kinematics based index were achieved similar performance compared to kine-
matics based performance. It verified that visual kinematics based index can be
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Table 2. Evaluation for impact of bounding box. Each row is the performance
using a single index. The value in parentheses is the improvement in adding the bound-
ing box, and the bold is the most significant improvement.

Index Phase Step Action(L) Action(R) Avg.

BBox only 55.63 27.75 19.57 20.16 30.78

λ1 83.98(+4.30) 61.37(+5.31) 9.99(+19.82) 10.19(+18.97) 41.38(+12.10)

λ2 42.68(+16.84) 14.82(+15.10) 16.32(+9.02) 14.26(+10.74) 22.02(+12.93)

λ3 35.88(+22.95) 13.47(+16.08) 14.78(+8.73) 13.67(+10.07) 19.45(+14.46)

λ4 35.88(+21.61) 8.75(+20.51) 11.87(+10.95) 10.29(+12.30) 16.70(+16.34)

λ5 36.63(+19.91) 15.38(+13.76) 14.32(+7.91) 14.17(+7.56) 20.13(+12.29)

λ6 48.58(+6.77) 20.83(+6.59) 17.80(+2.61) 18.11(+3.33) 26.33(+4.82)

λ7 34.55(+20.75) 7.59(+19.99) 10.16(+10.56) 10.17(+10.54) 15.62(+15.46)

λ8 34.54(+20.58) 7.18(+20.38) 10.01(+11.01) 10.16(+10.92) 15.47(+15.72)

λ9 34.22(+21.39) 6.82(+20.68) 10.18(+9.98) 10.15(+11.83) 15.34(+15.97)

λ10 33.80(+21.14) 7.10(+20.10) 10.06(+12.02) 10.16(+11.59) 15.28(+16.21)

helpful to recognize the actions of tools in Tables 1, 2, and 32. Furthermore, the
proposed fusion technique achieved improved performance compared to baseline.
Our fusion methodology was useful for fusing the representations by enhancing
the interactions between features.

Performance on G40. As like setting of PETRAW, we used the same setting of
training models. However, the initial learning rate was set 1e-2, weighted cross-
entropy loss was used for slowfast, and a cosine annealing scheduler was used for
all experiments. A batch size of 64 was used in all experimental environments,
and all networks were trained for 50 epochs. The sampling rate was set 1 fps for
train and test datasets. The clip size was 32, and the time range T was the same
as the clip size. It also improved performance by using the visual kinematics-
based index on G40 in Table 4. That is, the visual kinematics-based index was
available to replace the kinematics in actual surgery.

Table 3. Performance change for each modality on PETRAW. {V, K, VKI}
denote video, kinematics and visual kinematics based index.

Model Modality Phase Step Action(L) Action(R) Avg.

Slowfast50 V 98.13 96.15 79.52 78.72 88.13

Bi-LSTM K 96.79 80.52 78.10 77.01 83.11

Bi-LSTM VKI 91.47 68.85 34.18 34.03 57.13

Linear Fusion V+K 98.26 96.13 80.45 81.86 86.14

Conv. Fusion V+K 98.59 96.43 82.57 81.83 89.85

Linear Fusion V+VKI 98.21 96.28 79.93 79.17 85.12

Conv. Fusion V+VKI 98.23 96.38 79.87 78.98 88.36

2 Please refer to supplementary material for additional experimental results of Accu-
racy, mPrecision, mRecall, and mF1 on PETRAW.
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Table 4. Performance change of each modality on G40. mPrecision, mRecall,
and mF1 are measured by the average of results for each class.

Model Modality Accuracy mPrecision mRecall mF1

Slowfast50 V 63.37 55.40 59.10 55.49

Bi-LSTM VKI 50.53 40.32 36.79 34.80

Linear Fusion V+VKI 69.71 56.58 58.83 56.76

Conv. Fusion V+VKI 67.71 56.75 60.19 57.41

4.3 Ablation Study

Visual Kinematics Based Index for Organs. The surgical procedure was
related to the interaction between tools and organs. Therefore, relation indices
of tools and organs can be helped for recognition performance. We evaluated
the performance change by involving a relation index between tools and organs.
We used λ8 and λ10 measured between tools and organs for considering the
relationship. The comparison is shown in Table 5. Those indices were validated
to help recognize the surgical procedure by improved performance.

Table 5. The comparative results for including indices of organs on G40. We
compared by adding the relation index between tools and organs, including the liver,
stomach, pancreas, spleen, and gallbladder.

Model Index Accuracy mPrecision mRecall mF1

Bi-LSTM tools only 52.58 41.40 40.76 39.46

Bi-LSTM add organs 53.72 44.04 41.10 40.67

Change of Semantic Model. We evaluated the change in performance regard-
ing segmentation models. We considered three models, DeeplabV3+ [30], Uper-
Net [27], and OCRNet [31]. UperNet used Swin Transformer [28] as backbone
network and HRNet [32] for OCRNet. We used the basic setting of MMSegmen-
tation [33] to train models during 100 and 300 epochs on PETRAW and G40,
respectively. According to accurate segmentation results, the performance was
improved in Table 6.
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Table 6. Performance change for various segmentation models on PETRAW.
The values in table are mF1-score for each task.

Seg. Model Target Model mIoU Phase Step Action(L) Action(R) Avg.

DeeplabV3+ Bi-LSTM 98.99 89.91 61.83 24.33 22.40 49.62

OCR-HRNet Bi-LSTM 98.98 92.06 68.67 31.71 35.02 56.86

Swin-UperNet Bi-LSTM 98.94 91.47 68.85 34.18 34.03 57.13

Table 7. Performance change for various segmentation models on G40.

Seg. Model Target Model mIoU Accuracy mPrecision mRecall mF1

DeeplabV3+ Bi-LSTM 85.14 50.20 39.96 37.58 36.69

OCR-HRNet Bi-LSTM 86.45 50.40 39.66 40.30 38.39

Swin-UperNet Bi-LSTM 87.64 52.58 41.40 40.76 39.46

5 Conclusion

We proposed a visual modalities-based feature fusion method for recognizing
surgical procedures. We extracted a visual kinematics-based index from a visual
modality such as a semantic segmentation map and trained the model using the
indices and visual features from CNN. We validated that our approach helped
to recognize the surgical procedure in simple simulation (PETRAW) and actual
surgery (G40). In addition, the visual kinematics-based index is expected to be
helpful in non-robotic surgery like laparoscopic surgery due to generating them
from visual modality. For further study, we will consider evaluating by extracting
a visual kinematics-based index from other visual modalities such as the object
detection model.
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Abstract. Multi-instance learning (MIL) is widely used in the computer-aided
interpretation of pathological Whole Slide Images (WSIs) to solve the lack of
pixel-wise or patch-wise annotations. Often, this approach directly applies “nat-
ural image driven” MIL algorithms which overlook the multi-scale (i.e. pyrami-
dal) nature of WSIs. Off-the-shelf MIL algorithms are typically deployed on a
single-scale of WSIs (e.g., 20× magnification), while human pathologists usu-
ally aggregate the global and local patterns in a multi-scale manner (e.g., by
zooming in and out between different magnifications). In this study, we propose
a novel cross-scale attention mechanism to explicitly aggregate inter-scale inter-
actions into a single MIL network for Crohn’s Disease (CD), which is a form
of inflammatory bowel disease. The contribution of this paper is two-fold: (1) a
cross-scale attention mechanism is proposed to aggregate features from different
resolutions with multi-scale interaction; and (2) differential multi-scale attention
visualizations are generated to localize explainable lesion patterns. By training
∼250,000H&E-stained Ascending Colon (AC) patches from 20 CD patient and
30 healthy control samples at different scales, our approach achieved a superior
Area under the Curve (AUC) score of 0.8924 compared with baseline models.
The official implementation is publicly available at https://github.com/hrlblab/
CS-MIL.

Keywords: Multi-instance Learning · Multi-scale · Attention mechanism ·
Pathology

1 Introduction

Digital pathology is relied upon heavily by clinicians to accurately diagnose Crohn’s
Disease (CD) [14,32]. Pathologists carefully examine biopsies at multiple scales
through microscopes to examine morphological patterns [6], which is a laborious task.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Multi-scale awareness. Human pathologists typically aggregate the global and local pat-
terns in a multi-scale manner. However, previous work failed to be aware of cross-scale relation-
ship at different resolutions. Our method demonstrates the importance-of-regions with cross-scale
attention maps, and aggregate the multi-scale patterns with differential attention scores for CD
diagnosis.

With the rapid development of whole slide imaging (WSI) and deep learning methods,
computer-assisted CD clinical prediction and exploration [9,18,19,27] are increasingly
promising endeavors. However, annotating images pixel- or patch-wise is computation-
ally expensive for a standard supervised learning system [11,16,23,24]. To achieve
accurate diagnoses from weakly annotated images (e.g., patient-wise diagnosis), multi-
instance Learning (MIL) – a widely used weakly supervised learning paradigm – has
been applied to digital pathology [7,21,22,26,29]. For example, DeepAttnMISL [31]
clustered image patches into different “bags” to model and aggregate diverse local fea-
tures for patient-level diagnosis.

However, most prior efforts, especially the “natural image driven” MIL algorithms,
ignore the multi-scale (i.e., pyramidal) nature of WSIs. For example, a WSI consists of
a hierarchical scales of images (from 40× to 5×), which allows pathologists to exam-
ine both local [2] and global [1] morphological features [5,13,28]. More recent efforts
have mimicked such human pathological assessments by using multi-scale images in a
WSI [15,20]. These methods typically perform independent feature extraction at each
scale and then perform a “late fusion”. In this study, we consider the feasibility of exam-
ining the interaction between different scales at an earlier stage through an attention-
based “early fusion” paradigm.

In this paper, we propose the addition of a novel cross-scale attention mechanism
in an attention-guided MIL scheme to explicitly model inter-scale interactions during
feature extraction (Fig. 1). In summary, the proposed method not only utilizes the mor-
phological features at different scales (with different fields of view), but also learns
their inter-scale interactions as a “early fusion” learning paradigm. Through empirical
validation, our approach achieved the higher Area under the Curve (AUC) scores, Aver-
age Precision (AP) scores, and classification accuracy. The contribution of this paper is
two-fold:

• A novel cross-scale attention mechanism is proposed to integrate the multi-scale
information and the inter-scale relationships.

• Differential cross-scale attention visualizations are generated for lesion pattern guid-
ance and exploration.
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Fig. 2. Cross-scale Attention Guided Multi-instance Learning Pipeline. This figure demon-
strates the pipeline of the proposed method. The local feature-based clustering was deployed on
each WSI to distribute the phenotype patterns in each MIL bag. The cross-scale attention mech-
anism is deployed in each cluster of MIL branch to combine the multi-scale features with differ-
ential attention scores. Multi-scale representations from different clusters were concatenated for
CD classification.

2 Methods

The overall pipeline of the proposed CS-MIL is presented in Fig. 2. Patches at each
location (same center coordinates) at different scales are jointly tiled fromWSIs. Patch-
wise phenotype features are extracted from a self-supervised model. Then, local feature-
based clustering is deployed on each WSI to distribute the phenotype patterns in each
MIL bag. Cross-scale attention-guided MIL is proposed to aggregate features in multi-
scale and multi-clustered settings. A cross-scale attention map is generated for human
visual examination.

2.1 Feature Embedding and Phenotype Clustering

In the MIL community, most histopathological image analysis methods are divided into
two stages [10,25]: (1) the self-supervised feature embedding stage and (2) the weakly
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supervised feature-based learning stage. We follow a similar design that leverages our
dataset to train a contrastive-learning model SimSiam [8] to extract high-level pheno-
type features from patches. All of the patches are then embedded into low-dimensional
feature vectors for the classification in the second stage.

Inspired by [31], we implement K-means clustering to cluster patches on the patient
level based on their self-supervised embeddings from the first stage since the high-level
features are more comprehensive than low-resolution thumbnail images in represent-
ing phenotypes [33]. When gathering the patches equally from different clusters, the
bag with the better generalization for the MIL model can be organized with distinc-
tive phenotype patterns sparsely distributed on WSIs. In contrast, patches with similar
high-level features can be aggregated for classification without spatial limitation.

2.2 Cross-Scale Attention Mechanism

We implement the MI-FCN encoder from DeepAttnMISL [31] as the backbone to
encode patch embeddings from corresponding phenotype clusters and aggregate the
instance-wise features to the patient-wise classification, which showed superior perfor-
mance on survival prediction onWSIs. In the MIL community, several attention mecha-
nisms [17,22] have been proposed for instance-relationship between different locations
on WSIs. However, those methods are not aware of modeling multi-scale patterns from
the pyramid-structured WSIs. Some approaches [15,20] have aggregated multi-scale
features into deep learning models from WSIs. Unfortunately, those methods fail to
exploit relationships between multiple resolutions at the same location.

To address this issue, we propose a cross-scale attention mechanism to represent
distinctive awareness at different scales in the backbone. After separately encoding
embedding features at different scales, the cross-scale attention mechanism from those
encoding features is leveraged to consider the importance of each scale when aggregat-
ing multi-scale features at the same location. These attention scores are multiplied by
representations from multiple scales to fuse the cross-scale embedding. The multi-scale
representation F can be calculated by:

F =
S∑

s=1

asfs (1)

where

as =
expWTtanh(VfT

s )
∑S

s=1 expWTtanh(VfT
s )

(2)

W ∈ R
L×1 and V ∈ R

L×M are trainable parameters in the cross-scale attention
layer. L is the size of the MI-FCN output fs, M is the output channel of the hidden
layer in the cross-scale attention layer. Tangent element-wise non-linearity activation
function tanh(.) is implemented both negative and positive values for proper gradient
flow. S is the number of the scales on WSIs. The attention-based instance-level pooling
operator from [31] is then deployed to achieve patient-wise classification with cross-
scale embedding.
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2.3 Cross-Scale Attention Visualisation

The cross-scale attention maps from the cross-scale attention mechanism on WSIs are
presented to show the distinctive contribution of phenotype features at different scales.
The cross-scale attentions are mapped from patch scores of the cross-scale attention
mechanism on WSIs, demonstrating the importance at multiple resolutions. This atten-
tion maps concatenate scale knowledge and location information can expand clinical
clues for disease-guiding and exploration in different contexts.

3 Experiments

3.1 Data

50H&E-stained Ascending Colon (AC) biopsies from [4], which are representative
in CD, were collected from 20 CD patients and 30 healthy controls for training. The
stained tissues were scanned at 20× magnification. For the pathological diagnosis, the
20 slides from CD patients were scored as normal, quiescent, mild, moderate, or severe.
The remaining tissue slides from healthy controls were scored as normal. 116 AC biop-
sies were stained and scanned for testing with the same procedure as the above training
set. The biopsies were acquired from 72 CD patients who have no overlap with the
patients in the training data.

3.2 Experimental Setting

256× 256 pixels patches were tiled at three scales (20×, 10× and 5×). For 20×
patches, each pixel is equal to 0.5 Micron. Three individual models following the offi-
cial SimSiam with a ResNet-50 backbone were trained at three scales, respectively. All
three models were trained in 200 epochs with a batch size of 128 with the official set-
ting. 2048-channel embedding vectors were received for all patches. K-means cluster-
ing with a class number of 8 was implemented to receive phenotype clustering within
the single-scale features at three resolutions, and multi-scale features that include all
resolutions for each patient.

10 data splits were randomly organized following the leave-one-out strategy in the
training dataset, while the testing dataset was separated into 10 splits with a balanced
class distribution. Each bag for MIL models was collected for each patient, equally
selecting from different phenotype clustering classes, marked with a slide-wise label
from clinicians. Negative Log-Likelihood Loss (NLLLoss) [30] was used to compare
the slide-wise prediction for the bag with the weakly label. The validation loss was used
to select the optimal model on each data split, while the mean value of the performance
on 10 data splits was evaluated as the testing results. Receiver Operating Characteristic
(ROC) curves with Area under the Curve (AUC) scores, Precision-Recall (PR) curves
with Average Precision (AP) scores, and classification accuracy were used to estimate
the performance of each model. We followed the previous work [12] to implement the
bootstrapped two-tailed test and the DeLong test to compare the performance between
the different models. The cross-scale attention scores were normalized within every
single scale between 0 to 1.
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Table 1. Classification performance on testing dataset.

Model Patch scale Clustering scale AUC AP Acc

DeepAttnMISL(20×) [31] Single 20× 0.7961 0.6764 0.7156

DeepAttnMISL(10×) [31] Single 10× 0.7992 0.7426 0.6897

DeepAttnMISL(5×) [31] Single 5× 0.8390 0.7481 0.7156

Gated attention [17] Multiple Multiple 0.8479 0.7857 0.7500

DeepAttnMISL [31] Multiple Multiple 0.8340 0.7701 0.7069

MDMIL-CNN [15] Multiple 5× 0.8813 0.8584 0.7759

DSMIL [20] Multiple 5× 0.8759 0.8440 0.7672

CS-MIL(Ours) Multiple 5× 0.8924 0.8724 0.8017

Table 2. The bootstrapped two-tailed test and the DeLong test between different methods.

Model p-value of AUC p-value of AP

DeepAttnMISL(20×) [31] 0.004 0.001

DeepAttnMISL(10×) [31] 0.001 0.002

DeepAttnMISL(5×) [31] 0.048 0.004

Gated attention [17] 0.070 0.031

DeepAttnMISL [31] 0.009 0.002

MDMIL-CNN [15] 0.466 0.457

DSMIL [20] 0.350 0.201

CS-MIL(Ours) Ref. Ref.

4 Results

4.1 Performance on Classification

We implemented multiple DeepAttnMISL [31] models with patches at different scales
with a single-scale setting. At the same time, we trained the Gated Attention (GA)
model [17] and DeepAttnMISL model with multi-scale patches, without differentiating
scale information. Patches from multiple scales are treated as instances when process-
ing phenotype clustering and patch selection for MIL bags. Furthermore, we adopted
a multi-scale feature aggregations, jointly adding embedding features from the same
location at different scales into each MIL bag as [15]. We also concatenated embed-
ding features from the same location at different scales as [20]. We followed above
multi-scale aggregation to input phenotype features into the DeepAttnMISL backbone
to evaluate the baseline multi-scale MIL models as well as our proposed method. All
of the models were trained and validated within the same hyper-parameter setting and
data splits.
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Fig. 3. ROC curves with AUC scores and PR curves with AP scores. This figure shows the
ROC curves and PR curves of baseline models as well as the AUC scores and AP scores. The
proposed model with cross-scale attention mechanism achieved superior performance in two met-
rics.

Table 3. Comparison of different cross-scale attention mechanism designs on testing dataset.

Id Attention layer kernel Activation function AUC AP Mean of scores

1 Non-sharing ReLU 0.8575 0.8559 0.8576

2 Non-sharing Tanh 0.8848 0.8679 0.8763

3* Sharing ReLU 0.8924 0.8724 0.8824

4 Sharing Tanh 0.8838 0.8609 0.8723

Testing Result. Table 1 and Fig. 3 indicates the performance of the performance while
directly applying the models on the testing dataset in the CD classification task, with-
out retraining. In general, single-scale models achieved worse performance compared
to multi-scale models, indicating the benefit of external knowledge from multiple scale
information. The proposed CS-MIL achieved better scores in all evaluation metrics,
showing the benefits of the cross-scale attention which explores the inter-scale relation-
ship at different scales in MIL. Table 2 shows the bootstrapped two-tailed test and the
DeLong test to compare the performance between the different models.

Cross-Scale Attention Visualisation. Figure 4 represents cross-scale attention maps
from the cross-scale attention mechanism on a CDWSI and normal WSI. The proposed
CS-MIL can present distinctive importance-of-regions on WSIs at different scales,
merging multi-scale and multi-region visualization. As a result, the 20× attention map
highlights the chronic inflammatory infiltrates, while the 10× attention map focuses on

Table 4. Comparison of different bag sizes on testing dataset.

Bag size AUC AP Mean of scores

64 0.8507 0.8220 0.8363

16 0.8690 0.8523 0.8606

08* 0.8924 0.8724 0.8824

01 0.8769 0.8261 0.8515
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Fig. 4. Attention Map Visualization. This figure shows the cross-scale attention maps from the
proposed model. The proposed CS-MIL can present importance-of-regions at different scales.

the crypt structures. Those regions of interest interpret the discriminative regions for
CD diagnosis across multiple scales.

4.2 Ablation Studies

Inspired by [31] and [17], we estimated several attention mechanism designs in MIL
with different activation functions. We formed the cross-scale attention learning into
two strategies, differentiated by whether they shared the kernel weights while learning
the embedding features from multiple scales. We also evaluated the performance of
different bag sizes. As a result, as shown in Table 3, sharing the kernel weight for cross-
scale attention learning with ReLU [3] achieved better performances with a higher mean
value of multiple metrics. Table 4 demonstrates that a bag size of 8 is an optimal hyper-
parameter for this study. The * is the proposed design.

5 Conclusion

In this work, we propose the addition of a cross-scale attention mechanism to an
attention-guided MIL to combine multi-scale features with inter-scale knowledge. The
inter-scale relationship provides extra knowledge of tissues-of-interest in lesions for
clinical examination on WSIs to improve the CD diagnosis performance. The cross-
scale attention visualization represents automatic scale-awareness and distinctive con-
tributions to disease diagnosis in MIL when learning the phenotype features at different
scales in different regions, offering an external AI-based clue for multi-scale patholog-
ical image analysis.



32 R. Deng et al.

Acknowledgements. This work is supported by Leona M. and Harry B. Helmsley Charitable
Trust grant G-1903-03793, NSF CAREER 1452485, and Veterans Affairs Merit Review grants
I01BX004366 and I01CX002171, and R01DK103831.

