
Tweakable Sleeve: A Novel Sleeve
Construction Based on Tweakable Hash
Functions

David Chaum, Mario Larangeira, and Mario Yaksetig

Abstract Recently, Chaum et al. (ACNS’21) introduced Sleeve, which describes an
extra security layer for signature schemes, i.e., ECDSA. This distinctive feature is a
new key generation mechanism, allowing users to generate a “back up key” securely
nested inside the secret key of a signature scheme. Using this novel construction, the
“back up key”, which is secret, can be used to generate a “proof of ownership”, i.e.,
only the rightful owner of this secret key can generate such a proof. This design offers
a quantum secure fallback, i.e., a brand new quantum resistant signature, ready to be
used, nested in the ECDSA secret key. In this work, we rely on the original Sleeve
definition to generalize the construction to a modular design based on Tweakable
Hash Functions, thus yielding a cleaner design of the primitive. Furthermore, we
provide a thorough security analysis taking into account the security of the ECDSA
signature scheme, which is lacking in the original work. Finally, we provide an
analysis based on formal methods using Verifpal assuring the security guarantees
our construction provides.

Keywords Provable security · Digital wallet · Hash-based signatures

This work was supported by JSPS KAKENHI Grant Number JP21K11882.

D. Chaum
xx Network, Grand Cayman, Cayman Islands
e-mail: david@xx.network

M. Larangeira (B)
Tokyo Institute of Technology, Tokyo, Japan
e-mail: mario@c.titech.ac.jp; mario.larangeira@iohk.io

IOHK, Battery Road, Singapore

M. Yaksetig
University of Porto, Porto, Portugal
e-mail: mario.yaksetig@fe.up.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Pardalos et al. (eds.),Mathematical Research for Blockchain Economy, Lecture Notes
in Operations Research, https://doi.org/10.1007/978-3-031-18679-0_10

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18679-0_10&domain=pdf
mailto:david@xx.network
mailto:mario@c.titech.ac.jp
mailto:mario.larangeira@iohk.io
mailto:mario.yaksetig@fe.up.pt
https://doi.org/10.1007/978-3-031-18679-0_10

170 D. Chaum et al.

1 Introduction

The ECDSA signature scheme is widely used; however it achieved new levels of
exposure after it found new applications in electronic wallets for cryptocurrencies
such as Bitcoin [22], Ethereum [25] and Cardano/Ouroboros [2, 11, 19]. This inten-
sive exposure drove the research community to channel its efforts to propose new
attacks on the signature scheme/wallets [1, 24].

Recently, Chaum et al. [8] proposed Sleeve, a signature based new cryptographic
primitive in order to mitigate damages during massive leaks of wallet private infor-
mation. In a nutshell, the goal of [8] is to allow the rightful user to prove its (correct)
ownership in the face of the situation that its secret key becomes public. In such a
situation, proving the knowledge of the correct secret key, via zero knowledge pro-
tocols, for example, is of no use as, potentially, anyone could generate such proof.
Furthermore, Sleeve leaves at the disposal of the user a second signature scheme.
More concretely, Sleeve leverages a regular ECDSA scheme to have a nested “back
up key” to generate the proof of ownership, or even be fully discarded for a (post
quantum) signature scheme; a hash based signature scheme. In theory, wallets imple-
menting Sleeve can be easily switched to be quantum resistant, since in addition to
ECDSA, they would also contain a post quantum signature as the fallback feature.

SSS leeve Design Limitations. The novel approach in [8], in particular the construc-
tion the original authors introduced, deals with the aggregation of a W-OTS+ public
key into a single value to be used in the ECDSA as the secret key. Their solution
was to adapt the L-Tree data structure [10] in order to execute the integration. This
approach works for their purpose; however its design seems fairly limited and ad
hoc, i.e. left and right branches of the L-Tree requires pair of values which needs
to be added to the key pairs. More modern approaches exist and seem more suit-
able to such integration between ECDSA and hash based signatures, such as relying
on Tweakable Hash Functions [3]. The security analysis of [8] introduces two new
properties: proof of ownership and fallback; however it does not detail the impacts
in the signature scheme. Namely, the introduction of a back up key nested into the
ECDSA signature scheme is not shown to have any side effects on its security. In fact,
the ECDSA security in [8] is not assured by a computational problem. Transactions
generated by wallets rely on signatures, therefore this state of uncertainty is not ideal
for the security of regular users. Moreover, a closer look on the ECDSA security
literature shows that it is more involved than a naive reader would previously expect
[6, 7, 13, 14].

History of the ECDSA Security. Brown [6, 7] has shown that the ECDSA is strong
unforgeable (when the adversary receives only one signature permessage) in a chosen
message attack considering a proof technique based on the Random Oracle Model
(ROM) and Generic GroupModel (GGM). Fersch et al. [13] pointed out, that indeed
ECDSA is strong unforgeable in these models; however in the real world, when no
assumption is assumed in the group (thus not in the GGM), that is not the case. The

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 171

reason for the discrepancy is the modelling of the group in the conversion function
of the scheme, i.e., mapping the group elements to the field Zq for a large prime q.

The works [13, 14] sidestep the briefly mentioned limitations of the proof tech-
nique by dropping the GGM, while still relying on the ROM. Both works show that
ECDSA is indeed secure; however when the adversary is given only one signature
per message employing a proof method relying on a “Generic ElGamal Framework”,
which subsumes several variants of DSA, including the ECDSA. Perhaps, surpris-
ingly, the proven security is based in theSemiLogarithmProblem (SLP) [6] instead of
themore standardDiscrete LogarithmProblem (DLP) as onewould expect. Attempts
to show the security of Sleeve must take into account these developments, and that
is what we do within this work.

