
Prediction Markets, Automated Market
Makers, and Decentralized Finance
(DeFi)

Yongge Wang

Abstract This paper compares mathematical models for automated market mak-
ers (AMM) including logarithmic market scoring rule (LMSR), liquidity sensitive
LMSR (LS-LMSR), constant product/mean/sum, and others. It is shown that though
LMSRmay not be a good model for Decentralized Finance (DeFi) applications, LS-
LMSR has several advantages over constant product/mean based AMMs. This paper
proposes and analyzes constant ellipse based cost functions for AMMs. The pro-
posed cost functions are computationally efficient (only requires multiplication and
square root calculation) and have certain advantages over widely deployed constant
product cost functions. For example, the proposed market makers are more robust
against slippage based front running attacks. In addition to the theoretical advantages
of constant ellipse based cost functions, our implementation shows that if the model
is used as a cryptographic property swap tool over Ethereum blockchain, it saves up
to 46.88% gas cost against Uniswap V2 and saves up to 184.29% gas cost against
Uniswap V3 which has been launched in April 2021. The source codes related to
this paper are available at https://github.com/coinswapapp and the prototype of the
proposed AMM is available at http://coinswapapp.io/.

Keywords Decentralized finance · Market scoring rules · Constant ellipse

1 Introduction

Decentralized finance (DeFi or open finance) is implemented through smart contracts
(DApps) which are stored on a public distributed ledger (such as a blockchain) and
can be activated to automate execution of financial instruments and digital assets.
The immutable property of blockchains guarantees that these DApps are also tamper-
proof and the content could be publicly audited.

Y. Wang (B)
UNC Charlotte, Charlotte, NC 28223, USA
e-mail: yonwang@uncc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_12

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_12&domain=pdf
http://orcid.org/0000-0002-1403-2922
https://github.com/coinswapapp
http://coinswapapp.io/
mailto:yonwang@uncc.edu
https://doi.org/10.1007/978-3-031-18679-0_12

214 Y. Wang

DeFi applications range from automated markets (e.g., Uniswap [11] and Curve
Finance), price oracles (e.g., Chainlink), to financial derivatives and many others.
Most DeFi applications (e.g., Bancor [6] and Compound [7]) enable smart token
transaction instantly by using price equilibriummechanisms based on total availabil-
ity supply (or called bonding curves), though still some of DeFi applications do not
carry out instant transaction. In a blockchain system, traders submit their transactions
to the entire blockchain network (e.g., stored in the mempool), a miner in the sys-
tem collects these transactions, validates them, and puts them into a valid block that
is eventually added to an immutable chain of blocks. These submitted transactions
(e.g., the mempool for Ethereum could be viewed at https://etherscan.io/txsPending)
are visible to all nodes. A malicious node (the miner itself could be malicious) may
construct his/her own malicious transactions based on these observed transactions
and insert her malicious transactions before or after the observed transactions by
including appropriate gas costs (see, e.g., [14]). These malicious transactions take
Miner Extractable Value (MEV) profit with minimal cost. With their own experience
of failing to recover some tokens of 12K USD value in a Uniswap V2 pair (these
tokens were recovered by a front running bot), Robinson and Konstantopoulos [10]
describe the Ethereum blockchain as a Dark Forest. The flashbots website (https://
explore.flashbots.net/) shows that the total extracted MEV by front running bots in
the 24 hours of May 18, 2021 is around 8.6M USD. In addition to the front running
attacks, it is also common to mount attacks against DeFi price oracles. In the DeFi
market, a lender (a smart contract) normally queries an oracle to determine the fair
market value (FMV) of the borrower’s collateral.

This paper analyzes existing mathematical models for AMMs and discusses their
applicability to blockchain based DeFi applications. One important consideration
for the discussion is to compare the model resistance to front running attacks. Our
analysis shows that though LS-LMSR is the best among existing models, it may not
fit the blockchain DeFi application due to the following two reasons:

• LS-LMSR involves complicated computation and it is not gas-efficient for DeFi
implementations.

• The cost function curve for LS-LMSR market is concave. In order to reflect the
DeFi market principle of supply and demand, it is expected that the cost function
curve should be convex.

Constant product based Uniswap AMM has been very successful as a DeFi swap-
ping application. However, our analysis shows that Uniswap V2 [11] has a high
slippage (in particular, at the two ends) and may not be a best choice for several
applications. This paper proposes a constant ellipse based AMM model. It achieves
the same model property as LS-LMSR but its cost function curve is convex and
it is significantly gas-efficient for DeFi applications. At the same time, it reduces
the sharp price flunctuation challenges by Uniswap V2. We have implemented and
deployed a prototype CoinSwap based on our constant ellipse AMM during March
2021 (see http://coinswapapp.io/) and released a technical report [13] of this paper
during September 2020. The CoinSwap has a controllable slippage mechanism and
has a mechanisms for Initial Coin Offer (ICO). It should be noted that Uniswap

https://etherscan.io/txsPending
https://explore.flashbots.net/
https://explore.flashbots.net/
http://coinswapapp.io/

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 215

team was aware of their Uniswap V2 disadvantages that we have just mentioned
and, independent of this paper, proposed the Uniswap V3 [12] (released during April
2021). UniswapV3 tried to address this challenge by using a shifted constant product
equation (x + α)(y + β) = K .Though this shifted equation inUniswapV3 resolves
some of the challenges that constant ellipse AMM has addressed and it can imple-
ment some of the funcationalities in CoinSwap (e.g., ICO and reduced slippage), it
still does not have a smooth price flunctuation at two ends. Furthermore, the experi-
mental data from CoinSwap project shows that Uniswap V3 has significant high gas
costs than CoinSwap (to achieve the same functionality).