References

1. AbdulJabbar, K., et al.: Geospatial immune variability illuminates differential evolution of
lung adenocarcinoma. Nat. Med. 26(7), 1054–1062 (2020)

2. Abousamra, S., et al.: Multi-class cell detection using spatial context representation. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4005–4014
(2021)

3. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 (2018)

4. Bao, S., et al.: A cross-platform informatics system for the gut cell atlas: integrating clin-
ical, anatomical and histological data. In: Medical Imaging 2021: Imaging Informatics for
Healthcare, Research, and Applications, vol. 11601, pp. 8–15. SPIE (2021)

5. Bejnordi, B.E., Litjens, G., Hermsen, M., Karssemeijer, N., van der Laak, J.A.: A multi-
scale superpixel classification approach to the detection of regions of interest in whole slide
histopathology images. In: Medical Imaging 2015: Digital Pathology, vol. 9420, pp. 99–104.
SPIE (2015)

6. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of
lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

7. Chen, J., Cheung, H.M.C., Milot, L., Martel, A.L.: AMINN: autoencoder-based multiple
instance neural network improves outcome prediction in multifocal liver metastases. In: de
Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 752–761. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-87240-3 72

8. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758
(2021)

9. Con, D., van Langenberg, D.R., Vasudevan, A.: Deep learning vs conventional learning algo-
rithms for clinical prediction in Crohn’s disease: a proof-of-concept study.World J. Gastroen-
terol. 27(38), 6476 (2021)

10. Dehaene, O., Camara, A., Moindrot, O., de Lavergne, A., Courtiol, P.: Self-supervision
closes the gap between weak and strong supervision in histology. arXiv preprint
arXiv:2012.03583 (2020)
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Abstract. The topology of the segmented vessels is essential to eval-
uate a vessel segmentation approach. However, most popular convolu-
tional neural network (CNN) models, such as U-Net and its variants,
pay minimal attention to the topology of vessels. This paper proposes
integrating graph neural networks (GNN) and classic CNN to enhance
the model performance on the vessel topology. Specifically, we first use a
U-Net as our base model. Then, to form the underlying graph in GNN,
we sample the corners on the skeleton of the labeled vessels as the graph
nodes and use the semantic information from the base U-Net as the node
features, which construct the graph edges. Furthermore, we extend the
previously reported graphical connectivity constraint module (GCCM)
to predict the links between different nodes to maintain the vessel topol-
ogy. Experiments on DRIVE and 1092 digital subtraction angiography
(DSA) images of coronary arteries dataset show that our method has
achieved comparable results with the current state-of-the-art methods
on classic Dice and centerline-Dice.

Keywords: Vessel segmentation · Graph neural network · Deep
learning · Link prediction

1 Introduction

Retinal vessel segmentation provides essential supportive information for the
clinical diagnosis of ocular diseases, such as macular degeneration, diabetic
retinopathy, and glaucoma. Likewise, the anomaly changes of coronary arter-
ies identified by the coronary segmentation may indicate hypertension, myocar-
dial infarction, and coronary atherosclerotic disease. However, after decades of
research, vessel segmentation remains challenging. One of the reasons is that the
topology of vessels is exceptionally complex for classic methods to ensure the
connectivity of blood vessels.

Deep learning methods based on convolutional neural networks (CNN) have
achieved remarkable performance in segmentation tasks. The U-Net is proven as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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an effective model in medical image segmentation [11]. After that, several vari-
ants of U-Net have been proposed to improve the network architecture or train-
ing strategy to achieve better performances, such as [9,19,20]. It is worth noting
that nnU-Net, an out-of-the-box tool based on U-Net, generates state-of-the-art
segmentations without manual intervention in many medical segmentation tasks
[4]. However, these methods are trained under evenly weighted pixel-wise losses,
usually ignoring the relatively weak linkage between the vessel segments, which
sabotages the topology and connectivity of the segmented vessels. To solve this
problem, Mosinska et al. [10] propose a method to perform segmentation and
path classification simultaneously. Hu et al. [3] propose a continuous-valued loss
function based on the Betti number, which can persist homology. Notably, Shit et
al. [16] introduce centerline-Dice (clDice) to encourage the segmentation model
maintaining tubular structures. In this work, we also use clDice as a metric to
evaluate the topology and connectivity of the vessel segmentation results.

Recently, graph neural network (GNN) has been introduced to medical image
segmentation. GNN has been proved to discover the relationship between con-
nected nodes by aggregating node features in a non-Euclidean domain, thereby
improving segmentation performance. Saueressig et al. [12] construct the nodes of
the graph through SLIC superpixel method [1] and transform the pixel-level seg-
mentation of the brain tumor into the graph-level node classification. However,
this method is more suitable for concentrated targets, such as lesion segmen-
tation or natural image segmentation, other than vessels. Vessels have slender
tree-like structures and complex topologies and require a more delicate design
of graph construction and training. Vessel graph network (VGN), proposed by
Shin et al., is the first model to embed GNN into the traditional CNN model for
retinal vessel segmentation [15]. However, the overcomplex network architecture
of VGN is inefficient. Li et al. [8] followed the graph construction method in
VGN, and designed a graphical connectivity constraint module (GCCM) in a
plug-in mode which backpropagates the information of the GNN to the CNN in
training stage and significantly reduces the computational cost of the inference
stage.

The above GNN-based models typically construct the graph nodes by sam-
pling some pixels in the non-overlapping sub-regions in the image. The models
then connect the nodes with edges if both nodes are on the vessels, which results
in many redundant and isolated nodes. These unwanted nodes highly increase
the computational cost in the graph construction and training stage. On the
other hand, the aforementioned methods only use GNN as node classification,
which labels the sub-regions as vessels or not. But it is not helpful to maintain
the topology and connectivity of vessel segmentation results. Therefore, we con-
sider that link prediction between nodes outweighs the mere node classification
on enhancing the topology and connectivity of the segmented vessels rather than
classifying graph nodes. To achieve the link prediction using GNN, Kipf et al.
[6] propose two graph auto-encoders (GAE and VGAE) that reconstruct the
adjacency matrix by node embeddings generated by graph convolutional net-
work (GCN). Ahn et al. [2] improve Kipf’s methods by proposing a variational
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graph normalized autoEncoder (VGNAE), which more effectively utilizes the
node features.

Fig. 1. The overview of our framework. The upper part is U-Net for segmentation,
while the lower part is the LP-GCCM that enhances vascular connectivity. The LP-
GCCM only participates in training stage but not in inference stage.

This work embeds a more topology-focused GNN into the classic CNN model
to segment vessels. Inspired by Li et al. [8], we propose a novel corner-based graph
construction approach and extend their original GCCM to fit the link prediction
settings. The proposed graph construction approach shows more effective utiliza-
tion of the semantic information from the base CNN model. It can significantly
reduce the time elapsed training the GNN. Furthermore, our proposed link pre-
diction shows an excellent ability to maintain the connectivity of the segmented
vessels. On the public DRIVE dataset [17], and a private dataset of 1092 digital
subtraction angiography (DSA) images of coronary arteries [22], experiments
show that our method outperforms the current state-of-the-art methods. And
our method produces a significantly higher result on clDice metric.

2 Methods

In this section, we describe in detail the corner-based vascular connectivity graph
construction approach, the training stage of link prediction-based GCCM (LP-
GCCM), and the ensemble modeling. The overview of our framework is shown
in Fig. 1.
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2.1 Corner-Based Vascular Connectivity Graph Construction

A graph can be described by G = (V ;E;A), where V is the set of nodes, E is the
set of edges, and A is the adjacency matrix [21]. We divide the graph construc-
tion into five steps: node sampling, node feature generation, edge construction,
adjacency matrix generation and edge label generation (shown in Fig. 2).

Fig. 2. Example of graph construction process. (a) Manual annotation, (b) Skeleton, (c)
Corner-based node sampling (the red points represent nodes), (d) Superpixel clusters,
(e) Edge construction, (f) Edge label generation (green lines represent positive edges,
while blue lines represent negative edges). (Color figure online)

Node Sampling: Like in VGN and Li et al., the classic node sampling extracts
pixels from fix-sized sub-regions, which is inefficient. For example, such method
samples a total of 20732 nodes from the 21st image in the DRIVE dataset,
however, only 3380 nodes exist edges, and about 6366 nodes are in the black
background.

Therefore, we propose a corner-based graph construction method. Specifi-
cally, given a vessel manual annotation I, we apply ultimate thinning [7] to
obtain the skeleton IS of I and adopt the method in Shi et al. [14] to sample
the corners on IS as the set of graph nodes V = {vi}Nn

i=1 = {(xi, yi)}Nn
i=1, where

Nn represents the number of corners. We set the upper limit of Nn to 1000,
the Euclidean distance between the corners is greater than 5, ensuring that the
corners are evenly distributed on vessels.

Node Feature Generation: Node feature generation is an important link
between CNN and GNN, so we use the feature map of the last layer in CNN
F , which combines multi-scale features, to generate GNN node features f =
{fi}Nn

i=1. To increase the utilization of semantic information from F , we use the
adapted SLIC [1] method to cluster each node vi ∈ V simultaneously. We fix the
center (xi, yi) of vi during processing iterations of SLIC algorithm. A cluster Ci

corresponding to each vi is created and the mean value of the features of each
pixels (cxj , cyj) ∈ Ci is then computed as fi, which can be defined as,

fi =

∑|Ci|
j=1 F (cxj , cyj)

|Ci| , (1)
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where |Ci| represents the number of pixels in Ci. We treat fi as the node feature
of vi, and in this work, fi is a one-dimensional vector with 64 entries.

Edge Construction: We adopt the same edge construction method in Li et
al. [8] which uses the geodesic distance as the edge construction criterion. The
construction process calculates the travel time T between nodes in V by the fast
marching method [13]. For node vi, T (vi) can be solved by,

S · |∇T (vi)| = 1, (2)

where S is the speed function, which is the ground truth (GT) of vessels, so
the nodes travel faster on vessels. By calculating the travel time of each node
T (vi), the model can construct the set of edges E between nodes whose geodesic
distance is less than a given threshold thrett,

E = {ei,j}Ne
i=1,j=1, if T (vi, vj) < thrett, (3)

where Ne represents the number of edges, and ei,j represents the directed edge
from vi to vj .

Adjacency Matrix Generation: The adjacency matrix A reflects the
attributes of the edges in the graph. We apply the cosine similarity between
two node features to generate the adjacency matrix as follows,

Ai,j =

{
cos(fi,fj)∑

k∈Ner(vi)
cos(fi,fk)

ei,j ∈ E;

0 ei,j /∈ E,
(4)

where Ner(vi) is the set of neighboring nodes of vi.

Edge Label Generation: To provide edge labels for the link prediction, we
determine whether edges are positive or negative by the distance between IS
and E. Given an edge ei,j ∈ E, we can represent it with an image-level line. Our
model then calculates the minimum distance of ei,j from IS , and determines the
distance less than the threshold thredis as positive, and the others as negative.
As shown in column (f) of Fig. 2, the positive edges almost coincide with IS .

2.2 Graphical Connectivity Constraint Module

Based on the graph G = (V ;E;A) and node features f , we propose a LP-GCCM
for enhancing vessel connectivity. GNNs can encode f through graph convolution
to obtain node embeddings Z and use inner-product to decode the embeddings
to reconstruct the adjacency matrix Â [6],

Â = σ(Z · ZT ), with Z = Encoder(f,A), (5)
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where Encoder is any graph convolution layers and σ is the sigmoid function. In
VGNAE [2], the Encoder is graph normalized convolutional network (GNGN)
using L2-normalization.

Following Li et al. [8], we use the plug-in mode to integrate GNN into CNN,
which makes GNN constrain the vessel connectivity only during the training
stage. Unlike ordinary link prediction tasks that take all existing edges as positive
edges, we selectively generate edge labels, as reported in Sect. 2.1.

2.3 Network Training

Dice loss and Cross-entropy (CE) loss are widely used in medical image segmen-
tation. We combine the two as the segmentation loss LSeg to train U-net:

LSeg = 1− 2
∑Np

i=1 pi · yi + ε
∑Np

i=1 pi +
∑Np

i=1 yi + ε
− 1

Np

Np∑

i=1

(yi ·log(pi)+(1−yi)·log(1−pi)), (6)

where Np is the number of pixels, pi and yi mean the probability and GT of
pixel i, respectively, and ε is the smoothness term which is set to 1e–6.

For the LP-GCCM, we also use CE with sigmoid layer as the graph constraint
connectivity loss LGCC ,

LGCC = − 1
Ne

Ne∑

i=1

(yi · log σ(pi) + (1 − yi) · log σ(1 − pi)), (7)

where pi and yi mean the probability output and the label generated in Sect. 2.1
of edge i, respectively. The loss for the whole network Lsum = LSeg + LGCC .

2.4 Ensemble Modeling

Due to the possible catastrophic forgetting phenomenon, plugging in GNN may
undermine the performance of the base U-Net. Therefore, we ensemble the pro-
posed method and a pure base U-Net by taking the union of their results, which
significantly improves the overall segmentation.

3 Experiments and Results

In this section, We evaluate our method on DRIVE and 1092 DSA images of
coronary arteries dataset, demonstrating that our method outperforms related
methods in segmentation accuracy, vessel connectivity, and time cost.

3.1 Dataset

DRIVE dataset [17] is the most common benchmark that includes 40 fundus
images of size 565× 584 with manual annotations. Besides, we include a dataset
with 1092 coronary arteries DSA images of size 512 × 512 with manual annota-
tions, of which 546 images are in the training set, 218 images are in the validation
set, and the remaining 328 images form the test set.
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Fig. 3. Example of blood vessel segmentation results on two datasets. (a) Original
images, (b) Manual annotation, (c) Baseline, (d) Li et al., (e) Our LP-GCCM only, (f)
Our ensemble model. The first three rows are the results of the DRIVE, and the last
three rows are the results of the coronary arteries DSA images dataset. The red boxes
represent better vessel connectivity segmented by our method. (Color figure online)

3.2 Experiment Details

We use the Adam algorithm as the optimizer [5] with learning rates of 5e–4 and
5e–2 for U-Net and GCCM on both datasets. The learning rate decays by a factor
of 0.85 every 20 epochs. Meanwhile, The grid interval and the weight between
color similarity and spatial proximity in the SLIC method are set to 5 and 35,
and the threshold thrett and thredis in edge and edge label construction are 25
and 1, respectively. The training epochs are 200 and 100, and the batch sizes are
2 for DRIVE and the DSA image dataset. All the experiments are implemented
on NVIDIA Tesla V100 GPU.



Vessel Segmentation via Link Prediction of GNNs 41

3.3 Results

We show evaluation results by different methods in Table 1 and examples of
vessel segmentation results on two datasets in Fig. 3. As the baseline of this
paper, U-Net has Dice scores of 0.8149 and 0.8870 on the DRIVE and the DSA
datasets. Our proposed method has Dice scores of 0.8267 and 0.8921 on two
datasets, outperforming the baseline and Li’s method. Furthermore, ensemble
modeling can effectively improve both Dice and clDice metrics. Our method has
high clDice scores of 0.8267 and 0.9206, respectively, presenting better vessel
connectivity.

Table 1. Comparison on DRIVE and coronary arteries DSA images dataset

DRIVE

Method Accuracy Precision Dice clDice

U-Net 0.9685 0.8383 0.8149 0.8147

Li et al. 0.9645 0.7773 0.8046 0.8221

Our LP-GCCM 0.9679 0.8264 0.8137 0.8210

Our ensemble model 0.9677 0.8085 0.8176 0.8267

Coronary arteries DSA images dataset

Method Accuracy Precision Dice clDice

U-Net 0.9694 0.8392 0.8870 0.9162

Li et al. 0.9631 0.7987 0.8677 0.9073

Our LP-GCCM 0.9699 0.8458 0.8875 0.9200

Our ensemble model 0.9713 0.8521 0.8921 0.9206

4 Ablation Study

In this section, we evaluate different graph construction methods, and different
downstream tasks using the same GNN model [18] on the DRIVE dataset. The
results in Table 2 show that our graph construction method is more effective,
and the link prediction has achieved the best performance in vessel connectivity.

Table 2. Ablation study results on graph construction method and LP-GCCM. NC
and LP represent for node classification and link prediction tasks. The size of sub-region
is 4 × 4 in Li’s method.

Method Task Dice clDice Nn Ne Training time(s) Graph constuction
time(s)

Li et al. NC 0.8046 0.8221 20732 31391.6 1312 321.0

LP 0.8108 0.8176 1308

Ours NC 0.8129 0.8196 957.4 7451.5 81 26.8

LP 0.8144 0.8231 70
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5 Conclusion

This paper proposes a corner-based graph construction method and a GCCM-
based link prediction to maintain vessel connectivity and improve vessel segmen-
tation performance. Despite the promising results, our method requires further
investigation: 1. adaptive thresholds could be introduced to void possible discon-
nection of the links according to the curvature of the vessels. 2. prior knowledge
in the retinal and coronary vessels may help foster the convergence of the GNNs;
3. we can further design training strategies to reduce the catastrophic forgetting
issue instead of ensemble modeling. In summary, the proposed vessel segmen-
tation can maintain vessel connectivity and topology and has the potential to
provide more accurate support for the quantitatively clinical diagnosis.
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Abstract. The application of deep learning (DL) methodology in the differenti-
ation of benign and malignant lesions has drawn wide attention. However, it is
extremely hard to acquire medical images with biopsy labeling, which leads to the
scarcity of datasets. This is contrary to the requirement that DL algorithms need
large datasets for training. To effectively learn features from small tumor datasets,
a Bagging Strategy-based Multi-scale gray-level co-occurrence matrix (GLCM)-
Convolutional Neural Network (BSM-GLCM-CNN) is proposed to boost the clas-
sification performance. Specifically, instead of feeding the raw image to the CNN,
GLCM is used as the input of the designed model. As a texture descriptor, GLCM
has the advantages of effectively representing lesion heterogeneity and of the same
size for all input samples given the gray level. This work creatively partitions the
GLCM to three groups to make full use of certain scale information of each group.
When fusing the multi-scale texture information, the concept of bagging strategy
in ensemble learning is used to improve the classification performance, where
multiple base Learners are generated. Final classification results are obtained by
integrating the multi-scale base Learners with the voting mechanism. Experimen-
tal results show that the proposed BSM-GLCM-CNN can successfully distinguish
colonic polyps in a small dataset. The proposed method achieves an improvement
from 68.00%Area Under Curve (AUC) to 90.88%AUC over other state-of-the-art
models. The experimental results demonstrate the great potential of the proposed
method when challenged by small pathological datasets in the medical imaging
field.
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1 Introduction

DLhas beenwidely evolved in recent years [1]. DL is amulti-layer network composed of
a large number of neurons [2]. Given a large amount of training data, these neurons can
automatically discover distinguishing features and make decisions [3]. A widely used
way to distinguish features is based on the convolutional neural networks (CNN) in the
DL architecture [4]. CNN has been successfully applied to the task of classification of
natural images, such as face recognition [5]. There are also many reports of successful
CNN application in the task of diagnosis of various diseases [6], e.g. the application
of CNN for early differentiation or diagnosis of lung nodules before their malignant
transformation into lung cancer [7, 8].

However, in these diagnosis studies, the CNNmodels focusedmore on learning from
the raw computed tomography (CT) images [9, 10]. One difficulty is that limited fea-
tures learned from lesions of uncertain size and morphology in the raw images [11]. To
consider this uncertainty of the raw images, a large number of studies have preprocessed
the raw images before training the models [12, 13]. For instance, Ma et al. segmented
the raw images, performed the first- and second-order derivatives for geometric analysis
[12]. And then linear discriminate analysis (LDA) was applied to extract deep features
from the raw image data, where the LDAwas adopted to reduce the dimensionality of the
feature [13]. The other difficulty is that datasets are usually scarce in medical imaging-
based diagnosis, particularly for cancer imaging. Utilizing small datasets to train the
deep learning models usually results in suboptimal classification. Some studies sought
to expand the dataset volume to tackle this problem at its source, such as, data warp-
ing and synthetic over-sampling were investigated to create additional training samples
[14]. When facing the difficulty of small dataset classification, ensemble learning can
be another choice. Ensemble learning has advantages in dealing with scarce datasets
and is efficient in classification tasks by building and combining multiple DL algo-
rithms [15], which could reduce differences of automated decision systems and improve
classification accuracy [16]. For instance, a multi-view ensemble learning-based voting
mechanism was presented to boost the classification performance in small datasets [17].
Alternatively, the small datasets can be divided into multiple subsets to train the model
to form an adaptive system based on ensemble learning [18].

Despite the great effort of mitigating the uncertainty of the raw images and the
scarcity of datasets, the difficulty of obtaining satisfactory differentiationmalignant from
benign lesions remains. According to above-mentioned issues, we summarize the factors
restricting the improvement of polyp classification into two categories. One is related to
the variations of polyp shape and size due to pathological changes as represented in the
raw images, so it is hard for DL models to extract, summarize and further learn effective
features. The other is the small data volume because of the difficulty of collecting large
data volume with pathological ground truth from the patients. Hence, how to use small
image data volume for classification task of tumor polyps is still a formidable challenge.

To address the limitationsmentioned above, a BSM-GLCM-CNNmodel is proposed
in this work. This paper uses CT data of colonic polyps as study material to validate
our method. The innovation of the model can be summarized into two folds. First, to
address the uncertainty of CT raw images of the polyps, this study uses GLCM instead
of the raw CT images as the input of CNN models and divides GLCM into three groups
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to allow the model to learn certain scale information. As a method of describing and
analyzing texture features, GLCM has excellent properties such as size consistency,
shape and scaling invariance [19]. So GLCM-based CNN does not need the adjustment
of CT raw image sizes and preserve the uniformity of feature extraction from the raw
images. Second, to address the accuracy of the model is hard to improve due to the
scarcity of CT raw images, this study adopts the bagging strategy [20], where a parallel
ensemble learning can be generated simultaneously. Specifically, this study randomly
generates multiple groups of Random Train Test sets (RTTsets) to train base Learners
on multi-scale GLCM texture features, i.e. letting all Learners vote and finally integrate
the voting results through specific combination tactics. It greatly reduces generalization
error and alleviates the problems caused by small datasets. The BSM-GLCM-CNN
model improves the accuracy of performing the polyp classification compared with
several existing state-of-the-art classification methods.

2 Methods

2.1 Dataset and Preprocessing

59 patients are provided with 63 polyps containing 31 benign and 32 malignant polyps.
Benign polyps include four categories, i.e., Serrated Adenoma (3 cases), Tubular Ade-
noma (2 cases), Tubulovillous Adenoma (21 cases), Villous Adenoma (5 cases). The
malignant is Adenocarcinoma only (32 cases). The polyp size ranges from 3 to 8 cm (an
average of 4.2 cm). A routine clinical non-contrast CT scanning protocol covering the
entire abdomen scanned the patients. More than 400 image slices are obtained for each
CT image, every slice size is setting to 512× 512, and every image voxel is nearly cubic
with 1mm. Experts adopted a semi-automated segmentation algorithm to draw contour
of polyp image slice inside the CT abdominal image volume.

Fig. 1. The illustration of (a) the GLCM in 13 directions. (b) the process of GLCM formation.
(c) the multi-scale displacement.

GLCM is a method to extract statistical texture features from raw images [21].
The co-occurrence matrix (CM) describes the displacement and direction relationship
between pixel pairs in the digital image, the definition is as follows:

Ci,j(d , θ) = ∑
p∈V

{
1 if I(p + d(cos θ, sin θ)) = j

0 otherwise
(1)
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where I is the gray value of the raw CT image, p is a point inside the plane where the
image is located, and I(p) is pixel value located at point p, i and j represent a group of
pixels inside the image, and d is the distance from point p to other point in the direction of
θ . As shown in Fig. 1(a), 13 sample directions are presented to describe the entire object
[19]. Figure 1(b) shows examples of how to generate GLCM from raw grayscale images.
In this work, by using the concept of multi-scale, the corresponding generated GLCM
of 13 directions are divided into three scales because of the different displacement size,
where the illustration is shown in Fig. 1(c), and the number of GLCM of each scale are
3, 6 and 4 respectively. It is hypothesized that the multi-scale wise grouping can improve
the classification performance comparing treating 13 directions as a whole group. The
grayscale value is fixed at 32.