Our Contributions. Succinctly, the main contributions of this work are

• Section 3 (and Appendix A) introduces a clean and modular construction to
quantum-secure fallback and proof of ownership of ECDSA under the Sleeve
definition and based on Tweakable Hash Functions;

• Section 4 presents a proof of security with respect to the original Sleeve definition,
for proof of ownership and fallback, regarding the signatures generated by Sleeve
with respect to the unforgeability security of the ECDSA scheme, and based on the
computational problem SLP (dependence of a computational problem is crucial
in provable security standard);

• Section 5 introduces benchmarks of an open-source, fully audited, and deployed
implementation currently in use on existing blockchain platform;

• Section 6 shows the security of the construction using Verifpal, a formal methods
analysis tool, and provides the first ever analysis of a hash-based signature scheme
using formal methods analysis tools, highlighting the existing challenges in this
type of modelling.

The most remarkable differences between the work from [8] and ours is (1) the
use of Tweakable Hash functions, which [8] does not use. Therefore, as in [8], our
construction works with basic wallet scripts, e.g., multisig. Their construction relies
heavily on L-Tree as used in [16], therefore our construction takes the more modern
approach, (2) the security guarantees and analysis we introduce.

2 Background

As preparation, let n be the security parameter, and PPT denote probabilistic
polynomial-time. We rely on the standard notion of negligible function. That is
negl(n) is said to be negligible if and only if for all c ∈ N, there is a n0 such that for
all n ≥ n0, negl(n) < n−c.

Now we can review the Sleeve and Tweakable Hash Function definitions.

172 D. Chaum et al.

Fig. 1 Overview of theSleeve construction, where the user generates a post-quantum (PQ) key pair
(PQsk,PQpk) along with a hash keyX from the local randomness seed, which is used as an input
when hashing the fallback public key. The result of the hashing operation is used as an elliptic curve
secret key, ECCsk, then used as elliptic curve cryptography (ECC) trapdoor and obtain the elliptic
curve public key ECCpk. Diamond arrows represent a trapdoor, and normal arrows showcase the
values acting either as input or output

Overview of the SSS leeve construction. The principle behind the construction is that
users first generate a public-private key pair that is quantum resistant along with a
secret key value, hash the quantum-resistant public key along with the secret key
value, and use this output as a secret key to be used as an elliptic curve secret key.
Upon obtaining the elliptic curve secret key, users can trivially generate the cor-
responding public key. To finalize, users may have to perform additional steps to
obtain a wallet address associated with an elliptic curve public key. For example, on
blockchain platforms like Bitcoin [22], Ethereum [25] and Cardano/Ouroboros [2,
11, 19], users hash their ECDSA public key to obtain their wallet address. The con-
struction is designed to be modular such that users can easily use the best suitable
cryptographic assumptions for each of the modules. Figure 1 illustrates an overview
diagram of the construction.

SSS leeve Desired Properties. The design [8] is due to the need to integrate a quantum-
secure fallback into the ECDSA scheme. Namely, the question it addresses is: If
an adversary breaks the Elliptic Curve based DLP (ECDLP), compromising the
security of a cryptocurrency, can users redeem (or rollover) their assets in a safe
manner without the risk of theft from this adversary?

Before addressing the required properties for our design, we highlight similar
research in this area, such as [18] and [17], that provide a different alternative solution
to this question. These approaches rely on a user Alice publishing one hash commit
of both the elliptic curve public key and the fallback public key. At a later point in
time, Alice signs a reveal transaction using the fallback secret key which reveals both
the elliptic curve public key and the fallback key. This transaction then proves that
Alice is the true owner of a specific wallet address.

The scheme in [8] requires some different properties, which are now enumerated.
First, and intuitively, users should have the ability to integrate a (quantum-secure)
fallback for traditional cryptocurrency wallets, which typically rely on the ECDSA
scheme. Ideally, this solution should not incur in any type of additional communica-
tion costs and should not assume an interactive protocol if it is not strictly necessary.
This segregation and lack of interactivity with any other parties is particularly rele-

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 173

vant as it allows a user to, upon completion of the key generation, quickly and simply
store the fallback key in a cold wallet without requiring any signature until a quantum
threat appears. Second, the users should have the ability to leak the fallback public
key in a manner that does not expose the ECDSA secret key. For example, Alice
should be able to disclose that she owns a wallet address WA, and a fallback public
key to inform all in the system that she may need to provide a signature that can be
verified under such fallback key. The reveal of the fallback public key should not
translate to a compromise of the ECDSA secret key as then any entity in the system
could produce signatures and attempt to perform transactions on behalf of Alice.

Third, the design should be modular, easy to use, and compatible with currently
used cryptocurrency wallets. Therefore, the design should have the possibility of
supporting any elliptic curve based wallet, any post-quantum secure fallback, and
should support the use of mnemonics and other features that improve usability for the
end user. Ideally, the security proofs for each of the components should be modular
such that changing the used schemes in the different parts of the design does not
affect other parts of the construction.

Lastly, one of the main properties of this construction is fork voiding in a
blockchain system. Upon redeeming the digital assets into the fallback public key,
users should fully expose the ECDSA secret key such that the value of the assets
stored on the original chain naturally converges towards zero, thus it incentives users
to abandon the initial chain towards the new and safer fork.