The structure of the paper is as follows. Section 2 gives an introduction to pre-
diction markets and analyzes various models for automated market makers (AMM).
Section 3 proposes a new constant ellipse market maker model. Section 4 compares
various cost functions from aspects of the principle of supply and demand, coin liq-
uidity, and token price fluctuation. Section 5 compares price amplitude for various
cost functions and Sect. 6 discusses the implementation details.

2 Existing Models for Prediction Market Makers

2.1 Prediction Market and Market Makers

It is commonly believed that combined information/knowledge of all traders are
incorporated into stock prices immediately (Fama [2] includes this as one of his “effi-
cient market hypotheses”). For example, these information may be used by traders to
hedge risks in financial markets such as stock and commodities future markets. With
aggregated information from all sources, speculators who seek to “buy low and sell
high” can take profit by predicting future prices from current prices and aggregated
information. Inspired by these research, the concept of “information market” was
introduced to investigate the common principles in information aggregation. Among
various approaches to information market, a prediction market is an exchange-traded
market for the purpose of eliciting aggregating beliefs over an unknown future out-
come of a given event. As an example, in a horse racewith n horses, onemay purchase
a security of the form “horse A beats horse B”. This security pays off $1 if horse
A beats horse B and $0 otherwise. Alternatively, one may purchase other securities
such as “horse A finishes at a position in S” where S is a subset of {1, . . . , n}. For
the horse race event, the outcome space consists of the n! possible permutations of
the n horses.

For prediction markets with a huge outcome space, the continuous double-sided
auction (where the market maker keeps an order book that tracks bids and asks)
may fall victim of the thin-market problem. Firstly, in order to trade, traders need to
coordinate on what or when they will trade. If there are significantly less participants
than the size of the outcome space, the traders may only expect substantial trading
activities in a small set of assets and many assets could not find trades at all. Thus the

216 Y. Wang

market has a low to poor liquidity. Secondly, if a single participant knows something
about an event while others know nothing about this information, this person may
choose not to release this information at all or only release this information gradually.
This could be justified as follows. If any release of this information (e.g., a trade based
on this information) is a signal to other participants that results in belief revision
discouraging trade, the person may choose not to release the information (e.g., not
to make the trade at all). On the other hand, this person may also choose to leak the
information into the market gradually over time to obtain a greater profit. The second
challenge for the standard information market is due to the irrational participation
problem where a rational participant may choose not to make any speculative trades
with others (thus not to reveal his private information) after hedging his risks derived
from his private information.

2.2 Logarithmic Market Scoring Rules (LMSR)

Market scoring rules are commonly used to overcome the thin market and the irra-
tional participation problems discussed in the preceding section. Market scoring rule
based automated market makers (AMM) implicitly/explicitly maintain prices for all
assets at certain prices and are willing to trade on every assets. In recent years, Han-
son’s logarithmic market scoring rules (LMSR) AMM [4, 5] has become the de facto
AMM mechanisms for prediction markets.

Let X be a random variable with a finite outcome space Ω . Let p be a reported
probability estimate for the random variable X . That is,

∑
ω∈Ω p(ω) = 1. In order to

study rational behavior (decision) with fair fees, Good [3] defined a reward function
with the logarithmic market scoring rule (LMSR) as follows:

{sω(p) = b ln(2 · p(ω))} (1)

where b > 0 is a constant. A participant in the market may choose to change the cur-
rent probability estimate p1 to a new estimate p2. This participant will be rewarded
sω(p2) − sω(p1) if the outcome ω happens. Thus the participant would like to max-
imize his expected value (profit)

S(p1,p2) =
∑

ω∈Ω

p2(ω) (sω(p2) − sω(p1)) = b
∑

ω∈Ω

p2(ω) ln
p2(ω)

p1(ω)
= bD(p2||p1)

(2)
by honestly reporting his believed probability estimate, where D(p2||p1) is the rela-
tive entropy or Kullback Leibler distance between the two probabilities p2 and p1. An
LMSR market can be considered as a sequence of logarithmic scoring rules where
the market maker (that is, the patron) pays the last participant and receives payment
from the first participant.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 217

Equivalently, an LMSR market can be interpreted as a market maker offering
|Ω| securities where each security corresponds to an outcome and pays $1 if the
outcome is realized [4]. In particular, changing the market probability of ω ∈ Ω to
a value p(ω) is equivalent to buying the security for ω until the market price of the
security reaches p(ω). As an example for the decentralized financial (DeFi) AMM
on blockchains, assume that the market maker offers n categories of tokens. Let
q = (q1, . . . , qn)where qi represents the number of outstanding tokens for the token
category i . Themarket maker keeps track of the cost functionC(q) = b ln

∑n
i=1 e

qi /b

and a price function for each token

Pi (q) = ∂C(q)

∂qi
= eqi /b

∑n
j=1 e

q j /b
(3)

It should be noted that the equation (3) is a generalized inverse of the scoring rule
function (1). The cost function captures the amount of total assets wagered in the
market where C(q0) is the market maker’s maximum subsidy to the market. The
price function Pi (q) gives the current cost of buying an infinitely small quantity of
the category i token. If a trader wants to change the number of outstanding shares
from q1 to q2, the trader needs to pay the cost difference C(q2) − C(q1).