2.2 The Structure of Bagging Strategy-Based Multi-scale GLCM-CNN

An overview of the proposed framework is presented in Fig. 2(a). The GLCM divided
Data1, Data and Data3 according to the different scales are the input of the model, and
the distribution of data is shown in Fig. 2(b). The details of CNN Learners for each scale
are shown in Fig. 2(c), which is the same with the scale Learner mentioned in Fig. 2(a).
In Fig. 2(a), bagging strategy [20] is a famous representative of a parallel ensemble
learning algorithm, it is adopted in this model to study the common information from
RTTsets; Multi-scale GLCM-CNN is designed to study each RTTset.

Fig. 2. An overview of (a) the BSM-GLCM-CNN framework. (b) the distribution of data. (c) the
training process and concrete structure of GLCM-CNN.

Bagging Strategy. In this model, the data of each scale is divided into the training
sets and testing sets randomly to generate RTTset, as shown in Fig. 2(a). 15 RTTsets
are generated for each scale. For each RTTset, 31 samples (16 positive samples and
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15 negative samples) are randomly selected as the test set, the training set contains the
remaining 32 samples (16 positive samples and 16 negative samples). The RTTsets of
different scales are used to train the models Scale-1 Learner, Scale-2 Learner and Scale-
3 Learner respectively. We trained 15 base Learner for each scale. And each Learner
generates a classification result. Then, all results of base Learners will be combined by
a classical method of ensemble learning, the majority voting mechanism, to generate
the final prediction of polyp classification. This work combines the more effective tex-
ture information learned by different Learners and RTTsets to obtain an excellent final
classification effect. The majority voting mechanism can be described as follows:

H (x) =
⎧
⎨

⎩

cj if
T∑

i=1
hji(x) > 1

2

N∑

k=1

T∑

i=1
hki (x)

reject otherwise
(2)

where h represents a Learner, T means there are T Learners, and N means there are N
categories. When the classification result of category j by T Learners is more than half
of the total votes, category j is predicted; otherwise, the classification is rejected.

Multi-scale GLCM-CNN. The detailed CNN model architecture is shown in Fig. 2(c)
using 13 directional GLCM. According to different scales of inputs, three CNN archi-
tectures are defined as Scale-1 Learner, Scale-2 Learner and Scale-3 Learner. It also
corresponds to the blue circle, green square and pink triangle severally in Fig. 2(a).
They share the same network structure. The independent Learner of the model takes
the GLCM of each scale as inputs. It consists of ten layers including three convolu-
tion layers, three max-pooling layers, a flatten layer, two fully-connected layers and an
output layer. The partial fully-connected layers are omitted. The activation function of
each convolution layer is ReLU, and batch normalization is performed. The kernel size
of the convolution layer and max-pooling layer are 3 × 3 and 2 × 2 respectively. The
number of neurons in the three convolutional layers is 32, 64 and 128, which shows an
increasing characteristic. The number of neurons in the two fully-connected layers is
1000 and 100 respectively. The network architecture depth and kernel size are optimized
to achieve the best AUC score. SGD optimizer is adopted to minimize the cross-entropy
loss. The batch size and learning rate are set as 12 and 0.0001. Early stopping function
is applied to prevent overfitting. The model adopts soft-max function to acquire better
classification performance of malignant and benign polyps.

2.3 Comparison with the Related Architectures and Models

To explore an effective approach using this small dataset to differentiate benign and
malignant polyps, this study proposes a bunch of comparison architectures/models to
present the classification performances. To pursue the best GLCM-CNN-based models,
we proposed three other architectures, they are Single-scale, One-channel and Three-
scaleGLCM-CNN.At the same time,we proposed twomodels based on bagging strategy
to chase for the better classification effects, namely Bagging Strategy-based Single-scale
and One-channel GLCM-CNN.
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Three-Scale, Single-Scale and One-Channel GLCM-CNN. Details of the structures
are proposed here. Three-scale GLCM-CNN architecture is shown in Fig. 2(c). The
GLCM of three scales are designed as the inputs and the Three-scale GLCM-CNN
structure consists of three parallel scale Learners. After the parallel training of Scale-1
Learner, Scale-2 Learner and Scale-3 Learner, the outputs of three Learners are merged
using concatenate function, which takes the nonuniformity of sampling direction into
consideration, and two fully connected layers are adopted to achieve the classification.

Single-scale GLCM-CNN is presented to study whether information of single scale
has the greatest influence on the final classification effect. The network structure is that
Scale-1, Scale-2 and Scale-3 Learner learn independently using Data1, Data2 and Data3
without affecting each other.

One-channel GLCM-CNN is proposed for training all 13 directional GLCMwithout
adopting the concept of scales. GLCM in 13 directions as a whole is inputted to one
channel for training, and the model structure and specific parameters are the same as
Single-scale GLCM-CNN.

Bagging Strategy-Based Single-Scale and One-Channel GLCM-CNN. Bagging
Strategy-based Single-scale and One-channel GLCM-CNN both use the same CNN
model and algorithm, the only difference is the data input. The former model uses
GLCM of each single scale, and the latter one adopts 13 directional GLCM to be fed
into one channel for training. Specifically, for each Random Train Validation Test set
(RTVTsets), 31 samples are selected as the test set randomly, validation set and training
set are further separated from the remaining 32 samples in the rest of amount. And the
training set and the validation set are empirically settled as 24:8, which relatively outper-
forms other ratios. Similar to the RTTsets, RTVTsets will also be randomly generated
15 times. The RTVTset was utilized to train the models by Scale-1 Learner, Scale-2
Learner and Scale-3 Learner, so 15 Scale-1, 15 Scale-2, and 15 Scale-3 Learners are
performed respectively. These Learners were sorted by the performance and upward
trend of validation accuracy (val_acc), and about 10 Learners with excellent classifica-
tion results are screened out among the 15 Learners. The predicted accuracies of each
scale are combined with soft voting of ensemble learning to generate the final classifica-
tion respectively. In addition, we also trained 15 One-channel GLCM-CNNs, and they
are also combined with the soft voting mechanism.

The a represents a sample, i (= 1, 2, 3… 15) defines as a base Learner. The predictive
value for sample a is Pi(a) (0 < Pi(a) < 1), the set of Learners as I , then take the subset
of I as J , and on this subset, the soft voting predictive value of sample is:

PJ (a) = ∑

i∈J
Pi(a)

card(J ) (3)

where card(J ) represents the number of elements in set J , that is the number of trained
base Learners, andPJ (a) is the predictive probability of the test set after the combination
of the selected base Learners.

2.4 Comparison with Existing Methods

The study uses GLCM as the feature to classify polyps, alleviating the need of the raw
image size being not fixed and improving the polyp classification performance. To verify
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this idea, a comparison experiment is introduced [11], R-IMG, C-IMG and M-IMG are
three models to classify the polyps by using raw CT images [11]. Specifically, R-IMG
was to randomly select an image slice each polyp. Another method was to take the
largest area slice as input, called C-IMG. Multi-channel CNN architecture was used to
treat each image slice as a separate channel input that learned combined features from
multiple slices, called M-IMG.

3 Results

3.1 Classification Performance of Proposed BSM-GLCM-CNN

To investigate the effectiveness of multi-scale architecture and bagging strategy on clas-
sification performance, an experiment of BSM-GLCM-CNN was carried out. Here, ten
individual experiments were performed using randomly generated RTTsets every time.
Based on Table 1, we achieved relatively robust classification performance, the best
AUC of classification performance is achieved as high as 96.67%, the ACC, SEN and
SPE reach 96.77%, 100.00% and 86.77% respectively.

Table 1. The classification results of BSM-GLCM-CNN model.

Experiment AUC ACC SEN SPE Experiment AUC ACC SEN SPE

1 87.08 87.10 87.50 86.77 6 90.21 90.32 93.75 86.67

2 90.21 90.32 93.75 86.77 7 93.54 93.55 93.75 93.33

3 93.33 93.55 100.00 86.77 8 93.54 93.55 100.00 86.77

4 96.77 96.77 100.00 93.33 9 90.21 90.32 93.75 86.77

5 90.42 90.32 87.50 93.33 10 83.54 83.87 93.33 73.33

3.2 Effectiveness of Related Architectures and Models

To compare the effectiveness between the proposed method and other architec-
tures/models, this study also provided the Single-scale, One-channel and Three-scale
GLCM-CNN and Bagging Strategy-based Single-scale and One-channel GLCM-CNN
method to conduct an experiment on polyp classification. The experiment results of
these scenarios are presented in Table 2. Among the GLCM-CNNs, it can be clearly
observed that the Three-scale GLCM-CNN has the highest AUC (81.62%) and the best
classification effect for malignant and benign polyps, the AUC of 13 directional GLCM-
based One-channel CNN model is the second place, the AUC reaches 79.25%. Among
the three Single-scale Learners, Scale-1 Learner has the best overall polyp classification
performance with an AUC of 77.36%, while the identification performance of Scale-2
and Scale-3 Learner is slightly worse.

The results indicate two primary points. First, it can be seen that the classification
performance of Three-scale GLCM-CNN is superior to other GLCM-CNNs. Second,
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Table 2. The classification results of the different methods.

Methods AUC ACC SEN SPE

GLCM-CNN Scale_1
Learner

77.36 ± 6.42 77.42 ± 6.57 71.67 ± 13.34 83.56 ± 18.15

Scale_2
Learner

73.85 ± 8.68 73.55 ± 9.38 64.58 ± 23.35 83.11 ± 10.35

Scale_3
Learner

73.88 ± 8.16 73.55 ± 8.72 63.75 ± 23.76 84.00 ± 17.05

One-channel 79.25 ±6. 47 79.14 ± 6.65 75.83 ± 15.46 82.67 ± 10.27

Three-scale 81.62 ± 6.50 81.29 ± 6.81 76.25 ± 12.54 86.67 ± 7. 13

Bagging
Strategy-based
GLCM-CNN

Scale_1
Learner

84.17 ± 3.10 84.20 ± 3.04 85.00 ± 6.96 83.33 ± 8.56

Scale_2
Learner

80.82 ± 2.60 80.97 ± 2.68 83.75 ± 9.76 76.00 ± 9.98

Scale_3
Learner

80.98 ± 2.67 80.97 ± 2.68 80.63 ± 12.01 81.33 ± 12.22

One-channel 82.58 ± 3.87 82.50 ± 3.90 85.00 ± 10.15 80.00 ± 11.16

Proposed
multi-scale

90.88 ± 3.51 90.97 ± 3.47 94.33 ± 4.38 87.33 ± 5.54

among the three Single-scale CNNs, the classification performance of Scale-1 Learner
is better than the other two Learners. In the case that the network structure of three
Single-scale Learners is the same, such results elucidate that GLCM in the direction of
displacement equals 1 (in Fig. 1(c)) is more suitable to classify the polyps, compared
with Scale-2 and Scale-3, and Scale-1should contain much more valuable features.

The proposed Bagging Strategy-based GLCM-CNN polyp classification perfor-
mance is shown in Table 2. Scale-1 Learner based on bagging strategy prominently
improved the AUC from 77.36% of Scale-1 Learner to an average of 84.17%. The
standard deviation narrows from 6.42% to 3.10%. Both Scale-2 Learner and Scale-3
Learner have varying degrees of enhancement. Meanwhile, the AUC of One-channel
GLCM-CNN increased from 79.25% to 82.58%. Compared with Three-scale GLCM-
CNN, the proposed BSM-GLCM-CNN increases from 81.62% to 90.88%. These results
successfully demonstrated the effectiveness of the proposed bagging strategy.

According to the advantages of the bagging strategy, the classification error caused
by the instability of a single base Learner is reduced, thus the classification performance
is dramatically improved. It supports our ideas that bagging strategy in ensemble learning
can benefit the polyp classification on limited medical datasets. Comparing the classifi-
cation performance of the above models, the best classification performance is observed
by BSM-GLCM-CNN model, it proves that classifiers combining all three scale Learn-
ers have superiority than single scale Learner, which confirms our initial hypothesis that
different texture information integration can further improve the classification effect.
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Overall, our results successfully demonstrate the superiority ofBSM-GLCM-CNNwhen
pathologically proven data sets are minuscule.

3.3 Comparison Experiments with Existing Methods

To compare the classification performance between raw images and GLCM images, the
performances of different methods are compared and summarized in Table 3, the AUC
of the proposed BSM-GLCM-CNN is much higher than raw CT-CNNmethods. Around
20% improvement is obtained, which shows the super preponderance of using texture
features as the input of CNN models when dealing with polyp CT images.

Table 3. The comparison between the proposed BSM-GLCM-CNN and other methods.

Methods AUC ACC SEN SPE

Raw CT Image-based CNN R-IMG 60.00 60.00 66.00 54.00

C-IMG 67.00 64.00 69.00 59.00

M-IMG 68.00 74.00 76.00 50.00

BSM-GLCM-CNN 90.88 90.97 94.33 87.33

Overall, our results consistently prove that proposedBSM-GLCM-CNNachieves the
best classification performance. It shows the huge benefits obtained both from GLCM
texture features and bagging strategy, which reveals the great power to deal with the
small pathologically proven medical image dataset.

4 Conclusion

In this paper, we proposed a BSM-GLCM-CNN model to improve the performance
of classifying benign and malignant colonic polyps from pathologically proven small
sample size. In this method, 15 base Learners of three scales are trained respectively,
and the classification results of these 45 base Learners are voted to obtain the final
lifting effect. The advantage of feature learning ability of different base Learners is
reflected by the baggingmechanism and votingmechanism.And the experimental results
demonstrate that our proposed method has great potential when dealing with small
sample sizes. Not only the problem of low accuracy and poor effectiveness of themethod
brought by small sample sizes is solved, but also the problem of poor robustness of the
method brought by small sample sizes is mitigated.

References

1. Yan, Z.: Multi-instance multi-stage deep learning for medical image recognition. In: Deep
Learning for Medical Image Analysis, pp. 83–104 (2017)

2. Eddy, D.: Screening for colorectal cancer. Ann. Intern. Med. 113, 373–384 (1990)



A Bagging Strategy-Based Multi-scale Texture GLCM-CNN Model 53

3. Hao, X., Zhang, G., Ma, S.: Deep Learning. Int. J. Semant. Comput. 10(03), 417–439 (2016)
4. Sun, X., Wu, P., Hoi, S.: Face Detection using deep learning: an improved faster RCNN

approach. Neurocomputing 299(JUL.19), 42–50 (2018)
5. Qin, H., Yan, J., Xiu, L., et al.: Joint training of cascaded CNN for face detection. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2016)
6. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed.

Eng. 19(1), 221–248 (2017)
7. Wang, H., Zhao, T., Li, L.C., et al.: A hybrid CNN feature model for pulmonary nodule

malignancy risk differentiation. J. Xray Sci. Technol. 26(2), 1–17 (2018)
8. Tan, J., Huo, Y., et al.: Expert knowledge-infused deep learning for automatic lung nodule

detection. J. X-Ray Sci. Technol. 27, 17–35 (2018)
9. Pawełczyk, K., et al.: Towards detecting high-uptake lesions from lung CT scans using deep

learning. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol.
10485, pp. 310–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_29

10. Liu, X., Hou, F., Qin, H., et al.: Multi-view multi-scale CNNs for lung nodule type
classification from CT images. Pattern Recognit. (2018). S0031320317305186

11. Tan, J., Pickhardt, P.J., Gao, Y., et al.: 3D-GLCM CNN: a 3-dimensional gray-level co-
occurrence matrix based CNN model for polyp classification via CT colonography. IEEE
Trans. Med. Imaging PP(99), 1 (2019)

12. Ming, M., Wang, H., Song, B., et al.: Random forest based computer-aided detection of
polyps in CT colonography. In: 2014 IEEENuclear Science Symposium andMedical Imaging
Conference (NSS/MIC). IEEE (2016)

13. Lakshmanaprabu, S.K., Mohanty, S.N., Shankar, K., et al.: Optimal deep learning model for
classification of lung cancer on CT images. Future Gener. Comput. Syst. 92(MAR.), 374–382
(2019)

14. Wong, S.C., Gatt, A., Stamatescu, V., et al.: Understanding data augmentation for classifica-
tion: when to warp. IEEE (2016)

15. Qi, Y.: Ensemble Machine Learning. Springer, USA (2012)
16. Polikar, R.: Ensemble learning. Scholarpedia
17. Chen, Y., Li, D., Zhang, X., et al.: Computer aided diagnosis of thyroid nodules based on

the devised small-datasets multi-view ensemble learning. Med. Image Anal. 67(1), 101819
(2021)

18. Fan, C., Hou, B., Zheng, J., et al.: A surrogate-assisted particle swarm optimization using
ensemble learning for expensive problems with small sample datasets. Appl. Soft Comput.
91, 106242 (2020)

19. Hu, Y., Liang, Z., Song, B., et al.: Texture feature extraction and analysis for polyp differenti-
ation via computed tomography colonography. IEEE Trans. Med. Imaging 35(6), 1522–1531
(2016)

20. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)
21. Hua, B.O., Fu-Long, M.A., Jiao, L.C.: Research on computation of GLCM of image texture.

Acta Electron. Sin. 1(1), 155–158 (2006)

https://doi.org/10.1007/978-3-319-68548-9_29


Liver Segmentation Quality Control
in Multi-sequence MR Studies

Yi-Qing Wang(B) and Giovanni Palma

IBM Watson Health Imaging, Rue Alfred Kastler, 91400 Orsay, France
{yi-qing.wang,giovanni.palma}@ibm.com

Abstract. For an automated liver disease diagnosis system, the ability
to assess the liver segmentation quality in the absence of ground truth
is crucial. Because it helps detect algorithm failures at inference time so
that erroneous outputs can be prevented from impacting the diagnosis
accuracy. In addition, it can be used to quality check annotated data for
training and testing purposes. In this paper, we introduce the concept
of liver profile as the basis for an exploratory data analysis approach to
identifying poorly segmented images in multi-sequence MR liver studies.

1 Introduction

Liver segmentation is key to automated liver disease diagnosis [7]. The ability
to assess the segmentation quality in the absence of ground truth is thus of
interest. It allows to detect algorithm failures at inference time, which is crit-
ically important in practice because an erroneous liver segmentation may lead
to errors in downstream tasks such as lesion detection [3,4,12,17,18] and image
registration [1,9], thereby negatively impacting the overall diagnosis accuracy.
Additionally, this ability can also help ensure the quality of annotated training
and test datasets by identifying poor (image, segmentation mask) pairs, poten-
tially resulting in better algorithms and more accurate performance evaluation.

The quality of liver segmentation, either by human annotators or by an algo-
rithm, depends on the quality of the medical images under analysis. Strongly
degraded images generally result in inaccurate segmentations. However, it is
hard to quantify image quality in absolute terms, because images of good qual-
ity for one task can be poor for another [2]. For instance, in a medical image, it
can be easy to ascertain the presence of a liver lesion. But its measurement and
characterization can prove difficult if its textural details are hard to discern. For
this reason, human experts tend to disagree with each other when it comes to
rating medical images in terms of their overall quality [6,13,15], especially when
they are trained in different medical fields [11].

How to automate segmentation quality assessment without access to ground
truth has drawn some attention lately. Most existing methods are of supervised
nature and need a set of well annotated samples to begin with. For example, the
work [10] suggests to train a SVM-based regressor on geometric, intensity and
gradient features to predict several segmentation error metrics with respect to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Li et al. (Eds.): MMMI 2022, LNCS 13594, pp. 54–62, 2022.
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ground truth. Similarly, a framework was presented in [16] which uses a model to
evaluate an image’s segmentation quality by checking its consistency with some
known annotated samples. In a few recent works [5,8,14], the authors proposed
to use uncertainty information from model produced probabilistic segmentation
maps. Although these methods can be used to detect segmentation failures at
inference time, they do not lend themselves easily to training data quality control
because manual annotations are almost always binary valued.

In this work, we propose an exploratory data analysis approach to assessing
liver segmentation quality in MR studies of the abdomen. It is based on the
following observations: 1) an MR study typically consists of multi-sequence vol-
umes and 2) within a study, all the volumes portray the same liver. Therefore,
a study’s well segmented volumes should yield consistent liver size statistics.

This paper is organized as follows. We first introduce the concept of liver pro-
file and describe its properties. Next we propose a simple algorithm to estimate
the liver profile from a multi-sequence liver study and demonstrate its effective-
ness at detecting incorrectly segmented image slices. Finally we conclude and
discuss future work.

2 Liver Profile

2.1 Definition

Consider a human liver. We define its profile as a function that maps a transverse
plane to its corresponding liver cross-sectional area. By definition, it thus requires
an infinity of axial liver slices and cannot be computed directly. Since the liver
is a smooth three dimensional object, its profile must be continuous. Therefore,
it can be estimated from a medical scan produced by imagining techniques such
as CT and MR, which samples liver slices on a regular interval.

Specifically, consider an n-slice axial liver scan with slice spacing equal to sz
(in millimeters). Let Si denote the area in square millimeters of the liver cross-
section captured by the scan’s i-th slice. Let φ be an interpolation through the
points {(i, Si)}i=0,...,n−1. For example, the linear interpolation leads to

φ(x) = (S�x�+1 − S�x� )(x − �x�) + S�x�, x ∈ [0, n − 1) (1)

where �x� denotes the largest integer less than or equal to x ∈ R. The interpo-
lation is then scaled to result in the scan profile P(t) := φ(t/sz). Over its support
{t |P(t) > 0}, the scan profile can be considered as an approximation of the liver
profile. The support’s length is referred to as the scan’s liver span.

Note that in Eq. (1), it is an arbitrary choice to give the index of zero to the
scan’s first slice. Instead, we could set its index to another value, such as 1, and
maintain the same concept of scan profile. In other words, both liver and scan
profile are uniquely defined only up to a translation.
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2.2 Properties

In the absence of major clinical events (such as a partial hepatectomy), a liver
tends to have a rather static profile over a short period of time. Moreover, as
long as a person’s longitudinal axis points to the same direction, their liver
axial cross-sectional areas are relatively insensitive to rigid body motions. As a
result, a patient’s various well performed scans should lead to similar-looking
scan profiles, all of which resemble the same underlying liver profile.

