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Abstract. Agent societies generally aim at collective provision of ser-
vices (capabilities or resources) in a more efficient way than their agents
could individually. In particular, some agents may be more efficient than
the others in providing certain tasks. Thus, a task-agent assignment deci-
sion determines the overall performance of the society. The conventional
linear sum assignment problem handles the assignment of tasks to a soci-
ety of agents in a one-on-one manner. Such assignments typically only
consider efficiency in terms of the overall cost or benefit for the system.
However, an assignment strategy may be unfair if it does not explicitly
consider fairness. Therefore, the conventional mathematical models for
the task assignment problem should be rethought to explicitly consider
fairness in the allocation of the tasks to the agents. In this paper, we
study the utilitarian, egalitarian, and Nash social welfare in task assign-
ment and propose two new assignment models that balance efficiency and
fairness. Since fairness is a relatively abstract term that can be difficult
to quantify, we propose three new fairness measures based on equity and
equality and use them to compare the newly proposed models. Through
functional examples, we show that a reasonable trade off between effi-
ciency and fairness in task assignment can be found through the use of
the proposed models.

Keywords: Task assignment · Multi-agent systems · Fairness ·
Efficiency · Resource allocation · Multi-agent coordination

1 Introduction

In this work, we focus on societies formed by self-concerned individually rational
agents that share a common goal but have their own individual, possibly con-
flicting interests. They may share their capabilities and/or resources to carry out
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given tasks in a more efficient way and thus create synergies. Therefore, agents
are expected to obtain higher performance by collective action. Examples of such
societies are agriculture cooperatives, taxi, ride sharing, and hot meal delivery
platforms.

In particular, we study linear sum task assignment problem where a set of
tasks needs to be assigned to a set of agents in a one-on-one manner. We assume a
centralised decision making process (or algorithm) that is in charge of deciding
which agent is assigned to each task. An optimal solution, from a utilitarian
point of view, would be the assignment that produces the lowest overall cost (or
the highest benefit). However, this globally most efficient solution for the whole
system may create large differences among the individual assigned costs of the
participating agents (we refer to this as an “unfair” assignment). The perception
of an unfair task assignment solution may motivate unsatisfied agents to leave
the society, putting the survivability of the society at risk. Thus, assignment
decisions in such societies should be made not only based on minimising overall
assignment cost but should also consider social welfare and fairness.

The classical linear sum assignment problem is a largely studied, generally
computationally easy problem, for which exact solutions can be produced rela-
tively rapidly for even very large instances. However, to the best of our knowl-
edge, related work on balancing fairness and efficiency in task assignment is
scarce. Therefore, in this work, we explore the means of balancing the over-
all cost and fairness in task assignment in agent societies. These two aspects
are generally opposed, i.e., solution approaches focusing on cost minimisation
are likely to produce unfair assignments for some agents, while fair assignments
may be far from the minimum cost solution. In this paper, we study trade-off
between these two requirements and focus on finding task assignment solutions
that are as fair as possible while not overly penalising the overall system’s cost.
This implies finding efficient and fair assignments considering the distribution
of individual costs among agents.

The main contributions of this paper are twofold. First, we propose three
new fairness measures for a multi-agent system composed of self-concerned indi-
vidually rational agents: Egalitarian Fairness Measure (EFM), Relative All-to-
all Fairness (RAF), and Overall Relative Opportunity Cost Fairness (OROCF)
measure. Then, we present two new one-on-one task assignment models that
maximise social welfare of the system while balancing efficiency and fairness:
envy-free utilitarian model that uses the utilitarian social welfare function while
constraining the differences of the costs between agents and the Nash model
that optimises the Nash product of assigned tasks’ benefits or costs of individual
agents composing the system. We choose Nash social welfare due to its structure
(being product of costs) that explicitly balances efficiency and fairness.

The rest of the paper is organised as follows. In Sect. 2, we give an overview
of the state of the art. In Sect. 3, we give motivation for this work and define
the general problem of one-on-one task assignment. We propose new equality
and equity fairness measures in Sect. 4. The two new mathematical models for
efficient and fair task assignment are presented in Sect. 5. Section 6 presents
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simple functional tests and discusses how the presented models differ based on
the proposed fairness measures. In Sect. 7, we conclude the paper by giving an
overview of the results and discuss the potential of the new proposed models and
fairness measures to make a fairer task assignment. We also give lines of future
work to improve the current models and fairness measures.