Next we use an example to show how to design AMMs using LMSR. Assume
that b = 1 and the patron sets up an automated market marker q0 = (1000, 1000) by
depositing 1000 coins of token A and 1000 coins of token B. The initial market cost
isC(q0) = ln

(
e1000 + e1000

) = 1000.693147. The instantaneous prices for a coin of

tokens are PA(q0) = e1000

e1000+e1000 = 0.5 and PB(q0) = e1000

e1000+e1000 = 0.5. If this AMM is

used as a price oracle, then one coin of token A equals PA(q0)
PB (q0)

= 1 coin of token B.
If a trader uses 0.689772 coins of token B to buy 5 coins of token A from market
q0, then the market moves to a state q1 = (995, 1000.689772) with a total market
cost C(q1) = 1000.693147 = C(q0). The instantaneous prices for a coin of tokens
in q1 are PA(q1) = 0.003368975243 and PB(q1) = 295.8261646. Now a trader can
use 0.0033698 coins of token B to purchase 995 coins of token A from the AMM q1
with a resulting market maker state q2 = (0, 1000.693147) and a total market cost
C(q2) = 1000.693147 = C(q0).

The above example shows that LMSR based AMM works well only when the
outstanding shares of the tokens are evenly distributed (that is, close to 50/50). When
the outstanding shares of the tokens are not evenly distributed, a trader can purchase
all coins of the tokenwith lesser outstanding shares and let the price ratio PA(q)

PB (q)
change

to an arbitrary value with a negligible cost. This observation is further justified by the
LMSRcost function curves inFig. 1.Thefirst plot is for the cost functionC(x, y, z) =
100 with three tokens and the second plot is for the cost functionC(x, y) = 100 with
two tokens. The second plot shows that the price for each token fluctuates smoothly
only in a tiny part (the upper-right corner) of the curve with evenly distributed token
shares. Outside of this part, the tangent line becomes vertical or horizontal. That is,
one can use a tiny amount of one token to purchase all outstanding coins of the other

218 Y. Wang

Fig. 1 LMSR market maker cost function curves for C(x, y, z) = 100 and C(x, y) = 100

token in the market maker. In a conclusion, LMSR based AMMs may not be a good
solution for DeFi applications.

In the traditional prediction market, the three desired properties for a pricing rule
to have include: path independence, translation invariance, and liquidity sensitivity.
Path independencemeans that if themarket moves from one state to another state, the
payment/cost is independent of the paths that it moves. If path independence is not
achieved, the adversary trader may place a series of transactions along a calculated
path and obtain profit without any risk. Thus this is an essential property that needs
to be satisfied. An AMMwith a cost function generally achieves path independence.
Thus all models that we will analyze in this paper (including our proposed constant
ellipse AMM model) achieve path independence. On the other hand, the translation
invariance guarantees that no trader can arbitrage the market maker without risk by
taking on a guaranteed payout for less than the payout. As an example„ a translation
invariant pricing rule preserves the equality between the price of an event and the
probability of that event occurring. Translation invariant rules also guarantee the
“law of one price” which says that if two bets offer the same payouts in all states,
they will have the same price. Liquid sensitivity property requries that a market
maker should adjust the elasticity of their pricing response based on the volume of
activity in the market. For example, as a generally marketing practice, this property
requires that a fixed-size investment moves prices less in thick (liquid) markets than
in thin (illiquid) markets. Though liquid sensitivity is a nice property to be achieved,
a healthy market maker should not be too liquid sensitive (in our later examples, we
show that Uniswap V2 is TOO liquid sentitive).

Definition 1 (see, e.g., Othman et al [9]) For a pricing rule P ,

1. P is path independent if the value of line integral (cost) between any two quantity
vectors depends only on those quantity vectors, and not on the path between them.

2. P is translation invariant if
∑

i Pi (q) = 1 for all valid market state q.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 219

3. P is liquidity insensitive if Pi (q + (α, . . . , α)) = Pi (q) for all valid market state
q and α. P is liquidity sensitive if it is not liquidity insensitive.

Othman et al [9] showed that no market maker can satisfy all three of the desired
properties at the same time. Furthermore, Othman et al [9] showed that LMSR sat-
isfies translation invariance and path independence though not liquidity sensitivity.
In practice, the patron would prefer liquidity sensitity instead of absolute transla-
tion invariance. By relaxing the translation invariance to

∑
i Pi (q) ≥ 1, Othman

et al [9] proposed the Liquidity-Sensitive LMSR market. In particular, LS-LMSR
changes the constant b in the LMSR formulas to b(q) = α

∑
i qi where α is a con-

stant and requiring the cost function to always move forward in obligation space.
Specifically, for q = (q1, . . . , qn), the market maker keeps track of the cost function
C(q) = b(q) ln

∑n
i=1 e

qi /b(q) and a price function for each token

Pi (q) = α ln

⎛

⎝
n∑

j=1

eq j /b(q)

⎞

⎠ + eqi /b(q)
∑n

j=1 q j − ∑n
j=1 q j eq j /b(q)

∑n
j=1 q j

∑n
j=1 e

q j /b(q)
(4)

Furthermore, in order to always move forward in obligation space, we need to revise
the cost that a trader should pay. In the proposed “no selling” approach, assume that
the market is at state q1 and the trader tries to impose an obligation qδ = (q ′