Though the liver profiles may vary in shape from person to person (see Fig. 1),
they have an asymmetrical bell shape in general. It is because the liver cross-
sectional area usually peaks at a transverse plane which passes through both left
and right liver lobes and gradually decreases as we move the plane towards the
liver’s superior or inferior surfaces.

2.3 Estimation

Generally speaking, a scan profile is a noisy and partial estimate of its cor-
responding liver profile. Its approximation quality depends on the scan’s slice
spacing, voxel resolution and the accuracy of liver cross-sectional area measure-
ments. A smaller slice spacing, finer voxel resolution and more accurate liver
segmentation lead to a scan profile of higher approximation quality.

For patients who have undergone multiple liver scans, it is possible to obtain
an even better estimation of their liver profiles than the individual scan profiles
themselves. To do so, consider a patient’s m scan profiles {Pi}i=1,...,m. Their
supports, as defined previously, are of relative value because two different scans
rarely portray the same abdominal region. However, since all the scan profiles
describe the same liver, we can find a common coordinate system to represent
them.

Without loss of generality, let us assume that the patient’s first scan profile P1

has the greatest liver span. We fix it as the reference and translate the other scan
profiles to align with it individually. To this end, we use the following metric to
assess the quality of alignment between two positive valued functions with finite
support

agreement( f , g) =

∫
{t | f (t)>0,g(t)>0}

min( f (t), g(t))dt
∫
{t | f (t)>0,g(t)>0}

max( f (t), g(t))dt
(2)

which is the Jaccard index of the areas underneath these two functions restricted
to their common support. Aligning a scan profile thus amounts to finding its opti-
mally translated version that has the maximum agreement with the reference.
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Algorithm 1: Liver Profile Estimation
Data: m scan profiles {Pi}i=1,...,m
Result: m aligned scan profiles and estimated liver profile P∗

α← 0;
i ← 0;
P∗
0 ← the scan profile with the greatest liver span;

while α < 0.99 and i < 5 do
Align all the scan profiles with P∗

0;
P∗
1 ← pointwise median of the aligned scan profiles i.e. Eq. (3);
α← agreement(P∗

0, P
∗
1);

i ← i + 1;
P∗
0 ← P∗

1;

end
P∗ ← P∗

0;

Once all the scan profiles have been aligned, we may estimate the liver profile.
Specifically, the estimator’s support is defined as the union of those of the aligned
scan profiles and its values are set pointwise to the median of the aligned scan
profiles. It leads to

P∗(t) = median∪1≤i≤m,Pi (t)>0{Pi(t)}, t ∈ ∪1≤i≤m{t |Pi(t) > 0} (3)

where we continue to use Pi to denote an aligned scan profile.
Next, we substitute the estimated liver profile P∗ for P1 and align the entire

set of scan profiles again with this new reference. These two operations are then
repeated until successively obtained P∗ stabilizes, which usually takes less than 5
iterations. We call the estimate P∗ from the final iteration the patient’s estimated
liver profile. This procedure’s pseudo code is provided in Algorithm1.

3 Experiments

3.1 Data

Let us first describe our data. It is a private collection of 70 MR studies of adult
patients from three different hospitals. The number of volumes per study varies
from 4 to 11, totaling 558 volumes in all. They were acquired using various T1,
T2 and diffusion weighted MR sequences with slice spacing ranging from 2 mm to
11 mm. A team of radiologists examined them one volume at a time and created
the liver masks for the entire dataset, leading to 28458 marked slices.

Quality checking the annotated volumes one by one is tedious and cannot
scale to larger datasets. We now describe how the liver profile can help us quickly
identify the likely inaccurate segmentation masks. We had experimented with
both linear and cubic spline interpolation schemes for constructing scan profiles.
They yielded little difference. Therefore, for simplicity, we chose linear interpo-
lation i.e. Eq. (1).
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3.2 Exploratory Analysis at the Volume Level

Study-wise, the scan profiles from our annotated volumes are broadly consistent.
To show it, we used the agreement metric defined in Eq. (2). Specifically, for the
aligned scan profiles of a study, we are interested in their individual agreement
with the study’s estimated liver profile. Clearly, those who agree with the esti-
mated liver profile agree well with themselves, too. To simplify the presentation,
in the following, we call an aligned scan profile’s agreement with its estimated
liver profile its coherence score, which thus also takes values in the interval [0, 1].

A typical MR study consists of volumes with varying slice spacing and voxel
resolution, leading to scan profiles of different approximation quality. As a result,
their coherence scores rarely equal 1. For example, the aligned scan profiles
shown in Fig. 1 and Fig. 4, though they agree with their respective estimated
liver profile, have coherence score ranging from 0.96 to 0.99.

Fig. 1. Aligned scan profiles of two annotated multi-sequence MR liver studies from
two different patients. They are consistent within the study. In the legend, we print for
each scan profile its coherence score. These two examples show that the liver profile
varies in shape across people.

Fig. 2. (a) Plots the cumulative distribution function (CDF) of the 558 coherence
scores. They are mainly distributed close to 1. In fact, 90% of them exceed 0.95. (b)
Shows the CDF of the ratio between the segmented and expected liver cross-sectional
area of the marked slices. The distribution of this slice-level statistic is concentrated
around 1, indicating that the two area measures broadly agree.
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We ran Algorithm 1 on our data one study at a time. It resulted in as many
coherence scores as there are volumes in our data. Figure 2a plots their cumula-
tive distribution function. Most of them indeed lied close to 1. Specifically, 90%
of these volumes had a coherence score above 0.95. To detect inaccurate seg-
mentations at the volume level, we thus retrieved the 55 volumes and their liver
masks corresponding to the lowest 10% of the obtained coherence scores. They
belonged to a total of 47 studies, each of which had at most 2 of these volumes.
After a visual inspection, we found that among them, 43 annotated volumes
with the lowest coherence scores were faulty because of either bad image quality
or a visible segmentation error. See Fig. 3 for an example.

3.3 Exploratory Analysis at the Slice Level

For these faulty segmentations, their aligned scan profiles also help locate where
the faults occur. It is because they help identify the image slices whose segmented
liver cross-sectional area differs considerably from what is expected from their
corresponding estimated liver profile at the same axial axis locations. In the
absence of exceptional medical conditions which reduced or expanded the liver
size, such a disagreement suggests a segmentation error, which may also be
caused by bad image quality.

Therefore, we can use the aligned scan profiles to explore potential segmenta-
tion errors at the slice level. Specifically, for every annotated slice, we computed
the ratio between its segmented liver cross-sectional area and the expected area
from its corresponding estimated liver profile at the same axial axis location. It
resulted in 28458 sample values whose cumulative distribution function is shown
in Fig. 2b. As expected, this statistic is concentrated around 1. Too high or too
low a ratio thus indicates a segmentation error (see Fig. 3).

3.4 Span Disparity

The liver profile also helps identify an additional subset of annotated volumes,
which exhibit span disparity. It occurs when the liver is only partially observed in
the image volume. This can originate from two possible causes. First, the scan’s
axial range is insufficient to cover the whole liver, leading to a partial acquisition.
Second, part of the scanned liver fails to be recognized due to measurement errors
or poor image quality. This latter results in a partial segmentation. Regardless of
the cause, our approach allows to estimate such a volume’s missing liver portions
in a straightforward manner. See Fig. 4a for an illustration.

It is also easy to detect an image volume with span disparity because the liver
span of its scan profile is much shorter than that of its corresponding estimated
liver profile. To differentiate between the two possible causes, the location of the
discrepancy matters. If it happens at one end of the volume, with no additional
image slices outside the scan profile’s support, the cause can be determined to
be a partial acquisition. Otherwise, it is a partial segmentation (Fig. 4).
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Fig. 3. (a) The aligned scan profiles of a study. A significant cross-sectional area dis-
agreement between a scan profile and its estimated liver profile at the same axial axis
location indicates a segmentation error. (b) The blue (DWI B400 500) scan profile
identifies a few slices with smaller than expected liver cross-sectional area (pointed by
the red arrows) whereas the indigo (T2 SSFSE) scan profile suggests over-segmentation
in multiple slices (pointed by the black arrows). For example, (c) (resp. (d)) Shows a
detected slice with too small (resp. too large) a segmented area. Bad image quality
seems to be responsible for the error in (d). (Color figure online)

The span disparity does not need to result in a low coherence score (Fig. 4a).
It is independent of cross-sectional area disagreement in that one does not nec-
essarily entail the other. But both can happen at the same time, too.
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Fig. 4. (a) Shows the span disparity of a scan profile with respect to its estimated liver
profile. The red line represents the axial extent of the superior liver portion missing from
this volume. Additional image slices do exist to the right the scan profile’ support. But
they suffer from severe artefacts and were not marked by the radiologists. (b) Shows
one of these remaining slices. (Color figure online)

4 Conclusion

In this paper, based on the concept of liver profile, we have presented an
exploratory data analysis approach to liver segmentation quality control for
multi-sequence MR liver studies. Our method is efficient and allows to locate
inaccurately segmented image slices.

Due to its mild assumptions, this method may also carry over to the analysis
of segmented liver contours arising from multi-phase CT or longitudinal studies.
Furthermore, it may also be applicable to assessing the segmentation quality of
other anatomies in a similar context.
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Abstract. This work proposes a new feature extraction method to anal-
yse patterns of the substantia nigra in Parkinson disease. Recent imaging
techniques such that neuromelanin-sensitive MRI enable us to recognise
the region of the substantia nigra and capture early Parkinson-disease-
related changes. However, automated feature extraction of Parkinson-
disease-related changes and their geometrical interpretation are still
challenging. To tackle these challenges, we introduce a fifth-order ten-
sor expression of multi-sequence MRI data such as T1-weighted, T2-
weighted, and neuromelanin images and its tensor decomposition. Recon-
struction from the selected components of the decomposition visualises
the discriminative patterns of the substantia nigra between normal and
Parkinson-disease patients. We collected multi-sequence MRI data from
155 patients for experiments. Using the collected data, we validate the
proposed method and analyse discriminative patterns in the substantia
nigra. Experimental results show that the geometrical interpretation of
selected features coincides with neuropathological characteristics.

Keywords: Parkinson disease · Substantia nigra · Multi-sequence
data · Tensor decomopsition · Feature extraction · Image analysis

1 Introduction

Parkinson disease is the second most common progressive neurodegenerative
disorder, with approximately 8.5 million people who had been affected world-
wide in 2017 [1]. The characteristic of Parkinson disease is a progressive loss of
dopaminergic neurons in the substantia nigra pars compacta [2]. Currently, the
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Fig. 1. Slices of volumetric images of three-type sequences. (a) T1WI. (b) T2WI. (c)
NMI. (a)–(c) show the same region including substantia nigra of a normal patient.
(d) G.T. for the region of the substantia nigra. By manual normalisation of intensities
shown in (c), an expert neurologist can recognise the regions of the substantia nigra.

diagnosis of Parkinson disease depends on the clinical features acquired from
patient history and neurological examination [3]. A traditional role of MRI for
Parkinson disease is supporting clinical diagnosis by enabling the exclusion of
other disease processes [4]. However, several advanced imaging markers have
emerged as tools for the visualisation of neuro-anatomic and functional processes
in Parkinson disease. As one of them, neuromelanin-sensitive MRI uses high-
spatial-resolution T1-weighted imaging with fast spin-echo sequences at 3-Tesla
MRI [5,6]. This new imaging technique provides a neuromelanin image (NMI)
with neuromelanin-sensitive contrast, and T1 high-signal-intensity areas in the
midbrain represent neuromelanin-rich areas. Since neuromelanin exists only in
dopaminergic neurons of the substantia nigra pars compacta and noradrenergic
neurons of locus coeruleus, NMI is useful for analysing the substantia nigra by
capturing early Parkinson-disease-related changes. Figure 1 shows the examples
of slice images of T1-weighted image (T1WI), T2-weighted image (T2WI), and
NMI with annotation labels of the substantia nigra.

We propose a new feature-extraction method to analyse patterns of substan-
tia nigra in Parkinson disease. For the analysis, we use T1WI, T2WI, and NMI.
Even though only NMI is the valid imaging for recognising the region of the
substantia nigra among these three, T1WI and T2WI help obtain anatomical
information. In addition to anatomical information, a simple division of inten-
sities of T1WI by ones of T2WI yields a new quantitative contrast, T1w/T2w
ratio, with sensitivity to neurodegenerative changes [7]. A combination of differ-
ent imaging sequences can offer more useful information for the analysis. There-
fore, we use these multi sequences for our analysis. In developing a new feature
extraction method, we set a triplet of volumetric images: T1WI, T2WI, and NMI
to be a multi-sequence volumetric image for each patient. As the extension of
a higher-order tensor expression of a set of volumetric images [8], we express a
set of multi-sequence volumetric images by a fifth-order tensor expression shown
in Fig. 2(a). Inspired by tensor-based analytical methods [9–11], we decompose
this fifth-order tensor into a linear combination of fifth-order rank-1 tensors. By
re-ordering the elements of this decomposition result, as shown in Fig. 2(b), we
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Fig. 2. Tensor expression and decomposition of multi-sequence volumetric images.
(a) Fifth-order expression of a set of sampled multi-sequence volumetric images. (b)
Decomposition of multi-sequence volumetric image.

obtain the decomposition of each multi-sequence volume image. This decompo-
sition is a linear combination of fourth-order rank-1 tensors and their weights.
Since this decomposition is based on the identical fourth-order rank-1 tensors, a
set of weights expresses the characteristics of a multi-sequence volumetric image.
Therefore, by selecting discriminative weights as feature vectors for normal and
Parkinson disease, we achieve a feature extraction for analysing patterns of the
substantia nigra between normal- and Parkinson-disease patients.

2 Mathematical Preliminary

2.1 Matrix Operations

We introduce two products of matrices since these are necessary for the CP-
decomposition. Setting the Kronecker product of vectors a = (ai) ∈ R

I and
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b = (bj) ∈ R
J as a ⊗ b = [a1b1, a1b2, . . . , a1bJ , . . . , aI−1bJ , aIb1, . . . , aIbJ ]�, we

have Khatori-Rao product between two matrices A ∈ R
I×K and B ∈ R

J×K by

A � B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,aK ⊗ bK ], (1)

where ai and bi are i-th column vectors of A and B, respectively. For the
same-sized matrices A = (aij),B = (bij) ∈ R

I×J , Hadamard product is the
elementwise matrix product

A ∗ B =

⎡
⎢⎢⎢⎣

a11b11 a12b12 . . . a1Jb1j

a21b21 a22b22 . . . a2Jb2j

...
...

. . .
...

aI1bI1 aI2bI2 . . . aIJbIj

⎤
⎥⎥⎥⎦ . (2)

These products are used in Algorithm 1.

2.2 Tensor Expresstion and Operations

We briefly introduce essentials of tensor algebra for the CP-decomposition-based
feature extraction. In tensor algebra, the number of dimensions is refered as
order of a tensor. We set a fifth-order tensor A ∈ R

I1×I2×I3×I4×I5 . An element
(i1, i2, i3, i4, i5) of A is denoted by ai1i2i3i4i5 . The index of a tensor is refered as
mode of a tensor. For examples, i3 is the index for mode 3. A fifth-order tensor
A is a rank one if it can be expressed by the ourter products of five vectors
u(j) ∈ R

Ij , j = 1, 2, 3, 4, 5, that is

A = u(1) ◦ u(2) ◦ u(3) ◦ u(4) ◦ u(5), (3)

where ◦ expresses the outer product of two vectors. Furthermore, a cubical tensor
C ∈ R

I×I×I×I×I is diagonal if ai1i2i3i4i5 �= 0 only if i1 = i2 = i3 = i4 = i5. We
use I to denote the cubical identity tensor with ones of the superdiagonal and
zeros elsewhere.

For two tensors A,B ∈ R
I1×I2×I3×I4×I5 , we have the inner product

〈A,B〉 =
I1∑

i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

I5∑
i5=1

ai1i2i3i4i5bi1i2i3i4i5 , (4)

where ai1i2i3i4i5 and bi1i2i3i4i5 expresses elements of A and B, respectively. This
inner norm derives a norm of tensor

‖A‖ =
√

〈A,A〉 =

√√√√
I1∑

i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

I5∑
i5=1

a2
i1i2i3i4i5

. (5)

Unfolding of a tensor A is reshaping A by fixing one mode α. The α-mode
unfolding gives a matrix A(α) ∈ R

Iα×(IβIγIδIε) for {α, β, γ, δ, ε} = {1, 2, 3, 4, 5}.
For a tensor and its unfoding, we have the bijection F(n) such that

F(n)A = A(n), A = F−1
(n)A(n). (6)
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Algorithm 1: CP decomposition

Input: a fifth-order tensor T , CP rank R, a sufficient small number ε
the maximum number of iteration N

initialise U (n) = [u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
R ] ∈ R

In×R for n = 1, 2, 3, 4, 5
for i = 1, 2, . . . , N

for n = 1, 2, 3, 4, 5
Set {α, β, γ, δ} = {1, 2, 3, 4, 5} \ n with a condtion α < β < γ < δ

V = U (α)�U (α) ∗ U (β)�U (β) ∗ U (γ)�U (γ) ∗ U (δ)�U (δ)

Compute the Moore-Penrose pseudoinverse [15] of V as V †

U (n) = T(n)(U
(δ) � U (γ) � U (β) � U (α))V †

if ‖T −
∑R

r=1 u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ◦ u

(4)
r ◦ u

(5)
r ‖ � ε

break

Output: a set {U (n)}5
n=1 satisfying

T ≈ I ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) ×5 U
(5)

This n-mode unfolding derives n-mode product with a matrix U (n) ∈ R
J×In

A ×n U (n) = F−1
(n)(U

(n)A(n)). (7)

For elements u
(n)
jin

with j = 1, 2, . . . , J and in = 1, 2, . . . , In of U (n), we have

(A ×n U (n))i1...in−1jin+1...i5 =
In∑

in=1

ai1i2...i5u
(n)
jin

. (8)

3 Feature Extraction for Multi-sequence Volumetric Data

We propose a new feature extraction method to analyse the difference of multi-
sequence volumetric images between two categories. Setting Yi,1 ∈ R

I1×I2×I3

for j = 1, 2, . . . , I4 to be volumetric images measured by different I4 sequences
for i-th sample, we have multi-sequence volumetric images as a fourth-order
tensor Xi = [Yi,1,Yi,2, . . . ,Yi,I4 ] ∈ R

I1×I2×I3×I4 . We express multi-sequence
volumetric data of I5 samples by a fifth-order tensor T = [X1,X2, . . . ,XI5 ] ∈
R

I1×I2×I3×I4×I5 as shown in Fig. 2(a) . In this expression, we assume that regions
of interest are extracted with cropping and registration as the same-sized volu-
metric data via preprocessing. For T , we compute CP decomposition [11,12]

T =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r ◦ u(5)
r + E (9)

by minimising the norm ‖E‖ of a reconstruction error E . In Eq. (9), a tensor
is decomposed to R rank-1 tensors. Therefore, R is refered to as a CP rank.
Algorithm 1 summarises the alternative reast square method [13,14] for CP
decomposition.
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From the result of Eq. (9), setting u
(n)
kr is the k-th element of u(n)

r , we have
reconstructed volumetric and multi-sequencel volumetric images by

Y̌ji =
R∑

r=1

u
(4)
jr u

(5)
ir (u(1)

r ◦ u(2)
r ◦ u(3)

r ), (10)

X̌i =
R∑

r=1

u
(5)
ir (u(1)

r ◦ u(2)
r ◦ u(3)

r ◦ u(4)
r ), (11)

respectively. Figure 2(b) illustrates the visual interpretation of Eqs. (10) and (11).
In these equations, rank-1 tensors u(1)

r ◦u(2)
r ◦u(3)

r , r = 1, 2, . . . , R express parts
of patterns among all volumetric images in three-dimensional space. In Eq. (11),
rank-1 tensors (u(1)

r ◦ u
(2)
r ◦ u

(3)
r ◦ u

(4)
r ), r = 1, 2, . . . , R expresses parts of pat-

terns among multi-sequence volumetric images. In Eq. (11), u
(5)
ri indicates the

importance of a part of patterns among multi-sequence data for i-th sample.
Therefore, a set u

(5)
i11, u

(5)
i2 , . . . , u

(5)
iR express features of multi-sequence pattern of

i-th sample.
We select discriminative feature from the results of CP decomposition to

analyse the difference between two categories. Setting C1 and C2 to be sets of
indices of images for two categories, we have the means and variances of u

(5)
ir by

μr = E(u(5)
ir ) and σ2

r = E((u(5)
ir − μr)2), (12)

μ1r = E(u(5)
ir |i ∈ C1) and σ2

1r = E((u(5)
ir − μ1r)2|i ∈ C1), (13)

μ2r = E(u(5)
ir |i ∈ C2) and σ2

2r = E((u(5)
ir − μ2r)2|i ∈ C2), (14)

for all indices of i, C1 and C2, respectively. We set intra-class and inter-class
variance by

σ2
Br =

N1

N
(μ1r − μr)2 +

N2

N
(μ2r − μr)2, (15)

σ2
Wr =

N1

N
σ2
1r +

N2

N
σ2
2r, (16)

respectively. Using Eqs. (15) and (16), we have seperability [16,17] as

sr =
σ2
Br

σ2
Wr

=
σ2
Br

σ2
r − σ2

Br

. (17)

Sorting s1, s2, dots, SR in desending order, we have a sorted index r̃1, r̃2, . . . , r̃R

satisfying sr̃1 ≥ sr̃2 ≥ · · · ≥ sr̃R
and {r̃1, r̃2, . . . , r̃R} = {1, 2, . . . , R}. We select L

elements from u
(5)
r , r = 1, 2, . . . , R as fi = [u(5)

ir̃1
, u

(5)
ir̃2

, . . . , u
(5)
ir̃L

]� ∈ R
L for multi-

sequence volumetric images of i-th sample. Since these L elements have large
seperabilities among R features, these elements indicate discriminative patterns
in multi-sequence volumetric images between two categories.
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4 Experiments

To analyse patterns of the substantia nigra between normal and Parkinson-
disease patients in multi-sequence volumetric images: T1WI, T2WI, and NMI, we
collected 155 multi-sequence volumetric images of 73 normal and 82 Parkinson-
disease patients in a single hospital. In each multi-sequence volumetric image,
T2WI and NMI are manually registered to the coordinate system of T1WI. Fur-
thermore, a board-certified radiologist with ten years of experience specialising
in Neuroradiology annotated regions of substantia nigra in NMIs. Therefore,
each multi-sequence image has a pixel-wise annotation of the substantia nigra.