2 State of the Art

The assignment of resources, capabilities or tasks in a multi-agent society
may vary when defining fairness and efficiency depending on mutual inter-
dependencies among agents and their relation with the society’s objectives (e.g.,
[4,7,21]).

Collaborative decision making considers a goal that is shared and owned
among all agents in a society, while cooperative decision making considers work-
ing toward a shared goal even though its ownership is not shared [25]. Thus,
cooperative decision making results are generally differentially beneficial to dif-
ferent agents [22], while collaboration is generally about equally sharing efforts,
costs and benefits. Collaborative multi-agent task allocation problem is studied
in, e.g., [16,19]. This problem has many different real world applications where
fairness can be a challenge. For example, in Spatial Crowdsourcing [32], there
is a need to minimise the payoff difference among workers while maximising
the average worker payoff. Similarly, in Rideshare Platforms, it was shown in
[24] that, during high-demand hours, lacking any consideration of fairness and
seeking only an optimal number of trips could lead to increased societal biases
in the choice of the clients. This problem is relevant for many other applica-
tions including manufacturing and scheduling, network routing and the fair and
efficient exploitation of Earth Observation Satellites (e.g., [7]).

There exist in the literature many kinds of fairness measures for different con-
texts, e.g., machine learning (e.g., [10]), neural networks (e.g., [26]) and algorithm
development (e.g., [13]). Of our interest are the fairness measures for the alloca-
tion of indivisible goods (e.g., [8]), and in more specific, the fairness measures for
one-on-one assignment of tasks in collaborative or cooperative multi-agent sys-
tems. The most known fairness measures for allocation of indivisible goods are
the maxmin of the utility of the agents in the system which maximises the utility
of the agent that contributes the least to the global utility of the system; there is
also proportionality which states that each agent should receive at least one nth

of the utility this agent would have received if it were alone. Max-min fairness is
generalised in the case of resource allocation for systems with different resource
types in [12] while max-min fairness, proportional fairness and balanced fairness
are compared in the setting of a communication network of processor-sharing
queues in [3].

The concept of fairness is studied as well in other contexts, like the multi-
winner voting problem, machine learning and in recommender systems (e.g.,
[31]), but also more generally in decision making (e.g., [28]). The importance of
the individual perception of fairness within a system in order to keep individ-
ual satisfaction high is emphasised in [29]. The potential contradiction between
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individual fairness and group fairness is studied in [2] in the Machine Learning
context. Some works study more generally the concepts of distributive justice,
equality and equity (e.g., [9]).

Related to the balance of efficiency and fairness are different social welfare
concepts. Their modelling and importance in enhancing the quality of task allo-
cation are studied in [7]. In this work, we study egalitarianism and utilitarianism
in this regard. Egalitarianism is a trend of thought in political philosophy that
favours equality among the individuals composing the society no matter what
their circumstances are (e.g., [11]). Utilitarianism, on the other hand, is a the-
ory of morality that advocates actions that maximise happiness or well-being
for all individuals while opposing to the actions that cause their unhappiness or
harm. When directed toward making social and economic decisions, a utilitarian
philosophy aims at the improvement of the society as a whole (e.g., [23]).

The Nash social welfare combines efficiency and fairness considerations. This
function, or variants of it, are studied in literature considering, e.g., fairness
in the ambulance location problem [14], and in allocating indivisible goods [6].
The multiagent resource allocation problem considering Nash social welfare (the
product of the utilities of the individual agents) is studied in [27].

In resource allocation, there can be agents desiring tasks (resources) more
than others, or there can even be agents desiring tasks given to other agents,
creating envy in the system (e.g., [7]). Envy-freeness criterion implies that an
allocation should leave no agent envious of the other (e.g., [5]). However, it is
not always enough to achieve envy-freeness for a fair solution (e.g., [1,15,20]).

3 Motivation and Problem Definition

Most of the State of the art literature on task assignment generally focuses on
the efficiency of the assignment and does not consider fairness in the process,
thus optimising only the system’s overall general assignment cost or profit (e.g.,
time, distance, monetary value, etc.). This strategy is equivalent to optimising
utilitarian social welfare function, a concept from welfare economy that sums the
utility of each individual in order to obtain society’s overall welfare (see, e.g.,
[7,30]). All agents are treated the same, regardless of their initial level of utility
or cost distribution among the tasks. This strategy is admissible in case of a
single decision maker, but might be unacceptable when multiple self-concerned
and individually rational agents must decide on the assignment of tasks.