SSS leeve and its Security Properties. The Sleeve primitive is composed by the tuple
(Genπ ,Sign, Verify, Proof,Verify-Proof). The generation algorithm outputs the
pairs of keys, vk and sk, and the backup key bk. The first pair is the regular
verification key, used for verifying a signature, and the secret-key used for issuing a
signature. While the last key is used to issue the Proof of Ownership π , with respect
to vk as follows

Definition 1 (Sleeve [8])Afallback schemeSleeve = (Genπ ,Sign,Verify,Proof,
Verify-Proof) is a set of PPT algorithms:

• Genπ (1n) on input of a security parameter n outputs a private signing key sk, a
public verification key vk and the back up key bk;

• Sign (sk,m) outputs a signature σ undersk for amessagem using the designated
main signature scheme, in our example this is an ECDSA signature;

• Verify (vk, σ,m) outputs 1 iff σ is a valid signature on m under vk;
• Proof(bk, c) on input of the backup information bk and the challenge c, it outputs
the ownership proofπ . In our example, this is aW-OTS+ signature on the challenge
c using the fallback key bk;

• Verify-Proof(vk,sk, π, c) is a deterministic algorithm that on input of a public-
key vk, secret-key sk, an ownership proof π and a challenge c, it outputs either
0, for an invalid proof, or 1 for a valid one.

The twomain security properties ofSleeve are (1) the capability of issuing a proof
to confirm the ownership of the secret key, even in the face of amassive leakage, when

174 D. Chaum et al.

the secret key becomes public, and (2) the capability to smoothly switch to another
signature scheme, namely a quantum resistant one. Briefly, we formally review both
properties.

Definition 2 (Proof of Ownership [8]) For any PPT algorithmA and security param-
eter n, it holds

Pr[(vk,sk,bk) ← Genπ (1n) : (c∗, π∗) ← A(sk,vk)

∧Verify-Proof(vk,sk, π∗, c∗) = 1] < negl

for all the probabilities are computed over the random coins of the generation and
proof verification algorithms and the adversary.

Definition 3 (Fallback [8]) We say that the scheme (Genπ ,Sign, Verify), with
secret and verification key respectively sk and vk such that Genπ (1n) →
(vk,sk,bk), has fallback if there are sign and verification algorithms Signπ and
Verifyπ such that sk and bk can be used as verification and secret keys respectively,
along with Signπ and Verifyπ as fully independent signature scheme.

Tweakable Hash Functions. Introduced to allow better abstraction of hash-based
signature scheme. By decoupling the computations of hash chains, hash trees, and
nodes, protocol designers can separate the analysis of the high-level construction
from exactly how the computation is done. Therefore abstracting the computation
away in hash-based schemes only requires analyzing the hashing construction. The
standard definition is as follows.

Definition 4 (Tweakable Hash Function [3]) Let P the public parameters space, T
the tweak space, and n, α ∈ N. A Tweakable Hash Function is an efficient function
mapping an α-bit message M to an n-bit hash valueMD using a function key called
public parameter P ∈ P and a tweak T ∈ T . Therefore, we have Th : P × T ×
{0, 1}α → {0, 1}n, MD ← Th(P, T, M).

A tweakable hash function takes public parameters P and context information in
the form of a tweak T in addition to the message. The public parameters might be
thought as a function key or index. The tweak might be interpreted as a nonce. We
use the term public parameter for the function key to emphasize it is intended to be
public. Thus we explicitly assume an extra property for Th.

Definition 5 (Indistinguishability) For the security parameter n, and the tweakable
hash function Th, we say that Th has the Computational Indistinguishability from
Uniformly Random Distribution Property, if for every PPT distinguisher D, and
arbitrary choices of the parameters P , T and M , the following holds |Pr [x ←
Th(P, T, M),D(x) = 1] − Pr [x ← U ,D(x) = 1]| ≤ negl(n), for the uniformdis-
tribution U .

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 175

3 The Tweakable Sleeve
We now describe our Sleeve construction, with W-OTS+ as the fallback, and a
tweakable hash function for the public key integration, i.e. Tweakable Sleeve.

Definition 6 (Family of Functions) Given the security and the Winternitz param-
eters, respectively, n ∈ N and w ∈ N, w > 1, let a family of functions Hn be
{hk : {0, 1}n → {0, 1}n|k ∈ Kn} with key space Kn .

Definition 7 (Chaining Function) Given a family of functions Hn , x ∈ {0, 1}n , an
iteration counter i ∈ N, a key k ∈ Kn , for jn−bit strings r = (r1, . . . , r j) ∈ {0, 1}n× j

with j ≥ i , then we have the chaining function as follows

cik(x, r) =
{
hk(c

i−1
k (x, r) ⊕ ri), 1 ≤ i ≤ j;

x, i = 0.

Additionally, we review the notation for the subset of randomness vector r =
(r1, . . . , r�). We denote by ra,b the subset of (ra, . . . , rb), and for our construction
to be presented next, we rely on a Key-Derivation Function KDF which follows the
recently announced set of recommendations [9].

Protocol Description. Sleeve is 5-tuple set of PPT algorithms (Genπ ,Sign,

Verify,Proof,Verify-Proof). We describe the generic version of
(Genπ ,Sign,Verify) in Table 1, based on the formalism of [14] which is convenient
for our security analysis in Sect. 4. The algorithms Proof and Verify-Proof are
given in Tables 2 and 3, respectively.