As the preprocessing of feature extraction, we cropped the regions of interest
(ROI) of the substantia nigra from T1WI, T2WI, and NMI by using the anno-
tations. The size of T1WI and T2WI is 224 × 300 × 320 voxels of the resolution
of 0.8mm × 0.8mm × 0.8mm. The size of NMI is 512 × 512 × 14 voxels of the
resolution of 0.43mm × 0.43mm × 3.00mm. We registered NMI to the space of
T1WI for the cropping of ROIs. Setting the centre of an ROI to be the centre
of gravity in a substantia nigra’s region, we expressed an ROI of each sequence
as third-order tensors of 64 × 64 × 64.

In each third-order tensor, after setting elements of the outer region of sub-
stantia nigra to be zero, we normalised all the elements of a third-order tensor
in the range of [0, 1].

We expressed these third-order tensors of three sequences for 155 patients
by a fifth-order tensor T ∈ R

64×64×64×3×155 and decomposed it by Algorithm
1 for R = 64, 155, 300, 1000, 2000, 4000, 6000. For the computation, we used
Python with CPU of Intel Xeon Gold 6134 3.20 GHz and main memory 192 GB.
Figure 3(a) shows the computational time of the decompositions. Figure 3(b)
shows the mean reconstruction error E

[
‖Yij − Y̌ij‖/‖Yij‖

]
for each sequence.

Figure 4 summarises examples of the reconstructed volumetric images. From
each of the seven decomposition results, we extracted 100-dimensional feature
vectors.

We checked each distributions of feature vectors for the seven sets of the
extracted features. In feature extraction, we set C1 and C2 to be sets of indices for
normal and Parkinson-disease categories, respectively. For the checking, setting
(·, ·) and ‖ · ‖2 to be the inner product of vectors and L2 norm, we computed
a cosine similarity (f ,µ)/(‖f‖2‖µ‖2) between a feature vector f ∈ {fi}155i=1

and the mean vector µ = E(fi|i ∈ C1). The left column of Fig. 5 shows the
distributions of the consine similarities. Furthermore, we mapped feature vectors
from 100-dimensional space onto two-dimensional space by t-SNE [18], which
approximately preserves the local topology among feature vectors in the original
space. The right column of Fig. 5 shows the mapped feature vectors in a two-
dimensional space.

Finally, we explored the geometrical interpretation of selected features. As
shown in Fig. 6, some selected features have large magnitudes. We thought these
large-magnitude features express important patterns for an image. Therefore,
we multiplied these large magnitudes (approximately 10 to 20 of 100 features)
by 0.7 as feature suppression and reconstructed images for CP decomposition of
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Fig. 3. Computational time and reconstruction error in CP decomposition. (a) Compu-
tational time against a CP rank. (b) Mean reconstruction errors of volumetric images
against a CP rank. The mean reconstruction errors are computed for sequences: T1WI,
T2WI, and NMI.

T1WI

T2WI

NMI

Original
R = 64 R = 300 R = 1000 R = 2000 R = 4000 R = 6000

Reconstruction

Fig. 4. Example slices of reconstructed and original multi-sequence volumetric images.
The images express axial slices of reconstructed images for T1WI, T2WI, and NMI. R
expresses a CP rank used in a CP decomposition.

R = 6000. By comparing these reconstructed multi-sequence volumetric images,
we can observe important patterns corresponding to the suppressed features
as not-reconstructed patterns. Figure 7 compares reconstructed multi-sequence
volumetric images before and after the suppression of selected features.



Pattern Analysis of Substantia Nigra 71

(a)

−2 0 2

−2

−1

0

1

Normal
Parkinson disease

(b)

(c)

−1 0 1

−2

−1

0

1

Normal
Parkinson disease

(d)

(e)

−1 0 1 2

−1

0

1

2

Normal
Parkinson disease

(f)

Fig. 5. Distribution of extracted feature vectors. Left column: Distribution of cosine
similarities between a feature vector f ∈ {fi}155

i=1 and the mean vector µ = E(fi|i ∈ C1).
Right column: Visualisation of distribution of feature vectors. We map 100-dimensional
feature vectors onto a two-dimensional space. In the top, middle, and bottom rows, we
extracted 100-dimensional feature vectors from CP decompositions of R = 1000, 4000,
and 6000, respectively.

5 Disucussion

In Fig. 3(b), the curves of mean reconstruction errors for T1WI and NMI are
almost coincident, whilst the one of T2WI is different from these two. These
results imply that intensity distributions on the substantia nigra between T1WI
and NMI have similar structures. Even though the intensity distribution of T2WI
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Fig. 6. Examples of extracted features. (a) Extracted 100-dimensional feature vec-

tor [u
(5)
ir̃1

, u
(5)
ir̃2

, . . . , u
(5)
ir̃100

]�. (b)–(d) Scaled extracted feature vectors [u
(4)
j1 u

(5)
ir̃1

, u
(4)
j2 u

(5)
ir̃2

,

. . . , u
(4)
j100u

(5)
ir̃100

]�, where we set j = 1, 2, 3 for T1WI, T2WI, and NMI, respectively.
In (a)–(d), horizontal and vertical axes express an index of an element and value of
element, respectively.

has the common structure for T1WI and NMI, T2WI has different characteris-
tics from these two. These characteristics are visualised in Fig. 4. Three images
express shapes of substantia nigra, but the intensity distribution of T2WI are
different from T1WI and NMI. Furthermore, Fig. 6(b)–(d) also indicate the same
characteristics. In Fig. 6(b) and (d), the selected features for T1WI and NMI have
similar distributions of elements, even though the one of T2WI has a different
distribution.

In Fig. 4, the reconstruction of detail intensity distributions of multi-sequence
volumetric images needs large R, while the blurred shape of the substantia nigra
is captured even in small R such as 64, 300 and 1000. Since Algorithm 1 searches
for rank-1 tensors to minimise reconstruction error by solving the least squares
problems for each mode, the CP decomposition firstly captures common patterns
among sequences and patients with a small number of rank-1 tensors. To obtain
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w/o selection

with selection

T1WI T2WI NMI

Normal Normal NormalPD PD PD

Fig. 7. Reconstruction with and without selected features. The top row shows the
axial slices of the original multi-sequence volumetric images. In the top row, red dashed
circles indicate the discriminative regions in multi-sequence volumetric images between
normal and Parkinson disease. The middle row shows the axial slice of the reconstructed
images from a CP decomposition of R = 6000. The bottom row shows the axial slices
of reconstructed images for a CP decomposition of R = 6000, where we multiply the
large feature values in selected 100 features by 0.7. (Color figure online)

rank-1 tensors expressing non-common patterns among the images, we have to
increase the number of rank-1 tensors in the CP decomposition.

In Fig. 5(a), for normal and Parkinson disease, two distributions of cosine
similarities almost overlap. This result shows that the selected features from
the CP decomposition of R = 1000 are indiscriminative for two categories. As
R increases in Fig. 5 (c) and (e), the overlap of the distributions between the
two categories decreases. Figure 5(b), (d), and (f) also show the same charac-
teristics as Fig. 5(a), (c), and (e). These results and the results in Fig. 4 imply
that discriminative features between the two categories exist in non-common
patterns with detailed local intensity distributions among multi-sequence volu-
metric images.

Figure 7 depicts the reconstructed images’ missing regions after the suppres-
sion of selected features. Comparing the middle and bottom rows of Fig. 7, we
observed the missing regions in specific parts of the substantia nigra. In the
top row of Fig. 7, missing regions are marked on the original images by a red
dashed circle. The marked regions include the regions of severe loss of neurons
in Parkinson disease. The pars compacta of the substantia nigra is divided into
ventral and dorsal tiers, and each tier is further subdivided into medial to lat-
eral regions. In Parkinson disease, the ventrolateral tier of substantia nigra loses
first, and then the ventromedial tier also loses. Typically the cells of 70–90% in
the ventrolateral tier have been lost by the time a Parkinson-disease patient dies
[19]. Since the missing regions include the ventrolateral tiers, we coluded that
the proposed method achieved neuropathologically correct feature extraction.
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6 Conclusions

We proposed a new feature extraction method to analyse patterns of the sub-
stantia nigra in Parkinson disease. For the feature extraction, we expressed
multi-sequence volumetric images as a fifth-order tensor and decomposed it.
The proposed method selects discriminative features from the tensor decompo-
sition result. A series of experiments show the validity of the proposed method
and important patterns in multi-sequence volumetric images for discrimination
of Parkinson disease. Especially, our geometrical interpretation of the selected
features in the visualisation clarified the discriminative region of the substantial
nigra between normal and Parkinson-disease patients. Based on the suggested
tensor-based pattern expression, we will explore an optimal feature-extraction
method as a topic for future work.
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Abstract. Medical image segmentation involves a process of categoriza-
tion of target regions that are typically varied in terms of shape, orien-
tation and scales. This requires highly accurate algorithms as marginal
segmentation errors in medical images may lead to inaccurate diagnosis
in subsequent procedures. The U-Net framework has become one of the
dominant deep neural network architectures for medical image segmen-
tation. Due to complex and irregular shape of objects involved in medical
images, robust feature representations that correspond to various spatial
transformations are key to achieve successful results. Although U-Net-
based deep architectures can perform feature extraction and localization,
the design of specialized architectures or layer modifications is often an
intricate task. In this paper, we propose an effective solution to this prob-
lem by introducing Gabor filter banks into the U-Net encoder, which has
not yet been well explored in existing U-Net-based segmentation frame-
works. In addition, global self-attention mechanisms and Transformer
layers are also incorporated into the U-Net framework to capture global
contexts. Through extensive testing on two benchmark datasets, we show
that the Gabor filter-embedded U-Net with Transformer encoders can
enhance the robustness of deep-learned features, and thus achieve a more
competitive performance.

Keywords: Gabor filters · Deep learning · U-Net · Vision
transformers · Segmentation · Biomedical image

1 Introduction

Over the last decade, there has been a rapid development in the field of computer
vision. Various tasks such as image segmentation, image classification and object
detection have been drastically improved through the introduction of deep learn-
ing (DL) [1] architectures such as Convolutional Neural Networks (CNNs) [2,3].
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The applications of DL techniques in the medical field are gaining popularity
thanks to the impressive performance of end-to-end learning frameworks using
raw image data [4,5]. In terms of biomedical image segmentation task, the U-
Net [6], which is build upon Fully Convolutional Network (FCN) [7], has become
a dominate architecture. The elegant representation of the U-Net architecture,
consisting of decoder and encoder paths joined by a bridge layer, has inspired
several variants [8–12] and has found numerous computer vision applications
beyond the medical field [13–15]. Recently, the Transformer [16] and its variants
have demonstrated exceptional performance in the field of Natural Language
Processing (NLP). When comes to visual processing tasks, the Vision Trans-
former (ViT) [17], has gained popularity [18,19], including medical image seg-
mentation [20,21]. Medical images, especially produced by magnetic resonance
imaging (MRI), often are derived by several imaging protocols. Each protocol
reveals different aspects of the same anatomy and hence they are complemen-
tary to each other. Since each modal image potentially addresses different clinical
interpretations, it is often advantageous to exploit this multi-modal information.
Several advanced filtering techniques have been used to extract image represen-
tation. One of the kinds is deformable filters [22], which is capable of enhanc-
ing the capacity to model geometric transformations, however, its increases the
complexity of the model [23] and computational cost of the training. Another
example of filtering methods is rotating filters. Zhou et al. [24] presented actively
rotating filters where the filters rotate during convolutions to produce feature
maps with explicit encoded location and orientation. However, this method has
been proven to be more suitable for small and simple filters.

The Gabor filter [25] is one of the most popular in the field of image pro-
cessing and computer vision [26,27]. Luan et al. showed [23] that Gabor filters
exhibit some similarity with the learned filter in CNN [23]. And recent study
showed that it can modulate the features learned and expand the network inter-
pretability [28].

The contributions of this paper can be summarized as follows:

– To the best of our knowledge, this is the first work reporting the use of
Gabor filters in a Transformer-based U-Net framework to enrich the feature
representation for biomedical image segmentation.

– A new framework that embeds Gabor filter banks to a modified U-Net-based
Transformer architecture in a late-fusion multi-modal approach is proposed.

– Extensive experiments are conducted on two benchmark datasets demon-
strating outstanding performance of our proposed framework over several
state-of-the-art segmentation architectures.

2 Related Works

There have been several studies that explored the use of Gabor filter character-
istics in visual tasks. For instance, Gabor kernels were utilized to either initialize
or serve as inputs in the DL models [29,30]. In the work presented by Luan et al.
[23], Gabor filters were utilized in each layer to modulate the learned convolution



78 A. A. Reyes et al.

filters in order to enhance the robustness in feature representation. Alekseev and
Bobe [31] utilized Gabor filters in the first layer of their CNN design, making
the parameters of the Gabor function learnable through standard backpropa-
gation. Yuan et al. [32] introduced the use of adaptive Gabor Convolutional
Networks, where the kernels on each CNN are adaptively multiplied by a bank
of Gabor Filters, while the Gabor function parameters are constantly learned as
convolutional kernels.

Recently, the use of Vision Transformers [17] for biomedical image segmen-
tation has been explored. Chen et al. [20] proposed TransUNet, in which two
popular architectures in computer vision: U-Net [6] and ViT are merged together.
TransUNet leverages the Transformer’s attention mechanisms to develop strong
encoders, which eventually help to recover localized spatial information with
the use of U-Net encoders. Yang et al. [33] proposed a new automated machine
learning method which utilizing Transformers to optimize deep neural network
architectures for lesion segmentation in 3D medical images. The results showed
superior performance compared to the state-of-the-arts. Wang et al. [21] intro-
duced an architecture that incorporates Transformers for biomedical volumetric
image segmentation within a multi-modal approach, in which Transformers take
the tokens from the encoder feature maps for global feature modeling. Finally,
Chen et al. [34] addressed the problem of cross-modal interference by proposing
a deep learning architecture, named OctopusNet, in which a different encoder
is used for each modality, claiming to enhance feature extraction and avoiding
feature explosion.

3 Methodology

In this work, we propose a new framework for medical image segmentation tasks.
This framework has the following major contributions:

– Introduction of Gabor filter bank module to Transformer-encoded U-Net
architectures.

– Incorporation of feature maps from the Gabor filters into multi-modal deep
learning architectures for segmentation tasks.

– Development of a late fusion framework that consists of a Transformer
encoder with multi-head self-attention based skip connections within a U-
Net framework.

3.1 Gabor Filters

In computer vision, the use of different linear filtering techniques is widely
accepted for image feature representation. Those techniques allow to leverage
the unique characteristics found in a specific input image. Gabor filters [25], are
wavelets (kernels) based on a sinusoidal plane wave with particular frequency and
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Fig. 1. Illustration of the Gabor filter banks applied to and MRI sample image.

orientation [26]. Theses filters are particularly used to model receptive fields. The
wavelets are mathematically described as follows

g(x, y;ω, θ, ψ, σ, γ) = e
−(x′2+γ2y′2)

2σ2 e(i(ωx′+ψ)) (1)

x′ = x cos θ + y sin θ (2)

y′ = −x cos θ + y cos θ (3)

where ω is represent the frequency (2π/λ) of the wavelet’s sinusoidal component,
θ the orientation of the Gabor function’s normal to the parallel stripes, ψ the
phase offset and σ the standard deviation of the Gaussian envelope.

Gabor filters have proven to be a reliable tool to localize spatial and frequency
domain properties, which make them a popular resource for various pattern
analysis applications.

For this work, we extract features, through a set (bank) of Gabor filters, vary-
ing the parameters in such a way that the convolved outputs highlight embedded
patterns and edges, within regions of interest. Figure 1 shows the resultant convo-
luted output from an MRI input layer with a bank of Gabor filters, the outputs
show a variety of edges highlighted according to the orientation provided by
Gabor filters.

3.2 Transformers

Transformers were first proposed by Vaswami et al. [35] for Natural Language
Processing (NLP). At a high level of understanding, the Transformer architec-
ture consists of an embedding layer, an encoder and a decoder module. In the
context of NLP, the embedding layer converts the collection of input words into a
vector representation for each word, described as tokens within the architecture.
Then, positional information is incorporated on each vector, known as positional
encoding, in which global context is added as part of the embedding layer. The
encoder module takes those vectors as input for the multi-head attention layers.
At the end, all the outputs’ heads are concatenated and passed through the mul-
tilayer perceptrons (MLP) as feed-forward neural network. This process can be
repeated several times, since the several encoder layers can be stacked to boost
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the predictive power. The decoder consists of similarly computations with an
additional process named masked multi-head attention, as well as an additional
sub-layer which takes the output from the encoder.

Dosovitskiy et al. [17] extended the intuition behind Transformers to the
field of computer vision. Essentially they analogize between words as tokens of
large sentences with a group of pixels as a token of large images. These groups
of pixels are known as patches. The embedding layer perform the same task,
but instead of words, ViT uses patches of an image, with the corresponding
positional information encoded. The embedding layer is then fed to the Trans-
former encoder which contains multi-head attention that integrates information
globally. Multi-head attention is composed by a particular attention mechanism
knowing as “Scaled Dot-Product Attention”, which is mathematically described
as

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (4)

where Q, K, and V stand for queries, keys and values, respectively. The attention
mechanism computes the dot-product of the queries with the keys, acting as an
attention filter, which is scaled dividing by

√
dk (the dimension of K). The

softmax operation returns the weights that are multiplied against the values.
This attention function is repeated in parallel h times (h stands for heads),

with different learned linear projections of K, Q, and V (WQ,WK ,WV ). These
attention function outputs are concatenated and linearly projected with (WO).
As a result, the multi-head attention network can be represented as:

Multihead(Q,K,V) = Concat(h1, .., hi, .., hh)WO (5)

where
hi = Attention(QWQ

i ,KWK
i ,VWV

i ) (6)

This attention mechanism is named as Multi-Head Self Attention.

3.3 GFT: Gabor Filters with Transformers

Figure 2 shows the proposed architecture which can be described as three differ-
ent stages as follows.

The Gabor Filter Composite Stage: In this stage, each single modality is
taken as input and is multiplied with a Gabor filter bank. The Gabor filter
banks are determined prior by setting a range of parameters (λ, θ, ψ, σ, γ). Due
to computational costs, the number of kernels in the Gabor filter bank is set
as 24, obtained through the following set of parameters: λ : {π/4, π/2, 3π/4};
θ : {0, π/4}; σ : {1, 3}; γ : {0.05, 0.5}; and ψ : {0}, with a kernel size of 9.

The U-Net-Based Transformer Architecture Stage: Inspired by the Tran-
sUNet architecture [20], in which Transformers are encoded in a U-Net architec-
ture framework to leverage merits of CNN and transformers models. However,
this architecture simply combines feature maps from encoder to decoder via
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Fig. 2. Overall framework of the proposed methodology combining Gabor filters with
Transformers for multimodal biomedical image segmentation.

skip connection without any operations, leading to a limited feature represen-
tation [36]. Therefore, in addition, and suggested by Attention U-Net [37], we
add Multi-head Self Attention (MHSA) on each of the skip connection from the
encoder to the decoder path in the TransUNet architecture to enrich the fea-
ture presentation. This addition leverages the spatial information granted in the
early stages of the encoder path, thus helping to make the network contextualize
better. Figure 3 illustrates the modified TransUnet architecture utilized in this
proposed framework.

The Multi-modal Late-Fusion Output Stage: The last stage of the frame-
work concatenates the outputs obtained using each modality as inputs, and com-
putes dense layer operations to obtain a final pixel-wise classification to form an
output segmentation mask. This work demonstrates the efficiency of combining
each modality prediction’s outcome separately to form a final prediction, instead
of using all modalities at one combined input.

4 Results

4.1 Datasets

ISLES20181. The ischemic stroke lesions segmentation (ISLES) challenge is a
well known competition, holding a new edition every year since 2015 [38–40].
ISLES 2018 is composed by a total of six modalities: diffusion weighted imaging
(DWI), computed tomography (CT), mean transit time (MTT), time to peak
of te residue function (Tmax), cerebral blood flow (CBF) and cerebral blood
volume (CBV). In this work, we utilize the training dataset provided by the
1 http://www.isles-challenge.org/ISLES2018/.

http://www.isles-challenge.org/ISLES2018/
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Fig. 3. Illustration of the proposed DL architecture inspired by TransUNet [20] with
the addition of MHSA in the skip connections.

competition, since this dataset contains the larger number of cases (94) and
each case is bundled with the corresponding ground truth segmentation mask
required performance evaluation purpose. Each case contains 6 modalties (DWI,
CT, Tmax, MTT, CBF and CBV) as volumes with the following dimension:
256 × 256 × n, where n is the deep (or number of slices) for each volume, which
varies in the range of 2 to 28 within this dataset. Since there is no uniformity
among all the samples, therefore we separate each volume in layers and take them
as input for the proposed multi-modal DL framework. In addition, the data set
is split in a ratio of 8:2 for training and testing purpose correspondingly. During
the training, a randomly selected 10% of the data is used for validation purpose.
In order to reduce dimensionality and computational cost, we decide to use the
four perfusion scan modalities provided (CBF, CBV. MTT, and Tmax) and
discard the CT and DWI modalities for our analysis.

2018 Atrial Segmentation Challenge Dataset2. Opened in 2018, the Atrial
Segmentation Challenge [41] addressed the detection of atrial fibrillation, since
this is the most common type of cardiac arrhythmia. The data set is composed
of 100 training samples and 54 testing samples, on both cases the ground truths
are available for each sample of 3D late gadolinium-Enhanced Magnetic Reso-
nance Imaging (LGE-MRI). In contrast to the ISLES 2018 dataset, each sample
contains a total of 88 slices, however, the height and width differ from one sam-
ple to other (576 × 576 or 640 × 640), therefore we decide to resize each slide to
128 × 128 to keep uniformity on both training and testing sets.

4.2 Experimental Setup

All the experiments are set to be run in a Tesla A100 cluster GPU, for a total
of 150 epochs, with a batch size of 16. The optimizer adopted for the set of
experiments is Adam, with a learning schedule rate starting at 0.0001 and a
decay factor of e−0.01 every epoch. The best model is recorded every time the
2 http://atriaseg2018.cardiacatlas.org/.

http://atriaseg2018.cardiacatlas.org/
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Table 1. Performance over the ISLES 2018 dataset.

Evaluation metric

ACC Dice Jaccard mIoU

U-Net (early-fusion) 0.8994 0.2378 0.1349 0.5164

U-Net (late-fusion) 0.9886 0.5332 0.3635 0.6760

Att. U-Net (early-fusion) 0.9369 0.3306 0.1980 0.5670

Att. U-Net (late-fusion) 0.9892 0.5605 0.3893 0.6892

UPEN (early-fusion) 0.9871 0.5820 0.4105 0.6988

UPEN (late-fusion) 0.9874 0.4147 0.2616 0.6245

TransUNet (early-fusion) 0.9554 0.3729 0.2291 0.5920

TransUNet (late-fusion) 0.9894 0.6190 0.4482 0.7188

GFT (early-fusion) 0.9753 0.5173 0.3489 0.6620

GFT (CBF) 0.9269 0.2776 0.1612 0.5435

GFT(CBV) 0.9860 0.5715 0.4001 0.6929

GFT (MTT) 0.9400 0.2939 0.1723 0.5558

GFT (Tmax) 0.9692 0.4831 0.3185 0.6436

GFT (late-fusion) 0.9873 0.6417 0.4725 0.7299

Table 2. Performance over the 2018 Atrial Segmentation Challenge dataset.