Let us introduce a simple example showing how unfair a task assignment opti-
mising utilitarian social welfare function can be. Let us consider 3 self-concerned,
individually rational agents (a1, a2, a3) that need to be assigned to a set of 3
tasks (k1, k2, k3) in a one-on-one manner and vice versa. The cost matrix con-
taining the assignment costs for these agents and tasks is shown in Table 1a.

By applying the conventional (linear sum) task assignment model (i.e., the
Utilitarian model) that optimises the overall cost of the system without consid-
ering fairness in the assignment (see, e.g., [17,19]), we might get the assignments
(called solution s1) marked in bold in Table 1b. The overall minimum assignment
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Table 1. Example of a cost matrix and different one-on-one task assignment solutions
with minimum overall cost (in bold)

(a) Cost Matrix

k1 k2 k3

a1 50 60 70

a2 30 40 50

a3 10 50 30

(b) Solution s1

k1 k2 k3

a1 50 60 70

a2 30 40 50

a3 10 50 30

(c) Solution s2

k1 k2 k3

a1 50 60 70

a2 30 40 50

a3 10 50 30

(d) Solution s3

k1 k2 k3

a1 50 60 70

a2 30 40 50

a3 10 50 30

cost found by this model is 120. However, if we focus on its cost distribution on
individual agents, we see large discrepancies. Indeed, the cost of agent a1 is
60, while the cost of a2 is only 30. Thus, a1 is charged twice more than a2.
In Table 1d (i.e., solution s3), this difference is even larger resulting in 7 times
larger cost of the worst-off in respect to the best-off agent. Generally, an upper
bound on the difference in the assignment cost is the maximum value in a given
cost matrix. In centralised systems, where agents are owned and controlled by a
single decision maker, this would not cause any problem. However, in the case
of decentralised systems composed of self-concerned and individually rational
agents, such an unfair solution might result in the worst-off agents leaving the
system due to the lack of fairness in the solution.

Table 1c shows a fairer solution (called s2) where the costs of the agents
are as close as possible, thus minimising the envy of agents. This is an ideal
situation in regard to fairness in this case where all agents are assigned tasks of
similar costs. Notice that, in this case, we didn’t have to sacrifice efficiency to
achieve this situation. In case of repetitive task allocations, the assignments can
be altered to further facilitate balance in the accumulated assignment costs.

Problem Definition. Given are a set of agents a ∈ A and a set of tasks k ∈ K
that form a weighted complete bipartite graph G = (A

⋃
K,E) with edge set

E = A × K and with given edge weights cak on each edge (a, k) ∈ E, where cak
is the cost of assigning task k ∈ K to agent a ∈ A, ∀a ∈ A, k ∈ K. W.l.o.g, we
assume that the cardinality of the sets is equal, i.e., |A| = |K|. In the case of
unequal cardinality, we add a sufficient number of dummy vertices and assume
that cak = 0 where a ∈ A or k ∈ K are dummy vertices. The objective is to
assign agents a ∈ A to tasks k ∈ K in a one-on-one manner and, therefore,
find a perfect matching among vertices in A and vertices in K considering both
assignment efficiency and fairness. An edge (a, k) is matched if its (two) extreme
vertices a ∈ A and k ∈ K are mutually matched, and a matching is perfect if
every vertex of A is matched (assigned) exactly to one vertex of K, and vice
versa. The following is the mathematical formulation of these constraints.

∑

k∈K

xak = 1,∀a ∈ A (1)
∑

a∈A

xak = 1,∀k ∈ K (2)
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xak ∈ {0, 1},∀a ∈ A,∀k ∈ K (3)

where xak is a binary decision variable equal to 1 if agent a ∈ A is assigned
to task k ∈ K, and zero otherwise. Constraints (1) and (2) assure that there
is one-on-one assignment for each agent a ∈ A and task k ∈ K, respectively.
Constraints (3) fix the ranges of the decision variables.