Table 1 GenSleeve is based on the GenElGamal Framework [6, 14] and it relies on the Th which
is indistinguishable from the uniform distribution as per Definition 5, and Proof and Verify-Proof
are the concrete algorithms

Genkπ (1n) SignH (m,sk) VerifyH (m,vk, σ)

Pick a random public seed P h ← H(m) Parse: (s, t)
p← σ

Pick (� + w − 1) n-bit strings ri r
$← Zp; R ← gr h ← H(m)

Set bki ← ri , for 1 ≤ i ≤ � If R = 1:Return ⊥ If (s, h, t) /∈ D: Return 0

Set r = (r�+1, . . . , r�+w−1) t ← f (R) R̂ ← VE
g,x (s, h, t)

Set vki = cw−1
k (bki , r), 1 ≤ i ≤ � s ← SE

sk(h, t, r) If R̂ = 1: Return 0

Pick a random hash key X If (s, h, t) /∈ D: Return ⊥ t̂ ← f (R̂)

Pick a random tweak T Return σ = (s, t) If t �= t̂ : Return 0

W-OTS+
pk = Th(P, T,vk1, . . . ,vk�) Return 1

sk ← ((r, k),Th(P,X ,W-OTS+
pk))

vk ← gsk1

Return (vk,sk,bk)

176 D. Chaum et al.

Table 2 Proof algorithm, which is the eW-OTS+ Signature Scheme from [8]. The changes intro-
duced by our construction are necessary in order to be used in combination with ECDSA signatures

Proof(c,bk)

Parse bk → (bk0,bk1, . . . ,bk�)

Parse bk0 → (T ,P,X)

Set π0 = bk0
Compute c → (c1, . . . , c�1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C = ∑�1

i=1(w − 1 − ci),

w-base representation (C1, . . . ,C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = c‖C as (b1, . . . , b�1+�2)

Set πi = cbik (bki , r), for 1 ≤ i ≤ �1 + �2

Return π = (π0, π1, . . . , π�1+�2)

Table 3 The verification of the proof π adapts the verification procedure for eW-OTS+ by adding
an extra check on the ECDSA verification key vk

Verify-Proof(vk,sk, c, π)

Parse sk → (sk0,sk1)

Parse sk0 → (r, k)
Parse π → (π0, π1, . . . , π�1+�2), π0 → (T, P,X)

Compute c → (c1, . . . , c�1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C = ∑�1

i=1(w − 1 − ci),

and the base w representation (C1, . . . ,C�2),

for Ci ∈ {0, . . . , w − 1}
Parse B = c||C as (b1, . . . , b�1+�2)

Set vki = cw−1−bi
k (πi , rbi+1,w−1) for 1 ≤ i ≤ �1 + �2

Set W-OTS+
pk = Th(P||T ||vk1, . . . ,vk�1+�2)

Return 1, if the following equations hold

sk1 = Th(P||X ||W-OTS+
pk)

vk = gsk1

3.1 The Generic Sleeve: GenSleeve
In order to formulate the definition for GenSleeve, we review more basic definitions
to cast it in more generic terms and bases its security on a computational problem, i.e.
SLP.

Our security analysis relies on the work of [14] which is the state of the art in the
understanding of the security of the ECDSA. Their proof bases the analysis in the
Semi Logarithm Problem (SLP) with respect to the Conversion Function f . Such a

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 177

function was introduced in the GenElGamal Framework which subsumes ECDSA
and other ElGamal based schemes. The proposed framework is parameterized by a
Defining Equation E for a set D which gives the distribution of the values to be used
in the signature generation, consequently, generating the different “flavors” of the
ElGamal/DSA schemes.1 For a better readability and completeness of this work, we
now review these definitions.

Conversion Function. A component of the GenElGamal Framework is the conver-
sion function f .More concretely, the conversation functionmaps the groupmembers
from G to Zq . The SLP is with respect to f and, in its simplest form, can be stated
as given a pair of group members g and X = gx , it is required to output s and t such
that t = f ((g · Xt)

1
s). Its more general form is given by the next definition.

Definition 8 (SLP [6]) Let (G, g, q) be a prime-order group and let f : G∗ → Zq

and ρ0, ρ1 : Z2
q → Zq be functions. We say that an algorithm I(τ, ε)-breaks the SLP

inG with respect to f , ρ0 and ρ1 if it runs in time at most τ and achieves probability
ε = Pr[X ← G; (u, v) ← I(g, X) : v = f (gρ0(u,v) · Xρ1(u,v))].
The Defining Equation. The sign and verification procedures for the ECDSA and
Sleeve variants can be defined in a modular and general fashion. The technique to
make the variants is crucially dependent on the sampling values; Each variant has a
different distribution. The Defining Equation rules the distribution, thus we review
the definition.

Definition 9 (Defining Equation) Let D ⊂ Z
3
q be a set. An equation E =

E(s, h, t, r, x) over D × (Z∗
q)

2 is said to be defining (a signature scheme) if E
has the form E(s, h, t, r, x) = C0(s, h, t) + r · Cr (s, h, t) + x · Cx (s, h, t), where
C0 and Cx are functions D → Zq , and Cr is a function D → Z

∗
q . With other words,

E is defining if it is affine linear in x and r , and E can always be solved for r .

The concrete example of Defining Equation is E(s, h, t, r, x) = h − rs + t x for the
Defining Set D = Z

∗
q × Zq × Z

∗
q as given by [14].

Definition 10 (Sign and Verification Function) Let E be a defining equation. Then
we define the signing function SE (h, t, r,sk) = SE

sk(h, t, r) as follows: if there
exists a unique s such that E(s, h, t, r,sk) is satisfied, SE returns s; otherwise, the
function returns ⊥. Further, we define the verification function VE (g, s, h, t,sk) =
VE
g,sk(s, h, t) with respect to a prime-order group (G, g, q) as follows: if r is the

(unique) solution of E(s, h, t, r,sk) then VE returns gr .