Acc Dice Jaccard mIoU

U-Net 0.9970 0.8961 0.8118 0.9043

Att. U-Net 0.9968 0.8897 0.8013 0.8990

UPEN 0.9971 0.9001 0.8184 0.9077

TransUNet 0.9971 0.9002 0.8186 0.9078

GFT 0.9972 0.9044 0.8256 0.9114

validation performance is improved, with a tolerance of 10 epochs for an early
stop. For robustness of the result, during the training process, the dataset is
randomly split in a ration of 9:1, for training and validation purpose, respectively.

4.3 Experimental Results

We first conduct experiments on the training set from the ISLES 2018 dataset.
Our proposed framework achieves mean Intersection over Union (mIoU) of
0.5435, 0.6929, 0.5558 and 0.6436 for CBF, CBV, MTT and Tmax individual
modalities, respectively. These results are competitive in comparison with state-
of-the-art architectures for segmentation tasks such as U-Net [6], Attention U-
Net [8], UPEN net [9] and TransUNet [20], when the input are taken without
split them by each modality. Our proposed late fusion model outperforms the
aforementioned biomedical image segmentation methods by achieving a mIoU of
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Fig. 4. The visual comparison of segmentation outputs on the ISLES 2018 dataset.
Green boxes: location of true positive predictions. Red boxes: locations of false positive
predictions. (Color figure online)

0.7299. Detailed quantitative results using the ISLES 2018 dataset are provided
in Table 1. Figure 4 shows a visual comparison of segmentation results, the green
boxes indicates the location of the segmentation mask, some methods as U-Net,
Attention U-Net and TransUNet predict the region of interests along with some
other areas (red boxes) that are not included in the ground truth. Techniques as
UPEN, in the other hand, tends to be more accurate in the location of the seg-
mentation mask, however in some samples also includes several false positives.
In contrast our method shows prediction outputs much more alike the ground
truth provided in the dataset, in both locations and segmentation shape.

In addition, we evaluate the performance of our proposed framework with the
2018 Atrial Segmentation Challenge dataset, since this dataset is just composed
by one modality (LGE-MRI), there was not need to implement a multimodal
approach. Our GFT approach achieves a mIoU of 0.9114, showing a solid superi-
ority over the competing architectures. Our GFT also yields better performance
in terms of accuracy, Dice score, and Jaccard coefficient. Details of the obtained
results are summarized in Table 2. Figure 5 shows a visual comparison of seg-
mentation results obtained from the aforementioned methods.
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Fig. 5. The visual comparison of segmentation results on the 2018 Atrial Segmentation
Challenge dataset.

5 Conclusions

We presented a new framework for biomedical image segmentation tasks, in
which Gabor filters are introduced to leverage intrinsic feature representations
from the different modalities in a volumetric sample of information. The pro-
posed framework complement the rich feature representation obtained by the
Gabor filters with a modified U-Net-based Transformer architecture. The exten-
sive experiments performed on two well-known benchmark datasets showed that
Gabor filter with Transformers outperformed different state-of-the-art architec-
tures in terms of Dice score, mIoU, and Jaccard coefficient. Future work will be
focused on the development of automatic selection for Gabor filter parameters
(θ, ψ, λ, σ, γ) to produce an optimized Gabor filter bank and thus improve overall
performance of the proposed architecture.
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Abstract. Neuroblastoma is one of the most common cancers in infants,
and the initial diagnosis of this disease is difficult. At present, the MYCN
gene amplification (MNA) status is detected by invasive pathological
examination of tumor samples. This is time-consuming and may have
a hidden impact on children. To handle this problem, in this paper, we
present a pilot study by adopting multiple machine learning (ML) algo-
rithms to predict the presence or absence of MYCN gene amplification.
The dataset is composed of retrospective CT images of 23 neuroblastoma
patients. Different from previous work, we develop the algorithm without
manually segmented primary tumors which is time-consuming and not
practical. Instead, we only need the coordinate of the center point and
the number of tumor slices given by a subspecialty-trained pediatric radi-
ologist. Specifically, CNN-based method uses pre-trained convolutional
neural network, and radiomics-based method extracts radiomics features.
Our results show that CNN-based method outperforms the radiomics-
based method.

Keywords: Neuroblastoma · MYCN amplification · CT · Radiomics ·
Convolutional neural network

1 Introduction

Neuroblastoma is one of the most common extracranial solid tumors in infant
patients [1]. Despite a variety of treatment options, patients with high-risk neu-
roblastoma tend to have poor prognoses and low survival. MYCN gene amplifi-
cation (MNA) is detected in 20% to 30% of neuroblastoma patients [2]. MNA is
an important part of the neuroblastoma risk stratification system. It has been
proved to be an independent predictor and is related to aggressive tumor behav-
ior and poor prognosis [3]. The MYCN gene with higher amplification multiple
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indicates that the neuroblastoma may be a more invasive type and its prognosis
may be worse. Therefore, MNA patients of any age are “high-risk” groups [1],
and the detection of MNA is an essential part of the evaluation and treatment
interventions of neuroblastoma.

MYCN gene amplification status is generally detected by invasive patho-
logical examination of tumor samples which is time-consuming and may have
a hidden impact on children. Therefore, it is significant to develop a fast and
non-invasive method to predict the presence or absence of MNA.

Radiomics [4] is a method to rapidly extract innumerable quantitative fea-
tures from tomographic images. This allows the transformation of medical image
data into high-dimensional feature data. Radiomics is composed of a set of first-
order, second-order, and higher-order statistical features on images. Previous
studies [6–8] have shown significant relationships between image features and
tumor clinical features. For example, Wu et al. [6] first segment primary tumors
and extract radiomics features automatically from the ROI. An ML model is
then trained with selected features.

Convolutional neural networks (CNN) are under-explored in the prediction
of outcomes in neuroblastoma patients. CNN has shown incredible success in
image classification tasks [9], and it is a potential approach for processing medical
images. Although CNN is primarily driven by large-scale data, transfer learning
has shown its effectiveness in training models with small amounts of data [10].
The number of our CT data is limited, and we use a pre-trained CNN model to
handle the challenge of lack of medical image data.

In this work, we investigate the radiomics-based method and CNN-based
method on a limited dataset. Specifically, we feed radiomics features into multiple
ML models to predict the status of MNA. For CNN-based method, we use pre-
trained ResNet [5] to extract deep features and predict the label of the data
end-to-end. To the best of our knowledge, our method is the first study to try to
simplify the annotation process. Specifically speaking, we do not need a pediatric
radiologist to manually segment primary tumors which is time-consuming and
not practical in clinical applications. Instead, we only need a pediatric radiologist
to point out the center point of the tumor and the number of tumor slices in
CT images. We crop the ROI images with fixed size and feed them into the
model to predict the MNA status. This can greatly reduce the evaluation time
of new CT data. Our results demonstrate comparable performance of previous
segment-tumor method.

In summary, the contribution of this paper are as follows.

– We propose a novel CNN-based method to predict the presence or absence of
MYCN gene amplification of the CT images.

– We greatly simplify the annotation process which makes the prediction pro-
cess fast and practical, and we have achieved comparable performance with
previous works while the evaluation time is greatly reduced.

In the following, we first review related work and the clinical data prepara-
tion, then elaborate on radiomics-based and CNN-based methods, and further
empirically compare them, with a tentative conclusion followed in the end.
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2 Related Work

There is an increasing interest in the prediction of patient outcomes based on
medical images [16–21]. Wang et al. [11] propose a CNN-based method to predict
the EGFR mutation status by CT scanning of lung adenocarcinoma patients.
By training on a large number of CT images, the deep learning models achieve
better predictive performance in both the primary cohort and the independent
validation cohort. Wu et al. [6] combine clinical factors and radiomics features
which are extracted from the manually delineated tumor. The combined model
can predict the MNA status well. However, the annotation process makes the
evaluation time-consuming. When evaluating new patient images, the method
has to annotate the tumor ROI at first. Similarly [6], Liu et al. [7] extract
radiomics feature from tumor ROI and apply pre-trained VGG model to extract
CNN-based feature. Angela et al. [12] sketch the ROI on the CT images of
neuroblastoma, then extract the radiomics features on ROI. With the extracted
feature, they develop the radiology model after feature selection to predict the
MNA status.

3 Clinical Data Preparation

Dataset. From the medical records, a total of 23 patients with pretreatment
CT scans who have neuroblastoma are selected. Each patient has three-phase
CT images. Inclusion criteria are (1) age ≤18 years old at the time of diagnosis,
and (2) histopathologically confirmed MNA status detection. The number of
presence of MNA in the enrolled patients is only two. The rest 21 patients do
not have MNA.

Data Preprocessing. As shown in Fig. 1, the unit of measurement in CT scans
is the Hounsfield Unit (HU). We first transform it into the gray level. In the CT
scans, a pixel spacing may be [2.5, 0.5, 0.5], which means that the distance
between slices is 2.5 mm. And the pixel spacing of different CT scans may vary.
As a result, we resample the full dataset to a certain isotropic resolution. Then
we transfer the CT scans into image format.

The proportion of MNA and non-MNA in the training cohort is highly imbal-
anced (2:21). The imbalance harms the generalizability and fairness of the model
[15]. To tackle this problem, we adopt re-sampling method to augment the
MNA CT image data. Specifically, we apply rotation, flipping, noise injection,
and gamma calibration transformation techniques to CT images. For non-MNA
images, we randomly select transformation techniques to augment the images,
and for MNA images, we apply all transformation techniques to balance the
dataset.

With the annotation information, we use a fixed-size filter (128 × 128 size)
to crop the tumor out of each slice image around the center point of the tumor,
and the cropped slice number is identical to the annotated tumor slice number.
That ensures the extracted features correspond to the same spatial information
across all images.
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Fig. 1. The pre-processing of the CT data.

4 Proposed Methods

4.1 Radiomics-Based Method

As shown in Fig. 2, primary tumors are annotated from initial staging CT scans
using open-source software package ITK-SNAP [13] by a subspecialty-trained
pediatric radiologist. We use pyradiomics [14] to extract radiomics features,
which is implemented based on consensus definitions of the Imaging Biomarkers
Standardization Initiative (IBSI). We extract three kinds of radiomics features
as shown in Table 1, 107 features in total. In summary, the first-order statistical
features capture the intensity of the images. The shape features describe the
geometric shape of the tumor. In our setting, the shape of the tumor is a cube
(we do not precisely segment the tumor ROI), which may make the feature not
separable because each tumor shape is similar. The gray level features represent
the spatial relationship of the voxels.

After the feature extraction, we select the features which are highly correlated
to the label. In specific, we apply LASSO linear regression to select the proper
features, which reduces the dimension of the data and the number of features and
it attenuates over-fitting. Note that we only apply the LASSO linear regression
on the training set excluding the test set to prevent data leakage.

Finally, We adopt multiple ML methods to predict the MNA status includ-
ing SVM, logistic regression, KNN, random forest and AdaBoost. The selected
features and the label are the input of the model, and we train the model on
CT images of 18 patients while other CT images are used for validation. We
use stratified four-fold outer cross-validation to analyze the performance of our
models. Note that the slices belonging to one patient could only b divided into
training or test set, preventing slices of the same subject are used both for train-
ing and testing which invalidates the results.

4.2 CNN-Based Method

ResNet is widely used in computer vision. We adopt ResNet34 which is pre-
trained on ImageNet to predict patient MNA status end-to-end from the CT
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Table 1. Extracted radiomics features

First-order statistics Shape-based Gray level

Range 2D shape features GLCM

Maximum GLDM

Minimum 3D shape features GLRLM

Mean GLSZM

Variance NGTDM

Total 18 Total 14 Total 75

images. We retrain the final layer of ResNet34 to predict the MNA status. To fit
in the input size of the model, we crop the images into 128 × 128 size based on
the center point of the tumor to ensure the tumor is at the center of the cropped
images. The CT images are gray images while the model requires RGB images
which are three-channel. We study three approaches to transform gray images
into three-channel images. In specific, the first approach inputs the gray images
into the model. The second approach transforms identical gray images into three-
channel images. The third approach transforms gray images of adjacent slices
into three-channel images.

Fig. 2. Illustration of radiomics-based method process.

5 Experiments

We compare the performance of radiomics-based ML methods and CNN-based
methods on our dataset.
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Table 2. Accuracy of machine learning models for MNA status prediction. The number
in brackets is the variance and the outer number is the mean of four-fold cross-validation
accuracy. The best ROC-AUC value is 0.84 (95% CI: (0.81, 0.86))

ML methods Accuracy

SVM 0.73 (±0.11)

Logistic regression 0.74 (±0.11)

KNN 0.72 (±0.09)

Random forest 0.71 (±0.09)

AdaBoost 0.70 (±0.12)

5.1 Experimental Results

For all experiments, we split the dataset into training set and validation set and
do four-fold cross-validation. The training set contains 18 patients CT images
while the validation set contains 5 patients CT images. The accuracy is reported
on the total validation set images.

Radiomics-Based Methods. Among the ML techniques we experiment with,
logistic regression model over radiomics features outperforms other models pre-
dicting MNA status as shown in Table 2. The mean accuracy of logistic regression
model is 0.74, 0.01 higher than SVM model. We further present the ROC-AUC
value of the best logistic regression model, which is 0.84 (95% CI: (0.81, 0.86)).

CNN-Based Methods. As shown in Table 3, the CNN-based methods outper-
form the best result of radiomics-based method. The second CNN-based method
whose input is synthesized by three identical gray images achieves the best per-
formance 0.79 accuracy and ROC-AUC value 0.87. The ACC result is 0.05 higher
than the radiomics-based methods.

Table 3. Mean accuracy of radiomics-based methods and CNN-based methods for
MNA status prediction. FS: Feature Selection. ACC: accuracy

Methods-based ACC AUC

Radiomics-based 0.72 0.81

FS + Radiomics-based 0.74 0.84

1st CNN-based 0.73 0.85

2nd CNN-based 0.79 0.87

3rd CNN-based 0.73 0.83

5.2 Discussion

In this study, we investigate multiple methods to predict the MNA status based
on the CT scans of neuroblastoma patients. A total of 23 patients are enrolled
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with MNA detection report. To the best of our knowledge, there is no such study
in the analysis of CT images in neuroblastoma.

Radiomics-Based Methods. In Table 2, we notice that there is no significant
difference in the performance of different ML models. The mean accuracy of
the logistic regression model is just 0.04 higher than the AdaBoost model. The
results reported in [6] are higher than ours because we report the results on the
total validation images rather than the patients. Specifically speaking, we test
our model on each tumor slice image and report the accuracy rather than test the
model on each patient. If the output of our model is the same as the validation
patients number, the mean accuracy of our radiomics-based methods is 0.882
which is 0.06 higher than the 0.826 reported in [6]. In addition, we observe a
performance promotion of feature selection as shown in Table 3. When using
radiomics-based methods without feature selection, the mean accuracy is 0.72
while with feature selection, the mean accuracy is 0.74. That demonstrates the
effectiveness of feature selection which helps the model to focus on the important
features.

CNN-Based Methods. Compared to radiomics-based methods, the CNN-
based methods achieve higher performance both on the accuracy and AUC. The
mean accuracy of CNN-based methods is 0.79 which is 0.05 higher than the best
radiomics-based methods.

We notice that, in [7], the results are partly opposite to the results drawn from
our experiments. This is likely because of the following reason. [7] uses precisely
annotated tumor ROI to extract 3D radiomics features to predict patient out-
comes. The 3D features contain more information including the size and shape
of the tumor, which helps much to the prediction process. Instead, we do not
need the time-consuming segmentation of primal tumors, and CNN focuses on
the information of 2D images and performs better on fixed-size images.

As shown in Table 3, we study three approaches to transform gray images
into three-channel images. The second approach performs best, and the mean
accuracy is 0.06 higher than other approaches. We use the third approach that
synthesizes gray images of adjacent slices to three-channel images to capture
inter-slices information. However, the performance of this method is worse than
the second one. This may be because the original image contains enough infor-
mation to predict the MNA status.

6 Conclusion

Our study provides insight into that the CNN model has the capability to per-
form well in the prediction of MNA status of neuroblastoma patient CT scans.
In our experiments, the CNN model outperforms multiple radiomics-based ML
methods. Different from previous works, we study a much less time-consuming
annotation approach which greatly reduces the validation time without man-
ually segmenting primary tumors. We also investigate different approaches to
synthesize three-channel images by the original gray images and we find that
duplicating the slice image into three-channel images performs better.
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Limitation. Due to the computational limitations, we could not perform a study
to investigate more CNN models including 3D CNN which may capture inter-
slices information better. Also, the radiomics-based methods in our setting is
not fully explored. We hope these will inspire future work.
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Abstract. The majority of deep learning (DL) based deformable image
registration methods use convolutional neural networks (CNNs) to esti-
mate displacement fields from pairs of moving and fixed images. This,
however, requires the convolutional kernels in the CNN to not only
extract intensity features from the inputs but also understand image
coordinate systems. We argue that the latter task is challenging for tra-
ditional CNNs, limiting their performance in registration tasks. To tackle
this problem, we first introduce Coordinate Translator, a differentiable
module that identifies matched features between the fixed and moving
image and outputs their coordinate correspondences without the need
for training. It unloads the burden of understanding image coordinate
systems for CNNs, allowing them to focus on feature extraction. We
then propose a novel deformable registration network, im2grid, that uses
multiple Coordinate Translator’s with the hierarchical features extracted
from a CNN encoder and outputs a deformation field in a coarse-to-fine
fashion. We compared im2grid with the state-of-the-art DL and non-DL
methods for unsupervised 3D magnetic resonance image registration. Our
experiments show that im2grid outperforms these methods both quali-
tatively and quantitatively.

Keywords: Deformable image registration · Deep learning · Magnetic
resonance imaging · Template matching

1 Introduction

Deformable registration is of fundamental importance in medical image analy-
sis. Given a pair of images, one fixed and one moving, deformable registration
warps the moving image by optimizing the parameters of a nonlinear transfor-
mation so that the underlying anatomies of the two images are aligned according
to an image dissimilarity function [11,16,32,34,37]. Recent deep learning (DL)
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methods use convolutional neural networks (CNNs) whose parameters are opti-
mized during training; at test time, a dense displacement field that represents
the deformable transformation is generated in a single forward pass.

Although CNN-based methods for segmentation and classification are better
than traditional methods in both speed and accuracy, DL-based deformable reg-
istration methods are faster but usually not more accurate [4,8,13,15,39]. Using
a CNN for registration requires learning coordinate correspondences between
image pairs, which has been thought to be fundamentally different from other
CNN applications because it involves both extracting and matching features
[14,25]. However, the majority of existing works simply rely on CNNs to implic-
itly learn the displacement between the fixed and moving images [4,13,15].

Registration involves both feature extraction and feature matching, but to
produce a displacement field, matched features need to be translated to coor-
dinate correspondences. We argue that using convolutional kernels for the lat-
ter two tasks is not optimal. To tackle this problem, we introduce Coordinate
Translator, a differentiable module that matches features between the fixed and
moving images and identifies feature matches as precise coordinate correspon-
dences without the need for training. The proposed registration network, named
im2grid, uses multiple Coordinate Translator’s with multi-scale feature maps.
These produce multi-scale sampling grids representing coordinate correspon-
dences, which are then composed in a coarse-to-fine manner to warp the moving
image. im2grid explicitly handles the task of matching features and establishing
coordinate correspondence using Coordinate Translator’s, leaving only feature
extraction to our CNN encoder.

Throughout this paper, we use unsupervised 3D magnetic resonance (MR)
image registration as our example task and demonstrate that the proposed
method outperforms the state-of-the-art methods in terms of registration accu-
racy. We think it is important to note that because producing a coordinate
location is such a common task in both medical image analysis and computer
vision, the proposed method can be impactful on a board range of applications.

2 Related Works

Traditional registration methods solve an optimization problem for every pair
of fixed, If , and moving, Im, images. Let φ denote a transformation and let the
best transformation φ̂ be found from

φ̂ = argmin
φ

Lsim(If , Im ◦ φ) + λLsmooth(φ), (1)

where Im ◦ φ yields the warped image Iw. The first term focuses on the simi-
larity between If and Im ◦ φ whereas the second term—weighted by the hyper-
parameter λ—regularizes φ. The choice of Lsim is application-specific. Popu-
lar methods using this framework include spline-based free-form deformable
models [32], elastic warping methods [11,27], biomechanical models [16], and
Demons [34,37]. Alternatively, learning-based methods have also been used to
estimate the transformation parameters [9,19].
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Recently, deep learning (DL) methods, especially CNNs, have been used for
solving deformable registration problems. In these methods, φ is typically rep-
resented as a map of displacement vectors that specify the voxel-level spatial
offsets between If and Im; the CNN is trained to output φ with or without
supervision [4,6,13,15,20]. In the unsupervised setting, the displacement field is
converted to a sampling grid and the warped image is produced by using a grid
sampler [26] with the moving image and the sampling grid as input. The grid
sampler performs differentiable sampling of an image (or a multi-channel feature
map) using a sampling grid; it allows the dissimilarity loss computed between
the warped and fixed images to be back-propagated so the CNN can be trained
end-to-end. In past work, [4] used a U-shaped network to output the dense
displacement; [12,13] used an encoder network to produce a sparse map of con-
trol points and generated the dense displacement field by interpolation; and [8]
replaced the bottleneck of a U-Net [31] with a transformer structure [36]. Several
deep learning methods also demonstrate the possibility of using a velocity-based
transformation representation to enforce a diffeomorphism [10,39].

Our method represents the transformation using a sampling grid G, which
can be directly used by the grid sampler. For N -dimensional images (N = 3
in this paper), G is represented by an N -channel map. Specifically, for a voxel
coordinate x ∈ D

N (where D
N contains all the voxel coordinates in If ), G(x)

should ideally hold a coordinate such that the two values If (x) and Im(G(x))
represent the same anatomy. Note that the displacement field representation
commonly used by other methods can be found as G − GI , where GI is the
identity grid GI(x) = x.

3 Method

For the image pair If and Im, the proposed method produces a sampling grid
G0 that can be used by the grid sampler to warp Im to match If . Similar to
previous DL methods, we use a CNN encoder to extract multi-level feature maps
from If and Im. Instead of directly producing a single displacement field from
the CNN, G0 is the composition of multi-level sampling grids, generated from
the multi-level feature maps with the proposed Coordinate Translator’s.