4 Proposed Fairness Measures

In this section, we introduce different fairness measures for quantifying the bal-
ance between fairness and efficiency in task assignment from the egalitarian and
equity point of view. All the fairness measures are fractions ranging between 0
and 1. We avoided the division by 0 in some extreme cases by adding a very
small number ε (e.g., ε = 1e−10) to both the numerator and the denominator of
these fractions.

Egalitarian Fairness Measure. (EFM) focuses on the assignment cost faced
by the worst-off agent (i.e., the agent with the highest assignment cost in a
given feasible solution). Given the assignments xsol

ak , with a ∈ A and k ∈ K, of a
feasible solution sol, EFM is computed as follows:

EFM(sol) =
cmax − cwo

sol + ε

cmax − cwo
min + ε

(4)

where cmax = maxa∈A,k∈K{cak} is the maximum value in the cost matrix,
cwo
sol = maxa∈A{∑

k∈K cakx
sol
ak } is the cost paid by the worst-off agent in the

given solution, and cwo
min is the minimum cost that the worst-off agent could pay.

In particular, cwo
min is the optimal solution of the given mathematical problem:

cwo
min = min λ (5)

s.t. (1)–(3) and
∑

k∈K

cakxak ≤ λ,∀a ∈ A (6)

λ ∈ � (7)

where Constraints (6) impose that the cost (λ) paid by the worst-off agent must
be not less than the cost paid by any agent, and Constraints (7) fix the range of
the additional variable λ. When the worst-off assigned cost cwo

sol is equal to cmax,
EFM(sol) will equal zero (ignoring ε). On the other hand, when cwo

sol is equal to
cwo
min, EFM(sol) will equal one; moreover, this also occurs when there exists an

agent a ∈ A such that cak = cmax,∀k ∈ K.
For the cost matrix given in Table 1a, where cmax = 70 and cwo

min = 50,
we calculate the EFM(sol) for each solution reported in Tables 1b–1d. All the
solutions reported in Table 1, have minimum overall assignment cost equal to
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120, while the values of cwo
sol are cwo

s1 = 60, cwo
s2 = 50, cwo

s3 = 70 for the solutions
reported in Table 1b, Table 1c, and Table 1d, respectively. EFM(sol) value for
these solutions are: EFM(s1) = 70−60

70−50 = 0.5, EFM(s2) = 70−50
70−50 = 1, and

EFM(s3) = 70−70
70−50 = 0.

According to EFM measure, solution s2 is the fairest one. Note that the
increase in EFM value in solution s2 corresponds to a distribution of the costs
that leaves the worst-off agent better off than in s1, and that solution s3 leaves
the worst-off agent with the worst possible cost. Note that, generally, there may
be multiple such distributions.

Relative All-to-All Fairness. (RAF) evaluates fairness at a group level by
taking into account each agent’s perspective in comparison with the others. The
measure is based on the sum between the squared differences of the assignment
costs of each agent and the costs of the others, as seen in Eq. (8).

wsol =
∑

a∈A

∑

a′∈A|a′>a

(
∑

k∈K
cakx

sol
ak − ca′kx

sol
a′k)

2, (8)

Then, relative all-to-all fairness is computed as follows:

RAF (sol) =
wmax − wsol + ε

wmax − wmin + ε
, (9)

where wmax and wmin represent the maximum and the minimum value of Eq. (8)
given Constraints (1)–(3).

For the cost matrix given in Table 1a, the two components of RAF that are
independent of the assignment solution are wmax = 5400 and wmin = 0, related
to solutions smax, with xsmax

13 = xsmax
22 = xsmax

31 = 1, and smin, with xsmin
11 =

xsmin
23 = xsmin

32 = 1, respectively. The values wsol for the solutions reported
in Table 1b, Table 1c and 1d are ws1 = 1800, ws2 = 600, and ws3 = 5400,
respectively. Related RAF values are: RAF (s1) = 5400−1800

5400−0 = 0.67, RAF (s2) =
5400−600
5400−0 = 0.89, and RAF (s3) = 5400−5400

5400−0 = 0.
Also according to the RAF measure, solution s2 is the fairest one and the

order of the three solutions is the same as for EFM. This is not surprising as
both measures evaluate equality in a solution. However, s2 is not the absolute
fairest solution which, with respect to this indicator, is x11 = x23 = x32 = 1
where all the agents pay the same cost; in this case the RAF value is equal to
1. This is also not surprising as this particular measure considers not only the
worst-off agent, but all of them, therefore making it less likely that one of the
solutions with minimum cost also has the highest fairness value.