As remarked by [14], the affine linear form of E makes possible to efficiently evaluate
VE given just the tuple (s, h, t, gsk), i.e., without knowing sk explicitly. Now we
are ready to define our generic construction.

Definition 11 (GenSleeve Framework) Given a hash function H , and the S and
V, respectively the Sign and Verification Functions, the Conversion Function f ,

1 For a complete list of the supported schemes, we refer the reader to the full list in [14].

178 D. Chaum et al.

the Defining Equation E and Set D, and the Generic Sleeve scheme is the tuple
(Genπ ,SignH

,VerifyH
,Proof, Verify-Proof), such that k is the parameter of the

family of function, the three first algorithms are given as follows.

4 Security Analysis

This sections introduces the security analysis of the Tweakable Sleeve in three com-
plementary ways. The next sections cover, respectively, the following:

1. Security with respect of generic attacks and fallback security, as these were
introduced in [8];

2. Lemma 1 proposal that shows Tweakable Sleeve has equivalent security as the
ECDSA in terms of unforgeability of signatures, i.e. EUF-CMA;

3. The security of the GenSleeve (introduced in Sect. 3.1), in the same fashion
of [14], i.e. Generic ECDSA, and show GenSleeve to be secure with respect to
the Semi Logarithm Problem (SLP).

4.1 Generic Attack Security and Unforgeability of Fallback
Scheme

The authors of Sleeve describe in [8] the security level of the construction against
generic attacks targeted at the underlying hash function and prove the unforgeability
of the fallback scheme. Additionally, they prove that, for an appropriate choice of
parameters, the best attack against the fallback scheme (i.e., eW-OTS+ the W-OTS+
variant introduced in [8]) is the same attack against the original W-OTS+. We use
these results as a reference as we consider the same fallback scheme and note that,
by replacing the assumptions of the underlying hash function with a tweakable hash
function, the security results remain well-defined.

4.2 Tweakable Sleeve is at Least as Secure as an ECDSA One

The security of the ECDSA scheme is given by [14]. However Sleeve introduces
a new key generation method, which is not considered in the security proof of [8].
Concretely, the generation method relies on the tweakable hash function in order to
generate the ECDSA secret key sk; however it is not clear if such modification on
the ECDSA scheme introduces weaknesses. We address this gap now.

The Unforgeability of SSS leeve. In addition to the listed properties of Sect. 2, Sleeve
is also suitable to similar security definitions as the ones for signature schemes. The

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 179

Table 4 Unforgeability for Sleeve, i.e. three keys are generated. The above game is One-Message
Existential Unforgeability with Chosen Message Attack game, i.e. (EUF-CMA1). For the general
form, i.e. the standard (EUF-CMA), the Sign Procedure does not abort when the message is in the
list L. For the key only (UF-KOA) variant of the game, the adversary does not access the Sign
Procedure

Procedure Init(n) Procedure Sign(m)

L ← ∅ If m ∈ L: Abort
(vk,sk,bk) ← Genπ (1n) σ ← Sign(sk,m)

Return vk If σ = ⊥: Return ⊥
L ← L ∪ {m}

Procedure Fin(m∗, σ ∗) Return σ

If m∗ ∈ L: Abort
If Verify(vk,m∗, σ ∗) = 0: Abort

Return 1

difference is the generation of the keys, which Sleeve introduces an extra one, the
back up key. Table 4 defines the security notion, derived from standard EUF-CMA
security for signature schemes. The difference is only the extra back up key.

The goal of the next lemma is to show that the EUF-CMA security of Sleeve,
constructed with a suitable tweakable hash function, and ECDSA, instantiated with
uniformly random sampling for the secret key, are equivalent.

Lemma 1 AssumeECDSA isEUF-CMA secure and the generation algorithmGenπ

from Table 1 is constructed with a tweakable hash functionTh indistinguishable from
the uniform distribution as per Definition 5 for the security parameter n. ThenSleeve
is EUF-CMA as given by the security game of Table 4.

Proof (sketch) Assume the existence of a Sleeve forger F which wins the game
from Table 4 by outputting a forgery (m∗, σ ∗) with non-negligible probability. Then
we construct a PPT distinguisher algorithm D which breaks the indistinguishability
property of Th with high probability. We construct D as follows:

• D performs the security game given by Definition 5, and receives as input the
string x ;

• D modifies the generation algorithm Genπ from Table 1, by using the received
string x to generate the public, key. In the modified game the public key is vk′ =
gsk

′
for sk′ ← x ;

• D simulates the EUF-CMA security game of Table 4 to F using (vk′, sk ′);
• With high probability F outputs (m∗, σ ∗), then D uses the verification algorithm
Verify to perform the following and stop:

– If Verify(m∗, σ ∗) = 1, then output 1
– Else, output 0;

Now we estimate the success probability of F in the EUF-CMA game of Table 4,
by considering three points:

180 D. Chaum et al.

• From the indistinguishability property of Th, we know |Pr [x ← Th(P, T, M),

D(x) = 1] − Pr [x ← U ,D(x) = 1]| is negligible for arbitrary choices of P , T
and M as given by Definition 5 and initial hypothesis;

• Following from the EUF-CMA security of ECDSA, we have that Pr[x ←
U ,Verify(m∗, σ ∗) = 1] is negligible for the uniform random distribution U ;

• Finally, note that Pr[x ← Th(P, T, v),D(x) = 1] and Pr[x ← Th(P, T, v),

Verify(m∗, σ ∗) = 1] are equal by design of D and success probability of F .