3.1 Coordinate Translator

Let F and M denote the multi-channel feature maps that are individually
extracted from If and Im, respectively. The goal of a Coordinate Translator
is to take as input both F and M , and produce a sampling grid G that aligns
M interpolated at coordinate G(x) with F (x) for all x ∈ D

N .
As the first step, for every x, cross-correlation is calculated between F (x)

and M(ci) along the feature dimension, where ci ∈ D
N for i ∈ [1,K] are a set

of candidate coordinates. The results are a K-element vector of matching scores
between F (x) and every M(ci):
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Fig. 1. Structure of the proposed positional encoding layer and Coordinate Translator.

Matching Score(x) =
(
F (x)T M(c1), . . . , F (x)T M(cK)

)
. (2)

The choice of ci’s determines the search region for the match. For exam-
ple, defining ci to be every coordinates in D

N will compare F (x) against every
location in M ; these matches can also be restricted within the 3 × 3 × 3 neigh-
borhood of x. We outline our choices of ci’s in Sect. 4. The matching scores are
normalized using a softmax function to produce a matching probability pi,

pi =
exp

(
F (x)T M(ci)

)
∑

j exp (F (x)T M(cj))
for every ci. (3)

We interpret the matching probabilities as the strength of attraction between
F (x) and the M(ci)’s. Importantly, we can calculate a weighted sum of ci’s to
produce a coordinate x′ ∈ R

N , i.e., x′ =
∑K

i=1 pi · ci, which represents the cor-
respondence of x in the moving image Im. This is conceptually similar to the
combined force in the Demons algorithm [34]. For every x ∈ D

N the correspond-
ing x′ forms the Coordinate Translator output, G.

Coordinate Translator can be efficiently implemented as the Scaled Dot-
Product Attention introduced in the Transformer [36] using matrix operations.
For 3D images with spatial dimension H × W × S and C feature channels, we
reshape F and M to R

(H×W×S)×C and the identity grid GI to R
(H×W×S)×3.

Thus Coordinate Translator with {c1, . . . cK} = D
N can be readily computed

from,
Coordinate Translator(F,M) = Softmax(FMT )GI , (4)

with the softmax operating on the rows of FMT .

Positional Encoding Layer. In learning transformations, it is a common prac-
tice to initialize from (or close to) an identity transformation [4,8,26]. As shown
in Fig. 1, we propose a positional encoding layer that combines position informa-
tion with F and M such that the initial output of Coordinate Translator is an
identity grid. Inside a positional encoding layer, for every x = (x1, · · · , xN ) with
xi’s on an integer grid (xi ∈ {0, . . . , di−1}), we add a positional embedding (PE),

PE(x) =
(
cos

x1π

d1 − 1
, sin

x1π

d1 − 1
, · · · , cos

xNπ

dN − 1
, sin

xNπ

dN − 1

)
,
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Fig. 2. Example of the proposed im2grid network structure with a 3-level CNN
encoder. The grid composition operation can be implemented using the grid sampler
with two grids as input.

to the input feature map, where di is the pixel dimension along the ith axis.
Trigonometric identities give the cross-correlation of PEs at x1 and x2 as

PE(x1)T PE(x2) =
N∑

i=1

cos
(

Δxiπ

di − 1

)
,

where Δxi is the difference in the i th components of x1 and x2. This has max-
imum value when x1 = x2 and decreases with the L1 distance between the two
coordinates. We initialize the convolutional layer to have zero weights and bias
and the learnable parameter α = 1 (see Fig. 1) such that only the PEs are consid-
ered by Coordinate Translator at the beginning of training. As a result, among all
ci ∈ D

N , M(x) will have the highest matching score with F (x), thus producing
GI as the initial output. Coordinate Translator also benefits from incorporating
the position information as it allows the relative distance between ci and x to
contribute to the matching scores, similar as the positional embedding in the
Transformer [36].

3.2 im2grid Network Architecture

The proposed im2grid network is shown in Fig. 2. Similar to previous meth-
ods, im2grid produces a sampling grid to warp Im to Iw. Our CNN encoder
uses multiple pooling layers to extract hierarchical features from the intensity
images. In the context of intra-modal registration, it is used as a Siamese net-
work that processes If and Im separately. For clarity, Fig. 2 only shows a three
level im2grid model with three level feature maps F1/F2/F3 and M1/M2/M3

for If and Im, respectively. In our experiment, we used a five level structure.
Our grid decoder uses the common coarse-to-fine strategy in registration. Firstly,
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Fig. 3. Visualization of the multi-scale sampling grids by sequentially applying finer
grids to the moving image. Here we used a five-level CNN encoder and G5, . . . , G1 are
coarse to fine sampling grids produced from the five-level feature maps.

coarse features F3 and M3 are matched and translated to a coarse sampling grid
G3 using a Coordinate Translator. Because of the pooling layers, this can be
interpreted as matching downsampled versions of If and Im, producing a coarse
displacement field. G3 is then used to warp M2, resolving the coarse deformation
between M2 and F2 so that the Coordinate Translator at the second level can
capture more detailed displacements with a smaller search region. Similarly, M1

is warped by the composed transformation of G3 and G2 and finally the moving
image is warped by the composition of the transformations from all levels. A
visualization of a five-level version of our multi-scale sampling grids is provided
in Fig. 3. In contrast to previous methods that use CNNs to directly output
displacements, our CNN encoder only needs to extract similar features for cor-
responding anatomies in If and Im and the exact coordinate correspondences
are obtained by Coordinate Translator’s. Because our CNN encoder processes If

and Im separately, it is guaranteed that our CNN encoder only performs feature
extraction.

The proposed network is trained using the mean squared difference between
If and Iw(= Im ◦φ) and a smoothness loss that regularizes the spatial variations
of the G’s at every level,

L =
1

|DN |
∑

x∈DN

(If (x) − Iw(x))
2 + λ

∑

i

∑

x∈DN

||∇(Gi(x) − GI(x))||2, (5)

where
∣
∣DN

∣
∣ is the cardinality of DN and all Gi’s and GI are normalized to [−1, 1].

4 Experiments

Datasets. We used the publicly available OASIS3 [28] and IXI [1] datasets in
our experiments. 200, 40, and 100 T1-weighted (T1w) MR images of the human
brain from the OASIS3 dataset were used for training, validation, and testing,
respectively. During training, two scans were randomly selected as If and Im,
while validation and testing used 20 and 50 pre-assigned image pairs, respec-
tively. For the IXI dataset, we used 200 scans for training, 20 and 40 pairs for



104 Y. Liu et al.

Fig. 4. Examples of registering the moving image (the first column) to the fixed image
(the last column) using SyN, voxelmorph, ViT-V-Net, and our proposed methods.

validation and testing, respectively. All scans underwent N4 inhomogeneity cor-
rection [35], and were rigidly registered to MNI space [18] with 1 mm3 (for IXI)
or 0.8 mm3 (for OASIS3) isotropic resolution. A white matter peak normaliza-
tion [30] was applied to standardize the MR intensity scale.

Evaluation Metrics. First, we calculated the Dice similarity coefficient (DSC)
between segmentation labels of If and the warped labels of Im. An accurate
transformation should align the structures of the fixed and moving images and
produces a high DSC. We obtained a whole brain segmentation for the fixed and
moving images using SLANT [24] and combined the SLANT labels (133 labels) to
TOADS labels (9 labels) [5]. The warped labels were produced by applying each
methods deformation field to the moving image labels. Second, we measured the
regularity of the transformations by computing the determinant of the Jacobian
matrix, which should be globally positive for a diffeomorphic transformation.

Implementation Details. Our method was implemented using PyTorch and
trained using the Adam optimizer with a learning rate of 3×10−4, a weight decay
of 1 × 10−9, and a batch size of 1. Random flipping of the input volumes along
the three axes were used as data augmentation. We used a five-level structure
and tested different choices of ci’s for each Coordinate Translator. We found that
given the hierarchical structure, a small search region at each level is sufficient
to capture displacements presented in our data. Therefore, we implemented two
versions of our method: 1) im2grid which used a 3 × 3 search window in the
axial plane for producing G1 and a 3× 3× 3 search window at other levels; and
2) im2grid-Lite which is identical to im2grid except that the finest grid G1 is
not used.

Baseline Methods: We compared our method with several state-of-the-art
DL and non-DL registration methods: 1) SyN: Symmetric image normaliza-
tion method [2], implemented in the Advanced Normalization Tools (ANTs) [3];
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Table 1. The Dice coefficient (DSC), the average number of voxels with negative
determinant of Jacobian (# of |Jφ| < 0) and the percentage of voxels with negative
determinant of Jacobian (%) for affine transformation, SyN, Voxelmorph, ViT-V-Net,
and the proposed methods. The results of the initial alignment by the preprocessing
steps are also included. Bold numbers indicate the best DSC for each dataset.

OASIS3 IXI
DSC # of |Jφ| < 0 % DSC # of |Jφ| < 0 %

Initial 0.651± 0.094 − 0% 0.668± 0.107 − 0%

Affine 0.725± 0.068 − 0% 0.748± 0.052 − 0%

SyN [2] 0.866± 0.029 223 <0.002% 0.845± 0.035 613 0.008%

Voxelmorph [4] 0.883± 0.040 85892 <0.7% 0.842± 0.068 21574 <0.3%

ViT-V-Net [8] 0.872± 0.042 110128 <0.9% 0.845± 0.068 21298 <0.2%

im2grid-Lite 0.909± 0.021 38915 <0.4% 0.870± 0.043 14917 <0.2%

im2grid 0.908± 0.023 11880 <0.1% 0.865± 0.050 3235 <0.04%

2) voxelmorph: A deep learning based unsupervised method trained with the
mean squared error loss [4]; 3) ViT-V-Net: A transformer [36] based network
structure proposed in [8].

For SyN, a wide range of hyper-parameters were tested on the OASIS3 valida-
tion set and the best performing parameters were used for generating the final
results. For voxelmorph and ViT-V-Net, we adopted the same training strategies
as the proposed method, including the loss function and data augmentation. We
optimize the parameters of each method for performance on the OASIS3 valida-
tion set and then used those parameters in testing on both datasets.

Results. For both OASIS3 and IXI test datasets, we registered the moving
to the fixed image and report the averaged DSC for all labels in Table 1. In
both datasets, the proposed methods outperform the comparison methods for
DSC. For each individual anatomic label, we also conducted a paired, two-sided
Wilcoxon signed rank test (null hypothesis: the difference between paired values
comes from a distribution with zero median, α = 10−3) between our methods
and the comparison methods. Both proposed methods show significant DSC
improvements for seven of nine labels and comparable DSC performance to the
best comparison method for the remaining two labels (thalamus and putamen).
Visual examples on OASIS3 data are shown in Fig. 4. It can be seen, especially
from the highlighted regions, that the warped image produced by the proposed
methods have a better agreement with the fixed image.

Evaluation on Learn2Reg Validation Dataset. We also test the proposed
method on the inter-subject brain MRI registration task from the Learn2Reg
challenge [22] (L2R 2021 Task 3). All scans from the challenge have been pre-
processed following [23], and for evaluation purpose segmentation maps of 35
labels were generated using FreeSurfer [17]. We choose the im2grid-Lite version
for this task because the challenge evaluation is done on the ×2 downsampled
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Table 2. Results of the proposed method and several state-of-the-art methods on the
Learn2Reg 2021 Task 3 validation dataset.

DSC DSC30 SDlogJ HD95

im2grid-Lite 0.8729± 0.0142 0.8714 0.1983 1.3786

TransMorph [7] 0.8691± 0.0145 0.8663 0.0945 1.3969

ConvexAdam [33] 0.8464± 0.0159 0.8460 0.0668 1.5003

Han et al. [21] 0.8410± 0.0139 0.8355 0.0796 1.6595

Lv et al. [29] 0.8271± 0.0131 0.8199 0.1206 1.7220

images. During training, two scans were randomly selected from the training
set and used as input to the proposed method. The performance is evaluated
by comparing the warped segmentation of the moving image and the segmenta-
tion of the fixed image. The results are summarized in Table 2, where the DSC
represents the average Dice coefficient of all segmented labels; DSC30 is the low-
est 30% DSC among all cases, which measures the robustness of the methods;
SDlogJ is the standard deviation of the log of the Jacobian determinant of the
deformation field; and HD95 represents the 95% percentile of Hausdorff distance
of segmentations. The results of several state-of-the-art methods from the chal-
lenge leaderboard are also included. The proposed method shows better accuracy
as well as robustness among the comparison methods. Although adopting the
instance-specific optimization as described in [4] can potential boost the perfor-
mance on the validation set, our method only used the training set because we
assume that such fine tuning process is not available during deployment.

5 Discussion

In this paper, we proposed Coordinate Translator for producing coordinate cor-
respondences from two feature maps. Additionally, we proposed the im2grid
network that uses Coordinate Translator’s for deformable image registration.
For unsupervised 3D magnetic resonance registration, im2grid outperforms the
state-of-the-art methods in accuracy with a similar training and testing speed
as other deep learning based registration methods. Although im2grid has no
explicit guarantee of being diffeomorphic, the deformation fields it generated
contains fewer voxels with negative determinant of Jacobian compared with
other deep learning methods that output deformation fields directly from feature
maps. We believe this comes from our design decision to restrict the candidate
voxels to the immediate neighborhood of a voxel, which yields a locally smooth
deformation field at each scale. We note that even a diffeomorphic algorithm
with theoretical guarantees (e.g., SyN) can produce non-diffeomorphic transfor-
mations because of errors introduced during interpolation [38].

For registration, we demonstrated that using Coordinate Translator for
matching features and establishing coordinate correspondences together with the
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convolutional networks for feature extraction can significantly boost the perfor-
mance. Coordinate Translator is a general module that can be incorporated in
many existing network structures and therefore is not limited to the registra-
tion task. We believe that many tasks that involve image input and coordinate
output can benefit from the use of the Coordinate Translator module.
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EY032284 and the Intramural Research Program of the NIH, National Institute on
Aging.
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Abstract. Detection of tumors in metastatic colorectal cancer (mCRC)
plays an essential role in the early diagnosis and treatment of liver cancer.
Deep learning models backboned by fully convolutional neural networks
(FCNNs) have become the dominant model for segmenting 3D comput-
erized tomography (CT) scans. However, since their convolution layers
suffer from limited kernel size, they are not able to capture long-range
dependencies and global context. To tackle this restriction, vision trans-
formers have been introduced to solve FCNN’s locality of receptive fields.
Although transformers can capture long-range features, their segmenta-
tion performance decreases with various tumor sizes due to the model
sensitivity to the input patch size. While finding an optimal patch size
improves the performance of vision transformer-based models on seg-
mentation tasks, it is a time-consuming and challenging procedure. This
paper proposes a technique to select the vision transformer’s optimal
input multi-resolution image patch size based on the average volume
size of metastasis lesions. We further validated our suggested framework
using a transfer-learning technique, demonstrating that the highest Dice
similarity coefficient (DSC) performance was obtained by pre-training
on training data with a larger tumour volume using the suggested ideal
patch size and then training with a smaller one. We experimentally eval-
uate this idea through pre-training our model on a multi-resolution pub-
lic dataset. Our model showed consistent and improved results when
applied to our private multi-resolution mCRC dataset with a smaller
average tumor volume. This study lays the groundwork for optimizing
semantic segmentation of small objects using vision transformers. The
implementation source code is available at: https://github.com/Ramtin-
Mojtahedi/OVTPS.
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1 Introduction

Colorectal cancer is the third most common cancer diagnosed in the United
States, with 100,000 new cases and 50,000 deaths expected in 2022 [1]. The sur-
vival rate of these patients is over 90% [2]. However, up to 70% of them will
develop liver metastasis [3], with a roughly 5-year survival rate of 11% [4]. The
segmentation of metastatic colorectal cancer (mCRC) liver tumours on com-
puted tomography (CT) images is essential for evaluating tumour response to
chemotherapy and surgical planning [5], especially for detecting small metastasis
tumor volumes in the liver tissue. To achieve this objective, it is imperative to
build and develop a reliable and automated machine-learning (ML) model.

Convolutional neural networks (CNNs)-based [6–10] and vision transformers
(ViTs)-based [11] architectures are the major machine learning segmentation
approaches. Since the introduction of the pioneering U-shaped encoder-decoder
architecture, dubbed U-Net [12], CNN-based architectures have achieved state-
of-the-art performance on a variety of medical image segmentation tasks [13].
The U-Net is a densely supervised encoder-decoder network where the encoder
and decoder sub-networks are connected by densely supervised skip pathways.
Adapting the U-Net to new challenges entails a range of design, preprocessing,
training, and assessment strategies for the network. These hyperparameters are
interconnected and have a substantial effect on the outcome. The nnU-Net frame-
work was developed by Isensee et al. [14] to address these limitations. Based on
2D and 3D vanilla U-Nets, they suggested nnU-Net as a robust and self-adaptive
architecture.

Despite the effectiveness of fully convolutional networks, these networks have
a drawback in learning global context and long-range spatial relationships due to
their confined kernel size and receptive fields. To tackle this limitation, Dosovit-
sky et al. [15] proposed using transformers in computer vision tasks, called ViTs,
resulting from their successful performance in the language domain, their ability
to capture long-range dependencies, and their self-attention mechanisms. Com-
pared to state-of-the-art convolutional networks, ViT-based models achieve sig-
nificant outcomes while using fewer computing resources for the training phase.
By integrating an additional control mechanism in the self-attention module, a
gated axial-attention model was presented by Valanarasu et al., [16], extending
the previous transformer-based architectures. A novel ViT-based on a hierarchi-
cal structure was introduced by Liu et al. [17] to represent the image features
through shifted windows. Their proposed structure improved performance as
self-attention processing is limited to non-overlapping local windows, but cross-
window connections are still allowed. Hatamizadeh et al. [18] proposed UNEt
TRansformers (UNETR) to capture global multi-scale information. This unique
U-Net-based architecture employs a transformer as the encoder to learn sequence
representations of the input volume. The extracted features from the transformer
encoder are integrated with the CNN-based decoder through skip connections
to predict the segmentation outputs.

Although the UNETR achieved state-of-the-art performance in 3D volu-
metric segmentation, it used an isotropic network topology with fixed-size fea-
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ture resolution and an inflexible embedding size. Therefore, UNETR could not
describe context at various sizes or assign computations at different resolutions.
While their proposed network could be performant for segmenting large-sized
objects such as the liver, it did not show the same level of performance in seg-
menting small objects such as small liver tumors.

Our goal in this paper was to detect and segment colorectal liver metas-
tases on abdominal CT scans. The contribution of this work is twofold: First,
we introduce a framework to find an optimal patch size for the vision trans-
former models to improve ViT-based structures in segmenting small objects.
Specifically, based on the liver lesion volume, we designed a framework for ViT
patch size, using the UNETR architecture as the backbone of our experiments to
achieve higher segmentation performance. We also validated our proposed frame-
work in a transfer-learning approach and showed that pre-training on training
data that has a larger tumor volume using the proposed optimal patch size
and then training with a smaller one achieved the best Dice similarity coefficient
(DSC) performance. Second, we show that our pipeline outperforms the UNETR
baseline ViT-based model in terms of DSC for segmenting liver metastasis and
validates our results on LiTS and mCRC datasets.

2 Method

In the following subsections, the structure of the ViT-based model, our proce-
dure to select optimal patch size, and a novel training technique to improve
performance on segmenting of small tumors are elaborated.

2.1 ViT-Based Model Structure

Transformer Patch. In the ViT transformer framework, the input image is
split into patches, and a series of linear embeddings of these patches is passed to
the vanilla transformer [15]. These image patches are processed and considered
similar to tokens (words) in natural language processing. Specifically, transform-
ers operate on a 1D sequence of input embeddings. Similarly, the given 3D input
images are mapped to 1D embedding vectors in our pipeline. In the utilized
framework, the 3D CT volumes are provided with an input size of (H, W, L)
are the input image dimensions. The transformer patches are represented as
M. Accordingly, flattened uniform sequences are being created with the size
of N = (H × W × L)/(M × M × M) using non-overlapping patches that are
shown with yv ∈ RN×M3

.
To maintain the retrieved patches’ spatial information, 1D learnable posi-

tional embeddings (Epos ∈ RN×P ) are added to the projected patch embeddings
with dimensional embedding size. This process is shown in Eq. (1).

z0 = [y1vE; y2vE; ...; yNv E] + Epos (1)
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Fig. 1. Comparing tumor sizes in mCRC and LiTS sample data where (a) is the LiTS
dataset with larger tumor volume size, and (b) is the mCRC dataset (Green: liver,
Yellow: tumor). (Color figure online)

where E ∈ RM3×P is flattened uniform non-overlapping patches embedding [13].
The transformer encoder consists of alternating layers of multi-headed self-
attention (MSA) and multilayer perceptron (MLP) blocks. As proposed in [9],
these blocks can be shown as Eq. (2) and Eq. (3).

źj = MSA(Lnorm(zj−1)) + zj−1, j ∈ [1, ..., T ] (2)

źj = MLP(Lnorm(źj)) + źj , j ∈ [1, ..., T ] (3)

where T is the number of transformer layers, Lnorm function denotes layer
normalization, and the MLP block consists of two linear layers with GELU
activation functions. There are parallel self-attention (SA) heads in the MSA
sublayer, and attention weights are calculated as (4). The SA block uses standard
qkv self-attention, which uses query (q) and the sequence’s associated key (k)
and input sequence value (v) representations. Equation (4) is also included where
Kh = K/n is the scaling factor and the outputs of the MSA are achieved as Eq.
(5) using MSA weights (WMSA ∈ Rn·Kh×S).

Attention(q,k,v) = Softmax(
qKT

√
Kh

)v (4)

[Attention1(z); ...;Attentionn(z)]WMSA (5)

Loss Function. The loss function employed is a mix of soft Dice loss and cross-
entropy loss, which could be calculated in a voxel-by-voxel approach, as shown
in Eq. (6).

Loss(G,O) = 1 − 2
C

C∑

r=1

ΣA
x=1Gx,rOx,r

ΣC
x=1G

2
x,r + ΣU

K=1O
2
x,r

− 1
A

A∑

x=1

C∑

r=1

Gx,rlog(Ox,r)

(6)
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where A represents the voxel’s number; C denotes the number of classes. The
probability output and one-hot encoded ground truth for class r at voxel x are
represented by Ox,r and Gx,r, respectively [19].