1, . . . , q
′
n)

to the market with q̄δ = mini q ′
i < 0. That is, the trader puts q ′

i coins of token i to
the market if q ′

i ≥ 0 and receives −q ′
i coins of token i from the market if q ′

i < 0. Let
q̄δ = (−q̄δ, . . . ,−q̄δ). Then the trader should pay C(q + qδ + q̄δ) + q̄δ − C(q) and
themarketmoves to the new stateq + qδ + q̄δ . In the proposed “covered short selling
approach”, the market moves in the same way as LMSR market except that if the
resulting market q′ contains a negative component, then the market q′ automatically
adds a constant vector to itself so that all components are non-negative. In either of the
above proposed approach, if q + qδ contains negative components, extra shares are
automatically mined and added to the market to avoid negative outstanding shares.
This should be avoided inDeFi applications. In DeFi applications, one should require
that qδ could be imposed to a market q0 only if there is no negative component
in q + qδ and the resulting market state is q + qδ . LS-LMSR is obviously path
independent since it has a cost function. Othman et al [9] showed that LS-LMSR
has the desired liquidity sensitive property. On the other hand, LS-LMSR satisfies
the relaxed translation invariance

∑
i Pi (q) ≥ 1. This means that if a trader imposes

an obligation and then sells it back to the market maker, the trader may end up with
a net lost (this is similar to the markets we see in the real world). Figure 2 displays
the curve of the cost function C(x, y, z) = 100 for LS-LMSR market maker with
three tokens and the curve of the cost function C(x, y) = 100 for LS-LMSR market
maker with two tokens. It is clear that these two curves are concave.

220 Y. Wang

Fig. 2 LS-LMSR market maker cost function curves for C(x, y, z) = 100 and C(x, y) = 100

Fig. 3 Constant product cost function curves for xyz = 100 and xy = 100

2.3 Constant Product/Sum/Mean AMMs

Constant product market makers have been used in DeFi applications (e.g., Uniswap
[11]) to enable on-chain exchanges of digital assets and on-chain-decentralized price
oracles. In this market, one keeps track of the cost function C(q) = ∏n

i=1 qi as a
constant. For this market, the price function for each token is defined as Pi (q) =
∂C(q)

∂qi
= ∏

j �=i q j . Figure 3 shows the curve of the constant product cost function
xyz = 100 with three tokens and the curve of the constant product cost function
xy = 100 with two tokens.

The cost functionC(q) = ∏n
i=1 q

wi
i has been used to design constantmeanAMMs

[8]wherewi are positive real numbers. In the constantmeanmarket, the price function
for each token is Pi (q) = ∂C(q)

∂qi
= wi q

wi−1
i

∏
j �=i q j . Figure 4 shows the curve of the

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 221

Fig. 4 Constant mean cost function curves for xy2z3 = 100 and x2y3 = 100

constant mean cost function xy2z3 = 100 with three tokens and the curve of the
constant mean cost function x2y3 = 100 with two tokens.

Onemay also use the cost functionC(q) = ∑n
i=1 qi to design constant summarket

makers. In this market, the price for each token is always 1. That is, one coin of a
given token can be used to trade for one coin of another token at any time when
supply lasts.

The curves in Figs. 3 and 4 show that constant product/mean/sum AMMs are
highly liquidity sensitive when the distribution of the tokens are far from balanced
market states (where the price flunctuates sharply). By the fact that there exist cost
functions, constant product/mean/sum AMMs achieve path independence. It is also
straightforward to check that constant product/mean AMMs are liquidity sensitive.
By the fact (see [9]) that nomarketmaker can satisfy all three of the desired properties
at the same time, constant product/mean AMMs are not translation invariant. It is
also straightforward to check that the constant sum AMM is liquidity insensitive.
Since liquidity sensitivity is one of the essential market rules to be satisfied, in the
remaining part of this paper, we will no long discuss constant sum models.

3 Constant Ellipse AMMs

Section 4 compares the advantages and disadvantages of LMSR, LS-LMSR, and
constant product/mean/sum AMMs. The analysis shows that none of them is ideal
for DeFi applications. In this section, we propose AMMs based on constant ellipse
cost functions. That is, the AMM’s cost function is defined by

222 Y. Wang

C(q) =
n∑

i=1

(qi − a)2 + b
∑

i �= j

qiq j (5)

where a, b are constants. The price function for each token is

Pi (q) = ∂C(q)

∂qi
= 2(qi − a) + b

∑

j �=i

q j .

For AMMs, we only use the first quadrant of the coordinate plane. By adjusting the
parameters a, b in the equation (5), one may keep the cost function to be concave
(that is, using the upper-left part of the ellipse) or to be convex (that is, using the
lower-left part of the ellipse). By adjusting the absolute value of a, one may obtain
various price amplitude and price fluctuation rates based on the principle of supply
and demand for tokens. It is observed that constant ellipse AMM price functions
are liquidity sensitive and path independent but not translation invariance. Figure 5
shows the curve of the constant ellipse cost function

(x − 10)2 + (y − 10)2 + (z − 10)2 + 1.5(xy + xz + yz) = 350

with three tokens and the curve of the the constant ellipse cost function

(x − 10)2 + (y − 10)2 + 1.5xy = 121

with two tokens. As mentioned in the preceding paragraphs, one may use convex or
concave part of the ellipse for the cost function. For example, in the second plot of
Fig. 5, one may use the lower-left part in the first quadrant as a convex cost function
or use the upper-right part in the first quadrant as a concave cost function. It is
straightforward to verity that the constant ellipse AMM achieve path independence
and liquidity sensitivity. Though constant ellipse AMM is not translation invariant,
our analysis and examples provide evidence that in a constant ellipse AMM, a trader
have certain risks for arbitraging the market maker on a payout for less than the
payout (this is related to our analysis on the slippage in the later sections).