Overall Relative Opportunity Cost Fairness. (OROCF) focuses on achiev-
ing equity among the agents by taking into account the missed opportunities in
terms of the assignment cost for each agent. The opportunity cost (e.g., [18])
is the concept in microeconomics of lost benefit that would have been derived
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by an agent from an option not chosen. As the reference value, we consider a
task of the minimum cost and normalise the difference in the cost value between
the assigned task and the best-off task (the task with minimum cost) over the
amplitude of costs for each agent, as seen in Eq. (10).

ysol =
∑

a∈A

∑
k∈K cakx

sol
ak − mink∈K {cak} + ε

maxk∈K {cak} − mink∈K {cak} + ε
(10)

OROCF (sol) =
ymax − ysol + ε

ymax − ymin + ε
, (11)

where ymax, ymin represents the maximum and the minimum value of Eq. (10)
given Constraints (1)–(3).

The values ysol for the solutions reported in Tables 1b, 1c and 1d are ys1 = 1,
ys2 = 1, and ys3 = 1.5, respectively. For the cost matrix given in Table 1a, the
two components of OROCF that are independent of the assignment solution
are ymax = 2 for xsmax

13 = xsmax
21 = xsmax

32 = 1 and ymin = 1 for xsmin
11 =

xsmin
22 = xsmin

33 = 1. Related OROCF values are: OROCF (s1) = 2−1
2−1 = 1,

OROCF (s2) = 2−1
2−1 = 1, and OROCF (s3) = 2−1.5

2−1 = 0.5.
Note that OROCF value is the highest both for s1 and s2, meaning that these

solutions offer the lowest highest opportunity cost for the sum of all agents. The
reader can verify that the solution x11 = x23 = x32 = 1 would be the worst
choice for agents a2 and a3 and would give a value of OROCF equal to 0.

5 Proposed Models Considering Fairness and Efficiency

In this section, we propose new models that mitigate the equity issues posed by
the classical linear sum assignment model (e.g., [4]) and achieve a solution that
is as fair as possible while sacrificing as little as possible of the overall system’s
efficiency.

Nash Model. The proposed Nash Model is inspired by the Nash social welfare
function, a well studied social welfare function in which the goal is to maximize
the product of the utility functions of the agents composing the system. The
proposed model is given next:

min
∏

a∈A

∑

k∈K

cakxak (12)

s.t. (1)–(3). Since Eq. (12) is a nonlinear objective function, solving the above
problem is computationally expensive. Thus, we propose next its linearised
equivalent, which is possible due to the one-on-one assignment constraints (1)–
(3).

max
∑

a∈A

∑

k∈K

log(M − cak)xak (13)

s.t. (1)–(3), where M > maxk∈K,a∈A {cak}.
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Envy-Free Utilitarian Model. This model focuses both on efficiency and
fairness. We introduce the fairness variable fu to ensure that all the costs for
each agent are inside a certain interval that shrinks as fu becomes smaller. The
model is defined as follows:

min αfu + (1 − α)
∑

k∈K

∑
a∈A cakxak

|A| (14)

s.t. (1)–(3), and

∑

k∈K

cakxak −
∑

k∈K

∑
a∈A cakxak

|A| ≤ fu,∀a ∈ A (15)

fu ∈ � (16)

Constraints (15) guarantee that, for each agent, the difference between the
cost of its assigned task and the average of the costs of the assigned tasks for all
the agents is less than the value fu. Constraint (16) fixes the range of variable
fu. Parameter α ranges between 0 and 1 and is used to weigh the fairness and
the average cost paid by an agent in (14).

6 Functional Tests

To demonstrate the difference between the Nash model and the Envy-free Util-
itarian model, we randomly generated three cost matrices (Table 2) with costs
ranging from 1 to 1000. The models were solved for each matrix using IBM ILOG
CPLEX Optimization Studio 20.0.1.

Table 2. Example cost matrices.