Therefore, |Pr [x ← Th(P, T, M),D(x) = 1] − Pr [x ← U ,D(x) = 1]| ≤
negl(n), and |Pr[x ← Th(P, T, M),Verify(m∗, σ ∗) = 1] − negl(n)| ≤ negl(n).

Hence Pr[x ← Th(P, T, v),Verify(m∗, σ ∗) = 1] must be negligible and Sleeve is
also EUF-CMA, thereby giving the lemma. �
The earlier lemma only relates the security of Sleeve and ECDSA. In order to thor-
oughly prove the hardness of breaking Sleeve it is convenient to consider a compu-
tational problem. That is what we do next.

4.3 The Security of GenSleeve
Fromnowwe take the approach of [14] in order to build a full proof of the unforgeabil-
ity of the generic Sleeve variant based on the assumed hard computational problem.
Namely, show the security of GenSleeve with respect to SLP. What we do now is to
review themain definitions from [14] combinedwith the ones introduced in Sect. 3.1.

Definition 12 (h-decomposable) Let E = E(s, h, t, r, x) be a defining equation
with corresponding set D. We say that E is h-decomposable (with respect to D) if
there exist functions ν0, ν1 : Zq → Zq and ρ0, ρ1 : Z2

q → Zq such that ν0, ν1 �= 0 if
h �= 0 and r = ν0(h) · ρ0(s, t) + x · ν1(h) · ρ1(s, t) for all (s, h, t) ∈ D and r, x ∈ Z

∗
q

satisfying E(s, h, t, r, x).

For completeness, in the next definition we consider the standard notion for
δ statistical distance. That is, for any two ensembles {X (x, k)}x∈{0,1}∗,k∈N and
{Y (x, k)}x∈{0,1}∗,k∈N, for index k and input x , the value |Pr[X (x, k) = 1] −
Pr[Y (x, k) = 1]| is at most δ.

Definition 13 (δ-Simulatability) Let (E,G, H, f,D) be an instantiation of
GenSleeve as in Definition 11. It is said that the instantiation is δ-simulatable if
there exists a function SimE : Z3

q × Z
2
q ∪ {⊥} that is computable in about the same

time as SE such that for all sk ∈ Z
∗
q the statistical distance between the outputs of

the two protocols depicted by Table 5 is at most δ.

The generic security is derived from the work on [14]. Namely, the next two
theorems which are defined according to the number of random oracle and signature
queries, respectively QH and Qs and the big-O notation O. For completeness we
present them altered to GenSleeve. However we refer the reader to the full work for
the proofs of the theorems, which are the same for GenSleeve.

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 181

Table 5 PSim shows that, given a procedure Sim, it is possible to generate a tuple (s, h, t) statis-
tically close without knowing the secret key sk

Preal (sk, g) PSim(vk, g)

r
$← Zp a, b

$← Zp

R ← gr R ← vkagb

If R = 1: Return ⊥ If R = 1: Return ⊥
t ← f (R) t ← f (R)

h
$← Zq (s, h) ← SimE (a, b, t)

s ← SE
sk(h, t, r) If (s, h, t) /∈ D: Return ⊥

If (s, h, t) /∈ D: Return ⊥ Return (s, h, t)

Return (s, h, t)

Theorem 1 [14] Let (E,G, H, f,D) be a δ-simulatable of GenSleeve. Then if H
is modeled as random oracle, for every forger F that (τ,Qs,QH , ε)-breaks the
one-per-message unforgeabillity if this instantiation there also exists a forger F ′
that (τ ′, 0,QH , ε′)-breaks the key-only unforgeability of this instantiation, where
ε′ ≥ ε/(e2(Qs + 1)) − Qsδ and τ ′ = τ + O(QH).

Theorem 2 [14] Let (G, g, q) be a prime-order group, let E be a defining equation
with corresponding set D, and let f : G∗ → Zq and H : {0, 1}∗ → Zq be functions.
If E is h-decomposable with functions ρ0 and ρ1, and H is modelled as a random
oracle, then the SLP in G with respect to f , ρ0, ρ1 is non-tightly equivalent to the
key-only unforgeability of GenSleeve when instantiated with (E,G, H, f,D).

That is, for any adversary I that (τ, ε)-breaks SLP, there exists a forger F that
(τ ′, ε)-breaks the key-only unforgeability of Generic Sleeve, where τ ≈ τ ′.

Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability
of GenSleeve, there exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP, where
τ ≈ τ ′ and QH is the number of random oracle queries posed by F .

Sections 4.1, 4.2 and 4.3 fully cover the security of the Tweakable Sleeve, regard-
ing ECDSA security, and GenSleeve with respect to SLP.

We now focus on the experimental results.

5 Implementation and Performance

This section describes our open-source implementation, the audit results along with
the associated fixes, and details of the Verifpal formal analysis model.

Reference Implementation. We implemented a single-threaded version in Golang.
In our implementation, W-OTS+ uses SHA3 for public key compression and
Blake2b for hash ladder calculations. We use the secp256k1 curve with ECDSA as

182 D. Chaum et al.

the main signature scheme and verified the correctness of our code, which integrates
BIP39 [4], by comparing it with reference BIP39 implementations [5, 15]. Our
implementation differs slightly from the original W-OTS+ specification, which
defines a secret key as � random numbers and, instead, derives the secret key values
from a single seed parameter by using a KDF. The W-OTS+

pk is compressed using a
tweakable hash function using the public seed, and the secret hash key value X .

Audit.We expose the detailed results obtained from the official audit of the reference
implementation and the subsequent fixes.