4 Supply-and-Demand, Liquid Sensitivity, and Price
Fluctuation

Without loss of generality, this section considers AMMs consisting of two tokens: a
USDT token where each USDT coin costs one US dollar and an imagined spade suit
token♠. The current market price of a♠ token coin could have different values such
as half a USDT coin, one USDT coin, two USDT coins, or others. In Decentralized
Finance (DeFi) applications, the patron needs to provide liquidity by depositing coins
of both tokens in the AMM. Without loss of generality, we assume that, at the time
when the AMM is incorporated, the market price for a coin of spade suit token is

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 223

Fig. 5 Constant ellipse cost function curves for three and two tokens

equivalent to oneUSDT coin. For general cases that themarket price for one♠ coin is
not equivalent to one USDT coin at the time when the market maker is incorporated,
we can create virtual shares in the AMMby dividing or merging actual coins. That is,
each share of USDT (respectively ♠) in the AMM consists of a multiple or a portion
of USDT (respectively ♠) coins. One may find some examples in Sect. 5.

To simplify our notations, we will use q = (x, y) instead of q = (q1, q2) to rep-
resent the market state. In this section, we will only study the price fluctuation of
the first token based on the principle of supply and demand and the trend of the
price ratio Px (q)

Py(q)
which is strongly related liquid sensitivity. By symmetry of the cost

functions, the price fluctuation of the second token and the ratio Py(q)

Px (q)
have the same

property. In the following, we analyze the token price fluctuation for various AMM
models with the initial market state q0 = (1000, 1000). That is, the patron creates
the AMM by depositing 1000 USDT coins and 1000 spade suit coins in the market.
The analysis results are summarized in Table 1.

Table 1 Token price comparison

AMM type Market cost Px (q)/Py(q) Tangent ∂y
∂x

LS-LMSR 2386.29436 (0.648, 1.543) (−1.543,−0.648)

Cons. product 1000000 (0,∞) (−∞, 0)

Cons. sum 2000 1 –1

Cons. ellipse 50000000 (0.624, 1.604) (−1.604,−0.624)

224 Y. Wang

4.1 LS-LMSR

For the LS-LMSR based AMM, the market cost is

C(q0) = 2000 · ln (
e1000/2000 + e1000/2000

) = 2386.294362.

At market state q0, the instantaneous prices for a coin of tokens are Px (q0) =
Py(q0) = 1.193147181. A trader may use 817.07452949 spade suit coins to pur-
chase 1000 USDT coins with a resulting market state q1 = (0, 1817.07452949) and
a resulting market cost C(q1) = 2386.294362. At market state q1, the instantaneous
prices for a coin of tokens are Px (q1) = 0.8511445298 and Py(q1) = 1.313261687.
Thus we have Px (q1)/Py(q1) = 0.6481149479. The tangent line slope of the cost
function curve indicates the token price fluctuation stability in the automated mar-
ket. The tangent line slope for the LS-LMSR cost function curve at the market state
q = (x, y) is

∂y

∂x
= −

(x + y)
(
e

x
x+y + e

y
x+y

)
ln

(
e

x
x+y + e

y
x+y

)
+ y

(
e

x
x+y − e

y
x+y

)

(x + y)
(
e

x
x+y + e

y
x+y

)
ln

(
e

x
x+y + e

y
x+y

)
+ x

(
e

y
x+y − e

x
x+y

) .

For the LS-LMSR AMM with an initial state q0 = (1000, 1000), the tangent
line slope (see Fig. 6) changes smoothly and stays between −1.542936177 and
−0.6481149479. Thus the token price fluctuation is quite smooth. By the principle
of supply and demand, it is expected that when the token supply increases, the token
price decreases. That is, the cost function curve should be convex. However, the cost
function curve for LS-LMSR market is concave. This can be considered as a dis-
advantage of LS-LMSR markets for certain DeFi applications. Though LS-LMSR
does not satisfy the translation invariance property, it is shown in [9] that the sum of
prices are bounded by 1 + αn ln n. For the two token market with α = 1, the sum
of prices are bounded by 1 + 2 ln 2 = 2.386294362 and this value is achieved when
x = y.

As an additional example of LS-LMSR AMMs, a trader may spend 10 USDT
coins to purchase 10.020996 coins of spade suit token at market state q0 or spend
500 USDT coins to purchase 559.926783 coins of spade suit from the market state
q0 with a resulting market state (1500, 440.073217). Furthermore, in the market
state (1500, 440.073217), the value of one USDT coin is equivalent to the value of
1.260346709 coins of spade suit token.

4.2 Constant Product and Constant Mean

For the constant product AMM, themarket cost isC(q0) = 1000000 and the constant
product cost function is x · y = 1000000. At market state q0, the instantaneous token

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 225

Fig. 6 Tangent line slopes for LS-LMSR (first) and constant product (second) cost functions

prices are Px (q0) = Py(q0) = 1000. Thus we have Px (q)

Py(q)
= 1. A trader may use one

USDT coin to buy approximately one coin of spade suit token and vice versa at
the market state q0. However, as market state moves on, the prices could change
dramatically based on token supply in the market and the pool of a specific coin will
never run out. Specifically, at market state q0, a trader may spend 10 USDT coins
to purchase 9.900990099 spade suit coins. On the other hand, a user may spend
500 USDT coins to purchase only 333.3333333 coins of spade suit token from the
market state q0 with a resulting market state q1 = (1500, 666.6666667). Note that
in the example of LS-LMSR market example, at market state q0, a trader can spend
500 USDT coins to purchase 559.926783 coins of spade suit. Furthermore, in the
market state q1, one USDT coin could purchase 0.4444444445 coins of spade suit
token. The tangent line slope of the cost function curve at the market state q = (x, y)
is

∂y

∂x
= − Px (q)

Py(q)
= − y

x
.