UNETR uses a contracting-expanding pattern with a stack of transformers,
ViT, as the encoder, and skip connections to the decoder. It considers the patch
size as a hyperparameter. In this sense, choosing an optimal patch size (M∗) is
critical due to its impact on the features’ receptive field. This is because patches
are reshaped into a tensor with the size of H

M∗ × W
M∗ × L

M∗ × P , where P is
the transformer’s embedding size. To assess the impact of patch size, we did
our experiments on two clinical datasets, LiTS, and our private mCRC. LiTS
has a larger tumors volume size than the mCRC dataset. Samples of these two
datasets are shown in Fig. 1.

2.2 Choosing Optimal Patch Size

The proposed framework tries to find the best patch size for our tumor seg-
mentation. As shown in Fig. 2, the average volume of the tumors is first com-
puted on the training input. Then, the optimal patch size is determined based
on a mathematical relationship between the average volume size of tumors and
the performance. The experimented patch sizes must be a factor of the input
image dimensions, 256×256×96, and were selected based on our computational
resources and with respect to the sizes proposed in [15], M ∈ [8, 12, 16, 24]. This
ensures that the model performs best when segmenting small objects such as
tumors.

The average volume size of tumors in LiTS datasets was reported as 17.56
cm3 [20]. Through histogram analysis on our private mCRC dataset, the average
tumor volume was achieved as 10.42 cm3. Empirically, the relationship between
optimal patch size (M∗) and the average volume size of the tumors attained as
Eq. (7).

M∗ = Argmin
M∈[8,12,16,24]

(| 3
√
V × S − M |) (7)

where M is the patch size; S is the voxel spacing, and V is the average volume size
of tumors for LiTS and mCRC datasets. The optimal patch is achieved by finding
the patch that makes the absolute differentiation of cube root multiplication of
voxel spacing and average tumors volume size with patch size be at a minimum.

2.3 Pre-training Technique to Improve Segmentation of Small
Tumors

To increase the segmentation performance of ViT-based structures on small
lesions, we suggested pre-training on a dataset with a large tumor volume (LiTS
data) using the optimal patch size achieved by the proposed framework and sub-
sequently training on a smaller one (mCRC dataset) to achieve the best DSC
performance. This idea was experimentally tested, as shown in the next section,
and could increase the DSC significantly compared to when the dataset with a
small tumor volume was trained by scratch.
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Fig. 2. The model’s pipeline is shown for the proposed framework. In step (a), the
framework receives the raw 3D CT images of the abdomen, consisting of the liver
and its primary and secondary tumors. Then, the average tumor volume is computed
through histogram analysis in step (b). Through assessment of the averaged volume of
tumors and the three determined patch sizes in step (c), M ∈ [8, 12, 16, 24] the optimal
patch size is selected in step (d). In step (e), we train the model and segment it in our
backboned UNETR network to achieve segmented tumors and liver organs in step (f).

3 Experimental Results

3.1 Datasets

We conducted our experiments on two multi-resolution 3D abdominal CT liver
datasets, including training with large tumor volumes (LiTS) and later smaller
ones (mCRC). For the former, we used the LiTS, which consisted of 201 CT
images with liver and liver tumors annotations: 131 for training and 70 for test-
ing. The number of tumors detected in the scans varied between 0 and 75,
exhibiting a half-normal distribution. The dataset was created to closely show
real-world clinical data and contains a range of cancer types, including primary
tumors such as hepatocellular carcinoma (HCC) and metastasis from colorec-
tal, breast, and lung cancer. The collection includes scans with voxel spacings
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ranging from 0.56 mm to 1.0 mm in the axial plane and slice thicknesses ranging
from 0.70 mm to 5.0 mm [20,21]. In the private data, we employed CT volume
of the colorectal liver metastasis (mCRC) [22]. This dataset contained 198 CT
scans of patients who underwent hepatic resection for CRLM between 2003 and
2007. The number of tumors in the scans ranged from 1 to 17. Voxel spacing in
the scans in the dataset ranged from 0.61 mm to 0.98 mm in the axial plane, and
slice thickness was 0.80 mm to 7.5 mm. For data pre-processing, all image voxel
spacing was normalized to the range [0–1]. In addition, all foreground images
were resampled to a voxel spacing of 0.765 × 0.765 × 1.5 mm3, achieved by the
median of the range of spacings and availability of computational resources. The
data is also transformed using 90◦ orientation, flipping, random rotations, and
intensity shifting.

3.2 Implementation Details

Table 1 illustrates the important model parameters and hyperparameters we
employed to conduct the experiments on our datasets. The hyperparameters
used for the ViT network were selected based on the ViT-base discussed in [15].
We also ran the experiments with various input image sizes and discovered that
256 × 256 × 96 produced the best results compatible with our computational
resources. Implementations of experiments and code will also be available. For
all experiments, the training and validation split considered as 80:20.

Table 1. Summary of employed parameters and critical hyperparameters.

Parameter Description of the
value/method

Input image size [H × W × L] [256 × 256 × 96]

Optimizer Adam

Learning rate 0.0001

Weight-decay 1e−5

ViT: [Layers, Hidden Size, MLP size,
Heads, Number of Parameters]

[12, 768, 3072, 12, 86M]

Batch Size 1

Computational resource NVIDIA A100 - 40GB

3.3 Liver and Lesion Segmentation Results

Segmentation Results for Optimal Patch size. We calculated the opti-
mal patch size, M∗, based on Eq. (7) for both datasets. We also compared our
results with smaller and larger patch sizes than the calculated one to validate
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our proposed technique. As shown in Table 2, the best performance results were
achieved for the computed patch size of 16 and 12 for the LiTS and mCRC
datasets, respectively. In addition to these experiments, we tested the DSC per-
formance using a combination of both datasets, which did not outperform the
following results. Moreover, as our main focus was to find the optimal patch
size, we didn’t provide results with respect to the CNN-based architectures,
which inherently have different structures with no utilized transformer.

Table 2. Highest segmentation performance results for the models built on LiTS and
mCRC datasets using multiple patch sizes.

Dataset Patch size Tumor DSC [%] Liver DSC [%] Loss Training time
[Min.]

LiTS M = 8 48.62 81.3 0.2105 1883.93

M = 12 51.19 87.37 0.2297 2464.83

M* = 16 53.08 88.06 0.1805 2811.70

M = 24 51.91 87.93 0.1717 4106.87

mCRC M = 8 39.64 89.51 0.1893 3745.30

M* = 12 41.44 92.35 0.1020 2221.24

M = 16 40.14 87.77 0.1060 2566.82

M = 24 38.82 87.85 0.2050 3758.87

Effectiveness of the Proposed Vision-Based Model Training. Table 3
indicates that employing LiTS pre-trained models significantly improves seg-
mentation performance. The patch size of 16 showed the best outcomes, with a
DSC of 44.94% for tumor segmentation. This indicates that training on a large
tumor volume dataset successfully learns tumor representations that improve
model performance on an mCRC dataset with small tumor volume mCRC.

Table 3. Comparison of the highest segmentation performance (DSC (%)) results using
the pre-trained model on the dataset with larger tumor volumes (LiTS) to the dataset
with smaller tumor volumes (mCRC).

Patch size Pre-trained model Non pre-trained model Improvement

Tumor Liver Tumor Liver Tumor Liver

8 42.2 93.97 39.64 89.51 2.56 4.46

12 44.46 94.42 41.44 92.35 3.02 2.07

16 (M*) 44.94 94.61 40.14 87.77 4.8 6.84

Figure 3 visually compares the segmentation performance between pre-
trained models on the LiTS dataset with larger tumor volumes to the mCRC
dataset with smaller tumor volumes both for tumor and liver organ.
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Fig. 3. The performance results for the tumor and liver organ segmentation tasks were
obtained using LiTS pre-trained models and mCRC itself for training. All pre-trained
models could improve performance, while the model with a patch size of 16 achieved
the best results, improving the tumor segmentation performance by 4.8%.

4 Discussion and Conclusion

This paper proposed a novel framework to find an optimal patch size for seman-
tic segmentation, particularly practical for small liver lesion segmentation. Based
on the volume size of metastasis, we introduced a procedure to calculate patch
size methodically in transformer-based segmentation models. In addition, the
optimal patch size computed by the proposed method showed the best perfor-
mance on large objects such as a liver organ. Furthermore, a significant part
of the small tumor information was missed when we trained on a large patch
size. However, when we pre-trained a model on our public dataset of LiTS with
larger tumors, the model could learn tumors representations with higher per-
formance. Consistent with our first novelty and in a transfer-learning approach,
the pre-trained model demonstrated its most effective performance in learning
representations and segmentation performance when it utilized the computed
optimal patch size defined by (7), M∗. The results of this study could be used
for further development in vision transformer-based networks with multi-patch
sizes. We also showed that our pipeline outperforms the ViT-based models in
terms of DSC for segmenting liver metastasis tumors and validated our results
on LiTS and mCRC datasets.
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Abstract. Lymphoma is a cancer of the lymphatic system, and it can
affect many organs throughout the body. Positron emission tomogra-
phy (PET)/computed tomography (CT) are primary imaging methods
to assess lymphoma types and monitor their treatment, where PET is
sensitive to identify lymphoma regions while CT preserves anatomical
structures. Combining PET and CT is thus useful for lymphoma seg-
mentation because it helps to identify lymphoma types and evaluate
treatment effects. However, lymphoma segmentation suffers many chal-
lenges, including substantial lymphoma size and shape variance, numer-
ous types, limited PET/CT data for lymphoma, and similar PET signals
with adjacent organs. To address these challenges, we integrate label
guidance, patch sampling, and negative data augmentation to achieve
multi-modal lymphoma segmentation. The training data consist of posi-
tive and negative patch samples. These samples are purposely extracted
from the original scans with the guidance of lymphoma labels. Neg-
ative samples are further supplemented from the PET/CT scans of
non-lymphoma patients to better discriminate lymphoma from adjacent
organs. The proposed method was validated on the PET/CT scans from
28 patients. Experimental results revealed that the Dice coefficient was
improved from 0.11 to 0.43 in comparison with a baseline method the
3D-residual U-Net method. Patch-based strategy is also computational
undemanding. These results suggest that the proposed method could be
an efficient means to segment lymphoma and possibly used for identifying
lymphoma types and assessing their treatment.
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1 Introduction

Lymphoma is a hematopoietic malignancy with numerous types, and it can
affect people of all ages [1]. Lymphoma treatment response is highly dependent
on the measurement of tumor burden, which often requires accurate identifi-
cation of lymphoma regions. Positron emission tomography (PET)/computed
tomography (CT) [2,4,8] are primary imaging methods to assess lymphoma and
monitor treatment response. Figure 1 illustrates an example of PET/CT scans
on lymphoma patient. Organs such as kidney and liver are well depicted, but
lymphoma is difficult to identify in the CT scan (Left Image). In contrast, the
standardized uptake value (SUV) is used to measure fluorodeoxyglucose positron
emission tomography uptake or glucose metabolism of the tumor regions in the
PET scan. For this reason, lymphoma is visually represented as bright regions in
the PET scan (yellow arrows) while organs are hard to delineate. These obser-
vations motivate us to develop a multi-modal lymphoma segmentation method
as it is useful for lymphoma treatment.

Fig. 1. Example of lymphoma distributed on the paired PET-CT scans. Left column:
organs are preserved in the CT scan; Center column: lymphoma is highlighted with
bright regions in the PET scan (yellow arrows), in which it is randomly spread to the
whole body; Right column: PET scan with overlayed lymphoma labels, from which we
can observe that lymphomas are outside organs (a1, a2), inside organs (b1, b2), small
spots (c1, c2). Kidneys (d1, d2) and bladder (e1, e2) could also have bright normal
regions similar to lymphoma. All these challenges are attributed to the difficulty of
lymphoma segmentation.

However, lymphoma segmentation is a challenging task because it can ran-
domly spread throughout the body (Fig. 1). It could be either outside organs
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(a1, a2) or inside organs (b1, b2). Lymphoma also has a wide range of shapes
and sizes, such as tiny spots (c1, c2). High SUV values at kidneys (d1, d2) and
bladder (e1, e2) are also similar to those at lymphoma. All these difficulties hin-
der lymphoma segmentation, and only a limited number of methods have been
developed for lymphoma segmentation. An ensemble model from DeepMedic
was developed for pediatric lymphoma PET/CT scans [11]. DenseX-Net was
also developed to segment lymphoma on the whole-body PET/CT scans [7].
However, the input of these methods is 2D slice, which potentially lose the spa-
tial coherence among slices. Another 3D segmentation method based on the
belief function was used to segment lymphoma [3], which integrated a feature
extraction module and an evidential segmentation (ES) module. Although it
achieved decent segmentation results, it has not considered the multi-scale and
patch-based framework to further extract the useful information from the details
of the PET and CT scans. This paper aims to develop a deep learning-based
approach to segment lymphoma on multimodal PET/CT scans. Our method
combines Label guided Patch sampling for Multi-Modalities, and negative sam-
ple augmentation (LPMM-nsa) to serve the segmentation purpose. The training
data are composed of a set of local image patches, and positive (green boxes,
Fig. 2), and negative patches (red boxes, Fig. 2) are extracted according to the
likelihood of lymphoma regions or non-lymphoma regions. In other words, pos-
itive samples are more likely from the lymphoma regions and negative samples
are from non-lymphoma regions, which could help to create high-quality data
for training. Negative samples are further enhanced from PET/CT scans of non-
lymphoma patients1 to better discriminate the lymphoma from organs. Since
our method is patch based, the proposed method is naturally computationally
undemanding and GPU memory efficient, which is suitable for clinical applica-
tions. A validation dataset with 28 lymphoma patients is also created to evaluate
the segmentation accuracy, in which the lymphoma size changes drastically, and
they are more close to the real clinical practice.

2 Method

For demonstration of the effectiveness of the proposed methods, we choose to use
the widely validated 3D-residual U-Net as the back-bone structure to develop
our own modules (Fig. 2). It is noted that the proposed methods can be extended
to other more advanced structure in simple plug-in fashion such as [3].

2.1 Notation and Formation

Let us first give some notations and formations to improve readability. Multi-
modal PET/CT dataset {Xi}n

i=1 where Xi is a sample in the dataset, which
channel-wise concatenates the PET and CT modalities. Training and testing
datasets are defined as {Xt

i}k
i=1 and {Xv

i }l
i=1 respectively. Their corresponding

1 https://clinicaltrials.gov/ct2/show/NCT01724749.

https://clinicaltrials.gov/ct2/show/NCT01724749
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Train
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Input
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Concatenate

3D-residual U-Net module

Fig. 2. Overview of the proposed lymphoma segmentation method based on 3D-
residual U-Net. Positive patch samples (green boxes) are extracted from the lymphoma
regions guided by their labels, and negative samples (red boxes) are created from non-
lymphoma regions. (Color figure online)

labels are, thus, given as {Yt
i}k

i=1 and {Yv
i }l

i=1. Each element y in Yt
i and

Yv
i belongs to the set {0, 1} denoting lymphoma and non-lymphoma regions,

respectively. Let us denote the 3D residual U-Net as E and the loss function as
L. Then the classic segmentation framework is as follows:

θ∗ = min
θ(E)

k∑

i=1

L(E(Xt
i),Y

t
i) (1)

where θ(E) stands for the trainable parameters of the network and θ∗ is the
optimized parameters of the network.

2.2 Label-Guided Patch Sampling

To further extract the useful information from the details of the PET/CT scans
and decrease the computing resource demanding issue of the huge 3D volumetric
data, we utilize the strategies of label-guided patch sampling. Training samples
are extracted based on the guidance of data label. The sampling function S()
extracts patches non-homogeneously in terms of probability of the presence of
lymphoma guided by the label map Yt

i because lymphoma regions and their
adjacent regions should be highlighted. The sampling process is thus given by:

{X̂t
ij}m

j=1 = S(Xt
i; f ,m,Yt

i) (2)

where the X̂t
ij represents the j-th patch sampled from the scan dataset Xt

i.
m indicates the number of patches. The f Bernoulli distribution to sample the
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images from the lymphoma and non-lymphoma regions according to the Yt
i :

f(y; p) =

{
p if y = 1,

1 − p if y = 0.
(3)

where the probability p is set as 0.6 in this work, and y = 1 if it is a positive
sample and y = 0 if it is a negative sample. Using patch sampling leads (1) to:

θ∗ = min
θ(E)

n,m∑

i=1,j=1

L(E(X̂t
ij), Ŷ

t
ij) (4)

where Ŷt
ij is the patch label of X̂t

ij .

2.3 Negative Sample Augmentation

Negative sample augmentation is another efficient strategy to enhance the train-
ing data. PET/CT scans of the non-lymphoma patients were used for discrimi-
nating organs from lymphoma. Therefore, we denote the extra patch dataset as
({X̂e

ij}s
j=1, {0}s

j=1), where the negative patches {X̂e
ij}s

j=1 are randomly sampled
from the extra negative samples {Xe

i }q
i=1. The symbol 0 means the all 0 label

tensor for the negative sample X̂e
ij . Finally, our framework is expressed as:

θ∗ = min
θ(E)

n,m∑

i=1,j=1

L(E(X̂t
ij), Ŷ

t
ij) +

q,s∑

i=1,j=1

L(E(X̂e
ij),0) (5)

Optimizing (5) yields the trained network E∗. During inference, the prediction
of the patches of a PET/CT scans is given by Ŷ∗

ij = E∗(X̂v
ij). These predicted

patches are stitched based on the aggregation function:

Y∗
i = G(X̂∗

ij ;α) (6)

where the α represents the parameters for the patch aggregation, which includes
patch size, overlap margin, and Y∗

i is the final lymphoma segmentation.
The ADAM optimizer [6] with weight decay is used for training. The learning

rate is set to 10−3. The proposed method is implemented in PyTorch. Both
training and testing are performed on the Nvidia DGX station equipped with a
Tesla A100 graphics card with 40 GB GPU memory.

2.4 Data Collection and Validation Methods

Twenty-two lymphoma patients underwent whole body (WB) PET and CT
examinations between 2010–2021 were collected, and Research Consortium for
Medical Image Analysis (RECOMIA) AI tool was used to initially label the lym-
phoma regions. These labeled results were then reviewed and manually corrected
by an experienced radiology residence. Labeled results were eventually confirmed
by a nuclear medicine physician, which generates our lymphoma labels.
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All twenty-two PET/CT scans were resampled to 500 × 500 × 850 pixels
through cropping and padding operations. The intensity is normalized to [0, 1]
using the window range of [−1000, 800] on the CT scan and the SUV window
range of [0, 40] inspired by [10] on PET scan. We empirically set the patch size
as 64 × 64 × 64. For the SUV computation, we use the SUV normalized by the
body weight (SUVbw) [5]2. More specifically, the computation method is listed
as follows:

SUV bw = (PET image P ixels) ∗ (weight in grams)/(injected dose) (7)

PET image pixels and injected dose are decay corrected to the start of scan.
After the conversion, the pet image pixels are in units (g/ml). Three metrics
are used for validation, including Dice score (dsc), average symmetric surface
distance (assd), and sensitivity. Two experiments were conducted in this work.
The first is the comparison between the baseline 3D residual U-Net and the
proposed method with different settings, including the proposed label guided
patch sampling for multi-modal data (LPMM), and its further improved version
with negative sample augmentation (LPMM-nsa). The second is the comparison
among single modality (PET or CT only) and multi-modal (PET/CT).

3 Experiments

The comparison of segmentation results using different methods is reported
in Table 1. It reveals that the combination of label guidance, patch sampling
and negative data augmentation (LPMM-nsa) achieves the highest segmenta-
tion accuracy. It also suggested that the input of multi-modal data is another
key component to improve the segmentation accuracy as the dice-coefficient is
only 0.11 using PET scan only. In contrast, the proposed method can achieve
0.43.

Comparison results in Fig. 3 also supported these findings because the base-
line 3D residual U-Net is prone to over-segmenting lymphoma (second row). In
contrast, over-segmentation is substantially reduced after using label guidance
and patch sampling. However, it could induce the issue of under-segmentation,
which was further improved by the addition of negative sample augmentation.
Figure 4 also proves the importance of multi-modal input. All lymphomas are
missed from the model trained on CT scans only because lymphoma is non-trivial
to identify on CT scans. Some lymphoma were segmented using the model with
PET scans only, and the segmentation results were vastly improved with both
modalities. Since CT and PET concentrate on the different parts of lymphoma
patients, they might contribute to each other to more accurately identify lym-
phoma regions.

To further demonstrate the advantage of our methods, we illustrate several
results from each multi-modal method in details in Fig. 3 from axial.

2 https://qibawiki.rsna.org/index.php/Standardized Uptake Value (SUV).

https://qibawiki.rsna.org/index.php/Standardized_Uptake_Value_(SUV)
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Table 1. Comparison of lymphoma segmentation results using different methods

dsc↑ assd↓ sensitivity↑
Single modality

3D-residual U-Net (Pet only) 0.11 29.8 0.3

Multiple modalities

3D-residual U-Net 0.18 41.4 0.82

LPMM (ours) 0.26 28.95 0.84

LPMM-nsa (ours) 0.43 19.12 0.82

Fig. 3. Comparison of lymphoma segmentation results using different segmentation
models. The three columns show slices from three scans respectively. First row: ground
truth; second row: segmentation results from the baseline 3D-residual U-Net method
where lymphomas are over-segmented; third row: results from the segmentation model
enhanced with label guided patch sampling where over-segmentation is substantially
reduced but with some lymphoma under-segmentated; fourth row: results with the
addition of negative sample augmentation, in which lymphomas are accurately seg-
mented.
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Fig. 4. Comparison of lymphoma segmentation using different image modalities. The
three columns show slices from three scans respectively. First row: ground truth, second
row: segmentation results using CT only, third row: results using PET only, and fourth
row: results using both CT and PET. No lymphomas are segmented on CT scans only,
and some lymphomas are found in the results with PET only. Almost all lymphomas
are segmented using both modalities

4 Conclusion and Future Work

In this paper, we developed a multi-modal lymphoma segmentation method on
PET/CT scans. Three key components were integrated to improve the segmen-
tation accuracy, including label guidance, patch sampling, and negative sample
augmentation. Label guidance helps to create effective training samples that are
more focused on both lymphoma and non-lymphoma regions. Patch samples not
only reduces computational cost, but also avoid over-segmentation from the base-
line 3D residual U-Net (third row, Fig. 3). Negative sample augmentation could
further reduce the issue of under-segmentation raised by path sampling (fourth
row, Fig. 3). Comparing with the segmentation models from single modal, multi-
modal is another important property to the segmentation accuracy (Fig. 4. The
validation results in Table 1 also proved that the proposed method utilized all
effective means to achieve the highest segmentation accuracy.
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In the future, we would like to explore more about the multiple modal-
ity fusion methods, such as graph-based methods [9], multimodal transform-
ers [12], as well as incorporate additional modal of clinical reports to continu-
ously improve segmentation accuracy. Nevertheless, the proposed method shows
the promising results to accurately segment lymphoma on PET/CT scans.
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