• Scope: The scope of the audit included the correctness of the cryptography and
associated security, finding eventual timing leaks, usage of unsafe APIs, missing
security checks, risk from dependencies, and poor randomness generation.

• Security Issues:No outstanding security issue appeared in the core cryptographic
modules and the main security remarks are associated with a command line inter-
face (CLI) tool created to improve the usability of the user. The audit results are
openly available in [23].

• Verifpal Implementation: The code associated with the formal analysis tools is
openly available on a Github repository in a special folder dedicated to the formal
verification component [23].

Performance Metrics. We present performance metrics for our single-threaded
implementation running on one Amazon c5.xlarge benchmark machine with an Intel
Xeon Platinum 8124M 3.00GHz CPU and 8GiB RAM. Our code runs a Sleeve key
generation in 1.81 ms, which comprises a W-OTS+ key generation that takes 1.75
ms and an ECDSA key generation that takes 0.059 ms. These early results demon-
strate that the key generation of the (tweakable) Sleeve construction is significantly
slower than presently used key generation mechanism (i.e., ECDSA). These results
are expected as the Sleeve construction introduces a significant amount of additional
steps in the wallet generation process. Potential improvements may include calcu-
lating the W-OTS+ hash-ladders in parallel and the use of different and potentially
faster hash functions implementations.

6 Formal Methods Analysis

This section reports on the mathematical security proof of our construction, and
outlines the Verifpal [20, 21] model we used to analyze the tweakable Sleeve along
with some of the challenges that appeared throughout this process. We start by
giving a brief summary on the Verifpal tool.

Verifpal. Verifpal is a software for verifying the security of cryptographic protocols.
This tool is oriented towards real-world practitioners attempting to integrate formal
verification into their line of work. To achieve this, Verifpal uses a new, intuitive
language for modeling protocols that is considered easier to write and understand
than the languages currently employed by existing tools.

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 183

Challenges toModellingSSS leeve in Verifpal.A commonly found problem in symbolic
model protocol verifiers is that, for complex protocols, the different combinations
of variables that the verifier must assess, quickly becomes too large to terminate
in reasonable time. This is a challenge we faced in our modelling process as we
initially attempted to model a W-OTS+ fallback for ECDSA and the tool constantly
issued memory fault errors when starting to perform the hash ladder iterations,
which resulted in the stopping of the verification process in a faulty manner.
Additionally, we highlight the lack of existence of the XOR logical function in
the tool, which lead to design attemptswith changed variants of the chaining function.

Verifpal Model of SSS leeve. To avoid the memory fault issues derived from iterating
different attack scenarios involving a high number of hash function calls, we model a
simpler Lamport signature scheme as a quantum-secure fallback instead ofW-OTS+.

Attacker model. All the interactions in the model go through an active attacker.
Therefore, we assume the Dolev-Yao model [12] where the adversary is in charge
of delivering the messages.

Results. The tool output that regardless of the compromise of the ECDSA secret key
value, the queried values remain confidential, and only the true owner of the hash-
based fallback key pair is able to produce a safety signature.We assume correctness of
the Verifpal execution results, especially since there reslts match the results obtained
in the security proof of Sleeve.

7 Final Remarks

The Sleeve definition is a promising and novel scheme designed as an extension to
existing wallets since, as quantum computers evolve, the security of most cryptocur-
rency wallets is at risk.

In this work, we improve on the original Sleeve construction by proposing the
Tweakable Sleeve. Thus we introduced a more modular approach that is simpler to
analyze and implement. Moreover, we fill the missing gaps in the security proof of
the original proposal, connecting it to the state-of-the-art of the ECDSA security.
Namely, (1) our construction presents the same capabilities of the original Sleeve,
(2) it is at least as secure as the ECDSA signature scheme given a tweakable hash
function whose output is computationally indistinguishable from the uniformly ran-
dom distribution, and (3) our construction is generically secure, i.e. GenSleeve with
respect to SLP.

Finally, we showcase our security results using the formal method analysis tool
called Verifpal, which produced positive results matching the ones obtained in the
mathematical proof of security. The distinctive extra level of security provided by
Sleeve has the potential to help in the adoption of this new cryptographic primitive
in the context of blockchain applications. Moreover this work illustrates that our
construction is now open-source, audited, and features a more complete security

184 D. Chaum et al.

proof relating the construction with a concrete computational problem: a must in
provable security practice.

Finally, this work illustrates a fruitful combination of theoretical work, from the
protocol specification/construction, to the formal method analysis. Such thorough
work which might raise the expectation of due diligence teams to include formal
analysis when designing and evaluating cryptographic protocols.

A High-level Diagram of the Tweakable Sleeve
Construction

This section exposes a high-level diagram of the sequence of performed steps in the
key generation component of the Sleeve construction (Fig. 2).

Fig. 2 Sleeve high-level diagram of the key generation

Tweakable Sleeve: A Novel Sleeve Construction Based on Tweakable . . . 185

References

1. Aranha, D. F., Novaes, F. R., Takahashi, A., Tibouchi, M., & Yarom, Y. (2020). Ladderleak:
Breaking ecdsa with less than one bit of nonce leakage. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (pp. 225–242). New York,
NY, USA: CCS ’20, Association for Computing Machinery.

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., & Zikas, V. (2018). Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In D. Lie, M. Mannan, M.
Backes, & X. Wang (Eds.), ACM CCS (pp. 913–930). ACM Press. https://doi.org/10.1145/
3243734.3243848.

3. Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., & Schwabe, P. (2019).
The SPHINCS+ signature framework. In L. Cavallaro, J. Kinder, X. Wang, & J. Katz (Eds.),
ACM CCS (pp. 2129–2146). ACM Press. https://doi.org/10.1145/3319535.3363229.