That is, the tangent line slope for the cost function curve (see Fig. 6) can go from
−∞ to 0 and the token price fluctuation could be very sharp. Specifically, if the total
cost of the initial market q0 is “small” (compared against attacker’s capability), then
a trader/attacker could easily control and manipulate the market price of each coins
in the AMM. In other words, this kind of market maker may not serve as a reliable
price oracle. A good aspect of the constant product cost function is that the curve
is convex. Thus when the token supply increases, the token price decreases. On the
other hand, the sum of prices Px (q) + Py(q) = x + y in constant product market is
unbounded. Thus constant production cost function could not be used in prediction
markets since it leaves a chance for a market maker to derive unlimited profit from
transacting with traders.

For constant mean AMMs, Fig. 4 displays an instantiated constant mean cost
function curve. The curve in Fig. 4 is very similar to the curve in Fig. 3 for the

226 Y. Wang

constant product cost function. Thus constant mean AMM has similar properties as
that for constant product AMM and we will not go into details.

4.3 Constant Ellipse

As we have mentioned in the preceding Sections, one may use the upper-right part
of the curve for a concave cost function or use the lower-left part of the curve
for a convex cost function. In order to conform to the principle of supply and
demand, we analyze the convex cost functions based on constant ellipse. Con-
stant ellipse share many similar properties though they have different character-
istics. By adjusting corresponding parameters, one may obtain different cost func-
tion curves with different properties (e.g., different price fluctuation range, different
tangent line slope range, etc). The approaches for analyzing these cost function
curves are similar. Our following analysis uses the low-left convex part of the circle
(x − 6000)2 + (y − 6000)2 = 2 × 50002 as the constant cost function.

For AMMs based on this cost function C(q) = (x − 6000)2 + (y − 6000)2, the
market cost is C(q0) = 50000000. At market state q0, the instantaneous prices for
a coin of tokens are Px (q0) = Py(q0) = −10000. A trader may use 1258.342613
spade suit coins to purchase 1000 USDT coins with a resulting market state q1 =
(0, 2258.342613) and a resulting market cost C(q1) = C(q0). At market state q1,
the instantaneous prices for a coin of tokens are Px (q1) = 12000 and Py(q1) =
7483.314774. Thus we have Px (q1)

Py(q1)
= 1.603567451. The tangent line slope of the

cost function curve at the market state q = (x, y) is

∂y

∂x
= − Px (q)

Py(q)
= − x − 6000

y − 6000
.

This tangent line slope function (see Fig. 7) changes very smoothly and stays in the
interval [−1.603567451,−0.6236095645]. Thus the token price fluctuation is quite
smooth. Furthermore, this cost function has a convex curve which conforms to the
principle of supply and demand. That is, token price increases when token supply
decreases. For constant ellipse cost function market, the sum of prices are bounded
by Px (q) + Py(q) = 2(x + y) − 4a. Similar bounds hold for constant ellipse cost
function market. Thus, when it is used for prediction market, there is a limit on the
profit that a market maker can derive from transacting with traders.

Figure 8 compares the cost function curves for different AMMs that we have
discussed. These curves show that constant ellipse cost function is among the best
ones for DeFi applications.

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 227

Fig. 7 The tangent line slope for constant ellipse automated market maker

Fig. 8 Cost functions (bottom up): (x + y) ln
(
e

x
x+y + e

y
x+y

)
= 2000 · ln (

2e1/2
)
, (x + 6000)2 +

(y + 6000)2 = 2 × 70002, x + y = 2000, (x − 6000)2 + (y − 6000)2 = 2 × 50002, and xy =
1000000

4.4 Front Running Attacks Based on Slippage

Slippage based front-running attacks can always be launched if the tangent line
slope for the cost function curve is not a constant. The more the tangent line slope
fluctuates around the current market state, the more profit the front-runner can make.
The analysis in preceding sections show that tangent line slopes for LS-LMSR and

228 Y. Wang

constant ellipse cost functions fluctuate smoothly and tangent line slopes for constant
product/mean cost functions fluctuate sharply. Thus LS-LMSR and constant ellipse
cost function automated markets are more robust against front running attacks. In
Uniswap V2, when a trader submits a transaction buying coins of token A with coins
of token B (or vice versa), the trader may submit the order at the limit. But the front
runner can always try to profit by letting the trader’s order be executed at the limit
price as shown in the following attacks against Uniswap V2.

Example 1 Most front running attacks leverage off-chain bots and on-chain proxy
smart contracts to carry out attacks (see., e.g, [10]). There are some statistics on these
front running bots at Dune Analytics (see, e.g., [1]). The following two recent proxy
smart contracts take advantage of the large slippage on Uniswap V2.

• 0xd59e5b41482ee6283c22e1a6a20756da512ffa97 received a profit of at least
1,172,436 USD during a 14 days period.

• 0x000000005736775feb0c8568e7dee77222a26880 received a profit of 60 ETH
during one week. The profit was transferred to another address 0x94dD....

We analyze attacking steps by the second bot against Uniswap V2 Pair SPA-
ETH: 0x13444ec1c3ead70ff0cd11a15bfdc385b61b0fc2. The attacking transactions
are included in the block 12355902 finalized on May-02-2021 04:43:18 PM.

1. The attacker saw that 0x006fa275887292cdc07169f1187b7474e376bb3b sub-
mitted an order to swap 4.544 ETH for SPA.

2. The attacker’s smart contract inserts an order to swap 2.6842 ETH for 385,583
SPA before the above observed order in transaction hash 0x4e2636...