(a) Functional test 1

k1 k2 k3

a1 382 816 366

a2 846 544 175

a3 578 824 526

(b) Functional test 2

k1 k2 k3

a1 450 895 358

a2 856 233 449

a3 890 672 976

(c) Functional test 3

k1 k2 k3

a1 683 170 699

a2 943 364 894

a3 557 741 127

To compare the efficiency of the solutions obtained using the models pre-
sented in Sect. 5, we calculate the following normalised efficiency indicator
(Eff):

Eff(sol) =
zmax − zsol + ε

zmax − zmin + ε
(17)

where zsol =
∑

k∈K

∑
a∈A cakx

sol
ak with xsol

ak being the solution returned by the
considered model. The values zmax and zmin are, respectively, the maximum and
the minimum values of

∑
k∈K

∑
a∈A cakxak given Constraints (1)–(3).
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Table 3. Results and comparison

Functional test 1

Model Eff EFM RAF OROCF

Nash 0.91 1 1 1

Envy-free (α = 0) 1 0.07 0 0.68

Envy-free (α ≥ 0.5) 0.91 1 1 1

Functional test 2

Model Eff EFM RAF OROCF

Nash 0.93 1 0.91 1

Envy-free (α = 0) 1 0.28 0.17 0.92

Envy-free (α = 0.5) 0.93 1 0.91 1

Envy-free (α ≥ 0.9) 0 0 1 0

Functional test 3

Model Eff EFM RAF OROCF

Nash 0.93 1 0.73 1

Envy-free (α = 0) 1 0 0 0.99

Envy-free (α = 0.5) 0.93 1 0.73 1

Envy-free (α = 0.7) 0.59 0.94 0.93 0.64

Envy-free (α ≥ 0.9) 0.05 0.19 1 0.06

Table 3 shows the results of our experiments with all indicators and their
values depending on the model used.

The case when α = 0 corresponds to the case when we are optimising the
global cost only (utilitarian social welfare function). We get very low values of
fairness for this case according to our prior assumptions. It is interesting to
notice similarities when we set α value to 0.5. Indeed, in that case, the Envy-free
Utilitarian model and the Nash model have the same behaviour and give us the
same solutions. These solutions for α = 0.5 are ideal for the fairness indicators
EFM and OROCF in our three tests, while RAF also increases significantly.
Moreover, the efficiency (Eff) is greater than 0.9. Equality and equity can be
improved without significant decrease in efficiency. We notice in tests 2 and 3
that, generally, the higher the value of α, the lower the overall system’s efficiency.
This shows that striving for too much equality can be highly detrimental to the
system’s efficiency and even equity. The results for the cost matrix in Table 1a
also support this claim in case α = 1. Here, allocation x11 = x23 = x32 = 1 is an
egalitarian allocation that decreases efficiency and equity simultaneously since
agents a2 and a3 are allocated to their worst-off tasks and the overall allocation
cost is 150 instead of the minimum cost of 120.
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7 Conclusions

In this paper, we focused on balancing efficiency and fairness in one-on-one multi-
agent task assignment. This problem is of high importance in agent societies com-
posed of individually rational and self-concerned agents where an agent decides
to participate only if it brings an individual benefit that is at least as good as
when not participating. In this regard, we studied the utilitarian, egalitarian and
Nash social welfare, the concepts from economics and philosophy that may be
applied in such multi-agent societies to tackle this challenge. Since quantitative
fairness measures for task assignment are scarce or missing, we proposed three
new fairness measures: egalitarian fairness measure, all-to-all relative fairness
measure, and overall relative opportunity cost fairness measure. We proposed
the Nash model for task assignment that minimises the product of the costs of
each agent, considering one-on-one assignment constraints, and the Envy-Free
Utilitarian model which is a model combining the ideas of envy-freeness, equality
and the utilitarian social welfare measure. We concluded with 3 functional tests
showing that by using our proposed two models, we can achieve a better fairness
with little sacrifice in the overall efficiency, and that our Envy-free Utilitarian
model can be adjusted depending on the need for fairness.

The fairness measures presented should be computed only for non-dummy
vertices to ensure that these measures can still reach either the value of 0 or 1
in practice. In the future, we will further study fairness measures, particularly
one encompassing both equality and equity to better support decision-making
in collaborative and cooperative open societies where agents can enter and leave
as they wish. Moreover, we will focus on three-index assignment problem where
each agent needs a tool to perform a task. The assignment here is also performed
in a one-on-one manner. Similarly, crafting a multi-objective model which con-
siders equality, equity and fairness for such a problem is a challenge worth facing
henceforth.
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