4. Mnemonic code for generating deterministic keys. Accessed September 10, 2021, from https://
github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.

5. Mnemonic code converter. Accessed September 10, 2021, from https://iancoleman.io/bip39/.
6. Brown, D. (2005). On the provable security of ECDSA, pp. 21–40. London Mathematical

Society Lecture Note Series, Cambridge University Press.
7. Brown, D. R. (2005). Generic groups, collision resistance, and ecdsa. vol. 35, pp. 119–152.

Springer.
8. Chaum, D., Larangeira, M., Yaksetig, M., & Carter, W. (2021). Wots+ up my sleeve! a hidden

secure fallback for cryptocurrency wallets. In International Conference on Applied Cryptog-
raphy and Network Security (pp. 195–219). Springer.

9. Chen, L. (2022). Recommendation for key derivation using pseudorandom functions-revision
1. NIST special publication. Accessed February 20, 2022, from https://doi.org/10.6028/NIST.
SP.800-108r1-draft.

10. Dahmen, E., Okeya, K., Takagi, T., & Vuillaume, C. (2008). Digital signatures out of second-
preimage resistant hash functions. In J. Buchmann, & J. Ding (Eds.), Post-quantum Cryp-
tography, Second International Workshop, PQCRYPTO (pp. 109–123). Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-88403-3_8.

11. David, B., Gazi, P., Kiayias, A., & Russell, A. (2018). Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: J. B. Nielsen, & V. Rijmen (Eds.), EURO-
CRYPT, Part II. LNCS (vol. 10821, pp. 66–98). Heidelberg: Springer. https://doi.org/10.1007/
978-3-319-78375-8_3.

12. Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2), 198–208.

13. Fersch,M., Kiltz, E., & Poettering, B. (2016). On the provable security of (ec)dsa signatures. In
Proceedings of the 2016 ACMSIGSACConference onComputer andCommunications Security
(pp. 1651–1662). New York, NY, USA: CCS ’16, Association for Computing Machinery.

14. Fersch, M., Kiltz, E., & Poettering, B. (2017). On the one-per-message unforgeability of
(EC)DSA and its variants. In: Y. Kalai, & L. Reyzin (Eds.), TCC 2017, Part II. LNCS (vol.
10678, pp. 519–534). Heidelberg: Springer https://doi.org/10.1007/978-3-319-70503-3_17.

15. Golang implementation of the bip39 spec. Accessed September 10, 2021, from https://godoc.
org/github.com/tyler-smith/go-bip39.

16. Hülsing, A. (2013). W-OTS+ - shorter signatures for hash-based signature schemes. In A.
Youssef, A. Nitaj, & A. E. Hassanien (Eds.), AFRICACRYPT 13. LNCS (vol. 7918, pp. 173–
188). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-38553-7_10.

17. Ilie, D. I., Karantias, K., & Knottenbelt, W. J. (2020). Bitcoin crypto-bounties for quantum
capable adversaries. Cryptology ePrint Archive, Paper 2020/186. https://eprint.iacr.org/2020/
186.

18. Ilie, D. I., Knottenbelt, W. J., & Stewart, I. (2020). Committing to quantum resistance, better:
A speed-and-risk-configurable defence for bitcoin against a fast quantum computing attack.
Cryptology ePrint Archive, Paper 2020/187. https://eprint.iacr.org/2020/187.

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3319535.3363229
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://iancoleman.io/bip39/
https://doi.org/10.6028/NIST.SP.800-108r1-draft
https://doi.org/10.6028/NIST.SP.800-108r1-draft
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-70503-3_17
https://godoc.org/github.com/tyler-smith/go-bip39
https://godoc.org/github.com/tyler-smith/go-bip39
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/187

186 D. Chaum et al.

19. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: J. Katz, & H. Shacham (Eds.), CRYPTO 2017, Part I.
LNCS (vol. 10401, pp. 357–388). Heidelberg: Springer. https://doi.org/10.1007/978-3-319-
63688-7_12.

20. Kobeissi, N. (2021). Verifpal: Cryptographic Protocol Analysis for Students and Engineers.
Accessed August 5, 2021, from https://verifpal.com.

21. Kobeissi, N., Nicolas, G., & Tiwari, M. (2020). Verifpal: Cryptographic protocol analysis for
the real world. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing
Security Workshop (p. 159). New York, NY, USA: CCSW’20, Association for Computing
Machinery.

22. Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.org/
bitcoin.pdf.

23. Sleeve. (2022). Accessed February 21, 2022, from https://github.com/xx-labs/sleeve/tree/
main/verifpal_model.

24. Trinity attack incident part 1: Summary and next steps. Accessed September 22, 2020, from
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8.

25. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151, 1–32.

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://verifpal.com
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/xx-labs/sleeve/tree/main/verifpal_model
https://github.com/xx-labs/sleeve/tree/main/verifpal_model
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8

	 Tweakable mathcalSleeve: A Novel mathcalSleeve Construction Based on Tweakable Hash Functions
	1 Introduction
	2 Background
	3 The Tweakable mathcalSleeve
	3.1 The Generic Sleeve: GenmathcalSleeve

	4 Security Analysis
	4.1 Generic Attack Security and Unforgeability of Fallback Scheme
	4.2 Tweakable mathcalSleeve is at Least as Secure as an ECDSA One
	4.3 The Security of GenmathcalSleeve

	5 Implementation and Performance
	6 Formal Methods Analysis
	7 Final Remarks
	A High-level Diagram of the Tweakable mathcalSleeve Construction
	References