3. 0x006fa....’s order is fulfilled at the transaction hash 0x9a17...where the user
received 613,967 SPA for his 4.544 ETH.

4. The attacker’s smart contract inserts an order to swap 385,583 SPA for 2.8778
ETH after the above observed order in transaction hash 0x34787e...

5. The attacker’s smart contract received 0.1936 ETH for free.

5 Price Amplitude

For constant product/mean AMMs, the relative price P1(q)

P2(q)
of the two tokens ranges

from 0 (not inclusive) to ∞. At the time when a tiny portion of one token coin is
equivalent to all coins of the other token in the market maker, no trade is essentially
feasible. Thus the claimed advantage that no one can take out all shares of one token
from the constant product/mean market seems to have limited value. For a given
LS-LMSR (or constant ellipse) automated market with an initial state q0, the relative
price P1(q)/P2(q) can take values only from a fixed interval. If the market changes
and this relative price interval no long reflects the market price of the two tokens,
one may need to add tokens to the market to adjust this price interval. On the other
hand, it may be more efficient to just cancel this automated market maker and create
a new AMM when this situation happens.

https://ethervm.io/decompile/0xd59e5b41482ee6283c22e1a6a20756da512ffa97
https://ethervm.io/decompile/0x000000005736775feb0c8568e7dee77222a26880
https://etherscan.io/address/0x94dDD5e97de3A659A1b10E2845857eDb01883619
https://v2.info.uniswap.org/pair/0x13444ec1c3ead70ff0cd11a15bfdc385b61b0fc2
https://etherscan.io/block/12355902
https://etherscan.io/address/0x006fa275887292cdc07169f1187b7474e376bb3b
https://etherscan.io/tx/0x4e2636bb75566ac73150beb9c92c6cbab1342023e907e91d6e93dc0f01635b06/
https://etherscan.io/address/0x006fa275887292cdc07169f1187b7474e376bb3b
https://etherscan.io/tx/0x9a17e959255ff7b9ae096c5af0a66992bae5bba055e860b11c32f7114f08e977/
https://etherscan.io/tx/0x34787e325022773d3deb20bdea0b737c0e04aa8f46afa89282c83cc519630388/

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 229

In the following example, we show how to add liquidity to an existing LS-LMSR
AMM to adjust the relative price range. Assume that the market price for a coin of
token A is 100 times the price for a coin of token B when the AMM is incorporated.
The patron uses 10 coins of token A and 1000 coins of token B to create anAMMwith
the initial state q0 = (1000, 1000). The total market cost is C(q0) = 2386.294362.
Assume that after some time, the AMMmoves to state q1 = (100, 1750.618429). At
q1, we have P1(q1)/P2(q1) = 0.6809820540 which is close to the lowest possible
value 0.6481149479. In order to adjust the AMM so that it still works when the value
P1/P2 in the real world goes below 0.6481149479, the patron can add some coins of
token A to q1 so that the resultingmarket state is q2 = (1750.618429, 1750.618429).
To guarantee that one coin of token B is equivalent to P2(q1)

100·P1(q1) = 0.01468467479
coins of token A in q2, we need to have the following mapping from outstanding
shares in q2 to actual token coins (note that this mapping is different from that for
q0):

• Each outstanding share of token A corresponds to 0.01468467479 coin of token
A.

• Each outstanding share of token B corresponds to one coin of token B.

Thusthereare1750.618429 × 0.01468467479 = 25.70726231coinsoftoken A inq2.
Since there is only one coin of token A in q1, the patron needs to deposit 24.70726231
coins of token A toq1 tomove theAMMto stateq2. If themarket owner chooses not to
deposit these tokens to themarket, themarketmakerwill still run, but there is a chance
that the outstanding shares of token A goes to zero at certain time.

In the above scenario, one may ask whether it is possible for the market maker
to automatically adjust the market state to q3 = (1750.618429, 1750.618429) by
re-assigning the mapping from shares to coins? If q2 automatically adjusts itself to
q3 without external liquidity input, then a trader may use one share of token A to
get one share of token B in q3. Since we only have one equivalent coin of token
A but 1750.618429 outstanding shares in q3, each outstanding share of token A
in q3 is equivalent to 0.0005712267068 coins of token A. That is, the trader used
0.0005712267068 coins of token A to get one coin of token B (note that each out-
standing share of token B corresponds to one coin of token B in q3). By our analysis
in the preceding paragraphs, at q3, one coin of token B has the same market value of
0.01468467479 coins of token A. In other words, the trader used 0.0005712267068
coins of token A to get equivalent 0.01468467479 coins of token A. Thus it is impos-
sible for the automated market to adjust its relative price range without an external
liquidity input.

6 Implementation and Performance

We have implemented the constant ellipse based AMMs using Solidity smart con-
tracts and have deployed them over the Ethereum blockchain. The smart contract
source codes andWeb User Interface are available at GitHub. As an example, we use

230 Y. Wang

the ellipse (x − c)2 + (y − c)2 = r2 to show how to establish a token pair swapping
market in this section. Specifically, we use c = 109 and r · 1014 = 16000 · 1014 (that
is, r = 16000) for illustration purpose in this section.

Each token pair market maintains constants λ0 and λ1 which are determined
at the birth of the market. Furthermore, each token market also maintains a non-
negative multiplicative scaling variable μ which is the minimal value so that the
equation (μλ0x0 − 109)2 + (

μλ1y0 − 109
)2 ≤ 16000 · 1014 holds where μλ0x0 <

109 and μλ0y0 < 109. This ensures that we use the lower-left section of the ellipse
for the automated market.

6.1 Gas Cost and Comparison

We compare the gas cost against Uniswap V2 and Uniswap V3. During the imple-
mentation, we find out that some of the optimization techniques that we used in
Coinswap may be used to reduce the gas cost in Uniswap V2. Thus we compare the
gas cost for Uniswap V2 (column Uni V2) our optimized version of Uniswap V2
(column Uni V2O), Uniswap V3 (column Uni V3), and our CoinSwap in Table 2.
In a summary, our constant ellipse AMM (CoinSwap) has a gas saving from 0.61%
to 46.99% over Uniswap V2 and has a gas saving from 23.19% to 184.29% over
Uniswap V3. It should be noted that Uniswap V3 tried to reduce the slippage in
certain categories though still do not have the full slippage control as CoinSwap has.
The testing script that we have used will be available on the Github. Some field for
Uniswap V3 in Table 2 is empty since we did not find an easy way to test that in the
Uniswap V3 provided testing scripts.

Table 2 Gas cost Uniswap V2, V3, and CoinSwap with liquidity size (40000000,10000000)

Function UNI V2 UNI V2O UNI V3 CoinSwap Saving over
UNI V2

Saving over
UNI V3

mint() 141106 132410 308610 109722 28.60% 184.29%

swap() 89894 88224 114225 89348 0.61% 27.84%

swap()[1st] 101910 100051 96294 5.83%

add Ω 216512 207368 185442 16.76%

remove Ω 98597 97319 82694 67127 46.88% 23.19%

add ETH 223074 213930 192027 16.14%

full removal 123339 122061 98805 24.83%

partial
removal

180355 137061 144283 25.00%

Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi) 231

7 Conclusion

The analysis in the paper shows that constant ellipse cost functions have certain
advantages for building AMMs in Decentralized Finance (DeFi) applications. One
may argue that constant ellipse cost function based markets have less flexibility after
the market is launched since the price amplitude is fixed. We have mentioned that,
though the token price could range from 0 to ∞ in the constant product cost model,
when the price for one token is close to infinity, any meaningful trade in the market
is infeasible. Thus the old market needs to be stopped and a new market should be
incorporated. Indeed, it is an advantage for an AMM to have a fixed price amplitude
when it is used as a price oracle for other DeFi applications. For the constant product
cost market, if the patron incorporates the AMM by deposing a small amount of
liquidity, an attacker with a small budget can manipulate the token price significantly
in the AMM and take profit from other DeFi applications that use this AMM as a
price oracle. For constant ellipse based AMMs, the patron can use a small amount
of liquidity to set up the automated market and the attacker can only manipulate the
token price within the fixed price amplitude.

References

1. Dune Analytics. (2021). Collected–bot per month. https://duneanalytics.com/queries/14859.
2. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The

journal of Finance, 25(2), 383–417.
3. Good, I. J. (1952). Rational decisions. J. Royal Statistical Society B, 14(1), 107–114.
4. Hanson, R. (2003). Combinatorial information market design. Information Systems Frontiers,

5(1), 107–119.
5. Hanson, R. (2007). Logarithmic markets coring rules for modular combinatorial information

aggregation. The Journal of Prediction Markets, 1(1), 3–15.
6. Hertzog, E., Benartzi, G., & Benartzi, G. (2017). Bancor protocol: continuous liquidity for

cryptographic tokens through their smart contracts. https://storage.googleapis.com/website-
bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf.

7. Leshner, R., & Hayes, G. (2019). Compound: The money market protocol. https://compound.
finance/documents/Compound.Whitepaper.pdf.

8. Martinelli, F., & Mushegian, N. (2019). A non-custodial portfolio manager, liquidity provider,
and price sensor. https://balancer.finance/whitepaper/.

9. Othman, A., Pennock, D. M., Reeves, D. M., & Sandholm, T. (2013). A practical liquidity-
sensitive automated market maker. ACM TEAC, 1(3), 1–25.

10. Robinson, D., & Konstantopoulos, G. (2020). Ethereum is a dark forest. https://medium.com/
@danrobinson/.

11. Uniswap. (2020). Uniswap v2 core. https://uniswap.org/whitepaper.pdf.
12. Uniswap. (2021). V3. https://uniswap.org/whitepaper-v3.pdf.
13. Yongge, W. (2020). Automated market makers for decentralized finance (defi). arXiv preprint

arXiv:2009.01676.
14. Zhou,L.,Qin,K., Torres,C. F., Le,D.V.,&Gervais,A.High-frequency tradingondecentralized

on-chain exchanges.

https://duneanalytics.com/queries/14859
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://balancer.finance/whitepaper/
https://medium.com/@danrobinson/
https://medium.com/@danrobinson/
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
http://arxiv.org/abs/2009.01676

	 Prediction Markets, Automated Market Makers, and Decentralized Finance (DeFi)
	1 Introduction
	2 Existing Models for Prediction Market Makers
	2.1 Prediction Market and Market Makers
	2.2 Logarithmic Market Scoring Rules (LMSR)
	2.3 Constant Product/Sum/Mean AMMs

	3 Constant Ellipse AMMs
	4 Supply-and-Demand, Liquid Sensitivity, and Price Fluctuation
	4.1 LS-LMSR
	4.2 Constant Product and Constant Mean
	4.3 Constant Ellipse
	4.4 Front Running Attacks Based on Slippage

	5 Price Amplitude
	6 Implementation and Performance
	6.1 Gas Cost and Comparison

	7 Conclusion
	References

